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Abstract 

 

Malaria is one of the most widespread infectious diseases of our time. The global malaria map 

has been shrinking over the past 60 years, but today more people are at risk of suffering from malaria 

than any other time in history. In the past few years malaria has once again attracted more attention, 

partly because it is recognized that malaria spread in sub-Saharan Africa has increased in the recent 

years, mainly due to the development of drug resistances. 

Cryptolepine (1), is an indoloquinoline alkaloid, extracted from the West African climbing shrub 

Cryptolepis sanguinolenta (Lindl.) Schltr, a traditional herb used in folk medicine for the treatment of 

malaria. Several authors hypothesized that the mechanism of action of cryptolepine could be by 

inhibition of haemozoin formation in the digestive vacuole (DV) of the parasite, however in a 

microscopic fluorescence study, the indoloquinoline chromophore, was suggested to accumulate into 

specific parasite structures that could correspond to the parasite nuclei, and thus justifying its activity 

due to cytotoxic effects on DNA and topoisomerase II activity. 

Cryptolepine derivatives (3) have been synthesized through the incorporation of basic side-chains 

in the C-11 position of the 10H-indolo[3,2-b]quinoline scaffold and evaluated for their antiplasmodial 

and cytotoxicity properties. The derivative containing a conformationally restricted piperidine side-

chain (3n) presented IC50 values of 23-44 nM against chloroquine resistant strains and a selectivity 

index value of ca 1400, i.e. a 1000-fold improvement in selectivity when compared with 1. The 

introduced side chains are weakly basic, with pKa values in the terminal amine functionality ranging 

from 5.2 to 12.5, and are predicted to promote accumulation inside the DV to an extent similar to that of 

chloroquine. All compounds within this series showed the ability to interact with monomeric haematin 

(FPIX-OH), with a stoichiometry of 1:1 (3:FPIX-OH) and with association constants (Kass) values 

between 0.062 and 0.41 x106 M-1, comparable to chloroquine (Kass = 0.085 x106 M-1). The complex 

stabilization is assured by π-π stacking interactions modulated by the aromatic core, and H-bond 

between the terminal amine side chain and haematin carboxylate anions, thus capable to inhibit 

haemozoin formation in DV. However, localization studies of compound 3n inside parasite blood stages 

suggest an additional mechanism of action, like interactions with DNA, besides inhibition of haemozoin 

crystal growth. Cryptolepine derivatives (3) bind strongly to double-stranded d(GATCCTAGGATC)2 

oligonucleotide with association constants ranging from 105 M-1 to 107 M-1. Furthermore, molecular 

docking simulations showed that, in contrast with 1, compounds 3 are predicted to not intercalate into 

DNA double helix, binding essentially to single- and double-stranded DNA, with a stoichiometry of 2:1 

(3:DNA), through electrostatic and H-bonding interaction involving charged nitrogens. 

In order to explore the indolo[3,2-b]quinolin-11-one (quindolone) scaffold (4), and get new 

antimalarial chemotypes, we decided to synthesize a series of quindolones derivatives (5), targeting 

malaria parasite digestive vacuole and haeme detoxification pathway, through the introduction of N,N-
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diethylethanamine in the indolo[3,2-b]quinoline aromatic nucleus (N5,N10-alkylation). This reaction 

gave N,O- (94), N,N- (5) and O-(95) alkylated products containing two or one basic side-chains, which 

were evaluated for antiplasmodial activity against chloroquine-resistant P. falciparum W2 strain and 

cytotoxicity for HepG2 A16 hepatic cells. By incorporating alkylamine side chains and chlorine atoms 

in the quindolone nucleus we transformed the inactive tetracyclic parent quindolones (4, 91a and 91b) 

into moderate or highly active and selective compounds to the resistant P. falciparum W2 strain, with 

IC50 ranging from 51 to 2638 nM and with selectivity ratios up to 98. All the quindolone derivatives in 

the series showed the ability to complex FPIX-OH (1:1 stoichiometry) with associations constants (Kass) 

ranging from 0,074 to 0,14 x106 M-1, being the main intermolecular interactions due to π-π stacking 

interactions and H-bond between derivatives and haematin. 

Cryptolepine and the new antimalarial chemotype, quindolone, are suitable scaffolds for the 

design of active and selective compounds targeting parasite haemozoin detoxification pathway, with 

potential for development as antimalarial agents. 

 

KEYWORDS: Cryptolepine, indolo[3,2-b]quinolines, antiplasmodial, synthesis, Haem, DNA. 

 

 

 

 

 

 

 

 

 

 

 

 

 



| xi 
 

Resumo 

 

A malária ou paludismo é uma doença infecciosa provocada por parasitas do género Plasmodium 

e transmitida pela picada do mosquito fêmea do género Anopheles. A malária é uma das infecções mais 

difundida por todo o mundo. Apesar propagação ter diminuído nos últimos 50 anos, nos dias de hoje há 

mais pessoas em risco de contaminação com malária do que em qualquer outra época da história. Em 

2008, a malária era endémica em 108 países, contando com cerca de 247 milhões de casos reportados, 

3,3 mil milhões de pessoas em risco. Anualmente, entre 1 a 3 milhões de casos culminam em morte, dos 

quais, muitos são crianças com idade inferior a 5 anos. A malária é a principal causa de morte infantil 

em África, sendo que 60 % dos novos casos registados todos os anos ocorrem na África sub-Sahariana, 

onde ocorrem 90 % dos casos fatais de malária. Para além de ser um grave problema de saúde pública, a 

malária é também um problema sócio-económico, não só devido ao elevado investimento efectuado na 

prevenção e tratamento, mas também devido a custos indirectos resultantes da perda de productividade 

que advêm da elevada morbilidade e mortalidade. No entanto, recentemente a malária voltou a chamar a 

atenção da comunidade, muito porque foi reconhecido que o número de casos reportados em África tem 

aumentado nos últimos anos devido ao aumento de fenómenos de resistência nos parasitas aos fármacos 

utilizados para tratamento da infecção. 

Apesar da enorme variedade de compostos com actividade antimalárica, a sua eficácia contínua 

no entanto a ser reduzida devido aos fenómenos de resistência associados. A cloroquina (2) é uma 4-

amionoquinolina sintetizada em 1934 e tem sido um dos pilares do tratamento da malária nos últimos 60 

anos, sendo de consenso geral, que a sua actividade antimalárica se deva à inibição da formação do 

cristal de hemozoína no vacúolo digestivo do parasita. No organismo humano, o parasita ingere 

hemoglobina e digere-a, libertando os amino ácidos necessários para o seu desenvolvimento, e o heme, 

tóxico para o parasita. Este heme é então biocristalizado pelo parasita a hemozoina, um cristal inerte e 

não tóxico. A cloroquina, devido às suas propriedades básicas, apresenta a capacidade de se acumular 

no interior do vacúolo digestivo acídico e formar complexos estáveis cloroquina:heme, através de 

interacções π-π entre os anéis aromáticos, impedindo assim a formação da hemozoina e originando a 

morte do parasita. Vários autores referem ainda que a cloroquina apresenta também a capacidade de 

complexar com as faces em crescimento do cristal de hemozoina, inibindo assim o processo de 

cristalização. 

Nos últimos 30 anos, extractos de uma enorme variedade de espécies de plantas, incluindo muitas 

utilizadas na medicinal tradicional, têm sido avaliadas in vitro quanto à sua actividade antimalárica. O 

alcalóide criptolepina (1), constituinte maioritário da raíz da Cryptolepis sanguinolenta, um arbusto 

trepador africano normalmente utilizado na medicina tradicional para tratamento da malária, 

demonstrou possuir propriedades antiplasmodicas equivalentes à cloroquina. A criptolepina parece 

exercer as propriedades antiplasmodicas devido à capacidade de inibir a formação da hemozoina, tal 
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como a cloroquina, ligando-se ao heme e bloqueando assim o mecanismo de destoxificação do parasita. 

No entanto, a criptolepina é também um agente intercalante de cadeias de ADN ricas em guanina (G) e 

citosina (C), e tendo preferência por sequências CC não alternadas. Assim, a criptolepina apresenta 

propriedades citotóxicas devido à inibição da topoisomerase II e da síntese do ADN. Estas propriedades 

citotóxicas podem também estar na origem da actividade antiplasmódica uma vez que, um estudo de 

localização intracelular em eritrócitos infectados com P. falciparum, revelou que o alcalóide se acumula 

em estruturas no interior do parasita que poderão corresponder ao núcleo.  

Neste trabalho foram sintetizados 25 análogos da criptolepina (3) com cadeias laterais diamino-

alquílicas, na posição C11 do núcleo aromático da indolo[3,2-b]quinolina e avaliados quanto as suas 

propriedades antiplasmodicas e citotóxicas em linhas celulares de mamífero. O análogo com uma cadeia 

lateral de piperidina (3n), apresentou uma actividade antiplasmódica (IC50) variando entre 23 e 44 nM, 

contra diferentes estripes resistentes à cloroquina, e um índice de selectividade de aproximadamente 

1400, representando um aumento de cerca de 1000 vezes quando comparado com 1. Os nossos estudos 

sugerem que a introdução de cadeias laterais com aminas terminais basicas, apresentando valores de pKa 

variando entre 5,2 e 12,5, promove a acumulação dos compostos no interior do vacúolo digestivo do 

parasita, em níveis de concentração semelhantes aos da cloroquina. Todos os análogos da criptolepina 

sintetizados apresentam a capacidade de formar complexos com o monómero da hematina (FPIX-OH), 

com constantes de associação (Kass) variando entre 0,062 e 0,41 x106 M-1, semelhante à constante de 

associação determinada para a cloroquina (Kass = 0,085 x106 M-1). Os complexos são estabilizados 

maioritariamente através de interacções π-π entre o núcleo aromático da indolo[3,2-b]quinolina e o 

núcleo porfirínico da hematina. Estudos de modelação molecular revelaram também que os azotos 

protonados nas aminas terminais das cadeias laterais podem formar pontes de hidrogénio com os iões 

carboxilato da hematina. Estes resultados demonstraram que os novos análogos da criptolepina 

apresentam a capacidade de complexar com a FPIX-OH e inibir a formação da hemozoina. No entanto, 

o estudo de localização intracelular realizado por microscopia de fluorescência em eritrócitos infectados 

com P. falciparum, demonstrou que os análogos da criptolepina também apresentam a capacidade de se 

acumularem no núcleo do parasita e assim, potenciar a actividade antiplasmódica. De modo a avaliar a 

capacidade de 3 para interagir com estruturas de ADN, foram realizados estudos de interacção com um 

oligonucleótido de cadeia única d(5’-GCCAAACACAGAATCG-3’) e de cadeia dupla 

d(GATCCTAGGATC)2. Os compostos 3 apresentaram forte capacidade de complexação com ambas as 

estruturas de DNA e valores de constante de associação (Kass) variando entre 105 M-1 e 107 M-1. Estudos 

de modelação molecular com estruturas de ADN de hélice duplas semelhante à utilizada no ensaios in 

vitro, demonstraram que os compostos não são agentes intercalantes, tal como verificado para a 

criptolepina, mas ligam-se à fenda menor/maior, com uma estequiometria 2:1 (análogo da 

criptolepina:ADN) e interagem preferencialmente com a cadeia de fosfatos através de interacções 

electrostáticas e pontes de hidrogénio.  
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Estes resultados demonstraram que a actividade antiplasmódica dos novos análogos da 

criptolepina parece ser justificada por efeitos sinérgicos ou aditivos à inibição da formação da 

hemozoina e citotoxicidade associada à interacção com estruturas de ADN. 

Com o objectivo de aumentar a diversidade de esqueletos químicos com actividade antimalárica, 

foram sintetizados novos análogos da indolo[3,2-b]quinolin-11-ona (11-quindolona), tendo como 

propósito aumentar a retenção destes compostos no interior do vacúolo digestivo do parasita. Para tal, 

foram introduzidas duas cadeias amino-alquílicas (N,N-dietiletanoamina) no núcleo aromático da 

quindolona (alquilação em N5 e N10). A reacção originou no entanto padrões de alquilação adicionais, 

N,O- (94) e O- (95), que foram também avaliados quanto ao seu potencial antiplasmódico e 

citotoxicidade em células hepáticas HepG2 A16. Com introdução de uma ou duas cadeias amino-

alquílicas e átomos de cloro no núcleo aromático, as quindolonas (4, 91a e 91b), inicialmente inactivas, 

deram origem a compostos com actividade moderada a forte contra a estirpe W2 do P. falciparum 

resistente à cloroquina, apresentando valores de IC50 entre 51 e 2638 nM, e com maior selectividade 

para o parasita. Todos os análogos da quindolona sintetizados apresentam também a capacidade de 

formar complexos com a hematina, com uma estequiometria 1:1 (análogo:FPIX-OH) e constantes de 

associação (Kass) que variam entre 0,074 e 0,14 x106 M-1. A estabilidade do complexo é assegurada pela 

formação de interacções π-π entre o núcleo aromático e o anel de porfírina da hematina e estudos de 

modelação molecular confirmaram a possibilidade de formação de pontes de hidrogénio entre a amina 

terminal da cadeia lateral e os aniões carboxilato do dimero da hematina. Estes resultados demonstraram 

que a introdução de cadeias amino-alquílicas no núcleo da quindolona origina compostos com boa 

actividade antiplasmódica, com aparente capacidade de inibição da formação da hemozoína e 

possivelmente com maior capacidade de acumulação no vacúolo digestivo do parasita. 

As indolo[3,2-b]quinolinas demonstraram assim serem bons esqueletos para o desenho e 

desenvolvimento de compostos para tratamento da malária, obtendo-se compostos mais activos e 

selectivos para o parasita. 

 

PALAVRAS-CHAVE: Criptolepina, indolo[3,2-b]quinolinas, actividade antiplasmódica, síntese, 

Heme, ADN. 
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General Introduction 

 

Rationale and Aims of this Thesis 

ryptolepine (1) is an indolo[3,2-b]quinoline alkaloid, first isolated in 1929 by Clinquart(1) 

from the roots of Cryptolepis sanguinolenta (synonymy of Cryptolepis triangularis 

N.E.Br.), a traditional herb used in the folk medicine for the treatment of malaria. Cryptolepine 

possesses a broad range of biological activities that include antiplasmodial, antibacterial, antifungal, 

antihyperglycemic, anti-inflammatory, and antitumor among others reviewed elsewhere.(2-3) The 

antiplasmodial activity of 1 was first reported in 1991 by Naomesi(4) after extracting it from the roots of 

C. sanguinolenta. They tested cryptolepine for in vitro activity against the P. falciparum multi-resistant 

K1 and found to be highly active with an IC50 value of 134 nM, comparable with that of chloroquine (2, 

IC50 = 230 nM). However 1 also presents cytotoxic properties that precludes its clinical use. These 

cytotoxic properties are likely to be due to its DNA interactions properties and its ability to intercalate 

into GC-rich sequences, inhibiting topoisomerase II as well as DNA synthesis.(5-8) 

 

 

 

 

 

(1) Cryptolepine 

 

 

 

 

(2) Chloroquine 

 

 

(3) Cryptolepine derivatives 

 

Studies on the possible antimalarial mode of action suggest that 1 can also inhibit the haemozoin 

formation in the parasite digestive vacuole, in a way similar to that of chloroquine and related 

aminoquinolines. However, no correlation between the antiplasmodial activity and the accumulation in 

the acid digestive vacuole, determined by a mathematical method, based on the compounds acid 

dissociation constants (pKa), was seen, suggesting that the antimalarial activity involves other 

mechanisms in addition to the inhibition of haemozoin formation.(9-10)   

Prompted by these results, the main objective of this project is to synthesise novel derivatives of 

the antimalarial natural compound cryptolepine as part of a larger project of development of safer and 

potent antimalarial drugs, at an affordable cost. The proposed approach is to synthesise cryptolepine 

C 
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derivatives (3), with an ionisable diamine side chain at position C11 of the alkaloid scaffold, which is 

expected to improve the antimalarial activity and the selectivity against Plasmodium sp., through an 

increase in the accumulation of compounds inside the acidic digestive vacuole of the intraerythrocytic 

parasite, where they can target the haem and thus inhibit haemozoin formation.  

The specific objectives of this PhD project are: 

-         to develop robust synthetic methods for the target cryptolepine derivatives (3) based on a 

common synthetic building-block that can be used to prepare a wide range of compounds. 

These methods can allow the creation of a small library of cryptolepine analogues. 

-         to use advanced two-dimensional NMR techniques (COSY, HMQC and HMBC) to confirm 

the chemical structure of all synthesized derivatives; 

- to study the binding of compounds to DNA and haeme by a range of methods including melting 

profiles, UV-visible spectroscopy, fluorescence and molecular modeling simulation; 

- to calculate the ratio of compounds concentration inside the parasite food vacuole based on their 

acid-base equilibrium constants determined by UV-visible and NMR titration; 

- based on the antimalarial activity displayed by the target compounds (obtained in Dr. Phil 

Rosenthal’s laboratory, at the University of California), determine structure-activity 

relationships; 

-         to use the above mentioned relationships and the in vitro cytotoxicity of compounds 

(determined at Dr. Cecília Díaz laboratory, at Universidad de Costa Rica) to select compounds 

for in vivo evaluation against P. berghei infected mice; 

 

Outline of this Thesis 

Chapter 1 gives a short overview of the global malaria spread, the Plasmodium life cycle and 

drugs developed or employed in the malarial therapy, as well as the setbacks of the drug development, 

like Plasmodium resistance. Also the indoloquinolines compounds with antiplasmodial activity are 

reviewed as well as their synthetic methodologies.  

Chapter 2 will discuss the design and synthetic strategies used to obtain the indolo[3,2-

b]quinolines scaffolds. The cryptolepine derivatives (3) synthesis, obtained through the methodology 

developed by Görlitzer and Weber(11-12) and adapted by Bierer(13-14) will be reported. Characterization of 

obtained compounds by several methodologies, like NMR, will be discussed, as well as the synthesis 

and characterization of several intermediates used to achieve these derivatives. In addition, we decided 

to start a second line of research based on the indolo[3,2-b]quinoline chemical structure and engineered, 
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based on the common intermediate indolo[3,2-b]quindolin-11-one (4, quindolone) a new scaffold for 

antiplasmodial drug development. The synthesis of new quindolone derivatives with an ionisable 

alkylamine chain at positions N5 and N10 (5) will be described. 

In Chapter 3 the establishment of acid dissociation constants (pKa) of the synthesized 

indolo[3,2-b]quinoline 3 through the Henderson-Hasselbalch methodology(15-16) will be discussed. The 

acid-base chemistry is of great importance in biological systems, because it will affect its permeability 

through biological membranes and interaction with biological targets.  

   Chapter 4 will present the binding interactions of the cryptolepine derivatives (3) with double-

stranded DNA structures. Since it is commonly accepted that cryptolepine can exert its cytotoxic 

properties due to interactions with DNA and topoisomerase II in host cells(8, 17) it is of great importance 

to understand the type of interaction, the binding affinity as well as the structure-activity relationships of 

3, with double-stranded DNA structures. Also, the study of the binding interactions with haematin, the 

precursor of the malaria pigment in the detoxification pathway of malaria parasites,(18-21) is essential in 

the development of novel antiplasmodial drugs. Here, we present the binding type and affinity of the 

new cryptolepine and quindolone derivatives (3 and 5) with haematin monomer, as well as their 

structures-activity relationships.    

Nowadays, in silico studies can provide information about molecules and binding to biological 

targets that was very difficult or even impossible to obtain through experimental observation. Chapter 

5 will discuss electronic and charges distribution properties of the cryptolepine derivatives (3) obtained 

through density functional theory (DFT). In addition, docking studies of these derivatives (3) with short 

double-stranded DNA structures will be presented, as well as, docking studies of cryptolepine and 

quindolones derivatives (3 and 5) with haematin dimer will be discussed, allowing to understand their 

binding interactions.  

Chapter 6 will integrate all the studies described in the previous five chapters and provide a 

global overview of the in vitro antiplasmodial properties of the synthesized cryptolepine and quindolone 

derivatives. Based on the physical and chemical properties of these derivatives, as well as on the DNA 

and haematin binding properties, the antiplasmodial mode of action of these indolo[3,2-b]quinolines 

will be discussed. Additionally, in vivo studies in infected mice infected with P. berghei, as well as in 

vitro antiplasmodial activity in human hepatoma cells and intracellular localization of 3n in P. 

falciparum-infected erythrocytes by fluorescence microscopy will be included in the discussion, aiming 

to contribute to a better knowledge of their mode of action.  

In Chapter 7 it will be presented all the experimental procedures used to the development of the 

present study. Synthetic methodologies, physical-chemical properties and in vitro binding studies, as 

well as in silico studies will be described.  
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Chapter I – Malaria, from Disease to Therapeutics  

 

“God not only plays d ice,  He also  sometimes throws the d ice where 
they cannot  be seen” 

 
Stephen Hawking (1942)  

 British theoretical physicist 

 

 

 

 

 

 

Abstract 

Malaria is one of the most prevalent tropical diseases and one of the most wide spread infections of our time. 

Malaria is caused by protozoal parasites of the genus Plasmodium and the infectious stages of the parasite reside 

in the salivary glands of female Anopheles mosquitoes that bite humans for a blood meal.  During blood extraction 

the mosquito injects the parasite into the blood stream giving rise to a complex life cycle in human host. 

Considerable success in gaining control over malaria was achieved in the 1950s and 60s through administration 

of 4-aminoquinolines, specially chloroquine, the most important antimalarial agent ever. However, the 

development of resistance by the parasite against antimalarial drugs, has underscored the importance to develop 

new medicines for the malaria treatment. Natural products remain a rich source of novel molecular scaffolds and 

cryptolepine, an indolo[3,2-b]quinoline alkaloid extracted from the roots of Cryptolepis sanguinolenta is one 

example of natural products with antiplasmodial activity. Beside its extraction from natural sources, several 

synthetic methodologies have been developed and new cryptolepine derivatives with improved antiplasmodial 

activity have been reported. 
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1.1 Malaria Overview 

alaria is one of the most widespread infectious diseases of our time. Malaria is a 

diseases caused by infection with eukaryotic parasites of the genera Plasmodium. There 

are more than 120 species of Plasmodium, but only five infect humans; P. malariae, P. ovale, P. vivax, 

P. falciparum and occasionally some human malaria can be caused by P. Knowlesi, although it has not 

been established whether human-mosquito-human transmission can occur. Infections with all these 

species cause initially similar illness, cyclical fevers, anemia and splenomegaly (enlarged spleen), the 

classic triad associated with malaria. The benign tertian (P. vivax and P. ovale) and quartan malaria (P. 

malariae) very rarely lead to serious illness or life-threatening complications, whereas P. falciparum 

malaria may progress towards severe disease in those not particularly protected by acquired immunity 

or if not treated promptly.(22)  

Malaria is one of the earliest reported infectious diseases in humans and through the years, the 

development of antimalarial drugs has long been neglected in industrialized countries. The global fight 

against malaria requires a multiple approach. Nowadays, a wide range of effective tools, which includes 

insecticides to prevent infection by mosquitoes, and medicines to treat and prevent the infection are 

available.(23) However, long-term prophylaxis by vaccination has been especially challenging as the 

parasite has various sophisticated mechanisms to avoid the host immune system.(24) The most effective 

first generation vaccine in development, GlaxoSmithKline (GSH)’s RTSS, reduces the risk of clinical 

malaria, delays time to new infection, reduces episodes of severe malaria and it has recently entered 

Phase III clinical trials.(25) Nevertheless, with all available strategies, several gaps remain in our armory 

against malaria, and a substantial number of patients will suffer from this disease over the coming 

decades. To achieve the goal of eradication, antimalarial drug discovery must continue working on the 

development of new medicines to treat malaria, mainly targeting the asexual blood stages of 

Plasmodium overcoming the emerging drug resistance and also blocking the transmission of the parasite 

to other persons by the mosquito vector. 

