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Abstract 

 
 

Human immunodeficiency virus (HIV) depends on the host cell machinery to complete 

its life cycle. Several host proteins may help the virus to replicate and others have the ability 

to suppress its replication. These helper and restriction factors might be involved in many 

different pathways, such as RIG-I like helicases (RLH) signaling or microRNA 

(miRNA)-mediated silencing pathways, or could be a member of a specific group of proteins, 

like kinases and phosphatases. Here, we conducted a shRNA screen focused on innate 

antiviral defenses. Our study discovered 4 factors involved in HIV-1 replication: two 

participate in miRNA silencing, RNASEN and TNRC6A; and two proteins are regulators of 

RLH signaling pathway, ISG15 and OTUD5. RNASEN and ISG15 showed a helper factor 

nature regarding HIV-1, while TNRC6A and OTUD5 appear to have a restriction effect in 

HIV-1 replication. We also proceeded to the characterization of previously identified helper 

factors in other shRNA screen performed by Rato et al. For this purpose, we evaluated the 

effect of 13 proteins from the 14 identified in HIV-2 cycle, which exhibited a similar outcome 

from the one observed in HIV-1. From all kinases and phosphatases identified, we observed 

that one protein, CIB2, when overexpressed led to an enhanced LTR-driven expression, 

suggesting a role for CIB2 in HIV-1-LTR transcription. Moreover, we assessed that two of the 

identified proteins, SGK and CIB2, are important in HIV-1 entry, since their knockdown 

reduces the number of fusion events. In conclusion, this study highlights the power of small 

scale RNAi screens, providing new insights for the complex host-HIV interactions and 

instigating new possibilities for antiviral strategies. 

 
Key words: HIV-1; HIV-2; RNAi; miRNA silencing; RLH signaling; CIB2; SGK 
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Resumo 

 
 

Introdução 

O Vírus da Imunodeficiência Humana do tipo 1 (Human Immunodeficiency Virus type 

1, HIV-1) é do género Lentivirus da família Retroviridae. O seu genoma é formado por duas 

moléculas de RNA com cerca de 9 kb, flanqueadas por repetições terminais longas (long 

terminal repeats, LTR) e com 9 grelhas de leitura abertas (open reading frame, ORF). As 4 

proteínas Gag – matrix (MA), cápside (CA), nucleocápside (NC) e p6 – e as 2 proteínas Env 

– glicoproteína de superfície gp120 (SU) e glicoproteína transmembranar gp41 (TM) – são 

componentes estruturais. As proteínas Pol – protease (PR), transcriptase reversa (RT) e 

integrasse (IN) – providenciam as funções enzimáticas. Adicionalmente, 6 ORF originam as 

proteínas acessórias Rev, Tat, Vif, Vpr, Nef, e Vpu, que regulam a expressão dos genes 

virais e que participam no processo de encapsidação, aumentando a eficiência da infecção. 

A fase precoce do ciclo de replicação viral inicia-se com a ligação de um virião 

infeccioso ao receptor celular de superfície CD4, através da glicoproteína de superfície do 

vírus, gp120 (SU). Esta sofre alterações conformacionais que permitem o reconhecimento 

dos co-receptores, em particular CCR5 e CXCR4 no HIV-1, possibilitando a fusão do 

invólucro viral com a membrana celular e consequentemente a entrada viral. No citoplasma, 

o RNA genómico viral em cadeia simples é convertido pela transcriptase reversa (RT) num 

intermediário de DNA de cadeia dupla, que é então transportado para o núcleo na forma de 

complexo de pré-integração (PIC), e integrado no genoma da célula, por acção da integrase. 

Na fase tardia do ciclo, os genes do DNA proviral são transcritos e traduzidos pela 

maquinaria da célula hospedeira em proteínas virais. As proteínas estruturais são 

transportadas para a membrana plasmática onde se acumulam. A poliproteína Gag liga-se 

ao RNA genómico do vírus e então interage com a membrana plasmática, que é forçada a 

se projectar e eventualmente a se separar, formando-se uma partícula que é libertada para 

o exterior da célula infectada. A maturação do virião, iniciada pela protéase, resulta na 

reorganização nuclear e a aquisição da infecciosidade viral.   

Vários autores focaram o seu estudo em vias celulares, que envolvem imunidade inata 

e defesas antivirais. Uma das vias inatas antivirais é a detecção de RNA viral através de 

receptores intracelulares que pertencem à família das helicases do tipo RIG-I (RIG-I like 

helicases, RLH). Após a ligação ao RNA, a RLH RIG-I ou MDA-5 sofre uma mudança 

conformacional que permite a interacção entre os domínios CARD da RLH e da proteína 

mitocondrial VISA. Desta interacção resulta a rápida indução de citocinas antivirais incluindo 

o interferão (interferon, IFN) tipo I, através da activação de IRF3-IRF7 ou NF-κB mediada 

por TRAF6 e TRAF3, respectivamente. Várias moléculas reguladoras participam nesta 
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sinalização, incluindo ISG15 (IFN-stimulated gene 15), RNF125 (Ring finger protein 125), 

ATG5 (Autophagy related protein 5), ATG12 (Autophagy related protein 12), LGP2 

(Laboratory of genetics and physiology 2), OTUD5 (OTU domain containing 5), e PIN1 

(Peptidylprolyl cis/trans isomerase, NIMA-interacting 1).  

As possíveis interacções entre transcritos virais e a maquinaria da célula hospedeira 

para a tradução, o armazenamento e a degradação de mRNAs surgem como um aspecto 

significante da resposta antiviral. Este processo de turnover do RNA mediado por 

microRNAs (miRNAs) pode ocorrer em focos citoplasmáticos chamados P-bodies (mRNA 

processing bodies). Vários estudos revelam que os intervenientes da via miRNA que são 

simultaneamente componentes dos P-bodies causam supressão da replicação do HIV-1, 

nomeadamente a proteína TNRC6A (também conhecido por GW182), a endorribonuclease 

do tipo III DICER1 (dsRNA-specific endoribonuclease type III), a RNA helicase RCK/p54, e a 

proteína LSm1 (Sm-like protein 1). Outros componentes dos P-bodies que podem interferir 

são a RNase nuclear do tipo III RNASEN (RNase III nuclear), a enzima DCP1A (mRNA-

decapping enzyme 1A) e o factor EDC4 (Enhancer of mRNA deccaping 4). 

Como todos os vírus, o HIV-1 depende da maquinaria celular para conseguir replicar-

se. Este facto impulsionou estudos cujo objectivo era a identificação de factores celulares 

associados à replicação do HIV-1. Recentemente, vários autores exploraram como 

tecnologia um fenómeno biológico no qual pequenas moléculas de RNA de cadeia dupla 

(double stranded RNA, dsRNA) levam à degradação de mRNAs. Este processo chamado de 

RNA de interferência (RNA interference, RNAi) tornou-se uma ferramenta útil, podendo ser 

usados pequenas moléculas de RNAs de interferência (small interfering RNAs, siRNAs) ou 

pequenos RNAs com formato em hairpin (short hairpin RNAs, shRNAs). Neste contexto foi 

recentemente realizado um trabalho por Sylvie Rato e colaboradores que, através de um 

screen de shRNA focado em cinases e fosfatases, identificou 14 proteínas importantes para 

a replicação do HIV-1, nomeadamente CIB2 e SGK. Ambas as proteínas demonstraram 

serem importantes numa fase inicial ciclo do HIV-1, antes da integração viral e muito 

provavelmente na entrada do vírus. SGK (serum/glucocorticoid regulated kinase) é uma 

cinase que activa certas vias de potássio, sódio e cloro, também dependentes de alguns 

coreceptores, sugerindo um envolvimento na fusão vírus-célula. CIB2 é uma proteína 

regulatória de ligação ao cálcio (calcium and integrin binding regulatory protein 2), que 

parece interagir com integrinas e pode ter um papel importante nos canais iónicos, 

sugerindo uma influência na fusão vírus-célula. Uma vez que todas as funções de CIB2 são 

suportadas pela elevada homologia entre CIB2 e CIB1, pensa-se que CIB2 pode também 

interagir com DNA-PKcs (DNA-dependent protein kinase). DNA-PKcs é a unidade catalítica 
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de um complexo proteico da cinase nuclear DNA-PK que parece estar envolvida na 

integração e na transcrição do HIV-1. 

 

Objectivos  

Neste estudo pretendeu-se: 1) Identificar novos factores celulares adjuvantes 

essenciais à replicação do vírus HIV-1 associados às duas vias da imunidade inata, i.e o 

silenciamento de genes pela via de miRNAs e a via de sinalização de RLH; 2) Avaliar o 

efeito das proteínas identificadas por Rato e colaboradores no ciclo viral do HIV-2 e; 3) 

investigar o mecanismo pelo qual CIB2 e SGK influenciam a fase precoce do HIV-1, mais 

concretamente na fusão e na transcrição do vírus. 

 

Materiais e Métodos  

Para a construção de clones shRNA, procedeu-se à transdução de células Jurkat por 

spinoculation, utilizando vectores lentivirais que expressam shRNAs individuais para os 

genes selecionados das duas vias de imunidade inata em estudo. Os clones individuais 

foram obtidos pelo método de ClonaCell-TCS e selecionados em meio suplementado com 

2 µg/mL de puromicina. Os ensaios de replicação de HIV-1 e HIV-2 foram efectuados após a 

infecção dos diferentes clones por spinoculation com uma multiplicidade de infecção 

(Multiplicity of Infection, MOI) de 1. O HIV-1 e o HIV-2 foram produzidos por transfecção, 

pelo método de fosfato de cálcio dos plasmídeos pHIV-1NL4-3 e pHIV-2ROD em HEK 293T, 

respectivamente. A transcrição pelo HIV-LTR foi avaliada pela expressão de β-galactosidase 

após transfecção transiente em células HeLa-P4 com pCMV-Tat, pCMV-CIB2, pLKO.1 

shRNA CIB2, pLKO.1 shRNA DNA-PKcs, pLKO.1 shSCRAM, e pcDNA3.1ZEO(+) em 

diferentes combinações. Para avaliar a fusão vírus-célula, os clones shRNA CIB2 e SGK 

foram infectados com HIV-1NL4-3 com a enzima Beta-lactamase (BlaM)-Vpr incorporada e 

posteriormente incubados com o flurocromo CCF2-AM. A degradação do corante pela 

enzima BlaM após a fusão vírus-célula foi detectada por citometria de fluxo. 

