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Resumo  

 

 

A malária constitui uma das doenças infecciosas mais devastadoras, afectando 

actualmente 5 a 10% da população mundial. O audacioso plano de erradicação da 

malária é um objectivo em curso que requer o desenvolvimento de novas estratégias de 

combate à infecção e que é limitado pelo conhecimento insuficiente da biologia do 

Plasmodium, o parasita que provoca a malária, e das complexas interacções que 

mantém com o hospedeiro. 

O Plasmodium é um organismo protozoário com um ciclo de vida complexo que envolve 

um mosquito vector do género Anopheles e um hospedeiro vertebrado. A fase hepática 

da malária é a primeira etapa do ciclo de vida do parasita no hospedeiro mamífero, 

durante a qual não é revelado nenhum sintoma da doença. É, no entanto, nos 

hepatócitos que o Plasmodium se desenvolve e replica originando milhares de novos 

parasitas que são depois libertados na corrente sanguínea. A passagem do parasita 

para o sangue dará lugar à fase sintomática da doença. Assim, apesar de ser 

clinicamente silenciosa, a infecção do fígado pelo Plasmodium é determinante no 

estabelecimento de qualquer infecção de malária. A fase hepática da malária constitui 

um excelente alvo para a criação de uma vaccina ou de novas abordagens terapeúticas 

uma vez que conferirá protecção completa ao hospedeiro humano, impedindo a 

manifestação clínica de sintomas e, mais importante, a transmissão da doença para 

outros indivíduos. A compreensão dos mecanismos fundamentais de controlo da 

infecção no fígado irá certamente contribuir para o desenvolvimento de novas 

estratégias de combate à infecção. Considerando que as terapias existentes 

actualmente tenderão a tornar-se insuficientes ou obsoletas, devido em grande parte ao 

desenvolvimento de resistências pelo parasita, será crucial produzir vacinas eficazes 

contra a infecção por Plasmodium. 

O principal desafio para qualquer hospedeiro é o de detectar o parasita e de induzir 

uma resposta defensiva rápida. Os Toll e os Toll-like receptors (TLRs) constituem uma 

família de receptores do sistema imune inato, que desempenham esse papel essencial 

de reconhecimento e defesa contra agentes infecciosos. Estão presentes tanto em 

organismos invertebrados como vertebrados, reflectindo uma notável conservação de 
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função em termos evolutivos. A análise funcional dos TLRs dos mamíferos revelou que 

estes reconhecem moléculas ou famílias moleculares específicas conservadas 

evolutivamente que se encontram presentes em microrganismos. Estas moléculas não 

são encontradas em mamíferos, excepto em condições de stress celular ou inflamação, 

tornando-as alvos importantes no desenvolvimento de novas estratégias de intervenção 

imunológica. Os diferentes membros desta família de receptores reconhecem lípidos, 

proteínas, lipoproteínas, carbohidratos, péptidos, lipopeptídeos e estruturas de ácidos 

nucleicos que são na generalidade expressas por grupos específicos de organismos 

patogénicos. Quando reconhecidas pelos TLRs, induzem a activação da imunidade 

inata, assegurando a geração de uma resposta imune adaptativa contra os parasitas. 

Actualmente, embora seja consensual a noção de que os TLRs estão envolvidos na 

detecção de parasitas, e tendo sido previamente descrito que os hepatócitos 

expressam os TLRs 1 a 9, a nossa compreensão acerca da sua função na resposta 

imune inata contra a infecção do fígado pelo Plasmodium ainda é limitada. 

O trabalho apresentado nesta tese focou-se essencialmente na determinação do papel 

de alguns destes receptores e de uma molécula adaptadora envolvida na via de 

sinalização dos mesmos, MyD88, durante a fase hepática da malária. 

Enquanto que a infecção de ratinhos mutantes para TLR2 por esporozoítos de P. 

berghei – a forma invasiva transmitida por mosquitos Anopheles e que infecta 

hepatócitos de roedores – é semelhante à dos ratinhos controlo wild-type, a infecção de 

ratinhos que não expressam os receptores TLR4 e TLR9 apresenta diferenças 

significativas importantes relativamente aos controlos. Ratinhos com deficiências na 

expressão de TLR4 e TLR9 revelam uma maior susceptibilidade e resistência, 

respectivamente, à infecção do fígado pelo parasita. A expressão reduzida ou ausência 

de TLR4 reduz a intensidade da resposta imune, permitindo uma maior proliferação do 

parasita no fígado. Pelo contrário, a ausência de expressão de TLR9 parece ser 

prejudicial para o parasita, uma vez que os níveis de infecção pelo parasita são 

reduzidos em mutantes para TLR9. Estas observações sugerem que estes dois 

receptores desempenham papéis importantes na infecção pela forma hepática de P. 

berghei. De facto, o tratamento com LPS e CpG, ligandos de TLR4 e TLR9 

respectivamente, em simultâneo com a infecção, provoca uma diminuição nos níveis de 

infecção no fígado. O receptor TLR9 poderá ser importante na infecção e 

desenvolvimento do parasita durante a primeira fase do seu ciclo de vida no 



 

 
v 

hospedeiro. Adicionalmente, a molécula recrutada por todos os TLRs na sua via de 

sinalização, MyD88, é aqui descrita como mediadora da imunidade protectora induzida 

por esporozoítos de P. berghei atenuados por irradiação, a única forma até agora 

descrita de imunização efectiva contra a forma hepática do parasita. Embora a molécula 

adaptadora MyD88 seja relevante no processo de imunização com esporozoítos 

irradiados, os ratinhos que não expressam MyD88, quando injectados com parasitas 

viáveis, revelam níveis de infecção muito semelhantes aos ratinhos controlo wild-type. 

Os resultados apresentados nesta tese sugerem que os TLRs são mediadores de 

interacções entre o parasita e o hospedeiro durante a fase hepática da malária e 

poderão ainda estar envolvidos no desenvolvimento de imunidade conferida pela 

imunização com esporozoítos irradiados. A activação destes receptores na fase inicial 

da infecção poderá ainda ditar o grau de desenvolvimento da patologia em etapas mais 

tardias da doença, e consequentemente, determinar o aparecimento ou a ausência de 

malária cerebral, a manifestação mais letal desta doença.  
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Abstract 

 

 

Malaria is one of the most severe human infectious diseases, affecting 5 to 10% of the 

world's population every year. Although malaria eradication has emerged as a desirable 

if audacious goal, it is consensual that the development of novel intervention strategies 

is limited by our current understanding of the biology of Plasmodium, the causative 

agent of malaria, and of the complex relationships that the parasite maintains with its 

hosts.   

Plasmodium has a complex life cycle that oscillates between a mosquito vector and a 

vertebrate host. Upon infection of its mammalian host, each Plasmodium sporozoite 

establishes itself in liver hepatocytes where it replicates into thousands of new parasites 

(merozoites) that are subsequently released into the bloodstream, infecting red blood 

cells and causing malaria. Liver infection by Plasmodium is an ideal target for the 

development of anti-malaria strategies, as it is the first step of infection and it is clinically 

silent. Indeed, Plasmodium liver stage is the epitome of a perfect malaria vaccine or 

drug target since complete protection from infection of the treated human host abrogates 

clinical manifestation and, importantly, transmission of the disease. Thus, understanding 

the key events during liver infection will certainly facilitate our progress towards novel 

intervention strategies against malaria.  

The prime challenge for any invaded host is to detect the pathogen and orchestrate a 

rapid defensive response. A set of essential surface and endosomal molecules that 

comprise the Toll or Toll-like family of receptors perform this role in invertebrate and 

vertebrate organisms, reflecting a remarkable conservation of function. Functional 

analysis of mammalian Toll-like receptors (TLRs) has revealed that they recognize 

specific evolutionarily conserved microbial molecules or molecular families that are 

present among pathogens and are usually critical to the pathogen's function. These 

molecules are not found in mammals except in cell stress and inflammation, making 

them crucial targets for immune intervention. The members of the TLR family recognize 

lipids, proteins, lipoproteins, carbohydrates, peptides, lipopeptides and nucleic acid 

structures that are broadly expressed by specific groups of pathogens, providing the 
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basis for innate immunity and ensuring multiple mechanisms of the adaptive immune 

response against parasites. 

Although it is clear that pathogen detection involves members of the TLR family and that 

hepatocytes express the majority of all known TLRs, our current understanding about 

their function in the innate response to Plasmodium liver infection remains elusive. 

The work presented in this thesis aimed to determine the role of some of these innate 

receptors and their adaptor molecule, MyD88, not only in the establishment of 

Plasmodium in the liver but also during an immunization process with attenuated forms 

of Plasmodium sporozoites.  

Liver stage infection by Plasmodium is strongly affected by manipulation of TLR4 and 

TLR9. While TLR2-deficient mice are infected as wild-type control mice, TLR4 and 

TLR9-deficient mice show increased susceptibility and resistance to liver stage infection, 

respectively. While TLR4 absence dampens the inflammatory response, increasing the 

parasite load in the liver, the lack of TLR9 seems to be detrimental for the parasite. On 

the other hand, administration of LPS and CpG (TLR4 and TLR9 ligands, respectively), 

at the time of sporozoite injection, strongly reduces the levels of Plasmodium liver load.  

In humans, immunization with large numbers of radiation-attenuated sporozoites (RAS) 

remains the only protocol that leads to the induction of sterile immunity. MyD88 is a 

mediator of protective immunity induced by P. berghei RAS, despite the fact that when 

injected with viable sporozoites, MyD88-deficient mice are infected as normal wild-type 

control mice. 

Altogether, the findings presented herewith suggest that TLRs not only mediate major 

events in the establishment of Plasmodium liver stage infection but are also key players 

during the establishment of sterile immunity.  
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IRAK  IL-1 receptor associated kinase 
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RT-PCR  reverse transcriptase PCR 
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TIR  Toll/interleukin-1 receptor 
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Plasmodium, the causative agent of malaria, is a protozoan parasite that has been 

discovered more than 125 years ago. Still, malaria remains a major global-health 

problem today. According to the World Health Organization (WHO) World Malaria 

Report 2008 the most recent numbers shows that malaria still kills approximately one 

million people each year, essentially young children and pregnant women. This public 

health burden creates a significant barrier to economic and social development of the 

most affected countries (Snow, Trape et al. 2001). So far, due to the complexity of the 

Plasmodium parasite and its life cycle, the available options for preventing malaria 

remain limited to vector control and chemoprophylaxis. While drug-resistant strains of 

the parasite are emerging and insecticide-resistant strains of the mosquito vector are 

spreading around, the efforts to design an effective vaccine or to develop new drugs 

capable of reducing malaria morbidity, mortality or transmission remain unsuccessful. 

 

 

Malaria – Past, present and future 

 

The term malaria is derived from the Italian mala aria, which means “bad air”, from the 

early association of the disease with marshy areas. Towards the end of the 19th 

century, Charles Laveran, a French army surgeon, observed parasites in the blood of a 

patient suffering from malaria, and Dr Ronald Ross, a British medical officer in 

Hyderabad, India, discovered that mosquitoes were responsible for transmitting malaria. 

The Italian professor Giovanni Grassi subsequently showed that human malaria could 

only be transmitted by Anopheles mosquitoes (reviewed inTuteja 2007).  

Currently, over two billion people, representing more than 40% of the world’s population, 

are at risk of malaria (Snow, Guerra et al. 2005). The most affected populations are from 

developing countries in both the subtropical and tropical regions, many of which are 

endemic for the disease. Despite its broad distribution, most of the malaria cases and 

deaths occur in sub-Saharan Africa. Nevertheless, Asia, Latin America, the Middle East 

and parts of Europe are also affected (World Health Organization, 2007) (see Figure 1). 

Malaria is widespread where the temperature and rainfall are most suitable for the 

development of Anopheles mosquitoes, the transmission vector of the malaria parasite, 

Plasmodium. In the past, malaria also occurred widely in other regions with temperate 
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climate conditions such as Western Europe and the United States. However, public 

health measures and economic development have been successful in achieving 

complete eradication of the disease, except for cases imported via international travel.  

 

 

 

 

Figure 1 Malaria risk areas, 2006 (World Health Organization, 2007). 

 

 

To counteract this major public health problem The Global Malaria Eradication 

Programme was created by the WHO in 1955 and was based on two different kinds of 

approaches. First, chloroquine was used for treatment and prevention of malaria 

infection, and second, the insecticide dichloro-diphenyl-trichloroethane (DDT) was 

applied as a vector control strategy. The implementation of these two types of measures 

led to some beneficial effects, especially in areas with lower transmission rates, like Sri 

Lanka and India (WHO, The World Health Report 1999). However, global eradication 

was officially abandoned in 1972, mainly due to the emergence of chloroquine-resistant 
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Plasmodium parasites and DDT-resistant Anopheles mosquitoes (Brito 2001), but also 

due to lack of political motivation. Still, in certain countries like Thailand, where better 

health infrastructure and sustained anti-vector measures, associated to economic 

development, were implemented, parasite transmission has actually declined. In other 

countries, like Sri Lanka and Madagascar, the resurgence of malaria caused devastating 

epidemics, which have affected entire populations (Roberts, Manguin et al. 2000). Then, 

the emergence of chloroquine and sulfadoxine-pyrimethamine-resistant Plasmodium 

parasites in Africa (Snow, Trape et al. 2001) became a major issue that required a 

serious intervention from the international community, which led to new vector 

controlling measures and new drug combinations with artemisinin derivatives. These 

measures were very successful in some areas, reinvigorating the program for global 

eradication (Greenwood, Fidock et al. 2008).  

Currently, the WHO’s Global Malaria Programme (GMP), as well as other international 

initiatives that have been launched to challenge malaria, postulates that malaria control 

requires an integrated approach that comprises prevention and treatment with effective 

antimalarials. Several other organizations support the implementation of prevention and 

treatment programs. In fact, there are several ways of decreasing malaria prevalence 

but none currently offers an absolute blockade (Greenwood and Mutabingwa 2002). 

Thus, it is urgent to develop new tools to prevent and treat malaria and to overcome the 

increasing parasite drug resistance observed over the past few decades. Many believe 

that the three combined strategies of drug treatment, vaccination and vector control will 

ultimately be a requisite to significantly decrease malaria infection and transmission 

(Miller and Greenwood 2002; Ballou, Arevalo-Herrera et al. 2004). 

Vaccines, drugs and anti-vector measures are being developed to prevent infection, 

disease, and transmission. Interestingly, the most widely used old compounds are both 

derived from ancient herbal therapies. Quinine, isolated from cinchona bark in 1820, and 

artemisinin, which was obtained from the plant Artemisia annua in 1972 and currently 

constitutes the most used drug for treatment, being an extremely effective antimalarial. 

To overcome parasite drug resistance and to extend the useful life of current drugs, 

combination therapy is being progressively more employed. Further, progress towards 

developing a vaccine is incomplete. There is no clinically approved malaria vaccine 

available thus far, even though some are currently in the clinical development and 
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testing phases (Girard, Reed et al. 2007; Todryk and Hill 2007). Another prospective 

option for reducing malaria transmission is by using genetically modified mosquitoes that 

are refractory to parasite transmission (Christophides 2005). Nevertheless, to be 

effective, these mosquitoes need to be successful in the wild, competing with the 

already evolutionary and ecologically established mosquitoes. 

The availability of genome sequences for humans, Anopheles mosquitoes and 

Plasmodium parasites has created new expectations for future research achievements. 

As part of a major and global effort to eradicate malaria, research must be directed to a 

deeper knowledge of Plasmodium biology but also to the mammalian host and vector 

response to the parasite. In that respect, a better understanding of the host immune 

mechanisms operating against Plasmodium infection can also give rise to more powerful 

interventions. These would be critical to counteract antimalarial drug resistance and the 

requirement of an effective vaccine against Plasmodium, which hinders malaria control.  

 

 

Plasmodium 

 

Malaria parasites are eukaryotic unicellular microorganisms that belong to the genus 

Plasmodium. More than 100 species of Plasmodium can infect several animal species 

such as birds, reptiles, and a variety of mammals, although only five different species of 

Plasmodium infect humans under natural conditions: P. falciparum, P. vivax, P. 

malariae, P. ovale and more recently P. knowlesi. These five species differ in their 

morphology, geographical distribution, relapse patterns and drug responses. Host 

immunity against them is also distinct. Among these five species, P. falciparum is the 

most virulent and the major cause of mortality. It is also distinguished by its ability to 

adhere to the endothelium during the blood stage of the infection and to sequester in 

several organs, including the brain. The sequestration of P. falciparum-infected 

erythrocytes in the brain has been thought to be a major cause of severe malaria-

associated pathology including cerebral malaria, a complication that is often fatal. 

However, this view is today contested by proposals of alternative pathogenic 

mechanisms. Plasmodium vivax is usually found in tropical areas outside Africa because 

most Africans lack the Duffy blood group antigen, essential for P. vivax invasion, which 
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is expressed on the surface of erythrocytes. Both P. vivax (the most widespread 

species) and P. ovale (the least common malaria parasite, restricted to West Africa) are 

capable of remaining latent in the liver for weeks to many years as quiescent liver stage 

forms – hypnozoites, which turns infection with these parasites difficult to eliminate. The 

beginning of a new round of pre-erythrocytic schizogony results in relapses of malaria 

infection. Despite not being able to form hypnozoites, P. malariae can persist for 

decades as a long-lasting asymptomatic blood stage infection. It is found worldwide, but 

with relatively low frequency (reviewed in Collins and Jeffery 2007). A fifth species, P. 

knowlesi, which was originally described as a malaria parasite of non-human primates, 

has been recently described in naturally infected humans in specific regions, such as 

Malaysia, where the monkey population is highly prevalent (Singh, Kim Sung et al. 

2004).  

 

 

Plasmodium life cycle 

 

Plasmodium parasites have a complex life cycle in their mosquito vector and vertebrate 

hosts (see Figure 2). Vertebrate infection begins with the bite of an infected female 

Anopheles mosquito. Sexual stage differentiation and development of sporozoites, the 

liver infective form of the parasite, take place in the mosquito vector and its transfer 

occurs during a blood meal. It was thought that sporozoites moved rapidly away from 

the site of injection. However it was recently described that most of the infective 

sporozoites remain at the injection site for hours, with only slow release into the 

bloodstream (Yamauchi, Coppi et al. 2007). Once in circulation, sporozoites travel to the 

liver and enter parenchymal cells to initiate the hepatic phase of the disease. Prior to 

invasion of a final hepatocyte where the parasite will develop and replicate, sporozoites 

traverse several hepatocytes before invading a final one (Mota, Pradel et al. 2001). The 

structures on sporozoites surface responsible for hepatocyte invasion are mainly the 

thrombospondin domains on the circumsporozoite protein (CSP) and on 

thrombospondin-related adhesive protein (TRAP). These domains specifically bind to 

heparan sulfate proteoglycans (HSPGs)  on the hepatocytes (Frevert, Sinnis et al. 

1993). Once inside the hepatocyte, each sporozoite gives rise to tens of thousands of 
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merozoites through a process termed schizogony. The time for asexual replication in the 

liver differs, depending on the infecting parasite and infected host. The prepatent period 

– the time between sporozoite inoculation and the appearance of parasites in the blood 

– takes 6 to 18 days for human species, and 42 to 48 hours for murine malaria 

parasites. Using a rodent malaria parasite, P. berghei, it has been shown that liver stage 

parasites “manipulate” their host cells to ensure the safe release of merozoites into the 

blood. Hepatocyte-derived merosomes appear to act as shuttles that ensure the 

protection of parasites from the host immune system and the release of viable 

merozoites directly into the bloodstream (Sturm, Amino et al. 2006). The release of 

many thousands of merozoites into the blood, initiates the erythrocytic stage of malaria, 

a pathogenic cyclic phase in which merozoites develop into mature schizonts within 

erythrocytes, which rupture and release a new wave of merozoites that invade a new 

batch of red blood cells (reviewed in Prudencio, Rodriguez et al. 2006). 

 

 

 

 

Figure 2 Plasmodium life cycle. 
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Each merozoite invades an erythrocyte and divides by schizogony to form an 

erythrocytic schizont, containing up to 20 daughter merozoites. These merozoites can 

reinfect other erythrocytes, giving rise to a cyclical blood-stage infection with a 

periodicity of 48–72 hours, depending on the Plasmodium species.  

During the blood stage of infection, unknown factors trigger a subset of developing 

merozoites to differentiate into male and female gametocytes, which, when taken up by 

a feeding mosquito, give rise to extracellular gametes, carrying on the Plasmodium’s life 

cycle. In the mosquito mid-gut, the gametes fuse to form a motile zygote (ookinete), 

which penetrates the mid-gut wall and forms an oocyst, within which meiosis takes place 

and genetically distinct haploid sporozoites develop (Aravind, Iyer et al. 2003). The 

mosquito becomes infectious to its next blood meal donor around two weeks after 

ingesting gametocytes. 

To complete its life cycle, Plasmodium must pass through the mosquito midgut and 

salivary glands, penetrate skin vessels, traverse macrophages and several hepatocytes 

prior to enveloping itself in a vacuole and finally, to attach to the surface of erythrocytes 

before invasion. The unicellular malaria parasite exploits a pool of around 5000 genes 

(Gardner, Hall et al. 2002) to undergo remarkable changes and face distinct 

environments and barriers to parasite infection and development. Since all these 

processes require a series of specific molecular interactions, they are considered as 

potential targets for the development of new tools against malaria. 