 

M 
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1.1.1 Global Malaria Burden 

The global malaria map has been shrinking over the past 60 years, but today more people are at 

risk of suffering from malaria than any other time in history. Malaria is a global health problem with 

109 endemic countries in 2008, 247 million cases among 3.3 billion people at risk in 2006 and killing 

between 1 and 3 million people annually, most of whom are children under 5 years old. Also, pregnant 

women and their unborn children are particularly vulnerable to the parasites. Malaria is a particularly 

devastating disease in sub-Saharan Africa, where about 90 % of cases and deaths occur. However, 40 % 

of the world’s population lives in areas where there is risk of transmission. Malaria is found in tropical 

regions throughout Africa, Southeast Asia, Pacific Islands, India and Central and South America (Figure 

1.1). In certain epidemiological circumstances, malaria is a devastating disease with high morbidity and 

mortality. Plasmodium falciparum is the most virulent and deadly of malaria parasites and is 

responsible for more than 90 % of the cases. In 10-40 % of all cases of severe malaria P. falciparum is 

also lethal, because it can lead to high parasitaemia and additional bind to endothelial cells leading to 

disruption of organ function.(26) 

 

 

 

 

 

 

 

   

Figure 1.1 – Estimated 
incidence of malaria per 
1000 population, 2006 
data.(26) 

Malaria can be 

transmitted by several species of female Anopheles mosquitoes that differ in behavior, contributing to 

the different epidemiological patterns of the disease observed worldwide. After the II World War 

exhausting efforts were made to eradicate malaria worldwide and were successful over large 

geographical areas, however in tropical Africa and many parts of Asia were not.  

In the past few years malaria has once again attracted more attention. Projects such as Roll Back 

Malaria Partnership (supported by the Word Heath Organization) and the Bill and Melinda Gates 

Foundation malaria eradication program,(27) had  contributed to the reinvestment in research, partly 

because it is recognized that malaria spread in sub-Saharan Africa has increased in the recent years, 

mainly due to the development of drug resistances. The global climate warming, war and civil conflicts 

also led to an upsurge of malaria in many parts of Africa where health services are ineffective.(28-31) In 

addition, malaria and the Human Immunodeficiency Virus (HIV) infection can also interact in several 
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ways, increasing the viral load, increasing malaria fevers and interacting adversely during pregnancy, 

leading to an increase of the illness and life risk.(32-34)   

1.1.2 Plasmodium Species 

Life Cycle 

The malaria parasite is a complex eukaryote with a dynamic pattern of genomic expression, able 

to constantly change its gene expression to generate a sequence of forms that can subsist in different 

environments in human and mosquito host.(35) The development of the Plasmodium is carried in two 

hosts, namely mosquito (Anopheles sp.) and humans and the events of the plasmodium infection within 

human bloodstream were extensively reviewed elsewhere.(36)      

The infectious stages of the malaria parasite reside in salivary glands of female Anopheles 

mosquitoes that bite humans for a blood meal. During the blood extraction Anopheles mosquitoes inject 

its saliva into the lesion, thereby transferring 15-20 sporozoites into the blood stream (step 1, Figure 

1.2). The sporozoites are able to overcome host’s immune system and rapidly taken up into the liver, 

where they pass the Kupffer cells and infect the hepatocytes, developing each one into tissue schizonts 

containing 10 to 30 thousand merozoites.(37-39) This hepatic development, also called exoerythrocytic, 

takes a minimum of 6 days after inoculation in P. falciparum malaria, 9 days in the benign tertian and 

about 15 days in quartan malaria. An average incubation of 2 weeks between infection and the onset of 

the disease might be considered as a rule of thumb in vivax and falciparum malaria (step 2, Figure 

1.2).(40) After the hepatic stage, the developed schizonts rupture the liver cells and release the 

merozoites into the blood stream, starting the erythrocytic stage of the Plasmodium sp. life cycle, the 

post-hepatic infection (step 3, Figure 1.2).(41) Left untreated, parasites multiply in the red blood cells 

(RBC) at a rate of about 10-fold increase every two days, leading to high parasitaemia within a few days 

and associated clinical symptoms and complications, which may lead to death. In the cases of P. vivax 

and P. ovale, some sporozoites turn into hypnozoites, a form that can remain dormant in the liver cells, 

causing relapses months or even years after the initial infection.(42) Inside the erythrocyte, parasite 

ingests the host-cell hemoglobin to develop synchronously from a ring stage via a trophozoite, into 

blood schizonts that release new merozoites to the blood stream (step 4, Figure 1.2), leading to the 

classical cycle of fever that is observed clinically.  

Some merozoites infecting the RBC develop into male and female gametocytes (step 5, Figure 

1.2). In P. falciparum, these are formed in the later stages of infection and by contrast, in P. vivax, they 

are formed at the same time as the asexual stages.(43-45) Gametocytes are taken up into the female 

mosquito gut during the blood meal (step 6, Figure 1.2) and the male gametocytes are activated to form 

gametes, which fuse with the female gametes to form diploid ookinetes (step 7, Figure 1.2). These 

ookinetes migrate to the midgut of the insect, pass through the gut wall and form the oocyst, which after 



10 | Malaria, from Disease to Therapeutics 
 

 
  

meiotic division originates sporozoites. After migration to the salivary glands of the female mosquito 

(step 8, Figure 1.2), the sporozoites are ready to renew the cycle again.(46) 

 

Figure 1.2 – Schematic representation of the Plasmodium sp. life cycle.(47) 

Step 1 – Mosquito blood meal and sporozoites invasion; Step 2 - Sporozoites pass the Kupffer cells and infect the 
hepatocytes, developing each one into tissue schizonts; Step 3 – The developed schizonts rupture the liver cells and 
release the merozoites into the blood stream; Step 4 - Inside the erythrocyte, parasite develops synchronously from a ring 
stage to new merozoites; Step 5 - Some merozoites infecting the RBC develop into male and female gametocytes; Step 6 
– Gametocytes are taken up into mosquito during a new blood mead of the infected host; Step 7 – Male and female 
gametocytes develops into new sporozoites via oocyst; Step 8 - Migration of the sporozoites to the salivary glands of the 
female mosquito to renew the cycle.       

 

Digestive Apparatus of Plasmodium sp. 

Malaria parasites in bloodstream reside within host erythrocytes (RBC) where 95 % of the 

soluble proteins present is haemoglobin.(48) An estimated 75 % of haemoglobin is consumed by P. 

falciparum during its brief intraerythrocytic stay. Thus, haemoglobin degradation in the metabolic 

active trophozoite stage, is a catabolic and efficient process, in which some enzymes are involved. 

Plasmodium parasites utilize haemoglobin as an amino acid source for protein synthesis and also as 

energy source. (49) 

Plasmodium ingests the haemoglobin and other RBC content, from the host cell through an 

opening called cytostome (Figure 1.3), which is transported by transport vesicles to the acidic digestive 

vacuole of the parasite, where the degradation may start before the delivery in the vacuole.(50) In P. 

falciparum double-membrane transport vesicles bud off from the cytostome and migrate toward and 

fuse with the large digestive vacuole, an specialized acidic (pH ~ 5.5) degradative organelle(51-52) where 

acidic conditions are maintained primarily by a V-type H+-ATPase pump.(53)  
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Figure 1.3 – Schematic 
representation of the 
Plasmodium cell structure.(54) 

Host cell cytoplasm is ingested 
by cytostome and packaged in 
transport vesicles. Degradation 
of the haemoglobin (Hb) may 
start in the transport vesicles 
and is completed in the 
digestive vacuole. Haem 
released from the Hb digestion 
is converted into a crystalline 
substance called haemozoin 
(HZ) or malarial pigment that 
is harmless to the parasite. 

 

Clearly the digestive vacuole is a major site of haemoglobin degradation and its function has 

been extensively reviewed. (55-56) In the acidic digestive vacuole, a multitude of processes involved in 

haemoglobin degradation has been indentified. During digestion, the protein part of haemoglobin is 

broken down, initially into large peptides and later in small peptides, as a result of a concerted action of 

several proteins. These include a group of aspartic proteases called plasmepsins, a group of cysteine 

proteases called falcipains, a metalloprotease called falcilysin, aminopeptidases and at least one 

dipeptidylpeptidase (Figure 1.4). The degradation pathway taken by the degradative enzymes is a semi-

ordered pathway, with plasmepsins making the initial cleavage of the intact haemoglobin, followed by 

secondary cleavages realized by plasmepsins and falcipains. In later stages falcilysin recognize and 

degrades short peptides generated by the upstream enzymes and the dipeptidylpeptidase and the 

aminopeptidases make the final cleavage in the process, with released of the amino acids. (49)  

Early in the haemoglobin degradation pathway, haem (Fe+2-ferriprotoporphyrin IX, FPIX (Fe+2)) 

is released and immediately oxidised to haem (Fe+3-ferriprotoporphyrin IX, FPIX (Fe+3)), which are 

toxic to the parasite. These iron products can generate reactive oxygen species, which may lead to 

parasite death, and as such are detoxified by assembly in a crystalline array called haemozoin (HZ) or 

malaria pigment that is harmless to the parasite.(18-21)  

Haemozoin, the Detoxification Pathway 

Haemozoin was assumed to be a haemoprotein until 1987, when Fitch and Kanjananggulpan,(57) 

showed that it consists only of ferriprotoporphyrin IX (Fe+3), identical to the synthetic product β-

haematin, described by Hamsik in 1936,(58) that can be crystallized from aqueous solution with acetic 

acid.(59) Later Slater et al. reported several studies of elemental analysis, infrared spectroscopy, extended 

X-ray absorption fine structure (EXAFS) and X-ray diffraction confirming that haemozoin consists only 

of FPIX (Fe+3) and is indeed apparently identical to β-haematin.(60) They also established that the FPIX 

(Fe+3) molecules are linked through coordination of haem propionate group of one molecule to the Fe+3 

centre of its neighbour, making a polymer structure of linked FPIX (Fe+3). Later several studies showed 



12 | Malaria, from Disease to Therapeutics 
 

 
  

the symmetry of the crystal and were able to determine the unit cell parameters of the well-defined 

faces.(61)  

 

 

 

 

 

 

Figure 1.4 – Schematic 
representation of 
the haemoglobin 
degradation 
mechanism in the 
digestive vacuole 
of Plasmodium.(62) 

Ingested haemoglobin is transported into the DV where is degraded to haem and globin. The globin fragments are 
cleaved by several proteases until amino acids used in the peptide synthesis by Plasmodium. Haem fragment, which is 
toxic to the parasite is oxidised (Fe2+ to Fe3+) and crystallized to HZ through several mechanism like, spontaneous 
formation, biocrystallization and mediated by proteins and lipids. 

However, in 2000 in a X-ray powder diffraction study, Pagola et al., showed that β-

haematin/haemozoin are not in fact polymers but rather a cyclic dimers of FPIX (Fe+3) in which the 

propionate group of each FPIX (Fe+3) molecule coordinates to the FPIX (Fe+3)  centre of its partner, 

while the dimers are linked through hydrogen bonding of the propionic acid groups (Figure 1.5).(63)      

 

Figure 1.5 – a) Two unit cells of the crystal of β-haematin viewed along the [001] direction; b) Packing diagram of 
the crystal structure of β-haematin.(63)  

a) Formation of bonds occurs through Fe1-O41 bonds, whereas dimers are linked by hydrogen bonds through O36 and 
O37. All other hydrogens were removed for clarity, b) Lighter shaded atoms (C, grey; O, red; N, green; Fe, blue; H, not 
shown) are nearer the viewer. The chains of hydrogen-bonded dimers extend from the left to the right. 
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 The degradation of haemoglobin by Plasmodium sp., in addition to goblin, FPIX (Fe+2) and this 

detoxification pathway has been extensively reviewed elsewhere.(64-66) During the haemoglobin 

degradation process, all the haem released to the digestive vacuole is oxidised from Fe+2 to Fe+3 by a 

mechanism that is not fully understood. However, it is presumed to involve O2 as oxidant, and indeed, it 

has been shown that oxyhaemoglobin is rapidly oxidised to methaemoglobin at low pH (step 1,Figure 

1.6). In the process vast 

quantities of superoxide (O2
-) 

are generated, which under 

acid conditions are 

transformed into O2 and H2O2, 

and the latest to O2 and H2O 

through catalytic activities, 

preventing its toxicity.(67) 

 The resulting FPIX (Fe+3), 

presumably presented as H2O-

FPIX (Fe+3), is insoluble at 

digestive vacuole pH and also 

toxic to the Plasmodium sp., 

due to its capacities to induce 

oxidative stress, leading to 

membrane peroxidation and 

consequently parasite 

death.(64, 68-69) Thus, under 

digestive vacuole conditions the oxidized H2O-FPIX (Fe+3) spontaneously form π- π complexes, 

dimerizing in a neutral [H2O-FPIX (Fe+3)]2 in which one propionic acid group on each porphyrin is 

ionised and the other is not, corroborating what has been long held that dimerization involves formation 

of a µ-oxo dimer (step 2 and 3, Figure 1.6).(70-71)  

The exact mechanism of haemozoin formation is unknown, but many theories have been 

suggested to explain this mechanism. Spontaneous haemozoin (β-haematin) formation, 

biomineralization or biocrystalazation, haemozoin formation mediated by proteins and mediated by 

lipids are some of the proposed mechanisms.(18) Plasmodium falciparum contains unique histidine rich 

proteins (HRP), which bind to FPIX (Fe+3) and efficiently promotes the in vitro haemozoin formation. 

Based on these results it was claimed that haemozoin formation in malaria parasites involves the joint 

action of both HRP and lipids.(72-74) However, recent studies involving genetic and cell biology 

evidences have begun to point against any involvement of HRP in haemozoin formation. The most 

convincing argument for this is the formation of haemozoin in parasites clones lacking genes for both 

HRP-II and HRP-III, which are morphologically indistinguishable.(75) In addition, 97 % of the HPR-II is 

 

Figure 1.6 – Schematic representation of the processes involved in the 
haemozoin formation.(18)  

Haemoglobin transported to the digestive vacuole is digested and the haem 
(FPIX(II)) is oxidised presumably by molecular oxygen to haem (FPIX(III))(Step 
1). In aqueous solution Fe(III)FPIX dimerises probably to form a π-π dimer which 
is delivered to a lipid body (LB) dubbed a lipid nanosphere (Step 2). In the lipid 
nanosphere Fe(III)FPIX forms a “haematin precursor” dimer which converts to 
haemozoin dimer by displacement of axial water ligands of H2O-FPIX(III) 
together with formation of Fe(III)-propionate bonds (step 3). In absence of 
competing hydrogen bonding to the solvent, these dimers can start to assemble 
haemozoin nuclei by hydrogen bonding (step 4) to each other and finally 
assembling the haemozoin crystal (step 5). 
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exported from the parasite to the RBC, while only 3 % is localized in the digestive vacuole where 

haemozoin formation occurs.(76) 

 

 

 

 

 

 

Figure 1.7 – a) Theoretical growth from 
β-haematin viewed: (top) perpendicular 
to the {100} face, (bottom) along c-axis; 
b) Crystal structure of  β-haematin, 
which consists of molecular haem 
dimers, viewed along the c-axis; c) field 
emission inlens scanning electron 
microscopy micrographs of haemozoin 
purified from P. falciparum.(77) 

 

In view of the evidence that HRP are not involved in the formation of the haemozoin in malaria 

parasites, Jackson et al., investigated the neutral lipid bodies in P. falciparum and demonstrated the 

presence of lipid particles associated with the digestive vacuole of the parasite. (78) One year later, in 

2005, the publication of an electron micrograph image by Coppens and co-workers, showed for the first 

time the completely encapsulated haemozoin within a neutral lipid body in the digestive vacuole of P. 

falciparum.(79-80)  A recent study developed by Pisciotta and co-workers changed the entire outlook on 

haemozoin formation, confirming that it forms within lipid bodies inside the digestive vacuole of the 

parasite.(81) In the study they provide ultrastructural evidence that neutral lipid nanospheres present 

within the digestive vacuole are the in vivo site of haemozoin formation, and it seems that the origin of 

the lipid bodies is the inner membrane of the endocytotic transport vesicles.(50) Following this evidence, 

molecular dynamics simulations have provided insight into molecular mechanism of haemozoin 

formation at lipid-water interface, where interaction of two monomers in vacuum showed rapid 

formation of the “haemozoin precursor dimer”.(82-83)  

Finally, inside the lipid body, µ-oxo dimers are linked through hydrogen bonds to form the 

haemozoin crystal (step 4 and 5, Figure 1.6). However, several mechanisms in the haemozoin formation 

process remain partially understood, like the mechanism of haemozoin growing. According to the 

theoretical growth morphology of β-haematin crystals reported by Buller and co-workers the crystals 

elongated in the c-direction, are delineated by well-developed {100} and {010} side faces and smaller 
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{011} end faces (Figure 1.7).(77) However some questions remain unanswered: how is delivered FPIX 

(Fe+3) to the lipid body? Is there any protein or proteins involved in these processes? 

1.1.3 Malaria Chemotherapeutics 

Malaria chemotherapeutics are traditionally classified according to the stages of the Plasmodium 

life cycle that are targeted by the drug (Figure 1.8). One of the most wide used antimalarial drug was 

quinine (Figure 1.9), a natural product extracted from the bark of the tree Cinchona calisaya and it was 

the basis to the development of the antimalarial drugs. The drug development can follow several 

strategies, ranging from minor modifications of existing agents to the design of novel agents that act on 

new targets. Synthetic derivatives of quinine, such as the 4-aminoquinoline chloroquine (2, CQ) can be 

considered as the first antimalarial drugs developed after the pioneer work of Ehrlich(84) with methylene 

blue in the end of the eighteenth century. The antimalarial compounds used for the treatment of malaria 

as been extensively reviewed in the past.(23, 85-88) 

Most of the antimalarial drugs used today are blood schizonticides, i.e., act on the asexual 

intraerythrocytic stages (ring, trophozoite and schizont) of the Plasmodium sp.. Tissue schizonticides 

kill persistent hepatic schizonts, and thus prevent the invasion of the erythrocytes, acting as prophylactic 

drugs. Hypnozoiticides act on the persistent intrahepatic stages of P. vivax and ovale, preventing 

relapses and the gametocytocides drug class destroy the intraerythrocytic sexual forms of the 

Plasmodium sp., and thereby hinder the transmission from human to mosquito hosts.(89) 

 

 
 
 
Figure 1.8 – Schematic representation 
of the plasmodium life cycle with 
phases targeted by antimalarial drugs 
in the human host. 
 

Tissue schizonticides act on the primary 
tissue forms of the plasmodia 
(merozoites), which after growth within 
the liver, initiate the erythrocytic stage. 
By blocking this stage, further 
development of the infection can be 
theoretically prevented; Hypnozoiticides 
act on the dormant liver stages of the 
parasite (hypnozoites) preventing 
relapses; Blood schizonticides act on the 
erythrocytic stages of the Plasmodium 
sp., ending with the clinical symptoms of 
malaria; Gametocytocides destroys the 
sexual forms of the parasite in the blood 
and thereby prevent transmission of the 
infection to the mosquito.  
 

The tissue schizonticides class comprise drugs from the family of the folate inhibitors and 8-

aminoquinolines. The folate inhibitors (Atavaquone 6, Proguanil 7, Chloroproguanil 8, and 
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Pyrimethamine 9, Figure 1.9) are some of the most widely used antimalarial drugs, inhibiting the 

enzymes of the folate pathway, resulting in the decrease of pyrimidine synthesis, hence, reducing the 

DNA, serine and methionine formation. The activity of these compounds is exerted at all growing 

stages of the Plasmodium sp., being also blood schizonticides and gametocytocides, albeit their role in 

the malaria is hampered by the rapid emergence of drug resistance.(90) 

The 8-aminoquinolines (Primaquine 9, Pamaquine 10 and Tafenoquine 11, Figure 1.9) act on the 

pre-erythrocytic and transmission stages of the parasite life cycle and are the only class of compounds 

capable of exert its antiplasmodial effect on hypnozoites (hypnozoiticides). The mechanism by which 

the 8-aminoquinolines exert activity is likely to be due to the disruption of the mitochondrial function, 

swelling and thickening the mitochondria in the tissue-stage of the parasite.(85, 91) 

The blood schizonticides are the major class of antimalarial drugs and include compounds from 

the family of the folate inhibitors, aminoquinolines, amino-alcohols (Chloroquine 2, Piperaquine 13, 

Amodiaquine 14, Pyronaridine 15, Quinine 16, Mefloquine 17, Halofantrine 18 and Lumefantrine 19, 

Figure 1.9) and artemisinins (Artemisinin 20, Arteether 21, Artemether 22 and Dihydroartemisinin 21, 

Figure 1.9). The quinoline-containing drugs class includes some of the most common antimalarial 

compounds. Their primary target is believed to be the Plasmodium digestive vacuole, being commonly 

accepted that these drugs act on haeme detoxification pathway, and for most of them, are only active 

against those stages of the parasite that actively degrade haemoglobin.(85, 92) Despite widespread 

resistance to chloroquine and quinine compounds, there is a continued interest in this type of 

compounds. Their mode of action and mechanism of resistance, although only partially understood, 

seems to occur independently of each other and due to the complexity of the digestive food vacuole 

environment and the immutable nature of the haem molecule, quinoline-resistance have probably been 

delayed for decades in the past.(93)  

Furthermore, quinoline drugs target do not exits at such a concentration under physiological 

conditions in the human host, increasing the selectivity of these compounds to the Plasmodium sp., and 

thus representing a better target in comparison to some parasite enzymes that are derivatives of those in 

human host (several proteases, farnesyl transferase and enzymes involved in the choline uptake).(94) 

The artemisinin-type compounds (Figure 1.9) act on the intraerythrocytic stages and in the sexual 

forms of the Plasmodium, being at the same time blood schizonticides and gametocytocides. The key 

pharmacophore in artemisinin (20) is the 1,2,4-trioxane unit, and in particular the endoperoxide bond is 

crucial for expression of antiparasitic activity.(95) In current use are either the natural product artemisinin 

itself and the semi-synthetic derivatives 21-23. The mechanism of action is not completely understood, 

but the prevailing hypothesis is the reductive cleavage of the peroxide bridge by the FPIX (Fe+2), 

generating C-centred radicals, which would alkylate biomolecules, leading to the death of the parasite. 

These compounds achieve, per cycle, the highest parasitaemia reduction rate when compared to any 
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other drug known to date.(96) However, recently it was identified in Western Cambodia several cases of 

resistance to artemisinin-type compounds.(97-98) 

Folate inhibitors 8-aminoquinolines 
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Figure 1.9 – Structures of selected key antimalarial compounds.        
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Furthermore, the high neurotoxicity of the dihydroartemisinin, which is believed to be the active 

metabolite of all artemisinins, is the major concern and the stopper to the wide use of these 

compounds.(99) 

Several other drug targets like proteases involved in haemoglobin digestion (plasmepsins, 

falcipains, etc.), metabolic pathways, fatty acid biosynthesis, isoprenoid biosynthesis, haem biosynthesis 

and several membrane, mitochondrial and cytosolic targets, among others, have been identified in 

Plasmodium sp.(100-103) Additionally, drug combination therapies, consisting on combined administration 

of drugs with different targets, have been formulated to delay the development and spread of drug 

resistance malaria parasites.(104) Continuous efforts to develop drug candidates to several drug targets, in 

addition to the development of hybrid molecules (double-drugs), inhibiting two different targets at the 

same time, to overcome the spread of malaria and associated drug resistance, have been made and 

extensively reviewed elsewhere.(23, 88, 105-107) 

Haem Target Based Chemotherapy, the Quinoline-Containing Drugs 

Haemozoin formation is one of the most attractive drugs targets to the development of new 

antiplasmodial drugs and can be justified by three reasons:  

i.  haem formation does not seem to be dependent of any specific parasite enzyme, which 

consequently makes the appearance of resistance to the drugs more difficult. For instance, 

2 was extensively used for 20 years before the parasite develop resistance, whereas one 

year was sufficient to the development of resistance to 11, an inhibitor of dihydropteroate 

synthase);(102)  

ii. the haem detoxification pathway is not directly involved in the mechanism of quinoline 

resistance, whereas drug transporters are probably responsible for the alteration of the drug 

accumulation inside the digestive vacuole of the parasite;(100)  

iii.  in the haem detoxification pathway the drug target is the free haem that does not exit at 

such a concentration in the human cells under physiological conditions, increasing the 

selectivity and thus representing a better target when compared to others that have 

analogous in human host.  