 

Resultados 

Dos 152 shRNA clones obtidos, 19 foram viáveis e destes, 10 foram submetidos a 

ensaios de replicação. Desta forma foram identificados 4 factores importantes na replicação 

do HIV-1: RNASEN e ISG15, cuja supressão induziu uma redução da quantidade de vírus 

detectada; e OTUD5 e TNRC6A cuja supressão induziu um aumento da carga viral. 

As proteínas previamente identificadas por Rato e colaboradores como factores 

adjuvantes do HIV-1 também demonstraram ter um papel importante no ciclo replicativo do 
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HIV-2, como se pôde observar pela redução da quantidade viral detectada no sobrenadante 

dos clones infectados. 

Em relação a CIB2, os níveis de β-galactosidase obtidos na co-transfecção com CIB2 

e Tat foram superiores ao controlo, evidenciando que a sobre-expressão de CIB2 leva ao 

aumento da transcrição de LTR. Quando quantidades crescentes de CIB2 são transfectadas 

com quantidades crescentes de shRNA de DNA-PKcs, observa-se uma forte diminuição dos 

níveis de β-gal que corresponde a uma redução da transcrição do LTR pela Tat.  

No ensaio de fusão vírus-célula observou-se uma diminuição da percentagem de 

células que sofreram fusão viral de 20% nas células Jurkat, para 7,65% e 8,10% nos clones 

shRNA de CIB2 e SGK, respectivamente. 

 

Conclusões 

Os resultados apresentados nesta tese mostram as potencialidades da tecnologia do 

RNAi para a compreensão da interacção entre factores celulares e o HIV-1. A identificação 

de factores adjuvantes e de restricção envolvidos na via de silenciamento pelos miRNAs e a 

via de sinalização de RLH é um passo importante para aprofundar o conhecimento 

relativamente às defesas antivirais inatas. Além disso, a caracterização de proteínas 

relevantes no ciclo de replicação do HIV-1, assim como do HIV-2, pode estimular novos 

estudos relativos à interacção HIV-célula. Desta forma, estes estudos poderão propor novas 

estratégias antivirais contra a infecção por HIV-1, importantes para encontrar tratamentos 

mais eficientes para a SIDA. 

 

Palavras-chave: HIV-1; HIV-2; RNAi; silenciamento por miRNAs; via de sinalização RLH; CIB2; SGK  
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Introduction 

 

1. Acquired Immunodeficiency Syndrome 

 

Acquired Immunodeficiency Syndrome (AIDS) was recognized in early 1980s as the 

decline of immune system characterized by opportunistic diseases appearance in previously 

healthy individuals [1]. In 1983, the virus responsible for this syndrome was identified as a 

retrovirus capable of infecting CD4+ lymphocytes [2, 3] and consequently death with a half-

life of less than two days [4]. Nowadays, the virus is known as Human Immunodeficiency 

Virus (HIV) and there are two types of HIV known until now: type 1 (HIV-1) and type 2 

(HIV-2). The former is more virulent and is more worldwide prevalent than type 2.  

Highly active antiretroviral therapy (HAART), although powerful, effective against HIV 

and capable of prolonging life and health of the infected individuals, is still not able to cure 

AIDS [5]. For this reason, several studies started to focus on the host-virus interactions 

involved in various steps of retroviral replication, becoming more evident that understanding 

the dynamic interplay of host cell and virus is essential to the effort to eradicate HIV [6]. 

 

2. HIV-1 characterization  

 

2.1. Genome and structure of HIV-1 

 

HIV-1 is a member of Lentivirus genus from the Retroviridae family, which is 

characterized by a long incubation period [4].  

The HIV-1 genome encodes nine open reading frames (ORF) (Figure 1). Three of these 

encode the group specific-antigen (Gag), polymerase (Pol), and envelope (Env) polyproteins, 

which are subsequently proteolyzed into individual proteins common to all retroviruses [7]. 
 

Figure 1. HIV-1 genome. Adapted from Robinson, H. L. Nature Reviews Immunology 2, 239-250 (April 2002) 

 

The four Gag proteins – matrix (MA), capsid (CA), nucleocapsid (NC), and p6 – and the 

two Env proteins – glycoproteins gp120 (surface or SU) and gp41 (transmembrane or TM) – 

are structural components that make up the core of the virion and outer membrane envelope. 
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Figure 2. HIV-1 virion. Adapted 

from NIAHI. 

The three Pol proteins, protease (PR), reverse transcriptase (RT), and integrase (IN), provide 

essential enzymatic functions and are also encapsulated within the particle (Figure 2). HIV-1 

encodes six additional proteins, often called 

accessory proteins, three of which (Vif, Vpr, and Nef) 

are found in the viral particle. Two other accessory 

proteins, Tat and Rev, provide essential gene 

regulatory functions, and the last protein, Vpu, 

indirectly assists in assembly of the virion. The 

retroviral genome is encoded by a ~9-kb RNA flanked 

by 5’ and 3’ long-terminal repeats (LTRs), and the 

5’ LTR contains the promoter for transcription. Two 

genomic-length RNA molecules are also packaged in 

the particle [4, 7-9].  

 

2.2. HIV-1 replication cycle 

 

In the early phase of HIV-1 replication, viral particles bind specifically to cells bearing 

CD4 receptor, a protein that normally functions in immune recognition (Figure 3). Binding 

occurs via specific interactions between the viral envelope glycoprotein gp120 and the 

amino-terminal immunoglobulin domain of CD4 [4, 8, 9]. The gp120-CD4 interaction is 

sufficient for binding but not for infection. Instead, a group of CC and CXC chemokine 

receptors, particularly CCR5 and CXCR4, which mobilize intracellular calcium and induce 

leukocyte chemotaxis serve as essential viral coreceptors to trigger membrane fusion [4, 7]. 

After the engagement of HIV coreceptor, gp41 undergoes conformational changes exposing 

a region of the viral transmembrane protein, the ―fusion peptide‖. This peptide promotes 

directly the fusion event between the viral and the host membranes, allowing the viral core to 

gain access to the cytoplasm [4, 8, 9]. Once inside the cell, the HIV-1 core endures a poorly 

understood uncoating process that involves the core disassembly by the dissociation of the 

capsid (CA) [4, 9], which appears to be essential for the progress of reverse transcription [10, 

11]. Uncoating is followed by the activation of reverse transcriptase (RT) to copy the single-

stranded positive-sense viral RNA genome into double-stranded linear DNA [4, 7-10, 12]. 

This DNA is delivered into the nucleus in the form of a pre-integration complex (PIC) 

containing several proteins. Components of PIC include viral proteins, such as reverse 

transcriptase (RT), matrix (MA), Vpr, and integrase (IN), as well as host proteins including 

BAF and HMG I(Y) [9, 12]. Following nuclear import of the viral PIC, the integrase (IN) 

catalyzes the insertion of the linear, double-stranded viral DNA into the host cell 
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chromosome, completing the early phase of HIV-1 replication cycle [4, 7, 8, 12]. The 

unintegrated DNA can also follow non-productive pathways, in which it becomes circularized 

or degraded, creating in some cases 2-LTR circles [13, 14]. 

 

Figure 3. HIV-1 replication cycle. After fusion with the host membrane, HIV-1 suffers uncoating, followed by 

retro-transcription of viral ssRNA genome into dsDNA by reverse transcriptase (RT). This DNA is delivered into 

the nucleus and is then inserted into the host genome by the viral integrase (IN) to form the integrated provirus. 

Afterwards, the viral DNA is transcribed and the viral RNAs are processed and exported out to the cytoplasm. 

New viral RNA is used as genomic RNA and to make viral proteins. New viral RNA and proteins move to cell 

surface and a new, immature, HIV virus is formed. The virus matures by protease releasing individual HIV 

proteins. Adapted from NIAHI. 

 

In the late phase of the life cycle, the viral DNA is transcribed by the host RNA 

polymerase II (RNAP) system into unspliced and spliced mRNA transcripts [4, 12]. Initially, 

short spliced RNA species that encode the regulatory proteins Tat, Rev and Nef are 

synthesized. Tat is an essential transcriptional activator that binds to a stem-loop element 

(trans-activating response element, TAR), located at the 5’ end of the nascent RNA 

transcript. This protein requires interactions with other cellular proteins to improve its 

function. Thus, enhanced transcription by Tat implies the recruitment of cellular proteins such 

as cyclin T and cyclin-dependent protein kinase-9 (Cdk9) [4, 7, 8, 12]. Transcription from the 
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HIV-1 LTR leads to the generation of different viral RNAs. These fall into three major classes: 

1) unspliced RNAs, which function as the mRNAs for the Gag and Gag-Pol polyprotein 

precursors, and are packaged into progeny virions as genomic RNA; 2) partially spliced 

mRNAs, which encode the Env, Vif, Vpu, and Vpr proteins; and 3) small multiply spliced 

mRNAs, which are translated into Rev, Tat, and Nef [4, 8, 12]. Since most cellular mRNAs 

are fully spliced before their transport out of the nucleus, the need for unspliced and partially 

spliced RNAs in the cytoplasm is a problem for HIV. This problem has been overcome 

through the evolution of a novel viral protein, Rev, and a cis-acting RNA element, the Rev 

responsive element (RRE) [4, 7-10, 12]. Three viral structural protein precursors — group-

specific-antigen protein (Gag), Gag-polymerase (Gag-Pol) and the envelope protein (Env) — 

are translated in the cytoplasm, and transported to the plasma membrane by vesicular, 

cytoskeletal or other routes. Nascent virions are assembled from these proteins on host 

membranes, and immature particles are released from the cells. Finally, maturation of the 

virions, which is triggered by the viral protease, results in a drastic reorganization of the core 

and the acquisition of virus infectivity [4, 8, 12]. 

