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“Para ser grande, sê inteiro: nada 

Teu exagera ou exclui. 

Sê todo em cada coisa. Põe quanto és 

No mínimo que fazes. 

Assim em cada lago a lua toda  

Brilha, porque alta vive” 
 

               Fernando Pessoa  
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One of the most important and difficult steps in a scientist short life is to decide 

start writing the PhD thesis, but even before, to be brave or naive enough to start a 

scientific career and to run the unknown and tricky road until the end. It is a kind 

of matrimonial relation, where almost all scientists begin to love science, adore and 

enjoy the idea of discover something new and interesting with the propose of 

finding a solution or eliminating something that was not so bright. Therefore, 

everything starts with conceptual dreamers without frontiers.  

 

This thesis describes the work carried between January 2006 and July 2009 

mainly at the Instituto de Medicina Molecular (Lisbon, Portugal). During this 

period, part of the research was done at Massachusetts General Hospital (Boston, 

USA), at MIT (Cambridge, USA) and at the Institute Currie (Paris, France). The 

main goal was to study how the biochemical and biophysical properties of specific 

particulate antigens influence the cross-presentation pathway(s) and try to dissect 

and indentify the mechanism(s) behind it.  

 

This thesis was divided in 6 Chapters:  

The introduction comprises a general overview of specific key immunology 

concepts, such as Innate Immunity, Dendritic Cell biology, and antigen 

presentation mechanism with emphasis on antigen cross-presentation.   

 The second chapter focuses on particulate antigen design and the goal of 

specific properties introduced in the particles; the shRNA lentiviral library 

production and its application in high-throughput approaches. It includes a 

summary description of my participation in the work done within this period and 

the resulting publications.  



 

 

 

 

 

 

 

 

 

The third chapter is composed by the materials and methods used throughout 

my work, including the different particulate platforms design and biochemical and 

cellular techniques for antigen presentation studies.   

Results of my main project are described on Chapter 4, where different 

platforms of particulate antigen were used to study antigen cross-presentation 

mechanism(s).  

Discussion is presented on Chapter 5 and concluding remarks on Chapter 6.  

 

The results presented in this thesis, in collaboration with Darrell Irvine’s lab at 

MIT, are under preparation for publication. 
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“A person who never made a 

mistake never tried anything new” 

 

Albert Einstein 
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The study of host-pathogen interactions is crucial to unveil the diversity of the 

immune response outcome. Dendritic Cells (DCs) play a central role in the 

initiation and regulation of T-Cell immunity, functioning as master switches that 

control whether the outcome of antigen presentation results in tolerance, or 

immunity. Antigen cross-presentation is a necessary mechanism to generate 

immunity against tumors, bacteria and viruses. In addition, it is extremely 

important to induce cytotoxic immunity by vaccination with antigens. Moreover, 

particulate antigens have been used in vaccine design tools as a platform to deliver 

different types of signals and in the modulation of DC-dependent immune 

responses. DCs express a series of different receptors that mediate the transfer of 

signals from the environment. Among them, Toll-Like Receptors (TLRs) play a 

critical role in the early innate immune response to invading pathogens. These 

receptors have the ability to recognize a broad range of pathogen-associated 

molecular patterns (PAMPs), turning them, key receptors in distinguishing 

between self/non-self antigens. The precise mechanisms underlying the crosstalk 

between TLRs and antigen presentation are not entirely understood. Therefore, the 

main goal of this project is to understand how TLR agonists coupled to particulate 

antigens influence antigen cross-presentation. 

 In our studies, we have used newly synthesized particle antigens, denominated 

as 'synthetic pathogens', coupled with a model antigen (Ovalbumin - OVA), and/or 

a model ligand (TLR agonist). These particle platforms have distinct, well-defined 

physical and biochemical properties, and function as a novel approach to elucidate 

the intrinsic mechanism(s) of antigen cross-presentation. In addition, they represent 

a valuable and powerful tool, which might be explored for therapy applications. 

ABSTRACT 

http://en.wikipedia.org/wiki/Vaccination


 

 

 

 

 

 

 

 

 

TLR4 is unique among TLRs as it can signal through both MyD88 and TRIF 

adaptors upon LPS stimulation, but mainly by the TRIF pathway when LipidA is 

the agonist. Our results revealed that when LPS is in the same cargo as the particle 

antigen, it impairs antigen cross-presentation and dictates a shift to MHC class- II 

presentation. This antigen cross-presentation abolishment is recovered on TLR4 

deficient DCs and in the presence of the p38 MAPK pathway inhibitor, but not in 

the absence of the MyD88 adaptor. Moreover, LipidA reproduces the same 

phenotype as LPS, implicating the TLR4/TRIF-mediated signaling on particulate 

antigen cross-presentation impairment. Thus, here we describe a new mechanism 

of antigen selection in DCs for antigen cross-presentation that is dependent on the 

antigen based-environment. We show that the efficiency of presenting antigens 

from phagocytosed cargo is dependent on the presence of TLR ligands within the 

cargo. The influence of the compartmentalization on the crosstalk between the 

TLR-signaling and the antigen cross-presentation pathway(s), may constitute a tool 

used by DCs in order to discriminate the contents of phagosomes and present an 

appropriate immune response to specific stimuli. Therefore, DCs may have the 

“capacity” to decide which kind of destiny an antigen should have depending on 

the type and origin of the stimuli. 

In order to dissect the mechanisms behind the cross-presentation phenotype, we 

have addressed the role of particle LPS on several antigen presentation key steps. 

Our data show that LPS-containing phagosomes enhance phagosome maturation 

(higher levels of colocalization with lysosomes) characterized by higher rates of 

phagosomal acidification and a decrease of phagosomal reactive oxygen species 

(ROS) production. The induction of phagosome maturation mediated by LPS 

signaling seems to shut down the machinery for antigen release into the cytosol, 

where the epitopes for MHC class-I are predominantly generated by the 

proteasome. Moreover, lower levels of antigen degradation occur when LPS is in 
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the same cargo as antigen, mainly in a proteasome-dependent manner. This 

phenotype mediated by particulate LPS stimulus seems to be related with lower 

levels of particle antigen cross-presentation.  

Therefore, we propose that antigen cross-presentation is enhanced during the 

brief period of time when phagosomal acidification is “sustained” and an immature 

phenotype is predominant, where endoplasmic reticulum  machinery important for 

MHC class-I presentation probably is available. In addition this phenotype allows 

antigen escape into cytosol and the generation of epitopes for MHC class-I by the 

proteasome. On the other hand, antigen cross-presentation is impaired when a 

stimulus that induces phagosome maturation/acidification is in the same cargo as 

the antigen, producing a mature phenotype, allowing the generation of epitopes on 

the endocytic pathway that is compromised for MHC class-II antigen presentation.  

In order to address if the abolishment on antigen cross-presentation phenotype 

is transversal to others TLRs, studies were extended using different TLR specific 

agonists. When particle antigen contains TLR agonists that preferentially signal 

through MAPK/NF-kB pathways, antigen cross-presentation is induced. In 

contrast, in the presence of TLR agonists that preferentially signals through IFN-

Type I pathway, particle antigen cross-presentation is inhibited. Therefore, a 

signaling pathway correlation may exist in the outcome of antigen presentation 

pathway(s) mediated by TLR agonist-containing particle antigens. 

In sum, this work shows for the first time the inhibitory effect of TLR4 

signaling on cross-presentation when agonists are delivered in the same cargo as 

particulate antigen. This phenotype is likely to be mediated by TRIF-dependent 

signaling, mainly by p38 MAPK activation. This knowledge could have a major 

impact in the dissection of the antigen cross-presentation mechanism, which will 

be highly valuable for novel vaccine design inducing T-Cell responses of the 

desired type and specificity.  
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O estudo das interações patogénio-hospedeiro é fundamental para a 

compreensão da diversidade da resposta imunitária e para o desenvolvimento de 

novas estratégias terapêuticas. As células dendríticas (DCs) desempenham  um 

papel central na iniciação e regulação da imunidade mediada por linfócitos T, 

funcionando como “interruptores”, que podem originar uma resposta de tolerância 

ou imunidade em relação a um determinado antigénio. O mecanismo de cross-

presentation de antigénios tem sido descrito como necessário para gerar imunidade 

contra tumores, bactérias e vírus, e fudamental na indução de imunidade citotóxica 

mediada por vacinação. Por outro lado, os antigénios particulados têm sido 

utilizados como ferramentas no design de vacinas, possibilitando uma plataforma 

na qual se podem integrar diferentes tipos de estímulos.  

As DCs expressam uma diversidade de  receptores à superficie, o que permite 

uma detecção e transmissão eficazes dos vários tipos de “sinais” do meio ambiente. 

Entre eles, os Toll-Like Receptors (TLRs) desempenham um papel crucial, na 

resposta imune inata contra patogénios invasores. Estes receptores têm a 

capacidade de reconhecer uma ampla gama de padrões moleculares associados a 

patogénios (PAMPs), implicando-os como receptores-chave na distinção entre 

antigénios próprios e não-próprios. O mecanismo subjacente à crosstalk entre 

TLRs e a apresentação de antigénios não é totalmente conhecido. Por isso, um dos 

principais  objetivos do meu trabalho foi compreender como é que os agonistas dos 

TLRs no mesmo contexto que antigénios particulados, influenciam a sua cross-

presentation. 

Neste projecto foram utilizadas partículas sintéticas – designadas por synthetic 

pathogens - na presença de um antigénio modelo (Ovalbumina) e/ou de um ligando 

RESUMO 



 

 

 

 

 

 

 

 

 

(agonista dos TLRs). Estas plataformas têm propriedades físicas e bioquímicas  

distintas e bem definidas,  pelo que funcionam como uma nova abordagem para 

dissecar o mecanismo de cross-presentation  de antigénios, bem como explorar o 

seu potencial para utilizaçao nas mais diversas terapias. 

Os resultados demonstram que quando o Lipopolissacarídeo (LPS - agonista do 

TLR4) está presente  no mesmo contexto que as partículas contendo o antigénio, 

ocorre uma redução nos níveis de cross-presentation de antigénios. Este fenótipo é 

acompanhado por uma mudança na via de apresentação de antigénios para MHC 

classe- II, que é induzida quando comparada com as partículas só com o antigénio. 

Este mecanismo foi demonstrado como sendo mediado pelo TLR4, onde a cross-

presentation de antigénios é restabelecida em DCs deficientes nesse receptor .  

A origem física dos estímulos (partícula vs solúvel) parece ser crucial para a 

regulação da via de cross-presentation de antigénios. Quando o LPS solúvel é co-

incubado com partículas contendo o antigénio (dois estímulos físicos diferentes), 

verifica-se um aumento da activação/proliferação de células T em ambos os 

contextos de apresentação de antigénios - MHC classe-I e MHC classe -II. No 

entanto, quando o LPS é utilizado numa partícula diferente daquela que contém o 

antigénio, não se verificam diferenças significativas na eficiência das duas vias. 

A influência da compartimentação no crosstalk entre a sinalização mediada 

pelos TLR e a via de cross-presentation de antigénios, pode constituir uma 

ferramenta importante que as DCs utilizam para discriminar o conteúdo dos 

fagossomas e iniciar uma resposta imune apropriada aos estímulos específicos. 

Esta observação é de extrema importância para compreender o papel de estímulos 

"patogénicos" no destino da apresentação de antigénios. Com o objectivo de 

compreender o mecanismo adjacente ao fenótipo observado da via da cross-

presentation de antigénios particulados, o papel da activação do TLR4 foi estudado 

em vários processos importantes na apresentação de antigénios. Os resultados 
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obtidos indicam que fagossomas que contêm LPS têm uma indução na maturação 

(níveis mais elevados de colocalização com lisossomas), caracterizada por taxas 

mais elevadas de acidificação e uma diminuição da produção de espécies reactivas 

de oxigénio (ROS). A indução da maturação dos fagossomas mediada pela 

sinalização por  LPS parece bloquear o mecanismo de libertação do antigénio dos 

fagossomas para o citosol, onde os epítopos para a apresentação em MHC classe -I 

são predominantemente gerados pelo proteassoma. Para além disso, níveis mais 

baixos de degradação do antigénio, mediada principalmente pelo proteassoma, 

ocorrem quando o LPS está no mesmo contexto. Este fenótipo é devido à 

sinalização mediada pelo LPS e parece estar relacionado com níveis baixos de 

cross-presentation do antigénio particulado. 

 Posto isto, sugerimos que a cross-presentation de antigénios é reforçada 

durante um breve período de tempo quando o pH dos fagossomas é mantido em 

valores próximos do estado basal, onde um  fenótipo imaturo é  predominante. Este 

estado imaturo é caracterizado pela existência de componentes do retículo 

endoplasmático (ER) importantes para a apresentação em MHC classe-I, 

permitindo o escape do antigénio para o citoplasma, onde os epítopos podem então 

ser gerados pelo proteassoma e apresentados no contexto MHC classe-I à 

superfície. Por outro lado, a cross-presentation de antigénios é diminuída quando 

um estímulo que induz a maturação dos fagossomas que contem o antigénio está  

no mesmo contexto. A formação de fagolisossomas leva à rápida acidificação e 

produz um fenótipo maduro, permitindo a geração de epítopos na via endocítica 

que é direccionada para a via MHC classe-II de apresentação de antigénios. 

 O TLR4 é singular entre os TLRs, uma vez que pode sinalizar tanto pelo 

adaptador MyD88 ou pelo TRIF quando estimulado por LPS, mas 

preferencialmente pelo adaptador TRIF quando LipidA é o agonista. Com o 

objectivo de estudar o impacto da sinalização do TLR4 na via de cross-



 

 

 

 

 

 

 

 

 

presentation dos antigénios particulados, o LipidA foi utilizado no mesmo 

contexto que o antigénio particulado. Observou-se uma reprodução do fenótipo de 

supressão da via de cross-presentation de antigénios obtido na presença do LPS. 

Além disso, a cross-presentation de antigénios particulados na presença de LPS 

não foi recuperada usando DCs deficientes no adaptador MyD88, ao contrário do 

que acontece quando se usa DCs deficientes no TLR4 e na presença de inibidores 

de activação da via das MAPK, principalmente a p38 MAPK. Estes resultados 

implicam a via TLR4/TRIF na inibição da cross-presentation de antigénios. 

Com o objectivo de verificar se o efeito inibitório na via de cross-presentation 

de antigénios é transversal aos outros TLRs, os estudos foram alargados usando 

agonistas dos diversos TLRs no mesmo contexto que as partículas de antigénio. 

Verificou-se que, os agonistas dos TLR que sinalizam preferencialmente através da 

via MAPK/NF-kB induzem a cross-presentation de antigénios particulados. Em 

oposição, os agonistas dos TLR que sinalizam preferencialmente  através da via do 

IFN Tipo-I, levam à inibição da cross-presentation destes antigénios. O TLR4 

pode sinalizar através dos dois adaptadores (MyD88 e TRIF) em diferentes 

localizações, sendo preferencialmente via TRIF quando o TLR4 é internalizado 

nos endossomas. A inibição da via de cross-preserntation  de antigénios mediada 

pelo LPS quando no mesmo contexto que o antigénio particulado, poderia indicar 

que o LPS em partículas sinaliza preferencialmente através da via TRIF, quando 

estas são internalizadas. Esta observação corrobora os dados obtidos com os outros 

agonistas de TLR que preferencialmente sinalizam através da via do IFN Tipo-I, 

como é o caso do TLR3, do TLR7 e do TLR9, que estão localizados em 

endossomas. Conclui-se assim que os vários TLRs estão envolvidos em 

mecanismos diferentes que levam a efeitos distintos nas vias de apresentação de 

antigénios. Além disso, um padrão da via de cross-presentation de antigénios 
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parece existir mediado por partículas contendo os vários agonistas dos  diferentes 

TLRs.  

Em colaboração com o grupo do Prof. Darrell Irvine do MIT, pretendemos 

alargar estes estudos para outras plataformas de antigénios. Partículas de poli(ácido 

lático-co-ácido glicólico), PLGA, e hidrogel têm sido usadas como plataforma para 

administrar drogas, assim como em aplicações de biomateriais e concepção de 

vacinas. De acordo com os dados obtidos para a plataforma “fixa” de antigénios 

(partículas utilizadas nos ensaios anteriores), o LipidA no mesmo contexto que o 

antigénio particulado inviabiliza a via de cross-presentation de antigénios, 

comprovando a sua acção como um inibidor de sinalização mediada pelo TLR4, 

por um mecanismo dependente do adaptador TRIF. Assim, podemos concluir que 

mesmo na presença de partículas com propriedades distintas, a via mediada pelo 

adaptador TRIF tem um papel importante na inibição da via de cross-presentation 

de antigénios quando estimulada pelos agonistas do TLR4. 

Este trabalho mostrou pela primeira vez, o efeito inibitório da crosstalk entre a 

sinalização pelo TLR4 e a cross-presentation de antigénios quando os agonistas 

estão no mesmo contexto do antigénio particulado. Este fenótipo é susceptível de 

ser mediado pela via  TLR4/TRIF, principalmente através da activação da via p38 

MAPK. Estes resultados podem ter assim um impacto deveras importante na 

dissecção do mecanismo de cross-presentation de antigénios, assim como na 

concepção de novos protocolos de vacinação e na indução de  respostas específicas 

mediadas por linfócitos T. 
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Ag    Antigen  

APCs    Antigen Presenting Cells  

BMDCs    Bone Marrow-derived Dendritic Cells 

Cat.S    Cathepsin S  

cDCs    Concentional Dendritic Cells 
CFSE     Carboxyfluorescein diacetate Succinimidyl Ester  

CpG    Cytosine-guanosine oligonucleotide 

CTL     Cytotoxic T Lymphocyte  

Cyt c     Cytochrome c  

Cytcp    Particles loaded with Cyt c 

Cytc=LPSp   Particles loaded with Cyt c and LPS 

DCs     Dendritic Cells  

DHR123   Dihydrorhodamine 123 

DQ-OVAp   Particles loaded with DQ-OVA 

DQ-OVA=LPSp   Particles loaded with DQ-OVA and LPS 

ELISA    Enzyme-linked Immunosorbent Assay 
ER    Endoplasmatic Reticulum 

ERAD    ER-associated Degradation 

FACS     Fluorescence Activated Cell Sorter  

GM-CSF   Granulocyte Macrophage- Colony Stimulating Factor 

Hydrogel=OVAp   Hydrogel particles loaded with OVA 

Hydrogel=OVA=MPLAp   Hydrogel particles loaded with OVA and MPLA 

IFN-β    Interferon beta 

IFN-γ     Interferon gamma  

IL-…    Interleukin-…   

LPS     Lipopolysaccharide  

MPAKs    Mitogen-activated protein kinases 

MHC     Major Histocompatibility Complex  
MPLA (LipidA)   Monophosphoryl Lipid A 

MyD88    Myeloid differentiation primary response gene 88 

NF-κB    Nuclear Factor kappa B  

OVA     Ovalbumin  

OVA488   Ovalbumin–Alexa488 

OVAp    Particles loaded with OVA  

OVA=CpGp   Particles loaded with OVA and CpG 

OVA=Flagellinp   Particles loaded with OVA and Flagellin 

OVA=LPS   Particles loaded with OVA and LPS 

OVA=LipidAp   Particles loaded with OVA and LipidA 

OVA=Pam2p   Particles loaded with OVA and Pam2 
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OVA=Pam3p   Particles loaded with OVA and Pam3 

OVA=PolyI:Cp   Particles loaded with OVA and PolyI:C 
OVA=ssRNA40p   Particles loaded with OVA and ssRNAS40 

OVA488p   Particles loaded with OVA488 

OVA488=LPSp   Particles loaded with OVA488 and LPS 

OVA=DHR123p   Particles loaded with OVA and DHR123 

OVA=DHR123=LPSp  Particles loaded with OVA, DHR123 and LPS 

PAMPs    Pathogen-Associated Molecular Patterns 

pDCs    Plasmacytoid Dendritic Cells  

PLGA    poly(lactic-co-glycolic acid) 

PLGA=OVAp   poly(lactic-co-glycolic acid) particles loaded with OVA 

PLGA=OVA=MPLAp  poly(lactic-co-glycolic acid) particles loaded with OVA                          

and MPLA 

PRRs                                                 Pattern Recognition Receptors 
RNAi    RNA interference 

ROS     Reactive Oxygen Species  

sDCs    Splenic Dendritic Cells  

shRNA    short hairpin RNA 

SIINFEKLp   Particles loaded with SIINFEKL 

SIINFKL=LPSp   Particles loaded with SIINFEKL and LPS 

TRIF    TIR-domain-containing adapter-inducing interferon-β 

TAP     Transporter Associated with Antigen Processing 

TCR     T-Cell Receptor 

TLR    Toll-Like Receptor 

u.v.    Ultraviolet radiation 
WB    Western Blot 
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1. Immune System_____________________________________________ 

The immune system is one of nature's most fascinating creations. It is composed 

of different cell types and uses almost all known proteins, with different ―jobs‖ in 

fighting foreign invaders and to recognize and tolerate self. It protects against 

bacteria, viruses, and other parasites, but unfortunately some pathogens can bypass 

and establish diseases. In some cases, immune cells fail their function and progress 

to recognize self-antigens (autoimmune response). For these reasons, immunology 

is one of the most studied subjects, and its knowledge seems to be interminable and 

fascinating. The immune system has been ―conceptually‖ subdivided in 2 sub-

systems, innate and adaptive, each one with a different function and role. The main 

distinction relates to the mechanisms and receptors used for the immune 

recognition, which will be described bellow (Medzhitov and Janeway, 2000).   

 

1.1. Innate Immune System  

 
The idea of a generic host defence was introduced over 100 years ago by Eli 

Metchnikoff, who revealed the role of ―phagocytes‖ in destroying invading 

microbes. In 1957, important components of innate immunity, named interferons, 

were discovered by Alick Isaacs. The interferons were recognized as important 

molecules for host defence mechanism activation with broad specificity. In 1973, 

Steinman and Cohn made a big step in immunology, by identification of Dendritic 

Cells (DCs) as a subtype of phagocytes, which were specialized for the capture and 

presentation of antigens. Nonetheless, the ―big bang‖ in innate immunity was 

introduced by Charles Janeway Jr. in his seminal 1989 commentary. There he 

introduced the ―immunologist´s dirty little secret‖, i.e. that most antigens would 

only elicit an adequate immune response when mixed with adjuvants containing 

microbial products.   

The Innate Immune system is an evolutionarily ancient part of the host defense 

mechanisms and is found in all metazoans (the same molecular modules are found 



 

 

 

 

 

Chapter 1_________________________________________________________________ 

 

4 

in plants and animals, meaning that it arose before the split into these two 

kingdoms) (Hoffmann et al., 1999). Innate immunity major functions are: a) 

inflammatory responses through the production of chemical factors (cytokines and 

chemokines); b) activation of the complement cascade that promote the clearance 

of pathogens, dead cells or antibody complexes; c) identification and removal of 

cellular debris, foreign particles or microorganism by phagocytosis; d) activation 

of the adaptive immune system through a process known as antigen presentation. 

Innate immune cells originate from pluripotent hematopoietic stem cells present in 

the bone marrow and include: Natural killer cells, Mast Cells, Eosinophils, 

Basophils and the phagocytic cells (Macrophages, Neutrophils and DCs) (Janeway 

and Medzhitov, 2002). There are hundreds of receptors involved in innate immune 

recognition and approximately 10
14

 and 10
18

 different somatically generated 

immunoglobulin receptors and T-Cell receptors respectively. However, microbes 

are extremely heterogenous and can mutate at a much higher rate than any of their 

hosts (Medzhitov and Janeway, 2000).  

Therefore, the strategy of the innate immune response may not be to recognize 

every possible antigen, but rather to focus on a few, highly conserved structures 

present in large groups of microorganisms, that are structurally distinct from the 

host. These structures are referred to as Pathogen-Associated Molecular Patterns 

(PAMPs), and the receptors of the innate immune system that evolved to recognize 

them are called Pattern-Recognition Receptors (PRRs) (Janeway, 1989). These 

receptors allow the first line of defence: discrimination between self and non-self 

(Janeway, 1989). When Charles Janeway Jr. answered the questions: “How does 

the immune system determine the origin of the antigen, and how does it decide 

whether to induce and immune response or not? Does innate immune system has a 

major role on that?”, the PAMPs and their recognition by PRRs, emerged as 

essential components for the innate immune system to respond or not to a specific 

antigen (Janeway and Medzhitov, 2002). 
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1.2 Adaptive Immune System  

 

Adaptive Immunity is present only in vertebrates and it was the ―big bang‖ in 

immunity. It is composed of highly specialized, systemic cells: B Lymphocytes (B 

cells), T Lymphocytes (T-Cells) - CD8
+
 T-Cell or Cytotoxic T-Cell, CD4

+
 T-Cell 

or Helper T-Cells (Th1 or Th2) and gamma/delta T-Cells (Medzhitov and Janeway, 

2000; Reis e Sousa, 2004a). Adaptive immunity is a relative newcomer on the 

evolutionary landscape. Because the mechanism of generating receptors in the 

adaptive immune system involves great variability and rearrangement of receptor 

gene segments, the adaptive immune system can provide specific recognition of 

foreign antigens, immunological memory of infection, and pathogen-specific 

adaptor proteins. However, the adaptive immune response is also responsible for 

allergy, autoimmunity, and the rejection of tissue grafts (Janeway and Medzhitov, 

2002). This variability of receptors is due to Somatic hypermutation on two types 

of antigen receptors: T-Cell receptors (TCRs) on T-Cells and immunoglobulin 

receptors (IgR) on B cells. These antigen receptors are generated by random 

somatic gene rearrangement and are expressed in a clonal fashion on lymphocytes. 

Since each lymphocyte displays a single kind of structurally unique receptor, the 

repertoire of antigen receptors in the entire population of lymphocyte is extremely 

unique (each lymphocyte with a structurally unique receptor). Thus, these receptors 

are able to recognize almost all antigens that exist in nature. However, these 

receptors recognize not only pathogenic, but also environmental or self-antigens 

(Hoffmann et al., 1999; Medzhitov and Janeway, 1998). Rarely, responses from 

these receptors to environmental or self-antigens could lead to allergies or 

autoimmune diseases. What adaptive immunity adds to the underlying innate 

immune system is specific recognition of proteins, carbohydrates, lipids, nucleic 

acids (Janeway, 1989).  The signals induced on recognition by the innate immune 

system, in turn, control the activation of adaptive immune responses that respond 

to a pathogen only after it has been recognizing by the innate immune system 
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(Medzhitov and Janeway, 2000). DCs make the link between innate and adaptive 

immune system by presenting antigens to naive T-Cells and expressing molecules 

such as cytokines, chemokines, costimulatory molecules and proteases to initiate 

an immune response (Steinman, 1991). To generate an efficient immune response 

to a specific pathogen, it is critical that the recognition of a specific antigen by 

lymphocyte receptors could trigger its activation and proliferation. This process 

termed clonal selection is the basic property of the adaptive immune system. 

Unfortunately, these receptors cannot be passed on to the next generation, even if 

they give a survival advantage. Antigen Receptors have to be reinvented by every 

generation (Medzhitov and Janeway, 2000). This mechanism takes 3-5 days to 

produce enough number of clones and to differentiate into effector cells. For most 

pathogens, this period could be enough to damage the host and establish disease 

(Medzhitov and Janeway, 2000). However, the effector mechanism of innate 

immune system (antimicrobial peptides, phagocytosis and alternative complement 

pathway), is activated immediately after infection, which normally leads to a rapid 

control of the infection pathogen. ―Retarding‖ the infection until the adaptive 

immune system is ready to deal with it, is one of the main functions of innate 

immunity (Janeway and Medzhitov, 2002).  
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2. Pathogen and Antigen Recognition________________________________ 

 

2.1. Pattern Recognition Receptors  

  

The Pattern Recognition Receptors (PRRs) concept was introduced by Janeway 

20 years ago, with the idea that immune system senses microbial infection by these 

receptors that are predominantly expressed on sentinels cells. Pathogen-associated 

molecular patterns (PAMPs) are the molecular signature recognized by PRRs, 

which are broadly expressed in pathogens but not in host cells. Therefore, PRRs 

are able to discriminate between self from non-self (Janeway, 1989). During the 

past years, different families of PRRs were identified. The most important are: 

Toll-like receptors (TLR), RIG-I-like receptors (RLR), NOD-like receptors (NLR) 

and C-Type Lectin Receptor (CLR). 

Studies have shown the existence of a cytosolic detection system for 

intracellular PAMPs. These cytosolic PRRs include retinoic acid-inducible gene-I 

(RIG-I)-like receptors (RLRs) and nucleotide-binding oligomerization domain 

(NOD)-like receptors (NLRs). RLRs belong to the RNA helicases family that 

specifically detects RNA species derived from viruses in the cytoplasm and 

coordinate anti-viral programs via type I IFN induction (Yoneyama and Fujita, 

2008). NLRs constitute a large family of intracellular PRRs, where the NOD1, 

NOD2 and NALP3 are the most relevant (Ting et al., 2008). NOD1 and NOD2 

recognize intracellular bacterial cell products, and NALP3 responds to multiple 

stimuli to form a multi-protein complex termed the NALP3 inflammasome, which 

promotes the release of the IL-1 family of cytokines (Fritz et al., 2006; Inohara et 

al., 2005; Kanneganti et al., 2007; Meylan et al., 2006; Schweichel et al., 2006; Yu 

and Finlay, 2008). CLRs, are diverse families of receptors containing one or more 

C-type lectin domains, identified as a carbohydrate-binding structure. The different 

groups vary widely in ligand recognition and function and only a few acts as innate 

PRR mediating the recognition of PAMPs by DCs (Robinson et al., 2006). CLR 
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expressed by DCs  included dectin-1, DEC-205 and DC-SIGN, which all belong to 

a separate group of CLR (Zelensky and Gready, 2005). Dectin-1 has been shown to 

act as PRR resulting in DC activation (Rogers et al., 2005). It recognizes 

carbohydrate structures in the form of fungal β 1,3-glucans (Palma et al., 2006). 

DEC-205 and DC-SIGN play a role in uptake, processing and presentation of 

antigens from pathogens, but does not induce DC activation (Jiang et al., 1995; 

Mahnke et al., 2000).  

In addition to PAMPs, innate immunity has the potential to respond to 

endogenous molecules that are released by host cells as a result of necrosis, 

pathogen infection, damage, injury and certain pathological conditions, which are 

directly or indirectly recognized by TLRs, NLRs, RLRs or as-yet undefined 

sensors. The recognition of endogenous molecules by PRRs is tightly linked to the 

pathogenesis of autoimmune and inflammatory diseases (Kawai and Akira, 2009).  

TLR family detects PAMPs either on the cell surface or the lumen of 

intracellular vesicles such as endosomes or lysosomes (Kawai and Akira, 2009). 

This work was focused on TLRs function in antigen cross-presentation; therefore 

they will be described more extensively as follows. 

 

2.1.1. Toll-like Receptors: Overview 

 
The first member of the Toll family, Drosophila Toll, was discovered as one of 

12 maternal effect genes that function in a pathway required for dorso-ventral axis 

formation in fly embryos (Hashimoto et al., 1988). Analysis of the sequence of the 

toll gene revealed that it encodes a transmembrane protein with a large 

extracellular domain containing leucine-rich repeats. The sequence of the 

cytoplasmic domain of the toll turned out to be similar to the cytoplasmic domain 

of the human interleukin-1 receptor (hIL-1R), and it became apparent that they had 

possible functional similarities (Gay and Keith, 1991). Both hIL1-R and toll in 

drosophila have homologous cytoplasmic TIR domains and signal through 
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homologous protein kinases (Pelle and IRAK). Their signal-transduction leads to 

activation of transcription factors of the nuclear factor-kB (NF-kB) family pathway 

(Anderson, 2000; Belvin and Anderson, 1996). Earlier studies done by Ruslan 

Medzhitov in 1997, lead to the identification of a family of membrane-bound 

receptors in mammalian similar to drosophila toll (Medzhitov and Janeway, 1997). 

Therefore, a family of pattern-recognition receptors homologues of drosophila toll 

have been identified in mammals and are referred as toll-like receptors (TLRs) 

(Medzhitov and Janeway, 1997; Rock et al., 1998). Until now, there are described 

13 members of mammalian TLR family (Akira et al., 2006). TLR1-9 are conserved 

between humans and mice, TLR10 is not functional in mice because of a retrovirus 

insertion, and TLR11, TLR12 and TLR13 are lost in human genomes.  

TLRs differ from each other in: (1) ligand specificities, (2) expression patterns 

and in (3) target genes they can induce (Akira et al., 2006). The TLR family 

members can be conveniently divided into two subpopulations with regard to their 

cellular localization. TLR1, TLR2, TLR4, TLR5, TLR6 and TLR11 are expressed 

exclusively on the cell surface and recognize microbial membrane components 

such as lipids, lipoproteins and proteins. TLR3, TLR7, TLR8 and TLR9 are 

localized in intracellular vesicles such as the endosomes or lysosome and the 

endoplasmic reticulum (ER) and predominantly recognize microbial nucleic acid 

species (Akira and Takeda, 2004).  

Therefore, TLR were initially implicated in the recognition of bacterial, fungal 

patterns and viruses (Pasare and Medzhitov, 2005; Takeda and Akira, 2004) but the 

exact mechanism of PAMPs recognition has not yet been well characterized. 

Recent studies have revealed the crystal structure of TLR1, TLR2, TLR3 and 

TLR4 and suggest their mechanism of ligand recognition (Jin and Lee, 2008). The 

ligands for most TLRs were identified trough generation of mice deficient for each 

TLR. Genetic studies revealed that TLR are able to recognize a wide range of 

PAMPs including lipids, lipoproteins, proteins, glycans and nucleic acids and play 
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a central role in initiating innate immune responses (Akira et al., 2006). Bacterial 

lipopeptide, a ligand for the TLR-1-TLR2 heterodimer, interacts with internal 

protein pockets, and hydrophobic interactions are responsible for ligand 

recognitions (Jin et al. 2007). On the other end, viral double-stranded RNA 

(dsRNA), a TLR3 ligand, interacts with both the N-terminal and the C-terminal 

sites on the lateral side of the convex surface of TLR3 by ionic and hydrogen 

bonds with the sugar-phosphate backbones of dsRNA (Choe et al., 2005). TLR4 is 

responsible for bacterial LPS recognition but there are no direct interactions. TLR4 

form a complex with another LRR protein known as MD-2 (LPS-binding 

component) by ionic and hydrogen bonds in two oppositely charged patches (Kim 

et al., 2007; Ohto et al., 2007). All these TLR ligands induce a homodimer or 

heterodimer of TLRs (TLR1-TLR2, TLR3-TLR3, TLR4-TLR4) showing an ―m‖-

shaped complexes. This dimerization is necessary for triggering downstream 

signaling by recruitment the TIR domain-containing adapter protein (fig.1).  
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Fig.1: TLR-mediated immune responses. The TLR family can be divided into subfamilies: the TLR 
at the cell surface (TLR1, TLR2, TLR4, TLR5 and TLR11) primarily detected bacterial, fungal and 
protozoan cell components, while intracellular TLR (TLR3, TLR7/8 and TLR9) recognize nucleic 
acid ligands in specific endosomal compartments. TLR2 in concert with TLR1 or TLR6 discriminates 
between the molecular patterns of triacyl and diacyl lipopeptide, respectively. TLR3 recognizes 

dsRNA. TLR4 recognizes bacterial LPS. TLR7/8 mediates recognition of imidazoquinolines and 
ssRNA. TLR9 recognizes CpG DNA of bacteria and viruses. TLR5 recognizes bacterial flagellin and 
mouse TLR11 recognizes components of uropathogenic bacteria and profilin like molecule of the 
protozoan parasite Toxoplasma gondii. TLR1/2 and TLR2/6 utilize MyD88 and TIRAP as essential 
adapters. TLR3 utilizes TRIF. TLR4 utilizes four adapters, including MyD88, TIRAP, TRIF and 
TRAM. TLR7/8, TLR9, TLR5 and TLR11 use only MyD88. The MyD88-dependent pathway 
controls inflammatory responses, while TRIF mainly mediates type I IFN responses. In addition, 
TLR7/8 and TLR9 induce type I IFN in a MyD88-dependent manner. Adapted from (Kawai and 

Akira, 2006). 

 
 

2.1.2. Toll-like Receptors at cell surface  

 

Toll-like Receptor 4: The first human TLR (hTLR), that was identified by 

Ruslan Medzhitov in 1997 is now referred to as toll-like receptor 4, and it was 

shown to activate, like its drosophila homolog, NF-kB signaling pathway 

(Medzhitov et al., 1997). In 1998, further four TLR were reported (Rock et al., 

1998). Through NF-kB pathway, activation of TLR4 induces the expression of a 

variety of inflammatory cytokines and co-stimulatory molecules that are crucial to 

adaptive immune response (Medzhitov et al., 1997). This evidence implies TLRs 

as receptors of the immune system (Medzhitov and Janeway, 1997). The first link 

arises when it was shown that TLR4 is the receptor for lipopolysaccharide (LPS) in 

mice. Mice with either spontaneous mutation or a target disruption of the tlr4 gene, 

have no response to LPS and are thus resistant to endotoxin shock (Poltorak et al., 

1998; Qureshi et al., 1999). Together, these studies demonstrated the essential role 

for TLR4 in recognition of LPS, a major component of gram-negative bacteria, 

which is a potent immunostimulatory molecule and cause septic shock.  

TLR4 is not directly involved in LPS recognition. Soluble LPS molecules first 

interact with a serum protein called lipopolysaccharide-binding protein (LBP) that 

is present as a soluble protein or as a plasma membrane protein (Ulevitch and 

Tobias, 1995). At the plasma membrane, LBP binds CD14, a receptor that is 
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anchored to cell surface by a glycosylphosphoinositol tail (GPI-linked cell surface 

protein) and delivers LPS-LBP to the TLR4 (Miyake, 2007; Wright et al., 1990; 

Wright et al., 1989).   

A small protein, MD-2, is also required for TLR4-mediated recognition of LPS, 

making the three components of LPS-recognition complex (TLR4, CD14 and MD-

2). MD-2 lacks a transmembrane anchor but is constitutively associated with the 

extracellular region of TLR4, whereas CD14 is presumably recruited to the 

complex after binding LPS (Shimazu et al., 1999).  The cell-surface events that 

lead to LPS recognition are not clear, but important data indicate that a complex of 

TLR4/MD-2/CD14 directly binds LPS (da Silva Correia et al., 2001; Lien et al., 

2000; Poltorak et al., 2000). ‗Smooth‘ LPS is composed of a polysaccharide O-

antigen side chain and has complete core oligosaccharides, whereas ‗rough‘ LPS 

lacks O-antigen and has shorter core oligosaccharides; both forms contain lipid A, 

a biologically active component of LPS. Cells lacking CD14 are unresponsive to 

smooth LPS; however, they still respond to rough LPS or lipid A (Dybdahl et al., 

2002; Vabulas et al., 2002).  TLR4 is known to activate two signaling pathways - 

the myeloid differentiation primary response gene 88 (MyD88)-dependent pathway 

and the TIR-containing adapter inducing IFN-β (TRIF)-dependent pathway. 

Monophosphoryl lipid A (MPLA) is a low-toxicity derivative of LPS with useful 

immunostimulatory properties. MPLA is inefficient with respect to stimulation of 

TLR4/MyD88-induced gene expression, it has fortuitously retained TLR4/TRIF-

associated activities, such as induction of type I interferon (Mata-Haro et al., 

2007). 

These results suggest that the diversity of the structures of LPS among bacterial 

species may influence selective activation of these pathways. In addition to the 

detection of components of Gram-negative bacteria, TLR4 has been implicated as 

well, in the recognition of liptocheic acid (LTA), the heat shock protein hsp60, and 

the fusion protein of the respiratory syncytial virus (RSV) and mouse mammary 
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tumors virus (Kurt-Jones et al., 2000; Ohashi et al., 2000; Takeuchi et al., 1999; 

Vabulas et al., 2001). The physiological relevance of these putative TLR4 ligands 

remains to be demonstrated. However it is clear that mammalian TLRs do not 

discriminate between classes of pathogens (Janeway and Medzhitov, 2002).  

TLR4 has recently been shown to signal from two locations (Kagan et al., 

2008). At the plasma membrane, TLR4 recruits the second TIR domain adapter to 

be described, termed MyD88-adapter-like protein (MAL), and MyD88, leading to 

NF-kB activation. It then appears to traffic to the endosome, where it recruits two 

other TIR domain adapters, translocating chain-associating membrane protein 

(TRAM) and TIR-domain-containing adapter-inducing interferon-β (TRIF). 

Consequently leading to activation of the protein kinase TANK-binding kinase-1 

(TBK-1) and activation of interferon regulatory factor 3 (IRF3), the transcription 

factor required for induction of Type I interferons and many other genes that 

contain the interferon responsive response element. This capacity for signaling 

from two locations appears to be unique to TLR4 among the TIR domain-

containing receptors (O'Neill, 2008).  

 

Toll-like Receptor 2 and heterodimers: TLR2 recognizes a wide range of 

PAMPs derived from various pathogens, ranging from bacteria, fungi, parasites 

and viruses (Akira et al., 2006). These ligands include triacyl lipopeptides from 

bacteria and mycobacteria, diacyl lipopeptides from mycoplasma, peptidoglycan 

(PGN) and lipoteichoic acid (LTA) from Gram-positive bacteria, porin from 

Neisseria, lipoarabinomannan from mycobacteria, zymosan (containing b-glucan, 

mannans, chitin, lipid and protein) from fungi, Trypanosoma GPI-mucin (tGPI-

mucin) and hemagglutinin protein from measles virus. TLR2 generally forms a 

heterodimer with TLR1, TLR6 or non-TLR molecules such as CD36, CD14 and 

dectin-1 to discriminate the molecular structure of the ligands. TLR2–TLR6 
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recognizes the mycobacterial diacylated lipopeptide, LTA and zymosan, whereas 

TLR2–TLR1 recognizes the bacterial triacylated lipopeptide.  

The role of extracellular TLRs may be as sensors for danger signals. TLR2 and 

TLR4 are also implicated in the recognition of endogenous molecules. These 

include heat shock proteins (HSP60, HSP70, gp96 and HSP22), fibrinogen, the 

extra domain A of fibronectins, hyaluronic acid, heparan sulfate, fatty acids, high-

mobility group box 1 (HMGB1), modified low-density lipoprotein and β-defensin 

2, most of which are released during inflammation or tissue damages or by necrotic 

cells (Akira and Takeda, 2004).These endogenous ligands trigger production of 

TNF-α, IL-12 and nitric oxide (Miyake, 2007).  

 

Toll-like Receptor 5: TLR5 recognizes a highly conserved central site of 

flagelin, a protein that is a component of bacterial flagella, which is required for 

protofilament formation and bacterial motility (Hayashi et al., 2001). TLR5 is 

highly expressed on the basolateral surface of intestinal epithelial cells and 

moreover preferentially in CD11c
+ 

CD11b
+
 lamina propria of DCs (LPDCs) in the 

small intestine (Uematsu et al., 2006), which suggests a role of TLR5 in the 

detection of invasive flagellated bacteria in the gut. TLR5 on LPDCs plays a 

critical role in regulating both innate and adaptive immune response in the intestine 

(Uematsu et al., 2008).  

 

Toll-like Receptor 11: Mouse TLR11, which is a relative to TLR5, is highly 

expressed in the kidney and bladder. Because TLR11-deficient mice are 

susceptible to uropathogenic bacteria infection, is likely to sense its products, 

however a specific ligand has not been identified yet (Zhang et al., 2004). TLR11 

also recognizes a parasite component from Toxoplasma gondii tachyzoites known 

as soluble Toxoplasma antigen that is a potent inducer for IL-12. The active 

component is a profiling-like molecule that functions as an actin-binding protein 
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and involved in parasite motility and invasion (Plattner et al., 2008) and is 

recognized by mouse TLR11 (Yarovinsky et al., 2005).   

 

 

2.1.3. Intracellular Toll-like Receptors 

 
The intracellular TLRs, TLR3, TLR7, TLR8 and TLR9, are expressed in 

intracellular compartments. They are on the ER in resting cells and trafficked to the 

endosomal compartments such as endosomes and lysosomes, in response to 

PAMP-mediated stimulation (Latz et al., 2004; Nishiya et al., 2005). This 

intracellular localization is important for the recognition of viral nucleic acids that 

are delivered to TLR expressing intracellular vesicles through the endosomal 

pathway. Moreover, this is also important for discrimination of self from non-self 

nucleic acids since ectopic expression of TLR9 on the macrophage cell surface 

causes it to respond to DNA derived from self (Barton et al., 2006). Intracellular 

TLRs appear to be sensors of foreign nucleic acids and trigger anti-viral innate 

immune responses by producing type I IFN and inflammatory cytokines. 

