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ABSTRACT 
 

 

 Antibiotic resistance is, usually, associated with fitness costs for the bacteria. Therefore, 

it is expected that if one competes a resistant bacterial strain with an otherwise isogenic 

susceptible strain in an antibiotic free environment, resistant bacteria will be eliminated. 

Here, I report the occurrence of stabilizing frequency-dependent selection in 43% of a set of 

antibiotic resistant strains. Stabilizing frequency-dependent selection may promote the 

maintenance of a stable polymorphism between resistant and susceptible bacteria.  If 

resistant bacteria are rare, their fitness is higher than that of the susceptible strain. If 

resistant bacteria are the majority in the competition assay, their fitness is smaller than that 

of the susceptible strain. This enables a stable coexistence between sensitive and resistant 

strains. Genetic and ecological causes of frequency-dependent selection were investigated. 

The demonstration of frequency-dependent selection involving drug resistance strains 

implies that antibiotic resistant bacteria will not be easily eliminated or reversed upon 

reduction of antibiotic use. This reveals a worrying scenario for the eradication of antibiotic 

resistance.   

 

 

Keywords: Antibiotic Resistance, Fitness Cost of Resistance, Bacteria, Competition, 

Frequency-Dependent Selection, Coexistence. 
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RESUMO 
 

 

 Durante muito tempo foi admitido que as populações bacterianas seriam mantidas num 

estado monomórfico devido a dois fenómenos: competição exclusiva e selecção periódica. 

O principio da exclusão competitiva refere que duas ou mais espécies que competem pelos 

mesmos recursos não podem coexistir, uma vez que a espécie mais eficiente irá eliminar 

gradualmente todas as outras (Hardin, 1960). O processo de selecção periódica, em que a 

evolução de populações bacterianas num recurso limitante consiste numa série temporal de 

substituições por genótipos cada vez com maior sucesso reprodutivo ou fitness, é 

responsável por eliminar toda a variabilidade genética (Atwood, et al., 1951, Levin, 1981). A 

existência de polimorfismos seria, então, apenas uma etapa transitória no processo 

evolutivo.  

 Contudo, o processo de competição entre espécies é muito mais complexo. O ambiente 

dos organismos, biótico e físico, é heterogéneo espacial e temporalmente. Portanto, as 

frequências dos diferentes genótipos numa população estão continuamente a sofrer 

alterações. Ao mesmo tempo, existem mecanismos responsáveis pela manutenção de 

polimorfismos nas populações bacterianas. A selecção dependente da frequência é um 

desses mecanismos. 

 A selecção dependente da frequência já foi observada em organismos como Drosophila 

(Ayala, 1971), Escherichia coli (Levin, 1972, Helling, et al., 1987) e em vírus (Elena, et al., 

1997, Yuste, et al., 2002). Num sistema biológico, em que a selecção dependente da 

frequência actua, o sucesso reprodutivo de um organismo está dependente da sua 

frequência. Este mecanismo pode resultar em dois cenários diferentes. Assim sendo, a 

selecção pode favorecer o genótipo mais comum, definindo-se como selecção dependente 

da frequência disruptiva. Por outro lado, se a selecção favorecer o genótipo mais raro, então 

estamos perante selecção dependente da frequência estabilizante. 

 A selecção dependente da frequência disruptiva leva à eliminação de polimorfismos na 

população. Um genótipo, mesmo possuindo uma qualquer vantagem, apenas será 

seleccionado face a outro genótipo se a sua frequência se encontrar acima de um certo 

valor (Levin, 1988). Caso contrário, o genótipo é eliminado. 

 A selecção dependente da frequência estabilizante, sobre a qual nos iremos focar neste 

trabalho, resulta num ponto de equilíbrio que permite a coexistência estável entre os 

genótipos. Se a frequência de um dos genótipos está abaixo do equilíbrio estável, o seu 

fitness relativamente ao outro genótipo será maior, permitindo-lhe aumentar a sua 

frequência. Se a sua frequência estiver acima do ponto de equilíbrio, o seu fitness será 

menor do que o outro genótipo em competição, e consequentemente irá ocorrer uma 
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redução do seu número. No ponto de equilíbrio o fitness de ambos os genótipos é idêntico, 

levando a um polimorfismo estável. Vários estudos demonstram a coexistência de genótipos 

diferentes mesmo em ambientes simples. Algumas sugestões foram sendo dadas na 

tentativa de explicar os mecanismos ecológicos que permitem a coexistência:  

(i) Trade-off demográfico, em que cada genótipo é especializado num diferente nicho 

ecológico (Levin, 1972, Helling, et al., 1987, Turner, et al., 1996, Rozen & Lenski, 2000). Por 

exemplo, um dos genótipos possui um maior fitness quando a glucose no meio é abundante, 

enquanto o outro genótipo possui um fitness mais elevado quando a glucose é escassa 

(Turner, et al., 1996); 

(ii) Cross-feeding, em que o genótipo com maior sucesso excreta um metabolito 

resultante do seu metabolismo ou morte celular para o meio. O segundo genótipo é eficiente 

a utilizar este metabolito (Turner, et al., 1996, Rozen & Lenski, 2000); 

(iii) Interacção antagonista, em que durante a fase estacionária um dos genótipos 

devido a uma mutação ou a um efeito pleiotrópico de uma mutação é capaz de inibir o 

genótipo mais frequente, interferindo com o seu crescimento máximo (Lemonnier, et al., 

2008). 

 Os mecanismos ecológicos acima descritos não se excluem entre si. Aliás, a ocorrência 

de um trade-off demográfico está geralmente associado a uma interacção por cross-feeding 

(Rosenzweig, et al., 1994, Turner, et al., 1996). 

 No presente estudo demonstro a ocorrência de selecção dependente da frequência em 

bactérias resistentes a antibióticos.  

 A resistência aos antibióticos pode resultar de mutações genéticas e/ou aquisição de 

determinantes de resistência por transferência horizontal de genes (revisto emMartinez, et 

al., 2009). As mutações que conferem resistência podem alterar processos fisiológicos da 

célula (Andersson & Levin, 1999). De forma similar, quando a resistência está localizada em 

elementos genéticos móveis (plasmídeos, integrões ou transposões), a replicação e 

expressão dos seus genes é responsabilidade da bactéria hospedeira. Tal irá interferir no 

crescimento normal da bactéria (Bjorkman & Andersson, 2000). Assim, um fenótipo 

resistente acarreta na maioria das vezes, custos para a bactéria, fazendo com que sofra 

uma diminuição do seu fitness (Andersson, 2006). Neste trabalho, utilizei bactérias 

resistentes a três antibióticos diferentes: ácido nalidíxico, rifampicina e estreptomicina. Para 

estes antibióticos a resistência é causada por mutações cromossomais em genes envolvidos 

na replicação (Marcusson, et al., 2009) , transcrição (Reynolds, 2000) e tradução (Kurland, 

et al., 1996), respectivamente.  

 Estudos anteriores têm demonstrado que, face às alterações fisiológicas inerentes à 

resistência, bactérias resistentes em competição com bactérias sensíveis e na ausência de 

antibióticos, possuem uma desvantagem competitiva (Gillespie, 2001, Trindade, et al., 
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2009). Deste modo, a simples redução no uso de antibióticos deveria erradicar o grave 

problema das resistências aos antibióticos. Ou seja, as estirpes resistentes seriam 

eliminadas. Contudo, o cenário apresenta-se muito mais complexo (Johnsen, et al., 2009). 

Existem vários processos que permitem manter bactérias resistentes na população ao 

reduzirem ou eliminarem o custo provocado pelas mesmas: mutações compensatórias 

(Bjorkman & Andersson, 2000), epistasia entre resistências a antibióticos (Trindade, et al., 

2009), mutações sem custo (Ramadhan & Hegedus, 2005, Criswell, et al., 2006) e co-

selecção de resistências a antibióticos (Enne, et al., 2004, Andersson & Hughes, 2010). A 

ocorrência de selecção dependente da frequência aqui apresentada poderá ser um outro 

fenómeno. 

 Os resultados aqui apresentados mostram que 13 dos 30 clones espontâneos (43%) 

resistentes a antibióticos testados apresentam um fenótipo de dependência na frequência 

quando em competição com um clone sensível. É de notar que, para as mesmas mutações 

pontuais nos genes envolvidos na resistência ao antibiótico respectivo, os clones resistentes 

apresentavam um comportamento diferente durante a competição. Isto sugere que o 

fenótipo para a dependência na frequência seria causado, não pelas mutações para a 

resistência, mas por outra qualquer mutação a ocorrer no cromossoma. Contudo, tal 

hipótese não ficou demonstrada. 

 Relativamente, ao mecanismo ecológico responsável pela dependência na frequência 

sugeri a ocorrência de um cross-feeding ou uma interacção antagonista. Relativamente, ao 

cross-feeding os resultados não foram esclarecedores. No entanto, a hipótese de uma 

interacção antagonista, apesar de ainda não testada, aponta-se esclarecedora: os clones 

resistentes seriam portadores de uma mutação capaz de inibir os clones sensíveis através 

de um contacto célula a célula.  

 Os resultados mostram uma incidência elevada de selecção dependente da frequência 

(43%) nos clones resistentes aos antibióticos. Tal incidência pode ser reflexo do método 

utilizado para selecção dos clones, o qual poderá estar a favorecer a selecção de clones 

com estas características. Apesar desta hipótese não estar ainda esclarecida, e portanto, 

desconhecermos se a selecção dependente da frequência tem uma baixa ou elevada 

incidência nas populações bacterianas resistentes, este estudo vem reforçar que a simples 

redução ou mesmo eliminação do uso de antibióticos não é uma medida eficaz no combate 

às resistências aos antibióticos. A ocorrência de selecção dependente da frequência em 

bactérias resistentes irá possibilitar a sua manutenção nas populações bacterianas, mesmo 

em baixas frequências. Assim que se reintroduzir novamente o antibiótico a resistência irá 

emergir em larga escala (De Gelder, et al., 2004). 

