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ABSTRACT 
 

This study focused on the research of new bioactive constituents from four 
species of the Plectranthus plants. Previous works on plants of the genus Plectranthus 
(Lamiaceæ) evidenced that some of their constituents possess interesting biological 
activities. 

The antimicrobial activity of the plant extracts and of the isolated metabolites 
was thoroughly searched. Antioxidant, anticholinesterase and anti-inflammatory 
properties of some compounds were also screened.  

The phytochemical study of the acetone extracts of Plectranthus ornatus Codd., 
P. ecklonii Benth., P. porcatus Winter & Van Jaarsv and P. saccatus Benth. rendered 
several terpenoid constituents mostly diterpenes. 

From P. ornatus three new forskolin-like labdane diterpenes (6-O-acetylforskolin, 
1,6-di-O-acetylforskolin and 1,6-di-O-acetyl-9-deoxyforskolin), a new diterpene with 
the rare halimane skeleton (11R*-acetoxyhalima-5,13E-dien-15-oic acid), and  two 
known labdane diterpenes were isolated; the rhinocerotinoic acid which was found in 
Plectranthus species for the first time, and plectrornatin C. Six known triterpenoids 
were also identified as mixtures. The study of P. ecklonii led to the isolation of two 
known abietanes, sugiol and parvifloron D. Sugiol was obtained from Plectranthus 
species for the first time. Four known triterpenoids were also identified as mixtures. P. 
porcatus, a plant not hitherto studied, yield a new spiro-abietane diterpene [(13S,15S)-
6β,7α,12α,19-tetrahydroxy-13β,16-cyclo-8-abietene-11,14-dione]. A new beyerane 
diterpene (ent-7α-acetoxy-15-beyeren-18-oic acid) was isolated from P. saccatus.  

Attempting to find novel bioactive prototypes from the more potent 
antibacterial diterpenes, isolated in higher yields, some diterpene derivatives were 
prepared. Nine new derivatives were obtained from (11R*,13E)-11-acetoxyhalima-
5,13-dien-15-oic acid (P. ornatus). A new 2β-(4-hydroxy)benzoyloxy derivative of 
microstegiol was prepared from parvifloron D (P. ecklonii). From the 7α-acetoxy-6β-
hydroxyroyleanone (isolated in the past from P. grandidentatus) thirteen ester 
derivatives were synthesized, whereof ten were new compounds. 

The unequivocal chemical structures of pure compounds (natural and 
derivatives) were deduced from their spectroscopic (IR, MS, 1D and 2D NMR 
experiments) and physico-chemical data, as well as from literature information. 

The preliminary antimicrobial activity screenings of all the isolated metabolites 
showed that several diterpenes inhibited the growth of the Gram positive bacteria 
tested. In addition, the minimum inhibitory concentration against standard and clinical 
isolates of sensitive and resistant Staphylococcus and Enterococcus strains was 
determined for the antibacterial metabolites and their synthesized derivatives.  

The (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid and its (11R*,13E)-
halima-5,13-diene-11,15-diol derivative were the more active halimanes. Parvifloron D 
was less active than its microstegiol 2β-(4-hydroxy)benzoate derivative, but both 
showed more potent antibacterial activities than the halimane diterpenoids.  

The three 12-O-benzoyl esters derivatives of the 7α-acetoxy-6β-
hydroxyroyleanone prototype revealed to be more potent growth inhibitors against 
Staphylococcus and Enterococcus strains than the prototype. The 6β-propionyloxy-12-
O-propionyl derivative also showed to be more active against Enterococcus than the 
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prototype. Generally, the 12-esters and the 6,12-diesters were more active against 
Enterococcus than Staphylococcus strains. The hydrophobic extra-interactions with the 
bacterial targets seem to play an important role on the activity of royleanones 
derivatives prepared. 

Taking into account the IC50 values which expressed the scavenging DPPH 
radical ability, the isolated metabolite parvifloron D as well as 7α-acetoxy-6β-
hydroxyroyleanone showed in vitro antioxidant activity. 

The in vitro acetylcholinesterase assay did not detect any activity for all the 
newly isolated diterpenes and 7α-acetoxy-6β-hydroxyroyleanone. 

The COX inhibitor screening assay was tested on 6-O-acetylforskolin, 
rhinocerotinoic acid, plectrornatin C, (11R*,13E)-halima-5,13-diene-11,15- diol, 11R*-
acetoxyhalima-5,13E-dien-15-oic acid and on its methyl ester, for their ability to inhibit 
COX-2. The preliminary results encourage further studies aiming to confirm and to 
examine its potential anti-inflammatory activity in a more robust approach. 
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RESUMO 
 

Este estudo teve como objectivo a pesquisa de novos constituintes bioactivos 
de quatro espécies de plantas do género Plectranthus.  

A actividade antimicrobiana dos extractos obtidos e dos metabolitos isolados foi 
realizada e foram testadas as propriedades anti-oxidante, anti-colinesterase e anti-
inflamatória de alguns compostos.  

O estudo fitoquímico dos extractos de acetona de Plectranthus ornatus Codd., P. 
ecklonii Benth., P. porcatus Winter & Van Jaarsv. e P. saccatus Benth. originou diversos 
constituintes terpénicos, principalmente diterpenos. 

Três novos diterpenos do tipo forskolina (6-O-acetilforskolina; 1,6-di-O-
acetilforskolina e 1,6-di-O-acetil-9-deoxiforskolina) foram isolados de P. ornatus. 
Foram também identificados um novo diterpeno com o raro esqueleto de halimano 
(ácido 11R*-acetoxihalima-5,13E-dien-15-óico), dois diterpenos labdânicos 
conhecidos; o ácido rinocerotinóico encontrado pela primeira vez em espécies do 
género Plectranthus, e a plectrornatina C. Seis triterpenos já conhecidos foram 
igualmente identificados na forma de misturas. O estudo de P. ecklonii originou o 
isolamento de dois abietanos conhecidos: o sugiol e a parviflorona D. O sugiol foi 
isolado pela primeira vez de espécies Plectranthus. Outros quatro triterpenos 
conhecidos foram identificados também como misturas. A planta P. porcatus, até à 
data não estudada, originou um novo diterpeno spiro-abietânico [(13S,15S)-
6β,7α,12α,19-tetrahidroxi-13β,16-ciclo-8-abietene-11,14-diona]. Um novo diterpeno 
com esqueleto de beierano (ácido ent-7α-acetoxi-15-beieren-18-óico) foi isolado de P. 
saccatus.  

Na tentativa de obter novos protótipos bioactivos, vários derivados foram 
preparados, a partir dos diterpenos antibacterianos mais potentes e isolados em maior 
quantidade. Nove novos derivados foram obtidos do ácido (11R*,13E)-11-
acetoxihalima-5,13-dien-15-óico (P. ornatus). Um novo derivado 2β-(4-
hidroxi)benzoilado do microstegiol, foi preparado a partir da parviflorona D (P. 
ecklonii). Treze ésteres derivados da 7α-acetoxi-6β-hidroxiroyleanona (isolada 
anteriormente de P. grandidentatus) foram sintetizados, sendo de assinalar que dez 
dos derivados são compostos novos. 

A determinação estrutural dos compostos puros (naturais e derivados) foi 
deduzida por espectroscopia (IV, EM, RMN 1D e 2D), propriedades físico-químicas e 
com base na informação obtida da literatura. 

O estudo preliminar da actividade antimicrobiana de todos os metabolitos 
isolados, mostrou que diversos diterpenos inibem o crescimento de bactérias de Gram 
positivo. A concentração mínima inibitória (CMI) dos metabolitos e seus derivados foi 
determinada em estirpes de Staphylococcus e Enterococcus, tanto em bactérias padrão 
como em isolados clínicos resistentes e sensíveis a antibióticos. O ácido (11R*,13E)-11-
acetoxihalima-5,13-dien-15-óico e o seu derivado (11R*,13E)-halima-5,13-diene-11,15-
diol foram os halimanos mais activos. A parviflorona D foi menos activa do que o seu 
correspondente derivado 2β-(4-hidroxi)benzoilado, mas ambos apresentaram uma 
actividade antibacteriana mais potente do que os diterpenos com esqueleto de 
halimano.  
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Os três 12-O-benzoil-ésteres derivados do protótipo 7α-acetoxi-6β-
hidroxiroyleanona revelaram ser inibidores mais potentes do que a royleanona-
protótipo, contra as estirpes testadas de Staphylococcus e Enterococcus. O derivado 
6β-propioniloxi-12-O-propionilo mostrou ser o mais activo contra as estirpes testadas 
de Enterococcus do que o protótipo. De um modo geral, os derivados 12-ésteres e os 
6,12-diésteres foram mais activos contra as estirpes de Enterococcus do que as 
estirpes de Staphylococcus testadas. As interacções hidrofóbicas com os alvos 
bacterianos parecem ter um papel importante na actividade antibacteriana dos 
derivados de royleanona preparados. 

Os metabolitos parviflorona D e a 7α-acetoxi-6β-hidroxiroyleanona 
demostraram possuir actividade antioxidante in vitro, tendo em conta os valores de 
IC50 que expressam a actividade anti-oxidante com base na captura do radical DPPH. 

Todos os novos diterpenos isolados e derivados obtidos neste trabalho foram 
testados e não revelaram possuir actividade inibitória da acetilcolinesterase in vitro. 

A actividade anti-inflamatória foi testada nos compostos 6-O-acetilforskolina, 
ácido rinocerotinóico, plectrornatina C, (11R*,13E)-halima-5,13-diene-11,15-diol, ácido 
11R*-acetoxihalima-5,13E-dien-15-óico e no seu éster metílico, através da sua 
capacidade de inibir a COX-2. Os resultados preliminares obtidos apoiam a necessidade 
de estudos futuros de forma a confirmar, explorar e discutir uma potencial actividade 
anti-inflamatória. 
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I.1. Drug discovery from medicinal plants 

 

Current research in drug discovery from medicinal plants involves a 

multifaceted approach combining botanical, phytochemical, biological, and molecular 

techniques. Medicinal plant drug discovery continues to provide new and important 

lead-compounds against various pharmacological targets. Plant secondary metabolites 

and their semi-synthetic derivatives continue to play an important role in drug 

discovery. These compounds are representative of a wide structural diversity. Despite 

the recent interest in molecular modeling, combinatorial chemistry, and other 

synthetic chemistry techniques by the pharmaceutical companies and funding 

organizations, natural products, and particularly medicinal plants, remains an 

important source of new drugs, new drug leads, and new chemical entities. 

Considering the example of anticancer drug market, a recent analysis in North 

America, Europe, and Japan during the period 1981–2006 revealed that 47.1% of a 

total of 155 clinically approved anticancer drugs were either unmodified natural 

products or their semi-synthetic derivatives, or synthesized molecules based on 

natural product compound pharmacophores (Pan L. et al., 2010). Approximately one 

quarter of the bestselling drugs worldwide (2001 and 2002) were natural products or 

derived from natural products. Drugs derived from medicinal plants can serve not only 

as new drugs themselves but also as drug leads suitable for optimization by medicinal 

and synthetic chemists. Even when new chemical structures are not found during drug 

discovery from medicinal plants, known compounds with new biological activity can 

provide important drug leads. Several known compounds isolated from traditionally 

used medicinal plants have already been shown to act on newly validated molecular 

targets.  

In the last few decades the medicinal plants which form the backbone of 

traditional medicine have been the subject of very intense pharmacological studies. In 

developing countries, it is estimated that about 80% of the population rely on 

traditional medicine for their primary health care. Therefore, arises a need to screen 

medicinal plants for bioactive compounds as a basis for further pharmacological 

studies (Matu E.N. and Van Staden J., 2003). 
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The natural products are typically isolated in small quantities that are 

insufficient for lead optimization and development. Thus, considering the drug 

discovery from medicinal plants, the collaboration with synthetic and medicinal 

chemists is necessary, since the natural products isolated remains an essential 

component in the search for new medicines (Balunas M.J. et al., 2005). 

Recently, there has been a renewed interest in natural product research (due to 

the failure of alternative drug discovery methods) to deliver lead compounds in key 

therapeutic areas such as immunosuppression, anti-infectives, and metabolic diseases 

(Butler M.S., 2004).  

In the last decades, developments in spectroscopic techniques at molecular 

levels, improvements in immunology and enzymologie as well as in searching for 

structure–activity relationships (SAR studies) and more sensitive bioassays led to 

determinate important drugs from natural sources. Plants are the most important 

source of new drugs. Several recent drugs are derived from their secondary 

metabolites or prepared from them as semi-synthetic and synthetic derivatives for 

clinical uses (Topcu G. et al., 2007).  

 

I.2. Terpenoids: biogenetic considerations  

 

Terpenoids are an enormous class of plant metabolites with many diverse roles 

in growth, development, and resistance to environmental stresses. Terpenoids have 

several applications as industrial biomaterials, including pharmaceuticals, fragrances 

and flavors, and insecticides. Some terpenoids may serve in the production of novel 

biofuels (Bohlmann J. and Gershenzon J., 2009).  

Isoprene had been characterized as a decomposition product from various 

natural cyclic hydrocarbons, and was suggested as the fundamental building block for 

terpenoids (isoprenoids). Isoprene is produced naturally but is not involved in the 

formation of these compounds, and the biochemically active isoprene units were 

identified as the diphosphate (pyrophosphate) esters dimethylallyl diphosphate 

(DMAPP) and isopentenyl diphosphate (IPP) (Scheme I.1). The term ‘prenyl’ is in 

general use to indicate the dimethylallyl substituent. In macromolecules like proteins 
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can be modified by attaching terpenoids chains, like cysteine residues alkylated with 

farnesyl or geranylgeranyl groups increasing the lipophilicity of the protein and its 

ability to associate with membranes (Dewick P.M., 2002).  

Terpenoids derived from C5 isoprene units in a head-to-tail arrangement. 

Typical structures containing carbon skeletons represented by (C5)n are classified as 

hemiterpenes (C5), monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), 

sesterterpenes (C25), triterpenes (C30) and tetraterpenes (C40) (see Scheme I.1). The 

monoterpene, sesquiterpene, and diterpene synthases of plant origin use the 

corresponding C10, C15, and C20 prenyl diphosphates as substrates to generate the 

enormous diversity of carbon skeletons characteristic of the terpenoid family of 

natural products. The synthesis of isopentenyl diphosphate, isomerization to 

dimethylallyl diphosphate, prenyltransferase-catalyzed condensation of these two C5-

units to geranyl diphosphate (GDP), and the subsequent 1´-4 additions of isopentenyl 

diphosphate generate farnesyl (FDP) and geranylgeranyl (GGDP) diphosphate (Scheme 

I.1). The prenyl diphosphates undergo a range of cyclizations based on variations on 

the same mechanistic theme to produce the parent skeletons of each class. Thus, GDP 

(C10) gives rise to monoterpenes, FDP (C15) to sesquiterpenes, and GGDP (C20) to 

diterpenes. These transformations catalyzed by the terpenoid synthases (cyclases) may 

be followed by a variety of redox modifications of the parent skeletal types to produce 

the many thousands of different terpenoid metabolites. More than 3000 different 

diterpenoid structures have been defined, all of which appear to be derived from 

GGDP. Most diterpenoids are cyclic, and there appear to be two major, and 

fundamentally different, modes of cyclization in this class. The macrocyclic diterpenes, 

are formed by cyclizations analogous to those of the monoterpene and sesquiterpene 

series. The second mode of cyclization involves generation of copalyl diphosphate 

(CDP) as the initial intermediate (Mann J., 1987; Bohlmann J. et al, 1998; Dewick P.M., 

2002). 
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Scheme I.1. Isoprenoids obtention from isoprene units identified as the 

diphosphate (pyrophosphate) esters dimethylallyl diphosphate (DMAPP) and 

isopentenyl diphosphate (IPP; Dewick P.M., 2002) 

 

I.2.1 The mevalonate and deoxyxylulose phosphate pathways  

 

Since the initial discovery of the mevalonate pathway in the 1950s, it was 

widely accepted that isopentenyl diphosphate (IPP), the fundamental unit in terpenoid 

biosynthesis, was only formed by condensation of acetyl CoA through the ubiquitous 

mevalonate pathway (Scheme I.2).  

 

 

 

 



Chapter I    Introduction 

6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme I.2. Pathway of mevalonic acid (MVA; Dewick P.M., 2002). 

 

However, it has been disclosed that many organisms including higher plants, 

that use an alternative mevalonate-independent pathway (non-mevalonate pathway) 

for the formation of IPP. According to Rohmer and coworkers, the initial step of this 

pathway is the formation of 1-deoxy-D-xylulose 5-phosphate (DXP) by condensation of 

pyruvate and glyceraldehyde 3-phosphate (Scheme I.3). In the second step the 

intramolecular rearrangement of DXP is assumed to give a hypothetical rearranged 

intermediate, 2-C-methylerythrose 4-phosphate, which is then converted to 2-C-

methyl-D-erythritol 4-phosphate (MEP) by an unspecified reduction process. Thus, 

precise details about the reductive mechanism for the formation of MEP remained 

unclear (Takahashi S. et al., 1998; Kuzuyama T., 2002). 

The biochemical isoprene units (IPP and DMAPP) may be derived from two 

pathways either the intermediate is mevalonic acid (MVA; Scheme I.2) or 1-deoxy-D-

xylulose 5-phosphate (DXP; Scheme I.3). This latter pathway is also referred to as the 

mevalonate-independent pathway or the methylerythritol phosphate pathway 

(Scheme I.3).  
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Scheme I.3. Pathway via 1-deoxy-D-xylulose 5-phosphate (DXP; Dewick P.M., 

2002). 

 

1-Deoxy-D-xylulose 5-phosphate (DXP) is formed from the glycolytic pathway 

intermediates pyruvic acid and glyceraldehyde 3-phosphate. The methylerythritol 

phosphate contains the branched-chain system equivalent to the isoprene unit, but 

the complete sequence of steps leading to the intermediate isopentenyl phosphate 

has yet to be elucidated (Scheme I.3).  

In plants, the two pathways appear to be compartmentalized, so the 

mevalonate pathway enzymes are located in the cytosol, whereas the deoxyxylulose 

phosphate pathway enzymes are found in chloroplasts. Accordingly, triterpenoids and 

steroids (cytosolic products) are formed by the mevalonate pathway, whilst most 

other terpenoids are formed in the choloplasts and are deoxyxylulose phosphate 

derived, with some exceptions. There are also examples where the two pathways can 

supply different portions of a molecule, or where there is exchange of late-stage 

common intermediates between the two pathways resulting in a contribution of 

isoprene units from each pathway (Dewick P.M., 2002). Several isoprenoids were 

found to be of mixed origin suggesting that some exchange and/or cooperation exists 



Chapter I    Introduction 

8 

 

between these two pathways of different biosynthetic origin. Contradictory results 

presented by Wanke et al. could indicate that these two pathways are operating under 

different physiological conditions of the cell and are dependent on the developmental 

state of plastids (Wanke M. et al., 2001). 

The diterpenes arise from geranylgeranyldiphosphate (GGPP), which is formed 

by addition of a further IPP molecule to farnesyl diphosphate in the same manner as 

described for the lower terpenoids. Cyclization reactions of GGPP mediated by 

carbocations formation, plus the potential Wagner-Meerwein rearrangements, will 

allow many structural variants of diterpenes to be produced. In addition, individual 

enzyme systems present in a particular organism will then control the folding of the 

substrate molecule and thus define the stereochemistry of the final product.  

Protonation of GGPP can initiate a concerted cyclization sequence, terminated 

by loss of proton from a methyl, yielding copalyl PP. The stereochemistry in this 

product is controlled by the folding of the substrate on the enzyme surface, though an 

alternative folding can lead to labdadienyl PP, the enantiomeric product having 

opposite configurations at the newly generated chiral centres. The most commun 

stereochemistry is found in labdadienyl PP and derivatives and so the enanteriomeric 

series use the prefix ent. (Scheme I.4). 

 

 

 

 

 

 

Scheme I.4. Protonation of GGPP yielding copalyl PP though an alternative 

folding leading to labdadienyl PP (Dewick P.M., 2002). 
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The alternative stereochemistry typified by labdadienyl PP can be seen in the 

structure of abietic acid. Initially, the tricyclic system is built up as in the pathway to 

ent-kaurene (with (-)-copalyl PP as precursor) via the same mechanism, but generating 

the enantiomeric series of compounds. The cation loses a proton to give 

sandaracopimaradiene, which undergoes a methyl migration to modify the side-chain, 

and further proton loss to form the diene abietadiene. Abietic acid results from 

sequential oxidation of 4α-methyl (Scheme I.5). 

 

 

 

 

 

 

Scheme I.5.  Biosynthetic pathway of abietic acid from labdadienyl PP (Dewick 

P.M., 2002). 

 

In forskolin (Scheme I.6), the third ring is heterocyclic rather than carbocyclic. 

The basic skeleton of forskolin can be viewed as the result of quenching of the cation 

by water as opposed to proton loss, followed by SN2 nucleophilic substitution on to the 

allylic diphosphate (or nucleophilic substitution on to the allylic cation generated by 

loss of diphosphate).  A series of oxidative modifications will then lead to forskolin (a 

valuable pharmacological tool as a potent stimulator of adenyl cyclase activity, and it is 

being investigated for its cardiovascular and bronchospasmolytic effects; Dewick P.M., 

2002). 
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Scheme I.6. Biosynthetic pathway of forskolin from GGPP (Dewick P.M., 2002). 

 

The clerodanes appear to be related biosynthetically to the labdanes, via a 

series of methyl and hydride shifts. The labdane skeleton is itself derived from geranylg  

eranylpyrophosphate (GGPP), although this represents a simplification of the overall 

biogenetic route, involving many parallel pathways to yield the multitude of clerodane 

natural products.  

 

 

 

 

 

 

 

 

Scheme I.7. Biosynthetic pathway of clerodanes from GGPP (Merritt A.T. and 

Ley S.V., 1992). 

The trans clerodanes can arise via a concerted migration process to 

intermediate I.1, whilst the cis compounds require a stepwise process, with a ‘pause’ 

at intermediate I.2. Then this can lead to either cis or trans compounds, depending on 

which of the C-4 methyl groups that migrate.  

It is possible that the various genera/families have developed independently 

the capacity to biosynthesize the clerodanes, or simply that there are a large number 

of families producing as yet unisolated clerodanes. Within individual families and 

genera, however, the species have been grouped to indicate chemical similarities of 
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the isolated natural products, or trends in the productivity of species, rather than 

adhering to strict taxonomic ordering (Merritt A.T. and Ley S V., 1992). 

Geranylfarnesyl PP (GFPP) arises by a continuation of the chain extension 

process, adding a further IPP unit to GGPP (Scheme I.1). Triterpenes (C30) are not 

formed by an extension of the now familiar process of adding IPP to the growing chain. 

Instead, two molecules of farnesyl PP are joined tail to tail to yield the hydrocarbon 

squalene, originally isolated from the liver oil shark (Squalus sp.) which was used to 

study its biosysthetic role as a precursor of triterpenes and steroids. The tetraterpenes 

has its skeleton formation involving tail-to-tail coupling of two molecules of 

geranylgeranyl diphosphate (GGPP) in a sequence essentially analogous to that seen 

for squalene and triterpenes.  

 

I.2.2. Diterpenoids 

 

Diterpenes constitute the second largest class of terpenes, with over 2200 

compounds belonging to 130 distinct skeletal types. The interest in the isolation of 

these compounds is growing due to their biological activity, ecological function, use as 

templates for synthesis and taxonomic function (Hanson J.R., 1995-2009; Alvarenga 

S.A.V. et al., 2001).  

As Lukhoba et al. reported, the majority of phytochemical studies on 

Plectranthus species have focused on the isolation of a wide range of diterpenoids. 

One of the most studied Plectranthus-derived compounds is the labdane forskolin 

isolated from P. barbatus. It has a range of pharmacological properties and could 

explain many of the diverse medicinal uses of P. barbatus. Other biologically active 

diterpene is taxol isolated from Taxus brevifolia that displays anticancer properties. 

Terpentecin is a microbial clerodane diterpene isolated from Streptomyces spp. that 

has shown to be an antitumor antibiotic that targets DNA topoisomerase II. (Wang S.-

Y. et al, 2002; Lukhoba C.W. et al., 2006; Lozama A. and Prisinzano T.E., 2009). 

Lamiaceae is one of the families in which most of the diterpenes are found. The 

frequent occurrence of specific diterpene skeletons is observed and has been used, 

together with the presence of other secondary metabolite classes, in chemotaxonomic 
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studies. In this way, diterpenes had been used as chemotaxonomic markers. Alvarenga 

et al. showed that the Lamiaceae diterpenes can be divided into 91 skeletons. 

Plectranthus (Coleus) species were characterized by the accumulation of abietanes and 

its derivatives, cyclopropylabietanes and its derivatives and kauranes skeletons. The 

main type of diterpene structures found was the abietane skeletons. The majority of 

diterpenes were found in Salvia and Plectranthus genera.  Salvia presentes the highest 

number of species studied with the highest occurrence of diterpenes distributed 

among 50 diterpene skeletons (Alvarenga S.A.V. et al., 2001).  

Some of the most common structural diterpene types in Plectranthus species 

are included in the biosynthetic grid presented in Scheme I.8.  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme I.8. Metabolic grid for some common diterpenoid skeletons 

(Figueiredo M.R. et al., 1995). 

 

Diterpenes diversify mainly through labdane-derived pathways bifurcating at a 

pimarane stage into kaurane or abietane-centered biosynthetic groups.  There is a 
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strong predominance of abietanes over kauranes in gymnosperms (Figueiredo M.R. et 

al., 1995). 

Abietane (Scheme I.8) is the skeleton with the highest occurrence and the most 

widespread in Lamiaceae. The Plectranthus abietanes found were not oxidized at 

carbons 1 and 20. In Coleus, the carbons preserved were 1,2,15, 18 (equatorial methyl) 

and 19 (axial methyl). The abietanes more oxidized were produced by Salvia in which 

any carbon can be oxidized. The derivatives with a 17(15→16)abeoabietane skeleton 

(a, see Figure I.1) were also found in Plectranthus genus and these diterpenes 

preserved positions 1, 2, 15, 18 (equatorial methyl group) and 20. The skeleton 

17(15→16)abeotriptolidane (b, see Figure I.1) was also found in Plectranthus species. 

These substances isolated, maintained positions 1, 15, 19 and 20 as in the original 

skeleton and carbon 4 was always sp2 hybridised. The skeleton 13(16)-

cyclopropylabietane (c, see Figure I.1) is derived from abietane and was reported as 

being present in Coleus and Plectranthus. The substances isolated from Coleus and 

Plectranthus displayed some similarities. In both genera an oxygen atom bound at 

positions 6 and 12, the formation of a carbonyl at C-11 and C-14, and a double bond 

between C-8 and C-9 were detected. The substitution pattern from the original 

skeleton was retrieved at positions 1, 2, 5 and 20. The cyclopropylabietanes from 

Plectranthus were additionally preserved at 15, 16, 17 and 18 while those isolated 

from Coleus presented an oxygen attached to C-7. The skeleton 13(16)-

cyclopropyltriptolidane (d, see Figure I.1) was also found in Coleus and Plectranthus. 

The compounds isolated from Plectranthus presented oxygen bound at positions 6 and 

12, formation of a carbonyl at C-11 and C-14 and a double bond between C-8 and C-9. 

The original skeleton was maintained at positions 1, 5 and 20 and carbon 4 was a sp2 

hybridised in all substances. The structures reported in Plectranthus were also 

preserved at C-15, C-16 and C-17, but had an oxygen bound to C-7.  

In Lamiaceae, the skeleton of beyeranes were found exclusively in Sideritis. The 

occurrence of kauranes was reported for eight Lamiaceae genera including 

Plectranthus.  

Labdane diterpenes were found in 20 genera of Lamiaceae. All Coleus labdanes 

were derived from manoyl oxide, i.e. labdanes skeletons with an epoxide bridge at C-8 
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and C-13. They always possessed a carbonyl group at C-11 and a double bond between 

C-14 and C-15. The carbons at 2, 3, 5, 12, 16, 17, 18, 19 and 20 remained unchanged 

when compared with the original labdane skeleton. The presence of clerodanes was 

reported in 13 Lamiaceae genera (Alvarenga et al., 2001). 

 

 

 

 

 

 

Figure I.1. 17(15→16)Abeoabietane (a), 17(15→16)abeotriptolidane (b), 

13(16)-cyclopropylabietane (c) and 13(16)-cyclopropyltriptolidane (d) skeletons. 

 

Salvia species are important medicinal plants due to their diverse secondary 

metabolites, especially abietane diterpenoids with a p-quinone C ring moiety. In fact, 

in Salvia genus, the diversity of abietane diterpenes is very rich. The most interesting 

abietane diterpenes were rearranged abietanes and norabietanes. A new serie of 

rearranged abietanes, which have 7 or 8 membered ring A was isolated by Ulubelen et 

al. The first member of this serie rearranged abietanes was microstegiol (see Figure 

I.2), isolated from the aerial parts of S. microstegia. Like Plectranthus genus, Salvia 

species also afforded many triterpenes, however, their structures were not as much 

interesting and diverse as abietane diterpenes. Most of them have oleanane or ursane 

type skeleton, and some lupanes (Topcu G. et al., 2007).  

Clerodanes (Scheme I.8) are found in many different plant families and contain 

four contiguous stereocenters contained in a cis or trans decalin. (Lozama A., 

Prisinzano T. E., 2009). During the last thirty years, over six hundred and fifty 

diterpenoids and nor-diterpenoids with the clerodane carbon skeleton have been 

isolated. Confusion has arisen in the literature over the absolute stereochemistry of 

the various clerodanes isolated. The revision of the absolute stereochemistry of 

clerodin (see Figure I.2), a neo-clerodane that displays antifeedant properties and 

inhibits insect growth, (Lozama A. and Prisinzano T.E., 2009), result in the first member 
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of the clerodane series. This neo-clerodane has led to those compounds with the same 

absolute stereochemistry as clerodin being termed neo-clerodanes and those 

compounds enantiomeric to clerodin being termed ent-neo-clerodanes. A further 

division of the clerodanes has been to cis and trans compounds, depending on the 

stereochemistry of the decalin ring junction (Scheme I.7). 

Six genera of the Lamiaceae family have been shown to produce clerodanes. 

Only a small number of the clerodanes have been shown to exhibit any biological 

activity. However, only a handful of compounds have been reported as having no 

activity in the tests carried out, thus leaving the large majority as simply untested or 

unreported. The clerodanes are best known for their insect antifeedant properties, and 

related insecticidal properties, with an emphasis placed on the safety aspects of such 

natural insect antifeedants in relation to mammalian and piscial life (Merritt A.T. and 

Ley S.V., 1992).  

One neoclerodane diterpene that has been investigated recently is salvinorin A 

(see Figure I.2), isolated from the leaves of Salvia divinorum, possessing hallucinogenic 

effects. Because it is active at opioid receptors, its chemical reactivity is a useful 

example for the development of methodology to modify other neoclerodane 

diterpenes. Further advances in the synthesis of neoclerodane diterpenes are likely to 

further develop this structural class of terpenes into useful biological probes (Lozama 

A., Prisinzano T.E., 2009). 

 

 

 

 

 

 

 

 

Figure I.2. Chemical structures of diterpenes microstegiol, clerodin, salvinorin A 

and 7α-acetoxy-6β-hydroxyroyleanone. 
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I.2.2.1. The abietane 7-acetoxy-6-hydroxyroyleanone 

 

The constituents of Plectranthus plants are mainly diterpenoids belonging to 

abietane, kaurane and labdane classes, being royleanone abietanes a well represented 

subclass. In a few royleanone abietanes were found antimycobacterial activities, for 

example, in derivatives of carnosic acid, isolated from Salvia africana-lutea (McGaw L. 

J. et al., 2008), and in horminone, obtained from S. reptans (Martínez-Vázquez M. et 

al., 1998) and S. multicaulis (Ulubelen A. et al., 1997). These last abietanes were similar 

to royleanones isolated from P. grandidentatus and P. hereroensis, that revealed anti-

methicillin resistant Staphylococcus aureus (MRSA) proprieties (Gaspar-Marques C.C. 

et al., 2006). 

Royleanones are hydroquinonic abietanes with a 12-hydroxy-11,14-di-oxo-

quinone moiety in C ring, vastly distributed in Lamiaceae family. Several natural 

quinones metabolites showed antimycobacterial activity (Copp B.R. et al., 2007; 

Mahapatra A. et al., 2007; Rijo P. et al, 2010) and other interesting pharmacological 

activities, namely, antimicrobial, antitumoral and antiviral (Batista O. et al., 1995; 

Batista O. et al., 1996; Teixeira A.P., 1997; Gaspar-Marques C.C., 2006; Gaspar-

Marques C. et al., 2008). 7α-Acetoxy-6β-hydroxyroyleanone (see Figure I.2) is often 

isolated from Plectranthus species (Gaspar-Marques C. et al., 2006; Lukhoba C.W. et 

al., 2006). The antioxidant activity of this royleanone was studied by Chang et al. 

(Chang S.-T. et al., 2002) and recently this diterpene was studied for its bioactivity 

(selectively modify C-type inactivation of Kv1.2 channels; Leung Y.-M. et al., 2010). 

Its possible biosynthesis pathway was proposed from the diterpene (-)-abietic 

acid, that originates by cyclization of the corresponding C20 isoprenoid precursor, 

followed by sequential oxidation of A-ring α-methyl of the olefin to a carboxyl function 

(Wang S.-Y. et al., 2002). 

The quinones are aromatic rings with two ketone substitutions. They are 

ubiquitous in nature and are characteristically highly reactive. These compounds, being 

colored, are responsible for the browning reaction in cut or injured fruits and 

vegetables and are an intermediate in the melanin synthesis pathway in human skin. 

Their presence gives the material its dyeing properties. The switch between diphenol 
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(or hydroquinone) and diketone (or quinone) occurs easily through oxidation and 

reduction reactions. The individual redox potential of the particular quinone- 

hydroquinone pair is very important in many biological systems; witness the role of 

ubiquinone (coenzyme Q) in mammalian electron transport systems. Vitamin K is a 

complex naphthoquinone and its antihemorrhagic activity may be related to its ease of 

oxidation in body tissues. Hydroxylated amino acids may be made into quinones in the 

presence of suitable enzymes, such as a polyphenoloxidase.  

In addition to providing a source of stable free radicals, quinones are known to 

complex irreversibly with nucleophilic amino acids in proteins, often leading to 

inactivation of the protein and loss of function. For that reason, the potential range of 

quinone antimicrobial effects is great. Probable targets in the microbial cell are 

surface-exposed adhesins, cell wall polypeptides, and membrane-bound enzymes. 

Quinones may also render substrates unavailable to the microorganism. As with all 

plant-derived antimicrobials, the possible toxic effects of quinones must be thoroughly 

examined (Cowan M.M., 1999). 

The diterpenoid 6β-acetoxy-7α-hydroxyroyleanone (see Figure I.2), isolated 

from Plectranthus grandidentatus, is associated with various biological activities 

(Cerqueira F. et al., 2004; Marques C.G. et al., 2002). Previous studies on Plectranthus 

spp. revealed that their royleanones metabolites were active against the Gram-positive 

Enterococcus and Staphylococcus aureus strains.  Preliminary SAR reasoning led to the 

conclusion that the presence of a C ring with a 12-hydroxy-p-benzoquinone feature 

and an oxidized B ring at C-6/C-7 positions were significant for the activity (Gaspar-

Marques C. et al., 2006). In addition, Young et al. (Yang Z. et al., 2001) reported that 

the presence of additional benzyl groups influenced the anti-MRSA activities of 

phenolic abietanoids. Furthermore, a number of diterpene metabolites were found to 

be active against Gram positive bacteria, as totarol and abietic acid (Scheme I.5). These 

diterpenes have the ability to cross or damage the bacterial cytoplasmatic membrane 

due to their amphipathic character. Besides that, it was described that antibacterial 

activity may be modulated through an increase in lipophilicity and/or in hydrogen-

bond donor/acceptor groups of the hydrophilic moiety (Yang Z. et al., 2001; Urzúa A. et 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Marques%20CG%22%5BAuthor%5D
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al., 2008; Bernabeu A. et al., 2002). However, nor the complete mechanism of action 

neither their biological targets are known.  

 

I.3. Plectranthus L’Hérit genus  

 

Plectranthus is an Old World genus belonging to the Mint family (Lamiaceae), 

and there are about 350 known species which are widely distributed in Africa, 

Madagascar, India, Australia and a few Pacific islands. The family Lamiaceae contains 

several genera, such as sage (Salvia) and mint (Mentha), with a rich diversity of 

ethnobotanical uses. The popularity of Plectranthus is explained by their ornamental 

leaves, make free-flowering, easy and fast-growing and resist most pests and diseases. 

Most of the Plectranthus species of the world are soft trailing semi-succulent to 

sucullent herbs or shrubs widely distributed in the summer-rainfall savannahs and 

forested regions. 

The name Plectranthus means spurflower (plectron = spur and anthos = flower) 

and refers to the characteristic spur at the base of the corolla tube of Plectranthus 

fruticosus, the first plectranthus to be placed in the genus. The name is confusing 

because very few plectranthus actually have this spur, but the French botanist 

L’Heritier, who described the genus in 1788, was unaware of this fact (Van Jaarsveld E., 

2006; Lukhoba C.W. et al., 2006). 

Some species of Plectranthus are difficult to identify because of a lack of clear-

cut morphological criteria to discriminate not only among species within the genus but 

also among the closely related genera. This has resulted in numerous taxonomic 

problems in the naming of species with the result that species have often been placed 

in several closely related genera like Coleus. Phylogenetically they are divided into two 

major clades: clade 1 (corresponding to the formally recognized genus Coleus) were 

richer in number and diversity of uses than members of clade 2; and clade 2 

(compromising the remaining species of Plectranthus). The high incidence of synonymy 

can lead to problems in uncovering a species ethnobotanical profile. Members of the 

‘Coleus’ clade are the most studied group both taxonomically and economically. 
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Plectranthus species in clade 1 are frequently used as medicines and are used to treat 

a range of ailments, particularly digestive, skin, infective and respiratory problems. 

Plectranthus used as foods, flavours, fodder and materials are also mostly found in 

Clade 1. Many species of Plectranthus grown as ornaments are resistant to diseases 

including P. ecklonii and P. saccatus (Lukhoba C.W. et al., 2006). A subsequent work to 

Lukhoba C.W. et al. shows that there are three main clades in the genus Plectranthus, 

(a sigmoid ‘Coleus’ clade; a sigmoid Plectranthus clade; and a straight Plectranthus 

clade (Potgieter C.J. et al., 2009). 

 
I.3.1. Plectranthus ornatus Codd.  

 

The name ‘ornatus’ means ornamental spurflower (tuin spoorsalie or 

skutblaarsalie), synonym Coleus comosus. Is a decumbent aromatic succulent herb, to 

130-300 mm, freely branched, neat and cushion-shaped. Corolla 20-25 mm long, light 

blue to blue-purple, tube slightly deflexed, expanding to the mouth. P. ornatus is 

widespread in Central Africa from Ethiopia in the north to Tanzania in the south. It is 

semi-naturalized in South Africa. It occurs in glassland above the forest zone (Van 

Jaarsveld E., 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.3. Plectranthus ornatus Codd. (Van Jaarsveld E., 2006). 
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Previous studies on the secondary metabolites of Plectranthus ornatus Codd. 

(see Figure I.3; synonym P. comosus Hochst. ex Gürke) reported the isolation of 

labdane, clerodane and halimane diterpenoids (Oliveira P. et al., 2005; Rijo P. et al., 

2002; Rijo P. et al., 2005; Rijo P. et al., 2007), some of which have shown to possess a 

moderate antimicrobial activity against Candida species and selected Gram positive 

and Gram negative bacteria strains.  

The first chemical study of this specie was on the acetone extract and yielded a 

novel neoclerodane derivative, plectrornatin A, and two labdane derivatives, 

plectrornatins B and C (see Figure I.4). Plectrornatins A and C showed moderate 

antimicrobial activity against five Candida species and selected Gram negative and 

Gram positive bacteria strains (Rijo P. et al., 2002).  

 

 

 

 

 

 

 

 

Figure I.4 Chemical structures of diterpenoids a and plectrornatins A, B and C. 

 

 

Further phytochemical studies on the leaves of P. ornatus resulted on the 

isolation of a new diterpene (a; see Figure I.4; Albuquerque R.L. et al., 2003). 

In Brasil, this specie is very used and is popular known as ‘boldinho’, ‘boldo-

rasteiro’, ‘boldo gambá’ and ‘boldo-de-folha-miúda’. According to an 

ethnopharmacological survey, the leaves of P. ornatus are often used for stomach and 

liver diseases as substitute to P. barbatus (common name ‘falso-boldo’) also used for 

the same reason. Both are used for the same kind of biological activities: diuretic, 

antipyretic, analgesic, antibiotic and anti-inflammatory (Oliveira P. et al., 2005). A 
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study of P. ornatus hexane and ethanol extracts on the anti-inflammatory activity 

mediated by glycocorticoide receptor revealed that only the hexane extract showed 

agonist activity on the glycocorticoide receptor (Franzotti E. M. et al., 2006). Mauro C. 

et al. described an anatomical study of the vegetative organs of P. ornatus (Mauro C. 

et al, 2008). 

A phytochemical investigation of a hexane extract of the aerial parts of P. 

ornatus yielded three new neoclerodane diterpenoids, two labdane diterpenes (see 

Figure I.5) obtained for the first time as natural products, and several previously 

known substances, namely plectrornatin C (Figure I.4) and triterpenoids (Oliveira P. et 

al., 2005).  

 

 

 

 

 

 

 

 

Figure I.5. Chemical structures of neoclerodane diterpenoids (a, b and c) and 

two labdane derivatives isolated from P. ornatus (d and e; Oliveira P. et al., 2005). 

 

 

An extension of a previous study (Rijo P. et al., 2002) from the same acetone 

extract of P. ornatus, yielded the isolation of three labdane diterpenoids (see Figure 

I.6) that were found, together with known triterpenoids. The isolated compounds have 

structures closely related to that of forskolin, a very interesting substance isolated 

from Coleus forskohlii Briq. (Lamiaceae). This was the first report on those labdane 

diterpenoids as naturally occurring substances, although they were already known as 

semisynthetic derivatives (Rijo P. et al., 2005).  
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Figure I.6. Chemical structures of labdane diterpenoids a, b and c, forskolin, 

halimane d and rhinocerotinoic acid (Rijo P. et al., 2005; Rijo P. et al., 2007). 

 

The persistence of the phytochemical study of the same acetone extract of P. 

ornatus (Rijo P. et al., 2002) yielded the isolation of a new halimane and a known 

labdane (see Figure I.6). This was the first report on the isolation of rhinocerotinoic 

acid from a Lamiaceae species and also on the presence of a halimane-type diterpene 

in a plant belonging to the genus Plectranthus (see Figure I.6). Moreover, only few 5-

halimene derivatives have been isolated so far, and they were found in Euphorbiaceae 

and Asteraceae plants. It is of chemotaxonomic interest that P. ornatus contains 

labdane, halimane and clerodane diterpenoids (Oliveira et al., 2005; Rijo et al., 2002; 

Rijo P. et al., 2005). 

The essencial oils from the leaves of P. ornatus were analysed and the 

antioxidant activity and chemical composition was also studied (Albuquerque R.L. et 

al., 2007). 

 

 

I.3.2. Plectranthus ecklonii Benth. 

 

Plectranthus ecklonii Benth. (see Figure I.7) was first collected in 1813 by the 

naturalist William Burchell in the Eastern Cape, according to Dr. Codd (1983). When 

Bentham (British taxonomist 1800-1884) described the plant in 1848, he named it after 

Ecklon (plant collector and traveler in South Africa, 1795-1868) who had collected it on 
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the Katberg (South Africa). Bentham was apparently unaware of William Burchell’s 

original collection. It thrives in partial shade where frost is not severe, and in 

cultivation gets to 1-3 m. The common names are Ecklon spurflower and Ecklon 

spoorsalie and is an erect aromatic freely branched shrub. Leaves are ovale to 

elliptical, the lower surface of the glands reddish-brown and with the corolla bluish-

purple, rarely pink or white (Van Jaarsveld E., 2006). 

 

 

 

  

 

 

 

 

 

 

 

 

Figure I.7. Plectranthus ecklonii Benth. (Van Jaarsveld E., 2006). 

 

P. ecklonii is used in Zimbabwe to treat skin infections for its antibacterial and 

antifungal activities and in South Africa is used as ornamentals (Lukhoba C.W. et al., 

2006) and traditionally used for treating stomach aches, nausea, vomiting and 

meningitis (Nyila M.A. et al., 2009). Studies on pollination of Plectranthus spp. 

(Lamiaceae) in southern Africa also refers to P. ecklonii (Potgieter, C.J. et al., 1999; 

Potgieter C.J. et al., 2009).  

The phytochemical studies that have been reported to P. ecklonii includes the 

isolation of two novel isomeric o-quinones, ecklonoquinone A and B, two flavones (see 

Figure I.8) and the diterpenoid p-quinomethane parvifloron F (see Figure I.9; Uchida 

M. et al., 1980). 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Nyila%20MA%22%5BAuthor%5D
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Figure I.8. Chemical structures of ecklonoquinone A and B and two flavones a 

and b (Uchida M. et al., 1980). 

 

The Plectranthus ecklonii aqueous extract was studied and the major 

compound found was rosmarinic acid (see Figure I.9). The presence of this compound 

could explain the inhibition of acetylcholinesterase and antioxidant activities studied, 

but the extract was stronger inhibitor than rosmarinic acid (Figueiredo N.L., et al. 

2010). 

 

 

 

 

 

 

 

Figure I.9. Chemical structures of parvifloron F and rosmarinic acid (Uchida M. 

et al., 1980; Figueiredo N.L. et al., 2010). 

 

A first report on the bioactivity of the ethyl acetate P. ecklonii extract and its 

constituents was done. The study tested the P. ecklonii extract and its isolated 
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compounds for their activity on tyrosinase inhibition. Bioassay-guided fractionation of 

the ethyl acetate extract of the plant led to the isolation of two known compounds, 

parvifloron D (Figure I.10) and parvifloron F (Figure I.9; Rüedi P., Eugster C.H., 1978). 

The antibacterial activity of the extract and its isolated compounds correlated with the 

traditional use of the plant (Nyila M.A. et al., 2009). Van Zyl et al. also isolated those 

two known abietane diterpenes from P. ecklonii dichloromethane extract and the 

compounds showed antiplasmodial activity (van Zyl R.L. et al., 2008). Parvifloron D was 

also isolated on the acetone extract of P. ecklonii together with sugiol and showed 

antibacterial activity (see Figure I.10; Simões M.F. et al., 2010b).  

 

 

 

 

 

 

Figure I.10. Chemical structures of parvifloron D and sugiol (Simões M.F. et al., 

2010b). 

 

 

I.3.3. Plectranthus porcatus Winter & Van Jaarsv.  

 

P. porcatus (see Figure I.11) was discovered by Pieter Winter of the Natural 

Herbarium in Pretoria whilst searching for more populations of new species of 

Raphionacme in the Leolo Mountains (South Africa). Its distribution is from northern 

Leolo Moutains to Sekukuniland and Limpopo Province. As habitat the climate is 

subtropical, with hot summers and dry, sunny winters with light frost. Common names 

are ribbed spurflower and Sekukuni spoorsalie. The epithet ‘porcatus’ alludes to the 

ridged nature of most stem internodes. P. porcatus are perennial soboliferous multi-

stemmed aromatic shrub to ± 1.2 m and 1.5 m in diameter, aerial stems sparingly 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Nyila%20MA%22%5BAuthor%5D
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branched. Corolla 2-lipped, somewhat sigmoid, white to slightly mauve-tinged, 

glandular hairy and sparsely dotted with sessile orange glandular trichomes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.11.  Plectranthus porcatus Winter & Van Jaarsv. (Van Jaarsveld E., 

2006). 

 

The only phytochemical study from P. porcatus yielded a new diterpenoid, 

(13S,15S)-6β,7α,12α,19-tetrahydroxy-13β,16-cyclo-8-abietene-11,14-dione (see Figure 

I.12). This was the first study either chemically or pharmacologically, on this specie and 

the compound showed no antibacterial activity against Gram-negative bacteria and 

Candida albicans (yeast strain) tested (Simões M. F. et al., 2010a). 

 

 

 

 

 

 

Figure I.12. Chemical structure of (13S,15S)-6β,7α,12α,19-tetrahydroxy-13β,16-

cyclo-8-abietene-11,14-dione (Simões M.F. et al., 2010a). 
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I.3.4. Plectranthus saccatus Benth. 

 

The name from the latin ‘sacattus’ means bag-shaped or pouched, referring to 

the base of the flower. P. saccatus (see Figure I.13) was first collected in 1832 by 

Drège, a German botanical collector and traveler. Medley Wood, who collected it in 

Ngoye Forest, rated it hightly. The common name is stoep jacaranda, stoep jacaranda 

and sak-spoorsalie. P. saccatus is procumbent, decumbent or erect aromatic shrub up 

to 2m, stems puberulous. Corolla 11-30 mm long, mauve to blue (rarely white). Two 

subspecies are recognized. The recognition of two varieties within this subspecies is 

contentious, and a careful consideration of corolla lengths shows that they are highly 

variable, representing a continuum rather than forming clearcut groups within the 

species. Subsp. saccatus is a decumbent to erect shrub with a widespread distribution 

and a large saccate corolla and is very variable with several local forms or ecotypes. P. 

pondoensis (Pondo stoep jacaranda) is distinguished its trailing habit, and its flexible 

stems up to 4 m long bearing distinctly succulent glandular pubescent leaves. It usually 

has a short corolla tube 6-10 mm long, compared to the much larger corolla of subsp. 

saccatus. As habitat it prefers forest or forest margins, in hilly terrain or deep river 

gorges (Van Jaarsveld E., 2006). 

There are few studies involving P. saccatus, Lukhoba et al. reported P. saccatus 

as having horticultural use (Lukhoba C.W. et al., 2006) and Potgieter et al. presented 

studies of pollination of Plectranthus spp. (Lamiaceae) where P. saccatus was 

described as having a sigmoid corolla shape that limits the type and size of insects that 

can access nectar and act as pollinators (Potgieter C.J. et al., 1999; Potgieter C.J. et al., 

2009).  
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Figure I.13. Plectranthus saccatus Benth. (Van Jaarsveld E., 2006). 

 

The first chemical study of Plectranthus saccatus Benth. described a bio-assay 

guided fractionation of an acetone extract of leaf material, that resulted in the 
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isolation of a novel beyerane diterpenoid and other minor beyerane (a and b 

respectively; see Figure I.14). The new compound showed insect antifeedant activity 

against Spodoptera littoralis (Wellsow J. et al., 2006). A new diterpenoid, ent-7α-

acetoxy-15-beyeren-18-oic acid (c; see Figure I.14) have been isolated recently from an 

acetone extract and showed no antimicrobial activity against Gram-negative bacteria 

and Candida albicans (yeast strain) tested (Simões M.F. et al., 2010). 

 

 

 

 

 

 

Figure I.14. Chemical structures of beyeranes a, b (Wellsow J. et al., 2006) and c 

(Simões M.F. et al., 2010). 

 

I.4. Biological activity of Plectranthus 

 

Many Plectranthus species are plants of ornamental, economic and medicinal 

interest, and with a rich diversity of ethnobotanical uses. Several species are used all 

around the world as vermicides, antiseptics and purgatives, for the treatment of ear 

infections, toothache and stomach ache, as a remedy for vomiting and nausea, and 

against a vast array of other diseases (Rijo P. et al., 2007). Some examples: P. barbatus 

and P. bojeri are indicated for the treatment of pneumonia and P. amboinicus revealed 

anti-MTB activity. Moreover P. aegypticus, P. ambiguus, P. caninus, P. edulis, P. 

elegans, P. glandulosus, P. hadiensis, P. lanceolatus, P. laxiflorus, P. madagascarensis, 

P. mollis, P. montanus, and P. stolzii are used to relieve several respiratory diseases 

(Lukhoba C.W., 2006). 

Several studies on species from the genus Plectranthus describe various 

biological activities, providing scientific evidence for their use in traditional herbal 

preparations (Maistry K., 2003). The isolation of compounds from Plectranthus is 
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important to validate the popular use of the plant. The active components indicate 

that these compounds contribute for the activity of Plectranthus species (Rodrigues 

P.A. et al., 2010).  

Many biological activities have been attributed to this genus and antimicrobial 

activity is very cited (Maistry K., 2003). Other examples are extensive like acaricidal 

activity (Rasikari H., 2007), herpetic inhibitory and antioxidant properties (Gaspar-

Marques C. et al., 2008) or gastroprotective effect (Rodrigues P.A. et al., 2010).  

Some biological activities described for Plectranthus species (and tested in 

chapter IV) will be presented, namely the main antimicrobial activity, antioxidant, 

acetylcholinesterase inhibitory activity and anti-inflammatory activity. 

  

I.4.1. Antimicrobial activity  

 

Natural products have been a rich source in providing leads for the 

development of drugs for the treatment of bacterial infections. However, beyond the 

discovery of the natural product, thienamycin and the synthetic lead, oxazolidinone in 

the 1970s, there has been a dearth of new compounds (see Figure I.15).  

 

Figure I.15. Chemical structures of thienamycin and the synthetic lead, 

oxazolidinone. 
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A number of natural products, e.g. aspirin and morphine (see Figure I.16), are 

still in use today.  

 

 

 

 

 

Figure I.16. Chemical structures of aspirin and morphine. 

 

Drugs derived from microbial fermentations have played an equally seminal 

role in modern discovery and have revolutionized medicine, saving both human and 

animal lives. Like other areas of drug discovery, there are two sources for antibiotic 

leads—natural products and synthetic compounds. Natural products have been the 

mainstay in providing novel chemical scaffolds for many drugs, as well as leads that 

were chemically modified and developed as antibacterial agents. They generally 

possess complex architectural scaffolds and densely deployed functional groups, 

affording the maximal number of interactions with molecular targets, often leading to 

exquisite selectivity for pathogens versus the host. The successes of the Golden Age of 

antibiotics led to considerable excitement. Antibiotic resistance began to emerge, and 

vancomycin becoming the antibiotic of last resort for the treatment of Gram-positive 

bacterial infections in hospitals. After a number of years of use, emergence of 

nosocomial vancomycin-resistant Staphylococcus aureus (VRSA) and multidrug-

resistant (MDR) strains of this organism and Enterococcus faecalis strains have become 

a common occurrence. It is now accepted that resistance is inevitable, and that 

resistance management will be part of the process for all new antibiotics (Singh S.B. 

and Barrett J.F., 2006; Gibbons S., 2008). There is therefore a continuing need to 

discover and characterize new classes of antibiotics to reduce the pressures of 

bacterial resistance (Cordell G.A., 2000; Xiao Z.Y. et al., 2007).  

Considering the multidrug resistance (MDR), Gibbons S. et al. revealed the 

molecular similarity of MDR in an attempt to find some common features of 

structurally unrelated inhibitors. The shape of the molecule, aromatic rings and the 
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presence of some polar atoms determine the potency of MDR inhibitors (Zloh M. and 

Gibbons S., 2004).  

Staphylococcus aureus is a commensal organism that is commonly cited as 

being a major hospital-acquired pathogen. Strains of this species that are resistant to 

β-lactams, notably the methicillin-resistant Staphylococcus aureus (MRSA) strains, 

have been described from clinical sources for over forty years. It is the ability of this 

Gram-positive organism to acquire resistance to practically all useful antibiotics that is 

the cause for considerable concern. For example, in the UK there has been a significant 

increase in the number of death certificates which mention MRSA with 47 citations in 

1993 rising to 398 in 1998. The occurrence of a fully vancomycin resistant strain of 

MRSA in the US in 2002 indicated that the successful treatment of MRSA strains by the 

use of the glycopeptides antibiotic is not guaranteed (Gibbons S., 2004). 

Pressure to find novel antibacterials with new modes of action will drive 

exploitation of plant sources as antimicrobials. The choice is logical given the ecological 

rationale that plants produce natural products as a chemical defence against microbes 

in their environment. Pharmaceutical companies have neglected natural products 

preferring to utilise combinatorial chemistry libraries as a source of chemical diversity. 

Unfortunately such libraries lack the true chemical diversity that natural products 

display (extensive functional group chemistry and chirality) and these libraries are poor 

for discovery purposes but have potential in lead optimization (Gibbons S., 2004).  

A review study found a number of articles published on the antimicrobial 

activity of medicinal plants in PubMed during the period between 1966 and 1994, and 

found 115; however, in the following decade between 1995 and 2004, this number 

more than doubled to 307. In these studies is possible to find a wide range of criteria. 

Many focus on determining the antimicrobial activity of plant extracts found in folk 

medicine (Plectranthus hadiensis extracts, Mothana R.A. et al., 2008; Plectranthus 

amboinicus, Gurgel A.P.A.D. et al., 2009b), essential oils or isolated compounds. Some 

of these compounds were isolated or obtained by bio-guided isolation after previously 

detecting antimicrobial activity on the part of the plant. A second block of studies 

focuses on the natural flora of a specific region or country; the third relevant group of 
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papers is made up of specific studies of the activity of a plant or principle against a 

concrete pathological microorganism (Ríos J.L., Recio M.C., 2005).  

In this way, it is of interest, to explore the potential medicinal and economic 

uses of Plectranthus, for the reasons that some are African medicinal plants with 

potential use in primary healthcare, and that this genus is related to Salvia, Coleus and 

Rabdosia genera used in ethnomedicine all over the world (Gaspar-Marques C. et al., 

2006). 

Diterpenes is one of the largest groups of plant derived natural products with 

anti-staphylococcal activity and certain plant taxa and diterpene classes are well 

represented, in particular, the genus from the Lamiaceae or mint plant family. 

(Ulubelen A. et al., 2002). Other taxa in the mint family include Plectranthus 

hereroensis, which produces an acetylated abietane quinone (a; Figure I.17; Baptista 

O. et al., 1995) related to horminone, and P. elegans (b and c; Figure I.17; Dellar J.E et 

al., 1996) with similar activities against Gram-positive bacteria. The authors suggested 

that these compounds may have a role in the chemical defence of Plectranthus. 

Interesting sources of antibacterial leads, such as abietane type diterpenes are 

potential to exploit this taxonomic group and the abietane diterpene class (Gibbons S., 

2004). 

 

 

 

 

 

 

Figure I.17. Chemical structures of abietanes a, b, c and horminone (Gibbons S., 

2004). 

 

A Structure-Activity Study of Antibacterial diterpenoids (several kaurane, 

abietane, labdane, clerodane and totarane skeletons), led to the identification of some 

structural requirements for their action and suggested two structural requirements for 

activity of these and related compounds. These structural features included a 
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substituted decalinic system, capable of insertion into a lipophilic region, and a 

hydrophilic fragment possessing one hydrogen-bond-donor group, capable of 

interactions with hydrogen-bond-acceptor groups in the membrane. These structural 

requirements are responsible for an optimal insertion of these and related compounds 

into cell membranes, as suggested by the results of docking of some of these 

compounds into a model phospholipid bilayer. The analysis of the antibacterial 

activities on related diterpenoids thus offers an insight into the structural 

requirements for the antibacterial activity of these and related compounds and 

contributes to the future design of other antibacterial molecules (Urzúa A. et al., 

2008). 

In previous Plectranthus genus isolation works were reported several 

antimicrobial abietane diterpenoids from Plectranthus hereroensis (Batista O. et al., 

1994; 1995), P. grandidentatus (Teixeira A.P. et al., 1997) and P. elegans (Dellar J. et 

al., 1996). Salvia is another genus that have been study for the isolation of abietane 

diterpenoids (Martínez-Vázquez M. et al., 1998; Chen X. et al., 2002; Ulubelen A. et al., 

2000; 1996; 2001) but antimicrobial diterpenoids were also isolated from other family 

plants (Dellar et al, 1996; Zgoda-Pols J.R. et al., 2002; Politi M. et al, 2003; Smith E. et 

al., 2005; Jeong S.-I. et al., 2006; Yoshikawa et al., 2008). Considering the antibacterial 

activity, abietane diterpenoids (Woldemichael G.M. et al., 2003) namely, oxidized 

abietane diterpenes (Gaspar-Marques C. et al., 2006; Mitchell M.O., 2007; Mulvey 

M.R. and Simor A.E., 2009) are frequently reported on reviews (San Feliciano A., 1993), 

or structural effects and structure-activity studies (Gigante B. et al., 2002; Feio S.S., 

1999; Moujir L.M., 1993). Due to the multiple pharmacological activities described for 

these oxidized abietane metabolites, it is thinkable to use them as models for the 

search of further bioactive drugs (Gaspar-Marques C. et al., 2006). This prompted 

Michalet et al. and other researchers groups to synthesize derivatives in order to 

provide structure–activity relationships and to access more potent inhibitors. Synthesis 

of derivatives is a strategy to potentiate antimicrobials, considering the natural 

product molecule a good starting point for structure–activity relationships (SARs).   

Searching for inhibitors from natural sources is therefore an attractive strategy to 

access a greater range of active compounds (Michalet S. et al., 2007). 
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Natural products have inspired many developments in organic chemistry, 

leading to advances in synthetic methodologies and to the possibility of making 

analogues of the original lead compound with improved pharmacological or 

pharmaceutical properties. Natural product scaffolds have also been well recognized 

as being ‘privileged’ structures in terms of their ability to be the basis for successful 

drugs (Harvey A.L., 2008; Saleem M. et al., 2010).  

There are several examples in the literature of chemical modifications of 

abietane (San Feliciano A. et al., 1993; Moujir L. et al., 1993; Feio S.S. et al., 1999; Yang 

Z. et al., 2001; Gigante B. et al., 2002; Tada M. and Ishimaru K., 2006; Rijo P. et al, 

2010), totarane (Evans G.B. et al., 1999; Evans G.B., Furneaux R.H., 2000a; Evans G.B., 

2000b), pimarane, podocarpane and kaurane diterpenes to evaluate their antibacterial 

activity, in an attempt to define some of the structural parameters needed for 

improving antimicrobial activity (Tada M. et al., 2010).  

Another study described some derivatives prepared in an attempt to define 

some of the structural parameters needed for antimicrobial activity. 12-

Benzoylhorminone was found to be more active against the tested organisms than the 

starting materials. The lack of antimicrobial activity of the 6,7-dehydroroyleanone 

clearly demonstrated that the presence of a hydroxyl group at C-7 in these molecules 

is essencial for such activity (see Figure I.18; Martínez-Vázquez M. et al., 1998). 

 

 

 

 

 

 

 

 

Figure I.18. Chemical structures of 12-Benzoylhorminone and 6,7-

dehydroroyleanone. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Evans%20GB%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Evans%20GB%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Furneaux%20RH%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Evans%20GB%22%5BAuthor%5D
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The ability of many Plectranthus species to produce antibacterial metabolites, 

particularly of the diterpene class, prompted Gibbons S. et al. to investigate the 

chemistry and antibacterial activity of extracts from Plectranthus ernstii. Three new 

diterpenoids including two pimaranes (a and b; Figure I.19) and a labdane (c; see 

Figure I.19) were isolated from the whole herb of P. ernstii. Pimarane a exhibited 

moderate antistaphylococcal activity against a range of multidrug-resistant (MDR) and 

methicillin-resistant (MRSA) strains of Staphylococcus aureus and all three diterpenes 

exhibited antimycobacterial activity. Certain diterpenes, such as totarol, have been 

shown to possess multifaceted activities as potent antibacterials and at the same time 

behaving as efflux pump inhibitors. The simple change (from 7-hydroxy of compound a 

to 7-oxo of compound b) resulted in a loss of antistaphylococcal activity, presumably 

as a result of increased lipophilicity and poorer uptake (Stavri M. et al., 2009). 

 

 

 

 

 

 

 

 

Figure I.19. Chemical structures of pimaranes (a and b) and labdane (c) isolated 

from P. ernstii. 

 

The mechanism of action of terpenes as antimicrobial agents is not fully 

understood but is speculated to involve membrane disruption by the lipophilic 

compounds. A study revealed that increasing the hydrophilicity of kaurene 

diterpenoids (Mendonza L. et al., 1997) by addition of a methyl group drastically 

reduced their antimicrobial activity (Cowan M.M., 1999). 

Considering the mode of action of antibacterial diterpenes there is a theoretical 

study on the structural and electronic parameters of the horminone molecule (see 

Figure I.18), an abietane diterpene quinone, by means of all-electron calculations. The 
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results allow the identification of the negative site of horminone (HM) most favorable 

for its binding to the Mg2+ ion. The HM–Mg2+ complex is assumed to play a significant 

role in the antibacterial activity. First, it penetrates the membrane cell. Then, through 

its interaction with rRNA, it inhibits the protein synthesis in several types of bacteria 

and it was also found to be cytotoxic against mammalian tumor cells. It is worth 

mentioning that horminone and derivatives are structurally related to the tetracycline 

moieties, specifically with oxitetracycline, a well-known commercial antibiotic. These 

results suggest that the carbonyl and hydroxyl groups, attached at the “7” position of 

ring B and at the “11,” “12,” and “14” positions of the quinoide ring, may play a 

significant role in the reactivity properties of these compounds (Nicolás I. et al., 2003). 

Further studies of Castro et al. continued on another theoretical study of the 

complexes of horminone with Mg2+ and Ca2+ ions and their relation with the 

bacteriostatic activity (Nicolás I. and Castro M., 2006). 