 

Toll-like Receptor 3: TLR3 is a receptor for dsRNA. It recognizes a synthethic 

analogue of dsRNA polyinosinic-polycytidylic acid (poly:IC), genomic RNA 

purified by dsRNA viruses (such as reovirus) and dsRNA produced during the 

course of single-stranded RNA (ssRNA) viruses replication (such as RSV, 

encephalomyocarditis virus (EMCV) and West Nile virus (WNV) (Alexopoulou et 

al., 2001; Wang et al., 2004). TLR3 is also implicated in the recognition of small 

interfering RNA (siRNA) in a sequence independent manner (Kleinman et al., 

2008). TLR3 mRNA is expressed in conventional Dendritic Cells (cDCs) but 

mostly in CD8α
+
 DCs, which have high phagocytic activity for apoptotic bodies of 

virus-infected or dsRNA-loaded cells. This allows dsRNA to gain access to TLR3 

compartments and signaling to produce IL-12p40 and IFN-β (Schulz et al., 2005). 
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Toll-like Receptor 7: TLR7 is a natural receptor for ssRNA. It was originally 

identified to recognize imidazoquinoline derivatives (imiquimod and resiquimod 

(R-848)), and guanine analogues such as loxoribine. These compounds have anti-

viral and anti-tumor properties (Hemmi et al., 2002). Synthethic polyuridine 

ssRNA and some siRNAs as well as natural compounds such guanosine-rich and 

uridine-rich ssRNA from HIV or influenza virus were identified as ligands for 

TLR7 (Diebold et al., 2004; Heil et al., 2004). TLR7 is mostly expressed in a 

subset of DCs, plasmacytoid Dendritic Cells (pDCs), which are unique in their 

capacity to rapidly secrete vast amounts of type I IFN in response to viral 

infections. These response to influenza or VSV was impaired in TLR7-deficient 

pDCs and it is independent of envelope virus replication such influenza or herpes 

viruses. It seems that these virus are endocyted to intracellular compartments, were 

viral particles are degraded, allowing the viral RNA to engage TLR7 (Gilliet et al., 

2008).  

 

Toll-like Receptor 8: TLR8 is related phylogenetically with TLR7. TLR8 is 

mostly expressed in monocytes, and is up-regulated upon bacterial infection. 

Human TLR8 recognizes R-848, ssRNA from virus (HIV, VSV and influenza A) 

and bacterial RNA, however, TLR8-deficient mice responds normally to these 

molecules suggesting a species-specific function of TLR8 (Heil et al., 2004). 

 

Toll-like Receptor 9: TLR9 was identified to recognize DNA motifs that are 

frequently present in bacteria, but are rare in mammalians  - unmethylated 2´-

deoxyribo cytidine-phosphate-guanosine (CpG) (Hemmi et al., 2000). Synthethic 

CpG oligodeoxynuvleotides (ODNs) are TLR9 ligands. This recognition is 

independent of the base sequence, and the sugar backbone 2´-deoxyribose of DNA 

is sufficient for signaling (Haas et al., 2008).  TLR9 is highly expressed in pDCs as 

TLR3 and TLR7, which serve as sensor for virus infection. pDCs respond to DNA 
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virus infection (such as MCMV,HSV-1 and HSV-2) and to CpG ODNs by 

production high amounts of type I IFN and this response was totally dependent on 

TLR9 (Krug et al., 2004a; Krug et al., 2004b; Lund et al., 2003).  Recently, a 

compound derived from Plasmodium falciparum - hemozoin (Hz)– potentially 

activates, trough TLR9, macrophages and DCs to produce inflammatory cytokines 

and chemokines (Coban et al., 2005; Parroche et al., 2007; Pichyangkul et al., 

2004).  

 

2.1.4. Toll-like Receptors signaling pathway(s) 

 

TLRs are type I transmembrane proteins (N-terminal is outside de membrane) 

composed of three major domains. The ectodomain is responsible for PAMPs 

recognition and is characterized by Leucin-Rich Repeats (LRRs). There is a 

transmembrane domain and an intracellular domain homologous to that of the IL1-

R known as Toll/IL1R (TIR) domain which is required for initiation of the 

downstream signaling pathways. The LRR domain is composed of 19-25 tandem 

copies of LRR motifs, 20-30 amino acids in length, that contain the ‗xLxxLxLxx‘ 

motif as well as ‗xUxxUxxxxUxxLx (U: hydrophobic)‘ sequences. LRR domain 

contains a beta-strand and an alpha-helix linked by loops, which leads to the 

prediction that the LRR has a horseshoe-like structure.  

Differences in the TIR-domain-containing adaptors used for downstream 

signaling by TLRs have a crucial influence on the cytokine patterns induced in 

response to ligand recognition (fig.2). Except for TLR3 which exclusively signals 

via the TIR domain-containing adaptor inducing IFN-β (TRIF), all TLR share the 

adaptor molecule MyD88 (O'Neill and Bowie, 2007). While the TIR domain of 

MyD88 is recruited directly to the cytoplasmic TIR domain of most TLR, TLR2 

and TLR4 require the MyD88-adaptor-like adaptor (MAL), also called TIR-

domain-containing adaptor protein (TIRAP), as a bridge for MyD88 recruitment 

(Fitzgerald et al., 2001; Horng et al., 2002; Kagan and Medzhitov, 2006; 
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Yamamoto et al., 2002). In addition to these two TIR-containing adaptor 

molecules, TLR4 also signals via TRIF and TRIF-related adaptor molecule 

(TRAM) (Fitzgerald et al., 2003; Yamamoto et al., 2003). These differences in 

adaptor molecule usage between the TLR leads to activation of various 

transcription factors in the downstream signaling cascade. Triggering of TLR2 

homo and heterodimers and TLR5 lead exclusively to NF-kB activation, whereas 

TLR4 additionally induces interferon regulatory factor 3 (IRF3) in a TRIF/TRAM-

dependent manner (Fitzgerald et al., 2003). While IRF3 is crucial for the induction 

of interferon-β (IFN-β) in response to TLR4, NF-kB-mediated immune activation 

leads to the rapid induction of pro-inflammatory cytokines such IL-6, IL-12 and 

TNF-α. IRF5 was shown to play a crucial role in the induction of pro-inflammatory 

cytokines and IFN type-I in response to TLR activation in general (Takaoka et al., 

2005).  

As a summary, the general consequence of TLR activation results in induction 

of mitogen activated protein kinases (MAPK) p38, ERK and JNK and transcription 

of nuclear factor kB (NF-kB) and interferon regulatory factor (IRF)-responsive 

genes pivotal to immunity (fig.2).  
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Fig.2: TLR signaling pathway(s). Lipopolysaccharide recognition by TLR4 initiates both MyD88-
dependent and TRIF-dependent pathways. The TLR4–MD-2 complex engages with LPS on the cell 
surface via LBP and CD14 and then recruits a TIR domain-containing adapter complex including 

TIRAP and MyD88. The TLR4–MD-2–LPS complex is subsequently trafficked to the endosome, 
where it recruits TRAM and TRIF adapters (not shown (Kagan et al., 2008)). TIRAP–MyD88 recruits 
IRAK family members and TRAF6 to activate TAK1. The TAK1 complex activates the IKK 
complex composed of IKKa, IKKb and NEMO (IKKc), which catalyze phosphorylation of IkB 
proteins. Phosphorylated IkB proteins are degraded, allowing NF-kB to translocate to the nucleus. 
TAK1 simultaneously activates the MAPK pathway that induces the activator protein-1 (AP-1). The 
activation of NF-kB and AP-1 results in induction of inflammatory cytokine genes (MyD88- 
dependent pathway). TRAM–TRIF recruits TRAF6 and RIP-1 for activation of TAK1 as well as 
TRAF3 for activation of TBK1– IKKi that phosphorylates and activates IRF3, in addition to NF-κB 

and AP-1. Whereas NF-kB and MAPK regulate expression of inflammatory cytokine genes in both 
pathways, IRF3 regulates expression of type I IFN in the TRIF-dependent pathway only. TLR7 and 

TLR9 reside in the ER and interact with UNC93B and traffic to the endosome to recognize viral 
ssRNA and DNA, respectively. These TLRs recruit MyD88, IRAK4 and TRAF6, which in turn 
activates TAK1, IRF5 and TRAF3. TAK1 mediates activation of NF-kB and MAPK, which leads to 
the induction of inflammatory cytokine genes. TRAF3 activates IRAK1 and IKKα, which catalyze 
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the phosphorylation of IRF7 and induce type I IFN genes. TLR3 signaling basically goes through the 
same pathway as the TLR4-TRIF-dependent pathway, without TRAM. TLR7 and -9 initiate only the 
MyD88-dependent pathway, but they induce IFNα expression by activating IRF7 via TNF receptor-
associated factor 3 (TRAF3). Adapted from (Kawai and Akira, 2009; Lee and Kim, 2007). 
 

Upon PAMPs recognition, TLRs induce inflammatory responses and a variety 

of antimicrobial effector responses. In particular, TLR ligation on specialized 

antigen-presenting cells called Dendritic Cells (DCs) directly induces a 

differentiation program, called DC maturation, which is characterized by the 

induction of co-stimulatory molecules on the cell surface. The co-stimulatory 

signal "flags" the antigenic peptides as foreign and is required (along with the TCR 

ligand–MHC/peptide complex) for the activation of T lymphocytes. Thus, by 

recognizing microbial molecular patterns, TLRs couple recognition of infection 

with the induction of pathogen-specific adaptive immune responses. TLR have also 

been implicated in autoimmunity and their manipulation has been seen to be 

extremely important in immunotherapies (Janeway and Medzhitov, 2002). 

The activation of DCs determines the ability to deliver three signals to naive T 

lymphocytes (fig.3). The three signal model is composed by: Signal 1: delivered to 

the T-Cell receptor by the engagement of peptide-MHC complex of DCs. Antigens 

internalized that are delivered to late endosomes compartments, could be processed 

and loaded onto MHC class-II molecules (Turley et al., 2000). However, Blander 

and Medzhitov have shown that the response to peptide loading after phagocytosis 

by MHC class-II only occurs if TLR signals are triggered (Blander and Medzhitov, 

2006b), however little is known about the implication of TLR signaling on MHC 

class-I antigen cross-presentation. Signal 2: delivered to T-Cells through co-

stimulatory molecules such, CD40, CD80, CD83 and CD86. T-Cell activation is 

determined by the expression of these co-stimulatory molecules on DCs 

(Banchereau and Steinman, 1998; Iwasaki and Medzhitov, 2004; Reis e Sousa, 

2006) that is induced by triggering TLR signaling pathways (Iwasaki and 

Medzhitov, 2004). In the absence of co-stimulatory signal naive T-Cells are 



 

 

 

 

_______________________________________________________________Introduction   

 

 

21 

tolerized (when receive signal 1 alone) and primed when signal 1 and signal 2 are 

both present. Signal 3: refers to DC-derived signals, such as cytokines, and 

determine the T-Cell differentiation fate and for consequence the outcome of 

immune response (Reis e Sousa, 2006). As initially postulated, many of these 

signals are controlled by TLR (Akira et al., 2006; Amsen et al., 2004; Reis e 

Sousa, 2006).  

 

 

Fig.3: Interactions between Dendritic Cell and naive T-Cell. Signal 1 is the antigen-specific signal 
that is mediated through T-Cell receptor (TCR) triggering by MHC class molecules peptides 
processed from pathogens after internalization through specialized pattern recognition receptors 
(PRRs).  Signal 2 is the co-stimulatory signal, mainly mediated by triggering of CD28 by CD80 and 
CD86 that are expressed by DCs after ligation of PRRs, such as Toll-like receptors (TLRs) that are 
specialized to sense infection through recognition of pathogen-associated molecular patterns 
(PAMPs) or inflammatory tissue factors. Signal 3 is the polarizing signal that is mediated by various 
soluble or membrane-bound factors, such as interleukins and chemokines. The nature of signal 3 

depends on the activation of particular PRRs, such as TLRs by PAMPs. Optimal activation of DCs 
requires feedback stimulation by CD40 ligand (CD40L) expressed by T-Cells after activation by 
signals 1 and 2. Adapted from (Kapsenberg, 2003). 
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3. Antigen Presenting Cells (APCs)_______________________________ 

 
 3.1. The importance of being professional 
 

Virtually any cell type expressing cell surface MHC class-I and II α/β 

heterodimers was able to engage T-Cells in an antigen-specific manner (Malissen 

et al., 1984). However, different cell types can process and present antigens with 

different efficiencies (Mellman et al., 1998; Robadey et al., 1996; Schneider and 

Sercarz, 1997). This finding has led investigators to consider certain cells as 

antigen presenting cells (APCs), a group that typically includes B Lymphocytes (B 

Cells), Macrophages (MØ), and especially Dendritic Cells (DCs).  

 

3.2. Dendritic Cells (DCs): The key players in antigen presentation 
  

The historical, functional, and morphological definition of a DC is a veiled cell 

characterized by the presence of numerous membrane processes, that extended for 

up to hundreds micrometers in the form of dendrites, pseudopods or veils.  

Additional, morphological features of DCs included high concentrations of 

intracellular structures related to antigen processing such as endosomes and 

lysosomes. The fundamental characteristic is the unique ability to stimulate a naive 

T-Cell into cycle (Steinman, 1991). Phenotypically, DCs expressed in their surface 

large amounts of MHC class-II molecules, but are excluded of lineage markers 

including CD14 (monocyte), CD3 (T-Cell) CD19, 20, 24 (B cell), DCD56 (natural 

killer cell) and CD66b (Granulocyte) (Hart, 1997). Concerning their antigen 

presenting function, DCs also express various adhesion molecules: CD11a (LFA-

1), CD11c, CD50 (ICAM-2), CD54 (ICAM-1), CD58 (LFA-3) and CD102 

(ICAM-3), as well expressed in monocytes and macrophages (Hart and Prickett, 

1993); and co-stimulatory molecules: such as CD80 (B7.1), CD86 (B7.2) and 

CD40. The adhesion molecules, co-stimulatory molecules and MHC class-II 
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molecules are up-regulated upon activation (Banchereau et al., 1994; Fagnoni et 

al., 1995). 

DCs are the sentinels of the immune system, which play a critical role in the 

regulation of the adaptive immune response, making the link to adaptive immune 

system. These ―professional‖ APCs function as key players as their primary 

function is to present antigens being unique among APCs for their critical role in 

stimulating naive T-Cells. DCs are rare cells present in blood, skin and all 

lymphoid organs, however, they are crucial for normal immune responses 

(Banchereau et al., 2000; Banchereau and Steinman, 1998). Mice depleted of DCs 

display defective immune responses to viral (Ciavarra et al., 2006), parasitic (Jung 

et al., 2002; Liu et al., 2006) and bacterial infections (Jung et al., 2002). 

DCs function as ―master switches‖, being able to control whether the antigen 

gives a tolerance or a cellular immune response (Steinman et al., 2003). They 

reside in immature state in peripheral tissues to ―sample‖ the environment. When 

encounter bacteria, viral particles or apoptotic cells, DCs could enter in a mature 

stage. This maturation program leads to migration to secondary lymphoid organs, 

and consequently antigens could be presented directly in MHC class-II molecules, 

triggering CD4
+
 T-Cells or cross-presented on MHC class-I molecules to CD8

+
 T-

Cells (Basta and Alatery, 2007; Bevan, 1976b; Rock and Shen, 2005). In this way, 

all systemically and peripherally expressed antigens can be presented to T-Cells.   

The existence of distinct DC subsets is due to their inherent plasticity and to the 

changing microenvironment modulating their immunological properties. Because 

different DC types may play distinct roles in induction of immunity and tolerance 

(Belz et al., 2002a; Belz et al., 2002b; Chilton et al., 2004; Heath et al., 2004; 

O'Keeffe et al., 2005) the outcome of the vaccination strategy in each scenario 

might vary (Corbett et al., 2005). DCs form a heterogeneous cell population, which 

could be classified as plasmacytoid (pDCs) or conventional DCs (cDCs) (Shortman 

and Naik, 2007). 
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3.2.1. DCs sub-populations: Conventional Dendritic Cells (cDCs) 

 

Within mouse lymphoid organs the cDCs can be recognized by the expression 

of high levels of CD11c and MHC class-II (Shortman and Liu, 2002). Further 

separation of the cDCs into subsets depends upon the organ in question and can be 

subdivided into migratory DCs and resident DCs (Villadangos and Schnorrer, 

2007). Migratory DCs develop in peripheral tissues and migrate constitutively into 

lymph nodes, even in the absence of inflammatory stimuli (Walton et al., 2006; 

Wilson et al., 2008). These include Epidermal Langerhans cells (LCs) and different 

subsets of epidermal DCs: pulmonary CD103
+
CD11b

- 
and CD103

-
CD11b

+
 DC 

(Hintzen et al., 2006) and their recently described dermal counterparts CD103
+
 

CD11b
-
langerin

+
 and CD103

-
CD11b

+
langerin

-
 dermal DCs (Bursch et al., 2007; 

Ginhoux et al., 2007; Poulin et al., 2007). Resident DCs differentiate in the 

lymphoid organs from blood-borne precursors (Liu et al., 2007; Naik et al., 2006) 

and can be divided by the CD8αα homodimer marker into three ‗‗conventional‘‘ 

(CD11c
high

) DCs subsets:  CD8
+
CD4

-
 DC, CD8

- 
CD4

-
 DC and DN DC. These 

subsets are discussed as follow. 

 

3.2.1.1 Splenic Dendritic Cells (sDCs) 

 

sDCs compose 1% of total splenocytes. Of these, approximately 80% are cDC 

and the remaining 20% are pDC (Asselin-Paturel et al., 2003). The separation of 

spleen cDC into functionally distinct subsets is possible by the separation of 

CD11c
hi
MHC II

+
 cells based on the expression of CD4 and the CD8αα homodimer 

(Vremec et al., 2000).  

CD8
+
 Spleen DC: The CD8

+
CD4

−
 subset compose about 25% of total spleen 

cDC and resides in the T-Cell areas of spleen  being  the shortest lived cDCs 

subtype, with a turnover rate about three days (Kamath et al., 2000). The CD8
+
 

DCs are important in vivo due to their ability to secrete extremely high levels of the 

pro-inflammatory cytokine IL-12p70 upon activation, lending these cells with a 
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Th-1-inducing profile (Maldonado-Lopez et al., 1999). The CD8
+
 cDCs also 

express other cytokines upon activation including IL-6, TNF-α, and low levels of 

chemokines including Mip-1α and β and RANTES (Proietto et al., 2004). Under 

some circumstances the CD8α
+
 DCs also produce type I IFN (Hochrein et al., 

2001). The CD8
+
 cDCs in all organs are unique amongst the cDCs as they have the 

exquisite ability to constitutively present exogenous cell-associated or soluble 

proteins very efficiently in the context of MHC class-I (den Haan et al., 2000; 

Pooley et al., 2001; Schnorrer et al., 2006).  

CD4
+
 Spleen DC:  The CD4

+
CD8

−
 cDCs of mouse spleen comprise about 50% 

of spleen cDCs and are located in non-T-Cell zones of the spleen. They require 

IRF4 and IRF2 for development and normal function (Ichikawa et al., 2004). The 

CD4
+
 cDCs stand out as the cDCs population that produces the highest levels of 

inflammatory-type chemokines: Mip-3α, Mip-3β, RANTES (Proietto et al., 2004). 

However, the CD4
+
 cDCs display a high capacity to stimulate CD4

+
 and CD8

+
 T -

Cells in ―direct‖ presentation assays. In fact the CD4
+
 cDCs, together with the 

CD4
−
CD8

−
 cDCs are the most potent presenters of MHC class-II antigen 

complexes to CD4
+
 T-Cells (den Haan and Bevan, 2002; Pooley et al., 2001). 

Contrary to CD8
+
 cDC, the CD4

+ 
cDCs and CD4

−
CD8

−
 cDCs have been shown to 

induce TH2 responses by responder T-Cells (Hammad et al., 2004; Maldonado-

Lopez et al., 1999). When compared to the CD8
+
 cDCs, the antigen cross-

presentation capacity of CD4
+
 cDCs in the steady state is poor. 

CD8
-
CD4

- 
(DN) Spleen DC: The CD4

−
CD8

−
 DCs in mouse spleen comprise 

about 20–25% of spleen cDCs and closely resemble the CD4
+
 DCs in function. 

Similarly, they also produce high levels of Mip-3α, Mip-3β and RANTES, 

although the levels produced in the steady state are considerably lower than those 

produced by the CD4
+
 cDCs. The CD4

−
CD8

−
 cDCs are also poor at cross-

presenting exogenous antigen, although they are as efficient as CD4
+ 

cDCs in 

direct MHC class-I and MHC class-II presentation (Schnorrer et al., 2006). 
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Microarray data does suggest that at least the majority of cells that are identified as 

CD4
−
CD8

−
 DCs are extremely closely related to the CD4

+ 
cDCs (Edwards et al., 

2003; Lahoud et al., 2006). Mice treated with fms-like tyrosine kinase 3 ligand 

(Flt3-L) have a large increase in CD4
−
CD8

−
 and CD8

+
 cDCs, and, in contrast, the 

CD4
+ 

cDC are preferentially increased in a mouse treated with GM-CSF (O'Keeffe 

et al., 2002). There are other cDCs: Thymic cDCs, Lymph Node cDCs  and 

Immature cDCs of Blood and Bone Marrow (Hochrein and O'Keeffe, 2008).  

Plasmacytoid DC (pDCs): The phenotype of pDCs is always CD11c
int

MHC 

II
lo
CD11b

− 
CD205

−
 and they defy the classical definition of a DC since in the 

steady state they completely lack any cytoplasmic protrusions or veils (plasma cell 

morphology) and lack the ability to stimulate naive T-Cells into cycle. However, 

upon activation by viruses, TLR7, 8, or 9 ligands they rapidly acquire the 

morphological and phenotypical characteristics of a cDC together with their trade 

mark high type I IFN production. There is no doubt that these cells have a major 

function in innate immune responses with their exceptional ability to produce 

rapid, high levels of type I IFN upon activation (Barchet et al., 2005a; Barchet et 

al., 2005b; Fuchsberger et al., 2005; Liu, 2005; Naik et al., 2005a; Soumelis and 

Liu, 2006). It remains unclear the real ability of pDC to stimulate naive T-Cells 

into cycle when compared to the potent stimulatory activity of cDCs. Several 

recent reports cite pDCs as capable and necessary of maintaining tolerance (Abe et 

al., 2005; de Heer et al., 2004; Ochando et al., 2006). cDCs phenotype is 

summarized on following table and compared to their in vitro equivalent. 
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Table I: Mouse cDCs subsets, in vitro equivalent and respective phenotype.   

    
 CD8

+
 DC     CD8

- 
DC   DN DC pDCs Monocyte Derived 

CD11c +++         +++ +++ + +++ 

CD8 ++           - - +/- - 

CD4 -           + - - - 

CD205 ++           - +/- - +/- 

CD11b -      ++ ++  ++ 

Langerin    +    - - - - 

Ly6C   -    - - ++ ++ 

      

In vitro 

equivalent 

    Bone-Marrow precursors plus FLT3-L BM, spleen or blood 

percursosr plus GM-CSF 
                    Adapted from (Villadangos and Schnorrer, 2007)  

 

 

 

 

3.2.2. DC generation in vitro and their in vivo counterpart 

 

At least two distinct pathways of DC development from pluripotent bone 

marrow stem cells have been identified in mice, myeloid and lymphoid, which 

differ in phenotype, localization, and function (Cella et al., 1997; Steinman, 1991). 

Both subsets express high levels of CD11c, MHC class-II complex, and the co-

stimulatory molecules CD86 and CD40. To date, the most reliable marker to 

distinguishing these two subsets is CD8α, which is expressed as a homodimer on 

the lymphoid DC, but is absent from the myeloid subset. Other markers such as 

DEC-205 and CD1d are expressed at higher levels on lymphoid DCs, but they can 

be up-regulated on myeloid DCs by in vitro culture or by LPS treatment 

(Maraskovsky et al., 1996; Pulendran et al., 1997; Vremec and Shortman, 1997; 

Wu et al., 1996). The establishment of defined cell-culture systems to generate 

DCs in vitro has been instrumental in assessing the functional properties of these 
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cells. Granulocyte/macrophage colony stimulating factor (GM-CSF) preferentially 

expands the myeloid DC subset in vivo (Pulendran et al., 1999). Several methods 

to generate mouse DCs in vitro have been described (Shortman and Naik, 2007). 

The most common involves culturing bone-marrow (primitive hematopoietic 

progenitors) or spleen precursors in medium that is supplemented with GM-CSF, 

which are able to fully function as a DC capable of priming antigen specific T-Cell 

responses, with or without interleukin-4 (IL-4) (Inaba et al., 1992; Scheicher et al., 

1992). The DCs generated by this method resemble monocyte-derived DCs, which 

almost certainly do not correspond with any of the lymphoid-organ-resident DC 

subsets found in vivo (Shortman and Naik, 2007). DCs can also arise from 

lymphoid-committed precursors (Ardavin et al., 1993; Saunders et al., 1996) 

(Steinman et al., 1997; Vremec et al., 1992; Wu et al., 1996). To generate these, 

bone-marrow precursors must be cultured with FMS-like tyrosine kinase 3 ligand 

(FLT3L) (Lyman and Jacobsen, 1998), and both lymphoid and myeloid DC 

numbers increase dramatically upon Flt3-L injection (Pulendran et al., 1997; 

Shurin et al., 1997). It is expected that this culture system will allow comparative 

studies among resident DC subtypes, and between these DCs and monocyte-

derived DCs (Shortman and Naik, 2007). 
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4. The mechanism of Antigen Presentation_________________________ 

 
As described, DCs are the ―professional‖ APCs, because they are able to 

degrade antigens in a ―fine-tune‖ way, presenting the resulting fragments at cell 

surface and activate both naive CD4
+
 T-Cells and CD8

+
 T-Cells (Banchereau and 

Steinman, 1998). DCs process intracellular and extracellular antigens differently, 

using different pathways, which could outcome in a different immune response.  

 

 

4.1. Antigen presentation pathways 

4.1.1. Classical pathways  

4.1.1.1 Extracellular antigens - MHC Class-II pathway 

Extracellular antigens are internalized by endocytosis (exogenous pathway). 

As the phagosome matures it acquires the machinery for antigen processing and 

loading. MHC class-II molecules (MHC-II) are assembled as dimmers in the 

endoplasmic reticulum (ER) with help of the specialized chaperone invariant chain 

(li), which occupied the peptide-binding groove. These MHC-II/li complexes are 

transported to the MHC class-II containing compartments (MIIC). Here the 

invariant chain is degraded by cathepsins and proteases until only the part that 

occupies the peptide-binding groove is left, which is called CLIP. In these 

compartments, MHC-II encounters antigenic peptides fragments, in size between 

9-25 mer, derived from proteins degraded in the endocytic track. CLIP is then 

exchanged for one of these fragments with the help of the chaperone HLA-DM. 

The resulting peptide fragments associate with MHC class-II molecules presents 

within phagosomes and migrate to cell membrane to be presented to CD4
+
 T helper 

cells that stimulate mainly the production of antibodies (Ramachandra et al., 1999; 

Rocha and Neefjes, 2007). 
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4.1.1.2. Intracellular antigens - MHC Class-I pathway 

 

Intracellular antigens from self or from pathogens, such as virus, are degraded 

in the cytoplasm or nucleus by the ubiquitin-proteasome pathway (endogenous 

pathway), where the proteins are conjugated with a chain of ubiquitin molecules, a 

marker for rapid degradation (Goldberg and Rock, 1992; Hershko and 

Ciechanover, 1998; Rock et al., 1994). The proteasome degrades proteins into 

oligopeptides ranging in size from 2-3 residues to >20 amino acids, and the 

majority of these residues are further hydrolyzed by cytosolic peptidases ultimately 

into amino acids that are re-utilized for protein synthesis or energy (Rock and 

Goldberg, 1999). However, a small fraction of resulting peptides >7 residues that 

survived to complete destruction are shuttled into the endoplasmatic reticulum 

(ER) through the transporter associated with antigen processing (TAP protein). In 

the ER, long peptides are trimmed by ER aminopeptidase-1 (ERAP1) to peptides 

of 8-9 residues (York et al., 2002). 8-mer or 9-mer peptides with appropriate 

sequences, are loaded into newly synthesized MHC class-I molecules by loading 

complex (ER chaperones clanexin, calreticulin and tapasin). MHC class-I/peptide 

complexes are then transported to the cell surface, where it stimulates cytotoxic T 

lymphocytes (CTLs) that kill directly infected cells. The MHC class-I presentation 

of endogenous antigen by professional APCs to elicit an immune response is also 

called direct presentation.  

CD8
+
 cytotoxic lymphocytes are crucial for clearance of infected cells and 

provide the major defense against cancer.  However, this pathway does not explain 

how can CTL responses be elicited against tumor cells of non-hematopoietic origin 

or against viruses that no not infect professional APCs? The first evidence was 

shown by Bevan in 1976, were CTL responses could be elicited against antigens 

derived from an exogenous source. He showed that minor histocompatibility  

antigens could be transferred from donor cells to host APCs which result in T-Cell 

priming, ―cross-priming‖ (Bevan, 1976a, 1976b). Consequently, extracellular 
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antigens can have access into endogenous pathway by a mechanism not well 

known, and antigens could be present into MHC class-I complex. This mechanism 

is denominated antigen cross-presentation and it is almost restricted to DCs, 

which should have specialized machinery. The term ―cross priming‖ is used when 

presentation results in activation and ―cross tolerance‖ is used when there is 

tolerization of CD8
+
 T-Cells (Heath and Carbone, 2001b; Touret et al., 2005; 

Yewdell et al., 1999). Antigen cross-presentation is teleologically attractive in that 

it serves three evolutionary purposes (Chen et al., 2004b): (1) as a fallback 

mechanism for viruses that evade CTL activity by failing to replicate within APCs; 

(2) as a tumor surveillance mechanism and (3) as a means for inducing peripheral 

tolerance to self-antigens not synthesized within APCs (Lin et al., 2008b).   

 

4.1.2. Antigen cross-presentation  

     4.1.2.1. Internalization pathways for antigen cross-presentation  

 
Immunity to microbial infections or tissue remodeling (eliminating self) 

depends on engulfment into intracellular vesicles by specialized phagocytic cells 

(Macrophages, Neutrophils and DCs). However, these two different processes 

usually give rises to a different immune response, where phagocytosis of microbes 

triggers inflammatory response but not engulfment and degradation of apoptotic 

cells. These inflammatory vs anti-inflammatory outcome depends on the type of 

receptors and signaling pathways that are engaged during recognition (Greenberg 

and Grinstein, 2002; Henson et al., 2001; Underhill and Ozinsky, 2002).  

The uptake of particles >0.5 μm in size is termed phagocytosis, whereas 

particles < 0.5 μm are taken up by receptor-mediated endocytosis or pinocytosis 

(Rejman et al., 2004). Distinct types of phagocytosis tend to be ligand specific: 

bacteria (~0.5–3 μm) or yeast (~3–4 μm) are internalized by macrophages through 

scavenger receptors. Microorganisms can also be coated with serum components 

(for example, complement) or antibodies and then taken up through complement 
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(Underhill and Ozinsky, 2002; van Lookeren Campagne et al., 2007) or Fc-

receptors (Nimmerjahn and Ravetch, 2006; Swanson and Hoppe, 2004), 

respectively. Cells that undergo apoptosis, which can range in size from 5 to 50 

μm, must also be removed (Kinchen and Ravichandran, 2008). 

DCs acquire exogenous antigens through four major pathways. The nature of 

the antigen determines which internalization route is used. (a) Large particulate 

antigens (such as bacteria, cell debris, apoptotic cells and biologically inert 

particles) are internalized by phagocytosis, a clathrin-independent process trough 

phagosomes (a membrane-bound organelle formed when a phagocytic cell engulfs 

particulate material) (Brown, 1986). (b) Small particulate antigens enter the cell by 

endocytosis, the formation of vesicles of between 150-200nm formed at sites of 

membrane invaginations, termed coated pits, mediated by cells surface receptors 

(Mellman, 1996). (c) Pinocytosis describes the uptake of soluble antigens as part of 

the extracellular fluid present in the vicinity of the budding endosome. Uptake of 

endocytic vesicles can be both clathrin dependent and independent. (d) Large fluid 

volumes are internalized by macropinocytosis, by the formation of nonspecifically 

large vacuoles around 200-500nm at sites of membrane ruffling (Brode and 

Macary, 2004).  

Antigen from endocytic vesicles is either retro-translocated into the cytosol for 

presentation via the classical pathway or loaded on MHC class-I molecules within 

the endocytic compartment for antigen cross-presentation, or in MHC class-II 

molecules in vacuolar pathway (Brode and Macary, 2004).  This balance is not well 

understood so far as well the type of stimulus that favors the different pathways. 

However, physiologically, phagocytosis is probably a major route for antigen 

uptake and cross-presentation (Savina and Amigorena, 2007). Phagocytosis is the 

center of immune response by providing a route for destruction of pathogens and 

generation of antigenic ligands. This process could be divided in four stages: (1) 

particle attachment to cell surface and target recognition by surface receptors that 
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initiate cytoskeletal rearrangements and membrane trafficking; (2) particle 

internalization, characterized by the flow redistribution of the plasma membrane to 

surround the particle;  (3) phagosome formation / maturation by exchange material 

initially with early endosomes and subsequently with late endosomes and 

lysosomes to form phagolysosomes; (4) fusion with plasma membrane leading to 

antigen presentation in MHC class molecules to T-Cells (Greenberg and Grinstein, 

2002).  

Work done in DCs, showed that particle antigens (i.e. Ovalbumin adsorbed to 

latex beads), that force internalization by phagocytosis, strongly increased the 

efficiency of antigen cross-presentation (Kovacsovics-Bankowski et al., 1993; 

Shen et al., 1997). Initially it had been suggested that the efficiency of antigen 

cross-presentation may be due to differences in phagocytic capacity (Albert et al., 

1998). Indeed, all DCs subsets have equivalent capacities of both soluble and 

particulate antigens. However they have a different ability to cross-present (den 

Haan et al., 2000; Pooley et al., 2001; Schulz et al., 2002). It is important to note 

that uptake of particulate antigens may trigger a different pathway(s) than uptake 

of soluble antigens, which could lead to different efficiencies in antigen cross-

presentation (Graham et al., 2007). Therefore, whether receptors only selectively 

drive antigens to specific endocytic cross-presentation compartments or just 

accumulate antigens within DCs to favor antigen cross-presentation is still 

unknown (Guermonprez et al., 2002). Once antigen is in the phagosome, how are 

presented peptides generated and how do they get to MHC class-I molecules?  
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4.1.2.2. Antigen loading into MHC class I pathway - Mechanism(s) 

 
There are two main pathways for presentation of exogenous antigens via MHC 

class–I: (1) one requires escape of exogenous antigen via active transfer from 

phagosomes into the cytosol for proteasomal degradation – Cytosolic Pathway 

(Arnold et al., 1995; Kovacsovics-Bankowski and Rock, 1995; Norbury et al., 

1995; Reis e Sousa and Germain, 1995); (2) the other involves the activity of 

lysosomal proteases for peptide generation within the phagosome itself – Vacuolar 

Pathway (Shen et al., 2004). There is another interesting model proposed by J. 

Neefjes‘ lab, which implicates GAP junctions in the swapping of intracellular 

peptides to adjacent APCs (Neijssen et al., 2005), but its relevance has not been 

addressed so far. The cytosolic pathway is considered the most important pathway 

under physiological conditions for antigen cross-presentation, while the 

―alternative‖ vacuolar pathway contribution in vivo is relatively insignificant (Rock 

and Shen, 2005). 

 

4.1.2.2.1. The Vacuolar Pathway – TAP independent pathway 

 

The vacuolar pathway model (fig.4) propose that MHC class-I molecules 

encounter and bind exogenously derived peptides in post-Golgi or endolysosomal 

compartments, in the same way as MHC class-II molecules, before being 

transported to the cell surface. Indeed, MHC class I-β2-microglobulin dimmers are 

present in the endosomes of immature DCs and can traffic rapidly to the cell 

surface upon encounter with a maturation signal (Ackerman and Cresswell, 2003; 

Kleijmeer et al., 2001; MacAry et al., 2001). How peptide-receptive MHC class-I 

molecules traffic to the vacuole is unknown, although there are several possible 

routes of entry. Specific sorting of MHC class-I molecules from the plasma 

membrane into endosomes that could fuse with phagosomal compartments (Chiu et 

al., 1999; Reid and Watts, 1990), is mediated by a highly conserved tyrosine motif 
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within the cytoplasmic tail region (Lizee et al., 2003). Intriguingly, deletion or 

mutation of this motif abrogates acquisition and antigen cross-presentation of 

exogenously derived peptides in vitro and attenuate T lymphocyte responses to 

immunodominant viral epitopes in vivo (Lizee et al., 2003). Consistent with these 

possibilities, vacuolar antigen cross-presentation was reported to be insensitive to 

brefeldin A (BFA) which blocks exocytosis of proteins from the ER (Pfeifer et al., 

1993). This mechanism does not require TAP and was insensitive to proteasome 

inhibitors and therefore was clearly different from the phagosome-to-cytosol 

pathway (Song and Harding, 1996). Different types of antigens have been shown to 

be cross-presented, at least in part, by this vacuolar pathway: Proteins associated 

with E.coli (Campbell et al., 2000; Pfeifer et al., 1993; Song and Harding, 1996; 

Wick and Pfeifer, 1996), poly(lactic-coglycolic acid) (PLGA) particles (Shen et al., 

2004), viral proteins/virus-like particles (Bachmann et al., 1995; Ruedl et al., 2002; 

Stober et al., 2002) or even soluble antigens (Chen and Jondal, 2004).  

For vacuolar pathway presentation, antigens are not generated in the cytosol but 

instead within endocytic vacuoles. The proteases resident in these compartments 

may play an important role in peptide generation. Protease inhibitor leupeptin, 

several cathepsins resident in the endocytic compartments shown to be sensitive to 

leupeptin (Chapman et al., 1997; Villadangos et al., 1999), and DCs deficient on 

cathepsin S were unable to present Ovalbumin antigen by the vacuolar pathway but 

does not affect the phagosome-to-cytosol Ovalbumin antigen presentation pathway 

(Shen et al., 2004). These indicate that the proteases involved in the two pathways 

were clearly distinct. However, an absence of cathepsin B, L or D had no effect on 

antigen cross-presentation by both pathways (Shen et al., 2004). Cysteine 

Proteases, including cathepsin S, are able to generate peptides for MHC class-II 

presentation pathway. Shen and colleagues shown that chatepsin S could play a 

key and non-redundant role in the vacuolar pathway of antigen cross-presentation, 
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at least for several antigens, and was not substitute by others cathepsins (Shen et 

al., 2004). 

 

 

Fig.4: Vacuolar pathway of antigen cross-presentation: In the vacuolar pathway, antigen is 
internalized into phagosomes where it is degraded into oligopeptides by cathepsin S and possibly 
other endosomal proteases. The resulting peptides are probably loaded onto major histocompatibility 
complex class-I molecules (MHC-I) that have trafficked into the vesicle from the plasma membrane 
or from the endoplasmic reticulum (ER), either by internalization, transport or ER–phagosome fusion,  

and presented at cell surface. See text above for details. Adapted from (Rock and Shen, 2005). 
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4.1.2.2.2. Phagosome-to-cytosol pathway - TAP-dependent pathway 

 
The Phagosome-to-cytosol pathway model (fig.5) proposes that the antigen 

internalized into endosomes is followed by release into the cytosol (translocation) 

of the APCs (Delamarre et al., 2003; Rodriguez et al., 1999). In the cytosol, 

proteins need to be degraded (Cresswell et al., 2005) by proteasome before being 

transported into the lumen of the endoplasmatic reticulum (ER) via TAP. In the ER 

the antigens are loaded onto newly synthesized MHC class-I molecules, that are 

transported to the cell surface to be presented to CD8
+
 T-Cells. At least, three 

observations support this model: Antigen cross-presentation is abrogated by the 

inhibition of proteasomal degradation using lactacystin (Rodriguez et al., 1999); by 

inhibition of TAP or in TAP-deficient professional APCs (den Haan et al., 2000); 

and by inhibition of the secretory pathway and the trans-golgi network using 

brefeldin A (Kovacsovics-Bankowski and Rock, 1995). 

 

4.1.2.2.2.1. The ER-Phagosome Model 

 

Recent revelations regarding the phagocytic process support an alternative 

molecular model for antigen cross-presentation. This may occur autonomously 

through an involvement of the ER in the generation of phagosome compartments 

but in a TAP - dependent manner, the ER-phagosome fusion model. This model 

proposes that during phagosome formation there is an ER recruitment, which 

allows the phagosomes to contain all MHC class-I loading machinery (Pierre, 

2005) and other required ER-components important for antigen cross-presentation 

(Gagnon et al., 2002; Houde et al., 2003). This model is similar to the phagosome-

to-cytosol model in that antigen retro-translocated to the cytosol for proteasome-

mediated processing. However, it differs in that peptides are transported back into 

the phagosomes, instead of the ER, for the MHC class-I/peptide complexes 

formation. It has been a paradigm for more than three decades that the plasma 
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membrane, through invaginations, provides all of the membrane required to form 

complete phagosomes. Active phagocytes are capable of engulfing large numbers 

of particles without any apparent loss from their plasma membrane (Werb and 

Cohn, 1972). Membrane regeneration process alone is difficult to explain this 

observation. The ER-phagosome fusion model was originally suggested by 

proteomic analysis (mass spectrometry and two-dimensional gel electrophoresis) of 

latex bead phagosomes from mouse macrophages that shown presence of many 

ER-derived components, including the MHC-I loading machinery in phagosomes 

(Garin et al., 2001). Further analysis showed that phagosomes fuse with the ER 

during particle engulfment, and that ER membranes constitute a large part of 

phagosomal membranes (Gagnon et al., 2002). Three independent studies came out 

at same time with the evidence that phagosomes in both macrophages (Houde et 

al., 2003) and DCs (Ackerman et al., 2003; Guermonprez et al., 2003) were 

competent organelles for antigen cross-presentation. Additionally, antigen cross- 

presentation studies via this route was only partially inhibited by brefeldin A 

(blocks exocytosis of proteins from the ER), suggesting that the ER-fused 

phagosomes are able to transport peptide-loaded MHC class-I complexes directly 

to the cell surface independent of Golgi-mediated transport (Yewdell and Haeryfar, 

2005). Briefly, ER membranes fuse with the plasma membrane to form the 

complete phagosome with a large portion of ER-derived membranes and proteins 

including all the major elements of the MHC class-I  loading complex such as 

TAP, tapasin, calnexin, MHC class-I heavy chain, ER chaperones, disulphide 

isomerases (Grp78, ERp57), ER-aminopeptidases associated with peptide 

trimming (ERAP) and the peptide translocation channel (sec61) (Gagnon et al., 

2002; Houde et al., 2003). Despite much controversy regarding the purity of the 

phagosomal preparations in such studies (Touret et al., 2005), subsequent studies 

confirmed the existence of endoplasmic reticulum–based proteins in phagosomes 

(Ackerman et al., 2003; Guermonprez et al., 2003; Houde et al., 2003). 
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Phagosomes gradually progress through the endocytic pathway and acquire 

hydrolases such as cathepsins. Partial proteolysis by cathepsins generates 

polypeptides suitable for export into cytosol by Sec61. Cytosolic peptides are poly-

ubiquitinated by the ubiquitinating enzyme complex (UBC) become substrates for 

proteasomal degradation. After proteasomal degradation, processed peptides are re-

imported (translocated) by the TAP into the lumen of phagosomes compartments 

and trimmed by ER aminopeptidase (ERAP) into 8-9 residues. Indeed, the import 

of peptides is dependent on TAP, as demonstrated by: antibodies against TAP, the 

inhibitory peptide ICP47 derived from herpes simplex virus, and US6 a low-

molecular weight cytomegalovirus protein (Ackerman and Cresswell, 2003). This 

8-9 length ideal peptides are loaded into MHC class-I molecules by the MHC 

class-I loading complex. Phagosomes containing loaded MHC class-I molecules 

may recycle back to the plasma membrane by exocytosis to be present to CD8
+
 T-

Cell. The role of the cytosolic pathway in antigen cross-presentation was recently 

confirmed in vivo, by the selective suicide of DCs that are able to translocate 

exogenous proteins, using cytocrome c intravenously (Lin et al., 2008a). 
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Fig.5: Antigen cross-presentation: Phagosome-to-cytosol pathway. In the phagosome-to-cytosol 
pathway, antigen is internalized into phagosomes or macropinosomes and then transferred into the 
cytosol. Recently, it was found that a subset of phagosome acquires transporter associated with 

antigen processing (TAP), MHC class-I, Tapasin, and Sec61 from the ER, and it is not presently clear 
to what extent these vesicles versus standard phagosomes participate in this pathway. The mechanism 
by which proteins are transferred from phagosomes into the cytosol is not understood, although it has 
been hypothesized that this export may occur through Sec61. Once in the cytosol, the antigen is 
hydrolyzed by proteasome into oligopeptides that are then transported by TAP and loaded onto MHC 
class-I molecules in the endoplasmic reticulum (ER) or the ‗ER – phagosome‘ vesicles, and presented 
at cell surface. See text above for details. Adapted from (Rock and Shen, 2005). 
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4.1.2.3. Key steps in MHC class-I antigen cross-presentation 

 

These exogenous antigens to be presented to CD8
+
 T-Cells need to utilize the 

conventional MHC class-I presentation pathway, where exists three crucial steps: 

the release into cytosol (retro-translocation machinery) (Gagnon et al., 2002; 

Houde et al., 2003), the antigen processing mediated by proteasome complex and 

the transport associated (Brossart and Bevan, 1997; Kovacsovics-Bankowski and 

Rock, 1995) and the control of phagosomal maturation (Blander and Medzhitov, 

2006a). 