 

 

3. HIV-2 Characterization  

 

Less consideration has been given to HIV type 2 comparing to HIV-1, due to its 

restricted endemicity. Also a lentivirus, HIV-2 is a closely related retrovirus to HIV-1, 

presenting ~60% similarity to HIV-1 at the aminoacid level in Gag and Pol, and 30-40% in the 

regions encoding the Env [15]. Besides these structural genes, HIV-2 also comprises the 

accessory proteins Tat, Rev, Nef, Vif, Vpr and Vpx (instead of Vpu as in HIV-1). In HIV-2, the 

molecular weight of some proteins varies from those on HIV-1. This is particularly true for 

surface glycoprotein gp125 (gp120 for HIV-1) and transmembrane glycoprotein gp32 (gp41 

in HIV-1) [15-17].  

In addition to genomic and structural similarity, HIV-2 reveals a parallel replication cycle 

with HIV-1. The main difference relies on the early phase, more precisely in the fusion even, 

since HIV-2 can use a much wider repertoire of both CC and CXC chemokine receptors 

including CCR1 to CCR5, CXCR2, and CXCR4 [18].  

Henceforth, only HIV-1 will be referred on this work, since every aspect of HIV-2, 

otherwise indicated, is considered to be analogous to HIV-1.  
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4. HIV-Cell Interaction  

 

Like all viruses, HIV-1 depends on the host cell machinery to support its replication. 

This fact prompted studies aimed at identifying host cell factors associated with HIV-1 

replication since the virus exploits many different cellular factors and pathways during its 

cycle [12]. Some cellular factors can help HIV-1 to complete its life cycle, named helper 

factors, and others can defend cells from viral infection by reducing or suppressing HIV-1 

replication, called restriction factors [12, 19]. Certain host factors have been demonstrated to 

participate in different pathways of innate immunity and antiviral defenses [20-28]. Also, 

several authors recently turned to RNA interference (RNAi) screenings to uncover new host 

proteins important in HIV-1 cycle [29-34].  

 

4.1. Innate antiviral defenses 

 

Viruses that invade mammalian cells are recognized by different innate responses 

through pattern-recognition receptors from different pathways: TLR-dependent pathway 

characterized by Toll-like receptors [20-23]; and RIG-I like helicases (RLH)-dependent 

recognition, which is associated to mitochondrial antiviral pathway [22-24]. Mitochondrial 

antiviral immunity involves the detection of viral RNA by intracellular pattern-recognition 

receptors (PRRs) belonging to the RLH family. The convergence of these and other signaling 

molecules to the outer mitochondrial membrane results in the rapid induction of antiviral 

cytokines including type-1 interferon (IFN) [22-24].  

RLH signaling pathway begins with the recognition of the viral intermediates, double-

stranded RNA (dsRNA) or 5’triphosphate single stranded RNA (ssRNA), by RIG-like family of 

helicases, retinoic acid inducible gene-I (RIG-I) or melanoma differentiation associated gene-

5 (MDA-5). Upon ligand binding, RIG-I or MDA5 undergoes a conformation change allowing 

for the interaction of the RLH Caspase activation and recruitment domain (CARD) with the 

CARD-containing virus-induced-signaling adapter (VISA), also known as MAVS, IPS-1, and 

Cardif (Figure 5). VISA signals through TNF receptor associated factor (TRAF)3 or TRAF6 to 

activate kinases leading to the nuclear translocation of IFN regulatory factor (IRF)3-IRF7 and 

Nuclear factor kappa B (NF-κB), respectively, resulting in the transcription of type-1 IFN [22, 

24]. Several regulatory molecules regulate this response, in a positive or negative manner. 

Laboratory of genetics and physiology 2 (LGP2) was thought to inhibit RIG-I and augment 

MDA-5-mediated responses [24], but more recently evidences showed that LGP2 facilitates 

viral RNA recognition by RIG-I and MDA5 through its ATPase domain [25]. Ligand-activated 

RIG-I is regulated through proteosomal degradation after ISGylation by IFN-stimulated gene 
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15 (ISG15) or after lysine 48 ubiquitination by Ring finger protein 125 (RNF125). On the 

other hand, lysine 63 ubiquitination of RIG-I by tripartite motif-containing 25 (TRIM25) 

augments RIG-I-VISA interactions and enhances downstream signaling, whereas RIG-I-VISA 

interactions are inhibited by an autophagy regulator (Atg5-Atg12). The protein nucleotide-

binding domain and leucine-rich-repeat-containing family 1 (NLRX1) functions as an inhibitor 

of VISA signaling from within the mitochondria. Also, the removal of ubiquitin moieties from 

TRAF3 by the deubiquitinase OTU domain-containing 5 (OTUD5) prevents TRAF3 

associations with downstream kinases, thereby inhibiting RLH signaling. At the most distal 

level, phoshorylated IRF3 is targeted for proteosomal degradation by the peptidyl-prolyl 

isomerase 1 (PIN1) [22, 24]. Understanding the role of these regulators could bring some 

light into innate antiviral responses regarding HIV-1.  
 

 

Figure 5. Regulators of RLH signaling. Intracellular signaling responses to viral infection begins with the 

recognition of the viral intermediates by the RIG-like family of helicases (RLH). After ligand binding, RIG-I or 

MDA5 undergo conformational changes, allowing the interaction between the VISA’s CARD and the CARDs of 

RIG-I or MDA5. VISA-mediated signaling results in transcription of type-I IFNs through activation of IRF3-IRF7 or 

NF-κB mediated by TRAF6 or TRAF3, respectively. Several regulatory molecules (shown in red) regulate this 

response and the inhibitory (red lines) and stimulatory (green arrows) effects of these molecules on RLH signaling 

are illustrated. Adapted and modified from Moore, C. B. and J. P. Ting (2008). Immunity 28(6): 735-9. 

 

Another integral component of innate antiviral defense is post-transcriptional regulation 

mediated by microRNAs (miRNAs) [35]. Since viruses are dependent on cellular machinery 

for their survival and replication, interactions between viral transcripts and host machinery for 
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translation, storage and degradation of mRNAs emerge as a significant aspect of antiviral 

response. This process of RNA turnover can occur in cytoplasmic foci named mRNA 

processing bodies (P-bodies), also associated with translational repression and              

RNA-mediated silencing [36-38]. Recent studies reveal that miRNA effectors that are 

simultaneously P-bodies components cause suppression of HIV-1 replication. In fact, some 

of these factors like RNA helicase RCK/p54 and protein GW182 were demonstrated to 

repress HIV-1 gene expression by preventing viral mRNA translation, as well as other 

P-bodies components such as protein LSm1 and 5'-3' exoribonuclease XRN1 [26]. In fact, 

knockdown of RCK/p54 and LSm1, since it leads to P-bodies disruption [36], results in 

enhanced virus production [26]. Furthermore, HIV-1 mRNAs physically associate with 

Argonaute 2 (Ago2), a central component of RNA-induced silencing complex (RISC), and 

co-localize with cellular proteins required for miRNA-mediated silencing such as RCK/p54 

and Ago2 in P-bodies [26]. Others proteins such as decapping enzyme DCP1A, nuclear 

RNase type III RNASEN (also known as Drosha) and enhancer of mRNA deccaping EDC4 

have also been pointed out as key players in RNA turnover [36-38].  

Despite all efforts, the knowledge about the interactions between RNA silencing and 

HIV-1 is minor. There are four kinds of interactions that seems to occur in HIV-1 infection: 1) 

RNAi of viral origin blocking viral RNA; 2) RNA silencing of viral origin down-regulating 

cellular mRNA; 3) cellular miRNAs targeting viral RNA; and 4) cellular miRNA                

down-regulating cellular mRNAs encoding for cellular proteins necessary for virus replication 

[27]. Moreover, HIV-1 infection has been suggested to exert a suppressive effect on miRNA 

processing and RNA-silencing, by producing viral suppressors of this pathway [35, 27]. 

Regarding the use of RNA interference (RNAi) technology, the forced overexpression of 

short hairpins RNAs (shRNAs) and small interfering RNAs (siRNAs) in cells might also have 

the potential to exhaust the cellular machinery for RNA silencing, complicating the 

interpretation of biological outcomes. Whether these influences might significantly affect the 

siRNA and shRNA screens for HIV-1 cofactors remains to be determined. Moreover, when 

shRNA-cell clones are infected by HIV-1, the shRNA-silencing of targeted mRNAs would 

have already been completed and would be unlikely influenced by the effects of infection on 

RNAi activities [39].  

The increasing knowledge of the interactions between viral transcripts and host cell 

factors involved in RNA turnover will be essential for the discovery of new targets that could 

be used to design new therapeutic strategies. 
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4.2. RNA interference and gene silencing 

 
 

RNA interference (RNAi) is a biological phenomenon in which small dsRNA molecules 

present in the cytoplasm of a cell lead to the destruction of cognate mRNAs. The substrate of 

this pathway is small interfering RNAs (siRNAs) which consist on 21-23 nucleotides duplexes 

capable of direct sequence-specific inhibition of gene expression by mRNA degradation [36, 

40-42]. Others dsRNAs have also been described to trigger small RNA-guided gene 

silencing pathways in mammals, such as microRNAs (miRNAs) [37, 41-43]. miRNAs are 18-

23 nucleotide RNA molecules which bind usually with imperfect complementarity to their 

target mRNAs, leading to their repression [38, 44, 45]. Although siRNAs and miRNAs differ in 

their mechanism of biogenesis, their functions are connected by members of the conserved 

family of Argonaute (Ago) proteins, associated to RNA-induced silencing complexes (RISCs) 

[37, 41, 43, 44].  