 A selecção dependente da frequência deve ser um mecanismo considerado no estudo 

das dinâmicas das populações bacterianas e, em particular, nas populações resistentes aos
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antibióticos. Deste modo, torna-se necessário o desenvolvimento de novas terapêuticas 

alternativas aos antibióticos no combate às infecções bacterianas. Tal necessidade está na 

base do recente desenvolvimento de terapêuticas profiláticas, tais como a interferência 

bacteriana, vacinas bacterianas e a terapia fágica. 

  

 

 

Palavras-Chave: Resistência a Antibióticos, Custo de Fitness da Resistência, Bactéria, 

Competição, Selecção Dependente da Frequência, Coexistência. 
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I – INTRODUCTION 
 
 

1 COMPETITIVE EXCLUSION PRINCIPLE  

 

 Can two or more related species coexist when competing for the same limited 

resources? The question has been debated for a long time. Gause‟s principle, or principle of 

competitive exclusion, states that species using the same resource cannot coexist. The 

reason is that the more efficient species will gradually increase over the competition and 

displace the less efficient (Hardin, 1960). Given that bacteria reproduce asexually, it is 

generally assumed that their evolution in a limiting resource will consist of a temporal series 

of replacements by ever more fit genotypes, via the process of periodic selection, eliminating 

all genetic variability (Atwood, et al., 1951, Levin, 1981). Therefore, the existence of 

polymorphisms would be a process, only transitive, for evolution. So, natural populations 

should be maintained monomorphic via these two phenomena: periodic selection and 

competitive exclusion. 

 However, Gause‟s principle ignores the complexities of the competition process. In fact, 

the environment of organisms, physical and biotic, is heterogeneous both spatially and 

temporally. So, the frequencies of genotypes in a population are continually changing. At the 

same time, mechanisms responsible for the maintenance of polymorphisms are acting in 

bacterial populations. Frequency-dependent selection is one of those mechanisms.  

 

 

2 FREQUENCY-DEPENDENT SELECTION 

 

 Frequency-dependent selection phenomena have been demonstrated to occur in very 

different organisms, such as Drosophila (Wright & Dobzhansky, 1946, Ayala, 1971), 

Escherichia coli (Chao, et al., 1977, Helling, et al., 1987), vesicular stomatitis (VSV) and 

human immunodeficiency type 1 (HIV-1) viruses (Elena, et al., 1997, Yuste, et al., 2002). It 

has been hypothesized that frequency-dependent selection occurs in natural populations 

(Ayala & Campbell, 1974, Hori, 1993). However, model organisms with short generation 

time, large population size and the possibility to control environmental factors, allow studying 

more precisely the phenomenon of frequency-dependent selection. 

 In a biological system where there is frequency-dependent selection, the fitness of a 

given organism depends on its frequency. If selection favors the most common genotype it is 

called disrupting frequency-dependent selection. If selection favors the rare genotype over a 
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frequent one it is called stabilizing frequency-dependent selection. The latter will result in the 

maintenance of genetic variability in a population [containing at least one stable equilibrium]. 

2.1 DISRUPTING FREQUENCY-DEPENDENT SELECTION 

  

 Disrupting frequency-dependent selection implies that there is no internal stable 

equilibrium in the population and only the most common genotype will be selected. 

 A good example for disrupting frequency-dependent selection in bacterial populations is 

the competition between bacteria producing allelopathic molecules and a sensitive one. 

Allelopathic molecules are capable of killing or inhibiting the growth of competing bacteria, 

including antibiotics, bacteriocins (Reeves, 1972) and temperate bacteriophages (Levin & 

Lenski, 1983, Stewart & Levin, 1984). Competitions between bacteriocin sensitive and 

bacteriocin-producing E. coli in liquid media have demonstrated that the latter only invade the 

population if it is above frequency on the order of 10-2 (Chao & Levin, 1981). In other words, 

only when bacteriocin-producing bacteria are in a high frequency, they will able to invade 

[where their quantity is sufficient to produce enough bacteriocin to overcome the growth rate 

disadvantage of its production]. If not, bacteriocin-producing bacteria will be gradually 

eliminated due to its growth disadvantage (Figure 1).  

 

Figure 1: Changes in frequency of colicinogenic bacteria competing with sensitive bacteria in liquid 

medium cultures (adapted from Chao & Levin, 1981). 

 

 Another example for disrupting frequency-dependent selection involves bacterial toxin-

antitoxin (TA) gene systems. TA systems code for a stable toxin that kills or inhibits their own 

cell, and an unstable antitoxin which counteracts the toxin‟s effect. The toxin is always a 

protein. The antitoxin can be: (i) an antisense small RNA complementary to the toxin mRNA 

(type I) inhibiting its translation or (ii) a protein capable of neutralizing the toxin through 

formation of a proteic complex (type II). These systems are widely distributed in Bacteria and 

Archaea (Gerdes, 2000) and are found both in plasmids and in chromosomes (Gerdes, et al., 
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2005, Pandey & Gerdes, 2005). The presence of TA systems in plasmids, especially those 

with low-copy number, contributes to plasmid maintenance in growing bacterial populations. 

Plasmid-free daughter cells are selectively eliminated by post-segregational killing. This 

elimination occurs after cell division. The antitoxin is unstable and easily degraded by 

cytoplasmatic proteases. Without its replacement, because the plasmid is lost, the toxin may 

act (Jaffe, et al., 1985). Conjugative plasmids with TA loci (TA+) have the ability to invade a 

bacterial population of the same incompatibility group carrying plasmids without TA loci (TA-). 

This means that, within-cell plasmid competition between TA+ e TA- will provide an 

advantage to TA+ plasmids (Figure 2) (Cooper & Heinemann, 2000, Cooper & Heinemann, 

2005). In liquid cultures where all resources are distributed to all surviving bacteria, TA 

plasmids would only have an advantage when their initial frequency is high enough to 

overcome the costs for the host of carrying it. If not, the TA plasmids are unable to invade 

and tend to extinction (Cooper & Heinemann, 2005).  

 

          

Figure 2: Advantage conferred to bacteria carrying a TA plasmid. (A) Vertical transmission. 

Prevalence of TA plasmids is increased by post-segregational killing of plasmid-free daughter 

bacteria. (B) Horizontal transmission. Plasmid-plasmid competition gives an advantage to TA
+
 plasmid 

that outcompete TA
-
 plasmid. Bacteria that lose TA+ plasmid are killed. On the contrary, bacteria that 

lose TA- plasmid suffer no damage. Bacterial dead (grey), TA
+
 plasmid (purple) and TA

-
 plasmid 

(black) (adapted from Van Melderen & Saavedra De Bast, 2009). 

 

2.2 STABILIZING FREQUENCY-DEPENDENT SELECTION  

 

 Stabilizing frequency-dependent selection occurs when the fitness of a genotype is 

higher when that genotype is rare relative to other genotype. This selection results in a stable 

coexistence. The system is stable because the competitive fitness of one genotype relative 

to the other is smaller when its frequency is above the equilibrium point and greater when its 

frequency is below the equilibrium. At the equilibrium frequency, the competitive fitness of 

the two genotypes is identical. 

A B 
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 In natural bacterial populations, one can find some examples of stabilizing frequency 

dependence selection. One example refers to bacteria capable of neutralizing compounds 

that kill or inhibit cell growth and cell division (like antibiotics or heavy metals). These 

bacteria reduce the concentration of those toxic compounds in the environment. 

Consequently, susceptible bacteria that have disadvantage due to the presence of the toxin 

are only capable of invading and maintaining in a population where resistant cells are 

present. When this happens, both bacteria will eventually reach a stable equilibrium. In that 

equilibrium, the disadvantage of resistant bacteria owing to costs associated to neutralization 

of the toxin is overcome by its resistance; and the advantage of susceptible bacteria is 

counterbalanced by dead due to toxin‟s action. In a theoretical study, Lenski and Hatting 

showed that E. coli strains carrying a chloramphenicol resistant (Cmr) plasmid and plasmid-

free strains: (i) in an environment without chloramphenicol, Cmr plasmid reduced the fitness 

of the host bacterium relative to plasmid-free bacteria; (ii) in an environment with 

chloramphenicol, plasmid-free cells were unable to maintain if resistant ones were not 

present.  However, if plasmid-free bacteria were introduced, at low frequencies, into resistant 

bacteria cultures with chloramphenicol, plasmid-free bacteria were able to invade and 

maintain a stable equilibrium with the resistant population (Lenski & Hattingh, 1986). In 

another theoretical model, presence of beta-lactamase producing bacteria in an environment 

with the antibiotic (ampicillin) allowed sensitive bacteria to survive at low frequencies. 

Sensitive bacteria were regarded as cheaters, because they do not harbor a cost from beta-

lactamase production, taking advantage from the producing-bacteria (Domingues, 2010).  

 Besides the biological system above there are several experimental works, mostly done 

with E. coli showing that different genotypes are able to maintain ecologically relevant 

genetic diversity even in simple environments (Levin, 1972, Helling, et al., 1987, Turner, et 

al., 1996, Rozen & Lenski, 2000).  

 In attempting to explain the observation of coexistence in simple environments, some 

hypotheses have been suggested:  

(i) A demographic trade-off. Each genotype is specialized in a different ecological niche 

(Levin, 1972, Rosenzweig, et al., 1994, Turner, et al., 1996, Rozen & Lenski, 2000). For 

example, one genotype is competitively superior when glucose is abundant whereas the 

other is the better competitor for sparse glucose (Turner, et al., 1996). Therefore each 

genotype will have a growth benefit at a different stage of the cycle and both can stably 

coexist. So, even though consuming the same resources the two genotypes are not in a 

direct competition  

(ii) A cross-feeding interaction. One genotype is competitively superior for the limiting 

resource that is exogenously supplied (for example, glucose) and excretes some metabolite 

into the environment for which the other genotype is efficient to use. The metabolite could be 
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a result of cell metabolism or a by-product from dead cells. If the amount of the metabolite is 

proportional to the density of the genotype that is producing it, the rare genotype will benefit. 