 

4.1.2.3.1. Antigen transport into the cytosol (retro-translocation) 

 

For the antigens to be degraded by the proteasome the antigens should have 

access to the cytosol (Pierre, 2005). Therefore, the logical question to ask is, how 

are antigens internalized into endosomes/phagosomes transferred across 

membranes into cytosol? There is a simple explanation that antigens could 

passively egress through ―leaky‖ phagosomal membranes (Reis e Sousa and 

Germain, 1995). However this observation is questioned by Amigorena´s lab, were 

they shown that immune complexes tracked microscopically by fluorescent dye 

retained their immunoglobulin portion within endosomal compartments after 

cytosolic translocation (Rodriguez et al., 1999). In this work, they also proposed 

the existence of a selective size-specific process that permits retro-translocation of 

the phagosome into the cytosol. The nature of the channel or complex is not well 

defined (Lilley and Ploegh, 2004; Ye et al., 2004), however there is some evidence 

from the interaction of Ovalbumin antigen with the ER-associated degradation 

(ERAD) pathway translocon, sec61 (Imai et al., 2005). Another channel protein, 

Derlin1, another component of the ERAD pathway, was also implicated (Lilley 

and Ploegh, 2004; Ye et al., 2004).  
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Sec61 is normally involved in the import of newly synthesized proteins from 

ribosomes into the endoplasmic reticulum. However, in ways that are incompletely 

understood, the direction of transport through Sec61 can be reversed (Tsai et al., 

2002). Sec61 is known to be involved in the retro-translocation of misfolded 

proteins from the endoplasmic reticulum to the cytosol for degradation, so it has 

been proposed that Sec61 might be involved in the translocation of proteins in 

phagosomes to the cytosol (Ackerman et al., 2003). Sec61 has been isolated from 

purified phagosomes from DCs, but there is no crucial experiments showing 

mediated export of internalized antigens (apart from dextrans) (Rodriguez et al., 

1999) from phagosomes into cytosol. Recently, Cresswell‘s lab made use of 

exotoxin A, inhibitor of sec61 transporter, which results in inhibition of antigen 

cross-presentation of soluble Ovalbumin (Ackerman et al., 2006). The exogenous 

antigens were rapidly found in cytosol within 1-2hr of internalization and sec61 

appears to be involved (Guermonprez et al., 2003; Houde et al., 2003; Roy, 2002). 

This translocation was also observed with the colera toxin subunit 1 (CTA1), a 

known substrate for Sec61, suggesting the role of this complex in the translocation 

events observed (Schmitz et al., 2000).  

However, a major problem exists: the size of sec61 channel. A crystal structure 

for secY (homolog of sec61), showed that the diameter of this pore-like channel is 

around 5-8Å in diameter (Van den Berg et al., 2004), which appear to be too small 

to accommodate large proteins as 30-60 KDa, dextrans, luciferase or horse radish 

peroxidase, with an expected radii of >30Å (Van den Berg et al., 2004), that have 

been previously shown to egress from phagosomes into the cytosol (Norbury et al., 

1997; Norbury et al., 1995; Rodriguez et al., 1999). In a recent review, Lin and 

colleagues suggest that this could be due to: 1) the sec61 channel has the capacity 

to widen, 2) proteins are transferred out of phagosomes in an unfolded state and 

subsequently refolded in the cytosol or, 3) additional pathways for cytosolic 

transfer are available (Lin et al., 2008b; Rock, 2006).  
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4.1.2.3.2. Antigen processing /degradation 
 

To be presented in MHC class-I molecules, antigenic peptides of defined length 

(usually 8–10 amino-acid residues long) and sequence have to be generated. Where 

and how are generated these peptides? Houde and colleagues have found that some 

of the antigens internalized into phagosomes are polyubiquitinated (Houde et al. 

2003). Proteasome - an ATP dependent, multisubunit protease - is the central 

proteolytic machinery in the cell, involved in the turnover of proteins and plays a 

critical role in initiation protein breakdown to generate most antigenic peptide 

ligands for MHC class-I molecules (Rock et al., 1994; York et al., 1999). 

Proteasome are required to make the C-terminal cleavages that generate the 

presented peptide (Goldberg et al., 2002). Proteasome tends to cleave after 

hydrophobic or basic residues — residues that are favored as carboxy-terminal 

anchor residues – this final N-terminal peptide generation is crucial for correct 

loading into MHC class-I molecules (Beninga et al., 1998; Mo et al., 1999). Other 

proteases and peptidases could contribute to the MHC class-I peptide pool, but in a 

minor extension (Schwarz et al., 2000).  

Because large percentage of antigenic peptides are not generated as 8 or 10-

residue products that bind MHC class-I molecules, but precursors peptides of 10-

12 residues, they required to be cleaved at N-terminal by cytosolic and ER amino 

peptidases (ERAAP or ERAP1) (Lauvau et al., 1999; Mo et al., 1999). This 

trimming should in some way controlled, a role develop by cytosolic chaperons 

who protect MHC class-I epitopes for total degradation in cytosol.  

Polyubiquitylated proteins are marked for rapid degradation by 26S proteasome, 

composed of the 20S proteasome, representing the catalytic core, and two 19S 

regulator complexes that are responsible for the binding and unfolding of 

substrates (Kloetzel, 2001). The proteasome composition and expression of 

modulatory cofactors can vary accordingly the type of inflammatory environment, 

which will affect the repertoire of peptides produced (Naujokat et al., 2007; 
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Visekruna et al., 2006). However, the evidence that proteasomes are involved in 

cross-presenting of exogenous antigens remains indirect and only based on in vitro 

data using proteasome inhibitors (Ackerman and Cresswell, 2004; Kovacsovics-

Bankowski and Rock, 1995; Norbury et al., 1997; Norbury et al., 1995; Shen et al., 

2004). Proteasomes are localized in the cytosol and are not found in the ER and 

endolysosomes, demonstrating that cross-presented proteins are processed by 

either form of proteasomes should intersect the cytosol during antigen cross-

presentation. Typical proteasome are not always well suited for generating 

antigenic peptides. To process antigens more efficiently, the cell replaces some of 

its proteasomal subunits with more appropriate subunits. Exposure of cells to IFN-

γ induces the synthesis of three proteolytic proteasome subunits (LMP2 (βli), 

LMP7 (β5i), and MECL-1(β2i)), which are incorporated into an alternative form of 

proteasome, called immunoproteasome, displacing the constitutive subunits β1, β2, 

and β5, respectively (Aki et al., 1994; Kelly et al., 1991; Martinez and Monaco, 

1991; Ortiz-Navarrete et al., 1991). Other stimuli like TNF-α and IFN-β as well as 

stimulation of DCs can influence the expression levels of the three immuno-

subunits (Jamaluddin et al., 2001; Kuckelkorn et al., 2002; Loukissa et al., 2000). 

It had been previously demonstrated that defined T-Cell epitopes are exclusively 

generated by immunoproteasomes and fail to be generated by the constitutive 

proteasomes (Cerundolo et al., 1995; Chen et al., 2001; Gileadi et al., 1999; Toes 

et al., 2001; Van Kaer et al., 1994). Immunoproteasomes should generate more 

peptides with C-terminal hydrophobic or basic residues, the kinds of peptides that 

preferentially bind to TAP and MHC class-I molecules (Goldberg et al., 2002). 

Internalized antigens into phagosomes, follow normal maturation process, enter 

the endocytic pathway and are processing for presentation in MHC class-II 

molecules. This pathway is able to generated suitable peptides for MHC class-I 

molecules (Shen et al., 2004). During phagosome maturation process (vesicular 

interactions with endosomes and lysosomes) phagosomes acquired molecules 
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involved in generation of toxic reactive oxygen species (ROS), lysosomal 

proteases (e.g., cathepsins S, L, B, D, and AEP) and proton pumps (e.g., V-

ATPase) (Delamarre et al., 2005; Lennon-Dumenil et al., 2002). The acidic 

environment (drop in pH) that is coupled to phagosome maturation, creates an 

optimal environment for catabolitic protease activity, that contributes to both 

killing of microbes and proteolytic processing of antigens (Ramachandra et al., 

2009). Chatepsin S could play a key and non-redundant role in the vacuolar 

pathway of antigen cross-presentation, at least for several antigens, and is not 

substitute by others cathepsins. An explanation could be the differences in their 

cleavage site or be the predominat protease on this vacuolar compartments 

(Lennon-Dumenil et al., 2002), but most important the unique ability to cathepsin 

S to be catalytically active at neutral pH (Chapman et al., 1997; Shi et al., 1992). 

In contrast all others cathepsins require acid environment for catalytic activity, 

which may be crucial, because at low pH, class-I molecules may not be able to 

stably bind peptides (Chapman et al., 1997; Villadangos et al., 1999). Another 

possibility is that peptides generated in endocytic compartments could be loaded 

onto class-I molecules in another location in the cell for antigen cross-presentation. 

It is reported that peptides from phagosomes could traffic to MHC class-I 

molecules in the ER through a retrograde transport mechanism (Day et al., 1997). 

The precise site(s) of processing and peptide loading was not well identified; 

however lysosomes (or late endosomes) are obvious candidates, by their capacity 

of digestion of internalized antigens were loading machinery accumulates 

(Trombetta and Mellman, 2005).  

However, a fine balance should be achieved between proteolytic function to 

process antigens and complete destruction, for the antigens to be present by MHC 

molecules. This are regulated at phagosomal acidification level as well as at 

protease activity during different stages of APCs activation or maturation 

(Delamarre et al., 2005; Trombetta et al., 2003; Trombetta and Mellman, 2005). 



 

 

 

 

 

Chapter 1_________________________________________________________________ 

 

46 

DCs have adapted their intracellular machinery to focus on antigen presentation 

rather than microorganism killing (antigen degradation) that is best played by 

macrophages and neutrophils (Savina et al., 2006). This type of mechanism by 

DCs can generate long-lived peptide-MHC complexes leading to ―antigenic 

memory‖ which result in high efficiency in antigen presentation (Trombetta and 

Mellman, 2005; Villadangos et al., 2005). 

 

4.1.2.3.3. Regulation of phagosomal maturation   

 
Regulated activation of lysosomal acidification appears to be an important 

element controlling antigen presentation during DC maturation. The control of 

lysosomal pH depends on many factors and is primarily due to the influx of H
+
 into 

the lysosome (Mellman et al., 1986) mediated by the vacuolar ATPase (V-ATPase) 

(Nishi and Forgac, 2002; Stevens and Forgac, 1997). After internalization, a 

gradual remodeling of the phagosomal membrane and contents occurs through a 

finely coordinated sequence of fusion events with vesicular components of the 

endocytic and possibly also secretory pathways (Beron et al., 1995; Desjardins et 

al., 1997; Mayorga et al., 1991; Pitt et al., 1992). This process was described as 

―phagosome maturation‖ (fig.6) (Vieira et al., 2002). Despite multiple rounds of 

fusion, the surface area of the phagosome remains approximately constant (Bajno 

et al., 2000; Hackam et al., 1998; Holevinsky and Nelson, 1998) by virtue of 

concomitant fission events that contribute to remodeling. Maturing phagosomes 

ultimately fuse with lysosomes for terminal degradation of the cargo and killing of 

internalized microorganisms. This process is accompanied by a progressive 

decrease in phagosomal pH, and could reach lower values such pH 4.5 in 

lysosomes (Hayashi et al., 1973). Hydrolytic enzymes resident in late endosomes 

and lysosomes have low pH optimum, which ensures that their activities are 

confined to a particular stage in the endocytic pathway (Blander and Medzhitov, 

2006a). Acidification of the phagosomal lumen is generated by the vacuolar 
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ATPase (V-ATPase) (composed by V1 domain that bind and hydrolyze ATP and 

V0 domain that serves as the pore for protons transport) delivered via fusion with 

membranes of the endocytic pathway (Forgac, 1998; Nishi and Forgac, 2002).  

 

 

Fig.6: The sequential incorporation of early endosomes, late endosomes and lysosomes to 
phagosomes drives phagosome maturation. These vesicles (identities indicated by different colors) 
are recruited to the phagosomal surfaces and then fuse with phagosomes, providing the phagosome 
with a variety of protein and lipid materials composition. Phagosome luminal pH starts to decrease 
after the completion of engulfment and reaches the lowest level when a phagosome evolves into a 
phagolysosome. A phagolysosome gradually decreases in size and eventually disappears. Adapted 

from (Zhou and Yu, 2008). 

 

In addition, as found for the endocytic and secretory systems, there is mounting 

evidence suggesting that acidification is not only a consequence but also a 

determinant of phagosomal maturation (Gordon et al., 1980) and phagosome-

endosome fusion (Gordon et al., 1980; Hart and Young, 1991). The control and 

regulation of phagosome maturation is not yet fully understood. Phagosome 

acidification seems to be tailored to the functions of the particular cell type. The 

outcome of phagosome maturation in macrophage is the killing of pathogens and 

complete degradation and clearance of phagosomal cargo. Instead, in DCs, it 

serves to prevent complete degradation of cargo antigens such MHC molecules can 

present the right epitope to T-Cells. DCs seems to actively maintain a more 

alkaline pH within their phagosomes (Savina et al., 2006). A progressive decrease 

in phagosomal pH occurs over time in macrophages whereas no significant 

acidification seems to occur in DCs (Janssen et al., 2006). The steps in phagosomal 
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maturation seems to be conserved among different cell types, however phagosomes 

are not created equal and there is a significant degree of phagosome heterogeneity 

and individuality that is dictated primarily by the cargo contained in phagosomes 

as well as by external signals and the activation/or differentiation state of 

phagocytic cells (Griffiths, 2004) .  

Recent proteomic studies, revealed phagosomal complexity and association 

with hundreds of proteins that differ upon stimulation (Desjardins et al., 1994; 

Garin et al., 2001; Griffiths and Mayorga, 2007). The rate of phagosome 

maturation is: i) dependent on its contents, illustrated by the ability of some 

intracellular pathogens to arrest phagosome development to aid their survival 

(Vergne et al., 2004) and ii) mediated by signaling pathways activated during 

engulfment as suggested by studies inhibiting Toll-like receptor signaling (Blander 

and Medzhitov, 2004; Shiratsuchi et al., 2004). At the phagosomal level, receptor-

ligand interactions during phagocytosis could have an important role.  

 

4.1.2.4. Antigen cross-presentation: State-of-the-art 

4.1.2.4.1 Antigen cross-presentation in vivo - Differential contribution of 

different mechanisms 

 
The different mechanisms for antigen cross-presentation have been 

characterized in vitro. Are similar mechanisms operative in vivo? Ken Rock´s lab 

has shown that the same particulate antigens that are cross-presented by APCs in 

vitro are similarly acquired by these cells when injected in vivo and stimulate 

strong CTL immunity (Falo et al., 1995; Kovacsovics-Bankowski et al., 1993). In 

contrast, injection of soluble antigen fails to prime CD8
+
 T-Cell response. 

Therefore in vivo, as in vitro phagocytosis and phagosomes plays an important role 

in antigen cross-presentation (Rock and Shen, 2005). Some studies using wild type 

irradiated mice reconstituted with TAP-deficient bone marrow macrophages and 

DCs, have shown that TAP-dependent antigen cross-presentation is active in vivo 
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and plays a major role in cross-priming of CD8
+
 T-Cells to viruses, tumors (Huang 

et al., 1996; Sigal et al., 1999) and transplant cells (Shen et al., 2004). In contrast, 

in TAP-deficient bone marrow chimeras, CD8
+
 T-Cell response was primed to 

PLGA-OVA, high-dose influenza virus, and also weakly to transplant cells (Shen 

et al., 2004). Therefore, the cathepsin S-dependent pathway is operative in vivo, 

although its contribution is less than the TAP-dependent pathway. TAP-

independent pathway can be up-regulated during DC maturation, either by LPS or 

CpG, suggesting that under certain conditions it can play a more significant role 

(Chen and Jondal, 2004; Robson et al., 2003). It potentially plays a major role in 

situations where the TAP-dependent pathway is inhibited (due to infection with 

virus encoding immune evasion molecules or with antigens that are unable to 

access the cytosolic pathway).  

 

4.1.2.4.2 Are all DC sub-types able to cross-present antigens? 

 

Not all DCs are created equal, as some subsets may have a greater capacity to 

cross-present antigens to CD8
+
 T-Cells (Lin et al., 2008b; Villadangos and Heath, 

2005). Bevan´s group was the first to show differences in antigen cross-

presentation ability to cell-associated antigens between the various DC subsets, 

reporting that all subsets were capable of antigen uptake, but only the CD8
+
 DC 

subset are able to cross-present in vivo (den Haan et al., 2000). Further studies 

confirmed the same observation, shown that cell-associated antigen was cross-

presented by CD8
+
 but not CD8

-
 DC (Iyoda et al., 2002; Naik et al., 2005b; Schulz 

and Reis e Sousa, 2002). The capacity of the CD8
+
 DC in uptake of dead cells was 

in the origin of the unique ability to cross-presenting this form of antigen (den 

Haan et al., 2000; Iyoda et al., 2002; Kerksiek et al., 2005; Schulz and Reis e 

Sousa, 2002; Valdez et al., 2002). Moreover,  antigens in immunocomplexed form 

(OVA/Ig complexes), or associated to bacteria, were reportedly cross-presented by 

both CD8
+
 and CD8

-
 DC (den Haan and Bevan, 2002; Iyoda et al., 2002; Schulz 
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and Reis e Sousa, 2002). Thus, the context of antigen with additional activator 

ligands, if in an immune complex (via the FcR-γ ), or additionally if seen together 

with Toll-like receptor ligands (associated with bacteria), may endow cDC, at least 

in spleen, with the ability to cross-present antigens (Maurer et al., 2002). 

Therefore, both spleen CD8
− 

cDC subsets, under certain circumstances, are able to 

cross-present antigen at least as well as CD8
+
 cDC.  

These findings led to the hypothesis that all DCs can cross-present and that the 

role of each DC subset in cross-presentation of a given antigen is dictated simply 

by their ability to capture that antigen. However, work done with soluble antigen 

by Pooley et al., shown that both CD8
+ 

and CD8
-
 DC captured this form of antigen 

in vivo, but only the CD8
+ 

DC cross-presented it efficiently (Pooley et al., 2001). 

Recent work done by Schnorrer et al., support the notion that CD8
+
 DC possess 

specialized machinery to deliver different forms of antigen to the cross-

presentation pathway and that this machinery is largely absent in the other splenic 

DC subsets (Schnorrer et al., 2006). Indeed, the CD8
+ 

DC capacity for antigen 

cross-presentation was extended to soluble antigen (Pooley et al., 2001), viral 

(such as herpes simplex virus, vaccinia and influenza) (Belz et al., 2004a; Smith et 

al., 2003), bacterial (such as Listeria monocytogenes) (Belz et al., 2005) and 

apoptotic cells (Iyoda et al., 2002).  In contrast, CD8
-
 DCs generally appear to be 

required for CD4
+
 T-Cell immunity to soluble antigens (Pooley et al., 2001), HSV-

2 infections (Zhao et al., 2003) and cutaneous Leishmania (Filippi et al., 2003). 

pDCs have been implicated in antigen cross-presentation at least in vitro (Hoeffel 

et al., 2007). However, in most studies, the efficacy of antigen cross-presentation 

by pDCs is modest compared with cDCs (Salio et al., 2004; Schnurr et al., 2005). 

However the route of administration (such as intravenous, lung or intragastric 

delivery) of cross-presented antigen may also determine the DC subset involved. 

The general conclusion of different in vivo studies using different routes of 

administration is that resident CD8
+ 

DC in spleen and peripheral lymph nodes are 
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potent at cross-presenting, whereas migratory CD8
-
 DCs have a small capacity to 

cross-present (Belz et al., 2004b; Chung et al., 2005; Iwasaki and Kelsall, 2001; 

O'Connell et al., 2003; Pillarisetty et al., 2004; Stoitzner et al., 2006; Vremec et 

al., 2000; Waithman et al., 2007). Therefore, in a per cell basis the CD8
+
 DCs have 

higher antigen cross-presentation capacity. A summary of CD8
+
 and CD8

-
 DCs 

antigen presentation capacities are represented in the following table. 

 

Table II: Summary of CD8+ and CD8- DCs antigen presentation and uptake abilities mediated by the 
source of the antigen. 
 

Antigen                    CD8
+
 DCs                                           CD8

-
 DCs       

 Uptake MHC-I MHC-II Uptake MHC-I MHC-II 

Endogenous ø ++ ++ ø ++  ++ 

Phagocytosed       

    Cells-antigen ++ ++ + +/- - +/- 

    Beads-antigen ++ ++ +/- ++ - ++ 

Pinocytosed ++ ++ ++ ++ +/-  ++ 

                                                                            Adapted from (Villadangos and Schnorrer, 2007) 

 

4.1.2.4.3 Antigen cross-presentation in tolerance and immunity  

 

During these past years has been clear that immune system uses antigen cross-

presentation to monitor tissues for the presence of foreign antigens in cells. 

However it is not clear exactly how these proteins are acquired by the APCs, by 

released of cellular proteins by secretion or cell death or even by material 

―sequestration‖ of living cells by APCs (Rock and Shen, 2005). The cross-

presented antigens can be acquired in several different forms including DNA or 

RNA, peptides, peptide-HSP complexes (Freigang et al., 2003; Suto and 

Srivastava, 1995; Udono and Srivastava, 1993). However, they play a minor role 

(Wolkers et al., 2004) where cellular proteins appear to be the major source of 

cross-presented antigens in vivo (Shen and Rock, 2004). The aggregation or 
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association of antigen with cellular debris may promote the internalization of the 

exogenous antigens into the antigen cross-presentation pathways of the APCs 

(Carbone and Bevan, 1990; Li et al., 2001).   

Cross-tolerance requires the constitutive presentation of self-antigens to cause 

deletion of self-reactive CTLs (Davey et al., 2002; Kurts et al., 1997). Several 

studies have reported that pancreatic β-cell expression of model self-antigens leads 

to cross-tolerance by host bone marrow-derived DCs (Kurts et al., 1997; Kurts et 

al., 1999; Morgan et al., 1999), and later identified as CD8
+ 

DC (Belz et al., 

2002a). A model to study antigen cross-presentation of apoptotic cells in vivo was 

developed by Steinman and co-workers (Liu et al., 2002). In this study deletion 

tolerance of OVA-transgenic CD8
+
 T-Cell was induced following antigen cross-

presentation of apoptotic cells carrying osmotically loaded OVA by the CD8
+
 DC 

subset (Liu et al., 2002). Thus, together these data indicate that CD8
+
 DCs plays an 

important role in constitutively antigen cross-presentation in the steady state, 

resulting in deletion of naïve peripheral T-Cells and antigen-specific tolerance. 

CD8
-
 DCs were recently implicated in cross-tolerance to intestinal soluble OVA 

(Chung et al., 2005) and to OVA expressed in keratinocytes (Waithman et al., 

2007) as well as CD4
+
 T-Cell tolerance to gastric (Scheinecker et al., 2002) and 

pancreatic autoantigens (Hugues et al., 2002).  

Adjuvants, most of them from microbial origins, play an essential role in the 

generation of immunity, and have been described to enhance immune responses. In 

the absence of these stimuli, antigen can lead to tolerance instead of immunity 

(Dresser, 1961; Heath et al., 1998; Hunter, 2002). Adjuvants are thought to exert 

their effects at least in part by stimulating DCs to fully mature and express 

costimulatory molecules. Therefore, tissue antigens that are internalized by DCs, in 

absence of these stimuli will be predicted to induce cross-tolerance (Heath et al., 

1998; Kurts et al., 1997). However, the release of adjuvants from cells provides a 
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mechanism by which a dying cell‘s antigen can stimulate immunity instead of 

tolerance (Kurts et al., 1998; Shi et al., 2003; Shi et al., 2000).  

 

4.1.2.4.4 Antigen cross-presentation in therapy 

 

Antigen cross-presentation can be the dominant pathway for vaccinia-induced 

CTL responses. There are a number of infectious diseases for which vaccines are 

unavailable or only stimulate suboptimal immunity (Gasteiger et al., 2007). The 

evidence for the role of antigen cross-presentation of certain cellular antigens in 

vivo (such as minor histocompatibility antigens, protein-coated cells, intracellular 

bacteria, intracellular protozoa, certain virus like HSV, influenza and vaccinia) 

appears convincing (Heath et al., 2004). Moreover, there are non-infectious 

indications, such as cancer, that could be potentially treated with vaccines (Rock 

and Shen, 2005; Thomas et al., 2004; Valmori et al., 2007). Antigen cross-

presentation  of dying target cells may be important not only in the pathogenesis of 

a CTL-mediated autoimmune disease like type 1 diabetes (Liadis et al., 2005) but 

also in epitope spreading in this disease (Krishnamurthy et al., 2006; Yamanouchi 

et al., 2003). Most vaccines consist of non-living components of pathogens (killed 

or subunit vaccines). However, they normally fail to elicit CD8
+ 

T-Cell immunity, 

which is extremely important in most of viral infections and cancer, because 

antigens in these preparations do not get presented on the MHC class-I molecules 

of APCs. The major problem could be the way that antigen is delivered. Particulate 

form of the antigen are taken up efficiently by APCs, and presented on both MHC 

class-I and class -II molecules (Falo et al., 1995; Raychaudhuri and Rock, 1998; 

Rock and Clark, 1996). Immature DCs avidly take up particulate antigens, which 

are precisely the cells that can most efficiently stimulate immune responses. Many 

studies have been done with particulate preparations of biocompatible and 

biodegradable materials such polylactide-co-glycolide (Desai et al., 1997; Fu et al., 

2000; Kaiser-Schulz et al., 2007; Newman et al., 2002; Newman et al., 1998; 
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Raychaudhuri and Rock, 1998; Waeckerle-Men et al., 2006; Waeckerle-Men et al., 

2004; Walter et al., 1999; Wang et al., 1999). One advance is the possibility to 

target particulate antigens in ways to elicit CD4
+
, CD8

+ 
T-Cell immunity or both 

responses to better mount a specific immune response to a specific disease. This 

could be done in vivo, by directing this particles to DCs or introduce antigens into 

the antigen cross-presentation pathways of DCs ex vivo and then inject these APCs 

back in vivo as a cellular vaccine (Celluzzi and Falo, 1998; Moron et al., 2004; 

Nestle et al., 2005). 

 

4.1.2.4.5 TLRs in DCs subsets and antigen cross-presentation 

 
The separation of DCs into multiple subsets based on phenotype normally 

correlates with a difference in function. These functional differences could lead to 

understand and manipulate the immune response to pathogens, tumors and self 

(autoimmune diseases). The outcome of immune responses depends on the state of 

DC differentiation or maturation. During the steady state, DCs reside in an 

immature form, and can promote immune tolerance (Davis et al., 1999). Exposure 

to stimuli such as pathogens activates or matures DCs and initiates immunity. 

Therefore, the type of immunity depends the upon the particular maturation 

stimulus that the DC encounters (Dhodapkar et al., 2008; Granucci et al., 2003).  

TLRs, the ancient and highly conserved family of receptors, have been 

implicated in the immune responses to pathogens and many of these could lead to 

many autoimmune pathology. Activation of TLRs by agonist, leads to DC to enter 

into a maturation process, undergoing a number of phenotypical and functional 

changes (Janeway and Medzhitov, 2002). The maturation process, in general, 

involves a redistribution of MHC molecules from intracellular endocytic 

compartments to the DC surface, down-regulation of antigen internalization, an 

increase in expression of co-stimulatory molecules (CD80, CD86, CD40) and 

MHC class-II molecules at cell surface. It is normally characterized by 
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morphological changes (e.g. dendrites formation), cytoskeleton re-organization, 

surface expression of adhesion molecules and chemokine receptors and secretion 

of chemokines, proteases and cytokines (Akira, 2006). A wide variety of cytokines 

may be expressed (not necessarily simultaneously) by mature DCs: IL-12, IL-1α, 

IL1-β, IL-15, IL-18, IFN-α, IFN-β, IL-4, IL-10, IL-6, IL-17, TNF-α and MIF 

(Morelli et al., 2001). The qualitative and quantitative composition of the cytokine 

pattern induced in response TLR stimulation depends on the receptor that are 

triggered, the ligand that are recognized, and the cell type that are activated and 

their maturation stage (Reis e Sousa, 2004a, 2004b).  

Several populations of DC have been described (Shortman and Liu, 2002; 

Villadangos and Heath, 2005) with different capacities of antigen cross-

presentation (den Haan et al., 2000; Heath et al., 2004; Iyoda et al., 2002; Pooley 

et al., 2001; Schnorrer et al., 2006; Schulz and Reis e Sousa, 2002) and different 

expression of TLR family members (Boonstra et al., 2003; Iwasaki and Medzhitov, 

2004). However, how this differential expression is related with different capacities 

of DCs substes to cross-present antigens is not well understood. TLR expression on 

different sDCs and in vitro generated DCs are summarized in the following table.   

 

Table III: TLR expression by mouse splenic DCs subsets and in vitro generated DCs. 

 

Mouse DC TLR1 TLR2 TLR3 TLR4 TLR5 TLR6 TLR7 TLR8 TLR9 

Spleen CD4+ ++ ++ + + ++ +++ ++ ++ ++ 

Spleen CD8+ ++ ++ +++ + low ++ - ++ ++ 

Spleen CD4-CD8- ++ ++ ++ + + ++ + ++ ++ 

Spleen pDC ++ ++ low + + ++ +++ ++ +++ 

 Adapted from (Boonstra et al., 2003; Iwasaki and Medzhitov, 2004)   

 
 

 

          

in vitro DCs 
(IL-4 + GM-CSF) 

   ++          ++  
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4.1.2.4.5.1 How do TLRs influence antigen cross-presentation?  

 

TLR signaling has been shown to have influence in the efficiency of antigen 

processing and presentation (Apetoh et al., 2007; Blander and Medzhitov, 2006b; 

West et al., 2004; Yarovinsky et al., 2006; Zaru et al., 2007). TLRs have been 

implicated in antigen cross-presentation efficiency of different ―forms‖ of antigen 

(Bevaart et al., 2004; Chen et al., 2005; Datta and Raz, 2005; Datta et al., 2003; 

Heit et al., 2003; Lin et al., 2008a; Schulz et al., 2005; Weck et al., 2007).  

TLR ligands were shown to acutely stimulate antigen macropinocytosis, leading 

to enhanced presentation by MHC class-II and MHC class-I (West et al., 2004). 

Soluble antigens are poor substrates for antigen cross-presentation and their uptake 

and traffic differs from particulate antigens (Shen et al., 1997). It has been shown 

that cross-priming in mice and even in primates is more efficient if an adjuvant like 

CpG oligonucleotide (ODNs) or other immunostimulatory DNA sequences were 

chemically linked to antigen in a TLR9-dependent manner (Cho et al., 2000; Heit 

et al., 2005; Schirmbeck et al., 2003; Wille-Reece et al., 2005). More recently, 

Christian Kurts and colleagues demonstrated that efficient antigen cross-

presentation of soluble antigen required TLR-MyD88 signaling and appeared 

biased towards antigens containing microbial molecular patterns (Burgdorf et al., 

2008). TLR3 stimulation resulted in cross-priming in two vaccine models: 

vaccination with either virally infected cells or isolated Ovalbumin proteins 

(Schroder and Bowie, 2005; Schulz et al., 2005). Reis e Sousa and colleagues 

showed that cross-priming of cell-associated antigens is more potent when the cells 

were either virus infected or loaded with poly I:C (Schulz et al., 2005). 

Studies from Laurence Zitvogel‘s laboratory demonstrated that activation of 

tumor antigen-specific T-Cell immunity requires secretion of the high-mobility-

group box 1 (HMGB1) protein by necrotic tumor cells and the action of HMGB1 

on TLR4 expressed by DCs. DCs required signaling through TLR4 and MyD88 for 

efficient processing and cross-presentation of antigen from dying tumor cells 
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(Apetoh et al., 2007). In humans, there is evidence that addition of CpG ODNs to a 

melanoma vaccine resulted in a CTL response (Speiser et al., 2005). 

Using biodegradable microspheres, Marcus Groettrup and colleagues found that 

the co-encapsulation of TLR ligands and antigen onto this microspheres, compared 

with co-injection of antigen with TLR ligands, enhance cytotoxic T-Cell activation 

in vaccinated mice (Schlosser et al., 2008).  

The "communication‖ between TLR signaling pathways and the phagosome/ 

lysosome pathway leads to the control of phagosome maturation and MHC class-II 

presentation (Blander and Medzhitov, 2006b). Whether cross-presentation of 

phagocytosed antigens is also dependent on TLR signaling, as shown for MHC 

class-II presentation, is not clear. In the absence of TLR signaling, antigen cross-

presentation may occur constitutively to ensure that CD8
+ 

T-Cells, with auto-

reactivities to endogenous cellular proteins, encounter autoantigens in the absence 

of inflammation and become tolerant. Alternatively, concerning the physiological 

role of antigen cross-presentation in antiviral immunity (Heath and Carbone, 

2001a; Rock and Shen, 2005), only infected apoptotic cells may successfully be 

cross-presented, where viral nucleic acids within these cells could trigger TLRs. 

Conflicting studies exist showing both outcomes (Chen et al., 2004a; Datta and 

Raz, 2005; Datta et al., 2003; Delamarre et al., 2003; Hamilton-Williams et al., 

2005; Heit et al., 2003; Palliser et al., 2004; Salio and Cerundolo, 2005; Schulz et 

al., 2005; Tabeta et al., 2006; Wagner et al., 2004; Wilson et al., 2006; Winau et 

al., 2006). The general consensus is that constitutive antigen cross-presentation 

does occur at steady state (Heath et al., 2004). A direct comparison, however, in 

the presence or absence of TLR signals has not been enlightened.   

Therefore, we propose to identify whether TLRs also control antigen cross-

presentation of phagocytosed antigens and the intrinsic mechanism(s).  

 

 

 



 



 

 

 

 

 

 

 

 

 

Objectives and Integrated Research Plans: 

 

Synthetic Pathogen Platform &  
shRNA genetic tools 

 

 

 

 

 

 

 

 

 

 

 

2 



 

 

 

 

 

 

Chapter 2 _________________________________________________________________ 

 

 

60 

 

  



 

 

 

 

 

______________________________Synthetic pathogen platform and shRNA Library tool 

 

 

61 

1. Integrated research plans_________________________________  

 Particles carrying antigen have been extensively applied to study antigen cross-

presentation (Kovacsovics-Bankowski et al., 1993; Kovacsovics-Bankowski and 

Rock, 1994; Reis e Sousa and Germain, 1995)
 
and for the design of improved 

vaccines (Jain et al., 2005; Langer et al., 1997; Marx et al., 1993; Singh and 

O'Hagan, 1999).  In a few studies, these particle carriers have also been modified 

with ligands to improve uptake by target cells (Keegan et al., 2003; Kempf et al., 

2003) or to modulate APCs function. Thus, we proposed to study the 

internalization, traffic and processing of „synthetic pathogens‟- model particles 

with distinct, well-defined physical and biochemical properties - by using a novel 

approach. It may allow us to understand how the biophysical nature of particulate 

antigens influences their uptake and fate in APCs. Signals from pathogen 

structure/composition itself, which modulate phagocytosis, can be compared and 

subsequent immunity in the context of a single well-defined particle platform. 

Previous results from our lab using particle antigen co-delivered with a phagocytic 

ligand (circulating opsonins: complement and IgG) led to higher levels of CD8
+ 

T-

Cell responses comparable to those induced by Ovalbumin coated particles 

(unpublished data). These results might be explained by enhanced phagocytic 

levels or/and re-routing the particles to specific compartments for efficient antigen 

cross-presentation. In order to understand how the signals from pathogens integrate 

and influence antigen presentation outcome, and how parasites can subvert the 

endocytic traffic/antigen presentation pathways for evasion and disease 

establishment, particle antigen coupled with a modulation signal (TLR agonists) 

were used. Making use of the RNAi technology to generate loss of function 

phenotypes, we proposed to determine the signaling events that regulate this 

process and to probe the role of both known and newly identified genes on antigen 

cross-presentation of model particle antigens, complementing with biochemical 
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approach to characterize each step in detail. This work could have an important 

role on elucidating how pathogen structure and chemistry dictates signaling, 

intracellular traffic, antigen processing, immune responses and pathogen survival 

or elimination.  

 

2. Synthetic Pathogen Platform & shRNA genetic tools____________  
  

2.1 Why to use particle antigens? 

DCs are able to cross-present exogenous proteins in soluble form only when 

they are incubated with very high concentration (Kovacsovics-Bankowski et al., 

1993; Norbury et al., 1995; Rock et al., 1990). This finding suggested that antigens 

are taken up by fluid-phase endocytosis and access the antigen cross-presentation 

pathway inefficiently, which may explain why immunization with soluble protein 

antigens generally fails to stimulate CTL immunity. Ken Rock and co-workers 

found that when a soluble protein was “made” particulate (adsorption to particles 

of 1-5µm) antigen cross-presentation occurs at 10
3
-10

4
 fold lower concentrations of 

antigen (Harding and Song, 1994; Kovacsovics-Bankowski et al., 1993; 

Kovacsovics-Bankowski and Rock, 1994). As, immature DCs are highly 

phagocytic, they avidly ingest particulate antigens. The strong CTL response was 

also observed in vivo when Ovalbumin coated particles are inject into animals 

(Falo et al., 1995; Harding and Song, 1994; Kovacsovics-Bankowski et al., 1993) 

and when another particulate antigens, bacterial antigens, were used (Pfeifer et al., 

1993). This phenomenon generally explains why cellular antigens are cross-present 

in vivo efficiently, because cell-associated antigens are essentially particulate in 

nature (Carbone and Bevan, 1990; Li et al., 2001). Thus, why is particulate antigen 

cross-presented much more efficiently than soluble antigens? It seems that the 

amount of antigen internalized by phagocytosis is much greater comparing when 
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soluble proteins are internalized by fluid-phase pinocytosis. However, when the 

amount of antigen internalized is kept constant, phagocystosis is more efficient 

than endocytosis in antigen cross-presentation (Reis e Sousa and Germain, 1995). 

Therefore, it seems that the pathway by which particulate antigens are internalized 

gives access to a type of compartment with an “easy access” to the antigen cross-

presentation pathway.  

 

2.2 Applications in vaccine design  

 
The ultimate goal of the vaccine field is to develop effective immunity after a 

single vaccine injection. Therefore, strategies for preventive and therapeutic 

vaccines have focused on the ability to deliver antigen to DCs in a target and 

prolonged manner. DCs have important properties for vaccination as they 

controlling adaptive immune response by internalization and processing antigen 

through MHC class-I and class-II pathways,  presenting antigenic peptides to CD8
+
 

and CD4
+
 T Lymphocytes respectively (Banchereau and Palucka, 2005; 

Banchereau and Steinman, 1998; Nestle et al., 2001). This highlights the need to 

develop technologies that effect the robust and simple targeting of DCs, using 

biomaterial vectors. The most promising biomaterials for drug vehicles are 

biodegradable polymer microparticles and nanoparticles (Lutolf and Hubbell, 

2005; Peppas and Langer, 1994). These polymer particles are suitable for 

conjugation or loading with antigens and adjutants, protecting the antigen from 

complete degradation in vivo during particular steps of the cell-internalization 

pathways. From these particles, antigen could be released intracellularly, in a 

manner that can activate both antigen presentation pathways and consequently 

CD4
+ 

and CD8
+
 T-Cell immunity. Moreover, the surface of these biomaterial 

vehicles can be conjugated with DC-specific antibodies or ligands (danger signals) 

to increase targeting specificity or activation, enhancing the adjuvant effects on 
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DCs (Reddy et al., 2006). These strategies demonstrate how biomaterials can be 

designed to respond specifically to the intracellular environment for efficient 

antigen release and specific processing and presentation and elicit an ideal immune 

response to a specific antigen.  

      2.3 What is the effect of TLR agonists on these particles?   

Activation of the immune system by a vaccine requires: (i) the delivery of a 

sufficient amount of antigen to antigen presenting cells (Macrophages and DCs), 

(ii) the controlled presentation of antigen molecules to target immune cells (CD4
+
 

and/or CD8
+ 

T-Cells), (iii) the proliferation of effector cells such as cytotoxic T 

lymphocytes and plasma B cells, and (iv) the maintenance of an activated immune 

system for the desired period of time. Adjuvants could play an important role on 

those requirements (Reddy et al., 2006).  

Successful immunization results in activation of adaptive immunity, which 

could be performed for example by TLR agonists, at least by up-regulation the 

expression of MHC molecules and co-stimulatory molecules (Iwasaki and 

Medzhitov, 2004). TLRs have been implicated in particle antigen uptake and 

antigen presentation. A recent work showed that TLR ligands differentially affect 

uptake and presentation of cellular antigens (Weck et al., 2007). Blander has 

shown that TLRs are also implicated in antigen uptake of particulate antigens and 

MHC class-II presentation (Blander, 2007; Blander and Medzhitov, 2004).  

PLGA microspheres have been used as a vaccine platform (Acharya et al., 

2009; Cleland et al., 1994; Singh et al., 2006; Sun et al., 2003). It has been shown 

that surface coating or micro-encapsulation of an adjuvant and an antigen yields 

better antibody titers in vaccine animals (Hunter et al., 2001; Kazzaz et al., 2006; 

Singh et al., 2004) or better T helper cell proliferation and cytokine secretion in 

vitro (Westwood et al., 2006). More recently, was reported that strong CTL 
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response to Ovalbumin could be elicited with PLGA microspheres containing both 

Ovalbumin and CpG oligonucleotide (ODNs) than when antigen and adjuvant are 

loaded into separately microspheres (Heit et al., 2007; Schlosser et al., 2008) or co-

injected (Storni et al., 2004). The same phenotype was observed for Poly I:C but 

less stronger comparing to CpG oligonucleotide (Schlosser et al., 2008). Another 

study has shown that immunization of mice with PLGA microspheres containing 

recombinant prion protein and CpG oligonucleotide was able to induce antibodies, 

T helper- and CTL responses to the prion protein, showing that the paradigm of co-

encapsulation is not valid only for vaccination with one model antigen (Kaiser-

Schulz et al., 2007).  

As such, antigen cross-presentation is an important mechanism leading to 

effective vaccine response against intracellular pathogens that required CTL-

mediated immunity (Heath and Carbone, 2001; Touret et al., 2005; Yewdell et al., 

1999). All these observations have important consequences for the design of 

microparticulate vaccines, specifically if they can be extended to cross-priming 

CTLs. Some studies described above, implicated TLR agonists in antigen cross-

presentation but the question whether an adjuvant and antigen must be co-localized 

within one and the same particle in order to optimal elicit cross-priming is not 

completely solved, being the principal aim of my PhD work.  
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Part I: Synthetic Pathogen Platform design and characterization 
 

TLR agonists have been implicated as important molecules to elicit and induce 

efficient immune response and have been focus of innumerous studies in the 

vaccine field for anti-tumor treatment and infectious diseases (Erard and Ryffel, 

2008; Ishii and Akira, 2007; Pulendran, 2007; Wolska et al., 2009). To better study 

the interaction of particle antigens with DCs (host-pathogen interaction) we 

focused on TLRs to design our synthetic pathogen platform. Understanding 

whether the capacity to cross-present is dictated by antigen capture or handling is 

important for the design of vaccination strategies based on antigen targeting in vivo 

(Bonifaz et al., 2002; Corbett et al., 2005; Wille-Reece et al., 2005a; Wille-Reece 

et al., 2005b). To address de question of whether an adjuvant and antigen must be 

co-localized in the same particle in order to optimally elicit cross-priming, or to 

evaluate the role of a single ligand in a particulate antigen, or even to study de 

dynamic of antigen and ligand exposure, we have proposed to create 3 types of 

model particles that would deliver antigen and cell-modulating ligands (TLR 

agonists) to DCs in a different way: 

 

(1) Fixed-ligand particles (Polystyrene), which have covalently 

immobilized antigen and ligand on their surface;  

(2) Mobile-ligand particles (PLGA), where antigen and ligands are tethered 

to a lipid bilayer coated on the surface of the poly (lactic-co-glycolic acid) 

particle; 

(3) Sequestered dynamic-ligand particles (Hydrogel), which have antigen 

and ligands „masked‟ by a thin polymer shell which is designed to 

dissolve at phagolysosomal pH (lower pH), allowing staged delivery of 

signals to DCs. 

 



 

 

 

 

 

______________________________Synthetic pathogen platform and shRNA Library tool 

 

 

67 

1. Polystyrene particles (fixed-ligand particles) 

 Commercially available monodisperse carboxylated polystyrene microspheres 

from Polysciences were used as the basis of our fixed-„Synthetic Pathogens‟. 

Particles with sizes range from 50 nm to 6.0 µm were applied, in order to cover a 

relevant range to intact microbes. Ovalbumin protein was used as a model antigen 

to be delivered by these particles. In order to provide a „universal‟ platform, TLR 

agonists were co-attached to the particle antigen. These particles allow the creation 

of a simple model, where the influence of a specific TLR agonist in antigen cross-

presentation can be addressed.  

 

1.1 Two-step coupling of Protein and TLR ligands to Carboxylated 

Microspheres 

 Carbodiimide chemistry was the basis for these model particles syntheses. 