 

 

Figure 4. RNA silencing by miRNAs and siRNAs. MicroRNAs (miRNAs) are transcribed by RNA Polymerase II 

as primary-miRNAs (pri-miRNAs), which are processed by Drosha into pre-miRNAs. These pre-miRNAs, after 

exported to cytoplasm by Exportin 5, are cleaved by Dicer, leading to the formation of duplexes miRNA/miRNA*. 

In steps shared with siRNA (small interfering RNA) pathway, one of the strands is incorporated to RNA-induced 

silencing complex (RISC). This complex leads to mRNA targeting and subsequent degradation in cytoplasmic foci 

named P-bodies. RNAs assembled in P-bodies can become available for translation. Adapted and modified from 

Scaria, et al. (2006). Retrovirology 3:68 
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The gene silencing mediated by miRNAs begins with the miRNAs processing by RNA 

Polymerase II as primary microRNAs (pri-miRNAs) which are imperfect RNA hairpins of 

hundreds to thousands of base pairs (Figure 4). Subsequently, pri-miRNAs are processed in 

the nucleus by the microprocessor complex comprising DGCR8 and RNA III endonuclease 

RNASEN to a stem loop structure, the pre-miRNA. The exportation of pre-miRNA to the 

cytoplasm is mediated by the nuclear export factor Exportin-5. Cytoplasmic pre-miRNAs are 

then cleaved by DICER, another RNA III endonuclease, leading to the formation of 18-23-

base pair duplexes miRNAs/miRNAs*. The miRNA/miRNA* is then incorporated in RISC, 

where the miRNA* strand is degraded and miRNA serves as a mature strand or guide 

strand. The incorporation of the mature strand promotes the activation of RISC, which is not 

possible without the catalytic activator Ago2. RISC is then capable of targeting a mRNA with 

complementary sequence to anti-sense strand of the miRNA. The grade of sequence 

complementarity will determine the final step of the pathway: with perfectly complementary 

sequence, the mRNA will be degraded; with partially complementary sequence, there will be 

translation repression, which is the most common result in miRNA pathway [37, 40, 42-44].  

The siRNA-mediated silencing is parallel to the process above, differing in the 

beginning which initiates with the cleavage of long dsRNAs into siRNAs by the RNA III 

endonuclease Dicer (Figure 4). The duplex siRNA is unwound and one of the two strands is 

incorporated into RISC. This complex, along with Ago2, supports mRNA targeting in a similar 

manner as in miRNA-mediated gene silencing, but the result is always cleavage and 

subsequent degradation of the transcript [35, 40, 41, 44, 46-48].  

RNAi, for its characteristics, became a useful lab tool for understanding viral-host 

interactions. Researchers take advantage of this pathway by directly transfecting siRNAs or 

by delivering transgenes encoding short hairpins RNAs (shRNAs), which are processed by 

Dicer into siRNAs [27, 49].  

 

 

4.2.1. siRNAs and shRNAs screenings 

 

Three screens that used siRNA pools to identify cellular proteins important in HIV-1 

replication were reported in 2008 [29-31]. Intriguingly, the identities of the gene candidates 

discovered in these reports are highly divergent with very little overlap, as illustrated at [32]. 

Also, some well-known HIV-1 cofactors such as Sp1 transcription factor were not identified 

[39]. These evidences offer credibility to the notion that these approaches were not extensive 

as initially thought. However, many of those host factors can alter in different contexts of 

cellular metabolism, changing their importance in HIV-1 cycle. Moreover, differences in cell 

types, and how primary data sets and off-target effects are filtered have also been suggested 
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to account for the discovery of the many different HIV-1 cofactors in the screens [39]. Despite 

all these discrepancies, the technology of short-RNA-based screening is a developing and 

crucial tool to uncover all putative host factors required for HIV-1 replication.  

One limitation to the reported screens is the use of HeLa or HEK293T cells that are not 

physiological substrates for infection by HIV-1. Human T-cell lines, such as Jurkat cells, are 

better models, although the latter cells cannot be efficiently transfected with siRNAs. In 

addition, the use of a pseudotyped virus or a mutated strain of HIV-1 also limits the 

interpretability of some of the results. To overcome these limitations, Yeung et al. and Rato 

et al. performed recently a loss of function screen with short-hairpin-RNA (shRNAs) cloned in 

lentiviral vectors to allow the constitutive expression of the shRNAs in Jurkat T lymphocytes 

[33, 34]. This approach is remarkable not only for the advantage of employing cells 

physiologically infected by HIV-1, including primary T cells and macrophages [33, 39], but 

also for the selection of shRNA transduced Jurkat cells for extended duration before being 

subject to HIV-1 infection [33, 34]. This pre-infection selection for shRNA cell clones serves 

to eliminate clones affected in cell growth or survival, reducing the number of false positive 

genes identified in the screening. Jurkat T-cell clones, each expressing a single discrete 

shRNA, were subjected to infection by HIV-1, and then genes responsible for any alteration 

in viral replication were identified, completing the screening [33, 34, 39]. For the above 

reasons, shRNA screens have certain inherent and nuanced advantages over siRNA 

screening selected settings. 

RNAi screenings can also be employed in recognizing targets in a specific group of 

proteins, like kinases and phosphatases, as described by Rato et al. [34]. Protein 

phosphorylation is a well-characterized biochemical process for reversible regulation of 

protein activity. Both kinases and phosphatases are required for this crucial process that 

regulates many cellular processes in eukaryotes [50]. Moreover, they constitute nowadays 

the largest subset of the druggable genome, sustaining kinase/phosphatase modulation as 

approach for the development of novel therapeutic strategies [51]. For this purpose, Rato et 

al. performed an iterative shRNA screen in Jurkat cells which allowed the identification of 14 

different cellular proteins, involved in several cellular pathways that are essential for HIV-1 

replication. Outcome results demonstrated that the majority of these proteins are involved in 

steps prior to viral integration, maybe during entry into the cell and/or uncoating and also 

affecting viral transcription [34]. One of the identified proteins is serum/glucocorticoid 

regulated kinase (SGK), a serine/threonine protein kinase that activates certain potassium, 

sodium, and chloride channels, suggesting an involvement in the regulation of processes 

such as cell survival [52]. For the same reason, it could be implicated in virus-cell fusion [53, 

54]. Additionally, SGK is transcriptionally activated by the glucocorticoid receptor (GR) [55], 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0009276#pone.0009276-Loffing1
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which has been demonstrated to interact with HIV viral protein Vpr within a complex 

integrating VIP-1. Moreover, it has been suggested that the Vpr-GR interaction could induce 

apoptosis since NF-kB inhibition by Vpr seemed to be GR-dependent [56], implicating SGK 

as an important HIV-1 cofactor.  

Another protein also identified by Rato et al. screen is CIB2, calcium and integrin 

binding family member 2. Little is known about this calcium binding regulatory protein, and 

almost everything is supported by its high homology with CIB1 [57]. CIB1 not only has a role 

in ion channels, but also interacts with integrins, proposing a role in cell-to-cell interactions, 

as well as in viral entry [53, 54, 58, 59]. Furthermore, CIB1 has been described to interact 

with several proteins involved in hemostasis, DNA damage response and apoptosis [60], 

such as Snk, inositol 1,4,5-triphosphate receptor and DNA-PKcs [61-64].  

DNA-dependent protein kinase (DNA-PK) is a nuclear serine/threonine protein kinase 

that is activated upon DNA damage. It is a three-protein complex consisting of a 470-kDa 

catalytic subunit (DNA-PKcs) and the regulatory DNA binding subunits, Ku heterodimer 

(Ku70 and Ku80) [65]. Although its role in HIV-1 integration has been strongly suggested 

[66], this retroviral step is not the only one affected. DNA-PK has been identified as an Sp1 

kinase [67] and has also been shown to phosphorylate the carboxy-terminal domain (CTD) of 

RNA polymerase II [68]. In fact, Chun et al. proposed that Tat and DNA-PK interact to 

increase the phosphorylation state of Sp1, resulting in upregulated expression of the HIV-1 

LTR [67]. These findings suggest a function for DNA-PK in transcription. 

 

 

5. Aim of the present work 

 

Human Immunodeficiency Viruses (HIV-1 and HIV-2) rely on host proteins to facilitate 

their replication, which may affect several cellular pathways. The study of some regulators of 

innate immune responses could add some light into HIV-1 infection, as well as clarifying the 

function of kinases and phosphatases during HIV-1 and HIV-2 replication at the level of viral 

entry and transcription. Both directions may contribute to a better knowledge of HIV-cell 

interaction and also lead to the discovery of new cellular targets for HIV-1 therapy. 

This work combined three main goals: 1) identification of new helper factors essential 

for HIV-1 replication related to innate immunity, more precisely, to miRNA-mediated silencing 

and RLH signaling pathways; 2) characterization of previously identified proteins by Rato and 

co-workers in HIV-2 replication cycle; and 3) evaluation of the mechanism by which CIB2 and 

SGK affect the early phase of HIV-1 life cycle, more precisely in viral fusion and transcription. 