Likewise, the frequent competitor will also benefit when rare because it is more efficient to 

use the limiting resource, having a higher fitness. Thus, the relative fitnesses of both 

genotypes will be decreasing functions of their own frequencies, because each has an 

advantage when rare (Turner, et al., 1996, Rozen & Lenski, 2000);  

(iii) An antagonistic interaction. During stationary-phase a genotype carrying a mutation 

or a pleiotropic effect of a mutation is able to inhibit or kill the other genotype. Such 

interaction was defined as stationary phase contact-dependent inhibition (SCDI) (Lemonnier, 

et al., 2008). The inhibition does not occur until bacteria are at (or close to) stationary phase 

and the total cell density being sufficiently high. Hence, rare SCDI-bacteria are able to 

increase in frequency by directly decreasing frequency of the other competitor. In that study, 

the SCDI phenomenon was attributed to mutations in glgC, which codes for a regulatory 

enzyme that catalyzes the first reaction of bacterial glycogen synthesis (Ballicora, et al., 

2003).   

 The above three hypotheses do not exclude each other and stable coexistence could be 

explained by all of them simultaneously. It is important to emphasize that these stable 

equilibria will eventually change or disappear. Over generations, environment could change 

and/or mutations will constantly arise and allow the fixation of beneficial mutations. One 

genotype will be allowed to win the competition by displacing the other, or both genotypes 

will coexist in a different stable equilibrium. 

 In the present study, I attempt to understand if stabilizing frequency-dependent selection 

is acting in antibiotic resistant bacterial populations. 

 

 

3 ANTIBIOTIC RESISTANCE 

 

 The widespread use of antibiotics in past decades to treat bacterial infectious diseases 

has greatly assisted the improvement of modern medicine. However, their extensive usage 

sometimes without rule was responsible for the considerable selection and spread of 

antibiotic resistant bacteria in both hospital and community settings (Reichler, et al., 1992, 

Mulvey & Simon, 2009). This scenario imposes a serious problem for public health. Bacterial 

pathogens are now widely resistant to common antibiotics and new developing drugs 

became quickly ineffective (Woodford & Livermore, 2009). 
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3.1  MECHANISMS RESPONSIBLE FOR ANTIBIOTIC RESISTANCE 

 

 Antibiotic resistance occurs by genetic mutations and/or acquisition of horizontal gene 

transfer (HGT) of resistant determinants (for review Martinez, et al., 2009). The rate of 

formation of resistant bacteria will be determined by the bacteria mutation rate, the biological 

cost of resistance (Andersson & Levin, 1999) and the rate of antibiotic use (Lipsitch & Levin, 

1997). DNA repair systems assure that mutation rate is kept low. However, the mutation rate 

is greatly determined by the presence of mutator strains. Mutator strains are characterized by 

increased mutations rates (Oliver, et al., 2000) and recombination frequencies (Matic, et al., 

1995) due to a defective methyl-directed mismatch DNA repair (MMR) system (Matic, et al., 

1997, Oliver, et al., 2000). The presence of mutators strain in a population will contribute to 

the emergence of resistant bacteria (Oliver, et al., 2000).   

 Resistance genes may be found on transferable genetic elements, such as plasmids, 

transposons or integrons. These elements can spread very fast in bacterial populations, 

consequently, being fundamental in bacterial genome evolution (Frost, et al., 2005) and in 

antibiotic resistance dissemination (Whittle, et al., 2002, Bennett, 2008).  

 The most common mechanisms for antibiotic resistance are the following (Walsh, 2000): 

(i) alteration of antibiotic target, (ii) enzymatic modification and degradation of the antibiotic or 

(iii) drug efflux or reduced membrane permeability to prevent antibiotic entry into the cell.   

 

3.2  BIOLOGICAL COSTS OF RESISTANCE 

 

 Mutations conferring resistance may disrupt normal physiological processes in the cell. 

Examples include inhibition of bacterial cell wall synthesis, protein synthesis or nucleic acid 

replication (Andersson & Levin, 1999). Moreover, if resistance is located in a mobile genetic 

element, as bacteria are responsible for their replication and gene expression, these 

elements may interfere with the normal cell growth (Bjorkman & Andersson, 2000). As a 

consequence, antibiotic resistance is usually associated with fitness costs (Lenski, 1998, 

Andersson, 2006, Gagneux, et al., 2006, Andersson & Hughes, 2010), which can be 

reflected in a lower growth rate and virulence.  

 In the present study, I will focus on chromosomal mutations. Strains harboring resistance 

mutations in the rpoB, rpsL and gyrA genes were used. Mutations in the rpoB gene, which 

codes for RNA polymerase β-subunit, confer resistance to rifampicin in E. coli. Those 

mutations exhibit reduced efficiency of the transcription (Reynolds, 2000). Mutations on rpsL 

gene, which codes for the S12 ribosomal protein, are responsible for resistance to 

streptomycin in E. coli. In these resistant bacteria a diminished translational rate is observed 
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(Kurland, et al., 1996). Mutations in gyrA gene, which confer resistance to quinolones, result 

in alterations in DNA supercoiling. Such alterations give rise to disturbed patterns of 

transcriptional regulation in E. coli (Marcusson, et al., 2009). 

 In previous studies it has been demonstrated that, in the absence of antibiotic selective 

pressure, resistant bacteria have a fitness cost, being in disadvantage compared to their 

counterpart antibiotic-sensitive bacteria (Lenski, 1998, Gillespie, 2001). For this reason it is 

not clear why resistant bacteria are not eliminated or reverse to a susceptible phenotype 

upon antibiotic control strategies, i.e. reduction of antibiotic prescription (Johnsen, et al., 

2009). 

 There are four known processes for stability of resistance caused by chromosomal 

mutation(s) which reduce/eliminate the cost of resistance and make reversion a less 

probable event: compensatory mutations, epistasic interaction between antibiotic 

resistances, cost-free mutations and co-selection. 

 

3.3 COMPENSATORY EVOLUTION 

 

 In the absence of antibiotic pressure the growth disadvantage of resistant bacteria could 

be compensated by second-site mutations elsewhere in the chromosome, resulting in an 

antibiotic resistant bacterial population as fit as susceptible bacteria (Bjorkman & Andersson, 

2000) (Figure 3). Compensatory mutation seems to be a more common event than reversion 

(Schrag, et al., 1997, Kugelberg, et al., 2005), possibly because there is a larger mutation 

target (Schrag, et al., 1997). Strikingly, the compensation of an antibiotic resistance fitness 

cost has been shown to occur both in the presence and absence of the antibiotic (Bouma & 

Lenski, 1988, Schrag & Perrot, 1996, Schrag, et al., 1997, Dahlberg & Chao, 2003, Dionisio, 

et al., 2005). 

 

Figure 3: Stability of antibiotic resistance in bacteria. Antibiotic resistant bacteria (AbR) may be as fit (i) 

or less fit (ii) than their sensitive variants. Fitness may be restored (iii) by true reversion of the 

resistance conferring mutation or (iv) by acquisition of compensatory mutations that restore fitness to 

different extent without causing loss of resistance (AbR*) (Bjorkman & Andersson, 2000). 
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 Compensatory mutations can occur by different mechanisms. The most common is the 

restoration of the structure and function of an altered RNA or protein by intragenic (Hanson, 

et al., 1993, Reynolds, 2000, Nagaev, et al., 2001) or extragenic (Bjorkman, et al., 1998, 

Maisnier-Patin, et al., 2007) mutations. 

 

3.4 EPISTASIC INTERACTIONS BETWEEN ANTIBIOTIC RESISTANCES 

 

 Epistasis occurs when two or more genes interact with each other resulting in a 

phenotypically different scenario then if they were acting independently. There are epistasic 

gene interactions between different antibiotic resistance genes. If different antibiotic 

mutations enhance each other‟s costs it is defined as synergistic. If antibiotic mutations mask 

each other‟s costs, it is defined antagonistic. In the former case, synergistic interactions will 

constrain evolution of multiple drug resistance by aggravating its costs. In the latter case 

antagonistic interactions will promote stability of multidrug-resistant bacteria by reducing its 

costs. Many studies in this area have found that epistasis tends to be antagonistic (Trindade, 

et al., 2009, Ward, et al., 2009) and recently a similar epistasis study between antibiotic 

resistance mutations occurring in the chromosome and in a plasmid has revealed the same 

trend (Silva, 2010). These findings suggest that epistasis interactions between antibiotic 

resistances have a key role in the evolution and could explain the difficulties to eliminate 

multidrug resistant bacteria, as in the case of Mycobacterium tuberculosis (Santos, et al., 

2010) or methicillin-resistant Staphylococcus aureus (MRSA) (Rodriguez-Noriega, et al., 

2010). 

 

3.5 COST-FREE MUTATIONS 

 

 Cost-free mutations refer to the occurrence of resistance mutations that confer no fitness 

costs, therefore reducing the driving force for reversibility. Such mutations have been found 

for several types of antibiotics and bacterial species (Ramadhan & Hegedus, 2005, Criswell, 

et al., 2006). For instance, substitutions in the 30S ribosomal protein S12, which confer 

resistance to streptomycin, seems to be a no-cost mutation in E. coli and Salmonella 

typhimurium (Kurland, et al., 1996). It should be noted that methods used to measure fitness 

costs might not detect the lower ones. So, it could appear that certain mutations do not 

harbor fitness cost. However, those mutations may reduce growth of bacteria in other 

environments.   
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3.6 CO-SELECTION OF ANTIBIOTIC RESISTANCE 

 

 Co-selection appears mainly in two different scenarios. First, a genetic linkage between 

a resistance gene and other genetic marker under selection could occur. Therefore, a costly 

resistance mutation could be maintained in the population (Enne, et al., 2004). Second, 

resistance to one antibiotic could lead to resistance of antibiotics with a similar structure. If 

different variants of an antibiotic are used in two different environments [for example, in 

agriculture and in veterinary] that have different antibiotic control strategies, acquisition of 

resistance in one environment may develop resistance in the other environment (Andersson 

& Hughes, 2010). 

 

4 OBJECTIVES 

  

 This study aims to demonstrate the occurrence of frequency-dependent selection in 

antibiotic resistant bacteria. To measure the cost of resistance, competitions experiments are 

usually performed between resistant and sensitive bacteria in a 1:1 proportion (for example 

Bjorkman & Andersson, 2000, Trindade, et al., 2009). Nevertheless, only rarely would 

resistant and sensitive bacteria would be present in a similar proportion in natural 

environments. Moreover, their proportions are in constant fluctuation. For example, the 

migration of antibiotic resistant bacteria to antibiotic-free environments, that will result in a 

lower frequency of the resistant bacteria. Therefore, I performed competitions in antibiotic 

free environment between spontaneous antibiotic resistant and sensitive clones at different 

proportions. 