Several types of antiplasmodial drugs, like 4-aminoquinolines, (which we will deepen in this 

section), acridones, xanthones, azoles, among others are reported to exhibit antiplasmodial activity by π-

π stacking interactions, enhancing the free haem toxicity through inhibition of haemozoin formation.(18, 

108-110) Also, artemisinins show antiplasmodial activity due to the decomposition of the endoperoxide 

bond by haem (Fe+2), to produce initially an oxy radical that subsequently rearranges into one or both of 

two distinctive carbon-centered radical species.(111) The evidence to support that each individual carbon 

radical species is the responsible for the antimalarial activity remains an area of intense debate, however 

it has been proposed that the final alkylation, by these reactive species, of biomolecules such as haem, 

specific proteins and other targets result in the death of the parasite.(112-115)  
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The quinoline-containing drugs such as chloroquine (2), amodiaquine (14), quinine (16) and 

mefloquine (17) have been mainstays of malaria chemotherapy for much of the past 60 years. The first 

widely used antimalarial drug was quinine, a natural product extracted from the bark of the tree 

Cinchona calisaya by Pelletier and Caventou in 1820.(85) The structure of quinine was elucidated in 

1908 and provided evidence that the quinoline nucleus could be a useful component of an antimalarial 

drug. In the 1930s, Andersag investigated the activity of the structural related 4-aminoquinoline 2, 

which displayed excellent activity. However, after initial trials in Germany, chloroquine was regarded 

as too toxic for use in humans, but after the II World War, chloroquine was re-evaluated and became the 

foundation of malaria therapy for the next decades.(116) In 1948, Burckhalter found that a group of 

heterocyclic -dialkyl-o-cresols and related group of benzylamines were effective antimalarials. From 

this, the 4-aminoquinoline 14 was discovered and found to have an excellent activity/toxicity 

profile.(117) The key to the success of the most important synthetic quinoline, CQ has been the excellent 

clinical efficacy, limited toxicity, easy of use and simple, cost-effective synthesis. 

However, the exact mode of action of chloroquine and related 4-aminoquinolines remains to be 

elucidated, but most investigators now accept that a critical step of this process is the binding of the 

drug to the FPIX (Fe+3).(18, 118) Also, the antimalarial activity of CQ stems directly from its highly 

selective uptake and concentration in malaria infected erythrocytes.(119) This could be due to a proton 

trapping mechanism. Chloroquine is a weak base (pKa
1 = 8.1, pKa

2 = 10.2)(85) which in its uncharged 

form diffuses freely into acidic compartments, like the DV of Plasmodium, where it protonates and 

becomes trapped. Chloroquine accumulation is 20-fold higher in malaria parasite than in mammalian 

cells, due to pH trapping and binding with dimers of FPIX (haematin dimers), and thus, inhibiting 

haemozoin formation. (120-121)  

Since the interaction with haematin appears to be the key to the mechanism of action of 4-

aminoquinoline drugs, Vippagunta and co-workers employed isothermal titration calorimetry  studies to 

derive association constants for 2-FPIX (Fe+3) complex bind at neutral pH.(122) From this work it was 

shown that 2 binds to haematin µ-oxo dimers in a sandwich arrangement through - stacking 

interactions between quinoline and the porphyrin ring. Also, stoichiometric studies regarding 2 binding 

to FPIX monomer were recorded to be 1:1, in 40 % DMSO in water to maintain FPIX in monomeric 

state.(123) Molecular modelling experiments also reinforced the view that enthalpically favourable - 

interactions observed, derived from a positive alignment of the out-of-plan -electron density in 2 and 

haematin dimers at the points of intermolecular contact.(121, 124-126) 

Other studies have suggested that 2 and related drugs may inhibit haemozoin formation by blocking the 

growing face of the HZ crystal by a capping effect.(77, 127-128) In 2002, based in the theoretical growth of 

β-haematin, Buller and co-workers proposed a non-covalent binding site for the quinoline drug family at 

the end of the fast-growing face {001} of β-haematin, elucidating the differences in activity of various 

quinolines.(77) In the model, the quinoline aromatic ring is interleaved between porphyrin rings within a 

fissure at the {001} surface and attached by a salt bridge between the amine functionality in the side 
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chain and the carboxylate group, as well as various interactions between the quinoline and FPIX that 

have a strong Coulombic contribution, such as 7-Cl···CH3 interaction and N···HC=C of the haematin 

surface (Figure 1.10).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.10 – Chloroquine bound to the 
face {001} β-haematin crystal 
highlighting energetically favourable 
interactions. The distances are between 
highlighted atoms. NH···NC=C 2.4 Å, 
Cl-H3C 3.0 Å, NH···O2C 2.7 Å, 
NH···C=C (-cloud) 2.7 Å.(77) 

The exocyclic amine chain should be sufficiently long and flexible to ensure the optimal bind 

distance to the host acid moiety and allow the appropriated intercalation of the quinoline. However, in 

the case of 2 and other 4-aminoquinolines since interactions are primarily with FPIX (Fe+3) monomers, 

haematin µ-oxo dimers, haemozoin growing crystals or other forms of FPIX (Fe+3) present in the DV 

the binding interactions are co-facial and would be expected that the interaction energies involved in the 

complexation may be similar.(129) The haemozoin formation and its role in the antimalarial activity of 

the 4-aminoquinoline drugs has been excellently reviewed recently by Weissbuch and Leiserowitz.(130) 

Nevertheless, the efficacy of the quinoline-based antimalarials has decreased in recent years, 

mainly as a result of the development and spread of parasite resistance.(131) To overcome the extend of 

the quinoline-resistance, several studies to develop 4-aminoquinolines and to recognize its structure-

activity relationships (SAR) has been done in the last decades. The basic structure of the 4-

aminoquinoline used in malaria chemotherapy contains a 7-chloroquinoline substituted ring system with 

a flexible side chain in position 4 of the quinoline system. The 7-chloro functionality is optimal for the 

antimalarial efficacy both in vitro and in vivo, providing moderately strong electron-withdrawn capacity 

necessary to inhibit haemozoin formation (strong electron-withdrawn capacity diminishes the pKa of the 

quinolinic nitrogen and consequently the antiplasmodial efficiency) and strong lipophilicity.(48, 132-133)  

In the 4-position of chloroquine and related 4-aminoquinolines, an alkyldiamine side chain is 

attached and different approaches, including length, lipophilicity and distal nitrogen substituent 

variations, have been.(23, 129, 134) Variations on the side chain length of chloroquine revealed that side 

chains of 2-3 and 10-12 carbons length retain the activity against chloroquine-resistant (CQ-R) strains 
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of Plasmodium.(135-136) In addition, the introduction of hydrogen-bond acceptors in the substituents in 

the distal basic nitrogen of the side chain also retain the activity against CQ-R strains.(137) Several other 

modifications like the introduction of small heterocyclic systems and functional groups, like 

sulfonamides and thioureas, in the terminal nitrogen of the side chain allowed the antiplasmodial 

activity/toxicity modulation, showing that this kind of approaches are useful for the development of new 

antimalarial drugs.(135, 138-141)   

The introduction of one aryl ring, in the side chain of the 4-aminoquinolines (increasing 

lipophilic character of the drug) led to compounds with good activity in vivo. Amodiaquine (14) differs 

chemically from 2 in the fact that contains a 4-hydroxyanilino function in its side chain.(117) However, 

the greatest difference between the structures is the presence of the aryl ring, since chloroquine and 

amodiaquine both have four carbons between the secondary nitrogen and tertiary nitrogen in the side 

chain. The presence of the 4-hydroxyanilino reduces the pKa values of amodiaquine (pKa
1

 = 7.1 pKa
2 = 

8.1)(134) when compared to 2, so might be expected to have reduced activity due to diminished 

accumulation in the DV. Nevertheless, 14 is accumulated more efficiently than 2 and have potent 

antiplasmodial activity. The mechanism of accumulation cannot be only explained by the weak-base 

effect and thus additional binding components, settled by structural features of the molecule seems to be 

involved.(120, 142) However, the therapeutic value of amodiaquine is significantly decreased by the 

biotransformation of its p-aminophenol moiety into a quinonimine, which is susceptible to nucleophilic 

attacks by thiols groups, resulting in severe hepatotoxicity.(143) In order to avoid this hepatotoxicity, 

several modifications have been made in amodiaquine chemical structure. The substitution of the 4’-

hydroxyl functionality of 14 for fluorine, the isomerisation of the 3’-(diethylamino)methyl-4’-hydroxyl 

for 3’-hydroxyl-4’-(diethylamino)methyl (isoquine series), the introduction of a 5’-chlorophenyl moiety 

(tebuquine series) and related isomer isoterbuquine has been made to afford structures with improved 

antiplasmodial activity against CQ-S and CQ-R strains and reduced associated toxicities.(120, 144-150) 

Another strategy to overcome the Plasmodium sp. resistance has been the dimerization of two quinoline 

nucleus with linkers of varying length (i.e. piperaquine, 13). The activity of such bisquinolines against 

CQ-R strains has been explained by their steric bulk, which prevent them to fitting into the substrate 

binding site of the several membrane proteins, in addition to the possible increased accumulation 

efficiency due to their four positive charges. Although the developed bisquinolines showed activity 

against CQ-R strains, it appears to be a certain degree of cross resistance with chloroquine and some of 

them have been marred by some cytotoxicity issues.(151-154) 

1.1.4 Chloroquine Resistance in Plasmodium sp. 

During the 1940s and 1950s the 4-aminoquinoline chloroquine proved to be worldwide a safe 

and cheap antimalarial drug for prophylaxis and therapeutic. However, in the beginning of the 1960s, 

due to the massive use of the drug, Plasmodium sp. have developed resistance to chloroquine, 

independently of the world regions, with devastating consequences mainly in the poorest countries.(155) 

Resistance to a drug can arise in several ways. Firstly the drug may be transformed to become less 
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active, secondly the drug target may be altered so the drug cannot exert its activity, thirdly the drug 

target can be overexpressed thereby reducing the drug action and fourthly the drug may be denied 

access to its target by either a reduced accumulation or an increase in its efflux out of its site of action. 

In the blood stages of P. falciparum CQ-R strains the concentration of chloroquine within the infected 

cell is diminished, probably to the efflux currently understood to occur across the membrane of the DV 

and so the drug does not achieve intravacuolar concentration to inhibit haemozoin formation.(156-158) 

Also, changes in the pH gradient across the digestive vacuolar membrane were proposed to be 

associated with certain drug resistance phenotypes, although after some controversy among authors, 

recent evidence has suggested that there is no difference in the DV pH between CQ-R and CQ-S 

strains.(159-162) Through the years, the drug resistance mechanism has been the subject of study of several 

authors and has been extensively reviewed elsewhere.(29, 89, 163-168) 

It is generally accepted that changes in the sequence of the vacuolar membrane protein PfCRT 

(codified by gene pfcrt on chromosome 7) are convincingly linked to CQ-R in P. falciparum.(169-170) 

This membrane protein is a 424 amino acid protein called chloroquine resistance transporter (PfCRT), 

where a polar, positively charged residue (lysine) is replaced by threonine (K76T) which is neutral and 

hydrophobic, mediating the efflux of the positively charged chloroquine (Figure 1.11). 

Other changes in PfCRT, which modify the overall hydrophobicity of the protein, are associated 

with the CQ-R.(169, 171) As consequence of these protein mutations, CQ concentration descrease inside 

the DV and three different models to mediate this process have been proposed:  

i. CQ efflux out of the DV via an energy dependent transporter;  

ii. leak of CQ out of the DV down its concentration gradient (not related with energy);  

iii. opening of an aqueous pore that permits the passive outward movement of protonated forms 

of the drug.(168)     

 

 

 

Figure 1.11 – Schematic representation of the 
parasite at equilibrium in the red blood cell. 
Top) parasite wild-type, sensitive to 
chloroquine; bottom) parasite resistant to 
chloroquine with mutation in PfCRT.(166) 

Top) Weak base chloroquine travels through the 
RBC membrane, cytoplasm, parasite cytoplasm 
and become concentrated into the parasite DV 
under the pH gradient and unable to exit through 
the positively charged PfCRT, and inhibiting 
haemozoin formation. Bottom) Chloroquine is 
shown leaking out through the modified CQ-R 
PfCRT channel into the cytoplasm, allowing 
haemozoin formation. (membranes are shown in 
grey).      
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The multidrug resistance phenotype was first identified in tumor cells and is associated with over 

expression of certain transporters of the ABC superfamily (transmembrane proteins that carry out 

certain biological processes including translocation of various substrates across membranes). Some of 

these transporters are known as multidrug resistance (MDR) and consist on proteins that are able to 

maintain the toxic compound’s concentration bellow lethal level.(172) As in neoplastic cells it has been 

identified a gene responsible for the MDR in P. falciparum, the pfmdr1.(173) It codifies for a protein 

known as PGH-1, localized in the DV, that are able to transport chloroquine, quinine and other 

antimalarial drugs.(174) Additionally, different clones of P. falciparum containing pfmdr1 and pfcrt 

alleles have a large susceptibility variation to antimalarial drugs, which may indicate that other genes 

play a role in parasite resistance.(175)      

It is recognized that 4-aminoquinolines more hydrophobic than 2, such as amodiaquine, retain 

activity against some CQ-R strains and this is believed to be due to their interactions with the 

hydrophobic lining of CQ-R PfCRT.(176) Additionally, CQ derivatives with shortened and lengthened 

aminoalkyl side chains have been shown to exhibit undiminished activity against CQ-R parasites.(136) 

These data suggests that the side chain is a primary recognition motif for CQ-R, although there is some 

evidence that the 4-amino-7-chloroquinoline ring itself may be weakly correlated with cross-resistance 

with CQ.(138, 177)  

Another well documented property of chloroquine-resistance is the ability that ‘reversor’ agents 

have to increase the sensitivity to CQ to levels associated with CQ-S strains, like in MDR in cancer 

cells. Verapamil (24), a monoprotic weak base that is known to block the calcium channels, was the first 

drug to be demonstrated to reverse CQ-R.(178-179) Verapamil as the ability to enhance the action of 

chloroquine in CQ-R strains but has no effect on CQ-S strains. The sensitivity of P. falciparum parasites 

to 24 has been linked to mutations in pfmdr1 and pfcrt.(180-181) 

After the discovery of the chemosensitizing potential of 24, a wide range of structural and 

functionally diverse agents, like others calcium channel blockers, tricyclic antidepressants, 

antihistamines among others, have been described to reverse CQ-R.(182) However, despite the wide 

chemical diversity among the compounds able to reverse CQ-R, all of them share several common 

characteristics: a cationic charge at digestive vacuole pH, two planar rings, significant lipophilicity and 

a nitrogen atom, often tertiary.(183) In 2002, in a 3D QSAR study, Bhattacharjee and co-workers 

revealed a common pharmacophore to CQ-R 

reversal agents.(184) The basic features are two 

hydrophobic aromatic rings and a hydrogen bond 

acceptor, preferably nitrogen, being optimal for 

tertiary or secondary amines. Using a molecular 

modelling approach Aliber et al., defined an 

interaction site to this nitrogen atom, in which 

there is hydrogen bonding to a hydroxyl of a 

 
(24) Verapamil 

 
 

Figure 1.12 – Structure of the calcium channel blocker 
verapamil (24). 
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serine residue and a salt bridge formed between the same positively charged N and an aspartate residue, 

consistent with pfCRT in CQ-R parasites.(185) Thus, CQ-R reversal may involve direct competition of 

the resistance reverser for the CQ binding site in PfCRT. 

While the safety, efficacy and cost-effectiveness of CQ was undeniable in the past, maintaining 

these advantageous, while reactivating its antiplasmodial activity in combination with resistance 

reversers could be a great challenge. In the meantime, the search for new compounds with improved 

efficacy to CQ-R and CQ-S Plasmodium sp. should be stimulated to increase the armory in the fight 

against malaria and to keep the ancient plague in check.   

1.2 Indolo[3,2-b]quinoline, a Scaffold for Antiplasmodial Drug Development  

Nature has been a wide source of antimalarial compounds and alkaloids from traditional herbal 

medicines have contributed greatly over the centuries not only to the discovery of new antimalarial and 

therapeutic agents but also to the elucidation of biochemical pathways allowing the development of 

modern pharmaceutical industry.(186-189) Indoloquinolines are unique natural alkaloids, characterized by 

an indole and a quinoline fused rings, found almost exclusively in the West African climbing shrub 

Cryptolepis sanguinolenta (Lindl.) Schltr. The roots’ aqueous extracts of this plant have been used for 

centuries by African traditional healers mainly for the treatment of fevers including malaria, hepatitis 

and bacterial infections, although others uses, such as antirheumatic, spasmolytic and as a tonic have 

also been reported (190-192). The chemical composition of the roots of C. sanguinolenta (synonymy of C. 

triangularis N.E.Br.)(193) was first studied in 1929 by Clinquart (1) and an alkaloid named cryptolepine 

was isolated from a sample collected in Zaire. Later, Delvaux (194), working with a root sample from 

Nigeria, established the molecular formula of cryptolepine as C16H12N2, but it was only in 1951 that 

Gellért et al. (195) identified the correct structure of cryptolepine as 5-methyl-5H-indolo[3,2-b]quinoline 

(1). 

In 1978, Dwuma-Badu et al. (196) reported the isolation of another minor alkaloid from the roots 

of C. sanguinolenta, the simplest indolo[3,2-b]quinoline, named quindoline (25), but it was only 

between 1993 and 2000, with the development of modern spectroscopic methodologies allowing the 

complete structural identification of a compound with few milligrams or even micrograms, that several 

other minor indoloquinoline alkaloids were isolated from C. sanguinolenta and their structures 

identified (Figure 1.13). Most of them show the indolo[3,2-b]quinoline nucleus as hydroxycryptolepine 

(26) (197), cryptolepinoic acid (27), methylcryptolepinoate (28) (198) and quindolone (4)(199).  However, 

other regioisomers such as the 5-methyl-5H-indolo[2,3-b]quinoline (29) named by different groups as 

neocryptolepine (200) or cryptotackieine (201) and the 5-methyl-5H-indolo[3,2-c]quinoline (30) named 

isocryptolepine (202) or cryptosanguinolentine (201) were also identified in this botanical species, together 

with dimeric alkaloids: cryptospirolepine (31) (203), cryptomisrine (32) (204), bis-cryptolepine (33) (200) 

and cryptoquindoline (34) (197). Cryptolepine was also identified in some Sida species (Malvaceae) and 

in Microphilis guianensis  (Sapotaceae).(205-206) Although the synthesis of 25 was first reported in 1906 
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(207), before its isolation from C. sanguinolenta. For indoloquinoline alkaloid cryptolepine (1) as well as 

for its isomers, neocryptolepine (7), isocryptolepine (8) and the synthetic isoneocryptolepine (35, 5-

methyl-5H-indolo[2,3-c]quinoline) several methodologies for its synthesis have been reported(12, 14, 208-

234) and reviewed elsewhere for the indolo[3,2-b]quinolines.(2)   

 

 

(25) Quindoline  

  

                             
(1) Cryptolepine, R = H 

                            (26) Hydroxycryptolepine, R = OH 

                            (27) Cryptolepinoic acid, R = COOH 

                            (28) Methylcryptolepinoate, R = COOCH3 

 

 

(4) Quindolone 

 

(29) Neocryptolepine 

 

 

 

(30) Isocryptolepine 
 

(31) Cryptospirolepine 
 

(32) Cryptomisrine 

 

(33) Bis-cryptolepine 

 

(34) Cryptoquindoline 

 

(35) Isoneocryptolepine 

Figure 1.13 – Indoloquinolines from Cryptolepis sanguinolenta and synthetic isoneocryptolepine. 

Cryptolepine (1) is by far the most studied indoloquinoline. It has two nitrogens but only one 

(N10) is acid, with a pKa of 11.8 and under acidic conditions, cryptolepine exists has a salt (Figure 

1.14).(235) Several authors make reference to 1 in the salt and basic form as two different compounds, 

showing different biological results for each form. However, in this review we will consider the 

structure of 1 as either of the two forms since, as it is an equilibrium, both forms can co-exist depending 

the concentration of each one on the pH of the medium. 
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Figure 1.14 – Cryptolepine (1) acid-base equilibrium. 

1.2.1 Synthetic Pathways 

The synthesis of quindoline, the simplest member of the indolo[3,2-b]quinoline alkaloids, was 

accomplished by Fichter and Boehringer in 1906.(207) Since then, ten others synthetic strategies have 

been proposed, seeking not only to be faster and more efficient but also to use available starting 

materials. The earliest synthetic approach to the synthesis of indolo[3,2-b]quinolines (Ray’s method) 

involves a condensation reaction of two building blocks. However, besides the good yields, these types 

of reactions take long time to be accomplished. In the beginning of the 80’s, Görlitzer and Weber 

methodology evolved to the first total synthesis of indolo[3,2-b]quinolines with commercially available 

starting materials and without coupling of two building blocks. This synthetic approach has, however 

the disadvantage of involving 5-9 steps. To overcome this weakness Fan and Ablordeppey developed in 

1997 a synthesis of quindoline, which involves only a two step reaction and is completed in one day, but 

affording also the regioisomer 7H-indolo[2,3-c]quinoline. In the last decades several methodologies 

involving different approaches and type of reactions have been reported in the literature and will be 

reviewed in this section. The newest methodologies simplify the design and synthesis of new 

indolo[3,2-b]quinolines, making the overall process faster, with higher efficiency and with increased 

versatility. Continuing efforts towards new synthetic methodologies should make synthesis of 

indolo[3,2-b]quinolines pharmaceutical leads simpler and more flexible. 

Armit and Robinson method 

In 1922, Armit and Robinson(208) prepared the quindoline-11-carboxylic acid by condensation of 

isatinic acid with an alkaline solution of indoxyl (shown in Scheme 1.1) and in 1947, Holt and Petrow 
(209) synthesized the same compound, with good yields (~70 %) using O,N-diacetylindoxyl and N-

acetylindoxyl, which have the advantage of being very much less oxidized than the parent indoxyl. 

Quindoline was then prepared from quindoline-11-carboxylic acid by reduction with zinc in alkali, or 

with sodium amalgam, followed by oxidation with air. The Holt and Petrow’s methodology has been 

applied during decades to synthesize C11 carboxylic acid quindolines with different substituents in 

aromatic nucleus.(13-14, 206, 210, 235-238) 

 
(36) Indoxyl 

+ 

 

(37) Isatinic Acid 

 

1. KOH (aq.) 
2. HCl 

 

 

(38) Quindoline-11-carboxilic acid 

Scheme 1.1 – Synthesis of quindoline-11-carboxilic acid (38) by condensation of indoxyl with isatinic acid. 
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However, these methods of synthesis require a difficult condensation reaction, which involve 

long time to be completed (10 days in Holt and Petrow methodology) and with starting materials of 

reduced availability. In the last three decades, several others synthetic strategies towards indolo[3,2-

b]quinolines and derivatives have been reported. 

Görlitzer and Weber’s method 

In 1981, Görlitzer and Weber (11) synthesized the indolo[3,2-b]quinoline nucleus. Their synthesis 

uses a nucleophilic substitution of second order to couple two building blocks, methyl anthranilate (39) 

and N-(2-(2-bromoacetyl)phenyl)-4-methylbenzenesulfonamide (40) to give the intermediate 41 

(Scheme 1.2). 

After deprotection of the amine group with sodium methanolate, the intermediate 41 undergoes 

double intramolecular thermal cyclization in strong acid medium to afford quindolone (4). Quindoline is 

subsequently obtained after chlorination of C11 in 4 with phosphorus oxide trichloride(12) followed by 

hydrogenation on Pd/C to remove the chloride.(239) Cryptolepine can then be obtained after reaction of 

quindoline with methylating agents, which undergoes through selective N-alkylation.(240) 

 
 
 
(39) methyl 2-aminobenzoate 

+ 

 
(40) N-(2-(2-bromoacetyl)phenyl)-4-

methylbenzenesulfonamide 

 

(41) methyl 2-((2-(2-(4-methyl-
phenylsulfonamido)phenyl)-2-

oxoethyl)amino)benzoate 

 

 

1. NaOMe 
2. PPA 
Ra = H 
Rb = H 

 

 
 

(4) Quindolone 

  

PPA 
Ra = H, OMe, F, Cl 
Rb = H, F, Br, Cl,    
        Me, OMe,  
        COOH 

 
 

 (42) Anthranilic Acids  

 

 
 

 
 

(43) 2-(2-bromo-
acetamido)benzoic acids 

 
 

 
 

(44) 2-(2-(phenylamino)-
acetamido)benzoic acids 

Scheme 1.2 – Görlitzer and Weber total synthesis and derived methodologies. 
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Görlitzer and Weber total synthesis experienced some adaptations to afford different quindoline 

derivatives.(13, 239, 241-249) A substituted anthranilic acid (42) is treated with haloacetyl halogen 

(bromoacetyl bromide in Scheme 1.2) to afford the haloacetyl derivate 43, and subsequent reaction with 

substituted aniline provides the derivative 44. Condensation of 43 with aniline is strongly influenced by 

the substituents in the aniline. In anilines with strong electron withdrawing groups conversion is too low 

to obtain the desired compound 44 with good yields. Acid-promoted intramolecular cyclization of 44 

gives quindolone (4), which can undergo an incompletely conversion, and an 18 member ring 

trioligomer is formed.(248) This polyphosphorous catalyzed cyclization is the key step to obtain the 

indolo[3,2-b]quinolines and the presence of electron withdrawing groups can reduce significantly the 

yield, if the optimal experimental conditions are not assured. 