 

 

The pre-liver infection 

 

The liver stage of Plasmodium infection appears as a good target for developing anti-

malaria vaccines or prophylactic drugs. Given that it is the first obligatory step of 

infection and that Plasmodium remains in the liver for about a week in human malaria 

infections, the immune system has enough time to mount a response. However, the 

immune response is usually unsuccessful as the blood stage of infection will follow. 

Even so, it can be improved to make it more effective. Furthermore, the liver stage is a 

relevant target to prevent the infection at an early stage, once it is clinically silent and 

either an effective vaccine or prophylaxis would avoid the development of disease. In 
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addition, the infection is achieved with only a small number of infected hepatocytes and 

so, there are only small numbers to eradicate (Rosenberg, Wirtz et al. 1990). In recent 

years, despite some experimental constraints, particularly in humans, some advances 

have been made to understand both parasite and host mechanisms of infection and 

response, respectively. The use of malaria rodent models to study the liver stage of 

infection has been crucial to allow manipulation of liver infection, intravital imaging, gene 

knockouts and a sort of scientific approaches that would never be possible in humans. 

These progresses are having important implications in the development of potential 

tools for novel clinical approaches and for vaccine design.  

During a blood meal, infected Anopheles mosquitoes inoculate Plasmodium sporozoites 

into the dermal and subdermal tissue of the host. Over time, the sporozoites migrate 

through the skin until they reach a blood vessel, then traversing the endothelium, 

sporozoites move into the blood circulation, from where they reach the liver to initiate a 

malaria infection. Using intravital microscopy of the skin during a mosquito bite, 

Vanderberg and colleagues, directly evidenced that mosquito probing introduces 

sporozoites into dermal tissue and these migrate through the dermis and into blood 

vessels. Furthermore, they also pointed out the role of anti-sporozoite antibodies in 

blocking sporozoite invasion of these dermal blood vessels (Vanderberg and Frevert 

2004).  

Interestingly, a quantitative real-time analysis of the fate of sporozoites was used after a 

mosquito bite in rodents, to demonstrate that only a portion of the parasites entered 

circulation, whereas some are drained by lymphatics and stop at the proximal lymph 

node (Amino, Thiberge et al. 2006). Once there, the authors postulate that most are 

degraded by dendritic cells, but a few sporozoites are capable of partially differentiating 

into exoerythrocytic stages. This event occurs during sporozoite migration after 

mosquito probing, and the fact that parasites can partially develop in lymph nodes might 

have a major influence in host immunity against Plasmodium infection and therefore 

must be considered in vaccine development against the preerythrocytic stages of the 

parasite. It was also proposed that host cell traversal is important for progression of the 

malaria parasite through the dermis to the liver. Using a murine parasite, P. berghei, it 

has been recently shown that cell traversal is important in the host dermis for preventing 

sporozoite destruction by phagocytes and arrest by nonphagocytic cells (Amino, 
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Giovannini et al. 2008). In addition, during the migration in the skin before entering the 

liver, sporozoites are very susceptible to neutralization by antibodies. These bind 

sporozoite surface proteins, mainly the CSP (Yoshida, Nussenzweig et al. 1980) that 

uniformly covers the external surface of sporozoites, and effectively opsonize the 

parasite (Vanderberg and Frevert 2004). Still, when sporozoites are able to rapidly reach 

a blood vessel, they are then carried to the liver in a very short period of time, entering 

the sinusoids through the portal fields. Sinusoids display a very specialized endothelium, 

essentially consisted by fenestrated endothelial cells and resident liver macrophages, 

known as Kupffer cells (Bouwens, De Bleser et al. 1992; Prudencio, Rodriguez et al. 

2006). 

 

 

The liver infection 

 

Sporozoites attach to the endothelial inner layer of liver sinusoids by interactions 

between parasite surface proteins, both CSP and TRAP (Robson, Hall et al. 1988), with 

host extracellular matrix proteoglycans (reviewed in Kappe, Buscaglia et al. 2004). 

These parasite surface proteins, CSP and TRAP, are also thought to play essential roles 

in sporozoite gliding motility and host cell infection (Sultan, Thathy et al. 1997). Since 

sporozoites do not adhere to sinusoidal endothelia in vitro (Pradel and Frevert 2001), 

the gliding along the sinusoid lining is thought to be mediated by the interaction of CSP 

and TRAP with the unique highly sulphated liver HSPGs protruding from the 

extracellular matrix in the space of Disse and through fenestrae of the endothelial cells 

(Robson, Frevert et al. 1995; Pradel, Garapaty et al. 2002). 

After attaching to sinusoids endothelium, sporozoites must cross the sinusoidal barrier 

to reach hepatocytes. Surprisingly, Frevert and colleagues suggested that instead of 

taking what would seem a safer route through endothelia, the parasites traverse Kupffer 

cells without suffering any harm. The authors proposed a model in which these liver 

macrophages function as the sporozoite gate to the liver. Thus, according to this model, 

sporozoites glide along the endothelium, then penetrate and traverse Kupffer cells to 

reach hepatocytes. Notably, the CSP from sporozoites, by binding to ribosomes and 

inhibiting protein synthesis (Frevert, Galinski et al. 1998), seems to suppress the 
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respiratory burst in Kupffer cells (Usynin, Klotz et al. 2007) and to inhibit antigen 

presentation and cytokine release, thereby disabling the Kupffer cells’ potential anti-

parasitic function (Steers, Schwenk et al. 2005). However, it has been shown that 

Kupffer cells can phagocytize sporozoites (Meis, Verhave et al. 1983) and interfere with 

the development of the exo-erythrocytic forms (Vreden, Sauerwein et al. 1993) 

presumably by the production of IL-6 (Vreden, van den Broek et al. 1992). In addition, in 

vivo depletion of Kupffer cells prior to infection with P. berghei sporozoites results in 

increased parasitemia (Vreden, Sauerwein et al. 1993).  

Once inside the liver parenchyma, sporozoites traverse several hepatocytes before 

infecting a final one (Mota, Pradel et al. 2001). Mota and colleagues described that 

sporozoite host cell traversal caused breaching of the plasma membrane of the 

hepatocyte, followed by rapid repair. These observations emphasized that sporozoite 

migration through several cells in the mammalian host seems to be required for liver 

stage development and maintenance of the life cycle. The same authors proposed that 

sporozoites must cross the cytosol of several hepatocytes before invading a final one by 

the formation of a parasitophorous vacuole (PV), a specialized membrane compartment. 

Cell traversal seems to depend on at least two sporozoite secretory proteins – SPECT 

(sporozoite microneme protein essential for cell traversal) and SPECT2 (Ishino, Yano et 

al. 2004; Ishino, Chinzei et al. 2005). Inside the PV, in which the parasite is confined 

from the host cell cytoplasm  (Mikolajczak and Kappe 2006), the parasite proliferates 

and differentiates into thousands of erythrocyte-invasive forms, the merozoites 

(Hollingdale 1985). The initial formation of the vacuole is dependent on secretory 

proteins that are characterized by 6-cysteine domains. Indeed, sporozoites lacking 6-

cysteine proteins enter hepatocytes but cannot form a PV (Labaied, Harupa et al. 2007) 

and do not undergo the subsequent liver stage development.  

Several other parasite proteins have been described as being important in nutrient 

uptake from the host infected hepatocyte. UIS3 protein (Mikolajczak, Jacobs-Lorena et 

al. 2007) is one these proteins that seem to be inserted in the PV membrane. 

Genetically modified parasites that lack the expression of these proteins, display 

arrested development early in infection (Mueller, Camargo et al. 2005; Tarun, Dumpit et 

al. 2007). In fact, these proteins are critical for parasite development, since both 6-

Cysteine protein-deficient (Labaied, Harupa et al. 2007) and PV protein-knockout 
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parasites are consequently attenuated and cannot give rise to a blood stage infection 

(Mueller, Camargo et al. 2005; Tarun, Dumpit et al. 2007). 

 

 

Liver innate immunity 

 

Vertebrate immunity can be divided into innate and adaptive, both of which are 

responsible for the recognition and elimination of pathogens. The innate immune 

system, also present in invertebrates, constitutes the first line of defense against 

parasites. The innate immune response is mediated largely by polymorphonuclear 

leukocytes (PMNs) such as neutrophils, macrophages, dendritic cells (DCs), mast cells 

and NK cells. The functions of these innate cellular components comprise opsonization, 

activation of complement and phagocytosis that kills the pathogens and concurrently 

coordinate additional host responses by synthesizing a wide range of inflammatory 

mediators and cytokines (Medzhitov 2001).  

In general, the infectious agent is killed and degraded in antigen-presenting cells within 

the maturing phagossome, and components of the pathogen are presented to T cells, 

resulting in the activation of the adaptive immune response and in the establishment of 

protective immunity (Aderem and Ulevitch 2000). The recognition by the adaptive 

immune system and the efficiency of the response relies on the generation of random 

and highly diverse repertoires of B and T cell antigen receptors, clonal selection and 

expansion of lymphocytes with receptors of relevant specificity, followed by subsequent 

memory acquisition in most cases.  

The liver is an organ that stands between the gastrointestinal tract and the systemic 

circulation. Blood from the intestines, rich in bacterial products and in food-derived 

antigens, encounters the resident population of immune cells. The vast majority of the 

non-parenchymal cells found in the liver are specialized macrophages called Kupffer 

cells (KCs). Additionally, CD4 and CD8 T cells, DCs, natural killer (NK) cells and NKT 

cells are also found in the liver (reviewed in Crispe 2003).  

The primary antigen-presenting cells (APCs) in the liver are DCs, which migrate to 

lymph nodes in order to present antigens to antigen-specific lymphocytes, which in turn 

migrate to the site of infection. Not only DCs but also KCs as well as liver sinusoidal 
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endothelial cells (LSECs), hepatic stellate cells (HSCs) and hepatocytes are able to 

present antigens in the liver. These are resident cells and do not enter the draining 

lymph nodes.  

KCs constitute the liver resident macrophages and their interaction with leucocytes has 

been found to be relevant for host defense, liver regeneration and establishment of liver 

immune tolerance (reviewed in Bilzer, Roggel et al. 2006). By residing in liver sinusoids, 

KCs are among the first immune cells to come in contact with bacteria or bacterial 

components derived from the gastrointestinal tract. Additionally, KCs are thought to be 

responsible for the rapid clearance of bacteria from the blood stream (Klein, Zhadkewich 

et al. 1994).  

The most relevant factors in KC activation are endogenous complement factors C3a and 

C5a, β-glucans from bacteria and fungi, and LPS. In particular, KC activation by LPS, 

involving the LPS-binding protein CD14 and TLR4, activates the NF-κB pathway that 

ultimately will lead to production of pro-inflammatory cytokines, tumor necrosis factor-α 

(TNF-α) and IL-1, as well as large amounts of nitric oxide (NO). The release of pro-

inflammatory cytokines, such as IL-1, IL-6, and TNF-α, promotes the infiltration of 

neutrophils to eliminate bacteria. TNF-α also induces apoptosis in hepatocytes under 

pathological conditions (Schumann and Tiegs 1999). Additionally, KCs produce IL-12 

and IL-18 which activate NK cells to produce anti-viral interferon-γ (IFN-γ). However, 

following initial activation to produce pro-inflammatory cytokines, KCs release IL-10 

which down-regulates the production of TNF-α, IL-6 and other cytokines (Knolle, 

Schlaak et al. 1995) and thereby probably contributes to the intrahepatic cell populations 

capability to induce tolerance. 

LSECs can also be efficient APCs in the liver (Crispe 2009). They constitutively express 

MHC class I and II, as well as the co-stimulatory molecules CD40, CD80, and CD86. 

LSECs take up the antigen and present it to CD4 and CD8 T cells.  

Physiological concentrations of endotoxin, which are continuously present in portal 

venous blood (Crispe 2009), seem to induce the release of IL-10 from LSECs and KCs 

(Knolle, Schlaak et al. 1995) and to downregulate CD4 T cell activation by LSECs 

through down-modulation of the expression of MHC class II, CD80 and CD86 (Knolle, 

Germann et al. 1999). In contrast, TLR4 activation of APCs by endotoxin induces T cell 

activation (Pasare and Medzhitov 2005). These observations indicate that the liver 
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tolerogenic effect might be related to the continuous exposure of sinusoidal cells to 

bacterial products from the gut. 

Nevertheless, in contrast to TLR4 activation, activation of TLR3 by polyI:C or activation 

of TLR9 by CpG oligonucleotides, has been shown to induce CD8 T cell-mediated 

hepatitis in transgenic mouse models and has been suggested to induce autoimmunity 

by breaking immune tolerance in the liver (Sacher, Knolle et al. 2002; Lang, Georgiev et 

al. 2006). As well, TLR9 activation has been described to exacerbate CD4 T cell 

induced hepatitis (Jiang, Sun et al. 2009).  

HSCs are well known for their involvement in hepatic fibrosis and storage of vitamin A, 

and were recently shown to function as APCs (Winau, Hegasy et al. 2007). They are 

able to present protein or lipid antigens to MHC class I and II or to CD8 and CD4 T cells 

as well as to NKT cells. Upon bacterial infection, HSC elicited a protective antigen-

specific T cell response that eliminated the pathogens (Winau, Hegasy et al. 2007). 

Hepatocytes constitute the parenchymal cell population in the liver, which primarily 

perform metabolic functions. Still, they are also involved in immunoregulation by their 

ability to function as APCs. It has been shown recently that direct interactions occur 

between lymphocytes and hepatocytes through cytoplasmic extensions penetrating the 

liver endothelial fenestrations (Warren, Le Couteur et al. 2006). Apart from their 

constitutive MHC class I expression, hepatocytes also express MHC class II under 

inflammatory conditions, present the antigen and activate CD4 T cells (Herkel, 

Jagemann et al. 2003).  

T lymphocytes in the liver display an activated phenotype, constituting a source of both 

IFN-γ and IL-4 (Klugewitz, Blumenthal-Barby et al. 2002). However, the primary 

consequence of T cell priming in the liver seems to be tolerance (Knolle, Schmitt et al. 

1999; Limmer, Ohl et al. 2000). Indeed, as mentioned above, antigen presentation by 

LSECs induces apoptosis in CD8 T cells (Bertolino, Trescol-Biemont et al. 1998), a 

mechanism which might frustrate efforts to prime an effective local immune response. 

NK cells are present at an unusual high frequency among liver lymphocytes. By 

synthesizing IFN-γ, which promotes secretion of chemokine CXCL9 by hepatocytes, NK 

cells are thought to have a crucial role in T cell recruitment, and thus in promoting T cell-

mediated immunity (Itoh, Morita et al. 2001). As for NKT cells, even though having a 

limited T cell receptor (TCR) diversity, they were shown to play a role in the immune 
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response to the liver stage of malaria infection (Gonzalez-Aseguinolaza, de Oliveira et 

al. 2000) and to be crucial for the establishment of anti-tumour immunity (Cui, Shin et al. 

1997). 

 

 

Immune responses to malaria  

 

The life cycle of Plasmodium includes several stages, which can be targeted by host 

immune responses, either by blocking the intermediary critical steps between the 

different infection stages, or by directly killing the parasite.  

Following the injection of Plasmodium parasites by a female Anopheles mosquito into 

the human dermis, sporozoites have to evade antibodies and other opsonizing 

molecules such as complement, when accessing blood vessels in the skin and then to 

pass through liver macrophages and hepatocytes to initiate liver stage infection.  

Liver developing parasites are a target of cytotoxic T lymphocytes (CTLs) and at the 

time of merosome release, merozoites have to evade circulating antibodies to invade 

erythrocytes. Blood stage parasites are susceptible to opsonizing antibodies and 

macrophages, and cytokine responses have been related to both protection and disease 

during this stage of infection. In fact, antibodies that block binding of P. falciparum–

infected erythrocytes to endothelium might prevent disease and control parasitemia. 

Human antibodies specific for gametocytes can block transmission to mosquitoes, 

although these might require complement for parasite killing. Parasites can also be killed 

by Anopheles mosquito innate immune responses during early or late sporogonic stages 

and lead to refractoriness to infection (reviewed in Greenwood, Fidock et al. 2008). 

It has been demonstrated that the main anti-parasite effector mechanism in the liver is 

IFN-γ produced mainly by CS-specific CD8 and CD4 T cells that inhibit parasite 

development within hepatocytes (Schofield, Ferreira et al. 1987; Weiss, Sedegah et al. 

1988; Hoffman, Isenbarger et al. 1989; Romero, Maryanski et al. 1989; Rodrigues, 

Cordey et al. 1991). CD8 CTLs that are capable of recognizing Plasmodium antigens 

presented by MHC class I molecules on the surface of infected hepatocytes seem also 

to play a role. CTLs kill the hepatocytes through pore-forming perforin proteins, which 

allow apoptosis-inducing granzymes to enter and kill the target cells. However, immunity 
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can also be achieved in perforin knockout mice immunized with irradiated sporozoites 

(Renggli, Hahne et al. 1997). Moreover, IFN-γ production may enhance cytolytic 

mechanisms by increasing class I molecules on the surface of hepatocytes, making 

those hepatocytes better targets for CTL lysis, and activating supplementary effector 

cells such as natural killer cells and macrophages, which are also able to kill the target 

cells through CTL-like mechanisms, TNF-α induction and NO production. 

In the erythrocytic stage, the potential targets for an immune response are merozoites in 

the blood stream or intraerythrocytic parasites. Since HLA class I or II molecules are 

absent from the surface of the parasite or the infected red blood cell (RBC), it is 

generally agreed that humoral responses are critical in blood-stage immunity. It was 

shown in mouse models that B cells and antibodies are important in parasite elimination 

(Langhorne, Cross et al. 1998). The mechanisms by which antibodies are effective 

consist of blockade of the invasion of RBCs by merozoites (Blackman, Heidrich et al. 

1990), antibody-dependent cellular killing mediated by cytophilic antibodies (Bouharoun-

Tayoun, Oeuvray et al. 1995) and binding of antibody to parasite-induced molecules on 

the RBC surface, leading to greater clearance of infected RBCs (Bull, Lowe et al. 1998). 

Several studies suggest that responses to many antigens are involved in protection 

(Gray, Corran et al. 2007). Many presumed target antigens on the infected RBC surface 

and antigens either on the merozoite surface or released during merozoite invasion 

have been identified as being potentially protective.  

The immune response to malaria is extremely complex, and is both species- and stage-

specific. The generation and maintenance of clinically protective immune responses 

requires repeated infections over the lifetime of the individual. There are several 

mechanisms playing a role in adaptive immunity against malaria: antibodies that prevent 

invasion of sporozoites into liver cells, CD8 T cells and IFN-γ that inhibit parasite 

development in infected hepatocytes, antibodies that block invasion of merozoites into 

erythrocytes, antibodies that prevent sequestration of infected erythrocytes by 

preventing binding to adhesion molecules on the vascular endothelium, IFN-γ and CD4 

T cells that activate macrophages to phagocytose intra-erythrocytic parasites and free 

merozoites, antibodies that neutralize parasite glycosylphosphatidylinositol and inhibit 

induction of the inflammatory cytokine cascade and, finally, antibodies that mediate 
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complement-dependent lysis of extracellular gametes, prevent fertilization of gametes 

and the development of zygotes (reviewed in Stevenson and Riley 2004). 

As described above, the adaptive immune responses known to be protective at each 

stage of the parasite’s life cycle have been the subject of many studies in mice models 

of malaria infection and are quite well known. However, unlike other infections with 

intracellular pathogens, including viruses, bacteria and some protozoan parasites 

(Janeway and Medzhitov 2002; Akira, Uematsu et al. 2006; Beutler, Jiang et al. 2006), 

the role of the innate immune mechanisms against Plasmodium infection has not been 

often addressed.  

 

 

Vaccine development against malaria 

 

It is known that older children and adults with exposure to malaria infection can develop 

complete protection from severe illness and death, even though sterile immunity is 

probably never achieved. However, the viability of malaria vaccination is supported by a 

number of observations. Both epidemiological data and mathematical models 

demonstrate that immunity to malaria might be acquired with age, since only a few 

adults die of malaria in endemic regions (Gupta and Day 1994). This might be due either 

to the acquisition of tolerance – the infection proceeds at the same rates, but there are 

no clinical symptoms (clinical immunity) – or to the development of immunity to the 

parasite infection, in individuals that are continuously exposed to the disease throughout 

their life time. Some epidemiological data correlate specific immune responses with 

reduced malaria incidence, which indicates that it might be possible to develop immunity 

against the parasite. For instance, a considerable number of associations were done 

with immune responses to the main highly variable protein on the surface of infected 

erythrocytes, P. falciparum erythrocyte membrane protein 1 (PfEMP1), which constitutes 

a difficult target for immunization due to its high rates of antigenic switching and 

considerable diversity (Bull, Lowe et al. 1998; Dodoo, Staalsoe et al. 2001). Additionally, 

in the 1970s, it was shown that both humans and mice could be immunized with RAS, 

meaning that immunity against the pre-erythrocytic malarial stages by itself could induce 
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sterile protection for several months (Nussenzweig, Vanderberg et al. 1967; Clyde, Most 

et al. 1973). 