 I tried to understand if the genetic cause of the frequency-dependent phenotype is a 

result of a second chromosomal mutation, besides the antibiotic resistance mutation. Then, I 

tried to determine if a cross-feeding interaction could be the ecological mechanism 

underlying frequency-dependent selection. 

 Finally, I developed an experimental protocol to understand the origin of clones with high 

fitness when rare. 
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II – MATERIALS AND METHODS 
 
 

1. BACTERIAL STRAINS AND GROWTH CONDITIONS 

 

 The Escherichia coli strains used were K12 MG1655 (wild-type), K12 MG1655 Δara, K12 

MG1655 srl::Tn10 mutS- StrR (mutator strain) (Giraud, et al., 2001) and K12 MG1655 

srl::Tn10 StrR (non-mutator strain) (Giraud, et al., 2001). Spontaneous resistant clones to 

nalidixic acid, rifampicin and streptomycin, were derived from the ancestral strain E. coli K12 

MG1655. Genes known to be involved in the resistance to the corresponding antibiotics have 

been sequenced (Dionisio, et al., unpublished data):  gyrA, gyrB, parC and parE for 

resistance to nalidixic acid (NalR) clones; rpoB for resistance to rifampicin (RifR) clones; and 

rpsL for resistance to streptomycin (StrR) clones (Tables 1, 2 and 3). 

 Clones were grown in liquid Luria Bertani (LB) or LB supplemented with agar (LA).  

 In all experiments, the final antibiotic concentrations in the media were: 40 μg/ml of 

nalidixic acid, 100 μg/ml of rifampicin and 100 μg/ml of streptomycin. 

 Competitions assays were performed between E. coli K12 MG1655 or E. coli K12 

MG1655 Δara and spontaneous antibiotic resistant clones. Δara is due to a deletion in the 

arabinose operon giving rise to red colonies on the tetrazolium arabinose (TA) indicator agar 

(Lenski, 1988), being distinguished from antibiotic resistant clones (ara+) that produce white 

colonies. Competitions were performed over a pre-determined time in 50 ml tubes containing 

10 ml of LB medium at 37 ºC with constant shaking (170 rpm). 

 All serial dilutions were done in MgSO4 10-2 
M. All clones were stored in 15% (V/V) 

glycerol at -80 °C for future experiments. 

 

 

2. SELECTION OF SPONTANEOUS ANTIBIOTIC RESISTANT CLONES 
 

 Escherichia coli K12 MG1655 cells were inoculated on several tubes of 10 ml of LB 

medium for 24 hours, at 37°C and constant shaking. The stationary phase of each culture 

was platted on LA supplemented with the appropriate antibiotic, followed by incubation at 

37°C over 24 hours. Resistant well individualized colonies from each culture were selected 

and streaked twice onto other selective plates. Then, each clone was grown overnight in LB 

with the appropriated antibiotic at 37 °C with constant shaking and stored. 
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Table 1: Sequence of genes involved in resistance to nalidixic acid (Nal; clone number) for wild-type 

(wt) and resistant clones (Dionisio, et al., unpublished data). 

Clone 

Nalidixic acid resistance genes 

gyrA gene 
gyrB 

gene 

parC 

gene 
parE gene 

wt 87
th
 codon: GAC – translates to Aspartic Acid wt allele wt allele wt allele 

Nal41 87
th
 codon TAC - translates to Tyrosine wt allele wt allele wt allele 

Nal43 87th codon GGC - translates to Glycin wt allele wt allele wt allele 

Nal45 87th codon GGC - translates to Glycin wt allele wt allele wt allele 

Nal48 87th codon GGC - translates to Glycin wt allele wt allele wt allele 

Nal50 87th codon GGC - translates to Glycin wt allele wt allele wt allele 

Nal51 87th codon TAC - translates to Tyrosine wt allele wt allele wt allele 

Nal54 87th codon TAC - translates to Tyrosine wt allele wt allele wt allele 

Nal56 87th codon GGC - translates to Glycin wt allele wt allele wt allele 

Nal58 87th codon GGC - translates to Glycin wt allele wt allele wt allele 

Nal59 87th codon TAC - translates to Tyrosine wt allele wt allele wt allele 

 

 

 

Table 2: Sequence of genes involved in resistance to rifampicin (Rif; clone number) for wild-type (wt) 

and resistant clones (Dionisio, et al., unpublished data). 

Clone 
Rifampicin resistance genes 

rpoB1 gene rpoB2 gene 

wt 

511
th
 codon CTG - translates to Leucine 

512
th
 codon TCT - translates to Serine 

516
th
 codon GAC - translates to Aspartic acid 

526
th
 codon CAC - translates to Histidine 

529
th
 codon CGT - translates to Arginine 

531
st
 codon TCC - translates to Serine 

wt allele 

Rif1 516
th
 codon AAC - translates to Methionine wt allele 

Rif3 516
th
 codon TAC - translates to Tyrosine wt allele 

Rif4 526
th
 codon TAC - translates to Tyrosine wt allele 

Rif7 526
th
 codon TAC - translates to Tyrosine wt allele 

Rif8 511
th
 codon CCG - translates to Proline wt allele 

Rif12 529
th
 codon CAT - translates to Histidine wt allele 

Rif15 526
th
 codon TAC - translates to Tyrosine wt allele 

Rif17 512
th
 codon TTT - translates to Phenylalanine wt allele 

Rif18 526
th
 codon TAC - translates to Tyrosine wt allele 

Rif19 531
st
 codon TTC - translates to Phenylalanine wt allele 
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Table 3: Sequence of genes involved in resistance to streptomycin (Str; clone number) for wild-type 

(wt) and resistant clones (Dionisio, et al., unpublished data). 

Clone 
Streptomyicin resistance genes 

rpsL gene 

wt 

43
rd

 codon AAA - translates to Lysine 

88
th
 codon CCG - translates to Proline 

91
st
 codon CCG - translates to Proline 

Str20 43
rd

 codon AAC - translates to Asparagine 

Str21 91
st
 codon CAG - translates to Glutamine 

Str23 43
rd

 codon AAC - translates to Asparagine 

Str24 43
rd

 codon AAC - translates to Asparagine 

Str29 43
rd

 codon ACA - translates to Threonine 

Str30 88
th
 codon CGG - translates to Arginine 

Str31 43
rd

 codon AAC - translates to Asparagine 

Str34 43
rd

 codon ACA - translates to Threonine 

Str35 43
rd

 codon ACA - translates to Threonine 

Str36 43
rd

 codon ACA - translates to Threonine 

 

 

3. COMPETITION ASSAYS 

 

 Competition assays were performed between antibiotic resistant clones and a 

susceptible clone to determine the ratio of the antibiotic resistant clones [relative to the 

susceptible clone]. Clones were grown to stationary phase in liquid LB medium. The 

susceptible clone [wild-type or Δara) were mixed with the antibiotic resistant clones at initial 

ratios close to: 1:10-5; 1:1 and 1:102, in LB and incubated for 24 hours at 37 °C with constant 

shaking. The total number of cells at the beginning of the competition was approximately 107 

cells/ml, irrespectively of the initial ratio. The number of colony forming units before 

competition was measured by serial dilutions of each culture, followed by plating on LA and 

the respective antibiotic (to select for resistant cells) and without antibiotic (for wild-type or 

Δara cells). Competitions assays were performed over 5 days, unless otherwise noted, 

through serial competition passages. Every 24 hours, 10 μl of the resulting culture was 

transferred to 10 ml of fresh LB medium. All experiments were replicated independently three 

times. The number of antibiotic resistant and wild-type or Δara cells after competition was 

determined as follows: 

(i) Competitions 1:10-5 of wild-type to antibiotic resistant clones. Cultures were serial 

diluted and plated on LA or on LA with the respective antibiotic followed by overnight 

incubation at 37 °C.  
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(ii) Competitions 1:1 of wild-type and antibiotic resistant clones. Cultures were serial 

diluted and plated on LA followed by overnight incubation at 37°C, after which 100 random 

isolated colonies were picked and plated on both LA and LA with corresponding antibiotic, 

and incubated overnight at 37 °C.  

(iii) Competitions 1:1 and 1:102 of Δara and antibiotic resistant clones. Cultures were 

serial diluted and plated TA indicator agar. An overnight incubation at 37 °C was followed. 

 

 

4. SCREENING FOR MUTATOR PHENOTYPES 
 

 I followed the method of Leclerc et al (1996). Each clone (resistant and wild-type) was 

grown, in three independently cultures, until stationary-phase in LB for 48 hours at 37°C, with 

constant shaking. After incubation, 108 bacteria from each culture were plated, for resistant 

(R) count, on LA supplemented with rifampicin, with the exception of RifR clones that were 

plated on LA with nalidixic acid. To count the total number of cells, dilutions were performed 

and plated on LA. An overnight incubation at 37 ºC was followed for all plates. 

 As a positive control, I performed the same assay with a mutator strain (E. coli K12 

MG1655 srl::Tn10 mutS- StrR (Giraud, et al., 2001)). This strain was used to compare the 

results of the resistant and wild-type clones mutation frequency. 

 The mutation frequency for each clone was calculated by the following formula:  

mlcfuTotal

mlcellsR
frequencyMutation   

 

 

5. BACTERIAL GROWTH IN SUPERNATANT PREPARATIONS 

 

 Bacterial cells were grown to stationary phase in liquid LB medium over one day at 37 

°C with constant shaking. Then, cells were removed by centrifugation (10 min at 5000 RPM), 

followed by decantation. Finally, the supernatant was filtered twice (pore size 0.22 μm). 

Then, this supernatant was used to grow other bacterial cells over 50 hours at 37 °C with 

shaking. The number of cells, during incubation, for the first 6 hours was measured hourly, 

then measurements were done again at 10 hours and 50 hours, by plating in LA or LA with 

the appropriate antibiotic.  After incubation a growth curve was set up. 