Joule’s method 

In 1996, Joule’s group synthesized the indolo[3,2-b]quinolines, cryptolepine, 

hydroxycryptolepine and quindoline based on the intramolecular -nucleophilic substitution of a 1-

phenylsulfonyl-2-acylindole (48, shown in Scheme 1.3).(211) 

In the overall process the acylindole undergoes intramolecular nucleophilic substitution at indole 

-position and the N-susbtituent is expelled as phenylsulfinate.(250) (2-Aminophenyl)(1-

(phenylsulfonyl)-1H-indol-2-yl)methanone (48) is achieved by condensation of 2-lithiated 1-

phenylsulfonylindole (46) with 2-nitrobenzaldehyde to afford 47 and consequent oxidation with 

manganese dioxide followed by catalytic reduction of the nitro group to amine. 

 
 

(45) 1-(pheny-
lsulfonyl)-1H-

indole 

 
 
 

BuLi 

 

  
 

(46) (1-(phenyl-
sulfonyl)-1H-

indol-2-yl)lithium 

 

(47) 2-nitro-phenyl-(1-
(phenylsulfonyl)-1H-
indol-2-yl)methanol 

 
 
   1.MnO2 

   2. H2, Pd-C 

 

 
(48) 2-aminophenyl-
(1-(phenylsulfonyl)-

1H-indol-2-
yl)methanone

 

 

NaH /  

 
 

(49) N-(2-(1-(phenylsulfon-yl)-
1H-indole-2-carbonyl)-

phenyl)benzamide 

 

 
(4) Quindolone 

 

NaOH /  
 

 

 

 
(50) 5-benzoyl-quindolone 

Scheme 1.3 – Joule’s method total synthesis 

N-Benzoylation of 48 through nucleophilic acyl substitution gave 49 and N-deprotonation using 

sodium hydride allowed the ring closure through intramolecular indole--nucleophilic substitution of 
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the acylindole giving in the indolo[3,2-b]quinoline 50. Hydrolysis of N5-benzoyl-quindolone (50) 

produced quindolone (4).(211) Quindoline and cryptolepine can be achieved from 4 through the process 

already described in Görlitzer and Weber total synthesis section.  

Fan and Ablordeppey’s method 

In 1997, Fan and Ablordeppey synthesized the indolo[3,2-b]quinoline nucleus from the 3-

aminoquinoline (51, shown in Scheme 1.4).(236, 240) Compound 51 undergoes through arylation with 

triphenylbismuth diacetate to form the intermediate 3-anilinoquinoline 52. Subsequent oxidative 

cyclization of 52 with palladium (II) acetate in triflouracetic acid produces the desired quindoline 25. 

This new methodology involves only a two steps reaction, completed in one day, and so represents an 

advantage when compared with the synthetic routes described so far. However, the formation of the 

regioisomer resulting from cyclization at 4-position of the quinoline reduces the yield of 25. 

To improve the efficiency of the cyclization step, the authors made some modifications in the 

methodology, changing the acid medium and the oxidant, but it was verified a reduction in the yield of 

the reactions, and in some cases, an increase of the side products. Blocking the 4-position of quinoline, 

in order to avoid cyclization in that position, was another strategy attempted by Fan and Ablordeppey, 

but this increased the reaction steps and reduced the advantage of this method over the others, i.e. a 

shorter reaction time with comparable yields. 

 

(51) quinolin-3-amine 

Ph3Bi(OAc)2 
Cu 

 

 

(52) N-phenylquinolin-3-amine 

Pd(OAc)2 
CF3COOH 

 

 

(25) Quindoline 

Scheme 1.4 – Fan and Ablordeppey total synthesis. 
 

In 2008, Ablordeppey’s group using this approach with some modifications synthesized 

substituted 10H-indolo[3,2-b]quinolines and 7H-indolo[2,3-c]quinolines with good yields.(251) 

 

Görlitzer and VentzkeNeu’s method 

In the same year as Fan and Ablordeppey, 1997, Görlitzer and VentzkeNeu(212) also succeeded in 

a total synthesis of quindoline (Scheme 1.5), driven by the commercial availability of the starting 

materials. 

The four steps reaction starts with the treatment of diethyl malonate (53) with 1-chloromethyl-2-

nitrobenzene (54), in presence of a base, to afford 55 through nucleophilic aromatic substitution at the 

alpha carbon of 53. Cyclization of 55, under basic conditions yields compound 56, which after 

nucleophilic substitution with 2-ethoxyacetyl bromide affords the intermediate 57. Quindoline (25) was 

accomplished after reaction with phosphorus trichloride acting as electrophile. 
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(53) diethyl malonate 

 
+ 

 

 
(54) 1-(chloromethyl)-2-

nitrobenzene 

 
NaOEt 

 

 
(55) diethyl 2,2-bis(2-
nitrobenzyl)malonate 

  NaOH 
EtOH 

 

Net3 
EtOH 

 
 

 
(56) 10-hydroxy-10H-

indolo[3,2-b]quinoline 5-oxide 

 
 

(25) Quindoline 

NaHCO3 
PCl3 

 

 

 
(57) 10-(2-ethoxy-2-oxoethoxy)-10H-

indolo[3,2-b]quinoline 5-oxide 

Scheme 1.5 – Görlitzer and VentzkeNeu total synthesis 

Rocca’s method 

The first Halogen-Dance reaction (HD) in quinoline series, as well as a new three steps synthesis 

was accomplished in 1998 by the Rocca group (Scheme 1.6).(213) The HD represents a base induced 

reaction of a haloaromatic compound in which the position of the halogen atom in the product 59, 

differs from its position in the starting material 58.(252) The mechanism consists in a sequence of 

deprotonation and metal-halogen exchange reactions, which in the end, lead to the most stable 

organometal species. These processes allow the introduction of an external electrophile at the former 

position of the halogen by concomitant establishment of a new reactive center at the new position of the 

halogen.(253) 

Treatment of 58 with LDA led to substituted quinoline 59, where fast isomerization to the more 

stable 4-lithioquinoline occurs, quenched with several electrophiles. Palladium-catalyzed cross-coupling 

reaction, under Suzuki conditions (254), between 59 and boronic acid derivative gave 60, which 

undergoes cyclization to quindoline 25, by a nucleophilic aromatic substitution (213). One year later, the 

same group described the total synthesis of cryptomisrine, a bis-quindoline linked by a keto group in 

position 11 of the indolo[3,2-b]quinoline nucleus, with the same HD methodology (214). As a extension 

of this methodology in 2001 Rocca’s group synthesized C11 substituted cryptolepines (255). Cross-

coupling palladium-catalyzed reactions of functionalized boronic acids with iodoquinolines produced 

the desired biaryls, which was then readily functionalized in the quinoline nucleus by metalation with n-

BuLi at low temperatures, followed by quenching with various electrophiles. The C11 substituted 

cryptolepines were achieved after cyclization of the prepared phenylquinolines and methylation of the 
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prepared quindolines through a methodology already described in Görlitzer and Weber total synthesis 

section.(13) 

 

 
(58) 3-fluoro-4-iodoquinoline 

 

 

   1.LDA/THF 

   2.E+ 

 

 

 

 

 

 

 

 
(59) 2-iodo3-fluoro-4-substituted-

quinolines 

 

E+ E 

I2 I 

H2O H 

CCl3CCl3 Cl 

CH3COH CH3CH(OH) 

PhCHO PhCH(OH) 

 

 

 

 
(59) 2-iodo3-fluoro-4-

substituted-quinolines 

 

 
Pd(PPh3)4/EtOH  

(60) N-(2-(3-fluoroquinolin-

2-yl)phenyl)pivalamide 

 

1. Piridinium Chloride 

2. NH4OH 

 
 

(25) Quindoline 

Scheme 1.6 – Rocca total synthesis 

 

Timári method 

In 1999 Timári’s group synthesized in a three step reaction the alkaloid quindoline (25, Scheme 

1.7), using the palladium-catalyzed cross-coupling reaction, under Suzuki conditions,(254) like Rocca 

total synthesis, between (2-pivalamidophenyl)boronic acid (61) and halogen substituted quinolines. (256) 

 
 

(61) (2-pivalamidophenyl)boronic acid 

 
 
+ 

 
 

(62) 2,3-dibromoquinoline 

 
 

Pd(0) 

 

 
(63) N-(2-(3-bromoquinolin-2-

yl)phenyl)pivalamide

 H+/H2O 

 
 

 
(25) Quindoline 

 
 

 

 

 
(64) 2-(3-bromoquinolin-2-yl)aniline 

Scheme 1.7 – Timári total synthesis 
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This strategy was accomplished by a regioselective coupling reaction of 2,3-dibromoquinoline (62) 

with 61, taking in consideration the fact that the α-heteroaryl halogen atom is more reactive in such 

coupling reactions.(257) After the cross-coupling reaction, the intermediate 63 was deprotected affording the 

appropriate substituted 2-aryl-quinoline 64. The intermediate64 undergoes in a substitution reaction using 

pyridinium hydrochloride, both as reagent and solvent, to afford the quindoline (25).  

Rádl’s method 

Rádl’s group developed in 2000 a total synthesis for the indolo[3,2-b]quinoline, quindolone (4, 

Scheme 1.8) and subsequently for quindoline and cryptolepine (216). The new methodology undergoes 

through second order nucleophilic reactions of benzonitriles with highly reactive α-bromoketones 

having suitable functionalized groups (R). 

Reaction of the ethyl 2-(cyanophenyl)carbamate (65) with 2-bromo-1-(2-fluorophenyl)ethanone 

or 2-bromo-1-(2-nitrophenyl)ethanone (66) provided the corresponding compound 68. The uncyclized 

intermediate 67 was not isolated and the reactions undergoes through addition of the enolate from 67, to 

the cyano group. Cyclization of derivative 68 through nucleophilic aromatic substitution in the presence 

of sodium hydride provided the required tetracyclic N-unsubstituted quindolone 4. This new approach 

to the synthesis of indolo[3,2-b]quinolines may be useful for the preparation of substituted derivatives. 

A large number of salicylonitriles and anthrainlonitriles are commercially available for use as starting 

materials.(216) 

 

 
 

(65)  Ethyl (2-cyanophenyl)-

carbamate 

 

+ 

 

 

 

 (66) 2-Bromo-1-(2-substituted-

phenyl)ethanone 

 

K2CO3 

DMF 

 

(67)  Ethyl (2-cyanophenyl)(2-(2-

substituted-phenyl)-2-oxoethyl)carbamate 
R = H, NO2 or F  

 
 

 
 

 

(4) Quindolone 

 

K2CO3 

DMF 

 

(68) Ethyl 3-amino-2-(2-substituted-

benzoyl)-1H-indole-1-carboxylate 

Scheme 1.8 – Rádl total synthesis 
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Mohan’s method 

A three step synthesis of indolo[3,2-b]quinoline alkaloids was reported in 2006 by Mohan’s 

group. (217) This methodology involves the heteroatom directed photocyclization of anilinoquinolines in 

the presence of protic solvents (Scheme 1.9).  

The term heteroatom-directed photoarylation describes electrocyclic reactions initiated 

photochemically and originated from the arrangements of an available electron pair in a heteroatom (in 

this case a nitrogen) and those from at least one aromatic -bond. (258) This class of reactions has high 

regiospecificity of the aromatic substitution ortho to the heteroatom, with elimination of smaller 

molecules like H2O, H2, HCl and MeOH. The haloquinoline 69 condenses with aniline 70 at 

temperatures ranging from 100 to 200 ºC affording the intermediate 71. The photochemical irradiation 

of 71, in acidic solvent, yields both the linearly- and angularly fused products of photocyclization. The 

presence of suitable leaving groups X is an important requirement for photocyclization. In the absence 

of protic acidic solvents, indolo[3,2-b]quinoline was not produced when X = OH and high yields were 

found when X = Cl, H and OMe. The developed methodology is an attractive synthetic route to the 

synthesis of indolo[3,2-b]quinolines, both linear (25) and angularly-fused (72) due to the easy 

availability of the starting materials.(217) 

 
(69)  3-Bromoquinoline 

 

+ 
 

(70)  2-Substituted-anilines 

 

 

 

(71)  N-(2-substituted-phenyl)quinolin-3-amine 
R = H, Cl or OMe  

h 

C6H6:MeOH:H2SO4 

I2, rt. 

 

 
 

(72) 7H-indolo[2,3-c]quinoline   

51 % 

 

+

 

(25) Quindoline 

16 % 

Scheme 1.9 – Mohan total synthesis 

 

Ray’s method 

In the same year as Mohan’s group, Ray’s group developed the total synthesis of indolo[3,2-

b]quinolines starting from 1-(2-nitrophenyl)-ethanone (73, Scheme 1.10).(259) The synthesis involved 

two important steps, regioselective thermal cyclization and generation of a nitrene intermediate 

followed by insertion into a sp2 C-H bond. 
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(73) 1-(2-Nitrophenyl)-

ethanone 

 
 
 

POCl3 
DMF 

 
 

(74) (Z)-3-Chloro-3-(2-
nitrophenyl)acrylaldehyde 

 
 

 
 

 

 
(75) (E)-4-Substituted-N-((Z)-3-((4-

substituted-phenyl)amino)-3-(2-
nitrophenyl)allylidene)aniline 

R = H, Br, CH3, I 

   

  

 

P(OEt)3 

 

 
 

 
(76) 6-Substituted-2-(2-
nitrophenyl)quinoline 

 

 
(77) 2-Substituted-quindoline 

Scheme 1.10 – Ray total synthesis. 
 

The reaction starts with the treatment of 1-(2-nitrophenyl)-ethanone (73) with phosphorus oxide 

trichloride in a Vilsmeier-Haack reaction to afford the -chlorocinnamaldehyde (74), with the nitro 

group remaining intact. The intermediate 74 undergoes through double nucleophilic reaction with 

aniline and the corresponding enaminoimine hydrochloride 75 was produced. Thermal cyclization of the 

enaminoimine 75 generated the 2-(2-nitrophenyl)quinoline 76, and after reaction with triethyl 

phosphite, which involves intramolecular annulations through nitrene intermediate, produced the 2-

susbtituted-quindoline 77. Ray’s group developed a simple methodology for the synthesis of 2-

substituted quindolines in a four steps reaction starting from accessible materials.(259-260) 

1.2.2 Antiplasmodial Activities 

The pharmacological activities of extracts of C. sanguinolenta and its major indoloquinoline 

alkaloid cryptolepine (1) as well as its isomers, neocryptolepine (7), isocryptolepine (8) and the 

synthetic isoneocryptolepine (35, 5-methyl-5H-indolo[2,3-c]quinoline)  have been extensively studied. 

Since 1937 and in the last 30 years, several publications have demonstrated that indoloquinolines have a 

variety of biological activities including antibacterial, antifungal, antiprotozoal, antitumoral, 

antihyperglycemic, anti-inflammatory, hypotensive, antithrombotic and vasodilation. Due to its rigid 

structure and scope of derivatization, the indolo[3,2-b]quinolines, quindoline and specially cryptolepine, 

have been intensively investigated for finding of new derivatives with improved biological 

properties.(261) 

Cryptolepine (1) is by far the most studied indoloquinoline with activity against malaria parasite 

(Table 1.1) being the subject of a recent review.(262) The antiplasmodial activity of 1 was first reported 
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in 1991 by Noamesi et al.(4) after extracting it from the roots of C. sanguinolenta. The authors tested 

cryptolepine for in vitro antimalarial activity against the multi-resistant (K1) strain of P. falciparum and 

found the compound to be highly active with an IC50 value of 134 nM, comparable with that of 

chloroquine (IC50 = 230 nM). Cryptolepine also showed in vivo significant activity against P. berghei 

yoelii and P. berghei berghei when administrated orally to infected mice, but showed no significant 

efficacy when administered subcutaneously to infected mice with P. berghei strain NK65 at non toxic 

doses.(263-264) In order to explain the high in vitro antiplasmodial activity of 1, which was not supported 

by the in vivo experiments, Kirby et al. demonstrated by a spectrophotometric method that 1 was able to 

intercalate into DNA and related this with its antiplasmodial mechanism of action.(264) 

In the following years several authors reported isolation from the roots of C. sanguinolenta and 

the antimalarial activity of not only cryptolepine, but also of neocryptolepine and isocryptolepine 

against chloroquine resistant and sensitive strains of P. falciparum (Table 1.1). Cryptolepis 

sanguinolenta has been investigated since 1929 for its chemical composition and several indolo[3,2-

b]quinolines, beside cryptolepine, were isolated and their antiplasmodial activity evaluated. (198, 265-266) 

In Figure 1.15 one can see that 1 is the most active of all natural indolo[3,2-b]quinolines (25-28) and 

methylation of N5 is required for antiplasmodial activity, since 25 is inactive against both resistant and 

sensitive P. falciparum strains. It was also observed that introduction of acidic groups at C11 (26, 27) 

abolishes the activity but esterification of the carboxylic group (78) leads to partial recovery of activity. 

Based on these observations the authors suggested that weak basic properties were necessary for 

antiplasmodial activity of indolo[3,2-b]quinolines.(198) Corroborating this conclusion is the improved 

antiplasmodial activity shown by 10H-indolo[3,2-b]quinolin-11-yl-amines 79. Compound 79a which 

contains a para-aminophenol amine in C11 like amodiaquine was the most active of the series when 

tested against the P. falciparum resistant strain K1, with an IC50 around 30 nM .(243)  

Table 1.1 – IC50 values of lead indoloquinolines (IQ) against CQ-R and CQ-S Plasmodium falciparum strains. 

IQ 

IC50 (nM) 

P. Falciparum CQ-R strains P Falciparum CQ-S strains 

W2 (Ref) K1 (Ref) FcB1 (Ref) D6 (Ref) T996 (Ref) F32 (Ref) 

Cryptolepine (1) 
177-194 (263) 

2000 (267) 
755 (268) 

134 (4) 
142-231(263) 

134 (264) 
330 (255) 
440 (210) 
120 (269) 
440 (235) 
755 (249) 
230 (198) 
120 (270) 

430-560 (266) 
180 (271) 

116-153 (263) 
14 (198) 190-300 (266) 

Neocryptolepine (29) 
280 (263) 

14000 (267) 
14000 (272) 

220 (263) 
2610 (269) 

-- 150 (263) -- -- 

Isocryptolepine (30) -- 780 (269) 300 (266) -- -- -- 

Isoneocryptolepine (35) -- 230 (269) -- -- -- -- 



36 | Malaria, from Disease to Therapeutics 
 

 
  

 

The influence of the structural modifications at N5 and C11 of the indolo[3,2-b]quinoline nucleus 

was also evaluated in vitro against the Plasmodium falciparum by Arzel and co-workers.(255) They 

confirmed that methylation on N5 increases the antiparasitic activities, since 2 was about 100 times less 

active against both parasites than 1 and the alkylation at C11 in absence of 5-methyl substitution (81), 

does not affect significantly the antiplasmodial activity. With the 5-methyl substituent, alkyl groups at 

C11 (80 and 82) decrease the activity against both parasites, with exception of 82a which was about 5 

times more active against P. falciparum than cryptolepine. 

The search for indolo[3,2-b]quinolines with improved antiplasmodial activities led Wright and 

co-workers to synthesize new cryptolepine derivatives substituted in the aromatic nucleus (83).(210) The 

monosubstitued compounds 2-Br (83a) and 7-Br (83b) showed improved antiplasmodial activity when 

compared with 1 and the disubstitued compound 83c (2,7-diBr) was about 10 times more potent against 

P. falciparum K1 strain. In this study it was also shown that compounds 1, 83a-c,e,g  share the ability to 

inhibit -haematin formation, in a cell-free system, like chloroquine.(210) Compound 2,7-dibromo (83c) 

was also evaluated in vivo at several doses and a dose-dependent suppression of parasitemia was seen 

with an ED90 of 21.6 mg.kg-1.day-1. This structure-activity study was completed later with a series of 16 

new cryptolepine derivatives (84).(235) 

The IC50 of these compounds (84a,k-m,o) against P. falciparum K1 strain were <100 nM, 5-10 

fold lower than that of 1 but their cytotoxicities were only 2-4 times lower than that of 1. In infected 

mice with P. berghei, the 2-chloro-7-bromo (84k) suppressed parasitemia by 90% at doses of 25 mg.kg-

1.day-1, with no apparent toxicity to the mice. 

Like previously, the authors hypothesized that the mechanism of action of these compounds 

could be by inhibition of hemozoin formation in the food vacuole, however, no correlation between 

antiplasmodial activity and accumulation in the acid food vacuole, determined by a mathematical 

method on the bases of compounds pKa, was seen, suggesting that the antimalarial activity involves 

other mechanisms in addition to the inhibition of hemozoin formation.(10, 235) 

Arzel and co-workers, taking advantage of the fluorescence of the indoloquinoline chromophore, had 

previously shown that in P. falciparum-infected erythrocytes cryptolepine accumulates into specific 

parasite structures that could correspond to the parasite nuclei.(255) The antiprotozoal activities of 

dimeric indoloquinolines were also evaluated (269). Both dimeric alkaloids 33 and 34 were equally or 

less active than cryptolepine against P. falciparum CQ-R strain K1 (Figure 1.16), demonstrating that 

dimerization does not have a positive effect on the antiprotozoal activity. On the other hand, bis-

indoloquinolines 85 and 86a-b showed in vitro antiplasmodial activity against P. falciparum D6 and 

W2 strains with IC50 of 157 and 115 nM for the most active compound 86b (Figure 1.16).(271) 
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IC50 (nM) K1 

(33) Bis-cryptolepine 270 
 

 
IC50 (nM) K1 

(34) Cryptoquindoline >10000 

 
 

IC50 (nM) K1 
(26) Hydroxycryptolepine, R = OH 120000 
(27) Cryptolepinoic acid, R = COOH >181000 
(78) Ethylcryptolepionate, R = COOEt 3760 

 

 

 
EC50 (nM) K1 

(79) 11-((3-((diethylammonio)methyl)-5-substituted-4-hydroxy-phenyl)amino)-
7,10-substituted-10,11a-dihydro-4aH-indolo[3,2-b]quinolin-5-ium chloride 

 a: R1 = H, R2 = H, R3 = H 30.9 
 b: R1 = H, R2 = CH3, R

3 = H  
 c: R1 = Cl, R2 = CH3, R

3 = H   
 d: R1 = H, R2 = H, R3 = CH2HN+(CH2CH3)2  
 e: R1 = H, R2 = CH3, R

3 = CH2HN+(CH2CH3)2  
 f: R1 = Cl, R2 = CH3, R

3 = CH2HN+(CH2CH3)2  
 

 (80) 11-substituted Cryptolepine  
 a: R = Me 101 
 b: R = Et 1100 
 c: R = iPr 2200 
 D R = C6H6 1100 

 

 

 
IC50 (nM) K1 

(25) Quindoline 36200 
(81) 11-substituted quindoline  

 a: R = Me 74600 
 b: R = Et 30900 
 c: R = C6H6 74600 

 

 
IC50 (nM) K1 

 

(1) Cryptolepine, R = H 

330 

(82) 11-substituted Crypt. 
triflate 

 

 a: R = Me 62 
 b: R = Et 480 
 c: R = iPr 1300 
 d: C6H6 1100 

 

 
IC50 (nM) K1 HB3 

(83) mono, di and tri-subtituted IQ   
a: R2 = Br, R3 = CH3 260 450 
b: R3 = CH3, R

4 = Br 260 190 
c: R2 = Br, R3 = CH3, R

4 = Br 49 26 
d: R1 = CONH2, R3 = H >100000 - - 
e: R3 = CH3, R

4 = NO2 650 140 
f: R3 = CH3, R

6 = NO2 6920 4140 
g: R3 = CH3, R

4 = NO2, R
6 = NO2 650 450 

h: R3 = CH3, R
4 =NHAc 520 470 

i: R1 = Cl, R3 = CH3 240 1670 
j: R1 = Cl, R2 =Br, R3 = CH3 4650 - -  
k: R1 = Cl, R3 = CH3, R

5 = Br 7180 - - 
l: R1 = Cl, R3 = CH3, R

4 = Cl 7620 - - 
m: R1 = Cl, R3 = CH3, R

5 = Cl 27000 - - 
In absence of R default is hydrogen 

 
 

 
IC50 (nM) K1 

 

(1) Cryptolepine 

440 

(84) mono and di-substituted 
Crypolepine 

 a: R5 = Cl, R6 = Cl 88 
 b: R5 = Cl 166 
 c: R4 = Cl, R5 = Cl 356 
 d: R4 = Cl 448 
 e: R3 = Cl 4690 
 f: R1 = Cl >10000 
 g: R5 = F 1210 
 h: R5 = CH3 410 
 i: R5 = OCH3 950 
 j: R4 = CH3 149 
 k: R2 = Br, R5 = Cl 30 
 l: R2 = Br, R5 =F 63 
 m: R2 = Br, R4 = Cl 37 
 n: R2 = Br, R5 = CH3 260 
 o: R1 = Cl 45 

In absence of R default is hydrogen 
 

 
 

Figure 1.15 – Indolo[3,2-b]quinolines evaluated against Plasmodium falciparum strains. 