Despite it being possible to culture sporozoites in vitro (Al-Olayan, Beetsma et al. 2002), 

an extensive production is not a viable process, while immunization by thousands of 

infected mosquitoes is unfeasible as well. Thus, a huge effort has been made in the past 

25 years seeking to understand the immune mechanisms responsible for this protection 

and to identify the parasite proteins that are the targets of these protective immune 

responses. 

Thus far, sterile protective immunity against challenge with Plasmodium spp. 

sporozoites has been induced in several model systems and in humans by immunization 

with RAS. The primary target of this RAS-induced protection is the infected hepatocyte 

and several immune mechanisms have been identified as critical mediators of protection 

against sporozoite infection. Studies in mice indicate that CD8 effector T cells producing 

IFN-γ are the main mechanism by which these vaccines may act (Schofield, Villaquiran 

et al. 1987).  

T cells specific for parasite-derived peptide/class I MHC molecule complexes on the 

surface of infected hepatocytes are the primary immune effectors, which kill parasites in 

infected hepatocytes, while antibodies against sporozoite surface proteins, such as 

CSP, are thought to have a minor function. CD4 T cells that recognize parasite-derived 

peptides presented by class II MHC molecules on the surface of infected hepatocytes as 

well as other factors, including NO, are also important effectors in protection against 

sporozoite infection (reviewed in Doolan and Martinez-Alier 2006).  

It was recently shown in mice that parasites deficient in certain proteins, which induce 

arrested development in the liver, were also able to induce sterile protection. Indeed, a 

single-dose immunization with specific genetically attenuated sporozoites (GAS) can 

induce full protection against subsequent sporozoite infection. Moreover, prime-boost 

immunizations are capable of inducing protection for at least 6 months. Several GAS 

that infect hepatocytes but are unable to establish blood-stage infections in vivo have 

been described: UIS3-deficient sporozoites (Mueller, Labaied et al. 2005), UIS4-

deficient sporozoites (Mueller, Camargo et al. 2005), P36p-deficient sporozoites (van 

Dijk, Douradinha et al. 2005; Douradinha, van Dijk et al. 2007) and P52-deficient 

sporozoites, in P. falciparum, an ortholog of the rodent parasite gene P36p (van Schaijk, 
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Janse et al. 2008). The protection conferred by GAS is, to some extent, achieved by 

antibodies that prevent sporozoite invasion of hepatocytes. However, CD8 T cells are 

essential to eliminate the remaining infected hepatocytes both by direct cytotoxicity and 

by IFN-mediated mechanisms (Jobe, Lumsden et al. 2007; Mueller, Deckert et al. 2007), 

similar to those conferring protection induced by RAS (Doolan and Hoffman 2000). 

Because many do not believe a live-attenuated vaccine will ever be feasible, research 

has also been directed towards identifying parasite antigens that should be included in a 

vaccine. Despite extensive work on this subject, the number or the identity of the 

antigenic determinants involved in the protection against liver infection conferred by 

immunization with RAS remain unclear. The genes that need to be targeted in a 

designed subunit vaccine in order to elicit similar levels of immunity are still undefined. 

There may be numerous antigens that contribute to the sterile protective immunity 

elicited by the immunization with RAS. This means that subunit vaccines that comprise 

only one or a few antigens might need to induce immune responses that are significantly 

stronger than those that are induced by years of natural exposure to the parasite, in 

order to be able to confer worthwhile protection (Hill 2006).  

Although hundreds of other Plasmodium genes are expressed in sporozoites and 

exoerythrocytic forms (EEFs), the CSP seems to be an immunodominant protective 

antigen in RAS (Kumar, Sano et al. 2006). The CSP is a surface protein that covers 

Plasmodium sporozoites and the plasma membrane of EEFs and has been detected in 

the cytoplasm of the infected hepatocytes (Hollingdale, Leland et al. 1983). Recently, 

CSP was shown to influence the expression of over one thousand host genes involved 

in several metabolic processes in order to create an appropriate niche for the parasite 

growth and development in liver hepatocytes (Singh, Buscaglia et al. 2007). The 

presence of CSP in the hepatocyte seems to enhance parasite growth of the liver stages 

both in vitro and in vivo (Singh, Buscaglia et al. 2007). Nevertheless, regardless of being 

considered as a major candidate antigen for vaccines targeting the pre-erythrocytic 

stages of Plasmodium infection, sterile immunity can be induced despite the absence of 

specific immune responses to the CSP expressed by the parasite used for challenge 

(Gruner, Mauduit et al. 2007). 

The sequencing of the genome of P. falciparum (Gardner, Hall et al. 2002) provided a 

most useful tool for vaccine research. However, this might become a double-edged 
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sword: the approximately 5300 open reading frames that were identified, many of 

completely unknown function, may scatter the enormous efforts that are being 

developed thus far. It is not obvious whether the identification of thousands of putative 

candidate antigens to generate a vaccine would be helpful or not in a field that is already 

struggling with a small number of putative vaccine candidates. Still, malaria research is 

already gaining from the genome sequencing and related proteome project (Florens, 

Washburn et al. 2002; Hall, Karras et al. 2005). For instance, the stage-specificity of 

expression of many antigens in the Plasmodium life cycle is being better defined, 

revealing the unique expression of liver and blood stage antigens. 

Four antigens expressed by P. falciparum RAS in hepatocytes have been extensively 

investigated as putative vaccine targets: PfCSP, Pf Sporozoite Surface Protein 

2/Thrombospondin related anonymous protein (PfSSP2/TRAP), Pf Exported Protein-1 

(PfEXP-1), and Pf Liver Stage Antigen-1 (PfLSA1). Immunizing mice with the rodent 

malaria orthologues of PfCSP, PfSSP2/TRAP, and PfEXP-1 protects them from 

sporozoites infection. Moreover, immunization of people with PfCSP partially protects 

them against experimental and natural challenge (reviewed in Hoffman and Doolan 

2000). So, currently, despite a long history of disappointing results with other 

candidates, the most success has been achieved using a PfCSP-based recombinant 

protein, called RTS,S, one subunit vaccine which has shown promise in phase IIb 

clinical trials (Bojang, Milligan et al. 2001; Alonso, Sacarlal et al. 2004; Alonso, Sacarlal 

et al. 2005; Aponte, Aide et al. 2007). This leading malaria vaccine candidate 

incorporates a fusion protein, which comprises CSP and the HBV surface antigen and 

aggregates as virus-like particles, together with the adjuvant AS02, which is based on 

monophosphoryl lipid A and QS-21 (Stoute, Slaoui et al. 1997). However, the RTS,S 

immunized volunteers were not protected after six months post−immunization and the 

vaccine only induced antibody and CD4 T cell responses, while CD8 T cell responses 

were not detectable (Lalvani, Moris et al. 1999).  

A second approach has been to elicit CD8 T cell responses, against the known Pf 

proteins expressed by irradiated sporozoites in hepatocytes. A PfCSP DNA vaccine has 

been reported to be safe (Le, Coonan et al. 2000) to induce CD8 CTL in malaria-naïve 

volunteers (Wang, Doolan et al. 1998) and to elicit CD8 T cell-dependent IFN-γ 

production (Wang, Epstein et al. 2001). 
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These promising results are also stimulating the search for additional vaccines. 

However, the field must be aware that natural immunity to malaria might consist of a 

complex mixture of diverse immune responses, some of probably no protective value 

and some potentially counter-protective, such as pro-inflammatory responses that have 

been implicated in the pathology of cerebral malaria (CM).  

Likewise, ongoing large efforts are testing P. falciparum attenuated parasites, by 

deletion of essential genes, as vaccine candidates in humans and developing a mean to 

deliver attenuated vaccines. 

 

 

Toll-like receptors 

 

For a long time a dogma persisted according to which the innate branch of immunity 

was considered to be entirely unspecific and somewhat less evolved then the adaptive 

immunity branch. With the discovery of a class of recognition receptors, which bind 

highly conserved specific molecules among pathogens, the unforeseen specificity of 

innate immunity was recognized, despite at a much lower level then the specificity 

observed in adaptive immunity.  

TLRs are one subset of a group known as pattern recognition receptors (PRRs). This 

set of recognition receptors of the innate immune system recognizes conserved 

molecular structures known as pathogen-associated molecular patterns (PAMPs), which 

are present in large groups of pathogens (Medzhitov and Janeway 1997). Mannose 

receptors, such as C-type lectins, scavenger receptors, opsonins (acute phase proteins, 

complement proteins), NOD (nucleotide-binding oligomerization domain) receptors and 

CARD (caspase activating and recruitment domain)-containing proteins, such as RIG-1 

(retinoic acid-inducible gene-1) and MDA-5 (melanoma differentiation-associated gene-

5) are also other members of this functionally-defined family. 

The Toll receptor was originally identified in Drosophila as an essential receptor for the 

establishment of the dorso-ventral pattern in developing embryos (Hashimoto, Hudson 

et al. 1988). In 1995, it was demonstrated that the Toll pathway in Drosophila embryos is 

crucial for immune responses (Lemaitre, Meister et al. 1995), and that Toll-mutant flies 

were highly susceptible to fungal infection (Lemaitre, Nicolas et al. 1996). The 
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involvement of Toll in flies’ immune defense drove the research to other animal models. 

In 1997, the first mammalian homologue of the Drosophila Toll receptor was identified. A 

mammalian homologue of Drosophila Toll receptor, currently designated as TLR4, was 

shown to induce the expression of genes involved in inflammatory responses 

(Medzhitov, Preston-Hurlburt et al. 1997). Afterwards, several other proteins that are 

structurally similar to TLR4 were also identified and designated as TLRs (Rock, 

Hardiman et al. 1998). Since then, mammalian TLRs have been a major focus in the 

immunology field. They participate in the first line of defense against invading pathogens 

and play a significant role in inflammation, immune cell regulation, survival and 

proliferation. TLRs are Type I transmembrane proteins characterized structurally by the 

presence of a Leucin-Rich Repeat (LRR) domain in the extracellular part and a TIR (Toll 

IL-1 receptor) domain in the intracellular portion. 

Thus far, 11 human TLRs (TLR1–TLR11) and 13 (TLR1–TLR13) mouse TLRs have 

been identified. Toll homologues can also be found in plants (O'Neill and Greene 1998) 

and in worms (Rich, Allen et al. 2000). In Drosophila, nine Toll receptors were identified 

to date, but only Toll 1, was shown to play a role in host defense (Hoffmann and 

Reichhart 2002).  

Mammalian TLRs recognize a wide spectrum of ligands that comprise modified lipids, 

proteins and nucleic acids. TLR2 recognizes an extensive array of microbial 

compounds, such as bacterial lipopeptides (Aliprantis, Yang et al. 1999), peptidoglycan 

and lipoteicoic acid from Gram-positive bacteria (Schwandner, Dziarski et al. 1999). 

TLR2 can form heterodimers with both TLR1 and TLR6 (Ozinsky, Underhill et al. 2000) 

recognizing several other PAMPs including triacylated lipoproteins (Alexopoulou, 

Thomas et al. 2002), the dipalmitoylated mycoplasm lipoprotein 2 (MALP2) (Takeuchi, 

Kawai et al. 2001) and fungal zymosan (Ozinsky, Underhill et al. 2000). 

TLR4 recognizes the Gram-negative bacterial lipopolysaccharide (LPS). Already in the 

early 1970’s it was reported that antibody production by B cells could be induced by the 

mitogen LPS (Coutinho, Moller et al. 1973). Despite there being no specificity 

associated to LPS stimulation alone, B cells stimulated with this microbial component 

together with antigen give rise to an antigen-specific response (Coutinho, Gronowicz et 

al. 1974). Following these findings, the mouse strain C3H/HeJ was reported to be 

hyporresponsive to LPS, and the authors speculated that the observed defect in B cell 
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activation could be due to the absence of the receptor for LPS (Coutinho 1976). This 

was later confirmed by showing that using an antibody which bound the surface of B 

cells inhibited their LPS-mediated activation and immunoglobulin production, competing 

with LPS for the receptor (Coutinho, Forni et al. 1978).  

Later, two independent studies identified a mutation in the gene responsible for the LPS 

hyporesponsiveness in two mouse strains that were hyporesponsive to LPS, the 

C57Bl10/ScCr and the C3H/HeJ (Poltorak, He et al. 1998; Qureshi, Lariviere et al. 

1999). 

Afterwards, other TLR4 agonists with similar immunostimulatory properties to LPS in 

mice were identified: Taxol (Kawasaki, Akashi et al. 2000), the envelope proteins of 

mouse mammary tumour virus (MMTV) (Rassa, Meyers et al. 2002), the fusion protein 

of respiratory syncytical virus (RSV) (Kurt-Jones, Popova et al. 2000) and a few fungal 

structural components (Shoham, Huang et al. 2001; Wang, Warris et al. 2001). More 

recently, the heat shock protein 60 (Hsp60) (Ohashi, Burkart et al. 2000), Hsp70 (Asea, 

Rehli et al. 2002; Correia, V., personal communication; Vabulas, Ahmad-Nejad et al. 

2002), gp96 (Vabulas, Braedel et al. 2002) and β-defensin (Biragyn, Ruffini et al. 2002) 

have been described as endogenous ligands for TLR4. Fibronectin, heparan sulfate and 

hyaluronic acid are extracellular matrix components that are produced in response to 

tissue injury during inflammation. The extra domain A of fibronectin (Okamura, Watari et 

al. 2001), polysaccharide fragments of heparan sulphate (Johnson, Brunn et al. 2002) 

and oligosaccharides of hyaluronic acid (Termeer, Benedix et al. 2002) have also been 

reported as powerful agonists of TLR4. In addition, host fibrinogen is able of triggering 

chemokine secretion by macrophages, through recognition by TLR4 (Smiley, King et al. 

2001). 

TLR9 recognizes bacterial DNA and synthetic oligodeoxynucleotides containing CpG 

dinucleotides (Hemmi, Takeuchi et al. 2000). TLR9 has also been reported to be 

required in the recognition of host chromatin-IgG complexes (Leadbetter, Rifkin et al. 

2002). Recently, hemozoin purified from P. falciparum was described as a new non-

DNA ligand for TLR9 (Coban, Ishii et al. 2005). 

TLRs can be expressed in two different cellular localizations. TLRs 3, 7, 8, and 9, are 

expressed in intracellular compartments, the endosomes. Intracellular TLRs sense viral 
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and bacterial nucleic acids in particular. TLRs 1, 2, 4, 5, and 6 are located on the cell 

surface.  

TLRs signal via common pathways that converge on NF-κB activation and lead to the 

expression of several inflammatory genes. Each TLR elicits selective cellular responses 

to pathogens due to a differential usage of the intracellular adaptor proteins myeloid 

differentiation factor 88 (MyD88), MyD88-adaptor-like (MAL, also known as TIRAP), 

Toll/IL-1 receptor (TIR) domain-containing adaptor inducing IFN-β (TRIF), and TRIF-

related adaptor molecule (TRAM) (Kawai and Akira 2007). The recruitment of distinct 

accessory molecules is thought to confer ligand specificity and response selectivity. TLR 

stimulation leads to cytokine production and antimicrobial responses through NF-κB 

activation (Medzhitov, Preston-Hurlburt et al. 1997).  

Upon binding of a TLR agonist, all the receptors sequentially recruit the adaptor 

molecule MyD88, IL-1 receptor associated kinase (IRAK), and tumour necrosis factor 

receptor-associated factor 6 (TRAF6). These adaptors mediate the activation of the jun 

NH2-terminal kinase (JNK), nuclear factor NF-κB, p38, extracellular signal-related 

kinase 1/2 (ERK 1/2) and phosphoinositide 3-kinase signaling pathways, inducing the 

activation of target genes (Takeuchi and Akira 2001).  

Despite the fact that all mammalian TLRs seem to require MyD88 to signal, there are 

some reports that suggest that TLR signaling can trigger at least two pathways (Adachi, 

Kawai et al. 1998). The first of these two pathways to be described, dependent on 

MyD88, induces the production of pro-inflammatory cytokines; the second, MyD88 

independent, leads to the expression of IFN-β inducible genes. More recently, the TLR 

adaptor molecules Toll-interacting protein (TOLLIP), TIR-containing adaptor protein 

(TIRAP), TRIF and TRAM were identified (Burns, Clatworthy et al. 2000). TRAM and 

TIRAP are believed to confer the specificity for the MyD88 independent or dependent 

signaling cascade, respectively. Contrary to intracellular TLRs, which recruit MyD88 or 

TRIF, cell surface TLRs use TIRAP and/or TRAM as additional adaptors suggesting a 

link between adaptor usage and TLR localization. 

The understanding of how TLR activation induces inflammatory and antimicrobial 

responses has considerably progressed. Upon TLR activation, pro-inflammatory 

cytokines are released, inflammatory cells are recruited and direct antimicrobial activity 

is elicited in macrophages, for instance. Moreover, TLR signaling increases the 
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expression of co-stimulatory molecules and MHC class II on the surface of APCs, thus 

allowing efficient presentation of microbial products to T cells. Accordingly, TLRs provide 

a major contribution for the initiation of the adaptive immune responses (Medzhitov 

2001), particularly when in association with B cell receptor stimulation in the activation of 

antigen-specific B cells, to allow for specificity of the immune response (Coutinho, 

Gronowicz et al. 1974). 

Since uncontrolled inflammation is deleterious, TLR-mediated responses are tightly 

controlled by many mechanisms to induce appropriate responses against diverse 

microbial pathogens and to prevent excessive inflammation. For instance, TLR 

expression is modulated by IL-10 and TGF-β (McCartney-Francis, Jin et al. 2004). 

Additionally, negative regulators (such as an alternative spliced form of MyD88, IRAKM, 

suppressors of cytokine signaling protein) are induced by TLR ligands themselves to 

avoid exacerbated detrimental immune responses (Liew, Xu et al. 2005). 

Finally, TLR4 expression was found specifically in a subset of CD4 T cells, the 

regulatory T cells (Caramalho, Lopes-Carvalho et al. 2003). LPS stimulation of 

regulatory T cells led to an improvement in their suppressive function, thus uncovering a 

new anti-inflammatory role of TLR. The discovery of an anti-inflammatory effect of TLR 

activation might be extremely relevant in the evolution of the immune system, as it 

constitutes a rare negative feedback mechanism during potentially-deleterious 

inflammatory immune responses. 

Currently, it is unanimously accepted that innate immunity has evolved to recognize 

immunologically active molecules from either pathogens or the host by a variety of 

recognition receptors expressed on the plasma membrane and in endosomes, such as 

the TLRs.  

As well, other receptors have been identified: the Nod-like receptors (NLRs) and the 

recently described RIG-I-like receptors (RLRs), both of which reside in the cytoplasm 

(Creagh and O'Neill 2006). These recognition receptors are widely distributed in a 

variety of tissues and cell types to detect and respond to infection by triggering strong 

but defined innate immune activation through specific intracellular adaptor(s) and 

signaling molecules (Meylan, Tschopp et al. 2006).  
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Toll-like receptors in malaria 

 

TLRs, which are highly expressed in specialized immune cells such as macrophages, 

dendritic cells and B cells, play important roles not only in clearing the initial burden of 

infectious organisms, but also in the induction of adaptive (antigen-specific) immune 

responses to achieve long-lasting protection against infection. However, this scenario is 

much less simple in the case of pathogens that can chronically infect the host, such as 

Plasmodium. Plasmodium is still one of the most successful pathogens in the world. For 

a long time, Plasmodium coevolved with humans and other vertebrates, resulting in an 

extremely well-adapted parasite. The different Plasmodium spp undergo morphological 

changes during their complex life cycle, allowing them to evade or even suppress the 

host immune response. Thus, it is necessary to understand the nature of both innate 

and adaptive immune responses elicited during malaria infection and the mechanisms 

that allow parasite evasion and survival throughout its life cycle. 

Gene expression for all the nine TLRs that were first identified was observed in both 

human primary hepatocytes and in the human hepatoma cell line HepG2, as well as 

their associated accessory molecules, like MyD88 and MD-2 (in mouse hepatocytes) 

(Liu, Gallo et al. 2002). Considering that expression of Toll-like receptors and their 

associated accessory molecules impart responsiveness to microbial products, it is clear 

that the role of Toll-like receptors in hepatocytes is a key issue that remains to be 

elucidated in the liver stage of malaria infection. 

It is widely accepted that activation of the cellular components of the innate immune 

response plays an essential role in the outcome of infection with protozoan parasites. 

Proinflammatory cytokines produced by immune cells induce the activation of effector 

mechanisms responsible for restraining parasite development at early stages of 

infection. Several reports support the idea that TLRs are involved in the initial 

recognition of protozoan parasites by the immune system of the vertebrate host in early 

resistance to infection, for development of acquired immunity and also in pathology 

(reviewed in Gazzinelli and Denkers 2006). 