 

I.4.2. Antioxidant activity  

 

Antioxidants are vital in combating the free radicals, which damage human cells 

under oxidative stress conditions and an imbalance of free radicals may cause grave 

disturbances in cell metabolism. Free radicals are instable species because they have 

unpaired electrons and seek stability through electron pairing with biological 

macromolecules (Ozyurt D. et al., 2007).  Active oxygen (hydroxyl, peroxyl radicals and 

singlet oxygen) is highly toxic and an important causative agent of many diseases 

including cancer, heart disease, cataract and congestive disorders. Antioxidant 

compounds block the oxidation processes that produce free radicals which contribute 

towards these chronic diseases and aging (Muraina I.A. et al., 2009). In addition, it is 

also speculated to be pathologically important in various neurodegenerative processes 

including cognitive deficits and oxidative stress, that is associated with the 

pathogenesis of Alzheimer’s disease (AD) and cellular characteristics of this disease are 

either causes or effects of oxidative stress. Interestingly, intake of polyphenols through 

diets rich in fruits, vegetables and beverages such as red wine was stated to reduce 

incidence of certain age related neurological disorders including macular degeneration 



Chapter I    Introduction 

38 

 

and dementia. Therefore, the data suggests that high dietary or supplemental 

consumption of antioxidants in people may reduce the risk of AD (Orhan I. et al., 

2007). 

Recently there has been an increased concern about synthetic antioxidants. 

This is partly due to their possible toxicity against animal DNA. This may explain the 

interest in examining plant extracts as a source of cheaper and effective antioxidants 

and the growing interest in nutraceuticals (Ozyurt D. et al., 2007).  

Vitamin C plays an important role in animal health as an antioxidant 

supplement by inactivating free radicals produced through normal cellular activity and 

diverse stressors. Plant-derived antioxidants exert their effects by enhancing the levels 

of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase or by 

lowering the levels of lipid peroxides in the blood or liver. It is recognized that 

antioxidant (mainly polyphenolic) compounds from plant extracts can act by either 

free radical scavenging, singlet oxygen quenching, chelating of transitional metal such 

as iron, as well as a reducing agents and activator of antioxidative defense enzyme 

systems to suppress radical damage in biological system (Muraina I.A. et al., 2009). 

Interest has increased in naturally occurring antioxidants since they may be 

used to protect humans from oxidative stress damage. For example the use of 

antioxidants may slow the progression of AD and minimize neuronal degeneration. The 

chemical investigations on plants of the Lamiaceae and their antioxidant activitiy was 

investigated, as well as, the isolated diterpenoids with the ent-kaurane skeleton, 

oxidized on carbons C-7, or C-15 and C-18 (Ertas A. et al., 2009). Other study resulted 

in two new antioxidative diterpenoids (a and b, see Figure I.20), having the abietane 

nucleus, along with two known diterpenoids, parvifloron E and F (see Figure I.20 and 

Figure I.9). The compounds were isolated from the leaves of Plectranthus nummularius 

Briq. (Narukawa Y. et al., 2001).  
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Figure I.20. Chemical structures of diterpenoids a, b and parvifloron E. 

 

A study on Plectranthus plants reported the antioxidant activity and chemical 

composition of the essential oils of P. grandis and P. ornatus fresh leaves. The oil of P. 

ornatus showed a higher antioxidant activity than that of P. grandis, probably due to 

its higher yield of the phenolic compounds (Albuquerque R.L. et al., 2007). Another 

study of methanolic extracts of plants including Plectranthus hadiensis were analyzed 

for their antioxidant activity, and showed high free radical scavenging activity. The 

phytochemical screening demonstrated the presence of different types of compounds 

like flavonoids, terpenoids and others, which could be responsible for the obtained 

activities (Mothana A. et al., 2008). Recent works, revealed studies concerning the 

antioxidant activity of Plectranthus sp., the aqueous extract of P. barbatus leaves 

(Maioli M.A. et al., 2010) and the ethanol extract of P. amboinicus (Palani S. et al., 

2010).  

Essential oils and various extracts of plants (Lamiaceae) have been screened for 

their potential capacity to scavenge free radicals. It is known that many plants with 

medicinal value are used as condiment or aromatic and the inclusion of this kind of 

plants in those studies may determine their ability as functional foods or even 

pharmafoods. In addition, considering questions about the quality and safety of foods, 

only selected food additives are allowed. Because of the possible toxicities of the 

synthetic antioxidants, butylated hydroxyanisole (BHA) and butylated hydroxytoluene 

(BHT), increasing attention has been directed toward natural antioxidants. Antioxidant 

activities of plants from Salvia genus, whose isolated compounds are closely related to 

http://informahealthcare.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Palani%252C%2BS.)
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Plectranthus, were analyzed and the free radical scavenger activity was higher for the 

polar extracts (Tepe B. et al., 2004; Ferreira A. et al., 2006). 

In a recent study, sage (Salvia officinalis) and some other spices were used as 

antioxidant, and it was reported that the addition of sage and the other spices 

retarded the process of oxidation which proved sage to be more effective than the 

mixture of the other spices. Salvia is the largest genus in mint family (Lamiaceae) and 

those species can be one of natural sources with good culinary qualities, and their 

extracts are commonly used to increase the shelf life of foods. Besides their 

antioxidant, antiseptic, and antibacterial properties they possess antifungal, antiviral, 

cytotoxic, carminative, diuretic, hypoglycemic, hemostatic, wound healing, 

spasmolytic, tranquilizer and sedative activities. Abietane diterpenoids carnosic acid, 

royleanonic acid, carnosol and rosmanol have good antioxidant abilities isolated from 

sage plants (see Figure I.21). The oxidation cascade of carnosic acid, which causes 

formation of other phenolic and quinone abietanes in Lamiaceae plants, was proposed 

and antioxidant activity mechanism studies on abietanes have continued.  

 

 

 

 

 

 

 

Figure I.21. Chemical structures of carnosic acid, royleanonic acid, carnosol and 

rosmanol. 

 

For this purpose, Salvia barrelieri extract and its diterpenoids were investigated 

for potential antioxidant activity. The results indicate that the extract and the isolated 

abietane diterpenes, related to royleanone and horminone structures, particularly in 

uroyleanol (Figure I.22) are promising antioxidants (Kabouche A. et al., 2007).  
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Figure I.22. Chemical structure of uroyleanol (Kabouche A. et al., 2007).  

 

The antioxidant activity of some extracts from Salvia sp., particularly, the ethyl 

acetate and methanol extracts were observed to be highly active. The data indicates 

that the polar extracts for antioxidant activity are worth further phytochemical 

evaluation for identifying their active components (Orhan I. et al., 2007). Concerning 

the antioxidant properties of Lamiaceae family, and future phytochemical evaluation 

of active compounds, there are several reports of Salvia sp. extracts in literature 

(Erdemoglu N. et al., 2006; Tosun M. et al., 2009; Nickavar B. et al., 2007; Orhan I. et 

al., 2007).  

 

I.4.3. Acetylcholinesterase inhibitory activity 

 

The major biological role of acetylcholinesterase (AChE) is the termination of 

nerve impulse transmission at the cholinergic synapses, by rapid hydrolysis of the 

cationic neurotransmitter acetylcholine (ACh). According to the cholinergic hypothesis, 

memory impairments in patients with this senile dementia disease are due to a 

selective and irreversible deficiency in the cholinergic functions in brain. This serves as 

a rationale for the use of AChE inhibitors for the symptomatic treatment of Alzheimer’s 

disease (AD) in its early stages (Ahmad V.U. et al., 2005). 

AD is a degenerative neurological disorder characterized by senile plaques 

containing amyloid β protein and loss of cholinergic neuromediators in the brain. The 

most remarkable biochemical change in AD patients is a reduction of acetylcholine 

(ACh) levels in the hippocampus and cortex of the brain. Therefore, inhibition of 

acetylcholinesterase (AChE), the enzyme responsible for hydrolysis of ACh at the 

cholinergic synapse, is currently the most established approach to treating AD. While 
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AChE is found in all excitable tissue, whether nerve or muscle, in most erythrocytes 

and in placental tissue, BChE (butyrylcholinesterase) is present more commonly in the 

body including within the central and peripheral nervous system, liver and plasma 

(Orhan I. et al., 2007). 

Inhibition of AChE serves as a strategy for the treatment of Alzheimer’s disease 

(AD), senile dementia, ataxia, myasthenia gravis and Parkinson’s disease. There are a 

few synthetic medicines, e.g. tacrine, and the natural product-based rivastigmine for 

treatment of cognitive dysfunction and memory loss associated with AD (see Figure 

I.23). These compounds have been reported to have their adverse effects including 

gastrointestinal disturbances and problems associated with bioavailability which 

necessitates the interest in finding better AChE inhibitors from natural resources. 

Acetylcholinesterase (AChE) inhibitors are the only registered drugs used to treat 

Alzheimer's disease. 

 

 

 

 

 

Figure I.23. Chemical structure of tacrine, and rivastigmine. 

 

The majority of studies have focused on enhancement of cholinergic function, 

with particular attention being paid to the anti-ChE alkaloids, such as galantamine. This 

is perhaps a reflection of the relative success of the use of AChE inhibitors in AD 

patients, and a lack of understanding of the pathological mechanisms that occur in AD 

and the subsequent targets for treatment. However, numerous studies have shown 

that a diverse array of compounds, and not just the anti-ChE alkaloids, may have 

potential for efficacy in cognitive disorders (Howes M.-J.R. and Houghton P.J., 2003). 

Literature indicates that plants may yield novel AChE inhibitors, other than alkaloids 

and monoterpenes, which may have advantages in relation to efficacy and adverse-

effect profile (Howes M.-J.R. et al., 2003). Triterpene ursolic acid has also been 

reported to possess AChE inhibitory activity (Mukherjee P.K. et al., 2007). 
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New AChE inhibitors may contribute to the design of new pharmaceuticals and 

supply information which will facilitate the understanding of the interaction between 

inhibitors and the enzyme (Ren Y. et al., 2004).  

Amongst plants that have been investigated for dementia therapy, Salvia is one 

of the most numerous genera within the family Lamiaceae and grows in many parts of 

the world (Mukherjee P.K. et al., 2007). Salvia species (Lamiaceae) have been recorded 

to be used against memory loss in European folk medicine (Orhan I. et al., 2007). Salvia 

officinalis (sage) has previously been shown to possess in vitro cholinesterase inhibiting 

properties, enhancing mnemonic performance and improving mood in healthy young 

participants. The history of the use of sage (several plants of the Salvia genus) as a 

medicinal treatment spans several millennia, and both ancient and modern cultures. A 

series of studies have shown that both Salvia lavandulaefolia (Spanish Sage) and Salvia 

officinalis (Garden Sage) inhibit the cholinesterase group of enzymes. These Salvia 

species are both edible, not toxic (at the doses that are liable to be utilized in humans) 

and have long histories of safe usage (Kennedy D.O. et al., 2006; Adams M. et al., 

2007; Kamatou G.P.P. et al., 2008; Savelev S. et al., 2003; Perry N.S.L. et al., 2000). 

Several extracts from Salvia species (Lamiaceae) were examined for the 

anticholinesterase activity and the results indicated that nonpolar extracts are worth 

further phytochemical evaluation for identifying their active components (Orhan I. et 

al., 2007). 

Considering the anti-cholinesterase activity of terpenoids reported to date 

relatively weak, the analogues of active terpenoid compounds may be developed to 

enhance efficacy (Mukherjee P.K. et al., 2007). 

The first example of diterpenoids as acetylcholinesterase (AChE) inhibitors were 

two o-quinone diterpenes (dihydrotanshinone and cryptotanshinone, see Figure I.24) 

isolated from Salvia miltiorhiza (Ren Y. et al., 2004). Dihydrotanshinone had a seven-

fold higher activity than cryptotanshinone suggesting that an aromatic A ring may 

contribute more to inhibitory activity than hexane A ring. The abietane o-quinones still 

remain in study and could serve as interesting templates for the development of new 

drugs against AD (Wong K.K.-K. et al., 2010a; Wong K.K.-K. et al., 2010b).  
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Figure I.24. Chemical structures of dihydrotanshinone and cryptotanshinone.  

 

So far, there are few terpene-type AChE inhibitors ever reported, which are of 

relatively low potency, with IC50 in milli-molar level (Thirugnanasampandan R. et al., 

2008). However, two diterpenoid (dihydrotanshinone and cryptotanshinone, see 

Figure I.24) showed potent anti-AChE activity. Wong K.K.-K. et al. reported, in order to 

have a better understanding on the mode of action of those compounds on AChE 

inhibition, through detailed analyses of AChE enzyme kinetics and molecular docking 

(Wong K.K.-K. et al., 2010b).  

Concerning the anticholinesterase properties of diterpenoids, there are reports 

from Lamiaceae family, of oxidized ent-kauranes. The melissoidesin (Figure I.25), 

isolated from Isodon, a species formally placed in Plectranthus, and now recognised as 

a more distantly related genus (Thirugnanasampandan R. et al., 2008) that exhibited 

moderate antiacetylcholinesterase activity; and others bioactive ent-kaurane 

diterpenoids: eubol, 7-epi-candicandiol and sideroxol (see Figure I.25; Ertas A. et al., 

2009).  

 

 

 

 

 

 

Figure I.25. Chemical structures of melissoidesin, eubol, 7-epi-candicandiol and 

sideroxol (Ertas A. et al., 2009). 
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Ahmad V.U. et al. also reported three new tricyclic cis-clerodane type 

diterpenoids (a, b and c, see Figure I.26) which have shown inhibitory activity against 

AChE and BChE (Ahmad V. U. et al., 2005).  

 

 

 

 
 
 
 
 
 

Figure I.26. Chemical structures of cis-clerodane type diterpenoids a, b and c 

(Ahmad V.U. et al., 2005). 

 

I.4.4. Anti-inflammatory activity 

 

Inflammation is a complex process and many different mediators are involved. 

The inflammatory process is necessary for survival against pathogens and injury, but 

sometimes the inflammatory response is aggravated and sustained without benefit. 

(de las Heras B. et al., 2003) No definite model covering all aspects of inflammation 

exists. Arachidonic acid is released from the cell membrane by chemical and 

mechanical stimuli and converted by the cyclooxygenase enzymes (COX-1/COX-2) to 

the unstable prostaglandin intermediates PGG2 and PGH2. The fate of the 

cyclooxygenase products, PGG2 and PGH2, differs from tissue to tissue depending on 

the metabolizing enzymes present. COX-1 is constitutively expressed and is mainly 

responsible for the synthesis of cytoprotective prostaglandins in the gastrointestinal 

tract and of the proaggregatory thromboxane in blood platelets while COX-2 is induced 

in the inflamed tissue. COX-2 plays a major role in prostaglandin biosynthesis in 

inflammatory cells (monocytes/macrophages) and in the central nervous system. 

Modulation of the activity of the enzyme implies that the inflammation process can be 

modified (Matu E.N. and Van Staden. J., 2003). The screening of compounds isolated 
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from medicinal plants is motivated by the possibility of discovering new biologically 

active chemotypes for later use in clinical medicine. The anti-inflammatory activities of 

isolated compounds also made it possible to rationalize the ethnomedicinal use of 

species of the plants used. This rationalization of the ethnomedicinal use of plants is 

important in developing countries like South Africa because the services of traditional 

healers play an important role in primary health care systems (Kalgutkar A.S. et al., 

2000; Toit K. et al., 2005). 

The extracts of plant species of Plectranthus, as Plectranthus barbatus (Matu 

E.N. and Van Staden. J., 2003), or Plectranthus amboinicus (Gurgel A.P.A.D. et al., 2009) 

traditionally used for treatment of ailments of infectious and/or inflammatory nature 

have been screened. The evaluation of the anti-inflammatory activity of the extracts 

was done to support the folk use of this medicinal species (Gurgel A.P.A.D. et al., 

2009). 

A vast number of terpenoids have been evaluated as potential anti-

inflammatory molecules. The use of plant extracts rich in these terpenoids and 

administered in traditional medicine, point to the existence of likely candidates to act 

as potent anti-inflammatory drugs. It has been difficult to define precise molecular 

motifs, broadly distributed among these terpenes and involved in their anti- 

inflammatory activity. Some terpenoids act as plant hormones regulating different 

physiological functions but other are secondary metabolites involved in host defence 

and in the protection of plant/animal from potential pathogens.  

The isolation of triterpenoids and their biological activity against COX-1 and 

COX-2 have been investigated (Hasmeda M. et al., 1999; Rajic A. et al., 2001; Mitaine-

Offer A.-C. et al., 2002; Yoshikawa K. et al., 2005; Angeh J.E. et al., 2007). The search 

for selective inhibitors of COX-2 is considered important, on the basis of the theory 

that side effects, such as gastric lesions, that occurred from inhibition of COX-1 activity 

were observed with aspirin and others non-steroidal anti-inflammatory drugs 

(NSAIDs). Until now, very few compounds of natural origin have been reported to 

possess COX-2 inhibitory effects.   

Concerning the anti-inflammatory properties of diterpenes (Liu Q. et al., 2006), 

there are reports of labdane (Abe M. et al., 2006), kaurane (de las Heras B. et al., 
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2007), clerodane, abietane (as abietic acid, see Scheme I.5; Fernandez M.A. et al., 

2001) and pimarane (Kim T. D. et al., 2010) diterpenes (de las Heras B. et al., 2003). 

S. Hortelano et al. reported the potential of labdane diterpenoids from 

Lamiaceae, like andalusol, as anti-inflammatory agents. The future development of this 

class of compounds, as anti-inflammatory drugs requires the introduction of novel 

molecular targets of therapeutic relevance and thus are very promising candidates as 

leads for developing useful therapeutics. The diterpene tanshinone IIA, isolated from 

Salvia, and the abietanes carnosol and carnosic acid, were also described as anti-

inflammatory agents (see Figure I.27; de las Heras B. and Hortelano S., 2009).  

 

 

 

 

 

Figure I.27. Chemical structures of andalusol, tanshinone IIA, carnosol and 

carnosic acid (de las Heras B. and Hortelano S., 2009).  

 

In fact, a variety of biological activities have been determined for labdane 

diterpenes including antibacterial, antifungal, antiprotozoal, and anti-inflammatory 

activities, and additionally, recent studies reported the anti-inflammatory activity of 

labdane diterpenes through their inhibitory activity against cyclooxygenase. Selective 

inhibitory activity for two labdane diterpenes a and c and their acetate derivatives, b 

and d, against cyclooxygenases (COX-1 and COX-2) was reported (a, b, c and d; see 

Figure I.28; Hegazy M.-E.F. et al., 2008). 

 

 

 

 

 

Figure I.28. Chemical structures of labdane diterpenes a and c and their acetate 

derivatives, b and d (Hegazy M.-E.F. et al., 2008). 

http://pubget.com/search?q=authors%3A%22M%20A%20FernÃ¡ndez%22
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 Several reports indicate that nonselective anti-inflammatory drugs which inhibit 

COX-1 and COX-2 and microglial COX-1 may lead to a protective effect reducing the 

incidence of neurodegenerative disorders. Thus the use of anti-inflammatory drugs has 

been proposed as a therapeutic target implicated in the pathology of many diseases 

including neurodegenerative disorders such as Alzheimer’s disease. A new bioactive 

diterpene, was tested for antibacterial activity, anti-inflammatory activity using the 

COX-1 and COX-2 assays and investigated for inhibitory effect against 

acetylcholinesterase. The results obtained support the traditional uses of this plant in 

African traditional medicine for the treatment of some ailments that relate to 

microbial diseases, inflammation and central nervous system disorders. The isolated 

compound in this study showed activities against both cyclooxygenases (involved with 

inflammation) and acetylcholinesterase (associated with central nervous disorders) 

(Eldeen I.M.S. et al., 2010). Plants and their constituents with pharmacological 

activities may be relevant to the treatment of cognitive disorders, including, anti-

cholinesterase (anti-ChE), anti-inflammatory and antioxidant (Howes M.-J.R. et al., 

2003; Tabet N., 2006; Pavlov V.A. et al., 2009; Kamal M.A. et al., 2009). 

 From all the above mentioned, it was decided to undertake a study of some 

Plectranthus species for the isolation and complete structural characterization of their 

diterpenoids components. In addition, it was decided to prepare suitable derivatives 

from the more abundant bioactive compounds. Finally, studies to evaluate mostly the 

antimicrobial activity, but also the antioxidant, antiacetylcholinesterase and anti-

inflammatory activities, for all the compounds obtained, including the plant extracts, 

should be performed. This has been the focus of the work compiled in this thesis 

report. 
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Phytochemical study of  
Plectranthus ornatus, Plectranthus ecklonii, 

Plectranthus porcatus and Plectranthus 
saccatus 

 

Results and Discussion 
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II.1. Introduction 
 

This phytochemical study is focused on the acetone extracts of Plectranthus 

ornatus Codd. and Plectranthus ecklonii Benth. (whole plants) and P. porcatus Winter 

& Van Jaarsv. and P. saccatus Benth. (aerial parts). 

Several diterpenoids were isolated from P. ornatus: three new forskolin-like 

diterpenoids, a known labdane found for the first time in Plectranthus species and 

other two isolated in major quantities (a novel diterpenoid with the rare halimane 

skeleton and the previously isolated plectrornatin C). Mixtures of six known 

triterpenoids have also been isolated and characterized.  

The study of P. ecklonii has afforded two known abietane diterpenoids: one of 

which was found in Plectranthus species for the first time, and the other one was 

isolated in a very large amount. Mixtures of four known triterpenoids were also 

isolated and characterized.  

A spiro-abietane and a beyerane diterpenoids were isolated, from P. porcatus 

and P. saccatus respectively.  

In this chapter the physical and spectroscopic data of the isolated substances 

which allow the structural elucidation of all the compounds are described and 

discussed.   

II.2. Structure elucidation of terpenic compounds from 
Plectranthus ornatus Codd. 
 

II.2.1. Forskolin-like diterpenoids 

 

 
 
 
 
 

II.1 R1 = H, R2 = OH 
II.2 R1 = Ac, R2 = OH 
II.3 R1 = Ac, R2 = H 
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Compounds II.1-II.3 possess structures closely related to that of forskolin II.4, a 

very interesting substance isolated from Coleus forskohlii Briq. (Lamiaceae) whose 

synthesis and chemical reactivity have been extensively studied (Bhat S.V., 1993). The 

present study is the first on compounds II.1-II.3 as naturally occurring substances, 

although they were already known as semisynthetic derivatives. 6-O-Acetylforskolin 

II.1 and 1,6-di-O-acetylforskolin II.2 have previously been obtained by acetylation of 

forskolin II.4, (Bhat S.V. et al., 1982) whereas II.3 (1,6-di-O-acetyl-9-deoxyforskolin) has 

been reported as an intermediate in a semisynthesis of II.4 starting from 9-

deoxyforskolin II.5 (Hrib N.J., 1987a; Hrib N.J., 1987b). 

  

                                                                                                  

 

 

                    II.4 Forskolin                                                              II.5 

 

The forskolin II.4, possesses a labdane skeleton with: five methyl groups (Me-16 

to Me-20) and a double bond between C-14 and C-15; the characteristic olefinic proton 

H-14 that correlates in the HMBC experiment, with the totally substituted carbon C-13 

which in turn, correlates with the C-16 methyl group; and a system of AB protons on C-

12 that have no protons in vicinal positions and are only mutually coupled (Kogler H. 

and Fehlhaber H.-W., 1991). Structures II.1-II.3 were established by NMR spectroscopic 

studies. For the assignment of the 1H and 13C NMR spectra of II.1-II.3 (Tables II.1. and 

II.2., respectively), two-dimensional COSY, HSQC and HMBC experiments were carried 

out, as well as 1D NOESY spectra for the determination of the relative stereochemistry 

and conformations of these substances. 
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Table II.1. 1H NMR data of compounds II.1a, II.2b and II.3b (apyridine-d5, bCDCl3, 
400 MHz; δ in ppm, J (H,H) in Hz).  

Proton II.1a II.1b II.2b II.3b J(H,H) II.1a II.1b II.2b II.3b 

1β 5.01 
ddd§ 

4.60 
ddd§ 

5.56 t 5.50 t 1β,2α 3.2 3.3 2.4 2.7 

2α 1.54 
dq 

1.43dq 1.63 dq 1.72 
dddd 

1β,2β 2.4 2.5 2.4 2.7 

2β 2.16 
dddd 

2.11ddd
d 

2.12 
dddd 

1.97 
dddd 

2α,2β 14.4 14.0 15.4 14.4 

3α 1.98 td 1.78 td 1.58 td 1.45 
ddd 

2α,3α 3.2 3.3 3.4 2.7 

3β 1.04 dt 1.09 dt 1.15 dt 1.12 dt 2α,3β 3.2 3.3 3.4 3.4 
5α 2.72 d 2.38 d 2.41 d 1.60 d 2β,3α 13.1 13.7 13.0 13.0 
6α 6.20 

dd 
5.79 dd 5.80 dd 5.74 dd 2β,3β 3.2 3.3 3.4 3.4 

7α 6.15 d 5.50 d 5.54 d 5.10 d 3α,3β 13.1 13.7 13.0 13.5 
9α --- --- --- 3.32 s 5α,6α 2.8 2.9 2.7 2.4 

12α 3.48 d 3.21 d 3.14 d 2.64 d 6α,7α 4.6 4.4 4.6 3.9 
12β 2.60 d 2.48 d 2.42 d 2.59 d 12α,12β 16.4 17.1 16.5 18.8 
14 6.28 

dd 
5.94 dd 5.90 dd 5.94 dd 14,15A 10.7 17.3 10.6 10.8 

15A 4.91 
dd 

5.26 dd 4.93 dd 5.05 dd 14,15B 17.4 10.7 17.2 17.4 

15B 5.35 
dd 

4.97 dd 5.20 dd 5.24 dd 15A,15B 1.5 1.0 1.1 1.0 

Me-16 1.42 s 1.34 s 1.33 s 1.21 s 1β,1α-
OH# 

3.7 2.0 --- --- 

Me-17 1.84 s 1.64 s 1.64 s 1.50 s      
Me-18 0.97 s 1.02 s 1.03 s 0.98 s      
Me-19 1.00 s 0.97 s 0.98 s 0.94 s      
Me-20 1.64 s 1.42 s 1.52 s 1.44 s      
1α-OH 8.49 d# 2.9 d# --- ---      
9α-OH 8.63 s# 6.04 s# 4.74 s# ---      
1α-OAc --- --- 2.09 s 1.96 s      
6β-OAc 2.13 s 2.08 s 2.02 s* 2.07 s*      
7β-OAc 2.00 s 2.02 s 2.01 s* 2.08 s*      
§
Collapsed into a dd (J1β,2α and J1β,2β) after addition of D2O; 

#
Disappeared after addition of D2O; 

*
Interchangeable assignments. 
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Table II.2. 13C NMR data of compounds II.1a, II.2b and II.3b (apyridine-d5, bCDCl3, 
100 MHz; δ in ppm, J (H,H) in Hz). 

Carbon    II.1a II.1b II.2b II.3b 

1 73.54 d 74.18 d 73.94 d 74.78 d 
2 27.06 t 26.48 t 23.11 t 21.61 t 
3 36.82 t 36.23 t 37.00 t 36.74 t 
4 34.23 s 34.09 s 33.84 s 33.77 s 
5 42.61 d 41.84 d 43.00 d 47.23 d 
6 70.08 d 69.73 d 69.36 d 69.24 d 
7 75.54 d 74.05 d 76.57 d 78.51 d 
8 81.29 s 81.00 s 81.65 s 77.21 s 
9 82.74 s 82.36 s 81.44 s 57.32 d 

10 43.28 s 43.17 s 43.44 s 40.62 s 
11 206.82 s 205.28 s 205.26 s 205.21 s 
12 49.66 t 48.77 t 48.74 t 49.01 t 
13 75.83 s 75.17 s 75.70 s 74.61 s 
14 147.54 d 146.12 d 145.83 d 146.30 d 
15 110.13 t 110.81 t 110.38 t 112.89 t 
16 30.80 q 31.35 q 31.00 q 31.80 q 
17 23.69 q 23.01 q 23.22 q 24.03 q 
18 32.74 q 32.78 q 32.69 q 32.63 q 
19 23.54 q 23.49 q 23.39 q 22.91 q 
20 20.07 q 19.58 q 19.64 q 17.25 q 

1α-COCH3              ---     --- 168.40 s 169.88 s 
1α-COCH3              ---        --- 21.74 q 21.33 q 
6β-COCH3 170.49 s 169.89 s 169.87 s 169.45 s 
6β-COCH3 21.28 q 21.45 q 21.44 q* 20.93 q 
7β-COCH3 170.31 s 169.85 s 169.87 s 170.35 s 
7β-COCH3 20.95 q 20.83 q 20.82 q* 21.33 q 

                  *
Interchangeable assignments. 

 

II.2.1.1. 6-O-Acetylforskolin II.1 

 

 

 

                                                                    II.1 

6-O-Acetylforskolin II.1 (9 mg; 0.00026 %) is new as natural compound that was 

obtained as colorless prisms from EtOAc. Low-resolution mass spectrometry and 
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combustion analysis indicated a molecular formula of C24H36O8 for II.1 and its 1H and 

13C NMR spectra (Tables II.1 and II.2, respectively) were almost identical to those 

reported for forskolin (II.4, C22H34O7; Kogler H. and Fehlhaber H.-W., 1991). In fact, the 

observed differences between the 1H and 13C NMR spectra of II.1 and II.4 were 

compatible with the presence in the former of a 6β-acetoxyl group instead of the 6β-

hydroxyl group in the latter. This conclusion is supported by the following facts: 

compound II.1 possesses two acetoxyl groups, as was evidenced by its molecular 

formula and confirmed by the presence of two three-proton singlets (δ 2.13 and 2.00) 

and two pairs of acetoxyl carbons (δ 170.49 s, 170.31 s, 21.28 q and 20.95 q) in the 1H 

and 13C NMR spectra, respectively. The H-6α proton of II.1 appeared down-field shifted 

(δ 6.20) with respect to that of II.4 (δ 4.44) (Kogler H. and Fehlhaber H.-W., 1991). The 

C-1 – C-4 and C-8 – C-20 carbon atom resonances of II.1 (Table II.2) were almost 

identical to those of II.4, whereas the observed differences in the chemical shifts of the 

C-5, C-6 and C-7 carbons *Δδ = δ (II.1) – δ (II.4): –0.2, +1.2 and –1.6 ppm, respectively] 

are compatible only with the presence in II.1 of an acetoxyl substituent at the 6β-

position. Finally, the HMBC spectrum of II.1 (Table II.3) showed connectivity between 

the carbonyl carbon of the 6-O-acetyl group (δ 170.49 s) and the H-6α proton (δ 6.20 

dd) which, in turn, was connected with the C-5, C-7, C-8 and C-10 carbons, whereas the 

H-7α proton showed HMBC cross-peaks with the carbonyl carbon of the other acetate 

group (δ 170.31 s) and the C-6, C-8, C-9 and C-17 carbons. Thus, II.1 is 6-O-

acetylforskolin. 
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Table II.3. Significant assignments observed on HMBC experiment for 
compound II.1 

Position HMBC correlations 
OH-9α C-8, C-9 and C-10  
H-14 C-13 
H-6α C-5, C-7, C-8, C-10 and OAc:CO 
H-7α C-6, C-8, C-9, C-17 and OAc:CO 

H-15A + H-15B  C-13 and C-14 
H-1β C-3 and C-10 

H-12α C-11, C-13, C-14 and C-16 
OH-1α C-10 

H-12β C-11, C-13, C-14 and C-16 
H-5α C-3, C-4, C-7, C-9, C-10, C-20, C-18 and C-19 

Me-16 C-12, C-13 and C-14 
Me-17 C-7, C-8 and C-9 
Me-18 C-3, C-4, C-5 and C-19 
Me-19 C-3, C-4, C-5 and C-18 
Me-20 C-1, C-5, C-9 and C-10 

 

 

II.2.1.2. 1,6-Di-O-acetylforskolin II.2 

 

 

 

 

 

II.2 

 

1,6-Di-O-acetylforskolin II.2 (21.1 mg; 0.000622 %) was obtained as colorless 

fine needles from EtOAc-pentane. Compound II.2 is the 1-O-acetyl derivative of II.1, as 

was evidenced by its molecular formula (C26H38O9) and the presence of three acetoxyl 

groups in its 1H and 13C NMR spectra [δH 2.09 s, 2.02 s and 2.01 s, 3H each; δC 169.87 s 

(2C), 168.40 s, 21.74 q, 21.44 q and 20.82 q]. Comparison of the chemical shift of the 

H-1β proton of II.2 (δ 5.56 t) with respect to those of II.1 (δ 5.01 ddd, see Table II.1) 

and II.4 (δ 4.54 ddd; Kogler H. and Fehlhaber H.-W., 1991) together with the 
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diamagnetic shift of the C-2 carbon of II.2 (δ 23.11) with respect to those of II.1 (δ 

27.06) and II.4 (δ 26.46; Kogler H. and Fehlhaber H.-W., 1991) strongly support that II.2 

is 1,6-di-O-acetylforskolin. 

 

II.2.1.3. 1,6-Di-O-acetyl-9-deoxyforskolin II.3 

 

 

 

 

 

 

II.3 

 

 1,6-Di-O-acetyl-9-deoxyforskolin II.3 (11.6 mg; 0.000342 %) was obtained as 

colorless fine needles from EtOAc-pentane. Diterpenoid II.3 is the 9-deoxy derivative 

of II.2. The molecular formula established for II.3 was C26H38O8 and C26H38O9 for II.2. 

The IR spectrum of II.3 was devoid of hydroxyl absorptions, whereas II.2 showed a 

hydroxyl band at 3468 cm-1. The C-9 methine carbon of II.3 appeared at δ 57.32 in its 

13C NMR spectrum and it was connected (HSQC) with one proton singlet signal at δ 

3.32. In the HMBC spectrum of II.3, the H-9 proton showed connectivities with the C-1, 

C-5, C-7, C-8, C-11, C-17 and C-20 carbons. Comparison of the 13C NMR spectra of II.2 

and II.3 (Table II.2) clearly revealed that the 9α-hydroxyl substituent of the former is a 

9α-hydrogen in the latter, because upfield shifts for the α-carbon (C-9) and the C-8 and 

C-10 β-carbons *Δδ = δ (II.3) – δ (II.2): -24.1, -3.4 and –2.8 ppm, respectively], and 

paramagnetic shifts in the C-1, C-5, C-7, C-12 and C-17 -carbons (Δδ: +0.8, +4.2, +1.9, 

+0.3 and +0.8 ppm, respectively) were observed for II.3 with respect to those of II.2. 

Moreover, the shielding effect (Δδ = -2.4 ppm) observed on the -trans C-20 carbon of 

II.3, caused by the change of the 9α-OH substituent of II.2 by a 9α-hydrogen II.3, has 

also been reported in 9-deoxyforskolin II.5 with respect to forskolin II.4 (ΔδC-20 = -1.5 
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ppm; Hrib N.J., 1987b). Consequently, compound II.3 is 1,6-di-O-acetyl-9-

deoxyforskolin. 

 NOE (nuclear Overhauser effect) experiments on II.1-II.3 (Table II.4) were in 

agreement with the relative stereochemistry of these compounds as shown in the 

previously presented structures and allowed the unequivocal assignment of both 12-

methylene protons. Irradiation at δ 2.72 (H-5α proton of II.1) produced strong NOE 

enhancements in the signals of the H-3α, H-6α, H-7α and 9α-OH protons and a weak 

NOE in the signal of the Me-18 group. On irradiating at δ 3.32 (H-9α proton of II.3) the 

signals of the H-5α, H-7α, H-14 and HB-15 protons were enhanced. In addition, when 

the Me-17 protons of II.3 (δ 1.50) were irradiated, NOEs in the signals of Me-16 and 

Me-20 were observed. Moreover, irradiation at δ 1.44 (Me-20 of II.3) caused NOE 

enhancements in the H-1β, H-2β, Me-17 and Me-19 signals. These and other NOE 

results (Table II.4) established that the H-1 proton and the Me-16, Me-17, Me-19 and 

Me-20 groups of II.1-II.3 are on the same side of the plane of the molecule and possess 

a β-configuration. By the same reasoning, the H-5, H-6 and H-7 protons, the 9-

substituent (a hydroxyl group in II.1 and II.2, and a hydrogen in II.3) and the vinyl 

group at C-13 are α-substituents. On the other hand, the data in Table II.4 clearly 

established that the 12-methylene proton of II.1-II.3 appearing at lower field (HB-12, δ 

3.48, 3.14 and 2.64, respectively) is the α-hydrogen (observed NOEs between the H-14 

olefinic and the HB-12 protons in II.1-II.3, and between the H-9α and HB-12 protons in 

II.3), whereas the HA-12 proton (δ 2.60, 2.42 and 2.59, respectively) is the 12-

methylene β-hydrogen (observed NOE between the HA-12 and Me-17 protons in II.3).  
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Table II.4. Significant NOEs for compounds II.1-II.3 

Compound Irradiated proton  
(δ) 

Observed NOE with protons 
(% NOE enhancement) 

II.1 H-1 (5.01) H-2(+3.7), H-2 (+3.5), 9-OH (+1.9), Me-20 (+7.7) 
 H-5(2.72) H-3 (+7.9), H-6 (+11.7), H-7 (+11.7), 9-OH (+15.6), 

Me-18 (+4.6) 
 H-6 (6.20) H-5 (+10.5), H-7 (+3.5), Me-18 (+9.3), Me-19 (+1.8) 
 H-14 (6.28) 9-OH (+0.1), H-12 (+1.9), HA-15 (+1.7), Me-16 (+1.9) 

II.2 H-14 (5.90) 9-OH (+0.2), H-12 (+1.4), HA-15 (+1.1), Me-16 (+1.1) 

II.3 H-1 (5.50) H-2 (+3.7), H-2 (+4.3), H-9 (+1.9), Me-20 (+6.1) 
 H-6 (5.74) H-5 (+5.9), H-7 (+7.0), Me-18 (+5.9), Me-19 (+0.7) 
 H-9 (3.32) H-1 (+1.7), H-5 (+8.4), H-7 (+6.4), H-12 (+1.4), H-

14 (+1.3), HB-15 (+0.9) 
 H-14 (5.94) H-9(+0.9), H-12 (+2.3), HA-15 (+3.9), Me-16 (+2.4) 
 Me-17 (1.50) H-12(+1.7), Me-16 (+1.5), Me-20 (+1.4) 
 Me-20 (1.44) H-1 (+2.2), H-2 (+3.0), Me-17 (+3.6), Me-19 (+3.8) 

 

 

 A careful study of the 1H NMR spectra of II.1-II.3 provided the 3J (H,H) values 

(Table II.1) which allowed to establish the conformation for rings A and B of the trans-

decalin part of these diterpenoids. Both these six-membered rings possess a chair (4C1 

and 6C9, respectively) conformation in which the 1α-substituent and the H-2β and H-3α 

protons are trans diaxially oriented (J1β,2β = 2.7 – 2.4 Hz, J2β,3α = 13.1 – 13.0 Hz, J1β,2α = 

3.2 – 2.4 Hz), and the H-5α and H-7α protons and the 6β-acetoxyl group are also axial 

(J5α,6α = 2.8 – 2.4 Hz, J6α,7α = 4.6 – 3.9 Hz; see Figure II.1). The behaviour of II.1-II.3 

under NOE experiments further supported these deductions (see Table II.4). 

 

 

 

 

 

Figure II.1. Three-dimensional structure of compounds II.1 (R1=H, R2=OH), II.2 

(R1=Ac, R2=OH) and II.3 (R1= Ac, R2=H) derived from NOE experiments and 

interpretation of vicinal H-H coupling constants (Kogler H. and Fehlhaber H.-W., 1991). 
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 The analysis of the conformation of the substituted tetrahydropyran fragment 

(ring C) of II.1-II.3 was carried out on the basis of NOE results. If the tetrahydropyran 

was in a half-chair (13C9) conformation, the H-12β proton assumed an equatorial 

orientation and the Me-16 and Me-17 groups were axial. On the contrary, if this 

heterocycle was in a boat-like (B9,13) conformation, the H-12β proton and the Me-17 

group were cis diaxial, and the Me-16 group will adopt a pseudoequatorial orientation. 

The NOEs observed in the H-12β proton and the Me-16 and Me-20 groups of II.3 (+1.7, 

+1.5 and +1.4 % NOE enhancement, respectively) when the Me-17 protons (δ 1.50) 

were irradiated, suggest (Kogler H. and Fehlhaber H.-W., 1991) that the second 

conformational possibility is more likely. In fact, a boat-like (B9,13) conformation of ring 

C in forskolin II.4 has previously been established by NOE measurements, although, in 

the crystalline state, ring C of II.4 shows a chair conformation (Kogler H. and Fehlhaber 

H.-W., 1991). Since the chemical shifts of the C-11 – C-13, C-16 and C-17 carbons of II.3 

were almost identical to those of II.1 and II.2 (Table II.2), it´s plausible that, in solution, 

all these diterpenoids possess a boat (B9,13) conformation of the tetrahydropyran 

structural part, as in forskolin II.4 (see Figure II.1; Kogler H. and Fehlhaber H.-W., 1991; 

Rijo P. et al., 2005). 

 

II.2.2. A previously known labdane and a new halimane 
diterpenoids 
 

II.2.2.1. Rhinocerotinoic acid (7-oxo-labda-8,13E-dien-15-oic acid) 
II.6 

 

 

 

                                                                            II.6 

This was the first report on the isolation of rhinocerotinoic acid II.6 from a 

Lamiaceae species. The labdane diterpenoid isolated from P. ornatus II.6 showed 
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physical (mp., [α]D) and spectroscopic (IR, 1H and 13C NMR and mass spectra) data 

identical to those reported for rhinocerotinoic acid, an labdane diterpene previously 

isolated (Dekker et al., 1988) from Elytropappus rhinocerotis (L.f.) Less. (Asteraceae) 

which structure has recently been confirmed by partial synthesis from ()- sclareol 

(Gray et al., 2003). 

Compound II.6. was isolated as white fine needles with m.p. 187-189 ˚C and 

*α+ 18

D  +38.9˚ (c 0.236, CHCl3). Its mass spectrum showed the molecular ion at m/z 318 

and exhibited an ion at m/z 205 [M-C8H11O4]+ originated by the loss of the side chain.  

The 13C NMR spectrum showed the presence of a carboxylic carbon on C-15 at 

δC 171.13, and a ketone on C-7 at δC 200.13, in agreement with IR absorptions at 3306-

2894 br, 1720, 1630 cm-1 
implying the presence of a hydroxyl and two carbonyl groups. 

Those α-β unsaturated oxygen functions were identified by four olefinic carbons, two 

belonging to the double bond between C-8 and C-9, adjacent to the C-7 ketone (δC 

130.57 and δC 166.23; C-8 and C-9 respectively), and the other two of the C-13 and C-14 

double bond, adjacent to the carboxylic acid (δC 161.70 and δC 115.18; C-13 and C-14 

respectively).  

Observation of the 1H NMR and 13C NMR spectra of II.6 corresponding to 

carbons from C-1 to C-5; C-10 and from C-18 to C-20 hydrocarbon structural part were 

very similar to the data already reported for rhinocerotinoic acid II.6 (Dekker et al., 

1988; see Table II.5). In addition, a long-range coupling of four bonds was observed 

between H-1β (δ 1.91, dddd, J1β,3β = 1.3 Hz) and H-3β (1.48, dt, J3β,1β = 1.3 Hz) with w-

shaped arrangement of the bonds.  
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Table II.5. Comparison of the 1H and 13C NMR data of rhinocerotinoic acid II.6a 
with that reported by Dekker et al.b (1H NMR, CDCl3, a400 MHz, b500 MHz

 
and 13C 

NMR,CDCl3, a100 MHz and b127.5MHz; δ in ppm, J (H,H) in Hz).  

Position δH
a δH

b 
JH,H δC

a δC
b HSQC 

1α 1.36 td 1.35 1α,1β 12.7 35.89 35.9 t 
1β 1.91 dddd 1.90 1α,2α 3.7 --- --- --- 
2α 1.70 m* 1.68 1α,2β 12.7 18.56 18.6 t 
2β 1.60 ddddd 1.58 1β,2α 4.0 --- --- --- 
3α 1.21 td 1.20 1β,2β 3.7 41.23 41.2 t 
3β 1.48 dt 1.47 2α,2β 13.5 --- --- --- 
4   2α,3α 4.1 33.12 33.1 s 

5α 1.70 dd 1.68 2α,3β 3.2 50.26 50.3 d 
6α 2.50 dd 2.49 2β,3α 13.5 35.19 35.2 t 
6β 2.35 dd 2.35 2β,3β 3.2 --- --- --- 
7   3α,3β 13.5 200.13 200.1 s 
8   5α,6α 3.7 130.57 130.6 s 
9   5α,6β 14.3 166.23 166.3 s 

10   6α,6β 17.5 41.01 41.0 s 
11A+11B 2.35 m* 2.35 1β,3β 1.3 27.64 27.6 t 
12A+12B 2.28 m* 2.28 14,16 1.3 39.79 39.8 t 

13 --- --- --- --- 161.70 161.5 s 
14 5.74 q 5.73   115.18 115.4 d 
15     171.13 171.6 s 

Me-16 2.23 d 2.20   19.12 19.1 q 
Me-17 1.77 s 1.75   11.42 11.4 q 
Me-18 0.88 s 0.86   32.49 32.5 q 
Me-19 0.91 s 0.90   21.29 21.3 q 
Me-20 1.08 s 1.07   18.15 18.2 q 

* overlapped signals. δ values were measured from the HSQC spectrum. 

 

 

  The significant correlations observed on the HMBC spectrum of compound II.6 

confirmed its structure and are compiled in Table II.6. 
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Table II.6. Significant correlations observed in HMBC for compound II.6.  

Position HMBC 
H-14 
H-6α  

 Me-16 
Me-17 
Me-20  
Me-19  
Me-18 

C-12, C-13, C-15 and C-16 
C-4, C-5, C-7, C-8 and C-10  

C-12, C-13 and C-14 
C-7, C-8 and C-9 

C-1, C-5, C-9 and C-10,  
C-3, C-4, C-5 and C-18   
C-3, C-4, C-5 and C-19 

 

 

Irradiation of the Me-20 at δ 1.08 in an NOE experiment showed an effect on H-

6β (+3.4%), H-1β (+0.8%), H-2β (+1.1%) and Me-19 (+2.1%) establishing that those 

protons were all on the same face of compound II.6. The irradiation of the downfield 

proton H-14 at δ 5.74, showed a bigger effect on the methylene H-12 (+7.5%) than Me-

16 (+1.1%) defining the E stereochemistry of the double bond Δ13 where proton H-14 

and both protons H-12 were on the same side of the double bond. 

The three-dimensional structure of compound II.6 was derived from NOE 

effects and the interpretation of the angular dependencies of the vicinal proton-proton 

coupling constants described above. The A and B rings conformation of the decalin 

part of the molecule is 4C1, with a chair conformation of the A ring with C-4 on the 

upper side of the molecule and C-1 on the lower part of the A ring. The B ring 

conformation is 6HC5, a half-chair with C-6 on the upper side of the B ring and C-5 on 

the lower part of the molecule (see Figure II.2) (Rijo P. et al., 2007; Kogler H. and 

Fehlhaber H.-W., 1991). 

 

 

 

 

 

 

Figure II.2. A and B rings conformation (A: 4C1  and  B: 6HC5) of compound II.6. 
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II.2.2.2. 11R*-Acetoxyhalima-5,13E-dien-15-oic acid II.7 

 

 

 

 

II.7 

 11R*-Acetoxyhalima-5,13E-dien-15-oic acid II.7 (0.70 g, 0.0286 %) is a new 

halimane diterpenoid isolated as colourless hexagonal plates (from EtOAc – n-

pentane). I.R. absorptions at 3450-2576, 1736 and 1674 cm-1 
revealed the presence of 

an ester and an α,β-unsaturated carboxylic acid. Combustion analysis and low-

resolution mass spectrometry indicated a molecular formula of C22H34O4 for 

diterpenoid II.7. Mass spectrum didn´t show the molecular ion but exhibited an ion at 

m/z 302 [M-HOAc]+. The base peak at m/z 191 [M-C8H11O4]+ corresponds to the 

fragment obtained after the loss of the side chain. 

The 13C-NMR spectrum displayed twenty two carbon resonances corresponding 

to six methyl groups (one of which belongs to the acetyl group δ 20.8), five 

methylenes, five methines (two of them corresponding to olefinic carbons) and six 

quaternary carbons (one of the acetyl group δ 170.7 and the other of a carboxyl group 

at δ 171.1; see Table II.7). 
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Table II.7. 1H and 13C NMR data of 11R*-acetoxyhalima-5,13E-dien-15-oic acid 
II.7 (1H NMR, CDCl3, 400 MHz 

 
and 13C NMR,CDCl3, 100 MHz; δ in ppm, J (H,H) in Hz).  

Position δH JH,H
 δC HSQC 

1α 1.10 qd (1α,1β)12.8 28.9  t 
1β 1.92 dtd (1α,2α)4.2 --- --- 
2α 1.64 ddddd (1α,2β)12.8 22.5  t 
2β 1.52 qt (1α,10β)12.8 --- --- 
3α 1.19 td (1β,2α)4.0 40.9  t 
3β 1.42 ddd (1β,2β)4.1 --- --- 
4 --- (1β,10β)2.0 36.3  s 
5 --- (2α,2β)13.2 145.2  s 
6 5.45 dt (2α,3α)3.7 116.0 d 

7α 1.78 ddd (2α,3β)4.0 31.3  t 
7β 1.84 ddd (2β,3α)13.1 --- --- 
8β 1.56 ddq (2β,3β)3.2 32.9  d 
9 --- (3α,3β)13.1 41.6  s 

10β 2.07 ddd (6,7α)2.2 40.3  d 
11 5.31 dd (6,7β)5.2 75.0  d 

12A 2.44 ddd (6,10β)2.2 41.7  t 
12B 2.36 dd (7α,7β)17.1 --- --- 
13 --- (7α,8β)12.4 159.8  s 
14 5.68 qd (7β,8β)2.8 117.7  d 
15 --- (8β,17) 6.8 171.1  s 

Me-16 2.19 d (11,12A) 2.6 19.0  q 
Me-17 0.99 d (11,12B) 10.2 17.2  q 
Me-18 0.98 s (12A,12B) 13.4 28.1  q 
Me-19 1.05 s (12A,14) 0.4 29.7  q 
Me-20 0.69 s (14,16) 1.3 11.8  q 
11-OAc 2.00 s  170.7  s 
11-OAc ---  20.8  q 

 

 

The 1H-NMR spectrum showed signals corresponding to six methyl groups, five 

bonded to tertiary carbons (a doublet δ 2.19 (CH3-16) and four singlets δ  2.00, 1.05, 

0.98, 0.69 – OCCH3, CH3-19, CH3-18 and CH3-20 respectively) and one to a secondary 

carbon (doublet δ 0.99 – CH3-17). Two olefinic protons [a double triplet at δ 5.45 (H-6) 

and a quadruple doublet at δ 5.68 (H-14)] and a highfield proton signal of a methine 

group [double doublet at δ 5.31 (H-11)] could also be seen. The highfield signals of 

protons H-12A (δ 2.44) and H-12B (δ 2.46) were consistent with the proximity of the 

acetyl group and the double bond. The proton H-12A (ddd multiplicity) showed a 
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geminal coupling constant (J=13.4 Hz) with proton H-12B, a vicinal coupling constant 

(J=2.6 Hz) with proton H-11 and an allylic coupling constant (J=0.4 Hz) with proton H-

14 (Table II.7). The significant correlations observed in the HMBC spectrum of 

compound II.7 are shown in Table II.8. 

 

Table II.8. Significant correlations observed in the HMBC spectrum of 
compound II.7. 

Position HMBC 
H-6 

H-10β 
11-COCH3 

H-12A + H-12B 
H-14 

Me-16 
Me-17 
Me-20  
Me-19  
Me-18 

C-8, C-7 and C-10 
C-1, C-5 and C-8 

C-8, C-9, C-10, C-11, C-12, C-13 and C-20 
C-9, C-11, C-13, C-14 and C-16 

C-12, C-13, C-15 and C-16 
C-12, C-13, and C-14 

C-7, C-8 and C-9 
C-9 and C-11  

C-3, C-4, C-5 and C-18   
C-3, C-4, C-5 and C-19 

 

The 1H and 13C NMR spectra signals of the C-9 side chain (C-11– C-16) of II.7 

(Table II.7) are identical with those of 11R*-acetoxykolavenic acid II.8 (Oliveira P. et al., 

2005) and plectrornatin A II.9 (Rijo P. et al., 2002), two clerodane diterpenoids 

previously isolated from this species (Table II.9). Moreover, the 1H and 13C NMR data 

of II.7 corresponding to the C-1 – C-10 and C-17 – C-20 hydrocarbon structural part 

(Table II.7) were very similar to those reported for the same structural moiety of 

akaterpin II.10, a triterpenoid found in a marine sponge (Fukami A. et al., 1997; see 

Table II.10). These spectral analogies between compounds II.8-II.10 and the new 

diterpene of P. ornatus suggested a 5-halimene hydrocarbon skeleton for this 

compound, and its structure, as depicted in II.7, was confirmed as follows. The HMBC 

spectrum of II.7 showed correlations between the olefinic H-6 proton (δ 5.45) and the 

C-4, C-7, C-8 and C-10 carbons (δC 36.3, 31.3, 32.9 and 40.3, respectively), the protons 

of both C-4 methyl groups (δH 0.98 and 1.05, Me-18 and Me-20, respectively) were 

connected with the C-3 – C-5 carbons (δC 40.9, 36.3 and 145.2, respectively), and the 
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Me-20 protons (δH 0.69) displayed correlations with the C-8 – C-11 carbons (δC 32.9, 

41.6, 40.3 and 75.0, respectively). Moreover, the C-5 carbon (δC 145.2) showed HMBC 

connectivities with the H-1α, H-3β, H-7α, H-7β, H-10β, Me-18 and Me-19 protons 

(Table II.7), and the C-8 carbon (δ 32.9) was correlated with the H-6, H-7α, H-7β, H-

10β, H-11 and Me-17 protons (Table II.8). In addition, the protons and carbons of the 

side chain of compound II.7, corresponding to its C-11 – C-16 at C-9 (Table II.9), 

showed HMBC connectivities identical to those observed for the same structural part 

of II.8 and II.9 (Rijo P. et al., 2002; see Table II.8). All the HMBC data acquired for this 

diterpenoid are only compatible with the structure of II.7 herein presented.  

 

                                                                           

 

 

 

 

Compound II.8 R1 = H2, R2 = H 

Compound II.9 R1 = O, R2 = Me                         Compound II.10 
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Table II.9. Comparison between the 1H and 13C NMR data of the C-9 side chain 
(C-11 – C-16) of compounds 11R*-acetoxyhalima-5,13E-dien-15-oic acid II.7, II.8 
(Oliveira P. et al., 2005) and II.9 (Rijo P. et al., 2002; 1H NMR, CDCl3, 400 MHz 

 
and 13C 

NMR,CDCl3, 100 MHz; δ in ppm, J (H,H) in Hz).  

1H 
Position 

δH 
II.7 

δH  
II.9

 
δH 
II.8 

13C 
Position

 
 

δC 
  

  II.7 
δC  

    
II.9 

δC  
    

II.8
 

H-11 5.31 dd 5.28 dd 5.29 dd C-11 75.0 74.5 74.4 
H-12A 2.44 ddd 2.28 dd 2.30 dd C-12 41.7 41.7 42.0 
H-12B 2.36 dd 2.34 ddd 2.37 dd C-13 159.8 155.9 158.6 
H-14 5.68 qd 5.62 qd 5.66 br s C-14 117.7 118.4 118.3 
H-15 --- --- --- C-15 171.1 166.4 170.4 

Me-16 2.19 d 2.12 d 2.14 d C-16 19.0 18.8 19.0 
11-OCCH3 2.00 s 1.98 s 2.01 s 11-OCCH3 170.7 170.3 170.7 

--- --- --- --- 11-OCCH3 20.8 20.7 20.7 

 

Table II.10. Comparison of the 1H and 13C NMR data of the C-1 – C-10 and C-17 
– C-20 hydrocarbon structural part obtained for 11R*-acetoxyhalima-5,13E-dien-15-oic 
acid II.7a with that of akaterpin II.10b (Fukami A. et al., 1997) (1H NMR, CDCl3

a and 
CD3ODb, 400 MHz 

 
and 13C NMR,CDCl3

 a and CD3ODb, 100 MHz; δ in ppm, J (H,H) in Hz). 

Position δH II.7 δH II.10 δC II.7
 
 δC II.10 

1α 1.10 qd 1.68 m 28.9  28.9 
1β 1.92 dtd 0.98 m --- --- 
2α 1.64 ddddd 1.57 m 22.5  23.3 
2β 1.52 qt 1.57 m --- --- 
3α 1.19 td 1.42 m 40.9  42.2 
3β 1.42 ddd 1.20 m --- --- 
4 --- --- 36.3  37.1 
5 --- --- 145.2  147.4 
6 5.45 dt --- 116.0 d 

7α 1.78 ddd 1.84 ddd 31.3  32.7 
7β 1.84 ddd 1.77 ddd --- --- 
8β 1.56 ddq 1.47 m 32.9  34.6 
9 --- --- 41.6  37.6 

10β 2.07 ddd 2.23 m 40.3  41.0 
Me-17 0.99 d 0.86 d 17.2  15.6 
Me-18 0.98 s 1.04 s 28.1  29.5 
Me-19 1.05 s 1.06 s 29.7  30.3 
Me-20 0.69 s 0.59 s 11.8  16.8 
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 The relative configuration of II.7 was established by NOE experiments (Table 

II.11). Irradiation at δ 5.68 (H-14 proton) produced NOE enhancement in the signals of 

the H-11 and both H-12 protons, but not in the Me-16 signal, thus establishing a 13E 

configuration for the Δ13 – trisubstituted olefin. Furthermore, irradiation at δ 2.07 (H-

10β proton) caused NOE enhancements in the signals of the H-1β, H-8β and Me-18 

protons, whereas irradiation of the Me-20 protons (δ 0.69), caused an enhancement in 

the signals of the H-1α, H-7α, H-11 and Me-17 protons. These results established that 

the H-1β, H-8β, H-10β and Me-18 hydrogens are on the same side of the plane of the 

decalin part of II.7, and that the H-1α, H-7α, Me-17 and Me-20 hydrogens are on the 

opposite side. This conclusion was also supported by the coupling constant values 

observed for the axial H-8β and H-10β protons (J8β,7α = 12.4 Hz, J8β,7β = 2.8 Hz, J10β,1α = 

12.8 Hz and J10β,1β = 2.0 Hz, Table II.7). Therefore, it was ascertained that compound 

II.7 is the 11-acetoxyhalima-5,13E-dien-15-oic acid. 

The configuration of the C-11 stereogenic centre of II.7 was not ascertained. 

However, it´s likely that it should have the R* stereochemistry, because the 1H and 13C 

NMR data of the C-9 side chain of II.7 were almost identical to those reported for 

compounds II.8 (Oliveira P. et al., 2005) and II.9 (Table II.9; Rijo P. et al., 2002).  

The A ring has a 4C1 chair conformation with protons H-1α, H-2β, H-3α, Me-

18(β) and H-10β with an axial orientation, and protons H-1β, H-2α, H-3β and Me-19(α) 

in the equatorial positions. However the C-5―C-6 double bond indicates that the A 

ring adopts a distorted 4C1 chair conformation. The B ring presents a half chair 8HC9 

conformation, in which the axial substituents are protons H-10β, H-8β, H-7α and Me-

20 and the equatorial positions are occupied by protons H-6, H-7β and Me-17. These 

conformations are in agreement with the values observed for the coupling constants 

(see Table II.7). 
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Table II.11. Significant NOEs for compounds II.7 

Irradiated 
proton (δ) 

Observed NOE with protons 
(% NOE enhancement) 

H-14 (5.68) δ 5.31, H-11 (+0.8), 
δ 2.44 + 2.36, 2H-12 (+5.3),  

δ 2.19,Me-16 (0.6),  
δ 2.00, 11-OAc (0.8),  
δ 1.10, H-1α (+0.7); 

H-6 (5.45) δ 1.78 + 1.84, 2H-7 (+6.6); 
δ 1.05, Me-19 (α- equatorial, +8.8). 

H-11 (5.31) 
 

δ 5.68, H-14 (+1.6); 
δ 2.44 + 2.36, 2H-12 (+3.4); 

δ  2.19, Me-16 (+7.9); 
δ  2.07, H-10β (+4.7); 
δ 1.92, H-1β (+10.2); 
δ 0.69, Me-20 (+2.9). 

Me-16 (2.19) 
 

δ 2.19, H-14 (+0.4); 
δ 5.31, H-11 (2.1); 

δ 2.44 + 2.36, 2H-12 (+1.6). 
H-10β (2.07) 

 
δ 5.31, H-11 (+4.4); 

δ 2.44 + 2.36, 2H-12 (+6.7); 
δ 1.92, H-1β (+3.2);  

δ 1.56, H-8β (+5.43); 
δ 0.98, Me-18 (β- axial, 5.7). 

Me-19 (1.05) 
 

δ 5.45, H-6 (+16.7);  
δ 0.98, Me-18 (+6.0); 
δ 1.42, H-3β ( +~4.0). 

Me-20 (0.69) 
 

δ 5.31, H-11 (+4.8);  
δ1.78 , H-7α (+2.0); 

δ 1.10 + 0.99, H-1α and Me-17 (+ 8.9). 

 

II.2.2.3. Chemotaxonomic and biogenetic significance 

 

 This is the first report on the isolation of rhinocerotinoic acid II.6 from a 

Lamiaceae species and also on the presence of a halimane-type diterpene II.7 in a 

plant belonging to the genus Plectranthus. Moreover, only few 5-halimene derivatives 

like II.7 have been isolated so far, and they were all found in Euphorbiaceae and 

Asteraceae plants. 

 The isolation of the 5-halimene derivative II.7 from P. ornatus is of biogenetic 

significance, because 5- and 5(10)-halimenes arise from an intermediate in the 
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biosynthetic transformation of labdanes into clerodanes (Merritt A. T. and Ley S. V., 

1992). Diterpenoids belonging to both labdane- and clerodane-type had previously 

been found in P. ornatus (Oliveira P. et al., 2005; Rijo P. et al., 2002, 2005), therefore 

compound II.7 could be considered as the missing link of that biosynthetic pathway in 

this species (Rijo P. et al., 2007). 

 

II.2.3. Mixtures of six known triterpenoids 

 

II.2.3.1. β-Sitosterol II.11 and stigmasta-5,22E-dien-3β-ol II.12  

 

 

 

 

 

 

 

 

 

                                     II.11                                                                              II.12 

A mixture of β-sitosterol II.11 and stigmasta-5,22E-dien-3β-ol II.12 in a (1:1) 

ratio was isolated from many chromatographic fractions of the extract of this plant. 

The mixture crystallized spontaneously, as white needles with m.p. 139 - 146 ˚C. The 

identification of II.11 and II.12 was done by tlc by comparison with an authentic 

sample. The tlc, prepared with co-aplication, revealed the characteristic pink colour of 

compounds β-sitosterol II.11 and stigmasta-5,22E-dien-3β-ol II.12 confirming their 

presence. 

The 1H NMR spectrum of the mixture, showed the olefinic H-6 proton at δ 5.35 

and the geminal proton to hydroxyl group H-3α at δ 3.52, for both phytosterols. The 

(1:1) ratio was established through the comparison of the integral of the olefinic 

protons H-22 and H-23 of compound stigmasta-5,22E-dien-3β-ol II.12 at δ 5.15 (1H, dd, 

J22,23=15.2 Hz, J22,20 =8.4 Hz, H-22) and δ 5.01 (1H, dd, J23,22 =15.2 Hz, J23,24 = 8.8 Hz, H-
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23) with the integral of the H-6 and/or H-3α protons. The methyl signals seen from δ 

1.02 to 0.67 were complex but it was possible to assign the singlet at δ 1.00 to methyl 

Me-19 of both compounds II.11 and II.12, the doublet signal at δ 1.01 (3H, d, J21,20 =6.8 

Hz, Me-21) to Me-21 group of compound II.12 and the more shielded signal at δ 0.91 

(3H, d, J21,20 =6.4 Hz, Me-21) of compound II.11. Two singlet signals at δ 0.69 and δ 0.67 

were assigned to C-18 methyl groups of compounds II.12 and II.11, respectively 

(Kojima H. et al., 1990). 

 

II.2.3.2. α-Amyrin II.13 and β-amyrin II.14 

 

 

 

 

 

 

                                  II.13                                                        II.14 

A mixture of α-amyrin II.13 and β-amyrin II.14 in a (3:1) ratio was isolated as 

white crystals needles with m.p. 175-180 ˚C. The identification of II.3 and II.4 was done 

by tlc, comparing with an authentic sample (co-aplication). The characteristic purple 

colour presence of α-amyrin II.13 and β-amyrin II.14 was confirmed by tlc. 

The 1H NMR spectrum of the mixture showed the olefinic protons H-12 at δ 

5.18 (1H, t, J12,11 =  3.8 Hz, H-12) of compound II.14 and the more shielded signal at δ 

5.12 (1H, t, J12,11 = 3.6 Hz, H-12) of compound II.13. The (3:1) ratio was established by 

comparison of the integral of the olefinic H-12 proton present on both compounds. 