Alkylation of N10 with -phenylpentyl group (compound 87, Figure 1.16) was shown to improve 

antiplasmodial activity against both sensitive P. falciparum D6 strain (IC50 = 122 nM) and resistant W2 

strain (55 nM) .(271) However, isosteric replacement of N10 by sulfur or oxygen resulted in compounds 
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with moderate activities against P. falciparum D6 (IC50 = 755-4241 nM) and W2 (IC50 = 755-5302 nM) 

strains (271).   

 
IC50 (nM) D6 W2 

(85) 10,10'-(pentane-1,5-diyl)bis(5-methyl-
10H-indolo[3,2-b]quinolin-5-ium) 
iodide 

33 177 

 

 

 
IC50 (nM) D6 W2 

(86) 5,5'-(substituted-diyl)bis-(10H-
indolo[3,2-b]quinolin-5-ium) 

a: n = 4 > 707 - - 
b: n = 5 157 115 

 

 
IC50 (nM) D6 W2 

(87) 10-(5-phenylpentyl)-cryptolepine iodide 122 55 

 

Figure 1.16 – Indolo[3,2-b]quinolines evaluated against Plasmodium falciparum strains. 

 

1.2.3 Interactions with DNA and Cytotoxic Activities 

Due to the apparent structural similarity between the indolo[3,2-b]quinoline cryptolepine (1) and 

9-aminoacridine, which intercalates into DNA (273), Kirby et al. performed titrations of 1 with DNA and 

observed a hypochromic effect upon addition of DNA.(264) In the same study, molecular simulations 

suggested that stabilization of intercalation complex is made through π-π charge transfer complexes 

between nitrogens of purine-pyrimidine bases and 1. Corroborating these results, Bonjean et al. reported 

that 1 competes with the triphenylmethane dye for binding to DNA with the same efficiency as the well 

known intercalating drug doxorubicin.(274) In 1998 the same author studied the binding of 1 to DNA, the 

inhibition of topoisomerase II and the cytotoxicity towards mouse B16 melanoma cells. Association 

constants to calf thymus DNA (K1 = 3x106 and K2 = 4x104 M-1) were consistent with those determined 

to intercalating agents and it was observed a noticeable preference for GC-rich sequences. Cryptolepine 

was also shown to be a potent topoisomerase II inhibitor, stabilizing the topoisomerase II-DNA 

complex, stimulating the cut of DNA at a subset preexisting topoisomerase II cleavage sites and 

inhibiting preferentially the DNA synthesis rather than RNA and protein synthesis. This indoloquinoline 

easily crosses the cell membranes and accumulates selectively into the nuclei rather than in the 
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cytoplasm of B16 melanoma cells, blocking the cell cycle in G2/M phase and being 4-5 times more 

cytotoxic than ellipticine.(17) The alkaloid altered the B16 melanoma cell cycle distribution without 

signs of drug-induced apoptosis, pointing to a cell death via necrosis.(7) However in 2000 Dassonneville 

et al. extended the study of cytotoxic effects of cryptolepine at the cellular level and showed that 1 

provokes a massive accumulation of P388 murine leukemia cells in the G2/M phase but in HL-60 

human leukemia cells 1 leads to the appearance of a hypo-diploid DNA, characteristic of the apoptotic 

cell population, with mitochondria and caspases playing a central role in the activation of the 

cryptolepine induced apoptosis. They also observed cross-resistance patterns with cryptolepine 

comparable with those reported for anticancer drugs that are weak inhibitors of topoisomerase II, 

concluding that topoisomerase inhibition would play a relatively minor role in cryptolepine’s 

cytotoxicity. (275)  

The genotoxicity of 1 was studied by Ansah & Gooderham on V79 cells, a Chinese hamster lung 

fibroblast. (8) Cryptolepine induced accumulation of cells in the sub-G1 phase of the cell cycle, 

indicative of apoptotic cell death, but was not mutagenic (hprt gene) in a concentration range from 0.5 

to 5 µM. However, after 24 hours of treatment, cryptolepine induced a dose-dependent increase in 

micronuclei, a signal that it can lead to DNA damage and carry some genotoxic risk. Nevertheless, the 

poor genotoxicity of cryptolepine coupled with the potent cytotoxic action could support their 

anticancer potential.(8, 276) In 2002 Lisgarten et al. reported the crystal structure of cryptolepine 

intercalated with the DNA fragment d(CCTAGG)2.
(277) Cryptolepine was found to bind to DNA in GC-

rich sequences and to interact with those DNA sites in a base-stacking intercalation mode (Figure 1.17). 

The asymmetry of the alkaloid induces a perfect stacking with the asymmetry of the site, allowing the 

stability of the complex in the absence of hydrogen bonding interaction.(5) 

 Cryptolepine also interacts with triplexes and quadruplexes DNA structures. In a dialysis 

competition assay Guittat et al. demonstrated that cryptolepine is not a good substrate for DNA or RNA 

single strands, but displays good affinity for triplexes (Tm = 10 ºC) rather than for G-quadruplexes 

(Tm = 3 ºC). Additionally, cryptolepine showed weak telomerase inhibition activity, with an IC50 of 9.4 

µM and a moderated PCR inhibition at ~5 µM, before telomerase elongation was observed, probably 

reflecting the preference of cryptolepine for a duplex than a G-quadruplex structure.(278) 

In 2007 a study with murine macrophage cell line RAW 264.7 showed that cryptolepine inhibits 

NF-B (nuclear factor kappa-light-chain-enhancer of activated B cells) mediated gene expression, 

directly acting on the DNA binding step of activated NF-B and thus impairing the initiation of 

transcription of not only inflammatory proteins, but also regulators of the NF-B pathway. It was also 

suggested that cryptolepine might alkylate one of the crucial cysteine residues of the p65/p50 gene and 

thereby impair DNA binding of the nuclear factor.(279) Interestingly, a recent report emphasis the 

importance of the NF-B pathway for the pathogenesis of malaria  and the antimalarial activity of 

cryptolepine may be based on its inhibitory effect on NF-B.(280) 
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Figure 1.17 – Crystal structure of the 
cryptolepine intercalated into d(CCTAGG)2. 

a) Stereo view of two bis-intercalated 
d(CCTAGG)2 hexanucleotides in the ab-plane, 
with the end-stacked ligand bound between 
then. Four asymmetric units are represented in 
different colours. b) Stereo view of the 2Fo-Fc 
electron density map at the area of the 
intercalated ligand, looking into the major 
groove. The map was contoured at the 1.2  
level. Stacking (large arrows) and electrostatic 
(small arrows) interactions are shown. c) 
Stereo view of the projection down the helix 
axis of a d(CpC)-d(GpG) dinucleotide with the 
sandwiched ligand. 

More recently Matsui et al. showed that the treatment of human osteosarcoma MG63 cells with 

cryptolepine (1-4 M) induces p21WAF1/C1P1 mRNA and protein expression, resulting in G2/M phase 

arrest of the cell cycle in a p53-independent manner.(281) Although the indolo[3,2-b]quinoline 1 presents 

good cytotoxicity activity in cancer cell lines, the simplest 10H-indolo[3,2-b]quinoline 25 shows only 

moderate activity with IC50 ranging from 15.5 to 66 µM.(282) Due to the cytotoxic and antitumoral 

activity of natural indolo[3,2-b]quinolines 1 and 25, several derivatives with improved properties have 

been synthesized in the last 20 years.(238-239, 241, 244-245, 283-291) 

1.2.4 Whole Body Distribution of Cryptolepine in Mice and Toxicity 

The distribution of 3H-cryptolepine salt in pigmented and albino mice and in pregnant mice on 

day 16 of gestation was studied by whole-body distribution autoradiography, after a single intravenous 

injection of 0.5 mg.kg-1 which is about 10% of the theraupeutic dose.(292) It was reported that 5 minutes 

after injection most of 3H-cryptolepine left the blood and was localized in several tissues like, muscles, 

liver, gastrointestinal mucosa, adrenal medulla, thyroid, thymus, spleen, lymph glands and eye but not 

in central nervous system (brain and spinal cord). In most tissues a pronounced decrease of 

concentration occurred between 1 and 4 hours pos-injection. In the liver an initially high level of 

radiolabeled compound was gradually followed by a long tail of low concentrations which could be 

discerned even after 8 days. This fact and the observed radioactivity in the gall bladder and intestinal 

lumen indicated biliary secretion and an enterohepatic circulation, although it is not known if the 

radioactivity referred to cryptolepine or to its possible metabolites. The kidney level of radioactivity 
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increased after 20 minutes of injection and decreased rapidly from 1 hour and onwards. Organs with a 

rapid cell proliferation (spleen, thymus and gastrointestinal mucosa) showed a relatively high and 

prolonged retention. For instances, in thymus and spleen a slight activity was still retained after 4 days. 

The most notable and prolonged retention was found in the adrenal medulla and in the melanin-

contained tissues of the eyes in which the radioactivity could be found 8 days after administration. 

Following this observation, the authors suggested that this marked localization of cryptolepine in the 

adrenal medulla could explain the hypotensive activity of the alkaloid which would act by decreasing 

the catecholamine turnover. The overall distribution of 3H-cryptolepine in female mice was not 

significantly different from that of male mice. In fetal tissues the radioactivity was found to be much 

lower than in maternal tissue and this suggests a low influence of cryptolepine on the fetus if the 

compound is being used during pregnancy.(292)    

The studies of acute toxicity revealed that the intraperitoneal injection of 120 mg.kg-1 of 

cryptolepine is lethal for guinea-pigs after 12 hours.(293) In other studies the dose of 1 that killed 50 % of 

the mice over a 24 hours period after intraperitoneal administration was calculated as being 146 mg.kg-

1.(294) Studies on the subacute toxicity showed that chronic administration by subcutaneous injection of 

30 or 60 mg.kg-1 of 1 to mice after 2 weeks caused no damage in liver cells and only moderate necrosis 

in the kidney. However, after 6 weeks of administration both doses caused foci congestion of liver 

chronic inflammatory cells and the higher dose caused widespread cortical necrosis with hyperemia in 

the kidney.(294)  

 

 

 

 

 

 

 

 

 

 

 

 



42 | Malaria, from Disease to Therapeutics 
 

 
  

 



   
 

II 
Chapter II – Synthesis of Indolo[3,2-b]quinolines  

 

“Problems are only opportuni t ies  with thorns on them” 

Hugh Miller (1802 – 1856)  
 Scottish geologist and writer 

 

 

 

 

 

 

 

 

 

Abstract 

Indolo[3,2-b]quinolines represent a important scaffold to the development of new antimalarial drugs with 

improved activity against malaria parasites. Introduction of one alkyldiamine side chains in the cryptolepine (1) 

nucleus is expected to increase its antiplasmodial activity, by improving its accumulation in the parasite DV. The 

indolo[3,2-b]quinoline nucleus have been synthesized through already described synthetic methodology, that 

allowed us to prepare a small library of compounds from a common intermediate. In this study, a series of 

cryptolepine derivatives (3) has been synthesized through the incorporation of short basic side-chains in position 

C-11 of the 10H-indolo[3,2-b]quinoline skeleton. In order to explore the indoloquinoline scaffold and create new 

antimalarial chemotypes, we decided to synthesize also novel indolo[3,2-b]quinolin-11-one (4, 91a and 91b) 

derivatives by alkylating positions N5 and N10 (5) of the aromatic nucleus. However, reaction with 2-chloro-N,N-

diethylethanamide gave also different alkylation patterns, N,O- (94) and O- (95).    
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2.1 Introduction 

 

alaria is a global health problem and one of the most widespread infections of our time. 

Due to the development of the drugs-resistance by the different Plasmodium sp. the 

development of safer, potent and affordable antimalarial drugs to increase our armory in the fight 

against malaria is needed.(26, 167) The indolo[3,2-b]quinolines are a novel scaffold in the antimalarial 

armamentarium and cryptolepine (1) is by far the most studied one. Despite of cryptolepine be as active 

as chloroquine against the Plasmodium falciparum., its cytotoxicity precludes its clinical use.(8) 

However, previous studies on the possible antimalarial mode of action of cryptolepine and related 

natural indoloquinolines led to the conclusion that this class of compounds is able to inhibit haemozoin 

formation, through - stacking interactions between the aromatic core and the FPIX, like chloroquine 

and related 4-aminoquinolines.(210) Also, previous studies on the possible structure-activity relationships 

of these compounds showed that the introduction of halogens as substituents in the aromatic nucleus of 

the 5-methyl-indolo[3,2-b]quinolines increase the antiplasmodial activity, as well as the introduction of  

acidic groups in position C11 abolish the activity against the Plasmodium sp.(9, 198) In view of what is 

already known on the mode of action of cryptolepine (and related indoloquinolines), we synthesized 

new indoloquinolines capable of targeting the haemozoin formation in the digestive food vacuole of the 

Plasmodium sp. in the erythrocytic stage. The development of compounds targeting haemozoin 

formation need to cover the design of compounds capable of forming strong interactions with the 

propionic acid and carboxylate-iron moieties on the haemozoin fast growing faces {001} and {011}, 

able to interact with haematin through - stacking interactions and an ionisable function to promote the 

accumulation inside the parasite DV.   

The new cryptolepine derivatives (3) were synthesized with an alkyl- or aryldiamine side chain in 

position C11 of the indoloquinoline nucleus, while the new quindolone derivatives (5) were synthesized 

with an alkylamine side chain in positions N5 and N10 of the indoloquinoline core. Since cryptolepine 

already possess antiplasmodial activity, it is reasonable to think that introduction of alkyl- or 

aryldiamine groups in position C11 (3) will contribute to the accumulation of these compounds in the 

acidic DV, promote the interactions between the drug and the propionic acid and carboxylate-iron 

moieties of haematin, increasing consequently the specificity and antiplasmodial activity through 

M
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inhibition of haemozoin formation. Also, based on the quindolone scaffold (4), which do not show 

antiplasmodial activity by itself, we introduced alkylamine side chains in positions N5 and N10, aiming 

to achieve potent antiplasmodial activity through the inhibition of haemozoin formation in DV. The 

introduction of the two alkylamine side chains is expected to contribute to the accumulation in the DV 

through the ionisable amine functionality (weak base, pKa between 8 and 10) and to promote the 

electrostatic interactions with the propionic acid and carboxylate-iron moieties in the fast growing faces 

of haemozoin. Also, additional H-bond acceptors, like the carbonyl group in C11 and the substituents in 

the aromatic nucleus are expected to increase the interaction with haematin, together with the aromatic 

core of the quindolone scaffold, which would be able to interact with the haematin through - stacking 

interactions.         

One of the requirements of any synthetic strategy for drug development is that the synthetic 

pathway must be amenable to provide chemical diversity in order to obtain a large number of structural 

motifs. The synthesis of the new library of cryptolepine derivatives (3) with an alkyldiamine side chain 

at C11, and quindolone derivatives (5) with alkylamine side chains attached to nitrogens N5 and N10 was 

attained through a common intermediate. This strategy, also allowed us to appraise the effect of the 

amine side chain length, flexibility, electron-density and corresponding substituent on terminal amine, 

as well as the effect of the substitutions in the cryptolepine aromatic nucleus on the antiplasmodial 

activity.  

Cryptolepine and its derivatives were synthesized from a common intermediate, 11-quindolone 

(91), according to the retrosynthetic analysis represented in Figure 2.1 The key intermediates 91, were 

synthesized according to the procedure developed by Görlitzer and Weber (section 0)(11-12) and adapted 

by Bierer.(13-14) From 91 the quindolone derivatives (5) were synthesized through nucleophilic reaction 

with the appropriated haloalkylamine and the cryptolepine derivatives (3) were synthesized after 

chlorination of position C11, methylation of N5 and finally nucleophilic substitution of the chloride 

atom at position C11 by the appropriate alkyl- or aryldiamine. This synthetic strategy allowed us to 

introduce a large variety of alky- or aryldiamines, alkylamines and different substitution patterns in the 

aromatic core of the cryptolepine and quindolone derivatives (3 and 5). 

2.2 Synthetic Methodologies 

2.2.1 Synthesis of 5H-Indolo[3,2-b]-quinolin-11(10H)-one (4 and 91) and 5-Methyl-11-

chloro-10H-indolo[3,2-b]quinolines (93) Intermediates 

Several methodologies have been already described for the synthesis of the indoloquinoline 

scaffold (Section 1.2.1). However, not all of them allow the straightforward synthesis of the quindolone 

(91) with the desired substitution pattern in the aromatic nucleus. Due to the simplicity, efficiency and 

relatively low price of the reagents, the cryptolepine derivatives (3) and the quindolone derivatives (5) 
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were synthesized through the methodology developed by Görlitzer and Weber(11-12) and adapted by 

Bierer.(13-14) 

Cryptolepine derivatives (3) 

 
3 

 

93 

 

 

92 

 

 

91 
4 if R1, R2, R3 = H 

 
 R1, R2, R3 = H, CH3, CF3, OCH3 or Halogen 
R4 = Alkyl, cyclo or aryldiamine 
 

Quindolone derivatives (5)   

  
 

5 
R1, R2 = H, CH3, CF3 or Halogen 
R3 = Alkylamine 

 
91 

4 if  R1, R2 = H 

  

  
Figure 2.1 – Retrosynthetic analysis for the synthesis of the cryptolepine and quindolone derivatives (3 and 5). 

This methodology allowed us to synthesize the common indoloquinoline 5H-indolo[3,2-b]-

quinolin-11(10H)-one (91, 11-quindolones), used for the synthesis of cryptolepine, its derivatives and of 

the quindolone derivatives 5, as described in Scheme 2.1. The quindolone derivatives were synthesized 

directly from the intermediates 91 and the cryptolepine derivatives 3 were synthesized from the 

common intermediates 5-methyl-11-chloro-10H-indolo[3,2-b]quinolines (93), using the methodology 

described by Bierer and co-workers, which undergoes through a chlorination to give the 11-chloro-10H-

indolo[3,2-b]quinolines (92) and a methylation into N5 to afford 93, as represented in Scheme 2.1.(13-14)   

 
 

  
(88) Anthranilic acids 

i) 

 
 

(89)  2-(2-Bromoacetamido) 
benzoic acids 

 
 
 
 

ii) 

 
  

(90) 2-[2-(Phenylamino)-
acetamido]benzoic acids 

   

  
 
iii) 

 
 

 
(91) 5H-indolo[3,2-

b]quinolin-11(10H)-ones 
(11-Quindolones) 

 

 
 

v) 

 
 

 
(92) 11-chloro-10H-

indolo[3,2-b]quinolines 
(11-Chloro-quindolines) 

 
 

iv) 

 

 
(93) 5-methyl-11-chloro-

10H-indolo[3,2-b]quinolines 
(11-chloro-cryptolepines) 

Scheme 2.1 – Synthetic methodology for the synthesis of the common indolo[3,2-b]quinolines intermediates.  
i) Bromoacetyl bromide, DMF:1,4-Dioxane (1:1), overnight, r.t.; ii) Aniline, DMF, 120 ºC, 18 to 96 h; iii) PPA; 
130 ºC, 2 hours; iv) POCl3, reflux, 2 hours; v) MeOTf, Toluene, r.t., 24 hours.   

The synthetic pathway starts with reaction of the appropriate anthranilic acid (R1 = H or Cl), with 

an excess of bromoacetyl bromide in DMF/1,4-dioxane (1:1). The nucleophilic substitution occurs after 
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attack of the anthranilic acid amino group to the carbonyl of the bromoacetyl bromide with release of 

bromide, giving 89a and 89b in 96 % and 99 % yield, respectively.  

 

 
 
 

R1 

 

H 
Cl 

  
(89a) 2-(2-bromoacetamido)benzoic acid 
(89b) 2-(2-bromoacetamido)-4-chlorobenzoic acid 

 
 
 

Section 
 

7.2.1.1 
7.2.1.2 

Figure 2.2 – Structure of the 2-(2-Bromoacetamido) benzoic acids (89) 

The products of the reaction were characterized by 1H-NMR, 13C-NMR, bidimensional COSY, 

HMQC and HMBC nuclear magnetic resonance techniques, and melting point determination (Section 

7.2.1). The results are in agreement with the chemical structure of the compounds and with the 

literature.(13, 199) 

The attribution of the NMR signals (shown for 89a in Figure 2.3) allows to verify the presence of 

the acetamide carbonyl carbons in 13C-NMR with 13C chemical shifts (c) of 165.04 and 165.92 ppm for 

89a and 89b, respectively and the presence of one singlet at 1H chemical shift (H) of 3.87 and 4.28 ppm 

(89a and 89b, respectively), corresponding to 2 protons of the acetyl aliphatic CH2, confirming the 

formation of the desired product.  

 The 1H NMR coupling pattern showed 

two doublets (d) in aromatic region, H3 and H6 

coupling with positions ortho H4 and H5, 

respectively, and also two double-doublets (dd) 

corresponding to H4 and H5 coupling with ortho 

positions (i.e. H4 with H3 and H5 ), as shown in 

figure Figure 2.3. All the other signals in 1H 

NMR appears as singlets (s).    

The synthesis of the 2-[2-(phenylamino)-

acetamido]benzoic acid derivatives (90) was 

accomplished after reaction of 89a or 89b, with 

the appropriated aniline to give the required 

substitution pattern in the aromatic nucleus of 

the required indoloquinolines. The nucleophilic 

reaction of second order (SN2) occurs in DMF 

at 90 ºC with the attack of the aniline amino 

group to the electrophilic carbon  (aliphatic CH2) of the starting material with release of bromide.   

 

 

Figure 2.3 – Assignment of 1H and 13C NMR of 89a. 
Colour codes: H-yellow, C-grey, N-blue, O-red, Br-orange. 

Wireframe representation 
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R1 
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Cl 
Cl 
Cl 
Cl 
Cl 
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H 
H 
Cl 

CF3 

OCH3 

CH3 

R3 

H 
H 
Cl 
H 
H 
H 
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(90a) 2-(2-(phenylamino)acetamido)benzoic acid 
(90b) 4-chloro-2-[2-(phenylamino)acetamido]benzoic acid 
(90c) 4-chloro-2-{2-[(3-chlorophenyl)amino]acetamido}benzoic acid 
(90d) 4-chloro-2-{2-[(4-chlorophenyl)amino]acetamido}benzoic acid 
(90e) 4-chloro-2-(2-((4-(trifluoromethyl)phenyl)amino)acetamido)-benzoic acid 
(90f) 4-chloro-2-(2-((4-methoxyphenyl)amino)acetamido)benzoic acid 
(90g) 4-chloro-2-(2-((4-methylphenyl)amino)acetamido)benzoic acid 

 
7.2.2.1 
7.2.2.2 
7.2.2.3 
7.2.2.4 
7.2.2.5 
7.2.2.6 
7.2.2.7 

Figure 2.4 – Structure of the 2-(2-(phenylamino)acetamido)benzoic acids 90. 