Immunological and biochemical studies have shown a significant role of parasite surface 

molecules. Among them, the glycosylphosphatidylinositols (GPIs) are glycolipids that 

cover the surface of most protozoan parasites and have been described to be involved 
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in the modulation of host immune responses (Ropert and Gazzinelli 2000). GPI-

anchored glycoproteins purified from P. falciparum are capable of inducing the synthesis 

of proinflammatory cytokines, like TNF-α and IL-1, by macrophages. Evidence shows 

that GPI anchors from P. falciparum contribute to the pathology of infection having led to 

the classification of GPI as the “malaria toxin”. Indeed, GPI alone is enough to originate 

symptoms comparable to acute malaria infection in mice (Schofield and Hackett 1993; 

Tachado, Gerold et al. 1996). More recently, P. falciparum GPI has been shown to 

induce proinflammatory cytokine production in macrophages through the interaction of 

the three fatty acyl chains of the GPI anchor with the TLR2/TLR1 complex, also 

involving a small contribution of TLR4 (Naik, Branch et al. 2000; Krishnegowda, Hajjar et 

al. 2005). 

In addition, it is also believed that TLR9, a well known intracellular receptor for 

unmethylated bacterial CpG DNA motifs (Hemmi, Takeuchi et al. 2000), plays a crucial 

role in induction of proinflammatory cytokines during infection with protozoan parasites. 

Although this is becoming obvious for several protozoan parasites, the role of TLR9 in 

malaria remains unclear.  

According to some findings, hemozoin, a product of hemoglobin digestion by 

Plasmodium, seems to play an immunomodulatory role during infection. Hemozoin has 

been reported to induce (Coban, Ishii et al. 2002; Coban, Ishii et al. 2005) or inhibit 

(Taramelli, Basilico et al. 1995; Skorokhod, Alessio et al. 2004; Millington, Di Lorenzo et 

al. 2006; Urban and Todryk 2006) DC maturation and to trigger the production of 

proinflammatory cytokines such as TNF-α and IL-12, chemokines (Jaramillo, Gowda et 

al. 2003; Huy, Trang et al. 2006), and IL-10 (Deshpande and Shastry 2004; Keller, 

Yamo et al. 2006). Hemozoin might also be involved in the impairment of macrophage 

functions and in the reduction in expression of major histocompatibility complex class II 

antigen, CD54, and CD11c in human monocytes (Schwarzer, Turrini et al. 1992; 

Schwarzer, Alessio et al. 1998). These contradictory results might be attributed to 

different hemozoin isolates that may be contaminated with other compounds such as 

glycolipids, or nucleic acid derived from P. falciparum (Parroche, Lauw et al. 2007). 

Moreover, synthetic hemozoin displays diverse activities, depending on the source of 

the heme employed to prepare the β-hematin (Jaramillo, Plante et al. 2004; Coban, Ishii 

et al. 2005). 
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Hemozoin was described as a TLR agonist and a TLR9/MyD88-dependent pathway was 

shown to mediate murine DC activation by hemozoin during malaria, thus identifying the 

first non-DNA ligand for TLR9 (Coban, Ishii et al. 2005). TLR9 was known as a receptor 

for DNA, mostly of unmethylated CpG-containing DNA, and the description of hemozoin 

as TLR9 ligand was a surprising and controversial finding. Indeed, it was recently 

claimed that hemozoin plays a specific role in presenting the DNA to the intracellular 

TLR9, although it is not capable of stimulating the innate immune system by itself 

(Parroche, Lauw et al. 2007). 

As illustrated above for the malaria parasite, and reported in the literature for other 

protozoan parasites, different pathogens contain several agonists that trigger TLRs. 

Nevertheless, the specific role of MyD88 – the adaptor molecule common to all TLRs – 

and TLRs during malaria infection is under intense discussion, and it is not yet clear 

whether TLRs and their signalling pathways are critical in Plasmodium infection. Genetic 

studies in human patients have uncovered correlations of TLR polymorphisms to 

disease susceptibility: a frequent TLR4 allele (Asp299Gly) has been associated with 

severe malaria (Mockenhaupt, Cramer et al. 2006) and risk of maternal malaria, 

whereas the TLR9 allele T-1486C increases the risk of maternal malaria but was not 

associated with severe malaria (Mockenhaupt, Hamann et al. 2006). Recently, it was 

also reported that heterozygosity for a variant of MAL/TIRAP – an adaptor molecule for 

TLR2 and TLR4, is associated with protection to P. falciparum infection (Khor, Chapman 

et al. 2007). In addition, data concerning the regulation of TLR expression shows that 

there is an upregulation of TLR expression in patients infected with P. falciparum 

(Loharungsikul, Troye-Blomberg et al. 2008). Consistently, it has been shown that P. 

falciparum infection causes proinflammatory priming of human TLR responses during 

the acute phase of the disease (McCall, Netea et al. 2007). Supporting these 

observations, an upregulation of messenger ribonucleic acid transcripts coding for 

various components of inflammatory pathways (such as several TLRs, MyD88, NF-κB, 

and IFN-γ) was described in PMBC from patients during presymptomatic infection 

(Ockenhouse, Hu et al. 2006). The rupture of blood-stage schizonts releasing 

Plasmodium-derived TLR ligands, like GPI or hemozoin-bound nucleic acids, can induce 

differences in TLR expression, particularly when a correlation between TLR expression 

and severity of malaria has been evoked.  
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Several studies have been carried out in MyD88-knockout mice in the context of 

infectious disease models caused by protozoans, showing that these mice are generally 

immuno-compromised in terms of their capacity to fight pathogens. MyD88-knockout 

mice infected with T. gondii (Scanga, Aliberti et al. 2002), T. cruzi (Campos, Closel et al. 

2004), T. brucei (Drennan, Stijlemans et al. 2005), and Leishmania spp. (de Veer, Curtis 

et al. 2003; Muraille, De Trez et al. 2003) are described as being highly susceptible to 

infection. However, rodent malaria models behave differently in what concerns the role 

of MyD88. Despite being described as responsible for increased IL-12 production during 

infection with the P. berghei NK65, and thus for the pathology during infection, MyD88 is 

not critical in the control of parasite replication (Adachi, Tsutsui et al. 2001). As 

expected, MyD88 and TLR signalling-dependent activation of target cells is also at the 

origin of the deleterious consequences of unregulated innate immunity responses. Thus, 

in an experimental model of CM using P. berghei ANKA, MyD88 signaling is involved in 

CM development (Coban, Ishii et al. 2007), such that a reduction in mortality is observed 

in mice lacking MyD88. However, conflicting reports described CM development as not 

dependent of MyD88 and TLR signaling (Togbe, Schofield et al. 2007). In addition, 

another report stated that there are no differences between infected TLR2/4/9-deficient 

triple-knockout mice, which are MyD88-dependent TLRs, and wild-type mice regarding 

survival and pathogenesis (Lepenies, Cramer et al. 2008). TLR2 and TLR9, previously 

shown to be involved in the recognition of GPI anchors and DNA from Plasmodium, 

were proposed as being responsible in part for the fatal result of the infection. In 

summary, the role of TLRs and MyD88 in CM pathogenesis is not clearly understood. 

 

 

Aims 

 

Over the past few years, there were some substantial advances in the understanding of 

host immune responses to Plasmodium. Still, one of the underlying difficulties hindering 

successful vaccine design is the incomplete knowledge of the specific types of immune 

response to aim for, and then how to induce them. A deeper insight into the 

mechanisms of innate immunity during Plasmodium infection could provide critical clues 
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on how manipulation of the immune system may best be achieved. Thus, we proposed 

to elucidate some key features of the innate immune response to malaria liver stage. 

We sought to determine whether TLRs mediate host-pathogen interactions during liver 

stage infection, namely if TLRs present in hepatocytes play a role in parasite 

recognition, notwithstanding the role of TLRs in immune cells.  

To accomplish our goal, TLR2, TLR4, TLR9 and MyD88-deficient mice were injected 

with P. berghei sporozoites and the subsequent infection was characterized both in 

terms of parasite liver load, including the level of Plasmodium development inside host 

cells, and the host immune response. This approach aimed to unveil the nature of the 

effects induced by the innate response to Plasmodium and whether these are 

detrimental or beneficial for the parasite. Additionally, we also intended to investigate if 

TLR MyD88-mediated signalling is important in the protection against Plasmodium 

sporozoite infection that is conferred by immunization with RAS. 
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Hepatoma cell lines 

Hepa1-6 (murine hepatoma cell line) and HepG2 (human hepatoma cell line) cells were 

cultured in Dulbecco’s MEM medium (DMEM) with 1mM glutamine supplemented with 

10% Fetal Calf Serum (FCS), 1% penicillin/streptomycin (100U/mL penicillin, 0.1mg/mL 

streptomycin) and maintained at 37ºC in a 5% CO2 atmosphere. HuH7 cells (human 

hepatoma cell line) were cultured in RPMI supplemented with 10% FCS, 1% 

penicillin/streptomycin, 10mM HEPES, 2mM glutamine and 0.1mM non-essential 

aminoacids at 37ºC in 5% CO2. All cell culture media and supplements were purchased 

from Gibco, Invitrogen. Cells were routinely screened and found to be Mycoplasma free. 

 

Hepatocytes cultures 

Primary hepatocytes were prepared from 8 to 12 week old C57BL/6 wild-type, TLR2, 

TLR4 and TLR9-knockout mice as previously described, with minor modifications 

(Renia, Mattei et al. 1990). Cells were isolated by perfusion of liver lobes with Liver 

Perfusion Medium and Liver Digest Medium (Gibco, Invitrogen) and were further purified 

over a 60% Percoll gradient (GE Healthcare). Hepatocyte purity and viability were 

>95%, as assessed by trypan blue dye exclusion. Cells were cultured in eight-chamber 

plastic Lab-Tek slides (Nunc) in William’s E Medium (Gibco, Invitrogen) supplemented 

with 4% FCS (Gibco, Invitrogen) and 1% penicillin/streptomycin (Gibco, Invitrogen) and 

incubated at 37ºC in 5% CO2.  

 

Parasites 

Green fluorescent protein (GFP)-expressing Plasmodium berghei sporozoites, parasite 

line 259cl2 (Franke-Fayard, Trueman et al. 2004) were obtained from dissection of 

infected female Anopheles stephensi mosquito salivary glands. Dissections of mosquito 

salivary glands were performed in RPMI 1640 medium (Gibco, Invitogen). The glands 

were collected and mechanically disrupted to release the parasites. The debris was 

pelleted and the sporozoites in the supernatant were collected after three consecutive 

centrifugations at 20 g for 5 min, at 4ºC. Sporozoites were then counted and maintained 

on ice until use (adapted from Ozaki et al., 1984). Sporozoite quantification was 

determined using a haemocytometer.  
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Mosquitoes were provided from the Department of Medical Microbiology, University 

Medical Centre St. Radboud, HB Nijmegen, Netherlands and from Unidade de Malária, 

Instituto de Medicina Molecular, Lisbon, Portugal. 

 

Mice 

BALB/c, C3H/HeN, C3H/HeJ, C57BL/10 ScSn, C57BL/10 ScN, C57BL/6 (Thy1.2), 

C57BL/6 Thy1.1 and C57BL/6 TLR2, TLR4, TLR9 and MyD88-knockout mice were bred 

and maintained under specific pathogen-free conditions at the Instituto Gulbenkian de 

Ciência mouse housing facilities. MyD88, TLR2, TLR4, and TLR9-knockout mice were 

provided by S. Akira (Osaka University, Osaka, Japan).  

All animals were used between 7 and 12 weeks old. Mice experimental protocols were 

approved by the institutional ethical committee as well as the Portuguese Veterinary 

General Division.  

 

In vitro infections 

One day prior to infection, 2x105 Hepa 1-6, HepG2 or HuH7 cells were seeded in 24-well 

plates and grown at 37ºC in 5% CO2. Cells with approximately 80% confluence were 

infected with 2x104 P. berghei sporozoites, per well. The plates were then centrifuged for 

5 min at 2000 g and incubated at 37ºC in 5% CO2. Primary hepatocytes were seeded 24 

hours before infection in 8-chamber plastic Lab-Tek slides and incubated at 37ºC in 5% 

CO2. After medium removal, 4x104 sporozoites were added in 100µl of fresh 

supplemented medium. The culture medium was removed 42 hours post-infection and 

the cells lysed with a denaturing solution. After homogenization, lysates were used for 

RNA extraction. Total RNA from a pool of cells from 3 to 4 wells was extracted using 

RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions. RNA 

concentration and quality were determined using a NanoDrop ND-100 

spectrophotometer (NanoDrop Technologies). 

 

Quantification of infection by immunofluorescence 

Cells were washed with Phosphate Buffered Saline (PBS) 24 hours after infection, fixed 

in 4% paraformaldehyde (PFA) for 20 min at room temperature (RT) and permeabilized 

for 1 hour with 0.1% saponin in a “protein blocking” solution (3% Bovine Serum Albumin, 
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100mM glycine and 10% FCS; Sigma) to avoid unspecific reactions. Cells were then 

incubated for 45 min at RT with a mouse monoclonal antibody against the parasite heat 

shock protein 70 (Hsp70) (Tsuji, Mattei et al. 1994). After washing twice with PBS, cells 

were incubated for 45 min at RT with a secondary goat anti-mouse antibody AlexaFluor 

555 (Molecular Probes, Invitrogen) diluted in blocking solution, for detection. Hepatoma 

cells were then washed twice with PBS and incubated with 4'6-diamidino-2-phenylindole 

(DAPI, Sigma) diluted in PBS, to stain the nuclei. Finally, cells were washed with PBS 

and mounted on a slide with mounting medium Mowiol (Calbiochem) and observed on a 

fluorescence microscope. Infection was assessed by quantifying the number of EEFs 

per coverslip, a slide placed in the bottom of the well prior to cell seeding. 

 

Gene-specific expression and infection quantification by qRT-PCR 

Extraction of total RNA from liver was performed using RNeasy Mini Kit (Qiagen), 

according to the instructions provided by the manufacturer. After extraction, RNA 

concentration and quality were determined using a NanoDrop spectrophotometer 

(NanoDrop Technologies). One microgram of total RNA was reverse-transcribed to 

single strand cDNA using the AMV Reverse Transcriptase protocol (Roche Applied 

Science). The transcripts in the cDNA pool obtained from the reverse transcriptase 

reaction were quantified by quantitative real time PCR. The reaction was performed in 

the ABI PRISM 7900HT Sequence Detection System (Applied Biosystems) using SYBR 

Green PCR Master Mix (Applied Biosystems).  

Infection load in the liver was determined by qRT-PCR using P. berghei 18S rRNA-

specific primers as previously described (Bruna-Romero, Hafalla et al. 2001). Gene-

specific expression in liver was determined in a similar way using gene-specific primers. 

The levels of gene expression were quantified and normalized to the mRNA expression 

levels of the housekeeping gene hypoxanthine guanine phosphoribosyl transferase 

(HPRT) using the following primer sequences 5’-TGCTCGAGATGTGATGAAGG-3’ and 

5’-TCCCCTGTTGACTGGTCATT-3’. The following primers were used to quantify the 

number of parasite copies: P. berghei 18S rRNA, 5’-GGAGATTGGTTTTGACGTTT 

ATGTG-3’ and 5’-AGCATTAAATAAAGCGAATACATCCTTAC-3’. 

The following primer sequences were used to quantify the expression of leukocyte 

markers:  Cd3e, 5’-TCTCGGAAGTCGAGGACAGT-3’ and 5’-ATCAGCAAGCCCAGAGT 
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GAT-3’; Klrd1, 5’-TCACTCGGTGGAGACTGATG-3’ and 5’-AGGCAAACACAGCATTCA 

GA-3’; Mgl2, 5’-GGATCCCAAAATTCCCAGTT-3’ and 5’-TCCCTCTTCTCCAGTGTGCT-

3’; Ncf2, 5’-GCAGTGGCCTACTTCCAG AG-3’ and 5’-CTTCATGTTGGTTGCCAATG-3’.  

 

TLR agonists (LPS and CpG) treatment in vivo 

C57BL/6 mice were injected intraperitoneally (i.p.) with 10µg of LPS in PBS per mouse. 

PBS was prepared from double processed tissue culture water, endotoxin free (Sigma) 

and tissue-culture 10x PBS solution (Gibco). Ultra-pure LPS (Escherichia coli 0111:B4) 

and CpG were purchased from Sigma and InvivoGen, respectively.  

 

Sporozoite immunization and challenge 

GFP-expressing P. berghei RAS were submitted to a radiation dose of 16 krad, using a 

gamma-irradiator (Co source). 

Wild-type, TLR2, TLR4, TLR9 and MyD88-knockout mice were primed with the injection 

of 5x104 P. berghei RAS and given booster immunizations with two intravenous (i.v.) 

injections of 2x104 RAS in 7 to 10 days intervals. After challenge with 1x104 viable P. 

berghei sporozoites, all animal groups were monitored for blood-stage infections. Sterile 

immunity was assayed by Giemsa-stained blood smears and FACS analysis of blood 

drops, based on parasite GFP detection, obtained on days 1 to 30 post-sporozoite 

challenge. Sterile immunity was defined as the complete absence of blood-stage 

parasitemia at all time points. Naïve control mice groups were used for all experiments 

performed. 

 

Isolation of liver non-parenchymal cells and flow cytometry analysis 

Mice were infected with 1x105 P. berghei sporozoites and sacrificed 42 hours after 

infection to collect livers for isolation of liver non-parenchymal cells. Liver fragments 

were perfused using Liver Perfusion Medium and cells were dissociated using Liver 

Digestion Medium (Gibco, Invitrogen). Cells were centrifuged at 500 g for 10 min at 4ºC 

in RPMI with 10% FCS, 1% pen/strep, 1% HEPES, 1% sodium pyruvate and 0.1% β-

mercaptoethanol. The pellet was ressupended in supplemented RPMI and, to eliminate 

hepatocytes, centrifuged twice over Percoll (60% and 30%, respectively) at 900 g for 10 

minutes at 4ºC without brake. Pelleted lymphocytes were washed once in complete 
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RPMI and treated with ACK (ammonium, chloride and potassium; 0.15M NH4Cl, 1.0 mM 

KHCO3, 0.5 mM EDTA, pH 7.2), to remove erythrocytes.  

Cells were then resuspended in PBS containing 2% FCS and 0.01% sodium azide, and 

were incubated with Fc-block (anti-CD16/CD32, produced in house) before antibody 

staining. Data were acquired on a FACSCaliburTM (BD Biosciences) and analyzed with 

Flowjo software (TriStar Inc.). Live cell counts were calculated from the acquisition of a 

fixed number of 10µm latex beads (BeckmanCoulter) mixed with a known volume of 

unstained cell suspension in propidium iodide. The antibodies used were αCD4, αCD8, 

αNK1.1, αCD3, αF4/80, αCD11b, αCD11c, αCD19, αIgM, αIgD, αCD69, αGr-1, αLy6g, 

αMHC-II, αTNF-α and αIFN-γ with one of the following conjugations: Allophycocyanin 

(APC), Fluorescein isothiocyanate (FITC), Cy5, PerCP, Phycoerythrin (PE) or Alexa 

488. 

 

Bone marrow mouse chimeras 

C57BL/6 mice (Thy1.2+) were gamma-irradiated with 900 rad and, on the following day, 

received i.v. 2x106 bone marrow cells in PBS, from either WT or TLR-knockout mice 

donors (Thy1.1+). Reconstitution was assessed by recovering peripheral blood 

lymphocytes and staining for CD4, Thy1.1 and Thy1.2. 

 

Histopathology and morphometric analysis 

Liver tissues were harvested from infected mice 40 hours after infection. Tissues were 

fixed in 10% formalin for paraffin embedding and hematoxylin-eosin (HE) staining. 

Inflammatory foci were assessed in pictures of HE-stained sections by morphometric 

analysis using the ImageJ 1.34s software. The area of inflammatory foci was normalized 

to the total area observed. 

 

Statistical analysis 

All data are presented as mean ± SD. Statistical significance between experimental 

groups was determined using the two-tailed Student’s t-test. Values of p < 0.05 were 

considered statistically significant. 
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TLR4 deficiency is associated with impaired immune response 

to malaria liver stage infection 

 

 

 

Abstract 

 

Toll-like receptors (TLRs) are known to play an essential role in the innate recognition of 

pathogens and subsequent induction of host immune responses. However, the role of 

TLRs during liver infection of Plasmodium, the malaria protozoan parasite, has never 

been addressed. We found that TLR4-deficient mice display enhanced susceptibility to 

P. berghei sporozoite infection, whereas mice lacking TLR2 show no significant 

differences from wild-type control mice. Using both infected bone marrow chimeras and 

primary hepatocytes, we demonstrated that the resistance associated to the presence of 

TLR4 is mediated not only by bone marrow-derived cells but also by hepatocytes. 

Increased susceptibility in TLR4-mutant mice is first associated with a reduction in 

macrophage recruitment in response to sporozoite infection and, secondly, with 

impaired TNF production by macrophages in the liver. Moreover, treatments with LPS, a 

TLR4 ligand, at the time of sporozoite injection, decreased the levels of liver stage 

infection. Altogether, these findings suggest that TLR4 is implicated in the control of 

Plasmodium berghei liver infection, playing an important role in parasite recognition by 

the host. 

 

 

Introduction 

 

Malaria, one of the most prevalent infectious diseases, is caused by the protozoan 

parasite Plasmodium and represents a major threat to public health, creating a 

significant barrier to economic and social development of the most affected countries. 