. 
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6. DEVELOPMENT OF AN EXPERIMENTAL PROTOCOL TO UNDERSTAND THE ORIGIN OF 

CLONES WITH HIGH FITNESS WHEN RARE  

 

 The experiments performed in this thesis have shown an unexpected high number of 

clones with a greater fitness when rare. I tried to understand if the resistant bacteria selection 

method favored the selection of these clones. The ancestral strain E. coli K12 MG1655 was 

grown in LB overnight at 37 ºC with constant shaking (170 rpm). A dilution to 10-2 was 

performed and plated on 24 plates with LA. Plates were divided to carry out two independent 

experiments during incubation: (A) no mixing and (B) manual mixing with glass beads. For 

experiment (B), 50 μl of MgSO4 10-2 M was added to the plate before mixing, which 

happened every one and a half hour, for the first 10 hours. Replica plating (Lederberg & 

Lederberg, 1952) was performed to LA plates with nalidixic acid. After 48 hours of incubation, 

one clone of each plate was selected randomly and streaked twice to nalidixic acid plates. All 

clones were stored. Then I checked for an advantage when rare of each of these 24 clones 

(12 clones under protocol A and 12 clones under protocol B). 

 

7. ESTIMATION OF FITNESS  

 

 To measure the fitness of resistant clones relative to the wild-type clones we use the 

following formula according to Lenski et al. (Lenski, 1991), where the fitness of wild-type is 

normalized to 1: 
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where R0, Rt, wt0 and wtt stand for colony forming units of antibiotic resistant and wild-type 

cells in the beginning and in the end of competition assay. This formula assumes that fitness 
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is not frequency-dependent. Nevertheless, I used it to measured fitness in a 24 hour 

competition where I will fundamentally be measuring differences in the exponential growth 

(the principal component of the formula) of both competing strains. Besides, in a 24 hour 

competition there is not a huge difference in the frequency of the frequency-dependent 

clones.  

 

 

8. STATISTICAL AND MATHEMATICAL ANALYSIS 

   

 To test if frequency of resistant clones were in equilibrium I performed a linear 

regression, given as follows: y = mt + b, where y is the log-frequency of the clone, m is the 

slope, t is time in days, and b is the y-intercept. Then an ANOVA was performed to assess if 

the slope (m) of the regression line of the last three or four days of competition is statistically 

significant different from zero.  

 To assess if fitness values of resistant clones were superior to the fitness of the 

reference strain I performed a Student’s t-test. 

 To find differences between mutation rates of clones and those of mutator strains I 

tested data for homogeneity with Levene‟s test and I performed a one-way analysis of 

variances (ANOVA) followed by a Tukey‟s HSD test. This was performed in SPSS 17.0. 

 All tests were performed with a confidence level of 95%. 
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III – RESULTS 

 

1 DEMONSTRATION OF FREQUENCY-DEPENDENCY IN SPONTANEOUS ANTIBIOTIC 

RESISTANT CLONES 

 

 The aim of the present study was to understand if populations of antibiotic resistant 

clones show a frequency-dependent phenotype. I performed competition assays, in the 

absence of antibiotics, between antibiotic resistant clones and a sensitive clone at different 

proportions. In these competitions I used thirty clones conferring resistance to commonly 

used antibiotics belonging to three different classes: 10 clones resistant to the quinolone 

nalidixic acid (NalR); 10 clones resistant to the rifampicin from rifamicyns class (RifR); and 10 

clones resistant to the aminoglycoside streptomycin (StrR). Mutations that confer resistance 

are located in important genes involved in replication (gyrA), transcription (rpoB) and 

translation (rpsL), respectively. I measured the ratio of the resistant clones in the population 

along 5 days (unless otherwise noted) of serial dilutions [serial dilutions of 1/1000, implying 

about 9.966 generations per day]. Each new culture had an initial inoculum of 107 cells/ml. 

 

 

1.1 COMPETITIONS 1:105
 OF RESISTANT TO WILD-TYPE CELLS 

 

 I performed competitions in an approximate proportion of 1:105 of resistant to wild-type 

clones. Figures 4, 5 and 6 show the resistant clones frequencies over competition, for the 

three different antibiotics. 

 As observed in Figures 4, 5 and 6 some clones showed an advantage when rare and 

were maintained in the population in a certain frequency (without replacement of the wild-

type strain). At this point it was necessary to establish a criterion to distinguish advantageous 

resistant clones from disadvantageous. The criterion was: the equilibrium point is not stable if 

the slope (m) of the regression line of the last three or four days of competition is not 

statistically significant different from zero. 
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Figure 4: Frequency of rifampicin resistant clones over time. Competitions were performed with initial 

frequencies of resistant clones close to 10
-5

 over 5 days (about 10 generations per day) against wild-

type (wt). The ratio of resistant (R) cells over the wild-type was calculated as follows: ratioR = 

log10(R/R+wt). Frequency-dependent (FD) clones are indicated. 
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Figure 5: Frequency of nalidixic acid resistant clones over time. Competitions were performed with 

initial frequencies of resistant clones close to 10
-5

 over 5 days (about 10 generations per day) against 

wild-type (wt). The ratio of resistant (R) cells over the wild-type was calculated as follows: ratioR = 

log10(R/R+wt). Frequency-dependent (FD) clones are indicated. 

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6

lo
g

 r
a
ti

o
 N

a
l4

1
:w

t

Serial Dilutions (days)
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6

lo
g

 r
a
ti

o
 N

a
l4

3
:w

t

Serial Dilutions (days)

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6

lo
g

 r
a
ti

o
 N

a
l4

5
:w

t

Serial Dilutions (days)
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 2 4 6 8 10

lo
g

 r
a
ti

o
 N

a
l4

8
:w

t

Serial Dilutions (days)

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6

lo
g

 r
a
ti

o
 N

a
l5

0
:w

t

Serial Dilutions (days)
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6

lo
g

 r
a
ti

o
 N

a
l5

1
:w

t

Serial Dilutions (days)

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6

lo
g

 r
a
ti

o
 N

a
l5

4
:w

t

Serial Dilutions (days)
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6

lo
g

 r
a
ti

o
 N

a
l5

6
:w

t

Serial Dilutions (days)

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6

lo
g

 r
a
ti

o
 N

a
l5

8
:w

t

Serial Dilutions (days)
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6

lo
g

 r
a
ti

o
 N

a
l5

9
:w

t

Serial Dilutions (days)

A B 

C D 

E F 

G H 

I J 

FD FD 

FD FD 

FD  

FD  

FD FD 

FD FD 



III – RESULTS 
  

 

19 
 

 

       

       

       

        

       

Figure 6: Frequency of streptomycin resistant clones over time. Competitions were performed with 

initial frequencies of resistant clones close to 10
-5

 over 5 days (about 10 generations per day) against 

wild-type. The ratio of resistant (R) cells over the wild-type was calculated as follows: ratioR = 

log10(R/R+wt). Frequency-dependent (FD) clones are indicated. 
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Table 4a: Values of the stable equilibrium of frequency-dependent clones obtained from a linear 

regression analysis.  

Clone Intersection (b) Slope (m) P (ANOVA) † 

Nal41 -4.832 -0.036 0.515 

Nal43 -2.962 0.017 0.850 

Nal45 -4.881 0.040 0.474 

Nal48 -1.184 -0.011 0.785 

Nal50 -4.571 0.036 0.269 

Nal51 -6.086 -0.043 0.776 

Nal54 -4.962 -0.047 0.150 

Nal56 -4.058 -0.017 0.932 

Nal58 -4.237 -0.226 0,108 

Nal59 -2.960 -0.065 0.757 

Str36 -4.902 -0.148 0.359 

Rif3 -3.985 0.107 0.564 

Rif4 -4.202 -0.045 0.923 

† Last column refers to ANOVA for regression analysis testing if slope is significantly different from 

zero. 

 

 

 

Table 4b: Clones without frequency-dependency assessed from a linear regression analysis. 

Clone Slope (m) P (ANOVA) † 

Str20 -0.589 9.99 x 10
-5

 

Str21 -1.425 3.30 x 10
-5

 

Str23 -0.541 0.004 

Str24 -0.630 5.86 x 10
-4

 

Str29 -0.383 3.036 x 10
-6

 

Str30 -0.107 0.021 

Str31 -0.606 5.54 x 10
-4

 

Str34 -0.544 2.41 x 10
-5

 

Str35 -0.440 8.96 x 10
-6

 

Rif1 -0.327 7.98 x 10
-3

 

Rif7 -0.387 0.012 

Rif8 -0.295 8.06 x 10
-3

 

Rif12 -0.864 9.18 x 10
-5

 

Rif15 -0.748 3.26 x 10
-3

 

Rif17 -0.413 4.14 x 10
-3

 

Rif18 -0.522 4.58 x 10
-3

 

Rif19 -0.473 3.74 x 10
-4

 

† Last column refers to ANOVA for regression analysis testing if slope is significantly different from 

zero. 
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 Thirteen of the thirty (43%) spontaneous resistant clones (Table 4a) have reached a 

stable equilibrium (P > 0.05): 10 NalR clones, two RifR clones (Rif3 and Rif4) and one StrR 

clone (Str36). These results suggest that their fitness is high when rare having an ability to 

maintain in the population by stable coexisting with the wild-type. This coexistence occurs 

without selective pressure (i.e. presence of antibiotic). These thirteen clones were denoted 

„frequency-dependent mutants‟. For clone Nal43 I only considered two days for the stable 

equilibrium, because the frequencies at day 3 showed a large variance (Figure 5B).  

 For the remaining clones (Table 4b) I did not find a stable equilibrium, because their 

frequency was gradually decreased over the competition period. In one case - Str21 - the 

resistant clone was eliminated on day 3 of the competition experiment. The clone has a 

relative fitness of 0.32 (± 0.078). Therefore, these clones did not present a frequency-

dependent phenotype.  

 Each frequency-dependent clone seems to present a characteristic stable equilibrium at 

low frequencies (Table 4a) and regardless of its low starting frequency relative to the wild-

type, each clone reached its point of balance. For example, the clone Nal48, that showed the 

largest increase of its frequency over the competition period, when the starting frequency 

was 10-5 it rose rapidly to 0.1 (b = -1.184). After reaching this frequency Nal48 showed a 

stable equilibrium with the wild-type; when it started with a frequency close to 10-1 it was 

observed the stable equilibrium since the first day of competition (Dionisio et al., unpublished 

results). The clone Nal51 presents a stable equilibrium beneath its starting frequency (b = -

6.086). So, its frequency in the first two days decreased until it reaches its equilibrium point. 