 The products of the reaction were obtained in good yields (Table 2.1) and characterized by NMR 

techniques, and melting point determination. The attribution of the 1H and 13C NMR of 90a is shown in 

Figure 2.5. The results are in concordance with the chemical structure of the compounds and in 

agreement with the literature.(13, 199) The analysis of the 

NMR spectra (Section 7.2.2) confirms the formation of 

the desired products through the presence of the 

aromatics protons, from the introduced aniline and the 

singlet corresponding to 2 protons from the acetamide 

group in 90 (Table 2.1). The 1H NMR coupling pattern 

of 90a was similar to that of 89a, showing two d and 

two dd corresponding to the signals of H3, H6 and H4, 

H5 respectively, two s corresponding to the signals of the NH and CH2 of the acetamide, in addition to 

one singlet corresponding to the NH of the introduced aniline, two d and one dd, corresponding to H2’, 

H4’ and H3’ respectively, in case of 90a, due to ortho coupling in the aromatic ring, as shown in Figure 

2.5.  

 
Figure 2.5 – Assignment of 1H and 13C NMR of 90a. 

Colour codes: H-yellow, C-grey, N-blue, O-red. Wireframe representation 

Table 2.1 – 1H NMR chemical shifts (H) of the 
aliphatic CH2 in 90 and its reaction yields.

Compound H (ppm) 
Yield 
(%) 

(90a) 3.73 70 
(90b) 3.86 96 
(90c) 3.92 84 
(90d) 3.88 70 
(90e) 3.98 64 
(90f) 3.79 72 
(90g) 3.81 83 
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The 5H-indolo[3,2-b]quinolin-11(10H)-ones (91, 11-quindolones), the third intermediate in the 

synthetic pathway for the synthesis of the cryptolepine derivatives 3 and the final common intermediate 

for the synthesis of the quindolone derivatives 5, were achieved after cyclization of 90 in acid medium. 

The reaction is catalysed by polyphosphoric acid (PPA) and the mechanistic pathway is represented in 

Scheme 2.2. Polyphosphoric acid is recognized as a cyclising agent and it has been extensively used in a 

wide variety of reactions catalyzed by acids, due to its unique combination of properties: good solvent 

for organic compounds, a proton donor which improves condensation reactions and a cyclodehydrating 

agent which ensure slow intramolecular cyclization over a wide range of temperatures.(295) 

The acid-catalyzed mechanism of cyclization stars with the formation of an enolate equilibrium 

between the -carbon and the carbonyl from the acetyl group. The enolate attacks the carbonilic carbon 

of the acid functionality with formation of a 6-member ring and release of water.    

 

Scheme 2.2 – Acid-catalyzed cyclization of 90 to afford 5H-indolo[3,2-b]quinolin-11(10H)-ones (91, 11-
quindolones). 

The next step is the nucleophilic attack of the electrons in the aromatic ring of the aniline 

function to the carbonilic carbon in position 2 of the formed quinoline ring, closing the 5-member ring 

of the indole. After the ring closures the aromaticity is reestablished with release of a water molecule.    

  Section 
R1 

H 
Cl 
Cl 
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Cl 
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H 
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CF3 
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Cl 
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H 
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(4) 5H-indolo[3,2-b]quinolin-11(10H)-one   
(91a) 3-chloro-5H-indolo[3,2-b]quinolin-11(10H)-one  
(91b) 3,8-dichloro-5H-indolo[3,2-b]quinolin-11(10H)-one  
(91c) 3,7-dichloro-5H-indolo[3,2-b]quinolin-11(10H)-one 
(91d) 3-chloro-7-trifluoromethyl-5H-indolo[3,2-b]quinolin-11(10H)-one 
(91e) 3-chloro-7-methoxy-5H-indolo[3,2-b]quinolin-11(10H)-one 
(91f) 3-chloro-7-methyl-5H-indolo[3,2-b]quinolin-11(10H)-one 

 
7.2.3.1 
7.2.3.2 
7.2.3.3 
7.2.3.4 
7.2.3.5 
7.2.3.6 
7.2.3.7 

Figure 2.6 – Structure of the 5H-indolo[3,2-b]quinolin-11(10H)-ones  91. 

The products of the reaction (4 and 91) were obtained with yields ranging from 15 to 67 % 

(Table 2.2) and were characterized with NMR techniques, infrared spectra and melting point 
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determination (Section 7.2.3). For instance, the assignment of the 1H and 13C NMR spectra of 4 is 

illustrated in Figure 2.7. 

 The 1H NMR coupling 

pattern showed the presence of 

four dd corresponding to the 

proton H2, H3, H7 and H8, and four 

d corresponding to protons H1, H4, 

H6 and H9 due to the ortho 

couplings (as shown in Figure 

2.7). The NMR analysis reveal 

also the presence in the 13C NMR 

spectra of the carbonilic carbon 

(Table 2.2) in addition to a 

infrared  band at 1625 cm-1, 

belonging to the stretching of 

C=O,  corroborating the formation 

of the 11-quindolones 91a. The 

NMR data for all compounds are 

in concordance with the chemical 

structure of the compounds and 

with those described elsewhere.(13, 

199) 

 The introduction of chloride in the position 11 of the quindoline nucleus gave the 11-

chloroquindolines (92). The reaction occurs between the intermediates 4 or 91 and phosphorus 

oxychloride in a Vilsmeier halogenation reaction, with formation of the iminium ion as intermediate 

(Scheme 2.3). The mechanistic pathway begins with the nucleophilic attack of the electrons in the 

carbonilic oxygen to the phosphorous atom of the phosphorous oxychloride reagent, with release of 

chloride and formation of the iminium ion, which after the attack of the chloride to position C11, release 

phosphorodichloridic acid with formation of the 11-cloroquindolines (92). 

The products of the reaction were obtained with yield ranging from 49 to 78 % and characterized 

with NMR techniques, infrared spectra and melting point determination (Section 7.2.4). The NMR data 

are in good agreement with the chemical structure of the compounds and with those described 

elsewhere. (13, 199) The NMR analysis reveals the absence in the 13C-NMR spectra of the carbonilic 

carbon from the previous intermediate, corroborating the introduction of the chloride in position C11, 

giving 92. 

Table 2.2 – 13C NMR chemical shift (C) of carbonyl carbon in 4 and 91 and 
its reaction yields. 

Compound c (ppm) Yield (%) 

(4) 167.77 67 
(91a) 167.30 36 
(91b) 167.49 15 
(91c) 167.54 40 
(91d) 168.11 33 
(91e) 167.35 27 
(91f) 167.23 52 

 

 

Figure 2.7 – Assignment of 1H and 13C NMR of 4. 
Colour codes: H-yellow, C-grey, N-blue, O-red. Wireframe representation 
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Scheme 2.3 - Halogenation mechanism of 91 to give the 11-cloroquindolines (92) in a Vilsmeier reaction. 

Figure 2.9 shows the assignment of the 1H and 13C NMR spectra of 92a. The analysis of the 

spectra reveals a downfield shift in the C of the carbons 4a and 5a signals, when compared with the 

parent compound 4. Carbons 4a and 5a in 4 showed and C of 139.64 and 129.44 ppm, respectively, 

which in 92a showed a C of 144.28 and 146.52 ppm. 
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(92a) 11-chloro-10H-indolo[3,2-b]quinoline 
(92b) 3,11-dichloro-10H-indolo[3,2-b]quinoline 
(92c) 3,8,11-trichloro-10H-indolo[3,2-b]quinoline 
(92d) 3,7,11-trichloro-10H-indolo[3,2-b]quinoline 
(92e) 3,11-dichloro-7-trifluoromethyl-10H-indolo[3,2-b]quinoline 
(92f) 3,11-dichloro-7-methoxy-10H-indolo[3,2-b]quinoline 
(92g) 3,11-dichloro-7-methyl-10H-indolo[3,2-b]quinoline 

 
7.2.4.1 
7.2.4.2 
7.2.4.3 
7.2.4.4 
7.2.4.5 
7.2.4.6 
7.2.4.7 

Figure 2.8 – Structure of the 11-chloro-10H-indolo[3,2-b]quinolines 92. 

 

Also, the introduction of the chlorine in position C11 originated changes in the H of the 1H NMR 

spectra. The most significant changes occur in H4, which in 4 showed a H of 7.81 ppm, and due to an 

upfield shift verified in 92a showed H of 7.29 ppm (Figure 2.9). The analysis of the infrared 

spectroscopy spectra also reveals the disappearance of the band in the near-infrared region (≈1670 cm-1) 

corresponding to the stretching of carbonyl, reinforcing the successful introduction of the chlorine in 

position C11.  

The key intermediate for the synthesis of cryptolepine derivatives was obtained from 92a-c after 

reaction with methyl trifluoromethanesulfonate (methyl triflate) in anhydrous toluene. The reaction gave 

5-methyl-11-chloro-10H-indolo[3,2-b]quinolin-5-ium trifluoromethanosulfonate (93a-c) which in order 

to avoid the mixture of triflate and chloride anions (resulting from the reaction of introduction of 

alkyldiamine) in the final product (3),  was treated with a basic solution of Na2CO3 5% to forming its 

basic specie and then precipitated with HCl to achieve 5-methyl-11-chloro-10H-indolo[3,2-b]quinolin-

5-ium chloride (93a-c) as an orange solid, yielding 46 to 90 %. 
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Figure 2.9 – Assignment of 1H and 13C NMR of 92a. 
Colour codes: H-yellow, C-grey, N-blue, Cl-green. Wireframe representation. 

The characterization of 93a-c was done through NMR techniques and melting point 

determinations (Section 7.2.5). The assignment of the 1H and 13C NMR chemical shifts of 93a is shown 

in Figure 2.11. The data for compounds 93a-c are in agreement with the chemical structure of the 

compound and with the data already described in the literature.(13)  
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(93a) 5-methyl-11-chloro-10H-indolo[3,2-b]quinolin-5-ium chloride 
(93b) 3,11-dichloro-5-methyl-10H-indolo[3,2-b]quinolin-5-ium chloride 
(93c) 3,8,11-trichloro-5-methyl-10H-indolo[3,2-b]quinolin-5-ium chloride 
(93d) 3,7,11-trichloro-5-methyl-10H-indolo[3,2-b]quinolin-5-ium chloride 
(93e) 3,11-dichloro-5-methyl-7-trfifluoromethyl-10H-indolo[3,2-b] quinolin-5-ium chloride 
(93f) 3,11-dichloro-5-methyl-7-methoxy-10H-indolo[3,2-b] quinolin-5-ium chloride 
(93g) 3,11-dichloro-5-methyl-7-methyl-10H-indolo[3,2-b]quinolin-5-ium chloride 

 
7.2.5.1 
7.2.5.2 
7.2.5.3 
7.2.5.4 
7.2.5.4 
7.2.5.4 
7.2.5.4 

Figure 2.10 – Stucture of the 5-methyl-11-chloro-10H-indolo[3,2-b]quinolin-5-ium chlorides 93 

 

NMR spectra of compound 93a revealed the introduction of the N5-CH3, since and additional 1H 

chemical shift (H) at 5.04 ppm, integrating to three protons, and a 13C chemical shift (C) of 40.97 ppm. 

This 1H signal showed Nuclear Overhauser Effect (NOE) with the proton H4 (H = 8.88 ppm) of the 

aromatic nucleus (Figure 2.11). The introduction of the methyl group in N5 leads to a downfield in the 

protons in the aromatic nucleus, especially in protons H1 to H4 and in the indolic proton (11.88 in 92a to 

13.39). Also, it was verified an upfield on the 13C chemical shifts of carbons C4a and C5a (144.28 ppm 

in 92a to 136.15 ppm and 146.52 ppm in 92a to 139.03 ppm, respectively). 
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Figure 2.11 – Assignment of 1H and 13C NMR of 93a. 
Colour codes: H-yellow, C-grey, N-blue, Cl-green. Wireframe representation. 

The synthesis of compounds 93d-g were also tried with reaction of 92d-g with methyl triflate as 

described above for 93a-c (Section 7.2.5.1). However, the NMR characterization of the reaction 

products revealed that the desired product was not formed or very small amounts (5-10% of product, 

from inspection of 1H NMR). Since the product of the reaction is a salt very slightly soluble in most 

organic solvents, its purification processes, like chromatography, are not very efficient, being the 

recristalization form chloroform or ethyl acetate/methanol mixtures with diethyl ether the most 

successful one. However, due to the limited amount of reaction product, it was not possible to 

recrystallized 93d-g from the mixtures with 92d-g.  

In order to achieve the cryptolepine derivatives intermediates 93d-g we tried different synthetic 

methodologies (Section 7.2.5.4), aiming to increase the amount of product. Changes of solvent from 

toluene to anhydrous dichloromethane, acetone or dimethylformamide, inert atmosphere (N2), heating at 

given temperature or until reflux, as well as, extending the reaction time until 96 hours and increasing 

the equivalents of alkylating agent were attempted, however without success. Changing the alkylating 

agent was also tried. Reaction of 92d-g with trimethyloxonium tetrafluoroborate (Meerwein's 

reagent),(296-298) which is a strong alkylating agent, in dimethylformamide at 80ºC for 120 hours 

revealed no improvement in the product formation. As such, it was not possible to synthesize the 

compounds 93d-g. 

2.2.2 Synthesis of Cryptolepine (1) 

The synthesis of cryptolepine from the intermediate (92) was achieved through the synthetic 

methodology described in Scheme 2.4. The 11-chloroquindoline (92) undergoes through an 

hydrogenation reaction to give quindoline (25), which after alkylation gives cryptolepine. 
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The hydrogenation of 92a was achived using the methodology adapted by Ablordeppey and co-

workers(237) (method 1, Section 7.2.6.1.1) , in which the reaction occurs in a high pressure vassel, 

containing H2 and catalazed by palladium. In addition, a methodology developed by Mandal and 

McMurray(299) with in situ generation of H2 (method 2, Section 7.2.6.1.2) and palladium catalyzed, was 

also used. 

 

 
 

92 

 
i) 

 

 
 

(25) 10H-indolo[3,2-b] 
quinoline (Quindoline) 

 

 
ii) 

 

 
 

(1) 5-methyl-10H-indolo 
[3,2-b]quinolin-5-ium 

trifluoromethanesulfonate  
(Cryptolepine) 

Scheme 2.4 – Synthetic methodology for the synthesis of cryptolepine from 92. 
i) H2 Pd-C 10% NaOAc, AcOH, 60 psi, 2h or EtSiH, 10% Pd-C, MeOH, 20 min.; ii) methyl triflate, toluene, r.t., 
24h. 
 

 

Figure 2.12 – Assignment of 1H and 13C NMR of 25. 
Colour codes: H-yellow, C-grey, N-blue. Wireframe representation 

 Hydrogenation reaction in absence of metal catalyst only takes place at very high temperatures. 

The use of palladium catalist allowed us to react hydrogen and the substrate at lower temperatures with 

good yields. Palladium binds both H2 and the substrate, transfering the hydrongen catalyticaly to the 

substrate.(300-301) The quindoline 25 was synthsized with good yields with both methodologies (85 % and 

78 % for method 1 and 2, respectivily).  

However, reaction with tetraethylsilane as an hydrogen donor (Mandal and McMurray, methd 2), 

revealed to be more advantageus due to the simplicity of the experimental procedure. The reaction was 

carried out at room temperature, atmosferic pressure and in a short period of time (20 minutes), using 
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excess of tetraethylsilane and 15 % Pd-C (by weight). The products of both reactions were caracterized 

by NMR spectroscopy and melting point (Section 7.2.6) being the results in good agreement with the 

literature.(302) The assignment of the NMR spectra reveals the introduction of the hydrongen in position 

11 of the indoloquinoline nucleus (Figure 2.12). The proton appears as a singlet with a H of 8.29 ppm 

and the 13C chemical shift of C11 suffers and upfield shift from 130.57 ppm in 92a to 112.31 ppm in 25. 

In addition, carbons 10a and 11a suffer and downfiled shift when compared with the parent compound 

92a (124.08 and 118,42 ppm in 92a to 131.75 and 126.03 ppm in 25, respectively). 

Cryptolepine (1) was achieved after reaction of the intermediate 25 with methyl 

trifluoromethanosulfonate. Like already described for compounds 93, it is a nucleophilic reaction 

between N5 and the methyl group of the alkylating agent.     

The product of the 

reaction was characterized 

by NMR spectroscopy, 

melting point and 

elemental analysis, being 

the results in agreement 

with the literature (Section 

7.2.7).(303) The assignment 

of the NMR spectra reveals 

the presence of a singlet 

with a chemical shift of 

4.92 ppm, corresponding to 

three protons and a 13C 

signal with a C of 39.21 

ppm, corroborating the introduction of the methyl in N5 (Figure 2.13).  As demonstrated with 

compounds 92, a downfield shift on the H of the aromatic protons and, as well as in the proton of the 

indolic nitrogen (N10) was verified. Also, an upfield on the 13C chemical shifts of carbons 4a and 5a 

(145.04 in 92a to 137.06 and 142.71 in 92a to 134.34, respectively) was verified. 

2.2.3 Synthesis of Cryptolepine Derivatives (3) 

The cryptolepine derivatives with alkyldiamine side chains (3a-n,r-y), in position C11 of the quindoline 

nucleus  were synthesized after reaction of the key intermediate 93, with the required alkyldiamine, 

through a nucleophilic substitution reaction with release of chloride (Scheme 2.5). All alkyldiamine 

were used as received from the commercial supplier, except for those which the syntheses are described 

in Section 2.2.5. Thus, the cryptolepine derivatives 3d,j,l and t were obtained after reaction of the key 

intermediate 93 with the synthesized alkyldiamine 97, 100, 103, and 105, respectively. 

 

Figure 2.13 – Assignment of 1H and 13C NMR of 1. 
Colour codes: H-yellow, C-grey, N-blue. Wireframe representation 
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Section 
R1 R2 R3   
H H  (3a) 5-methyl-11-[(2-aminoethyl)amino]-10H-indolo[3,2-b] quinolin-5-ium chloride 7.2.8.1 

H H  
(3b) 5-methyl-11-{[2-(dimethylamino)ethyl]amino}10H-indolo[3,2-b] quinolin-5-ium 

chloride 
7.2.8.2 

H H 
 

(3c) 5-methyl-11-{[2-(diethylamino)ethyl]amino}-10H-indolo[3,2-b] quinolin-5-ium 
chloride 

7.2.8.3 

H H 
 

(3d) 5-methyl-11-[1-(diethylamino)propan-2-yl)amino]-10H-indolo[3,2-b] quinolin-5-
ium chloride 

7.2.8.4 

H H (3e) 5-methyl-11-[(3-aminopropyl)amino]-10H-indolo[3,2-b] quinolin-5-ium chloride 7.2.8.5 

H H  
(3f) 5-methyl-11-{[3-(dimethylamino)propyl]amino}-10H-indolo[3,2-b] quinolin-5-ium 

chloride 
7.2.8.6 

H H (3g) 5-methyl-11-{[3-(diethylamino)propyl]amino}-10H-indolo[3,2-b] quinolin-5-ium 
chloride 

7.2.8.7 

H H  
(3h) 5-methyl-11-{[3-(dimethylamino)-2,2-dimethylpropyl] amino}-10H-indolo[3,2-

b]quinolin-5-ium chloride 
7.2.8.8 

H H (3i) 5-methyl-11-{[3-(isopropylamino)propyl]amino}-10H-indolo[3,2-b] quinolin-5-ium 
chloride 

7.2.8.9 

H H (3j) 5-methyl-11-{[3-(piperidin-1-yl)propyl]amino}-10H-indolo[3,2-b] quinolin-5-ium 
chloride 

7.2.8.10 

H H  (3k) 5-methyl-11-[(4-aminobutyl)amino]-10H-indolo[3,2-b] quinolin-5-ium chloride 7.2.8.11 

H H 
 

(3l) 5-methyl-11-{[4-(diethylamino)butyl]amino}-10H-indolo[3,2-b] quinolin-5-ium 
chloride 

7.2.8.12 

H H 
 

(3m) 5-methyl-11-{[5-(diethylamino)pentan-2-yl]amino}-10H-indolo[3,2-b] quinolin-5-
ium chloride 

7.2.8.13 

H H 
 (3n) 5-methyl-11-(piperidin-4-ylamino)-10H-indolo[3,2-b] quinolin-5-ium chloride 7.2.8.14 

H H (3o) 5-methyl-11-[(1-isobutylpiperidin-4-yl)amino]-10H-indolo[3,2-b] quinolin-5-ium 
chloride 

7.2.8.15 

H H 
 

(3p) 5-methyl-11-[(1-benzylpiperidin-4-yl)amino]-10H-indolo[3,2-b] quinolin-5-ium 
chloride 

7.2.8.16 

H H 
 

(3q) 5-methyl-11-{[1-(2-hydroxybenzyl)piperidin-4-yl]amino}-10H-indolo[3,2-
b]quinolin-5-ium chloride 

7.2.8.17 

H H 
 (3r) 5-methyl-11-(phenylamino)-10H-indolo[3,2-b]quinolin-5-ium chloride 7.2.8.18 

H H 
 

(3s) 5-methyl-11-{[4-(piperidin-1-yl)phenyl]amino}-10H-indolo[3,2-b] quinolin-5-ium 
chloride 

7.2.8.19 

H H (3t) 5-methyl-11-{{4-[(diethylamino)methyl]-3-hydroxy-phenyl}amino}-10H-
indolo[3,2-b]quinolin-5-ium chloride 

7.2.8.20 

H H 
 

(3u) 5-methyl-11-(pyridin-3-ylamino)-10H-indolo[3,2-b] quinolin-5-ium chloride 7.2.8.21 

Cl H (3v) 3-chloro-5-methyl-11-{[3-(diethylamino)propyl]amino}-10H-indolo[3,2-b] 
quinolin-5-ium chloride 

7.2.8.22 

Cl H 
 

(3w) 3-chloro-5-methyl-11-(piperidin-4-ylamino)-10H-indolo[3,2-b] quinolin-5-ium 
chloride 

7.2.8.23 

Cl Cl 
 

(3x) 3,8-dichloro-5-methyl-11-(piperidin-4-ylamino)-10H-indolo[3,2-b] quinolin-5-ium 
chloride 

7.2.8.24 

H H 
 (3y) 5-methyl-11-(diethylamino)-10H-indolo[3,2-b]quinolin-5-ium chloride 7.2.8.25 

Figure 2.14 – Structure of the cryptolepine derivatives 3. 

 

The reaction was performed in ethyl acetate, where 93 proved to be quite insoluble. However, the 

addition of the amine deprotonates the indolic nitrogen (N10) and the indoloquinolines become soluble. 

With the progress of the reaction, the concentration of H+ increase in the solution, the indole nitrogen 

protonates and the product of the reaction precipitates in the reaction medium. The precipitated 
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cryptolepine derivatives 3a-n, r-y were then purified by recristalization techniques, yielding from 29 to 

82 %. 

 

93 

 

i) 

 

 

3

Scheme 2.5 – Synthetic methodology for synthesis of the cryptolepine derivatives 3. 
 i) Alkyl- cycloalkyl- or aryldiamine, AcOEt, reflux, 24h. 

 

The cryptolepine derivatives 3o-q were synthesized after reaction of the derivative 3n with 

isobutyraldehyde, salicyladehyde and benzaldehyde, respectively (Scheme 2.6). The reaction undergoes 

through a reductive amination, in which occurs the nucleophilic attack of the secondary amine of 3n to 

the carbonyl group of the aldehyde with formation of an imine intermediate and release of water. In a 

second step the imine is reduced to give the tertiary amine and the new cryptolepine derivative (Scheme 

2.7). These reactions occur in dry MeOH, yielding 59 %, 30 % and 66 %, respectively. 

 

Scheme 2.6 – Synthetic methodology for the synthesis of the cryptolepine derivatives 3o-q. 
i) Aldehyde, anhydrous Na2SO4, NaBH3CN, dry MeOH, r.t., 24 h. 

All the cryptolepine derivatives were characterized by NMR techniques, elemental analysis and 

melting point determinations (Section 7.2.8 and Appendix A). The results are in good agreement with 

the chemical structure of the compounds. For instance, the attribution of 1H and 13C NMR chemical 

shifts for 3n are shown in Figure 2.15. The 1H NMR spectra reveal two distinct areas of chemical shifts: 

the first one, between 2.05 ppm and 4.80 ppm corresponding to the aliphatic protons of the piperidine 

side chain (Figure 2.15) and including the methyl group at N5 and a second area between 7.44 ppm and 

8.66 ppm, corresponding to the eight aromatic and showing coupling constants (3JHH) between 7.4 and 

9.0 Hz, typical ortho coupling constants for aromatic protons. 

The introduction of the alkyldiamine side chain in position C11 of the cryptolepine nucleus of 3n 

was confirmed with NOE difference experiments in which the protons of the introduced side chain 

interact with the doublet (H 8.29 ppm) of proton C1 and with the singlet (H 12.16 ppm) attributed to 

the indolic proton, as shown in Figure 2.15.   
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Scheme 2.7 – Reductive amination mechanism of 3n with aldehyde to afford 3o,p and q. 