The geminal proton to hydroxyl group, H-3α at δ 3.22 (1H, dd, J3α,2β  = 10.8 Hz, J3α,2α = 

5.0 Hz, H-3α) was identified for both compounds II.13 and II.14. The 1H NMR spectrum 

also showed the allylic H-18 proton at δ 2.00 (1H, dd, J18,19 =  13.4 Hz, J18,19β =  4.4 Hz, H-

18, compound II.14) and the more shielded signal at δ 1.19 (1H, d, J18,19β = 3.6 Hz, H-18, 
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compound II.13). The mixture of compounds showed a complex signal at δ from 1.13 

to 0.78, corresponding to methyl signals of Me-23 to Me-30. The identification of the 

mixture was definitely established by comparing its 1H NMR spectrum with that of an 

authentic sample (Shingu T. et al., 1973).   

The mass spectrum confirmed the identification of α-amyrin II.13 and β-amyrin 

II.14 showing the presence of fragments m/z 218 (100%), m/z 208 (4%) and m/z 190 

([a-H2O]+., 10%) but with no discrimination between compounds II.13 and II.14 (Figure 

II.3; Djerassi C. et al., 1962; Budzikiewicz H. et al., 1963).  

 

 

                                                                                                                              

 

           m/z = 218                                       m/z = 208                          a: m/z = 190                                  

α-amyrin II.13. R1 = Me; R2 = H          

β-amyrin II.14. R1 = H; R2 = Me 

Figure II.3.  Fragments m/z 218, m/z 208 and m/z 190 of the mixture of α-

amyrin II.13 and β-amyrin II.14 (Djerassi C. et al., 1962; Budzikiewicz H. et al., 1963).       

      

II.2.3.3. Ursolic and oleanolic acids II.15 and II.16 

 

 

 

 

 

 

                   II.15                                                             II.16 
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The mixture of ursolic and oleanolic acids II.15 and II.16 in (1:4) ratio was 

isolated as white crystals needles with m.p. 243-249 ˚C. The tlc comparison with a 

standard sample (co-aplication), confirmed the characteristic pink colour presence of 

ursolic and oleanolic acids II.15 and II.16.  

The 1H NMR spectrum of the mixture showed the olefinic H-12 proton at δ 5.12 

(1H, br s, H-12) of compound II.16 and at δ 5.09 (1H, br s, H-12) of compound II.15. The 

(1:4) ratio was determined using the integral area of the H-12 proton of the 

corresponding compounds. The E ring methyl substitution is the only structural 

difference between compounds II.15 and II.16. The methyl group on carbon C-29 

presence, of compound II.15, displays the shielding effect of proton H-18. The geminal 

proton to hydroxyl group, H-3α at δ 3.04 (1H, dd, J3α,2β  = 8.0 Hz, J3α,2α = 6.0 Hz, H-3α) 

was identified for both compounds II.15 and II.16. The 1H NMR spectrum showed the 

allylic proton H-18 at δ 2.04 (1H, dd, J18,19 =  11.6 Hz, J18,12 =  2.0 Hz, H-18, compound 

II.15) and the more shielded doublet proton at δ 1.84 (1H, ddd, J18,19α (a,a)= 13.2 Hz, 

J18,19β (a,e) = 8.6 Hz,  J18,12 (allylic) = 2.0 Hz, H-18 compound II.16). The methyl signals of 

both compounds II.15 and II.16 from δ 1.00 to 0.62 (Me-23 to Me-30) were complex. 

The highfield part of the spectrum showed seven intense signals that could correspond 

to the seven methyl groups of oleanane skeleton, of compound II.16. The other seven 

methyl groups, including two doublet signals for C-29 and C-30 methyl groups, could 

correspond to the ursane skeleton, of compound II.15 (Janicsak G. et al., 2006).  

 

II.2.4. Plectrornatin C II.17 

 

 

 

II.17 
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Labdane II.17 was isolated before from a fraction studied earlier on the same 

plant extract (Rijo P. et al., 2002). The 1H and 13C NMR spectra showed characteristic 

signals identical to those reported before (Rijo P. et al., 2002). The five methyl groups 

attached to fully substituted sp3 carbon atoms, a vinyl group also on a quaternary 

carbon, an acetoxyl group at carbon C-1 (δH 1.95, 3H, s; δC 169.5 s and 21.4 q) in an 

axial configuration (geminal H-1β proton at δ 5.53 t, J = 2.8 Hz; δC 75.1 d) and placed 

between a fully substituted sp3 carbon and a methylene grouping. A (C)- CH-CHOAc-

CH2-(C) structural moiety in which the acetoxyl group must also be in an axial 

configuration (geminal H-6α proton of the acetate at δ 5.57 (ddd, J = 3.8, 2.9, and 2.6 

Hz, δC 69.5 d); acetoxyl group at carbon C-6 (δH 2.05, 3H, s, and δC 169.9 s and 21.8 q); 

methine group at carbon C-5 (δH 1.47 d, J = 2.6 Hz, δC 49.1 d); methylene grouping at 

carbon C-7 (δH 1.90 dd, J = 14.6 and 3.8 Hz, H-7α and δ 2.26 dd, J = 14.6 and 2.9 Hz, H-

7β, δC 46.2 t), and finally, another (C)-CH-CO-CH2-(C) partial structure (ketone at C-11, 

δC 206.2 s; methine at C-9, δH 3.23 s and δC 58.2 d; methylene protons as an AB system 

at carbon C-12, δ 2.60 and 2.67, both d, Jgeminal = 18.6 Hz). 

Comparing all these spectral data with those previously obtained (Rijo P. et al., 

2002), established the structure of this compound as II.17.  

 
II.3. Structure elucidation of terpenic compounds from 

Plectranthus ecklonii Benth. 
 

II.3.1. The diterpenoid sugiol II.18 

 

 

 

 

 

 

                                                                  II.18 
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Sugiol II.18, is an abietane type diterpene, former isolated from several plants 

including Salvia (Ulubelen A. et al., 2000), and was isolated from Plectranthus ecklonii 

Benth. for the first time.  

Sugiol II.18 was isolated as white crystals with m.p. 288 – 290 ˚C with *α] 27

D  + 

30.8 (c 0.133, CHCl3). Its EIMS showed a molecular ion at m/z 300, consistent with the 

molecular formula of C20H28O2. The I.R. spectrum confirmed the presence of a hydroxyl 

group (3140 cm-1), and in addition absorption band for an α,β-unsaturated carbonyl 

group at 1650 cm-1. The spectral assignments of 1H and 13C NMR spectra of sugiol II.18 

(Table II.12) are in agreement with the previously data reported for this compound 

(Rodríguez B., 2003).  

Table II.12. NMR data of sugiol II.18, (acetone-d6, 1H 400 MHz, 13C 100 MHz; δ 
in ppm, J in Hz). 

Position δH JH,H δC HSQC 

1α 
1β 

1.47 ddd 
2.20 ddd 

(1α, 1β) 12.8 
(1α, 2α) 3.6 

37.34  
 

t 
 

2α 
2β 
3α 
3β 
4 

5α 
6α 
6β 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Me-16* 

Me-17* 

Me-18 
Me-19 
Me-20 
12-OH 

1.63 ddddd 
1.79 ddddd 

1.27 ddd 
1.50 ddd 

 
1.80 dd 
2.50 dd 
2.55 dd 

--- 
--- 
--- 
--- 

6.82 s 
--- 
--- 

7.79 d 
3.23 sept of d 

1.21 d 
1.19 d 
0.92 s 
0.99 s 
1.20 d 
8.90 br 

(1α, 2β) 13.2 
(1β, 2α) 1.6 
(1β, 2β) 3.2 

(2α, 2β) 14.0 
(2α, 3α) 3.6 
(2α, 3β) 1.8 

(2β, 3α) 13.6 
(2β, 3β) 3.5 

(3α, 3β) 13.6 
(5α, 6α) 8.8 
(5α, 6β) 8.8 

(6α, 6β) 17.6 
(15,16(17)) 6.9 

(14,15) 0.6 
(1α, 20) 0.8 

18.81 
 

40.82 
 

32.58 
49.14 
35.21 

 
196.11 
123.18 
155.59 
37.32 

109.00 
159.25 
132.41 
125.23 
26.07 
21.58 
21.46 
31.71 
20.46 
22.32 

--- 

t 
 

t 
 

s 
d 
t 
 

s 
s 
s 
s 
d 
s 
s 
d 
d 
q 
q 
q 
q 
q 

--- 
* 

Interchangeable assignments. 
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The HSQC and HMBC experiments were also in agreement with the literature 

(Rodríguez B., 2003) and the latter significant assignments are shown in Table II.13.  

 

Table II.13. Significant assignments observed on HMBC experiment for sugiol 

II.18. 

Position HMBC 
12-OH 
H-14 
H-11 
H-15 

H-6α and H-6β 
H-1β 

Me-19 
Me-18 

C-11, C-12 and C-13 
C-7, C-9, C-12, C-15 

C-8, C-9, C-10, C-12 and C-13 
C-12, C-13, C-14, C-16 and C-17 

C-4, C-5, C-7, C-8 and C-10 
C-2, C-5, C-10, C-20 

C-3, C-4, C-5cand C-18 
C-3, C-4, C-5 and C-19 

 

The vicinal coupling constant values for C-1 - C-3 methylene protons (Table 

II.12) established that ring A of this diterpene is in chair conformation (4C1) from the 

vicinal J5α,6α and J5α,6β values (Table II.12). Sugiol II.18 possesses a half-boat 

conformation for its ring B (7,10B, J5α,6α = J5α,6β = 8.8 Hz; Rodríguez B., 2003). 

 

II.3.2. Parvifloron D II.19 

 

 

 

                                                                          II.19 

Parvifloron D II.19 (19.2 g, 0.27%), is an abietane type diterpene, previously 

isolated from several Plectranthus species including P. parviflorus (Ruedi P., Eugster 

C.H., 1978) and P. strigosus (Alder A.C. et al., 1984; Gaspar-Marques C., 2008) and 

reported as an antibacterial metabolite from P. ecklonii (Nyila M.A. et al., 2009). 

Parvifloron D II.19 was isolated from P. ecklonii as orange crystals of m.p. 157-

159 ˚C. The I.R. spectrum confirmed the presence of hydroxyl and phenol groups (3329 

cm-1) and the absorption bands for an aromatic ring (3100-300, 1600 and 773 cm-1) 
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and carbonyl (1669 cm-1) groups. The 1H and 13C NMR spectral data obtained of 

compound II.19 (Table II.14) were in agreement with the data described in the 

literature (Alder A.C. et al., 1984; Gaspar-Marques C. et al., 2008) for parvifloron D 

II.19. The structure of parvifloron D II.19 was confirmed by two-dimensional NMR 

experiments (COSY, HMQC and HMBC) and the significant correlations of long-range H-

C coupling were determinate by HMBC experiment spectrum and shown on Table 

II.15. 

Table II.14. NMR data of parvifloron D II.19, (CDCl3,1H 400 MHz, 13C 100 MHz; δ 
in ppm, J in Hz). 

Position δH JH,H δC HSQC 

1α 
1β 

1.74 dd 
3.76 ddd 

(1α, 1β) 13.0 
(1α, 2β) 11.4 

38.37  
 

t 
 

2β 
3α 
3β 
4 
5 
6 
 

7 
8 
9 

10 
11 
12 
13 
14 
15 

Me-16* 

Me-17* 

Me-18 
Me-19 
Me-20 

1´ 
2´, 6´ 
3´,5´ 

4´ 
7´ 

4´-OH 
11-OH 

5.59 tt 
1.56 dd 

2.15 ddd 
--- 
--- 

6.41 d 
--- 

6.79 d 
--- 
--- 
--- 
--- 
--- 
--- 

6.96 d 
3.15 sept of d 

1.18 d 
1.16 d 
1.29 s 
1.42 s 
1.64 s 

--- 
7.93 d 
6.88 d 

--- 
--- 

~7.70 br 
~7.20 br 

(1β, 2β) 4.4 
(2β, 3α) 11.4 

 (2β, 3β) 4.4 
(3α, 3β) 12.5 

(6, 7) 6.9 
(15,16(17)) 6.8 

(14,15) 0.8 
(1β,3β) 2.4 

(2´,3´;5´,6´) 8.9 

67.87 
45.06 

 
38.58 

164.84 
118.69 

 
139.13 
127.45 
127.17 
43.91 

146.40 
178.24 
141.61 
133.57 
26.52 
21.84 
21.63 
33.03 
30.58 
25.52 

122.43 
131.89 
115.23 
160.58 
166.18 

d 
t 
 

s 
s 
d 

 
d 
s 
s 
s 
s 
s 
s 
d 
d 
q 
q 
q 
q 
q 
s 
d 
d 
s 
s 

* 
Interchangeable assignments, ~ not assigned 
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Table II.15. Significant assignments observed on HMBC experiment for 
parvifloron D II.19. 

Position HMBC 
H-2´,6´ 
H-14 

H-3´,5´ 
H-7 
H-6 

H-2β 
H-1β 
H-15 
H-3β 
H-1α 
H-3α 

Me-20 
Me-19 
Me-18 

Me-16(17) 

C-7´ and C-4´ 
C-7, C-8, C-9, C-12, C-15 

C-1´ and C-4´ 
C-5, C-6, C-8, C-9 and C-14 
C-4, C-5, C-7, C-8 and C-10 

CO-(Ph) 
C-2, C-3, C-5 and C-20 

C-12, C-13, C-14 and C-16(17) 
C-1, C-2, C-4, C-5, C-18 and C-19 

C-2, C-3, C-5, C-9 and C-20 
C-1, C-2, C-4, C-5, C-18 and C-19 

C-1, C-5, C-9 and C-10 
C-3, C-4, C-5 and C-18 
C-3, C-4, C-5 and C-19 

C-13 and C-15 

 

 

II.4. Structure elucidation of (13S,15S)-6β,7α,12α,19-tetrahydroxy-
13β,16-cyclo-8-abietene-11,14-dione II.20 from P. porcatus Winter & Van 
Jaarsv. 

 

  Repeated chromatographic processes of the acetone extract of the aerial parts 

of P. porcatus (see Chapter V) allowed the isolation of the new (13S,15S)-

6β,7α,12α,19-tetrahydroxy-13β,16-cyclo-8-abietene-11,14-dione II.20 as yellowish fine 

needles (0.009 g; 0.009 %), which possessed a molecular formula of C20H28O6 

(HRESIMS). The 1H NMR spectrum of II.20 (Table II.16) was almost identical to that of 

spirocoleon 13 (7α-acetyl-12-O-desacetyl-19-hydroxycoleon Q); (13S,15S)-7α-acetyl-

6β,12α,19-trihydroxy-13β,16-cyclo-8-abietene-11,14-dione II.21, a compound 

previously isolated (Matloubi-Moghadam F. et al.,1984) from Coleus somaliensis S. 

Moore. In fact, the only observed differences were consistent with the absence in the 

former of the 7-O-acetyl group of the latter [II.20: δH-7β 4.63 dd, J7β,6α = 1.9 Hz, J7β,7α-OH = 

4.9 Hz; a doublet (J = 1.9 Hz) after addition of D2O. II.21: δH-7β = 5.75 d, J7β,6α = 2.00 Hz; δ 

1.97, 3H, s, 7α-OAc (Matloubi-Moghadam F. et al., 1984)]. 
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II.20, R=H; 
  II.21 R = Ac 

 
  Moreover, the 13C NMR spectrum of II.20 (Table II.16) was in complete 

agreement with those reported (Ruedi P. et al., 1983) for other spirocoleons 

possessing the same oxidation pattern and an identical stereochemistry. The 

stereochemistry at the C-12, C-13 and C-15 chiral centers of II.20 was established by 

comparing the 1H and 13C NMR chemical shifts and JH,H values corresponding to the C-

12–C-17 structural fragment (Table II.16) with those reported for the spirocoleon 13 

II.21 (Matloubi-Moghadam F. et al., 1984) and other related spirocoleons (Künzle J.M. 

et al., 1987; Rüedi P. et al., 1983; Schmid J.M. et al., 1982).  
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Table II.16. NMR data of compound II.20 (acetone-d6, 1H 500 MHz, 13C 125 MHz; δ in 
ppm, J in Hz). 

Position δH JH,H δC      HSQC 

1α 
1β 

1.29 td 
2.05 m** 

(1α, 1β) 13.5 
(1α, 2α) 3.6 

38.76 
 

t 
 

2α  
2β 
3α 
3β 
4 

5α 
6α 
7β 
8 
9 

10 
11 

12β 
13 
14 
15 

16A 
16B 

Me-17 

Me-18 
19A 
19B 

Me-20 
6β-OH 
7α-OH 

12α-OH 
19-OH 

1.5 ddddd 
1.79 ddddd 

1.26 ddd 
1.55 br d 

--- 
1.72 d 

4.23 m* 
4.63 dd 

--- 
--- 
--- 
--- 

3.82 d 
--- 
--- 

1.44 m** 
1.08 dd 
0.92 dd 
1.26 d 
1.09 s 

4.24 dd 
3.33 dd 
1.74 s 
4.99 d 
4.26 d 

5.12 br d 
4.98 br dd 

(1α, 2β) 13.5 
(1β, 2α) 3.1 
(1β, 2β) 3.4 

(2α, 2β) 14.1 
(2α, 3α) 3.6 
(2α, 3β) 3.1 

(2β, 3α) 13.5 
(2β, 3β) 3.4 

(3α, 3β) 14.0 
(5α,6α) 1.6 
(6α,7β) 1.9 

(15,16A) 8.5 
(15,16B) 6.7 
(15,17) 6.1 

(16A,16B) 3.7 
(19A, 19B) 11.1 
(6α, 6β-OH) 1.8 
(7β, 7α-OH) 4.9 

(12β, 12α-OH) 5.5 
(19A, 19OH) 4.4 
(19B, 19OH) 5.5 

 
 
 

20.11 
 

40.27 
 

39.81 
50.33 
70.30 
67.16 

142.49 
156.17 
40.08 

200.28 
78.57 
37.47 

198.00 
21.63 
27.28 

 
14.15 
29.37 
68.72 
 
22.73 
 

 

t 
 

t 
 

s 
d 
d 
d 
s 
s 
s 
s 
d 
s 
s 
d 
t 
 

q 
q 
t 
 

q 
 
 

* overlapped or partially
 
overlapped signals. ** Signal overlapped with the solvent signals. 

 

  In the 13C NMR spectrum (Table II.16), were observed two singlet signals 

corresponding to two α,β-unsaturated carbonyl groups (δC 200.28 and 198.00) in 

agreement with the I.R. spectrum (1699 and 1670 cm-1). Only the C-11 carbonyl carbon 

is correlated with the broad doublet hydroxyl proton 12α-OH at δ 5.12 and the H-12β 

proton at δ 3.82. The methine H-12β correlates with both carbonyl carbons C-11 at δ 

200.28 and C-14 at δ 198.00, as observed in the HMBC spectrum (Table II.17).  
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Table II.17. Significant assignments observed on HMBC experiment for 
compound II.20. 

Position HMBC 
OH-12α 
OH-6β  
 OH-19 
H-7β 
H-6α  

H-19A  
OH-7α 
H-12β 
H-19B 
H-15 

Me-17 
Me-18 
 H-16A 
H-16B 
Me-20  
H-5α 

C-11, C-12 and C-13 
C-5, C-6 and C-7  

C-19 
C-5, C-6, C-8, C-9 and C-14 
C-4, C-5, C-7, C-8 and C-10,  

C-13, C-4, C-5 and C-18   
C-6, C-7 and C-8 

C-9, C-11, C-13, C-14, C-15 and C-16 
C-3, C-4, C-5  and C-18 
C-13, C-14  and C-16 
C-13, C-15 and C-16 

C-3, C-4, C-5 and C-.19 
C-12, C-13, C-14, C-15 and C-17 
C-12, C-13, C-14, C-15 and C-17 

C-1, C-5, C-9 and C-10 
C-1, C-3, C-4, C-6, C-7, C-9, C-18, C-19 and C-20 

 

  The methylcyclopropane group was identified by two double doublet proton 

signals (1.08, dd, J16A,15 = 8.5 Hz, H-16A and 0.92, dd,  J16B,15 = 6.7 Hz, H-16B) that were 

correlated with a signal at δ 2.02 (H-15) that on its turn was correlated with a doublet 

methyl group at δ 1.26 (1.26, d, J17,15= 6.1 Hz, Me-17).  

  The downfield protons H-6α and H-7β were assigned as δ 4.23 and the double 

doublet at δ 4.63 respectively. They were correlated with each other and with 6β-OH 

and 7α-OH hydroxyl protons (4.99, d, J6β-OH,6α = 1.8 Hz,  6β-OH and 4.26, d, J7α-OH,7β = 1.8 

Hz, 7α-OH) in the COSY spectrum. The COSY spectrum also showed that proton H-6α 

correlated with the methine H-5α at δ1.72. The observation of HMBC spectrum 

showed the correlation of the double bond carbons C-8 (δc 142.49, s) and C-9 (δc 

156.17, s) with the proton H-7β at δ 4.63. The methine H-5α at δ 1.72 only correlated 

with the methine H-6α. The significant assignments observed on HMBC spectrum for 

compound II.20 are shown in Table II.17. 

The 1H -1H COSY spectrum was in complete agreement with the assigned 

structure. Proton at δ 5.12 (br d, 12α-OH) correlates with proton at δ 3.82 (d, H-12β). 

Hydroxyl proton signals at ~ δ 5.00 (d, 6β-OH and dd, 19-OH) correlates with the 
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correspondents protons at δ 4.23 (m, H- 6α) and 4.24 (dd, HA-19). Proton at δ 4.63 (dd, 

H-7β) correlates with hydroxyl proton at δ 4.26 (d, 7α-OH) and with proton at δ 4.23 

(m, 6α-H). 

The remaining hydroxyl group to assign was OH-19 at δ 4.98 (J19OH,19A = 4.4 Hz, 

J19-OH,19B= 5.5 Hz) as a broad double doublet. The double doublet protons at δ 4.24 and 

δ 3.33, H-19A and H-19B respectively, showed connectivities with each other 

(J19A,19B=11.1 Hz) and with the hydroxyl group (19-OH). The difference in δ values of the 

diastereotopics H-19A at δ 4.24 and H-19B at δ 3.33 is due to the intramolecular 

hydrogen bridge between the hydroxyl group 19-OH and the hydroxyl group at 6β-OH.  

Some signals were overlapped (H-1β, H-6α and H-15) with the solvent (acetone-

d6) signal, so it was decided to repeat the 
1
H-NMR spectrum in CD3OD as presented in 

Table II.18. The proton H-1β appeared at δ 2.07 as a ddd, showing all three coupling 

constants (J1β, 1α=13.0 Hz, J1β, 2α=3.0 Hz, J1β, 2β=3.7 Hz), proton H-6α as a broad singlet at 

δ 4.21 (J6α, 5α=~1.5 Hz, J6α, 7β=2.5 Hz) and proton H-15 as a ddq at δ 2.11 (J 15,16A= 8.6 Hz, 

J15,16B = 6.8 Hz, J15,17= 6.1 Hz).  
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Table II.18. NMR data of compound II.20 (CD3OD, 1H 500 MHz; δ in ppm, J in 
Hz). 

Position δH JH,H 

1α 
1β 

1.29 ddd 
2.07 ddd 

(1α, 1β) 13.0 
(1α, 2α) 3.7 

2α  
2β 
3α 
3β 
4 

5α 
6α 
7β 
8 
9 

10 
11 

12β 
13 
14 
15 

16A 
16B 

Me-17 

Me-18 
19A 
19B 

Me-20 
6β-OH 
7α-OH 

12α-OH 
19-OH 

1.53 ddddd 
1.81 qt 
1.26 m* 
1.56 ddd 

--- 
1.68 br s§ 

4.21 br s# 

4.63 d 
--- 
--- 
--- 
--- 

3.75 s 
--- 
--- 

2.11 ddq 
1.15 dd 
0.93 dd 
1.26 d 
1.09 s 
4.19 d 
3.29 d 
1.70 s 

--- 
--- 
--- 
--- 

(1α, 2β) 14.2 
(1β, 2α) 3.0 
(1β, 2β) 3.7 

(2α, 2β) 14.2 
(2α, 3α) 3.7 
(2α, 3β) 3.0 

(2β, 3α) 14.2 
(2β, 3β) 3.7 

(3α, 3β) 14.2 
(5α,6α) ~1.5 
(6α,7β) 2.5 

(15,16A) 8.6 
(15,16B) 6.8 
(15,17) 6.1 

(16A,16B) 3.7 
(19A, 19B) 11.1 

 
 
 

# 
W1/2 = 6 Hz, 

§
 W1/2 = 2.2 Hz, * overlapped signal. 

 

  The results of the NOE experiment are summarized in Table II.19 and show the 

information of more significant NOEs irradiations. 
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Table II.19. Significant NOEs for compounds II.20. 

Irradiated 

protona () 

Observed NOE with protons 
(% NOE enhancement) 

H-1β (3.75) 
 

δ 0.93, H-7(+2.4); 
δ 1.26, Me-17 (+2.6); 

H-16A(1.15) 
 
Me-18 (1.09) 
 
 
 
 
 
H-16B (0.93) 

 
 
 

δ 2.11, H-15 (+5.8); 
δ 0.93, H-16B (+25.4). 

δ 4.21, H-6α (+9.5); 
δ 4.19, H-19A (~+2.0); 
δ 3.29, H-19B (+3.6); 
δ 1.68, H-5α (+5.7); 
δ 1.56, H-3β (+1.3); 
δ 1.26, H-3α (+2.5). 

δ 3.75, H-12β (+3.6); 
δ 2.11, H-15 (<0.5); 

δ 1.26, Me-17 (+2.1); 
δ 1.15, Me-16A (+15.8). 

 a CD3OD spectrum. 

 

Considering the protons H-16A and H-16B, the irradiation of proton H-16A at δ 

1.15 on NOE experiment showed a big effect (+25.4%) on the geminal proton H-16B at 

δ 0.93 and a moderate effect on H-15 (+5.8%) thus H-16A is a pro-S proton. The 

irradiation of proton H-16B at δ 0.93 showed NOE effects on H-16A (+15.8%), H-12β 

(+3.6%), Me-17 (+2.1%), and H-15 (<0.5%), showing that H-16B is an enantiotopic 

proton, pro-R.  

Compound II.20 showed a positive sign for its specific rotation (*α]
20

D  + 218.8) 

like II.21 (Matloubi-Moghadametal F., 1984) and other spirocoleons previously found 

in plants belonging to the Plectranthus and Coleus genera (see Table II.20; Künzle J.M. 

et al., 1987; Matloubi-Moghadametal F., 1984; Rüedi P. et al., 1983; Schmid J.M. et al., 

1982) and whose absolute stereochemistry has been rigorously established. For this 

reason, and also on biogenetic grounds, was assumed that II.20 possesses a normal-

abietane absolute configuration. Thus, this new diterpenoid must be (13S,15S)-

6β,7α,12α,19-tetrahydroxy-13β,16-cyclo-8-abietene-11,14- dione II.20. 
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Table II.20. Comparation of spectral and chiroptical data of the diastereomers 
and compound II.20 (Rüedi P. et al., 1983). 

 

spectral and 
chiroptical 

data 

12R, 13S, 15S 

 

12R, 13R, 15R 

 

12R,13S,15R 

 

12R,13R15S 

 

 

II.20 

*α]
23

D (˚) +181.0 +100.0 +99.5 +147.5 +218.8 
1H NMR 
(CDCl3)  

δ(H-12β) 

 
4.11 s   

 
4.41 s 

 
4.69 s 

 
3.93 s 

 
3.82 d 

δ(Me-17) 1.27 d 1.26 d 0.89 s 1.27 d 1.26 d 
13C NMR 

(Acetone)  
δ(C-12) 

 
 

77.6 

 
 

75.3 

 
 

75.6 

 
 

81.7 

 
 

78.57 
δ(C-15) 20.8 27.3 20.4 25.3 21.63 

δ(C-16) 26.5 21.5 16.9 18.8 27.28 

δ(C-17) 13.1 13.4 11.5 11.1 14.15 

 

  These values for II.20 were identical with those of compounds with a 

(12R,13S,15S)-configuration and very different from those of the other 

diastereoisomers [(Künzle J.M. et al., 1987; Matloubi-Moghadam F., et al. , 1984; Rüedi 

P. et al., 1983; Schmid J.M., et al., 1982); see Table II.20]. 

 

II.5. Structure elucidation of ent-7α-acetoxy-15-beyeren-18-oic 
acid II.22 from Plectranthus saccatus Benth. 
 

The new diterpenoid II.22, isolated from an acetone extract of the aerial parts 

of P. saccatus (see Chapter V) was a colourless crystalline solid (0.0024 g; 0.0024 %), 

for which a molecular formula of C22H32O4 was established by HRESIMS. The 1H and 13C 

NMR spectra of ent-7α-acetoxy-15-beyeren-18-oic acid II.22 (Table II.21) were very 

similar to those of 3α,15-beyerene II.23 diterpenoid previously isolated from P. 

saccatus (Wellsow J. et al., 2006).  
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                  II.22                     II.23 R =                         II.24 R =  

 
 

Table II.21. NMR data of compound II.22 (CDCl3,1H 500 MHz,13C 125 MHz; δ in 
ppm, J in Hz). 

Position δH JH,H δC HSQC 

1α 
1β 

1.64 m* 
1.02 m* 

(2α, 3β) 14.7 
(2β, 3β) 2.5 

38.0 
 

t 
 

2β and 2α 
3α 
3β 
4 

5β 
6α 
6β 
7α 
8 

9β 
10 

11α 
11β 

12α and 12β 
13 

14α 
14β 
15 
16 

Me-17 

18 
Me-19 
Me-20 

OAc (CO) 
OAc (CH3) 

1.53 (2H) m* 
1.64 m* 
1.72 td 

--- 
2.24 dd 
1.72 m* 
1.49 m* 

4.76 t 
--- 

1.45 m* 
--- 

1.28 m* 
1.53 m* 

1.26 (2H) m* 
--- 

1.44 dd 
1.26 d 
5.53 d 

5.55 dd 
1.01 s 

--- 
1.15 s 
0.79 s 

--- 
2.04 s 

(3α, 3β) 14.7 
(5β,6α) 12.8 
(5β,6β) 1.5 
(6α,7α) 2.7 
(6β,7α) 2.7 

(14α, 14β) 9.1 
(15, 16) 5.8 

(14α, 12α) 2.1 
(16, 12#) 1.0 

17.6 
36.8 

 
46.7 
42.4 
27.4 

 
76.0 
52.9 
48.1 
36.6 
19.6 

 
32.7 
43.9 
56.6 

 
132.1 
138.1 
24.7 

184.1 
16.4 
14.9 

170.8 
21.1 

t 
t 
 

s 
d 
t 
 

d 
s 
d 
s 
t 
 

t 
s 
t 
 

d 
d 
q 
s 
q 
q 
s 
q 

# 
long range, * overlapped or partially

 
overlapped signals. δ were measured from the HSQC spectrum. 
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The 1H and 13C NMR spectra of II.22 showed signals, among others, for a 

carboxylic acid function (δC 184.1, q, C-18), a (Z)-1,2-disubstituted olefin (δH 5.53, d, H-

15 and δH 5.55, dd, H-16, Jvic = 5.8 Hz) linked directly to quaternary carbon atoms C-8 

and C-13 and an acetoxyl group at C-7β (δH 2.04, 3H, s; δC 170.8, q, and δC 21.1, CH3). 

This acetoxyl substituent must be axially attached to a secondary carbon atom (δC 

76.0, C-7; δH 4.76, 1H, t, Je,a = Je,e = 2.7 Hz, H-7α) which was placed between a fully 

substituted carbon C-8 and a methylene group (H-6α and H-6β). The observed HMBC 

connectivities (Table II.22) between the carbonyl carbon of the acetate (δ 170.8) and 

the proton at δ 4.76 (H-7α), and between this proton and carbons C-5, C-6, C-8, C-9, C-

14 and C-15 (δ 42.4, 27.4, 52.9, 48.1, 56.6 and 132.1, respectively), established that the 

acetoxyl substituent of II.22 was at the 7β-position (ent-7α). The α- or β- configuration 

for a substituent indicates that it is placed, respectively, below or above the plane of 

the formula depicted for II.22. However, since is assumed that this compound belong 

to the enantio series, those configurations should be described more rigorously as ent-

β or ent-α, indicating that the substituent is placed, respectively, below or above the 

plane of the depicted structure. 

The HMBC spectrum of II.22 (Table II.22) showed long-range connectivities 

between the carboxylic carbon (δC 184.1, C-18) and the protons at δ 2.24 (H-5), 1.72 

and 1.64 (H-3α and H-3β), and 1.15 (quaternary methyl group, Me-19), whereas the 

methyl protons at δ 1.15 were HMBC correlated with C-3, C-4, C-5 and with the 

carboxylic carbon (δ 36.8, 46.7, 42.4 and 184.1, respectively). These results established 

that both a carboxylic function and a quaternary methyl group at δH 1.15 (δC 16.4) 

were attached to the C-4 position (δC 46.7, s) of the beyerane skeleton. From the 13C 

NMR chemical shifts of the carboxylic carbon (δ 184.1, C-18) and its geminal methyl 

group (δ 16.4, Me-19) it was evident (Bruno et al., 1986; Hussein A.A. et al., 1999; 

Hussein A.A. and Rodríguez B., 2000; Wellsow J. et al.,2006) that in II.22 the carboxyl 

group was an equatorial substituent (18-position) and, consequently, the methyl group 

was axially oriented (19-position), with opposite stereochemistry to that in II.23 

(Wellsow J. et al. ,2006).  
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Table II.22. Significant assignments observed on HMBC experiment  for 
compound II.22. 

Position HMBC 
Me-20 
Me-17 
Me-19 
H-7α 
H-5β 
H-15 
H-16 

C-1, C-5, C-9 and C-10 
C-12, C-13, C-14 and C-16 

C-3, C-4, C-5 and C-18 
C-5, C-6, C-8, C-9, C-14, C-15  and -CO-CH3 

C-1, C-63, C-4, C-6, C-7, C-9, C-10, C-18, C-19 and C20 
C-7, C-8, C-9, C-13, C-14  and C-16 

C-8, C-12, C-13, C-14, C-15  and C-17 

 

1D NOESY experiments confirmed the relative stereochemistry depicted in II.22 

for this new diterpenoid and allowed the complete assignment of the overlapped 

proton signals shown in Table II.21. Irradiation at δ 5.54 (both H-15 and H-16 protons) 

caused NOEs in H-6α, H-7α, H-11α, H-14α, Me-17 and Me-20, whereas the signal of the 

H-15 proton, among others, was strongly enhanced when the H-7α proton signal (δ 

4.76) was irradiated. Moreover, on irradiation at δ 0.79 (Me-20) NOEs were observed 

in protons H-1α, H-2α, H-6α, H-11α, H-15 and, more important, in Me-19 (Table II.23).  
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Table II.23. Significant NOEs for compound II.22. 

Irradiated 
proton (δ) 

Observed NOE with protons 
(% NOE enhancement) 

Assigment 

H-15  
and  
H-16  
(5.54) 

 
 

δ 4.76, H-7α (0.8); 
δ 1.72, H-6α (0.8); 
δ 1.49, H-6β (0.3); 
δ 1.01, Me-17 (0.8); 
δ 0.79, Me-20 (1.5); 
δ ~ 1.30, H-14α + H-11α (0.7). 
 
 

H-15 → H-7α 
H-15 → H-6α 
H-15 → H-6β 

H-16 → Me-17 
H-15 + H-16 → Me-20 

H-15 + H-16 → H-14α + H-11α  
Discriminates H-11α from H-11β  

and H-14α from H-14β 

H-7α  
(4.76) 

δ 5.53, H-15 (1.4); 
δ 2.24, H-5β (0.3); 
δ 1.72, H-6α (2.0); 
δ 1.49, H-6β (2.0); 
δ 1.44, H-14α (2.0); 
δ 1.26, H-14β (0.5). 

H-7α → H-15 
H-7α → H-5β 
H-7α → H-6α 
H-7α → H-6β 

H-7α → H-14α + H-14β and 
Discriminates H-14α from H-14β 

Me-20 
(0.79) 

δ 5.54, H-15>>H-16 (1.6); 
δ 1.72, H-6α (1.8); 
δ1.64, H-1α (0.8); 
δ1.53, H-2α (0.7); 
δ1.28, H-11α (1.8); 
δ1.15, Me-19 (2.1). 

 
Me-20 → Me-19 

Defines configuration on C-4  
(Me-19 and COOH-18). 

   → corresponds to the irradiated proton that discriminate the assignment signals. 

The absolute configuration of II.22 was not ascertained, although on biogenetic 

grounds (Wellsow J. et al., 2006) can be assumed that this compound belongs to the 

enantio series, like the majority of the beyerane-type diterpenes isolated from natural 

sources and whose absolute stereochemistry has been rigorously determined 

(Connolly J.D. and Hill R.A., 1991; Jefferies et al., 1963; McMillan and Beale, 1999). 

From all the above data II.22 was characterized as ent-7α-acetoxy-15-beyeren-18-oic 

acid.  

It is of interest to comment that the co-occurrence in the same species of 

diterpenes oxidized at the C-18 II.22 or C-19 (II.23 and II.24) (Wellsow J. et al., 2006) 

positions is quite rare (Connolly J.D. and Hill R.A., 1991), and only a few cases have 

been reported hitherto (Connolly J.D. and Hill R.A., 1991; Matloubi-Moghadam et al., 

1984; Simões M.F. et al., 2010a). 
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III.1. Introduction  

 

In this chapter is described the synthesis of diterpenoid derivatives with the 

purpose of improving the biological activity showed by the analogous natural 

diterpenes. The antimicrobial activity was the main biological activity studied on the 

starting materials and on their derivatives. The diterpenoids 7α-acetoxy-6β-

hydroxyroyleanone III.1, (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid II.7 and 

parvifloron D II.19 were used as starting materials to prepare the derivatives.  

The previously isolated abietane 7α-acetoxy-6β-hydroxyroyleanone III.1, have 

shown to be active against various microorganisms namely, methicillin-resistant 

Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE) 

(Gaspar-Marques C. et al., 2006). The diterpenoids (11R*,13E)-11-acetoxyhalima-5,13-

dien-15-oic acid II.7, and parvifloron D II.19 were isolated in significant yields (as 

described in Chapter V) and showed interesting antimicrobial activities (Chapter VI).  

Thirteen 7α-acetoxy-6β-hydroxyroyleanone III.1 derivatives were prepared 

using known methodologies (hydrolysis, esterification and glycosidation). The 

diterpenoid (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid II.7 afforded nine 

derivatives using similar methodologies. From the parvifloron D II.19 a benzoyloxy 

derivative of microstegiol was prepared via an easy and stereoselective 

rearrangement. 
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III.2. 7α-Acetoxy-6β-hydroxyroyleanone derivatives 

 

 

 

 

7α-acetoxy-6β-hydroxyroyleanone III.1 

7α-acetoxy-6β-hydroxyroyleanone III.1 is a natural diterpene previously 

isolated from Plectranthus grandidentatus (Teixeira A.P. et al., 1997; Gaspar-Marques 

C et al., 2006). Due to the multiple pharmacological activities described for these 

oxidized abietane metabolites like royleanone III.1, it is plausible to think them as 

models for the search of further bioactive molecules (Gaspar-Marques C. et al., 2006; 

Cerqueira F. et al., 2004; Teixeira A.P. et al., 1997). Previous results have shown that 

royleanone abietanes were active against Gram-positive bacteria (Rijo P. et al., 2010; 

Gaspar-Marques C et al., 2006). As 7α-acetoxy-6β-hydroxyroyleanone III.1, showed to 

be a potent antimicrobial diterpenoid, III.1 may be a lead for antimicrobial drug 

development (Gaspar-Marques C et al., 2006).  

 

III.2.1. Basic hydrolysis of 7α-acetoxy-6β-hydroxyroyleanone III.1  

 

 

 

 

6β,7α-dihydroxyroyleanone III.2 
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6β,7α-dihydroxyroyleanone III.2 is a known compound (Hersch M. et al., 1975) 

that was obtained by basic hydrolysis of 7α-acetoxy-6β-hydroxyroyleanone III.1 using a 

potassium hydroxide solution. The 1H NMR and 13C NMR spectra confirmed the 

structure of compound III.2 showing similar signals to compound III.1. Royleanone III.2 

showed an additional hydroxyl proton (s, OH-6β) on C-6 carbon at δ 7.25 comparing to 

royleanone III.1.  

 

III.2.2. 7α-Acetoxy-6β-hydroxyroyleanone III.1 ester derivatives 

 

In order to study the effect of the ester substituents on the antimicrobial 

activity of III.1, aromatic and acyl ester derivatives of III.1 were synthesized using a 

known methodology (Mart nez-Vázquez M. et al., 2004). Royleanone derivatives III.3–

III.13, were prepared (Figure III.1) by esterification of the hydroxyl group at C-6 and/or 

C-12. The reaction with the correspondent aromatic acyl chloride afforded two highly 

lipophilic diesters, III.3 and III.4, and the aromatic monoesters III.5–III.8. A set of five 

alkyl derivatives III.9–III.13 was also prepared (Figure III.1; Martínez-Vázquez M. et 

al, 2004).  

                                                                                      

 

 

 

 

 

 

Figure III.1. 7α-Acetoxy-6β-hydroxyroyleanone III.1 ester derivatives III.3–III.13. 

 

 R1 R2 

III.3 BzO BzO 
III.4 4-Cl-C6H4COO 4-Cl-C6H4COO 
III.5 OH 4-Me-C6H4COO 
III.6 OH 4-Cl-C6H4COO 
III.7 OH 4-NO2-C6H4COO 
III.8 4-NO2-C6H4COO OH 
III.9 AcO AcO 

III.10 MeCH2COO MeCH2COO 
III.11 AcO OH 
III.12 MeCH2COO OH 
III.13 Me(CH2)2COO OH 
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Despite the fact that compounds III.9 (Hensch M. et al., 1975) and III.11 (Chang 

C.-I. et al., 2005) were already known, the 1H NMR data of III.9 are now completed and 

its 13C NMR spectrum is reported for the first time. The 1H and 13C NMR data of III.11 

were in good agreement with those reported in literature (Chang C.-I. et al., 2005), 

except for the assignments of the C–20 and the methyl carbon of the 6β-acetate, 

which must be reversed. Moreover, several J(H,H) values for III.11, not measured 

previously, are now reported (see Chapter VI). 

Aromatic and acyl ester derivatives of 7α-acetoxy-6β-hydroxyroyleanone III.1 

are abietane diterpenoids with five methyl groups (Me-15 to Me-20), an 7α-acetate 

group and an isopropyl group at C-13 with a typical H-15 septuplet proton (δ from 3.09 

to 3.18 of compounds III.3-III.13). The 1H NMR data for the decalin part of these 

molecules showed closely related signals (see Tables III.1 and III.3). The significant 

changes will be discussed below for each compound, comparing the signals of 7α-

acetoxy-6β-hydroxyroyleanone III.1 with the aromatic ester derivatives III.3-III.8 and 

with the acyl ester derivatives III.9-III.13. 

Structures III.3-III.8 were established by NMR spectroscopic studies and the 

complete assignment of the 1H and 13C NMR spectra of III.3-III.8 is reported in Tables 

III.1 and III.2, respectively. A combination of two-dimensional COSY, HSQC and HMBC 

experiments was carried out, together with 1D NOESY spectra, in some cases, for 

establishing the relative stereochemistry and conformations of these substances 

(Pretsch E. et al., 2000). 

The 1H NMR spectrum of the aromatic ester derivatives III.3, III.4 and III.8 

showed, for the methine H-6α proton, downfield signals between δ 5.76 and 5.78, 

when comparing with the double doublet at δ 4.31 of royleanone III.1. This effect was 

caused by the introduction of the aromatic ester groups and was also observed for the 

correlated doublet protons H-5α and H-7β showing signals from δ 1.69 to 1.70 (H-5α) 

and from δ 5.87 to 5.90 (H-7β), respectively, when comparing with compound III.1 

signals at δ 1.32 (H-5α) and 5.65 (H-7β). The remaining derivatives III.5, III.6 and III.7 

(with no modifications on the hydroxyl group of carbon C-6) showed similar signals, at 
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δ 4.32, 4.33 and 4.34 respectively, for the methine H-6α proton comparing with the 

double doublet at δ 4.31 for the royleanone III.1 (see Table III.1).  

The 13C NMR spectra of the derivatives III.3, III.4 and III.8 showed that the 

introduction of the aromatic ester groups on C-6 produced a paramagnetic shift (δ 68.4 

to 69.44) with respect to the signal at δ 67.0 of carbon C-6 of compound III.1. The 

carbons C-5 and C-7, on β position with respect to the ester group of C-6, showed 

diamagnetically shifted signals (δ 49.24 to 49.30 and δ 64.94 to 65.20 for C-5 and C-7, 

respectively) with respect to signals at δ 49.8 (C-5) and 68.7 (C-7) of compound III.1. 

The introduction of the withdrawing electron groups on carbon C-12 of compounds 

III.3-III.7 (δ from 179.2 to 180.0 for C-11 and δ from 149.5 to 150.0 for C-12) produced 

diamagnetic shifts comparing with compound III.1 (at δ 183.3 and 150.9 for carbons C-

11 and C-12, respectively); comparing with royleanone III.1 at δ 124.7, was also 

observed the deshielding (from δ 139.5 to 140.0) of carbon C-13 signal; see Table III.2). 
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Table III.1. 1H NMR data for 7α-Acetoxy-6β-hydroxyroyleanone III.1 and for 
compounds III.3-III.8 (CDCl3, a400 MHz; b500 MHz; δ in ppm, J in Hz). 

Proton III.1b III.3a III.4a III.5b III.6a III.7a III.8a 

1α ~1.17* 1.29 ~1.24* ~1.23* ~1.24 ~1.23* ~1.25* 
1β 2.62 2.58 2.58 2.49 2.49 2.49 2.75 
2α 1.55 ~1.58* 1.60 1.53 ~1.54 ~1.55* ~1.64* 
2β 1.83 ~1.78* 1.79 1.79 1.80 1.81 1.84 
3α ~1.20* ~1.38 ~1.28* ~1.19* ~1.20* ~1.20* ~1.28* 
3β 1.46 1.49 1.48 1.45 1.45 1.46 1.52 
5α 1.32 1.52 1.70 1.36 1.36 ~1.37* ~1.70* 
6α 4.31 1.69 5.76 4.32 4.33 4.34 5.78 
7β 5.65 5.90 5.88 5.67 5.68 5.68 5.87 
15 3.14 3.17 3.17 3.17 3.17 3.18 3.15 

Me-16# 1.17 1.19 1.21 ~1.19 ~1.21* ~1.22* 1.21 
Me-17# 1.20 1.21 1.19 ~1.22 ~1.21* ~1.22* 1.17 
Me-18 0.93 1.06 1.06 0.94 0.94 0.95 0.98 
Me-19 1.21 0.99 0.97 1.21 1.24 1.22 1.05 
Me-20 1.59 1.77 1.74 1.62 1.62 1.62 1.73 
6-OH ~2.03* --- --- --- 1.92 --- --- 

12-OH 7.19 --- --- --- --- --- 7.19 
7α-OAc 2.02 2.10 2.10 2.06 2.06 2.07 2.09 
6β-OAc --- 2.04 s --- --- --- --- --- 
12-OAc --- 2.34 s --- --- --- --- --- 

6β-OBz: 2´ and 6´ --- 7.99 7.92 --- --- --- 8.14 
6β-OBz: 3´ and 5´ --- ~7.41 7.39 --- --- --- 8.27 

6β-OBz: 4´ --- ~7.54 --- --- --- --- --- 
12-OBz: 2´´ and 

6´´ 
--- 8.15 8.08 8.09 8.07 8.32 --- 

12-OBz: 3´´ and 
5´´ 

--- ~7.52 7.51 6.98 7.49 8.37 --- 

12-OBz: 4´´ --- ~7.66 --- --- --- --- --- 
Bz-OMe --- --- --- 3.89 --- --- --- 

 *Overlapped signals, δ values measured from the HSQC and/or COSY spectra; 
#
Interchangeable  signals. 
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III.3 

The compound III.3 has two benzoyloxy groups attached on carbons C-6 and C-

12. The H-6α methine at δ 5.77 (dd, J6α,7β = 2.0 Hz, J6α,5α = 1.6 Hz, Hα–6), correlates in 

the HMBC spectrum with the carboxyl carbon at δ 165.3. This singlet carbon on its turn 

correlates with the orto protons of the benzoyl group at δ 8.15 (dt, J2’,3’ = 7.6 Hz, J2’,4’ = 

2.0 Hz, H–2’ and H–6’, 6–OBz). As the carbonyl carbon of the acetyl group (δ 168.10) 

correlates in the HMBC with the methine H-7β (δ 5.90) the remaining carboxyl carbon 

at δ 164.00 must be linked to the C-12 position (Table III.1 and III.2).  

 

 

 

 

                                                             

 

III.4 
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The diterpenoid III.4 has two p-chlorobenzoyl groups that esterified the 

hydroxyl groups on carbons C-6 and C-12. The H-6α methine (δ 5.76, t, J6α,7β = J6α,5α = 

1.6 Hz) correlates, in the HMBC spectrum, with the carbonyl carbon at δ 164.52 (C-7´). 

This singlet carbon correlates with the orto protons of the benzoyl group (δ 7.92, d, Jo = 

8.6 Hz, H–2’ and H–6’). The carbonyl carbon of the acetyl group at C-7 (δ 168.13) 

correlates (HMBC) with the methine H-7β (δ 5.88) so the other carboxyl carbon (δ 

163.19) belongs to the substituent group at the carbon C-12. The complete assignment 

of the two p-chlorobenzoyl groups (1H and 13C NMR spectra and HSQC and HMBC 

experiments) are shown in Tables III.1 and III.2.  

 

 

 

 

 

 

III.5 

The derivative III.5 has a p-methoxybenzoyloxy group on carbon C-12. The 

HMBC experiment showed connectivities between the H-7β methine at δ 5.67 (d, J7β,6α 

= 1.7 Hz) and the carbonyl carbon at δ 169.7 (7α-OAc). This singlet carbon correlates 

with the methyl protons of the acethyl group at δ 2.06 (s, 7α-OAc). Though the 

hydroxyl proton of C-6 was not found in the 1H NMR spectrum, in the 13C NMR 

spectrum a signal at δ 67.3, similar to the C-6 signal of compound III.1 (δ 67.0) was 

present. The remaining carboxyl carbon at δ 164.4 must be assigned to the p-

methoxybenzoyl group at the C-12 position (see Table III.1 and III.2). The orto and 

meta protons of the ring of the benzoyl group at δ 8.09 (d, J2’,3’(6’,5’) = 8.9 Hz, H–2’ and 

H–6’) and at δ 6.98 (2H, d, J3’,2’(5’,6’) = 8.9 Hz, H–3’ and H–5’) as well as the methoxyl 
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protons at δ 3.89 (s, OMe-8’; see Table III.1) and the corresponding carbons were also 

assigned (see Table III.2). 

 

 

 

 

 

                             

III.6 

Compound III.6 has a p-chlorobenzoyloxy group attached to carbon C-12. The 

HMBC experiment showed connectivities between the H-7β methine at δ 5.68 (dd, 

J7β,6α = 2.0 Hz, J7β,5α = 0.6 Hz) and the carbonyl carbon at δ 169.67, which correlates 

with the methyl protons of the acetyl group at δ 2.06 (s, 7α-OAc). Moreover, the 1H 

NMR signals of H-5α, H-6α and H-7β and δC of C5, C6 and C7 have almost the same 

values for III.6 and III.1. this indicate that OH-6 is free (δ 1.92, br, 6β-OH) and OH-12 is 

esterified.  The complete assignment of the p-chlorobenzoyl group was made by 1H 

and 13C NMR spectra and COSY, HSQC and HMBC experiments (see Tables III.1 and 

III.2).  

 

 

                                                              

                                                           

 

III.7 
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The royleanone derivative III.7 bears a p-nitrobenzoyloxy group on carbon C-12. 

Once more, 1H and 13C NMR data of –C5H-C6H(OH)-C7H(OAc)- and HMBC experiments 

indicated that this moiety, is present in both III.1 and III.7. So the signal at δ 164.6    

must correspond to the ester group linked to C-12 and the complete assignment of the 

ester group were established by 1H and 13C NMR spectra and HSQC experiment (see 

Tables III.1 and III.2).  

 

 

 

 

III.8 

The compound III.8 is a p-nitrobenzoyl derivative of III.1. Its H-6α methine (δ 

5.78, t, J6α,7β = J6α,5α = 1.6 Hz) is correlated with the carbonyl carbon at δ 163.58 (C-7´) 

which correlates with the orto proton of the benzoyl group (δ 8.27, d, J2’,3’(6’,5’) = 9.0 Hz, 

H–2’ and H–6’). The 1H NMR spectrum showed a hydroxyl group attached to an 

aromatic carbon (δ 7.19, s; δC 150.63) similary to C12-OH of III.1 (see Table III.1 and 

III.2).  
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Table III.2. 13C NMR data for 7α-Acetoxy-6β-hydroxyroyleanone III.1a and for 
compounds III.3b-III.8b (CDCl3, a 125.7 MHz; b100 MHz; δ in ppm, J in Hz). 

Carbon III.1 III.3 III.4 III.5    III.6 III.7 III.8 

1 38.37 38.37 38.37 38.30 38.33 38.35 38.46 
2 19.00 18.83 18.81 18.86 18.87 18.86 18.86 
3 42.28 42.48 42.47 42.28 42.26 42.22 42.39 
4 33.67 33.76 33.77 33.52 33.72 33.51 33.27 
5 49.76 49.31 49.30 48.80 49.77 49.78 49.24 
6 67.00 68.43 68.72 67.26 67.22 67.21 69.44 
7 68.75 65.25 65.19 68.88 68.85 68.80 64.94 
8 137.12 135.20 135.67 135.52 135.74 135.96 136.74 
9 149.91 152.50 152.40 153.04 152.5 152.94 149.23 

10 38.63 38.77 38.78 38.86 38.93 39.00 38.35 
11 183.29 180.00 179.7 179.89 179.55 179.20 183.13 
12 150.90 150.00 149.5 149.90 149.8 149.70 150.63 
13 124.69 140.00 139.8 139.51 139.5 139.80 125.03 
14 185.74 185.33 185.21 185.90 185.69 185.50 185.17 
15 24.17 25.16 25.23 25.07 25.18 25.30 24.20 
16 19.84 20.36 20.37 20.44 20.44 20.40 19.81 
17 19.70 20.00 20.21 20.18 20.23 20.43 19.64 
18 33.52 33.33 33.29 33.71 33.51 33.73 33.74 
19 23.81 23.21 22.20 23.83 23.83 23.83 23.27 
20 21.51 22.20 21.23 21.75 21.73 21.72 22.03 

7α-COCH3 169.60 168.13 168.13 169.71 169.67 169.60 168.13 
7α-COCH3 20.93 20.84 20.81 20.91 20.91 20.89 20.81 
6β-OBz 7´ --- 165.33 164.52 --- --- --- 163.58 
6β-OBz 1´ --- 127.91 128.14 --- --- --- 135.04 

6β-OBz 2´ and 6´ --- 129.87 131.22 --- --- --- 130.91 
6β-OBz 3´ and 5´ --- 128.47 128.88 --- --- --- 123.68 

6β-OBz 4´ --- 133.22 139.79 --- --- --- 150.92 
12-OBz 7´´ --- ~164.00* 163.19 164.38 163.18 164.60 --- 
12-OBz 1´´ --- 129.71 126.36 120.21 126.45 133.38 --- 

12-OBz 2´´ and 6´´ --- 130.51 131.84 132.72 131.84 131.63 --- 
12-OBz 3´´ and 5´´  128.81 129.24 114.05 129.18 123.90 --- 

12-OBz 4´´  134.30 141.02 163.66 140.89 151.19 --- 
12-OBz OMe  --- --- 55.57 --- --- --- 
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The five alkyl derivatives III.9–III.13 will be described (Figure III.1; Martínez-

Vázquez M. et al, 2004). The 1H NMR spectrum of these acyl ester derivatives III.9-

III.13 showed, for the methine H-6α proton, downfield signals from δ 5.48 to 5.51, 

comparing with the double doublet at δ 4.31 for H-6α of the royleanone III.1. This 

effect was caused by the introduction of the electron withdrawing groups (see Table 

III.3).  

 

 

                                              

III.9 

Compound III.9 has two new acetyl groups linked to C-6 and C-12 carbons, 

when compared to III.1 (see Tables III.3 and III.4). The HMBC experiment showed 

connectivities of the H-6α (δ 5.48) with the carbonyl carbon at δ 169.04 (6β-OCOCH3), 

confirming the acetyl group at 6-β position.  

 

 

 

 

 

 

III.10 

Comparing to compound III.1, the derivative III.10 presents two more 

propyloxy groups (O-CO-CH2-CH3) on both C-6 and C-12 carbons. The HMBC spectrum 

confirmed the correlation between proton H-6α (δ 5.49) and the carbonyl carbon C-1´ 
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(δ 172.50). Thus the remaining not assigned carbonyl carbon must be the C-1´´ (δ 

171.73). The two methylene protons (H-2´) at δ 2.32 (dq, J2’A,2’B = 16.8 Hz, J2’A,3’ = 7.6 

Hz, HA–2’) and 2.25 (q, J2’B,2’A = 16.8 Hz, J2’B,3’ = 7.6 Hz, HB–2’) are attached to the 

secondary C-2´ carbon (confirmed by HSQC experiment) at δ 27.81. The C-2´ correlates 

with the carbonyl and methyl carbons at δ 172.50 (C-1´) and 8.80 (C-3´), respectively. 

The methyl protons of C-3´ (δ 1.11, t, J3’,2’A = J3’,2’B = 7.6 Hz, H-3’) correlates, in HMBC 

experiment, to C-2´ carbon (δ 27.81) and carbonyl C-1´ (δ 172.50). The presence of 

other C-12 propanoate moiety was evidenced by HMBC and HSQC spectra which 

showed connectivities that assigned the protons and carbons of OC1´´-C2´´H2-C3´´H3 (see 

Chapter VI, Tables III.3 and III.4). 

 

 

 

 

 

III.11 

The 6,7-diacetyl III.11 showed a hydroquinonic hydroxyl group (δH 7.17) also 

present in the protype III.1. The extra acetoxyl group (δH 2.04, s, 3H; δC 20.81, COCH3; 

δC 168.99, COCH3) was attributed to the 6β position. The introduction of the 6β-

acetoxyl group was confirmed by correlations observed in the HMBC spectrum 

between the carbon δC 168.99 (6β-COCH3) and the proton H-6α at δ 5.50 (Tables III.3 

and III.4).  
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Table III.3. 1H NMR data for 7α-Acetoxy-6β-hydroxyroyleanone III.1 and for 
compounds III.9-III.13 (CDCl3, a500 MHz; b400 MHz; δ in ppm, J in Hz). 

Proton III.1a III.9b III.10b III.11a III.12b III.13b 

1α ~1.17* ~1.24* ~1.24* ~1.24* ~1.22* ~1.23* 
1β 2.62 2.52 2.51 2.67 2.66 2.66 
2α 1.55 1.56* 1.55 ~1.60* ~1.58* ~1.58* 
2β 1.83 1.78 1.77 1.82 1.82 1.82 
3α ~1.20* ~1.23 ~1.23* 1.24* ~1.22 ~1.23* 
3β 1.46 1.45 1.44 1.49 1.48 1.47 
5α 1.32 1.52 1.53 1.56 1.54 ~1.60* 
6α 4.31 5.48 5.49 5.50 5.51 5.50 
7β 5.65 5.68 5.68 5.70 5.70 5.69 
15 3.14 3.09 3.09 3.16 3.16 3.16 

Me-16# 1.17 1.18 1.17 1.22 1.22 1.22 
Me-17# 1.20 1.17 1.16 1.19 1.19 1.19 
Me-18 0.93 0.98 0.98 0.99 0.99 0.99 
Me-19 1.21 0.97 0.96 0.98 0.97 0.98 
Me-20 1.59 1.59 1.59 1.59 1.59 1.59 
6-OH ~2.03* --- --- --- --- --- 

12-OH 7.19 --- --- 7.17 7.17 7.18 
7α-OAc 2.02 2.03 2.04 2.03 2.04 2.04 
6β-OAc --- 2.04 --- 2.04 --- --- 
12-OAc --- 2.34 --- --- --- --- 

6β-Pr-2´A --- --- 2.32 --- 2.29 --- 
6β-Pr-2´B --- --- 2.25 --- 2.29 --- 

6β-Pr-Me3´ --- --- 1.11 --- 1.12 --- 
12-Pr-2´´A --- --- 2.66 --- --- --- 
12-Pr-2´´B --- --- 2.61 --- --- --- 

12-Pr-Me3´´ --- --- 1.27 --- --- --- 
6β-Bu-2´A --- --- --- --- --- 2.28 
6β-Bu-2´B --- --- --- --- --- 2.20 
6β-Bu-3´A  

and 3´B 
--- --- --- --- --- ~1.63* 

6β-Bu-4´ --- --- --- --- --- 0.91 

*Overlapped signals, δ values measured from HSQC and/or COSY spectra; 
#
Interchangeable  

signals. 
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III.12 

 Compound III.12 has only a propyloxy chain at the 6β position when compared 

with derivative III.10. The similar signals at δ 2.29 (m, H-2’), of the methylene and 

methyl at δ 1.12 (t, J3’,2’A = J3’,2’B = 7.6 Hz, Me-3’) protons, were correlated with each 

other in the COSY spectrum. The hydroxyl proton of C-12 appeared at δ 7.17 as a broad 

singlet signal (see Tables III.3 and III.4). 

 

 

                                                          

 

III.13 

Compound III.13 is a butanoate ester of HO-C-6. The C-12 hydroxyl proton was 

observed at δ 7.18 as a broad singlet signal. The attachment of the butanoxy moiety at 

C-6 position was evidenced by HMBC spectrum, which showed correlations between 

the H-6α methine (δ 5.50, t, J6α,7β = J6α,5α = 2.1 Hz), with carbonyl C-1´ (δ 171.7). This 

singlet carbon (C-1´) correlated with the methylene protons at δ 2.28 (dt, J2’A,2’B = 15.9 

Hz, J2’A,3’  = 7.1 Hz, HA–2’), and 2.20 (dt, J2’B,2’A = 15.9 Hz, J2’B,3’ = 8.0 Hz, HB–2’). The 

remaining protons and carbons of the ester group were assigned on the basis of their 

coupling constants and multiplicities, being also in agreement with the COSY, HSQC 

and HMBC spectra (see Tables III.3 and III.4; Chapter VI). 
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Table III.4. 13C NMR data for 7α-Acetoxy-6β-hydroxyroyleanone III.1 and for 
compounds III.9-III.13 (CDCl3, a 125.7 MHz; b100 MHz; δ in ppm, J in Hz). 

Carbon III.1a III.9b III.10b III.11b III.12b III.13b 

1 38.37 38.31 38.31 38.39 38.36 38.36 
2 19.00 18.78 18.78 18.88 18.88 18.88 
3 42.28 42.39 42.39 42.42 42.43 42.41 
4 33.67 33.58 33.58 33.57 33.58 33.57 
5 49.76 48.95 48.95 48.98 49.03 49.00 
6 67.00 67.24 67.24 67.15 67.08 67.00 
7 68.75 65.25 65.25 65.21 65.24 65.24 
8 137.12 135.67 135.67 137.08 137.11 137.09 
9 149.91 152.22 152.22 149.29 149.32 149.32 
10 38.63 38.93 38.93 38.70 38.66 38.65 
11 183.29 179.67 179.67 183.22 183.23 183.23 
12 150.90 149.28 149.28 150.84 150.84 150.84 
13 124.69 139.42 139.42 124.82 124.81 124.79 
14 185.74 185.37 185.37 185.33 185.35 185.34 
15 24.17 25.17 25.17 24.17 24.15 24.13 
16 19.84 20.17 20.17 19.82 19.82 19.81 
17 19.70 20.19 20.19 19.68 19.67 19.66 
18 33.52 33.18 33.18 33.22 33.2 33.24 
19 23.81 22.93 22.93 22.95 23.02 23.00 
20 21.51 21.44 21.44 21.27 21.35 21.33 
7α-COCH3 169.60 168.15 168.15 168.09 168.04 168.06 
7α-COCH3 20.93 21.27 21.27 21.27 20.82 20.82 
6β-COCH3  169.04 169.04 168.99 --- --- 
6β-COCH3  20.75 20.75 20.81 --- --- 
6β-COCH2CH3   172.50  172.46 --- 
6β-COCH2CH3   27.81  27.84 --- 
6β-COCH2CH3   8.80  8.85 --- 
12-COCH3  168.26     
12-COCH3  20.39     
12-COCH2CH3   171.73    
12-COCH2CH3   27.21    
12-COCH2CH3   8.86    
6β-COCH2CH2CH3      171.78 
6β-COCH2CH2CH3      36.42 
6β-COCH2CH2CH3      18.08 
6β-COCH2CH2CH3      13.70 

 

 



Chapter III    Results and Discussion  

 

108 

 

III.2.3. Synthesis of the α-mannopyranoside III.14 from 7α-acetoxy-
6β-hydroxyroyleanone III.1 

 

 

 

 

III.14 

Compound III.14 has the α-mannopyranosyl group at the C-6 carbon when 

compared with royleanone III.1. Both the 1H NMR and 13C NMR spectra are consistent 

with six additional carbons (C-1´ to C-6´), the five methine protons, of C-1´ to C-5´, and 

methylene protons of the C-6´ carbon, corresponding to the sugar group introduced. 