  

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0009276#pone.0009276-Muthumani1
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Methods 

 

Plasmid propagation in Escherichia coli competent cells  

E.coli JM109 (New England Biolabs) (genotype: F´traD36 proA+B+ lacIq Δ(lacZ)M15/Δ(lac-

proAB) ginV44 e 14- gyrA96 recA1 relA1 endA1 thi hsdR17) was used for plasmid 

propagation of pHIV-1NL4-3 (AIDS  Research  and  Reference Reagent  Program,  Division  of  

AIDS,  NIAID,  NIH), pLKO.1 which contains a shSCRAM sequence or shRNA for each gene 

(Sigma, USA); pHEF-VSVg (AIDS  Research  and  Reference Reagent  Program,  Division  

of  AIDS,  NIAID,  NIH), pCMV-BlaM-Vpr (gift from Dr. Olivier Schwartz, Pasteur Institute) 

and pHIV-2ROD (gift from Francois Clavel, INSERM). E.coli TOP10F’ (Invitrogen, USA) 

(genotype: F'[lacIqTn10(TetR)] mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 

deoR nupG araD139 Δ(ara-leu)7697 galU galK rpsL (StrR) endA1 λ-) was transformed to 

propagate pcDNA3.1/ZEO(+) (Invitrogen, USA), pCMV-Tat (AIDS  Research  and  Reference 

Reagent  Program,  Division  of  AIDS,  NIAID,  NIH), and pCMV-CIB2 (cloned in João 

Gonçalves Lab). All plasmids are displayed in annexes. 

 

Plasmid DNA Extraction 

Transformed bacteria were grown in LB medium (for 1 L: 10 g triptone; 5 g yeast extract; 10 

g NaCl in 1 L ddH2O; pH=7,2) supplemented with 100 µg/mL ampicilin (USB, Cleveland, 

USA) at 37°C o.n. with agitation for pLKO.1, pcDNA3.1/ZEO(+), pCMV-Tat and pCMV-CIB2 

or at 30°C used for pHIV-1NL4-3, pHIV-2ROD, pHEF-VSVg and pCMV-BlaM-Vpr. 

The pHIV-1NL4-3 was used for production of HIV-1 viral particles (NL4-3 strain without VSV) 

with replication and infection ability. All plasmids extraction was carry out by midipreps 

preparation via JETStar 2.0 Plasmid Purification MIDI Kit (Genomed, Portugal) or via Invisorb 

Plasmid Midi Kit (Invitek, Berlin). pLKO.1 plasmids were extracted by minipreps preparation 

via Invisorb Spin Plasmid Mini Two Kit (Invitek, Berlin), according to manufacturers’ 

instructions.  

 

Cell culture conditions 

Human embryonic kidney (HEK) 293T (ATCC, VA, USA) and HeLa-P4 (HeLa-CD4-LTR-β-

gal, AIDS Reagent, MD, USA, contributor Dr. Richard Axel) cell lines were cultivated in 

Dulbecco’s minimal essential medium (DMEM) supplemented with 10% (v/v) heat-inactivated 

fetal bovine serum, 2 mM L-glutamine, 100 U/mL Penicillin, 100µg/mL Streptomycin, and 

0.25 μg/mL Amphotericin B (DMEM-10). Cells were grown throughout 70-80% of confluence 

in tissue culture flasks (75 cm3) (Orange Scientific, Belgium), at 37°C with 5% CO2. 
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Jurkat E6-1 T-cells obtained through the NIH AIDS Research and Reference Reagent 

Program (MD, USA, contributor Dr. Arthur Weiss) were cultured in RPMI-1640 supplemented 

with 10% (v/v) heat-inactivated fetal bovine serum, 2 mM L-glutamine, 100 U/mL Penicillin, 

100µg/mL Streptomycin, and 0,25 μg/mL Amphotericin B (RPMI-10). Jurkat cells expressing 

shRNA (shRNA clones) were cultured in RPMI-10 supplemented with 2 µg/mL of puromycin 

(Sigma, MO, USA). Cells were grown in tissue culture flasks (25 cm3) (Orange Scientific, 

Belgium), at 37°C with 5% CO2. All cell culture media and reagents, otherwise indicated, 

were from Lonza (Basel, Switzerland). 

 

Construction of lentiviral shRNA clones  

Jurkat cells were seeded at 5 x 104 per well in 96-well plates (6.9 mm Ø) (Orange Scientific, 

Belgium), 20-24 hours prior transduction. Transduction was performed by spinoculation [69] 

using lentiviruses-based vectors that express RNA-inducing shRNAs for the elected genes 

(contribution from Dr. Luís Moita, UBCSI, IMM). The conditions of spinoculation were 1 h, 

200 rpm, 20°C. Each well suffered a medium change 6 hours after the spinoculation using 

RPMI-10. In the following 96 hours, all cells were challenged gradually with increasing 

concentrations of puromycin ranging 0.5 and 1 µg. In order to isolate individual clones for 

each shRNA, puromycin resistant-cells were cloned with a ClonaCell™-TCS semi-solid 

medium (StemCell Technologies, Vancouver, Canada). For this purpose, 500 cells were 

collected from each population expressing a different shRNA and placed in 200 µL of semi-

solid medium supplemented with 0.5 µg/mL of puromycin. After 7 days in culture, individual 

clone clusters were recovered and grown in 96-well plates with RPMI-10 supplemented with 

2 µg/mL of puromycin. The resistant cell clones were expanded and cells were allowed to 

growth for 2 months for phenotype stabilization. 

 

Viral production 

For transfection assays, 5 x 105 HEK 293T cells were distributed in 6-well plates (34.7 mm Ø) 

(Orange Scientific, Belgium), 20-24 hours before. Cells were transfected by calcium 

phosphate transfection method [70, 71] with 5 µg of pHIV-1NL4-3, 5 µg of pHIV-2ROD, 5 µg of 

pHIV-1NL4-3 plus 0.5 µg of pHEF-VSVg, or 3.2 µg of pHIV-1NL4-3 plus 1.1 µg of 

pCMV-BlaM-Vpr, regarding the different assays. 

Afterwards, transfected cells were incubated for 20-24 hours, followed by a medium change 

(DMEM-10). Viral production quantification for HIV-1NL4-3 was performed 48 hours after 

transfection by p24CA ELISA, according to manufacturer’s recommendations using NCI-

Frederick Cancer Research and Development Center – AIDS Vaccine Program kit (NIH, 
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USA). For HIV-2ROD quantification, INNOTEST™ HIV Antigen mAb kit (INNOGENETICS, 

Belgium) was used 48 h post-transfection. 

 

Infection Assays 

Jurkat cells and shRNA clones were infected with HIV-1NL4-3, HIV-1NL4-3 with VSVg, and HIV-

2ROD at the indicated Multiplicity of Infection (MOI), by spinoculation [69]. After 6 h, cells were 

washed in phosphate-buffered saline solution (PBS) (1×) and medium was replaced. During 

the 7 day-infection assay, medium was replaced at day 4. HIV-1 replication was monitored in 

all experiments by p24CA ELISA (AIDS Vaccine Program), whereas HIV-2 replication was 

measured by INNOTEST™ HIV Antigen mAb kit (INNOGENETICS). 

 

Assessment of Cell Viability 

After 7 days of infection, Jurkat cells and shRNA clones viability was assessed by 

determining the cellular reducing capacity through the extent of AlamarBlue® (resazurin) 

reduction to resorufin. The amount of resorufin produced is proportional to the number of 

living cells and can be quantified at 570 nm by spectrophotometry. Briefly, cells were 

incubated with AlamarBlue® (Invitrogen, USA) for 4 h at 37°C and the absorbance was read 

in Infinite M200 plate reader (Tecan). Results were represented as % of AlamarBlue 

reduction, comparing to control cells. 

 

Virus-cell Fusion Assay and Flow Cytometry Analysis 

Jurkat cells and shRNA clones were submitted to infection to evaluate fusion event. All the 

experiment was carried on as demonstrated in [72]. Briefly, Jurkat cells and shRNA clones 

were seeded at 5 x 105 per well in 24-well plates (Orange Scientific, Belgium) and were 

incubated with virions containing BlaM-Vpr (50-500 ng p24CA) at 37°C for 3 h. Following 3 h 

of incubation, cells were washed in CO2-independent medium (GibCo, Invitrogen) and then 

loaded with CCF2/AM dye as described by the manufacturer (Aurora Biosciences). Cells 

were incubated with CCF2/AM dye for 1 h at room temperature. After two washes with CO2-

independent medium, the BlaM reaction was allowed to develop for 7 h at room temperature 

in 200 µL of CO2-independent medium supplemented with 10% FBS and 2.5 mM probenecid, 

a nonspecific inhibitor of anion transport (Sigma, MO, USA). Finally, infected and uninfected 

cells were washed and fixed with 1.2% paraformaldehyde in PBS. Uninfected cells were 

used as negative controls, as well as HIV-1NL4-3-infected cells. The change in emission 

fluorescence of CCF2 after cleavage by Blam-Vpr chimera from green (520 nm) to blue (447 

nm) was monitored by flow cytometry, indicating the percentage of cells where fusion 
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occured. BD FACSAria (BD Bioscience, CA, USA) was used to acquire 10,000-gated events 

from each sample. Data were analyzed using FlowJo software (Tree Star, OR, USA). 

 

Expression Assays 

The extent of transcription was determined as a measure of β-galactosidase expression by 

Chlorophenol red-β-D-galactopyranoside (CPRG) colorimetric assay, according to the 

manufacturers’ recommendation (Roche, Germany) and as described in [73]. For this 

purpose, HeLa-P4 cells containing the β-gal gene under the control of HIV-LTR were seeded 

at 5 x 104 cells per well in 24-well plates (14,5 mm Ø) (Orange Scientific, Belgium), 20-24 

hours prior transfection with pCMV-Tat alone or in several combinations with pCMV-CIB2, 

pLKO.1 shRNA CIB2, pLKO.1 shRNA DNA-PKcs, pLKO.1 shSCRAM, pcDNA3.1ZEO(+) and 

several concentrations (up to 2 µg of total DNA), as indicated in the legend of the figures. 