EDC/NHS coupling chemistry was used to attach antigen and TLR agonist to the 

surface of carboxylated polystyrene particles. The principle of this chemistry is 

based on: N-hydroxysulfosuccinimide Sulfo-NHS (Pierce - Sulfo-NHS is water-

soluble, but not membrane-permeable. NHS is membrane-permeable but not water-

soluble) was used to modify a carboxyl group to an amine-reactive ester. This is 

accomplished by mixing Sulfo-NHS with a carboxyl-containing molecule and a 

dehydrating reagent such as EDC (Pierce). The addition of EDC will cause a 

dehydration reaction between the carboxyl and the NHS hydroxyl group, giving 

rise to a NHS-ester-activated molecule. The NHS-ester-containing molecule can 

then react spontaneously with a primary amine-containing molecule (fig.7). While 

the carboxyl-containing molecule can be made to react directly with the amine-

containing molecule by the addition of EDC, the reaction is much more efficient 

with Sulfo-NHS present because a stable intermediate is created (Grabarek and 

Gergely, 1990; Staros et al., 1986). 
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Fig.7: Activation and cross-linking mechanism of NHS/EDC. EDC reacts with a carboxyl group 
on carboxylated particle, forming an amine-reactive O-acylisourea intermediate. This intermediate 
may react with an amine on amine group ligand yielding a conjugate of the two molecules joined by a 
stable amide bond. However, the intermediate is also susceptible to hydrolysis, making it unstable and 
short-lived in aqueous solution. The addition of Sulfo-NHS stabilizes the amine-reactive intermediate 
by converting it to an amine-reactive Sulfo-NHS ester, thus increasing the efficiency of EDC-
mediated coupling reactions. The amine-reactive Sulfo-NHS ester intermediate has sufficient stability 
to permit two-step cross-linking procedures, which allows the carboxyl groups on amine group ligand 

to remain unaltered. Adapted from http://www.piercenet.com 

 

The reaction should be quenched by adding a solution with BSA and sodium 

azide to remove any un-reacted NHS present in solution. This method of 

quenching causes hydrolysis to occur with any un-reacted NHS present, very 

quickly. This is recommended if the proteins are not susceptible to high pH 

extremes. Carboxylate microspheres will be covalently linked to a mixture of the 

protein and ligand-modified, via carbodiimide coupling of the core particle‟s 

carboxy groups and exposed amines of ligands. As model ligands LPS (TLR4 

agonist) and unmethylated CpG (TLR9 agonist) were used as extracellular and 

intracellular agonists respectively.  

The LPS has phosphatidylethanolamine functional groups, so the most efficient 

and direct route is to couple LPS to carboxylic acid functionalized microspheres by 

carbodiimide crosslinker as used for Ovalbumin stimulation.  In any event, using 

these available amines is by far the easiest way of achieving covalent conjugation. 

A ninhydrin test for amines could be used, so that the moles of primary amine per 

milligram LPS could be determine. This will be helpful in situations 

where we may want more control over the amount of LPS that are loaded onto the 
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particles. Through knowing the moles of amine, we are able to titrate in a 

competing amine, such as glycine or ethanolamine so that we saturate the particles' 

functional groups while controlling LPS content. In some cases, a non-chemical 

approach that would leave LPS structurally intact was used. This reaction would be 

to simply mix a solution of LPS with Ovalbumin-coated microspheres. Ovalbumin 

has a very high affinity for fatty acids and binds LPS very efficiently.  We will use 

this approach in other different type of approaches when conformational alteration 

of protein is not appropriate. 

The CpG ODN (synthetic cytosine-guanosine oligonucleotide) ligand can be 

coupled to the surface of carboxylate particles by making use of 3´ amino modified 

unmethylated CpG with the objective to perform EDC/NHS coupled chemistry in 

the way to use the free amine group to couple directly to free carboxylated at 

particles surface. The oligo was made by customization by sigma-genosys as 

follow: CpG 1826 (mouse specific) 5′- TCC ATG ACG TTC CTG ACG TT-3′ (-

NH2 with a C12 linker at 5  ́ and Phosporothioate ligations between bases – 

protected from DNases digestion).  

 

For detailed Protocol see Chapter 3  

 

1.2 Coupling reaction efficiency 

In order to check the coupling reaction efficiency, the relative quantity of 

antigen, as well of the model agonists (LPS and CpG) on particles surface, 

fluorescent microscopy for fluorescent forms of antigen (OVA-Alexa594) and 

agonists (LPS-FITC and NH2-CpG-FAM) were used (fig.8). 
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A)                                         B)                                            C)    

            

 

 

 

 

 

 

 

 

                                                  

 

 

 

 

 

 

 

 

 

 

 
Fig.8: Model particles antigen loading efficiency by CLSM images.  Images of 1.0 µm polystyrene 
particles loaded with (A) 200µg of OVA-Alexa594 (red) or (B) 20µg of NH2-CpG-FAM (green) or 
(C) 20µg of LPS-FITC (green). Bright-field images are shown in upper panels and fluorescence 

images in lower panels. Objective of magnification 63x was used (Scale bar 1.0µm). 
 
 

These images show that either the protein or the model agonists form a well-

defined layer at the surface of the polystyrene particles, which confirms the 

efficiency of the coupling reaction. However, a question arises: Does the presence 

of agonists on coupling reaction affect the binding efficiency of the model antigen 

between the different type of particles used (OVAp, OVA=LPSp and 

OVA=CpGp)? To address this, antibodies were used against Ovalbumin to 

measure the amount of antigen at particle surface by FACS, as follows: 
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Fig.9: Ovalbumin-loaded particles efficiency by FACS based assay. Ovalbumin measurement at 
1.0 µm polystyrene particles surface (OVAp, OVA=LPSp and OVA=CpGp) using Rabbit polyclonal 
antibody for Ovalbumin (Abcam) and 2nd anti-Rabbit conjugated to Alexa488 (Abcam). The white 
filled plot represents correspondent particles loaded only with 2nd antibody and the blue filled plot 
represents Ovalbumin staining. Quantitative coupling of Ovalbumin was examined by FACS by 
analyzing the Mean of fluorescence intensity (MFI) in the FL1-H channel. Numbers represent the 
MFI in the FLH-1 channel of stained particles. The graph is representative of at least three 
independent experiments. 
 

These plots show that the loading efficiency (values of MFI) was similar in 

model particles either in the presence or absence of agonists (LPS and CpG) during 

the coupling reaction.  

 

1.3 Particles Quantification 

To better study particulate antigen presentation, the number of particles should 

be measured. Particles were titrated by absorbance at 600nm. An example of 

particle quantification is shown in figure 10 using 1.0µm particles as a model. 

Using a calibration curve, the estimate number of particles in each condition could 

be measured indirectly by replacing the y value with the absolute value of 

absorbance at 600 nm (fig.10). The remaining particle sizes (50 nm to 6µm) were 

measured in a concentration range where absorbance is linear. 
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Table IV: Calibration curve: Values of absorbance at 600nm for the different particles concentration.  

Particles/100µl 9,1x10
7
 4,55x10

7
 2,28x10

7
 1,52x10

7
 1,14x10

7
 9,10x10

6
 0 

Abs 600nm 0,340 0,210 0,157 0,133 0,120 0,111 0,080 

 

 

Fig.10: Particles Titration: Calibration curve of model particles with 1.0µm in size: particles 
concentration vs Abs at 600nm. 

 

 

1.4 Coupling TLR ligands using a sonication protocol  

 To study the influence of other TLR agonists, we made use of an adapted 

protocol from Yates et al., to couple different TLR mouse agonist for TLR (TLR1-

9 Agonist Kit from InvivoGen). This kit contains: TLR1/2 agonist - Pam3CSK4, 

TLR2 agonist – HKLM, TLR3 agonist - Poly(I:C), TLR4 agonist - LPS-EK, 

TLR5 agonist - ST-FLA, TLR6/2 agonist - FSL1, TLR7 agonist - ssRNA40, 

TLR9 agonist - ODN1826 were adsorbed onto the surface of OVA-coated particles 

by sonication with 100ng /µl of ligand in PBS for 20 minutes at 40°C. The particles 

were washed extensively in PBS prior to use (Yates and Russell, 2005). The 

conjugation efficiency can be assessed by measuring inflammatory cytokine 

production after challenging DCs. In order to confirm the efficiency of this 
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method, we made use of available fluorescent ligands (LPS-FITC, NH2-CpG-

FAM) and compared with data from EDC/NHS coupling reaction with the same 

fluorescent ligands (fig.11). 

 

Fig.11: Adsorption of model agonists to Ovalbumin particles by sonication. Fluorescent LPS and 
CpG were adsorbed onto the surface of the 1.0 µm polystyrene Ovalbumin-coated particles by 
sonication of the particles in 100ng/ml of ligand in PBS for 20 minutes at 40°C. OVAp alone (grey 
line) and adsorbed with LPS-FITC (blue line) and NH2-CpG-FAM (red line). Quantitative coupling 
of LPS and CpG were examined by FACS by analyzing the Mean of Fluorescence Intensity (MFI) in 
the FL1-H channel. Numbers represent the MFI in the FLH-1 channel. The graph is representative of 
at least three independent experiments. 
 

 

The loading efficiency of LPS and CpG by sonication method was similar as for 

EDC/NHS coupling reaction. This approach can be very useful, and allow the use 

of another conjugation strategy to study model particles antigen presentation.  

 

1.5 Relative antigen coupling estimation for different particles size 

Particles size from 50nm to 6µm was used to cover a broad range of pathogens 

ranging from virus to bacteria to address the question if size influences antigen 

cross-presentation, using the same particle ratio per DCs. In order to estimate the 

amount of antigen loaded into different particles size the following equation was 

used to predict the maximum protein loaded on particles surface (summarized in 

table V). 
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Table V: Expected maximum protein at close packing on microspheres surface for the different 
particles size. The equation was adapted from Prof. Darrell Irvine. 

 

 

 
Size Group Quantity Surface Area Nº  Protein  Protein (x/1.0µm) 

0.05µm -COOH 3,64x1014 p./ml 7,8x10-3 µm2 307 3,0x10-3 

0.10µm -COOH 4,55x1013 p./ml 0,031 µm2 1097 1,1x10-2 

0.20µm -COOH 5,68x1012 p./ml 0,126  µm2 4141 4,2x10-2 

0.50µm -COOH 3,64x1011 p./ml 0,785 µm2 24971 2,53x10-1 

0.75µm -COOH 1,08x1011 p./ml 1,766 µm2 55734 5,65x10-1 

1.0µm -COOH 4,55x1010 p./ml 3,14 µm2 98683 1,0 

2.0µm -COOH 5,68x109 p./ml 12,56µm2 392342 3,97 

3.0µm -COOH 1.68 x 109p./ml 28,26µm2 880981 8,93 

6.0µm -COOH 2,10x108 p./ml 113,04µm2 3516776 35,64 

 

Using Alexa Fluor 488 Ovalbumin (OVA488) the loading efficiency at the 

surface of different particles size can be measured by FACS (fig.12). 

Fig.12:  Antigen loading efficiency to particles with different sizes. Fluorescent Ovalbumin (Alexa 
Fluor 488 Ovalbumin - OVA488) was covalently linked to model particles of 500nm, 1.0µm and 
3.0µm in size. Quantitative coupling of fluorescent particles antigen was examined by FACS and the 
mean of fluorescence intensity (MFI) in the FLH-1 channel were analyzed. Numbers represent the 
MFI in the FLH-1 channel of fluorescent particles. The graph is representative of at least three 

independent experiments.  
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2. PLGA particles (Biodegradable particles)  

 

 Biodegradable particles made of the polymer Poly D,L-lactic-co-glycolic acid 

(PLGA), can be used as antigen delivery devices for macrophages and DCs 

(Gander, et al., 2005). PLGA particles of about 0,5-5µm in diameter are actively 

phagocytosed by human and murine DCs, and can be used to bind to or encapsulate 

proteins and peptides, in addition to adjuvants such as DNA or RNA (Newman et 

al., 2002; Newman et al., 1998; Wang et al., 1999). The PLGA particles by 

themselves do not trigger DC maturation (Waeckerle-Men et al., 2004). PLGA 

polymer hydrolyzes slowly in aqueous environments, and releases encapsulated 

peptides and proteins into the processing pathways for presentation on either MHC 

class-I and class-II pathways (Otten et al., 2003; Partidos et al., 1997; Waeckerle-

Men et al., 2006). PLGA has been successful as a biodegradable polymer because 

it undergoes hydrolysis in the body to produce the original monomers, lactic acid 

and glycolic acid. These two monomers under normal physiological conditions are 

by-products of various metabolic pathways in the body. Since the body effectively 

deals with the two monomers, there is very minimal systemic toxicity associated 

with using PLGA for drug delivery or biomaterial applications (Waeckerle-Men et 

al., 2004). As an example, a commercially available drug delivery device using 

PLGA is Lupron DepotⓇ used in the treatment of advanced prostate cancer. State-

of-the-art of PLGA particles: i) clinically proven biocompatibility for poly(D,L-

lactide-co-glycolide); ii) promising candidate technique for vaccinations (delivery 

of PLGA complexes by various routes; including oral, nasal and subcutaneous); iii) 

protected protein antigen and increasing delivery efficiency (Acharya et al., 2009). 

The illustrated protocol for PLGA micro-particles synthesis with and without a 

lipid layer will be described as follows. For detailed protocol see chapter 3.  This 

work has been done in collaboration with Prof. Darrell Irvine´s group at MIT. 

http://en.wikipedia.org/wiki/Toxicity
http://en.wikipedia.org/wiki/Lupron
http://en.wikipedia.org/wiki/Prostate_cancer
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2.1. PLGA microspheres loaded with protein mixed in the core  

Illustrative representation of PLGA microspheres loaded with protein mixed in 

the core (fig.13). For detailed protocol see Chapter 3. 

 

 

Fig.13: Schematic illustrating the process of PLGA particles synthesis.  Particles were formed by 
homogenization of polymer-containing organic phase into water, followed by evaporation of the 
organic solvent overnight and centrifugation for 5 minutes at 2.000xg.  Scanning electron images of 
the pellets and supernatants (not shown) indicate that micron scale particles, mimicking bacteria, were 
separated from 100 nm-scale particles, mimicking viruses. (Adapted from Irvine´s Group – 
unpublished data).  

 

In order to address the oligonucleotide (oligo) and protein conjugation to PLGA 

particles, fluorescent equivalents (oligo-Texas red and OVA-Alexa594) were used 

(fig.14). 

 

   

Fig.14: Fluorescence 

microscopy of 

PLGA particles. 
Bright-field images 
(left panels) and 
fluorescent (right 

panels) of PLGA 
particles loaded with 
5nmol oligo-Texas 
Red and 10µg Ova-
Alexa594. Objective 
of magnification 63x 
was used (Scale bar 
5µm).  
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This image shows that both antigen and oligos were widely distributed on 

PLGA particles due to surfactant effect. Confocal microscopy was employed using 

OVA-FITC loading PLGA particles (fig.15), confirming the widely pattern 

distribution of Ovalbumin on PLGA particles as follows in next figure. 

                          A                                  B                                   C 

 

Fig.15: CLSM images of PLGA particles loaded with fluorescent antigen. (A) bright-field 
images, (B) fluorescence images of PLGA particles loaded with OVA-FITC and (C) Merged images. 

Objective of magnification 63x was used with FITC filters (Scale bar 1.0µm). 

 

2.2 PLGA microspheres with lipid layer to mimic pathogens and allow 

protein and ligand conjugation 

 

Illustrative representation of PLGA microspheres synthesis with lipid layer and 

loaded with protein and MPLA (fig.16). For detailed protocol see Chapter 3. 

 
 

Fig.16: Schematic illustrating the process of PLGA microspheres synthesis with lipid layer.  
Particles were formed by homogenization of a lipid- and polymer-containing organic phase into 
water, followed by evaporation of the organic solvent overnight and centrifugation for 5 minutes at 
2.000xg.  Scanning electron images of the pellets and supernatants (not shown) indicate that micron 

scale particles, mimicking bacteria, were separated from 100 nm-scale particles, mimicking viruses. 
(Adapted from Irvine´s Group – unpublished data).  
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To analyze PLGA particles synthesis and morphology by this method, scanning 

electron microscopy (SEM) were performed. The antigen conjugation efficiency 

was addressed by conjugating Alexa Fluor 488 Ovalbumin with maleimide-

modified PLGA particles via this method and analyzing by CLSM (fig.17).  

 

 

Fig.17: Schematic illustrating the process of particle synthesis and morphology of particles 
observed by scanning electron microscopy (SEM). Particles were formed by homogenization of a 
lipid- and polymer-containing organic phase into water, followed by evaporation of the organic 
solvent overnight and centrifugation for 5 minutes at 2.000xg. Left: Scanning electron images of the 

particles indicate that micronscale particles, mimicking bacteria, were separated from 100 nm-scale 
particles, mimicking viruses. Scanning electron micrograph showing 1-5 µm particle diameter (scale 
bar 10 µm) Right: Confocal micrograph of Alexa Fluor 488 Ovalbumin conjugated to maleimide-
modified PLGA particles via this method (scale bar 5 µm). (This image was kindly provided by Anna 
Bershteyn from Irvine´s lab at MIT). 

 

In order to address the Lipid bilayer formation and Ovalbumin distribution/ 

conjugation onto PLGA particles, a fluorescent dye DiI (1,1´-dioctadecyl 3,3,3 ,́3´-

tetramethylindo- carboxycyanate perchlorate from invitrogen) Red labeling (which 

fluorescence was readily detected after binding to phospholipid bilayer 

membranes), and Alexa Fluor 488 Ovalbumin were used (fig.18). 
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              A                               B                             C                               D 

 

Fig.18: CLSM images of PLGA particles loaded with fluorescent antigen and lipids. (A) bright-
field images and (B) fluorescence images of maleimide-modified PLGA particles conjugated to Alexa 
Fluor 488 OVA (green) and (C) DiI Lipophilic tracer (red) by method previously described. (D)  
Merged image of the three previous ones. Colocalization appears in yellow. Images were obtained 
with 63x objective amplification with respective filters (Scale bar 0.5µm). 
 

These images showed that both Ovalbumin and lipids are widely distributed on 

particles surface and in some extend in the core of particles.  By this process, the 

lipid bilayer keeps most of the antigen at the cell surface. To visualize the 

morphology of the lipid layer at particles surface and address if it mimics a cellular 

bilayer, Cryo-TEM were used (fig.19). 

 

Fig.19: Cryo-TEM micrographs of lipid-coated particles. Particles synthesized with a 1:25 weight 
ratio of DMPC to PLGA were enveloped by single shells of lipid resembling previous Cryo-TEM 
studies of lipid-coated silica nanoparticles. PLGA particles made of the same materials but smaller, to 

allow us to visualize the lipid surface. (This image was kindly provided by Anna Bershteyn from 
Irvine´s lab at MIT). 
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Cryo-TEM images show a well defined lipid bilayer formed at PLGA particles 

surface, which support this method of PLGA particles synthesis as an ideal system 

to use it to mimic pathogens and to better study host-pathogen interactions.  

 

3. Hydrogel particles (Sequestered dynamic-ligand particles) 
 

 During the past few years, many potentially powerful therapeutic strategies for 

the treatment of diseases require improvement of delivery of drugs into the cytosol 

or nuclear compartments of cells. Examples include therapeutic protein delivery 

(Determan et al., 2006; Schweichel et al., 2006), anti-tumor toxin delivery 

(Borghouts et al., 2005; Devalapally et al., 2007; Son et al., 2003), gene therapy 

mediated  by plasmid DNA (Medina-Kauwe et al., 2005; Putnam, 2006), 

RNA/DNA that trigger potent anti-viral immune responses (Diebold et al., 2003) 

and gene silencing via RNA interference (Tagami et al., 2007). Internalized 

compounds/macromolecules by cells are confined to closed vesicles (endosomes or 

phagosomes), where the pH is progressively lowered by fusion with lysosomes. 

The pH could reach lower values such pH 4.5 and where the degradation 

machinery of the cell are activated (Akinc and Langer, 2002; Asokan and Cho, 

2002). This process could lead to rapid destruction of therapeutic molecules with 

little or no release to cytosol. PLGA particles have been used as polymer-based 

delivery systems to encapsulate DNA and provide sustained release as the polymer 

degrades. However the major issue is to avoid the DNA degradation by low pH and 

enzymes from lysosomes before it can be successfully releases to the cytosol  (Fu 

et al., 2000; Walter et al., 1999). In addition, delivery system using PLGA possess 

a very poor ability to escape from endolysosomes (Cui and Mumper, 2002). 

Therefore, endosomal escape is a major and critical point of current intracellular 

delivery systems and synthetic carrier materials that respond to changes in pH 

could be useful for drug or antigen release from these compartments before 
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degradation. The idea of using this type of particles platform that allows the 

endosomal particles escape contents could have different applications as follows:  

 

3.1. Genesis of Hydrogel pH-responsive particles: Mechanism of exogenous 

antigens delivery into MHC class-I pathway 

 

Antigen presentation to cytotoxic T-Cells is greatly induced (up to 1000-fold) 

by delivery antigens to the cytosolic of DCs, to allow the intracellular machinery to 

load the right peptide onto MHC class-I molecules (Zarei et al., 2003). The 

biomaterial vehicle must release the antigen intracellularly in a manner that will 

enable processing by MHC class-I, class-II or both pathways. To deliver 

exogenous antigens to MHC class-I pathway, they have to bypass the rapidly 

traffic of phagosomes to lysosomes where antigens are then degraded 

enzimatically, preventing the antigen to be processed and presented intracellularly 

(Banchereau, et al. 2000). To avoid lysosomal trafficking, Murphy and colleagues 

have designed smart polymers that use acid-degradable acetal bonds to disrupt 

endosomes in a pH-dependent manner (Murthy et al., 2003). From an extracellular 

pH of 7.4, particles that were internalized will eventually fuse with lysosomes and 

achieve a pH ~5-5.5 (Underhill et al., 1999). These particles allow antigen and 

adjuvants to release into cytosol as the endosomes are acidified before lysosomal 

fusion, which enhance the processing by the MHC class-I pathway instead of MHC 

class-II (Murthy et al., 2003).  

Our approach is based on de-constructible hydrogen-bonded multilayers, a 

concept originally demonstrated by Sukhishvili and colleagues (Sukhishvili et al., 

2000, 2002). Hydrogen-bonded multilayers of neutral and polyacid chains 

assembled on the surface of colloidal particles have been reported (Kozlovskaya et 

al., 2005). Here we extended this concept to the assembly of neutral and polybase 

chains assembled on our functionalized particles, to create an acid-responsive 
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protective shell (illustrated in Fig.21). Polymers bearing hydrophilic groups such 

as –OH, CONH, -COOH, -SO3H and NH2 can be crosslinked to form hydrogels. 

The swelling properties of ionic hydrogels are unique due to the ionization of their 

pendant functional groups, and the equilibrium degree of swelling can be changed 

suddenly by several orders of magnitude near the pKa or pKb of the hydrogels. 

Taking advantage of the swelling ability of cationic gels, they can be applied for 

endosomal disruption at low pH (Khare and Peppas, 1993). It has been shown that 

cationic hydrogels made from diethyl aminoethyl methacrylate (DEAEMA) and 

poly (ethylene glycol) monomethacrylate (PEGDMA) have a pKb ~7 which is the 

ideal pKb to respond to endosomal pH (Podual et al., 2000). At pH below 7 a 

fraction of the tertiary amine groups of core on the poly (DEAEMA-co-PEGDMA) 

were protonated and thus positively charged, while the net surface (shell) charge is 

negative due to primary amines that remain charged at all moderate pH, allowing 

electrostatically-driven adsorption (fig.21). Thus, siRNA, oligos or antigen could 

be electrostatically bound to the surface of the particles. At pH higher than 7.0, 

poly (DEAEMA-co-PEGDMA) are largely uncharged and capable of strong 

hydrogen bonding. In near-neutral extracellular conditions, the polymer multilayer 

coating will remain hydrogen-bonded and prevent access of the „masked‟ ligands 

to cells. On internalization, the drop in pH within the phagocytic pathway will 

induce ionization of the poly (DEAEMA-co-PEGDMA) chains (due to the pKa of 

the tertiary amino groups in the polymer, which is near neutral pH (Schwarte et al. 

1998), leading to loss of hydrogen bonding, dissolution of the coating, and 

exposure of the masked ligand (fig.20). Antigen and/or selected ligands could be 

adsorbed to poly (DEAEMA-co-PEGDMA) core-shell nanoparticles. Our research 

was thus to investigate the use of synthetic pH-sensitive hydrogel nanoparticles as 

a novel intracellular antigen delivery system to cytosol, bypassing the requirement 

of retro-translocation machinery in antigen cross-presentation.   
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Because the surface membrane or envelope of some pathogens is not 

compromised until fusion of the phagosome with lysosomes, internal components 

of these pathogens may not be exposed to antigen processing machinery until late 

stages of the phagolysosomal processing pathway. With this approach, TLR 

agonists and antigen could be selectively exposure to endosome environment as the 

pH drops during phagosome maturation. This hypothesis is consistent with the 

localization of certain TLRs that recognize internal components of pathogens to 

phagolysosomal compartments (Latz et al., 2004; Oshiumi et al., 2003), rather than 

at surface of phagocytes.  To determine whether sequential encounter of antigen or 

activating signals impacts the response of phagocytes to pathogens, hydrogel 

particles with „masked‟ antigen or TLR agonist layers could be synthesized, which 

can be selectively exposed based on the pH of the particle microenvironment as 

illustrated in the next figure. 

 

Fig.20: Hydrogel pH- 

responsive particles cellular 
mechanism. Particles are 
internalized along with an 

agonist and a model antigen 
into endosome. During 
internalization, endosomes 
matures and become acidic 
(pH<7.0) to break down 
internalized molecules. The 
particles begin to be protonated 
at this pH, absorbing protons 

that are pumped into the 
endosome. As protons are 
absorbed, anions are also 
pumped into the endosome to 
maintain charge neutrality.This 
causes an osmotic pressure 

buildup that will drive water into the endosome, eventually disrupting or rupturing the membrane and 
causing release of the ligand, antigen and particle into the cytosol. Adapted from (Hu et al., 2007). 
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3.2. New application system: RNAi delivery on same context as antigen 
 

Up regulation of MHC class-II and CD86 were adopted as a surrogate marker of 

DC maturation with the assumption that this always correlates with 

immunogenicity (Finkelman et al., 1996). DCs were later found to also induce 

tolerance, and it was suggested that tolerance and immunity were mediated by 

immature and mature DCs, respectively (Finkelman et al., 1996; Steinman and 

Nussenzweig, 2002). Most researchers interpreted „immature tolerogenic DCs‟ to 

refer to MHC class II
low

CD86
low

 DCs. Besides this, many studies have used this 

terminology while relying on naive T-Cell proliferation as a correlate of 

immunogenicity, which is not correct because T-Cell proliferation can lead to 

tolerance as well as shown by „phenotypically mature‟ DCs were found to induce 

tolerance (Albert et al., 2001) or at least not to induce immunity (Sporri and Reis e 

Sousa, 2005). Therefore, an interesting approach could be explored for the efficient 

delivery of RNAi for regulatory molecules of antigen presentation in same context 

as a particular  antigen in order to amplify or suppress adaptive immune response 

for vaccines or immunotherapy (Greenland et al., 2007). An ideal delivery system: 

(1) be able to bind RNAi in a reversible manner as to ensure the subsequent release 

of the RNAi; (2) escape from endosomal compartment; and (3) be biocompatible. 

Therefore, pH-sensitive core-shell nanoparticles have recently been proved to be a 

good delivery system for RNAi (Blackburn et al., 2009; Hu et al., 2009). The 

promise of RNAi will only be a clinical reality when safe and efficient delivery 

systems become well established. 
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3.3  Synthesis and characterization of pH-sensitive core-shell nanoparticles 

 
 Illustrative representation of Hydrogel pH-responsive core-shell nanoparticles 

synthesis and chemical composition (fig.21). For detailed protocol see Chapter 3. 

 

 

 

Fig.21: Schematic structure and chemical composition of pH-responsive core-shell 
nanoparticles. At extracellular/cytosolic pH, tertiary amines of DEAEMA repeat units in the particle 

cores are largely uncharged, and the particles are collapsed; at endolysosomal pH, the core tertiary 
amines ionize, and the particles swell. Surfactant-free polymerization of DEAEMA formed the core 
structure of hydrogel nanoparticles, crosslinked by PEGDMA. AEMA was polymerized in a second 
stage to form a thin shell structure rich in primary amines. Particles can swell ~2-fold (8- fold volume 
change) in response to pH drop below ~7. Adapted from (Hu et al., 2007). 

 

In order to show physiologic properties of Hydrogel particles comparing to 

PLGA particles, calcein, a membrane-impermeant fluorophore, was used as a 

model drug molecule and tracer to monitor the stability of endo/phagosomes 

following particle uptake (fig.22). This work has been done in collaboration with 

Prof. Darrell Irvine´s group at MIT. 
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Fig.22: Endosomal escape of the 

membrane-impermeable dye molecule 

calcein into the cytosol of DCs in the 

presence of pH-responsive core-shell 

nanoparticles comparing to PLGA 
nanoparticles and microparticles. 
CLSM images at 40x - Fluorescence 
overlays (red, nanoparticles; green, 
calcein). sDCs were co-incubated with 

1µM of LysoTracker Red DND-99 (to 
label endolysosomes), 0.24 mM of 
calcein, and 1:20 (DCs:particles) ratio. 
(A) Cells were treated with calcein 
alone. Cells were co-incubated with (B) 
calcein and Hydrogel=OVA 
nanoparticles (C) with calcein and 
PLGA=OVA microparticles (D) with 
calcein and PLGA=OVA nanoparticles 

(Scale bar 20µm). (This image was 
kindly provided by Anna Bershteyn from 
Irvine´s lab at MIT). 

 

 
 

Hydrogel nanoparticles exhibited calcein fluorescence throughout the cytosol 

and nucleus (fig. 22-B). Calcein entry into the cytosol is triggered by the presence 

of nanoparticles required at the pH-sensitive core (fig. 22-B), as calcein remained 

in an endosomal distribution in cells co-incubated with calcein and PLGA nano 

and microparticles (fig.22-C and D). Therefore, hydrogel particles are able to 

delivery components into cytosol upon internalization by DCs, but not PLGA 

nanoparticles. These results implicate hydrogel pH-responsive particles as a good 

delivery vehicle into cytosol for antigen cross-presentation studies. 
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Part II: shRNA Library: New tools for the genetic dissection of antigen 

cross-presentation pathway(s) 

 
1. Technology overview and design 

The information resulting from genome-sequence increased the need for tools 

that allow genome-scale functional studies. In model organisms such 

Caenorhabditis elegans and Drosophila melanogaster, the recognition that RNA 

interference (RNAi) can be used to suppress gene expression (Fire et al., 1998; 

Kennerdell and Carthew, 1998), has lead to identification of the genes underlying 

many biological processes through loss-of-functions screens (Bettencourt-Dias et 

al., 2004; Boutros et al., 2004; Fraser et al., 2000; Kamath et al., 2003; Kiger et 

al., 2003; Lum et al., 2003). Chemically synthesized RNAi also suppresses gene 

expression in mammalian cells and become essential tool for biological studies 

(Elbashir et al., 2001). RNAi screen have been done with commercially available 

libraries (Aza-Blanc et al., 2003; MacKeigan et al., 2005; Pelkmans et al., 2005). 

As many mammalian cell types are resistant to transfection methods, an alternative 

approach has to be used to introduce synthetic siRNA into cells. In 2002 emerged a 

new “transfection” technology based in transduction mammalian cells with viruses 

carrying expression cassettes that encode short hairpin RNAs (shRNAs) to 

generate gene-specific siRNAs in cells. This approach produces stable and highly 

effective gene suppression in a variety of mammalian cell types (Abbas-Terki et 

al., 2002; Brummelkamp et al., 2002; Paddison et al., 2002; Stewart et al., 2003). 

 

2. The RNAi consortium (TRC) 

The RNAi Consortium (TRC) is a collaborative group of 11 world-renowned 

academic and corporate life science research groups whose mission is to create 

comprehensive tools for functional genomics research. The RNAi Consortium 
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emerged with the objective of generating genome-scale shRNA libraries in viral 

vectors to target almost all human and mouse gene, that allows gene silencing in 

most dividing and non-dividing cell types.  

 

2.1 Lentiviral shRNA  library production 

The TRC lentiviral shRNA library contains now constructs targeting all human 

and mouse genome, with ~5 distinct shRNA constructs per gene. The inclusion of 

five different shRNA constructs targeting each gene increases the opportunity to 

achieve strong knockdown, often offers a gradation of knockdown and provides the 

means to rapidly evaluate the gene specificity of a phenotypic hit. Constructs were 

designed using a siRNA rules based algorithm consisting of sequence, specificity 

and position scoring for optimal hairpins, that attempt for maximize knock-down 

and minimize off-target effects, as well as to ensure that most genes in the library 

contain shRNAs that target both the 3´ unstranlated region (UTR) and coding 

sequence (CDS) of their transcripts (Khvorova et al., 2003; Schwarz et al., 2003). 

For each shRNA, they designed a 21 base stem for the target transcript and an 

intervening 6 base loop consisting of a XhoI site. The hairpins were cloned into the 

pLKO.1 vector, which carries the puromycin-resistance gene and drives shRNA 

expression from a human U6 promoter (fig.24). The pLKO1 lentiviral vector 

enables efficient transduction of primary and non-dividing cells making it easy to 

perform RNAi studies in these hard to transfect cell lines (Federico, 2003). 

Typically, 3-5 shRNA constructs are created for each target gene to provide 

varying levels of knockdown and to target different regions of mRNA transcript. 

One in five clones will typically provide at least 70% knockdown of the gene 

target. Sense and anti-sense hairpin oligonucleotide pairs for 90 hairpin sequence 

were annealed separately and ligated into pLKO.1 at AgeI and EcoRI restriction 

sites, and the ligations were transformed into competent bacteria in a 96-well plate. 
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The 90 transformations in each plate were then pooled and plated onto a large agar 

plate. A total of 672 colonies were selected robotically for growth, plasmid 

purification, and sequencing. This process yields 94% of the designed clones, each 

gene has an average of 4.7 unique shRNA constructs, and 96% of the genes have 

four or more different constructs (Moffat et al., 2006). The TRC creates a 

production pipeline to generate a library of sequence verified shRNAs in pLKO.1. 

In summary, the production of the library comprises several steps: 1) Hairpin 

Design; 2) Vector Preparation; 3) Oligo Pair Annealing, Ligation and 

Transformation; 4) Colony Picking and Sequencing Validation; 5) Quality 

Assessment of Library Glycerol Plates; 6) Tests of Recombination; 7) High-

Throughput DNA Production; 8) Lentiviral Production; 9) Lentiviral infections; 

10) Quantitative RT-PCR and 11) Titering Assay (Moffat et al., 2006). 

 

2.2 High-Throughput lentiviral particle production 

A high-throughput (HT) method to generate high-titer lentiviruses was 

generated by TRC shRNA library consortium. Although preparation of 

transfection-quality plasmid DNA and subsequent packaging of the viral plasmids 

into viruses is quite straightforward for individual samples, performing this process 

efficiently in a high-throughput 96-well format is more challenging; furthermore, 

high-throughput screening demands high and uniform viral titers. TRC consortium 

has developed protocols for DNA and viral production for the TRC library. These 

protocols are frequently updated with improvements and the latest versions can be 

found online (http://www.broad.mit.edu/genome_bio/trc/protocols.html). 

A semi-automated procedure was optimized in 96-well plates in which 

HEK293T cells were transfected with library and packaging plasmids (pCMV-

dR8.91) and envelope plasmid (pMD2.G). pCMV-dR8.91 and the envelope 

plasmid pMD2.G are available from Addgene. Transfection-quality DNA was 

http://www.broad.mit/
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prepped using 96-well PureLink kits (Invitrogen) with average yields of 4 μg 

DNA/well, quantified using a PicoGreen assay (Molecular Probes), and normalized 

robotically in each plate. Lentiviruses were made in 96-well format by transfecting 

packaging cells (HEK 293T) with a three-plasmid lentivirus packaging system 

(Naldini et al., 1996; Zufferey et al., 1997). 300 µl of transfected cell supernatants 

containing VSV-G pseudotyped lentiviruses are collected over 36–60 hrs and 

aliquoted and stored these lentivirus containing supernatants at 80ºC. With current 

HT methods of viral production in 96-well plates, viral titters with average of 

3x10
7
 infectious units (I.U)/ml in A549 cells infected were obtained. Typically, 

50% of wells fall within a twofold range of viral titer. Thus, the procedure above 

yields sufficient volumes of lentiviral supernatants (300µl) from a single 96-well 

plate, is sufficient to provide virus for several hundreds shRNA infectious, 

depending as well on the transducibility of the target cells (Root et al., 2006). One 

consequence of using lentiviral vectors with high titer and broad tropism is the 

requirement for adequate biosafety procedures for manipulation. The three 

plasmid–based lentivirus productions of self-inactivating viruses nearly eliminates 

the possibility of recombination to create replication-competent viruses, and the 

rate of recombination is several orders of magnitude lower than that of comparable 

amphotropic retroviral systems. Many institutions apply biosafety level 2 practices 

to work with third-generation lentiviruses. TRC consortium used biosafety level 2
+
 

precautions for all lentiviral shRNA library work with appropriate containment and 

decontamination procedures. An example of institutional guidelines for lentiviral 

work is available online (http://www.ohsu.edu/research/rda/ibc/protocols.shtml) 

(Root et al., 2006). 

 

 

 

http://www.ohsu.edu/research/rda/ibc/protocols.shtml
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2.3 Subsets compilation 

During the first year of my PhD I have been in Boston at Nir Hacohens‟ lab 

(Harvard/MGH/Broad institute), one of the main collaborative groups that 

compose the TRC consortium, where the UBCSI lab was originated. The objective 

was to learn about the state-of-art shRNA library its compilation and how to 

transfer specific subsets of the shRNA library to perform loss-of-function screens, 

in order to perform the rapid identification of the genes underlying many biological 

processes such as antigen presentation and inflammation that are the two main 

areas of interest for the UBCSI lab. With this powerful tool we are able to generate 

and study loss-of-function phenotypes of genes that compose specific protein 

functional families. As a summary, we organized different subsets of shRNA for 

mice and human genes, in order to produce bacteria, DNA and lentivirus (fig.23):  

 

Fig.23: Relative representation of different shRNA bacterial glycerol stock library collections 
for Human and Mouse genome. Numbers represent the sets of shRNA target genes in each 

collection: Splicing factors, Kinases/Phosphatases, vesicle traffic, antigen presentation and others 
small collections.  

 

2.4 Library production and use  

The next figure shows a schematic represenation of shRNA lentiviral library 

production, lentiviral infection and  phenotype assay (fig.24).   
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Fig.24: Scheme for library production and use. Bacterial glycerol production, pLKO.1shRNA 

constructs DNA prep, viral production and transduction method. Vector map for the pLKO.1 

lentiviral vector: The self-inactivating lentiviral vector backbone contains elements for efficient viral 
packaging and shRNA expression. Expression of the shRNA is driven by the human U6 promoter 
(hU6). The lentiviral vector also contains the mammalian selection marker puromycin resistance gene 
(PAC) and the bacterial ampicillin resistance gene (AmpR). Part I: Inoculation, growth, and 

duplication of glycerol stocks in 96-well plates: To create the different shRNA library families, 
different colonies were re-organized from the master TRC library collection into new 96-well plates. 

Colonies were inoculated one by one, and grown for 17hrs at 37ºC in Terrific Broth supplemented 
with 100ng/µl of Carbenicillin with constant shaking at 300 rpm in an appropriated shaker for 96-well 
plates. After, glycerol stocks were prepared using 40µl autoclaved 50% glycerol and 80µl of culture 
from deep well growth plate into each destination plate to make replicate copies. These plates were 
freeze immediately and store at -80ºC. Part II: Preparation of Transfection-Quality Plasmid DNA 

in 96-well Plates: The rest of bacterial culture was used to prepare of transfection-quality plasmid 
DNA using TRC library protocols for glycerol and plasmid preparation. See detailed protocol: 
https://www.broadinstitute.org/genome_bio/trc/protocols/trcGlycerolStockPlasmidPrep.pdf. Part III: 

lentiviral Production: Packaging Cells (HEK 293T) were transfected with the 3 lentivirus plasmids 

(hairpin-pLKO.1 vector, packaging plasmid and envelope plasmid). At 18 hours post-transfection: 
medium were removed and replaced with fresh high-serum media (30% FBS). At 24 hours viruses 
were harvest by replacing the medium with C10. At 48hr afterwards, viruses were harvested again 
and packaging cells were discarded according to TRC library protocols for lentiviral production. See 

https://www.broadinstitute.org/genome_bio/trc/protocols/trcGlycerolStockPlasmidPrep.pdf
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detailed protocol: http://www.broadinstitute.org/genome_bio/trc/protocols/trcLentiVirusProd.pdf.Part IV: 

Lentiviral infection: High titer of lentiviruses was used (10µl) to transduce target cells by 
spinoculation (2200rpms at 37ºC during 90 min). Polybrene were used as 8µg/ml as final 
concentration. After 2 days at 37ºC, cells were selected with an optimal concentration of puromycin 
(concentration should be optimized for each cell line; typical concentrations range from 2-5 μg/ml). 
Puromycin selection requires at least 48hrs. Incubated periods are highly dependent on the post-
infection assay. Part V: Phenotypic assay: could be performed 3+ days after puromycin incubation. 

Validation by mRNA Knockdown (qPCR) or protein Knockdown (Western/FACS) could be 
performed 2+ days or 3+ days respectively.  
Adapted  from http://www.broadinstitute.org/genome_bio/trc/publicProtocols.html and (Moffat et al., 2006).  

 

2.5. Publications  

The ultimate objective with this tool was to create a specific collection of 

shRNA, which we called as “antigen presentation collection”, to generate loss-of-

function of specific genes involved in different key steps of antigen presentation 

pathways. Using this powerful tool, we initially proposed to dissect and clarify the 

antigen cross-presentation mechanism(s) mediated by our platform of synthetic 

model particles. In addition to the knowledge of the technology behind shRNA 

platform, another proposed was to generate important subsets of families of genes 

crucial for the development of different projects that were occurring in the lab 

(UBCSI at Instituto de Medicina Molecular) and with collaboration of different 

groups abroad:  

 

i) One of the collaborations was done with Anjana Rao´s lab in Cambridge at 

Harvard Medical School, with the aim to identify splicing factors required for the 

activation-induced switch from CD45RA
+
 isoforms to the short isoform CD45RO 

(exclusion of exons 4-6 (A-C) of CD45 transcripts). As the transition from naïve to 

activated T-Cells is marked by alternative splicing of pre-mRNA encoding the 

transmembrane phosphatase CD45, it is of great importance to understand how this 

regulation occurs. From this work using the Splicing Factors shRNA library, we 

identified a single factor, heterogeneous ribonucleoprotein L-like (HNRPLL), 

which is up-regulated in response to PMA stimulation and whose depletion 

http://www.broadinstitute.org/genome_bio/trc/protocols/trcLentiVirusProd.pdf
http://www.broadinstitute.org/genome_bio/trc/publicProtocols.html
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eliminated stimulation-dependent CD45RO expression. HNRPLL is necessary and 

sufficient to induce CD45RO expression in B and T-Cell lines and primary T-

Cells. We conclude that HNRPLL is a crucial regulator of CD45 alternative 

splicing in activated T-Cells. This work was published in Science. 2008 Aug 1; 

321 (5889):686-91). 

ii) Another project developed in collaboration with Sebastian Amigorena´s lab 

in Paris at Curie Institute, proposed to identify vesicle traffic proteins involved on 

the control of different steps of the Exosome secretion pathway. Exosomes are 

secreted by several cell types and can be involved in intercellular communication 

and in the pathogenesis of infectious and degenerative diseases. The molecular 

mechanisms of their biogenesis and secretion are, however, poorly understood. 

Using a shRNA interference screen for vesicle traffic proteins, we identified 5 

small GTPases of the Rab family involved in exosome secretion in HeLa cells, 

were the two Rab27, Rab27a and Rab27b, play a major role but different and 

complementary in the exosomal pathway. By showing that major inhibition of 

exosome secretion is associated with alterations of late endocytic compartments, 

we demonstrate that exosomes originate mainly from MVEs. This work was 

published in Nature Cell Biol. 2010 Jan;12(1):19-30. 

iii) Caetano Reis e Sousa´s lab in London at Cancer Research Institute was 

interested in fungal response and the mechanism behind that. Caetanos´s lab has 

shown that with Dectin-1, a PRR for fungi, a novel innate signaling pathway 

involving Syk kinase and the adaptor CARD9 is defined, which is critical for 

inducing Th17 responses to fungal infection. We demonstrated that another C-type 

lectin, Dectin-2, also signals via Syk indirectly trough association with FcRγ, and 

CARD9, and contributes to Dendritic Cell  activation by fungal particles. We 

concluded from this work that Dectin-2 constitutes a major fungal PRR that can 

couple to the Syk–CARD9 innate signaling pathway to activate DCs and regulate 

javascript:AL_get(this,%20'jour',%20'Nat%20Cell%20Biol.');
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adaptive immune responses to fungal infection. This work was published in 

Journal of Experimental Medicine 2009 Aug 206: 2037-2051.  

iv) In collaboration with Prof. João Gonçalves´ lab in Lisbon at Faculdade de 

Farmácia, we proposed to identify novel HIV-1 replication of druggable targets 

identified by a shRNA-based screen enriched in kinases/Phosphatases in T 

lymphocytes. HIV-1 is a complex retrovirus that uses host machinery to promote 

its replication. Understanding cellular proteins involved in the multistep process of 

HIV-1 infection may result in the discovery of more adapted and effective 

therapeutic targets. Kinases and phosphatases are a druggable class of proteins 

critically involved in regulation of signal pathways of eukaryotic cells. Here, we 

have focused in the discovery of kinases and phosphatases that are essential for 

HIV-1 replication but dispensable for cell viability. We have performed an iterative 

screen in Jurkat T-Cells with a short-hairpin-RNA (shRNA) library highly enriched 

for human kinases and phosphatases. We identified new 14 proteins essential for 

HIV-1 replication that do not affect cell viability. These proteins were described to 

be involved in MAPK, JNK and ERK pathways, vesicular traffic and DNA repair. 