The characterization of fundamental aspects of parasite-host interactions is critical to 

identify new therapeutic targets for clinical intervention. 



Chapter 3 
 

 
44 

Plasmodium sporozoites infect the liver of mammalian hosts after an Anopheles 

mosquito bite. This gives rise to a clinically silent but decisive process, in which the 

invading parasites replicate and give rise to thousands of merozoites. The blood stage 

of the infection, which constitutes the symptomatic phase of the disease, is initiated by 

the release of merozoites in the blood stream and subsequent erythrocyte invasion. 

Parasite recognition in the liver is likely to be determinant to the outcome of the disease. 

Therefore, the generation of an early effective immune response against malaria may 

well be fundamental for the control of parasite replication.  

TLRs are a major, structurally related, receptor family known to be required for innate 

defense against most parasites. These receptors recognize distinct evolutionary 

conserved molecular structures derived from pathogens, and also inflammatory 

mediators that represent danger signals from the host, playing a key role in innate 

immune recognition. Acting as sensors of parasite infection, TLRs induce inflammatory 

and antiparasitic effector responses. Upon activation, TLRs transduce signals via a 

common adaptor molecule, MyD88, leading to NF-kB activation that consequently leads 

to the induction of a wide range of inflammatory genes (Medzhitov, Preston-Hurlburt et 

al. 1998; Kawai, Adachi et al. 1999; Akira and Takeda 2004). So far, 11 human TLRs 

and 13 mouse TLRs have been identified. TLR2 recognizes molecules from Gram-

positive bacteria (peptidoglycan, lipoteichoic acid, and lipoproteins) while TLR4 has 

been identified as a receptor for LPS being, therefore, a key player in the immune 

response to Gram-negative bacteria (Poltorak, He et al. 1998; Hoshino, Takeuchi et al. 

1999; Lien, Sellati et al. 1999; Schwandner, Dziarski et al. 1999; Yoshimura, Lien et al. 

1999). 

TLRs have been implicated in the initial recognition of protozoan parasites and early 

resistance to protozoan infection by the host immune system (Campos and Gazzinelli 

2004; Kropf, Freudenberg et al. 2004; Nebl, De Veer et al. 2005; Minns, Menard et al. 

2006). Activation of TLR and MyD88 signaling pathway has been associated with a 

protective effect during infection with T. cruzi, T. gondii and Leishmania spp (Campos 

and Gazzinelli 2004; Kropf, Freudenberg et al. 2004; Minns, Menard et al. 2006). 

Nevertheless, TLRs constitute a double-edge sword, as their activation throughout 

infection was also shown to be involved in the establishment of immune pathology 

(Gazzinelli, Ropert et al. 2004; Gazzinelli and Denkers 2006). 
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Although a controversial role of TLRs in mediating innate immune responses to parasite-

derived molecules during malaria blood stage has been described before (Naik, Branch 

et al. 2000; Krishnegowda, Hajjar et al. 2005; Parroche, Lauw et al. 2007), their 

involvement in the recognition of Plasmodium liver infection has not yet been 

demonstrated. MyD88 signaling was reported to be implicated in the development of 

CM, and TLR2 and TLR9 were described as partially responsible for a fatal outcome of 

the infection (Coban, Ishii et al. 2007). The same authors have previously demonstrated 

that TLR2 and TLR9 were involved in the recognition of GPI anchors and DNA from 

Plasmodium (Coban, Ishii et al. 2005; Krishnegowda, Hajjar et al. 2005). Human 

patients infected with P. falciparum show an upregulation of TLR expression 

(Loharungsikul, Troye-Blomberg et al. 2008), and human genome studies link them to 

disease susceptibility (Mockenhaupt, Cramer et al. 2006; Mockenhaupt, Hamann et al. 

2006; Khor, Chapman et al. 2007). Further evidence of TLR involvement in malaria 

infection was provided by the finding that P. falciparum infection in humans causes 

proinflammatory priming of human TLR responses (Ockenhouse, Hu et al. 2006; McCall, 

Netea et al. 2007). Accordingly, mRNA coding for several receptors and inflammatory 

molecules such as TLRs, MyD88, NF-κB and IFN-γ was shown to be upregulated in 

PBMC from patients during presymptomatic infection (Ockenhouse, Hu et al. 2006). 

Eventhough the above findings pointing to an important role of TLRs during malaria 

infection, several contradictory reports were described in the literature, most of them 

showing that CM development seems to be independent of MyD88 and TLR signaling 

(Togbe, Schofield et al. 2007). It was recently described that infected TLR2/4/9-deficient 

mice (MyD88-dependent TLRs) showed no differences in survival and pathogenesis 

after a blood-stage infection when compared to wild-type mice (Lepenies, Cramer et al. 

2008). The reasons for these discrepancies are not fully understood, especially in what 

concerns inconsistent data obtained with similar mouse models in different laboratories.  

Despite extensive studies on the role of TLRs in the blood stage of Plasmodium 

infection, the knowledge about their function in the liver stage is still very limited. 

Recently, Torgler et al proposed that cell traversal by sporozoites has a detrimental 

effect on parasite survival (Torgler, Bongfen et al. 2008). Non-traversed hepatocytes 

have the ability to respond to released host factors, resulting in a NF-κB-dependent 

innate immune response and, consequently, in a reduction of the infection load. Despite 
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hypothesizing that Plasmodium sporozoite-mediated hepatocyte wounding induces an 

innate immune response, which limits the extent of parasite infection, the authors do not 

demonstrate whether members of the TLR family are implicated in NF-κB activation 

during sporozoites infection. 

Gene expression for all nine TLRs, as well as for their associated accessory molecules 

MyD88 and MD-2, was identified both in human primary hepatocytes and in the human 

hepatoma cell line HepG2 (Liu, Gallo et al. 2002). Hence, we sought to investigate the 

role of TLR2 and TLR4 – two TLRs known to participate in the immune response to 

other protozoan infections – in the innate immune response to P. berghei sporozoites 

during liver infection.  

Using a murine model, we demonstrated that TLR4, but not TLR2, plays a critical role in 

host control of P. berghei sporozoite infection. We showed that two independent TLR4-

natural mutant mouse strains and genetically engineered TLR4-knockout mice are more 

susceptible to P. berghei sporozoite infection. The enhanced resistance of TLR4-

competent mice is mainly mediated by bone marrow-derived cells but an additional 

protective effect, that seems to be hepatocyte-dependent, is observed in primary 

hepatocyte cultures. The increase in infection levels in TLR4-knockout mice correlates 

with impaired TNF production by macrophages in the liver and also with decreased 

macrophage and DC recruitment in TLR4-knockout infected livers. Moreover, LPS 

treatment significantly reduces the levels of P. berghei sporozoite infection, providing 

additional evidence for a role of TLR4 activation in the modulation of host response early 

during infection. 

 

 

Results 

 

Mice lacking a functional TLR4 show increased susceptibility to P. berghei 

sporozoites infection 

Two independent natural mutant mouse strains, B10ScN and C3H/HeJ, which have an 

inactivating mutation in TLR4, as well as C57BL/6 TLR4-knockout mice were infected 

with P. berghei sporozoites. An increase in the number of parasite copies in all three 

mutant strains relative to wild-type controls, which have a functional TLR4 molecule, 
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was observed by qRT-PCR of mRNA from livers of infected mice, 40 hours post-

infection. Analysis of mRNA from livers of infected mice at 20 hours post-infection 

reveals that this increase is already observed by then (Figure 1).  
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Figure 1 Mice lacking functional TLR4 are more susceptible to P. berghei sporozoite 

infection. Groups of wild-type (C3H/HeN, C57BL/10 ScSn and C57BL/6) mice, and TLR4-

deficient mice (C3H/HeJ, C57BL/10 ScN and C57BL/6 TLR4-knockout), were
 
infected with 2x10

4
 

P. berghei sporozoites. After liver removal, 10, 20 and 40 hours after infection, the number of 

parasite copies was quantified by qRT-PCR of mRNA extracted from the infected livers (A). 



Chapter 3 
 

 
48 

Blood parasitemias were measured in all experimental groups by FACS analysis of blood drops, 

starting at day 3 post-infection. Parasitemias from mice that did not develop CM were measured 

until day 26 post-infection (B). Results are representative of two to ten independent experiments 

(mean ± SD, n=4-6, p < 0.05). 

 

 

TLR4-mutant mice showed higher blood parasitemias at day 3 post-infection, which 

confirms that sporozoites have increased rates of infection in the liver and that 

consequently more erythrocyte-infective parasites are released in the blood stream 42 

hours after liver infection (Figure 1). In contrast, mice lacking TLR2 do not show 

significant differences in susceptibility to infection, as confirmed by RT-PCR and by 

measuring blood parasitemias at day 3 post-infection (Figure 2).  
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Figure 2 TLR2-knockout mice do not show significant differences from wild-type controls 

after infection with P. berghei sporozoites. Wild-type and TLR2-mutant C57BL/6 mice were
 

infected with 2x10
4
 P. berghei sporozoites. After liver extraction, 40 hours post-infection, the 

number of parasite copies was quantified by qRT-PCR of mRNA extracted from the infected 

livers (A). Blood parasitemias were measured after day two post-infection in all experimental 

groups by FACS analysis of blood drops (B) (mean ± SD, n=5).  

 

 

Altogether, the results we obtained after infection of TLR4-deficient mice with three 

different genetic backgrounds indicates that TLR4 plays a critical role in the immune 

response to P. berghei sporozoites infection. Host response to the parasite infection in 

the liver might determine the outcome of the disease, once a higher percentage of 
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parasites will develop in the blood stage of the infection due to inefficient parasite 

recognition. In fact, none of the TLR4-deficient mice infected with sporozoites died with 

CM, dying of hiperparasitemia after day 20 post-infection instead. C57BL/6 wild-type 

controls all died from CM at day 6 or 7 post-infection (Figure 3). Thus, these 

observations suggest that the immune mechanisms elicited throughout infection and 

development of Plasmodium parasites in the liver will be important in the outcome of the 

blood stage of the disease.  

 

 

Figure 3 Increased survival of infected 

TLR4-knockout mice. Wild-type and TLR4-

knockout C57BL/6 mice were
 
infected with 

2x10
4
 P. berghei sporozoites. Infected mice 

were monitored daily for clinical symptoms 

(n=6). 

 

 

 

LPS treatment decreases the levels of infection 

Our findings suggest that TLR4 might be activated during P. berghei sporozoite liver 

infection, which then interferes with the normal course of infection. Thus, we next sought 

to test whether infection-independent TLR4 activation interferes with the levels of 

infection. To this end, we used the TLR4 ligand LPS, a component of the cell wall of 

Gram-negative bacteria like E. coli, in in vivo and in vitro infections. Binding of LPS to 

TLR4 leads to the activation of an intracellular signaling cascade resulting in a 

proinflammatory response characterized by the expression of TLR-response genes such 

as IL-1, IL-6, and TNF. Both C57BL/6 and BALB/c mice were injected i.p. with 10 

micrograms of LPS per mouse, immediately prior to P. berghei sporozoites infection. 

The C57BL/6 mice treated with LPS revealed a 94% reduction in the number of parasite 

copies in the liver, collected 40 hours after infection, when compared to the control 

group (Figure 4A). Similar reductions were observed when mice were allowed to go 

through blood stage infection. By day 4, while the average parasitemia of the control 

group was 0.15%, blood-stage parasites were only detectable in Giemsa-stained blood 
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smears by day 6 post-infection in the mice treated with LPS (Figure 4B). Moreover, eight 

out of nine of the infected BALB/c mice have never developed detectable parasitemia 

after injection of 2x104 P. berghei sporozoites. 
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Figure 4 In vivo treatment with LPS reduces the number of developing parasites. Wild-type 

C57BL/6 mice were injected i.p. with 0.1, 1 and 10µg of LPS per mouse and right after, infected 

i.v. with 2x10
4
 P. berghei sporozoites. The number of parasite copies after 10µg of LPS injection 

was quantified by qRT-PCR of mRNA extracted from the infected livers collected 40 hours after 

infection (A). Blood parasitemias were measured after day three post-infection in all experimental 

groups, by FACS analysis of blood drops (B). Results are representative of five independent 

experiments (mean ± SD, n=3-6, p < 0.01). 

 

 

Next, we tested whether the protection conferred by LPS was hepatocyte-mediated. 

Thus, we treated LPS responsive Hepa1-6, HepG2 cells (mouse and human hepatoma 

cell lines, respectively) and C57BL/6 mouse-derived hepatocytes with 10 micrograms of 

LPS per ml, at the time of sporozoite infection. We found that TLR4 activation by LPS 

decreases the infection levels in hepatoma cells (Figure 5) and mouse primary 

hepatocytes. To assess the effect of LPS treatment in the development of the parasite in 

vitro, we quantified the number and the area of parasite EEFs at 24 hours after infection. 

LPS treatment not only decreases the number of EEFs (Figure 5A) but also leads to a 

reduction in the area of the developing EEFs (Figure 5B), which constitutes a sign of 

arrested or abnormal development. 
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Figure 5 LPS is detrimental to parasite development in vitro. Hepa1-6 cells were incubated 

with 10µg of LPS troughout infection with 2x10
4
 P. berghei GFP-sporozoites. After fixation, 24 

hours post-infection,   GFP-positive EEFs were counted (A). The area of the EEFs was quantified 

by ImageJ (B) (mean ± SD, n=3, p < 0.05). 

 

 

The in vitro effect of LPS does not represent as dramatic a decrease in infection as that 

observed in vivo suggesting that LPS-mediated protection in vivo might be the result of 

cumulative protective effects from immune cells and hepatocytes. In support of this 

hypothesis, primary hepatocytes lacking TLR4 expression reveal only a small but 

significant increase in susceptibility to P. berghei sporozoite infection, when compared to 

primary hepatocytes from wild-type control mice (Figure 6). Altogether, these data 

suggest that hepatocytes might respond to Plasmodium liver stage infection through 

TLR4 activation by initiating a cascade of immune events that will be detrimental for 

parasite development and disease outcome. Moreover, other effects besides those 

occurring on hepatocytes seem to be important for the phenotype observed in vivo. 

 

 

Figure 6 Primary hepatocytes from mice that lack TLR4 

expression are more susceptible to sporozoite infection. 

Wild-type, TLR2- and TLR4-knockout C57BL/6 mouse-derived 

hepatocytes were cultured in vitro and infected with P. berghei 

sporozoites. Quantitative PCR analysis was performed to 

measure the number of parasite copies from cell lysates 

collected 40 hours after infection (mean ± SD, n=3, p < 0.05).  
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TLR4 bone marrow chimeras (WT BM > WT or TLR4-/- mice) lose the increased 

susceptibility to infection 

In the absence of TLR4, mice reveal an impaired immune response and primary 

hepatocytes show increased susceptibility to infection. However, the role of TLR4-

expressing immune cells in this process remains unclear. To clarify the relative 

importance of TLR4-associated resistance in hepatocytes and/or hematopoietic 

(immune) cells, we performed mouse bone-marrow chimeras. First, wild-type and TLR4-

knockout C57BL/6 mice (Thy1.2) were lethally irradiated and reconstituted with bone 

marrow-derived cells from TLR4-suficient mice (Thy1.1). We performed a flow-cytometry 

analysis screening after staining cells for Thy1.1 and Thy1.2 to confirm that both groups 

of mice were fully reconstituted with wild-type bone marrow-derived cells from the 

C57BL/6 Thy1.1 donors. Two to three months later, to allow the regular turnover of the 

macrophage population, which is to some extent resistant to irradiation and 

consequently not fully depleted, the bone marrow chimeras were infected with P. 

berghei sporozoites. TLR4-knockout mice that had been reconstituted with TLR4-

competent bone marrow lose the increased susceptibility to infection, as shown by qRT-

PCR of mRNA from livers of mice sacrificed 40 hours post-infection (Figure 7A). These 

results were corroborated by following the parasitemias of chimeric C57BL/10 ScSn and 

C57BL/10 ScN (TLR4-deficient) fully reconstituted with wild-type bone marrow. By day 3 

post-infection, these mouse chimeras did not display significant differences in blood 

parasitemias (Figure 7B). These data demonstrate a role for hematopoietic cells in 

mediating the TLR4-associated resistance to infection. 
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Figure 7 Bone marrow chimeric mice (WT BM > WT mice and WT BM > TLR4
-/-

 mice) show 

similar levels of infection. Wild-type C57BL/6 and C57BL/10 ScSn and TLR4-deficient C57BL/6 

and C57BL/10 ScN recipient mice (Thy1.2) were lethally irradiated and reconstituted with wild-

type bone marrow from C57BL/6 Thy1.1 and C57BL/10 ScSn donor mice. The degree of 

reconstitution was 96-100%. Mouse chimeras were
 
infected with 2x10

4
 P. berghei sporozoites. 

The number of parasite copies was quantified by qRT-PCR of mRNA extracted from infected 

livers from C57BL/6 chimeric mice, collected 40 hours post-infection (A) Blood parasitemias were 

measured after day two post-infection in C57BL/10 mouse chimeras, by FACS analysis of blood 

drops (B) (mean ± SD, n=6-8). 

 

 

Mice with TLR4-deficient hematopoietic cells (TLR4-/- BM > WT or TLR4-/- mice), 

show a small but significant difference in susceptibility to liver infection 

After analyzing the outcome of introducing wild-type bone marrow-derived cells in mice 

lacking TLR4 in the response to infection, we sought to determine the effect of TLR4 

absence in tissues other than bone marrow-derived cells. Mouse bone marrow chimeras 

were obtained as described before. Here, wild-type and   TLR4-knockout C57BL/6 mice 

were lethally irradiated and reconstituted with bone marrow-derived cells from TLR4-

deficient mice. Such chimeras, therefore, do not differ in TLR4 expression by bone 

marrow-derived (immune) cells, but show differential TLR4 expression in all other body 

tissues, including hepatocytes. We found that when bone marrow-derived (immune) 

cells lack TLR4 expression, TLR4 absence in other tissues imparts a moderate but 

significant increase in susceptibility to infection (Figure 8). Again, these observations 

suggest that the increase in the number of parasite copies described in infected TLR4-

deficient mice also appears to be mediated by hepatocytes, as previously indicated by 

the infection of wild-type and TLR4-knockout C57BL/6 mouse-derived primary 

hepatocytes. 

 

Figure 8 TLR4-/- BM > TLR4-/- mouse chimeras are more 

susceptible to P. berghei sporozoite infection than TLR4-/- BM > 

WT mice. TLR4-suficient and TLR4-deficient C57BL/6 recipient mice 

were lethally irradiated and reconstituted with TLR4-deficient bone 

marrow from C57BL/6 TLR4-knockout donor mice. Chimeric mice 
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were
 
infected with 2x10

4
 P. berghei sporozoites. The number of parasite copies was quantified by 

qRT-PCR of mRNA extracted from the infected livers collected 40 hours post-infection (mean ± 

SD, n=8, p < 0.05). 

 

 

Macrophage recruitment is reduced in TLR4-knockout mice during P. berghei 

sporozoite infection  

In order to clarify which immune cells are responsible for the increased susceptibility to 

sporozoite infection in TLR4-deficient mice, we analysed the expression of leukocyte 

markers throughout infection in the liver. We compared wild-type and TLR4-knockout 

C57BL/6 mice for expression of the following genes: Ncf2 and Ncf4 (neutrophil cytosolic 

factor 2 and 4, a neutrophil marker), Klrd1 (killer cell lectin-like receptor subfamily D 

member 1, a NK cell marker), CD68 antigen (expressed by tissue macrophages and 

cells of myeloid/mononuclear lineage), Mgl2 (macrophage galactose N-acetyl-

galactosamine specific lectin 2, a macrophage cell surface carbohydrate-binding 

molecule) and CD3 (a TCR adaptor molecule). Among these genes, we found that the 

expression of CD68 and Mgl2 in the livers of TLR4-knockout infected mice was 

decreased at 40 hours post-infection, suggesting that there is less macrophage 

recruitment in TLR4-deficient infected livers than in the livers of wild-type mice (Figure 

9). The other cell markers did not show significant differences in expression between the 

two groups of mice, indicating that there are no differences in numbers of neutrophils, 

NK cells and T cells in infected mice that either lack or express TLR4 (Figure 9). 
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Figure 9 CD68 and Mgl2 are less expressed in livers of TLR4-knockout infected mice. Wild-

type and TLR4-knockout C57BL/6 mice were
 
infected with 2x10

4
 P. berghei sporozoites. Livers 

were collected 40 hours after infection and gene expression levels of several leukocyte markers, 

Ncf2 and Ncf4, Klrd1, CD3, Mgl2 (p < 0.05) and CD68 (p < 0.05), were determined by 

quantitative RT-PCR (mean ± SD, n=6). 

 

 

Macrophage and DC recruitment in livers of infected mice is TLR4-mediated 

To characterize the immune response in the liver and to determine whether TLR4 

deficiency would lead to a decrease in activation and recruitment of immune cells, we 

isolated liver non-parenchymal cells from wild-type and TLR4-knockout C57BL/6 

infected mice, 40 hours after infection. 