Total amount of DNA was normalized with pcDNA3.1ZEO(+). Transfections were performed 

with FuGENE® HD Transfection Reagent (Promega Corporation, USA) according to 

manufacturers' protocol. After 48h, β-galactosidase expression was measured by Infinite 

M200 plate reader (Tecan). 

 

Statistical Analysis 

Statistical significance was determined using the Paired t-test. Differences were considered 

statistically significant when p≤0.05. Analyses were performed using the Graphpad Prism 4.0 

software (GraphPad Software, CA, USA). 
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Results 

 

1. RNAi screening towards antiviral responses 

1.1 shRNA screening to isolate HIV-1 resistant Jurkat T-Cells 

 

To identify host factors essential for HIV-1 replication we developed a shRNA screen in 

Jurkat T-cells using a RNAi lentiviral library. This library includes 25 shRNAs corresponding 

to 5 human genes regarding miRNA-mediated silencing, and 35 shRNAs corresponding to 7 

human genes responsible for regulating the mitochondrial antiviral signaling pathway, 

composing a total of 5 shRNAs for each gene. The chosen genes concerning miRNA 

pathway encode for DICER, RNASEN (also known as Drosha), EDC4 (enhancer of mRNA 

deccaping 4), DCP1A (mRNA-decapping enzyme 1A), and TNRC6A (GW182-related). For 

the RLH signaling, the following regulators were selected: ISG15, ATG5, ATG12, RNF125, 

OTUD5, LGP2, and PIN-1. All of these regulators are involved in innate immune responses, 

particularly in IFN production (see Figure 5).  

As described in Figure 6, lentiviral-based vectors that express RNA-inducing shRNAs 

for each gene were used to transduce Jurkat cells at an MOI of 1. For 96 hours, transduced 

cells were challenged gradually with increasing concentrations of puromycin and then cloned 

with a ClonaCell™-TCS semi-solid medium (StemCell Technologies, Vancouver, Canada). 

This method was chosen for its ability to simultaneously select and clone. We obtained 152 

individual shRNA-transduced Jurkat cell clones after this procedure. To identify regulators 

essential for HIV-1 replication but innocuous for T-cell viability, individual shRNA clones were 

expanded and cultured for 2 months in medium supplemented with puromycin. At this stage, 

the number of Jurkat shRNA clones that survived was reduced to 19 (Table 1), which may be 

due to cytotoxic effects resulting from gene knockdown in cells cultured for 60 days. 

 

Figure 6. shRNA screen in Jurkat cells. 

shRNA encoding lentiviral particles were 

used to transduce Jurkat T cells. After 

ClonaCell-TCS Method, shRNA Jurkat 

clones were obtained, expanded and 

allowed to growth for 2 months to identify 

cellular proteins essential for HIV-1 

replication but not essential for the cell 

viability. 
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Gene 
Symbol 

Name and Features shRNA 
# shRNA 
clones 

DICER1 
Double-stranded RNA-specific endoribonuclease type III  
Required for formation of RISC and to process precursor miRNAs and siRNAs.  

E6 3 

E8 2 

RNASEN 
DROSHA, Double-stranded RNA-specific endoribonuclease type III  
Core nuclease that executes the initiation step of miRNA processing in the nucleus by 
cleaving pri-miRNA to release pre-miRNA. 

B5 2 

C5 1 

EDC4 
Enhancer of mRNA decapping 4 (or Hedls)  
Component of a decapping complex containing DCP1A and DCP2, seems to play a role in 
mRNA decapping. Component of P-bodies. 

- 0 

DCP1A 
mRNA decapping enzyme 1A  
Part of a cytoplasmic complex in P-bodies containing proteins involved in mRNA 
decay, including XRN1 and LSm1. 

- 0 

TNRC6A 
Trinucleotide repeat containing 6A protein (or GW182) 
Plays a role in RNA-mediated gene silencing by both miRNAs and siRNAs. The protein 
associates with mRNAs and Argonaute proteins in P-bodies.  

F3 1 

F5 2 

ISG15 
Interferon-stimulated protein or ISG15 ubiquitin-like modifier 
Seems to display antiviral activity during viral infections by conjugating to intracellular 
target proteins after IFN-α or IFN-β stimulation. 

B4 1 

ATG5 
ATG5 autophagy related 5-like 
May play an important role in the apoptotic process, being essential for autophagy 
when conjugated to ATG12. 

- 0 

ATG12 
ATG5 autophagy related 12 homolog 
Required for autophagy. An autophagy regulator complex containing Atg5-Atg12 
inhibits RIG-I-MAVS interactions. 

- 0 

RNF125 
Ring finger protein 125 
E3 ubiquitin ligase that acts as a positive regulator in the T-cell receptor signaling 
pathway. Promotes degradation of ligand-activated RIG-I. 

- 0 

OTUD5 
OUT domain containing 5 (or DUBA) 
Suppresses the type I interferon-dependent innate immune response by cleaving the 
polyubiquitin chair from TRAF3. 

G2 2 

LGP2 
RNA helicase likely ortholog of mouse D11LGP2 
Facilitates viral RNA recognition by RIG-I and MDA5 through its ATPase domain. 

D6 2 
D10 3 

PIN1 
Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 
Essential isomerase involved in regulation of mytosis. Inhibits IRF3 activity during RLH 
signaling. 

- 0 

 

 

Subsequently, to screen which viable shRNA clones were resistant to HIV-1 replication, 

an infection assay was performed for each individual clone. Since several clones were 

originated from the same lentiviral particles, only 10 different shRNA clones were infected 

with HIV-1NL4-3 VSVg with a MOI of 1. After 7 days of infection, viral replication was measured 

by p24CA ELISA in supernatant of infected cultures and resistance to HIV-1 replication was 

determined. To assure that the RNAi pathway was activated by the stable expression of 

shRNAs and did not interfere with HIV-1 replication leading to off-target effects, we used 

scrambled shRNA (shSCRAM) as control. This is a non-specific shRNA that activates the 

RNAi pathway, without targeting any human genes. As shown in Figure 7, shRNA RNASEN 

C5 and ISG15 B4 clones were resistant to HIV-1 replication without compromising cell 

viability. Indeed, when compared to wild-type Jurkat cells, these 2 shRNA clones exhibited 

more than 20% reduction in HIV-1 replication, indicating that our original shRNA screen was 

Table 1. Genes selected to the construction of shRNA clones. 
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able to efficiently isolate T-cells clones resistant to HIV-1 replication. However, we could also 

identify two clones that showed an 80% increase in HIV-1 replication, implicating a restriction 

nature in TNRC6A and OTUD5 proteins. 
 

   

    

 

 

 

 

 

2. Searching for more evidences 

 

In the second part of this dissertation, the work developed focus on 13 of the 14 

proteins identified by Rato et al. and their effect in HIV-2 replication cycle. In addition, several 

assays regarding LTR transcription and virus fusion were performed in order to establish the 

exact step of HIV-1 early phase in which SGK and CIB2 play their function. 

 

Figure 7. HIV-1 infection of resistant shRNA clones. a) One to two shRNA clones for each target gene were 

infected with HIV-1NL4-3 VSVg (MOI of 1) and after 7 days of infection, HIV-1 replication was measured by 
p24

CA
 levels in the supernatant. b) Viability of shRNA clones after 7 days of infection with HIV-1NL4-3 VSVg. 

Values are relative to infected Jurkat cells, and results are shown as mean ± SD of 4 (a) or 3 (b) independent 

experiments. *P < 0,05 versus control. 

a) 

b) 
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2.1 Effect of identified proteins on HIV-2 replication cycle 

 

First, we evaluated if the host factors previously identified by Rato et al. as helper 

factors in HIV-1 could also have an inhibitory effect in HIV-2 replication. For this purpose, we 

challenged shRNA clones with HIV-1NL4-3 and HIV-2ROD using an MOI of 1 for 7 days and 

assessed both viral amounts in the supernatant and cellular viability (Figure 8). 

 

 

 

 

 

 

As represented in Figure 8a, we can observe a reduction in the amount of virus in all 

tested shRNA clones with both HIV-1, as already reported by Rato et al., and HIV-2. 

However, the decrease in viral amount was less dramatic for some clones in HIV-2 

Figure 8. shRNA clones resistant to HIV-1 and HIV-2 infection. a) Each shRNA clone was infected with 

HIV-1NL4-3 and HIV-2ROD (MOI of 1) and after 7 days of infection, HIV replication was measured by p24
CA

 (HIV-
1) or p27

CA
 (HIV-2) levels in the supernatant. Values are relative to infected Jurkat cells. b) Viability of shRNA 

clones after 7 days of infection with HIV-1NL4-3 and HIV-2ROD. Values are relative to infected Jurkat cells. This 
figure is representative of two independent experiments. 

b) 

a) 
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replication, particularly CIB2, EZH2 and STK24, when comparing to HIV-1 infection. 

Moreover, these clones show a higher amount of HIV-2 when compared to other shRNA 

clones. Since all shRNA clones exhibited viability values similar to the control (Figure 8b), 

these results were not due to an outcome of cell viability decrease. 

 
 

2.2 Virus-cell fusion is affected by CIB2 and SGK 

 

Since CIB2 potentially interacts with integrins [58, 58] and both SGK and CIB2 are 

involved in regulation of several ion channels [52-54], we inquired if these proteins could 

affect virus-cell fusion. To get a better understanding on the blocking effect of host-protein 

expression by shRNA in HIV-1 entry, we challenged Jurkat cells, shSCRAM, CIB2 and SGK 

shRNA clones with HIV-1NL4-3 particles with β-lactamase-Vpr chimeric proteins (BlaM-Vpr) 

incorporated. As a result of virion fusion, BlaM-Vpr is delivered into the cytoplasm of target 

cells and this transfer is detected by enzymatic cleavage of the CCF2 dye. BlaM cleaves the 

β-lactam ring in CCF2 loaded in target cells, changing its fluorescence emission spectrum 

from green (520 nm) to blue (447 nm) and thereby allowing fusion to be detected by flow 

cytometry. 