Moreover, we have shown that most proteins do not affect viral integration but 

rather affect viral transcription/translation. This study brings new insights for the 

complex interplay of HIV-1/host cell and opens new possibilities for antiviral 

strategies. This work was published in PLoS ONE 2010 Feb 17;5(2):e9276. 

 

The results presented in this thesis, in collaboration with Darrell Irvine‟s lab at 

MIT, are under preparation for publication:  

 

Freitas RP, Bershteyn A, Moita C, Irvine DJ, Moita LF. The particle antigen 

cross-presentation is impaired by a crosstalk effect of TLR4 signaling in a 
phagosome dependent manner. In preparation. 
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Mice                                                                                                                                                                                                                                                                                                                                      
 

We have used 6- to 12-week-old C57BL/6 Wild Type, MyD88KO, TLR4KO, 

OT-I and OT-II mice. All mice were bred and maintained under specific pathogen-

free conditions at Instituto de Medicina Molecular animal breeding facility 

according to institutional guidelines.  

 

Cells Isolation/Preparation        

 

 Bone Marrow-derived Dendritic Cells (BMDCs)  

DCs differ in developmental origin and most DCs are considered to be of 

myeloid origin; the main evidence for this comes from studies of DC development 

in cultures stimulated by Granulocyte-macrophage colony-stimulating factor (GM-

CSF) (Inaba et al., 1993). The principle method for generating BMDCs with GM-

CSF was adapted from previous publications (Inaba et al., 1992a; Inaba et al., 

1992b; Inaba et al., 2001; Scheicher et al., 1992). Culture of DCs in vitro was 

carried out in RPMI medium 1640 (GIBCO) supplemented with 10% heat-

inactivated and filtered (0.22 µm, Milli-Pore) Fetal Bovine Serum (endotoxin-free, 

BIOWEST), β-mercaptoethanol (50µM Sigma- GIBCO) L-glutamine 100 units/ml 

(2mM, GIBCO), penicillin (100 U/ml, GIBCO) streptomycin (100µg/ml GIBCO)  

and GM-CSF (15-30% J558 supernatant, depending on GM-CSF concentration, 

tested previously in culture) - Complete Medium (C10). The BMDCs were 

differentiated in 96 round-well plates (corning) or large Petri dish (non treated 

dish) depending the number of DCs and the type of experiment. Bone-Marrow 

derived Dendritic Cells (BMDCs) isolation from mice bone-marrow was done as 

follow: 

Day 0: Femurs and tibiae of female, 6–12 weeks old female C57BL/6 or 

TLR4KO, were removed and purified from the surrounding muscle tissue. Then 
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both ends were cut with scissors and the marrow flushed with BMDCs Medium 

using a Syringe with a 25G needle. Clusters within the marrow suspension were 

disintegrated by vigorous pipetting and filtered. After spin down cells were 

resuspended in 2 ml of TAC buffer to lysis Red blood cells (8.32 g NH4Cl; 0.82 g 

NaHCO3; 0.043 g EDTA in 1L of miliQ water) for 2 minutes. This reaction was 

stopped with 8 ml of complete medium. The cells were pelleted and counted. 15-

30% J558 supernatant (depending on GM-CSF concentration) was added. BMDCs 

were plated in 96 well plates at 5x10
4
/well in 200µl or alternatively in 150 mm 

petri dishes (non treated dish) at 10-12x10
6
/petri dish in 20ml of medium and 

incubated at 37ºC. For 96 well plates, BMDCs care is performed every two days 

until BMDCs are ready to harvest on day 6 or 7. Remove old medium - Carefully 

aspirate in circular fashion ¾ of medium.  This sucks up nutrient depleted medium 

and non-adherent-non DCs. Prepare new medium - add J5 (1:30 dilution) to C10 

and replace with ¾ of volume. 

Day 3: For the petri dishes cultured BMDCs, take the supernatant with floating 

cells and transfer it into a 50 ml tube. Add 10 ml of phosphate-buffered saline (BS) 

to the dish and swirl gently trying to detach some cell clusters (avoiding bubbles). 

Mix this PBS containing cells with the floating cells supernatant.  Add 4ml RT -

trypsin to the dish and let it for 2 minutes; stop by adding 4 ml BMDC medium and 

swirl gently. Transfer this volume and mix with the rest of the cells. After this 

short trypsin treatment many cells remain attached to the bottom of the dish. Do 

not try to take them; most of them have a macrophage-like phenotype. Centrifuge 

the cells and resuspend them in some volume of BMDC medium; count them and 

plate again into 150 mm dishes (10-12 .10
6
 cells in 20ml/Petri dish). 

 

Day 7: Repeat as described for day3. 
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Day 9-11: Repeat as described for day3. Perform CD11c staining for 

Fluorescent Activated Cell Sorter (FACS) analysis. The level of CD11c
+
 

population should be more than 70% from day 10-11 and increase over time.  It is 

important to verify if CD11c
+
 cells are immature and how is their capacity of 

maturation. Treat some cells during at least 20 hours with 10 µg/ml LPS. Perform 

staining of MHC-II, CD40, CD86 in treated and not treated cells and analyze by 

FACs. The levels of these 3 markers should be low in non-treated cells and 

importantly increased in LPS treated DCs. 

Once the population is 80-90% CD11c
+
, cells can be platted at higher 

concentration (around 15-20x10
6
 cells in 20ml/Petri dish). They can be used for 7-

10 days depending on maturation markers. CD11c staining for FACs analysis was 

performed (fig.25). The level of CD11c
+
 population should be more than 70% from 

day 6 and increase over time. To verify if CD11c
+
 cells are immature and how is 

their capacity of maturation, BMDCs were stained with anti-CD86, anti-CD40 and 

anti-MHC-II treated and not treated with LPS stimulation (10ng/ml) for at least 20 

hours and analyzed by FACs for the surface expression of maturation markers. The 

levels of these 3 markers should be low in non-treated cells and increased in LPS 

treated DCs (fig.26). 

     

 Fig.25: BMDCs staining at day 9 with anti- 
CD11c

+
-PE antibody. Upper left panel 

unstained BMDCs population vs upper right 
panel stained BMDCs with anti-CD11c+-PE 
antibody (Abcam). Lower graph shows 
histogram of BMDCs unstained (dot curve) 
and stained with CD11c+-PE (filled curve). 
Number represents the percentages of the 

positive CD11c+ cells, analyzed on PE 
channel. These data are representative from 
one experiment repeated at least three times 
with similar results. 
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Fig.26: BMDCs maturation with GM-CSF, staining at day 3, 6 and 9 in culture. BMDCS were 

stained with anti-CD86, anti-CD40, anti-MHC-II and anti-CD11c antibodies (Abcam), with and 
without LPS stimulation (10ng/ml) for at least 20 hours. BMDCs were analyzed by FACS and plots 
represent surface expression of CD86, CD40 and MHC class-II vs DC marker (CD11c+). Numbers 
show the percentage of cells on CD11c+ quadrants. Antibodies were used with 1:200 dilution. These 
data are representative from one experiment repeated at least three times with similar results. 
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 Splenic Dendritic Cells (sDC)  

DCs form lymphoid origin were isolated form mouse spleen as previously 

described (Vremec et al., 2000), making use of Immunomagnetic bead purification  

kit (CD11c MicroBeads mouse - AutoMACS; Miltenyi Biotec) (Ing et al., 2006; 

Williamson et al., 2002). The spleen was cut into small fragments and left for 30 

minutes for enzymatic disaggregation in medium with Collagenase D (1mg/ml) 

and DNaseI (0,02mg/ml) at 37ºC to generate single cell suspension. After, the 

fragments were resuspended and filtered through 30µm nylon mesh, to remove cell 

clumps that may clog the column. To prevent DC maturation during the isolation 

protocol, the procedure was performed on ice or at 4ºC. Cell number was 

determined and cells were recovered from the digestion by centrifugation for 

200xg for 5 minutes. Cell pellet was resuspended in 400µl of MACS buffer 

(solution containing PBS pH 7.2, 0.5% bovine serum albumin (BSA), and 2 mM 

EDTA by diluting MACS BSA Stock Solution 1:20 with autoMACS™ Rinsing 

Solution per 10
8 
total cells (keep buffer cold,4−8 °C). 100µl of CD11c MicroBeads 

were added per 10
8
 of total cells. The cells were mixed with the beads and incubate 

for 15 minutes in the refrigerator (2-8ºC). Cells were washed by adding 1 ml of 

buffer per 10
7
 cells and centrifuge at 200xg for 5 minutes. Cells were resuspended 

up to 10
8
 cells in 500µl of MACS Buffer. Next magnetic separation was 

performed: Place MS column in the magnetic field separator and equilibrate with 

500µl of MACS Buffer. Apply cell suspension onto the column and collect flow-

through containing unlabeled cells. Always wait until the column reservoir is 

empty before proceeding to next step. Wash column 3x with 500µl of Buffer and 

collect again the flow-trough. Remove column from the separator and placed in a 

15ml falcon tube. Elute the CD11c
+
 cells by pippeting 500µl of MACs buffer onto 

the column and immediately flush out the magnetically labeled cells by firmly 
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pushing the plunger into the column. This protocol excluded B220
+
 „„plasmacytoid 

DC‟‟ from the DC preparation.  

 

 T-Cells (CD8
+
 Cytotoxic T-Cells and CD4

+
 T Helper Cells)  

CD8
+
 Cytotoxic T-Cells and CD4

+
 T helper cells were isolated from spleen of 

OT-I and OT-II mice respectively, using two different T-Cell isolation Kits from 

MACS Miltenyi Biotec. T-Cell Isolation Kit is an indirect magnetic labeling 

system for the isolation of untouched T-Cells from single-cell suspensions of 

lymphoid organs. Consequently, CD8α
+
 T-Cells were isolated by depletion of non-

CD8α
+ 

T-Cells and CD4
+
 T-Cells were isolated by depletion of non-CD4

+ 
T-Cells  

(negative selection), as described elsewhere (Gruber and Brocker, 2005). Highly 

pure untouched CD8α
+
 T-Cells and CD4

+
 T-Cells are isolated respectively using 

this approach.  Non-CD8α
+
 T-Cells, i.e. T helper cells, B cells, NK cells, DCs, 

macrophages, granulocytes, and erythroid cells, are indirectly magnetically labeled 

with a cocktail of biotin-conjugated antibodies against CD4 (L3T4), CD45R 

(B220), CD49b (DX5), CD11b (Mac-1), and Ter-119, as well as anti-Biotin 

MicroBeads. Non-CD4
+
 T-Cells i.e. cytotoxic T-Cells, B cells, NK cells, DCs, 

macrophages, granulocytes, and erythroid cells, are indirectly magnetically labeled 

with a cocktail of biotin-conjugated antibodies against CD8a (Ly-2), CD45R 

(B220), CD49b (DX5), CD11b (Mac-1), and Ter-119, as well as Anti-Biotin 

MicroBeads. Isolation of T-Cells was achieved by depletion of the magnetically 

labeled cells. The protocol is the same for CD8
+
 T- Cell or CD4

+ 
T-Cell isolation, 

using however different magnetic beads cocktail described previously.  

Sample preparation: The spleen was dissociated mechanically, between 2 

slides sterilized with ethanol 70%. The resulting tissues were resuspended with a 

pipette and the cell suspension was filtered. Cells were recovered by centrifugation 

at 300xg during 5 minutes. 2 ml of TAC were added for 5 minutes at RT to remove 
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erythrocytes. Complete medium were added to stop the reaction and the pellet was 

recovered by centrifugation at 300xg during 5 minutes. Pellet was resuspended in 1 

ml MACS buffer and cell number was determined.  

Magnetic labeling: Cell suspension was centrifuge at 300xg during 5 minutes 

and pellet was resuspended in 40µl of MACS buffer per 10
7 

of total cells. 10 µl of 

Biotin-Antibody Cocktail (Cocktail of biotin-conjugated monoclonal antibodies), 

were added per 10
7
 cells and incubated at 4ºC during 15 minutes (mixture were 

mixed every 5 minutes). 30µl of MACs Buffer and 20 µl of Anti-Biotin 

Microbeads (monoclonal antibodies – secondary labeling reagent) were added per 

10
7
 of total cells. Resuspension was mixed and refrigerated for 15 minutes at 4ºC. 

Cells were washed by adding 1 ml per 10
7
 cells and centrifuged at 300xg for 5 

minutes. Pellet was resuspended up to 10
8
 cells in 500µl (for higher cell number 

buffer volume was scale up).  

Magnetic Separation: MS columns were placed in the magnetic field of MACS 

separator. Cell column were equilibrated by adding 500µl of MACS buffer. Cell 

suspension was applied onto the column (Cells were allowed to pass through and 

collect effluent as fraction with unlabeled cells, representing the enriched T-Cell 

fraction). Column was washed 3x with 500µl of MACS Buffer and the effluent 

was collected in the same tube. The purity of the enriched CD8α
+
 T-Cells or CD4

+
 

T-Cells were evaluated by FACS with a fluorochrome-conjugated antibody against 

CD8α (CD8α-FITC) or CD4 (CD4-FITC) respectively. 
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Synthetic Pathogen Platform       

 
 Fixed-ligand particles – Polystyrene particles 

 

 Two-step coupling to Carboxylated Microspheres  

 Method of preparation:  

 A two-step coupling reaction of protein and TLR agonists was performed using 

carboxylated microspheres. 100µl of 1.0 µm microspheres (4.55 x 10
10

 particles/ml 

from Polysciences) from stock suspension were pelleted at 13.000 rpm, 5 minutes 

and washed 2x with 1ml of PBS. Particles were resuspended in 1,5ml of Activation 

Buffer (0.1 M MES 0.5 M NaCl, pH 6.0). Pre-solution of 0,1g/ml of EDC (Pierce) 

and Sulfo-NHS (Pierce) were prepared in activation buffer. 2mg of EDC (~6,7mM) 

and Sulfo-NHS (6mM) were added to beads suspension, vortexed, and incubated 

covered on shaker for 15 minutes at RT. 2µl of 2-Mercaptoethanol (Pierce), at final 

concentration of ~20mM, were added to quench EDC. Particles were pelleted and 

washed 1x with activation buffer. Particles were resuspended in 100µl of Coupling 

Buffer 2x (0.2 M MES 1M NaCl, pH 7.0) and divided into 3 batches (50 µl each): 

1- Antigen only and 2- Antigen and LPS and 3- Antigen and CpG, as shown in 

following table. 

 

Table VI: Covalent conjugation of OVA and TLR agonists (LPS and CpG) to polystyrene particles. 
 

 OVAp OVA=LPSp OVA=CpGp 

Coupling Buffer 2x 50µl 50µl 50µl 

Ovalbumin endograde (10mg/ml) 20µl 20µl 20µl 

LPS endo-toxin free (1mg/ml) - 20µl - 

CpG-NH2 (100ng/µl) - - 20µl 

MQ water (endotoxin free) 30µl 10µl 10µl 

Total volume 100µl 100µl 100µl 
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This reaction was mixed by vortex and incubated on a rotator covered for 3 

hours at RT. Beads were pelleted and 1ml of Quenching Buffer (1%BSA, 50mM 

Tris, 0,1%NaN3, pH7,4 in PBS ) was added to stop the coupling reaction and 

incubated on a rotator covered for 1 hour. Beads were pelleted and washed 1x with 

1ml of quenching buffer and 3x more with 1ml of PBS 1x  (if they form “clusters” 

beads were washed 1x PBS 0.05%Tween). Resuspended in 100µl of PBS 1x and 

stored at 4ºC. For particles with a size range inferior to 0.5µm, micro vectaspin 

columns were used in centrifugation steps (Whatman).  

The optimal Ovalbumin and agonists‟ concentrations were titrated and used in 

saturation conditions. Different concentration ranges have been used with no 

significance differences in loading efficiency as measured by FACS (data not 

shown). Quantitative methods could be applied to measure the conjugation 

efficiency (amount of Ovalbumin and agonists at particle surface), based either on 

the amount of the compound that remains in supernatant (Jain et al., 2005) or a 

more specific method based on a FACS assay using calibrated fluorescent particles 

labeled with the same dye as the compounds. However, the aim of this work was 

not to quantify the precise amount of antigen or agonists on model particles, but 

instead a more qualitative approach.  

 

 Mobile-ligand particles – PLGA particles  

 

 PLGA microspheres loaded with protein mixed in the core   

Method of preparation:  

Depending on the ratio of lactide to glycolide used for the polymerization, 

different forms of PLGA can be obtained. These are usually identified in regard to 

the monomers' ratio used (PLGA 50:50 - identifies a copolymer whose 

composition is 50% lactic acid and 50% glycolic acid - from  Lakeshore 
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Biomaterials). PLGA particles loaded with protein mixed in the core were prepared 

as described: Weigh 100mg of PLGA in Kimble glass tube (from Laboratory 

Disposable Products, Inc) with cap, and then add 1ml of dichloromethane, cover 

with cap and vortex at highest speed (or sonicate less than 30 seconds) until it 

dissolves- [solution 3]. Weigh 20mg of BSA in a 1.5ml eppendorf tube and add 

100µl 2% PVA (use pipette and gently pipette up and down so we can prevent 

bubbles- [solution 4]. If incorporating protein, then add this BSA solution (BSA is 

used to protect the protein encapsulated in the PLGA particle) as the carrier protein 

to the lyophilized Ovalbumin protein vial (20µg), gently pipette up and down, and 

this will be our solution 4 in this case. Add solution 4 to solution 3 and emulsify by 

homogenization originally at speed 1, then immediately turn up to speed 3 (10.000 

rpm) for 1 minute. Add 5 nmol (estimated quantity) of oligo and or 20µg of LPS 

and repeat last step. Then place homogenizer tip in the solution 1 beaker (2% 

PVA/50ml Water MQ) and start at speed 1, then add (use blue pipette) the above 

emulsion (from (3), ~1.1ml) to solution 1 and turn up to speed 3 to homogenize, 

since this is in a beaker, so move the homogenizer tip around once while 

homogenizing so can make it more homogenously homogenized, then place in the 

middle of the solution for 1 minute. Place solution 2 (1%PVA/ 100ml Water MQ) 

on stir plate and start stirring at speed 4, then add above emulsion (from (3), total 

~51,1ml) to solution 2 and stir for 3-4 hours at speed 4 without homogenization 

(1.000rpm at RT to evaporate DCM) on stir plate (VT= 150ml). At the end of 

stirring, dispense it in three 50ml conical tubes and centrifuge at 10.000rpm for 20 

minutes. Pellet the particles and collect in one 50ml conical tube. Wash 2x more. 

After the last centrifugation, decant supernatant; add 2-3ml of water. Particles 

could be separated by size, using vectaspin micro 0.02µm and 0.2µm (from 

whatman) and stored at 4ºC for a couple of days. For a long storage, they could be 
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place in liquid nitrogen and then cover the tube with Kimwipe and place in 

lyophilizer. 

 

 PLGA microspheres with lipid layer to mimic pathogens -allow 

protein and ligand conjugation  

With this technology, it is possible to create an improved dynamic system, 

where particles with surface lipid layers mimicking the composition of lipid-

enveloped pathogens. Our collaborators described the self-assembly of different 

components of biological membranes or lipid-like tracer molecules at the surface 

of PLGA particles (Bershteyn et al. 2008). We employed the emulsion approach to 

fabricate lipid-enveloped polymer microparticles and nanoparticles. 

Method of preparation:  

a) Stock solutions: 80 mg of PLGA were pre-aliquot into eppendorfs and stored 

at -20
o
C. This is to avoid moisture entering the polymer stock due to numerous 

freeze-thaw cycles. Lipid stocks were resuspended in chloroform and can be pre-

mixed and stored in aliquots.  

DOPC, 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine,18:1PC(cis) (Avanti; 11.7 

mg/ml stock in chloroform). DOPG,1,2-Dioleoyl-sn-Glycero-3-[Phospho-rac-(1-

glycerol)](SodiumSalt)18:1 PG (Avanti; 3.00 mg/ml stock in chloroform). DSPE-

PEG-maleimide,1,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine-N [Maleimide 

(Polyethylene Glycol)2000] (Ammonium Salt)  (Avanti; 5.53 mg/ml stock in 

chloroform). MPLA Lipid A, monophosphoryl from Salmonella enterica serotype 

minnesota Re 595 (Sigma; 3.32 mg/ml stock in chloroform). 

These stocks were stored at -20ºC or -80ºC ideally with Teflon tape wrapped 

around the seal to keep solvent in, or at least with parafilm to keep moisture out. 

When possible, the containers were purged with nitrogen gas to remove oxygen 

before storage. 
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b) Preparation of organic phase: The stocks of lipid and polymer should be 

leave at room temperature for a few minutes, until the vials are no longer cold to 

touch. This will keep condensation from entering the stocks. Add 250 µl of DOPC, 

DOPG, and PEG-maleimide stock. For MPLA-containing beads, also add 250 µl 

of MPLA stock. Use a steady stream of nitrogen to dry the lipid in the vial, 

removing the chloroform solvent or a vacuum chamber with a bump trap to remove 

residual chloroform. Add 80 mg PLGA to each vial and add 1 ml dichloromethane. 

Let stand, swirling or pipeting occasionally, until polymer has dissolved. Add 4 ml 

more dichloromethane. 

c) Synthesis of microparticles: Clean the homogenizer (Ika T25 Homogenizer) 

with acetone, ethanol, and water, in this sequence. Pour 40 ml pure water into an 

Erlenmeyer flask and begin homogenizing at speed 3. Use a 5 ml pipet to slowly 

pour the organic solution along the homogenizer tip. Polymer and lipid co-

dissolved in dichloromethane are emulsified into ultrapure water with a 

homogenizer; slow evaporation of the organic solvent led to formation of solid 

particles. After dispensing all organic solution, homogenize for an additional 2 

minutes. Add stir bar and stir at ~400 rpm at room temperature overnight. Clean 

the homogenizer by blotting away excess solution, squirting with acetone, and 

cleaning with acetone, ethanol, and water. Repeat for each sample.  

After 12-24 hours, strain particles through a 40 µm cell strainer. The 

polydisperse products of this synthesis can be separated by centrifugation (5 

minutes at 2.000xg) into bacterial-sized and virus-sized populations. Place particles 

into a capped container for storage at 4ºC.  

d) Conjugation of model antigen – Ovalbumin:  

i) Modification of OVA and quenching: Use Frozen aliquots of 

SAT(PEO)4 at 250 mM in DMSO. Ovalbumin dissolved in sterile PBS at 4.5 

mg/mL (0.1 mM) should be added a 10-fold molar excess of a freshly thawed 
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aliquot of SAT(PEO)4 (1:250 for 1 mM final). Incubate Ovalbumin on rotator for 

30 minutes. (When 1 batch of plain and 1 batch of MPLA beads, started with 130 

µl of OVA and add 0.52 µl SAT(PEO)4.). Add 1:40 quenching buffer (75 mg/ml 

or 1 M glycine in PBS stock for final 25 mM) and rotate for another 15 minutes. 

ii) Deprotection of -SH groups on ova:  Prepare a Zeba desalt column 

according to the instructions, spinning 4 additional times for buffer exchange with 

PBS. After Ovalbumin reaction is complete, desalt OVA into PBS. (Any excess 

modified OVA can be stored at 4ºC at this point.) Measure the volume of eluted 

OVA and add 1 part deacetylation solution (0.5 M hydroxylamine, 25 mM EDTA 

in PBS pH 7.2-7.5) per 10 parts of OVA (~20 µl deacetylation solution to ~200 µl 

OVA). Incubate on rotator for at least 2 hours to deprotect reactive groups. 

iii) Reaction with microparticles: Coupling buffer (10 mM EDTA, 

0.01mM TCEP in PBS pH 7.2-7.5) must use a fresh addition of 0.01-0.02 mM 

TCEP due to the short half-life of this reagent in PBS. Weigh a minimal but 

accurate amount of TCEP and dissolve at 1 mg/ml in pure water. Incubate on 

rotator to dissolve. Meanwhile, spin down 1 ml beads at 1.100xg for 1 minute to 

remove small particles. Resuspend in 50 µl PBS, add 950 µl PBS, and spin again at 

13.000 xg for 5 minutes. Resuspend beads in 50 µl coupling buffer (no TCEP). 

At this point, mix coupling buffer with 2x TCEP by adding 14.3 µl of 1 mg/ml 

TCEP per 2.5 ml coupling buffer precursor (Remember that the TCEP will have a 

short half-life.). Solvent exchange a Zeba desalt column into this solution. Desalt 

the OVA from deacetylation solution into coupling buffer with TCEP. Finally, add 

50% of the OVA/coupling buffer/TCEP solution to a batch of plain beads, and 

50% to a batch of MPLA-containing beads. Let the reaction for at least 3 hours, 

and then wash beads 3x with PBS at 13.000xg for 5 minutes before quantifying 

using hemocytometer and OD600. 
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 Sequestered dynamic-ligand particles – Hydrogel particles  

 Synthesis and characterization of pH-sensitive core-shell 

nanoparticles 

 
Reagents:  

2-diethylamino ethylmethacrylate (DEAEMA), 2-aminoethyl methacrylate 

hydrochloride (AEMA 90%) and ammonium peroxodisulfate (APS) were 

purchased from Sigma-Aldrich Co. Poly (ethylene glycol) dimethacrylate 

(PEGDMA, MWPEO = 200g/mol - cross-linker) were purchased from 

Polysciences Inc.  

Method of preparation:  

Disperse DEAEMA (1ml, 4.97mmol) premixed with PEGDMA 200 (10μl, 

0.03mmol) in water (9ml) with stirring and equilibrated at 70°C for 15 minutes. 

DAEMA is hydrophobic, thus surfactants are not necessary. Ovalbumin (100µg) 

and TLR agonists (LipidA – 20µg) could be pre-mixed with this solution, before 

adding APS (50μl of 200mg/ml freshly made solution) as the initiator - the solution 

becomes white in ~ 1 minute. The emulsion polymerization occurs at 70°C for 3 

hours to grow the particle core, followed by injection of AEMA (50μl of 800mg/ml 

freshly made solution, 0.24mmol) to grow the particle shells for an additional 1.5 

hours.  

The nanoparticles were purified by dialysis (10,000 MWCO Slide-A-Lyzer® 

Dialysis Cassettes, Pierce Chemical Co.) in deionized water pH~ 5-6 (membrane of 

8-12kDa) for three days followed by ultrafiltration 3x (10.000 MWCO PLGC 

Ultrafiltration Membrane, Millipore Co.) and centrifugation 3x with PBS (pH 7.4) 

at 15.000xg. Purified particles can be stored in PBS at 4°C.  Another approach 

used to couple Ovalbumin and TLR agonists is to pre-mix with core-shell 

nanoparticles for 5 minutes to allow electrostatic adsorption of the protein and 

agonists to the cationic surfaces of the core-shell particles. The majority of free 
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Ovalbumin and agonists could be removed by centrifugation. Ovalbumin and 

agonists are tightly absorbed on the surface of the core-shell nanoparticles due to 

the positively charged amine groups in the PAEMA shell. 

 

Antigen Presentation to Naive T Cells in vitro         

 

o Antigen Presentation Model  

To study antigen presentation we made use of an ex vivo model using primary 

APCs (either BMDCs or sDCs), model particles covalently loaded with model 

antigen (Ovalbumin) and/or TLR agonist. Primary T-Cells isolated either from OT-

I mice (CD8
+
 T-Cells with a transgenic T-Cell receptor (TCR) K

b
/SIINFEKL-

specific) and OT-II mice (H-2b-restricted OVA class-II epitope OVA4 (OVA323-

339) were co-incubated with DCs to measure MHC class-I and MCH class-II 

antigen presentation respectively. T-Cell proliferation/activation can be measured 

by: 

 

1) Fluorescence-activated cell sorting (FACS) using the FACSCaliber (BD 

instruments), following T-Cell division. 

 

2) ELISPOT assay (ELISA) for detection of IFN-γ or IL-2 released by 

activated antigen-specific T-Cells.  

 

 

The antigen presentation model is schematically represented in the following 

figure: 
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Antigen Presentation Model 

 

Fig.27: Antigen Presentation Model: C57BL/6 mice (in some cases TLR4KO and MyD88KO mice 
were used) DCs are isolated either from Spleen (sDCs) or from Bone Marrow (BMDCs) and 

incubated with antigens during 5 hours. Primary T-Cells from OT-I (CD8+ T-Cells with a transgenic 
T-Cell receptor (TCR) Kb/SIINFEKL-specific – OVA257-264:K

b) or OT-II (transgenic CD4 TCR 
specific for the MHC class II–restricted OVA peptide aa323–339 - OVA323-339:I-A

b) mice were 
isolated from spleen and co-culture with DCs. T-Cell activation are follow at day 3, by measuring T-
Cell proliferation by FACS or by Cytokine production (IL-2/IFN-γ) by ELISA.  
 

 

1) FACS Proliferation assay - CFSE  

 

T-Cell activation can be follow by FACS, using a Fluorescent T-Cell staining 

dye (carboxy-succinimidyl-fluorescein-ester - CFSE; Molecular Probes, Eugene, 

OR). During each round of cell division, relative fluorescence intensity of the dye 

is decreased by half, thus cell division can be follow by looking to the clearly 

defined peaks following division in FACS plot.  

Individual DCs populations (BMDCs or sDCs) were plated in 96-well round 

bottom plates (Costar-Corning) at 2.5x10
4
 cells per well and challenged with the 

indicated number/concentration depending on the type of experiment: 

- Soluble antigen OVA (endotoxin free Ovalbumin from PROFOS AG 

endotoxin concentration < 1 EU/mg; and BSA fraction V from Sigma as a 

negative control. 

- Soluble peptides: K
b 

epitope  pOVA257-264 – SIINFEKL from NeoMPS; H-

2b epiope pOVA 323-339 – OVA4 from NeoMPS  
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- Synthetic Particles (Fixed-ligand particles: Particles loaded with OVA- 

OVAp; OVA particles coupled with TLR ligands- OVA=LPSp, 

OVA=CpGp, OVA=LipidA, OVA=Pam2p, OVA=Pam2p, OVA=PolyI:C, 

OVA=ssRNA40 and OVA=Flagellinp. Mobile-ligand particles: PLGA 

particles loaded with OVA- PLGA=OVA; and PLGA=OVA particles 

loaded with MPLA. Sequestered dynamic-ligand particles: Hydrogel 

particles loaded with OVA- Hydrogel=OVA; and Hydrogel=OVA 

particles loaded with MPLA).  

- Soluble TLR agonists (LPS, CpG, PolyI:C and LipidA) . 

- Fixed OVA-expressing E. coli (a kind gift from Darren Higgins‟ lab),  

- OVA-loaded dying cells were prepared by osmotic shock as described 

previously (Liu et al., 2002).  

DCs were challenged for at least 2 hours at 37°C in complete medium followed 

by extensive washes in PBS. DCs were allowed to internalize soluble OVA and 

OVA particles for the indicated times. Alternately, DCs were loaded with the 

specific OVA peptide as a control of surface exposure of MHC class-I molecules 

and BSA as a negative control. For TLR4 inhibition pathway assay, DCs were pre-

incubated for 2 hours before antigen pulse with 10µM of drugs for the tree main 

MAPK pathway. Drugs were kept during the entire pulse period. The drugs used 

were: P38 inhibitor – SB203580 from Promega; MEK inhibitor- PD98059 from 

Cell Signaling and JNK inhibitor- SP600125 from Promega. DCs were washed 3x 

and resuspended in 200 µl of complete medium containing 5x10
4
 CFSE-labeled 

OT-I or OT-II cells. T-Cells were labeled as follow: T-Cells were resuspended in 

medium without serum at 10
6 
cell/ml. 2µl of CFSE (invitrogen) (5mM) were added 

to each 10
6 

cell/ml, and incubated 10 minutes at 37°C. Cells were pellet at 200xg 

for 5 minutes and resuspend in complete medium in manner to add the same 

number of T-Cells as initial number of DCs. T-Cell proliferation was analyzed 

after 60–65 hours of culture by FACS as described elsewhere (Wilson et al., 2003). 
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Supernatants form 60–65 hours of culture was stored at -20ºC to further cytokines 

analysis by ELISA. Each determination was performed in triplicate.  

2) ELISA assay (Enzyme Linked Immuno Sorbent Assay) 

 

o IFN-γ and IL-2 

Elisa 96-well plates (Nunc) were coated with 50µl/well of the respective 

capture antibody diluted in PBS and incubate at 4ºC overnight. Plate were washed 

3x with 0.01% Tween20 in PBS. 100μl/well of Blocking buffer were added and 

plate were incubated 1 hour at RT. Plate were washed 3x with 0.01% Tween20 in 

PBS.  Samples and standards (50 µl/well) were added and incubated 1 hour at RT 

or at 4ºC O/N. Plates were washed 3x with 0.01% Tween 20 in PBS. 50 µl/well of 

2
nd

 antibody diluted in 5 ml of blocking buffer (each antibody as an appropriate 

dilution) were added and incubated 1 hour at RT. Plates were washed 3x with 

0.01% Tween20 in PBS. 50µl/well of streptavidin diluted in PBS (1:200) were 

added and incubated for 30 minutes at RT. Plates were washed 3x with 0.01% 

Tween20 in PBS. 50 µl/well of TMB (5 ml) were added and disclosed in the dark. 

When a difference between all the standards and sample were observed, reaction 

was stopped by the addition of 50 µl/well of H2SO4. The absorbance at 450nm was 

measured in TECAN infinite
® 

200 plate reader. 

3)  B3Z assay:  

After challenge for 6-12 hours with antigen and ligands, sDCs were fixed with 

0.08% glutaraldehyde during 5 minutes, and stopped in glycine 0.2M in 96 flat-

well plates. Cells were washed and co-cultured (10
5
 per well in 96 flat well plates) 

for 18 hours with the B3Z CD8
+
 T-Cells, a T-Cell hybridoma specific for theH-

2K
b
/OVA257–264 complex (10

5 
per well) (Karttunen et al., 1992). B3Z activation was 
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monitored by measuring the induction of lacZ reporter under NF-AT elements 

using 100 µl of 0.15mM the CPRG substrate (Roche) in PBS/0.5% NP-40. The 

absorbance of wells was read after 4 hours incubation at 37ºC, at 595nm 

(Karttunen et al., 1992). 

4) Antibody staining - H-2K
b
/OVA 

For labeling H-2K
b
/OVA complexes on DCs surface we made use of 

Phycoerythrin (PE) anti-K
b
/OVA 25-D1.16 (eBioscience). The 25-D1.16 

monoclonal antibody reacts with the Ovalbumin-derived peptide SIINFEKL bound 

to H-2Kb of MHC class-I, but not with unbound H-2Kb, or H-2Kb bound with an 

irrelevant peptide. DCs were pulsed for 30 minutes and chased for 2 to 16 hours 

with model particles. Cells were washed extensively with PBS. Staining with 25-

D1.16 antibody, or Mouse IgG1 isotype matched control, were performed during 

30 minutes on ice and extensively washed in PBS. Staining was analyzed by FACS 

in the FLH-2 channel. Data were analyzed against control without antigen 

stimulation. 

ELISA assay for pro-inflammatory and anti-inflammatory cytokines__  

o IL-6, IL-12 and TNF-α  

Protocol was the same as for IFN- γ and IL-2 as described previously.  

 

o IFN-β 

To measure IFN- β, we made use of Mouse Interferon Beta Single Plate (96 Well) 
ELISA Kit from R&D. The protocol was done as described in Product Data sheets 

for Mouse Interferon Beta ELISA Kit v.1.4. 

http://www.ebioscience.com/ebioscience/specs/antibody_12/12-5743.htm
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Phagocytosis Assay___________________________________________  

Phagocytosis was determined using particles covalently coupled with OVA-

Alexa488 by EDC/NHS chemistry. sDCs (2×10
5
 cells/250 µl) were incubated for 1 

hour at 37°C in the presence of fluorescent particles. The cells were then 

extensively washed with cold PBS and immediately analyzed by FACS. The 

percentage of phagocyting cells (phagocytic index) was calculated by FACS 

measuring the MFI in the FLH-1 channel. A control at 4°C and other with a 2 

hours pre-incubation with 10 M of cytochalasin D, potent inhibitor of actin 

polymerization, (Sigma), was done to calculate the proportion of particles that are 

associated with but not phagocytosed by DCs. As an additional experiment control, 

cells were washed 3x in PBS, distributed on to poly-l-lysine coated slides, and 

fixed in 4% paraformaldehyde before imaging by confocal microscopy. Cells were 

visualized on a confocal microscope equipped with LSM image analysis software 

(Carl Zeiss, Inc.). Images were acquired using a 60X objective lens with a 10X 

ocular lens. Image processing was performed in Image J and LSM Image Browser 

confocal software.  

 

Antigen Degradation Assay____________________________________ 

To measure antigen degradation we used different approaches: antigen 

processing of DQ-Ovalbumin visualized by FACS (Daro et al., 2000; 

Santambrogio et al., 1999) and levels of Ovalbumin by Western Blot (Savina et al., 

2009).  
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o Self-quenched fluorescent Ovalbumin (DQ-Ovalbumin) 

DQ-Ovalbumin (molecular probes) is a self-quenched conjugate of Ovalbumin 

that exhibits bright green fluorescence upon proteolytic degradation. This 

substrate, which is labeled by BODIPY
®

 FL a pH insensitive dye in a range of 3-9, 

is designed especially for the study of antigen processing and presentation. 

The coupling of DQ-Ovalbumin to polystyrene carboxylated particles was 

performed by passive adsorption, instead of coupling conjugation, to avoid protein 

unfolding or desnaturation. Passive adsorption was performed as described by 

Amigorena´s lab (Savina et al., 2006). Briefly, 100µl of 1.0µm carboxylate 

polystyrene particles from stock solution were pellet (4 minutes at 13.000 rpm), 

washed 2x in PBS and resuspended in a solution of DQ-Ovalbumin in PBS at 

10mg/ml. The reaction was performed on a rotator overnight at 4°C. Particles were 

centrifuged during 4 minutes at 13.000 rpm to remove soluble DQ-Ovalbumin and 

4 washes were performed in PBS. The last resuspension was done in PBS in the 

same volume as the stock solution (100µl or more) and stored at 4ºC. Polystyrene 

particles are ready to use. LPS was adsorbed to DQ-Ovalbumin particles as 

describe previously (20µg during 2 hours shaking at RT followed by extensive 

wash in PBS). DCs were pulsed and chased at the indicated times with the coupled 

polystyrene particles.  DCs (5×10
5
 /200 µl DME) were pulsed with DQ-Ovalbumin 

coupled particles(1:20) for 15 minutes at 37°C, washed extensively with cold PBS 

and resuspended in 500µl of complete medium. They were cultured for the 

indicated time points. When indicated, sDCs were incubated with inhibitors for 

proteases, Z-FL-COCHO (calbiochem), highly specific inhibitor of Cathepsin S, 

and MG132- Z-Leu-Leu-Leu-CHO (calbiochem), a highly specific, fully reversible 

inhibitor of proteasomal proteolytic activity. OVA-processing was followed by 

measuring the MFI in the FLH-1 channel by FACS.  
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o Ovalbumin antigen manipulation for Western Blot assay 

To measure antigen processing we made use of Ovalbumin loaded particles or 

biotinylated Ovalbumin loaded particles. The biotinylation was performed as 

follows: Primary amines of Ovalbumin were biotinylated using the EZ-Link NHS-

PEO4-Biotin Biotinylation Kit a polyethylene glycol (PEG)-containing reagent. 

The proteins at a concentration of 5 mg/ml in PBS were incubated at room 

temperature for 30 minutes with 50x molar excess of NHS-PEO4-Biotin. The 

reaction was stopped by adding excess amount of ethanolamine–HCl (pH 8.5). The 

reaction mixture was loaded onto Zeba Desalt Spin Columns to remove un-reacted 

biotin and recover the final product. The number of biotin molecules incorporated 

into protein molecules could be determined using a standard HABA assay 

according to the manufacturer‟s protocol. Molar ratios of the biotin 

moieties/proteins could range from 0.8 to 13. The biotinylated Ovalbumin were 

incubated with streptavidin-coated particles for 1 hour at RT and washed 

extensively. LPS was adsorbed to biotinylated Ovalbumin particles as describe 

previously (20µg during 2 hours shaking at RT followed by extensive wash in 

PBS). DCs were pulsed and chased at the indicated times with the coupled 

polystyrene particles.  Dendritic cells (5×10
5
/200 µl DME) were pulsed with 

particles at 1:20 (DC:particles) ratio for 15 minutes at 37°C. DCs were washed 

extensively with cold PBS and resuspended in 500µl complete medium, and 

cultured for the indicated time points. When indicated, sDCs were incubated 2 

hours previously with inhibitors for proteases (Z-FL-COCHO (calbiochem), highly 

specific inhibitor of cathepsin S, and MG132 - Z-Leu-Leu-Leu-CHO (calbiochem), 

a highly specific and fully reversible inhibitor of proteasomal proteolytic activity) 

and kept during the incubation time points.  
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Western Blot:  

sDCs from the different experiments were collected and washed 2x with cold 

PBS solution. Cells were lysed for 15 minutes at 4ºC using RIPA buffer (50 mM 

Tris-HCl at pH=7.4, 1% NP-40, 0.25% Sodium Deoxicholate, 150 mM NaCl, 1 

mM EDTA, 1 mM Na3VO4, 1 mM NaF in the presence of proteases inhibitor 

cocktail from Roche). Lysed cells were centrifuged at 14.000 rpm for 15 minutes at 

4ºC, and supernatants kept at -20ºC.  

Protein concentration in whole cell lysates was determined with RC/DC Protein 

Assay (Bio-Rad, Hercules, CA). Cell lysates were denatured at 95ºC for 10 

minutes in the presence of Laemli buffer (Biorad) and 30 μg separated by 10% 

Sodium Dodecyl Sulfate (SDS)-PAGE gels. Electrophoresis was performed at 110 

V for 2 hours, and gels transferred to nitrocellulose membranes (Whatman) at 220 

mA for 1 hour. Membranes were blocked in a solution containing 5% Milk 0.05% 

Tween20 in PBS for 1 hour. To detect Ovalbumin antigen, the membrane was 

incubated with anti-Ovalbumin rabbit IgG from Abcam (1:1000). Membranes were 

washed 3x with 0.1% PBS-Tween20 (Sigma-Aldrich) and incubated with the 

respective HRP conjugated secondary antibodies (Molecular Probes, Eugene, OR) 

for 1 hour at room temperature, followed by 3x 10 minutes washes with 0.1% PBS-

Tween20, before developing with ECL plus reagent (GE Healthcare). Membranes 

were developed in anAGFA Curix 60
®
 equipment. To detect biotinilated 

Ovalbumin antigen, the membrane was incubated with HRP-Sav (1:500) (elisa kit 

from R&D), washed 3x with 0.1% PBS-Tween20 before developing with ECL 

plus reagent (GE Healthcare). Membranes were developed in an AGFA Curix 60
®
 

equipment. To control loadings, the membrane was stripped using Restore WB 

Stripping Buffer (Pierce, Rockford, IL) and incubated with anti-β-Actin.  
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o Antigen available in cytosol (apoptosis mediated by Cytocrome c) 

Cyt c from horse heart (Sigma) was adsorbed to carboxylated polystyrene 

particles in water at 4ºC O/N at 10mg/ml. Particles were extensively washed in 

PBS.  LPS was adsorbed to cyt c particles as describe previously (20µg during 2 

hours shaking at RT followed by extensive wash in PBS). BMDCs were pulsed and 

chased at the indicated times with the coupled polystyrene particles. BMDCs 

(5×10
5
/200 µl DME) were pulsed with particles at 1:20 (BMDCs:particles) ratio 

for 15 minutes at 37°C, washed extensively with cold PBS and cultured for the 

indicated time points in 500µl of complete medium (C10). BMDCS were analyzed 

for apoptosis by FACS using an Annexin-V-FITC Kit (Pierce). Briefly, After 18 

hours of chase, BMDCs were washed 2x in cold PBS and resupended in Binding 

Buffer. 1x10
6
 BMDCs were incubated with 1:200 of Annexin-V-FITC for 15 

minutes at RT in dark and analyzed immediately by FACS in the FLH-1 channel. 

PI can be used as the viability marker (5 µl of a 50 µg/ml stock solution). 

 

Western Blot for p38-P and IKb-α (TLR pathway signaling)   
 

sDCs were pulsed and chased at the indicated time points with the Ovalbumin 

particles (OVAp) and Ovalbumin particles containing LPS (OVA=LPSp).sDCs 

(5×10
5
/200 µl DME) were pulsed with particles at 1:20 (sDCs:particles) ratio for 

15 minutes at 37°C, washed extensively with cold PBS and cultured for the 

indicated time points in 500µl of complete medium. sDCs from the different 

experiments were collected and washed twice with cold PBS. Cells were lysed for 

15 minutes at 4ºC using RIPA buffer (50 mM Tris-HCl at pH=7.4, 1% NP-40, 

0.25% Sodium Deoxicholate, 150 mM NaCl, 1 mM EDTA, 1 mM Na3VO4, 1 mM 

NaF in the presence of proteases inhibitor cocktail - Roche). Lysed cells were 

centrifuged at 14.000 rpm for 15 minutes at 4ºC, and supernatants kept at -20ºC. 
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Protein concentration in whole cell lysates was determined with RC/DC Protein 

Assay (Bio-Rad, Hercules, CA).Cell lysates were denatured at 95ºC for 10 minutes 

in the presence of Laemli buffer (Biorad) and 30 μg separated by 10% Sodium 

Dodecyl Sulfate (SDS)-PAGE gels. Electrophoresis was performed at 110 V for 2 

hours, and gels transferred to nitrocellulose membranes (Whatman) at 220 mA for 

1 hour. Membranes were blocked in a solution containing 5% Milk 0.05% 

Tween20 in PBS for 1 hour. Primary antibodies incubation for p38-P (38KDa) 

(cell signaling) and IkB-α (39KDa) (cell signaling) were performed for 1 hour at 

room temperature. Membranes were washed 3x with 0.1% PBS-Tween20 (Sigma-

Aldrich) and incubated with the respective HRP conjugated secondary antibodies 

(Molecular Probes, Eugene, OR) for 1 hour at room temperature followed by 3x 10 

minutes washes with 0.1% PBS-Tween20, before developing with ECL plus 

reagent (GE Healthcare). Membranes were developed in an AGFA Curix 60
®
 

equipment. To control loadings, the membrane was stripped using Restore WB 

Stripping Buffer (Pierce, Rockford, IL) and incubated with anti-β-Actin.  