Besides the acetyl group at C-7α carbon, four more acetyl groups were assigned to 

positions C-2´, C-3´, C-4´ and C-6´ (singlet signals at δ 2.16, 1.98, 2.00 and 2.13, 

respectively) of the sugar moiety. The H-6α methine at δ 4.19 (br s, J6α,7β = 1.4 Hz,  

J6α,5α = ~1.4 Hz, Hα–6) correlates, in the HMBC spectrum, with the C-1´carbon of the α-

mannopyranosyl moiety (δ 99.98). The HMBC and HSQC correlations and the 1H 1H 

COSY spectrum were in complete agreement with the structure of III.14 (see Table 

III.5).  
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Table III.5. 1Ha and 13Cb NMR spectroscopic data for compound III.14a (CDCl3, 
a500 MHz; b125 MHz; δ in ppm, J in Hz). 

Position δC δH HMBC (H→C) 

1 38.56 CH2 1.22 m* (H-1α)  
  2.66 brd ( H-1β)  
2 18.90 CH2 1.56 m*(H-2α)  
3 42.37 CH2 1.20 m* (H-3α)  
  1.52 m* (H-3β)  
4 33.60 qC -  
5 49.63 CH 1.45 br s (H-5α) C-1, C-3, C-4, C-6, C-10, C-18 and C-

19 
6 77.41 CH 4.19 br s (H-6α) C-4, C-5, C-7, C-8, C-10 and C-´1 
7 65.20 CH 6.05 d (H-7β) C-5, C-6, C-8, C-9, C-14 and CO at δ 

168.68 
8 136.55 qC -  
9 149.96 qC -  
10 38.80 qC -  
11 183.17 qC -  
12 150.97 qC -  
13 124.78 qC -  
14 185.24 qC -  
15 24.15 CH 3.18 sept (H-15) C-12, C-13, C-14, C-16, C-17 
16# 19.87 CH3 1.23 d (Me-16) C-13, C-15, C-17 
17# 19.66 CH3 1.22 d (Me-17) C-13, C-15, C-16 
18 33.51 CH3 0.94 s (Me-18) C-3, C-4, C-5, C-19 
19 23.59 CH3 1.20 s (Me-19) C-3, C-4, C-5, C-18 
20 21.93 CH3 1.64 s (Me-20) C-5, C-6, C-10 
1´ 99.98 CH 5.11 br s   
2´ 69.71 CH 5.18 br s  
3´ 68.85 CH 5.17 dd   
4´ 65.73 CH 5.29 t  
5´ 69.74 CH 3.75 ddd  
6´ 62.13 CH2 4.30 dd (HA-6)  
  4.04 dd (HB-6)  
7α-OAc 168.68 qC; 20.63$ CH3 2.02 s  
2´-OAc 168.68 qC; 20.63 CH3 2.16 s  
3´-OAc 170.05 qC; 20.68$ CH3 1.98 s  
4´-OAc 169.53 qC; 20.70$ CH3 2.00 s  
6´-OAc 170.89 qC; 20.77$ CH3 2.13 s  
*Overlapped or partially overlapped signals. Approximate δ values were obtained from the HSQC 

spectrum.
 #

Interchangeable signals. 
$
Interchangeable assignments. 
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III.3. Halimane derivatives 

III.3.1. Synthesis and identification of the derivatives III.15-III.23 

To prepare the derivatives III.15-III.23 a large quantity of pure (11R*,13E)-11-

acetoxyhalima-5,13-dien-15-oic acid II.7 was isolated from the acetone extract of 

Plectranthus ornatus, as described in Chapter VI. 

Nine derivatives were synthesized taking advantage of the presence of both 

carboxylic and ester groups of II.7. Compound II.7 gave the (11R*,13E)-11-

acetoxyhalima-5,13-dien-15-oic acid methyl ester III.15, under methylation conditions.  

Reduction of II.7 with lithium aluminium hydride yielded two derivatives: (11R*,13E)-

11-acetoxyhalima-5,13-dien-15-ol III.16 and (11R*,13E)-halima-5,13-diene-11,15-diol 

III.17. Transacetylation of III.16 yielded (11R*,13E)-15-acetoxyhalima-5,13-dien-11-ol 

III.18. Esterification of III.17, using appropriate acyl anhydrides, allowed the 

preparation of three ester derivatives: (11R*,13E)-15-propionyloxyhalima-5,13-dien-

11-ol III.19, (11R*,13E)-11,15-dipropionyloxyhalima-5,13-diene III.20 and (11R*,13E)-

15-butyryloxyhalima-5,13-dien-11-ol III.21. Finally, (11R*,13E)-15-benzoyloxyhalima-

5,13-dien-11-ol III.22 and (11R*,13E)-15-(4-methoxy)benzoyloxyhalima-5,13-dien-11-ol 

III.23 were also prepared from III.17 by reaction with the adequate benzoyl chlorides 

(see Figure III.2). 

 

 

 

 

 

 

Figure III.2. (11R*,13E)-11-Acetoxyhalima-5,13-dien-15-oic acid II.7 derivatives 

III.15-III.23. 

 R1 R2 

II.7 Ac COOH 
III.15 Ac COOMe 
III.16 Ac CH2OH 
III.17 OH CH2OH 
III.18 OH CH2OAc 
III.19 OH CH2OCOCH2CH3 
III.20 COCH2CH3 CH2OCOCH2CH3 
III.21 OH CH2OCOCH2CH2CH3 
III.22 OH CH2OCOPh 
III.23 OH CH2OCOPh-p-OCH3 
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The structures of the compounds III.15-III.23 were unequivocally established 

from spectroscopic information – I.R., MS, 1H and 13C NMR, COSY, HSQC and HMBC – 

and by comparison with II.7 data (Chapter VI). 

Halimane II.7 and its derivatives have common structural features, namely the 

presence of five methyl groups (Me-16 to Me-20), two double bonds (C5-C6 and C13-

C14) with their typical downfield protons at δ from 5.41 to 5.44 (dt, J6,7β = 5.6 Hz, J6,7α = 

J6,10β = 2.1 Hz, H-6 for compound II.7) and at δ from 5.34 to 5.67 (qd, J14,16 = 1.2 Hz, 

J14,12A = 0.4 Hz, H-14 for halimane II.7). The significant characteristics of each halimane 

derivatives III.15-III.23, will be discussed below. 

The 1H NMR of C-11 acyloxy halimanes (II.7, III.15, III.16 and III.20) presents the 

geminal methine H-11 protons more deshielded (δH-11 5.21 to 5.31) than the C-11 

hydroxy derivatives III.17-III.19 and III.21-III.23 (δH-11 from 3.66 to 3.69). Consistently, 

the C-11 chemical shift of the 11-hydroxyhalimanes appear at a more shielded values 

(δC-11 from 72.9 to 73.08) than the analogous 11-acyloxy diterpenes (δC-11 from 74.84 to 

75.82; see Tables III.6 and III.7).  

Another 13C NMR signal affected by the chemical transformations is the 

corresponding C-15 carbon. The higher δC-15 values correspond to the carboxylic 

function (δ 171.05 of compound II.7) and the methyl ester (δ 166.61 of derivative 

III.15). A shielding effect observed for III.16 and III.17 (δ 59.21 and 59.27, respectively) 

is coherent with a hydroxyl attached to C-15. The C-15 of all esters from the 15-

hydroxyl at halimane III.17 showed deshielding values (δ from 61.7 to 61.04; III.18-

III.23) when compared to III.17 (δ 59.27; see Tables III.8 and III.9).  
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Table III.6. 1H NMR data for (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid 
II.7 and for compounds III.15-III.18 (CDCl3, 400 MHz; δ in ppm, J in Hz). 

Proton II.7 III.15 III.16 III.17 III.18 

1α 1.10 1.09 1.08 1.10 1.10 
1β 1.92 1.92 1.91* ~1.81 ~1.80* 
2α 1.64 1.63 1.64* ~1.60 ~1.60* 
2β 1.52* 1.52 1.51 ~1.55 ~1.55* 
3α 1.19 1.19 1.19 1.20 1.19 
3β 1.42 1.41 1.41 1.42 1.42 
6 5.45 5.44 5.43* 5.41 5.41 

7α 1.78* 1.75 1.76 ~1.78 ~1.78* 
7β 1.84* 1.84 1.84 1.87 1.87 
8β 1.56* 1.56* 1.58* ~1.62 ~1.62* 

10β 2.07 2.06 2.09* 2.29 2.28 
11 5.31 5.31 5.21 3.66 3.66 

12A 2.44 2.42 2.30 2.33 2.34 
12B 2.36 2.33 2.21 2.09 2.12 
14 5.68 5.67 5.43* 5.53 5.46 

Me-16# 2.19 2.18 1.71 1.72 1.75 
Me-17# 0.99 0.98 0.98 0.97 0.97 
Me-18 0.98 0.97 0.97 1.00 1.00 
Me-19 1.05 1.05 1.05 1.05 1.05 
Me-20 0.69 0.68 0.68 0.80 0.80 
11-OAc 2.00 1.98 1.99 --- --- 

15-COOCH3 --- 3.66 --- --- 2.04 
15A --- --- 4.10 4.18 4.62 
15B --- --- 4.06 4.18 4.58 

2´A, 2´B --- --- --- --- --- 
Me-3´ --- --- --- --- --- 

2´´A, 2´´B --- --- --- --- --- 
Me-3´´ --- --- --- --- --- 
Me-4´´ --- --- --- --- --- 
11-OH --- --- --- --- --- 

               *Overlapped signals, δ values measured from the HSQC and/or COSY spectra. 
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III.15 

Derivative III.15 is the methyl ester of halimane II.7 on carbon C-15. The HMBC 

experiment of the methoxyl group at δ 3.66 (correlated in HSQC with carbon at δ 

50.89) showed connectivities to C-15 carbon (δ 166.61). The remaining 1H NMR and 13C 

NMR spectra signals were completely assigned (see Tables III.6 and III.8) and were very 

similar to the halimane II.7 signals.  

The reduction of compound III.15 yielded a hydroxyl group on C-15, resulting 

the compound III.16. When an excess of the reducing reagent was used, the 

compound III.17 was obtained, with two hydroxyl groups on carbons C-11 and C-15. 

The compound III.18, with a hydroxyl group on carbon C-11, was obtained at the 

purification step of compound III.16, by transesterification. 

 

 

 

 

 

III.16 

Halimane III.16 has two additional double doublet proton signals at δ 4.10 (dd, 

J15A,15B = 12.3 Hz, J15A,14 = 7.0 Hz, H-15A) and at δ 4.06 (1H, dd, J15B,15A = 12.3 Hz, J15B,14 = 

6.8 Hz, H-15B) caused by the presence of a hydroxyl on carbon C-15. Those geminal 
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protons H-15A and H-15B show connectivity on COSY experiment with the vinylic 

proton H-14 at δ 5.43. The allylic protons H-15A and H-15B at δ 4.10 and at δ 4.06 

(which correlated in HSQC with the triplet carbon at δC-15 59.21) showed connectivities, 

in the HMBC experiment, on C-13 and C-14 carbons at δ 136.86 and at δ 126.32, 

respectively. The complete assignment of NMR signals of III.16 were established by 1H 

and 13C NMR spectra and HMBC, HSQC and COSY experiments. The hydroxyl group on 

carbon C-15 deshielded the signals of proton H-14 and methyl group at carbon C-16 

from δ 5.67 and 2.18 (compound III.15), to δ 5.43 and 1.71 (compound III.16) 

respectively.  

The 13C NMR spectrum of compound III.16 comparing to compound III.15 were 

very similar, except for carbons from C-13 to C15. In this way, the hydroxyl group 

shielded the signal of carbon C-15 (from δ 166.61 to 59.21) and the same effect was 

observed for carbon C-13 (from δ 156.80 to 136.86). The double bond carbon C-14 

deshielded the signals from δ 117.86 to 126.32, when the ester carbon C-15 of 

compound III.15 was converted to the hydroxyl group of compound III.16 (see Tables 

III.6 and III.8).  

 

 

 

 

             

III.17 

 

1H and 13C NMR spectra and HMBC, HSQC and COSY experiments of compounds 

III.17 and III.16 were very similar. The signal assigned to the methyl (δ 1.99) of the 

acetoxyl group on C-11 of compound III.16 disappeared. The 1H NMR spectrum 

showed the methine proton H-11 shielded from δ 5.21 (with an acetyl group on C-11 

of compound III.16) to δ 3.66 (with a hydroxyl group of compound III.17).  
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The differences on the 13C NMR spectra signals, of compound III.17 compared 

to compound III.16 were: shielding carbons C-11 (δ from 75.82 to 73.08) and C-10 (δ 

from 40.16 to 38.91) and deshielding for the carbons C-13 (δ from 136.86 to 137.78) 

and C-12 (δ from 40.06 to 42.01), respectively (see Tables III.6 and III.8).  

 

 

 

 

 

III.18 

Compound III.18 was obtained from compound III.16 by transesterification. The 

transesterification could resulte from the proximity of the hydroxyl group on carbon C-

15, of the side chain, and the acetyl group on carbon C-11. Comparing the 1H NMR 

spectra of compounds III.17 and III.18, the latter has a methine proton H-11 at δ 3.66, 

an additional methoxyl group at δ 2.04, and the deshielded geminal protons H-15A and 

H-15B at δ 4.62 (dd, J15A,15B = 12.7 Hz, J15A,14 = 7.0 Hz, H-15A), and at δ 4.58 (dd, J15B,15A 

= 12.7 Hz, J15B,14 = 7.0 Hz, H-15B) by the ester group on carbon C-15.  

The 13C NMR spectra ofcompounds III.17 and III.18 were also very similar. The 

significant differences were carbons C-13-C-15 and the acetoxyl group on C-15. The 

withdrawing group on C-15 deshielded the carbon C-15 (δ from 59.27 to 61.17), 

shielded the carbon C-14 (δ from 126.68 to 121.72) and deshielded the carbon C-13 (δ 

from 137.78 to 140.25).  

The carbonyl at δ 171.12 (15-OCOCH3) showed connectivities, in the HMBC 

experiment, with the geminal protons H-15A and H-15B, at δ 4.62 and at δ 4.58, 

respectively (see Tables III.6 and III.8). 
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Table III.7. 1H NMR data for compounds (11R*,13E)-11-acetoxyhalima-5,13-
dien-15-oic acid II.7 and for III.19-III.23 (CDCl3, 400 MHz; δ in ppm, J in Hz). 

Proton II.7 III.19 III.20 III.21 III.22 III.23 

1α 1.10 1.09 ~1.08* 1.10 1.10 1.10 
1β 1.92 ~1.80* * ~1.80* ~1.80* ~1.80* 
2α 1.64 ~1.58* * ~1.58* ~1.57* ~1.57* 
2β 1.52* 1.53 * ~1.53* ~1.52* ~1.53* 
3α 1.19 1.19 1.18 1.19 1.19 1.19 
3β 1.42 1.42 * ~1.42* 1.42 ~1.42* 
6 5.45 5.41 5.44 5.41 5.41 5.41 

7α 1.78 ~1.78* * ~1.78* ~1.78* 1.78* 
7β 1.84 1.86 1.84 1.86 1.87 1.87 
8β 1.56 ~1.62* * ~1.62* 1.62 1.61* 

10β 2.07 2.28 * 2.28 2.30 2.30 
11 5.31 3.66 5.26 3.66 3.69 3.68 

12A 2.44 2.34 * 2.34 2.38 2.37 
12B 2.36 2.12 2.24 2.12 2.16 2.15 
14 5.68 5.46 5.34 5.46 5.60 5.59 

Me-16# 2.19 1.75 1.73 1.75 1.81 1.81 
Me-17# 0.99 0.97 0.98 0.96 0.97 0.97 
Me-18 0.98 1.00 0.97 1.00 1.01 1.01 
Me-19 1.05 1.05 1.05 1.05 1.05 1.05 
Me-20 0.69 0.80 0.67 0.80 0.81 0.81 
11-OAc 2.00 --- --- --- --- --- 

15-COOCH3 --- --- --- --- --- --- 
15A --- 4.63 4.56 4.62 4.88 4.84 
15B --- 4.59 4.49 4.59 4.84 4.81 

2´A, 2´B --- 2.31 2.30 2.27 ---        --- 
Me-3´ --- 1.13 1.12 1.64 --- --- 

2´´A, 2´´B --- --- 2.27 --- --- --- 
Me-3´´ --- --- 1.10 --- --- --- 
Me-4´´ --- --- --- 0.93 --- --- 
11-OH --- --- --- 1.43 --- --- 

Ph-(2´, 6´)     8.03 7.98 
Ph-(3´, 5´)     7.42 6.90 

Ph-(4´)     7.54 --- 
PhOMe      3.85 

*Overlapped signals, δ values measured from the  HSQC and/or COSY spectra. 
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III.19 

Compound III.19 has a propyloxy group on carbon C-15. The 1H and 13C NMR 

spectra showed similar signals to the compound III.18 spectra and the additional 

signals (δH-2´ 2.31; δC-2´ 27.57 and δMe-3´ 1.13; δC-3´ 9.12) were confirmed with the HMBC 

and HSQC experiments. The HMBC experiment revealed the correlation of the 

carbonyl carbon at δ 174.49 (C-1´) with the geminal protons H-15A and H-15B at δ 4.63 

and δ 4.59, respectively (see Tables III.6-III.9). 

 

 

 

 

 

 

 

 

III.20 

Compound III.20 has two propyloxy groups on carbons C-15 and C-11. The 1H 

NMR spectrum showed similarities with the signals of compound III.19 for all 

assignments except for the proton H-11 deshielded at δ 5.26. Compound III.20 like 

compounds II.7, III.15 and III.16 have an ester group on carbon C-11 with proton H-11 

signals at δ from 5.21 to 5.31 in agreement with δ (5.26) of III.20. Additional H-
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2´methylene signals at δ 2.27 (q, J2’,3’ = 7.6 Hz, H2-2’ at C-11) and the methyl Me-3´ 

signal at δ 1.10 (t, J3’,2’ = 7.6 Hz, Me-3’at C-11) were also observed. The position of  

propyloxy group of C-11 was confirmed with HMBC experiments showing correlations 

of the carbonyl carbon at δ 173.97 with the methylene H-2´ protons at δ 2.27 (see 

Tables III.7 and III.9). 

The 13C NMR spectrum also showed similarities with the signals of compound 

III.19 except for carbons C-10 to C-13. The carbon C-11 showed a downfield signal at δ 

74.84, similar to the derivatives with ester groups on carbon C-11, δ from 75.82 to 

74.97 (halimanes II.7, III.15 and III.16) with respect to hydroxyl group on carbon C-11, 

δ from 73.08 to 72.9 (derivatives III.17-III.19 and III.21-III.23). The same effect was 

observed for carbon C-10 signal at δ 40.14, like halimane esters on carbon C-11 (δ from 

40.27 to 40.16) comparing with hydroxyl group on carbon C-11 (at δ 38.9 to 38.93). 

The opposite effect was observed on carbon C-12 (signal at δ 40.24) like the ester 

derivatives (δ from 41.67 to 40.06) showing a higher field signal compared to the 

hydroxyl derivatives on carbon C-11 (δ from 42.24 to 42.06; see Tables III.7 and III.9).  
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Table III.8. 13C NMR data for (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic 
acid II.7 and for compounds III-15-III.18 (CDCl3, 100 MHz; δ in ppm, J in Hz). 

Carbon II.7 III.15 III.16 III.17 III.18 

1 28.89 28.87 28.96 29.87 29.69 
2 22.51 22.50 22.58 22.90 22.88 
3 40.88 40.89 41.31 41.37 41.33 
4 36.30 36.29 36.31 36.52 36.51 
5 145.17 145.20 145.33 146.12 146.10 
6 116.02 116.04 115.94 115.15 115.19 
7 31.34 31.36 31.36 31.03 31.04 
8 32.85 32.83 32.78 32.79 32.79 
9 41.61 41.64 40.98 41.20 41.18 

10 40.25 40.27 40.16 38.91 38.90 
11 74.97 75.07 75.82 73.08 72.93 
12 41.69 41.37 40.06 42.01 42.06 
13 159.78 156.80 136.86 137.78 140.25 
14 117.72 117.86 126.32 126.68 121.72 
15 171.05 166.61 59.21 59.27 61.17 
16 18.99 18.75 16.20 16.34 16.44 
17 17.15 17.15 17.18 17.27 17.25 
18 28.14 28.14 28.12 27.68 27.69 
19 29.72 29.72 29.73 29.87 29.87 
20 11.84 11.77 11.99 12.64 12.61 

11-OCOCH3 170.67 170.59 171.12 --- --- 
11-OCOCH3 20.82 20.85 21.04 --- --- 
15-COOCH3 --- 50.89 --- --- --- 
15-OCOCH3 --- --- --- --- 171.12 
15-OCOCH3 --- --- --- --- 21.03 

 

 

 

 

 

III.21 
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Compound III.21 has a butanoate group on C-15 and the 1H NMR spectrum 

showed similarities of signals with compound III.17-III.19. The 1H and 13C NMR spectra 

of derivative III.21, compared with III.17, showed the presence of a butanoxy on the C-

15 position (H-2´ at δ 2.27 and C-2´ at δ 36.19, H-3´ at δ 1.64 and C-3´ carbon at δ 

18.45, Me-4´ at δ 0.93 and C-4´ at δ 13.66; see Tables II.7 and III.9). The presence of 

the butanoxy moiety at C-15 was evidenced by the HMBC spectrum, which showed 

correlations between the carbonyl carbon of the ester moiety at δ 173.70 and the C-15 

methylene protons H-15A and H-15B at δ 4.62 and δ 4.59, respectively. The remaining 

protons and carbons of the ester group were assigned on the basis of their coupling 

constants, multiplicities and other data obtained from the HSQC and HMBC spectra 

(see Tables III.7 and III.9). 

 

 

                                                                      

 

                            III.22                                                           III.23 

The aromatic ester derivatives III.22 and III.23 at carbon C-15 showed 

similarities of signals in the 1H NMR spectrum with compounds III.17-III.19 and III.21 

that also have a hydroxyl group on C-11 carbon (δH-11 3.69 and 3.68, for compounds 

III.22 and III.23 respectively, and δH-11 3.66 for compounds III.17-III.19 and III.21). The 

H-15A and H-15B protons at δ 4.88 and 4.84, for compound III.22, and at δ 4.84 and 

4.81 for compound III.23, are deshielded by the aromatic ester group to respect to acyl 

derivatives (δH-15A 4.63-4.56 and δH-15B  4.49-4.59). This effect was also observed for the 

methyl protons Me-16 at δ 1.81, comparing to the same signal from δ 1.71 to 1.75 

(derivatives III.16-III.21). The 13C NMR spectrum also showed similar signals with 

carbon C-15 ester derivatives (compounds III.17-III.19 and III.21; see Table III.9) and all 
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carbon assignments were confirmed with the HSQC experiment as expected (Pretsch E. 

et al., 2000). 

Table III.9. 13C NMR data for (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic 
acid II.7 and for compounds III.19-III.23 (CDCl3, a100 MHz; δ in ppm, J in Hz). 

Carbon II.7 III.19 III.20 III.21 III.22 III.23 

1 28.89 28.82 28.95 29.81 29.80 29.80 
2 22.51 22.89 22.57 22.89 22.90 22.90 
3 40.88 41.36 41.40 41.35 41.30 41.30 
4 36.30 36.52 36.30 36.51 36.50 36.50 
5 145.17 146.13 145.37 146.11 146.10 146.10 
6 116.02 115.20 115.99 115.19 115.20 115.20 
7 31.34 31.06 31.39 31.05 31.00 31.00 
8 32.85 32.82 32.77 32.81 32.80 32.80 
9 41.61 41.22 40.96 41.20 41.20 41.20 

10 40.25 38.93 40.14 38.91 38.90 38.90 
11 74.97 72.96 74.84 72.95 72.90 72.90 
12 41.69 42.12 40.24 42.10 42.20 42.10 
13 159.78 140.08 139.05 140.09 140.40 140.00 
14 117.72 121.91 121.60 121.91 121.90 122.10 
15 171.05 61.04 61.06 60.93 61.70 61.40 
16 18.99 16.45 16.28 16.46 16.60 16.50 
17 17.15 17.25 17.23 17.25 17.30 17.20 
18 28.14 27.71 28.17 27.69 27.70 27.70 
19 29.72 29.88 29.74 29.88 29.90 29.90 
20 11.84 12.60 11.88 12.61 12.60 12.60 

11-OCOCH3 170.67 --- --- --- --- --- 
11-OCOCH3 20.82 --- --- --- --- --- 

1´ --- 174.49 174.43 173.70 --- --- 
2´ --- 27.57 27.54 36.19 --- --- 
3´ --- 9.12 9.10 18.45 --- --- 
4´ --- --- --- 13.66 --- --- 
1´´ --- --- 173.97 --- --- --- 
2´´ --- --- 27.82 --- --- --- 
3´´ --- --- 9.39 --- --- --- 

OBz-1´ --- --- --- --- 130.30 122.70 
OBz-2´ and 6´ --- --- --- --- 129.60 131.60 
OBz-3´ and 5´ --- --- --- --- 128.30 113.50 

OBz-4´ --- --- --- --- 132.90 163.30 
OBz-7´ --- --- --- --- 166.60 166.40 
PhOMe --- --- --- --- --- 55.40 
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III.4. 2β-(4-hydroxy)benzoyloxy-11β-hydroxy-4(5→11),20(10→5) 
diabeo-5(10),6,8,13-abietatetraen-12-one III.24 

 

 

 

 

                                                                               

                                 II.19                                   III.24. R =                         , III.25 R = H 

The 2β-(4-hydroxy) benzoyloxy derivative of microstegiol III.24 was obtained 

from parvifloron D II.19 (Rüedi P.and Eugster C.H., 1978; Van Zyl R.L. et al., 2008) 

which was isolated from an acetone extract of Plectranthus ecklonii Benth. (see 

Chapter II and V).  

 Treatment of a dichloromethane solution of parvifloron D II.19 with acid-

washed molecular sieves, for 24 hours at room temperature, gave a complex mixture 

of compounds. Column chromatography allowed the isolation of III.24, the main and 

the more polar product of the reactional mixture (see Chapter V). 2β-(4-

hydroxy)benzoyloxy-11β-hydroxy-4(5→11),20(10→5)diabeo-5(10),6,8,13-

abietatetraen-12-one III.24 had a molecular formula C27H30O5 (the same of the starting 

material II.19). The 1H and 13C NMR spectra of III.24 (Table III.10) were almost identical 

to the microstegiol III.25 data (Ulubelen A. et al., 1992). Moreover the observed 

differences were consistent with the presence, in the III.24 of a 4-hydoxybenzoyloxy 

group attached to the C-2 position instead of the C-2 methylene group of III.25.  
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Table III.10. 1H and 13C NMR spectroscopic data for compound III.24 (CDCl3, 500 
MHz(1H) and 125 MHz (13C); δ in ppm, J in Hz). 

Position δC δH HMBC (H→C) 

1 33.60 CH2 3.11 dt [J = 12.9,2.1 (W-type coupling)], eq 

H-1α 

C-2, C-3, C-5, C-9, C-10 

  4.04 dd (J = 12.9, 11.8), axb H-1β C-2, C-3, C-5, C-9, C-10 
2 70.22 CH 4.85 dddd (J = 12.3, 11.8, 3.7, 2.1), ax H-2α C-7´ 
3 47.61 CH2 1.65 ddd [J = 12.8, 3.7, 2.1 (W-type 

coupling)], eq H-3α 
C-1, C-2, C-4, C-11, C-
18, C-19 

  2.73 dd (J = 12.8, 12.3), ax H-3β C-1, C-2, C-4, C-11, C-
18, C-19 

4 41.12 qC -  
5 136.12 qC -  
6 130.67 CH 7.13 br d (J = 7.9) C-5, C-7, C-8, C-10 
7 127.81 CH 6.97 d (J = 7.9) C-5, C-6, C-8, C-9, C-14 
8 128.90 qC -  
9 139.54 qC -  
10 139.43 qC -  
11 83.51 qC 4.63 s, (OH-11)  C-9, C-11 and C-12 

12 205.74 qC -  
13 141.25 qC -  
14 141.05 CH 7.00 t [J = 1.2(long-range coupled with both 

H-6 and H-15 protons)] 

C-7, C-8, C-9, C-12, C-
13, C-15 

15 27.14 CH 3.03 septuplet of d (J = 6.8, 1.2) C-12, C-13, C-14, C-16, 
C-17 

16a 20.93 CH3 1.22 d (J = 6.8) C-13, C-15, C-17 
17a 22.08 CH3 1.16 d (J = 6.8) C-13, C-15, C-16 
18 28.96 CH3 0.85 s, eq Me-18 C-3, C-4, C-11, C-19 
19 21.87 CH3 0.88 s, ax Me-19 C-3, C-4, C-11, C-18 
20 21.38 CH3 2.42 s C-5, C-6, C-10 
1´ 123.20 qC -  
2´,6´ 131.92 CH 7.98 d (J = 8.8) C-1´, C-3´, C-4´, C-7´ 
3´,5´ 115.15 CH 6.86 d (J = 8.8) C-1´,  C-2´, C-4´ 
4´ 159.85 qC 5.74 br, (p OH-Ph) 

 

 

7´ 165.75 qC -  
aInterchangeable signals; bax and eq designate axial and equatorial hydrogen, respectively, and for positions 18 and 19 axial or 

equatorial methyl substituents. 
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The HMBC correlations observed between the protons Me-20 and the carbons 

C-5, C-6 and C-10, and between the protons Me-18 and Me-19 and the carbons C-3, C-

4 and C-11, as well as those between the OH-11 and the carbons C-9, C-11 and C-12 

(Table III.10), supported that III.24 arises from the abietane skeleton of II.19 by a 

4(5→11),20(10→5)diabeo-rearrangement. 

 The absolute configuration of III.24 and the stereochemistry of its seven-

membered ring substituents were established as follows. The C-2 asymmetric centre 

must have the same absolute stereochemistry in II.19 (Rüedi P. and Eugster C.H., 1978) 

and III.24, and the H-2 proton of III.24 is axially oriented because it showed two trans 

diaxial (J2,1 = 11.8 Hz and J2,3 = 12.3 Hz) and two cis axial / equatorial (J2,1 = 2.1 Hz 

and J2,3 = 3.7 Hz) vicinal couplings (Table III.10). Moreover, NOESY-1D experiments 

were in agreement with a cis spatial relationship between the 2-4-hydroxybenzoate 

and the hydroxyl group at C-11 because irradiation at  2.73 (H-3 axial proton) caused 

NOE enhancement in the signals of the H-1, H-3, OH-11 and Me-18 protons ( 4.04, 

1.65, 4.63 and 0.85, respectively), whereas the signals of the H-1, H-3 and Me-19 

(3.11, 1.65 and 0.88, respectively) were enhanced when the proton H-2 ( 4.85) 

was irradiated. In addition, irradiation of the C-11 hydroxyl proton ( 4.63) produced 

NOE enhancement only in the signals of the H-1 and H-3 protons. 

 The formation of a compound such as III.24 starting from parvifloron D II.19 

under acid catalysis is not surprising, and should be rationalized as it is outlined in 

Figure III.3. Compound II.19 rearranges, via a C-10 carbonium ion intermediate A 

(Karanatsios D. et al., 1966; Matsumoto T. et al., 1995), to the 4,5-seco-20(10→5)abeo-

abietane B, a class of rearranged abietanes that have been found in several Labiatae 

plants (Sexmero-Cuadrado M.J. et al., 1992; Li M. et al., 2000; Ulubelen A. et al.,1992, 

Ulubelen A. et al., 1997b). 12-O-Deprotonation of B followed by a stereoselective 

attack of the 9,11-aromatic bond from the si-face on the 3,4-olefin produces 

compound III.24. The total stereoselectivity for the conversion of II.19 into III.24 could 

be attributed to the presence in the former of a chiral centre at C-2 (Acuña A.U. et al., 

2009). 
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Figure III.3. Formation of compound III.24 from parvifloron D II.19. 

The use of acid-washed molecular sieves to obtain 4(5→11),20(10→5) diabeo-

rearranged derivatives from suitable abietane diterpenoids looks particularly attractive 

due to the noteworthy simplification of the experimental procedure, the avoidance of 

more acidic promoters (Karanatsios D. et al., 1966; Matsumoto T. et al., 1995; 

Sexmero-Cuadrado M.J. et al., 1992; Simões M.F. et al., 1986) and the mildness of the 

reaction conditions. This is the first report on the transformation of an abietane 

diterpene into a microstegiol derivative by an acid-catalyzed rearrangement. 
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IV.1. Introduction 

 

This chapter covers the biological activity namely antimicrobial, antioxidant and 

anti-inflammatory activities of the extracts and isolated compounds studied on 

Chapter II and of diterpenoid derivatives prepared on Chapter III. 

The P. ornatus and P. ecklonii extracts were prepared by means of an increasing 

polarity set of solvents, n-hexane, ethyl acetate, dichloromethane, acetone, methanol 

and methanol-water (7:3) and its antimicrobial activities were evaluated. P. ornatus 

acetonic extract showed the more potent growth inhibitory effect against E. faecalis 

with a MIC value of 31.25 μg/mL. In addition, it demonstrated a MIC value of 125.00 

μg/mL towards S. aureus, the same value obtained with the methanol-water extract. 

The P. ecklonii extracts and the remaining extracts were devoid of activity (MIC 

>125.00 or >250.00 μg/mL) or showing weak MIC values of 125.00 μg/mL against the 

standard Gram-positive, Gram-negative bacteria and C. albicans tested.  

Antimicrobial assays of P. ecklonii and P. ornatus acetone extract column 

chromatographic fractions of the whole plants were determinated using the agar 

diffusion method. All the fractions of P. ornatus exhibited negative results against all 

the tested microorganisms and P. ecklonni fractions from hexane:EtOAc 25% to 

EtOAc:MeOH 10% to 40% (PE2 and PE5-PE8) exhibited positive results against S. aureus 

and M. smegmatis, with the remaining fractions showing no antimicrobial activity. The 

fractions that showed antimicrobial activity were elected for exhausted gradient 

column chromatography which resulted in the isolation and elucidation of compounds 

studied in Chapter V. Parvifloron D II.19, previously reported as an antibacterial  

metabolite from P. ecklonii (Nyila M.A. et al., 2009), inhibited E. faecalis ATCC 51299 

(low-VRE: vancomycin resistant Enterococcus) and E. faecalis FFHB with MIC values of 

7.81 and 3.90 μg/mL, respectively, and showed lower MIC values (15.62 μg/mL) 

against both S. aureus ATCC 43866 and CIP 106760. 

7α-Acetoxy-6β-hydroxyroyleanone III.1, isolated from Plectranthus 

grandidentatus revealed growth inhibitory activity against Gram-positive bacteria. 

Searching for additional royleanone abietane templates, the antibacterial activity of 
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eleven derivatives of III.1 (III.3-III.13) was studied. The esters III.5, III.6 and III.10 are 

more active than III.1 against Enterococcus and Staphylococcus strains (MIC values 

ranging from 0.98 to 15.62 μg/mL). Moreover, 7-acetoxy-6-hydroxy-12-O-(4-

chloro)benzoylroyleanone III.6 gave rise to a  new antibacterial-prototype (MIC values 

of 3.91-15.62 μg/mL against Staphylococcus and of 0.98-3.91 μg/mL against 

Enterococcus spp.). The hydrophobic extra-interactions with bacterial targets seem to 

play an important role on the activity of royleanones derivatives III.3-III.13. 

11R*-Acetoxyhalima-5,13E-dien-15-oic acid II.7, isolated from the acetone 

extract of P. ornatus, exhibited growth inhibitory activity against five Staphylococcus  

and  five Enterococcus strains [MIC values 15.62 μg/mL (43.15 μM) – 62.50 μg/mL 

(172.65 μM)]. Diterpenes with a halimane skeleton are rarely isolated and their 

pharmacologic properties remain unknown. To study the potential of II.7 as 

antibacterial prototype some derivatives III.15-III.17, III.19-III.23 were obtained from 

II.7 and the majority were tested against the same ten Gram positive bacteria. The 

more active was the (11R*,13E)-halima-5,13E-diene-11,15-diol III.17 with MIC values 

of 15.62 μg/mL (51.05 μM) to 31.25 μg/mL (102.12 μM).  

Parvifloron D II.19, previously reported as an antibacterial  metabolite from P. 

ecklonii (Nyila M.A. et al., 2009), inhibited E. faecalis ATCC 51299 (low-VRE: 

vancomycin resistant Enterococcus) and E. faecalis FFHB with MIC values of 7.81 and 

3.90 μg/mL, respectively, and showed lower MIC values (15.62 μg/mL) against both S. 

aureus ATCC 43866 and CIP 106760. 

The new microstegiol derivative III.24 inhibited the growth of some 

Staphylococcus and Enterococcus strains with significant MIC values ranging from 3.91 

to 7.81 μg/mL. 
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IV.2.Antimicrobial activity 

 

IV.2.1. Antimicrobial activity of P. ornatus extracts 
 
 

Plectranthus ornatus Codd. is reported to be used in Brazil folk medicine, due to 

the antibiotic properties of its leaves, besides the more referred use for digestive 

ailments. The antimicrobial activity of six extracts of P. ornatus were screened (see 

Chapter V; Rijo P. et al., 2007) and their MIC values were determined against a 

collection of Gram-positive and Gram-negative bacteria and a yeast using the 

microdilution method. 

The initial screening of the antimicrobial activities was carried out on P. ornatus 

extracts (PO) prepared by maceration of dried plant, by means of an increasing polarity 

set of solvents from n-hexane (PO-H), ethyl acetate (PO-EA), dichloromethane (PO-D), 

acetone (PO-A), methanol (PO-M) to the solvent binary mixture MeOH-H2O (7:3; PO-

MW; see Chapter V).  

The acetonic extract from P. ornatus showed the more potent growth inhibitory 

effect against E. faecalis with a MIC value of 31.25 μg/mL (see Table IV.1). Additionally, 

this extract revealed the same MIC value (125.00 μg/mL) towards S. aureus observed 

for the methanol-water extract. The n-hexane, ethyl acetate, dichloromethane, 

acetone, methanol and extracts were devoid of activity (MIC >125.00 μg/mL) against 

the standard Gram-positive, Gram-negative bacteria and C. albicans (see Table IV.1). 
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Table IV.1. MICa values against a collection of Gram-positive and Gram-negative 
bacteria and a yeast, using the microdilution method, for six extractsc prepared from P. 
ornatus (PO). 

Extracts 
and 

Controlsb 

M. 
smegmatis 
ATCC 607 

E. coli 
ATCC 
25922 

P.aeruginosa 
ATCC  
27853 

S.aureus 
ATCC 
25923 

C.albicans 
ATCC 
10231 

E. hirae 
CIP 

5855 

PO-H >250 >125 >125 >250 >125 >125 
PO-EA >250 >125 >125 >250 >125 >125 
PO-D >250 >125 >125 >250 >125 >125 
PO-M >250 >125 >125 >250 >125 >125 

PO-MW >250 >125 >125 125 >125 >125 
PO-A ND ND ND 125 ND ND 

DMSO 250 125 125 250 125 125 
Positive 
control 

RIF 
<0.48 

NOR 
<0.48 

VAN >125 
Nor 0.97 

VAN 
1.95 

KET 
31.25 

VAN 
0.97 

ND - not determined; 
a
Minimal inhibitory concentrations of the extracts given in μg/mL; 

b
concentrations 

of extracts and controls given in 1 mg/mL; 
c
P. ornatus extracts (PO) from: n-hexane (PO-H), ethyl acetate 

(PO-EA), dichloromethane (PO-D), acetone (PO-A), methanol (PO-M) and MeOH-H2O (7:3; PO-MW); RIF 
= Rifampicine, NOR = Norfloxacin, VAN = Vancomycin, KET = Ketoconazole. 
 

Table IV.2. MICa values against a four Gram-positive Staphylococcus strains 
using the microdilution method for acetone extract from P. ornatus (PO-A). 

Extract and  
Controls 

S. aureus 
ATCC 43866 

S. aureus 
ATCC 700699 

S. aureus 
CIP 106760 

S. aureus 
FFHB 29593b 

PO-A 125.00 ND ND 125.00 
Vancomycine 3.90 7.81 3.90 1.95 

Meticillin  1.95 15.62 >250 0.97 
DMSO 250.00 250.00 250.00 250.00 

ND - not determined;
 a

Minimal inhibitory concentrations of the extracts given in μg/mL;
 b

FFHB species 
are clinical isolates from Hospital do Barreiro, deposited on the Microbiology Laboratory, Pharmacy 
Faculty of Lisbon University;   

 

Table IV.3. MICa values against a four Gram-positive Enterococcus strains using 
the microdilution method for acetone extract from P. ornatus (PO-A). 

Extract and 
Controls 

E. faecium 
FFHB 435628b 

E. faecalis 
FFHB 427483b 

E. flavescens 
ATCC 49996 

E. faecalis 
ATCC 51299c 

PO-A 62.50 >125.00 31.25 31.25 
Vancomycine 0.97 1.95 3.90 62.50 

DMSO 125.00 125.00 125.00 125.00 
a
 Minimal inhibitory concentrations of the extracts given in μg/mL; 

b
FFHB species are clinical isolates 

from Hospital do Barreiro, deposited on the Microbiology Laboratory, Pharmacy Faculty of Lisbon 
University; 

c
VRE. 
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IV.2.2. Antimicrobial activity of P. ecklonii extracts 
 
 

The antimicrobial activity of six extracts of P. ecklonii (PE; see Chapter V) were 

screened and their MIC values determined against a collection of Gram-positive and 

Gram-negative bacteria and a yeast using the microdilution method.  

The initial screening of the antimicrobial activities was carried on extracts 

prepared from P. ecklonii by means of an increasing polarity set of solvents, n-hexane 

(PE-H), ethyl acetate (PE-EA), dichloromethane (PE-D), acetone (PE-A), methanol (PE-

M), and methanol-water (7:3; PE-MW; see Chapter V). 

 

Table IV.4. MICa values against a collection of Gram-positive and Gram-negative 
bacteria and a yeast using the microdilution method for five extracts prepared from 

P.ecklonii. 

Extracts 

and 
Controlsb  

M.smegmatis 
ATCC  
607 

E. coli 
ATCC 
25922 

P.aeruginosa 
ATCC  
27853 

S.aureus 
ATCC 
25923 

C.albicans 
ATCC 
10231 

E. hirae 
CIP 

5855 

PE-H >250 >125 >125 125 >125 >125 
PE-EA 125 >125 >125 125 >125 >125 
PE-D 125 >125 >125 125 >125 >125 
PE-M >250 >125 >125 >250 >125 >125 

PE-MW >250 >125 >125 125 >125 >125 
PE-A ND ND ND ND ND ND 

DMSO 250 125 125 250 125 125 
Positive 
control 

RIF <0.48 NOR 
<0.48 

NOR 0.97 VAN 
1.95 

KET 
31.25 

VAN 
0.97 

ND - not determined, 
a
Minimal inhibitory concentrations of the extracts given in μg/mL; 

b
concentrations 

of extracts and controls given in 1 mg/mL; 
c
P. ecklonii extracts (PE) from: n-hexane (PE-H), ethyl acetate 

(PE-EA), dichloromethane (PE-D), acetone (PE-A), methanol (PE-M) and MeOH-H2O (7:3; PE-MW); RIF = 
Rifampicine, NOR =  Norfloxacin, VAN = Vancomycin, KET = Ketoconazole. 
 
 

The n-hexane, ethyl acetate, dichloromethane, methanol, methanol:water (7:3) 

and acetone extracts were devoid of activity (MIC >125.00 or >250.00 μg/mL) or 

showing weak MIC values of 125.00 μg/mL against the standard Gram-positive, Gram-

negative bacteria and C. albicans tested (see Table IV.4). 
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IV.2.3. Qualitative antimicrobial activity of P. ornatus and P. 
ecklonii acetone extract fractions 
 
 

The antimicrobial assays of Plectranthus ecklonii Benth. and P. ornatus Codd. 

acetone extract fractions of the whole plants were determinated. Fractions with a 

similar composition (see Chapter V) were pooled to give eight major fractions for P. 

ornatus (PO1-PO8; Table V.1) and eight major fractions for P. ecklonii (PE1-PE8; Table 

V.11).  

Antimicrobial activities were tested against Psedomonas aeruginosa, 

Escherischia coli, Staphylococcus aureus, Candida albicans and Mycobacterium 

smegmatis (see section V.8.1). The disc-diffusion method was used to determine the 

growth inhibition caused by plant extracts and fractions. The extracts and fractions in 

study were dissolved in DMSO with a concentration of 1 mg/mL and 15 µL or 30 µL 

were tested, using the agar diffusion method. The ratio of the inhibition zone (mm) 

produced by plant extract or fraction was used to express antibacterial activity. All the 

fractions and extracts of P. ornatus exhibited negative results for all biological assays, 

no inhibition zone (mm) was produced by plant extract or fraction. P. ecklonni fractions 

PE2 and PE5-PE8 exhibited positive results against S. aureus and M. Smegmatis as 

presented in Table IV.5, with the remaining extract and fractions presenting no 

antimicrobial activity. The fractions that showed antimicrobial activity were elected for 

exhausted gradient column chromatography which resulted in the isolation and 

elucidation of compounds studied in Chapter II. 
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Table IV.5. Positive results of P. ecklonni fractions PE2 and PE5-PE8 against S. 
aureus and M. smegmatis. 

P. 
ecklonni  
fractions 

/ g 

 
Polarity 

S. aureus inhibition 
zone (mm) 

15 µL / 30 µL  
applied  

M. Smegmatis 
inhibition zone 

(mm) 
15 µL / 30 µL applied   

PE2 / 13.7 From hexane:EtOAc  
25% to 50%  

8.5 / 9.0 8.0 / 8.5 

PE5 / 37.7 From hexane:EtOAc  
60% to 75%  

9.0 / 8.0 8.0 / 8.0 

PE6 / 27.5 From hexane:EtOAc  
75% to 90%  

  -  / 7.5   -   / 8.5 

PE7 / 5.5 From EtOAc 100%  
to 10% MeOH 

8.0/ 7.0 -   /   - 

PE8 / 49.8 From EtOAc:MeOH  
10% to 40%  

9.0 / 8.0 -   /   - 

 
  

 

IV.2.4. Antimicrobial activity of diterpenoids isolated from P. 
ornatus 

 

 

The diterpenoids isolated from P. ornatus (see Chapter V) 6-O-acetylforskolin 

II.1, 1,6-di-O-acetylforskolin II.2, 1,6-di-O-acetyl-9-deoxyforskolin II.3, rhinocerotinoic 

acid II.6, 11R*-acetoxyhalima-5,13E-dien-15-oic acid II.7, and plectrornatin C II.17 

were tested against a collection of Gram-positive and Gram-negative bacteria and a 

yeast using preliminary disk diffusion tests. The antibacterial activities against M. 

smegmatis, S. aureus, E. coli and C. albicans, showed the values of 9.0, 16.0, 7.0 and 

7.0 mm, respectively, as diameters of inhibitory zones for compound 11R*-

acetoxyhalima-5,13E-dien-15-oic acid II.7 and 6.5 mm against E. coli, for compound 

rhinocerotinoic acid II.6. The microdilution method was used against the same 

collection of Gram-positive and Gram-negative bacteria and a yeast for compounds II.6 

and II.7 as shown in Table IV.6. 
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Table IV.6. MICa values against a collection of Gram-positive and Gram-negative 
bacteria and a yeast using the microdilution method for diterpenoids II.1-II.3, II.6, II.7 
and II.17 isolated from P. ornatus. 

Compound M. 
smegmatis 
ATCC 607 

E. coli 
ATCC 
25922 

P.aeruginosa 
ATCC  
27853 

S.aureus 
ATCC 
25923 

C.albicans 
ATCC 
10231 

B. 
subtillis 

ATCC 
6633 

II.1 > 250 > 125 > 125 > 250 > 125 125 
II.2 >250 > 125 > 125 > 250 > 125 ND 
II.3 > 250 > 125 > 125 > 250 > 125 ND 
II.6 >250 ND ND ND ND 62.50 
II.7 125 ND ND ND ND 31.25 

II.17 > 250 > 125 > 125 > 250 62.5 ND 
DMSO 250 125 125 250 125 125 

Positive 
control 

RIF  
<0.48 

NOR 
<0.48 

NOR 0.97 VAN 1.95 KET 31.25 RIF 0.48 

ND - not determined, 
a
Minimal inhibitory concentrations of the extracts given in μg/mL; RIF = 

Rifampicine, NOR = Norfloxacin, VAN = Vancomycin, KET = Ketoconazole. 

 

Compounds II.6 and II.7 were also tested against methicillin-resistant 

Staphylococcus aureus (MRSA) and low vancomycin-resistant Enterococcus faecalis 

(VRE) as presented in Tables IV.7 and IV.8. 

 

Table IV.7. MICa values against four Gram-positive Enterococcus strains using 
the microdilution method for diterpenoids II.6 and II.7 isolated from P. ornatus. 

Compounds  E. faecalis  
ATCC  

51299b 

E. flavescens 
ATCC 

49996 

E. faecium  
FFHB  

435628c 

E. faecalis  
FFHB 

427483c 

II.6 62.50 >125.00 >125.00 >125.00 
II.7 0.48 62.50 1.95 15.60 

DMSO 125.00 125.00 125.00 125.00 
Vancomycin >500.00 3.90 0.48 0.97 

a
 Minimal inhibitory concentrations of the compounds is given in μg/mL; 

b
Low level vancomycin-

resistant Enterococcus (VRE); 
c
FFHB species are clinical isolates from Hospital do Barreiro, deposited on 

the Microbiology Laboratory, Pharmacy Faculty of Lisbon University; 
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Table IV.8. MICa values against four Gram-positive Staphylococcus strains using 
the microdilution method for diterpenoids II.6 and II.7 isolated from P. ornatus. 

Compounds S. aureus  
ATCC  

700699 

S. aureus 
CIP 

106760b 

S. aureus 
ATCC 

43866 

S. aureus 
FFHB 

29593c 

II.6 250.00 250.00 250.00 250.00 
II.7 250.00 250.00 3.90 7.81 

DMSO 250.00 250.00 250.00 250.00 
Vancomycin 3.90 3.90 0.97 0.97 

a
 Minimal inhibitory concentrations of the compounds is given in μg/mL; 

b
MRSA; 

c
FFHB species are 

clinical isolates from Hospital do Barreiro, deposited on the Microbiology Laboratory, Pharmacy Faculty 
of Lisbon University; 

 
 
 
 

IV.2.5. Antimicrobial activity of diterpenoids isolated from P. 
ecklonii 

 

 

IV.2.5.1. Antimicrobial activity of sugiol II.18 

 

The growth inhibition properties of sugiol II.18 were tested against P. 

aeruginosa, E. coli, S. aureus, C. albicans, E. hirae and M. smegmatis using the disc-

diffusion method.  Fraction PE2 showed antibacterial activity against S. aureus and M. 

smegmatis (see Table IV.5). Bioassay-guided chromatographic fractionation of the 

antibacterial active PE2 fraction led to the isolation of sugiol II.18. The Minimum 

Inhibitory Concentration value (MIC) of sugiol II.18 was evaluated against four 

Staphylococcus aureus strains and five strains of Enterococcus strains. Sugiol II.18 

showed MIC value of 62.5 μg/mL against E. faecalis FFHB 427483 (the remaining MIC 

values were 125-250 μg/mL). The low activity exhibited by sugiol II.18 was in 

agreement with a very low antibacterial activity previously reported for this compound 

(Politi et al., 2003; Ulubelen A. et al., 2000). 
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IV.2.5.2. Antimicrobial activity of parvifloron D II.19 

Purification of the fractions PE5-PE8 (Table IV.5) led to the isolation of 

parvifloron D II.19 and the antibacterial activity of this diterpenoid was carried out 

being outlined in Table IV.9. 

 

Table IV.9 MICa values against a collection of Gram-positive and Gram-negative 
bacteria and a yeast for parvifloron D II.19 isolated from P.ecklonii. 

Compounds M. 
smegmatis 
ATCC 607 

E. coli 
ATCC 
25922 

P.aeruginosa 
ATCC 27853 

 

S.aureus 
ATCC 
25923 

C.albicans 
ATCC 
10231 

E. hirae 
CIP 

5855 

II.19 125 >125 >125 125 >125 62.5 
DMSO 250 125 125 250 125 125 

Positive 
control 

RIF  
<0.48 

NOR 
<0.48 

NOR  
0.97 

VAN 
1.95 

KET 
31.25 

VAN 
0.97 

a
Minimal inhibitory concentrations given in μg/mL; RIF = Rifampicine, NOR = Norfloxacin, , VAN =  

Vancomycin, KET = Ketoconazole. 

 

Table IV.10. MICa values against a four Gram-positive Staphylococcus strains for 
parvifloron D II.19 isolated from P. ecklonii. 

Compound S. aureus 
FFHB 29593b,c 

S. aureus 
ATCC 43866 

S.aureus 
CIP 106760b 

S.aureus 
ATCC 700699 

Parvifloron D 
II.19 

125 15.62 15.62 62.5 

DMSO 250 250 250 250 
VAN 3.90 3.90 3.90 7.81 
TET <0.48 125 31.25 62.50 
OXY <0.48 31.25 31.25 62.50 
AMP 125 >250 >250 <0.48 
MET >250 1.95 >250 15.62 

a
Minimal inhibitory concentrations given in μg/mL; VAN = Vancomycin; TET = Tetracycline; OXY = 

Oxytetracycline; AMP = Ampicillin; MET = Meticillin; 
b
MRSA; 

c
 FFHB species are clinical isolates from 

Hospital do Barreiro, deposited on the Microbiology Laboratory, Pharmacy Faculty of Lisbon University. 
 

 
. 
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Table IV.11. MICa values against Gram-positive Enterococcus strains for 
parvifloron D II.19. 

Compound E. faecalis 
ATCC 

51299b 

E. flavescens 
ATCC  

49996 

E. faecalis 
CIP 

104476 

E. faecium 
FFHB 

435628c 

E. faecalis 
FFHB 

427483c 

II.19 7.81 15.62 7.81 31.25 3.90 
DMSO 125 125 125 125 125 

Vancomycin 62.5 3.90 31.25 0.97 1.95 
Tetracycline <0.48 <0.48 <0.48 <0.48 31.25 

Ampicillin <0.48 <0.48 <0.48 >125 <0.48 
a
Minimal inhibitory concentrations given in μg/mL; 

b
Low level vancomycin-resistant Enterococcus (VRE); 

c
 FFHB species are clinical isolates from Hospital do Barreiro, deposited on the Microbiology Laboratory, 

Pharmacy Faculty of Lisbon University. 
 

IV.2.6. Antimicrobial activity of the spiro-abietane diterpenoid 
II.20 isolated from P. porcatus and of the beyerane diterpenoid II.22 
isolated from P. saccatus  

 

 

The antimicrobial activity against reference bacteria (M. smegmatis, E. coli, P. 

aeruginosa and E. faecalis) and yeast (C. albicans), were evaluated for diterpenoids 

(13S,15S)-6β,7α,12α,19-tetrahydroxy-13β,16-cyclo-8-abietene-11,14-dione II.20 and 

ent-7α-acetoxy-15-beyeren-18-oic acid II.22, using the microdilution method. Among 

Gram-positive bacteria, two Staphylococcus spp. and two Enterococcus spp. were 

tested as shown in Tables IV.12 and IV.13. 

 

Table IV.12. MICa values against two Gram-positive Staphylococcus spp. using the 
microdilution method for the spiro-abietane diterpenoid II.20 isolated from P. 
porcatus and beyerane diterpenoid II.22 from P. saccatus. 

Compound S. aureus  

ATCC 
700699 

S. aureus 

CIP 
106760b 

S. aureus 

ATCC 
43866 

S. aureus 

FFHB 
29593b 

S. aureus 

ATCC 
6538 

S. 
epidermis  

ATCC 12228 

II.20 125 >250 125 125 62.50 >250 
II.22 125 125 125 125 125 125 

DMSO 250 250 250 250 250 250 
Rifampicin <0.49 500 <0.49 <0.49 <0.49 <0.49 

a
Minimal inhibitory concentrations given in μg/mL; 

b
MRSA. 
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Table IV.13. MICa values against a two Gram-positive Enterococcus spp. for the 
spiro-abietane diterpenoid II.20 isolated from P. porcatus and of the beyerane 
diterpenoid II.22 from P. saccatus. 

Compound E. faecalis 

ATCC 51299b 

E. faecalis 

H164 

E. hirae 

ATCC 10541 

II.20 >125 >125 >125 
II.22 >125 >125 >125 

Rifampicin <0.49 <0.49 <0.49 
DMSO 125 125 125 

a
Minimal inhibitory concentrations given in μg/mL; 

b
Low level vancomycin-resistant Enterococcus (VRE). 

 

The new diterpenes showed no activity against Gram-negative bacteria and 

Candida albicans (yeast strain). Among Gram-positive bacteria, the lower MIC value 

evaluated was 62.50 μg/mL for the abietane II.20 against Staphylococcus aureus ATCC 

6538. 

 

IV.2.7. Antimicrobial activity of royleanone derivatives III.3-III.13 

 

A previous antimicrobial studies on royleanones revealed that they were active 

against Staphylococcus and Enterococcus species. Moreover, a preliminary SAR 

(structure activity relationships) analysis of 10 natural abietanes led to the conclusion 

that the presence of a C ring with a 12-hydroxy-p-benzoquinone moiety and an 

oxidized B ring at C-6/C-7 positions were significant for the activity (Gaspar-Marques C. 

et al., 2006). In addition, (Yang Z. et al., 2001) reported that the presence of additional 

benzyl groups influenced the anti-MRSA activities of phenolic abietanoids. Along with 

others similar diterpene metabolites active against Gram-positive bacteria are totarol 

and abietic acid. These diterpenes have the ability to transverse or damage the 

bacterial cytoplasmatic membrane due to their amphipathic character. Besides that, it 

was described that antibacterial activity may be modulated through an increase in 

lipophilicity and/or in hydrogen-bond donor/acceptor groups of the hydrophilic 

moiety. However, nor the complete mechanism of action neither their biological 

targets are entirely known (Urzúa A. et al. 2008; Bernabeu A. et al. 2002).  
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  Trying to further identify the structural requirements involved in the activity 

against Gram-positive bacteria, 7α-acetoxy-6β-hydroxyroyleanone III.1 have been 

selected as a template because it has revealed a potent in vitro anti-Gram positive 

activity (Gaspar-Marques C. et al., 2006).  Thus, a set of eleven derivatives III.3-III.13 

(see Chapter VI), all being esters of HO-C6 and/or HO-C12, were hemisynthesised 

following the procedures as previously described (see Chapter III; Rijo P. et al., 2010). 

These analogues were prepared having in mind the plausible importance of the H-

binding groups (hydroxyl, quinone and ester), van der Waals interactions and 

hydrophobic binding moieties (hydrocarbon skeleton, acyl and aromatic features) in 

the interaction with the bacterial targets.   

 The aim of the hemisynthesis of these derivatives was to evaluate the potential 

utility of the substituents groups, carried by ester diterpenoids III.3-III.13, on the 

antibacterial activity of III.1 against methicillin-sensible and -resistant S. aureus, as 

well, vancomycin-sensible and -resistant Enterococcus spp.  

A previous assay showed that all derivatives III.3-III.13 were inactive against 

Escherichia coli and Pseudomonas aeruginosa (MIC values >125 μg/ml), in agreement 

with the former observations that royleanones were inactive towards most of Gram-

negative bacteria (Gaspar-Marques C. et al., 2006; Yang Z. et al. 2001).  

Despite template III.1 to be almost equipotent towards both Staphylococcus 

and Enterococcus bacteria, all derivatives III.3-III.13 showed higher inhibitory growth 

properties against Enterococcus spp. Than against Staphylococcus spp. Compounds 

III.3-III.13 inhibited vancomycin-resistant E. faecalis strains (Table IV.14) showing MIC 

values ranging  from 0.97 to 62.5 μg/mL (vancomycin MIC value of 62.50 μg/mL). 

These compounds III.3-III.13 also inhibited the MRSA strains (MIC range 3.90–7.81 

μg/mL) (Table IV.15). Nevertheless, the best MIC values resulting from the growth 

inhibition of MRSA and low-VRE strains were 1.95 to 7.81 μg/mL by III.5-III.6 and III.10. 

This may be a key-step in the selection of the mentioned derivatives as new 

antibacterial leads against resistant bacteria.  

Prototype royleanone III.1 has a lipophilic ring system, two hydroxyl groups 

both with potential hydrogen-bond donor/acceptor characteristics (at C6 and C12), but 
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with different electronic and chemical behaviour, as represented in Figure IV.1, and 

three more oxygen atoms with hydrogen-bond acceptor abilities (carbonyl groups). 

Transformation of III.1 resulted in more lipophilic esters with extra hydrogen-bond 

acceptors atoms (mostly oxygen from carbonyl) and with lower number of hydrogen-

bond donor atoms (Rijo P. et al. 2010).  

 

 

    

                              

                                  III.1a                               III.1b 
Figure IV.1 Tautomers a and b (5:95) of 7α-acetoxy-6β-hydroxyroyleanone III.1. 

Horminone is the 7α-hydroxy analogue of III.1. 

 

 The derivatives may be chemically classified into three groups: III.5-III.7 that 

preserved the alcoholic substituent (at C6); III.3-III.4 and III.9-III.10 without any free 

hydroxyl groups; and the remaining III.8 and III.11-III.13 that kept the more acidic HO 

group (at C12) (Figure IV.2). This division corresponds, nearly, to three levels of 

antibacterial activity (based on simple arithmetic mean calculations).  The first group of 

compounds (III.5-III.7), together with III.10, are more active against Enterococcus spp. 

(MIC values ranging from 0.98 to 15.62 μg/mL) being also more active than III.1 (MIC 

7.81–15.62 μg/mL) (Table IV.14). Moreover, 12-O-p-chlorobenzoyl analogue III.6 and 

6, 12-O-propyonyl diester III.10 are the most active compounds against Staphylococcus 

spp. (MIC ranging from 3.90 to 15.62 μg/mL) being also more active than III.1 (MIC 

7.81–31.25 μg/mL) (Table IV.15). The compounds III.3-III.4 and III.9 of the second 

group are less active, against all strains (MIC ranging from 7.81 to 125 μg/mL), than 

III.5-III.7 and III.10. Even so, the abietanes III.3 and III.9, with MIC values of 7.81 

μg/mL, are significantly active against low VRE E. faecalis ATCC 51299 (vancomycin MIC 

of 62.5 μg/mL). Compounds of the third group III.8 and III.11-III.13 showed MIC values 
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that ranges from 15.62 to 62.50 μg/mL against tested bacteria (Tables IV.14 and IV.15) 

revealing, generally, to be less active than III.1.  

 

 

 

 

                                                                           R                                             R1                 
                                                            III.3 R = Bz                     III.8 R1 = 4-NO2- C6H4CO 
             III.5 X = -OMe                        III.4 R = 4-Cl-C6H4CO     III.11 R1 = COCH3     

 III.6 X = -Cl                             III.9 R = COCH3              III.12 R1 = COCH2CH3 

 III.7 X = NO2                          III.10 R = COCH2CH3      III.13 R1 = CO(CH2)2CH3 
 
Figure IV.2. Ester derivatives III.3-III.13 of 7α-acetoxy-6β-hydroxyroyleanone 

III.1. 

The first partial conclusion is that oxygen atom attached to C12, most certainly, 

does not act as hydrogen-bond donor and thus, this kind of interaction is not essential 

for activity. In fact, the more active compounds III.5-III.7 and III.10 have an ester 

functional group on C12. On the contrary, those with a free hydroxyl on C12 (as III.8 and 

III.11-III.13), which could act as hydrogen-bond donor, are less active (Radulovid N. et 

al., 2010). The 1,2,4-quinone structure on the ring C of the major tautomeric form, 

(similarly to the  tautomer III.1b represented on the Figure IV.1), may contribute to 

this behaviour. Moreover, the importance for activity of the OH–C6 III.5-III.7 and III.10, 

as hydrogen-bond donor, is questionable due to its low dissociation capacity and to its 

steric hindrance. However, the role of the hydroxyl groups versus the carbonyl groups 

of the ester functions as hydrogen-bond acceptors was not clarified, based on the 

results obtained in this work. 

Most importantly, the significant increase of the activity revealed by 

compounds III.5-III.7 and III.10, seems to result from the higher lipophilicity brought by 

the aromatic/alkylic motif linked to the ester groups. The aromatic rings may improve 

the activity of antibacterial prototypes through additional interactions both with the 
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hydrophobic regions of the bacterial cell wall and cell membrane – through van der 

Walls interactions – and interacting with the ammonium ions – through induced dipole 

interactions or hydrogen bonding – with peptidoglycan and lipoteichoic acids 

constituents of the membrane system of Gram-positive bacteria (Patrick G.L. 2009 

Chopra I. and Roberts M., 2001).  Compound III.6 showed the highest MIC values (0.98-

15.62 μg/mL) due, must certainly, to the hydrophobic nature of chlorine, favouring the 

activity through extra hydrophobic interactions.  Furthermore, analogues III.5 and III.7 

also reveal interesting antibacterial activities, hypothetically, due to the peculiar 

electronic properties of both methoxyl and nitro groups attached to the benzoyl 

moiety. They would able to interact with an extra binding site of the cell wall and/or 

membrane acting as hydrogen-bond acceptors. The derivative III.10 shows an 

unexpected good activity (MIC range 3.91-15.62 μg/mL) when compared with III.9 

(MIC ranges 7.81-62.50 μg/mL). The extra hydrophobic binding sites carried by the 

alkylic structures around C6 and C12 of III.10 (propyl) seems to fit better to different 

hydrophobic regions of the binding site.  