 

 

 

 

Figure 9. CIB2 and SGK shRNA clones lead to reduced fusion events. Jurkat cells, shSCRAM, CIB2 

and SGK shRNA clones were infected with HIV-1NL4-3 with BlaM-Vpr (50-500 ng p24
CA

) and after 3h of 
infection, cells were submitted to incubation with CCF2 substrate. Fusion was analyzed by flow cytometry 
using a violet laser for excitation of CCF2. Values are relative to Jurkat cells infected with HIV-1NL4-3 with 
BlaM-Vpr. This figure is representative of the two assays performed.  
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After infection with HIV-1NL4-3 virions containing BlaM-Vpr, ~20% of the shSCRAM and 

Jurkat cells displayed a higher ratio of green to blue fluorescence, indicating that fusion 

occurred. The shift to increased blue fluorescence induced by viral infection was reduced to 

7,65% and 8,10% in CIB2 and SGK clones, respectively (Figure 9). This decrease by half 

suggests an involvement of CIB2 and SGK in viral fusion.  

 

 

2.3 CIB2 as an enhancer of Tat transcription 

 

Rato et al. demonstrated that the knockdown of CIB2 did not affect HIV-1 transcription; 

however no overexpression assays were ever done. For this reason, we sought to 

investigate whether CIB2 overexpression could affect Tat transactivation of HIV-1-LTR 

expression. To determine the most suitable concentration to use in subsequent assays, 

HeLa-P4 cells were transiently cotransfected with increasing concentrations of Tat, and the 

concentration 0.2 µg was chosen (data not shown). Then, Tat was either cotransfected with 

0.5 µg or 1 µg of CIB2, using the same concentrations of pcDNA as a control. By examining 

β-Galactosidase activity (Fig. 10a), the relative expression of CIB2 exhibited a significant 

increase on LTR-directed transcription compared with control pcDNA. Additionally, a 

knockdown assay was performed using a shRNA for CIB2 (0.5 µg or 1 µg) to transfect with 

Tat, and shSCRAM was used as control. Here, no noteworthy effect could be observed for 

shRNA against CIB2 (Fig. 10b).  

Next, we wanted to evaluate if the increase in transcription by CIB2 could be a result 

from an interaction with DNA-PKcs, since several findings suggest a function for DNA-PK in 

transcription, as well as other proteins that interact with this kinase [67]. Thus, we proceeded 

to the cotransfection of Tat, with increasing concentrations of CIB2 and shRNA DNA-PKcs, 

as shown in Figure 10c. As a control, increasing concentrations of CIB2 were transfected 

with Tat. Simultaneously, Tat was cotransfected with the corresponding concentrations of 

shRNA DNA-PKcs, and shSCRAM was used as control. As demonstrated in Figure 10c, 

knockdown of DNA-PKcs with overexpression of CIB2 led to a decrease in transcription by 

Tat. This result appears to be more significant than the reduction observed with the 

knockdown of DNA-PKcs. Taken together, our results suggest that CIB2 leads to increased 

LTR-driven expression, possibly via interaction with DNA-PKcs.  
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Figure 10. CIB2 has an effect in LTR-driven transcrition. a) pCMV-CIB2 or pcDNA3.1ZEO(+) was 

cotransfected with 0.2 µg of pCMV-Tat, using the concentrations 0.5 and 1 µg. b) shRNA CIB2 or 

shSCRAM was cotransfected with 0.2 µg of pCMV-Tat, using the concentrations 0.5 and 1 µg. c) pCMV-

CIB2 was cotransfected with shRNA DNA-PK in the same proportion. Transfection of pCMV-CIB2 was used 
as control. shRNA DNA-PK was transfected with the same concentrations, and shSCRAM was used as 
control. All wells were also transfected with 0.2 µg of pCMV-Tat. LTR-driven expression was determined by 
β-Galactosidase activity. Results are shown as mean ± SD of 5 (a, b) or 9 (c) independent experiments. 

*P<0,05 versus pcDNA (n=5). 
# # #

P<0.001 versus CIB2 (n=9). **P<0.05 versus 0,5µg shSCRAM (n=5). 

***P<0.001 versus 1µg shSCRAM (n=5).  

c) 

a) b) 



 
 

35 
 

Discussion 

 

Understanding the role of cellular proteins in cell types targeted by HIV during infection, 

such as T-cells, is critical to uncover the contribution of these factors towards disease 

progression. Since cellular proteins are less variable than viral proteins, the identified host 

proteins can potentially be used as antiviral targets, leading to therapeutic promise. To 

identify new HIV-1 cofactors, we performed a shRNA screen in Jurkat T-cells using a RNAi 

lentiviral library focused on two specific pathways, instead of a generalized genome-wide 

library, emphasizing the diversity of RNAi technology. These pathways are both involved in 

antiviral innate immunity: miRNA-mediated silencing pathway and RLH signaling pathway. 

Regarding miRNA pathway, we obtained clones for three genes, specifically RNASEN, 

DICER, and TNRC6A, failing this task for genes EDC4 and DCP1A. As respect to RLH 

signaling pathway, from the seven genes under study we only got clones for ISG15, LGP2 

and OTUD5 genes. Both EDC4 and DCP1A are involved in specific decay pathways that 

recognize several mRNAs and promote their decapping [36, 74]. The failure of these 

pathways possibly assures a continuous process of translation, which may implicate a 

problematic cost of energy, conceivably leading to cellular arrest and/or cell death. Since all 

mRNAs are available for protein synthesis and are not retained for later return into 

translation, cellular machinery of transcription could also be overexpressed and 

uninterruptedly synthesizing new mRNAs. The deregulation of these mechanisms might be 

responsible for the cytotoxic effect observed in EDC4 and DP1A shRNA clones. Some genes 

encoding for regulators of RLH signaling are also associated to cell development and 

homeostasis, particularly RNF125, PIN1 and the complex ATG5-ATG12. RNF125 is a 

positive regulator in T-cell receptor signaling pathway [75] whereas PIN1 is involved in 

regulation of mitosis [76] and in degradation of inducible nitric oxide synthase [77]. In 

addition, the complex ATG5-ATG12 plays an important role in autophagy, an essential 

process for physiological homeostasis [78]. Therefore, the knockdown of any of these 

proteins could implicate a deregulation of essential cellular mechanisms, suggesting an 

explanation for our inability to obtain positive clones without compromising cellular viability. 

According to our results for miRNA pathway, RNASEN C5 shRNA clone showed a 

significant decrease in HIV-1 replication, indicating a positive role in HIV-1 cycle. RNASEN, 

as the RNA endonuclease III responsible for the cleavage of pri-miRNA into pre-miRNA, 

plays an important role in miRNA-mediated silencing [46]. Down-regulation of this protein 

leads to a suppression of miRNA pathway which impairs interaction between RNA silencing 

and HIV-1. Although earlier evidences reported that the inhibition of RNASEN by siRNA 

increases HIV-1 replication [79], our results could also implicate a deregulation of RNA 
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silencing but in a different direction. Indeed, this suppression of RNASEN can affect 

specifically one kind of interaction, viral miRNAs down-regulation of cellular mRNA [27], 

suggesting a manipulation of immune response by HIV-1. Our results can also be explained 

by the use of different cell lines, as Nathans et al. used 293T cells and we returned to T 

lymphocytes, more precisely Jurkat cells. Although the aim of this screen was to identify 

helper factors, we obtained unexpected results suggesting that two genes could be 

restrictions factors. One of these genes is TNRC6A. As shown in Figure 7, the knockdown of 

TNRC6A led to an increase in HIV-1 replication, proposing a viral repressor role for this gene 

probably by preventing HIV-1 mRNA translation. Our work confirms previous evidences of 

enhanced viral replication when TNRC6A is down-regulated [26], while using Jurkat T cells, a 

physiological model for infection by HIV-1.  

Regarding RLH signaling, we identified two proteins, ISG15 and OTUD5, with opposite 

effects in HIV-1 replication. While ISG15 B4 shRNA clone showed a robust decrease in   

HIV-1 replication indicating that it could act as a helper factor, OTUD5 exhibited an increase 

suggesting it as a restriction factor. When challenged with HIV-1NL4-3, ISG15 B4 shRNA clone 

showed a robust decrease in HIV-1 replication, proposing ISG15 as a helper factor. ISG15 

seems to display a role during viral infections by conjugating to intracellular target proteins 

after IFN-α or IFN-β stimulation [80]. In fact, the evidence that IFN-α stimulates the induction 

of ISG15 [81] prompted a study by Okumura and colleagues [80] in which they show that 

overexpression of ISG15 inhibits HIV-1 release from infected cells. This effect was reverted 

when ISG15 expression was inhibited by siRNA [80]. For this reason, we would expect an 

enhanced level of viral replication with ISG15 knockdown. Instead, we observed a decrease 

in HIV-1 amount. This result, although controversial, could lead to a different direction 

towards understanding HIV-1 infection and innate immunity. Previous studies by Okumura et 

al. only focused on HIV-1 production, leaving a question concerning viral entry. Our results 

could indicate that ISG15 affect viral infectivity, influencing subsequent infections during a 

7 day-infection assay, and therefore reducing HIV-1 replication. OTUD5 is a deubiquitinase 

that prevents TRAF3-mediated activation of downstream kinases, thereby inhibiting RLH 

signaling and consequently type I IFN response [24]. Since a type I IFN response leads to an 

antiviral cellular state [81], OTUD5 down-regulation could positively regulate the IFN 

signaling, enhancing the antiviral response against HIV-1. This increased antiviral response 

was expected to have a negative effect in HIV-1 cycle, but instead we observed an opposite 

effect when we down-regulate OTUD5. This could mean a possible negative feedback by 

other regulator from RLH signaling, perhaps PIN1, mimicking OTUD5 function in order to 

guarantee a lower IFN response and therefore allowing a higher rate of HIV-1 replication. 
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RNAi screening performed by Rato et al. allowed the identification of 14 different 

proteins that assist HIV-1 replication, possibly playing an important role before viral 

integration in an early step of HIV-1 cycle, such as entry or uncoating. Development of small 

molecules that modulate the activity of these proteins may provide novel strategies for 

treatment of HIV/AIDS, particularly since the inhibition of these stages in the viral life cycle 

has already proven to be therapeutically effective. For this purpose, we attempted to assess 

two topics: 1) the effect of 13 of the 14 identified proteins in HIV-2 replication cycle; and 2) 

the mechanism by which CIB2 and SGK affect the early phase of HIV-1 life cycle, more 

precisely in viral fusion and transcription. 