We show that there are no significant differences in lymphocyte numbers between naïve 

and infected wild-type C57BL/6 mice at 40 hours post-infection (Figure 10). There is a 

small but non-significant increase in the frequency of both CD4 and CD8 activated T 

cells and, consequently, IFN-γ production, and a clear activation of NK T cells, which 

indicates that T cells are activated at this stage of the infection (Figure 11).  
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Figure 10 Cell numbers of non-parenchymal populations in the liver. Liver non-parenchymal 

cells from naïve and infected wild-type and TLR4-knockout C57BL/6 mice were purified and 

stained for different cell markers: CD8 T cells, CD4 T cells, B cells, NK T cells, NK cells, 

neutrophils, DCs (p < 0.05) and macrophages (p < 0.05). Mice were infected with 1x10
5
 P. 

berghei sporozoites (NI-non-infected mice, I-infected mice; mean ± SD, n=4). 

 

 

Infected wild-type mice also display a well-defined increase in both DC and macrophage 

populations, and a non significant increase in NK cells and neutrophils (Figure 10). This 

increment in cell populations does not occur in TLR4-knockout mice, which indicates 

that both macrophage and DC recruitment to the tissues is TLR4-mediated. Additionally, 

CD4 and CD8 activation also seems to be at least partially mediated by TLR4 since both 

CD4 and CD8 do not increase their expression of CD69, an early activation marker, in 

infected mice lacking TLR4. In contrast, NK T cells are activated as infected wild-type 

mice, suggesting that NKT cell activation is TLR4-independent. It is interesting to 

observe that macrophages from TLR4-knockout infected mice produce less TNF than 

wild-type infected controls, which shows that macrophage activation is also mediated by 

TLR4 during liver stage of infection.  
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Figure 11 Frequencies of activated non-parenchymal populations in the liver. Liver non-

parenchymal cells from naïve and infected wild-type and TLR4-knockout C57BL/6 mice were 

purified and stained for different cell markers: CD69+ CD8 T cells, CD69+ CD4 T cells (p < 0.05), 

CD69+ NK T cells (p < 0.05); CD8 T cells and CD4 T cells stained for intracellular expression of 

IFN-γ and TNF, respectively and macrophages from infected mice stained for intracellular 

expression of TNF (p < 0.05). Mice were infected with 1x10
5
 P. berghei sporozoites (NI-non-

infected mice, I-infected mice; mean ± SD, n=4). 
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TLR4 activation during liver infection partially mediates the infiltration of immune 

cells in the tissues 

Activation of TLR4 by sporozoites in hepatocytes as well in circulating immune cells is 

necessary for the activation of the immune response. In the absence of TLR4, 

macrophage recruitment is reduced, which results in an increased parasite proliferation 

in the liver. To observe the extent of tissue inflammatory response, we analyzed 

histological sections of wild-type and TLR4-knockout C57BL/6 mouse livers, infected 

with P. berghei sporozoites. As expected, we observed the existence of small 

inflammatory foci surrounding infected hepatocytes in wild-type mice (van de Sand, 

Horstmann et al. 2005). However, the total area of these inflammatory foci was 

significantly lower in TLR4-knockout mice (Figure 12A). Morphometric analysis was 

used to quantify the size occupied by infiltrated inflammatory cells and revealed that the 

area occupied by the inflammatory foci on C57BL/6 wild-type mouse liver sections is 

2.5-fold increased when compared to TLR4-knockout mice (Figure 12B). TLR4 

activation during P. berghei liver infection induces an inflammatory response which 

leads to the recruitment of immune cells to the infection site. 
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Figure 12 Recruitment of immune cells to P. berghei infected livers is partially mediated by 

TLR4. Liver sections showing representative inflammatory foci in wild-type and TLR4-knockout 

C57BL/6 mice after infection with 1x10
5
 P. berghei sporozoites (A). The area of cell infiltrates was 

quantified by ImageJ (B) (mean ± SD, n = 3, p < 0.05).  
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Discussion 

 

In recent years, substantial advances have been made in our knowledge about host 

immune responses to parasite infections. Despite considerable progress, our 

understanding of how Plasmodium interacts with the host immune system is far from 

being fully elucidated. Plasmodium infection is still increasing the burden of malaria 

worldwide and the associated drug resistance is a rising phenomena that requires new 

clinical approaches. Thus, it is essential to improve our knowledge about the biology of 

malaria infection. We focused on the interactions between the host immune system and 

P. berghei liver parasites mediated by some members of the TLR family. Their role in 

the blood stage of malaria infection, and namely in the development of cerebral malaria, 

is controversial. In addition, very little is known concerning the role of TLRs during the 

liver stage of infection. Recently, it was reported that the wounding of hepatocytes by 

sporozoites activates NF-κB, which might implicate triggering of TLR signaling. In the 

present chapter, we show that while we could not determine a role for TLR2 in the 

immune response to sporozoite infection, mice lacking TLR4 display enhanced 

susceptibility to P. berghei liver infection. Increased levels of parasite copies were 

observed in the liver of TLR4-deficient mice, as well as the expected higher 

parasitemias at the beginning of blood stage infection. To our knowledge this is the first 

report that Plasmodium infection triggers a TLR, and stresses the importance of the liver 

phase of malaria as an immunological significant stage. 

Mouse chimeras reconstituted with wild-type bone marrow reveal that the increased 

susceptibility associated with the absence of TLR4 is mainly mediated by 

hematopoietically-derived immune cells. However, by infecting primary hepatocytes and 

bone marrow chimeric mice reconstituted with a TLR4-deficient hematopoietic cell 

population, we showed that this phenotype is also partially mediated by hepatocytes. 

This finding is not entirely unexpected: hepatocytes constitute obligatory host cells in the 

Plasmodium life cycle, and the fact that they express a plethora of innate receptors like 

TLRs increases the chance for the appearance of recognition mechanisms during the 

co-evolution of host and parasite. The finding that TLR4 is activated in hepatocytes 

during Plasmodium infection calls for the question of what are the consequences of the 

recognition of the parasite. By showing that TLR4 activation by LPS, remarkably 
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reduces the infection levels and hinders parasite development, it appears that TLR4 

activation in hepatocytes has significant consequences during liver invasion by 

Plasmodium. Remarkably, we show that injection of 10 micrograms of LPS per mouse, 

at the time of sporozoite infection, can prevent BALB/c mice infection and decrease by 

94% the infection of C57BL/6 mice, which are more susceptible to P. berghei sporozoite 

infection. 

At twenty hours post-infection we already observe an increased susceptibility of TLR4-

deficient mice to infection. This phenotype correlates with defective macrophage 

responses in vivo, not only because there is a decrease in macrophage recruitment in 

TLR4-deficient infected livers, but also because they are less activated and therefore 

produce less TNF than wild-type controls. TNF release induces a pro-inflammatory 

response, which appears to be detrimental for the parasite and thus, limits the extent of 

parasite infection. Moreover, there is a clear increase in the number of DCs in the liver 

of infected wild-type mice whereas in the absence of TLR4, this influx does not occur. It 

was previously described that when DCs are sensitized directly with viable sporozoites, 

they stimulate CD8 T cells in vivo (Plebanski, Hannan et al. 2005), therefore, TLR4-

mediated recruitment and activation of DCs might play an important role in the immune 

response against P. berghei infection. The increase in the number of DCs present in the 

liver after infection allows for the mounting of an adaptive, specific immune response by 

inducing differentiation of helper T cells, a process that can is augmented by TLR 

activation. The fact that we do not observe significant differences in T cell numbers is 

expected at this earlier stage of the infection. However, we could already observe an 

increase in the activation of both CD8 and CD4 T cells (expressing CD69) and of IFN-γ-

producing Th1 and CD8 T cells, which while not being significant, can still be relevant if 

we consider the reduced fraction of the total number of resident T cells in the liver 

present at infection foci. These cells were probably mainly activated by the considerable 

amount of DCs in the liver at this stage. Furthermore, there might be also some direct 

activation of T cells TLRs by the parasite or by any endogenous ligands released during 

infection (Caramalho, Lopes-Carvalho et al. 2003). To get a cleared view at the immune 

cell activation process at this stage, injection of millions of sporozoites might induce a 

more vigorous and clearcut response, but this would be further away from how natural 

infections occur, where a reduced number of sporozoites infect the liver. The small 
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proportion of infiltrates in wild-type mice infected with 1x105 sporozoites – less than 0.1% 

– also demonstrates how small is the percentage of infected hepatocytes. Nevertheless 

there is a significant difference in the number of infiltrates in TLR4-knockout mice, which 

is clearly diminished.  

In summary, first, both macrophage and DC numbers are increased during infection as 

well as activated T cells, NK cells and neutrophils, to a smaller extent, which indicates 

that they are all involved in host immune response to Plasmodium infection. Secondly, 

their recruitment to the infection site seems to be clearly mediated by TLR4 both in 

macrophages and DCs and at least partially mediated in the remaining populations of 

immune cells. 

Finally, we showed that C57BL/6 mice lacking TLR4 display increased susceptibility to 

liver stage infection with P. berghei sporozoites, suggesting that TLR4 is required for a 

stronger immune response to P. berghei sporozoite infection in the liver. Nevertheless, 

unlike C57BL/6 controls, these mice do not develop CM. All wild-type mice die of CM 

between day 6 and 8 post-infection, while TLR4-knockouts only die later, between days 

17 and 27, reaching very high atypical levels of blood  parasitemias. These data indicate 

that TLR4 might be required for the development of CM when mice have been infected 

with the liver form of the parasite. It has been reported in the literature that mice with a 

C57BL/6 background, without a functional TLR4, develop CM as wild-type controls after 

a blood stage infection. Altogether, these findings emphasize the relevance of the 

immune events occurring during liver stage following sporozoite infection, and suggest 

that they might be important in the outcome of the disease.  

 

We propose that TLR4 activation both in immune cells, namely in macrophages and 

DCs, and in hepatocytes is required for a more efficient control of parasite infection. 

These data suggest an important role for TLR4 in parasite recognition by the host innate 

immune system, whether by direct recognition of a parasite TLR ligand or by indirect 

recognition of exposed or released endogenous ligands induced by parasite infection. 

An extensively described process like cell traversal is one possible event that can trigger 

TLR4-mediated signaling, activating host defense mechanisms. 
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The findings presented herein thus confirm that TLR4 plays a role in host resistance to 

P. berghei and provide the first clear evidence for TLR involvement in the control of 

malaria infection in vivo. 
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TLR9 is required for Plasmodium berghei 

liver infection 

 

 

Abstract 

 

Through recognition of pathogen-associated molecules, TLRs are known to participate 

in the control of infectious diseases. TLR9 is an intracellular receptor which recognizes 

foreign DNA molecules and is expressed by hepatocytes. Given that Plasmodium is an 

obligatory intracellular parasite, we hypothesized that TLR9 could be involved in the 

immune response in the liver stage of malaria. Our results show that unlike TLR4, which 

is implicated in the control of P. berghei liver infection and in other parasitic infections, 

TLR9 does not seem to play a role in host resistance to Plasmodium infection. In fact, 

TLR9 is shown to be beneficial for the parasite at early stages of P. berghei malaria 

infection. By infecting mice lacking TLR9 expression, we observed increased resistance 

to liver infection with P. berghei sporozoites. In addition, by infecting TLR9-deficient 

primary hepatocytes and mouse chimeras, it appears that this resistance is hepatocyte-

mediated, and not caused by lack of TLR9 expression in hematopoietic immune cells. 

However, treatment of mice and cells with CpG, a TLR9 ligand, also led to an increase 

in resistance to sporozoite infection, indicating that TLR9 is differentially activated or 

having distinct effects in different cell types. 

The role of this innate receptor during P. berghei sporozoites infection still requires more 

attention. One can predict that parasite-host interactions mediated by TLRs are complex 

and differ among protozoan parasites, and that TLR activation may differentially affect 

the outcome of the disease.  

 

 

Introduction 

 

We showed previously that TLR4-deficient mice display enhanced susceptibility to liver 

infection by P. berghei sporozoites. This suggests that TLR4-dependent signaling is 
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activated during infection and is involved in host control of P. berghei sporozoite 

infection. 

We then sought to determine whether TLR9 would influence the course of malaria liver 

infection. TLR9 is known as a receptor for DNA, mostly of unmethylated CpG-containing 

DNA. In malaria blood-stage infection, it has been shown that DCs are activated via a 

TLR9/MyD88-dependent pathway and that hemozoin mediates this activation (Coban, 

Ishii et al. 2005). More recently, others have shown that hemozoin plays a specific role 

in presenting parasite DNA to the intracellular TLR9, although it is not capable of 

stimulating the innate immune system by itself (Parroche, Lauw et al. 2007). Still, the 

importance of TLR9 signaling for the course of blood stage infection has been 

questioned, as infection of TLR2/4/9-deficient triple-knockout mice with blood stage 

parasites showed no differences regarding survival and pathogenesis, when compared 

to wild-type control mice (Lepenies, Cramer et al. 2008). 

Despite the above mentioned data concerning the effect of TLR9 in malaria infection 

with blood-stage parasites, it remains an open question whether the same is observed 

during liver stage infection.  

Concerning the role of TLR9 in P. berghei liver infection, we observed a drastic 

reduction in parasite copies detected in the liver of TLR9-knockout mice following 

sporozoite infection. By infecting primary hepatocytes and bone-marrow mouse 

chimeras we concluded that this effect is only mediated by hepatocytes, differently from 

what was found for infected TLR4-knockout mice, where immune cells also played an 

important role. Surprisingly, similarly to what happens after LPS treatment, generalized 

TLR9 activation by administration of CpG to infected mice or cultured hepatocytes in 

vitro decreases the levels of infection. 

It is commonly accepted that TLRs play a role in recognition and activation of the innate 

immune response against parasites. In this chapter, we show that TLR9 expression in 

hepatocytes seems to be beneficial for P. berghei liver infection. So far, it has never 

been shown that a TLR accounts for an increased resistance to infection, and these 

results open important questions about the interaction between host and parasite during 

the initial steps of malaria infection.  
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Results 

 

TLR9-knockout mice display increased resistance to P. berghei sporozoite 

infection 

We demonstrated previously that mice lacking TLR2 expression do not display 

significant differences from wild-type controls in liver infection with P. berghei 

sporozoites, whereas in the absence of TLR4, mice showed to be more susceptible to 

infection. This observation suggests an important role of TLR4 in Plasmodium 

recognition and, therefore, in the control of infection. To date, lack of TLR expression 

has been associated with susceptibility to infection, not only in malaria, as we described, 

but also in other infectious diseases. We then sought to characterize the role of TLR9 

during liver stage and a distinct response to infection was observed in TLR9-deficient 

mice infected with P. berghei sporozoites. Strikingly, in the absence of TLR9, C57BL/6 

mice are more resistant to P. berghei sporozoites infection than wild-type controls 

(Figure 1).  
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Figure 1 Mice lacking TLR9 expression are more resistant to P. berghei sporozoite 

infection. Wild-type and TLR9-knockout C57BL/6 mice were
 
infected with 2x10

4
 P. berghei 

sporozoites. After liver removal, 10, 20 (B) and 40 (A) hours after infection, the number of 

parasite copies was quantified by qRT-PCR of mRNA extracted from the livers. Blood 

parasitemias were measured in both experimental groups by FACS analysis of blood drops 

collected from day 2 post-infection. Parasitemias from mice that did not develop CM were 

measured until day 25 post-infection (C). Results are representative of two to six independent 

experiments (mean ± SD, n=4-6, p < 0.05). 

 

 

A reduction in the number of parasite copies was observed by quantitative RT-PCR of 

mRNA from livers of TLR9-knockout infected mice when compared to wild-type infected 

mice, collected 40 hours post-infection. Mice lacking TLR9 expression displayed an 80% 

reduction in the number of parasite copies when compared to wild-type controls (Figure 

1A). Additionally, parasites were only detected in the blood of these mice at day 4 post-

infection, while in wild-type controls blood stage parasitemias were already positive at 

day 3 post-infection (Figure 1C). Moreover, the resistance to infection associated with 

TLR9 deficiency was observed at early stages of parasite development in the liver. At 10 

hours post-infection the parasite load in livers of mice infected with 2x104 P. berghei 

sporozoites were clearly reduced when compared to wild-type controls (Figure 1B). 

These lower numbers of parasite copies were maintained throughout infection, 

suggesting that TLR9 plays a role at very early stages of liver infection, but might 

influence the blood stage of infection as well. To access survival after infection with P. 

berghei sporozoites, both wild-type and TLR9-knockout C57BL/6 mice were monitored 

daily for clinical symptoms. It was observed that most of the TLR9-knockout mice (70%) 

died with CM, as did the wild-type controls (Figure 2).  

 

Figure 2 Survival of infected mice. Wild-

type and TLR9-knockout C57BL/6 mice 

were
 

infected with 2x10
4
 P. berghei 

sporozoites. Infected mice were monitored 

daily for clinical symptoms (n=6). 
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TLR9-deficient hepatocytes display an increased resistance to P. berghei 

sporozoite infection  

To better understand which cells are responsible for the resistance to infection observed 

in vivo, hepatocytes from wild-type and TLR9-knockout C57BL/6 mice were purified, 

cultured and infected with P. berghei sporozoites. In the absence of TLR9, primary 

hepatocytes also reveal an increase in resistance to infection when compared to wild-

type controls (Figure 3). These observations suggest that the resistance described in 

vivo, which is associated to lack of TLR9 expression, is at least partially mediated by 

hepatocytes. Importantly, we can conclude that TLR9 plays a role in hepatocyte 

susceptibly to infection. 

 

 

Figure 3 Primary hepatocytes from TLR9-knockout mice are 

more resistant to P. berghei sporozoite infection than wild-type 

controls. Pools of wild-type and TLR9-knockout C57BL/6 mouse-

derived hepatocytes were cultured in vitro and infected with P. 

berghei sporozoites. Quantitative RT-PCR analysis was performed 

to measure the number of parasite copies from cell lysates collected 

40 hours after infection (mean ± SD, n=3, p < 0.05). 

 

 

TLR9 chimeras (WT BM > TLR9-/- mice) maintain an increased resistance to 

infection 

In the absence of TLR9, both mice and primary hepatocytes show an enhanced 

resistance to infection. To determine the role of hematopoietically-derived immune cells, 

during liver infection with P. berghei, we produced mouse bone-marrow chimeras. First, 

wild-type and TLR9-knockout C57BL/6 mice (Thy1.2) were lethally irradiated and 

reconstituted with bone marrow-derived cells from TLR9-suficient mice (Thy1.1). In 

order to confirm that both groups of mice were fully reconstituted with wild-type bone 

marrow-derived cells from the C57BL/6 Thy1.1 donors, we performed a flow-cytometry 

analysis after staining peripheral blood lymphocytes for Thy1.1 and Thy1.2. Two to three 

months later, to allow the regular turnover of the radiation-resistant macrophage 

population, the chimeras were infected with 2x104 P. berghei sporozoites. qRT-PCR 
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analysis of mRNA from livers of mice sacrificed 40 hours post-infection revealed that 

TLR9 chimeric mice maintain the increased resistance to infection observed in the 

TLR9-knockout mice (Figure 4A). These data were supported by following parasitemias 

from the infected TLR9 chimeras, fully reconstituted with wild-type bone marrow, which 

showed a significant decrease in blood parasitemias at day 3 post-infection when 

compared to wild-type control mice, also irradiated and reconstituted with wild-type bone 

marrow (Figure 4B). These data exclude a potential role of hematopoietically-derived 

cells in the TLR9-mediated resistance to infection. 
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Figure 4 TLR9-knockout increased resistance to P. berghei infection is not mediated by 

bone marrow-derived cells. Wild-type and TLR9-knockout C57BL/6 recipient mice (Thy1.2) 

were lethally irradiated and reconstituted with wild-type bone marrow from C57BL/6 Thy1.1 donor 

mice. The degree of reconstitution was >96%. Bone marrow chimeric mice were
 
infected with 

2x10
4
 P. berghei sporozoites. The number of parasite copies was quantified by qRT-PCR of 

mRNA isolated from the infected livers collected 40 hours post-infection (A). Blood parasitemias 

were measured from day two post-infection in all animal groups, by FACS analysis of blood drops 

(B) (mean ± SD, n=6, p < 0.05). 

 

 

TLR9-deficient bone marrow chimeras (TLR9-/- BM >TLR9-/- mice) show a 

significant increase in resistance to infection with P. berghei sporozoites  

The introduction of wild-type bone marrow-derived cells in mice lacking TLR9 led to the 

conclusion that these TLR9-suficient hematopoietic cells are not mediating the 

increased resistance to infection observed in these mice. The converse experiment was 
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then performed, where we sought to confirm whether TLR9-deficient hematopoietically-

derived cells would have any impact on the disease progression. We produced mouse 

bone-marrow chimeras as described above, where wild-type and TLR9-knockout 

C57BL/6 mice were lethally irradiated and reconstituted with bone marrow derived cells 

from TLR9-mutant mice. We show that when immune cells lack TLR9 expression, there 

is still a significant difference in parasite loads between both wild-type and TLR9-

knockout chimeras, as we observed in naive mice, despite to lower extent (Figure 5). 

These observations indicate that TLR9 deficiency in non-hematopoietic cells leads to 

increased resistance to P. berghei infection.  