Positional isomers 12-O-(4-nitro)benzoyl derivative III.7 and 6-(4-nitro)benzoyl 

analogue III.8 showed a considerable difference in activity (MIC range 1.95-15.62 and 

7.81-62.50 μg/mL, respectively) (Tables IV.14 and IV.15), despite the presence of close 

structural features (Figure IV.2). The nitro-benzoyl group may confer a bulkier 

structure to III.8 (around C6) and a quite planar hydrophobic surface to III.7 (around 

C12). The extra hydrophobic moiety linked, to C6, may not correspond to a hydrophobic 

binding site of the bacterial membrane systems, contrary when linked to C12. The same 

reasoning can be applied when III.5 (12-O-(4-methoxy)benzoyl ester) and III.4 (6,12-

O-(4-chloro)benzoyl ester) are compared as potential antibacterial agents (Tables 

IV.14 and IV.15). Derivative III.4 may have either an unfavourable shape and a steric 

hindrance or a wrong spatial distribution of the hydrophobic moieties that prevent the 

efficient binding to bacterial wall, besides a too higher lipophilicity. 

Finally, analogues III.8 and III.11-III.13 carrying dissimilar hydrophobic esters, 

attached to the C6 position, are not good antibacterial agents (Tables IV.14 and IV.15). 

These findings could be attributed either to a bulked steric structure or to an incorrect 
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position of the hydrophobic substituents once oxygen atoms do not seem to play an 

important role on the activity (as hydrogen-bond donors or acceptors).  

The studies carried out by Spiridonov et al (Spiridonov N. et al., 2003) 

suggested that the primary target of royleanones as antimicrobial (and antitumoral) 

agent would be the biological membranes. Their mode of action would be a 

consequence of the protonophoric activity due to the dissociation of the C12 hydroxyl 

group. Theoretical studies carried out by Nicolás et al (Nicolás I. et al., 2003; Nicolás I. 

et al., 2006) postulated that horminone, structurally close to III.1 (Figure IV.1), could 

be correlated with oxytetracycline having a similar bacteriostatic mode of action. Both 

have chelating abilities to form complexes with divalent cations, with preference by 

Mg2+. Oxygen atoms attached to C7 and C14 would behave as Lewis bases and 

coordinate with Mg2+. Thus, horminone should cross the membrane system of bacteria 

(a pH potential driven process) and, within the cytoplasm, should inhibit protein 

synthesis by interaction of the hydrated horminone-Mg2+ complex with ribosomal RNA 

(Nicolás I. et al. 2006; Chopra I. and Roberts M. 2001). Contrary to oxytetracycline, 

horminone and several royleanones (Tada M. and Ishimaru K., 2006; Gaspar-Marques 

C. et al, 2006; Yang Z. et al. 2001) as well as derivatives III.3-III.13 are active mostly 

against Gram-positive bacteria. This may be a consequence of the differences on 

bacterial cell walls. These small molecules could cross the porous cell wall of Gram-

positive bacteria, whilst they only could pass the membrane systems of Gram-negative 

bacteria through the protein porins channels which could reduce their diffusion 

probability. 

Further information from literature, concerning the antimicrobial mode of 

action of other royleanones is unavailable. Therefore, as all compounds (III.1 and III.3-

III.13; Figures IV.1 and IV.2) show a decreased basic character of the oxygen atoms of 

the acetyl group (C7), when compared with the Lewis basic character of the hydroxyl 

(C7) of horminone (Figures IV.1), it is difficult to believe that the mode of action might 

involve the coordination with Mg2+ cation as postulated for horminone, unless esters 

hydrolysis occur. 
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This first approach to find an antimicrobial prototype derivative provided 

compounds with better MIC values. Unfortunately, selectivity against bacterial cells is 

not satisfactory. Actually, calculations of the selective index (SI = GI50 (VERO cells) / 

MIC values), anchored in cytotoxicity data on Vero cells previously reported (Rijo P. et 

al., 2010) and on MIC values (Tables IV.14 and IV.15), show that just template III.1, 

derivatives III.5 and III.6 have SI values > 1 (Rijo P. et al., 2010) towards some strains.  

The more relevant derivative showing the more interesting SI values, is 12-O-p-

chlorobenzoyl analogue III.6 which is less cytotoxic than III.1 (Rijo, P. et al. 2010) and 

show the lowest MIC values, mainly, against the Enterococcus species. However, to 

improve potency and selectivity in order to reach compounds with attractive 

ADME/Tox (Absorption, Disposition, Metabolism, Excretion and Toxicity) properties, 

further efforts are required (Simpson, 2009). 

Table IV.14. MICa values against a five Gram-positive Enterococcus strains for 
compounds III.1, III.3-III.13. 

Compound E. faecalis 
ATCC 

51299b 

E. 
faecalis 

CIP  
104476 

E. 
faecalis 
FFHBc 

427483 

E. flavescens 
ATCC  
49996 

E. faecium 
FFHB 

435628c 

III.1 15.62 15.62 7.81 7.81 15.62 

III.3 7.81 1.95 7.81 7.81 15.62 

III.4 62.50 3.91 31.25 31.25 31.25 

III.5 1.95 15.62 0.97 3.91 0.97 

III.6 3.91 7.81 1.95 0.97 1.95 

III.7 1.95 7.81 3.91 3.91 3.91 

III.8 15.62 31.25 7.81 15.62 31.25 

III.9 7.81 ND 7.81 15.62 15.62 

III.10 3.90 ND 3.90 7.81 3.90 

III.11 31.25 15.62 15.62 62.50 15.62 

III.12 15.62 31.25 15.62 15.62 15.62 

III.13 15.62 15.62 15.62 62.50 15.62 

DMSO 125.00 125.00 125.00 125.00 125.00 

VAN 62.50 31.25 1.95 3.91 0.98 

AMP <0.49 <0.49 >125.00 <0.49 <0.49 

TET <0.49 <0.49 <0.49 31.25 <0.49 
a
Minimal inhibitory concentrations given in μg/mL; 

b
Low level vancomycin-resistant Enterococcus (VRE); 

c
 FFHB species are clinical isolates from Hospital do Barreiro, deposited on the Microbiology Laboratory, 

Pharmacy Faculty of Lisbon University; Control antibiotics: AMP (ampicillin), TET (tetracycline), VAN 
(vancomycin) ; ND = Not Determined. 
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Table IV.15. MICa values against methicillin-sensitive Staphylococcus aureus 
(MSSA)b and methicillin-resistant S. aureus (MRSA)c strains for compounds III.1, III.3-
III.13. 

Compound S aureus 
ATCC 

700699b 

S aureus 
CIP 106760c 

S aureus 
ATCC 

43866b 

S aureus 
FFHB 

29593c 

S aureus 
ATCC 25923b 

III.1 31.25 7.81 15.62 7.81 31.25 

III.3 31.25 15.62 15.62 125 62.5 

III.4 62.5 125 125 125 31.25 

III.5 31.25 3.90 3.90 3.90 62.5 

III.6 15.62 3.90 3.90 7.81 3.90 

III.7 7.81 15.62 7.81 15.62 62.5 

III.8 62.5 15.62 15.62 31.25 62.5 

III.9 31.25 15.62 15.62 62.5 62.5 

III.10 7.81 3.90 7.81 7.81 15.62 

III.11 31.25 62.5 125 125 62.5 

III.12 31.25 15.62 31.25 31.25 31.25 

III.13 31.25 31.25 31.25 31.25 62.5 

DMSO 250 250 250 250 250 

VAN 7.81 3.90 3.90 1.95 7.81 
AMP < 0.49 >250 >250 125 <0.49 

MET 15.62 >250 1.95 >250 098 

OXY 62.50 31.25 31.25 <0.49 0.98 

TET 62.50 31.25 125 <0.49 <0.49 
a
Minimal inhibitory concentrations given in μg/mL; Control antibiotics: AMP (ampicillin), MET 

(methicillin), OXY (oxytetracycline), TET (tetracycline), Van (vancomycin); 
c
FFHB species are clinical 

isolates from Hospital do Barreiro, deposited on the Microbiology Laboratory, Pharmacy Faculty of 
Lisbon University. 

 

IV.2.8. Antimicrobial activity of halimane derivatives III.15-III.23 

 

The synthesis of derivatives (III.15-III.23; see Chapter III) of 11R*-

acetoxyhalima-5,13E-dien-15-oic acid II.7 (see Chapter V) was carried out to screen the 

antimicrobial activity and determine their MIC values against a collection of Gram-

negative and positive bacteria and C. albicans (see Table IV.16).   

Further antibacterial studies on II.7, III.15-III.17 and III.19-III.23 were carried 

out against a collection of both antibiotic-sensible and antibiotic-resistant strains of 

Staphylococcus and Enterococcus (see Tables IV.17 and IV.18) aiming to understand 

some plausible structure activity relationships and search for a valuable antibacterial 
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halimane-prototype. Diterpene II.7 revealed to be active against Mycobacterium 

smegmatis, E.  faecalis and S. aureus with MIC values of 62.50, 15.62 and 31.25 μg/mL, 

respectively (see Tables IV.16-IV.18). From the data shown in Tables IV.17 and IV.18 it 

may be observed that compounds II.7, III.15-III.17 showed the highest inhibitory 

growth activity, particularly against Enterococci than against Staphylococci spp (MIC 

values of 15.62 and 125.00 μg/mL). The same observations occurred with the acetone 

extract and the fraction containing II.7 (PO-A3, see Chapter V).  

 

Table IV.16. MICa values against a collection of Gram-positive and Gram-
negative bacteria and a yeast for halimanes II.7 and hemisynthesised III.15-III.17 and 
III.19-III.23. 

Compound C. albicans 
ATCC 10231 

M. smegmatis 
ATCC 607 

E. coli  
ATCC 25922 

P.aeruginosa 
ATCC 27853 

II.7 >125 62,5 >125 >125 
III.15 >125 >250 >125 >125 
III.16 >125 ND >125 >125 
III.17 62,5 >250 >125 >125 
III.18 ND ND ND ND 
III.19 >125 >250 >125 >125 
III.20 ND ND ND ND 
III.21 >125 >250 >125 >125 
III.22 ND ND ND ND 
III.23 >125 >250 >125 >125 

DMSO 125 250 125 125 
Positive 
control 

KET 31,25 RIF <0.48 NOR <0,48 NOR 0.97 

a
Minimal inhibitory concentrations given in μg/mL; Control antibiotics: KET (Ketoconazole), NOR 

(Norfloxacin), OXY (oxytetracycline), RIF (Rifampicine), VAN (vancomycin), ND = Not Determined. 

 

The metabolite II.7 revealed interesting MIC values, ranging from 15.62 to 

125.50 μg/mL, against all five Enterococcus strains and against five of the S. aureus 

strains. It may be noticed that II.7 is 4-fold more active (MIC of 15.62 μg/mL) than 

vancomycin (MIC 62.50 μg/mL) against E. faecalis ATCC 51299. Furthermore, II.7 

showed activity against the two MRSA strains (S. aureus CIP 106760 and FFHB 29593) 

exhibiting MIC values of 15.62 and 31.25 μg/mL (Tables IV.17 and IV.18). 
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Generally, the halimenediol III.17 shows higher inhibitory ability than the acidic 

metabolite II.7 against Staphylococcus and Enterococcus spp., with MIC values of 15.62 

or 31.25 μg/mL (Tables IV.17 and IV.18). This suggests that III.17 (5,13-diene-11,15-

diol halimane) may be a valuable anti-Gram-positive prototype for further activity 

modulation.  

Compound III.16 (11-acetoxy-5,13-dien-15-ol derivative) exhibits lower MIC 

values (31.25 – 62.50 μg/mL) only against four strains, and the halimane diester III.15 

(methyl 11-acetoxy-5,13-dien-15-oate) revealed even lower MIC values (62.50 μg/mL) 

and only against two Enterococcus strain (Tables IV.17 and IV.18). 

Finally, results showed that the low-level VRE (E. faecalis ATCC 51299) strain is 

more susceptible to the halimanes II.7, III.16 and III.17 (MIC of 15.62 – 31.25 μg/mL) 

than to the vancomycin antibiotic (MIC of 62.50 μg/mL). Likewise, growth of both 

MRSA strains (S. aureus CIP 106760 and FFHB 29593; methicillin MIC >250 μg/mL) is 

inhibited, mostly, by II.7 and III.17 halimanes also with MIC values of 15.62 to 31.25 

μg/mL.  

Compound III.17 was found to be the more potent derivative in inhibiting both 

Staphylococcus and Enterococcus at a micromolar concentration, with MIC values from 

51.20 to 102.12 μM (15.62 to 31.25 μg/mL; Tables IV.17 and IV.18).  

 These outcomes further support the need of assaying other antibiotic-resistant 

Gram-positive bacteria, and search for other halimane II.7 derivatives with better 

antibacterial profiles. 
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Table IV.17. MICa values against five Gram-positive Staphylococcus spp. using 
the microdilution method for halimanes II.7 and hemisynthesised III.15-III.17 and 
III.19-III23. 

 

Compoundb 

S. aureus  
ATCC 

700699 

S. aureus 
CIP 

106760c 

S. aureus 
ATCC 

43866 

S. aureus 
FFHB 

29593c 

S. aureus 
ATCC 

25923 

II.7 125.00 15.62 62.50 31.25 31.25 
II.7d 345.30 43.15 172.65 86.33 86.33 
III.15 >250.00 >250.00 >250.00 125.00 125.00 
III.16 >250.00 62.50 125.00 125.00 125.00 
III.17 31.25 15.62 15.62 31.25 31.25 
III.17d 102.12 51.05 51.05 102.12 102.12 
III.18 ND ND ND ND ND 
III.19 >250.00 >250.00 >250.00 >250.00 125.00 
III.20 125.00 >250.00 >250.00 >250.00 125.00 
III.21 >250.00 >250.00 >250.00 >250.00 125.00 
III.22 >250.00 >250.00 >250.00 >250.00 125.00 
III.23 >250.00 >250.00 >250.00 >250.00 125.00 
PO-A ND ND 125.00 125.00 125.00 
PO-A3 ND ND 62.50 62.50 125.00 
VAN 7.81 3.90 3.90 1.95 7.81 
VANd 5.39 2.69 2.69 1.35 1.35 

MET(8-16) 15.62 >250 1.95 >250 0.97 
DMSO 250.00 250.00 250.00 250.00 250.00 

ND = Not Determined; 
a
Minimal inhibitory concentrations given in μg/mL; 

b
Estimated log P: 

II.7=5.20(±0.48); III.15=5.58(±0.87); III.16=5.22(±0.81); III.17=4.59(±0.72); III.18=5.18(±0.77); 
III.19=5.62(±0.84); III.20=6.68(±1.07); III.21=6.05(±0.87); III.22=6.69(±-0.81); III.23=6.66(±0.93) 
(VCCLAB, 2005);

 c
MRSA; 

d
Minimal inhibitory concentrations given in μM; PO-A = P. ornatus acetone 

extract; PO-A3 =  fraction containing II.7 (see Chapter V); VAN = Vancomycin; MET = Meticillin. 
 

. 
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Table IV.18. MICa values against a five Gram-positive Enterococcus spp. using 
the microdilution method for halimanes II.7 and hemisynthesised III.15-III.17 and 
III.19-III23. 

Compoundb E. faecalis 
ATCC 

51299c 

E. faecalis 
CIP 

104476 

E. faecalis 
FFHB 

427483 

E. 
flavescens 

ATCC 49996 

E. faecium  
FFHB 

435628 

II.7 15.62 62.50 31.25 15.62 31.25 

II.7d 43.15 172.65 86.33 43.15 86.33 

III.15 62.50 >125.00 >125.00 >125.00 62.50 

III.16 31.25 ND >125.00 31.25 62.50 

III.17 31.25 15.62 15.62 15.62 15.62 

III.17d 102.12 51.05 51.05 51.05 51.05 

III.18 ND ND ND ND ND 

III.19 62.50 ND >125.00 >125.00 >125.00 

III.20 >125.00 ND >125.00 >125.00 >125.00 

III.21 >125.00 ND >125.00 >125.00 >125.00 

III.22 >125.00 ND >125.00 >125.00 >125.00 

III.23 >125.00 ND >125.00 >125.00 >125.00 

PO-A 31.25 ND >125.00 31.25 62.50 

PO-A3 15.62 ND 62.50 15.62 31.25 

VAN 62.50 31.25 1.95 3.90 0.97 

VANd 43.12 21.56 1.35 2.69 0.67 

DMSO 125.00 125.00 125.00 125.00 125.00 
ND = Not Determined; 

a
Minimal inhibitory concentrations given in μg/mL; 

b
Estimated log P: 

II.7=5.20(±0.48); III.15=5.58(±0.87); III.16=5.22(±0.81); III.17=4.59(±0.72); III.18=5.18(±0.77); 
III.19=5.62(±0.84); III.20=6.68(±1.07); III.21=6.05(±0.87); III.22=6.69(±-0.81); III.23=6.66(±0.93) 
(VCCLAB, 2005); 

 c
Low-level VRE; 

d
Minimal inhibitory concentrations given in μM; VAN (Vancomycin); 

PO-A = P. ornatus acetone extract; PO-A3 =  fraction containing II.7 (see Chapter V); VAN = 
Vancomycin. 

 

IV.2.9. Antimicrobial activity of parvifloron D II.19 derivative: 
benzoyloxy derivative of microstegiol III.24 

 

Compound III.24 was tested against Gram-negative and Gram-positive bacteria, 

and Candida albicans. The results obtained revealed moderate activity against C. 

albicans and M. smegmatis (62.50 μg/mL; Tables IV.19). The Gram-positive 

Staphylococcus strains showed very interesting MIC values against four of the strains 

tested including a MRSA strain (methicillin resistant S. aureus; 3.91-7.81 μg/mL) for 

III.24. The Enterococcus strains evaluated together with E. faecalis ATCC 51299 (low-
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MRSA) also showed antibacterial activity with MIC values from 7.81 to 15.62 μg/mL for 

derivative III.24 (Tables IV.20 and IV.21). 

 

Table IV.19. MICa values against a collection of Gram-positive and Gram-
negative bacteria and a yeast for benzoyloxy derivative of microstegiol III.24. 

Compound C. albicans 
ATCC 10231 

M. smegmatis 
ATCC 607 

E. coli  
ATCC 25922 

P.aeruginosa  
ATCC 27853 

III.24 62.50 62.50 >125.00 >125.00 
Positive Control KET <0.49 RIF <0.49 AMP <0.49 AMP 31.25 

DMSO 125.00 250.00 125.00 125.00 
a
Minimal inhibitory concentrations given in μg/mL; KET

 
= Ketoconazole, RIF

 
= Rifampicin, AMP = Ampicillin. 

 

Derivative III.24 revealed to be a strong antimicrobial diterpenoid (MIC values 

from 3.91 to 125.00 μg/mL). In literature, the microstegiol III.25 was reported 

(Ulubelen A. et al., 2000) as a weak microbial growth inhibitory compound so these 

kind of diterpenoids are interesting molecules for further antimicriobial studies.  

 

Table IV.20. MICa values against a seven Gram-positive Staphylococcus strains 
using the microdilution method for benzoyloxy derivative of microstegiol III.24. 

 
Compound 

S. 
aureus  

ATCC 
700699 

S. 
aureusb 

CIP 
106760 

S. 
aureus 

ATCC 
43866 

S. 
aureusb 

FFHB 
29593 

S. 
aureus 

ATCC 
6538 

S. 
aureus 
ATCC 

25923 

S. 
epidermis  

ATCC 
12228 

III.24 31.25 3.91 3.91 31.25 3.91 62.50 7.81 

Rifampicin <0.49 500 <0.49 <0.49 <0.49 0.98 <0.49 

DMSO 250 250 250 250 250 250 250 
a
Minimal inhibitory concentrations given in μg/mL; 

b
MRSA. 

 

Table IV.21. MICa values against a three Gram-positive Enterococcus strains 
using the microdilution method for benzoyloxy derivative of microstegiol III.24. 

 

Compound 

E. faecalis 

ATCC 51299b 

E. faecalis 

H164 

E. hirae 

ATCC 10541 

III.24 7.81 15.62 7.81 
Rifampicin <0.49 <0.49 <0.49 

DMSO 125 125 125 
a
Minimal inhibitory concentrations given in μg/mL; 

b
VRE. 
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IV.3. Other biological activities 

IV.3.1. Antioxidant activity - DPPH free radical-scavenging assay 

 

There is an increasing interest in antioxidants, noting a preference for 

antioxidants from natural origin rather than from synthetic sources. A method that is 

currently popular is based upon the use of the stable free radical 

diphenylpicrylhydrazyl (DPPH; Molyneux P., 2003). The spectrophotometric method 

for assessing the total antioxidant activity is based on the absorbance decrease 

monitoring of the DPPH· radical (2,2-diphenyl-1-picrylhydrazyl) in the presence of 

antioxidants. DPPH· is characterized as a stable free radical due to the delocalization of 

the spare electron over the molecule. Thus, the molecule cannot dimerise, as would 

happen with other free radicals. The delocalization gives rise to a deep violet colour 

characterized by an absorption band at about 520 nm. When a DPPH· solution is mixed 

with a substance which can donate a hydrogen atom, the reduced form is generated 

accompanied by the loss of the violet colour (see Scheme IV.1). To obtain a preliminary 

evaluation of the antioxidant capacity of organic compounds, a DPPH bleaching assay 

can be used as a rapid tlc screening method (Pisoschi A.M. et al., 2009). 

 

 

 

 

 

 

 

 

 

Scheme IV.1. Reaction of DPPH· free radical with an antioxidant (Pisoschi A.M. 

et al, 2009). 
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IV.3.2. TLC-DPPH bleaching assay 

 

All the isolated compounds in Chapter II and 7α-acetoxy-6β-hydroxyroyleanone 

III.1 were submitted to TLC-DPPH bleaching assay.  Compounds with capacity to 

reduce DPPH appeared as yellow spots against a purple background. Only parvifloron 

D II.19 and the royleanone III.1 appeared as yellow spots, the remaining spots 

maintained the purple background. Considering the results of this preliminary study, 

the interaction of active compounds with DPPH was quantitatively measured by a UV-

visible spectroscopy method (Bernardi A.P.M. et al, 2007; Pisoschi A.M. et al., 2009; 

Sofidiya M.O. et al, 2009). 

 

IV.3.3. Measurement of DPPH Radical Scavenging Activity 

 

The diterpenoids, parvifloron D II.19 and 7α-acetoxy-6β-hydroxyroyleanone III.1 

were investigated for quantitative antioxidant activity through their ability to quench 

the synthetic DPPH radical. The percentage of DPPH radical reduction by abietanes 

II.19 and III.1 was evaluated at different concentrations in a spectrophotometric assay 

(Narukawa Y., 2001; Molyneux P., 2003; Sofidiya M.O. et al, 2009). Experiments were 

performed in triplicate and results were expressed as means ± standard deviation. The 

results obtained for the reference compounds, BHT and quercetin, are in good 

agreement with the ones previously published in literature (Gaspar-Marques C. et al., 

2008; Sofidiya M.O. et al, 2009). 

Both diterpenoids II.19 and III.1 showed a dose dependent scavenging activity 

as expected (Chang S.-Y. et al., 2002). Parvifloron D II.19 showed antioxidant 

properties (IC50 0.1125 ± 0.0177 mM) equivalent to BHT but lower than quercetin. The 

IC50 of royleanone III.1 (1.8500 ± 0.0707 mM) revealed antioxidant ability inferior to 

butylated hydroxytoluene (BHT; see Table IV.22).  
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Table IV.22. The scavenging activity expressed in terms of IC50 for parvifloron D 
II.19 7α-acetoxy-6β-hydroxyroyleanone III.1 and standard positive controlsa. 

Compounds IC50 (mM) 

BHTa 0.1050 ± 0.0071 

Quercetina 0.0075 ± 0.0007 

Parvifloron D II.19 0.1125 ± 0.0177 

7α-Acetoxy-6β-hydroxyroyleanone III.1 1.8500 ± 0.0707 

 

The results of DPPH radical scavenging assays suggest an interesting efficacy of 

the screened compounds (when compared with the standards) concerning the 

inhibition of reactive oxygen species, tested compounds react with free radicals, 

converting them to more stable products and terminating the radical chain reaction), 

which may be associated with the medicinal use of the Plectranthus plants. 

 

IV.4. Anticholinesterase activity  

 

The literature indicates that the terpenoids (Savelev S. et al., 2003; Mukherjee 

P. K. et al., 2007; Kamatou G.P.P. et al., 2008) and, particularly, some diterpenoids (Ren 

Y. et al., 2004; Ahmad V.U. et al., 2005; Ertas A. et al., 2009) may have 

anticholinesterase activity. Thus, the isolated compounds in Chapter II and III.1 were 

evaluated for their anticholinesterase activity. 

An extremely rapid method to screen a large numbers of compounds to 

uncovering new inhibitors of acetylcholinesterase (AChE) was performed. A qualitative 

method on a tlc plate for AchE activity measurement was described by Kiely et al., 

which is based on the reliable and most widely used method according to Ellman et al. 

(Ellman G.L et al., 1961). Solutions of the compounds tested were spotted on silica gel 

tlc plates in a matrix pattern. The silica gel plate was sprayed with a solution of 

acetylthiocholine iodide and 5,5-dithiobis(2-nitrobenzoic acid) -DTNB- followed by a 

solution of acetylcholinesterase. The enzyme reaction produced a yellow background 

color with inhibitor compounds exposed as white zones where color has failed to 

develop. The enzyme hydrolyses the substrate acetylthiocholine and the product, 
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thiocholine, reacts with Ellman’s reagent (DTNB) to produce 2-nitrobenzoic-5-

mercaptothiocholine (thiocholine-thionitrobenzoate disulphide) and 5-thio-2-

nitrobenzoic acid (thionitrobenzoate) which may be detected at 405 nm (see Figure 

IV.3; Kiely J. S. et al., 1991; Ree I.K. et al., 2001 and 2003). 

 

 

 

 

 

 

 

 

Figure IV.3. The detection of acetylcholinesterase activity by Ellman´s method. 
 

IV.4.1. Determination of AChE inhibitory activity - tlc assay 

 

Enzyme inhibitory activities of the samples, on silica gel layer, were detected by 

spraying the substrate, dye and enzyme according to Ellman’s method (Figure IV.3). A 

yellow background appeared with white spots caused by the inhibiting compounds 

(Rhee I. K. et al., 2003). 

All the compounds isolated in Chapter II and 7α-acetoxy-6β,12-dihydroxy-8,12-

abietadiene-11,14-dione III.1 were tested and the tlc plate only appeared with white 

spots on a yellow background for the positive controls (physostigmine and tacrine 

hydrochloride). If some spot had revealed the presence of inhibiting compounds, their 

anticholinesterase activities could be evaluated by the quantitative 

spectrophotometric method using the same Ellman´s method. 

 Another method was used and the same negative results were obtained for all 

compounds tested. The method for the screening of acetylcholinesterase inhibition by 

the compounds consisted in a bioautographic enzyme assay on tlc plates. The enzyme 

activity is detected by the conversion of naphthyl acetate into naphthol and the 

formation of the corresponding purple-coloured diazonium dye with Fast Blue B salt. 

Inhibitors of cholinesterases should produce white spots on the dye-coloured 
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background of the tlc plates and all the compounds revealed purple colour (Marston A. 

et al., 2002). 

 

IV.5. Anti-inflammatory activity 

 

There is a need for the design of COX inhibitors based on new structural 

templates (Chen Q.-H. et al., 2005) since the inhibition of the enzymes COX-1 and COX-

2 are considered one of the mechanisms of anti-inflammatory actions. In this way, the 

isolated compounds in Chapter II and 7α-Acetoxy-6β-hydroxyroyleanone III.1 were 

evaluated for their anti-inflammatory activity. The colorimetric COX (ovine) Inhibitor 

Screening Assay Kit was used in order to screen isozyme-specific inhibitors. Cayman’s 

Colorimetric COX (ovine) Inhibitor Screening Assay measures the peroxidase 

component of COXs. The peroxidase activity is assayed colorimetrically by monitoring 

the appearance of oxidized N,N,N’,N’-tetramethyl-p-phenylenediamine (TMPD) at 590 

nm (Cayman Chemical Company, 2010).  

Cyclooxygenase (COX, also called Prostaglandin H Synthase or PGHS) is a 

bifunctional enzyme exhibiting both COX and peroxidase activities. The COX 

component converts arachidonic acid to a hydroperoxy endoperoxide (Prostaglandin 

G2; PGG2), and the peroxidase component reduces the endoperoxide to the 

corresponding alcohol (Prostaglandin H2; PGH2), the precursor of Prostaglandins (PGs), 

thromboxanes, and prostacyclins. It is now well established that there are two distinct 

isoforms of cyclooxygenase (COX). Cyclooxygenase-1 (COX-1) is constitutively 

expressed in a variety of cell types and is involved in normal cellular homeostasis. A 

variety of mitogenic stimuli such as phorbol esters, lipopolysaccharides, and cytokines 

lead to the induced expression of a second isoform of COX, cyclooxygenase-2 (COX-2). 

COX-2 is responsible for the biosynthesis of PGs under acute inflammatory conditions. 

This inducible COX-2 is believed to be the target enzyme for the anti-inflammatory 

activity of nonsteroidal anti-inflammatory drugs (Nugteren D.H. and Hazelhof E., 1973; 

Hamberg M. and Samuelsson B., 1973; Xie W. et al., 1991; Kulmacz R.J. and Lands 

W.E.M., 1983; Jang M., et al., 1997). 
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IV.5.1. In Vitro Cyclooxygenase (COX) Inhibitory Assay  

 

Cyclooxygenase inhibitor screening assay kits (Cayman Chemicals-Catalog No. 

760114) were used in order to investigate the anti-inflammatory activity of all the 

isolated compounds in Chapter II against the inflammation pathway enzymes 

cyclooxygenase 2 (COX-2). The COX inhibitory activity of compounds II.1, II.2, II.3, II.6, 

II.7 and II.17, isolated on Chapter II, and compound II.7 derivatives III.15 and III.17, 

prepared on Chapter III, was measured using ovine COX-2 enzyme by the COX inhibitor 

screening assay. Naproxen and SC-560 (Cayman chemicals, catalog nº 70340, IC50 = 6.3 

μM) were used as controls in the COX assay. Any antioxidant could interfere with the 

assay and could appear to be a COX inhibitor. Thus, all the compounds tested were 

previously proved to be non-antioxidant as shown earlier (IV.2 Antioxidant activity). As 

the appropriate concentration of each eventual inhibitor was completely unknown, 

several dilutions of the inhibitor were tested, with compounds being examined around 

a final concentration of 1000 μM. The percent COX-2 activity values (Percent Initial 

Activity) were determinated as described in Chapter V and are shown on Table IV.23. 

 

Table IV.23. Ovine COX-2 inhibition by SC-560a, Naproxena, Plectrornatin C 
II.17, forskolin-like diterpenoids II.1, II.2:II.3 (1:1), halimane II.7 and its derivatives 
(II.15 and III.17) and rinocerotinoic acid II.6. 

Compounds Percent 
activity 

 (% ± SD) 

CV  
(%) 

Concentration / μM 

SC-560a  60.30 ± 1.36 2.24 6.3 
naproxena 67.36 ± 5.51 8.04 1087 

6-O-acetylforskolin II.1 89.93 ± 9.47 11.2 553 
1,6-di-O-acetylforskolin II.2 : 

1,6-di-O-acetyl-9-
deoxyforskolin II.3 (1:1) 

76.05 ± 9.33 10.8 506 

rinocerotinoic acid II.6 54.56 ± 10.13 15.3 785 
halimane II.7 79.20 ± 6.93 7.96 1379 

plectrornatin C II.17 59.42 ± 14.97 18.0 595 
halimane ester III.15 76.20 ± 2.78 3.53 664 

halimane dialcohol III.17 59.84 ± 12.35 16.9 1631 
a
Positive control. 
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In the COX inhibitor screening assay for COX-2, two positive controls were used: 

SC-560 (COX-1 IC50 = 0.009 μM; COX-2 IC50 = 6.3 μM; Smith C.J. et al., 1998), a highly 

selective COX-1 inhibitor that showed 60.30% percent of COX-2 activity, and naproxen 

(1087 μM) as a nonselective inhibitor that exhibited 67.36% for COX-2 activity (Hegazy 

M.-E.F. et al., 2008). 

The compounds under evaluation seem to show weak to moderate COX-2 

activity from 6-O-acetylforskolin II.1 at 553 μM with 89.93%, to rinocerotinoic acid II.6 

at 785 μM with 54.56%, respectively. Because antioxidants could not be screened with 

this assay some derivatives were experienced. The derivatives halimane ester III.15 

(76.20 % at 664 μM) and halimane dialcohol III.17 (59.84 % at 1631 μM) appear to 

inhibit COX-2 strongly than the starting material halimane II.7 (79.20%) at 1379 μM. 

Plectrornatin C II.17 showed 59.42 % of COX-2 activity at 595 μM. 

Though randomly performed, without a range of test concentrations and the 

possibility of calculate the IC50 values for comparison purposes, these preliminary 

experiences led to results that encourages the pursue of a further and more systematic 

investigation.
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V.1. General experimental procedures 

Melting-points were determined on a Kofler block and are uncorrected. Optical 

rotations were measured on a Perkin-Elmer 241 MC polarimeter (in CHCl3 solution). 

UV spectra were recorded on a Perkin-Elmer Lambda 2 UV/vis 

spectrophotometer using quartz or plastic cuvettes with an internal width of 1 cm (in 

MeOH solution).  

Infrared spectra were obtained on a Perkin-Elmer Spectrum One 

spectrophotometer (in KBr or neat).  

Mass spectra: positive EI mode, 70 eV, CH2Cl2 (Hewlett-Packard 5973 

spectrometer), or electro spray ionization in the positive (ESI+) mode on a Hewlett-

Packard 1100 spectrometer. For derivative III.24: HRESIMS: Agilent 6520 Accurate-

Mass QTOF LC/MS apparatus. Elemental analysis: LECO CHNS-932 apparatus. 

Elemental analyses were performed with a Carlo Erba EA 1108 apparatus for 

compounds II.1-II.3 and with a LECO CHNS-932 apparatus for compounds II.6 and II.7. 

NMR spectra were recorded on a Varian INOVA-400 Spectrometer equipped 

with a 5 mm inverse detection z-gradient probe. The 1H and 13C NMR spectra (at 400 

and 100 MHz, respectively) were measured at room temperature (22–23 °C) using 

CDCl3 as solvent, except for II.1 (pyridine-d5). 1H and 13C NMR chemical shifts are 

reported with respect either to the residual CHCl3 signal (δ 7.25) or to the solvent 

signals (CDCl3 77.00), respectively. NMR spectra were also recorded at room 

temperature on a Varian SYSTEM 500 MHz spectrometer in the case of compounds 

II.20, II.22 and III.24. The 1H and 13C NMR spectra (at 500 MHz and 125 MHz, 

respectively) were recorded in solutions of CDCl3 (II.20 and III.24), acetone-d6 (II.22) 

and CD3OD (II.22).  

One-dimensional 1H and 13C-NMR spectra were acquired under standard 

conditions. The pulse programs of the COSY, gHSQC and gHMBC experiments were 

taken from the Varian software library. Homonuclear two-dimensional spectra (COSY) 

and inverse proton-detected heteronuclear two-dimensional spectra (gHSQC) were 

acquired in the phase-sensitive mode and gHMBC spectra were acquired in the 

absolute value mode.  
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Column chromatography was carried out on silica-gel Merck 9385 [40-63 μm 

(230-400 mesh)] and Merck 7734 [63-200 μm (70–230 mesh)].  

Hydrated silica gel was prepared using silica-gel (Merck 7734, 230-400 mesh) 

with 10% (w/v) of water.  

Analytical and preparative thin layer chromatography (tlc and ptlc) were 

performed on precoated silica gel
 
F254 

plates [Merck 5554 (0.2 mm) and 5744 (0.5 mm), 

respectively] or on prepared plates with silica gel 60
 
F254 

Merck 7747 (5-50 μm). 

Visualisation was performed under the visible light and UV light (λ 254 and 366 nm) 

followed by spraying with a mixture of H2SO4:AcOH:H2O (4:80:16) and heating. Light 

petroleum (b.p. 50-70 ˚C) was used for column chromatography. 

 The reagents used in the determination of AChE inhibitory activity (V.9.2.1) 

were commercial and used without further purification. The acetylcholinesterase used 

was electric eel (type V-s; lyophilized powder; 1430 U/mg solid; 2380 U/mg protein). 

The anti-inflammatory activity (V.9.3.1) was performed using the in vitro 

Cyclooxygenase (COX) Inhibitory Assay – 760111 Colorimetric COX (ovine) Inhibitor 

Screening Assay Kit (Cayman Chemicals). 

 

V.2. Study of Plectranthus ornatus Codd. 

 

Plectranthus ornatus Codd. was cultivated in the Faculty of Pharmacy Hortum, 

Lisbon University, from seeds provided by the Herbarium of the Botanical Garden of 

Lisbon, Portugal. P. ornatus whole plants were collected in 1997 and 1998 and voucher 

specimens were deposited in the Herbarium of the “Instituto de Investigação Científica 

Tropical”, Lisbon (ref. C. Marques S/N° LISC). 

 

V.2.1. Plant material: study of Plectranthus ornatus whole plants 
Extraction and isolation  
 

The air dried and powdered whole plants of P. ornatus Codd. (3392.32 g) were 

extracted with Me2CO (6 x 34 L) at room temperature for 9 days. Filtration and 

evaporation of the solvent (under vacuum, 40 ˚C) yielded a residue of 183.91 g (5.42% 
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of dry material), which was subjected to column chromatography over silica gel
 
(Merck 

9385, 1088 g), using mixtures of n-hexane:EtOAc (1:0 to 0:1) and EtOAc:MeOH (1:0 to 

0:1) as eluents collecting 10 fractions. The precipitate of the first fraction (24.95 g), 

consisting mainly of waxes, was eliminated by filtration. Fractions PO-A5 and PO-A6 

were studied in a previous work (Rijo P., 2003). 

 According to differences in composition, as indicated by tlc, ten crude fractions 

were obtained (PO-A1 to PO-A10, Table V.1).  

 

Table V.1. Column chromatography A of the acetone extract (P. ornatus).  

Fraction Quantity (g) Eluent (%)  
n-hexane : EtOAc 

Eluent (%)  
 EtOAc: MeOH 

PO-A1 29.02 90:10 to 75:25  --- 
PO-A2 5.37 75:25 --- 
PO-A3 17.00 50:50 --- 
PO-A4 
PO-A5 
PO-A6 
PO-A7 
PO-A8 
PO-A9 

PO-A10 

20.57 
9.13 
3.28 
8.19 
9.19 

14.48 
41.17 

50:50 
25:75 
25:75 
25:75 
0:100 
0:100 

--- 

--- 
--- 
--- 
--- 
--- 
--- 

75:25 to 0:100  

 

 

V.2.1.1. Study of fraction PO-A2 (Column chromatography A2) 

 

The fraction PO-A2 was fractionated by column chromatography A2. Fraction 

A2-3 was studied by subsequent column chromatography B2 originating mixtures of 

amyrins II.13 and  II.14 (0.228 g), and fraction  A2-4 was studied by column 

chromatography B4, giving phytosterols II.11 and II.12 (0.417 g), as shown in the 

Scheme V.1.   
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Scheme V.1. Study of P. ornatus: isolated compounds from fraction PO-A2. 

 

The fraction PO-A2 eluted with n-hexane:EtOAc (75:25) was fractionated by 

column chromatography A2 (hydrated silica gel, 250 g) eluted with mixtures of n-

hexane:EtOAc and EtOAc:MeOH. After tlc monitoring, the chromatographic fractions, 

were combined into six fractions (A2-1 to A2-6, Table V.2).  

 

Table V.2. Column chromatography A2 of fraction PO-A2 (P. ornatus).  

Fraction Quantity / g Eluents (%) 
n-hexane: EtOAc 

Eluents (%)  
EtOAc : MeOH 

A2-1 0.0304 1:0 --- 
A2-2 0.0695 1:0 to 95:5 --- 
A2-3 0.4562 95:5 --- 
A2-4 2.2883 95:5 to 90:10 --- 
A2-5 1.0498 90:10 --- 
A2-6 1.6466 90:10 to 0:1 

 

 

 

Fraction 

PO-A2 

A2-1 

 

 

A2-2 

 

A2-3 

 

 

A2-4 

 

A2-5 

 

A2-6 

 

B2-1 B2-2 

 

B2-3 

 

B2-4 

 

B4-1 

phytosterols II.11 

and II.12        

(0.217 g) 

 

amyrins II.13 and  

II.14 (0.228 g) 

B4-2 

 

B4-3 

 

B4-4 

 

phyosterols II.11 and 

II.12 (0.200 g) 
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The fraction A2-4 eluted with mixtures of n-hexane:EtOAc (95:5 to 90:10) was 

recrystallized from n-hexane:AcOEt to give 0.217 g of a mixture of β-sitosterol 

(stigmast-5-en-3β-ol) II.11 and stigmasta-5,22E-dien-3β-ol II.12 in the proportion (1:2). 

The mother liquors of the fraction A2-4 were submitted to column chromatography B4 

(silica gel, 150 g) using mixtures of CH2Cl2:EtOAc (0:1 to 97:3) as eluents; after tlc 

monitoring, chromatographic fractions were combined into four fractions (B4-1
 
to B4-4, 

Table V.3).  

 

Table V.3. Column chromatography B4 of mother liquors of the fraction A2-4 (P. 
ornatus).  

Fraction Quantity / g Eluents / % 
CH2Cl2: EtOAc 

B4-1 0.2350 1:0 
B4-2 0.5980 1:0 
B4-3 0.3522 1:0 
B4-4 0. 6466 0:1 to 97:3 

 

The fraction B4-2 was recrystallized from n-hexane:EtOAc to give 0.200 g of a 

mixture of β-sitosterol (stigmast-5-en-3β-ol) II.11 and stigmasta-5,22E-dien-3β-ol II.12 

in the proportion (1:2).  

  The residue of the fractions eluted (A2-3) with n-hexane:EtOAc (95:5) was 

submitted to column chromatography B2 (silica gel, 50 g) using mixtures of CH2Cl2:n-

hexane (7:3 to 100:0) as eluents; after tlc monitoring, chromatographic fractions were 

combined into four fractions. The fractions eluted (B2-2) with a mixture of CH2Cl2: n-

hexane (7:3) were also recrystallized from the same solvent; through this procedure 

0.228 g of a mixture of α-amyrin II.13 and β-amyrin II.14 (1:2) was obtained. 
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V.2.1.1.1. β-Sitosterol (stigmast-5-en-3β-ol) II.11 and stigmasta-
5,22E-dien-3β-ol II.12 in a (1:1) ratio 
 

 

 

 

                     II.11                                                                II.12 

White crystals needles (0.217 g; 0.00639 % dry material); 

  m.p. 139 - 146 ˚C; 

R
f 
(SiO

2
; n-hexane:ethyl acetate, 7:3): 0.33; 

The tlc chromatogram upon revelation by a mixture of H2O : CH3COOH : H2SO4  (16: 80: 

4) and posterior heat with a standard sample (co-aplication) confirmed the presence of 

β-sitosterol II.11 and stigma-5,22E-dien-3β-ol II.12 giving a characteristic pink colour; 

1H NMR (400 MHz, CDCl3): δ 5.35 (1H, m, H-6 of both compounds), 3.52 (1H, m, 

H-3α of both compounds), 1.00 (3H, s, Me-19 of both compounds), 1.01 (3H, d, J21,20  = 

6.4 Hz, Me-21 compound II.12), 0.91 (3H, d, J21,20 = 6.8 Hz, Me-21 compound II.11), 

0.82 (2 x 9H, m, Me-26, Me-27, Me-29 for both compounds), 0.69 (3H, s, Me-18 

compound II.12), 0.67 (3H, s, Me-18 compound II.11). 
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V.2.1.1.2. α-Amyrin II.13 and β-amyrin II.14 in a (3:1) ratio 

 

 

 

 

 

 

 

                         α-amyrin II.13                                          β-amyrin II.14 

 

White crystals needles (228.3 mg; 0.00673 % dry material); 

m.p. 175-180 ˚C; 

R
f 
(SiO

2
, n-hexane: ethyl acetate; 1:1): 0.63; 

The tlc chromatogram upon revelation by a mixture of H2O : CH3COOH : H2SO4  (16: 80: 

4) and posterior heat with a standard sample (co-aplication) confirmed the presence of 

α-amyrin II.13 and β-amyrin II.14  giving a characteristic purple colour; 

1H NMR (400 MHz, CDCl3): δ 5.18 (1H, t, J12,11 =  3.8 Hz, H-12 compound II.14), 

5.12  (1H, t, J12,11 = 3.6 Hz, H-12 compound II.13), 3.22 (1H, dd, J3α,2β  = 10.8 Hz, J3α,2α = 

5.0 Hz, H-3α for both compounds), 2.00 (1H, dd, J18,19 =  13.4 Hz, J18,19β =  4.4 Hz, H-18 

compound II.14),  1.19 (1H, d, J18,19β = 3.6 Hz, H-18 compound II.13), 1.13-0.78 (16*3H, 

m, Me-23 to Me-30 of compound II.14 and II.13); 

EIMS m/z (rel. Int.): 426 [M]+ (10.0); 411 [M-CH3]+ (4.0); 218 (100), 208 (4), 203 

(50), 190 (10), 189 (5). 

 

V.2.1.2. Column chromatography A3 (Study of fraction PO-A4) 

 

The fraction PO-A4 was pooled and recrystallized to give 0.018 g of compound 

II.17 (plectrornatin C). The remaining residue was fractionated by column 
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chromatography A3 originating five fractions. Fraction A3-2 was pooled and 

recrystallized to give phytosterols II.11 and II.12 (0.300 g), and  fractions A3-1 and A3-3 

were studied by subsequent column chromatographies, B1 and B5, respectively, giving 

0.013 g of 6-O-acetylforskolin II.1 (B1) and 0.0011g of 11R*-acetoxyhalima-5,13E-dien-

15-oic acid II.7, 0.526 g of compound II.17 and 0.110 g of ursolic and oleanolic acids 

II.15 and  II.16 (B5) as shown in the Scheme V.2. Fraction A3-4 was studied by column 

chromatography B3 and will be described later in Scheme V.3. 

 

 

 

 

 

 

 

 

 

 

 

Scheme V.2. Study of P. ornatus: isolated compounds from fraction PO-A4. 

 

The fraction PO-A4 eluted with n-hexane:EtOAc (50:50) was pooled and 

recrystallized from the same mixture of solvents to give 0.018 g of compound II.17 

(plectrornatin C). The remaining fraction was submitted to column chromatography A3 

in silica gel (9385; 200 g) to give five fractions (A3-1 to A3-5; Table V.4). 

 

 

 

 

PO-A4 

A3-1 A3-2 
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II.17 (0.018 g) 

A3-4 
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B5-3 

 

Compound 

II.7 (0.011 g) 

 

B5-4 

 

B5-5 

 

Compound 

II.17 (0.526 g) 

 

Compound II.15 

and  II.16 (0.110 g) 
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Table V.4. Column chromatography A3 of fraction PO-A4 (P. ornatus).  

Fraction Quantity / g Eluents (%) 
n-hexane: EtOAc 

Eluents (%)  
EtOAc : MeOH 

A3-1 0.1139 1:0 to 85:15 --- 
A3-2 5.4876 85:15 --- 
A3-3 5.3710 85:15 to 80:20 --- 
A3-4 6.9930 80:20 to 75:25 --- 
A3-5 5.8438 75:25  to 75:25 

 

V.2.1.2.1. Plectrornatin C (1,6-diacetoxy-8,13R*-epoxy-14-
labden-11-one) II.17 
 
 

 

 

 

                                                                    II.17 

Colorless needles (EtOAc-n-pentane);   

m.p. 234-235 C (EtOAc-n-pentane); 

[] 20

D  – 81.5 (c 0,114; CHCl3); 

IR (KBr) max: 3090, 1642, 948 (vinyl group), 1732, 1238 (OAc), 2953, 2861, 

1453, 1394, 1364, 1210, 1144, 1036, 993, 913 cm-1;  

1H NMR (CDCl3, 400 MHz):  5.92 (1H, dd, J14,15B = 17.4 Hz, J14,15A  = 10.7 Hz, H-

14), 5.57 (1H, ddd, J6α,7α = 3.8 Hz, J6α,7 = 2.9 Hz, J6α,5α = 2.6 Hz, H-6), 5.53 (1H, t, J1β,2β 

=J1β,2α = 2.8 Hz, H-1), 5.19 (1H, dd, J15B,14 = 17.4 Hz, J15B,15A = 1.1Hz, HB-15), 5.04 (1H, 

dd, J15A,14 = 10.7 Hz, J15A,15B = 1.1 Hz, HA-15), 3.23 (1H, s, H-9), 2.67 (1H, d, J12β,12α = 

18.6 Hz, H-12), 2.60 (1H, d, J12α,12β = 18.6 Hz, H-12), 2.26 (1H, dd, J 7α,7β = 14.6 Hz, J 

7,6α = 2.9 Hz, H-7), 2.05 (3H, s, 6-OAc), 2.00 (1H, dddd, J2β,2α  = 15.5 Hz, J2β,3α = 13.6 

Hz, J2β,3β = 3.6 Hz, J2β,1β = 2.8 Hz, H-2), 1.95 (3H, s, 1-OAc), 1.90 (1H, dd, J7α,7β  = 14.6 

Hz, J 7α,6α = 3.8 Hz, H-7), 1.71 (1H, dddd, J2α,2β  = 15.5 Hz, J2α,3α = 3.4 Hz, J2α,1β = 2.8 Hz, 
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J2α,3β = 2.7 Hz, H-2), 1.47 (1H, d, J5α,6α = 2.6 Hz, H-5), 1.46 (3H, s, Me-17), 1.45 (1H, 

ddd, J3α,3β = 13.8 Hz, J3α,2β = 13.6 Hz, J3α,2α = 3.4 Hz, H-3), 1.42 (3H, s, Me-20), 1.26 (3H, 

s, Me-16), 1.11 (1H, ddd, J3,3α = 13.8 Hz, J3β,2β = 3.6 Hz, J3,2α = 2.7 Hz, H-3), 0.99 (3H, 

s, Me-19), 0.97 (3H, s, Me-18); 

13C NMR (CDCl3, 100 MHz):  75.1 (C-1, d); 21.7 (C-2, t); 36.9 (C-3, t); 33.7 (C-4, 

s); 49.1 (C-5, d); 69.5 (C-6, d); 46.2 (C-7, t); 75.7 (C-8, s); 58.2 (C-9, d); 40.5 (C-10, s); 

206.2 (C-11, s); 49.1 (C-12, t); 74.6 (C-13, s); 146.7 (C-14, d); 112.4 (C-15, t); 31.7 (C-16, 

q); 29.5 (C-17, q); 32.9 (C-18, q); 22.9 (C-19, q); 17.4 (C-20, q); 169.5 (1-OCOOCH3, s); 

21.4 (1-OCOOCH3, q); 169.9 (6-OCOOCH3, s); 21.8 (6-OCOOCH3, q); 

EIMS m/z (rel. Int.): 420 [M]+ (0.5); 405 (0.3), 377 (1), 360 (2), 300 (2), 285 (5), 

247 (8), 215 (11), 190 (8), 173 (11), 163 (7), 147 (7), 119 (10), 109 (11), 107 (11), 95 

(13), 91 (11), 81 (13), 69 (14), 67 (11), 55 (20), 43 (100), 41 (13); 

Anal. C 68.39%, H 8.58%, calcd for C24H36O6, C 68.54% and H 8.63%. 

 

Fraction A3-2 eluted with n-hexane:EtOAc (85:15), was  filtered through 

charcoal and celite (1:1) to eliminate chlorophylls and was pooled and recrystallized 

from the same mixture of solvents to give phytosterols II.1 and II.2 (0.300 g). Fraction 

A3-1 was studied by subsequent column chromatography B1, in silica gel (9385; 30 g) to 

give three fractions (B1-1 to B1-3; Table V.5).  

 

Table V.5. Column chromatography B1 of fraction A3-1 (P. ornatus).  

Fraction Quantity / g  Eluents (%) 
CH2Cl2: EtOAc 

B1-1 0.028 1:0 to 90:10 
B1-2 0.238 90:10 
B1-3 0.039 90:10 to 0:1 

 

Fraction B1-2 eluted by CH2Cl2: EtOAc (90:10) was pooled and recrystallized 

from the same mixture of solvents giving 0.013 g of compound II.1. 
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V.2.1.2.2. 6-O-acetylforskolin II.1 

 
 
 
 
 
 
 
 
                                                                            II.1 

Colorless prisms from EtOAc; 

m.p. 296-298 ˚C (m.p. 299-301 ˚C; Bhat S.V. et al., 1982); 

[] 20

D  +11.4˚ (MeOH; c 0.236); 

IR (KBr), υmax: 3399, 3188, 3057, 2968, 1739, 1711, 1396, 1370, 1264, 1238, 

1098, 1054, 995, 922 cm-1; 

1H NMR (CDCl3, 400 MHz):  8.63 (1H, s, 9α-OH), 8.49 (1H, d, J5α,6α = 2.8 Hz, 1α-

OH), 6.28 (1H, dd, J14,15A = 10.7 Hz, J14,15B = 17.4 Hz, 14-H), 6.20 (1H, dd, J6α,5α = 2.8 Hz, 

J6α,7α = 4.6, 6α-H), 6.15 (1H, d, J7α,6α = 4.6, 7α-H), 5.35 (1H, dd, J15B,14 = 17.4 Hz, J15B,15A = 

1.5, 15B-H), 5.01 (1H, ddd, J1β,2α = 3.2 Hz, J1β,2β = 2.4 Hz, 1β-H), 4.91 (1H, dd, J15A,15B = 

1.5, J15A,14 = 10.7 Hz, 15A-H), 3.48 (1H, d, J12α,12β = 16.4 Hz, 12α-H), 2.72 (1H, d, J5α,6α = 

2.8 Hz, 5α-H), 2.60 (1H, d, J12β,12α = 16.4 Hz, 12β-H), 2.16 (1H, dddd, J2β,1β = 2.4 Hz, J2β,2α 

= 14.4, J2β,3α = 13.1 Hz, J2β,3β = 3.2 Hz, 2β-H), 2.13 (1H, s, 6β-OAc), 2.00 (1H, s, 7β-OAc), 

1.98 (1H, td, J3α,2α = 3.2 Hz, J3α,2β = 13.1 Hz, J3α,3β = 13.1 Hz, 3α-H), 1.84 (3H, s, Me-17), 

1.64 (3H, s, Me-20), 1.54 (1H, dq, J2α,1β = 3.2 Hz, J2α,2β = 14.4 Hz, J2α,3α = 3.2 Hz, J2α,3β = 

3.2 Hz, 2α-H), 1.42 (3H, s, Me-16), 1.04 (1H, dt, J3β,2α = 3.2 Hz, J3β,2β = 3.2 Hz, J3β,3α = 

13.1 Hz, 3β-H), 1.00 (3H, s, Me-19), 0.97 (3H, s, Me-18); 

13C NMR (CDCl3, 100 MHz):  73.54 (C-1, d); 27.06 (C-2, t); 36.82 (C-3, t); 34.23 (C-

4, s); 42.61 (C-5, d); 70.08 (C-6, d); 75.54 (C-7, d); 81.29 (C-8, s); 82.74 (C-9, s); 43.28 (C-

10, s); 206.82 (C-11, s); 49.66 (C-12, t); 75.83 (C-13, s); 147.54 (C-14, d); 110.13 (C-15, 

t); 30.80 (C-16, q); 23.69 (C-17, q); 32.74 (C-18, q); 23.54 (C-19, q); 20.07 (C-20, q); 

170.49 (6β-COCH3, s); 21.28 (6β-COCH3, q); 170.31 (7β-COCH3, s); 20.95 (7β-COCH3, q); 

EIMS m/z (relative intensity, %): 452 [M]+ (1), 419 (1), 416 (1), 392 (2), 282 (2), 

253 (2), 233 (3), 219 (3), 207 (13), 165 (21), 152 (12), 147 (12), 135 (10), 123 (16), 121 
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(11), 111 (11), 109 (15), 107 (10), 99 (16), 95 (18), 85 (11), 69 (13), 68 (13), 55 (14), 43 

(100), 41 (12); 

Anal. C, 63.49%, H, 8.11%, calcd for C24H36O8 C, 63.70% and H 8.02 %.  

 

The fraction A3-3 eluted with n-hexane:EtOAc (85:15 to 80:20) was filtered 

through a pad of charcoal and celite (1:1) to eliminate chlorophylls and was submitted 

to column chromatography B5 of silica gel (9385; 30 g) using mixtures of CH2Cl2:EtOAc 

(1:0 to 65:35) as eluents; after tlc monitoring, chromatographic fractions were 

combined into five fractions (B5-1 to B5-5; Table V.6).  

 

Table V.6. Column chromatography B5 of fraction A3-3 (P. ornatus).  

Fraction Quantity / g Eluents (%) 
n-hexane: EtOAc 

B5-1 0.400 1:0 to 88:12 
B5-2 0.490 88:12  
B5-3 1.745 88:12 
B5-4 0.809 88:12 to 80:20 
B5-5 0.350 80:20 to 65:35 

 

The fractions B5-2, B5-3 and B5-5 were pooled and recrystallized from a mixture 

of solvents of EtOAc:CH2Cl2  (1:1),  EtOAc:CH2Cl2  (5:95) and n-hexane:EtOAc (70:30) to 

give 11 mg of the compound II.7, 0.526 g of the compound II.17 (Plectrornatin C) and 

0.110 g of the compound II.15 and II.16, respectively.  

 

V.2.1.2.3. 11R*-Acetoxyhalima-5,13E-dien-15-oic acid II.7 

 

 

 

 

 

 

                                                                         II.7 



Chapter V    Experimental Section  

 

172 

 

Colourless hexagonal plates from EtOAc – n-pentane;  

m.p. 158-161 ˚C; 

[α] 18

D - 48,1˚ (c 0.162, CHCl3);  

IR (KBr) νmax: 3450-2576 br, 2925, 1736, 1692, 1674, 1638, 1460, 1375, 1243, 

1028, 718 cm-1;  

1H RMN (CDCl3, 400 MHz) :  5.68 (1H, qd, J14,12A= 0.4 Hz,  J14,16= 1.3 Hz, H-14), 

5.45 (1H, dt, J6,7α,= 2.2 Hz, J6,7β= 5.2 Hz, J6,10β= 2.2 Hz, H-6), 5.31 (1H, dd, J11,12A= 2.6 Hz, 

J11,12B = 10.2,  H-11), 2.44 (1H, ddd, J12A,11= 2.6 Hz, J12A,12B= 13.4 Hz, J12A,14= 0.4 Hz, H-

12A), 2.36 (1H, dd, J12B,11= 10.2 Hz, J12B,12A= 13.4 Hz, H-12B), 2.19 (3H, d, J16,14= 1.3 Hz, 

Me-16), 2.07 (1H, ddd, J10β,1α= 12.8 Hz, J10β,1β= 2.0 Hz, J10β,6= 2.2 Hz, H-10β), 2.00 (3H, s, 

OAc-11), 1.92 (1H, dtd, J1β,1α= 12.8 Hz, J1β,2α= 4.0 Hz, J1β,2β= 4.1 Hz, J1β,10β= 2.0 Hz, H-1β), 

1.84 (1H, ddd, J7β,6= 5.2 Hz, J7β,7α= 17.1 Hz, J7β,8β= 2.8 Hz, H-7β), 1.78 (1H, ddd, J7α,6= 2.2 

Hz, J7α,7β= 17.1 Hz, J7α,8β= 12.4 Hz, H-7α), 1.64 (1H, ddddd, J2α,1α = 4.2 Hz, J2α,1β= 4.0 Hz, 

J2α,2β= 13.2 Hz, J2α,3α= 3.7 Hz, J2α,3β= 4.0 Hz, H-2α), 1.56 (1H, dqd, J8β,7α= 12.4 Hz, J8β,7β= 

2.8 Hz, J8β,17= 6.8 Hz, H-8β), 1.52 (1H, qt, J2β,1α= 12.8 Hz, J2β,1β= 4.1 Hz, J2β,2α= 13.2 Hz, 

J2β,3α= 13.1 Hz, J2β,3β= 3.2 Hz, H-2β), 1.42 (1H, ddd, J3β,2α= 4.0 Hz, J3β,2β= 3.2 Hz, J3β,3α= 

13.1 Hz, H-3β), 1.19 (1H, td, J3α,2α= 3.7 Hz, J3α,2β= 13.1 Hz, J3α,3β= 13.1 Hz, H-3α), 1.10 

(1H, qd, J1α,1β= 12.8 Hz, J1α,2α= 4.2 Hz,  J1α,2β = 12.8 Hz, J1α,10β= 12.8 Hz, H-1α), 1.05 (3H, s, 

CH3-19), 0.99 (3H, d, J17,8β= 6.8 Hz, CH3-17), 0.98 (3H, s, CH3-18), 0.69 (3H, s, CH3-20);  

13C RMN (CDCl3, 100 MHz):  28.9 (C-1, t), 22.5 (C-2, t), 40.9 (C-3, t), 36.3 (C-4, 

s), 145.2 (C-5, s), 116.0 (C-6, d), 31.3 (C-7, t), 32.9 (C-8, d), 41.6 (C-9, s), 40.3 (C-10, d), 

75.0 (C-11, d), 41.7 (C-12, t), 159.8 (C-13, s), 117.7 (C-14, d), 171.1 (C-1, s), 19.0 (C-16, 

q), 17.2 (C-17, q), 28.1 (C-18, q), 29.7 (C-19, q), 11.8 (C-20, q), 170.7 (-0CCH3, s), 20.8 (-

0CCH3, q); 

EIMS m/z (relative intensity, %): [M]+ absent, 302 [M-HOAc]+ (1), 287 (4), 260 

(5), 245 (15), 203 (17), 191 [M-C8H11O4] 

.  (100), 175 (11), 147 (15), 133 (18), 119 (40), 

105 (23), 95 (30), 80 (19), 69 (15), 55 (23); 

Anal. calculated for C22H34O4: C 72.89 %, H 9.45 %; found: C 72.71 %, H 9.33 %. 
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V.2.1.2.4. Ursolic and oleanolic acids II.15 and II.16 in a (4:1) ratio 

 

 

 

 

 

 

 

                                        II.15                                                       II.16                

White crystals needles; 

m.p. 243.249 ˚C;  

R
f 
(silica gel, dichloromethane: ethyl acetate; 8:2) 0.62; 

1H NMR (400 MHz, CDCl3): δ 5.12 (1H, br s, H-12 of compound II.16), 5.09 (1H, 

s, H-12 of compound II.15), 3.04 (1H, dd, J3α,2β= 8.0 Hz, J3α,2α= 6.0 Hz, H-3α), 2.04 (1H, d, 

J18,19α = 11.6 Hz, H-18 of compound II.15), 1.84 (1H, dd, J18,19α = 13.2 Hz, J18,19β = 4.4 Hz, 

H-18 of compound II.16), 1.00-0.62 (14*3H, s, Me-23 to Me-30 of compound II.16 and 

II.15). 

The study of fraction A3-4 was fractionated by column chromatography B3 in 

five fractions. Fraction B3-2 was pooled and recrystallized to give 0.771 g of compound 

II.2 and II.3 (isolation of II.2 from II.3 was done by subsequent column 

chromatographies C1). Fraction B3-3 was pooled and recrystallized to give 0.045 g of 

compound II.15 and II.16, and finally fraction B3-5 was rechromatographed by column 

chromatographies C3, which gave three fractions. The fraction C3-2 was fractionated by 

column chromatographies D1, and from fraction D1-3 was obtain 0.007 g of compound 

II.6. The most polar fraction (C3-3) was pooled and recrystallized to give 0.108 g of 

compound II.6 (Scheme V.3). 
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Scheme V.3. Study of P. ornatus: isolated compounds from fraction A3-4 (from 

fraction PO-A4). 

 

The fraction A3-4 was filtered through a pad of charcoal and celite (1:1) to 

eliminate chlorophyls giving 5.993 g of the residue that was submitted to column 

chromatography B3 of silica gel (9385; 200 g) using mixtures of CH2Cl2:EtOAc (1:0 to 

0:1) as eluent; after tlc monitoring, chromatographic fractions were combined into five 

fractions (B3-1 to B3-5; Table V.7).  

 

Table V.7. Column chromatography B3 of fraction A3-4 (P. ornatus).  

Fraction Quantity / g Eluents (%) 
CH2Cl2: EtOAc 

B3-1 0.2155 1:0 to 95:5 
B3-2 1.2016 90:10 to 85:15 
B3-3 0.6193 85:15  
B3-4 0.3188 80:20  
B3-5 0.8089 80:20 to 0:1 

 

 

A3-4 

 

B3-1 B3-2 B3-3 B3-4 B3-5 

Column 

chromatography 

C1 (separation of 

II.2 from II.3) 

Compounds      

II.2 and II.3     

(0.771 g) 

 

Compounds 

II.15 and II.16 

(0.045 g) 

C3-1 C3-2 C3-3 

Compound 

II.6 (0.109 g) 

 

D1-1 D1-2 D1-3 D1-4 

Compound II.6 

(0.007 g) 
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The fraction B3-2 was pooled and recrystallized from a mixture of solvents of 

CH2Cl2:EtOAc (1:1) to give 0.771 g of compound II.2 and II.3. The isolation of II.2 from 

II.3 (0.150 g) was achieved by column chromatography C1 using as eluent a mixture of 

CH2Cl2:EtOAc (95:5) to give 0.031 g of 1,6-di-O-acetylforskolin II.2 and 0.015 g of 1,6-di-

O-acetyl-9-deoxyforskolin II.3. The fraction B3-3 recrystallized from CH2Cl2 to give 0.045 

g of compounds II.15 and II.16 (ursolic and oleanolic acids) in the proportion (1:1). 