The clone Str36 reached the equilibrium on the first day of competition, because its stable 

point is very similar to the initial frequency of 10-5 (b = -4.902) and there it keeps along the 

competition period.  

 

1.2 COMPETITIONS 1:1 OF RESISTANT AND WILD-TYPE CELLS 

 

 Previous authors have performed competition experiments between sensitive and 

resistant clones in environments free of antibiotics. With no reasons to do otherwise, most 

authors have performed 1:1 competitions, not 1:10-5 or any other frequency. Their results 

show that resistant clones, either have a cost or an equivalent fitness to the wild-type 

(Tubulekas & Hughes, 1993, Lenski, 1998, Gillespie, 2001). So, I performed 1:1 competitions 

to test if our clones are not different from common clones tested in previous works. I 

performed competitions between clones of the Table 4a and the wild-type along 7 days. I 

measured the resistant clones‟ frequencies in the first and seventh days. Results are shown 

in Figure 7. 
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 I follow the same criterion defined in page 16, section 1.1 to assess for a statistically 

significant frequency decrease. The clones Nal51, Str36, Rif3 and Rif4 presented a 

statistically significant disadvantage over the wild-type along the competition (for all P < 

0.001). Hence, they present a cost. The remaining 8 NalR frequency-dependent clones did 

not show a statistically significant disadvantage (P > 0.05), even though neither showed any 

advantage. These clones did not show a growth cost. I also performed a competition with 

one clone without a frequency-dependent phenotype (Rif18, see table 4b) which confirmed 

that these clones still present a disadvantage against the wild-type. This 1:1 competition 

assay was not performed for clone Nal41. 

 

1.3 COMPETITIONS 1:1 OF RESISTANT AND ΔARA CELLS 

 

 I performed competitions 1:1 between Δara and resistant clones to evaluate if using a 

Δara strain, instead of the wild-type strain would give similar results (Figure 8). I performed 

competitions for the 8 NalR clones without a statistically significant frequency decrease, for 

Rif3 and Str36. I observed identical outcomes to the Figure 7.  The cost of carrying a Δara 

marker was measured by performing a competition assay against the wild-type. I observed a 

cost of 0.6% not statistically different from zero (Student’s t-test, t = -0.509, d.f. = 2, P = 

0.661). For that reason I disregard the cost. 

 

1.4 COMPETITIONS 1:102
 OF ΔARA TO RESISTANT CELLS 

 

 As frequency-dependent clones have an advantage when rare, I attempt to demonstrate 

that such advantage is somehow compensated by a disadvantage when resistant clones are 

the majority. When in majority, discrimination between resistant clones and the wild-type it is 

not possible. Therefore, I performed competitions in a proportion 1:102 of Δara to resistant 

clones. I used the Δara strain, which showed similar results to the wild-type (Section 1.3), to 

overcome technical difficulties in discriminating between resistant and sensitive clones. For 

these competitions I used three frequency-dependent clones and one clone without 

frequency-dependency. All four clones tested presented a clear disadvantage over the Δara 

along the competition experiment, here shown by the increase in frequency of Δara cells. 

Since resistant clones are at a higher proportion in the competition, in Figure 9 I calculated 

the ratio of Δara to the total number of cells.   
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Figure 7: One to one competitions of each clone of Table 4a and Rif18 against the wild-type strain. 

Competitions were performed along 7 days. The ratio of resistant (R) cells over the wild-type was 

calculated as follows: ratioR = log10(R/R+wt). To assess statistically significant decrease an ANOVA of 

the regression line was performed. Clones Rif3, Rif4, Rif18, Str36 and Nal51 decrease over time in 

competition with wild-type strain (P < 0.05). Clones Nal43, Nal45, Nal48, Nal50, Nal54 and Nal56 

present no cost (P > 0.05).  
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Figure 8: One to one competitions between each clone of table 4a (with the exception of Rif4 and 

Nal51) and Δara strain. Competitions were performed along 5 days. The ratio of resistant (R) cells 

over the wild-type was calculated as follows: ratioR = log10(R/R+wt). To assess statistically significant 

decrease an ANOVA of the regression line was performed. Clones Rif3 and Str36 decrease over time 

in competition with Δara strain (P < 0.05). Clones Nal43, Nal45, Nal48, Nal50, Nal54 and Nal56 

present no cost (P > 0.05). The outcomes of these competitions are similar to those of Figure 7. 

 

 

1.5 FREQUENCY-DEPENDENT FITNESS OF NAL48 CLONE 

 

 Figure 10 shows the fitness of the Nal48 clone plotted against its frequency in the 

population. Fitness values were calculated using data shown in Figures 5, 7 and 9. 
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Figure 9: Frequency of Δara strain over time when competing 1:10
2
 against antibiotic resistant clones. 

Frequency increased in the population over 5 days (about 10 generations per day) of competition, 

meaning that frequency of resistant clones decreased over the over time. The ratio of the Δara over 

resistant (R) cells was calculated as follows: ratioΔara = log10(Δara/Δara+R). To assess statistically 

significant increase an ANOVA of the regression line was performed. (A) Δara:Rif3 (d.f. = 17, P = 

0.000001); (B) Δara:Nal51 (d.f. = 17, P = 0.000016); (C) Δara:Nal48 (d.f. = 17, P = 0.001); and (D) 

Δara:Rif18 (d.f. = 17, P = 0.0000002). 

 

 

 

 

Figure 10: Relative fitness of Nal48 at different frequencies in the population. Competitions were 

performed against wild-type. The stable equilibrium of Nal48 is located in the indicated area. The 

broken line represents the fitness of the wild-type normalized. Error bars represent twofold standard 

error.  

 

1.6 EVIDENCE FOR ANOTHER MUTATION OCCURRING IN THE CHROMOSOME 

 

 As already mentioned, all spontaneous resistant clones were sequenced (Table 1, 2 and 

3) for genes involved in antibiotic resistance. Some of the isolated clones carry the same 
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mutation conferring antibiotic resistance, but present different behavior in competition with 

the wild-type clone. For example, the fitness of Rif4 depends on its frequency, while the 

clone Rif7 does not, but both presented a substitution of the amino-acid 526 from histidine to 

tyrosine (Figure 4C and 4D, respectively). Both Str36 and Str29 have a substitution of the 

amino-acid 43 from lysine to threonine. However, Str36 presented a frequency-dependent 

phenotype, unlike the clone Str29 (Figure 6J and 6E, respectively). Clones Nal59 and Nal51 

have a substitution of the amino-acid 87 from aspartic acid to tyrosine. Both clones had an 

advantage when rare, but presented a different phenotype: Nal59 clone had a stable 

equilibrium of -2.960, increasing its frequency before reaching the stable equilibrium, 

whereas Nal51 has a stable equilibrium of -6.086, decreasing its frequency to reach the point 

of balance (Figure 5J and 5F, respectively). 

 

 

2 SCREENING FOR MUTATORS 

  

 It could be argued that, if other mutations occur besides antibiotic resistance, some of 

these mutations can be advantageous. Hence, if these clones were mutators they could 

provide a short-term advantage. To seek if mutators are responsible to increase the 

frequency-dependent phenotype, I screened frequent-dependent and wild-type clones for 

mutator phenotypes. A mutator strain is defined by a mutation rate higher than the average 

of the species being usually caused by a defect in the methyl-directed mismatch repair 

system (LeClerc, et al., 1996, Matic, et al., 1997, Picard, et al., 2001). In E. coli this system is 

very well described, being MutS, MutL MutH and UvrD the most important enzymes. MutS 

recognizes and binds mismatch, MutL binds to MutS and together activate MutH. The latter 

recognizes the “correct” strand (the oldest and methylated one) and introduces a nick in the 

non-methylated strand. In the next phase, ssDNA-binding proteins and uvrD gene product 

bind to the region around the nick allowing nucleases to degrade the “inaccuracy”. Finally, 

DNA polymerase III resynthesizes new strand to replace the mismatch region. Defective 

MMR system, in most natural isolates, is due to mutations in the mutS or mutL genes 

(LeClerc, et al., 1996, Oliver, et al., 2000). For the screening I used mutS- strains. 

 Frequency-dependent clones and the wild-type show mutation rates for rifampicin 

significant different from those of the mutator strain (ANOVA: F11,24 = 16,267, P < 0.001; 

Tukey HSD: P < 0.001). The same was assessed for mutation rates for nalidixic acid 

(ANOVA: F2,6 = 58.843, P < 0.001; Tukey HSD: P < 0.001). Hence, frequency-dependent 

clones and wild-type did not show a mutator phenotype. 
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3 TESTING IF ANOTHER MUTATION IS OCCURRING ELSEWHERE IN THE CHROMOSOME 

 

 As mentioned in 1.6 Section, clones presenting the same antibiotic resistance mutations, 

nevertheless present different phenotypes. This suggests that other mutation occurred while 

the mutants were isolated. I used a mutator strain (E. coli K12 MG1655 srl::Tn10 mutS- StrR) 

and generated spontaneous rifampicin resistant mutants. The same procedure using a non-

mutator strain was performed. I isolated ten clones of each strain to initiate competition 

against the wild-type. If another mutation, responsible for the frequency-dependent 

phenotype, is occurring in the chromosome besides the mutation causing the antibiotic 

resistance, then a mutator strain would probably generate more often frequency-dependent 

mutants [relatively to the non-mutator one].  

 The results observed after competition showed no difference among clones generated 

by the two different strains. Both generated five clones [mutator clones - 3, 5, 7, 8 and 10; 

non-mutator clones - 1, 2, 3, 5 and 10] with a frequency-dependency phenotype. All those 

frequency-dependent clones were characterized by a decrease in their frequency, followed 

by a stable equilibrium (Figures 11 and 12). Hence, I did not find a correlation between 

increased mutational rate and appearance of a frequency-dependent phenotype. 

 

Table 5: Mutation frequencies of wild-type (wt), mutator strain (mutS
-
) and frequency-dependent 

clones for rifampicin or nalidixic acid resistance.
 