 

Figure 2.15 – Assignment of 1H and 13C NMR of 3n. 
Colour codes: H-yellow, C-grey, N-blue. Wireframe representation 

The side chain induced a shielding effect on the chemical shift of N5 -CH3 (H = 0.24 ppm) 

when compared with 93a. Also the 13C chemical shifts of C10a and C11a showed and upfield shift, 

when compared to 93a, of 7 and 2 ppm, respectively, whereas the 13C NMR chemical shift of C11 

showed a downfield shift of almost 18 ppm, when compared with the parent compound 93a, and of 

approximately 24 ppm when compared to 1. Since the CH2 pairs on the piperidine side chain of 3n are 

diastereotopic, easily discerned as one of the hydrogens in the pair will be cis to the NH group attached 
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to C11, while the other will be trans to it, these protons showed different chemical shifts, in 

consequence of its different chemical environments. In addition, the equatorial protons in a rigid six-

member ring are deshielded due to anisotropic effects of the  electrons in the C-C bond (deshielding 

cone have the same axis than the C-C bond), like verified in circulating aromatic π electrons, although 

with lower intensity.(304) The assignment of the chemical shifts on the aliphatic region of the 1H NMR 

spectra (Figure 2.15),  reveals a triplet integrating for two protons and attributed to H3’
(ax) and H5’

(ax), 

with a H value of  2.05 ppm, a geminal coupling constant (2JHH) of 11.5 Hz and a vicinal coupling 

constant (3JHH) of 11.0 Hz. Protons H3’
(eq) and H5’

(eq) showed a H value of 2.29 ppm and a coupling 

constant 2JHH of 11.5 Hz. At H 3.51 ppm , appears a broad multiplet, almost superimposed with the 

water singlet, which correspond to the proton H4’ of 4-aminopiperidine ring. Protons H2’
(ax) and H6’

(ax) of 

piperidine appears at 3.86 ppm with coupling constant values of 12.6 and 11.0 Hz for 2JHH and 3JHH, 

respectively. Lastly, at lower field (4.14 ppm) appears protons H2’
(eq) and H6’

(eq) of the piperidine ring, 

showing a geminal coupling constant (2JHH) value of 12.6 Hz. In the 2D NMR correlation spectroscopy 

(COSY) it is possible to verify the strong correlation between protons H3’
(ax) and H5’

(ax) with H2’
(ax) and 

H6
(ax), as expected for ortho axial protons and between H3’

(ax) and H5’
(ax) with proton H4’. This results, 

seems to point out that proton H4’ is in axial position and the bond with the NH-C11 is in the equatorial 

position of C4 of the piperidine ring.  

The attribution of the NMR spectra of the cryptolepine derivatives 3 showed similar results to 

those described for compound 3n. Also 3h showed NOE correlation between the proton in the carbon 

adjacent to C11-NH in the side chain (H = 4.21 ppm) with the proton in the indole nitrogen (H = 10.75 

ppm). The introduction of the side chain in C11 of cryptolepine nucleus, generally induced a shielding 

effect on the chemical shift of N5 -CH3, ranging between 0.1 to 0.45 ppm when compared with 93. Also 

the 13C chemical shifts of C10a and C11a showed an upfield shift in the order of 10 ppm and for N5 -

CH3 of 3 ppm when compared to 1 and 93, whereas the chemical shift of C11 showed a deshielding 

effect of 10 to 15 ppm when compared with the parent compounds 1 and 93. 

In addition to the NMR spectroscopy, all the cryptolepine derivatives 3 were also characterized 

through elemental analysis (C,N,H) and melting point determination to evaluate their degree of purity. 

For all the compounds the experimental elemental analysis results showed shifts of at least or low than 

0.4 %, showing  95 % purity, and the melting point determination showed for all the compounds a 

melting range (T) lower than 3 ºC, revealing the high degree of purity of the synthesized compounds.  

The synthetic methodology employed for the synthesis of the cryptolepine derivatives 3, with the 

11-chloro-5-methyl-10H-indolo[3,2-b]quinolines 93 as common intermediate, proved to be efficient, 

giving the desired compounds in good yields and with high degree of purity. 
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2.2.4 Synthesis of Quindolone Derivatives (5) 

The quindolone derivatives with alkylamine side chains in positions N5 and N10 (5, Figure 2.17) were 

synthesized after reaction of 91 with 2-chloro-N,N-diethylethanamine in presence of base, through a 

nucleophilic substitution reaction with release of chlorine (Scheme 2.8).  The alkylamine was used as 

received from the commercial supplier. The reaction was attempted with several different bases, like 

K2CO3, NaH, triethylamine (TEA) and N,N-diisoproprylethylamine (DIPEA) in dry acetone or 

tetrahrydrofuran (THF). However, the best results were achieved using as base K2CO3 in dry acetone.  

 
 
 
 

(91) 
4 if R1 and R2 = H 

 
(5) 5,10-bis(2-(diethylamino)ethyl)-5H-

indolo[3,2-b]quinolin-11(10H)-ones 

 

i) 

Scheme 2.8 – Synthetic methodology for the synthesis of the quindolone derivatives 5. 
i) K2CO3, NaI, dry acetone, overnight, reflux. 

 

 

The presence of base in the 

reaction medium, deprotonates the 

nitrogens and give rise to the 

tautomeric resonance in the aromatic 

nucleus of the quindolone, as shown 

in Figure 2.16. This tautomeric 

resonance activate the carbonylic 

oxygen, giving nucleophilic oxygen 

species, which can attack the 2-

chloro-N,N-diethylethanamine and 

lead to the formation of O-alkylated 

products in the reaction. In fact, it was 

possible to verify the formation of 

three different products with the 

described synthetic methodology (Scheme 2.9). The three products of the reaction were characterized 

through NMR spectroscopy, elemental analysis and melting point determination. The assignment of the 

NMR spectra of the three reaction products revealed that the major product was the (N,O) dialkylated 

species (94), yielding between 34 and 55 % (depending on the starting quindolone) as shown in Table 

2.3. 

 

Figure 2.16 – Quindolone tautomeric resonance after deprotonation 
of N5 (red) and N10 (blue). 
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(91) 
4 if R1 and R2 = H 

 
 

i) 

 

 

(5) 5,10-bis(2-
(diethylamino)ethyl)-5H-

indolo[3,2-b]quinolin-
11(10H)-ones 

 
 
 
+ 

 
(94) 2-(11-(2-

(diethylamino)ethoxy)-
10H-indolo[3,2-

b]quinolin-10-yl)-N,N-
diethylethanamines 

 
 
 
+ 

 
 

(95) 2-((10H-indolo[3,2-
b]quinolin-11-yl)oxy)-

N,N-diethylethanamines 
 

Scheme 2.9 – Products of the synthetic methodology used for the synthesis of the quindolone derivatives 5. 
i) K2CO3, 2-chloro-N,N-diethylethanamine, NaI, dry acetone, overnight, reflux. 

The 1H NMR spectra of the major product of the reaction (94a) displayed the signals 

corresponding to the introduction of two alkylamine side chains in the quindolone nucleus. The spectra 

showed two sets of two triplets at H 4.73 and 2.79 ppm and H 4.32 and 3.10 ppm, corresponding to 2 

protons each one, and three bond correlation between them (1H-1H Correlation Spectroscopy, COSY).  

 

 

Section 
R1 R2   
H H (5a) 5,10-bis(2-(diethylamino)ethyl)-5H-indolo[3,2-b]quinolin-11(10H)-one 7.2.9.1 
Cl H (5b) 3-chloro-5,10-bis(2-(diethylamino)ethyl)-5H-indolo[3,2-b]quinolin-11(10H)-one 7.2.9.2 
Cl Cl (5c) 3,7-dichloro-5,10-bis(2-(diethylamino)ethyl)-5H-indolo[3,2-b]quinolin-11(10H)-one 7.2.9.3 

Figure 2.17 – Structure of the quindolone derivatives 5. 

Table 2.3 – Yields of the alkylation reaction of quindolones (4, 91a and 91b), to afford their derivatives 5, 94 and 
95. 

 
5 

 
94 

 
95 

 R1 R2 Yield (%)  R1 R2 Yield (%)  R1 R2 Yield (%) 

5a H H 23 94a H H 55 95a H H 17 

5b Cl H 21 94b Cl H 33 95b Cl H 7 

5c Cl   Cl 29 94c Cl   Cl 34 95c Cl   Cl 5 

In addition, the spectra showed two sets of one quadruplet and one triple at H 2.70 and 1.13 ppm 

and H 2.62 and 1.00 ppm, respectively, integrating to 4 and 6 protons and with 1H-1H COSY 
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interactions, as shown in Figure 2.19 for 94a. The 13C NMR showed the signals corroborating the 

introduction of two side chains and the disappearance of the carbonilic carbon of the starting 

quindolone.  Further experiments revealed the attendance of nuclear Overhauser effect (NOE) between 

the 1H NMR triplet signals of the CH2 in the side chains with the aromatic protons H1 and H9. 

   

 

Section 
R1 R2 R3    

H H 
 

(94a) 2-(11-(2-(diethylamino)ethoxy)-10H-indolo[3,2-b]quinolin-10-yl)-N,N-diethylethanamine 7.2.9.1 

Cl H 
 

(94b) 2-((3-chloro-10-(2-(diethylamino)ethyl)-10H-indolo[3,2-b]quinolin-11-yl)oxy)-N,N-
diethylethanamine 

7.2.9.2 

Cl Cl 
 

(94c) 2-((3,7-dichloro-10-(2-(diethylamino)ethyl)-10H-indolo[3,2-b]quinolin-11-yl)oxy)-N,N-
diethylethanamine 

7.2.9.3 

H H H (95a) 2-((10H-indolo[3,2-b]quinolin-11-yl)oxy)-N,N-diethylethanamine 7.2.9.1 
Cl H H (95b) 2-((3-chloro-10H-indolo[3,2-b]quinolin-11-yl)oxy)-N,N-diethylethanamine 7.2.9.2 
Cl Cl H (95c) 2-((3,7-dichloro-10H-indolo[3,2-b]quinolin-11-yl)oxy)-N,N-diethylethanamine 7.2.9.3 

Figure 2.18 – Structures of 2-(11-(2-(diethylamino)ethoxy)-10H-indolo[3,2-b]quinolin-10-yl)-N,N-diethylethanamine (94) and 2-

((10H-indolo[3,2-b]quinolin-11-yl)oxy)-N,N-diethylethanamine (95). 

As illustrated in Figure 2.19 for compound 94a, the triplet at H 4.32 ppm, integrating for two 

protons, showed NOE with the doublet at H 8.40 ppm, corresponding to H1 and the triplet at H 2.79 

ppm, integrating for 2 protons, showed NOE coupling with the doublet at H 7.52 ppm, corresponding 

to H9. 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2.19 – Assignment of 1H and 
13C NMR of 94a. 

Colour codes: H-yellow, C-grey, N-blue, 
O-red. Wireframe representation 
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In addition, it was also verified a deshielding effect in the C of carbons in positions 4a and 5a, 

from 139.64 and 129.44 to 145.53 and 148.59, respectively, when compared with the parent compound 

4. 

The second major product of the reaction was the species dialkylated in both nitrogens, N5 and N10 (5), 

yielding from 19 to 23 % (Table 2.3). The assignment of the NMR spectra of 5a is shown in Figure 

2.20. The 1H NMR spectra of the 5a showed the same pattern as described to 94a and their analysis 

reveal the introduction of two N,N-diethylamine-ethyl side chains in the quindolone nucleus. 

The 13C NMR spectra showed the presence of the signals corresponding to two ethyl-N,N-

diethylamine side chains and one carbon at C 169.13 ppm, characteristic of the carbonilic carbon in the 

quindolone nucleus, demonstrating that no alkylation occurred in the oxygen.  Furthermore, the triplet at 

H 4.84 ppm showed NOE coupling with the aromatic protons H4 and H6 at H 7.70 and 8.25 ppm, 

respectively and the triplet at H 5.00 ppm with the proton H9 at H 7.59 ppm, corroborating the 

alkylation of the N5 and N10 positions.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.20 – Assignment of 
1H and 13C NMR of 5a. 
Colour codes: H-yellow, C-
grey, N-blue, O-red. Wireframe 
representation. 

The third and last product isolated from the crude mixture was the species alkylated in the 

oxygen (95), yielding between 5 and 17 %. NMR assignments for compound 95a is shown in Figure 

2.21. The 1H NMR spectra showed two triplets at H 4.58 and 3.07 ppm, integrating for two protons 

which one and with 1H-1H COSY interactions between them, in addition to one quadruplet and one 

triplet integrating to 4 and 6 protons, respectively  and with 1H-1H COSY coupling. The described NMR 



 Synthesis of Indolo[3,2-b]quinolines | 65 
 

pattern is in good agreement with the presence of one side chain in the chemical structure of the final 

product. Furthermore, in the 13C NMR it was not recognized the predictable signal of the carbonilic 

carbon, around C 170 ppm, indicative of the alkylation of the carbonyl functionality with the ethyl-N,N-

diethylamine side chain (95), as well as the presence of the a 13C NMR C at 73.99 ppm typical of the 

ether function. 

The developed synthetic methodology used for the synthesis of the quindolone derivatives (5), 

allowed the attainment of the compounds with high degree of purity. However, the alkylation reaction 

did not show any selectivity, since the tautometic effect between the nitrogens and oxygen gave rise to 

the appearance of side products (94 and 95). 

 

Figure 2.21 – Assignment of 1H and 13C NMR of 95a. 
Colour codes: H-yellow, C-grey, N-blue. Wireframe representation 

     

2.2.5 Synthesis of Alkyldiamines 

The N1,N1-dimethylpropane-1,2-diamine (97), used for the synthesis of 3d, was prepared all in 

one pot, by reductive amination of N,N-dimethylaminopropanone (96), with ammonium acetate and 

NaBH3CN, according to the route depicted in Scheme 2.10. The ammonium acetate reacts with the 

carbonyl group of the ketone, to form an imine accompanied by the loss of one molecule of water. This 
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imine intermediate is then reduced with cyanoborohydride to form the amine 97 in 24 % yield. The 

reaction product was characterised by 1H and 13C NMR, confirming the chemical structure 97 (Section 

7.2.10). For instance, the analysis of the NMR spectra revealed the disappearance of the carbonilic 

carbon on the 13C NMR spectra and a shielding effect on the H of the protons attached to C3 from 2.07 

ppm in 96 to 1.01 ppm in 97. 

 

(96) N,N-dimethylamino-
propanone 

 

 

 

 

(97) N1,N1-dimethyl- 
propane-1,2-diamine 

 

 

(98) N-(3-bromopropyl)-
phthalimide 

 

 

(99) 2-(3-(piperidin-1-yl)-
propyl)isoindoline-1,3-dione 

 

 

 

(100) 3-piperidin-1-
yl-propan-1-amine   

 

 

 
(101) tert-butyl-4-

aminobutylcarbamate 
 

 

(102) tert-butyl-4-
(diethylamino)butylcarbamate 

 

 

(103) N1,N1-diethyl-
butane-1,4-diamine 

 

 
 

 
 

  

(104) N-(3-hydroxyphenyl)-
acetamide 

(105) N-(4-
((diethylamino)-methyl)-3-
hydroxyphenyl)-acetamide 

 

 

Scheme 2.10 – Synthetic methodology for the synthesis of alkyldiamines 97, 100, 103 and 105 used in the 
synthesis of cryptolepine derivatives 3d,j,l and t. 

i) NH4OAc, NaBH3CN, anhydrous MgSO4, dry MeOH, reflux, 20h.; ii) piperidine, TEA, CH2Cl2, reflux, 30h.; iii) 
hydrazine, EtOH, reflux,3h.; iv) Acetaldehyde, anhydrous MgSO4, NaBH3CN, dry MeOH, 0 ºC, 2h.; v) CH2Cl2:TFA 

(1:1), r.t., 1 h.; vi) formaldehyde, diethylamine, EtOH, reflux, 96 h. 
 

The synthesis of compound 3j required the synthesis of 3-piperidin-1-ylpropan-1-amine (100). 

The alkyldiamine was synthesized according to the route in Scheme 2.10.  The intermediate 2-(3-

(piperidin-1-yl)propyl)isoindoline-1,3-dione (99) was obtained after reaction of N-(3-

bromopropyl)phthalimide (98) with piperidine in the presence of TEA, yielding 51 %. It is a 

nucleophilic substitution of second order, in which occurs the nucleophilic attack of the piperidine 

nitrogen to the saturated carbon adjacent to the halogen of 98, with release of bromide. The product of 

the reaction was characterized by NMR techniques and the data are in agreement with the chemical 
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structure of the compound (Section 7.2.11). In the sequence of the synthetic route represented in 

Scheme 2.10, the next step is the synthesis of the final alkyldiamine 3-(piperidin-1yl)propan-1-amine 

(100). The reaction occurs between the intermediate 99 and hydrazine in EtOH, yielding 71 %. It is a 

nucleophilic substitution at the carbonyl groups of the intermediate 99. The nucleophilic nitrogens of 

the diamine hydrazine attack the carbonyl groups with formation of 2,3-dihydrophthalazine-1,4-dione 

and release of the  3-(piperidin-1yl)propan-1-amine (100). The product of the reaction was characterized 

NMR techniques and the results are in agreement wit the chemical structure of the alkyldiamine 100 

(Section 7.2.12).     

In Scheme 2.10 is also described the synthetic methodology used for the synthesis of N1,N1-

diethyl-butane-1,4-diamine (103) required for the synthesis of the cryptolepine derivative 3l. The 

alkyldiamine 103 was synthesized from the tert-butyl-4-aminobutylcarbamate (101) through reductive 

amination with acetaldehyde in dry MeOH, following a mechanism similar to that outlined in Scheme 

2.7, to achieve the intermediate tert-butyl-4-(diethylamino)butylcarbamate (102) with 94 % yield. The 

product of the reaction was characterized by NMR techniques (Section 7.2.13) and it was possible to 

notice the introduction of the diethyl groups with H at 2.48 ppm integrating to 4 protons and with H at 

0.97 ppm integrating to 6 protons, corroborating the synthesis of 102. In order to complete the synthetic 

route described in Scheme 2.10, the protecting group tert-butyl carbamate was cleaved under acidic 

conditions with trifluoroacetic acid, with release of carbon dioxide, tert-butanol and N1,N1-diethyl-

butane-1,4-diamine (103), yielding 63 %. The product of the reaction was characterized through NMR 

techniques and the results are in agreement with the chemical structure of the compound, revealing the 

disappearance of the tert-Butyl 1H NMR signals and a singlet at 3.94 ppm, integrating to 2 protons and 

corresponding to the primary amine hydrogens (Section 7.2.14).  

 The synthesis of the N-{4-[(diethylamino)-methyl]-3-hydroxyphenyl}acetamide (105), required 

to the synthesis of the cryptolepine derivative 3t, was accomplished after reaction of N-(3-

hydroxyphenyl)-acetamide as described in Scheme 2.10. The mechanistic pathway starts with a 

Mannich reaction type, in which, nucleophilic addition of diethylamine to the acetaldehyde, followed by 

a dehydration gave an imine intermediate (Schiff base), as depicted in Scheme 2.11. This electrophile 

(Schiff base) reacts in a second step with the electron-rich aromatic ring of N-(3-hydroxyphenyl)-

acetamide (104), through an electrophile aromatic substitution with formation of the final aryldiamine 

105, yielding 55 %.  

The product of the reaction was characterized through NMR techniques and the results are in 

agreement with the chemical structure of the compound (Section 7.2.15). The product of the reaction 

showed in the 1H NMR spectra a singlet at 3.71 ppm, integrating for two protons and corresponding to 

the protons of the CH2 attached at position 4 of the aromatic nucleus. In addition the singlet showed a 

Heteronuclear Multiple Bond Coherence (HMBC) effect with C3 (C = 158.08 ppm) and with C5 (C = 

128.25 ppm). Also, it was noticed the presence of one quadruplet (H = 2.60 ppm) and one triplet (H = 
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1.09 ppm) integrating to four and six protons, respectively, thus corresponding to the N,N-diethylamine 

group. 

 

Scheme 2.11 - Mannich reaction mechanism of the N-(4-((diethylamino)methyl)-3-hydroxyphenyl)-
acetamido (105) synthesis. 

 

 

 

 

 

 

 

 

 



   
 

III 
Chapter III – Acid Dissociation Constants (pKa)  

 

“The important  th ing is  to  know how to take all  th ings quiet ly” 
 

Michael Faraday (1791-1876)  
English chemist and physicis 

 

 

 

 

 

 

 

 

 

 

 

Abstract 

Acid-base chemistry of antiparasitic drugs plays a key role in their biological properties. In this study are reported 

the acid dissociation constants (pKa) of several C-11 diamine-substituted cryptolepine derivatives with established 

antiplasmodial activities. The assignment of the pKa values was accomplished by spectroscopic techniques and 

analyzed through the Hendersson-Hasselbach methodology. A structural dependence of the pKa values is observed, 

namely the proximity of the terminal amine side-chain to the indolo[3,2-b]quinoline aromatic nucleus, the 

substitution pattern, as well as electron density distribution. 
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3.1 Introduction 

ntimalarial mode of action of aminoquinoline antimalarials, such as chloroquine, is at 

least in part due to the inhibition of haemozoin formation, a process that takes place in 

the DV of the parasite. In order to be active, these drugs have to accumulate in the DV and therefore the 

molecule must contain a basic functionality, protonable at DV acidic pH, in order to accumulate by a 

pH trapping mechanism. Therefore, physical and chemical properties of organic compounds, like acid 

dissociation constants (pKa), play a pivotal role in the development of new antiplasmodial compounds 

targeting the DV and the knowledge of cryptolepine and analogues acid dissociation constants is crucial 

to a better understanding of their mode of action. These equilibrium constants are normally used to 

characterize the acid-base chemistry of a compound that has either a single protonatable site or multiple 

sites with well separated (>3 pH units) pKas, and are often referred as the macroscopic equilibrium 

constants.(305) In a molecule with overlapping acid-base equilibrium constants, these constants 

characterize the system as a whole, but fail to provide information on specific protonatable sites. A 

compound with n protonatable sites can potentially exists in 2n protonation states, called micro-species, 

and as consequence, the equilibrium constants called microscopic equilibrium constants.(305)  

 

Cryptolepine has two nitrogen atoms but only one ionizable site at the indole nitrogen (pKa = 11.0 

by NMR spectroscopy and pKa = 11.8 by UV-visible spectroscopy). Under acid conditions, cryptolepine 

exists as a salt (Figure 1.14). In basic conditions, the indole nitrogen atom loses its indolic proton, the 

electrons of the aromatic nucleus are redistributed and the alkaloid exists as neutral organic base. 

Although, synthesized cryptolepine derivatives (3a-x) possess three ionizable functions. Thus, the pKa1 

values correspond to the deprotonation of the terminal nitrogen in the side chain, expected to be 

between 7 and 10 for alkylamines or lower for arylamines.(306) The indolic nitrogen of cryptolepine has 

a pKa value around 11(9, 307) and as such, the pKa2 correspond to its ionization in cryptolepine analogues, 

while the pKa3 value correspond to the ionization of the NH attached to C11, which is expected to be 

also around 11, or higher, since the pKa of the acidic nitrogen in position 4 of the 4-anilinoquinoline 

SKI-606 was calculated as 11.2.(308) The acid base equilibrium for cryptolepine analogues are 

schematized in Scheme 3.1. 

A 



72 | Acid Dissociation Constants (pKa) 
 

 
  

However, the cryptolepine derivative 3y do not have basic nitrogen attached to C11, due to the 

possible conjugation of lone pair of electrons in the nitrogen atom with the aromatic system. Thus, we 

considered only one acid base equilibrium in the cryptolepine derivative 3y, pKa1, corresponding to the 

deprotonation of the indole nitrogen atom in the aromatic nucleus of the indolo[3,2-b]quinoline 

(Scheme 3.2).  