Phagosome maturation assay___________________________________ 

o Measurement of Phagosomal pH      

The phagosomal measurements were done as previously described (Savina et 

al., 2006). Three micrometers of amino polybeads previously loaded with 

Ovalbumin, were covalently coupled with FITC (pH sensitive) and FluoProbes 647 

(pH insensitive) in the presence of sodium hydrogen carbonate buffer at pH 8 for 2 

hours at room temperature. After extensively washing with glycine 100 mM, the 

particles were suspended in PBS. BMDCs were pulsed with the coupled particles 

for 10 minutes and then extensively washed in cold PBS. The cells were then 

incubated at 37°C (chase) for the indicated times and immediately analyzed by 
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FACS, using a FL1 (FITC)/FL4 (FluoProbes 647)
 
gate selective for cells that have 

phagocytosed one latex particles. The ratio of the mean fluorescence intensity 

(MFI) emission between the two dyes was determined. Values were compared with 

a standard curve obtained by resuspending the cells that had phagocytosed beads 

for 2 hours at a fixed pH (ranging from pH 5.5 to 8) and containing 0.1% Triton 

X100. The cells were immediately analyzed by FACS to determine the emission 

ratio of the two fluorescent probes at each pH. To certify that the decrease in FITC 

fluorescence observed at low pH was not due to loss of FITC from the beads, the 

pH 5.5 buffer was neutralized after measurement using NaOH. In some cases, to 

evaluate the effect on pH of blocking V-ATPase activity, 200nM of Bafilomycin A 

was added to WT DCs 30 minutes before pulse, and kept during chase.  

o ROS measuring using DHR123      

Ovalbumin loaded particles with 1µm (prepared as described previously) were 

covalently coupled with dihydrorhodamine 123 (DHR123) from Invitrogen, in the 

presence of sodium hydrogen carbonate buffer at pH 8 for 2 hours at room 

temperature. After extensively washing with glycine 100 mM, particles were 

resuspended in PBS. BMDCs were pulsed with the DHR123-coupled particles 

during 20 minutes in CO2-independent medium and then extensively washed in 

cold PBS. After incubation with the particles, the cells were chased for the 

indicated times and immediately analyzed by FACS using a FCS/SSC gating 

selective for cells that have phagocytosed DHR123 particles. The variation of the 

MFI emission in the FL-1channel of DHR123 was determined.  

o Confocal Microscopy        

BMDCs were seeded on poly-L-lysine-coated glass coverslips (12 mm) for 15 

minutes at room temperature (RT). The coverslips were washed, and complete 
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medium was added to further incubate the attached cells at 37°C and 5% CO2 for 1 

hour. Attached cells were pulsed with OVA-Alexa488 particles at 1:20 

(BMDCs:particles) ratio during 15 minutes at 37ºC in RPMI and extensively 

washed with cold PBS. Completed medium was added subsequently and cells were 

chased for 30 minutes, 1 hour and 2 hours at 37ºC an atmosphere of 5% CO2. 

When indicated, as a control for phagocytosis, 10nM of Cytochalasin D was used 

30 minutes before incubation and kept during chasing. 10 minutes before each time 

point, 15mM of lysotracker was added in RPMI. The cells were then washed and 

fixed in 2% paraformaldehyde (PFA) for 10 minutes at RT followed by 3x washes 

with 1 mM glycine PBS. When indicated, Actin was labeled using 1U/ml of 

Phalloidin Red (Invitrogen), which binds specifically to F-Actin skeleton, for 30 

minutes, and washed 3x with 1 mM glycine PBS. Coverslips were mounted on 

glass slides using vectashield.  

All immunofluorescence images were acquired on a Zeiss LSM 510 META 

inverted confocal laser scanning microscope (Carl Zeiss, Jena, Germany) using a 

PlanApochromat 63×1.4 oil immersion objective. DAPI fluorescence was detected 

with a violet 405 nm diode laser (30 mW nominal output) and a BP 420-480 filter. 

Alexa Fluor 488 fluorescence was detected using the 488 nm laser line of an Ar 

laser (45 mW nominal output) and a BP 505-550 filter. Phalloidin Red 

fluorescence was detected using a 561 nm DPSS laser (15 mW nominal output) 

and a LP 575 nm filter. Sequential multi-track/frame imaging sequences were used 

to avoid any potential bleed-through from the different fluorophores. All confocal 

images were acquired with a frame size of 1024x1024 pixels and with the pinhole 

aperture set to 1 Airy unit. Fluorescence intensity around phagosomes and 

colocalization of Alexa488 and Lysotracker Red stainings were assessed using 

ImageJ (http://rsbweb.nih.gov.ij) to perform image processing and quantification. 

Briefly, each image was thresholded in the green and red channels before 

http://rsbweb.nih.gov.ij/
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colocalization was determined for each pixel, using the ImageJ plugin RG2B 

colocalization (http://rsbweb.nih.gov/ij/plugins/rg2bcolocalization.html) which 

creates a binary mask for colocalizing pixels. This image mask was further 

processed with a median filter (radius = 1 pixel) to remove noise. For each image, 

the number of beads with positive colocalization events where then counted. 

 

shRNA Lentivirus Production_________________________________   
     

Plate cells: 2.2 x 10
4
 HEK 293T cells/well were splited on a 96 Flat well plate 

in 100 µl DMEM + 10%FBS, without P/S, at 37ºC and incubated for 24h. 

Transfecion: 100ng of viral vector DNA (10ng/µl) were transferred to 96 well 

plates. 100ng/well (10ng/µl) of viral FuGW vector DNA and 100ng/well (10ng/µl) 

viral siSCRAM vector DNA are used as controls. 24.26µl/well of Optimem and 

0,6ul/well of transfection reagent (transit-LT1) are incubated for 5 minutes at RT. 

The packaging and envelope plasmids were mixed, 0.133µl/well of Δ8.9 (0.75 

µg/ul) and 0.01µl of VSV-g (1µg/µl) at a total volume of 25µl/well. The total 

volume (25µl) of the mix were added immediately on DNA plate and incubated for 

30 minutes at RT. The transfection mixture (35µl/well) was pipetted very gently 

onto cells (do not mix). Cells were incubated at 37ºC overnight. On the next 24 

hours, all media were removed and replaced with 180 µl medium with 30% FBS, 

1% L-glut, 1% P/S.  

Lentivirus harvest: 150µl of virus were collected after another 24 hours and 

medium were replaced with C10. After another 24 hours, all medium were 

collected and plate was trashed with bleach. Supernatants with Lentiviral particles 

were aliquoted and stored at -80ºC. 

 

 

http://rsbweb.nih.gov/ij/plugins/rg2bcolocalization.html


 

 

 

 

 

____________________________________________________ Materials and Methods 

 

 

127 

Lentiviral Infection__________________________________________ 
 

Day 0: plate 1x10
5
 BMDCs/well in 200 µl of BMDCs medium (C10) + GM-

CSF (or J5) in round bottom 96 well plates. 

Day 2: All media were removed carefully remove without disturbing the cells in 

the bottom; 10 µl/well of virus were added to transduced BMDCs and resuspended 

~5x; 40 µl/well of C10 + polyB (1:1000 final concentration) were added. 

Spinoculation protocol for infection was used: Centrifugation at 2200 rpm, 37ºC, 

90 minutes. Plates were wrapped in Saran wrap or equivalent to avoid evaporation. 

The media were removed (50 µl/well) and 200ul/well C10 + GM-CSF (or J5) were 

added. BMDCs were incubated during 2 days @ 37ºC. 

Day 4: 100µl of culture medium were removed and 150 µl of puromycin added 

to each well to a final concentration of 5 g/ml using C10 + GM-CSF (or J5). 

Day 6: Harvest and proceed with experiments (Puromycin was kept in medium 

when they are used for long time points). 

Note: The tips were discarded into a recipient with bleach for 24 hours (trashed 

normally afterwards). 

Knock Down phenotype validation ______________________________ 

o FACS staining for TLR4 and TLR9      

At day 6 (4 days after puromycin selection) of BMDCs transduction with 

shRNAs lentivirus for TLR4 and TLR9 and siSCRAM, cells were collected and 

washed 3x in PBS. Primary Antibodies for mouse TLR4 and TLR9, anti-TLR4 and 

anti-TLR9 from Abcam, were used with a 1:200 dilution and incubated with cells 

in PBS at 4ºC for 30 minutes. Cells were washed 3x with PBS and incubated with 

secondary antibody at 4ºC for 30 minutes on dark. BMDCs were washed and 

analyzed by FACS.   
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o Real-time PCR (qPCR) for TLR4 and TLR9     

Total RNA was extracted with Trizol reagent (Invitrogen, Carlsbad, CA, USA), 

according to the manufacturer's instructions. Following treatment with 2U/sample 

of RQ1 DNase, in the presence of 50 U/sample of RNase inhibitor (Invitrogen), for 

30 minutes at 37°C, 1 μg of RNA was reverse transcribed, using Superscript 

reverse transcriptase (Invitrogen), following normalized against the expression of 

the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 

the relative expression of each gene was calculated using Pfaffl‟s method (for 

details see ABI PRISM 7700 – User Bulletin #2) (Pfaffl, 2001). The primers were 

designed using different online software, MGH/Harvard Primer bank 

(http://pga.mgh.harvard.edu/primerbank/). The oligonucleotides used were for 

GAPDH, TLR4 and TLR9. Primers reverse and forward sequences are shown. 

Expression levels were evaluated by quantitative real-time PCR (qRT-PCR) with 

the ABI PRISM 7700 instrument (Applied Biosystems, Forster City, CA, USA) 

using 1x SYBR Green PCR Master Mix (Applied Biosystems).   

 

GAPDH_F 5’ GAGTCAACGGATTTGGTCGT 3’ 

GAPDH_R 5’ TTGATTTTGGAGGGATCTCG 3’ 

 

TLR4_F 5’ ATGGCATGGCTTACACCACC 3’ 

TLR4_R 5’ GAGGCCAATTTTGTCTCCACA 3’ 

 

TLR9_F 5’ ATGGTTCTCCGTCGAAGGACT 3’ 

TLR9_R 5’ GAGGCTTCAGCTCACAGGG 3’ 

 

 

Statistical analysis ________________________________________________ 

 
To test the significance of the differences observed the Student‟s T-test was 

used. In all tests the statistical significance was 2-sided and considered at * P < 

0.05, ** P < 0.01 and ***P < 0.001. Data are displayed as mean +/± 1SD. 

http://pga.mgh.harvard.edu/primerbank/
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The main objectives of this work were to understand and to reveal intrinsic 

mechanism(s) of antigen cross-presentation to specific physical and biochemical 

forms of antigen. In order to achieve those goals we have made use of particle 

antigens with different biophysical properties.  

 

Antigen cross-presentation model characterization    _ 

To study antigen cross-presentation we made use of an ex vivo model, where 

DCs and T-Cells were isolated from mice and cultured in vitro. We started by 

characterizing this model using particulate antigens (OVA particles- OVAp), 

soluble antigens (OVA protein and SIINFEKL peptide) and as a negative control 

BSA protein. Antigen presentation by DCs (either sDCs or BMDCs) has been 

measured in the context of MHC class-I and II. In order to measure MHC class-I 

antigen presentation, CD8
+
 T-Cells were isolated from OT-I mice (CD8

+
 T-Cells 

with a transgenic T-Cell receptor (TCR) -K
b
/SIINFEKL, restricted class I epitope - 

OVA257-264) and assays for T-Cell proliferation/activation were performed. In the 

case of MHC class-II antigen presentation, a similar approach was used, although 

CD4
+
 T-Cells were isolated from OT-II mice (CD4

+
 T-Cells with a transgenic T-

Cell receptor - H-2b/ISQAVHAAHAEINEAGR-OVA4, restricted MHC class-II 

epitope - OVA323-339). T-Cell proliferation could be followed by Fluorescent 

Activated Cell Sorter (FACS), using a Fluorescent T-Cell staining dye (Carboxy-

Succinimidyl-Fluorescein-Ester - CFSE; Molecular Probes, Eugene, OR) – where 

during each round of cell division, relative fluorescence intensity of the dye is 

decreased by half. Consequently cell division could be followed by looking to the 

well defined peaks, representing each division, observed in the FACS plot (fig.28). 

Therefore, proliferation was quantified by determining the geometric mean of 

fluorescence of CFSE using Flowjo (Treestar, Inc.) or by analyzing the percentage 

of proliferation relative to the steady state (i.e. cells that do not divide). In addition, 



 

 

 

 

 

 

Chapter 4________________________________________________________________  

 

 

132 

T-Cell activation could be followed by ELISPOT assay (ELISA), detecting the 

IFN-γ released into the supernatants of activated antigen-specific T-Cells. 

-------------------------------------------------------------------------------------------------------------      

(A)        (B) 

 

Fig.28: Pilot antigen cross-presentation FACS-based assay: OT-I T-Cell proliferation. sDCs 
(2.5x104) from C57BL/6 mice were incubated with OVAp at 1:10 (sDC:particles) ratio. OT-I T-Cells 
(1x105) stained with CFSE were co-incubated with sDCs. T-Cell proliferation was measured by 
FACS at day 3. Graphs represent T-Cell population gated on SSC vs CFSE plots. (A) FACS plot 
gated on OT-I T-Cells labeled with CFSE. (B) Histogram representing the same population of OT-I 

T-Cells. Open grey line plot represents control OT-I T-Cells that do not divide and blue filled plot 
represents OT-I T-Cells proliferation under OVAp stimulus. The numbers correspond to cell cycles, 
thus each peak corresponds to one cell division.  

---------------------------------------------------------------------------------------------------- 

In order to validate the ex vivo antigen presentation model, both soluble and 

particulate antigens were used. As described before, Ken Rock and co-workers 

have shown that when a soluble protein was “made” particulate (adsorption to 

particles of 1-5µm) antigen cross-presentation occurs at 10
3
-10

4
 fold lower antigen 

concentrations (Kovacsovics-Bankowski et al., 1993; Kovacsovics-Bankowski and 

Rock, 1994). This observation is one of the starting points for the use of particulate 

antigens to dissect and study antigen cross-presentation mechanism with a potential 

therapeutic target as the main goal. Antigen presentation by sDCs was measured by 

T-Cell proliferation FACS-based assay using soluble antigens at different 

concentrations (soluble OVA, soluble BSA and soluble OVA peptide -SIINFEKL) 
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and particulate antigens at different ratios (i.e. 1:10– ten particle antigens per one 

DC), as shown in fig.29.  

------------------------------------------------------------------------------------------------------------------------------------------                                                                                                  

 

 

Fig.29: Antigen cross-presentation 

FACS-based assay: Soluble and 

particulate antigens. 
 
(A) sDCs (2.5x104) from C57BL/6 
mice were incubated with a broad range 
of soluble model antigens 

concentration: OVA (10ng/µl -1µg/µl), 
SIINFEKL peptide (0,1ng/µl - 10ng/µl) 
and BSA (10ng/µl - 1µg/µl) as a 
control. (B) sDCs (2.5x104) from 
C57BL/6 mice were incubated with 
model particles. Model antigens, OVA, 
BSA and SIINFEKL were covalently 
conjugated to 1.0µm polystyrene 

particles by a coupling reaction (see 

protocol for details). Model particles 

were incubated with sDCs at different 
ratios (sDC:particles - 1:2, 1:5, 1:10, 
1:20, 1:50). OT-I T-Cells (1x105) 
stained with CFSE were co-incubated 
with sDCs. T-Cell proliferation was 
measured by FACS at day 3. 
Histograms represent T-Cell 
population gated on SSC vs CFSE 

plots. Open grey line plots represent 
control OT-I T-Cells that do not divide 
and blue filled plots represent OT-I T-
Cells proliferation under specific 
stimulus. Numbers represent the 
percentages of the proliferating cells of 
total OT-I T-Cells. These data are 
representative from one experiment 
repeated at least three times with 

similar results. 
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As expected, the OT-I T-Cell proliferation is antigen dose-dependent. Soluble 

OVA and SIINFEKL peptide induced high levels of T-Cell proliferation even at 

low concentrations (0.01µg/µl and 0.1ng/µl respectively - fig.29). However, lower 

amounts of soluble antigen should be used if one wants to characterize antigen-

dose concentration on T-Cell responses. BSA protein was used as a negative 

control, as BSA processing by DCs does not generate the correct peptide for OT-I 

T-Cell receptor (TCR) transgenic mice recognition. Clonal expansion of OT-I 

CD8
+
 T-Cells is specific for K

b
-SIINFEKL generated by OVA processing. 

To compare the “immunogenicity” of soluble and particulate antigen, the 

amount of proteins that are covalently attached to particles surface were estimated. 

Therefore, we made use of the following function that relates the surface area of 

microspheres with the size of the loading antigen.  

 

Equation: Estimated maximum number of proteins molecules at particle surface: 

 

Adapted from Prof. Darrell Irvine  

 

Comparing soluble OVA and particulate OVA, similar levels of OT-I T-Cell 

proliferation were achieved when particulate antigen has used at 1:50 (sDC:OVAp) 

ratio or 0.01µg/µl of OVA soluble (2µg on total) were incubated with DCs (94.3% 

and 93.8% respectively). In total, 2.5x10
9
 OVA molecules exist when a ratio of 

1:50 particles is used to stimulate 2.5x10
4 

sDCs. In a soluble condition, 2.68x10
13

 

OVA molecules exist in 200µl for a soluble concentration of 0.01µg/µl. The 

relative ratio:  2.68x10
13 

/ 2.5x10
9 

 1x10
4
. 

Moreover, in our model, when comparing the proliferation index (percentage of 

cells that divide at least once), a particle antigen is presented at least ~10
4
 times 

more efficiently than soluble antigen. These results are in line with the previous 
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studies performed by Ken Rock’ lab (Falo et al., 1995; Kovacsovics-Bankowski et 

al., 1993). However, for more detailed conclusion, the relative amount of OVA 

molecules at the particle surface can be quantified, using fluorescent OVA (OVA-

FITC) and calibrated particles with FITC dye. Our data revealed that the OVA 

measured at particles surface is majorly lower than expected theoretically, 

highlighting previous observation (data not shown). 

 

Size-dependent antigen cross-presentation       _ 

It was reported that particles size itself (devoid of ligand) can determine the 

uptake pathway (Rejman et al., 2004). Given the strict dependency of the immune 

response on the size of the microorganisms, from virus to bacteria, the possible 

role of particle size in antigen presentation has emerged. Thus, we set to determine 

the “best” particle size for antigen cross-presentation studies. To observe the effect 

of particle size on antigen cross-presentation efficiency, sDCs were exposed to 

OVA-loaded synthetic particles with sizes ranging from 0.05µm to 6.0µm, 

covering sizes from virus to bacteria. EDC/NHS coupling chemistry was employed 

to covalently attach OVA to polystyrene particles. For all particle sizes, different 

ratios (DC:particles) were used as described in fig.30. 
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------------------------------------------------------------------------------------------------------------------------------------------ 

                                                

 

Fig.30: OVA particles size dependent antigen cross-presentation FACS-based assay. sDCs 
(2.5x104) from C57BL/6 mice were incubated at different ratios (sDC:particles -1:10, 1:20, 1:50) with 
a broad range of polystyrene particle size (0.05µm – 6.0µm), covalently coupled with OVA. OT-I T-
Cells (1x105) stained with CFSE were co-incubated with sDCs. T-Cell proliferation was measured by 

FACS at day 3. Histograms represent T-Cell population gated on SSC vs CFSE plots. Open grey line 
plots represents control OT-I T-Cells that do not divide and blue filled plots represent OT-I T-Cells 
proliferation under OVAp stimulus. Numbers represent the percentages of the proliferating cells in 
total number of OT-I T-Cells. These data are representative from one experiment repeated at least 
three times with similar results. 
------------------------------------------------------------------------------------------------------------------------------------------ 

 

Preliminary data revealed changes in the magnitude of OVA antigen cross-

presentation by sDCs according to the size of the synthetic particles used. These 

data showed that 1.0µm particles are cross-presented more efficiently by DCs, 

being evident at lower ratios (Fig.30). Since particles size also affects the amount 

of antigen taken up by cells (Desai et al., 1997), the differences in antigen cross-

presentation could simply be attributed to the total amount of antigen internalized 

by DCs. Thus, to be able to address other type of conclusions, the amount of OVA 

covalently attached to the surface of the particles should be normalized, as well as 

the amount of internalized OVA using fluorescent-labeled OVA. The uptake of 

particles > 0.5 μm in size is termed phagocytosis, whereas particles < 0.5 μm are 



 

 

 

 

 

___________________________________________________________________Results 

 

 

137 

taken up by receptor-mediated endocytosis or pinocytosis (Rejman et al., 2004). To 

address if there were differences in the uptake by phagocytosis of the different 

particles size used, the amount of antigen internalized by phagocytosis was 

measured. Polystyrene particles of various diameters (0.5, 1.0 and 3.0µm) 

covalently coupled with fluorescent OVA-Alexa488 (Molecular Probes) were 

used. Phagocytosis was determined by a FACS based assay. Quantification was 

performed by determining the geometric mean of fluorescence in the FLH-1 

channel, using Flowjo software (Treestar, Inc.).  

 

------------------------------------------------------------------------------------------------------------------------------------------ 
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Fig.31: Size dependent quantitative uptake of fluorescent particles antigen. Fluorescent OVA 
(OVA-Alexa Fluor 488 - OVA488) was covalently coupled to model particles of 0.5 µm 
(0.5=OVA488), 1µm (1.0=OVA488) and 3.0µm (3.0=OVA488) in size. Particles were incubated 
with sDCs (5x104) from C57BL/6 at 1:10 (sDC:particles) ratio for initial 10 minutes of pulse and 2hrs 
of chase (phagocytosis). Cyto. D (10nM), a phagocytosis inhibitor, was incubated 1hr previously to 
particle addition. Quantitative uptake (Mean fluorescence intensity–MFI) of green fluorescent 
particles antigen by sDCs was examined by FACS in the FLH-1 channel. The graph represents the 

average + 1SD of three independent experiments. No statistically significant differences (P>0.05) 
were observed between amounts of fluorescent OVA of different size particles internalized by sDCs. 
------------------------------------------------------------------------------------------------------------------------------------------ 

 

There was no significant difference in the amount of antigen of the different 

size particles that were phagocyted by DCs (fig.31). This result supports the 
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evidence that the difference in antigen cross-presentation efficiency observed 

mediated by LPS is not due to the difference on the amount of antigen internalized. 

To determine whether the difference in the efficiency on particles size antigen 

cross-presentation is related to antigen processing/loading or transport to cytosol, 

we made use as antigen, SIINFEKL peptide (MHC class I–restricted OVA peptide) 

instead of OVA protein. A similar approach was performed for SIINFEKL peptide 

antigen presentation as used for OVA protein. 

 

------------------------------------------------------------------------------------------------------------------------------------------ 

       

 

Fig.32: SIINFEKL particles size dependent antigen cross-presentation FACS-based assay. sDCs 
(2.5x104) from C57BL/6 mice were incubated with a broad range size of polystyrene particles 
(0.05µm – 6.0µm) covalently coupled with SIINFEKL, at a low ratio (sDC:particles – 1:2). OT-I T-
Cells (1x105) stained with CFSE were co-incubated with sDCs. T-Cell proliferation was measured by 

FACS at day 3. Equimolar molecules of SIINFEKL peptide (comparing to OVA protein used on 
previous assays), were coupled to particles by covalent chemistry. Histograms represent T-Cell 
population gated on SSC vs CFSE plots. Open grey line plots represent control OT-I T-Cells that do 
not divide and blue filled plots represent OT-I T-Cells proliferation under SIINFEKLp stimulus. 
Numbers represent the percentages of the proliferating cells of total OT-I T-Cells. These data are 
representative from one experiment repeated at least three times with similar results. 
------------------------------------------------------------------------------------------------------------------------------------------ 

 

SIINFEKL particles (SIINFEKLp) induced higher and similar levels of T-Cell 

proliferation / activation, even at low ratios of sDC:particles (1:2) and among the 

different range of particle sizes used (0.05µm-6.0µm) (fig.32). These data support 

the assumption that the different efficiency on particle antigen cross-presentation, 

due to different forms of uptake, may not be related to the amount of antigen 

internalized but instead on intracellular processing/loading mechanism of different 



 

 

 

 

 

___________________________________________________________________Results 

 

 

139 

antigen particles size. Data obtained with different OVA particles size showed that 

the 1.0 µm particle-containing phagosomes are the most efficient on antigen cross-

presentation (fig.30). We can hypothesize that the size of antigen carriers plays a 

critical role in directing antigen to the MHC class-I antigen presentation pathway. 

From now on, 1.0µm particles were used as a model size for further studies to 

better dissect the antigen cross-presentation mechanism.  

 

TLR signaling on antigen cross-presentation      _ _ 

As the cellular mechanism of antigen cross-presentation is not well understood, 

as well the possible specificity of a specific stimulus, we have proposed to 

understand how TLR agonists in particulate antigens may influence their cross-

presentation. To address the role of pathogen-like particles in antigen cross-

presentation, model agonists for TLR4 and TLR9 were used, representing these 

receptors exogenous and endogenous pathogen “sensors” respectively. CpG oligo 

(a TLR9 agonist) or LPS (a TLR4 agonist) were covalently attached to Ova-

conjugated particles using the EDC/HNS coupling reaction. Antigen model 

particles and a FACS-proliferation based antigen cross-presentation assay were 

used. 
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------------------------------------------------------------------------------------------------------------------------------------------ 

 

 

Fig.33: TLR model particles antigen cross-presentation FACS-based assay. sDCs (2.5x104) from 
C57BL/6 mice were co-incubated with model particles (OVAp, OVA=CpGp and OVA=LPSp) at 
1:20 and 1:10 (sDC:particles) ratios, and with OT-I T-Cells (1x105) for 3 days. T-Cell proliferation 
was measured using CFSE staining by FACS. Histograms represent T-Cell population gated on SSC 

vs CFSE plots. Open grey line plots represent control OT-I T-Cells that do not divide and blue filled 
plots represent OT-I T-Cells proliferation under specific stimulus. Numbers represent the percentages 
of the proliferating cells of total OT-I T-Cells. These data are representative from one experiment 
repeated at least three times with similar results. 
------------------------------------------------------------------------------------------------------------------------------------------ 

 

Surprisingly, these preliminary data revealed that antigen cross-presentation of 

OVA particles is almost abolished when TLR agonists (CpG and LPS) are in the 

same cargo (fig.33). However, this phenotype was not as evident at higher ratios as 

1:50 (data not shown), which could be due to “saturation” of the DCs antigen 

presentation machinery. As a result, proliferation of CD8
+ 
T-Cells was significantly 

hampered in cells incubated with OVA=CpGp or OVA=LPSp conjugated particles 

at different ratios (1:10 and 1:20), when compared to cells incubated with “naked” 

OVAp (fig.33). Similar results were obtained, in a minor level, when BMDCs were 

used as model DCs instead of sDCs (data not shown).  
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Antigen cross-presentation phenotype using TLR KD models  _______ 

To address if this phenotype is TLR dependent or due to other different 

mechanism or even an “artifact”, sDCs from TLR4KO mice and BMDCs 

Knocked-Down (KD) for TLR4 or TLR9 by shRNA lentivirus were used. sDCs 

were isolated from WT and TLR4KO C57BL/6 mice as described previously, and 

model particles (OVAp and OVA=LPSp) were used to measure OT-I T-Cell 

proliferation, as shown in fig.34. 

 

------------------------------------------------------------------------------------------------------------------------------------------ 

 

Fig.34: TLR model particles antigen cross-presentation FACS-based assay: WT vs TLR4KO 
DCs. sDCs (2.5x104) from C57BL/6 WT and TLR4KO mice were co-incubated with model particles 
(OVAp and OVA=LPSp) at 1:10 (sDC:particles) ratio and with OT-I T-Cells (1x105) for 3 days. T-

Cell proliferation was measured using CFSE staining by FACS. Histograms represent T-Cell 
population gated on SSC vs CFSE plots. Open grey line plots represent control OT-I T-Cells that do 
not divide and blue filled plots represent OT-I T-Cells proliferation under  specific stimulus. Numbers 
represent the percentages of the proliferating cells of total OT-I T-Cells. These are representative data 
from one experiment repeated at least three times with similar results. 
------------------------------------------------------------------------------------------------------------------------------------------ 

 

As expected by previous data, antigen cross-presentation of WT sDCs was 

abolished when LPS is in the same cargo as OVA particles. However, antigen 

cross-presentation of OVA=LPSp by TLR4KO sDCs was not impaired, instead, 
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relative higher proliferation rates of OT-I T-Cells were observed (fig.34). 

Moreover, OVAp antigen cross-presentation phenotype (OT-I T-Cell proliferation) 

was recovered for OVA=LPSp in sDCs deficient on TLR4. These data showed that 

the effect of particulate LPS in antigen cross-presentation phenotype is TLR4 

dependent, suggesting the specificity of the LPS agonist through TLR4 signaling 

pathway. The TLR4KO proliferation data, where OVA=LPSp induce higher levels 

of T-Cell proliferation comparing to OVAp, suggest that particulate LPS in the 

absence of TLR4 could signal through other type of receptor, thus increasing (even 

in a low magnitude) antigen cross-presentation (fig.34- lower panels). In order to 

extend these studies to other type of DCs, BMDCs and shRNA lentivirus were 

used to Knock-Down TLR4 and TLR9.    

 

 
------------------------------------------------------------------------------------------------------------------------------------------ 
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Fig.35: TLR model particles antigen cross-presentation FACS-based assay: TLR4 and TLR9 
KD in DCs using shRNA. BMDCs (5x104) from C57BL/6 mice were transduced with 5 different 
lentivirus encoding shRNAs targeting TLR4 (upper graph) and TLR9 (lower graph). A random 
sequence (siSCRAM) was used as control. After selection at day 2 with puromycin, BMDCs were co-
incubated at day 6 with model particles (OVAp, OVA=CpGp and OVA=LPSp) at 1:10 (BMDCs: 
particles) ratio and OT-I T-Cells (1x105) for 3 days. At day 6, BMDCs were analyzed by FACS 

staining for TLR4 and TLR9 to evaluate the KD of TLR4 and TLR9. T-Cell activation was measured 
by ELISA for IFN-γ, using supernatants at 60-65 hrs. The graphs represent the average + 1SD of 
three independent experiments. The asterisks represent statistically significant differences between 
OVAp and OVA=LPSp and OVAp and OVACpGp for the same shRNA (*P<0.05;**P< 0.01). 
------------------------------------------------------------------------------------------------------------------------------------------ 

As expected, the levels of T-Cell activation (IFN-γ production) by BMDCs 

were lower comparing to sDCs (see next figure- fig.36). These data in BMDCs 

shown that T-Cell activation was decreased when OVA=LPSp and OVA=CpGp 

were used as particle antigen comparing to “naked” OVAp (fig.35), reproducing 

the same results obtained with sDCs (fig.33). The results may suggest that this 

phenotype is “transversal” to DCs populations, therefore proving BMDCS to be a 

good model for the use of shRNA interference tool in antigen cross-presentation 

phenotype characterization. Using two or more shRNAs constructs to target TLR4 

and TLR9 on BMDCs (where KD efficiency was previously confirmed), in the 

presence of OVA=LPSp or OVA=CpGp respectively, the antigen cross-

presentation phenotype was recovered (levels of OT-I T-Cell activation were 

similar as observed for “naked” OVAp), suggesting the specificity effect of the 

TLR agonists (LPS and CpG) through their TLR signaling pathway (fig.35). 
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MHC class-II antigen presentation pathway     _ _ 

LPS was used as the “model” TLR agonist aiming to better characterize the 

antigen cross-presentation phenotype and to try to dissect the underlying 

mechanism. We decided to use LPS for different reasons, mainly because: 1) it is 

one of the most used TLR agonists and TLR4 is the usual target of immunologists 

and vaccinologists, 2) it is easy to conjugate to different type of model particles, 3) 

the nature of its receptor, TLR4 is unique among TLRs, because signals through 

two different adaptors, MyD88 and TRIF. 

As MHC class-II is the classical pathway for extracellular antigen presentation 

and in order to have a mechanistic control comparing to antigen cross-presentation, 

we next addressed the role of LPS on MHC class-II presentation. Therefore, 

activation of OT-II Th1 Cells (CD4
+
) and OT-I cytotoxic T-Cells (CD8

+
) by DCs 

was addressed by measuring their IFN-γ production.  

 

------------------------------------------------------------------------------------------------------------------------------------------ 

 

Fig.36: Antigen presentation: INF-γ based T-Cell activation assay. T-Cell activation was 
addressed by ELISA for INF-γ secretion at 60-65hrs by OT-I T-Cells (left graph) and OT-II T-Cells 
(right graph) in response to sDCs (2.5x104) from C57BL/6 mice given diverse stimuli. Particulate 
antigens: Naked particles, OVAp and OVA=LPSp at 1:10 (sDC:particles) ratio; soluble antigen: 

OVA endograde (100ng/µl), SIINFEKL peptide (1ng/µl) and OVA4 peptide (1ng/µl) were used. 
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Soluble LPS was used at 10ng/µl. The graph represents the average + 1SD of three independent 
experiments. The asterisks represent statistically significant differences comparatively to OVAp (*P< 
0.05; **P< 0.01 *** P< 0.001). 
------------------------------------------------------------------------------------------------------------------------------------------ 

 

The ELISA data for IFN-γ produced by OT-I T-Cells, reproduced the previous 

results obtained for OT-I T-Cell proliferation (fig.33). Thus, in the presence of LPS 

in the same cargo as particle antigen, OT-I T-Cells activation (IFN-γ) was 

decreased approximately 3 times comparing to OVAp. Moreover, OVA=LPSp 

induced OT-II T-Cell proliferation, approximately 3 times, comparing to OVAp 

(fig.36). The induction observed on MHC class-II antigen presentation pathway 

mediated by LPS on same cargo as particle antigen corroborates previous data 

obtained by Blander et.al (Blander and Medzhitov, 2006b). It is interesting to 

notice that the relative antigen presentation for OVAp in absence of LPS stimulus 

is higher in MHC-class I when comparing to MHC class-II. When soluble LPS was 

co-incubated with OVAp (two different stimuli) there was an increase in T-Cell 

activation (IFN-γ) and proliferation (FACS analysis - data not shown) in both 

MHC class-I and MHC class-II contexts. Furthermore the magnitude was much 

higher for MHC-class-II (~ 4.5x) when compared to MHC class-I (~1.25x) (fig.33). 

These data suggest that LPS when in same cargo as antigen impairs antigen cross-

presentation and dictates a shift to MHC class-II antigen presentation.  

 

TLR signaling in a different physical form      _ 

Concerning the physical nature of stimulus (particulate vs soluble), we next 

addressed if the efficiency of presenting antigens from phagocytosed particles is 

dependent on the presence of TLR4 agonist within the antigen cargo. T-Cell 

activation was measured using IFN-γ ELISA assay.  
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------------------------------------------------------------------------------------------------------------------------------------------ 

 

 

Fig.37: INF-γ based T-Cell activation assay: Particle antigen presentation using different 
physical LPS stimuli. T-Cell activation was addressed by ELISA for INF-γ secretion at 60-65hrs by 
OT-I T-Cells (left graph) and OT-II T-Cells (right graph) in response to sDCs from C57BL/6 mice 
given particulate antigens: BSAp, BSA=LPSp, OVAp and OVA=LPSp. Particles were used at 1:10 

(sDC:particle) ratio. Soluble LPS was used at 10ng/µl. The graph represents the average + 1SD of 
three independent experiments. The asterisks represent statistically significant differences 
comparatively to OVAp (*P< 0.05; **P< 0.01 *** P< 0.001). 
------------------------------------------------------------------------------------------------------------------------------------------ 

These data suggest that when LPS is in a particulate form, but in a different 

cargo as particle antigen, there is no significant difference between these two 

stimuli (OVAp and OVAp + BSA=LPSp), either in MHC class-I and MHC class-II 

antigen presentation (fig.37). In opposition, when LPS is present in a soluble form, 

(fig.36 and 37), antigen presentation is induced in both MHC class-I and MHC 

class-II context, with higher magnitude for MHC class-II presentation. As a 

control, model particles with OVA labelled with a fluorescent dye were used, to 

ensure that the amount of antigen internalized was the same when sDCs where co-

cultured with OVAp alone or with OVAp and BSAp. However, no significant 

differences were observed (data not shown). Our results suggest that soluble LPS 

is able to activate all the antigen presentation machinery (up-regulation of 
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molecules involved in antigen presentation – MHC class-I and II and co-stimulatoy 

molecules). However, when LPS is in particulate state, relies the concept of 

“phagosome autonomous maturation” in antigen presentation (Blander and 

Medzhitov, 2006a), where distinct phagosomes are processed individually on the 

same cell. Thus, the TLR agonist must be in same cargo as antigen to signal a 

specific pathogen-mediated antigen fate.  

To better characterize the antigen cross-presentation phenotype, some “key” 

steps in antigen presentation should be dissected. We have proposed to characterize 

important mechanisms, such as uptake ratio, antigen processing and phagosome 

maturation mediated by antigen model particles. To control if the efficiency on 

antigen cross-presentation is due to different capacities on particle antigen 

internalization, we addressed the role of phagocytic ability on DCs mediated by 

LPS stimulus.   

 

Phenotype characterization I - Uptake__________________________________ 

It has been suggested that the efficiency of antigen cross-presentation is due to 

differences at phagocytic capacity level (Albert et al., 1998). As the amount of 

antigen that was internalized by DCs could influence the antigen presentation, the 

question if TLR agonists (more specifically LPS) influenced this process should be 

addressed. The implication of TLR signaling in phagocytosis and antigen uptake 

has been described but is quite controversial (Diwan et al., 2003; Khan et al., 2007; 

Weck et al., 2007). In order to address the possible involvement of TLR signaling 

in antigen uptake, phagocytosis of antigen model particles using OVA labeled with 

alexa 488 (OVA488) as model antigen was measured using a FACS-based assay.  
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------------------------------------------------------------------------------------------------------------------------------------------ 

 

 

Fig.38: Uptake assay of model particles: FACS: Measurement of antigen uptake by sDCs from 
C57BL/6 WT and TLR4KO mice using green fluorescent OVA (OVA488) loaded particles 
(OVA488p and OVA488=LPSp). Particles were co-incubated with sDCs at 1:10 (sDC:particles) ratio 
for initial 10 min of pulse and 2hrs of chase (phagocytosis). Soluble LPS was used at 10ng/µl. Cyto. 
D (10nM) and LPS (10ng/ml) were incubated 1hr previously to particle addition. MFI in the FLH-1 
channel was calculated for phagocytic cells. The graph represents the average + 1SD of three 

independent experiments. No statistically significant differences (P>0.05) were observed between 
amounts of fluorescent OVA488 model particles internalized by sDC from C57BL/6 WT and 
TLR4KO mice. Confocal images: Particles were co-incubated with BMDCS (plated in cover slips 
12hrs before to allow adhering) from C57BL/6 mice at 1:10 (sDC:particles) ratio during 10 min 
(pulse). After 2 hrs of incubation (chase), PFA1% was added during 5 min and cells were washed 
with PBS. Cyto. D (10nM) was incubated 1hr previously to OVA=488p addition. Phalloidin red was 
added at 1:40 dilution during 20 min, and BMDCs mounted in coverslips with vectashield medium 
for confocal analysis with a 63x objective (Scale bar, 2 µm). 
------------------------------------------------------------------------------------------------------------------------------------------ 

 

The FACS assay showed that the uptake capacity of sDCs was similar for OVA 

model particles (OVAp, OVA=LPSp and for OVAp + soluble LPS) and between 

WT and TLR4KO sDCs populations (fig.38). Therefore, TLR4 signaling does not 

affect in a significant way particle antigen internalization, when LPS is present 

either in same cargo as antigen or in a soluble form. As such, we may assume that 

the amount of antigen that reached the phagosomes by model particles is 
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approximately the same. Therefore, the differences observed in antigen 

presentation studies should not be due to differences in phagocytosis uptake of 

model particles used.  

 

Phenotype characterization II – Phagosome maturation (pH)   _ 

Efficient antigen processing in phagosomes requires limited and controlled 

antigen degradation, generating the correct array of peptides to be loaded on MHC 

molecules and to avoid total destruction by unspecific lysosomal proteases (Savina 

et al., 2006). Endosomal pH regulation is one of the most direct ways to control the 

lysosomal proteases activity (Delamarre et al., 2005) and it has been described to 

be involved in antigen presentation (Blander and Medzhitov, 2006a).  

In order to address the role of LPS on pH of phagosome containing particle 

antigen, we proposed to measure phagosomal pH in DCs accurately by a FACS 

assay, using pH-sensitive particles, developed and already published by 

Amigorena´s lab (Savina et al., 2006). Briefly, latex 3.0µm amino particles 

adsorbed with OVA were coated with pH-sensitive (Fluorescein isothiocyanate – 

FITC) and pH-insensitive (FluoProbe647) fluorescent dyes. After different time 

points of particles phagocytosis, the fluorescence intensity of the two dyes was 

quantified using a FACS-based assay. Population of DCs with an average of one 

particle internalized was selected on FluoProbe647 channel (FL4). The differences 

in pH was measured by deviations on FITC channel (FLH-1), reflecting the pH in 

the phagosomal environment. The absolute value of phagosomal pH was calibrated 

with a standard curve established in cells permeabilized with 0.1% Triton X100 

and immersed in buffers of fixed calibrated pH (Fig. 39-A). 
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------------------------------------------------------------------------------------------------------------------------------------------ 

 (A) 

  

               (B) 

 

Fig.39: Phagosomal pH measurement FACS-based assay. (A) pH measurement method: 
BMDCs (1x106) from C57BL/6 WT and TLR4KO mice were allowed to phagocytose latex particles 
coated with pH sensitive (FITC) and insensitive (Fluoprobes647) fluorescent probes for 10 min of 
pulse and 120 min of chase (see experimental procedures for details). Upper left graph: Histograms 
represent BMDCs population gated on FLH-1 (FITC) vs FL4 (Fluoprobes647) plots. Population of 
cells with an average of one particle per cell was selected (same FL4 fluorescence) and FLH-1 shift 

measured. Upper right graph: Histograms represent BMDCs population gated on SSC vs FLH-1 plots. 
Calibration curve was achieved by using BMDCs permeabilized with 0.1% Triton X100 for 1min in 
buffer solutions with specific pH ranging from 5.2 to 8.2. Representative FACS analysis for 
phagosomal pH calibration, showing MFI of the pH-sensitive probe at different pH (after 10 min 
pulse + 120 min chase). NaOH were applied in BMDCs permeabilized with 0.1% Triton X100 in 
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buffer pH5.2, in order to neutralize the phagosomal pH and show the dynamic recover of 
fluorescence. (B) pH phagosome assay. Model particles covalently coupled with OVA were 
adsorbed with FITC (pH sensitive dye) and Fluoprobe647 (pH insensitive dye) in equimolar amounts 
for 1hr. LPS was adsorbed to OVAp loaded with pH dyes for 2hrs. BMDCs (1x106) from C57BL/6 
WT and TLR4KO mice were allowed to phagocytose model particles (OVAp and OVA=LPSp) 
coated with pH sensitive and insensitive fluorescent probes for 10 min of pulse and 120 min of chase. 

Population with an average of one particle per cell was selected (same FL4 fluorescence) for each 
chase time and FLH-1 shift measured. 2µM Bafilomycin A1 (inhibitor of V-ATPase) was added 1hr 
previously. In contrast to others strategies for phagosomal pH measurements, the one used here 
analyzes independently 10.000 BMDCs, which means that at least 10.000 phagosomes were 
measured per condition in each experiment. The graph represents the average ± 1SD of three 
independent experiments. 
------------------------------------------------------------------------------------------------------------------------------------------ 

As showed in pH phagosome assay (fig. 39), by reporting the mean 

fluorescence intensity in the different conditions to a standard curve (fig. 39-A), the 

“real time” pH values in phagosomes were determined. After 10 minutes of 

phagocytosis pulse a general pH decreasing phenotype during the chase time was 

observed. The pH in BMDCs phagosomes with OVAp after 10 minutes pulse 

followed by 10 minutes chase, was relatively alkaline (below 9.0), higher than the 

extracellular medium (pH~7.4). This means that during the 20 minutes after 

particles incubation, there was an active and sustained mechanism of phagosome 

alkalinization, probably due to NOX2 activity as described previously (Savina et 

al., 2006).  