 

V.2.1.2.5. 1,6-Di-O-acetylforskolin II.2 

 

 

 

                                                                     II.2 

Colorless fine needles from EtOAc-pentane; 

m.p. 213-215 ˚C (m.p. 216-218 ˚C; Bhat S.V. et al.,  1982); 

[α]
20

D  +10.3˚ (CHCl3; c 0.136);  

IR (KBr), υmax: 3468, 2942, 1736, 1714, 1393, 1367, 1246, 1226, 1205, 1042 cm1;  

1H NMR (CDCl3, 400 MHz):  5.90 (1H, dd, J14,15A = 10.6 Hz, J14,15B = 17.2 Hz, 14-

H), 5.80 (1H, dd, J6α,5α = 2.7 Hz, J6α,7α = 4.6 Hz, 6α-H), 5.56 (1H, t, J1β,2α = 2.4 Hz, J1β,2β = 

2.4 Hz, 1β-H), 5.54 (1H, d, J 7α,6α = 4.6, 7α-H), 5.20 (1H, dd, J15B,14 = 17.2 Hz, J15B,15A = 1.1, 

15B-H), 4.93 (1H, dd, J15A,15B = 1.1, J15A,14 = 10.6 Hz, 15A-H), 4.74 (1H, s, 9α-OH), 3.14 

(1H, d, J12α,12β = 16.5 Hz, 12α-H), 2.42 (1H, d, J12β,12α = 16.5 Hz, 12β-H), 2.41 (1H, d, J5α,6α 

= 2.7 Hz, 5α-H), 2.12 (1H, dddd, J2β,1β = 2.4 Hz, J2β,2α = 15.4, J2β,3α = 13.0 Hz, J2β,3β = 3.4 

Hz, 2β-H), 2.09 (1H, s, 1α-OAc), 2.02 (1H, s, 6β-OAc), 2.01 (1H, s, 7β-OAc), 1.64 (3H, s, 

Me-17), 1.63 (1H, dq, J2α,1β = 2.4 Hz, J2α,2β = 15.4 Hz, J2α,3α = 3.4 Hz, J2α,3β = 3.4 Hz, 2α-H), 

1.58 (1H, td, J3α,2α = 3.4 Hz, J3α,2β = 13.0 Hz, J3α,3β = 13.0 Hz, 3α-H), 1.52 (3H, s, Me-20), 

1.33 (3H, s, Me-16), 1.15 (1H , dt, J3β,2α = 3.4 Hz, J3β,2β = 3.4 Hz, J3β,3α = 13.0, 3β-H), 1.03 

(3H, s, Me-18), 0.98 (3H, s, Me-19); 



Chapter V    Experimental Section  

 

176 

 

13C NMR (CDCl3, 100 MHz):   73.94 (C-1, d); 23.11 (C-2, t); 37.00 (C-3, t); 33.84 

(C-4, s); 43.00 (C-5, d); 69.36 (C-6, d); 76.57 (C-7, d); 81.65 (C-8, s); 81.44 (C-9, s); 43.44 

(C-10, s); 205.26 (C-11, s); 48.74 (C-12, t); 75.70 (C-13, s); 145.83 (C-14, d); 110.38 (C-

15, t); 31.00 (C-16, q); 23.22 (C-17, q); 32.69 (C-18, q); 23.39 (C-19, q); 19.64 (C-20, q); 

168.40 (1α-COCH3, s); 21.74 (1α-COCH3, q); 169.87 (6β-COCH3, s); 21.44 (6β-COCH3, q); 

169.87 (7β-COCH3, s); 20.82 (7β-COCH3, q); 

EIMS m/z (relative intensity, %) 494 [M]+ (2), 434 (8), 384 (8), 355 (25), 324 (5), 

295 (5), 282 (13), 207 (28), 193 (14), 191 (20), 175 (15), 165 (30), 152 (16), 147 (17), 

123 (19), 121 (12), 109 (13), 107 (12), 97 (10), 95 (19), 85 (13), 81 (15), 68 (19), 67 (13), 

55 (12), 43 (100), 41 (8);  

Anal. C, 63.28%, H 7.70%, calcd for C26H38O9, C 63.14% and H 7.74 %.  

 

V.2.1.2.6. 1,6-Di-O-acetyl-9-deoxyforskolin II.3 

 

 

 

 

                                                                  II.3 

 

Colorless fine needles from EtOAc-pentane;  

m.p. 199-200 ˚C;  

*α+
20

D  –46.9˚ (CHCl3; c 0.149);  

IR (KBr), υmax: 3090, 2971, 2942, 1736, 1715, 1635, 1393, 1366, 1252, 1234, 

1039, 984, 948 cm-1;  
1H NMR (CDCl3, 400 MHz):  5.94 (1H, dd, J14,15A = 10.8 Hz, J14,15B = 17.4 Hz, 14-

H), 5.74 (1H, dd, J6α,5α = 2.4 Hz, J6α,7α = 3.9, 6α-H), 5.50 (1H, t, J1β,2α = 2.7 Hz, J1β,2β = 2.7 

Hz, 1β-H), 5.10 (1H, d, J7α,6α = 3.9, 7α-H), 5.24 (1H, dd, J15B,14 = 17.4 Hz, J15B,15A = 1.0, 

15B-H), 5.05 (1H, dd, J15A,15B = 1.0, J15A,14 = 10.8 Hz, 15A-H), 3.32 (1H, s, 9α-H), 2.64 (1H, 

d, J12α,12β = 18.8 Hz, 12α-H), 2.59 (1H, d, J12β,12α = 18.8 Hz, 12β-H), 2.08 (1H, s, 7β-OAc), 
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2.07 (1H, s, 6β-OAc), 1.97 (1H, dddd, J2β,1β = 2.7 Hz, J2β,2α = 14.4, J2β,3α = 13.0 Hz, J2β,3β = 

3.4 Hz, 2β-H), 1.96 (1H, s, 1α-OAc), 1.72 (1H, dddd, J2α,1β = 2.7 Hz, J2α,2β = 14.4 Hz, J2α,3α 

= 2.7 Hz, J2α,3β = 3.4 Hz, 2α-H), 1.60 (1H, d, J5α,6α = 2.4 Hz, 5α-H), 1.50 (3H, s, CH3-17), 

1.45 (1H, ddd, J3α,2α = 2.7 Hz, J3α,2β = 13.0 Hz, J3α,3β = 13.5 Hz, 3α-H), 1.44 (3H, s, CH3-20), 

1.21 (3H, s, Me-16), 1.12 (1H , dt, J3β,2α = 3.4 Hz, J3β,2β = 3.4 Hz, J3β,3α = 13.5, 3β-H), 0.98 

(3H, s, CH3-18), 0.94 (3H, s, CH3-19); 

13C NMR (CDCl3, 100 MHz):  74.78 (C-1, d); 21.61 (C-2, t); 36.74 (C-3, t); 33.77 

(C-4, s); 47.23 (C-5, d); 69.24 (C-6, d); 78.51 (C-7, d); 77.21 (C-8, s); 57.32 (C-9, d); 40.62 

(C-10, s); 205.21 (C-11, s); 49.01 (C-12, t); 74.61 (C-13, s); 146.30 (C-14, d); 112.89 (C-

15, t); 31.80 (C-16, q); 24.03 (C-17, q); 32.63 (C-18, q); 22.91 (C-19, q); 17.25 (C-20, q); 

169.88 (1α-COCH3, s); 21.33 (1α-COCH3, q); 169.45 (6β-COCH3, s); 20.33 (6β-COCH3, q); 

170.35 (7β-COCH3, s); 21.33 (7β-COCH3, q); 

EIMS m/z (relative intensity, %): [M]+ absent, 463 [M-Me]+ (2), 435 (3), 418 [M-

HOAc]+ (7), 403 (2), 361 (3), 351 (7), 308 (8), 263 (10), 231 (10), 205 (10), 203 (24), 175 

(10), 95 (14), 81 (11), 69 (14), 55 (12), 43 (100), 41 (9); 

Anal. C, 65.31%, H, 7.89%, calcd for C26H38O8, C 65.25% and H, 8.00 %.  

 

The fraction B3-3 eluted from a mixture of solvents of CH2Cl2:EtOAc (85:15) was 

recrystallized from the same mixture of solvents to give 0.045 g of compounds II.15 

and II.16. 

The fraction B3-5 was submitted to C3 column chromatography of silica gel (9385; 

70 g) using as eluent mixtures of n-hexane:EtOAc (1:0 to 0:100); after tlc monitoring, 

chromatographic fractions were combined into three fractions (C3-1 to C3-3 Table V.8).  

 

Table V.8. Column chromatography C3 of fraction B3-5 (P. ornatus).  

Fraction Quantity / g Eluents (%) 
n-hexane: AcOEt 

C3-1 0.0600 1:0 to 80:20 
C3-2 0.4387 80:20 to 75:25  
C3-3 0.0300 75:25 to 0:100 
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The fraction C3-3 was recrystallized from a mixture of solvents of n-hexane:EtOAc 

(1:1) to give 6.6 mg of rhinocerotinoic acid II.6 (1,7-oxo-labda-8-13E-dien-15-oic acid). 

The fraction C3-2 was submitted to D1 column chromatography using as eluents a 

mixture of CH2Cl2:EtOAc (1:0 to 0:1); after tlc monitoring, chromatographic fractions 

were combined into four fractions (D1-1 to D1-4 Table V.9).  

 

Table V.9. Column chromatography D1 of fraction eluted by n-hexane:EtOAc 
(75:25) of column chromatography C1 (P. ornatus).  

Fraction Quantity / g Eluents (%) 
CH2Cl2: EtOAc 

D1-1 0.0320 1:0 to 80:20 
D1-2 0.0500 78:22 to 74:26 
D1-3 0.3467 74:28 to 58:42  
D1-4 0.0100 58:42 to 0:1 

 

The fraction D1-3 was recrystallized from a mixture of solvents of n-hexane:EtOAc 

(1:1) to give 108 mg (0.0032 %, on dry plant material) of rhinocerotinoic acid II.6 (1,7-

oxo-labda-8-13E-dien-15-oic acid). 

 

V.2.1.2.7. Rhinocerotinoic acid (1, 7-oxo-labda-8-13E-dien-15-oic 
acid) II.6 
 

 

 

 

 

 

                                                               II.6 

White fine needles; 

m.p. 187-189 ˚C (EtOAc-light petroleum); m.p. 189-190 ˚C (Gray C.A. et al., 

2003); 
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*α+ 18

D  +38.9˚ (c 0.236, CHCl3); *α+D +42˚  (Dekker T.G. et al., 1988);  *α+ 27

D  +40˚ (c 

2.52) (Gray C.A. et al., 2003); 

IR (KBr), υmax: 3306-2894 br, 1720, 1630, 1587, 1448, 1373, 1328, 1223, 1146, 

860, 679 cm-1;  

1H RMN (CDCl3, 400 MHz):  1.36 (1H, td, J1α,1β= J1α,2β  = 12.7 Hz, J1α,2α = 3.7 Hz, 

H-1α), 1.91 (1H, dddd, J1β,1α = 12.7 Hz, J1β,2α= 4.0 Hz, J1β,2β=  3.7 Hz, J1β,3β= 1.3 Hz, H-1β), 

1.70 (1H, m, J2α,1α = 3.7 Hz, J2α,1β= 4.0 Hz, J2α,2β= 13.5 Hz, J2α,3α= 4.1 Hz, J2α,3β= 3.2 Hz, H-

2α), 1.60 (1H, ddddd, J2β,1α = 12.7 Hz, J2β,1β=  3.7 Hz, J2β,2α= 13.5 Hz, J2β,3α= 13.5 Hz, J2β,3β= 

3.2 Hz, H-2β), 1.21 (1H, d largo, J3α,2α= 4.1 Hz, J3α,2β= 13.5 Hz, J3α,3β= 13.5 Hz, H-3α), 1.48 

(1H, dd, J3β,1β= 1.3 Hz, J3β,2α= 3.2 Hz, J3β,2β= 3.2 Hz, J3β,3α= 13.5 Hz, H-3β), 1.70 (1H, dd, 

J5α,6α = 3.7 Hz, J5α,6β= 14.3 Hz, H-5), 2.50 (1H, dd, J6α,5α = 3.7 Hz, J6α,6β = 17.5 Hz, H-6α), 

2.35 (1H, dd, J6β,5α = 14.3 Hz, J6β,6α= 17.5 Hz,  H-6β), 2.35 (2H, m, CH2-11), 2.28 (2H, m, 

CH2-12), 5.74 (1H, q, J14,16 = 1.3 Hz, H-14), 2.23 (3H,d, J16,14 = 1.3 Hz, CH3-16), 1.77 (3H, 

s, CH3-17), 0.88 (3H, s, CH3-18), 0.91 (3H, s, CH3-19), 1.08 (3H, s, CH3-20); 

13C RMN (CDCl3, 100 MHz): δ 35.8 (C-1, t), 18.56 (C-2, t), 41.23 (C-3, t), 33.12 (C-

4, s), 50.26 (C-5, d), 35.19 (C-6, t), 200.13 (C-7, s), 130.57 (C-8, s), 166.23 (C-9, s), 41.01 

(C-10, s), 27.64 (C-11, t), 39.79 (C-12, t), 161.70 (C-13, s), 115.18 (C-14, d), 171.13 (C-

15, s), 19.12 (C-16, q), 11.42 (C-17, q), 32.49 (C-18, q), 21.29 (C-19, q), 18.15 (C-20, q);  

EIMS m/z (relative intensity, %): 318 [M]+ (3), 205 [M-C6H9O2]+ (53), 177 (18), 

149 (18), 135 (100), 123 (47), 121 (27), 109 (20), 107 (20), 95 (17), 91 (23), 69 (25), 55 

(31), 53 (18). 

 

V.2.1.3. Column chromatography A4 (Study of fraction PO-A3) 

 

The fraction PO-A3 eluted with n-hexane:EtOAc (50:50) was filtered through a 

pad of charcoal and celite (1:1) to eliminate chlorophylls and the residue was 

submitted to column chromatography A4 of silica gel(9385; 150 g) using mixtures of 

CH2Cl2:EtOAc (1:0 to 0:1) as eluent; after tlc monitoring, the chromatographic fractions 

were combined into three fractions (A4-1 to A4-3, Table V.10).  
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Table V.10. Column chromatography A4 of fraction PO-A3 (P. ornatus).  

Fraction Quantity / g Eluents (%) 
DCM: EtOAc 

A4-1 2.8600 1:0 
A4-2 4.2380 1:0 to 50:50 
A4-3 4.0000 50:50 to 0:1 

 

The fraction PO-A3 was fractionated by column chromatography A4 giving three 

fractions. Fractions A4-2 were recrystallized to give 0.585 g a of a mixture of 

phytosterols II.11 and II.12 in the proportion (1:2) and a subsequent column 

chromatography B5 gave 0.519 g of the same mixture of phytosterols II.11 and II.12. 

Fraction A4-3 was submitted to other two column chromatographies, B7 and C4, for 

purifying compound II.7 (0.959 g) as shown in the Scheme V.4.   

 

 

 

 

 

 

 

 

 

 

 

 

Scheme V.4. Study of P. ornatus: isolated compounds from fraction PO-A3. 

 

 The fraction A4-2 (4.238g) was filtered through a pad of charcoal and celite (1:1) 

to eliminate chlorophylls and recrystallized from a mixture of solvents of n-

hexane:EtOAc (1:1) to give 0.585 g of a mixture of β-sitosterol (stigmast-5-en-3β-ol) 

II.11 and stigmasta-5,22E-dien-3β-ol II.12 in the proportion (1:2) and the remain 

PO-A3 

A4-1 A4-2 

 

A4-3 

 

B5-1 B5-2 

 

B5-3 

 

B5-4 

 

B5-5 

 

phytosterols II.11 and 

II.12 (0.519 g) 

 

phytosterols II.11 and 

II.12 (0.585 g) 

B7-1 B7-2 

 

B7-3 

 

B7-4 

 

B7-5 

 

compound II.7 

(0.120  g) 

 C4-1 C4-2 

 

C4-3 

 

C4-4 

 

C4-5 

 

compound II.7   
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residue was submitted to column chromatography B5 of silica gel
 
(9385, 100 g) eluted 

with CH2Cl2 to obtain more 0.519 g of the mixture of β-sitosterol (stigmast-5-en-3β-ol) 

II.11 and stigmasta-5,22E-dien-3β-ol II.12 in the same proportion (1:2). The fraction A4-

3 (4.00 g) eluted with CH2Cl2:EtOAc (50:50 to 0:1) was submitted to column 

chromatography B7 of silica gel
 
(9385, 100 g) eluted with CH2Cl2:EtOAc (1:0 to 0:1) to 

give five fractions. The fraction B7-4 (2.220 g) eluted with EtOAc, was submitted to 

another column chromatography C4 of silica gel
 

(9385, 200 g) eluted with 

CH2Cl2:acetone (1:0 to 0:1) for purifying compound II.7 in order to obtain more five 

fractions. Fractions (0.800 g and 0.700 g) eluted with CH2Cl2:acetone (80:20 to 75:25) 

and CH2Cl2:acetone (65:45 to 0:1) gave 0.733 g and 0.027 g of the compound 11R*-

acetoxyhalima-5,13E-dien-15-oic acid II.7, respectively. The fraction B7-5 (0.423 g) 

eluted with EtOAc was recrystallized giving 0.106 g of compound II.7. 

 

V.2.2. P. ornatus extracts 

 

The P. ornatus extracts (PO) were prepared by maceration of dried plant, by 

means of an increasing polarity set of solvents from n-hexane (PO-H), ethyl acetate 

(PO-EA), dichloromethane (PO-D), acetone (PO-A), methanol (PO-M) and solvent 

binary mixture MeOH-H2O (7:3; PO-MW).  

Five of the extracts were obtained by maceration of 25 g of dried and 

powdered plant material with 250 ml of each solvent, under agitation at room 

temperature, during a week. After filtration and solvents evaporation the following 

extracts were obtained: 0.351 g (1.404 % of dry plant) of a hexane extract, 0.772 g 

(3.088%) of an ethyl acetate extract, 0.696 g (2.784%) of a dichloromethane extract, 

2.248 g (8.993%) of a methanol extract and 1.777 g (7.108 %) of a MeOH-H2O (7:3) 

extract and 183.91 g (5.41%) of the acetonic extract (Rijo P. et al., 2010 submitted).  
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V.3. Study of Plectranthus ecklonii Benth. 

 

Plectranthus ecklonii Benth. was cultivated in the Faculty of Pharmacy Hortum, 

Lisbon University, from seeds provided by the Herbarium of the National Botanical 

Garden of  Kirstenbosch, South Africa. P. ecklonii whole plants were collected in July 

1998 and voucher specimens were deposited in the Herbarium of the Instituto de 

Investigação Científica Tropical, Lisbon (ref. C. Marques S/N° LISC). 

 

V.3.1. Plant material: study of Plectranthus ecklonii whole plants 
Extraction and isolation 
 

The air dried and powdered whole plants of P. ecklonii Benth. (7035.5 g) were 

extracted with Me2CO (6 x 7 L) at room temperature for 15 days. Filtration and 

evaporation of the solvent (under vacuum, 40˚C) yielded a residue of 284.4 g (4.04 % 

of dry material), which was subjected to column chromatography over silica gel
 
(7734, 

3000 g), using mixtures of n-hexane:EtOAc (1:0 to 0:1) and EtOAc:MeOH (1:0 to 0:1) as 

eluents yielding eight fractions. The precipitate of the first fraction, consisting mainly 

of waxes (21.34 g), was eliminated by filtration.  

 According to differences in composition, as indicated by tlc, the eight crude 

fractions were obtained (PE-A1 to PE-A8, Table V.11).  

 

Table V.11. Column chromatography A of the acetone extract (P. ecklonii).  

Fraction Quantity (g) Eluent (%)  
n-hexane : EtOAc 

Eluent (%)  
 EtOAc: MeOH 

PE-A1 
PE-A2 

2.68 
13.72 

70:30 
70:30 to 50:50  

--- 
--- 

PE-A3 
PE-A4 
PE-A5 
PE-A6 
PE-A7 
PE-A8 

7.47 
20.57 
37.70 
27.50 
5.55 

49.83 

50:50 
40:60 

40:60 to 25:75 
25:75 to 10:90 

0:100 
0:100 

--- 
--- 
--- 
--- 
--- 

to 40:60 
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The fraction PE-A2 was studied by three column chromatographies (CC) B2, C2 

and D1 and from a fraction of the latter compound II.18 (0.019 g) was obtained. The 

residue obtained was pooled and recrystallized to afford 0.030 g of phytosterols II.11 

and II.12. The remain residue was submitted to column chromatography E1 and from 

three different fractions compound  II.19 (0.104 g), compound II.15 and II.16 (0.005 g) 

and phytosterols II.11 and II.12 (0.121 g) were obtained.  

The fraction PE-A3 was fractionated by two column chromatographies (CC) B1 

and C1 and from a fraction of the latter, phytosterols II.11 and II.12 (0.008 g) were 

obtained. 

The fractions PE-A4 and PE-A7 were studied by column chromatographies (CC) 

B5 and B6, respectively, and compound II.19 (8.659 g and 0.863 g, respectively) was 

obtained. 

The fraction PE-A5 was studied by column chromatography B3 and one of the 

fraction was pooled and recrystallized to afford compound II.19 (1.494 g). The 

remaining residue was submitted to column chromatography C3 and the crude 

obtained was pooled and recrystallized to afford phytosterols II.11 and II.12 (0.129 g). 

The subsequent column chromatography D2 gave two different fractions that afforded 

the compound II.19 (2.800 g) and the compounds II.15 and II.16 (0.100 g). 

The fraction PE-A6 was studied by column chromatography B4 and from one of 

the fractions the phytosterols II.11 and II.12 (1.313 g) were isolated. The remaining 

residue was submitted to column chromatography C4 and the crude obtained from 

different fractions was pooled and recrystallized to afford phytosterols II.11 and II.12 

(0.021 g) and compound II.19 (5.401 g). 
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Scheme V.5. Study of P. ecklonii: isolated compounds from PE-A2 to PE-A7. 

 

V.3.1.1. Study of fraction PE-A3 (Column chromatography B1) 

 

The fraction PE-A3 eluted with n-hexane:EtOAc (50:50) was fractionated by 

column chromatography B1 (hydrated silica gel, 80 g) eluted with mixtures of n-

hexane:EtOAc. The chromatographic fractions, after tlc monitoring were combined 

into five fractions (B1-1 to B1-5, Table V.12).  
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Table V.12. Column chromatography B1 of the fraction PE-A3 (P. ecklonii).  

Fraction Quantity / g Eluents (%) 
n-hexane: EtOAc 

B1-1 5.689 100:0 
B1-2 0.024  100:0 to 85:15 
B1-3 3.689 80:20 to 85:25 
B1-4 0.500 70:30 to 45:55 
B1-5 0.833 40:60 to 0:100 

 

 

The fraction B1-3 was filtered through a pad of charcoal and celite (1:1) to 

eliminate chlorophylls; a quantity of 0.183 g of the resulting residue was submitted to 

column chromatography C1 of silica gel (9385; 14 g) using mixtures of n-hexane:EtOAc 

(1:0 to 0:1) as eluent; after tlc monitoring, chromatographic fractions were combined 

into four fractions. The fractions eluted with n-hexane:EtOAc (91:9  to 90:10) were 

pooled and recrystallized from a mixture of solvents of n-hexane:EtOAc (1:1) to give 

8.1 mg of β-sitosterol II.11 and stigmasta-5,22E-dien-3β-ol II.12 in the proportion (1:2). 

 

V.3.1.2. Column chromatography B2 (Study of fraction PE-A2) 

 

The fraction PE-A2 eluted with n-hexane:EtOAc (70:30 to 50:50) was 

fractionated by column chromatography B2 (silica gel, 130 g) eluted with mixtures of n-

hexane:EtOAc. The chromatographic fractions, after tlc monitoring were combined 

into seven fractions (B2-1 to B2-7). The fraction B2-3 was filtered through charcoal and 

celite (1:1) to eliminate chlorophylls and 1.948 g of the resulting residue was 

submitted to column chromatography C2 of silica gel (9385; 100 g) using as eluent 

mixtures of n-hexane:EtOAc (1:0 to 0:1); after tlc monitoring, chromatographic 

fractions were combined into seven fractions. The fraction C2-6 was fractionated by 

column chromatography D1 (silica gel, 100 g) eluted with mixtures of n-hexane:EtOAc. 

The fraction eluted with n-hexane:EtOAc (92:8) was pooled and recrystallized from a 

mixture of solvents of n-hexane:EtOAc (1:1) to give 19.3 mg (0.0003%, on dry plant 

material) of sugiol II.18. The remaining residue was chromatographed and the fraction 
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eluted with n-hexane:EtOAc (94:6 to 93:7) crystallized giving 30 mg of β-sitosterol II.11 

and stigmasta-5,22E-dien-3β-ol II.12. The remaining residue was re-chromatographed 

and further column chromatography for the purification gave 103.6 mg of parvifloron 

D II.19, 5.2 mg of compounds II.15 and II.16 (ursolic and oleanolic acids) and 121.2 mg 

of β-sitosterol II.11 and stigmasta-5,22E-dien-3β-ol II.12. 

 

  V.3.1.2.1. Sugiol II.18 

 

 

 

                                                                     II.18 

  m.p. 288-290˚ C, 295-297 ˚C (Glasby J. S. 1982);   

*α+
27

D  + 30.8 ˚ (c 0.133, CHCl3); *α+
25

D  + 28.3 ˚ (c 1.000, CHCl3; Chao K.P., 2005);  

  I.R. (KBr) νmax: 3140, 2940, 2880, 1650, 1610, 1580, 1570, 1510, 1460, 1380, 

1345, 1315, 1270, 1185, 1100, 920, 880, 780, 670 cm-1;    

  1H RMN ((CD3)2CO, 400 MHz):  8.90 (1H, br, 12-OH), 7.79 (1H, s, H-14), 6.82 

(1H, s, H-11), 3.23 (1H, sept of d, J15,16(17) = 6.9 Hz,  H-15), 2.55 (1H, dd, J6β,5α= 8.8 Hz, 

J6β,6α= 17.6 Hz, H-6β), 2.50 (1H, dd, J6α,5α= 8.8 Hz, J6α,6β= 17.6 Hz, H-6α), 2.20 (1H, ddd, 

J1β,1α= 12.8 Hz, J1β,2α= 1.6 Hz, J1β,2β= 3.2 Hz, H-1β), 1.80 (1H, dd, J5α,6α = 8.8 Hz, J5α,6β = 8.8 

Hz, H-5α), 1.79 (1H, ddddd, J2β,1β = 3.2 Hz, J2β,2α = 14.0 Hz, J2β,3α= 13.6 Hz, J2β,3β = 3.5 Hz, 

H-2β), 1.63 (1H, ddddd, J2α,1α= 3.6 Hz, J2α,1β= 1.6 Hz, J2α,2β= 14.0 Hz, J2α,3α= 3.6 Hz, J2α,3β = 

1.8 Hz, H-2α), 1.50 (1H, ddd, J3β,2α= 1.8 Hz, J3β,2β= 3.5 Hz, J3β,3α= 13.6 Hz, H-3β), 1.47 

(1H, ddd, J1α,1β = 12.8 Hz, J1α,2α = 3.6 Hz, J1α,2β = 13.2 Hz, H-1α), 1.27 (1H, ddd, J3α,2α = 3.6 

Hz, J3α,2β = 13.6 Hz, J3α,3β = 13.6 Hz, H-3α), 1.21 (3H, d, CH3-16), 1.20 (3H, d, CH3-20), 

1.19 (3H, d, CH3-17), 0.99 (3H, s, CH3-19), 0.92 (3H, s, CH3-18);  

  13C RMN ((CD3)2CO, 100 MHz):  37.34 (C-1, t), 18.31 (C-2, t), 40.82 (C-3, t), 

32.58 (C-4,s), 49.14 (C-5, d), 35.21 (C-6, t), 196.11 (C-7, s), 123.18 (C-8, s), 155.59 (C-9, 

s), 37.32 (C-10, s), 109.00 (C-11, d), 159.25 (C-12, s), 132.41 (C-13, s), 125.23 (C-14, d), 

http://www.amazon.co.uk/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&search-alias=books-uk&field-author=J.%20S.%20Glasby
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Chao%20KP%22%5BAuthor%5D
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26.07 (C-15, d), 21.58 (C-16, q), 21.46 (C-17, q), 31.71 (C-18, q), 20.46 (C-19, q), 22.32 

(C-20, q);  

EIMS m/z (relative intensity, %): 300 [M]+ (81), 285 [M-15] (100), 257 (6), 243 

(23), 229 (9), 217 (43), 215 (30), 203 (36), 201 (21), 189 (15), 187 (11), 163 (15), 145 

(9), 141 (8), 129 (9), 128 (13), 115 (13), 91 (11), 69 (28), 55 (21). 

 

V.3.1.2.2. Parvifloron D II.19 

 

 

 

 

 

 

                                                                          II.19 

m.p. 157-158 ˚C; 

  [α]
20

D
 + 128.1 ˚ (c 0.367, CHCl3);  

  IR (KBr) νmax: 3568-3092, 3329, 3059, 2959, 1669, 1594, 1520, 1444, 1315, 

1259, 1232, 1165, 1110, 1049, 1008, 985, 849, 773, 654 cm-1;  

1H RMN (CDCl3, 400 MHz) :  7.93 (2H, d, J2´,3´ = 8.9 Hz, H-2´ and H-6´), ~7.70 and 

~ 7.20 (br s, HO–4´ and HO–11), 6.96 (1H, d, J14,15 = 0.8 Hz, H-14), 6.88 (2H, d, J3´,2´ = 8.9 

Hz, H-3´ and H-5´), 6.79 (1H, d, J7,6 = 6.9 Hz, H-7), 6.41 (1H, d, J6,7 = 6.9 Hz, H-6), 5.59 

(1H, tt, J2β,1α = 11.4 Hz, J2β,1β = 4.4 Hz, J2β,3α = 11.4 Hz, J2β,3β = 4.4 Hz, H-2β), 3.76 (1H, 

ddd, J1β,1α  = 13.0 Hz, J1β,2β = 4.4 Hz, J1β,3β (W) = 2.4 Hz, H-1β), 3.15 (1H, sept of d, J15,16(17) 

= 6.8 Hz, J15,14 = 0.8 Hz, H-15), 2.15 (1H, ddd, J3β,2β = 4.4 Hz, J3β,3α = 12.5 Hz, J3β,1β(W) = 2.4 

Hz, H-3β), 1.74 (1H, dd, J1α,1β = 13.0 Hz, J1α,2β = 11.4 Hz, H-1α), 1.64 (3H, s, CH3-20), 1.56 

(1H, dd, J3α,2β = 11.4 Hz, J3α,3β = 12.5 Hz, H-3α), 1.42 (3H, s, CH3-19), 1.29 (3H, s, CH3-18), 

1.16 (3H, d, J16(17),15 = 6.8 Hz, CH3-16 or CH3-17), 1.18 (3H, d, J17(16),15 = 6.8 Hz, Me-17 or 

Me-16);  

13C RMN (CDCl3, 100 MHz):  38.37 (C-1, t), 67.87 (C-2, d), 45.06 (C-3, t), 38.58 

(C-4, s), 164.84 (C-5, s), 118.69 (C-6, d), 139.13 (C-7, d), 127.45 (C-8, s), 127.17 (C-9, s), 
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43.91 (C-10, s), 146.40 (C-11, s), 178.24 (C-12, s), 141.61 (C-13, s), 133.57 (C-14, d), 

26.52 (C-15, d), 21.84 (C-16 or C-17, q), 21.63 (C-17 or C-16, q), 33.03 (C-18, q), 30.58 

(C-19, q), 25.52 (C-20, q), 122.43 (C-1´, s), 131.89 (C-2´ and C-6´, d), 115.23 (C-3´ and C-

5´, d), 160.58 (C-4´, s), 166.18 (C-7´, s); 

EIMS m/z (relative intensity, %): 434 [M]+ (1), 297 (17), 296 (75), 240 (13), 228 

(22), 227 (100), 121 (27). 

 

V.3.1.3. Column chromatography B3 (Study of fraction PE-A5) 

 

The fraction PE-A5 eluted with n-hexane:EtOAc (40:60 to 25:75) was 

fractionated by column chromatography B3 (silica gel, 300 g) eluted with mixtures of n-

hexane:EtOAc and EtOAc:MeOH (1:0 to 0:1). The chromatographic fractions, after tlc 

monitoring, were combined into eight fractions (B3-1 to B3-8, Table V.13).  

 

Table V.13. Column chromatography B3 of the fraction PE-A5 (P. ecklonii).  

Fraction Quantity / g Eluents (%) 
n-hexane : EtOAc 

Eluent (%)  
 EtOAc: MeOH 

B3-1 0.186 1:0 to 85:15 --- 
B3-2 0.956 80:20 to 65:35 --- 
B3-3 5.412 60:40  --- 
B3-4 
B3-5 
B3-6 
B3-7 
B3-8 

19.763 
2.650 
1.976 
3.025 
2.318 

60:40 to 50:50 
50:50 to 45:55 

45:55 
45:55 to 40:60 

40:60 to 

--- 
--- 
--- 
--- 

80:20 

 

Fraction B3-4 (1.739 g) was filtered through a pad of charcoal and celite (1:1) to 

eliminate chlorophylls and was pooled and recrystallized from a mixture of solvents of 

n-hexane:EtOAc (1:1) to give 1.494 g of parvifloron D II.19. The resulting residue was 

submitted to column chromatography (silica gel, 1000 g) using a mixture of solvents of 

n-hexane:EtOAc (0:1 to 1:0); after tlc monitoring, chromatographic fractions were 

combined into eight fractions. Fractions eluted with of n-hexane:EtOAc (85:15 to 
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75:25) crystallized from a mixture of solvents of n-hexane:EtOAc (1:1) to give 0.129 mg 

of β-sitosterol II.11 and stigmasta-5,22E-dien-3β-ol II.12 in the proportion (1:2). 

Fraction eluted with n-hexane:EtOAc (80:20) was submitted to column 

chromatography (silica gel, 1200 g) using a mixture of solvents of n-hexane:EtOAc (0:1 

to 1:0), after tlc monitoring, chromatographic fractions were combined into five 

fractions giving 2.800 g of parvifloron D II.19 and 0.100 g of compounds II.15 and II.16 

(ursolic and oleanolic acids).  

 

V.3.1.4. Column chromatography B4 (Study of fraction PE-A6) 

 

The fraction PE-A6 eluted with n-hexane:EtOAc (25:75 to 10:90) was 

fractionated by column chromatography B4 (silica gel, 2000 g) eluted with mixtures of 

n-hexane:EtOAc. The chromatographic fractions, after tlc monitoring were combined 

into seven fractions giving 1.3130 g of β-sitosterol II.11 and stigmasta-5,22E-dien-3β-ol 

II.12. The fraction eluted with n-hexane:EtOAc (65:35) was submitted to column 

chromatography of silica gel (7734; 400 g) using as eluents mixtures of n-hexane:EtOAc 

(1:0 to 0:1) for the purification of compound II.19 giving 5.4008 g and 0.0207 g β-

sitosterol II.11 and stigmasta-5,22E-dien-3β-ol II.12 in the proportion of (1:2). 

 

V.3.1.5. Column chromatography B5 (Study of fraction PE-A4) 

 

The fraction PE-A4 eluted with n-hexane:EtOAc (40:60) was fractionated in five 

by column chromatography B5 (silica gel, 400 g) eluted with mixtures of n-

hexane:EtOAc (1:0 to 0:1), giving 8.6594 g of compound II.19. 

 

V.3.1.6. Column chromatography B6 (Study of fraction PE-A7) 

 

The fraction PE-A7 eluted with EtOAc was fractionated in five by column 

chromatography B6 (silica gel, 150 g) eluted with mixtures of n-hexane:EtOAc (1:0 to 

0:1), giving 0.8634 g of compound II.19. 
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V.3.2. P. ecklonii extracts 

 

  The six P. ecklonii extracts were prepared by maceration of dried plant, by 

means of an increasing polarity set of solvents from n-hexane (PE-H), ethyl acetate (PE-

EA), dichloromethane (PE-D), acetone (PE-A), methanol (PE-M), and methanol-water 

(7:3; PE-MW) solvents extract. The first five extracts were obtained by maceration of 

25 g of dried and powdered plant material with 250 ml of each solvent, under agitation 

at room temperature, during a week. So, after filtration and solvents evaporation 

1.176 g (4.704 % of dry plant) of a hexane extract, 1.506 g (6.024 %) of an ethyl acetate 

extract, 1.870 g (7.480 %) of a dichloromethane extract, 4.336 g (1.320%) of a 

methanol extract and 1.777 g (7.108 %) of a MeOH-H2O (7:3) extract were obtained. 

The acetone extract was described in section V.3.1. 

 

V.4. Study of Plectranthus porcatus Winter & Van Jaarsv. 

Plectranthus porcatus Winter & Van Jaarsv was cultivated in the Departamento 

de Protecção das Plantas e de Fitoecologia (DPPF) of Instituto Superior de Agronomia 

(ISA) of Universidade Técnica de Lisboa (UTL), from cuttings provided by the National 

Botanical Garden of Kirstenbosch (South Africa). Aerial parts of P. porcatus were 

collected in June 2007 and June and September 2008 and voucher specimens were 

deposited in the Herbarium João de Carvalho e Vasconcellos of the Instituto Superior 

de Agronomia, Lisbon (ref. 109/2008). 

 

V.4.1. Plant material: study of Plectranthus porcatus aerial parts 
Extraction and isolation 
 

The air dried and powdered aerial parts of P. porcatus Winter & Van Jaarsv (99 g) were  

extracted with Me2CO (5 x  0.2 L) at room temperature for 5 days. Filtration and 

evaporation of the solvent (under vacuum, 40 ˚C) from the crude extract yielded a 

residue of 8.46 g (8.54 % of dry material), which was subjected to column 

chromatography over silica gel
 
(Merck 9385, 180 g), using mixtures of n-hexane:EtOAc 
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(1:0 to 0:1) and MeOH as eluents; after tlc monitoring, chromatographic fractions were 

combined into fourteen fractions (from 0.011 g to 1.403 g). The fraction (1.403 g) 

eluted with n-hexane:EtOAc (3:7) was fractionated in nine by column chromatography 

(silica gel, 20 g) eluted with the same mixtures of solvents, giving 0.286 g of 

impure II.20 that was washed with cold n-hexane, and after recrystallization 

with MeOH-pentane, yielded 0.009 g (0.009 %, on dry plant material) of pure 

compound II.20.  

 

V.4.1.1. (13S,15S)-6β,7α,12α,19-tetrahydroxy-13β,16-cyclo-8-
abietene-11,14-dione II.20 

 

 

 

 

 

 

                                                                    II.20 

m.p. 200-203 ˚C, (yellowish fine needles, from MeOH-pentane); 

  *α+
20

D
 + 218.8 ˚ (c 0.637, MeOH);  

  IR (KBr) νmax: 3407, 3346, 3030, 2927, 2868.1, 1699, 1670, 1458, 1372, 1317, 

1282, 1215, 1091, 1020, 909 cm-1;  

1H RMN (Acetone-d6, 500 MHz) :  5.12 (br d,  J12α-OH,H-12β = 5.5 Hz, 12α-OH), 

4.99 (1H, d, J6β-OH, H-6α = 1.8 Hz, HO–6β), 4.98 (br dd, J19-OH, 19B = 5.5 Hz, J19-OH, 19A = 4.4 

Hz, HO–19), 4.63 (1H, dd, J7β,7α-OH = 4.9 Hz, H-7β), 4.26 (1H, d, J7α-OH, H-7β = 4.9 Hz, HO–

7α), 4.24 (dd, J19A, 19-OH, = 4.4 Hz, H-19A), 4.23 (1H, m, JH-6α, 6β -OH = 1.8 Hz, JH-6α,H-7β = 1.9 

Hz,  HO–6α),  3.82 (1H, d, JH-12β, 12α-OH = 5.5 Hz, H-12β), 3.33 (dd, J19A, 19-OH, = 5.5 Hz, H-

19B), 2.05 (1H, m, J1β,1α = 13.5 Hz, J1β,2α = 3.1 Hz, J1β,2β = 3.4 Hz, H-1β), 2.02 (1H, m, 

J15,16A = 8.5 Hz, J15,16B = 6.7 Hz, J15,17 = 6.1 Hz, H-15), 1.79 (1H, ddddd, J2β,1α = 13.5 Hz, 

J2β,1β = 3.4 Hz, J2β,2α = 14.1 Hz, J2β,3α = 13.5 Hz, H-2β), 1.74 (3H, s, CH3-20), 1.72 (1H, d, 

J5α,6α = 1.6 Hz, H-5α), 1.55 (1H, br d, J3β,2α = 3.1 Hz, J3β,2β = 3.4 Hz, J3β,3α = 14.0 Hz, H-3β), 

1.50 (1H, ddddd, J2α,1α = 3.6 Hz, J2α,1β = 3.1 Hz, J2α,2β = 14.1 Hz, J2α,3α = 3.6 Hz, J2α,3β = 3.1 
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Hz,H-2α), 1.29 (1H, td, J1α,1β = 13.5 Hz, J1α,2α = 3.6 Hz, J1α,2β = 13.5 Hz, H-1α), 1.26 (1H, 

ddd, J3α,2α = 3.6 Hz, J3α,2β = 13.5 Hz, J3α,3β = 14.0, H-3α), 1.26 (3H, d, J17,15 = 6.1 Hz, CH3-

17), 1.09 (3H, s, CH3-18), 1.08 (3H, dd, J16A,16B = 3.7 Hz, J16A,15 = 8.5 Hz, CH3-16A),  0.92 

(1H, dd, J16B,15 = 6.7 Hz, J16B,16A = 3.7 Hz, H-16B); 

13C RMN (Acetone-d6, 125 MHz):  38.76 (C-1, t), 20.11 (C-2, t), 40.27 (C-3, t), 

39.81 (C-4, s), 50.33 (C-5, d), 70.30 (C-6, d), 67.16 (C-7, d), 142.49 (C-8, s), 156.17 (C-9, 

s), 40.08 (C-10, s), 200.28 (C-11, s), 78.57 (C-12, d), 37.47 (C-13, s), 198.00 (C-14, s), 

21.63 (C-15, d), 27.28 (C-16 , t), 14.15 (C-17, q), 29.37 (C-18, q), 68.72 (C-19, t), 22.73 

(C-20, q); 

EIMS m/z (relative intensity, %): 364 [M]+ (12), 346 [M-H2O]+ (36), 328 [M-

2H2O]+  (100), 313 (31), 300 (73), 285 (72), 271 (72), 257 (38), 243 (48), 229 (55), 217 

(72), 201 (50), 189 (42), 177 (40), 151 (36), 123 (36), 109 (39), 95 (50), 91 (58), 77 (41), 

67 (33), 55 (66). 

 

V.5. Study of Plectranthus saccatus Benth. 

Plectranthus saccatus Benth. was cultivated in the Hortum of the  

Departamento de Protecção das Plantas e de Fitoecologia (DPPF) of Instituto Superior 

de Agronomia (ISA) of Universidade Técnica de Lisboa (UTL), from cuttings provided by 

the Herbarium of the National Botanical Garden of Kirstenbosch (South Africa). Aerial 

parts of P. saccatus were collected in 2007 and voucher specimens were deposited in 

the Herbarium João de Carvalho e Vasconcellos of Instituto Superior de Agronomia, 

Lisbon (ref. 109/2008). 

 

V.5.1. Plant material: study of Plectranthus saccatus aerial parts  
Extraction and isolation 
 

The air dried and powdered aerial parts of P. saccatus Benth (100 g) were 

stored at 5 ˚C and then extracted with Me2CO (8 x 0.6 L) at room temperature for 10 

days. Filtration and evaporation of the solvent (under vacuum, 40 ˚C) from the crude 
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extract yielded a residue of 6.89 g (6.89 % of dry material), which was subjected to 

column chromatography over silica gel
 
(Merck 9385, 75 g), using mixtures of n-

hexane:EtOAc (1:0 to 0:1) and MeOH as eluents, after tlc monitoring, chromatographic 

eluates were combined into six fractions (weights from 0.302 g to 2.419 g). The 

fraction (2.419 g) eluted with light petroleum:EtOAc (1:1) was filtered through a pad of 

charcoal and celite (1:1) to eliminate chlorophylls and the resulting residue was 

fractionated in four by column chromatography (silica gel Merck 7734, 8 g) eluted with 

mixtures of light petroleum:EtOAc (7:3), giving 47 mg of impure II.22 that, after 

recrystallization from light petroleum, yielded 0.024 g (0.024 % of the plant material) 

of pure compound II.22. 

 

V.5.1.1. Ent-7α-acetoxy-15-beyeren-18-oic acid II.22 

 

 

 

 

 

                                                                     II.22 

 

m.p. 240-242 ˚C, (colourless rectangular prisms, from petroleum ether, n-

hexane); 

  *α+
20

D
 + 43.5 ˚ (c 0.299, CHCl3);  

  IR (KBr) νmax: 3413 br (COOH), 3038 (C=C), 2949, 2866, 1728 (C=O, OAc), 1695 

(C=O, COOH), 1452, 1387, 1267 (OAc), 1246 (OA cor COOH), 1184, 1022, 950, 858, 756, 

745 cm-1;  

1H RMN (CDCl3, 500 MHz) :  5.55 (1H, dd, J16,15 = 5.8 Hz, J16,long range = 1.0 Hz, H-

16), 5.53 (1H, d, J15,16 =5.8 Hz, H-15), 4.76 (1H, t, J7α,6α = J7α,6β = 2.7 Hz, H-7α), 2.24 (1H, 

dd, J5β,6α = 12.8 Hz,  J5β,6β = 1.5 Hz, H-5β), 2.04 (3H, s, 7β-OAc), 1.72 (1H, m, H-6α), 1.72 

(1H, td, J3β,2α = J3β,3α = 14.7 Hz,  J3β,2β = 2.5 Hz, H-3β), 1.64 (1H, m, J1α,2α = J1α,1β = J1α,2β = 

*, H-1α), 1.64 (1H, m, J3α,2α = J3α,2β = J3α,3β = *, H-3α), 1.53 (2H, m, J2α,1α = J2α,2β = J2α,3α = 
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J2α,2β = *,  J2α,3β = 14.7 Hz,  J2β,1α = J2β,1β = J2β,2α = J2β,3α =* , J2β,3β = 2.5 Hz, H-2α and H-2β), 

1.53 (1H, m, J11β,11α = J11β,9β = J11β,12α = J11β,12β =*, H-11β), 1.49 (1H, m, J6β,5β = 1.5 Hz, J6β,7α 

= 2.7 Hz, J2β,6α =*, H-6β), 1.45 (1H, m, J9β,11β = J9β,11α = *, H-9β), 1.44 (1H, dd, J14α,14β = 

14.0 Hz, J14α,12α = 2.1 Hz, H-14α), 1.28 (1H, m, J11α,12α = J11α,9β = J11α,11β = J11α,12β = *, H-

11α), 1.26 (2H, m, J12α,11α = J12α,11β = J12α,12β = *, J12α,14α = 2.1 Hz,  J12β,11α = J12β,11β = J12β,12α 

= *, H-12α and H-12β), 1.26 (1H, d, J14β,14α = 9.1 Hz, H-14β), 1.15 (3H, s, Me-19), 1.02 

(1H, m, J1β,1α = J1β,2α = J1β,2β = *, H-1β), 1.01 (3H, s, Me-17), 0.79 (3H, s, Me-20); 

*overlapped signal; 

13C RMN (CDCl3, 125 MHz):  38.0 (C-1, t), 17.6 (C-2, t), 36.8 (C-3, t), 46.7 (C-4, 

s), 42.4 (C-5, d), 27.4 (C-6, t), 76.0 (C-7, d), 52.9 (C-8, s), 48.1 (C-9, d), 36.6 (C-10, s), 

19.6 (C-11, t), 32.7 (C-12, t), 43.9 (C-13, s), 56.6 (C-14, t), 132.1 (C-15, d), 138.1 (C-16 , 

d), 24.7 (C-17, q), 184.1 (C-18, s), 16.4 (C-19, q), 14.9 (C-20, q), 170.8 (CO, s), 21.1 (CH3, 

q); 

EIMS m/z (relative intensity, %): 360 [M]+ (0.5), 318 (2), 300 (42), 285 (17), 272 

(100), 255 (12), 239 (13), 185 (14), 157 (19), 146 (65), 131 (29), 118 (48), 105 (34), 91 

(30), 79 (22), 67 (12), 55 (17); 

HRMS (ESI-HRMS negative): m/z 359.2229 [M-H]-; Calculated for C22H31O4: 

359.2228. 

 

V.6. Synthesis of diterpenoid derivatives 

 

V.6.1. 7α-Acetoxy-6β-hydroxyroyleanone III.1 derivatives 

 

V.6.1.1. Basic hydrolysis of 7α-acetoxy-6β-hydroxyroyleanone III.1 

 

To a solution of 7α-acetoxy-6β-hydroxyroyleanone III.1 (70 mg; 0.1792 mmol) 

in ethanol (1 mL), 2.5 mL of a potassium hydroxide solution (8%; w/v; 3.59 mmol) were 

added at room temperature, under agitation for 30 minutes. The reaction was 

followed by tlc (AcOEt : n-hexane; 3:7). 
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After this time the reaction mixture was poured into water (10 mL) and 

extracted with AcOEt (10 mL x 5). The combined organic layers were dried over 

anhydrous sodium sulphate filtered and evaporated in the rotavapor. The yellow 

residue obtained was purified by thin layer chromatography (silica gel plates Merck nº 

7747 eluted with 7:3 n-hexane:AcOEt) to give 6β,7α-dihydroxyroyleanone III.2 

quantitatively (60.0 mg; 0.1722 mmol) as yellow crystals. This reaction was repeated 

under similar conditions and the same yield was obtained. 

 

6β,7α-dihydroxyroyleanone III.2 

 

 

 

 

                                                                    III.2 

Yellow needles;   

m.p. 200-201 C (n-hexane:AcOEt), 203-205C (Hensch M. et al., 1975); 

IR (KBr) max: 3568, 3529, 3448, 3348, 2958, 2854, 2366, 1737, 1720, 1706, 

1653, 1629, 1606, 1461, 1390, 1378, 1323, 1255, 1165, 1103, 1030, 998, 618, 493 cm-1;  

1H NMR (CDCl3, 400 MHz):  7.27 (1H, s, OH-12), 7.25 (1H, s, OH-6β), 4.51 (1H, 

dd, J7β,OH = 3.3 Hz, J7β,6α = 2.0 Hz, H-7), 4.45 (1H, dd, J6α,5α = 4.0 Hz, J6α,7β = 2.0 Hz, H-

6α), 3.16 (1H, sept, J15,16(17) = 7.1 Hz, H-15), 2.93 (1H, d, JOH,7β = 3.3 Hz,  OH-7α), 2.59 

(1H, dddd, J1β,1α = 12.8 Hz, J1β,2α = 3.5 Hz, J1β,2β = 3.5 Hz, J1β,3β(W) = 1.3 Hz, H-1), 1.83 

(1H, ddddd, J2β,1α = 13.4 Hz, J2β,1β = 3.5 Hz, J2β,2α = 13.9 Hz, J2β,3α = 13.4 Hz, J2β,3β = 3.4 Hz,  

H-2β), 1.60 (3H, s, Me-20), ~1.56 (1H, *, J2α,1α = 3.8 Hz,  J2α,1β  = 3.5 Hz, J2α,2β = 13.9 Hz, 

J2α,3α = 4.1 Hz, J2α,3β  = 3.4 Hz, H-2), 1.47 (1H, dddd, J3,2α = 3.4 Hz, J3β,2β = 3.4 Hz, J3,3α 

= 13.4 Hz, J3β(W),1β = 1.3 Hz, H-3), 1.40 (1H, d, J5α,6α = 4.0 Hz, H-5), 1.25 (3H, s, Me-19), 

1.22 (1H, ddd, J3α,2α = 4.1 Hz, J3α,2β = 13.4 Hz, J3α,3β = 13.4 Hz, H-3), 1.22# (3H, d, 
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J16(17),15 = 7.1 Hz, Me-16), 1.21# (3H, d, J17(16),15 = 7.1 Hz, Me-17), 1.18 (1H, ddd, J1α,1β  = 

12.8 Hz, J 1α,2α = 3.8 Hz, J1α,2β  = 13.4 Hz, H-1),  1.04 (3H, s, Me-18); 

*overlapped signal, 
# 

Interchangeable signals; 

13C NMR (CDCl3, 100 MHz):  38.5 (C-1, t); 19.0 (C-2, t); 42.3 (C-3, t); 33.8 (C-4, 

s); 49.5 (C-5, d); 69.4 (C-6, d); 69.2 (C-7, d); 141.0 (C-8, s); 147.5 (C-9, s); 38.6 (C-10, s); 

183.5 (C-11, s); 151.1 (C-12, s); 124.3 (C-13, s); 189.1 (C-14, s); 24.3 (C-15, d); 19.9# (C-

16, q); 19.8# (C-17, q); 33.5 (C-18, q); 24.0 (C-19, q); 21.6 (C-20, q); 
# 

Interchangeable signals. 

 

V.6.1.2. Synthesis of 7α-acetoxy-6β,12-dihydroxy-8,12-
abietadiene-11,14-dione III.1 esters 
 

The natural diterpene 7α-acetoxy-6β-hydroxyroyleanone III.1 was re-isolated 

from an acetone extract of P. grandidentatus. The 7α-acetoxy-6β-hydroxyroyleanone 

III.1 was used as starting material for the esterification reactions. Eleven royleanone 

derivatives III.3-III.13 were prepared by esterification at C-6 and/or C-12 positions 

(Figure V.1). 

 

                                         

 

 

 

 

 

 

Figure V.1.  Ester derivatives III.3-III.13 of 7α-acetoxy-6β-hydroxyroyleanone 

III.1. 

 

 R1 R2 

III.3 BzO BzO 
III.4 4-Cl-C6H4COO 4-Cl-C6H4COO 
III.5 OH 4-Me-C6H4COO 
III.6 OH 4-Cl-C6H4COO 
III.7 OH 4-NO2-C6H4COO 
III.8 4-NO2-C6H4COO OH 
III.9 AcO AcO 

III.10 MeCH2COO MeCH2COO 
III.11 AcO OH 
III.12 MeCH2COO OH 
III.13 Me(CH2)2COO OH 



Chapter V    Experimental Section  

 

197 

 

Hemisynthesis of royleanone derivatives III.3-III.13 

 

A solution of 7α-acetoxy-6β-hydroxyroyleanone III.1 in pyridine (Py) CH2Cl2 if 

necessary and the suitable benzoyl chloride or appropriate alkyl anhydride, was 

allowed to stand until total disappearance of III.1 (tlc analysis). The reaction mixture 

was then diluted with CH2Cl2 and successively washed with water and NaOH solution 

(5%). The organic layer was dried with anhydrous Na2SO4. The residue was purified by 

preparative thin layer chromatography over silica gel plates eluted with 

CH2Cl2:CH3COCH3 (98:2) to afford III.3-III.13 (Mart nez-Vázquez M. et al, 2004; Rijo P. 

et al., 2010). The conditions for obtaining each one of the derivatives were as follows 

and shown in Table V.14. 

 
Table V.14. Preparation of the 6β-hydroxy-7α-acetoxyroyleanone III.1 

derivatives III.3-III.13.  

Starting 
material III.1 

mg; mmol 

Benzoyl chloride/ 
alkyl anhydride 

 

Reactional 
conditions 

Product 
(yield) 

30.0; 0.077 benzoyl chloride 
(2 mL; 17 mmol) 

Py (0.5 ml), r.t.,  
3 days, 

III.3 (22.4 %) 

20.0; 0.051 4-chlorobenzoyl chloride 
(0.032 mL; 0.25 mmol) 

Py (2 ml), CH2Cl2  

(2 ml), r.t., 7 days 
III.4 (66.4 %) and 

III.6 (27.9 %) 
32.2; 0.082 4-methoxybenzoyl chloride  

(0.027 mL; 0.24 mmol) 
Py (2 ml), CH2Cl2  

(2 ml), r.t, 24 h 
 96.6 % of III.5 

30.3; 0.078 4-nitrobenzoyl chloride 
(141 mg; 0.76 mmol) 

Py (2 ml), CH2Cl2  

(2 ml), r.t., 40 min. 
III.7 (16.8 %) and 

III.8 (11.9 %) 
30.6; 0.078 acetic anhydride  

(2 mL; 21 mmol) 
Py (2 ml), CH2Cl2  

(1 ml), r.t., 24 h 
III.9 (65.6%) and 

III.11 (8.5 %) 
40.5; 0.104 propionic anhydride  

(1 mL; 7.8 mmol) 
Py (1 ml), 0˚ C,  

7 days 
73.5 % of III.10 

and III.12 (8.6 %) 
15.0; 0.038 butyric anhydride  

(1 mL; 6.1 mmol) 
Py (1 ml), 0˚ C, 24 h  III.13 (35.2%) 
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V.6.1.2.1. 7-Acetoxy-6-benzoyloxy-12-O-benzoylroyleanone III.3 

 

 

 

 

 

III.3 

Yellow quadrangular plates (EtOAc–n-pentane); 

m.p. 238-241 ˚C; 

[] 18

D  = −29.2 ˚ (c = 0.24, CHCl3);  

IR (KBr) max: 3062, 2962, 2933, 2867, 1755, 1738, 1726, 1666, 1612, 1601, 

1452, 1371, 1315, 1269, 1220, 1177, 1138, 1093, 1061, 1016, 932, 887, 808, 754, 712 

cm-1; 

1H-NMR (400 MHz, CDCl3): 8.15 (2H, dt, J2’,3’ = 7.6 Hz, J2’,4’ = 2.0 Hz, H–2’ and H–

6’, 6–OBz), 7.99 (2H, dt, J2’,3’ = 7.2 Hz, J2’,4’ = 1.2 Hz, H-2’ and H–6’, 12–OBz), 7.69–7.40 

(6H, complex signal, H–3’, H–4’, H–5’, 6– and 12–OBz), 5.90 (1H, dd, J7β,6α = 2.0 Hz, 

J7β,5α = 0.9 Hz, Hβ–7), 5.77 (1H, dd, J6α,7β = 2.0 Hz, J6α,5α = 1.6 Hz, Hα–6), 3.17 (1H, sept, 

J15,16(17) = 7.1 Hz, H–15), ~2.58 (1H, *, Hβ–1), 2.10 (3H, s, OAc-7α), ~1.78 (1H, *, Hβ–2), 

1.77 (3H, s, Me-20), 1.69 (1H, br d, J5α,6α = 1.6 Hz, Hα–5), 1.58 (1H, *, Hα–2), 1.49 (1H, 

ddd, J3β,3α = 13.2 Hz, J3β,2α = 3.6 Hz, J3β,2β = 2.8 Hz, Hβ–3), 1.29 (1H, td, J1α,1β = J1α,2β = 

13.2 Hz, J1α,2α = 3.8 Hz, Hα–1), ~1.38 (1H, *, Hα–3), 1.21 (3H, d, J17,15 = 7.1 Hz, Me-17), 

1.19 (3H, d, J16,15 = 7.1 Hz, Me-16), 1.06 (3H, s, Me-18), 0.99 (3H, s, Me-19); 

*Overlapped signals;
 

13C NMR (100 MHz, CDCl3): 185.33 (C-14, s); 180.00 (C-11, s); 168.13 (7α–OAc, 

s); 165.33 (C-7’, 6–OBz, s); 164.00 (C-7’, 12–OBz, s); 152.50 (C-9, s); 150.00 (C-12, s); 
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140.00 (C-13, s); 136.20 (C-8, s); 134.30 (C-4’, 12–OBz, d); 133.22 (C-4’, 6–OBz, s); 

130.51 (C-3’ and C-5’, 12–OBz, d); 129.87 (C-3’ and C-5’, 6–OBz, d); 129.71 (C-1’, 6–

OBz, s); 128.81 (C-2’ and C-6’, 12–OBz, d); 128.47 (C-2’ and C-6’, 6–OBz, d); 127.91 (C-

1’, 12–OBz, s); 68.43 (C-6, d); 65.25 (C-7, d); 49.31 (C-5, d); 42.48 (C-3, t); 38.77 (C-10, 

s); 38.37 (C-1, t); 33.76 (C-4, s); 33.33 (C-18, q); 25.16 (C-15, d); 23.21 (C-19, q); 22.20 

(C-20, q); 20.84 (7α- OAc, q); 20.36 (C-16, q); 20.00 (C-17, q); 18.83 (C-2, t); 

 EI-MS: 539 ([M–AcO]+, 1), 510 (1), 451 (2), 434 ([M–AcO–C6H5CO]+, 3), 406 

(20), 391 (5), 313 (7), 284 (6), 269 (12), 105 ([C6H5CO]+, 100), 77 (15); (C36H38O8, Mr 

598).  

 

V.6.1.2.2. 7α-Acetoxy-6β-(4-chloro)benzoyloxy-12-O-(4-chloro)-
benzoyl-royleanone III.4 

 

 

 

 

 

 

III.4 

Yellow amorphous powder; 

[α] 22

D  = −40.8 ˚ (c = 0.262, CHCl3);  

IR (KBr) max: 3074, 3097, 2961, 2932, 2867, 1751, 1726, 1669, 1594, 1488, 

1402, 1371, 1268, 1216, 1173, 1137, 1092, 1064, 1012, 931, 887, 847, 757, 732 cm-1; 

1H-NMR (400 MHz, CDCl3): 8.08 (2H, d, Jo = 8.6 Hz, H–2’ and H–6’, 12–OBzCl), 

7.92 (2H, d, Jo = 8.6 Hz, H–2’ and H–6’, 6–OBzCl), 7.51 (2H, d, Jo = 8.6 Hz, H–3’ and H–5’, 

12–OBzCl), 7.39 (2H, d, Jo = 8.6 Hz, H–3’ and H–5’, 6–OBzCl), 5.88 (1H, d, J7β,6α = 1.6 Hz, 
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Hβ–7), 5.76 (1H, t, J6α,7β = J6α,5α = 1.6 Hz, Hα–6), 3.17 (1H, sept, J 15,16(17) = 7.0 Hz, H–15), 

2.58 (1H, *, Hβ–1), 2.10 (3H, s, 7α–OAc), 1.79 (1H, qt, J2β,1α = J2β,2α = J2β,3α = 14.0 Hz, 

J2β,1β = J2β,3β = 3.7 Hz, Hβ–2), 1.74 (3H, s, Me-20), 1.70 (1H, d, J5α,6α = 1.6 Hz, Hα–5), 1.60 

(1H, dquint, J2α,2β = 14.0 Hz, J2α,1α = J2α,1β = J2α,3α = J2α,3β = 3.6 Hz, Hα–2); 1.48 (1H, dtd, 

J3β,3α = 13.4 Hz, J3β,2β = 3.7 Hz, J3β,2α = 3.6 Hz, J3β,1β = 1.0 Hz, Hβ–3), 1.30 (1H, *, Hα–1), 

1.28 (1H, *, Hα–3), 1.21 (3H, d, J16,15 = 7.0 Hz, Me-16)), 1.19 (3H, d, J17,15 = 7.0 Hz, Me-

17), 1.06 (3H, s, Me-18), 0.97 (3H, s, Me-19); 

*overlapped signals; 

 13C NMR (100 MHz, CDCl3): 185.21 (C-14, s); 179.70 (C-11, s); 168.13 (OAc-7α, 

s); 164.52 (C-7’, 6–OBzCl, s), 163.19 (C-7’, 12–OBzCl, s); 152.40 (C-9, s); 149.50 (C-12, 

s); 141.02 (C-4’, 12–OBzCl, s); 139.80 (C-13, s); 139.79 (C-4’, 6–OBzCl, s); 135.67 (C-8, 

s); 131.84 (C-2’ and C-6’, 12–OBzCl, d); 131.22 (C-2’ and C-6’, 6–OBzCl, d); 129.24 (C-3’ 

and C-5’, 12–OBzCl, d); 128.88 (C-3’ and C-5’, 6–OBzCl, d); 128.14 (C-1’, 6–OBzCl, s); 

126.36 (C-1’, 12–OBzCl, s); 68.72 (C-6, d); 65.19 (C-7, d); 49.30 (C-5, d); 42.47 (C-3, t); 

38.78 (C-10, s); 38.37 (C-1, t); 33.77 (C-4, s); 33.29 (C-18, q); 25.23 (C-15, d); 23.20 (C-

19, q); 21.23 (C-20, q); 20.37 (C-16, q); 20.21 (C-17, q); 18.81 (C-2, t); 

 EI-MS: 607 ([M–AcO]+, 3), 468 (*M−AcO−OC–C6H5Cl]+, 3), 440 (9), 313 (6), 269 

(9), 139 (OC–C6H5Cl , 100), 111 (16); (C36H36O8Cl2, Mr 666, 668, 670). 