Since HIV-2 has a reduced pathogenicity and slower disease progression than HIV-1 

[15, 82], it provides an important tool to study immune control during lentiviral infections. 

Identifying the host factors that account for controlled immunity will probably clarify the 

mechanisms responsible for the pathogenic nature of HIV-1 and may help uncover immune 

factors responsible for the control of HIV-2 infection. In order to establish the effect of the 

proteins identified by Rato et al. in HIV-2 life cycle, we compared the amount of virus in all 

tested shRNA clones challenged with both HIV-1 and HIV-2. Our results demonstrate that all 

proteins have an inhibitory effect in HIV-2 replication, as well as in HIV-1 cycle. This 

evidence could indicate that both HIV-1 and HIV-2 share some cellular pathways while 

hijacking these host factors to assure its survival. Since previous data demonstrated that all 

identified proteins have an effect on HIV-1 early phase, and presuming the same for HIV-2 

cycle, any difference in viral inhibition could highlight some knowledge into HIV-2 replication 

cycle. Indeed, some shRNA clones, particularly CIB2, EZH2 and STK24, showed a less 

drastic reduction in viral amount in HIV-2 replication, when comparing to HIV-1. Both CIB2 

and EZH2 could be involved in viral entry, due to either their connection to ion channels and 

integrins [53, 54, 58, 59] or their association to EED [34], respectively. The lower contribution 

of these proteins to viral entry could rely on the fact that HIV-2 can use a much wider 

repertoire of both CC and CXC chemokine receptors including CCR1 to CCR5, CXCR2, and 

CXCR4 [18]. Because STK24 is activated upon NRD1 phosphorylation, it has been proposed 

that STK24 could be incorporated in HIV-1 along with NRD1 and NRD2 [34]. This 

incorporation may not occur with the same efficiency in HIV-2 cycle, leading to the possibility 

that other cellular factors could perform a similar role. Further studies regarding the role of all 

13 proteins in HIV-2 replication might bring new perspectives in HIV-cell interactions. 

The characterization of the identified targets by Rato et al. is a succeeding tread, 

guiding to intrinsic knowledge of their role in specific steps of HIV-1 replication cycle. To 
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accomplish this, we performed virus-cell fusion and LTR-driven transcription assays against 

CIB2 and SGK shRNA clones.  

First, we attempted to assess whether CIB2 and SGK affect the specific step of the 

fusion event in HIV-1 early phase. Our results indicate a decrease in the percentage of cells 

subjected to viral fusion from ~20%, in Jurkat cells, to 7,65% and 8,10% in CIB2 and SGK 

clones, respectively. This reduction suggests an involvement of CIB2 and SGK in viral fusion. 

Since CIB2 interacts with integrins [83], and integrins have alrealdy been associated to HIV-1 

replication [58], the involvement of CIB2 probably focuses on this interaction. Knockdown of 

CIB2 could lead to a deregulation of integrin signaling, as a cytoplasmic effector in integrin 

α7Bβ1D signaling pathway [83], which could reduce HIV-1 replication. CIB2 possibly 

modulates the function of other integrins, and integrin modulation has been demonstrated to 

inhibit HIV infection, more precisely virus-to-cell and cell-to-cell transmission [84]. Also, this 

viral suppression could result from a decrease in NF-κB activation due to inhibition of 

integrins, as shown in macrophages [83]. Moreover, CIB2 is also related to ion channels [61], 

as well as SGK. The activation of certain potassium, sodium, and chloride channels by SGK 

suggests an involvement in the regulation of processes such as cell survival [52], which may 

control other cellular elements possible incompatible with HIV replication, such as 

intracellular pH and calcium levels [83]. Furthermore, ion channeling is strongly connected to 

chemokine signaling, which could affect HIV-1 entry although without blocking 

gp120/chemokine interaction [53, 85]. Moreover, both CXCR4 and CCR5 were demonstrated 

to transduce intracellular signals in monocyte-derived macrophages, activating K+ and Cl- ion 

channels and elevating intracellular calcium in response to their chemokine ligands [52]. The 

HIV-1 entry coreceptor activity of a chemokine receptor does not simply result from its 

expression in conjunction with CD4, but involves cell-specific determinants that enable fusion 

and productive infection [52]. For these reasons, we propose that both CIB2 and SGK could 

affect HIV-1 entry by deregulating chemokine signaling through inhibition of certain ion 

channels.  

Regarding CIB2, we perfomed the cotransfection with Tat and CIB2 which revealed an 

increase in β-gal level, implicating CIB2 as an enhancer of LTR transcription by Tat. As 

already stated by Rato et al., the knockdown of CIB2 did not affect transcription, which could 

demonstrate that CIB2 is not essential in HIV-1 transcription but nonetheless important to 

enhance expression by LTR. Since CIB2 potentially interacts with DNA-PKcs, we 

investigated a putative contribution of DNA-PK on CIB2 overexpression LTR-driven 

transcription. Outcome results from the cotransfection with CIB2, shRNA for DNA-PKcs, and 

Tat showed a strong inhibition of LTR transcription, even more significant than the one 

observed with the knockdown of DNA-PKcs. These data could indicate that CIB2 has an 



 
 

39 
 

enhancing effect in LTR-driven transcription by Tat, possibly due to DNA-PKcs. Indeed, our 

findings suggest a putative interaction between CIB2 and DNA-PKcs that might result in 

upregulated expression of the HIV-1 LTR.  

 

In conclusion, the results presented in this dissertation bring new insights for the 

complex interaction between HIV-1 and its cellular host. The identification of helper and 

restriction factors involved in miRNA-mediated silencing and RLH signaling pathways is an 

important step for a better understanding of innate antiviral immunity, particularly in T 

lymphocytes. Moreover, uncovering new targets through characterization of proteins in HIV-2 

replication cycle or either by assessing the specific step of HIV-1 cycle affected by each 

identified protein could instigate further studies involving cellular pathways and HIV-1 

replication. More importantly, these new studies could lead to novel antiviral strategies 

towards HIV-1 infection and maybe accomplish a more efficient treatment for AIDS.  
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Concluding Remarks 

 

RNAi technology constitutes an important tool to uncover cellular factors important for 

HIV-1 replication and to enrich the knowledge of HIV-cell interactions. However, several 

limitations are present and only future screens will improve the stringency of the selection, 

expand the cell types under study, and devise better strategies to address false 

positive/negative candidates.  

Since viruses are dependent on host machinery, all cellular mechanisms or its 

interveners may be important as antiviral factors. For this reason, short-RNA-mediated 

silencing and every related innate pathway have become relevant for understanding 

mammalian antiviral defenses and viral interference on them. The involvement of some P-

body components in RNA silencing seems clear, although it remains to be established the 

functional connection between miRNA-mediated regulation and P-bodies. A significant future 

challenge will be to uncover the steps that underlie RNA silencing of viral origin and its 

connection to HIV-1 life cycles. One step to accomplish that is to determine all HIV-1 

encoded miRNAs and then establish their role in evading cellular defenses. Another 

interesting point for future studies is to understand how some regulators of innate immunity 

could offer different outcomes regarding type I IFN signaling, and more precisely the 

mechanisms by which they affect HIV-1 infection.  

A better understanding of the mechanism by which the identified clones by Rato et al. 

affect HIV-2 replication may be important to uncover specific pathways hijacked by HIV-2. 

Although chemokine signaling has been reported to be involved in HIV-1 entry, the exact role 

chemokine-mediated activation of ion channels in fusion event remains unclear. To achieve 

this, it will be essential to discover the mechanism by which CIB2 and SGK regulate ion 

signaling. Even more, it is crucial to establish if the interaction between CIB2 and integrin 

α7Bβ1D has in fact an effect in HIV-1 replication. CIB2 was recognized as an enhancer of 

Tat activity in LTR-driven expression, but its role appears to be unnecessary to complete 

viral transcripion. The presumable interaction between CIB2 and DNA-PKcs given by our 

results is still a hypothesis that needs to be assessed. Further studies will be imperative to 

confirm this theory. Moreover, assessing other possible roles of CIB2 and SGK in HIV-1 early 

phase could provide other therapeutic approaches.  

The work presented in this dissertation proposes several functions of the identified 

proteins in HIV pathogenesis, but more important, incite further studies regarding HIV-cell 

interaction. 
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Annexes 

 
 

Plasmids 
 

 

Figure 11. Plasmid features and genomic map of pcDNA3.1/ZEO(+). This plasmid was used with CIB2 

construct in MCS (BamHI and XbaI). 

 

Figure 12. Plasmid features and genomic map of pLKO.1 puro. This plasmid was used with shRNA constructs 

for SCRAM, CIB2 and DNA-PKcs. Adapted from MISSION® shRNA (Sigma Aldrich). 

 

Figure 13. Plasmid features and genomic map of pHEF-VSVg. 
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Figure 14. Plasmid features and genomic map of pCMV-Tat.  

 

 

Figure 15. Plasmid features and genomic map of pHIV-1NL4-3. 

 

 