Concerning the phagosomal pH with OVAp during the chase time, it drops as 

the phagosome matures, acidified until pH 7.5 in 60 minutes. It rose after 60 

minutes, keeping phagosomes at higher pH values in an immature stage, 

recovering to the initial stage (pH~8.5) within 120 minutes (fig. 39).  

The rate of phagosome acidification was significantly enhanced in phagosomes 

containing OVA=LPSp. Phagosomal pH~7.2 was achieved earlier in 10 minutes 

after chase and acidified further over a 120 minutes chase, reaching values around 

pH 6.0. Lower pH values as pH~6.5 were achieved in early 30 minutes of chase. 

The kinetic of phagosome maturation changed around after 30 minutes of chase, 
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and was kept at slower rate until longer time points of incubation (120 minutes), 

decreased only 0.5 units from pH 6.5 to pH 6.0 (fig. 39). 

In the presence of Bafilomycin A, a V-ATPase inhibitor, the higher phagosomal 

acidification kinetics induced by OVA=LPSp was blocked. The pH decreased only 

0.5 units from pH~8.9 – pH~8.4, during the entire chase time (120 minutes). This 

result could imply V-ATPase in phagosomal pH acidification mediated by LPS 

signaling. In the absence of TLR4 (BMDCs from TLR4 KO), the rate of 

phagosome maturation induced by OVA=LPSp particles was decreased, with a 0.8 

pH units of difference at the end of chase time. A slower rate of phagosome 

maturation mediated by OVA=LPSp was observed, from pH 8.5 at 10 minutes to 

pH 7.0 in 120 minutes of chase. After 30 minutes, the pH achieved a “plateau” 

(lowest value - pH~6.8) and remained quite stable during the rest of chase. 

However, the phagosomal pH did not rise again to the initial stage as observed in 

absence of LPS stimulus on WT BMDCs, within 120 minutes (fig. 39). Therefore, 

the phagosome acidification related to OVA=LPSp may not totally dependent on 

TLR4-mediated signaling. Moreover, this observation implies TLR4 signaling on 

phagosomal acidification mediated by LPS 

The control and regulation of phagosomal pH is mediated in majority by the 

function of two complexes, V-ATPase and NADPH Oxidase NOX2 (Savina et al., 

2006). Amigorena´s lab described NOX2 as a specific adaptation of DCs endocytic 

pathway to the antigen presentation function by causing an active and sustained 

phagosome alkalinization, keeping pH at relative high values (Savina et al., 2006). 

The NOX2 generates ROS, causing transient phagosome alkalinization, in part 

through the consumption of protons in the phagocytic lumen (Lee et al., 2003; 

Segal, 2005). To better address the role of LPS signal within the cargo on 

phagosome maturation, we proposed to measure the phagosomal ROS production 

in order to correlate with phagosomal pH data.  
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Phenotype characterization II – Phagosome maturation (ROS)  _ 

To address ROS production, specifically in phagosomes containing OVAp and 

OVA=LPSp, dihydrorhodamine 123 (DHR123), a dye that only emits fluorescence 

under oxidative conditions (Vowells et al., 1995), was covalently linked to OVAp 

and OVA=LPSp. DHR123 is a pH stable molecule, thus the possibility of DHR123 

degradation in phagosomal lumen could be excluded (Savina et al., 2006). 

------------------------------------------------------------------------------------------------------------------------------------------ 

  Fig.40: Phagosomal ROS 

measurement based assay. 
Measurement of phagosomal 
ROS production using 
DHR123 coupled to model 
particles (OVA=DHR123p 
and OVA=DHR123=LPSp). 

MFI of FLH-1 channel was 
calculated for phagocytic 
cells. 2x105 BMDCs per time 
point were pulsed for 10 min 
in CO2 independent medium 
using 1:10 (BMDCs:particles) 
ratio and chased for 5 min, 15 
min, 30 min, 60 min and 120 
min. The graph represents the 

average ± 1SD of three 
independent experiments. 

------------------------------------------------------------------------------------------------------------------------------------------ 
As shown by FACS analysis, DHR-coated particles became fluorescent after 

phagocytosis, showing the production of ROS in DCs phagosomes. Moreover, 

ROS production in phagosomes containing model particles decreased during the 

chase time (fig.40). This means that phagosomal environment in DCs is oxidative 

due to ROS generation. ROS production in phagosomes containing OVAp was 

higher comparing to phagosomes containing OVA=LPSp, even at earlier chase 

time points (5 minutes) and during the entire chase time (120 minutes) (fig.40). It 

seems that the production of ROS decreased during the phagosome maturation 

mediated by model particles and it was more evident in phagosomes containing 
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OVA=LPSp. After 60 minutes of chase, the ROS production on phagosomes 

containing OVAp seemed to stabilize, with a tendency to recover even with low 

rate. However, ROS production in OVA=LPSp phagosomes appeared to decrease 

continually until the end of chase, with a higher rate (fig.40). As a result, these data 

showed that when LPS is in same cargo as OVA particles mediates the reduction of 

ROS production in phagosomes, which could be related to the higher rate of 

phagosome maturation/acidification induced by OVA=LPSp during the 

experimental time points (fig. 39). These data support the evidence showed by the 

pH results, which suggested that “naked” OVAp kept the phagosomes in a 

immature stage comparing to OVA=LPSp which enhance phagosome maturation 

(fig.39 and 40).  

 

Phenotype characterization III – Phagosome maturation (Confocal)  _ 

DCs have been shown to have lower contents of lysosomal proteases and 

acidification mechanism (Delamarre et al., 2005). In order to link phagosomal 

maturation with the pH regulation and ROS production profiles obtained above 

with model particles (fig.39 and 40), the intracellular localization of model 

particles was examined by confocal microscopy. Phagosome maturation ratios with 

different cargos was assessed by fluorescent microscopy, by qualitatively merging 

the phagosomes containing OVA488 fluorescent particles (OVA-Alexa488 - pH 

stable fluorescence) and lysosomes labeled with Lysotracker Red (Invitrogen). 

This colocalization could be quantified by determining the total colocalization area 

(pixel quantification using the ImageJ plugin RG2B colocalization which creates a 

binary mask for colocalizing pixels). Lysotracker probes have high selectivity for 

labeling and tracking acidic organelles in live cells, as the result of protonation, 

results in a pH dependent increase of fluorescent intensity (Shiratsuchi et al., 

2004). 
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------------------------------------------------------------------------------------------------------------------------------------------ 

 

Fig.41: Confocal imaging based phagosomal maturation assay. Representative fluorescent 
micrographs showing phagocytosis of OVA488 fluorescent particles (green) and lysosomes (red). 
BMDCs from C57BL/6 mice were incubated with 1µm OVA488 fluorescent polystyrene model 
particles (OVA488p and OVA488=LPSp) at a ratio (BMDCs:particles) of 1:10 for 15 min, washed, 
and further incubated for either 30 min or 120 min. BMDCs were stained with Lysotracker Red to 
label lysosomes and DAPI (blue) to label nuclei and fixed with 4% of paraformaldehyde. BMDCs 
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were washed and mounted in coverslips with vectashield medium for confocal analysis with a 63x 
objective. Merged images are shown in yellow and colocalization in white with values of total pixel 
colocalization. Slides were examined by confocal microscopy to determine the intracellular 
localization. The color images represent particles (green), lysosomes (red), lysosomes fused with 
phagosomes containing particles (yellow). NH4Cl (50mM) were used as a weak base that raises the 
pH of acidic compartments to disrupt the low pH at lysosomes and worked as a loading control. 

Images are representative at least from three independent experiments (Scale bar, 1µm). 
------------------------------------------------------------------------------------------------------------------------------------------ 

The confocal data showed that phagosomes containing OVA488=LPSp mature 

with higher ratio than those containing OVA488p (fig.41). This observation is 

independent of the phagocytic index, which is not different for OVAp and 

OVA=LPSp and not markedly agonist specific (fig.38). After 30 minutes of 

incubation, OVAp did not colocalize with lysosomes and phagosomes exhibited an 

alkaline environment where the pH is around 8.5 (fig.39). Whereas the majority of 

OVA=LPSp colocalize with a higher extend (Fig.41) showing an average pH of 

6.5 (fig.39). Even after 120 minutes incubation, phagosomes containing OVAp had 

reduced values of colocalization with lysosomes (Fig.41), with higher pH values 

around 8.5 (fig.39). In contrast, phagosomes containing OVA=LPSp completely 

merged with lysosomes, indicating that internalized particles were routed into 

lysosomes (Fig.41), where phagosomal pH reaches lower values as pH 6.0 (fig.39). 

These data indicate that LPS-containing phagosomes completely mature into 

phagolysosomes. As a phagosomal maturation control, NH4Cl was used as a weak 

base that raises the pH of acidic compartments to disrupt the low pH. Therefore, 

the colocalization between OVA488=LPSp and lysosomes was abolished in the 

presence of NH4Cl (fig.41), suggesting that the fusion was mediated by lower pH 

values. In addition, OVA488=LPSp and lysosomes appears to be concentrated on 

the periphery of the cell nucleus (labeled blue by DAPI), a feature of late 

endosomal and lysosomal compartments (Tran and Shen, 2009). Moreover, these 

results are reliable with the phagosomal pH profiles obtained before (fig.39).  
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Phenotype characterization IV – Antigen Processing / Degradation  _ 

Phagosomal pH regulation (either by V-ATPase or NOX2) is the main 

mechanism used by DCs to “protect” peptides from complete degradation, with the 

ultimate goal being to generate T-Cell epitopes (Savina et al., 2006; Trombetta et 

al., 2003). Therefore, we next sought to evaluate the role and functional 

consequences of such a drop in phagosomal pH and ROS production mediated by 

LPS in antigen processing/degradation.  

------------------------------------------------------------------------------------------------------------------------------------------ 
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Fig.42: Antigen processing/degradation based assays. A) Quantitative antigen processing/ 
degradation was examined by FACS by measuring the MFI of DQ-OVA in the FLH-1 channel. sDCs 
(1x105) from C57BL/6 mice were challenged with particles containing DQ-OVA (DQ-OVAp) and 
DQ-OVA + LPS (DQ-OVA=LPSp) at 1:10 (sDC:particles) ratio during 2hr. DQ-OVA (100ng/ml) 
and LPS (10n/ml) were adsorbed to 1.0 µm polystyrene particles during 2hr. Proteasome inhibiting 
drug, MG-132 (Z-leu-Leu-Leu-CHO) and the inhibitor of Cathepsin S (Z-FL-COCHO), were added 

1hr previously. The asterisks represent statistically significant differences (*P< 0.05; **P< 0.01). B) 
sDCs (1x105) from C57BL/6 mice were incubated with model particles (OVAp and OVA=LPSp) at 
1:10 (sDC:particles) ratio during 30 and 120 min. OVA were detected using anti-OVA monoclonal 
antibody (Abcam). Bradford normalization was performed. The chase with particles was performed 
without washing the remaining particles after pulse (long course kinetic). 30 μg of total protein 
extracts from sDCs were separated by 10% SDS-PAGE. C) sDCs (1x105) from C57BL/6 mice were 
pulsed with streptavidin particles coupled with OVA-biotin (OVAp) and OVA-biotin + LPS 
(OVA=LPSp) at 1:10 (sDC:particles) ratio for 10 min, washed extensively  and chased during 30 min 

and 120 min. OVA-biotin (100ng/ml) and LPS (10ng/ml) were adsorbed to 1.0 µm polystyrene 
particles during 2hr. OVA-biotin from whole cell lysates after particles phagocytosis was detected by 
Western blot using Sav-HRP from ELISA kit. As a loading control β-actin staining was performed. 
Lanes: 1) Control: only sDCs 2) OVAp 30 min + MG132 3) OVA=LPSp 30 min + MG132 4) OVAp 
30 min 5) OVA=LPSp 30 min 6) OVAp 2hrs + MG132 7) OVA=LPSp 2hrs + MG132 8) OVAp 2hrs 
9) OVA=LPSp 2hrs. 30 μg of total protein extracts from sDCs were separated by 10% SDS-PAGE. 
D) Antigen retro-translocation assay (availability in cytosol) using cyt c particles (apoptosis assay). 
Horse Heart cyt c and LPS was adsorbed to 1.0µm polystyrene particles during 2hr. BMDCs (1x105) 

from C57BL/6 mice were challenged with particles loaded with cyt c (Cyt.cp) and particles loaded 
with cyt c and LPS (Cyt.c=LPSp) at 1:10 (sDC:particles) ratio during 30 min and washed extensively. 
The amount of free cyt c in cytosol was measured by apoptosis assay using Annexin V-FITC kit at 
18hrs. Apoptosis was examined by FACS measuring the MFI in the FLH-1 channel. The asterisk 
represents statistically significant differences (*P< 0.05). E) sDCs (2.5x104) from C57BL/6 mice 
were co-incubated with model particles (SIINFEKLp, SIINFEKL=LPSp) at 1:2 (sDC:particles) ratio, 
and OT-I T-Cells (1x105) for 3 days. T-Cell proliferation was measured using CFSE staining by 
FACS. Histograms represent T-Cell population gated on SSC vs CFSE plots. Open grey line plots 
represent control OT-I T-Cells that do not divide and blue filled plots represent OT-I T-Cells 

proliferation under specific stimulus. Numbers represent the percentages of the proliferating cells of 
total OT-I T-Cells. These data are representative from one experiment repeated at least three times 
with similar results. 
------------------------------------------------------------------------------------------------------------------------------------------ 

 

Using the performed assays, we are not able to distinguish between antigen 

processing (peptide epitope generation) and degradation (random cleavage). DCs 

have reduced expression levels and low recruitment of proteolytic enzymes to 

phagosomes, which leads to low lysosomal proteolysis (Delamarre et al., 2005; 

Jancic et al., 2007) and a limited phagosomal acidification by V-ATPase (Savina et 

al., 2006; Trombetta et al., 2003). Therefore, we next sought to address the role of 

proteasome as an important protease catalytic complex in particle antigen 
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processing/degradation and cross-presentation in DCs. Thus, we have addressed 

the role of LPS on particle antigen processing/degradation using different 

molecular approaches as follows: 

i) As starting point, antigen degradation was followed by FACS analysis using 

DQ-OVA  (a self-quenched conjugate of OVA that exhibits bright green 

fluorescence upon proteolytic degradation) as a model antigen. The data showed 

that after 2 hrs of chase, the overall particle antigen processing/degradation was 

reduced when LPS (similar results were obtained in the presence of CpG – data not 

shown) was in same cargo as antigen (fig.42-A). To address the role of proteasome, 

as a key step in antigen processing for antigen cross-presentation (Guermonprez 

and Amigorena, 2005; Houde et al., 2003; Vyas et al., 2008), we used a 

proteasome inhibitor, MG-132 (Z-leu-Leu-Leu-CHO), at lower concentrations as 

possible to avoid unspecific inhibition of other proteases. MG-132 is highly 

specific, fully reversible inhibitor of proteasomal proteolytic activity (bind 

specifically 20S subunit). When proteasome activity was inhibited, at 120 minutes 

of incubation, there was a significant reduction of antigen processing/degradation, 

either on OVAp and OVA=LPSp for similar levels (fig.42-A). This suggests that 

proteasome plays an important and crucial role on particle antigen 

processing/degradation. In the presence of Z-FL-COCHO (Cathepsin S - Cat.S - 

inhibitor that do not block the activity of non-proteasomal serine proteases) antigen 

processing/degradation was reduced but not as evident as observed upon 

proteasome inhibition (fig. 42-A). These results could indicate a minor role of 

Cat.S in particle antigen degradation, either when an LPS stimulus occurs. 

Moreover, “blocking” an important endoprotease of vacuolar pathway degradation 

(Cat.S), the role of proteasome degradation on particulate antigen degradation was 

highlighted, existing at higher level when LPS stimulus was not present (fig.42-A).  
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ii) As a simple approach, particle antigen degradation (OVAp and OVA=LPSp) 

was followed by immunobloting detection, using 30 minutes and 120 minutes for 

the time course experiment without pulse (antigen was continuously internalized 

by DCs) (fig.42-B). In agreement with results obtained previously by DQ-OVA 

measurement (fig.42-A), western blot for OVA antigen showed a higher antigen 

processing/degradation for OVAp comparing to OVA=LPSp already at 30 minutes, 

being clearer at 120 minutes of incubation (fig.42-B). These differences observed 

on the antigen levels were not due to differences in antigen uptake, as it was shown 

previously (fig.38). 

iii) To support previous data and to better address the role of proteasome 

complex in particulate antigen processing/degradation, biotinylated OVA was 

conjugated to model particles. Consequently products of antigen degradation could 

be followed by immunobloting. Proteasome inhibitor was used to reveal the role of 

this protease complex in particle antigen processing/degradation. Using OVAp and 

OVA=LPSp, in combination with MG-132, during the first 30 minutes of chase 

there was no significant differences on antigen processing/degradation (fig.42-C). 

However, they were observed using a different immunobloting approach described 

previously (fig.42–B). Therefore, this could be due to OVA biotinylation that could 

influence their cleavage, or simply due to experimental differences. When a 

continuously challenge with particle antigen was used (fig.42-B), the amount of 

antigen internalized was higher and the differences on antigen processing/ 

degradation between OVAp and OVA=LPSp could be better addressed. At 120 

minutes, almost total antigen degradation was observed for OVAp but in a lesser 

extended for OVA=LPSp (fig.42–B). Analyzing the immunobloting  data on the 

end of chase (120 minutes), it was evident that OVA protein and intermediate 

processing products occurred at higher levels compared to those observed when 

LPS was in same cargo as antigen (fig.42-C), confirming our previous results (fig. 



 

 

 

 

 

___________________________________________________________________Results 

 

 

161 

42-B). However, in the presence of MG-132, OVA processing/degradation was 

inhibited significantly, but in a lower level when LPS was in same cargo. The 

degradation of OVAp was apparently totally reverted but in a minor extend for 

OVA=LPSp (fig. 42-C).  

This could highlight the role of proteasome on particle antigen processing/ 

degradation when a “bacterial” signal such as LPS is absent. Moreover, particle 

LPS may have a role on the control of proteasome-independent antigen 

processing/degradation, such as vacuolar endoproteases.  

iv) Reduced antigen processing/degradation in the presence of LPS may result 

from a decrease in proteasome activity. Alternatively, it may result by a reduction 

of antigen escape from the phagosome into the cytosol (retro-translocation), either 

by channel recruitment or kinetic function. The nature of this phagosomal “pore” 

remains controversial, although it appears to have a size limited. Internalized 

antigens with molecular masses of <40 kDa have been reported to gain access to 

the cytosol rapidly (Rodriguez et al., 1999), making small proteins ideal to study 

the amount of antigen that was available in cytosol. To relatively quantify the 

amount of internalized antigen available in cytosol, which results from the egress 

from phagosomes, cytochrome c (cyt c) a soluble 13-kDa mitochondrial protein 

was used. As proof of principle, when cyt c is available in the cytosol apoptosis 

was induced (Cai et al., 1998). As this assay was not suitable for sDCs (due to the 

short half-life in culture) BMDCs were employed as a model. Given the strict 

dependence of efficient antigen cross-presentation mechanism on the capacity to 

transfer exogenous antigens to the cytosol, exogenous cyt c would preferentially 

induce apoptosis when the mechanism of retro-translocation is more efficient (Hao 

et al., 2005; Schafer and Kornbluth, 2006). Our data showed that when LPS is in 

same cargo as cyt c particles, lower amounts of cyt c were available in the cytosol 

(less apoptosis), comparing to cyt c particles (fig. 42-D). Lower levels of apoptosis 
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could be due either higher degradation or to lower rates of cyt c escape from 

phagosomes into cytosol. Supporting previous data, where antigen degradation 

occurs at higher efficiency in the absence of LPS (fig.42- A, B and C) and the 

inhibition of proteasome almost completely abolished antigen degradation (fig.42-

A and C), we have observed less cyt c in cytosol (apoptosis) in LPS-containing 

particles (fig. 42-D). In addition, our previous data showed that phagosome 

maturation occurs at a higher rate in the presence of LPS containing particles 

(fig.39 and 41). Therefore we hypothesized that fewer antigen amounts could 

escape from phagosomes to cytosol, due to maturation kinetics, when LPS is 

present. These results are then in accordance with the low apoptosis level observed 

in this assay, when LPS is in same cargo as cyt c (fig. 42-D). Thus, we propose that 

reduced antigen processing/degradation mediated by LPS could be due not only to 

low proteasomal activity but also to low retro-translocation efficiency. 

v) Using SIINFEKL peptide as a model antigen, the retro-translocation step to 

the cytosol could be bypassed, as well as the requirement of the proteasome 

processing for antigen cross-presentation. Our data showed that the particle antigen 

cross-presentation is similar either in the presence or absence of LPS (fig. 42- E). 

LPS in same cargo as antigen did not impair SIINFEKL peptide cross-presentation, 

whereas in same cargo as OVA did (fig. 33). The influence of LPS in antigen retro-

translocation and/or proteasome activity was thus supported by this assay.  

 

Phenotype characterization V – The role of p38 in cross-presentation _ _ 

Blander and Medzhitov have found that activation of the p38 mitogen-activated 

protein (MAP) kinase downstream of TLRs was needed for accelerated phagosome 

maturation and MHC class-II antigen presentation (Blander and Medzhitov, 2004, 

2006a). As a downstream signal molecule of TLRs, and specifically TLR4, it 

makes sense to further address their role on the antigen cross-presentation 
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phenotype observed, using a p38 MAP kinase inhibitor, as other inhibitor drugs for 

the other MAPKs, ERK and JNK. 

------------------------------------------------------------------------------------------------------------------------------------------ 

 

 
Fig.43: Particle antigen cross-presentation based assay using MAPKs inhibiting drugs. sDCs 
(2.5x104) from C57BL/6 mice were incubated previously with inhibiting drugs for major MAPK 
pathway (p38, ERK and JNK) and DMSO as negative control for 2hr. Model particles (OVA and 
OVA=LPS) were incubated at 1:10 (sDC:particles) ratio. Left graph: OT-I T-Cells (1x105) were co-
cultured with sDCs for 3 days. T-Cell proliferation was measured using CFSE staining by FACS. 
Histograms represent T-Cell population gated on SSC vs CFSE plots. Open grey line plots represent 

control OT-I T-Cells that do not divide and blue filled plots represent OT-I T-Cells proliferation 
under specific stimulus. Numbers represent the percentages of the proliferating cells of total OT-I T-
Cells. These data are representative from one experiment repeated at least three times with similar 
results. Right graph: T-Cell activation was addressed by ELISA for IFN-γ secretion at 60-65hrs by 
OT-I T-Cells. The graph represents the average + 1SD of three independent experiments. The 
asterisks represent statistically significant differences comparatively to OVA=LPSp in absence of 
inhibiting drugs (*P< 0.05; **P< 0.01; *** P< 0.001). 
------------------------------------------------------------------------------------------------------------------------------------------ 

 

These data showed that in the presence of an inhibitor of p38 phosphorilation 

(SB203580), similar levels of OT-I T-cell proliferation / activation were achieved 

for both OVAp and OVA=LPSp (fig. 43), reversing the inhibitory effect on antigen 

cross-presentation mediated by  LPS on same cargo as OVA particles. Therefore, 

this result indicates that p38 activation might have a major role on antigen cross-

presentation impairment mediated by LPS signaling. Additionally, inhibiting drugs 
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for the others MAPK, JNK (SP600125) and ERK (PD98059), have also been used, 

but the effect on recovering of the phenotype was not as evident as shown with the 

p38 inhibiting drug (fig.43). Upon activation of TLR4, p38 becomes 

phosphorylated and IkB-α is degraded, players of two different main pathways 

(Fitzgerald et al., 2003). Therefore we decided to evaluate p38 phosphorylation 

state and IkB-α expression by protein immunoblot, as a manner to measure 

downstream TLR4 signaling activation mediated by particle LPS stimulus.   

 

------------------------------------------------------------------------------------------------------------------------------------------ 

 
 

Fig. 44: Western blot for p-p38 and IKB-α upon model particles stimulation.  sDCs (1x105) from 
C57BL/6 were pulsed with 1:10 (sDC:particles) ratio with OVAp and OVA=LPSp for 15 min, and 
chased for indicated time points (5 min, 15 min, 30 min, 1hr and 2hr). Whole cell lysates were 
analyzed for p38 phosphorylation and NF-kB activation (degradation of IkB-α) by WB using 1:200 
dilution of anti-p-38 and IKB-α antibodies (Abcam). 30 μg of total protein extracts from sDCs were 

separated by 10% SDS-PAGE. β-actin staining was used as loading control (bottom).   
------------------------------------------------------------------------------------------------------------------------------------------ 

 

These data showed that in the presence of OVA=LPSp, p38 phosphorylation 

and IKB-α degradation occurs with higher kinetics comparing to OVAp (fig. 44). 

Indeed, LPS on particulate state, effectively induce TLR4-mediated signaling, as 

showed by p38 and NFk-B signaling transduction pathways activation. 
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Phenotype characterization VI – The role of other TLRs agonists  _ 

To address if the effect was “transversal” to other TLRs, agonists for different 

TLRs (Pam3, PolyI:C, LPS, Flagellin, Pam2, ssRNA40 and Cpg) were used 

coupled to OVA particles, using a sonication protocol as described by Yates et.al, 

(Yates and Russell, 2005). 

 

------------------------------------------------------------------------------------------------------------------------------------------ 
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Fig.45: INF-γ based T-Cell activation assay: TLR agonist model particles antigen presentation. 
T-Cell activation was addressed by ELISA for INF-γ secretion at 60-65hrs by OT-I T-Cells (left 
graph) and OT-II T-Cells (right graph) in response to sDCs (2.5x104) from C57BL/6 mice given 
model particles. The different TLR agonists were adsorbed to OVAp by a sonication protocol during 
20 min. Naked particles, OVAp, OVA=Pam3p, OVA=PolyI:Cp, OVA=LPSp, OVA=Flagellinp, 
OVA=Pam2p, OVA=ssRNA40p and OVA=CpGp were used. Model particles were incubated at 1:10 

(sDC:particles) ratio. The graph represents the average + 1SD of three independent experiments. The 
asterisks represent statistically significant differences comparatively to OVAp (*P< 0.05; **P< 0.01). 
The table represents the principal pathways activated by engagement of a specific TLR agonist, and 
the relative induction of MHC class-I presentation vs MHC class-II presentation.  
------------------------------------------------------------------------------------------------------------------------------------------ 

 

These data showed that different TLR might have different roles and lead to 

different outcomes in antigen presentation pathways. Moreover, it seems that there 

is a pattern in the pathways induced by particulate TLR agonist and the outcome of 

antigen presentation (fig.45). Thus, TLR agonist that preferentially signals through 

MAPK/NF-kB pathways, such as Pam3, Flagellin and Pam2 seems to induce 

antigen cross-presentation. In opposition, TLR agonists that preferentially signal 

through IFN-Type I pathway, such as ssRNA40, polyI:C and CpG seem to inhibit 

antigen cross-presentation (fig.45). TLR4 is unique among TLRs, as it can signal 

through both MyD88 and TRIF adaptors. Recent work done by Kagan and 

colleagues has shown that TLR4 could signal through the two adaptors when in 

different locations and TRIF pathway is preferentially induced when TLR4 is 

internalized into endosomes (Kagan et al., 2008). This could indicate that LPS-

containing particles signal preferentially through TRIF dependent pathway when it 

are internalized. This hypothesis correlates with our results obtained for other 

agonists that preferential signal trough IFN type-I pathway, where antigen cross-

presentation is inhibited by (fig. 45). To further clarify the previous results, E.coli 

expressing OVA and apoptotic cells loaded with OVA were used to address the 

effect of physiological stimuli based on different sources of ligands. 
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Fig.46: INF-γ based T-Cell activation assay using: Antigen presentation of model particles, 
E.coli expressing OVA and apoptotic cells OVA-loaded by WT and TLR4 KO DCs. T-Cell 
activation was addressed by ELISA for INF-γ secretion at 60-65hrs by OT-I T-Cells (upper graph) 
and OT-II T-Cells (lower graph) in response to sDCs (2.5x104) from C57BL/6 WT and TLR4KO 
mice stimulated with OVAp, OVA=LPSp, E.coli expressing OVA (E.coli=OVA) and apoptotic cells 
OVA-loaded (Apoptotic=OVA). Model particles, E.coli and apoptotic cells were incubated at 1:10 
(sDC:particles) ratio. The graph represents the average + 1SD of three independent experiments. The 

asterisks represent statistically significant differences (*P< 0.05; **P< 0.01). 
------------------------------------------------------------------------------------------------------------------------------------------ 
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As shown previously by the proliferation data (fig. 34), similar levels of OT-I 

T-Cell activation were achieved for both OVAp and OVA=LPSp using sDCs from 

TLR4KO mice (fig.46). Thus the inhibitory effect of LPS on same cargo as OVA 

particles was abolished. In the case of MHC class-II presentation, in the absence of 

TLR4, the OVA=LPSp induced similar levels of antigen presentation as for OVAp 

(fig.46). Therefore, the inducible effect of LPS observed on MHC class-II particle 

antigen presentation is abolished in absence of TLR4. Using E. coli expressing 

OVA, antigen presentation was induced at higher levels in both MHC class-I and 

MHC class-II comparing to OVA particles. Moreover, there are not significantly 

changes on antigen presentation mediated by E. coli when sDCs deficient on TLR4 

were used (fig.46). It is possible that E.coli could induce a different pattern of 

receptors, resulting in a general inductor effect of antigen presentation.  

When u.v. irradiated cells loaded with OVA were used, antigen presentation 

was induced in both MHC class-I and MHC class-II comparing to OVA particles. 

Surprisingly, in the absence of TLR4, antigen cross-presentation of dead cells 

loaded with OVA was inhibited but not the MHC class-II presentation (fig.46). 

This could be due to specific danger signals that are produced during u.v. 

irradiation, which may stimulate TLR4 in a way, inducing antigen cross-

presentation.  

As mentioned before, TLR4 could signal through two adapters, therefore the 

effect of LPS in antigen cross-presentation could be MyD88 dependent, TRIF 

dependent or both. Our previous data indicate that the inhibitory mechanism could 

be mediated mainly by a TRIF dependent mechanism (fig.45). To address this 

hypothesis, sDCs from MyD88KO mice were used to confirm the role of this 

adaptor in antigen cross-presentation phenotype, mediated by particulate LPS in 

same cargo as antigen.  
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------------------------------------------------------------------------------------------------------------------------------------------ 

 
 
Fig.47: INF-γ based T-Cell activation assay: Antigen presentation of model particles by MyD88 
KO DCs. T-Cell activation was addressed by ELISA for INF-γ secretion at 60-65hrs by OT-I T-Cells 
(left graph) and OT-II T-Cells (right graph) in response to sDCs (2.5x104)  from MyD88KO mice in 
the presence of different particulate antigens: Naked particles, OVAp, OVA=LPSp and OVA=CpGp. 
Model particles were incubated at 1:10 (sDC:particles) ratio. The graph represents the average + 1SD 
of three independent experiments. The asterisks represent statistically significant differences 

comparing to OVAp (*P< 0.05). 
------------------------------------------------------------------------------------------------------------------------------------------ 

The basal antigen cross-presentation capacity of OVA particles by sDCs from 

MyD88KO mice is lower when compared with WT sDCs (~3 times less), not 

verified for MHC class-II antigen presentation (fig.46 and 47). These data showed 

that the enhanced effect of particulate LPS and CpG in MHC class-II presentation 

(fig.45) is abolished in MyD88 deficient sDCs (fig.47). The antigen cross-

presentation phenotype of model particles mediated by MyD88 deficient sDCs is 

comparable with WT sDCs. Indeed, similar inhibitory phenotype of antigen cross-

presentation were observed for OVA=LPSp and OVA=CpGp (fig.45), even in 

absence of MyD88 adapter (fig.47). Therefore, these results suggest that signaling 

through MyD88 adapter by TLR4 is not responsible for the abolishment effect on 

antigen cross-presentation mediated by LPS-containing particles. Unexpectedly, in 

absence of MyD88 adaptor, CpG impairs particle antigen cross-presentation. As 
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MyD88 is the only adaptor known for TLR9, this effect on antigen cross-

presentation could be due to signaling through another adaptor not described so far.  

The impairment on antigen cross-presentation mediated by CpG-containing 

particles be through other receptor is excluded by previous data, where KD of 

TLR9 revert the abolishment of antigen cross-presentation (fig.35).  

 

Phenotype characterization VII – Cytokines      _ 

Cytokines has been described as an important signal on the outcome of immune 

response, mainly by controlling of T-Cell activation (Macagno et al., 2007). In 

order to address the effect of our model particles on cytokine production, 

Inflammatory cytokines such as IL-6, IL-12, TNF-α, and IFN type I cytokines such 

as IFN-β, were measured upon stimulation with model particles, by ELISA assay.  

------------------------------------------------------------------------------------------------------------------------------------------ 

 
 
Fig.48: Inflammatory and anti-inflammatory cytokine secretion by DCs in response to model 
particles. ELISA measurement of cytokine secretion by sDCs (2.5x104) from C57BL/6 mice at 12 
hrs after challenged with model particles. Left graph: Inflammatory cytokines (IL-6, IL-12 and TNF-

α); Right graph: Anti-Inflammatory cytokines (IFN-β). Model particles: Naked particles, OVAp, 
OVA=CpGp, OVA=LPSp, OVA=PolyI:Cp and OVA=LipidAp were co-incubated at 1:10 
(sDC:particles) ratio. The graph represents the average + 1SD of three independent experiments.  
------------------------------------------------------------------------------------------------------------------------------------------ 
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As expected, OVA particles loaded with TLR agonists induced higher levels of 

co-stimulatory cytokines (IL-6, IL-12 and TNF-α) when compared with “naked” 

OVAp. However, TNF-α levels were not induced by OVA=PolyI:Cp (fig.43). IFN- 

β, one of the major cytokines produced upon IFN-type I pathway activation, was 

also induced by particulate TLR agonists, but with a higher extent for 

OVA=LipidAp (fig.48). As described, monophosphoryl LipidA (MPLA) is an 

agonist of TLR4 that induces particularly TLR4/TRIF-dependent pathway (Mata-

Haro et al., 2007). To address the possible effect of IFN-β on particle antigen 

cross-presentation impairment mediated by TLR4 agonists (more specifically 

LipidA), we made use of soluble rIFN-β in combination with OVAp. 

 
------------------------------------------------------------------------------------------------------------------------------------------ 

                     

 
 
Fig.49: INF-γ based T-Cell activation assay: Antigen presentation of model particles using 
soluble rIFN-β. T-Cell activation was addressed by ELISA for INF-γ secretion at 60-65hrs by OT-I 
T-Cells (left graph) and OT-II T-Cells (right graph) in response to sDCs (2.5x104) from C57BL/6 

mice given particulate antigens: Naked particles, OVAp and OVA=LipidAp. In some conditions, 
OVAp were co-delivered with a range (0.1–25U) of soluble rIFN-β concentration. 1U of rIFN-β 
corresponds to ~50 pg/ml. Model particles were incubated at 1:10 (sDC:particles) ratio. The graph 
represents the average + 1SD of three independent experiments. The asterisks represent statistically 
significant differences comparing to OVAp (*P< 0.05).  
------------------------------------------------------------------------------------------------------------------------------------------ 
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These data showed that OVA=LipidAp have a similar antigen cross-

presentation phenotype as verified for OVA=LPSp (fig.36), leading to an inhibition 

on OT-I T-Cell activation when compared to OVAp. However, in the case of MHC 

class-II presentation no significant differences were observed between OVAp and 

OVA=LipidAp (fig.49). Instead, an increase in MHC class-II presentation occurred 

when LPS was in same cargo as OVA particles (fig.36). This might suggest, in 

accordance with MyD88KO data (fig.47), that the inhibitory effect of antigen 

cross-presentation could be mainly due to a TRIF-dependent pathway.  

To address if this phenotype was related with IFN-β secretion by DCs upon 

model particles stimulation, soluble rIFN-β was used. Using lower concentrations 

of soluble rIFN-β, in a range observed by ELISA measurement of IFN-β produced 

upon stimulation with model particles (0.1-25 U), there was no effect in MHC 

class-II antigen presentation (fig.49). Concentrations as high as 25U, appear to be 

toxic to the cells as antigen presentation on both MHC class-I and MHC class-II 

were complete abolished (fig.49). Concerning to antigen cross-presentation, there 

was not a general inhibitory effect due to soluble rIFN-β, but slight tendency on 

antigen cross-presentation inhibition, only when IFN-β was present around 1U of 

concentration (fig.49). On contrary, and increase on antigen cross-presentation 

occurs, when IFN-β was present around 5U of concentration. Nevertheless, the 

rINF-β used could be not in an “ideal” conformation/processing state to signal 

properly through the IFN-R, as it was known to be critical to IFN-β signaling.  

However, we cannot exclude the hypothesis that soluble IFN-β could have a 

role on antigen cross-presentation inhibitory effect due to particle LPS/LipidA 

stimulation, although, further characterization should be done as other mechanism 

may also occur.  
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Phenotype characterization VIII – PLGA and Hydrogel particle platform _  

PLGA biodegradable particles have been used as in vivo carriers, and could be 

used as a dynamic system for antigen delivery (Acharya et al., 2009). Thus, a 

different platform of particulate antigen was used to address the role of TRIF-

dependent pathway mediated by TLR4. As described, MPLA (Monophosphoryl 

LipidA) is a low-toxicity derivative of LPS with useful immunostimulatory
 

properties that trigger exclusively the TRIF-dependent pathway and has been used 

as in vivo modulation ligand (Mata-Haro et al., 2007). In fact, MPLA is in 

regulatory approval for use as
 
a human vaccine adjuvant. Therefore, we next 

sought to evaluate the role of PLGA particles loaded with model antigen in the 

presence of MPLA on both MHC class-I and MHC class-II antigen presentation 

pathways. 

------------------------------------------------------------------------------------------------------------------------------------------ 

 

 

Fig.50: PLGA model particles antigen cross-presentation FACS-based assay. sDCs (2.5x104) 
from C57BL/6 mice were incubated with model particles (PLGAp, PLGA=OVAp and 

PLGA=OVA=MPLAp) at 1:40 (sDC:particles) ratio. Similar results were obtained with lower ratios 
1:20 and 1:10. 1x105 OT-I T-Cells (upper panel) and OT-II T-cells (lower panel) were co-incubated 



 

 

 

 

 

 

Chapter 4________________________________________________________________  

 

 

174 

for 3 days. Histograms represent T-Cell population gated on SSC vs CFSE plots. T-Cell proliferation 
was measured using CFSE staining by FACS. Numbers represent the percentages of the proliferating 
cells of total OT-I T-Cells. These are representative data from one experiment repeated at least three 
times with similar results. 
------------------------------------------------------------------------------------------------------------------------------------------ 

The results obtained with the PLGA model particles were in total accordance 

with previous ones obtained using fixed ligand (polystyrene) particles (fig.49), 

supporting the effect of TLR4 agonists as an inhibitory signal for antigen cross-

presentation when present in same context as particle antigen (fig. 50). Therefore, 

when MPLA is on same cargo as PLGA=OVAp, there was an inhibitory effect on 

antigen cross-presentation and a slightly increase MHC class-II presentation 

(fig.50). As TRIFKO mice were not available, TRIF/MyD88 double KO mice were 

used to address the direct role of TLR4/TRIF dependent pathway on antigen cross-

presentation phenotype inhibition mediated by MPLA-containing particles. 

------------------------------------------------------------------------------------------------------------------------------------------ 

 

 

 

 

 

 

 

 

 

Fig.51: PLGA model particles antigen cross-presentation FACS-based assay by TRIF/MyD88 
double KO DCs. sDCs (2.5x104) from TRIF/MyD88 double KO mice were co-incubated with model 
particles (PLGAp, PLGA=OVAp and PLGA=OVA=MPLAp) at 1:40 ratio (similar results with lower 
ratios 1:20 / 1:10) and OT-I T-Cells (1x105) for 3 days. T-Cell proliferation was measured using 
CFSE staining by FACS. Histogram represents T-Cell population gated on SSC vs CFSE plots. 
Numbers represent the percentages of the proliferating cells of total OT-I T-Cells These are 
representative data from one experiment repeated at least three times with similar results. 
------------------------------------------------------------------------------------------------------------------------------------------ 

As expected, in the absence of TRIF-dependent pathway, the inhibitory effect 

of MPLA-containing PLGA particles on antigen cross-presentation was abolished 

and similar levels of OT-I T-Cell proliferation were obtained for PLGA=OVAp 
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and PLGA=OVA=MPLAp (fig.51). This result support, even using different 

particle system, that the impairment on antigen cross-presentation phenotype 

mediated by TLR4 agonists could be due to a TRIF dependent pathway, as MPLA 

signals through TLR4 specifically using this adaptor (Mata-Haro et al., 2007).  

As Hydrogel pH-responsive particles are able to disrupt the phagosomes and to 

force the release of their contents into cytosol (Hu et al., 2007), we next sought to 

address the hypothesis if the MPLA mediated abolishment on antigen cross-

presentation could be in some extent related to the control of the mechanism of 

antigen escape to the cytosol as hypothesized previously (fig.42).  

------------------------------------------------------------------------------------------------------------------------------------------ 

 

Fig.52: Hydrogel pH-responsive model particles model particles antigen cross-presentation 
FACS-based assay. sDCs (2.5x104) from C57BL/6 mice were co-incubated with Hydrogel particles 
(Hydrogel=OVAp and Hydrogel=OVA=MPLAp) from 8:1 to 1000:1  (particles:sDC) ratio and OT-I 
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T-Cells (1x105) for 3 days. T-Cell proliferation was measured using CFSE staining by FACS. 
Histogram represents T-Cell population gated on SSC vs CFSE plots. Numbers represent the 
percentages of total OT-I T-Cells. These are representative data from one experiment repeated at least 
three times with similar results. 
------------------------------------------------------------------------------------------------------------------------------------------ 

 

These data showed that even using a particle system that forces the escape of 

antigen to cytosol, the inhibitory effect of MPLA on particles was evident even 

when antigen was present at higher ratios of concentration (fig.52). These data 

support the role of TLR4 agonists-containing particles on antigen cross-

presentation impairment. From these data we could hypothesize that antigen cross-

presentation inhibitory effect mediated by TLR4 agonists is not only due to 

decreased antigen availability on cytosol and processing by the proteasome (fig.42) 

or phagosome maturation (fig.39 and 41), but also to another intrinsic mechanism. 

However, hydrogel particles were at a range size of ~0.5µm (smaller than 

polystyrene and PLGA) and could reach different niches of internalized 

phagosomes that potentially have different antigen cross-presentation abilities 

(Kutomi et al., 2009; Reinicke et al., 2009; Tran and Shen, 2009). Further studies 

should be done in order to characterize this assumption. 

In sum, all these results showed that the impairment of particle antigen cross-

presentation of phagocytosed cargo is dependent on the presence of TLR4 agonists 

within the cargo (summarized in Table VII). All these data will be discussed in the 

following chapter. 
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Table VII: Representative illustration of principal model particles antigen presentation on both MHC 
class-I and MHC class-II pathways. LPS-mediated phenotype and influence on antigen presentation 
major key steps. 
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Antigen presentation is at the basis of the CD8
+
 T-Cell immune response 

against tumours or viral infections but also in self-tolerance mechanisms. Cross-

presentation of antigens in DCs, is a key pathway to elicit effective CD8
+ 

T-Cell 

responses of exogenously-delivered antigens (Heath and Carbone, 2001; Touret et 

al., 2005; Yewdell et al., 1999). However, little is known about its mechanistic 

basis and how it responds to different types of foreign and self-antigens. Classical 

antigen presentation studies have focused on soluble extracellular antigens, but 

much evidence suggests that particulate antigens, such as bacteria, fungi and 

microparticles, are processed much more efficiently to stimulate CD8
+
 T-Cells 

(Houde et al., 2003; Kovacsovics-Bankowski et al., 1993; Stuart and Ezekowitz, 

2005). DCs express a series of different receptors that mediate the transfer of such 

signals from the environment. Toll-Like Receptors play a critical role in the 

immune response to invading pathogens by sensing microorganisms (Akira, 2006). 

As the role of these receptors in the outcome of the immune response and antigen 

presentation is not well understood, here we discuss how TLR agonists in same 

cargo as particulate antigens influence cross-presentation and its possible intrinsic 

mechanism.  

 

Particles size influences OVA antigen cross-presentation   _ 

As a starting point and given the strict dependency of the immune response on 

the size of the microorganisms, we first looked at the role of particle size on 

antigen presentation. It was described that the size of ligand-devoid particles can 

determine their pathway(s) of entry (Rejman et al., 2004). Our data revealed a size-

dependent efficiency of particulate antigen cross-presentation by DCs (Chapter 4).  

Since particle size also affects the amount of antigen uptake (Desai et al., 1997) the 

differences in antigen cross-presentation could be attributed to the total amount of 

antigen taken up by DCs. However, there were no significant differences in the 
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amount of antigens of particles with different sizes that were internalized by DCs. 