 

V.6.1.2.3. 7α-Acetoxy-6β-hydroxy-12-O-(4-methoxy)benzoylroy- 
leanone  III.5 

 

 

 

 

 

III.5 
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Yellow fine needles (EtOAc–n-pentane); 

m.p. 215–218 ˚C; 

[] 18

D

 = +43.9˚ (c = 0.353, CHCl3); 

IR (KBr) max: 3474, 2962, 2931, 2867, 1745, 1724, 1668, 1607, 1581, 1512, 

1463, 1371, 1256, 1221, 1168, 1141, 1168, 1141, 1100, 1063, 1019, 1002, 963, 936, 

898, 843, 816, 759, 746 cm-1; 

1H-NMR (400 MHz, CDCl3): 8.09 (2H, d, J2’,3’(6’,5’) = 8.9 Hz, H–2’ and H–6’); 6.98 

(2H, d, J3’,2’(5’,6’) = 8.9 Hz, H–3’ and H–5’); 5.67 (1H, d, J7β,6α = 1.7 Hz, H–7β); 4.32 (1H, dd, 

J6α,5α = 1.9 Hz, J6α,7β = 1.7 Hz, Hα–6); 3.89 (3H, s, OMe-8’); 3.17 (1H, sept, J15,16(17) = 7.0 

Hz, H–15); 2.49 (1H, br m, Hβ–1); 2.06 (3H, s, OAc-7α); 1.79 (1H, qt, J2β,1α = J2β,2α = J2β,3α 

= 13.7 Hz, J2β,1β = J2β,3β = 3.4 Hz, Hβ–2); 1.62 (3H, s, Me-20); 1.53 (1H, dquint, J2α,2β = 

13.7 Hz, J2α,1α = J2α,1β = J2α,3α = J2α,3β = 3.7 Hz, Hα–2); 1.45 (1H, ddd, J3β,3α = 13.2 Hz, J3β,2α 

= 3.7 Hz, J3β,2β = 3.4 Hz, Hβ–3); 1.36 (1H, d, J5α,6α = 1.9 Hz, Hα–5); 1.23 (1H, *, Hα–1); 

1.22 (3H, d, J17,15 = 7.1 Hz, Me-17); 1.21 (3H, s, Me-19); 1.19 (1H, *, Hα–3); 1.19 (3H, d, 

J16,15 = 7.0 Hz, Me-16); 0.94 (3H, s, Me-18); 

*overlapped signals; 

13C NMR (100 MHz, CDCl3): 185.90 (C–14, s); 179.89 (C–11, s); 169.71 (7α–OAc, 

s); 164.38 (C-7´´, s); 163.66 (C-4´´, s); 153.04 (C-9, s); 149.90 (C-12, s); 139.51 (C-13, s); 

135.52 (C-8, s); 132.72 (C-2´´ and C-6´´, d); 120.21 (C-1´´, s); 114.05 (C-3´´ and C-5´´, d); 

68.88 (C-7, d); 67.26 (C-6, d); 55.57 (C-8’, OMe, q); 49.80 (C-5, d); 42.28 (C-3, t); 38.86 

(C-10, s); 38.30 (C-1, t); 33.71 (C-18, q); 33.52 (C-4, s); 25.07 (C-15, d); 23.83 (C-19, q); 

21.75 (C-20, q); 20.91 (OAc-7α, q); 20.44 (C-16, q); 20.18 (C-17, q); 18.86 (C-2, t);  

EI-MS: 524 ([M]+, 0.5), 496 ([M–CO]+, 1), 464 ([M–AcOH]+, 0.5), 436 ([M–AcOH–

CO]+, 3), 137 (2),136 (17), 135 ([H3COC6H4CO]+, 100), 93 (1), 92 (3), 91 (1), 79 (1), 78 (1), 

77 (6), 55(1); (C30H36O8, Mr 524). 
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V.6.1.2.4. 7-Acetoxy-6-hydroxy-12-O-(4-chloro)benzoylroylean- 
one III.6 

 

 

 

 

 

III.6 

Yellow fine needles (EtOAc–n-pentane); 

m.p. 221-223 ˚C; 

[α] 18

D  = +44.8˚ (c = 0.355, CHCl3); 

 

IR (KBr) max: 3485, 2962, 2929, 2867, 1749, 1732, 1667, 1596, 1461, 1371, 

1252, 1220, 1141, 1094, 1066, 1008, 896, 844, 749 cm-1; 

1H-NMR (400 MHz, CDCl3): 8.07 (2H, d, Jo = 8.5 Hz, H–2’ and H–6’), 7.49 (2H, d, 

Jo = 8.5 Hz, H–3’ and H–5’), 5.68 (1H, dd, J7β,6α = 2.0 Hz, J7β,5α = 0.6 Hz, Hβ–7), 4.33 (1H, 

dd, J6α,7β = 2.0 Hz, J6α,5α = 1.6 Hz, Hα–6), 3.17 (1H, sept, J15,16(17) = 7.1 Hz, H–15), 2.49 

(1H, m, H–1β); 2.06 (3H, s, OAc-7α), 1.92 (1H, br, OHβ–6), 1.80 (1H, qt, J2β,1α = J2β,2α = 

J2β,3α = 13.6 Hz, J2β,1β = J2β,3β = 3.6 Hz, Hβ–2), 1.62 (3H, s, Me-20), 1.54 (1H, dquint, J2α,2β 

= 13.6 Hz, J2α,1α = J2α,1β = J2α,3α = J2α,3β = 3.7 Hz, Hα–2), 1.45 (1H, dtd, J3β,3α = 13.3 Hz, 

J3β,2α = 3.7 Hz, J3β,2β = 3.6 Hz, J3β,1β = 0.9 Hz, Hβ–3), 1.36 (1H, dd, J5α,6α = 1.6 Hz, J5α,7β = 

0.6 Hz, Hα–5), 1.24 (3H, s, Me-19), 1.24 (1H, *, Hα–1), 1.21 (6H, d, J16(17),15 = 7.1 Hz, 

Me-16 and Me-17), 1.20 (1H, *, Hα–3), 0.94 (3H, s, Me-18); 

*overlapped signals; 

13C NMR (100 MHz, CDCl3): 185.69 (C-14, s); 179.55 (C-11, s); 169.67 (OAc-7α, 

s); 163.18 (C-7´´, s); 152.50 (C-9, s); 149.80 (C–12, s); 140.89 (C-4´´, s); 139.50 (C-13, s); 

135.74 (C-8, s), 131.84 (C-2´´ and C-6´´, d); 129.18 (C-3´´ and C-5´´, d); 126.45 (C-1´´, s); 

68.85 (C-7, d); 67.22 (C-6, d); 49.77 (C-5)); 42.26 (C-3, t); 38.93 (C-10, s); 38.33 (C-1, t); 
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33.72 (C-4, s); 33.51 (C-18, q); 25.18 (C-15, d); 23.83 (C-19, q); 21.73 (C-20, q); 20.91 

(OAc-7α, q); 20.44 (C-16, q); 20.23 (C-17, q), 18.87 (C-2, t); 

 EI-MS: 486 (*M−CH2=C=O]+, 1), 470 (*M−AcOH++
, 3), 468 (*M−AcOH++, 7), 329 

(9), 302 (8), 301 (8), 283 (6), 269 (7), 141 (43), 140 (10), 139 (100), 111 (14), 91 (2), 77 

(1); (C29H33O7Cl, Mr 528 and 530). 

 

V.6.1.2.5. 7-Acetoxy-6-hydroxy-12-O-(4-nitro)benzoylroy- 
leanone III.7 

 

 

 

 

III.7 

Yellow rectangular plates (EtOAc–n-pentane); 

m.p. 217–219 ˚C; 

*α+ 18

D

 = +36.2˚ (c = 0.174, CHCl3); 

IR (KBr) max: 3452, 3109, 3056, 2956, 2933, 2867, 1752, 1733, 1668, 1608, 

1530, 1462, 1369, 1347, 1320, 1252, 1218, 1140, 1101, 1070, 1011, 966, 932, 897, 869, 

854, 712 cm-1; 

1H-NMR (400 MHz, CDCl3): 8.37 (2H, d, J2’,3’(6’,5’) = 9.0 Hz, H–2’and H–6’), 8.32 

(2H, d, J3’,2’(5’,6’) = 9.0 Hz, H–3’ and H–5’), 5.68 (1H, d, J7β,6α = 1.7 Hz, Hβ–7)), 4.34 (1H, 

dd, J6α,5α = 1.9 Hz, J6α,7β = 1.7 Hz, Hα–6), 3.18 (1H, sept, J15,16(17) = 7.1 Hz, H–15), 2.49 

(1H, m, Hβ–1), 2.07 (3H, s, OAc-7α), 1.81 (1H, qt, J2β,1α = J2β,2α = J2β,3α = 13.6 Hz, J2β,3β = 

3.4 Hz, J2β,1β = 3.2 Hz, Hβ–2), 1.62 (3H, s, Me-20), 1.55 (1H, dquint, J2α,2β = 13.6 Hz, J2α,3β 

= 3.8 Hz, J2α,1α = J2α,1β = J2α,3α = 3.7 Hz, Hα–2), 1.46 (1H, ddd, J3β,3α = 13.4 Hz, J3β,2α = 3.8 

Hz, J3β,2β = 3.4 Hz, Hβ–3), 1.37 (1H, d, J5α,6α = 1.9 Hz, Hα–5), ~1.23 (1H, *, Hα–1), ~1.22 
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(3H, *, Me-16 and Me-17), 1.22 (3H, s, Me-19), ~1.20 (1H, *, Hα–3), 0.95 (3H, s, Me-

18);  

*overlapped signals; 

13C NMR (100 MHz, CDCl3): 185.50 (C-14, s); 179.20 (C-11, s); 169.60 (OAc-7α, 

s); 164.60 (C-7´´, s); 152.94 (C-9, s); 151.19 (C-4´´, s); 149.70 (C-12, s); 139.80 (C-13, s); 

135.96 (C-8, s); 133.38 (C-1´´, s); 131.63 (C-2´´ and C–6´´, d); 123.90 (C-3´´ and C-5´´, d); 

68.80 (C-7, d); 67.21 (C-6, d); 49.78 (C-5, d); 42.22 (C-3, t); 39.00 (C-10, s); 38.35 (C-1, 

t); 33.73 (C-18, q); 33.51 (C-4, s); 25.30 (C-15, d); 23.83 (C-19, q); 21.72 (C-20, q); 20.89 

(OAc-7α, q); 20.40 (C-16, q); 20.43 (C-17, q); 18.96 (C-2, t); 

EI-MS: 539 ([M]+, 1), 521 ([M–H2O]+, 6), 506 (*M−H2O−CH3]+, 2), 497 (14), 479 

([M–AcOH]+, 15), 450 (10), 329 (18), 283 (15), 150 ([O2N–C6H4CO]+, 100), 120 (63), 92 

(13), 76 (8), 55 (7); (C29H33O9N, Mr 539).  

 

V.6.1.2.6. 7-Acetoxy-6-(4-nitro)benzoyloxyroyleanone III.8 

 

 

 

 

III.8 

Red amorphous solid; 

*α+ 18

D  = −42.5˚ (c = 0.113, CHCl3); 

IR (KBr) max: 3383, 3109, 3080, 3056, 2962, 2931, 2867, 1753, 1732, 1643, 

1609, 1531, 1462, 1374, 1347, 1270, 1216, 1168, 1146, 1098, 1016, 981, 873, 756, 719 

cm-1; 

1H-NMR (400 MHz, CDCl3): 8.27 (2H, d, J2’,3’(6’,5’) = 9.0 Hz, H–2’ and H–6’), 8.14 

(2H, d, J3’,2’(5’,6’) = 9.0 Hz, H–3’ and H–5’), 7.19 (1H, s, HO–12), 5.87 (1H, d, J7β,6α = 1.6 Hz, 

Hβ–7), 5.78 (1H, t, J6α,5α = J6α,7β = 1.6 Hz, Hα–6), 3.15 (1H, sept, J15,16(17) = 7.0 Hz, H–15), 
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2.75 (1H, br d, J1β,1α = 12.9 Hz, Hβ–1), 2.09 (3H, s, OAc-7α), 1.84 (1H, qt, J2β,1α = J2β,2α = 

J2β,3α = 14.0 Hz, J2β,1β = J2β,3β = 3.5 Hz, Hβ–2), 1.73 (3H, s, Me-20), 1.70 (1H, d, J5α,6α = 1.6 

Hz, Hα–5), 1.64 (1H, dquint, J2α,2β = 14.0 Hz, J2α,1α = J2α,1β = J2α,3α = J2α,3β = 3.4 Hz, Hα–2), 

1.52 (1H, br d, J3β,3α = 13.7 Hz, Hβ–3), 1.28 (1H, *, Hα–3), 1.25 (1H, *, Hα–1), 1.21 (3H, 

d, J16,15 = 7.0 Hz, Me-16), 1.17 (3H, d, J17,15 = 7.0 Hz, Me-17), 1.05 (3H, s, Me-19), 0.98 

(3H, s, Me-18); 

* overlapped signals; 

 13C NMR (100 MHz, CDCl3): 185.17 (C-14, s); 183.13 (C-11, s); 168.13 (OAc-7α, 

s); 163.58 (C-7’, s); 150.92 (C-4’, s); 150.63 (C-12, s); 149.23 (C-9, s); 136.74 (C-8, s); 

135.04 (C-1’, s); 130.91 (C-2’ and C-6’, d); 125.03 (C-13, s); 123.68 (C-3’ and C-5’, d); 

69.44 (C-6, d); 64.94 (C-7, d); 49.24 (C-5, d); 42.39 (C-3, t); 38.46 (C-1, t); 38.35 (C-10, 

s); 33.74 (C-18, q); 33.27 (C-4, q); 24.20 (C-15, q); 23.27 (C-19, q); 22.03 (C-20, q); 20.81 

(OAc-7α, q); 19.81 (C-16, q); 19.64 (C-17, q); 18.86 (C-2, t); 

EI-MS: 539 ([M]+, 0.5), 497 ([M–CH2CO]+, 1), 479 (*M−AcOH++, 7), 372 

(*M−HOOC–Ph–NO2]+,1), 330 (*M−CH2CO−HOOC–Ph–NO2]+, 43), 314 (100), 298 (46), 

283 (20), 271 (23), 245 (68), 232 (84), 213 (25), 201 (18), 187 (24), 167 (54); 

(C29H33NO9, Mr 539). 

 

V.6.1.2.7. 7α,6β-Diacetoxy-12-O-acetylroyleanone III.9 

 

 

 

III.9 

Yellow amorphous solid; 

m.p., [α]D, IR and MS data identical to those reported in literature (Hensch M. 

et al.,  1975); 

1H-NMR (400 MHz, CDCl3): 5.68 (1H, d, J7β,6α = 2.0 Hz, Hβ–7), 5.48 (1H, dd, J6α,7β 

= 2.0 Hz, J6α,5α= 1.6 Hz, Hα–6), 3.09 (1H, sept, J15,16(17) = 7.0 Hz, H–15), 2.52 (1H, br d, 
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J1β,1α = 12.5 Hz, Hβ–1), 2.34 (1H, s, OAc-12), 2.04 (3H, s, OAc-6β), 2.03 (3H, s, OAc-7α), 

1.78 (1H, qt, J2β,1α = J2β,2α = J2β,3α = 14.0 Hz, J2β,1β = J2β,3β = 3.7 Hz, Hβ–2), 1.59 (3H, s, Me-

20), 1.56 (1H, *, Hα–2), 1.52 (1H, d, J5α,6α = 1.6 Hz, Hα–5), 1.45 (1H, dddd, J3β,3α = 13.4 

Hz, J3β,2β = 3.7 Hz, J3β,2α = 3.3 Hz, J3β,1β = 1.4 Hz, Hβ–3), 1.24 (1H, *, Hα–1), 1.23 (1H, *, 

Hα–3), 1.18 (3H, d, J16,15 = 7.0 Hz, Me-16), 1.17 (3H, d, J17,15 = 7.0 Hz, Me-17), 0.98 (3H, 

s, Me-18), 0.97 (3H, s, Me-19); 

*Overlapped signals; 

 13C NMR (100 MHz, CDCl3): 185.37 (C-14, s); 179.67 (C-11, s); 169.04 (OAc-6β, 

s); 168.26 (OAc-12, s); 168.15 (OAc-7α, s); 152.22 (C-9, s); 149.28 (C-12, s); 139.42 (C-

13, s); 135.67 (C-8, s); 67.24 (C-6, d); 65.25 (C-7, d); 48.95 (C-5, d); 42.39 (C-3, t); 38.93 

(C-10, s); 38.31 (C-1, t); 33.58 (C-4, s); 33.18 (C-18, q); 25.17 (C-15, d); 22.93 (C-19, q); 

21.44 (C-20, q); 21.27 (OAc-7α, q); 20.75 (OAc-6β, q); 20.39 (OAc-12α, q); 20.17 (C-16, 

q); 20.19 (C-17, q); 18.78 (C-2, t).  

 

V.6.1.2.8. 7-Acetoxy-6-propionyloxy-12-O-propionylroyleanone 
III.10 

 

 

 

 

 

III.10 

 Yellow rectangular plates, (EtOAc–n-pentane); 

 m.p. 137–139 ˚C; 

 *α+ 18

D  = +29.9˚ (c = 0.257, CHCl3); 

 IR (KBr) max: 2962, 2940, 2873, 1776, 1764, 1744, 1668, 1612, 1462, 1375, 

1275, 1210, 1172, 1136, 1113, 1079, 1027, 931, 893, 804, 750 cm-1; 
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 1H-NMR (400 MHz, CDCl3): 5.68 (1H, dd, J7β,6α = 2.0 Hz, J7β,5α = 0.5 Hz, Hβ–7), 

5.49 (1H, br dd, J6α,7β = 2.0 Hz, J6α,5α = 1.6 Hz, Hα–6), 3.09 (1H, sept, J15,16(17) = 7.1 Hz, H–

15), 2.66 (1H, dq, J2’A,2’B = 17.2 Hz, J2’A,3’ = 7.6 Hz, H2’A–12), 2.61 (1H, dq, J2’B,2’A = 17.2 

Hz, J2’B,3’ = 7.6 Hz, H2’B–12), 2.51 1H, (br d, J1α,1β = 12.4 Hz, Hβ–1), 2.32 (1H, dq, J2’A,2’B = 

16.8 Hz, J2’A,3’ = 7.6 Hz, HA–2’), 2.25 (1H, q, J2’B,2’A = 16.8 Hz, J2’B,3’ = 7.6 Hz, HB–2’), 2.04 

(3H, s, OAc-7α), 1.77 (1H, dddt, J2β,2α = 14.4 Hz, J2β,1α = J2β,3α = 13.8 Hz, J2β,1β = J2β,3β = 3.6 

Hz, Hβ–2), 1.59 (3H, s, Me-20), 1.55 (1H, dquint, J2α,2β = 14.4 Hz, J2α,1α = J2α,1β = J2α,3α = 

J2α,3β = 3.6 Hz, Hα–2), 1.53 (1H, dd, J5α,6α = 1.6 Hz, J5α,7β = 0.5 Hz, Hα–5), 1.44 (1H, dtd, 

J3β,3α = 13.8 Hz, J3β,2α = J3β,2β = 3.6 Hz, J1β,3β = 1.6 Hz, Hβ–3), 1.27 (3H, t, J3’’,2’’A = J3’’,2’’B = 

7.6 Hz, Me-3’’), 1.24 (1H, *, Hα–1), 1.23 (1H, *, Hα–3), 1.17 (3H, d, J16,15 = 7.1 Hz, Me-

16), 1.16 (3H, d, J17,15 = 7.1 Hz, Me-17), 1.11 (1H, t, J3’,2’A = J3’,2’B = 7.6 Hz, H-3’), 0.98 (3H, 

s, Me-18), 0.96 (3H, s, Me-19); 

*Overlapped signals; 

 13C NMR (100 MHz, CDCl3): 185.37 (C-14, s); 179.67 (C-11, s); 172.50 (C-1’, s); 

171.73 (C-1’’, s), 168.15 (OAc-7α, s); 152.22 (C-9, s); 149.28 (C-12, s); 139.42 (C-13, s); 

135.67 (C-8, s); 67.24 (C-6, d); 65.25 (C-7, d); 48.95 (C-5, d); 42.39 (C-3, t); 38.93 (C-10, 

s); 38.31 (C-1, t); 33.58 (C-4, s); 33.18 (C-18, q); 27.81 (C-2’, t), 27.21 (C-2’’, t); 25.17 (C-

15, d); 23.03 (C-19, q); 21.44 (C-20, q); 21.27 (OAc-7α, q); 20.17 (C-16, q); 20.19 (C-17, 

q); 18.78 (C-2, t), 8.86 (C-3’’, q); 8.80 (C-3’, q); 

EI-MS: 502 ([M]+, 0.3), 460 (*M−CH2=C=O]+, 1), 443 (*M−CH3COO]+, 2) 428, 

([M+−CH3CH2COOH], 0.5), 386 ([M+−CH2CO−CH3CH2CO2H], 34), 330 (100), 312 (28), 302 

(27), 269 (26), 57 (48); (C28H38O8, Mr 502). 

 

V.6.1.2.9. 7α,6β-Diacetoxyroyleanone III.11 

 

 

 

 

III.11 
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Yellow amorphous solid which softened at 60-70 ˚C; 

[α] 18

D  = −10.7 ˚ (c = 0.056, CHCl3); 

IR and mass spectra identical to those described previously (Chang C.-I. et al., 

2005), whereas the 13C NMR spectrum is also identical to that described, but the 

signals at δ 21.3 (CH3) and 20.8 (CH3) must be assigned to C–20 and 6β–OCOCH3 

carbons, respectively; 

1H-NMR (500 MHz, CDCl3): 7.17 (1H, br s, HO–12), 5.70 (1H, d, J7β,6α = 1.7 Hz, 

Hβ–7), 5.50 (1H, dd, J6α,7β = 1.7 Hz, J6α,5α =1.5 Hz, Hα–6), 3.16 (1H, sept, J15,16(17) = 7.1 

Hz, H−15), 2.67 (1H, dddd, J1β,1α = 12.9 Hz, J1β,2β = 3.1 Hz, J1β,2α = 2.7 Hz, J1β,3β = 1.2 Hz, 

Hβ–1), 2.04 (3H, s, Me-2’), 2.03 (3H, s, OAc-7α), 1.82 (1H, qt, J2β,1α = J2β,2α = J2β,3α = 14.0 

Hz, J2β,1β = J2β,3β = 3.1 Hz, Hβ–2), ~1.60 (1H, *, Hα–2), 1.59 (3H, s, Me-20), 1.56 (1H, d, 

J5α,6α = 1.5 Hz, Hα–5), 1.49 (1H, dt, J3β,3α = 13.4 Hz, J3β,2β = J3β,2α = 3.1 Hz, Hβ–3), 1.24 

(1H, *, Hα–1), 1.24 (1H, *, Hα–3), 1.22 (3H, d, J16,15 = 7.1 Hz, Me-16), 1.19 (3H, d, J17,15 = 

7.1 Hz, Me-17), 0.99 (3H, s, Me–18), 0.98 (3H, s, H3C(19)); 

* Overlapped signals. 

 

V.6.1.2.10. 7-Acetoxy-6-propionyloxyroyleanone III.12 

 

 

 

 

III.12 

Yellow amorphous solid; 

[α] 18

546 = −25˚ (c = 0.044, CHCl3); 

1H-NMR (400 MHz, CDCl3): 7.17 (1H, br, HO−12), 5.70 (1H, br d, J7β,6α = 2.0 Hz, 

J7β,5α < 0.4 Hz, Hβ–7), 5.51 (1H, dd, J6α,7β = 2.0 Hz, J6α,5α = 1.6 Hz, Hα-6), 3.16 (1H, sept, 

J15,16(17) = 7.1 Hz, H–15), 2.66 (1H, dtd, J1β,1α = 12.9 Hz, J1β,2β = 3.6 Hz, J1β,2α = 3.4 Hz, J1β,3β 

= 0.8 Hz, Hβ–1), 2.29 (2H, m, H-2’), 2.04 (3H, s, OAc-7α), 1.82 (1H, qt, J2β,1α = J2β,2α = 



Chapter V    Experimental Section  

 

209 

 

J2β,3α = 14.0 Hz, J2β,1β = J2β,3β = 3.6 Hz, Hβ–2), 1.59 (3H, s, Me-20), 1.58 (1H, * m, Hα–2), 

1.54 (1H, br d, J5α,6α = 1.6 Hz, J5α,7β < 0.4 Hz, Hα–5), 1.48 (1H, dtd, J3β,3α = 13.6 Hz, J3β,2α = 

J3β,2β = 3.6 Hz, J3β,1β = 0.8 Hz, Hβ–3), 1.22 (1H, *, Hα–1) and Hα–3), 1.22 (3H, d, J16,15 = 

7.1 Hz, Me-16), 1.19 (3H, d, J17,15 = 7.1 Hz, Me-17), 1.12 (3H, t, J3’,2’A = J3’,2’B = 7.6 Hz, 

Me-3’), 0.99 (3H, s, Me-18), 0.97 (3H, s, Me-19); 

*Overlapped signals; 

13C NMR (100 MHz, CDCl3): 185.35 (C-14, s), 183.23 (C-11, s); 172.46 (C-1´, s); 

168.04 (OAc-7α, s); 150.84 (C-12, s); 149.32 (C-9, s); 137.11 (C-8, s); 124.81 (C-13, s); 

67.08 (C-6, d); 65.24 (C-7, d); 49.03 (C-5, d); 42.43 (C-3, t); 38.66 (C-10, s); 38.36 (C-1, 

t); 33.58 (C-4, s); 33.20 (C-18, q); 27.84 (C-2’, t), 24.15 (C-15, d); 23.02 (C-19, q); 21.35 

(C-20, q); 20.82 (OAc-7α, q); 19.82 (C-16, q); 19.67 (C-17, q); 18.88 (C-2, t), 8.85 (C-3’, 

q); 

 EI-MS: 446 ([M]+, 0.4) 404 (*M−CH2CO]+, 1), 386 (M−AcOH++, 4), 372 

(*M−CH3CH2CO2H]+, 2), 348 (4), 330 (*M−CH3CH2CO2H−CH2CO]+, 100), 315 (20), 298 

(12), 287 (10), 261 (21), 260 (15), 248 (20),245 (13), 232 (12), 57 ([C2H5C=O]+, 18); 

(C25H34O7, Mr 446). 

V.6.1.2.11. 7-Acetoxy-6-butyryloxyroyleanone III.13 

 

 

 

 

III.13 

 Amorphous solid; 

 [α] 18

D

 =+12.1˚ (c = 0.19, CHCl3);  

 IR (KBr) max: 3378, 2962, 2931, 2873, 1755, 1659, 1638, 1612, 1462, 1374, 

1282, 1220, 1168, 1144, 1103, 1030, 959, 900, 756 cm-1; 

1H-NMR (400 MHz, CDCl3): 7.18 (1H, br s, HO−12), 5.69 (1H, dd, J7β,6α = 2.1 Hz, 

J7β,5α = 0.6 Hz, Hβ–7), 5.50 (1H, t, J6α,7β = J6α,5α = 2.1 Hz, Hα–6), 3.16 (1H, sept, J15,16(17) = 
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7.1 Hz, H–15), 2.66 (1H, ddd, J1β,1α = 13.0 Hz, J1β,2α = 3.3 Hz, J1β,2β = 2.9 Hz, Hβ–1), 2.28 

(1H, dt, J2’A,2’B = 15.9 Hz, J2’A,3’  = 7.1 Hz, HA–2’), 2.20 (1H, dt, J2’B,2’A = 15.9 Hz, J2’B,3’ = 8.0 

Hz, HB–2’), 2.04 (3H, s, OAc-7α), 1.82 (1H, qdd, J2β,1α = J2β,2α = J2β,3α = 13.8 Hz, J2β,1β = 

J2β,3β = 2.9 Hz, Hβ–2), ~1.63 (2H, *, HA–3’ and HB-3´), 1.60 (1H, *, Hα–5) 1.59 (3H, s, 

Me-20), 1.58 (1H, *, Hα–2), 1.47 (1H, ddd, J3β,3α = 13.0 Hz, J3β,2α = 3.6 Hz, J3β,2β =2.9 Hz, 

Hβ–3), 1.23 (2H, *, Hα–1 and Hα–3), 1.22 (3H, d, J16,15 = 7.1 Hz, Me-16), 1.19 (3H, d, 

J17,15 = 7.1 Hz, Me-17), 0.99 (3H, s, Me-18), 0.98 (3H, s, Me-19), 0.91 (1H, t, J4’,3’ = 7.4 

Hz, H–4’); 

*Overlapped signals; 

 13C NMR (100 MHz, CDCl3): 185.34 (C-14, s); 183.23 (C-11, s); 171.78 (C-1’, s); 

168.16 (OAc-7α, s); 150.79 (C-12, s); 149.32 (C-9, s); 137.09 (C-8, s); 124.79 (C-13, s); 

67.00 (C-6, d); 65.24 (C-7, d); 49.00 (C-5, d); 42.41 (C-3, t); 38.65 (C-10, s); 38.36 (C-1, 

t), 36.42 (C-2’, t); 33.57 (C-4, s); 33.24 (C-18, q); 24.13 (C-15, d); 23.03 (C-19, q); 21.33 

(C-20, q); 20.82 (OAc-7α, q); 19.81 (C-16, q); 19.66 (C-17, q); 18.88 (C-2, t); 18.08 (C-3’, 

t); 13.70 (C-4’, q); 

 EI-MS: 460 ([M]+, 0.3) 418 ([M–CH2=C=O]+, 1), 401(*M−AcO++, 5), 348 (5), 330 

(*M−AcO−CH3CH2CH2CO]+, 100), 315 (*M−AcO−CH3CH2CH2CO−Me++, 24), 297 (11), 287 

(12), 261 (26), 248 (24), 232 (14), 217 (7), 201 (8), 187 (6), 83 (8), 71 (13), 55 (5); 

(C26H36O7, Mr 460).  

 

V.6.1.3. Synthesis of α-mannopyranoside of 7α-acetoxy-6β-
hydroxyroyleanone III.14 

 

Acid-washed 4 Å molecular sieves AW-300 (2.5 g, 1.6 mm pellets) and three 

portions of (2R,3R,4S,5S,6R)-2-(acetoxymethyl)-6-(2,2,2-trichloro-1-

iminoethoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (117 mg; 0.238 mmol) were 

added to a solution of III.1 (40.2 mg; 0.103 mmol) in anhydrous dichloromethane (6 

mL), under argon atmosphere. The reaction mixture was refluxed, for 48 h. The 

reaction was followed by tlc (AcOEt : n-hexane; 1:1). Then, after filtration and washing 

of the molecular sieves with CH2Cl2 (20 mL), the total organic solution was evaporated 

to dryness yielding 519 mg. The residue obtained was purified by column 
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chromatography on silica gel 9385, with (AcOEt : n-hexane) from (3:1) to (1:1) solvents. 

The fraction containing the product (27.5 mg) was then further purified by preparative 

tlc (AcOEt : n-hexane; 1:1) to give the more polar derivative III.14 (1.15 mg; 1.60 μmol; 

1.55 %) as a yellowish crystals (from AcOEt : n-hexane; 1:1).  

 

 

 

 

 

III.14 

Yellow amorphous solid; 

[α] 20

D

 =+56.8 ˚ (c = 0.018, CHCl3);  

1H-NMR (500 MHz, CDCl3): 6.05 (1H, d, J7β,6α = 1.4 Hz, Hβ–7), 5.29 (1H, t, J4’,3’ = 

9.8 Hz, J4’,5’ = 9.8 Hz, H–4’), 5.18 (1H, br s, J2’,1’ = ~1.8-2.4 Hz, J2’,3’ = 3.5 Hz, H–2’), 5.17 

(1H, dd, J3’,2’ = 3.5 Hz, J3’,4’ = 9.8 Hz, H–3’), 5.11 (1H, br s, J1’,2’ = 2.8 Hz, H–1’), 4.30 (1H, 

dd, J6’A,6’B = 12.2 Hz, J6’A,5’ = 4.9 Hz, H–6’A), 4.19 (1H, br s, J6α,7β = 1.4 Hz,  J6α,5α = ~1.4 Hz, 

Hα–6), 4.04 (1H, dd, J6’B,6’A = 12.2 Hz, J6’B,5’ = 2.4 Hz, H–6’B), 3.75 (1H, ddd, J4’,3’ = 9.8 Hz, 

J4’,5’ = 9.8 Hz, H–4’), 3.18 (1H, sept, J15,16(17) = 6.8 Hz, H–15), 2.66 (1H, br d, J1β,1α = 12.7 

Hz, J1β,2α = *, J1β,2β = 3.0 Hz, Hβ–1), 2.16 (3H, s, OAc-2´), 2.13 (3H, s, OAc-6´), 2.00 (3H, s, 

OAc-4´), 2.02 (3H, s, OAc-7α), 1.98 (3H, s, OAc-3´), 1.85 (1H, qdd, J2β,1α = J2β,2α = J2β,3α = 

13.2 Hz, J2β,1β = 3.0 Hz, J2β,3β = 3.0 Hz, Hβ–2), 1.64 (3H, s, Me-20), 1.56 (1H, m*, J2α,1β = 

J2α,1α = J2α,3α = J2α,3β = *, J1α,2β = 13.2 Hz, J2α,2β = 13.2 Hz,  Hα–2), 1.52 (1H, m*, J3β,3α = 

J3β,2α = *, J3β,2β =3.0 Hz, Hβ–3), 1.45 (1H, br s, *, J5α,6α = 1.4 Hz, Hα–5), 1.23# (3H, d, J16,15 

= 6.8 Hz, Me-16), 1.22 (1H, m*, J1α,1β = 12.7 Hz,  J1α,2α = *, J1α,2β = 13.2 Hz, Hα–1), 1.22# 

(3H, d, J17,15 = 6.8 Hz, Me-17), 1.20 (3H, s, Me-19), 1.20 (1H, *, J3α,2α = J3α,3β = *, J3α,2β = 

13.2 Hz, Hα–3), 0.94 (3H, s, Me-18); 

*Overlapped or partially overlapped signals; approximate δ values obtained from the HSQC 

spectrum. 
#
Interchangeable signals; 

13C NMR (125 MHz, CDCl3): 185.24 (C-14, s); 183.17 (C-11, s); 170.89 (C-6’, s); 

170.18 (C´-2, s); 170.05 (C-3´, s); 169.53 (C´4, s); 168.68 (OAc-7α, s); 150.97 (C-12, s); 
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149.96 (C-9, s); 136.55 (C-8, s); 124.78 (C-13, s); 99.98 (C-1’, d); 77.41 (C-6, d); 69.74 (C-

5’, d); 69.71 (C-2’, d); 68.85 (C-3’, d); 65.73 (C-4´, d); 65.20 (C-7, d); 62.13 (C-6’, t); 

49.63 (C-5, d); 42.37 (C-3, t); 38.80 (C-10, s); 38.56 (C-1, t), 33.60 (C-4, s); 33.51 (C-18, 

q); 24.15 (C-15, d); 23.59 (C-19, q); 21.93 (C-20, q); 20.89 (OAc-2´, q); 20.77* (OAc-6´, 

q); 20.70* (OAc-4´, q); 20.68* (OAc-3´, q); 20.63* (OAc-7α, q); 19.87 (C-16, q); 19.66 (C-

17, q); 18.90 (C-2, t);  

*Interchangeable assignments; 

HRESIMS m/z: 721.3051 [M+H]+ (calcd 721.3066 for C36H49O15).  

 

V.6.2. (11R*,13E)-11-Acetoxyhalima-5,13-dien-15-oic acid 
derivatives 

 

The (11R*,13E)-11-Acetoxyhalima-5,13-dien-15-oic acid II.7 was used as starting 

material to prepare nine derivatives. Eight halimane derivatives III.15-III.23 were 

obtained by esterification at C-11 and/or C-15 positions (Figure V.2). The natural 

diterpene (11R*,13E)-11-Acetoxyhalima-5,13-dien-15-oic acid II.7 used for obtaining 

the derivatives III.15-III.23 was re-isolated from P. ornatus Codd. as described 

previously in Chapter II (Rijo P. et al., 2007; Rijo P. et al., accepted). 

                                                                               

 

 

 

 

 

 

Figure V.2. Derivatives III.15-III.23 of (11R*,13E)-11-acetoxyhalima-5,13-dien-15-

oic acid II.7. 

 

 R1 R2 

II.7 Ac COOH 
III.15 Ac COOMe 
III.16 Ac CH2OH 
III.17 H CH2OH 
III.18 H CH2OAc 
III.19 H CH2OCOCH2CH3 
III.20 COCH2CH3 CH2OCOCH2CH3 
III.21 H CH2OCOCH2CH2CH3 
III.22 H CH2OCOC6H5 
III.23 H CH2OCO-C6H5-p- OCH3 
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VI.6.2.1. Methylation of (11R*,13E)-11-acetoxyhalima-5,13-dien-15-
oic acid II.7 

 

 A solution of II.7 (11.4 mg) in acetone (2 mL) was treated with Me2SO4 (16 mg) 

in the presence of K2CO3 (6.2 mg) at room temperature for 5 h. After this time the 

reaction mixture was poured into water (10 mL) and extracted with AcOEt (10 mL x 5). 

The combined organic layers were dried over anhydrous sodium sulphate filtered and 

evaporated in a rotavapor. The yellow residue obtained was purified by thin layer 

chromatography (precoated silica gel plates Merck nº 7747 eluted with 7:3 n-

hexane:AcOEt) to give III.15 (11.2 mg, 94.5 %). 

 

(11R*,13E)-11-Acetoxyhalima-5,13-dien-15-oic acid methyl ester 
III.15 
 

 

 

 

 

 

 

III.15 

Colourless fine needles (Et2O – pentane); 

m.p. 89-91 ˚C; 

[] 20

D  -33.7 ˚ (c 0.249, CHCl3);  

IR (KBr) νmax: 3054, 2936, 1730, 1707, 1637, 1434, 1378, 1247, 1237, 1155, 1021, 

975 cm-1;  

1H NMR (400 MHz, CDCl3) δ 5.67 (1H, qd, J14,16 = 1.2 Hz, J14,12A = 0.4 Hz, H-14), 

5.44 (1H, dt, J6,7β = 5.6 Hz, J6,7α = J6,10β = 2.1 Hz, H-6), 5.31 (1H, dd, J11,12A = 2.5 Hz, J11,12B 

= 10.1 Hz, H-11), 3.66 (3H, s, COOMe), 2.42 (1H, ddd, J12A,12B = 14.0, J12A,11 = 2.5 Hz, 

J12A,14 = 0.4 Hz, H-12A), 2.33 (1H, br dd, J12B,12A = 14.0 Hz, J12B,11 = 10.1 Hz, J12B,14 < 0.2 

Hz, H-12B), 2.18 (3H, d, J16,14 = 1.2 Hz, Me-16), 2.06 (1H, dm, J10β,1α = 12.9 Hz, H-10β), 
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1.98 (3H, s, 11-OAc), 1.92 (1H, dm, J1β,1α = 12.9 Hz, H-1β), 1.84 (1H, dtd, J7β,7α = 17.7 Hz, 

J7β,6 = J7β,8β = 5.6 Hz, J7β,10β =1.8 Hz, H-7β), 1.75 (1H, ddt, J7α,7β = 17.7 Hz, J7α,8β = 9.8 Hz, 

J7α,6 = J7α,10β = 2.1 Hz, H-7α), 1.63 (1H, ddddd, J2α,2β = 13.3 Hz, J2α,1α = 3.9 Hz, J2α,1β = 3.6 

Hz, J2α,3α = 4.3 Hz, J2α,3β = 3.3 Hz, H-2α), 1.56 (1H, m, *, H-8β), 1.52 (1H, qt, J2β,2α = J2β,1α 

= J2β,3α = 12.9 Hz, J2β,1β = J2β,3β = 3.3 Hz, H-2β), 1.41 (1H, dtd, J3β,3α = 13.3 Hz, J3β,2α = J3β,2β 

= 3.3 Hz, J3β,1β = 1.8 Hz, H-3β), 1.19 (1H, td, J3α,3β = J3α,2β = 13.3 Hz, J3α,2α = 4.3 Hz, H-3α), 

1.09 (1H, qd, J1α,1β = J1α,2β = J1α,10β = 12.9 Hz, J1α,2α = 3.9 Hz, H-1α), 1.05 (3H, s, Me-19), 

0.98 (3H, d, J17,8β = 6.6 Hz, Me-17), 0.97 (3H, s, Me-18), 0.68 (3H, s, Me-20);  

*overlapped signals; 

13C NMR (100 MHz, CDCl3) δ 170.6 (11-OCOCH3, s), 166.6 (C-15, s), 156.8 (C-13, 

s), 145.2 (C-5, s), 117.9 (C-14, d), 116.0 (C-6, d), 75.1 (C-11, d), 50.9 (COOCH3, q), 41.6 

(C-9, s), 41.4 (C-12, t), 40.9 (C-3, t), 40.3 (C-10, d), 36.3 (C-4, s), 32.8 (C-8, d), 31.4 (C-7, 

t), 29.7 (C-19, q), 28.9 (C-1, t), 28.1 (C-18, q), 22.5 (C-2, t), 20.9 (11-OCOCH3, q), 18.8 (C-

16, q), 17.2 (C-17, q), 11.8 (C-20, q);  

EIMS: m/z (relative intensity) 376 (1), 316 (8), 301 (11), 274 (13), 259 (17), 203 (22), 

191 (100), 175 (11), 147 (11), 119 (27) 105 (13); C23H36O4, Mr 376. 

 

V.6.2.2. Lithium aluminium hydride reduction of II.7: (11R*, 13E)-11-
acetoxyhalima-5,13-dien-15-ol III.16 and (11R*, 13E)-halima-5,13-
diene-11,15- diol III.17 

 

 To a solution of II.7 (11.2 mg) in anhydrous ethyl ether (1.5 mL) H4LiAl (1.7 mg) 

was added under N2 atmosphere. The reaction mixture was left at room temperature 

for 2 h. The reaction mixture was evaporated in rotavapor, filtered and gave a mixture 

of III.16 and III.17, which were isolated by tlc (n-hexane:EtOAc; 7:3) yielding III.16 (2 

mg, 18.6 %) and III.17 (most polar compound, 6.5 mg, 68.7 %).  
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V.6.2.2.1. (11R*, 13E)-11-Acetoxyhalima-5,13-dien-15-ol III.16 

 

 

 

 

 III.16 

Colourless oil;  

[] 20

D  -22.1 ˚ (c 0.70, CHCl3);  

IR (neat) νmax: 3424, 3051, 2930, 1735, 1458, 1375, 1244, 1216, 1026, 757 cm-1;  

1H NMR (400 MHz, CDCl3): δ 5.43 (2H, m, H-6 and H-14), 5.21 (1H, dd, J11,12A = 

2.3 Hz, J11,12B = 10.3 Hz, H-11), 4.10 (1H, dd, J15A,15B = 12.3 Hz, J15A,14 = 7.0 Hz, H-15A), 

4.06 (1H, dd, J15B,15A = 12.3 Hz, J15B,14 = 6.8 Hz, H-15B), 2.30 (1H, br d, J12A,12B = 13.7, 

J12A,11 + J12A,14 < 3 Hz, H-12A), 2.21 (1H, dd, J12B,12A = 13.7 Hz, J12B,11 = 10.3 Hz, H-12B), 

2.09 (1H, dm, J10β,1α = 12.7 Hz, H-10β), 1.99 (3H, s, 11-OAc), 1.91 (1H, m, *, H-1β), 1.84 

(1H, dtd, J7β,7α = 17.7 Hz, J7β,6 = J7β,8β = 5.3 Hz, J7β,10β = 1.8 Hz, H-7β), 1.71 (3H, d, J16,14 = 

1.4 Hz, Me-16), 1.76 (1H, ddt, J7α,7β = 17.7 Hz, J7α,8β = 9.8 Hz, J7α,6 = J7α,10β = 2.5 Hz, H-

7α), 1.64 (1H, m, *, H-2α), 1.58 (1H, m, *, H-8β), 1.51 (1H, qt, J2β,2α = J2β,1α = J2β,3α = 13.1 

Hz, J2β,1β = J2β,3β = 3.4 Hz, H-2β), 1.41 (1H, dtd, J3β,3α = 13.1 Hz, J3β,2α = J3β,2β = 3.3 Hz, 

J3β,1β = 2.0 Hz, H-3β), 1.19 (1H, td, J3α,3β = J3α,2β = 13.1 Hz, J3α,2α = 4.5 Hz, H-3α), 1.08 (1H, 

qd, J1α,1β = J1α,2β = J1α,10β = 12.7 Hz, J1α,2α = 3.9 Hz, H-1α), 1.05 (3H, s, Me-19), 0.98 (3H, d, 

J17,8β = 6.5 Hz, Me-17), 0.97 (3H, s, Me-18), 0.68 (3H, s, Me-20);  

13C NMR (100 MHz, CDCl3): δ 171.1 (11-OCOCH3, s), 145.3 (C-5, s), 136.9 (C-13, 

s),  126.3 (C-14, d), 115.9 (C-6, d), 75.8 (C-11, d), 59.2 (C-15, t), 41.3 (C-3, t), 41.0 (C-9, 

s), 40.2 (C-10, d), 40.1 (C-12, t), 36.3 (C-4, s), 32.8 (C-8, d), 31.4 (C-7, t), 29.7 (C-19, q), 

29.0 (C-1, t), 28.1 (C-18, q), 22.6 (C-2, t), 21.0 (11-OCOCH3, q), 17.2 (C-17, q), 16.2 (C-

16, q), 12.0 (C-20, q);  
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EIMS m/z (relative intensity) [M]+ absent, 330 [M-H2O]+ (1), 288 [M-HOAc]+, (4), 

273 [M-Me-HOAc]+ (6), 270 [M-HOAc-H2O]+ (3), 231 (8), 203 (23), 191 (100), 189 (75), 

175 (20), 173 (21),  147 (22), 119 (66) 105 (24); C22H36O3, Mr 348. 

 

V.6.2.2.2. (11R*, 13E)-Halima-5,13-diene-11,15- diol III.17 

 

 

 

 

 

III.17 

Colourless thick oil;  

[] 20

D  -18.8 (c 0.33, CHCl3);  

IR (neat) νmax: 3369, 3051, 2927, 1667, 1455, 1383, 1262, 1088, 1038, 1000, 

802, 758 cm-1;  

1H NMR (400 MHz, CDCl3) δ 5.53 (1H, br tq, J14,15 = 6.8 Hz, J14,16 = 0.6 Hz, J14,12A < 

0.6 Hz, H-14), 5.41 (1H, ddd, J6,7β = 5.9 Hz, J6,7α = 2.1 Hz, J6,10β = 1.7 Hz, H-6), 4.18 (2H, d, 

J15,14 = 6.8 Hz, H2-15), 3.66 (1H, dd, J11,12A = 2.0 Hz, J11,12B = 10.8 Hz, H-11), 2.33 (1H, br 

dd, J12A,12B = 13.7, J12A,11 = 2.0 Hz, J12A,14 < 0.6 Hz, H-12A), 2.29 (1H, m, *, H-10β), 2.09 

(1H, dd, J12B,12A = 13.7 Hz, J12B,11 = 10.8 Hz, H-12B), 1.87 (1H, dtd, J7β,7α = 17.5 Hz, J7β,6 = 

J7β,8β = 5.1 Hz, J7β,10β = 2.1 Hz, H-7β), 1.81 (1H, m, *, H-1β), 1.78 (1H, m, *, H-7α), 1.72 

(3H, d, J16,14 = 0.6 Hz, Me-16), 1.62 (1H, m, *, H-8β), 1.60 (1H, m, *, H-2α), 1.55 (1H, m, 

*, H-2β), 1.42 (1H, dtd, J3β,3α = 13.0 Hz, J3β,2α = J3β,2β = 3.3 Hz, J3β,1β = 1.7 Hz, H-3β), 1.20 

(1H, m, H-3α), 1.10 (1H, m, H-1α), 1.05 (3H, s, Me-19), 1.00 (3H, s, Me-18), 0.97 (3H, d, 

J17,8β = 6.7 Hz, Me-17), 0.80 (3H, s, Me-20);  

13C NMR (100 MHz, CDCl3) 146.1 (C-5,s), 137.8 (C-13, s),  126.7 (C-14, d), 115.5 (C-6, 

d), 73.1 (C-11, d), 59.3 (C-15, t), 42.0 (C-12, t), 41.4 (C-3, t), 41.2 (C-9, s), 38.9 (C-10, d), 
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36.5 (C-4, s), 32.8 (C-8, d), 31.0 (C-7, t), 29.9 (C-19, q and C-1, t), 27.7 (C-18, q), 22.9 (C-

2, t), 17.3 (C-17, q), 16.3 (C-16, q), 12.6 (C-20, q);  

EIMS: m/z (relative intensity) [M]+ absent, 288 [M-H2O]+ (1), 231 (2), 203 (8), 191 

(100), 175 (12), 147 (9), 135 (12), 119 (19) 105 (16), 95 (16); C20H34O2, Mr 306. 

 

V.6.2.3.   Preparation of (11R*,13E)-15-acetoxyhalima-5,13-dien-11-
ol) III.18 from compound III.16 

 

 To a solution of III.16 (15 mg) in 7:3 petroleum ether-EtOAc (10 mL) silica gel 

(Merck 7747, 20 mg) was added. The mixture was stirred for 48 h at room 

temperature. Filtration and evaporation of the solvents gave a mixture (14.8 mg) of 

the starting material III.16 and another compound. After tlc of this mixture, 

compounds III.16 (8 mg, 53.3 %) and III.18 (6.2 mg, 41.3 %) were isolated.  

 

(11R*, 13E)-15-Acetoxyhalima-5,13-dien-11-ol III.18 

 

 

 

 

 

III.18 

Colourless oil;  

[] 20

D  -21.6 ˚ (c 0.213, CHCl3);  

IR (neat) νmax: 3445, 3049, 2928, 1739, 1731, 1668, 1455, 1383, 1235, 1039, 819 

cm-1;  

1H NMR (400 MHz, CDCl3): δ 5.46 (1H, tqd, J14,15 = 7.0 Hz, J14,16 = 0.6 Hz, J14,12A = 

0.4 Hz, H-14), 5.41 (1H, ddd, J6,7β = 4.7 Hz, J6,7α = 3.0 Hz, J6,10β = 1.6 Hz, H-6), 4.62 (1H, 

dd, J15A,15B = 12.7 Hz, J15A,14 = 7.0 Hz, H-15A), 4.58 (1H, dd, J15B,15A = 12.7 Hz, J15B,14 = 7.0 
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Hz, H-15B), 3.66 (1H, dd, J11,12A = 1.6 Hz, J11,12B = 10.6 Hz, H-11), 2.34 (1H, ddd, J12A,12B = 

13.7, J12A,11 = 1.6 Hz, J12A,14 = 0.4 Hz, H-12A), 2.28 (1H, dm, J10β,1α = 12.8 Hz, J10β,6 = 1.6 

Hz, H-10β), 2.12 (1H, dd, J12B,12A = 13.7 Hz, J12B,11 = 10.6 Hz, H-12B), 2.04 (3H, s, 15-OAc), 

1.87 (1H, dtd, J7β,7α = 17.6 Hz, J7β,6 = J7β,8β = 5.0 Hz, J7β,10β = 2.0 Hz, H-7β), 1.80 (1H, m, *, 

H-1β), 1.78 (1H, m, *, H-7α), 1.75 (3H, d, J16,14 = 0.6 Hz, Me-16), 1.62 (1H, m, *, H-8β), 

1.60 (1H, m, *, H-2α), 1.55 (1H, m, *, H-2β), 1.42 (1H, dtd, J3β,3α = 13.1 Hz, J3β,2α = J3β,2β = 

3.6 Hz, J3β,1β = 1.8 Hz, H-3β), 1.19 (1H, td, J3α,3β = J3α,2β = 13.1 Hz, J3α,2α = 3.8 Hz, H-3α), 

1.10 (1H, qd, J1α,1β = J1α,2β = J1α,10β = 12.8 Hz, J1α,2α = 4.0 Hz, H-1α), 1.05 (3H, s, Me-19), 

1.00 (3H, s, Me-18), 0.97 (3H, d, J17,8β = 6.9 Hz, Me-17), 0.80 (3H, s, Me-20);  

*Overlapped signals; 

13C NMR (100 MHz, CDCl3): δ 171.1 (15-OCOCH3, s), 146.1 (C-5, s), 140.3 (C-13, 

s),  121.7 (C-14, d), 115.2 (C-6, d), 72.9 (C-11, d), 61.2 (C-15, t), 42.1 (C-12, t), 41.3 (C-3, 

t), 41.2 (C-9, s), 38.9 (C-10, d), 36.5 (C-4, s), 32.8 (C-8, d), 31.0 (C-7, t), 29.9 (C-19, q), 

29.7 (C-1, t), 27.7 (C-18, q), 22.9 (C-2, t), 21.0 (15-OCOCH3, q), 17.3 (C-17, q), 16.4 (C-

16, q), 12.6 (C-20, q);  

EIMS m/z (relative intensity): [M]+ absent, 330 [M-H2O]+ (1), 273 (1), 255 (1), 

203 (6), 191 (100), 175 (12),  163 (10), 147 (8), 135 (13), 119 (23) 109 (16), 95 (18), 69 

(19); C22H36O3, Mr 348. 

 

V.6.2.4.   Preparation of the derivatives III.19-III.23 

  

 A solution of III.17 in pyridine (Py) and eventually CH2Cl2 and the suitable alkyl 

anhydride (for obtaining III.19-III.21) or appropriate benzoyl chloride (for compounds 

III.23 and III.23), was allowed to stand on adequate conditions. The reaction mixture 

was then diluted with EtOAc and successively washed with an aqueous saturated 

solution of NaHCO3 and then with water. The organic layer was dried over anhydrous 

Na2SO4. The residue was then purified by tlc (7:3 petroleum ether-EtOAc as eluent) to 

afford III.19-III.21. The conditions for obtaining each one of the derivatives were as 

follows. Treatment of III.17 (18.5 mg) with propionic anhydride (1 mL) in pyridine 

solution (1 mL) at 0 ˚C for 48 h gave a mixture of III.19 and III.20. Chromatography 
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yielded III.19 (10.5 mg, 48.0 %) and III.20 (9.5 mg, 37.5 %). A reaction mixture of III.17 

(37.5 mg), butyric anhydride (1 mL) and pyridine (1 mL) was allowed to stand at 0 ˚C 

for 30 min yielding III.21 (19.1 mg, 41.4 %). Benzoylation of III.17 (17 mg) with benzoyl 

chloride (30 μL) in pyridine (1 mL) at room temperature for 24 h gave III.22 (9 mg, 39.5 

%).  A solution of III.17 (19.8 mg) in pyridine (200 μL) and CH2Cl2 (2 mL) was treated 

with p-methoxybenzolyl chloride (40 μL) for 24 h at room temperature yielding III.23 

(14.7 mg, 51.6 %) (Table V.15).  

 

Table V.15. Hemisynthesis conditions of derivatives III.15-III.23.  

Starting 
material III.17 

mg;mmol 

Benzoyl chloride/alkyl 
anhydride 
mL; mmol 

Reactional 
conditions 

 

Product 
mg 

(yield %) 

 
18.5; 0.0603 

propionic anhydride 
1.00; 7.799 

py (1 mL) 
0 ˚C; 48 h 

III.19  
10.5 (48.0 %) 

III.20  
9.5 (37.5 %) 

37.5; 0.1223 butyric anhydride 
1.00; 6.087 

py (1 mL) 
 0 ˚C; 30 min 

III.21  
19.1 (41.4 %) 

17.0; 0.0554 benzoyl chloride 
0.030; 0.258 

py (1 mL)  
r.t.; 24 h 

III.22  
9.0 (39.5 %) 

19.8; 0.0646 

 

p-methoxybenzolyl 
chloride  

0.040; 0.295 

py (0.2 mL) and 
CH2Cl2 (2 mL) 24 

h; r.t. 

III.23  
14.7 (51.6 %) 

Py = pyridine; r.t. = room temperature 

 

 V.6.2.4.1. (11R*, 13E)-15-Propionyloxyhalima-5,13-dien-11-ol III.19 

 

 

 

 

III.19 
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Colourless thick oil;  

[] 20

D  -21.3 ˚ (c 0.207, CHCl3);  

IR (neat) νmax: 3543, 3050, 2929, 1738, 1462, 1382, 1363, 1277, 1184, 1081, 

1009, 938 cm-1;  

1H NMR (400 MHz, CDCl3): δ 5.46 (1H, br tq, J14,15 = 7.0 Hz, J14,16 = 0.9 Hz, J14,12A 

< 0.4 Hz, H-14), 5.41 (1H, ddd, J6,7β = 4.9 Hz, J6,7α = 3.2 Hz, J6,10β = 1.6 Hz, H-6), 4.63 (1H, 

dd, J15A,15B = 12.9 Hz, J15A,14 = 7.0 Hz, H-15A), 4.59 (1H, dd, J15B,15A = 12.9 Hz, J15B,14 = 7.0 

Hz, H-15B), 3.66 (1H, dd, J11,12A = 1.4 Hz, J11,12B = 10.7 Hz, H-11), 2.34 (1H, br dd, J12A,12B 

= 13.5, J12A,11 = 1.4 Hz, J12A,14 < 0.4 Hz, H-12A), 2.31 (2H, q, J2’,3’ = 7.7 Hz, H2-2’), 2.28 (1H, 

dm, J10β,1α = 12.7 Hz, H-10β), 2.12 (1H, dd, J12B,12A = 13.5 Hz, J12B,11 = 10.7 Hz, H-12B), 

1.86 (1H, dtd, J7β,7α = 17.6 Hz, J7β,6 = J7β,8β = 5.0 Hz, J7β,10β = 1.9 Hz, H-7β), 1.80 (1H, m, *, 

H-1β), 1.78 (1H, m, *, H-7α), 1.75 (3H, d, J16,14 = 0.9 Hz, Me-16), 1.62 (1H, m, *, H-8β), 

1.58 (1H, m, *, H-2α), 1.53 (1H, qt, J2β,2α = J2β,1α = J2β,3α = 12.5 Hz, J2β,1β = J2β,3β = 3.5 Hz, 

H-2β), 1.42 (1H, dtd, J3β,3α = 13.0 Hz, J3β,2α = J3β,2β = 3.3 Hz, J3β,1β = 1.6 Hz, H-3β), 1.19 

(1H, td, J3α,3β = J3α,2β = 13.0 Hz, J3α,2α = 4.3 Hz, H-3α), 1.13 (3H, t, J3’,2’ = 7.7 Hz, Me-3’), 

1.09 (1H, qd, J1α,1β = J1α,2β = J1α,10β = 12.7 Hz, J1α,2α = 4.6 Hz, H-1α), 1.05 (3H, s, Me-19), 

1.00 (3H, s, Me-18), 0.97 (3H, d, J17,8β = 7.0 Hz, Me-17), 0.80 (3H, s, Me-20);  

*Overlapped signals; 

13C NMR (100 MHz, CDCl3): 174.5 (C-1’, s),146.1 (C-5, s), 140.1 (C-13, s),  

121.9 (C-14, d), 115.2 (C-6, d), 73.0 (C-11, d), 61.0 (C-15, t), 42.1 (C-12, t), 41.4 (C-3, t), 

41.2 (C-9, s), 38.9 (C-10, d), 36.5 (C-4, s), 32.8 (C-8, d), 31.1 (C-7, t), 29.9 (C-19, q), 29.8 

(C-1, t), 27.7 (C-18, q), 27.6 (C-2’, t),  22.9 (C-2, t), 17.3 (C-17, q), 16.5 (C-16, q), 12.6 (C-

20, q), 9.1 (C-3’, q);  

EIMS m/z (relative intensity): [M]+ absent, 288 [M-CH3CH2COOH]+ (1), 287 (1), 

255 (2), 203 (7), 191 (100), 175 (12), 163 (10), 147 (7), 135 (11), 119 (19), 109 (12), 97 

(15), 69 (10), 57 (8); C23H38O3, Mr 362. 
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 V.6.2.4.2. (11R*,13E)-11,15-Dipropionyloxyhalima-5,13-diene III.20 

 

 

 

 

 

III.20 

Colourless thick oil;  

[] 20

D  -21.9 ˚ (c 0.187, CHCl3);  

IR (neat) νmax: 3049, 2930, 1737, 1733, 1463, 1385, 1276, 1183, 1082, 1015, 805 

cm-1;  

1H NMR (400 MHz, CDCl3): δ 5.44 (1H, ddd, J6,7β = 5.0 Hz, J6,7α = 3.2 Hz, J6,10β = 

1.6 Hz, H-6), 5.34 (1H, br ddq, J14,15A = 7.2 Hz, J14,15B = 6.9 Hz J14,16 = 1.2 Hz, J14,12A < 0.4 

Hz, H-14), 5.26 (1H, dd, J11,12A = 2.5 Hz, J11,12B = 10.1 Hz, H-11), 4.56 (1H, dd, J15A,15B = 

12.5 Hz, J15A,14 = 7.2 Hz, H-15A), 4.49 (1H, dd, J15B,15A = 12.5 Hz, J15B,14 = 6.9 Hz, H-15B), 

2.30 (2H, q, J2’,3’ = 7.6 Hz, H2-2’ at C-15), 2.27 (2H, q, J2’,3’ = 7.6 Hz, H2-2’ at C-11), 2.24 

(1H, dd, J12B,12A = 13.8 Hz, J12B,11 = 10.1 Hz, H-12B), 1.84 (1H, dtd, J7β,7α = 17.6 Hz, J7β,6 = 

J7β,8β = 5.0 Hz, J7β,10β = 1.9 Hz, H-7β), 1.73 (3H, d, J16,14 = 1.2 Hz, Me-16), 1.18 (1H, td, 

J3α,3β = J3α,2β = 13.1 Hz, J3α,2α = 4.5 Hz, H-3α), 1.12 (3H, t, J3’,2’ = 7.6 Hz, Me-3’at C-15), 

1.10 (3H, t, J3’,2’ = 7.6 Hz, Me-3’at C-11), 1.05 (3H, s, Me-19), 0.98 (3H, d, J17,8β = 6.8 Hz, 

Me-17), 0.97 (3H, s, Me-18), 0.67 (3H, s, Me-20)  (the remaining protons appeared as 

overlapped signals at almost identical field than in III.19, as was established from the 

HSQC spectrum);  

13C NMR (100 MHz, CDCl3): δ 174.4 (C-1’ at C-15, s), 174.0 (C-1’ at C-11, s), 

145.4 (C-5, s), 139.0 (C-13, s),  121.6 (C-14, d), 116.0 (C-6, d), 74.8 (C-11, d), 61.1 (C-15, 

t), 41.4 (C-3, t), 41.0 (C-9, s), 40.2 (C-12, t), 40.1 (C-10, d), 36.3 (C-4, s), 32.8 (C-8, d), 

31.4 (C-7, t), 29.7 (C-19, q), 29.0 (C-1, t), 28.2 (C-18, q), 27.8 (C-2’ at C-11, t),  27.5 (C-2’ 

at C-15, t),  22.6 (C-2, t), 17.2 (C-17, q), 16.3 (C-16, q), 11.9 (C-20, q), 9.4 (C-3’ at C-11, 

q), 9.1 (C-3’ at C-15, q);  
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EIMS m/z (relative intensity): [M]+ absent, 344 [M-CH3CH2COOH]+ (1), 270 [M-

2CH3CH2COOH]+ (2), 203 (22), 191 (100), 173 (17), 147 (13), 135 (14), 133 (14),  119 

(43), 109 (15), 105 (16), 95 (19), 69 (13), 57 (49); C26H42O4, Mr 418. 

 

 V.6.2.4.3. (11R*, 13E)-15-Butyryloxyhalima-5,13-dien-11-ol III.21 

 

 

 

 

 

III.21 

Colourless thick oil;  

[] 20

D  -20.9 ˚ (c 0.105, CHCl3);  

IR (neat) νmax: 3546, 3051, 2962, 2929, 1736, 1667, 1458, 1383, 1364, 1275, 

1178, 1090, 1040, 966 cm-1;  

1H NMR (400 MHz, CDCl3): δ 5.46 (1H, br tq, J14,15 = 7.0 Hz, J14,16 = 1.0 Hz, J14,12A 

< 0.4 Hz, H-14), 5.41 (1H, ddd, J6,7β = 4.9 Hz, J6,7α = 3.2 Hz, J6,10β = 1.6 Hz, H-6), 4.62 (1H, 

dd, J15A,15B = 12.8 Hz, J15A,14 = 7.0 Hz, H-15A), 4.59 (1H, dd, J15B,15A = 12.8 Hz, J15B,14 = 7.0 

Hz, H-15B), 3.66 (1H, ddd, J11,12A = 1.9 Hz, J11,12B = 10.7 Hz, J1,11OH = 3.2 Hz, H-11), 2.34 

(1H, br dd, J12A,12B = 13.6, J12A,11 = 1.9 Hz, J12A,14 < 0.4 Hz, H-12A), 2.28 (1H, dm, J10β,1α = 

12.8 Hz, H-10β), 2.27 (2H, t, J2’,3’ = 7.5 Hz, H2-2’), 2.12 (1H, dd, J12B,12A = 13.6 Hz, J12B,11 = 

10.7 Hz, H-12B), 1.86 (1H, dtd, J7β,7α = 17.6 Hz, J7β,6 = J7β,8β = 5.0 Hz, J7β,10β = 1.9 Hz, H-

7β), 1.80 (1H, m, *, H-1β), 1.78 (1H, m, *, H-7α), 1.75 (3H, d, J16,14 = 1.0 Hz, Me-16), 

1.64 (2H, sext, J3’,2’ = J3’,4’ = 7.5 Hz, H2-3’), 1.62 (1H, m, *, H-8β), 1.58 (1H, m, *, H-2α), 

1.53 (1H, m, *, H-2β), 1.43 (1H, d, J11OH,11 = 3.2 Hz, 11-OH), 1.42 (1H, m, *, H-3β), 1.19 

(1H, td, J3α,3β = J3α,2β = 13.0 Hz, J3α,2α = 4.4 Hz, H-3α), 1.10 (1H, qd, J1α,1β = J1α,2β = J1α,10β = 
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12.8 Hz, J1α,2α = 4.5 Hz, H-1α), 1.05 (3H, s, Me-19), 1.00 (3H, s, Me-18), 0.96 (3H, d, J17,8β 

= 6.8 Hz, Me-17), 0.93 (3H, t, J4’3’ = 7.5 Hz, Me-4’), 0.80 (3H, s, Me-20);  

*Overlapped signals; 

13C NMR (100 MHz, CDCl3): 173.7 (C-1’, s),146.1 (C-5, s), 140.1 (C-13, s),  

121.9 (C-14, d), 115.2 (C-6, d), 73.0 (C-11, d), 60.9 (C-15, t), 42.1 (C-12, t), 41.4 (C-3, t), 

41.2 (C-9, s), 38.9 (C-10, d), 36.5 (C-4, s), 36.2 (C-2’, t), 32.8 (C-8, d), 31.1 (C-7, t), 29.9 

(C-19, q), 29.8 (C-1, t), 27.7 (C-18, q), 22.9 (C-2, t), 18.5 (C-3’, t), 17.3 (C-17, q), 16.5 (C-

16, q), 13.7 (C-4’, q), 12.6 (C-20, q);  

EIMS m/z (relative intensity): 376 [M]+ (0.01), 358 [M-H2O]+ (0.1), 288 [M-

CH3CH2CH2COOH]+ (1), 255 (2), 203 (8), 191 (100), 175 (12), 163 (10), 147 (7), 135 (11), 

119 (19), 109 (12), 97 (18), 85 (6), 69 (11); C24H40O3, Mr 376. 