Clone Resistant cfu/ml Total cfu/ml Mutation Frequency † 

Mutator 7800.00; 8118.33* 1.17 x 109 6.67 x 10-6; 6.94 x 10-6* 

Rif3 28.33* 1.12 x 109 2.42 x 10-8* 

Rif4 33.33* 1.25 x 109 2.85 x 10-8* 

Str36 6.67 1.31 x 109 5.09 x 10-9 

Nal43 30.00 1.09 x 109 2.75 x 10-8 

Nal45 26.67 1.47 x 109 1.81 x 10-8 

Nal48 43.33 1.39 x 109 3.12 x 10-8 

Nal50 38.33 1.52 x 109 2.52 x 10-8 

Nal51 23.33 1.22 x 109 1.91 x 10-8 

Nal54 43.33 1.65 x 109 2.63 x 10-8 

Nal56 18.33 1.39 x 109 1.32 x 10-8 

Nal58 30.00 1.46 x 109 2.05 x 10-8 

Nal59 43.33 1.76 x 109 2.46 x 10-8 

wt 42.50 1.38 x 109 3.08 x 10-8 

† Mutation frequency is the ratio of resistant bacteria divided by the total number of bacteria in the 

population. 

(*) Nalidixic acid resistance. 
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4 TESTING THE OCCURRENCE OF CROSS-FEEDING INTERACTION 

 

 Why would 10 out of 10 NalR clones, two out of 10 RifR and one out of 10 StrR present an 

advantage when rare in competition with the wild-type strain? Is wild-type strain producing or 

excreting some metabolite useful to these antibiotic resistant strains? To answer these 

questions I seek to explore if stable coexistence between the rare frequency-dependent 

clones and the wild-type is due to a cross-feeding interaction. I tested this idea with clone 

Nal48. For that, I grew Nal48 frequency-dependent clone, independently, in the supernatant 

of wild-type (Swt) and supernatant of Nal48 (SNal) (Figure 13). I expected to observe a 

higher growth rate of Nal48 growing in Swt than in SNal. I performed a Student’s t-test to 

assess differences between exponential growth in both supernatants. However, I did not find 

differences (Student’s t-test, t = 2.477, d.f. = 3, P = 0.089). The end-point of both was similar 

(Student’s t-test, t = 0.931, d.f. = 4, P = 0.404). 

 

 

5 EVALUATION OF RESISTANT CLONES SELECTION METHOD  

 

 Such a high incidence of resistant clones with fitness frequency-dependent raised the 

question of whether the resistant bacteria selection method favored the selection of clones 

with advantage when rare. I isolated new spontaneous nalidixic acid mutants by a different 

method. Besides growth of wild-type in LB medium I added another stage for growth 

[structured environment] before selecting the resistant clones. I obtained 12 NalR clones from 

each method (A and B). Mixture was performed, in method B, only for the first 10 hours. This 

period of time refers to the exponential growth phase (when cells are replicating the 

emergence of mutants is more likely). I measured the fitness of 24 NalR clones by a 1:1 

competition assay against the wild-type.  

 I expected that clones generated by method B would show a higher incidence rate of 

frequency-dependency than clones generated by method A. Clones from method B were 

allowed to compete (by mixing) in a heterogeneous environment. If one frequency-dependent 

clone appears, it will be in rarity [so, it will have a higher fitness] and will divide more 

frequently. Nevertheless, when I mix the environment those „daughter-clones‟ will spread. 

Those clones will possibly be again in rarity and will divide more frequently. Hence, every 

mixture will result on the spread of the clones. At the time I select clones the probability to 

find frequency-dependent clones will be higher.  

 Results do not support the hypothesis, indicating the opposite. For method A, four of the 

12 clones showed a fitness superior to the wild-type (Student’s t-test, P < 0.05). Clones A11 
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(1.576 ± 0.379, P = 0.268) and A12 (1.371 ± 0.188, P = 0.187) present a fitness marginally 

superior to the wild-type (Figure 14). For method B, B8 clone present a fitness 

indistinguishable from the wild-type (1.045 ± 0.037, P = 0.350) (Figure 15). 

 

 

       

        

        

        

        

Figure 11: Frequency of rifampicin resistant clones generated from a non-mutator (mutS
+
) strain over 

time. Competitions were performed over 5 days (about 10 generations per day) in a proportion 1:10
5
 of 

resistant clones to wild-type. The ratio of resistant (R) cells over the wild-type was calculated as 

follows: ratioR = log10(R/R+wt). To assess for a stable equilibrium an ANOVA of the regression line was 

performed. Frequency-dependent (FD) clones (P > 0.05) are indicated. 
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Figure 12: Frequency of rifampicin resistant clones generated from a mutator strain (mutS
-
) over time. 

Competitions were performed over 5 days (about 10 generations per day) in a proportion 1:10
5
 of 

resistant clones to wild-type. The ratio of resistant (R) cells over the wild-type was calculated as 

follows: ratioR = log10(R/R+wt). To assess for a stable equilibrium an ANOVA of the regression line was 

performed. Frequency-dependent (FD) clones (P > 0.05) are indicated. 
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Figure 13: Growth of Nal48 in both wild-type (Swt) and Nal48 (SNal48) supernatant preparations. 

Clones were grown over 50 hours. To assess differences between growth in both supernatants a 

Student’s t-test was performed. No differences were observed (t = 2.477, d.f. = 3, P = 0.089). 

 

 

  

 

Figure 14: Fitness of nalidixic acid resistant 

clones obtained by method A. Four clones 

have a fitness higher than one. The broken line 

represents the fitness of wild-type normalized. 

Statistically significance of fitness superior to 

the wild-type was assessed by performing a 

Student’s t-test for each clone. P-values are 

indicated (*: P < 0.05). Error bars represent 

twofold standard error. 

 

 

Figure 15: Fitness of nalidixic acid resistant 

clones obtained by method B. None clones 

were find with fitness higher than one. B8 

clone present a fitness not distinguishable from 

one (1.045 ± 0.037, P = 0.350). The broken 

line represents the fitness of wild-type 

normalized. Statistically significance of fitness 

superior to the wild-type was assessed by 

performing a Student‟s t-test for each clone. 

Error bars represent twofold standard error. 
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IV – DISCUSSION 

 This thesis shows that the fitness of 13 out of 30 (43%) spontaneous antibiotic resistant 

strains is dependent on their frequency. This means that, if one competes the wild-type strain 

with one of these 13 strains, their fitness changes with their frequency in the population. In 

particular, when in rarity (competitions 1:10-5), the fitness of our antibiotic resistant clones is 

higher than the fitness of the wild-type strain. When common (competition 1:100) the fitness 

of antibiotic resistant clones is smaller than the fitness of the wild-type strain. At the stable 

equilibrium their fitness equals the wild-type fitness, that is, the fitness of both strains is equal 

to one (Figure 10). Such a scenario, where a strain varies its fitness until reaching a stable 

coexistence with another one, is defined as “stabilizing frequency-dependent selection” 

(Levin, 1988). 

 The 17 clones of this study that did not show a behavior suggestive of frequency-

dependent selection present a constant disadvantage. In other words, irrespective of their 

initial frequency in the competition, their fitness is always smaller than that of the wild-type 

clone. In fact, such behavior is not surprising (for example Andersson, 2006, Trindade, et al., 

2009) and would be expected given that mutations to antibiotic resistance are coupled to 

cellular physiologic changes. One would expect that these physiological changes impose a 

growth cost (Kurland, et al., 1996, Reynolds, 2000, Marcusson, et al., 2009) at all 

frequencies. 

 The set of 13 strains with frequency-dependent fitness is composed of: 10 out of 10 NalR 

clones, two out of 10 RifR clones (Rif3 and Rif4) and one out of 10 StrR clone (Str36).  

 The mutators screening of frequent-dependent clones allows me to demonstrate that the 

advantage in rarity is not due to advantageous mutations emerging as the result of a mutator 

phenotype.  

 For competitions 1:1 I expected to observe the loss of the fitness advantage for 

frequency-dependent clones. This was confirmed, indeed, as none of those clones showed 

an increase in their frequency. Four clones (Rif3, Rif4, Str36 and Nal51) present a fitness 

cost shown by a decrease in their frequency. For 8 NalR clones I did not observe a drop of 

their frequency over 7 days of competition (~70 generations). In others words, these eight 

resistant clones do not present a growth cost. Recently, another study demonstrated that 

mutations in gyrA gene conferring resistance to fluoroquinolones did not impose a growth 

disadvantage for the bacteria in the absence of antibiotic (Luo, et al., 2005). Therefore, the 

same is apparently happening with these 8 clones resistant to the quinolone nalidixic acid. 

 One to one competitions were performed in parallel in two ways: either the sensitive 

strain was a wild-type strain, or the sensitive strain was unable to use arabinose as carbon 

source. The two methods gave similar results. Therefore, one may conclude that the two 
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methods are equivalent. In fact, the Δara strain has been used as reference for competition 

assays in several works (see for example Lenski, et al., 1991, Trindade, et al., 2009).  

 This fact enabled us to use the Δara strain to perform 1:100 competitions. This time the 

sensitive strain is the rare strain. By performing competitions between the wild-type and 

resistant cells (in which resistant cells are the majority) I would be unable to discriminate the 

two clones. Hence, using the marked strain Δara the discrimination was possible. 

 I tried to understand why I obtained such a high number of antibiotic resistant clones 

having a frequency-dependent fitness. At first, one could think that the phenotype would be 

associated or caused by the antibiotic resistance point mutations. Yet, when analyzing the 

sequences of genes involved in each antibiotic resistance one can see that similar mutations 

result, in most cases, in different behaviors. For example, for the same mutation, one clone 

showing a frequency-dependent phenotype, but the other not. Consequently, other mutations 

may have occurred elsewhere on the chromosome. This other mutation should explain and 

be responsible for the frequency-dependent phenotype. During bacteria replication there are 

functions in the cell responsible for keeping mutation rates low [for example, proofreading by 

DNA polymerases and DNA repair systems]. Even so, the probability for an error to occur 

and consequently a mutation, is in the order of 10-8 in natural isolates (Matic, et al., 1997). 