As mentioned above, by infecting primary hepatocytes we confirmed that absence of 

TLR9 only in hepatocytes correlates with the in vivo reduction in the number of 

developing parasites in the liver of infected TLR9-knockout mice.  

 

 

Figure 5 TLR9-deficiency in non-hematopoietic cells leads 

to increased resistance to malaria liver stage infection. 

TLR9-sufficient and TLR9-deficient C57BL/6 recipient mice were 

lethally irradiated and reconstituted with TLR9-deficient bone 

marrow from C57BL/6 TLR9-knockout donor mice. Chimeric 

mice were
 

infected with 2x10
4
 P. berghei sporozoites. The 

number of parasite copies was quantified by qRT-PCR of mRNA 

isolated from the infected livers collected 40 hours post-infection 

(mean ± SD, n=5, p < 0.05).  

 

 

To determine whether the irradiation of mice followed by the injection of hematopoietic 

cells to reconstitute the depleted bone-marrow could have interfered with the levels of 

infection, we produced control chimeric mice: wild-type and TLR9-knockout C57BL/6 

mice were lethaly irradiated and reconstituted with bone marrow-derived cells from 

TLR9-suficient and TLR9-deficient mice, respectively. The infection of these mouse 

chimeras clearly showed that the irradiation and reconstitution procedures do not affect 

the phenotype observed in naïve mice infected with P. berghei sporozoites (Figure 6). 
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Figure 6 The irradiation and reconstitution procedures do not affect the susceptibility to 

infection associated to TLR9. TLR9-sufficient and TLR9-deficient C57BL/6 recipient mice were 

lethally irradiated and reconstituted with wild-type and TLR9-knockout bone marrow, respectively, 

from wild-type and TLR9-knockout C57BL/6 donor mice. Bone marrow chimeras were
 
infected 

with 2x10
4
 P. berghei sporozoites. The number of parasite copies was quantified by qRT-PCR of 

mRNA isolated from the infected livers collected 40 hours post-infection (mean ± SD, n=4, p < 

0.05). 

 

 

CpG treatment inhibits liver infection in vivo and decreases the levels of infection 

in vitro 

We showed that TLR9 expression in hepatocytes is responsible for an increased 

susceptibility to infection. To test whether TLR9 triggering would interfere with the 

infection levels we used CpG, a TLR9 agonist, to activate TLR9 both in vivo and in vitro. 

Both BALB/c and C57BL/6 mice were injected i.p. with 10 micrograms of CpG per 

mouse at the same time as sporozoite infection. Surprisingly, BALB/c mice did not 

become infected after injection of 2x104 P. berghei sporozoites while 50% of the 

C57BL/6 mice did. Additionally, we observed by qRT-PCR that the C57BL/6 mice that 

became infected after treatment with CpG displayed a dramatic reduction in the number 

of developing parasites in the liver (Figure 7A). Periodically, blood parasitemias were 

measured in mice in which the infection was prevented by CpG injection. These mice 

never developed positive parasitemia and remained alive for several months, dying later 

of natural causes (Figure 7B). 

To assess if CpG-mediated protection also occurs in hepatocytes infected in vitro, we 

treated Hepa1-6, HepG2 and Huh7 cells (mouse and two human hepatoma cell lines, 

respectively) and C57BL/6 primary hepatocytes with 10 micrograms of CpG per well, at 
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the time of sporozoite infection. We observed that CpG treatment in vitro also decreased 

the infection levels in hepatoma cells (Figure 7C) and in mouse primary hepatocytes 

(Figure 7D). We then did a titration in Huh7 cells with different concentrations of CpG, 

which resulted in an inversed correlation between CpG doses and infection levels 

(Figure 7C).  
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Figure 7 CpG treatment both in vivo and in vitro results in a major reduction in parasite 

load. Wild-type C57BL/6 mice were injected i.p. with 10µg of CpG per mouse and, at the same 

time, infected with 2x10
4
 P. berghei sporozoites. The number of parasite copies was quantified 

by qRT-PCR of mRNA isolated from the infected livers collected 40 hours post-infection (A). 

Likewise, BALB/c mice were infected and blood parasitemias were measured after day 2 post-

infection, by FACS analysis of blood drops (B). Huh7 hepatoma cells were treated with 0, 1, 5, 10 

and 50µg of CpG (C) and C57BL/6 primary hepatocytes were treated with 10µg of CpG (D). 

Then, both cells were infected with 2x10
4 

P. berghei sporozoites per well. The number of parasite 
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copies was quantified by qRT-PCR of mRNA extracted from cell lysates collected 24 (C) and 42 

hours after infection (D) (mean ± SD, n=3-5, p < 0.05).  

 

 

Discussion 

 

Plasmodium is a protozoan parasite which has coevolved with its mammalian hosts for a 

long period of time and might have developed, as well as other parasites, strategies to 

evade and manipulate the host immune response.   

Our understanding of how Plasmodium sporozoites might evade the immune response 

in the liver is scarce. Studying the function of TLRs, major parasite immune sensors, in 

Plasmodium liver infection, may contribute to shed some light on the nature of host-

parasite interactions at this stage.  

We demonstrated that TLR signaling is activated during Plasmodium infection, as TLR4-

deficient mice show enhanced susceptibility to infection. Likewise, in recent years it has 

been reported that several TLRs are important for the recognition of pathogens and 

activation of the innate immune response against protozoan parasites and against 

pathogens in general. So far, it has never been shown that lack of TLR accounts for an 

increased resistance displayed to an infection. However, our data indicates that mice 

lacking TLR9 are more resistant to P. berghei liver infection, suggesting that TLR9 

increases susceptibility to this parasite. Our findings can be interpreted as a mechanism 

used by Plasmodium to evade the immune response or to somehow facilitate the early 

stages of liver infection. Given that the phenotype displayed by TLR9-deficient mice 

appears to be hepatocyte-mediated, one can speculate that while traversing and 

infecting hepatocytes the parasite activates TLR9, and that this activation is beneficial 

for the infection. TLR9 triggering in this case could be attained by endogenous ligands 

or by the parasite itself. The use of an immune receptor for facilitating an infection might 

seem a surprising and unexpected ability from the Plasmodium protozoan, but the long 

history of evolution between this parasite and mammalian hosts could well give rise to 

such interactions. The role of TLR9 in facilitating the infection of Plasmodium can be 

thought to happen in one of two processes: the infection itself and subsequent parasite 

development inside the hepatocyte; and a dampening effect on the ensuing immune 
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response. In the first case it is possible that TLR9 triggering during parasite infection of 

hepatocytes somehow provokes the liver cell to undergo alterations which are either 

beneficial or even necessary for optimal infection, and can include cellular compartment 

rearrangement or de novo synthesis of proteins, for example. The second case could be 

an indirect effect in the immune response to liver infection, as TLR9 activation in 

hepatocytes might inhibit or otherwise redirect the danger signaling molecules released 

in response to cellular stress. 

Contrary to TLR4, TLR9 expression in hematopoietic cells appears to have no effect on 

liver infection. This result rules out Kupffer cells as being responsible for the phenotype 

observed in TLR9-deficient mice, despite these cells being also traversed by the 

parasite. It is however possible that in the bone marrow chimeras we produced, the 

reconstitution of Kupffer cells was not complete, even after the long period we allowed 

after bone marrow transfer before infecting the mice.  

While it is clear from our results that TLR9 expression in hepatocytes has a supporting 

effect in Plasmodium infection, our experiments do not exclude that triggering of TLR9 in 

hematopoietic cells impacts on the liver stage of malaria infection. In particular, the 

inhibition in infection levels observed after CpG administration is likely to activate the 

immune system and consequently negatively affect the infection of hepatocytes. To 

address this issue, different bone marrow chimeras must be studied where bone marrow 

deficient or sufficient for TLR9 is injected into irradiated wild-type mice. 

TLR9 activation with CpG, similarly to what was described for TLR4 stimulation using 

LPS, led to an increase in resistance to sporozoite infection. The mechanism or the 

target cells where TLR9 activation is triggered, either by the parasite infection or by 

CpG, must be distinct, giving rise to dissimilar effects in parasite load. Further work 

would be necessary to unravel the mechanisms underlying TLR9-associated host 

susceptibility to P. berghei liver infection.   
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MyD88 is a mediator of protective immunity induced by 

Plasmodium radiation-attenuated sporozoites 

 

 

 

Abstract  

 

Sterile protective immunity against malaria can be elicited through immunization with 

radiation-attenuated sporozoites (RAS). This experimental model has been unraveling 

essential defense mechanisms involved in the establishment and maintenance of 

protective immunity against malaria liver infection. However, these have not been fully 

elucidated.  

TLRs play a critical role in the activation of innate immunity by the recognition of parasite 

specific molecules. In signaling pathways via TLRs, MyD88 is a common adaptor which 

is essential for the production and release of inflammatory cytokines. In order to 

determine whether these host immune players are involved in the protection against 

Plasmodium liver infection conferred by immunization with RAS, we tested if sterile 

immunity could be induced in TLR2, TLR4, TLR9 and MyD88-knockout mice. Upon 

immunization with one or two doses of irradiated sporozoites, MyD88-knockout mice are 

able to develop some degree of protection, although to a smaller extent when comparing 

to wild type mice, and not enough to confer full protection after challenge with viable 

sporozoites. Accordingly, mice that lack MyD88 failed to develop protective immunity 

against P. berghei sporozoites upon three doses of irradiated sporozoites, whereas in 

immunized wild-type, TLR2, TLR4 and TLR9-knockout mice, parasite development was 

arrested. 

These findings point out the essential but not exclusive role of MyD88 (TLR2, TLR4 and 

TLR9-independent) in the protection elicited by irradiated sporozoites, emphasizing the 

relevance of innate immune mechanisms in the development of protective immunity to 

Plasmodium. 
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Introduction 

 

The experimental induction of sterile and lasting immunity against sporozoite infection, 

whereby the development of an erythrocytic stage infection is prevented, has been 

shown in the late 60s using gamma-irradiated rodent malaria sporozoites (Nussenzweig, 

Vanderberg et al. 1967). Later, immunization with RAS was also achieved in humans 

(Clyde, Most et al. 1973), leading to a global effort to develop a malaria vaccine 

targeting the pre-erythrocytic stages of Plasmodium parasites. This became a unique 

model to elucidate the immune mechanisms in the liver that are responsible for the 

establishment and maintenance of protective immunity.  

Recent accumulating evidence has demonstrated that irradiated sporozoites are 

parasite attenuated forms, which are viable and able to invade hepatocytes, but that 

undergo arrested development and fail to establish a blood-stage infection. Therefore, 

the immunization with RAS is able to induce protective immune responses against 

subsequent challenges with viable sporozoites. It has been shown that the protection 

conferred by RAS is mediated by both CD8 and CD4 T cells as well as by antibodies 

that recognize surface proteins in sporozoites. Although these mechanisms of protection 

play a major role in RAS-mediated protective immunity, a wide array of other immune 

effectors is being described in mice infected with the rodent species of Plasmodium, 

which represent a relevant model for studding the immune mechanisms in malaria 

infection. Thus, RAS-mediated protection also relies on cytokines such as IFN-γ and IL-

12, on molecules like NO and on NK cells for parasite clearance (reviewed in Doolan 

and Martinez-Alier 2006). Regardless of the extensive acquired knowledge about the 

defense mechanisms implicated in the establishment of a protective immune response, 

they have not been entirely elucidated. 

TLRs play an essential role in the direct recognition of infectious agents, leading to the 

establishment of innate and adaptive immune responses (Pasare and Medzhitov 2005; 

Akira, Uematsu et al. 2006). In mammals, signalling events downstream of TLRs are 

mediated by different TIR-containing adaptor proteins, namely MyD88, which is common 

to all TLRs. Therefore, the fact that TLRs are major players in host defense lead us to 

attempt to define the relevance of MyD88, TLR2, TLR4 and TLR9 in the protection 
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conferred by irradiated sporozoites. Our results illustrate that unlike TLR2, TLR4 and 

TLR9, MyD88 is a critical effector in the process of immunization with RAS. 

 

 

Results 

 

MyD88 is a major mediator in the establishment of protection elicited by 

immunization with RAS 

To evaluate the contribution of MyD88, TLR2, TLR4 and TLR9 in the mechanisms of 

protection against malaria liver infection, wild-type, MyD88, TLR2, TLR4 and TLR9-

knockout C57BL/6 mice received one immunization and two extra boosts of P. berghei 

RAS in 10-day intervals, before challenge with 1x104 sporozoites. All non-immunized 

mice, used as controls in the challenge infection, developed a patent blood-stage 

infection. In contrast, none of the wild-type, TLR2, TLR4 and TLR9-knockout C57BL/6 

mice immunized with P. berghei RAS developed blood parasitemia, indicating that it is 

possible to induce sterile protection to challenge with viable sporozoites in the absence 

of TLR2, TLR4 and TLR9. However, 86% of MyD88-knockout mice were not protected 

against the challenge. Blood-stage parasites were detectable in challenged MyD88-

knockout mice, both in Giemsa-stained blood smears and in blood drops analyzed by 

flow cytometry (Table 1 and Figure 1), suggesting that immunization with RAS is at least 

partially mediated by MyD88 and TLR2, TLR4 and TLR9-independent. 

 

Table 1 Immunization with RAS fails to elicit sterile immunity in the absence of MyD88 but 

not in the absence of TLR2, TLR4 and TLR9 

Mouse 

strain 

No. Protected/total no. challenged 

mice Sterile protection (%) 

WT 21/21 100 

TLR2-/- 11/11 100 

TLR4-/- 5/5 100 

TLR9-/- 10/10 100 

MyD88-/- 1/7 14 

Naive 30/30 0 
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Figure 1 The vast majority of MyD88-knockout mice do not develop sterile immunity after 

immunization with RAS. Wild-type, TLR2, TLR4, TLR9 and MyD88-knockout
 
C57BL/6 mice 

were primed with 5x10
5
 P. berghei RAS and given

 
booster immunizations with two injections of 

2x10
4
 RAS. After challenge with

 
1x10

4 
viable P. berghei sporozoites, all animal groups were 

monitored for blood-stage infections. Protection was determined by measuring parasitemia in 

Giemsa-stained blood smears and FACS analysis of blood drops, obtained on a regular basis 

from day 1 to day 42 post-challenge. 

 

 

Naïve wild-type and MyD88-knockout C57BL/6 mice infected with 1x104 viable P. 

berghei sporozoites develop a patent blood-stage infection at day 3 to 4 post-infection. 

Immunized wild-type, TLR2, TLR4 and TLR9-knockout mice do not become infected 

after chalenge with viable sporozoites while immunized MyD88-knockout mice show 

positive parasitemias after day 5 post-infection. Parasites were not detected in the blood 

in the first days of infection as in naïve infected mice, both by analysing Giemsa-stained 

blood smears and blood drops by flow cytometry. Interestingly, while all naïve wild-type 

mice died at day 7 post-infection, immunized MyD88-knockout mice died later on, at 

days 16 and 27 post-infection (Figure 2). MyD88 seems to be necessary to the the 

establishment of protection during the immunization with RAS since the majority of RAS 

immunized mice did not develop immunity. However, other factors appear to be of 

importance in the process of immunization, as one out of seven MyD88-knockout mice 

developed protection and that there is a delay in the appearance of parasites in the 

blood of the remaining mice on the group, which indicates that immunized MyD88-

knockout mice developed some degree of protection. 

 



Results 
 

 
83 

 

 

 

Figure 2 Immunized MyD88-knockout
 
mice developed a patent blood-stage infection after 

day 5 post-challenge. Wild-type, TLR2, TLR4, TLR9 and MyD88-knockout
 
C57BL/6 mice were 

immunized with three injections of P. berghei RAS and challenged with 1x10
4 

viable P. berghei 

sporozoites. Blood parasitemias were monitored in all animal groups, by examination of Giemsa-

stained blood smears and FACS analysis of blood drops on a regular basis after day one post-

challenge. Naïve wild-type and MyD88-knockout mice were the only mice that developed 

parasitemia at day 3 to 4 and at day 5 post-challenge, respectively. Parasitemias are shown for 

individual mice in the MyD88-knockout group (n=5-10). 

 

 

We show that MyD88 seems to be necessary for the establishment of protection against 

sporozoite infection, which is obtained in C57BL/6 mice by one immunization followed 

by two boosts of RAS. We investigated the immunization process further and asked 

whether MyD88 is particularly important in the establishment of the initial partial 

protection conferred by the first injection of RAS. Mice that were injected with one or 

multiple immunizing doses of RAS were challenged with live sporozoites and the insuing 

infection was monitored. The degree of protection was assessed by quantifying the 

number of parasite copies by qRT-PCR of mRNA isolated from the livers at 40 hours 

after the challenge with 1x104 viable P. berghei sporozoites (Figure 3). A single injection 

with RAS is sufficient to significantly decrease the infection levels after challenge with 

viable sporozoites, both in wild-type and in MyD88-knockout mice. We observed that the 

level of protection is reduced but not significantly in MyD88-knockout mice when 

comparing to wild-type mice. This reduction in protection against the challenge with 

viable sporozoites was observed in MyD88-knockout mice upon the first immunization 
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and was enhanced when followed by a single immunization boost, suggesting that 

MyD88 is important during the course of immunization and not only in the initial 

immunization (Figure 3). In addition, there are no significant differences in parasite load 

at 40 hours post-infection between naïve wild-type and MyD88-knockout C57BL/6 mice 

infected with viable P. berghei sporozoites (Figure 3). This indicates that MyD88 itself 

does not play a role during liver infection with P. berghei or that different TLRs, MyD88-

dependent, play opposite roles (resistance and susceptibility) during infection, 

compensating each other effects.  

 

 

 

 

Figure 3 MyD88 is implicated in the protective mechanisms elicited during immunization 

with RAS. Wild-type and in MyD88-knockout
 
C57BL/6 mice were immunized with one and two 

injections of P. berghei RAS. The degree of protection was assessed by quantifying the number 

of parasite copies by qRT-PCR of mRNA isolated from the livers at 40 hours after the challenge 

with 1x10
4 
viable P. berghei sporozoites (mean ± SD, n=4-6).  

 

 

We could not observe significant differences in initial parasitemias from wild-type and 

MyD88-knockout C57BL/6 naïve mice, which is expected after seing no differences in 

parasite load in the liver at 40 hours post-infection. However, we observed that while 

wild-type mice died with CM, all of the MyD88-knockout mice died later on, even though 

they presented CM symptoms, and reached parasitemias higher than 80%, which is not 

usually observed in mice infected with P. berghei parasites (Figure 4). In two out of five 

mice, the parasites were almost undetectable around two months post-infection, and 
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then, reached again very high parasitemias titres, suggesting that absence of MyD88 

might be relevant for parasite clearance. 
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Figure 4 Mice lacking a functional MyD88 do not show any differences from wild-type 

controls at day 3 post-infection but display very high parasitemias during blood stage 

infection. Wild-type and MyD88-knockout mice were
 
infected with 2x10

4
 P. berghei sporozoites. 

Blood parasitemias were measured by FACS analysis of blood drops. Parasitemias are shown 

for individual mice in the MyD88-knockout group on the right panel (mean ± SD, n=5). 

 

 

TLR and MyD88-knockout mice can develop a patent blood-stage infection 

throughout the immunization course with RAS 

During the course of immunization with RAS, the parasitemia of all mice was monitored 

weekly, by examination of Giemsa-stained blood smears and FACS analysis of blood 

drops. Interestingly, while during the immunization protocol none of the wild-type mice 

showed positive parasitemias, several TLR2, TLR9 and MyD88-knockout mice, 

immunized at the same time, developed a persistent blood-stage infection following the 

injection of RAS. Only the mice that did not become infected during the immunization 

course were challenged (Figure1, Table1). The incidence of infected mice after RAS 

injection was significantly higher in MyD88-knockout mice since 50% of mice injected 

with RAS became infected before the challenge with viable sporozoites (Table 2). The 

fact that none of the wild-type mice become infected while some TLR-MyD88-deficient 

did suggests that these mice were not able to counteract the infection by sporozoites 

which have resisted the radiation and were in fact not attenuated, and consequently, 
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were able to successfully infect the liver and continue their life cycle, progressing to the 

blood. The blood-stage infection developed by some of the mice in the course of 

immunization was found to be persistent and without significant variations in parasitemia 

(Figure 5). 

 

 

Table 2 A proportion of TLR2, TLR9 and MyD88-knockout
 
mice developed a patent blood-

stage infection throughout the immunization course with RAS 

 

Mouse strain No. Infected/RAS injected mice 

WT 0/21 

TLR2-/- 1/11 

TLR4-/- 0/5 

TLR9-/- 2/10 

MyD88-/- 7/14 

 

 

 

 

Figure 5 Mice infected during the immunization process developed a chronic blood-stage 

infection throughout time. TLR9 and MyD88-knockout mice were injected with RAS and never 

challenged with viable sporozoites. Parasitemias were assessed by FACS analysis of blood 

drops obtained regularly after the first immunization and the two following boosts. Parasitemias 

are shown for individual mice (n=2-4). 
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Discussion 

 

To further determine whether MyD88 was particularly important in the establishment of 

the initial partial protection following RAS immunization, we quantified the degree of 

protection after immunization either without boosting or followed by a single boost. The 

results indicate that MyD88 mediates protection at the time of the first immunization and 

also seems to play a role in the subsequent boosts. 