In addition, particulate MHC class-I OVA epitope (SIINFEKL) was efficiently 

cross-presented and not size related (Chapter 4). This evidence supports the idea 

that antigen cross-presentation size dependency is not due to different amounts of 

OVA antigen internalized, but instead, it can be related to different intracellular 

processing/loading mechanisms of antigens resulting from different uptake 

mechanisms. One possible explanation for these differences is suggested by the 

observation that after internalization, different kinds of particles localize to 

different niches of phagosomes (Brewer et al., 2004; Cervi et al., 2004; Oh and 

Swanson, 1996). Consequently, it is possible that the different OVA particles end 

up in different phagosomes with different antigen cross-presentation capabilities 

(Belizaire and Unanue, 2009; Tran and Shen, 2009). Recently, it was shown that 

particle size influences the phagosomal pH which is directly related with antigen 

cross-presentation efficiency. It was proposed that antigen bounded to 50 nm 

particles is shuttled rapidly to an acidic environment leading to its rapid and 

unregulated degradation and inefficient cross-presentation. In contrast, antigen 

bounded to 500 nm and 3 µm beads remained in a more neutral environment, 

which preserved the majority of antigens, leaving it available for the generation of 

peptides to be loaded onto MHC class-I molecules (Tran and Shen, 2009). 

Altogether, these observations suggest that the size of antigen carriers plays a 

critical role in directing antigens to the MHC class-I pathway. Therefore, 

enhancing phagocytic levels and/or re-route the particles to specific compartments 

could improve the efficiency of antigen cross-presentation.  
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“Pathogen-like” stimulus impairs particulate antigen cross-presentation _  

Previous studies showed that particulate antigens do not elicit a significant T-

Cell response in the context of MHC class-II. Moreover, these same studies 

revealed that co-stimulation of APCs with pathogen “sensors”, like TLR agonists, 

boost MHC class-II antigen presentation pathway (Blander, 2007a; Blander and 

Medzhitov, 2006). In addition, it was also described that antigen cross-presentation 

can be induced by TLR agonists (Bevaart et al., 2004; Chen et al., 2005; Datta and 

Raz, 2005; Datta et al., 2003; Heit et al., 2003; Schulz et al., 2005; Weck et al., 

2007). Unexpectedly, our data revealed that cross-presentation of OVA particles is 

almost abolished when the TLR4 agonist LPS (same observation for the TLR9 

agonist CpG) is present in same context as the antigen. On contrary, we observed 

an induction of the MHC class-II antigen presentation. The decrease in antigen 

cross-presentation mediated by LPS in same cargo as OVA particles was recovered 

in DCs deficient on TLR4 signaling, using both TLR4KO DCs and shRNA 

lentivirus mediated TLR4 gene knockdown (and TLR9 gene knockdown in case of 

OVA particles containing CpG).Targeting an important downstream pathway, 

MAPK pathway of TLR signaling, using inhibitors for JNK, ERK and p38, the 

levels of antigen cross-presentation of OVA particles containing LPS were 

recovered (higher extent for p38 MAPK inhibition), suggesting the LPS-mediated 

effect is through TLR4 signaling pathway (Chapter 4). This important discovery 

reveals that, when LPS is in same cargo as particle antigen, antigen cross-

presentation is impaired and MHC class-II presentation is increased, mediated by a 

TLR4-dependent signaling crosstalk. This impairment effect on antigen cross-

presentation mediated by TLR agonists on same cargo as particle antigen was 

never described before. However, when soluble LPS is co-incubated with OVA 

particles (two different physic stimuli) an increase of T-Cell activation/ 

proliferation occurs in both MHC class-I and MHC class-II (Chapter 4). It seems 
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that a strong soluble stimulus, such as LPS, is able to activate and reprogram all the 

antigen presentation machinery (up-regulation of molecules involved in antigen 

presentation – MHC class-I and class-II, co-stimulatory molecules, as well as other 

important cellular processes) leading to improved capacity to present an antigen in 

both classical pathways. The potential impact of this assumption, could justify its 

application on vaccine design projects, as TLR4 agonists were never described or 

used as a negative regulators of antigen cross-presentation response to a specific 

protein vaccine in vivo. 

The origin of pathogen-like stimuli (particulate vs soluble) seems to be critical 

for cross-presentation pathway(s) regulation (Chapter 4). When LPS is used in a 

different particle of that containing the antigen, no significant differences on the 

efficiency of MHC class-I and MHC class-II antigen presentation are observed 

(Chapter 4). Altogether, these data suggest that when in a soluble form, LPS 

stimulus could be able to activate all the machinery for antigen presentation, on 

contrary, when LPS is present in a particulate state, one can apply the concept of 

“phagosome autonomous maturation” in antigen presentation described by 

Blander et. al (Blander and Medzhitov, 2006a). According to this assumption, DCs 

distinguish between self and non-self antigens by selectively maturing phagosomes 

that contain the TLR agonist, as the TLR4 agonist LPS. This may constitute a 

regulatory mechanism to avoid the recognition of self antigens by the immune 

system (Blander and Medzhitov, 2006a). Our results with the TLR4 agonist and the 

antigen located on different particles, seem to support the finding that two 

phagosomes in the same DCs are “processed” individually (Blander 2008; Blander 

and Medzhitov, 2004, 2006b).This assumption is of great relevance to understand 

the role of “pathogen” stimuli on antigen fate and the capacity of an antigen-

presenting cell to decide the antigen presentation outcome of a specific antigen 

based-environment. The influence of the compartmentalization on the crosstalk 
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between the TLR-signaling  and the antigen cross-presentation pathways may 

constitute a tool that the DCs use to discriminate between the contents of 

phagosomes and to better mount an appropriate immune response to a specific 

stimulus. In sum, here we describe a new mechanism of antigen selection in DCs 

for cross-presentation that is based on the origin of the antigen. We show that the 

efficiency of presenting antigens from phagocytosed cargo is dependent on the 

presence of TLR agonists within the cargo. 

 

Antigen uptake is not regulated by particulate TLR stimulus    _ 

As the amount of antigen that is internalized by DCs may influence the antigen 

presentation, and moreover, TLRs have been implicated on phagocytosis (Blander, 

2007a), we addressed whether a TLR4 agonist influences the particulate antigen 

uptake. Our results revealed that the uptake capacity of DCs is similar for particle 

antigen, when LPS is present in a soluble form or in the same context as antigen 

(Chapter 4). As such, the amount of antigen that reaches the phagosomes is almost 

the same, thus, the differences observed in antigen presentation for particle antigen 

and particle antigen containing LPS do not appear to be due to differences in 

phagocytic uptake.  

 

Phagosome maturation mediated by LPS impairs antigen cross-presentation___  

The maturation of phagosomes containing antigens has been described as an 

important process related to antigen presentation (Blander, 2007a; Blander and 

Medzhitov, 2006a; Russell and Yates, 2007). It was previously reported that 

bacterial LPS enhances phagosome maturation/acidification (Blander and 

Medzhitov, 2004, , 2006a; Trombetta et al., 2003) and improves DC performance 

in antigen presentation (Blander and Medzhitov, 2006a; Trombetta and Mellman, 

2005). In agreement with the published studies, our data showed that, if present in 
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the same context as particulate antigens, LPS stimulus induces higher levels of 

phagosome maturation (phagosome colocalization with lysosomes). Moreover, in 

the absence of signals from TLR4, phagosomes failed to mature efficiently 

(Chapter 4).  

Our data link phagosome maturation enhancement with a phagosomal 

acidification (decreased pH) mediated by LPS-containing phagosomes. In the 

absence of LPS stimulus, phagosomal pH is maintained at higher pH values, 

indicative of an immature stage (Chapter 4), which enhances the fusion between 

phagosomes and early endosomes (Hart and Young, 1991; Kjeken et al., 2004; 

Pais and Appelberg, 2004). This blockade on phagosome maturation 

(phagolysosome formation) leads to phagosomal enrichment on ER machinery 

important for antigen cross-presentation (Ackerman et al., 2003; Claus et al., 1998; 

Houde et al., 2003; Howland and Wittrup, 2008) and supported the observation 

that only early phagosomes are able to contribute to antigen cross-presentation in 

DCs (Ackerman et al., 2003; Houde et al., 2003).This is supported by the evidence 

that antigen cross-presentation may occur in a time-dependent manner, 

preferentially early after phagocytosis (Howland and Wittrup, 2008). Additionally, 

antigen cross-presentation is described to be enhanced in the presence of a 

lysosomotropic agent (cause an increase in lysosomal pH) (Accapezzato et al., 

2005; Howland and Wittrup, 2008) as low pH values perturb the loading of 

peptides onto MHC class-I molecules (Ackerman and Cresswell, 2004; Ackerman 

et al., 2003) and favor antigen degradation mediated by vacuolar endoproteases 

(Claus et al., 1998; Delamarre et al., 2005; Manoury et al., 1998). 

Taken together our results with others, we hypothesize that the effect of LPS 

stimulus on phagosome maturation and pH regulation is related with particle 

antigen cross-presentation impairment. 
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The pH variation induced by LPS is blocked in the presence of Bafilomycin A 

(V-ATPase inhibitor), which implicates the V-ATPase complex on phagosomal pH 

regulation mediated by LPS. However, the TLR4KO pH phenotype mediated by 

LPS does not resemble completely the immature stage, suggesting that phagosomal 

pH kinetics mediated by LPS is not totally dependent on TLR4 mediated signaling, 

but seems to plays a major  role (Chapter 4). V-ATPase is the principal 

responsible for phagosomal pH acidification and its function could be regulated by 

the control of phagosomal efflux of protons (Nishi and Forgac, 2002; Stevens and 

Forgac, 1997). This process is important to maintain phagosomal electrochemical 

balance, allowing its acidification and maturation (Nishi and Forgac, 2002). P2x4 

receptor can play a role on this balance, as it is induced on phagosomes upon 

stimulation (Raouf et al., 2007). Knockdown of P2x4 receptor enhanced particulate 

antigen cross-presentation. This effect was not observed following P2x7 receptor 

knockdown as a control (data not shown). As its function was described to be 

enhanced by LPS (Raouf et al., 2007), P2x4 receptor could have an important role 

on phagosome maturation and consequently on particle antigen cross-presentation. 

A direct link between LPS signaling and V-ATPase control/regulation was not 

shown, however we can hypothesize the existence of such a link and that P2x4 

receptor could have an important role on that. Further studies should be done in 

order to support this assumption based on preliminary data. 

A recent study reported the DCs phagosomal pH to range between 7.0-7.5 upon 

challenge with pH sensitive particles (Savina et al., 2006). However, our results 

show higher pH values at the starting point (pH~8.8) and also different kinetics of 

pH variation following the addition of particles. These differences might be due to 

the fact that, unlike the previous study that use plain amino particles as backbone 

to coupled the fluorescent dyes, we have used particles loaded with OVA, similar 

to the ones used during the antigen presentation studies. It was previously shown 
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that OVA is able to target specific receptors on DCs for efficient uptake and 

antigen presentation (Burgdorf et al., 2007; Hao et al., 2007; Idoyaga et al., 2008). 

Studies performed with soluble OVA, implicated Scavanger Receptores, DEC-205 

and most importantly Mannose Receptors (MR) in re-routing endocytosis 

pathways to introduce soluble antigens into separate intracellular compartments 

(Burgdorf et al., 2007). The MR was also described to supply an early endosomal 

compartment distinct from lysosomes, which was committed to cross-presentation 

(Burgdorf et al., 2007). A similar mechanism may also explain the different 

phagosomal pH values obtained in DCs in the presence of particles loaded with 

OVA. In this case, phagocytosis might end up on more alkaline compartments 

giving rise to higher pH values when using particles loaded with OVA. This would 

then explain the different observations made previously regarding the controversial 

effect (negative or neutral effect) of LPS on phagosomal maturation (Shiratsuchi et 

al., 2004; Yates and Russell, 2005) and its relation with antigen cross-presentation.  

 

LPS plays a negative role on ROS production – a step required for efficient 

cross-presentation 

The control of phagosomal pH in DCs relies on the activity of the V-ATPase 

complex but also on the activity of NOX2 (Savina et al., 2006), and its regulation 

results from a delicate balance between the recruitment and activity of these two 

complexes (DeCoursey et al., 2001; DeCoursey et al., 2003; Nanda et al., 1994; 

Savina et al., 2006). NOX2 has been described as a major player, limiting “blunt” 

phagosomal acidification in DCs, providing a sustained alkaline phagosomal 

environment (pH 7-7.5) (Savina et al., 2006). Moreover, ROS production by 

NOX2 activity is required for efficient antigen cross-presentation (Mantegazza et 

al., 2008; Savina et al., 2006).  
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We showed that LPS-containing particles stimulus may reduce ROS production 

into phagosomes (Chapter 4). Thus, the lower rate of phagosomal maturation 

observed in the absence of LPS stimulus, maybe due in part to higher levels of 

ROS production. Increased ROS levels could consume the protons generated by V-

ATPase, therefore able to block phagosome acidification. This regulation could 

occur due to the control of the activity and/or recruitment of NOX2 to LPS 

particles-containing phagosomes. Moreover, V-ATPase and NOX2 activities could 

be regulated by signals from TLRs, either by controlling the density and assembly 

of these complexes on the phagosomal membrane or by regulating the activity of 

associated proteins (Nishi and Forgac, 2002). Although, the effect of TLR 

activation on NOX2 recruitment to phagosomes has not been studied directly, it 

was shown that soluble LPS enhances NOX2 activity and expression in DCs 

(Vulcano et al., 2004). This finding is in opposition to our results; however a 

simple explanation could be based on a different experimental set up, the physical 

nature of the LPS stimulus. Where others have used soluble LPS during a long 

time (~24h), and subsequently challenged with PMA, we used a LPS-particulate 

stimulus that could signal in a different time window or activation state of NOX2 

regulation/recruitment. Besides the pH regulation, ROS production in phagosomes 

may also modify molecular antigen conformation by oxidation, which could affect 

the antigen sensitivity to different proteases or influence the peptide export to the 

cytosol (Amigorena and Savina, 2010), and consequently antigen cross-

presentation. We suggest that higher levels of phagosome maturation of LPS-

containing phagosomes should be due to a regulatory mechanism mediated by LPS 

stimulus that leads to a higher rate of phagosomal acidification but also to a 

decrease of phagosomal ROS production (Chapter 4). Taken together these data, 

we hypothesize that antigen cross-presentation is enhanced during the period of 

time when pH is maintained at near alkaline values, where phagosomal 
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acidification is “sustained” and occurs and active ROS production which resembles 

an immature phenotype. On the other hand, antigen cross-presentation is impaired 

when a stimulus induces phagosome maturation, acidification and decreased ROS 

production, producing a mature phenotype that is compromised for MHC class-II 

antigen presentation. In sum, we propose that phagosomal maturation mediated by 

LPS stimulus impairs antigen cross-presentation, due to enhanced acidification and 

decreased ROS production, two compensatory mechanisms. 

  

LPS plays a role on particle antigen processing/degradation which is important 

for efficient cross-presentation 

DCs have adapted their intracellular machinery to focus on antigen presentation 

rather than on antigen degradation (Savina et al., 2006). As described, phagosomal 

pH regulation (either by V-ATPase or NOX2) is the main mechanism used by DCs 

to “protect” peptides from complete degradation, with the ultimate goal being to 

generate T-Cell epitopes (Savina et al., 2006; Trombetta et al., 2003). 

Antigen processing/degradation during antigen presentation by DCs is mediated 

either by the vacuolar pathway, compromised with the MHC class-II epitope 

generation or by the proteasome (cytosolic) pathway, that plays a major role on 

MHC class-I epitope generation (Belizaire and Unanue, 2009; Trombetta and 

Mellman, 2005). Our results show a major role of the proteasome on particulate 

antigen processing/degradation, as this process is almost abolished when a 

proteasomal inhibitor is used. In the presence of LPS, lower levels of particulate 

antigen processing/degradation were observed, which could imply LPS as a 

negative regulator of the proteasome activity.  In contrast, inhibition of Cathepsin S 

(a major endoprotease of the vacuolar degradation pathway) has a small effect on 

particulate antigen processing/degradation (Chapter 4). 
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Exogenous antigen processing by the proteasome is described as a key step and 

required for their cross-presentation (Houde et al., 2003). As we have previously 

shown, LPS-containing particles impairs antigen cross-presentation which could be 

in part explained by their negative regulation in proteasome-dependent degradation 

(Chapter 4), leading to less MHC-I epitopes generation. Further experiments 

should be then performed to analyse MHC-I/SIINFEKL complexes at cell surface, 

to show if LPS influences the amount of the first signal on antigen cross-

presentation. By using the methods available at the moment, either an anti-mouse 

H-2Kb OVA agonist peptide antibody or a B3Z T-Cell hybridoma based assay 

(Guermonprez et al., 2003; Kwon et al., 2005), we observed no differences in the 

MHC-I/SIINFEKL complexes at the cell surface, when LPS was in same cargo as 

particle antigen (data not shown). Nevertheless, other authors considered these 

methods with no sensitivity enough to evaluate particulate antigen presentation 

(Amigorena and Savina, 2010). Therefore, new and more efficient methods are 

required to accurately ascertain this question. 

In addition to proteasome, proteolytic activity of endosomal proteases has also 

been described to be important for an efficient antigen cross-presentation 

(Chapman, 2006). Antigen cross-presentation is favoured by a neutral pH in DC 

phagosomes (Savina et al., 2006). The Cathepsin S (Cat.S) endoprotease has been 

shown to have an optimal pH around 7.0 (Claus et al., 1998) and to be able to 

generate the correct OVA peptide (SIINFEKL). This fulfils the requirements for 

the OVA antigen to be loaded in MHC class-I molecules (Shen et al., 2004), 

favoring its cross-presentation. Our data don´t address a direct role for Cat.S 

activity on particle antigen cross-presentation. However, particulate LPS stimulus 

seems to have an important role on the control of proteasome-dependent antigen 

processing/degradation, but not on endosomal proteases activity (Chapter 4). On 

the other hand, it has been shown that certain antigens such as different bacterial 
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antigens do not require a cytosolic step for their cross-presentation (Belizaire and 

Unanue, 2009). Therefore, the proteasome and endoproteases may play important 

but different roles on particulate antigen processing for presentation on different 

pathways, depending on the type of signal in same context as antigen. We believe 

that depending on the context of antigen or the nature of the stimuli, endoproteases, 

may also generate MHC class-I restricted peptides that can be loaded in 

phagosomes or endosomes and presented to CD8
+ 

T-Cells.  

 

A possible role of LPS on the retro-translocation of antigen to the cytosol during 

cross-presentation 

The decreased antigen processing observed for particulate antigens in the 

presence of LPS may result exclusively from reduced proteasomal activity but may 

also result from a decreased  antigen escape from the phagosome to the cytosol 

(retro-translocation) (Guermonprez and Amigorena, 2005; Houde et al., 2003; 

Vyas et al., 2008).  

In order to address this assumption, an indirect measurement of antigen 

availability on the cytosol was performed. We showed that LPS on same cargo as 

particulate antigen reduces the antigen availability on the cytosol (as demonstrated 

by lower levels of apoptosis) (Chapter 4). This could be due to: 1) lower levels of 

retro-translocation; 2) higher levels of phagosomal degradation; 3) rapid shuttling 

to the proteasome degradation machinery. The 3
rd

 hypothesis could be excluded by 

data showing that degradation of OVA occurs at higher efficiency in the absence of 

LPS and was almost abolished in the presence of proteasome inhibitor (Chapter 

4). Concerning the other two hypotheses, and assuming that phagosome maturation 

is enhanced in particles with LPS, we hypothesize that particle antigen degradation 

takes place in acidified compartments at later stages of maturation rather than in 

the cytosol mediated by the proteasome activity. This would ultimately result in 



 

 

  

 

 

______________________________________________________________Discussion 

 

 

193 

reduced levels of antigen in the cytosol and is in accordance with our results 

showing that LPS in the same cargo as particulate antigen reduces the antigen 

availability on cytosol (Chapter 4). However, inhibition of Cathepsin S (a major 

endoprotease of the vacuolar degradation pathway) has a small effect on particulate 

antigen processing/degradation even in the presence of LPS (Chapter 4). Recent 

studies have shown that the transport of antigens to cytosol is a key step for antigen 

cross-presentation and could also require high pH in the lumen of the endocytic 

pathway (Mantegazza et al., 2008). Our results show that in the presence of LPS, 

phagosomes loose the immature stage (pH>7.0), therefore unfavorable for retro-

translocation (Chapter 4). This observation suggests that retro-translocation could 

be directly impaired by LPS stimulus. In the future, the ubiquitination state of 

cytoplasmic OVA should be addressed, in order to dissect the real value of LPS 

signaling on retro-translocation step on particulate antigen cross-presentation 

mediated by proteasome. 

In order to bypass the retro-translocation step as well the requirement of the 

proteasome or/and endoproteases processing for cross-presentation, SIINFEKL 

particles were used as a model antigen. On contrary to what was observed when 

using OVA particles, our results showed that LPS does not influence antigen cross-

presentation of particle antigen peptide (Chapter 4). Thus, the influence of LPS 

signaling in decreasing antigen retro-translocation and proteasome processing is 

once more supported by this assay.  

We propose that the higher rate of phagosome maturation mediated by 

particulate LPS, could give rise to less antigen escape to cytosol and consequently 

lower levels of antigen loading into MHC class-I presentation pathway. Taken 

together our results and other published studies (Howland and Wittrup, 2008; 

Kovacsovics-Bankowski et al., 1993; Palliser et al., 2005), allow us to speculate 

that phagolysosome formation mediated by LPS signaling may shut down the 
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machinery necessary for antigen egress to the cytosol. Alternatively, phagosome 

maturation mediated by LPS stimulus may avoid the recruitment of vesicles with 

specific cargos important for retro-translocation mechanism. These processes may 

impose another limit on the time window for an efficient antigen release and cross-

presentation. It seems that there is a LPS-dependent “check point” on phagosome 

maturation that blocks protein release to cytosol –“the point of no return”. Several 

groups have reported that the time of antigen persistence and degradative 

environment of exogenously-delivered antigen in phagosomes is critical to 

preserve peptides available for loading onto MHC class-I molecules (Howland and 

Wittrup, 2008; Savina et al., 2006), that was shown to occur efficiently in early 

endosomes (Burgdorf et al., 2007). In sum, we showed that the release of antigens 

from phagosomes to the cytosol was higher during early stages of phagosomal 

maturation, which is a crucial step for antigen cross-presentation. Taking all these 

observations together, we hypothesize that the epitopes for MHC class-II 

presentation are generated in phagolysosomes and should be retained on the 

endocytic pathway. In opposition, the MHC class-I epitopes should be generated 

predominantly in a proteasome dependent manner upon egress, during early stages 

of phagosome maturation.  

It is generally accepted that the Sec61 complex plays a role in ER-associated 

degradation (ERAD) in phagosome-cytosol export and in cross-presentation 

mechanism, however little is still yet known about this process (Guermonprez et 

al., 2003; Houde et al., 2003; Roy, 2002). Preliminary data, using shRNA 

lentivirus for Sec61g in BMDCs showed that Sec61 translocon is not the most 

important transporter when we made use of particulate antigen, as no significant 

differences on antigen cross-presentation were observed when sec61g was KD 

(data not shown). In fact, this was challenged by others that have implicated 

Derlin-1 in ER retro-translocation (Lilley and Ploegh, 2004; Ye et al., 2004) which 
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could have a role on particulate antigen cross-presentation. Nevertheless, we 

cannot exclude the importance of Sec61complex for other type and physical forms 

of antigens and further validations should be done in our system, as a 

compensatory effect, such as unspecific transport, could also occur. Even though 

all data obtained so far suggest a role of ERAD in antigen cross-presentation, the 

mechanisms and origins of antigen export involved in this antigen presentation 

pathway are not completely understood.  

 

TLR4 signaling mediated by p38 MAPK plays a major role on particle antigen 

cross-presentation impairment 

The role of TLR signaling on antigen cross-presentation is not clear and 

remains quite controversial. The TLR-p38 signaling pathway was implicated on 

the inducible mode of phagosome maturation and MHC class-II presentation 

(Blander, 2007b; Blander and Medzhitov, 2006a). Moreover, a simple event such 

as phosphorylation of p38 MAPK molecules by signals from TLRs can induce 

dynamic changes in the composition of the phagosome proteome (Cavalli et al., 

2001). Our data showed that the abolishment in antigen cross-presentation 

mediated by LPS in same cargo as particulate antigen was recovered when p38 

phosphorylation was inhibited, and in a lesser extend for others MAPKs (Chapter 

4). Integrating our data with others (Blander and Medzhitov, 2006a), it may 

suggest that a link between phagosome maturation and the impairment of antigen 

cross-presentation mediated by particulate LPS, could be played in major part by 

p38 MAPK activation. However, further studies should be done in order to address 

the precise role of p38 MAPK in particle antigen cross-presentation by analyzing 

the regulatory proteins upstream and downstream on the signaling pathway. This 

result implicates for the first time p38 MAPK activation mediated by TLR4 as a 

major negative regulator on antigen cross-presentation. However the precise 
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mechanism is not known. A recent work reports that TLR4 coordinates recruitment 

and signaling through TIRAP-MyD88 and TRAM-TRIF sequentially rather than 

simultaneously (Kagan et al., 2008). In addition, these signals seem to be separated 

compartmentally but also temporally (Kagan et al., 2008). The p38 activation 

could be mediated either by MyD88 and TRIF-dependent signaling pathways 

(Cekic et al., 2009; Oda and Kitano, 2006). Indeed, it was reported that 

endocytosis of TLR4 terminates an initial phase of MyD88-dependent signaling at 

cell surface leading to an early activation of NF-kB and p38 MAPK. Sequentially, 

endocytosis leads the start of a second phase of TRIF-dependent signal 

transduction from TLR4 located in endosomes inducing a late activation of NF-kB, 

p38 MAPK and IFN type I cytokine production such as IFN-β (Kagan et al., 2008). 

We have demonstrated that phospho-activation of p38 and degradation of IkB-α, 

occurs with higher kinetics in the presence of particulate LPS stimulus. The earlier 

activation of p38 at 5 minutes of chase, should be then due to signaling from cell 

surface mediated by MyD88 or from phagosomes mediated by TRIF, as DCs were 

allowed to uptake particles before chase. There is no evidence of a second wave of 

signaling within 2 hours of chase probably mediated by TRIF, which could occur 

later on (Chapter 4). However, we cannot exclude that the MyD88 and TRIF 

pathways could crosstalk in a time and spatial dependent way. As shown recently, 

synthetic derivate of LipidA, an agonist of TLR4 that tigers exclusively the TRIF-

dependent pathway (Mata-Haro et al., 2007), induces strong p38 MAPK but weak 

JNK activation (Cekic et al., 2009). Moreover, p38 phosphorylation and NF-kB 

activation is delayed in cells lacking MyD88 (Hoebe et al., 2003; Yamamoto et al., 

2003), which could be due to TRIF-dependent signaling. Our data using 

MyD88KO DCs, could exclude the MyD88 adapter as having a role in particle 

antigen cross-presentation impairment. In fact, in the absence of MyD88, the 

inducible effect on MHC class-II and abolishment of cross-presentation mediated 
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by particle antigen containing LPS does not occur (Chapter 4). These observations 

support the effect of TRIF-dependent pathway later on time, after particles 

internalization, on antigen cross-presentation impairment mediated mainly by p38 

MAPK. Therefore, these data suggest that MyD88 adaptor is not responsible for 

the abolishment of particle antigen cross-presentation, instead, it´s responsible for 

MHC class-II induction when LPS is in the same context as particle antigen. 

Interestingly, particulate CpG could indeed mediate the same phenotype either in 

MHC class-I and MHC class-II antigen presentation, by signaling through TLR9 as 

shown by using shRNA for TLR9 (Chapter 4). Another interesting observation 

was observed in the absence of MyD88, as an inhibitory effect on particle antigen 

cross-presentation containing CpG occurs. This effect implies that the impairment 

on particle antigen cross-presentation mediated by TLR9 occurs by another adaptor 

beside MyD88. Our previous results exclude in part the impairment of particle 

antigen cross-presentation mediated by CpG through another receptor, as in 

absence of TLR9 the phenotype is reverted (Chapter 4). This assumption has not 

been addressed so far, and further studies should be done to clearly show this new 

observation. A further step should be done, using shRNA lentiviral to perform KD 

for all four main adapters known (MyD88, TIRAP, TRIF and TRAM-  which 

mediate TLR signaling and share significant amino-acid sequence similarity within 

their TIR domains) (O'Neill et al., 2003), in order to dissect a possible role of  

different adapters beside MyD88 in TLR9 signaling upon CpG-containing particle 

antigen stimulation.  

 

TRIF/IFN-β pathway may have a role on particle antigen cross-presentation 

abolishment mediated by TLR4 agonists 

It is well accepted that cytokine production by DCs sensing pathogens can have 

a role on T-Cell response (Macagno et al., 2007). Moreover, a link between 
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antigen presentation pathway(s) and the expression cytokines could occur. As we 

made use of particles, internalization could lead to a second wave of signaling 

either amplifying or be suppress the first one originated from plasma membrane. 

The levels of inflammatory cytokines produced such as, IL-6, IL-12 and TNF-α, 

were induced by antigen particles containing TLR agonists. This induction was 

similar for particles containing LPS and LipidA but in a less extend for CpG 

containing particles (Chapter 4). These cytokines did not show a significant 

contribution in the antigen cross-presentation phenotype mediated by particulate 

antigen. In the presence of cytokines, in a physiological range induced by 

particulate stimulus, no differences on antigen cross-presentation were observed 

(data not shown). Thus we propose that particulate LPS and mostly LipidA could 

signaling through phagosomes and are able to activate IFN type-I pathway leading 

to IFN-β production, probably by a TRIF-dependent/MyD88-independent pathway 

(Chapter 4).  

We have described that the TRIF-dependent pathway may be responsible for 

the particle antigen cross-presentation abolishment. The main evidence emerges by 

the observation that LipidA-containing particle impairs antigen cross-presentation 

in same extend as observed for LPS, which implies the TRIF-dependent pathway 

in the antigen cross-presentation impairment mediated by TLR4 signaling 

(Chapter 4). However, the TRIF/IFN-β pathway has been implicated in response 

to viral infection (Yamamoto et al., 2002). The direct influence of IFN-β on 

antigen presentation was not described. However, the impairment on particulate 

antigen cross-presentation mediated by LipidA and LPS could be related in some 

extend to the stimulation mediated by soluble IFN-β. Our data shown that, there 

was not a general inhibitory effect due to soluble IFN-β, but slight tendency on 

antigen cross-presentation inhibition, only when IFN-β was present on a specific 

range of concentration (~1U- maximum produced by particle antigens under 
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physiological conditions). Nevertheless, the soluble INF-β used could not be in an 

“ideal” conformation/processing state to signal properly through the IFN-R, as it 

was none to be critical to IFN-β signaling. Moreover, soluble IFN-β at the same 

concentrations has no influence on MHC class-II (Chapter 4). Indeed, this subtle 

effect should not be the major responsible for the mechanism of particulate antigen 

cross-presentation abolishment mediated by TLR4 pathway. However, this 

evidence implies again the TLR4/TRIF-dependent pathway on the inhibitory effect 

of particle antigen cross-presentation. Concerning the cytokine pattern mediated by 

particulate TLR agonists, signaling from MyD88 adaptor could cooperate with 

TRIF adaptor for synergistic induction of a set of target genes and activation 

events. A crosstalk between the MyD88 and TRIF pathways for a robust TLR-

mediated activation of the immune system could occur (Ouyang et al., 2007) and 

be important on particulate antigen presentation mediated by LPS/LipidA. A time-

dependent activation of these two signaling pathways mediated by particulate LPS 

and LipidA should be further dissected.  

 

Antigen cross-presentation abolishment is “transversal” to other TLR/TRIF 

mediated signaling  

Different TLR signaling pathways may have different roles on particle antigen 

cross-presentation (Datta et al., 2003; Weck et al., 2007). Therefore, our data 

indicates that when in same cargo as particulate antigen, TLR agonist that 

preferentially signals through MAPK/NF-kB pathways seems to induced cross-

presentation, instead, TLR agonists that preferentially signals through IFN Type-I 

pathway seems to inhibit cross-presentation (Chapter 4). However, TLR4 is 

singular as it could signal through the two adaptors at different locations, and TRIF 

pathway is preferentially induced when TLR4 is internalized into endosomes 

(Kagan et al., 2008). This is one more evidence showing that the abolishment on 
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cross-presentation is due to the signaling of particulate LPS preferentially through 

TRIF-dependent pathway when it is internalized, correlating with other TLR 

agonists that signals preferentially through IFN type-I pathway, such as - TLR3, 

TLR7 and TLR9, localized in endosomes. Thus, these data support the 

TLR4/TRIF-dependent inhibitory mechanism on particle antigen cross-

presentation mediated by TLR4 agonists. Therefore, different TLR could have 

different roles and lead to different outcomes in antigen presentation pathways. 

Moreover, a pathway pattern seems to exist in the outcome of antigen presentation 

mediated by a specific particulate TLR agonist.  

 

 

“Integrated” stimuli affect differently antigen cross-presentation when compared 

to specific stimulus by “synthetic pathogens”  

Our results clearly suggest that TLR cooperation seems to have a role on the 

outcome of antigen presentation. E.coli expressing OVA and OVA loaded 

Apoptotic cells increases antigen presentation in both MHC class-I and class-II 

context when compared to particulate OVA antigen (Chapter 4). In absence of 

TLR4, no major effect was observed on antigen presentation mediated by E.coli; 

surprisingly, there was a significant decrease on cross-presentation but not on 

MHC class-II antigen presentation mediated by apoptotic cells (Chapter 4). 

Therefore, E.coli could induce a different pattern of receptors beside TLR4, which 

results in a general enhancing effect on antigen presentation. Furthermore, there is 

a hypothesis that apoptotic cells, during u.v irradiation could generate specific 

“danger” components that signals through TLR4 in a way that results in antigen 

cross-presentation induction when compared in the absence of this receptor 

(Chapter 4). It has been described that OVA from dead opsonised Toxoplama 

gondii is not able to be cross-presented, while OVA expressed in other pathogens 

such as E.coli and Salmonella is cross-presented (Pfeifer et al., 1993; Svensson and 



 

 

  

 

 

______________________________________________________________Discussion 

 

 

201 

Wick, 1999). The explanation claimed by the authors is that the amount of OVA in 

dead parasites is limiting (even if it is sufficient for presentation on MHC class-II 

molecules) and that the recruitment of ER components by the live Toxoplama 

gondii to the resident vacuole makes the cross-presentation mechanism more 

efficient (Goldszmid et al., 2009). Further studies should be done to address the 

role of cross-presentation mechanism against intracellular pathogens, by using 

model particles, with different molecules from several pathogens. Co-deliver 

antigen with a phagocytic ligand and a modulation signal allow the possibility to 

determine how uptake and inflammatory signals integrate to be cross-presented. 

 

LipidA has the same inhibitory effect on particulate antigen cross-presentation 

even in other particles platforms: PLGA and Hydrogel 

In collaboration with Darrel Irvine´s group of Bioengineering at MIT, we 

proposed to extend our studies to other platforms of antigen delivering with the 

aim to use in in vivo studies for a vaccine application. Properties such as in vivo 

biodegradability, an adjustable and dynamic system for delivery and the very high 

encapsulation capacity are strong arguments to explore PLGA microspheres as 

antigen delivery systems for vaccination for more than 20 years (Acharya et al., 

2009; Cleland et al., 1994; Shi et al., 2002; Singh et al., 2006; Sun et al., 2003; 

Waeckerle-Men et al., 2005). As expected, when LipidA was in same cargo as 

PLGA particles containing antigen, an inhibitory effect on cross-presentation and a 

slightly increase on MHC class-II presentation occurs. This effect was abolished in 

the absence of TRIF-dependent pathway when MyD88/TRIF double KO was used 

(Chapter 4). Thus, these data highlight previous results obtained using fixed 

ligand (polystyrene) particles, supporting the inhibitory outcome of TRIF-

dependent pathway on particulate antigen cross-presentation and an induction on 

MHC class-II presentation pathway mediated by TLR4 agonists.We suggest that 
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TRIF-dependent pathway mediated by LipidA has an inhibitory role on antigen 

cross-presentation even when antigen is forced to “run away” from the specific 

phagosomal signaling cargo, achieved when using Hydrogel particles as antigen 

carriers (Chapter 4). Based only on these data, we can hypothesize that, antigen 

cross-presentation inhibitory effect is not only due to decreased antigen availability 

on cytosol and processing by the proteasome or by enhanced phagosomal 

maturation (Chapter 4), but also to another mechanism mediated by TLR4 agonist 

signaling . However, these results could be related to a size-dependent phenotype. 

Hydrogel particles were used at a range of size < 0,5µm (smaller than polystyrene 

and PLGA) and could reach different “niches” of endocytic compartments, 

comparing to other different size/nature OVA particles,(Brewer et al., 2004; Cervi 

et al., 2004; Harding et al., 1991; Oh and Swanson, 1996) that potentially have 

different abilities or mechanisms for cross-presentation (Kutomi et al., 2009; 

Reinicke et al., 2009; Tran and Shen, 2009). Moreover, we can speculate that this 

type of niches could be “chosen” by signals present on same context as antigen 

such as TLR agonists.  

In sum, our data suggest that cross-presentation inhibitory effect mediated by 

TLR4/TRIF-dependent pathway upon LPS/LipidA-containing particle antigen 

stimulation is reproducible by using different particle systems. In order to achieve 

a good vaccine response against pathogens/tumor antigens, cross-presentation is 

required (Heath and Carbone, 2001; Touret et al., 2005; Yewdell et al., 1999). 

LipidA have been used in in vivo studies and vaccine design because of its lower 

toxicity (Persing et al., 2002). In vivo studies should be performed with our model 

particles in order to address the direct role of TLR4 agonist on antigen cross-

presentation impairment. Its knowledge could be of outstanding interest on vaccine 

research and have tremendous impact unveiling a key for an efficient immune 

response upon vaccination.  
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Using different particle platforms carrying antigen (Polystyrene, PLGA and 

Hydrogel) with different properties, we have shown that particulate antigen cross-

presentation is impaired when co-signaling through the TLR4 pathway. However, 

besides antigen cross-presentation impairment, MHC class-II antigen presentation 

is induced. This negative regulation is triggered by the TLR4 agonists, LPS or 

LipidA, in same cargo as antigen. This is supposed to be mediated by TLR4/TRIF-

dependent pathway, instead of TLR4/MyD88-dependent pathway. This result 

implicates for the first time TLR4 signaling as a negative regulator on antigen 

cross-presentation. As TLR4 signals preferentially through TRIF-dependent 

pathway when located in the endosomes, the LPS on same context as particle 

antigen is suggested  to target TLR4/TRIF signaling after particles internalization, 

in a spatial and temporal manner. These findings support the effect of 

compartmentalization on TLR4 negative signaling crosstalk with antigen cross-

presentation pathway, mediated by agonists when present in same cargo as the 

antigen. Moreover, this phenotype is reproducible with the different particle 

platforms studied, highlighting the role of the TLR4/TRIF-dependent pathway on 

the impairment of particle antigen cross-presentation. The crosstalk effect of TLR4 

signaling and particle antigen cross-presentation impairment is proposed to be 

mediated by p38 MAPK-dependent activation. This kinase is known to play a 

major role on phagosome maturation, and consequently on MHC class-II 

presentation. For the first time p38 MAPK activation mediated by TLR4 signaling 

was described as a negative regulator on antigen cross-presentation. However, we 

could not show how this negative regulation occurs, and further studies should be 

done to better address this assumption, and associate this phenotype with 

phagosomal maturation. To address a direct link between the effect of phagosomal 

maturation/pH and particle antigen cross-presentation mediated by LPS, drugs for 

phagosome maturation/pH inhibition should be used in further antigen presentation 
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assays. Additionally we have shown that TLR agonists that preferentially signal 

through the MAPK/NF-kB pathway have an inducible effect on particle antigen 

cross-presentation. In opposition TLR agonists that preferentially signal through 

IFN-Type I pathway seem to inhibit cross-presentation. Therefore, this observation 

supports that the inhibitory mechanism of cross-presentation mediated by TLR4 

agonist-containing particle antigen is mostly TRIF-dependent. Different TLRs 

could play different roles and lead to different outcomes in antigen presentation 

pathways. Moreover, a relation seems to exist in the outcome of antigen 

presentation mediated by particulate TLR agonist. This knowledge could be of 

extreme importance to address future questions in different fields, such as the 

antigen presentation response against tumours and pathogens. To dissect the 

specific pathway mediated by TLR4 and other TLRs, shRNA for the main adaptors 

(TIRAP, MyD88, TRAM and TRIF) and downstream signaling proteins should be 

then used.  

Concerning the mechanism, we propose that the impairment of cross-

presentation mediated by particulate antigen containing TLR4 agonist is related 

with phagosome maturation, retro-translocation and antigen processing, which are 

major steps in antigen presentation. Therefore, LPS in particulate state induces 

phagosome maturation, either by decreasing pH and ROS production or enhancing 

the inducible rate of fusion with lysosomes; decreasing the amount of antigen 

available in cytosol; or/and decreasing antigen processing mediated by proteasome. 

In order to integrate these data and to evaluate the importance of TLR4/TRIF 

signaling pathway on these key processes in antigen cross-presentation phenotype, 

TRIF and p38 KO DCs should be used to analyse each step in detail, mediated by 

particulate antigens in presence of TLR4 agonists: phagosome maturation, 

phagosomal pH and ROS regulation, antigen processing and retro-translocation 

should be addressed.  
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 Experimental observations imply an endocytic selective sorting of antigen 

cargo, where particles antigens are targeted to a specific pathway depending of the 

origin of stimuli present and the type of receptor engaged during internalization. 

Concerning antigen presentation, there are two different compartments that mature 

with different kinetics acquiring different phenotypes. One is compromised to 

antigen cross-presentation and the other one to MHC class-II presentation. 

Endosomes that would be “arrested” in an early stage, in an alkaline environment 

avoiding fusion with lysosomes favour cross-presentation. Early compartments are 

enriched in ER components, with high pH and low proteolytic environment that 

may allow antigen escape to cytosol and MHC-I peptide loading. Engagement of 

TLR4 would drive the cargo to MHC class-II compartments, which in contrary to 

immature ones are competent to fuse with lysosomes. As phagosome matures, the 

presence of ER components decreases as well the pH and proteolysis levels are 

enhanced. Therefore, these comportments become incompetent for cross-

presentation but specialized for MHC class-II restricted presentation (fig.54). 

Phagosome purification approach should be performed to address the biochemical 

alterations in phagosome proteomics during maturation steps in the presence of 

LPS stimulus. Important traffic proteins such as RABs, SNAREs and Syntaxins, 

pH regulatory complexes and transporter channels should be the first targets of 

study. A FACS analysis for antigen degradation of purified phagosomes should be 

done to better dissect the role of LPS stimulus on proteasome-dependent antigen 

particulate degradation and its direct role on particle antigen cross-presentation. A 

next logical and crucial step should be done in order to confirm antigen cross-

presentation phenotype in vivo, by analyzing CD8
+
 cytotoxic T-Cell response to 

particles antigen as well memory long-term response establishment. PLGA model 

particles should be on the first line, as they have been used as in vivo carriers due 

to their biocompatibility properties and potential for vaccine design.  
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As a conclusion, the compartmentalized nature on the crosstalk between the 

TLR-signaling and the antigen cross-presentation phenotype, could suggest the 

existence of a mechanism of selective maturation by which DCs may use to 

discriminate the contents of phagosomes and better mount an appropriate immune 

response. Therefore, DCs may have the “capacity” to decide which kind of destiny 

an antigen should have depending on the type and origin of the stimuli. This 

assumption was of great relevance to understand the role of “pathogen” stimuli on 

antigen fate and the capacity of an antigen-presenting cell to decide the outcome of 

a specific antigen based-environment. According to our data, we hypothesised that 

depending the nature of antigen, tumour/viral vs bacterial, DCs may use different 

cross-presentation pathways with different strength, depending on the antigen 

context and environment. In the absence of a pathogen-like stimulus, a cross-

presentation mechanism appears to be preferred, in detriment of MHC class-II 

which is the “classical” antigen presentation pathway against pathogens. Together 

our data suggest that cross-presentation might not be the preferred pathway against 

pathogens but can, notwithstanding, have a dramatic impact in challenges deprived 

of TLR agonists, namely against tumor cells or in self/altered-self recognition.  

The dissection and knowledge of the mechanism behind TLR signaling 

mediated by agonists in same context as antigen could be of extreme importance to 

the design of novel therapies. Our hypothesis could be highly valuable to design 

novel vaccination methodologies to induce T-Cell responses of the desired type 

and specificity, unveiling a key for an efficient immune response upon vaccination.  

Therefore, synthetic well-defined TLR agonist-antigen particles conjugates 

could be designed for optimal DCs activation and specific T-Cell induction to 

better study and elucidate how pathogen structure and chemistry dictates signaling, 

intracellular traffic, antigen processing, immune responses and pathogen survival 

or elimination.   
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                      No TLR4 signaling        Phagosomal-mediated TLR4 signaling 

 
 

Fig.54: Proposed model of crosstalk between TLR4 signaling and particle antigen presentation 
pathway(s). Early phagosomes are enriched in certain ER compounds and display high pH and a low 
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degradation environment due to sustained ROS production by NOX2. These are most probably the 
compartments that allow antigen escape to the cytosol probably through Sec61. After proteasome 
processing in the cytosol, the resulting peptides can either be translocated into the ER and follow the 
endogenous route for MHC class-I molecules or be re-imported to the endocytic compartments for 
loading on MHC class-I molecules. As phagosomes mature through a TLR4-mediated signal from 
LPS-containing phagosomes, the presence of ER-derived proteins decreases, and the pH drops. The 

compartments become incompetent for antigen cross-presentation, but acquire the environment 
required for MHC class-II antigen presentation. This phenotype is supposed to be mediated by a 
TLR4/TRIF/p38-dependent mechanism. See Chapter 5 and text above for details. 
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