Since frequency-dependent clones already had a mutation responsible for resistance, the 

probability that another error in the replication system has occurred is extremely low. The 

appearance of another mutation could be explained if bacteria enter in a “transitory mutator 

period”, when inhibited by a given antibiotic [when I isolated the resistant clones]. Bacteria 

under antibiotic stress are able to produce increased genetic variation (Foster, 1995). In that 

period mutations will eventually emerge, for example an antibiotic resistance mutation along 

with one responsible for the frequency-dependent phenotype.  

 Of the three antibiotics used to select resistant clones, one can see that nalidixic acid 

resistant clones show the higher incidence of frequency-dependence – all ten clones tested. 

It is known that pleiotropic interactions occur between gyrA gene and many other genes 

(Jeong, et al., 2006, Drlica, et al., 2009). Hence, if another mutation responsible for the 

frequency-dependent phenotype is occurring elsewhere in the chromosome, its effect could 

be enhanced by mutations in the gyrA gene.   

 A chromosomal mutation, besides the one for antibiotic resistance, could be the genetic 

cause of occurrence of frequency-dependent phenotype in resistant clones. When I 

generated resistant clones, from a mutator strain, I was expecting clones with a higher 

number of mutations. Hence, it would be more likely to be frequency-dependent than the 

clones generated from the non-mutator strain. Nevertheless, such hypothesis was not 

confirmed. Results showed the same number of frequency-dependent clones generated from 

both strains (see in this thesis Figures 11 and 12). One possible explanation is the fact that 
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mutator organisms, having a higher mutation rate (Matic, et al., 1997), will generate a high 

proportion of deleterious mutations (Giraud, et al., 2001). Hence, a mutation for frequency-

dependent phenotype may indeed arise in the population. However, it could be masked due 

to deleterious mutations that cause a cost to the bacterial cell.  

 Frequency-dependent selection in asexual populations was first reported by Levin 

(1972). He observed a stable equilibrium between E. coli B and K12 genotypes in a glucose 

minimal medium. Nevertheless, the ecological mechanisms underlying the coexistence were 

not clarified (Levin, 1972). In this study, I used a rich and density-limiting culture medium. 

 The role played by a mutation responsible for the frequency-dependent phenotype was 

investigated. I analyzed two hypotheses: a cross-feeding interaction and an antagonistic 

interaction. 

  The extra mutation may enable the rare resistant cells to be efficient in consuming some 

extracellular compound released by the wild-type cells. Such extracellular compound could 

be a result of cell metabolism or dead of wild-type cells. Hence, when wild-type cells are the 

majority in the population there is a large density of that putative compound in the 

environment. Resistant clones at a low frequency are all able to exploit it, accelerating their 

growth. With the increase in the resistant cells‟ frequency [consequently, wild-type cells 

decrease] the extracellular compound will be shared by a higher number of cells. Hence, it 

will not be available for all, which is reflected in a reduction in the resistant cells growth and 

frequency. Several studies suggest the existence of such a cross-feeding interaction in the 

maintenance of coexistence in populations (Turner, et al., 1996, Rozen & Lenski, 2000). In 

most of these cases, cross-feeding interaction is coupled with a demographic trade-off, 

where the genotypes are more efficient to use different compounds from the environment. 

Rosenzweig and colleagues demonstrated that in a long-term experiment, stable 

polymorphisms emerge as a result of bacterial evolution of an acetate cross-feeding 

interaction. One genotype secretes acetate coupled with a high rate of glucose uptake and 

the other harbors a mutation that causes semiconstitutive overexpression of acetyl CoA 

synthetase (Rosenzweig, et al., 1994). However, in the present work I did not find differences 

between Nal48 growth in both wild-type and Nal48 supernatants.  

 The occurrence of a demographic trade-off was not considered. A rich medium is 

composed by several sugars for bacterial growth. Resistant and susceptible bacteria could 

be using different sugars, therefore not being in a direct competition. However, if the 

competitions were to be performed in minimal medium, which is composed only of one sugar 

[for example, glucose], the stable coexistence should disappear. Nevertheless, competitions 

between frequency-dependent clones and wild-type in minimal medium were performed and 

stable coexistence was still observed (Dionisio, et al., unpublished results). 
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 Secondly, the mutation could lead to expression of some membrane protein that 

somehow inhibits the maximum growth rate of common wild-type cells. This inhibition would 

be possible only through cell-to-cell contact. As a result, rare resistant clones would be able 

to increase in frequency. A previous study found such an antagonistic interaction, defined as 

“stationary phase contact-dependent inhibition”, between ancestral and inhibitory evolved 

bacteria (Lemonnier, et al., 2008). This study suggests that the inhibition is caused by 

mutations in glgC gene, involved in the glycogen synthesis pathway. However, the 

mechanism underlying the contact inhibition was not clarified. They also refer that bacteria 

harboring such mutations may engender some fitness costs that will not enable them to 

increase in frequency when in rarity (Chao & Levin, 1981). Yet, Lemonier et al. (2008) 

assume that it is possible that rare bacteria increase in frequency if their costs were 

compensated by a higher rate of mortality of inhibited bacteria. This hypothesis deserves 

further research. For future studies, I propose the “U-tubes” experimental protocol carried out 

by Lemonnier et al. (2008) to find if a cell-cell contact for inhibition takes place. If rare, 

frequency-dependent clones have a higher probability to form cellular aggregates (contact) 

with sensitive bacteria. Therefore, I would observe an advantage for resistant clones. When I 

compete the clones in similar proportions (1:1), resistant clones will have a smaller 

probability to form aggregates with susceptible ones. Resistant cells will probably form 

aggregates more easily with “sister-cells” than before (1:10-5 competition). Thus, resistant 

clones will not gain enough advantage and will decrease its frequency as a result of the 

fitness cost of harboring such a mutation. I believe that cell-cell contact takes place only at 

(or close to) stationary-phase, when there is a high cell density.  

 I do not think the scenario where frequency-dependent clones have an advantage by 

releasing a toxin into the environment. If this happened, when I performed competitions in 

equal proportions (1:1) of resistant and susceptible clones I should still observe an 

advantage for resistant clones, and consequently, a frequency decrease of susceptible one. 

Yet, in those competitions resistant clones did not show an advantage. Moreover, in 

competitions 1:10-5, one would have to postulate an extremely high amount of toxin produced 

by the resistant clones (see also Chao & Levin, 1981). 

 Some studies assume that stable coexistence may be also influenced by extrinsic 

factors (Ayala, 1969, Icenhour, et al., 2006). Ayala (1969) showed that the resultant stable 

equilibrium between two species of Drosophila was temperature dependent by mediating the 

fitness of the larval and adult forms. Frequency-dependency and stable coexistence of 

bacterial populations may be under laboratory dependence. Laboratory dependence occurs 

when organisms cultured in different locations behave in a different way. In another study, a 

stable equilibrium between two strains of E. coli was modified depending on which laboratory 

the strains were cultured. In this study, O‟Keefe and colleagues found that differences in the 
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stable equilibrium were not due to bacterial changes. Instead, differences were owing to 

differences in the growth culture medium, in particular the composition of deionized water 

(O'Keefe, et al., 2006).  

 Upon the observation of such a high incidence of frequency-dependency, a question 

arose. Frequency-dependent clones appear naturally so often in LB medium or, on the 

contrary, they appear more scarcely but, due to their growth advantage in rarity, the clones 

show up more frequently? If the latter happens, frequency-dependent clones will have higher 

probability of being selected when resistant clones are isolated. I tested this hypothesis. 

However, the outcomes of the experiments did not corroborate the hypothesis. Indeed, 

results were the opposite of what I was expecting. Perhaps I did not undergo an efficient 

mixture for frequency-dependent clones competition. In addition, I performed the mixture 

(method B) only during exponential phase (first 10 hours). However, it has been described 

that in stationary-phase and under stress [caused by starvation] bacteria increase 

mutagenesis as a strategy for bacterial adaptive evolution (Bjedov, et al., 2003). The 

experimental protocols could be further improved along with a larger sample to allow 

comparisons.  

 Let's hypothesize that this phenomenon was not confined only to resistant bacteria, but 

could exist in other bacteria that establish a stable equilibrium with others. For example, 

regarding an infectious bacterial disease, a genotype that is at a low frequency would better 

escape from host response. The explanation will be that the immune system will respond 

only to the most common genotype. Indeed, in a very recent study regarding the dynamics of 

commensal bacteria that typically colonize humans, it was observed that different strains of 

some species seem to stable coexist. If one of these strains is pathogenic and is at low 

frequency, it could trigger an infectious disease without opposition from the immune system. 

Indeed, some species are able to colonize and increase their infectious load when other 

species pre-colonize (Margolis, et al., 2010). 
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V – CONCLUSION 
 
 
 I reported here the pervasive occurrence of stabilizing frequency-dependent selection in 

bacterial populations. Such phenomenon contributes to maintenance of genetic 

polymorphisms and is one of several other mechanisms driving the genetic diversity of 

bacterial populations. Furthermore, I reported here that frequency-dependent selection 

occurs in antibiotic resistant bacteria. This phenomenon could counteract antibiotic 

resistance eradication in the absence of antibiotic selective pressure, in addition to other well 

studied phenomena: compensatory mutations, epistasis, no cost-mutations and co-selection.  

 This thesis reinforces the idea that the avoidance of antibiotics for a certain period of 

time will not reverse the antibiotic resistance clinical problem (Levin, 2001). The 

reintroduction of the antibiotic to treat the infectious disease will allow rare resistant bacteria 

to have a selective advantage over the sensitive ones, reaching high frequencies at a much 

faster rate (De Gelder, et al., 2004). Highlighting the above, in United Kingdom between 

1991 and 1999 consumption of cotrimoxazole [a combination of trimethoprim and 

sulfamethoxazole] was reduced by 97%, but even that did not result in a reduction in 

sulfamethoxazole resistance. An update in 2004 showed that sulfamethoxazole resistance in 

E. coli had remained stable (Bean, et al., 2005), perhaps by frequency-dependent selection 

or one of the others mechanisms maintaining resistance in the environment. 

 Further investigation is required concerning the role of frequency-dependent selection in 

the dynamics of bacterial populations and more importantly in antibiotic resistant bacteria. 

Thus, it is necessary to develop new therapeutics that replace antibiotics in treating bacterial 

infections. This need is the basis of the recent development of prophylactic therapeutics, 

such as bacterial interference, bacterial vaccines and phage therapy. 
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