In the present chapter, we explored the possibility that TLRs and MyD88 might be 

required for the development of protective immune responses during immunization with 

RAS. This hypothesis was driven by the fact that TLRs are known to play a critical role 

in the direct recognition of pathogens, leading to the induction of innate and adaptive 

immune responses. Therefore, by adressing their importance in the protection conferred 

by RAS, we demonstrate that while TLR2, TLR4 and TLR9 are not implicated in RAS-

mediated protection, MyD88 is a major effector in the immunization against malaria liver 

infection. 

We did not observe a role for TLR2, TLR4 and TLR9 in the establishment of protection 

against the infection with P. berghei sporozoites. However, RAS fail to elicit sterile 

immunity in the absence of MyD88 which indicates that this TLR-adaptor molecule is 

involved in the mechanisms of protection conferred by RAS immunization. It is important 

to notice that the fact that TLR2, TLR4 and TLR9 are not mediating protection does not 

exclude the hypothesis that other TLRs or IL-1R signaling pathways might be involved in 

this process.  

Interestingly, despite not being implicated in the establishment of RAS-mediated 

protection, some of these TLRs are important in the response to putative radiation-

resistant sporozoites. As shown in Table 2 and Figure 5, a proportion of TLR2, TLR9 

and MyD88-knockout mice developed a patent blood-stage infection throughout the 

immunization course with RAS, while wild-type mice never displayed positive 

parasitemias. The blood-stage infection developed by some of the mice during the 

course of immunization was found to be persistent and without significant parasitemia 

variations. These mice, which were never challenged with viable sporozoites, developed 

a chronic blood-stage infection throughout time, which may be due to the development 

of a certain degree of immunization that does not allow parasite replication as efficiently 
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as in nonimmunized mice. These observations suggest that an immunodeficient mouse 

can have compromised adaptive immune responses, as wild-type mice never became 

infected during course of immunization with RAS against the few sporozoites that might 

have resisted the attenuation by irradiation. One may possibly conclude that vaccination 

with RAS is only effective in mice that are not immunocompromised, since the range of 

irradiation doses that can be employed is very limited, ranging between a value of 

radiation that can kill rather than attenuate the sporozoites and an insufficient amount of 

radiation that allows sporozoites to remain viable.  

Surprisingly, there are no significant differences between parasite load in the liver of 

naive wild-type and MyD88-knockout C57BL/6 mice infected with viable sporozoites at 

40 hours post-infection. Despite being involved in the development of protection 

confered by immunization with RAS and contrary to what we were expecting after 

describing TLR4-associated resistance and TLR9-mediated susceptibility to liver 

infection, MyD88 does not play a role during liver infection with P. berghei sporozoites. 

However, we can hypothesize that the parasite load observed in infected MyD88-

knockout mice is the result of the sum of several TLR-MyD88-mediated effects. For 

instance, considering that the opposite effects of TLR4 and TLR9 activation during P. 

berghei sporozoites infection are MyD88-mediated, they can cancel out each other, as 

they represent opposite effects.  

We also observed that MyD88-knockout mice infected with sporozoites did not develop 

CM as wild-type mice and remained alive for months after infection, reaching 

parasitemias of around 90%. These results obtained with liver stage infection are in 

contradiction to what we observed and was described previously for blood-stage 

infection of these mice given that MyD88-knockout mice were found to be as sensitive to 

fatal CM development as wild-type control mice after blood-stage infection (Correia et al. 

unpublished results; Togbe, Schofield et al. 2007). This observation suggests that 

MyD88 is involved in CM development after sporozoite infection. Also, the immune 

events in the liver may influence disease progression, since MyD88-knockout mice 

develop CM after a blood-stage infection. Furthermore, it seems likely that what 

probably kills mice at later stages of infection is not hyperparasitemia, since those mice 

reached extremely high levels of parasitemia, but MyD88-mediated deleterious 

inflammation. It is worth noting that two of the mice were even able to nearly clear 
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parasitemia after having reached around 90% of parasite-infected erythrocytes. This 

indicates that while erythropoiesis is normally taking place at the bone marrow, the mice 

are still able to recover from massive destruction of red-blood cells. However, as 

disease persists for months, bone-marrow depletion can also occur, rendering mice 

unable to recover.  

The immunization with RAS and, more recently, with GAS is, thus far, the only effective 

known vaccine against malaria. Despite being extensively studied, the mechanisms by 

which the response to these parasites is triggered are still undefined. Our findings 

indicate that MyD88 is a new player in this process. Still, the mechanisms by which 

MyD88 is initiating a response against RAS and their dependency of TLRs must be 

object of further work. It also remains to be elucidated if these mechanisms are similar to 

the ones developed during GAS immunization.  

Moreover, the role of MyD88 during CM and at later stages of blood infection needs to 

be further investigated. The immune events that take place during liver infection and 

their effect in the outcome of the disease must be considered in the future and data from 

blood-stage infections must be analysed regarding the absence of a primary liver 

infection. That these early immune responses participate in the outcome of blood-stage 

disease is a possibility that cannot be excluded.  
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Malaria is one of the most devastating infectious diseases and one of the major causes 

of death in developing countries, representing a significant barrier to economical and 

social development. An expanded global effort in control programs using drug treatment 

of infected individuals and populations at high risk of infection, and mosquito control with 

insecticide-treated bed nets and indoor-insecticide spraying, are being responsible for 

the retreating of malaria incidence in some areas of the developing world. Still, more 

than 40% of the world’s population is at risk of contracting malaria, mainly owing to the 

widespread emergence of drug-resistant Plasmodium variants. Research into the basic 

biology of malaria infection is, therefore, essential to provide new intervention targets for 

antimalarial drugs and vaccines. 

In recent years, remarkable findings have been made, widening our understanding of 

the innate immune system – the primary host defense barrier against a variety of 

microbial pathogens such as bacteria, fungi, viruses and parasites. The characterization 

of TLRs, a family of pathogen recognition receptors, was one of the most relevant 

findings in immunology in the last decade. This major breakthrough made immunologists 

aware of the specificity of the nature of the primary response, responsible for pathogen 

recognition and necessary for the induction of immune responses. To date, TLRs have 

been implicated in the recognition of different groups of pathogens and their activation 

has been associated with a protective effect during infection with T. gondii, T. cruzi, and 

Leishmania spp, other protozoan parasites which are Plasmodium related. Thus far, 

malaria seems to represent an exception in this field. One study has shown that CM 

pathogenesis and lethality is TLR-MyD88-dependent, and the activation of MyD88 

signalling during blood-stage infection seems to be involved in the excessive 

proinflammatory cytokine production responsible for the observed symptoms (Coban, 

Ishii et al. 2007). However, malaria research has been mainly focused on studying the 

immune responses to blood stage infection, while in liver stage infection the importance 

of TLRs, or other innate receptors, in parasite recognition was not addressed. It is 

known that the cellular inflammatory response against P. berghei is triggered shortly 

after the injection of viable sporozoites (Khan and Vanderberg 1991; Khan, Ng et al. 

1992) indicating that parasite recognition might occur at very early stages of infection. 

Furthermore, the primary site of replication for Plasmodium parasites in the mammalian 

host is the liver, within hepatocytes. The liver is considered to offer unique advantages 
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for the extensive parasite replication that occurs before the erythrocytic phase of the life 

cycle. As happens for other parasites, Plasmodium is believed to exploit the liver’s 

environment and subvert immunity to establish a successful infection. Plasmodium is 

thought to manipulate the phagocytic function of Kupffer cells to cross liver endothelium 

and gain access to hepatocytes (Frevert, Engelmann et al. 2005; Baer, Roosevelt et al. 

2007; Usynin, Klotz et al. 2007). In fact, by constituting a mandatory step for the 

progression of the infection and the establishment of the disease, the liver is likely to be 

an important target both for the generation of more powerful innate immune responses 

and for vaccine-induced adaptive immunity.  

The hepatocytes are known to express nine TLRs (Liu, Gallo et al. 2002). The work 

presented herein was focused on the role of some TLRs, expressed by both 

hepatocytes and immune cells, during the liver stage of infection and in the outcome of 

the disease. A murine parasite, P. berghei, was used to investigate the role of TLR2, 

TLR4, TLR9 and MyD88 in the innate immune response to P. berghei sporozoite 

infection. These TLRs and adaptor molecule have been previously described to be 

involved in host protection against other protozoan parasites, playing a role in pro-

inflammatory responses against the parasite during malaria blood-stage infection 

(Franklin, Rodrigues et al. 2007), and as being responsible by the pathology observed 

during blood-stage infection by being implicated in CM (Coban, Ishii et al. 2007). 

TLR4 and TLR9 seem to have distinct and independent roles during malaria infection, 

as our results show that mice lacking TLR4 and TLR9 expression display enhanced 

susceptibility and resistance, respectively. Consequently, TLR4 appears to be involved 

in the host response to the parasite infection and Plasmodium seems to take advantage 

of TLR9 during liver infection.  

TLR4-mediated resistance mechanisms pertain mostly to bone marrow-derived cells, 

with a minor involvement of hepatocytes. This seems to indicate that the activation of 

immune cells via TLR4 during Plasmodium infection is crucial to mount an effective 

response to the parasite.  Among the immune cells present in the liver, Kupffer cells, the 

liver macrophages, seem the most likely to be involved in such an early response, 

particularly by taking into account our finding that TLR4-deficient mice show impaired 

TNF production by macrophages in the liver. Kupffer cells were described previously as 

being traversed by sporozoites in liver sinusoids as a mean of reaching the liver 
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parenchyma. During this interaction, the parasite or an endogenous ligand might 

activate TLR4 leading to the activation and recruitment of other immune cells, which will 

infiltrate the tissues, initiating an inflammatory response. We show that in a natural 

infection TLR4 activation upon infection is partially responsible for the recruitment of 

macrophages and DCs to the tissues and which consequently decreases the number of 

successful developing parasites in the liver. It is important to state that TLR4 activation 

can happen either by interaction with a TLR ligand from the parasite, from bacteria 

present in mosquito salivary glands, or by recognition of exposed or released 

endogenous ligands induced by parasite infection. TLR4 activation in hepatocytes 

during sporozoite infection also seems to play an important role in parasite elimination. 

The hepatocyte might be responsible for TLR4-mediated direct parasite killing by the 

production of reactive oxygen species. Moreover, it might potentially contribute to the 

immune response by presenting parasite antigens to immune cells. 

TLR4 activation by LPS is capable of remarkably reduce the infection levels, both in vivo 

and in vitro, by interfering with parasite infection and development, emphasizing the 

relevance of TLR4 in the modulation of host response early during infection and how its 

activation can be used to achieve stronger responses against Plasmodium. This clearly 

opens new research lines in what concerns vaccine development, namely by using 

TLR4 agonists as adjuvants in the induction of more effective immune responses. 

In opposition to the importance of TLR4 for the immune response against Plasmodium, 

TLR9 expression on hepatocytes is responsible for increased susceptibility to sporozoite 

infection. TLR9-associated susceptibility is only mediated by hepatocytes, differently 

from the phenotype described for TLR4. The triggering of TLR9 might activate the 

immune system in a way that, while being effective against intracellular viral or bacterial 

infections, will deviate the immune response towards effector mechanisms which are 

less harmful to a protozoan parasite like Plasmodium. Of note is the fact that TLR9 can 

have anti-inflammatory effects, as observed in the gut where TLR9-triggered type I IFN 

has anti-inflammatory functions in colitis (Rachmilewitz, Katakura et al. 2004; Katakura, 

Lee et al. 2005). As such it is still a possibility that TLR9 activation in hepatocytes might 

lead to an anti-inflammatory response that benefits the parasite. 

Treatment with the TLR9 ligand CpG seems to activate innate immunity in bone marrow-

derived cells and, similarly to LPS, increases resistance to infection. It seems that 
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activation of TLR signalling might be useful in designing more powerful vaccines. 

However, TLR-based immunotherapeutic strategies must take into account the cells that 

are being targeted. The reason why TLR9 activation by CpG induces a decrease in 

infection, while TLR9 triggering in sporozoite infection leads to a better parasite 

development, remains to be elucidated. 

Still, we report for the first time, the unique role of TLR9 during a protozoan infection. 

Never a Toll-like receptor has been implicated in a pathogen infection as a mean to 

more successfully infect and/or develop in the host and evade the immune system.  

Considering the role of TLR4 and TLR9 in malaria, it was somehow surprising to notice 

that MyD88-knockout mice do not display a substantial impairment of host immune 

responses during P. berghei liver infection. Indeed, they do not show significant 

differences in the levels of infection, when compared to wild-type controls. This 

observation might be explained by the fact that, as described above, at least two 

different TLRs, TLR4 and TLR9, play a role in P. berghei infection. Assuming that both 

effects are MyD88-mediated and if there is no contribution from other TLRs, TLR4 and 

TLR9-mediated resistance and susceptibility, respectively, might compensate one 

another cancelling out each other’s effects. However, this might also not be the case: on 

the one hand, there is the possibility that the receptors signal through MyD88-

independent pathways; on the other hand, the use of one of the receptors by the 

parasite might not require its signalling, as it would be the case if the receptor 

constitutes a gateway into the cell. It is interesting to note that MyD88-knockout mice do 

not die of P. berghei acute infection and become chronically infected. This finding 

underlines the importance of MyD88 and putatively of the Toll pathway in the 

immunopathology of malaria infection, namely for CM, which is the main cause of death 

of Plasmodium-infected individuals. 

These findings reinforce the idea that host defence against protozoan pathogens might 

depend on the engagement of multiple TLRs, but also that this engagement can be 

manipulated for the parasite’s own benefit. 

A second aim of this work was to determine whether TLRs are involved in the protection 

conferred by RAS against Plasmodium liver infection. Thus far, the RAS vaccine is the 

only effective vaccine against malaria that was shown to elicit sterile immunity against 

Plasmodium parasites, both in experimental rodent hosts and in human volunteers. 
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More recently, several GAS vaccines have been proposed as alternative whole-parasite 

attenuated vaccines, which are a more feasible approach than RAS vaccines. By 

knocking out specific genes, GAS immunization is safer and more reproducible, and the 

GAS are easier to produce and also induce protective immunity in mice. Several studies 

have described other players implicated in the process of immunization, although it is 

still unknown how the immune response to attenuated parasites is initiated. In this 

scenario, the role of the innate immune receptors and associated signaling molecules, 

such as TLRs and MyD88, remains to be elucidated. MyD88-knockout mice failed to 

develop protective immunity against P. berghei sporozoites upon three doses of 

irradiated sporozoites, whereas in immunized wild-type, TLR2, TLR4 and TLR9-

knockout mice, parasite development was arrested. These findings highlight the 

essential and exclusive role of MyD88 (TLR2, TLR4 and TLR9 independent) in the 

protection elicited by irradiated sporozoites, emphasizing the importance of MyD88-

dependent innate immune mechanisms in the development of protective immunity to 

Plasmodium.   

It would be interesting to determine whether any of the TLRs is involved in MyD88-

mediated protection in the process of RAS immunization. Knowing that MyD88 is 

involved not only in the signaling of TLRs, but also in both IL-1 and IL-18R/IL-1R-

associated kinase signaling, one must not exclude the contribution of these other 

receptors in the absence of protection observed in RAS-immunized MyD88-knockout 

mice. It would also be interesting to address the relative contributions of IL-1 and IL-18 

versus TLR signaling in MyD88-mediated protection against sporozoites infection, 

induced by RAS immunization. 

The mechanism by which MyD88 mediates the development of protection remains 

unclear and would be relevant to be addressed in the future. Nevertheless, the data 

presented herein already reveal a new player in the protection against Plasmodium 

infection by immunization with RAS, which must be considered in vaccine development. 

These results might also change our view about the significance of innate immunity in a 

process where adaptive immunity was considered to date as the major player and focus. 

From these findings, two main conclusions can be drawn. First, TLRs are mediators of 

host-parasite interactions in malaria and, contrary to what would have been expected 

and described in the literature in recent years, they play distinct roles during infection. 
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TLRs seem to be involved in Plasmodium recognition, as is the case with other 

protozoan parasites, and their activation might be crucial for the development of 

protective immune responses. Secondly, the work described highlights the importance 

of liver infection in disease outcome. The immune events that take place during liver 

infection and their effect in the outcome of the disease must be taken into account, and 

the study of blood-stage infection must be analysed considering the absence of a 

primary liver infection. Whether these early immune responses participate in the blood-

stage disease outcome cannot be formally excluded. 

Once we acquire a deeper knowledge of the interactions between Plasmodium parasites 

and the host in the liver, especially in what concerns host immune responses, we can 

define better approaches to counteract this very well adapted parasite. Our findings also 

corroborate the established view about the complexity of the intrinsic mechanisms of 

infection developed by Plasmodium, and remind us that, despite decades of research, 

understanding malaria still remains a major challenge.  

 

 

Perspectives  

 

This work contributed to achieve a better understanding of host innate immune 

responses against malaria but also raised several questions that have not been yet 

clarified. Furthermore, recent findings have described important issues where TLRs 

might also be involved that should be addressed in the future. Some intriguing 

descriptions on the fate of sporozoites that are inoculated into the host dermis were 

reported. If sporozoites are drained to and partially develop in the lymph nodes (Amino, 

Thiberge et al. 2006), delivering exoerythrocytic antigens to a place other than 

hepatocytes, one might expect that it will have relevant implications in the immune 

response against Plasmodium. In the work presented here, given the model used to 

study the role of TLRs during Plasmodium liver infection in mice, we could not address 

questions related with sporozoite development in the lymph nodes. It would be important 

to determine the influence of TLRs in this additional step, where dendritic cells might 

become activated through the same TLRs playing a role in liver infection. The fact that 

sporozoites can escape immune cells and destructive mechanisms to go on to develop 
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in lymph nodes, where antigen presentation occurs and where there is priming of 

immune responses, is of immunological significance and might be influenced by TLRs. 

This issue will require further studies using the same kind of approach but instead of 

infecting mice by injecting sporozoites directly into the blood stream, the infection should 

be performed by mosquito bite. Malaria, as well as other infectious diseases, constitutes 

a serious threat to several populations and human health worldwide, urging for new 

strategies to treat and prevent disease. Based on a deeper understanding of parasite-

host interactions mediated by TLRs we can attempt to develop new TLR-based 

strategies against protozoan infection. Using pathogen-derived TLR ligands as 

therapeutic and prophylactic tools may constitute a future promising approach. In fact, 

most of the chemically defined microbial products being used as adjuvants or 

immunostimulants are TLR agonists, such as polyinosinic–polycytidylic acid (poly I:C), 

(TLR3 agonist), lipid A (TLR4 agonist), flagellin (TLR5 agonist), imiquimod (TLR7 and 

TLR8 agonist) and CpG DNA (TLR9 agonist) (Akira, Uematsu et al. 2006), which act as 

potentiators of the immune response. Currently, some approaches that use TLR 

agonists as adjuvants are already in progress. Monophosphoryl lipid A (MPL), a TLR4 

agonist, is in advanced stages of development for use as an adjuvant in vaccine 

formulations using recombinant antigens of P. falciparum (Richards, 1998) and 

Leishmania spp. (Skeiky, Coler et al. 2002), both of which are protozoans. We also 

showed that by using a TLR4 or a TLR9 ligand, we are able to prevent or interfere with 

liver parasite development. Synthetic compounds designed to mymic the structure of the 

ligand without having the strong and deleterious inflammatory effect like LPS has may 

be considered as alternative strategies to be used. Furthermore, CpG-containing 

oligodeoxynucleotides have been successfully used as adjuvants in vaccines that 

induce effective protective immunity in experimental models against challenge from 

different protozoan parasites, including Plasmodium spp. (Coban, Ishii et al. 2004; 

Kumar, Jones et al. 2004).  

In a different approach, when the activation of TLR pathway seems to be involved in 

pathology, like in the case of MyD88 (Adachi, Tsutsui et al. 2001), the use of TLR 

antagonists during acute malaria episodes might be beneficial, but only if it is confirmed 

that MyD88 and TLRs are not crucial for protective immunity and parasite clearance at 

later stages of natural infection. Similarly, if we demonstrate that the activation of TLR9 

http://www.nature.com/nri/journal/v6/n12/glossary/nri1978.html#df13
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signaling during sporozoite infection is detrimental for the host, we can propose the use 

of a TLR9 antagonist as a prophylactic agent. As mentioned previously, vaccination with 

the synthetic carbohydrate moiety of P. falciparum GPI anchors protects mice from 

cytokine-mediate pathology observed during acute malaria (Schofield, Hewitt et al. 

2002). Being recognized by TLRs (Krishnegowda, Hajjar et al. 2005), parasite GPI 

anchors can be mimicked by synthetic ones which can be used to block the pathological 

effects of malaria, working as an anti-toxic vaccine (Gazzinelli and Denkers 2006). 

The potential of TLR-based therapeutical interventions must not be neglected. The 

available knowledge about the biology of TLRs and their signalling pathways and about 

the nature of TLR-mediated host-parasite interactions will likely contribute to the 

development of new immunotherapeutic strategies to control malaria. 
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