 

 V.6.2.4.4. (11R*, 13E)-15-Benzoyloxyhalima-5,13-dien-11-ol III.22 

 

 

 

 

 

III.22 

Colourless thick oil;  

[] 20

D  -24.2 ˚ (c 0.062, CHCl3);  

IR (neat) νmax: 3530, 2928, 1720, 1602, 1585, 1452, 1382, 1273, 1110, 1070, 

1027, 758, 712 cm-1;  

1H NMR (400 MHz, CDCl3): δ 8.03 (2H, dd, J2’,3’ = 8.4 Hz, J2’,4’ = 1.3 Hz, H-2’ and 

H-6’), 7.54 (1H, tt, J4’,3’ = 7.4 Hz, J4’,2’ = 1.3 Hz, H-4’), 7.42 (2H, br dd, J3’,2’ = 8.4 Hz, J3’,4’ = 

7.4 Hz, H-3’ and H-5’), 5.60 (1H, br tq, J14,15 = 6.9 Hz, J14,16 = 0.7 Hz, J14,12A < 0.4 Hz, H-

14), 5.41 (1H, ddd, J6,7β = 4.9 Hz, J6,7α = 3.1 Hz, J6,10β = 1.6 Hz, H-6), 4.88 (1H, dd, J15A,15B = 
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12.5 Hz, J15A,14 = 6.9 Hz, H-15A), 4.84 (1H, dd, J15B,15A = 12.5 Hz, J15B,14 = 6.9 Hz, H-15B), 

3.69 (1H, br d, J11,12A < 0.4 Hz, J11,12B = 10.6 Hz, H-11), 2.38 (1H, br d, J12A,12B = 13.6, 

J12A,11 < 0.4 Hz, J12A,14 < 0.4 Hz, H-12A), 2.30 (1H, dm, J10β,1α = 12.8 Hz, H-10β), 2.16 (1H, 

dd, J12B,12A = 13.6 Hz, J12B,11 = 10.6 Hz, H-12B), 1.87 (1H, dtd, J7β,7α = 17.5 Hz, J7β,6 = J7β,8β 

= 5.0 Hz, J7β,10β = 1.9 Hz, H-7β), 1.81 (3H, d, J16,14 = 0.7 Hz, Me-16), 1.80 (1H, m, *, H-1β), 

1.78 (1H, m, *, H-7α), 1.62 (1H, m, *, H-8β), 1.57 (1H, m, *, H-2α), 1.52 (1H, m, *, H-

2β), 1.42 (1H, m, *, H-3β), 1.19 (1H, td, J3α,3β = J3α,2β = 13.0 Hz, J3α,2α = 4.8 Hz, H-3α), 

1.10 (1H, qd, J1α,1β = J1α,2β = J1α,10β = 12.8 Hz, J1α,2α = 4.7 Hz, H-1α), 1.05 (3H, s, Me-19), 

1.01 (3H, s, Me-18), 0.97 (3H, d, J17,8β = 6.8 Hz, Me-17), 0.81 (3H, s, Me-20);  

*Overlapped signals; 

13C NMR (100 MHz, CDCl3): 166.6 (C-7’, s),146.1 (C-5, s), 140.4 (C-13, s), 132.9 

(C-4’, d), 130.3 (C-1’, s), 129.6 (C-3’ and C-5’, d), 128.3 (C-2’ and C-6’, d), 121.9 (C-14, 

d), 115.2 (C-6, d), 72.9 (C-11, d), 61.7 (C-15, t), 42.2 (C-12, t), 41.3 (C-3, t), 41.2 (C-9, s), 

38.9 (C-10, d), 36.5 (C-4, s), 32.8 (C-8, d), 31.0 (C-7, t), 29.9 (C-19, q), 29.8 (C-1, t), 27.7 

(C-18, q), 22.9 (C-2, t), 17.3 (C-17, q), 16.6 (C-16, q), 12.6 (C-20, q);  

(ESI+) MS: m/z 433 [M+Na]+; C27H38O3, Mr 410. 

 

 V.6.2.4.5. (11R*, 13E)-15-(4-Methoxy)benzoyloxyhalima-5,13-dien-
11-ol III.23 

 

 

 

 

 

III.23 

Colourless thick oil;  

[] 20

D -25.8 ˚ (c 0.159, CHCl3);  
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IR (neat) νmax: 3525, 2956, 2931, 1712, 1607, 1582, 1512, 1459, 1382, 1258, 

1168, 1101, 1032, 847, 771, 758 cm-1;  

1H NMR (400 MHz, CDCl3): δ 7.98 (2H, d, J2’,3’ = 9.1 Hz, H-2’ and H-6’), 6.90 (2H, 

d, J3’,2’ = 9.1 Hz, H-3’ and H-5’), 5.59 (1H, br tq, J14,15 = 6.9 Hz, J14,16 = 0.8 Hz, J14,12A < 0.4 

Hz, H-14), 5.41 (1H, ddd, J6,7β = 4.9 Hz, J6,7α = 3.0 Hz, J6,10β = 1.6 Hz, H-6), 4.84 (1H, dd, 

J15A,15B = 12.5 Hz, J15A,14 = 6.8 Hz, H-15A), 4.84 (1H, dd, J15B,15A = 12.5 Hz, J15B,14 = 6.9 Hz, 

H-15B), 3.85 (3H, s, PhOMe), 3.68 (1H, dd, J11,12A = 1.9 Hz, J11,12B = 10.7 Hz, H-11), 2.37 

(1H, br dd, J12A,12B = 13.7, J12A,11 = 1.9 Hz, J12A,14 < 0.4 Hz, H-12A), 2.30 (1H, dm, J10β,1α = 

12.8 Hz, H-10β), 2.15 (1H, dd, J12B,12A = 13.7 Hz, J12B,11 = 10.7 Hz, H-12B), 1.87 (1H, dtd, 

J7β,7α = 17.5 Hz, J7β,6 = J7β,8β = 5.0 Hz, J7β,10β = 1.9 Hz, H-7β), 1.81 (3H, d, J16,14 = 0.8 Hz, 

Me-16), 1.80 (1H, m, *, H-1β), 1.78 (1H, m, *, H-7α), 1.61 (1H, m, *, H-8β), 1.57 (1H, m, 

*, H-2α), 1.53 (1H, m, *, H-2β), 1.42 (1H, m, *, H-3β), 1.19 (1H, td, J3α,3β = J3α,2β = 13.0 

Hz, J3α,2α = 4.3 Hz, H-3α), 1.10 (1H, qd, J1α,1β = J1α,2β = J1α,10β = 12.8 Hz, J1α,2α = 4.6 Hz, H-

1α), 1.05 (3H, s, Me-19), 1.01 (3H, s, Me-18), 0.97 (3H, d, J17,8β = 6.8 Hz, Me-17), 0.81 

(3H, s, Me-20);  

*Overlapped signals; 

13C NMR (100 MHz, CDCl3): 166.4 (C-7’, s),163.3 (C-4', s)146.1 (C-5, s), 140.0 

(C-13, s), 131.6 (C-2’ and C-6’, d), 122.7 (C-1’, s), 122.1 (C-14, d), 115.2 (C-6, d), 113.5 

(C-3’ and C-5’, d), 72.9 (C-11, d), 61.4 (C-15, t), 55.4 (PhOCH3, q), 42.1 (C-12, t), 41.3 (C-

3, t), 41.2 (C-9, s), 38.9 (C-10, d), 36.5 (C-4, s), 32.8 (C-8, d), 31.0 (C-7, t), 29.9 (C-19, q), 

29.8 (C-1, t), 27.7 (C-18, q), 22.9 (C-2, t), 17.2 (C-17, q), 16.5 (C-16, q), 12.6 (C-20, q);  

(ESI+) MS: m/z 463 [M+Na]+; C28H40O4, Mr 440. 

 

V.7. Parvifloron D II.19 derivatives 

 

 Parvifloron D II.19 used to obtain the derivatives III.24 was isolated from 

Plectranthus ecklonii as described previously in Chapter II (Simões M.F. et al., 2010b). 
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V.7.1. Skeletal rearrangement of parvifloron D II.19  

 

To a solution of parvifloron D II.19 (351 mg; 0.8077 mmol) in dichloromethane 

(30 mL), 12.5 g of molecular sieves AW-300 (acid-washed) were added at room 

temperature until disappearance of the initial red colour of the solution (24 hours). 

The reaction was followed by tlc (AcOEt : n-hexane; 3:1). Then, after filtration and 

washing of the molecular sieves with CH2Cl2 (50 mL), the organic solution was 

evaporated to dryness yielding 180 mg of a mixture of several compound (tlc). The 

residue obtained was purified by column chromatography on silica gel 9385 (eluted 

with AcOEt : n-hexane from 19:1 to 1:1). The more polar compound III.24 (from AcOEt 

: n-hexane; 1:1) that did not decompose was isolated as a yellowish crystals (37 mg; 

0.1239 mmol; 15.35 %).  

 

*2β-(4-Hydroxy)benzoyloxy-11β-hydroxy-
4(5→11),20(10→5)diabeo-5(10),6,8,13-abietatetraen-12-one] III.24 

 

 

 

 

 

III.24 

 

Colourless fine needles from EtOAc-light petroleum; 

m.p. 192-195 ˚C;  

[] 20

D  +271.2 ˚ (CHCl3, c 0.229);  

IR (KBr), νmax: 3402, 2965, 2929, 2868, 1706, 1679, 1655, 1609, 1592, 1513, 

1466, 1372, 1312, 1275, 1165, 1097, 1027, 950, 852, 773, 698 cm-1;  

UV (MeOH), max nm (log ): 336 (3.89);  
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1H NMR (500 MHz, CDCl3): δ 7.98 (2H, d, J2´,3´ = 8.8 Hz, H-2´ and H-6´), 7.13 (1H, 

br d, J6,7 = 7.9 Hz, J6,14 = 1.2 Hz,, H-6), 7.00 (1H, t, J14,6 = J14,15 = 1.2 Hz, H-14),  6.97 (1H, d 

J7,6 = 7.9 Hz, H-7), 6.86 (2H, d, J5´,6´ = 8.8 Hz, H-3´ and H-5´), 5.74 (1H, br, 4´-OH), 4.85 

(1H, dddd, J2α,3β = 12.3 Hz, J2α,1β = 11.8 Hz, J2α,3α = 3.7 Hz, J2α,1α = 2.1 Hz, H-2α), 4.63 (1H, 

s, 11β-OH), 4.04 (1H, dd, J1β,1α = 12.9 Hz, J1β,2α = 11.8 Hz, H-1β), 3.11 (1H, dt, J1α,1β = 

12.9 Hz, J1α,2α = 2.1 Hz, J1α,3α(w) = 2.1, H-1α), 3.03 (1H, sept of d, J15,16(17) = 6.8 Hz, J15,14 =  

1.2 Hz, H-15),  2.73 (1H, dd, J3β,3α = 12.8 Hz, J3β,2α = 12.3 Hz, H-3β), 2.42 (3H, s, Me-20), 

1.65 (1H, ddd, J3α,3βα = 12.8, J3α,2α = 3.7 Hz, J3α,1α(w) = 2.1 Hz, H-3α), 1.22 (3H, d, J16,15 = 

6.8 Hz, Me-16*),  1.16 (3H, d, J17,15 = 6.8 Hz, Me-17*), 0.88 (3H, s, Me-19), 0.85 (3H, s, 

Me-18); 

*Interchangeable signals; 

13C NMR (100 MHz, CDCl3): δ 205.74 (C-12, s); 165.75 (C-7´, s); 159.85 (C-4´, s); 

141.25 (C-13, s); 139.54 (C-9, s); 136.12 (C-5, s); 131.92 (C-2´, and C-6´, d); 130.67 (C-6, 

d); 128.90 (C-8, s); 127.81 (C-7, d); 123.20 (C-1´, s); 115.15 (C-3´ and C-5´, d); 83.51 (C-

11, s); 70.22 (C-2, d); 47.61 (C-3, t); 33.60 (C-1, t); 41.12 (C-4, s), 28.96 (C-18, q); 27.14 

(C-15, d); 22.08 (C-17, q); 21.87 (C-19, q); 21.38 (C-20, q); 20.93 (C-16, q); 

EIMS: m/z (relative intensity, %): 434 [M]+ (1), 296 (76), 240 (11), 227 (100), 121 

(27), 93 (5);  

HRESIMS: m/z 435.2170 [M+H]+ (calcd 435.2166 for C27H31O5).  

 

V.7.2. Acetylation of parvifloron D II.19 

 

To a solution of parvifloron D II.19 (321 mg; 0.739 mmol) in pyridine (30 mL) 5 

mL of acetic anhydride were added at room  temperature, under agitation for 72 

hours. The reaction was followed by tlc (AcOEt : n-hexane; 1:1). After this period of 

time the reaction mixture was washed with water (50 mL) and extracted with 

dichloromethane (30 mL x 4). The combined organic layers were dried over anhydrous 

sodium sulfate filtered and evaporated in a rotavapor. The residue obtained was 

redissolved in toluene to eliminate acetic acid and pyridine, and re-evaporated. The 
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mixture yielding 390 mg of a mixture of several compound (tlc) was purified by column 

chromatography (eluted with n-hexane :AcOEt; 2:1). A main product was isolated (105 

mg), but it decomposed before the 1H-NMR analysis).  

 

V.7.3. Basic hydrolysis of parvifloron D II.19 

 

To a solution of parvifloron D II.19 (86 mg; 0.198 mmol) in methanol (5 mL) was 

added potassium hydroxide (5 mL, 10%) at room temperature, under agitation for 72 

hours. After this time the reaction mixture was washed with water (30 mL) and HCl 5% 

(30 mL) and extracted with dichloromethane (20 mL x 4). The combined organic layers 

were dried over anhydrous sodium sulfate filtered and evaporated in rotavapor. The 

reaction mixture after analysed by tlc (n-hexane :AcOEt; 1:1) showed to be a mixture 

of several decomposition products.  

 

V.8. Antimicrobial activity 

 

V.8.1. Microbial strains 
 

The in vitro screening for antimicrobial study was carried out using Gram-

positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus hirae CIP 5855, E. 

faecalis ATCC 51299, Mycobacterium smegmatis ATCC 607), Gram-negative bacteria 

(Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853) and the yeast 

Candida albicans ATCC 10231. 

Comparative Gram-positive activities of the samples were performed against E. 

faecalis ATCC 51299 [low-level VRE (Vancomycin-Resistant Enterococcus)], E. faecalis 

FFHB 427483, E. faecium FFHB 435628, E. flavescens ATCC 49996, S. aureus ATCC 

25923, S. aureus ATCC 43866, S. aureus ATCC 700699, S. aureus CIP 106760 [MRSA 

(Methicillin Resistant S. aureus)], and S. aureus FFHB 29593 (MRSA) strains. FFHB are 
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clinical isolates from Hospital do Barreiro that were identified and deposited in the 

Laboratory of Microbiology of the Pharmacy Faculty, Lisbon University. 

 

V.8.2. Antimicrobial activity assays 

 

V.8.2.1. Agar diffusion method 

 

Antimicrobial activity was evaluated using the agar diffusion method, according 

to the Clinical and Laboratory Standards Institute (CLSI, 2005a) protocol with slight 

modifications. Briefly wells with 5 mm were made inside the Müller–Hinton agar 

plates. The plates were inoculated with 5 x 105 CFU/mL of the test microorganisms. All 

the compounds were dissolved in DMSO at a concentration of 1 mg/mL. Wells were 

filled with 30 μL of a solution of each tested compound, the positive control drug 

(vancomycin) and the negative control DMSO solvent, and were allowed to diffuse for 

45 min. The plates were incubated at 37 ˚C for 24 h. The sensitivity was recorded by 

measuring the clear zone of growth inhibition around the wells (mm, diameter) with a 

micrometer. Each set was tested in triplicate. 

 

V.8.2.2. Microdilution antimicrobial method 

 

The minimum inhibitory concentration (MIC) values of compounds against the 

test strains, were performed by means of the two fold serial broth microdilution assay 

(CLSI, 2006). The compounds, dissolved in DMSO, were diluted at concentrations 

ranging from 500 to 0.49 μg/mL, with a Müeller-Hinton broth medium for bacteria, 

and a Sabouraud broth medium for the yeast strain. The antimicrobial activity of the 

solvent was evaluated. Ampicillin (AMP), ketoconazole (KTC), methicillin (MET), 

norfloxacin (NOR), rifampicin (RIF) and vancomycin (VAN) were used as control 

antibiotics. The MIC values were taken as the lowest concentration of the compound 

that inhibited the growth of the microorganisms, after 24h of incubation at 37 ˚C, and 

are presented in μg/mL unities. The bacterial growth was measured with an 
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Absorvance Microplate Reader set to 630nm (ELX808TM–BioteK). Assays were carried 

out in triplicate for each tested microorganism. 

 

V.9. Other biological activities  

 

V.9.1. Antioxidant activity - DPPH free radical-scavenging assay 

 

To obtain a preliminary evaluation of the antioxidant capacity, a DPPH 

bleaching assay was used as a rapid tlc screening method (Pisoschi A.M. et al., 2009). 

 

V.9.1.1. TLC-DPPH bleaching assay 

 

A tlc [silica gel GF254 using as solvent n-hexane:AcOEt (7:3)] was performed for 

each of the isolated compounds in Chapter II and 7α-acetoxy-6β,12-dihydroxy-8,12-

abietadiene-11,14-dione III.1. After development and drying, the tlc plates were 

sprayed with a 0.2% DPPH solution in MeOH and examined 10 min after spraying. 

Vitamin E was used as positive control. The compounds with capacity to reduce DPPH 

appeared as yellow spots against a purple background. In this way, all the isolated 

compounds in Chapter II and 7α-acetoxy-6β,12-dihydroxy-8,12-abietadiene-11,14-

dione III.1 were submitted to TLC-DPPH bleaching assay but only parvifloron D II.19 

and royleanone III.1 appeared as yellow spots on purple background. After this 

preliminary study, the interaction of active compounds with DPPH were measured 

quantitatively by UV-visible spectroscopy (Bernardi A.P.M. et al, 2007; Pisoschi A.M. et 

al., 2009; Sofidiya M.O. et al, 2009). 
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V.9.1.2.Measurement of DPPH Radical Scavenging Activity 

 

The percentage of DPPH radical reduction by abietanes II.19 and III.1 was 

evaluated at different concentrations in a spectrophotometric assay (Narukawa Y., 

2001; Molyneux P., 2003; Sofidiya M.O. et al, 2009).  

A solution of the tested compound in methanol (500 μL) was added to a 

methanol solution of the DPPH radical (0.100 mM, 500 μL). The reaction mixture was 

vortexed thoroughly and left in the dark at room temperature for 30 min. The 

absorbance of the mixture was spectrophotometrically measured at 516 nm. 

Quercetin and BHT (butylhydroxytoluene) were used as standards. The ability to 

scavenge DPPH radical was calculated by the following equation: 

 

DPPH radical scavenging activity (%) =  
 ) (Abs

 ) Abs -  (Abs

control

samplecontrol
 x 100 

 

where Abscontrol was the absorbance of DPPH radical + methanol, Abssample was the 

absorbance of DPPH radical + sample/standard. The scavenging activity was expressed 

in terms of IC50, the concentration of the samples required to give a 50% of reduction 

in the intensity of the signal of the DPPH radical. The assays were done at least in 

triplicate. 

 

V.9.2. Anticholinesterase activity  

 

The isolated compounds in Chapter II and 7α-acetoxy-6β,12-dihydroxy-8,12-

abietadiene-11,14-dione III.1 were evaluated for their anticholinesterase activity. A 

qualitative method for AchE activity measurement on a tlc plate was described by Kiely 

et al., which is based on the reliable and most widely used method according to Ellman 

et al. The solutions of the tested compounds were spotted on silica gel tlc plates in a 

matrix pattern. Each plate was sprayed with a solution of acetylthiocholine iodide and 

5,5-dithiobis(2-nitrobenzoic acid) –DTNB- followed by a solution of 
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acetylcholinesterase. The enzyme reaction produced a yellow background color where 

the inhibitor compounds were exposed as white zones (where the colour has failed to 

develop; Kiely J. S. et al., 1991; Ree I.K. et al., 2001 and 2003). 

 

V.9.2.1. Determination of AChE inhibitory activity - tlc assay 

 

Acetylthiocholine iodide chloride (ATCI) was employed as substrate of the 

reaction and 5,5´-Dithio-bis(2-nitrobenzoic)acid –DTNB- was used for the 

measurement of the cholinesterase activity. The experiments were done in triplicate. 

Physostigmine and tacrine hydrochloride were used as positive controls. 

Buffers and enzyme preparation: the buffers employed were: A, 50 mM 

Phosphate  buffer (pH 7.2); B, buffer A containing 0.1% bovine serum albumin (BSA). 

The lyophilised enzyme was dissolved in the buffer A to produce a stock solution 

containing 500 units/mL, and further diluted with buffer B to contain 8 units/mL for 

the tlc assay.  

Substrate and Ellman’s reagent: acetylthiocholine iodide (ATCI) was used at a 

concentration of 60 mM in the buffer A for the tlc assay. DTNB was used at a 

concentration of 10 mM in the buffer A for the tlc assay. 

Enzyme inhibitory activities of the samples on the silica gel layer were detected 

by spraying the substrate, dye and enzyme according to Ellman’s method (Figure IV.3, 

Chapter IV). Aliquots (10 μL each) of each compound sample at 0.1 % in methanol, 

were applied to silica gel layer. The plate was sprayed with DTNB/ATCI reagent (10 mM 

DTNB and 60 mM ATCI in buffer A) until the layer was just saturated. The plate was 

then allowed to dry for 3–5 min after which 8 units/mL of enzyme solution were 

applied by spraying. A yellow background appeared with white spots caused by 

inhibiting compounds being visible after about 5 min. These white spots had to be 

observed and recorded within 15 min because they disappeared in 20–30 min. (Rhee I. 

K. et al., 2003). 

 All the compounds isolated in Chapter II and III.1 were tested and the tlc plate 

only appeared with white spots on a yellow background for the positive controls. If 
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some spot had showed inhibiting compounds, their anticholinesterase activities could 

be evaluated by the spectrophotometric method for quantitative determination using 

the same Ellman´s method. 

Bioautographic enzyme tlc assay: the method developed by Marston A. et al for 

the screening of acetylcholinesterase inhibition was also performed (Marston A. et al, 

2002). Physostigmine and tacrine used as positive controls, were dissolved in methanol 

and applied to tlc plates in varying dilutions. Acetylcholinesterase (1000 U) was 

dissolved in 150 mL of 0.05 M Tris–hydrochloric acid buffer at pH 7.8; bovine serum 

albumin (150 mg) was added to the solution. The stock solution was kept at 4°C. Tlc 

plates were then sprayed with enzyme stock solution and thoroughly dried again. 

Incubation was performed at 37°C for 20 min. For detection of the enzyme, solutions 

of 1-naphthyl acetate (250 mg) in ethanol (100 mL) and of Fast Blue B salt (400 mg) in 

distilled water (160 mL) were prepared immediately before use. After incubation of 

the tlc plates, 10 mL of the naphthyl acetate solution and 40 ml of the Fast Blue B salt 

solution were mixed and sprayed onto the plates to give a purple coloration after 1–2 

min. In the presence of an inhibitory activity, white spots should be observed against 

the dye-coloured background of the tlc plates. However, all the screened compounds 

revealed purple colour thus confirming the negative results verified in the previous 

method. 

 

V.9.3. Anti-inflammatory activity  

 

The isolated compounds in Chapter II and III.1 were evaluated for their anti-

inflammatory activity. The colorimetric COX (ovine) Inhibitor Screening Assay Kit was 

used in order to screen isozyme-specific inhibitors. Cayman’s Colorimetric COX (ovine) 

Inhibitor Screening Assay measures the peroxidase component of COXs. The 

peroxidase activity is assayed colorimetrically by monitoring the appearance of 

oxidized N,N,N’,N’-tetramethyl-p-phenylenediamine (TMPD) at 590 nm.  
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V.9.3.1. In vitro Cyclooxygenase (COX) Inhibitory Assay  

 

Cyclooxygenase inhibitor screening assay kits (Cayman Chemicals-Catalog No. 

760114) were used in order to investigate the anti-inflammatory activity of all the 

isolated compounds in Chapter II against the inflammation pathway enzymes 

cyclooxygenase 2 (COX-2). The COX inhibitory activity of compounds II.1, II.2, II.3, II.6, 

II.7 and II.17, isolated on Chapter II, and compound II.7 derivatives III.15 and III.17, 

prepared on Chapter III, was measured using ovine COX-2 enzyme by the COX inhibitor 

screening assay. Experimental procedures were performed according to the 

manufacturer’s instructions. Naproxen and SC-560 (Cayman chemicals, catalog nº 

70340, IC50 = 6.3 μM) were used as controls in the COX assay. Any antioxidant could 

interfere with the assay and could appear to be a COX inhibitor. Thus, all the 

compounds tested were previously proved to be non-antioxidant as shown earlier (IV.2 

Antioxidant activity). The compounds under assessment and the controls were 

dissolved in dimethyl sulfoxide (DMSO). As the appropriate concentration of each 

eventual inhibitor was completely unknown, several dilutions of the inhibitor were 

tested, with compounds being examined around a final concentration of 1000 μM. For 

each inhibitor at least two independent experiments were performed. The 

experimental procedures were carried out as prescribed in the assay manual and 

percent COX-2 activity values (Percent Initial Activity) were determinated as each 

Inhibitor Sample multiplying by 100, then divided by the 100% Initial Activity Sample, 

to give the percent enzyme activity. 
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The main goal of this study was to search for new bioactive constituents from 

four species of the Plectranthus genus.  

The antimicrobial activities of the plant extracts and of the isolated metabolites 

were thoroughly searched. Antioxidant, anticholinesterase and anti-inflammatory 

properties of some compounds were also screened.  

The phytochemical study of the acetone extracts of Plectranthus ornatus Codd., 

P. ecklonii Benth., P. porcatus Winter & Van Jaarsv. and P. saccatus Benth. resulted in 

several terpenoid constituents mostly diterpenes. 

From P. ornatus three new forskolin-like labdane diterpenes (6-O-

acetylforskolin II.1, 1,6-di-O-acetylforskolin II.2 and 1,6-di-O-acetyl-9-deoxyforskolin 

II.3) were isolated. Compounds II.1-II.3 possess structures closely related to that of 

forskolin II.4, a very interesting bioactive substance which was also isolated from 

Lamiaceae plants. This was the first study on compounds II.1-II.3 as naturally occurring 

substances, although they were already known as semisynthetic derivatives. 6-O-

Acetylforskolin II.1 and 1,6-di-O-acetylforskolin II.2 have previously been obtained by 

acetylation of forskolin II.4, (Bhat S.V. et al., 1982) whereas II.3 (1,6-di-O-acetyl-9-

deoxyforskolin) has been reported as an intermediate in a semisynthesis of II.4 (Hrib 

N.J., 1987a; Hrib N.J., 1987b). 

 

 

                                                                               

 

 

 

II.1 R1 = H, R2 = OH                                               forskolin II.4                                              
II.2 R1 = Ac, R2 = OH 

   II.3 R1 = Ac, R2 = H 
 

A new diterpene with the rare halimane skeleton [11R*-acetoxyhalima-5,13E-

dien-15-oic acid II.7] was also isolated from P. ornatus.  This was the first report on the 

presence of a halimane-type diterpene in a plant belonging to the genus Plectranthus. 
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Moreover, only few 5-halimene derivatives like II.7 have been isolated so far (found in 

Euphorbiaceae and Asteraceae). The isolation of the 5-halimene derivative II.7 from P. 

ornatus is of biogenetic significance, because 5- and 5(10)-halimenes arise from an 

intermediate in the biosynthetic transformation of labdanes into clerodanes (Merritt 

A. T. and Ley S. V., 1992). Since diterpenoids belonging to both labdane- and 

clerodane-type have previously been found in P. ornatus (Oliveira P. et al., 2005; Rijo P. 

et al., 2002; Rijo P. et al., 2005), compound II.7 may be considered as the missing link 

of that biosynthetic pathway in this species (Rijo P. et al., 2007). 

 

                                                                                 

 

 

 

 

                        II.7                           II.6                                         II.17 

 

Two known labdane diterpenes were also isolated from P. ornatus. The 

rhinocerotinoic acid II.6, an anti-inflammatory labdane diterpene previously isolated 

(Dekker et al., 1988) from Elytropappus rhinocerotis (L.f.) Less. (Asteraceae) which was 

found in Plectranthus species and on any genus of Lamiaceae for the first time; and 

plectrornatin C II.17 isolated from the same plant extract in an earlier study (Rijo P. et 

al., 2002).  

Six known triterpenoids were also identified as mixtures. A mixture of β-

sitosterol II.11 and  stigmasta-5,22E-dien-3β-ol II.12, a mixture of α-amyrin II.13 and β-

amyrin II.14 and a mixture of ursolic and oleanolic acids II.15 and II.16. 

The study of P. ecklonii (acetone extract) led to the isolation of two known 

abietanes, sugiol II.18 and parvifloron D II.19. Sugiol II.18, former isolated from several 

genera including Salvia (Ulubelen A. et al., 2000), was obtained from Plectranthus 

species for the first time. 
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                    II.18                                                                                         II.19 

Parvifloron D II.19 was previously isolated from several Plectranthus species 

including P. parviflorus (Ruedi P. Eugster C.H., 1978) and P. strigosus (Alder A.C. et al., 

1984) and was also recently reported as an antibacterial metabolite from P. ecklonii 

(Nyila M.A. et al., 2009). 

Four known triterpenoids were also isolated from P. ecklonii as mixtures. A 

mixture of β-sitosterol II.11 and  stigmasta-5,22E-dien-3β-ol II.12 and the mixture of 

ursolic and oleanolic acids II.15 and II.16. 

Repeated chromatographic processes on the acetone extract of the aerial parts 

of P. porcatus Winter & Van Jaarsv. allowed the isolation of the new (13S,15S)-

6β,7α,12α,19-tetrahydroxy-13β,16-cyclo-8-abietene-11,14-dione II.20.  

A new beyerane diterpene (ent-7α-acetoxy-15-beyeren-18-oic acid) II.22 was 

isolated from an acetone extract of the aerial parts P. saccatus Benth.. 

 

 

 

 
 
 
 
                     II.20                                                                   II.22 

 

Attempting to find novel bioactive prototypes from the more potent 

antibacterial diterpenes isolated in higher yields, some diterpene derivatives were 

prepared.  From the 7α-acetoxy-6β-hydroxyroyleanone III.1 (isolated in the past from 

P. grandidentatus) thirteen derivatives (III.2-III.13) including a glycoside (III.14) were 

synthesized, whereof ten were new compounds. Nine new derivatives (III.15-III.23) 
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were obtained from (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid II.7 (P. 

ornatus). A new microstegiol derivative [2β-(4-hydroxy)benzoyloxy-11β-hydroxy-

4(5→11),20(10→5)diabeo-5(10),6,8,13-abietatetraen-12-one] III.24 was prepared 

from parvifloron D II.19 (P. ecklonii).  

 

 

 

 

 

 

 

 

 

Figure VI.1. 7α-Acetoxy-6β-hydroxyroyleanone III.1 ester derivatives III.3–III.13.     

                               

 

                                                                  

 

 

Figure VI.2. 6β,7α-dihydroxyroyleanone III.2 and compound III.14 (α-

mannopyranoside of 7α-acetoxy-6β-hydroxyroyleanone III.1). 

 

 

 

 

 

 R1 R2 

III.1 OH OH 
III.3 BzO BzO 
III.4 4-Cl-C6H4COO 4-Cl-C6H4COO 
III.5 OH 4-Me-C6H4COO 
III.6 OH 4-Cl-C6H4COO 
III.7 OH 4-NO2-C6H4COO 
III.8 4-NO2-C6H4COO OH 
III.9 AcO AcO 

III.10 MeCH2COO MeCH2COO 
III.11 AcO OH 
III.12 MeCH2COO OH 
III.13 Me(CH2)2COO OH 



Chapter VI    Conclusions  

 

240 

 

 

 

 

 

 

 

 

 

Figure VI.3. (11R*,13E)-11-Acetoxyhalima-5,13-dien-15-oic acid II.7 derivatives 

III.15-III.23. 

                                                  

  

 

 

 

III.24 

The unequivocal chemical structures of pure compounds (natural and 

derivatives) were deduced from their spectroscopic (IR, MS, 1D and 2D NMR 

experiments) and physico-chemical data, as well as from literature information. 

The antimicrobial activity screening of all the isolated diterpenes showed that 

the active compounds only inhibited the growth of the Gram positive bacteria tested. 

In addition, the minimum inhibitory concentration (MIC) against standard and clinical 

isolates of sensitive and resistant Staphylococcus and Enterococcus strains was 

determined for the antibacterial metabolites and their synthesized derivatives.  

The three 12-O-benzoyl esters derivatives III.5-III.7 of the 7α-acetoxy-6β-

hydroxyroyleanone III.1 prototype revealed to be more potent inhibitors against 

Staphylococcus and Enterococcus strains (MIC values ranging from 0.98 to 62.50 

μg/mL)  than the prototype (MIC values ranging from 7.81 to 31.25 μg/mL). The 6β-

propionyloxy-12-O-propionyl derivative III.10 also showed to be more active against 

 R1 R2 

II.7 Ac COOH 
III.15 Ac COOMe 
III.16 Ac CH2OH 
III.17 OH CH2OH 
III.18 OH CH2OAc 
III.19 OH CH2OCOCH2CH3 
III.20 COCH2CH3 CH2OCOCH2CH3 
III.21 OH CH2OCOCH2CH2CH3 
III.22 OH CH2OCOPh 
III.23 OH CH2OCOPh-p-OCH3 
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Enterococcus species (MIC values ranging from 3.90 to 7.81 μg/mL) than the 

prototype.  Generally, the 12-esters and the 6,12-diesters were more active against 

Enterococcus than Staphylococcus strains. The hydrophobic extra-interactions with the 

bacterial targets seem to play an important role on the activity of royleanones 

derivatives prepared. 

The (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid II.7 and its (11R*,13E)-

halima-5,13-diene-11,15-diol derivative III.17 were the more active halimanes (MIC 

values ranging from 15.62  to 125.00 μg/mL).  

Parvifloron D II.19 (MIC values ranging from 3.90 to 125.00 μg/mL) was less 

active than its microstegiol 2β-(4-hydroxy)benzoyl derivative III.24 (MIC values ranging 

from 3.91 to 7.81 μg/mL), although showing both more potent antibacterial activities 

than the halimane diterpenoids (MIC values ranging from 15.62 to >250.00 μg/mL). 

The compounds under study were also surveyed about their capacity to 

terminate radical chain processes which reflects the antioxidant activity. Taking into 

account the IC50 values which expressed the scavenging DPPH radical ability, both 

parvifloron D II.19 and 7α-acetoxy-6β-hydroxyroyleanone III.1 showed in vitro 

antioxidant activity. Parvifloron D II.19 showed antioxidant properties (IC50 0.1125 ± 

0.0177 mM) equivalent to BHT (0.1050 ± 0.0070) but lower than quercetin (0.0075 ± 

0.0010. The IC50 of royleanone III.1 (1.8500 ± 0.0707 mM) revealed antioxidant ability 

inferior to butylated hydroxytoluene (BHT). In the literature similar oxidized abietanes 

bearing phenol groups, namely of the royleanone-type, are reported as promising 

antioxidants diterpenes (Kabouche A. et al., 2007), justifying thus the screening of this 

activity. 

The preliminar in vitro acetylcholinesterase assays did not detect any activity 

for all the newly isolated diterpenes and 7α-acetoxy-6β-hydroxyroyleanone III.1. 

The COX inhibitor screening assay were tested on 6-O-acetylforskolin II.1, 

rhinocerotinoic acid II.6, plectrornatin C II.17, (11R*,13E)-halima-5,13-diene-11,15- 

diol III.17, 11R*-acetoxyhalima-5,13E-dien-15-oic acid II.7 and on its methyl ester 

III.15, for their ability to inhibit COX-2. The compounds tested seem to show weak to 

moderate COX-2 activity from 6-O-acetylforskolin II.1 at 553 μM with 89.93%, to 
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rinocerotinoic acid II.6 at 785 μM with 54.56%, respectively. The results obtained for 

the derivatives halimane methyl ester III.15 (76.20 % at 664 μM) and diol III.17 (59.84 

% at 1631 μM) suggest a strong inhibition of COX-2 than the starting material halimane 

II.7 (79.20%) at 1379 μM. Plectrornatin C II.7 showed 59.42 % of COX-2 activity at 595 

μM. These preliminary anti-inflammatory activity results encourage further studies 

aiming to determinate the IC50 values (concentration at which there was 50% 

inhibition) of all the diterpenoids studied in this thesis, and to examine this potential 

bioactivity in a more robust approach.  

The preliminar screening of various-types bioactivities of plants and their 

constituents (extracts, isolated compounds and even derivatives) namely anti-

cholinesterase (anti-ChE), anti-inflammatory, antioxidant and antimicrobial activities 

can be relevant for the treatment of cognitive disorders (and other diseases), where 

anti-inflammatory process pathways are linked to the other two properties. 

Previous research on plants of the genus Plectranthus (Lamiaceæ) evidenced that 

some of their constituents owned interesting biological activities. This research work 

revealed that the four Plectranthus species studied biosynthesize a wide range of 

bioactive diterpenes which can be transformed into more potent bioactive diterpenes 

analogous. In this way, Plectranthus species may be considered good raw material for 

bioassay-guided studies, phytochemical studies and biological studies. In order to 

obtain structure-activity relationships and elucidate the mode of action, these and 

future works may contribute for the development of new medicinal drugs. 
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A.1. Antimicrobial activity of carbamoyl derivatives of 7α-acetoxy-
6β-hydroxyroyleanone III.1 

 

The preparation of some derivatives is outlined in Scheme A.1 7α-acetoxy-6β-

hydroxyroyleanone III.1 and 6β,7α-dihydroxyroyleanone III.2 were carbamoylated by 

two methods. Method A, with isocyanate (derivatives A.1 and A.2) and method B, with 

carbonyldiimidazole (CDI) where the intermediate imidazolide (derivatives A.3 and 

A.4), also isolated, was treated with an excess of the desired amine to form the 

carbamate derivative (derivatives A.5). 

 

 

 

 

 

 

 

Scheme A.1. Carbamoylated derivatives from 7α-acetoxy-6β-

hydroxyroyleanone III.1 and its basic hydrolysis product 6β,7α-dihydroxyroyleanone 

III.2. 

A.1.1. Royleanone carbamoylated derivatives using isocyanate 
(method A) 

 

To a solution of 6β,7α-dihydroxyroyleanone III.2 (12.4 mg; 0.0355 mmol) in dry 

toluene (2.5 mL) and triethylamine (0.005 mL; 0.0359 mmol) at 0 C, benzyl isocyanate 

(0.010 mL; 0.0796 mmol) was added. The reaction mixture was kept at 0˚C under 
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agitation for 1 hour (Leenders R.G.G. et al., 1996). The reaction was followed by tlc 

(diethyl ether). 

After this period of time the solvents were evaporated in rotavapor and the 

yellow residue obtained was purified by thin layer chromatography (precoated silica 

gel plates Merck nº 7747 eluted with 7:3 n-hexane:AcOEt) to give  7,6-di-(N-

benzoyl)carbamoyloxyroyleanone A.1 (3 mg; 0.0046  mmol) as yellow crystals (13.12 

%). This reaction was repeated and similar yields were obtained.  

 

 

 

 

 

 

A.1 

1H NMR (CDCl3, 300 MHz):  7.98 and 7.96 (2H, br s, NH protons), 7.80-7.40 

(10H, m, aromatic protons), 6.98 (1H, s, 12-OH), 5.94 (1H, d, J7β,6α = 1.7 Hz, H-7), 5.78 

(1H, br s (W1/2 = 7Hz), J6α ,7β = 1.7 Hz, H-6α), 3.19 (1H, sept, J15,16(17) = 7.1 Hz, H-15), 2.70 

(1H, br d, J1β,1α = 12.2 Hz, H-1), 1.67 (3H, s, Me-20), 1.22 (3H, d, J16(17),15 = 7.1 Hz, Me-

16), 1.18 (3H, d, J17(16),15 = 7.1 Hz, Me-17), 1.08 (3H, s, Me-19), 1.07 (3H, s, Me-18). 

 

 This reaction was repeated with 7-acetoxy-6-hidroxyroyleanone III.1 and 7-

acetoxy-6-(N-benzoyl)carbamoylroyleanone A.2 (87,59%) was obtained.  
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A.2. 

m.p. 213-215 C (AcOEt: n-hexano);  

[α] 18

D  – 25.8 (CHCl3; c 0.36).  

The tlc chromatogram with a standard sample (co-aplication) upon revelation 

with a mixture of H2O : CH3COOH : H2SO4  (16: 80: 4) and posterior heat confirmed the 

presence of 7-acetoxy-6-(N-benzoyl)carbamoylroyleanone A.2. 

 

A.1.2. Royleanone carbamoylated derivatives using 
carbonyldiimidazole (CDI) (method B) 
 

To a solution of 7α-acetoxy-6β-hydroxyroyleanone III.1 (10.0 mg; 0.0256 mmol) 

in dry dichloromethane (1 mL) carbonyldiimidazole (CDI) (0.0092 g; 0.0564 mmol) was 

added. The reaction mixture was kept at room temperature under agitation for 8 

hours. An aliquot of the intermediate imidazolide A.3 (6 mg) was isolated. 
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A.3 

Yellow needles (n-hexane);   

1H NMR (CDCl3, 400 MHz):  8.06 (1H, dd, J2´,4´ = 0.9 Hz, J2´,5´ = 1.5 Hz, H-2´), 7.37 

(1H, t, J5´,2´ = J5´,4´ = 1.5 Hz, H-5´), 7.05 (1H, dd, J4´,2´ = 0.9 Hz, J4´,5´ = 1.5 Hz, H-4´), 6.98 

(1H, br s, 12-OH), 5.92 (1H, dd,  J7β,6α = 1.8 Hz, J7β,5α = 0.6 Hz, H-7β), 5.65 (1H, dd, J6α,5α = 

1.5 Hz, J6α,7β  = 1.8 Hz,  H-6), 3.16 (1H, sept, J15,16(17) = 7.0 Hz, H-15), 2.74 (1H, ddd, 

J1β,1α = 12.8 Hz, J1β,2α = 3.8 Hz, J1β,2β = 2.7 Hz, H-1), 2.06 (1H, s, 7α-OAc), 1.85 (1H, m, 

J2β,1α = 13.1 Hz, J2β,1β = 2.7 Hz, J2β,2α = J2β,3α = *, J2β,3β = 13.2 Hz, H-2β), 1.69 (1H, *, J5α,6α = 

1.5 Hz, J5α,7β = 0.6 Hz, H-5), 1.66 (3H, s, Me-20), ~1.60 (1H, *, J2α,1α = 3.8 Hz,  J2α,1β  = 

3.5 Hz, J2α,2β = 13.9 Hz, J2α,3α = 4.1 Hz, J2α,3β  = 3.4 Hz, H-2), 1.54 (1H, ddd, J3,2α = 3.8 

Hz, J3β,2β = 13.2 Hz, J3,3α = 13.4 Hz, H-3), ~1.30 (1H, *, J3α,2α = J3α,2β = *, J3α,3β = 13.4 Hz, 

H-3), 1.22 (3H, d, J17(16),15 = 7.0 Hz, Me-17), ~1.20 (1H, *, J1α,1β  = 12.8 Hz, J 1α,2α = 3.7 

Hz, J1α,2β  = 13.1 Hz, H-1), 1.19 (3H, d, J16(17),15 = 7.0 Hz, Me-16), 1.06 (3H, s, Me-19), 

1.02 (3H, s, Me-18). 

*overlapped signal 

 

This carbamoylation reaction was repeated with the 6β,7α-

dihydroxyroyleanone III.2 (20.0 mg; 0.0574 mmol) and treated with 

carbonyldiimidazole (CDI; 0.036 g; 0.2263 mmol). The intermediate imidazolide was 

isolated, A.4 (7.5 mg; 0.017mmol) as yellow needles (29.53%).  
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A.4 

Yellow needles (n-hexane);   

1H NMR (CDCl3, 400 MHz):  8.05 (1H, dd, J2´,4´ = 0.9 Hz, J2´,5´ = 1.5 Hz, H-2´), 7.37 

(1H, t, J5´,2´ = J5´,4´ = 1.5 Hz, H-5´), 7.05 (1H, dd, J4´,2´ = 0.9 Hz, J4´,5´ = 1.5 Hz, H-4´), 6.98 

(1H, s, 12-OH), 5.86 (1H, dd, J7β,6α = 2.0 Hz, J7β,5α = 0.9 Hz, H-7β), 4.50 (1H, t, J6α,5α = 

J6α,7β  = 2.0 Hz, H-6), 3.14 (1H, sept, J15,16(17) = 7.1 Hz, H-15), 2.71 (1H, br d, J1β,1α = 12.2 

Hz, H-1), 1.64 (3H, s, Me-20), ~1.20 (6H, *, Me-17 and Me-16), ~0.92 (6H, *, Me-19 

and Me-18). 

*overlapped signal 

 

An excess of 5-methyl-2-aminothiazole (0.0199 g; 0.1745 mmol) was then 

added and the reaction mixture (containing the intermediate imidazolide), was kept at 

room temperature under agitation for 24 hours. The reaction was followed by tlc with 

n-hexane:AcOEt (7:3) (Robbins J.D. et al., 1996) The reaction mixture was poured into 

water (10 mL) and extracted with ethyl acetate (10 mL x 5). The combined organic 

layers were dried over anhydrous sodium sulphate filtered and evaporated in 

rotavapor. The yellow residue obtained was purified by thin layer chromatography 

(precoated silica gel plates Merck nº 7747 eluted with diethyl ether) to give 7-

acetoxy-6-(N-2-(5-methylthiazolyl)carbamoyloxyroyleanone A.5 (4.5 mg; 0.0084 

mmol) as yellow crystals (33.11 %).  
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A.5 

Yellow needles (n-hexane);   

1H NMR (CDCl3, 400 MHz):  7.90 (1H, br s, NH), 6.87 (1H, q, J4´,Me-5´ = 1.2 Hz, H-

4´), 5.85 (1H, dd,  J7β,6α = 2.1 Hz, J7β,5α = 0.6 Hz, H-7β), 5.52 (1H, dd, J6α,5α = 1.2 Hz, J6α,7β  

= 2.1 Hz,  H-6), 3.17 (1H, sept, J15,16(17) = 7.0 Hz, H-15), 2.67 (1H, br d, J1β,1α = 13.0 Hz, 

H-1), 2.32 (3H, d, JMe-5´,4´ = 1.2 Hz, Me-5´), 2.06 (1H, s, 7α-OAc), 1.56 (3H, s, Me-20), 

1.22 (3H, d, J17(16),15 = 7.0 Hz, Me-17), 1.19 (3H, d, J16(17),15 = 7.0 Hz, Me-16), 1.04 (3H, s, 

Me-19), 1.01 (3H, s, Me-18), 6.98 (1H, br s, 12-OH).  

 

The antimicrobial activity screening on all the diterpenoids derivatives showed 

that those active only inhibited the growth of the Gram positive bacteria. In addition, 

the minimum inhibitory concentration against standard Staphylococcus and 

Enterococcus strains was determined for the antibacterial metabolites and their 

synthesized derivatives. None of the derivatives improved the antimicrobial activity of 

the starting material 7α-acetoxy-6β-hydroxyroyleanone III.1 (MIC values ranging from 

250 to 7.81 μg/mL). 

Leenders R.G.G., Ruytenbeek, R., Damen, E.W.P., Scheeren, H.W., Highly Diastereoselective 

Synthesis of Anomeric β-O- Glycopyranosyl Carbamates from Isocyanates, Synthesis, 1996, 1309-1312. 

Robbins, J.D., Boring D.L., Tang, W.-J., Shank, R., Seamon, K.B., Forskolin Carbamates: Binding and 

Activation Studies with Type I Adenylyl Cyclase, J. Med. Chem., 1996, 39, 2745-2752. 
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A.2. Antimycobacterial Metabolites from Plectranthus. Royleanone 
Derivatives against Mycobacterium tuberculosis Strains 

 

The antimycobacterial activities of eight diterpenes, isolated previously from 

Plectranthus and eleven esters, of 7α-acetoxy-6β,12-dihydroxyabieta-8,12-diene-

11,14-dione were evaluated against the MTB strains H37Rv and MDR. Only 

diterpenoids with a quinone framework revealed anti-MTB activity. 7α-Acetoxy-6β,12-

dihydroxyabieta-8,12-diene-11,14-dione and its 6,12-dibenzoyl, 12-methoxybenzoyl, 

12-chlorobenzoyl, and 12-nitrobenzoyl esters, showed potent activities against the 

MDR strain with MIC values between 0.39 and 3.12 μg/mL. Cytotoxic activities towards 

3T3 and Vero cells were also evaluated. 12-Methoxybenzoyl derivative, with the best 

selectivity index, may be a suitable lead for further chemical modifications.  

 

A.3. Screening of anti-Helicobacter pylori activities of five royleanone 
terpenoids 

 

The diterpene 7α-acetoxy-6β-hydroxyroyleanone III.1, extracted from P. 

grandidentatus, is a suitable prototype with antibacterial activities. The bioactivities of 

four derivatives of III.1. 7α,6β-Diacetoxyroyleanone III.11,  7α,6β-diacetoxy-12-O-

acetylroyleanone III.9, 7α-acetoxy-6β-hydroxy-12-O-(4-methoxy)benzoylroyleanone  

III.5 and 7-acetoxy-6-hydroxy-12-O-(4-chloro)benzoylroyleanone III.6 were 

evaluated and compared with the antimicrobial activity with III.1 against four H. pylori 

clinical strains. The derivatives showed, on the whole, less antibacterial activity than 

7α-acetoxy-6β-hydroxyroyleanone III.1. Natural diterpene III.1 showed MIC values 

between 56.6 and 148.6 µg/mL against the H. pylori strains assayed, which is a good 

starting point range. Derivatives 7α,6β-Diacetoxyroyleanone III.11 and III.9 showed  

higher MIC values (92.8 to 222.7 µg/mL) towards the four assayed strains.  Derivatives 

III.5 and III.6 showed no anti-H. pylori activity. In this set of derivatives the loss of anti-

H. pylori activity may be related with the increase of the lipophilicity of 7α,6β-

diacetoxyroyleanone III.11-III.6. Subsequently, more hydrophilic derivatives of III.1 

need to be prepared to carry out further SAR studies.  
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A.4. Isopimarane diterpenoids from Aeollanthus rydingianus and 
their antimicrobial activity 

 

Four acyloxy-isopimarane derivatives along with two known isopimarane 

diterpenoids, the flavone cirsimaritin and the sterols β-sitosterol and stigmasterol 

were isolated from the aerial parts of Aeollanthus rydingianus. The structures of the 

compounds were established on the basis of spectroscopic analysis and chemical 

evidence. The isolated substances were screened for antimicrobial activity against 

Gram-positive and Gram-negative bacteria and a yeast strain. 19-Acetoxy-7,15-

isopimaradien-3β-ol and 7,15-isopimaradien-19-ol showed minimum inhibitory 

concentration (MIC) values of 3.90–15.62 μg/mL for Staphylococcus aureus and of 7.81 

μg/mL for Enterococcus hirae. 

 

A.5. Prediction of diterpenes antibacterial activity against MRSA 
using Machine Learning Methods 

 

 Models for the qualitative prediction of antibacterial activity against MRSA 

strains were built using machine learning methods (MLM) like Random Forests (RFs), 

Associative Neural Networks (ASNNs) and Counter-Propagation Neural Networks 

(CPNNs) on the basis of MOLMAP and DRAGON descriptors (Latino D. A. R. S. et al., 

2006; Pinheiro L. et al., 2010). 

 A dataset of 90 natural compounds from the class of diterpenes (abietanes, 

totaranes and pimaranes) was compiled (Gaspar-Marques C. et al., 2006; Yang Z. et al., 

2001; Evans G.B. and Furneaux R.H., 2000; Rijo P. et al, 2009) 

 The Minimum Inhibitory Concentration (MIC) values reported for those 

diterpenes were used to divide them into two groups. Compounds with MIC values  8 

μg/mL were classified as active and those with MIC values > 8 μg/mL as inactive 

antibacterial agents. 

 The relevant steps of the methodologies were: 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Evans%20GB%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Furneaux%20RH%22%5BAuthor%5D
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(i) generation of molecular descriptors (the input) through DRAGON software 

and the MOLMAP method; 

(ii) use of RFs were to check the most relevant descriptors for the prediction of 

anti-MRSA activity from an input vector that consists in DRAGON 

descriptors; 

(iii) performance of a selection of 74 descriptors (DRAGON descriptors) based 

on RFs; 

(iv) training of CPNNs and RFs to classify compounds as active or inactive 

against MRSA on the basis of their 15×15=225 MOLMAP descriptors; 

(v) employment of ASNNs and CPNNs to build models for the prediction of 

anti-MRSA activity using as input 93 descriptors – selection of 74 

descriptors (DRAGON descriptors) based on a Random Forest plus 19 global 

molecular descriptors calculated with DRAGON software; 

(vi) validation of ASNNs and CPNNs by internal validation procedures (internal 

validation tests and leave-one-out measures) and a partition of the data in 

training and test sets.  

(vii) Utilization of the ASSNN program to perform the experiments. 

(viii) Corrections of the weights, during the training procedure, by means of the 

Levenberg-Marquardt algorithm.  

 The obtained models for the qualitative prediction of antibacterial activity 

against MRSA strains were able to classify correctly a compound as active or inactive in 

more than 70-80% of the cases both in training and tests sets, depending on the 

method used. 

 The trained CPNN showed a trend for clustering according to activity, and 

produced accurate predictions for a small random test set. 

 A regression model was also set up using Associative Neural Networks (ASNNs) 

and then applied to the qualitative prediction of bioactivity based on the threshold of 8 

μg/mL. When the model was employed in qualitative prediction <90% of the 

compounds were correctly classified in the training, validation and Leave One Out 

(LOO) tests. Moreover, the results indicate that quantitative relationships with a good 
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accuracy could not be found between the descriptors used and the activity against 

MRSA. However when these models were used for qualitative predictions, good results 

could be obtained. 

 In the future, the development of work conditions (in terms of descriptors, 

dataset and automatic learning techniques) are expected, aiming that the prediction of 

obtained models could assist in the design and synthesis of new antibacterial 

compounds namely against MRSA.  

Machine Learning Methods: Drug discovery is a complex and costly process, with the 

main bottlenecks being the time and costs of finding, making and testing new chemical 

entities (NCE). The cost of developing a new drug today is estimated to be over $1 

billion. A large part of this cost is the result of failed molecules: chemical compounds 

that appear to be promising drug candidates during initial stages of screening, but 

after several rounds of expensive preclinical and clinical testing, turn out to be 

unsuitable for further development. With chemical libraries today containing millions 

of structures for screening, there is an increasing need for computational methods that 

can help alleviate some of these challenges. In particular, computational tools that can 

rank chemical structures according to their chances of clinical success can be 

invaluable in prioritizing compounds for screening: such tools can be used to focus 

expensive biological testing on a small set of highly ranked, more promising 

candidates, leading to potentially huge savings in time and costs (Agarwal S. et al., 

2010). 

Machine learning methods (MLM) have already shown considerable promise 

for this task. In particular, since the early days of chemical informatics, regression 

methods from machine learning and pattern recognition have been used in 

quantitative structure-activity relationship (QSAR) analysis to predict biological 

activities of compounds. These include, for example, partial least-squares (PLS) 

regression, neural networks, genetic algorithms, regression trees and random forests, 

and more recently, support vector regression (SVR), all of which have been used 

extensively in QSAR as well as quantitative structure-property relationship (QSPR) 

applications. QSARs or QSPRs approaches represent probably the most robust well 
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known tools to mathematically analyze the correlation between molecular properties 

and the corresponding property of interest (Michielan L. and Moro S., 2010). 

The prediction of the biological activity of a compound can be obtained from 

inductive learning, where the knowledge of previous experiments is used to learn the 

problem, the information is incorporated in a model, and this is used to make 

predictions for new objects, establishing classification models. 

A machine-learning method (inductive learning technique) takes as input a 

training-set of objects that have previously been classified into two or more classes (in 

the virtual screening context, this would be a set of molecules that had previously 

been tested and shown to be either active or inactive). These training-set molecules 

are then analysed to develop a decision rule that can be used to classify new molecules 

(the test-set) into one of the two classes. The concept of molecular similarity lies at the 

heart of such methods, since no machine-learning method can reasonably be expected 

to discriminate between active and inactive test-set molecules unless there are some 

structural commonalities (in terms of the descriptors available) between the training-

set actives and/or structural dissimilarity between the training-set actives and inactives 

(Chen B. et al., 2007). 

The foremost learning strategies in MLM are the supervised learning (Random 

Forests, Associative Neural Networks and Counter-Propagation Neural Networks) and 

unsupervised learning techniques (Kohonen  Self-Organizing Map). 

The main objective in any supervised learning technique is to build a system 

that, after the learning procedure, can associate the input data, Xs, with the output or 

target data, Ys. Supervised learning needs a set of pairs (Xs, Ys) as input. The input of 

the technique is the vector Xs and the target (correct answer) is the vector Ys. After 

the training, it is expected that the obtained model can give correct predictions for a 

new object X. During the learning procedure, the output of the system for a given 

object is compared with the corresponding target, and an error is calculated. The 

supervised learning methods use this error to make corrections that try to minimize it. 

In unsupervised learning there is no information about the classes or output of the 

training examples. Only the input data is given to the system to learn. It is said that the 
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learning is performed without a “teacher”. The main objective is to make a system 

learn the relations between objects, building a representation of the data, in the most 

part of the cases in a lower dimensionality thanthe input data. Generally, these 

techniques have an application in clustering, data compression and outlier detection. 

They are used to solve classification problems (Latino D.A.R.S., 2008). 

The descriptors generation or features extraction is an important step in 

computational classification of molecular structures and other problems such as 

clustering and quantitative property/activity relationship modeling. A number of 

modelling tools are available that can be used to generate structural descriptors. 

Dragon descriptors: The Dragon software can be used to generate around 

topological indices for the molecules. Topological indices are a set of features that 

characterize the arrangement and composition of the vertices, edges and their 

interconnections in a molecular bonding topology. These indices are calculated from 

the matrix information of the molecular structure using some mathematical formula. 

These are real numbers and possess high discriminative power and so are able to 

distinguish slight variations in molecular structure. This software can generate 99 

topological indices which includes Zagreb index, quadratic index, Narumi simple 

topological index, total structure connectivity index, Wiener index, balaban index and 

etc. (Shah J.Z. and Salim N., 2006). 

MOLMAP descriptors: The MOLMAP (MOLecular Maps of Atom-level 

Properties) descriptors encode local aspects of a chemical structure (exclusively on the 

basis of physicochemical properties) in a fixed-length code. The MOLMAP descriptor of 

a molecule represents the types of bonds available in that molecule. Their use by 

machine learning techniques for SAR applications can lead to the identification of 

structural features responsible for activity (Gupta, S. et al., 2006). 

Generation of MOLMAP descriptors: The MOLMAP descriptor relies on a 

Kohonen SOM (Self-Organizing Map) that defines types of bonds on the basis of their 

physicochemical and topological properties (Latino D.A.R.S. and Aires-de-Sousa J., 

2009). 
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Kohonen SOM: The Kohonen SOM is considered the most similar to biological 

neuron from all the neural networks types and architectures. SOMs learn by 

unsupervised training, distributing bonds through a grid of so-called neurons (each 

containing as many weights as there are input variables), on the basis of the chemical 

bonds properties. In order to use physicochemical properties of individual bonds for an 

entire molecule, and at the same time having a fixed-length molecular representation, 

all the bonds of a molecule are mapped into a fixed-size 2D self-organizing map. The 

algorithm is designed to reveal similarities in the bonds of a data set by mapping 

similar bonds into the same or closely adjacent neurons. (Latino D.A.R.S. and Aires-de-

Sousa J., 2009). 

Counter Propagation Neural Networks (CPNNs): A Counter Propagation Neural 

Network learn and map objects in a very similar manner to Kohonen SOMs, but have a 

second layer (output layer) that acts as a look-up table and stores output data. The 

first layer is a SOM and the second layer stores information about the output (ex: anti-

MRSA activity) (Zupan J. and Gasteiger J., 1999). 

Random Forests (RFs): A Random Forest is an ensemble of not pruned 

classification trees created by using bootstrap samples of the training data and random 

subsets of variables to define the best split at each node. It is a high-dimensional 

nonparametric method that works well on large numbers of descriptors. The final 

prediction is obtained by majority voting of the individual trees. Each tree is grown 

with a random subset of objects. A random subset of descriptors is made available for 

each node splitting. RFs associate a probability to each prediction, and report the 

importance of each descriptor in the global model (Breiman, L., 2001). 

Associative Neural Networks (ASNNs): ASNNs is a combination of an ensemble 

of Feed-Forward Neural Networks (FFNNs), a memory-less method, with the K-Nearest 

Neighbor technique, a memory based method, that often allows more accurate 

predictions for non-linear problems (Tetko, I., 2002). The EnsFFNNs is combined with a 

memory into a so-called ASNN. The memory consists on a list of objects, represented 

by their input variables, and the corresponding targets. 
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Memory-less method: There is no explicit storage of the data in the system 

after the training. The information about the data is stored in the neural networks 

weights (Latino D.A.R.S., 2008). 

Memory-based methods: The data used to train the models are stored in a 

“memory” and used to make predictions for new data based on some local 

approximations of the stored examples (Latino D.A.R.S., 2008). 

Levenberg-Marquardt algorithm: The Levenberg-Marquardt (LM) algorithm is 

an iterative technique that can locate the minimum of a multivariate function. It can 

be thought of as a combination of steepest descent and the Gauss-Newton method. 

When the current solution is still far from the correct one, the algorithm behaves like a 

steepest descent method - with a slow progress but guaranteed to converge. When 

the current solution is close to the correct solution, it becomes a Gauss-Newton 

method. The LM algorithm has become a standard technique for non-linear least-

squares problems that has been widely used in a broad spectrum of disciplines, namely 

to correct the weights of ASNNs in such way that the output of the network is as close 

as possible to the target (Latino D.A.R.S., 2008). 
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A.6. Anti-influenza virus activity and cytotoxicity in MDCK* cell cultures 
of diterpenes from Plectranthus 

 

Compounds parvifloron D II.19, (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic 

acid II.7, and their two derivatives (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid 

methyl ester III.15 and (11R*,13E)-halima-5,13-diene-11,15-diol III.17; 7α-Acetoxy-6β-

hydroxyroyleanone III.1 and their ester derivatives 7-acetoxy-6-benzoyloxy-12-O-

benzoylroyleanone III.3 and 7-acetoxy-6-propionyloxy-12-O-propionylroyleanone 

III.10 were tested against Influenza A/H3N2 strain A/X-31, Influenza A/H3N2 strain 

A/HK/7/87 and Influenza B strain B/HK/5/72. None was able to inhibit the cytopathic 

effects of influenza A or B virus at subtoxic concentrations. In fact, all compounds had 

relatively high cytotoxicity. The reference compounds oseltamivir carboxylate (the 

active form of Tamiflu®) and ribavirin were active against influenza virus; their EC50 

values were clearly lower than their MCC values (concentrations causing minimal 

toxicity). For amantadine and rimantadine, the best activity was seen with the H3N2 

strain. These compounds are known to be inactive against influenza B. Also, the 

chimeric A/X-31 strain that was used in the tests is known to be less sensitive to 

amantadine and rimantadine.                             (*MDCK cells: Madin Darby canine kidney cells) 
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