 

Scheme 3.1 – Proposed macroscopic acid base equilibrium for the cryptolepine derivatives 3a-x. 

Several methodologies can be used to determine acid dissociation constants (pKa) values and are 

reviewed elsewhere.(309) Changes in physical or chemical properties can be determined at several 

different pH values.  

Potentiometric pH titrations are the usual method for determination of acid dissociation constants 

in aqueous solutions with good reproducible results for compounds with pKa values between 2.5 and 

10.5. Outside this range potentiometric titrations suffer from limitations of interference due to the 

titration of the water solvent.(310-311)  

UV-spectroscopic titrations have been used as an alternative method to measure pKa values of 

compounds with high absorption coefficients and with a chromophore close enough to the site of the 

acid base function, allowing the usage of low concentrations, such as 1 µM.(312)  

Also, nuclear magnetic resonance (NMR) spectroscopy through the dependence of the 1H 

chemical shift (H), allows the determination of acid dissociation constants from the direct observation 

of the magnetic environment of a particular nucleus and can identify the exact site of protonation.(305, 313-

314)  

 

Scheme 3.2 – Proposed macroscopic acid base equilibrium for the cryptolepine derivatives 3y. 

In addition to the methodologies used for pKa determination, several in silico methodologies to 

estimate these properties have been developed. The computer program SPARC (SPARC Performs 

Automated Reasoning in Chemistry, http://ibmlc2.chem.uga.edu/sparc), developed in University of 
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Georgia, United States of America, has been used to predict ionization states of drugs. (315-317) SPARC 

analyze the chemical structure relative to a specific reactivity query and quantifies several descriptors 

commonly used in organic chemistry such as resonance, field effects, sigma induction, intramolecular 

hydrogen bonding and steric effects, among others and uses them to the final pKa prediction.(316-317) 

SPARC predicted values of acid dissociation constants for 1 and 3 are shown in Appendix D. 

3.1 Determination of Acid Dissociation Constants by UV-visible spectroscopy 

The acid dissociation constants of cryptolepine and derivatives from UV-visible spectrophotometry 

titrations were obtained with working concentrations of 5.0 µM and in pH range 3 to 13.7. The 

spectroscopic behaviour at acid, neutral and basic pH followed the Beer-Lambert law. The acid 

dissociation constants of 1 and 3a-y were determined by nonlinear regression to the modified 

Hendersson-Hasselbach (Eq. 3.1) equation of the absorbance data at different pH values and at different 

wavelengths (Appendix C). However, the analysis of the UV-visible spectra only allows the 

determination of the acid dissociation constants of the 

ionizable function close to a chromophore. In 

cryptolepine and the majority of its derivatives (except 

compounds 3p-u) the only chromophore is indolo[3,2-

b]quinoline skeleton, so that it is only possible to identify 

the pKa corresponding to the ionization of the  indolic 

nitrogen and of the nitrogen attached to C11. 

3.1.1 Cryptolepine 

Cryptolepine UV-visible spectra showed three main absorption bands at acid pH (λ = 280, 368 

and 430 nm), and as the pH increases (pH >11) a bathochromic shift (red shift) of approximately 10 nm 

is observed in all bands, in addition to hypochromic effects. For instance, the band at 280 nm verified 

and hypochromic effect at pH 11 followed by a 10 nm red shift at higher pH’s (Figure 3.1a). The UV-

visible spectra also exhibit three isosbestic points at λ = 285, 373 and 394 nm, respectively. 

a) b)

Figure 3.1 – a) UV-visible stacked spectra of cryptolepine (5µM) in the pH range from 3 to 13.7; b) UV-visible 
relative absorbance values of 1 at different wavelengths as a function of pH at 25 ºC (lines represent the 
fitting of the experimental data using the Hendersson-Hasselbach modified equation). 

 

               

 
Eq. 3.1 – Modified Henderson-Hasselbalch 

equation. 
(X equal to absorbance or 1H NMR chemical shift) 
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The analysis of the experimental data for 1 fitted to the modified Hendersson-Hasselbach 

equation  (Eq. 3.1) reveals the presence of one protonatable site over the studied pH range with a pKa 

value of 11.14 (Figure 3.1b), attributed to the ionization process (NH to N-), occurring in the indolic 

nitrogen of the indoloquinoline ring system. The described results are in good agreement with published 

data.(9, 307) 

3.1.2 Cryptolepine derivatives 

To a better knowledge of the acid base chemistry of cryptolepine derivatives, their acid 

dissociation constants were also studied by UV-visible. For instance, the UV-visible stacked spectra of 

3b in the studied pH range (3 to 13.7), as well as the fitting of the experimental data to the modified 

Henderson-Hasselbalch equation (Eq. 3.1) are given in Figure 3.2. 

a) 

 

b) 

 

Figure 3.2 – a) UV-visible stacked spectra of 3b (5µM) in the pH range 3 to 13.7; b) UV-visible relative 
absorbance values of 3b at different wavelengths as a function of pH at 25 ºC (lines represent the fitting 
of the experimental data using the Hendersson-Hasselbach modified equation). 

 

As cryptolepine, derivative 3b also showed three major absorption bands (λ = 272, 342 and 425 

nm) at acid pH and up to pH 11. With increasing basicity (pH>11) hypochromic effects and a 

bathochromic shifts of approximately 15-20 nm were observed for the 272 and 342 nm bands, while a 

more pronounced hypochromic effect was observed in the 425 nm band. The analysis of the 3b UV-

visible experimental data fitted to Eq. 3.1 (Figure 3.2b) reveals the presence of one inflection point in 

the best fitting curve, giving a pKa value of 11.61±0.02.  

Since the cryptolepine derivatives show two ionizable sites close to the chromophore (indole NH 

and C11-NH), it was expected to observe two inflection points in the non-linear fitting to the 

Hendersson-Hasselbach modified equation. This observation can have two interpretations:  

i. ionization of NH at C11 of compounds 3 occurs at pH higher than 13.7;  

ii. ionization of indole nitrogen and nitrogen attached to C11 take place at overlapping pH 

intervals. 
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 The C11 nitrogen atom is attached to an sp2 carbon, and on losing its hydrogen, the negative 

charge becomes stabilized by conjugation with the aromatic nucleus of the indoloquinoline. It is known 

that electron withdrawing groups in the vicinity of a basic function decrease its basicity. In fact the pKa 

of the acidic nitrogen in position 4 of a 4-anilinoquinoline was calculated as 11.2 by potentiometri, UV-

visible spectroscopy and 1H NMR.(308) Due to the chemical similarity between the nitrogen atom in 

position 4 of 4-anilinoquinoline and the nitrogen at C11 of the indolo[3,2-b]quinoline nucleus, its acid 

dissociation constant (pKa3) will probably be very close to the described  acid dissociation constant in 

the indolic nitrogen (pKa2 ≈11)(9, 307) of cryptolepine. Thus, cryptolepine derivatives 3 will probably have 

two overlapping acid dissociation constants (pKa2 and pKa3). Therefore, the acid base equilibrium of the 

indolo[3,2-b]quinoline nucleus of derivatives can be described in terms of microconstants k1, k2, k3, and 

k4, as depicted in Scheme 3.3.   

 

Scheme 3.3 – Proposed microscopic acid base equilibrium for the cryptolepine derivatives 3. 

 
The macroscopic acid base constant pKa2, assigned to acid base equilibrium in the indole nitrogen 

atom (Scheme 3.1), will be a combination of two site specific or “microscopic” dissociation reactions, 

k1 and k4, while the macroscopic acid base constant pKa3, assigned to the dissociation in the nitrogen 

atom attached to C11, will be a combination of the two site specific dissociation reactions with 

equilibrium constants k2 and k3. Hence, and due to the overlapping of the acid base reactions (pKa2 and 

pKa3 are probably separated by less than 3 pKa units), the value ascribed from the fitting of the UV-

visible data to the Hendersson-Hasselbach modified equation, do not correspond to a macroscopic acid 

dissociation constant, but probably, to a group constant that embrace all the microconstants (pk1 – pk4) 

and which we designated of observed acid dissociation group constant (pKa2
Obs).  

From the fitting of the UV-visible data to the Hendersson-Hasselbach modified equation it was 

attributed a pKa2
Obs value of 11.61±0.02 for cryptolepine derivative 3b. Table 3.1 shows the observed 
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acid dissociation group constants (pKa2
Obs) for the cryptolepine analogues 3, obtained in a similar way 

as described for 3b.  

Table 3.1 – Acid dissociation constants at 25 ºC for cryptolepine (1) and cryptolepine derivatives (3a-y), 
determined by UV-visible spectrophotometry. 

   

 

   

 R1 R2 R3 pKa1 pKa2
Obs R1 R2 R3 pKa1 pKa2

Obs 

1 H H H 11.14 ± 0.06 -- 3m H H 
 

-- 11.45±0.04 

3a H H   11.1±0.1 3n H H 
 

-- 11.6±0.1 

3b H H 
 

-- 11.61±0.02 3o H H 
 

-- 11.6±0.1 

3c H H 
 

-- 11.6±0.2 3p H H 
 

-- 11.5±0.2 

3d H H 
 

-- 11.6±0.2 3q H H 
 

-- 11.6±0.2 

3e H H  -- 11.5±0.1 3r H H 
 

-- 10.6±0.3 

3f H H  -- 11.9±0.1 3s H H 
 

5.42±0.02 10.0±0.2 

3g H H 
 

-- 11.6±0.1 3t H H 
 

-- 10.8±0.1 

3h H H  -- 11.7±0.1 3u H H 
 

4.5±0.2 10.3±0.2 

3i H H 
 

-- 11.49±0.02 3v Cl H 
 

-- 11.2±0.2 

3j H H 
 

-- 11.7±0.1 3w Cl H 
 

-- 11.1±0.2 

3k H H  -- 11.18±0.06 3x Cl Cl 
 

-- 10.3±0.1 

3l H H 
 

-- 11.77±0.02 3y H H 
 

11.74±0.03 -- 

pKa1 – Acid dissociation constant of the indole nitrogen atom of 1 and acid dissociation constant of terminal nitrogen atom of the side 

chain of 3; pKa2
Obs

 – Observed acid dissociation group constant of the ionization processes occurring in the indolo[3,2-b]quinoline chromophore 

of 3. 

Cryptolepine analogues 3s and 3u present an aromatic side chain attached at C11 with an 

ionizable function close to a chromophore. For instance, the UV-visible spectra of 3s showed three main 

absorption bands at acid pH (λ = 287, 356 and 447 nm) and as the pH increase hypochromic effects 

were verified in all bands (40, 70 and 30 %, respectively), together with a hypsochromic shift (blue 

shift) of ≈ 5 nm in the 447 nm absorption band. Additionally, an hyperchromic effect of approximately 

80 % was verified at 303 nm and an isosbestic point at 337 nm (Figure 3.3a). The analysis of the 

experimental data fitted to the Hendersson-Hasselbach modified equation reveals the presence of two 

protonable sites over the pH studied (3 – 13.7) with acid dissociation constant values of 5.42±0.02 and 

10.0±0.2 (Table 3.1), corresponding to the acid dissociation constant in the nitrogen atom in the side 
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chain (pKa1) and to the observed acid dissociation group constant (pKa2
Obs) of the ionization processes 

occurring in the indolic nitrogen atom and in the nitrogen attached at C11.  

Figure 3.3 – a) UV-visible stacked spectra of 3s (5µM) in the pH range 3 to 13.7; b) UV-visible relative 
absorbance values of 3s at different wavelengths as a function of pH at 25 ºC (lines represent the fitting 
of the experimental data using the Hendersson-Hasselbach modified equation). 

 

3.2 Determination of Acid Dissociation Constants by 1H-NMR spectroscopy 

Since the analysis of the acid base chemistry of cryptolepine derivatives through UV-visible 

spectroscopy suffer from some limitations, the analysis by nuclear magnetic resonance (NMR) 

spectroscopy through the dependence of the 1H chemical shift (H), is expected to overcome some of 

those restrictions. NMR spectroscopy allows the determination of acid dissociation constants from the 

direct observation of the magnetic environment of a particular nucleus.(305, 313-314) Assuming that 

changes in protons’ chemical shift of a set of protons are only due to ionization of the adjacent ionizable 

groups, the determination of microscopic equilibrium constants of the several micro-species of a 

multiple protonatable molecule is possible. Although NMR spectroscopy requires the use of deuterated 

solvents and pKa values in D2O can be corrected into the H2O equivalent system. The measurement of 

pD in D2O solutions can be made by glass electrodes using standard buffer solutions, where 

recommended values for buffers were published by the International Union of Pure and Applied 

Chemistry (IUPAC).(318) However, in practice, a related quantity is used, the so called pH*, which is a 

direct read of the pD in the D2O solution, with a H2O-calibrated pH-meter. The conversion of pH* into 

pD is than accomplished experimentally, measuring the pH and the pH* of solutions with known 

concentration of H+ and D+ and adding a experimental correction constant. However, this experimental 

correction is electrode dependent (generally around +0.4 pH units), and should be determined for each 

step, if accurate pD values are needed. Recently, Krężel and Bal, through a linear correlation between 

pH-meter readings in equivalent D2O and H2O solutions, determine experimentally a novel equation 

(Eq. 3.2) to correlate the pKa
* values measured in D2O into 

a H2O equivalent system.(319) Unfortunately, neither the acid 

dissociation constants obtained from pH* values (pKa
*) nor 

acid dissociation constants obtained from corrected pD 

values (pKa
D) are not straightforward comparable with pKa 

 

Eq. 3.2 – pH-meter readings in D2O 
solutions and H2O pKa correlation equation 
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values in water. As such, in this chapter, only uncorrected pH* values are used and reported. Similarly, 

pKa
* values obtained from the pH-meter direct readings are used for acid dissociation constants values, 

without isotope correction, to avoid the introduction of errors resulting from empirical equation. 

The pKa assignment of cryptolepine and derivatives 3 from NMR titrations were conducted by 

assigning the signals of each proton in 1H NMR spectra, through the two dimensional NMR 

spectroscopy technique COSY (1H-1H correlation spectroscopy) at different pH values.  As cryptolepine 

and its derivatives are insoluble in water, dimethylsulfoxide was added to improve solubility without 

affecting the pKa values. In fact, pKa values in aqueous dimethylsulfoxide (up to 27 vol %) are 

consistently slightly higher than in pure water, but differ by less than 0.2 pKa units from pKas in 100% 

water.(320) Working concentrations of approximately 50 mM in mixtures D2O:DMSO-d6 (60:40) with 3- 

(trimethylsilyl)propionic acid (TSP) as reference signal (H 0.00 ppm) were used and the solutions 

titrated with DCl (0.2 M) or NaOD (0.2 M). All the spectra were recorded at 25 ºC. Water and 

dimethylsulfoxide do give very large peaks (H ≈ 4.5 and ≈ 2.5 ppm, respectively), which do not 

interfere with the aromatic protons of the aromatic nucleus (in contrast to the N5 -CH3 singlet and some 

side chain protons of 3), the key signals for pKa determination. For each experiment the chemical shifts 

changes were followed with the pH changes. 

3.2.1 Cryptolepine      

The acid dissociation constant of cryptolepine was also calculated by fitting the 1H NMR 

chemical shift (H, ppm) to Eq. 3.1 as a function of pH*. The 1H NMR stacked spectra of cryptolepine 

in the pH* range 1.6 to 12 and the non-linear regression fit of the chemical shifts versus pH* to the 

modified Henderson-Hasselbalch modified(307) equation are showed in Figure 3.4. 

a) b)

Figure 3.4 – a) 1H NMR stacked spectra of cryptolepine in the pH* range from 1.6 to 12 (increasing from the 
bottom to the top) at 25 ºC; b) 1H NMR chemical shifts (H) of 1 as a function of pH in D20:DMSO-d6 
(60:40) and 25 ºC (lines represent the fitting of the experimental data using the Hendersson-
Hasselbach equation). 

For cryptolepine, the chemical shifts of protons H7, H9 and H11 (Figure 3.4) showed significant 

shifts in H with pH and as such, are the best probes to monitor the deprotonation of the indolic 

nitrogen. The analysis of the 1H NMR spectra of cryptolepine at different pH* values showed a 

significant decrease in the chemical shift of the H7 proton and an increase in the chemical shifts of 
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protons H9 and H11. Taking into account the resonance structure of cryptolepine  resulting from the 

ionization process, protons H7  and H9 showed the highest changes in chemical shift (H = 0.15 and 

0.33 ppm, respectively ) because they are in para and ortho positions,  relative to the carbon undergoing 

the biggest change in electron distribution (C9a), as shown in Figure 3.5. 

Thus, protons H7 and H9 seem to be 

excellent probes for monitoring the 

deprotonation of N10 and became the focus 

of this pKa assignment study for cryptolepine 

and its derivatives. To attain consistency 

with the cryptolepine analogues 3, the 

chemical shifts of H7 were used as reference 

to determine the pKa values for the indole 

nitrogen, since it is the proton with more 

consistent deviation of it H upon increasing 

pH (Table 3.2). The analysis of the NMR titration data for 1 fitted to the modified Hendersson-

Hasselbach equation (Eq 3.1) reveals the presence of one inflection in the region of pH 11, 

corresponding to one protonatable site over the studied pH* range with a pKa1
* value of 10.9±0.2 (Table 

3.4) and attributed to the ionization of the indolic nitrogen, corroborating the results from UV-visible 

spectrophotometry titrations. 

3.2.2 Cryptolepine derivatives 

To realize acid base chemistry of the 

cryptolepine derivatives, titrations of some of these 

compounds (3b, e-f, i, n, s and y) with deuterated 

solutions were performed and analysed through 

NMR spectroscopy. The non-linear regression 

analysis of the chemical shifts versus pH* to the 

Henderson-Hasselbalch modified equation of the 

cryptolepine derivatives are showed in Table 3.3. 

For instance, to understand the acid base chemistry of compound 3b and determine its acid dissociation 

constants the H vs. pH* (Table 3.3) were considered. Two ionizable functions are located in the side 

chain of 3b (pka1 and pka3, according to Scheme 3.1) and monitoring its protons’ chemical shifts (HA, HB 

and HC) allows the determination of the acid dissociation constant values. Also, monitoring the protons’ 

chemical shifts in the aromatic nucleus allows the determination of the acid dissociation constants of the 

indole nitrogen atom (pka2). 

Table 3.2 – Changes in 1H NMR chemical shift (H) in the 
studied pH range of protons H7, H9 and H11 of cryptolepine 
and protons H1, H7 and H9 of cryptolepine derivatives. 
  

  H (ppm) 
 H1 H7 H9 H11 

1 -- 0.15 0.33 0.14 
3b 0.36 0.33 0.26 -- 
3e 0.09 0.29 0.03 -- 
3f 0.30 0.33 0.19 -- 
3i 0.29 0.34 0.21 -- 
3n 0.16 0.35 0.21 -- 
3s 0.81 0.25 n.d. -- 
3y 0.03 0.21 0.10 -- 

n.d. – not determined due to no attribution in the 1H NMR spectra. 
 
 

 

Figure 3.5 –Deprotonation of the indolic nitrogen 
atom of cryptolepine induces a strong electronic 
effect in the orto and para positions (H9 and H7) 
to C9a. 
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 Due to this close proximity to the terminal nitrogen in the side chain, protons HB and HC are the 

best probes and showed only one inflection point in the pH* range 7-9, with a significant decrease of 

chemical shifts (H between 0.65 and 0.9 ppm, respectively) on increasing pH*.  

Table 3.3 – Non-linear fitting of the 1H NMR chemical shifts to the Henderson-Hasselbalch modified equation of 
cryptolepine derivatives in the studied pH* range 3 to 13.   

3b 
 

3e  

3f 
 

3i 
 



Acid Dissociation Constants (pKa) | 81 
 

Table 3.3 (Cont.) – Non-linear fitting of the 1H NMR chemical shifts to the Henderson-Hasselbalch modified 
equation of cryptolepine derivatives in the studied pH* range 3 to 13.   

    

3n 
 

3s 

3y 
 

These changes clearly reflect the deprotonation extent of the terminal nitrogen atom in the side 

chain, with the chemical shift undergoing to upfield values. Taking into account HC, which showed the 

highest H, and fitting the NMR data to the modified Henderson-Hasselbalch equation, the best fitting 

curve showed one inflection corresponding to a pKa1
* value of 7.70±0.05.  

In order to establish the pKa2 (Scheme 3.1) value of 3b the experimental H values of H7 and H9 

were taken into account. However, H7 seems to be the only proton which does not suffer influences 

from ionization processes in the side chain besides the ionization of the indole nitrogen (Table 3.3). 1H 

NMR spectroscopy H of H7 fitted to Eq. 3.1 showed an inflection in the best-fitting curve 

corresponding to a pKa
* value of 10.2±0.1. Although, since the macroscopic acid base equilibrium 

constant pKa2 is described in terms of the microconstants pk1 and pk4 (Scheme 3.3) the obtained value 
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do not correspond to a macroscopic acid dissociation constant, but probably to an observed acid 

dissociation group constant (pKa2
*Obs) that reflects the different contribution of the micro species to the 

acid base equilibrium.   

The titration curve of HA of 3b (Table 3.3) shows a small upfield inflection (H = 0.56 ppm) in 

the region of pH* 7-8, probably reflecting the three-bond distance from the protonable terminal amine, 

and a major downfield inflection (H = 0.79 ppm) in the region of 10-12. This deshielding upon pH* 

increase could correspond to the deprotonation extent of the close nitrogen atom attached to C11. Thus, 

monitoring the chemical shift of HA gave a pKa
* value of 11.3±0.2. Analogously to the described to the 

ionization of the indole nitrogen atom, the macroscopic acid dissociation constant pKa3 (Scheme 3.1) is 

described in terms of the micro species characterized though the micro equilibrium constants pk2 and 

pk3. Thus, the determined value could probably correspond to an observed acid dissociation group 

constant, pKa3
*Obs reflecting the different contributions of the acid base micro species.   

However, as the pKa3 function overlaps the pKa2 of the indole nitrogen, the chemical shift of 

proton HA can also be influenced by the ionization process occurring in the indole nitrogen (pKa2). To 

investigate this hypothesis, analysis of the protons’ chemical shifts of cryptolepine derivative 3y, which 

do not have a basic nitrogen atom attached C11 will allow to understand the possible influences of the 

ionization in the indolo nitrogen atom in the protons of the side chain adjacent to the nitrogen attached 

to C11 (proton HA). Thus possible changes in the chemical shifts occurring in the protons of the side 

chain of 3y would reflect the ionizations occurring in the indolo[3,2-b]quinoline nucleus.    

The analysis of the H of H1, H9, HA and HB fitted to Eq. 3.1 (Table 3.3) did not allow the 

determination of any acid dissociation constant, at this pH* range, due to the lack of significant 

variations in the chemical shifts of these protons. Therefore, it can be deduced that the chemical shifts of 

HA in the side chain of 3y and in general, of the cryptolepine derivatives, do not suffer significant 

influence from the ionization process occurring in the indole nitrogen. The analysis of the 1H NMR H 

of H7 fitted to the Hendersson-Hasselbach modified equation allow to notice one inflection point in the 

studied pH* range, corresponding to the acid dissociation constant of the indole nitrogen atom, with a 

pKa1
* value of 11.2±0.3. 

The attribution of the acid dissociation constants to the other cryptolepine derivatives (3e-f, i, n 

and s) followed the reported methodology for cryptolepine derivative 3b and are reported in Table 3.4. 

The terminal side chain amine functionality of cryptolepine derivatives 3a-q and 3s-x are neutral 

nitrogen bases, due to the availability of the lone pair of electrons for protonation. Any substituent that 

increases the electron density (electron donating groups) on the nitrogen atom therefore raises the 

energy of the lone pair of electrons thus making it more available for protonation and increasing the 

basicity of the amine (larger pKa). The acid dissociation constants for the terminal nitrogen atom in the 

side chain (pKa1), for cryptolepine derivatives 3b,e-f,i,n and s, established through NMR spectroscopy, 
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range between 5.1 and 10.43, excluding 3e for which it was not possible to establish any value in the 

studied pH* range (3.7-12.5).  

Table 3.4 – Acid dissociation constants (pKa
*) and observed acid dissociation group constants 

(pKa
Obs) at 25 ºC for cryptolepine (1) and cryptolepine derivatives (3a-y), determined by 

nuclear magnetic resonance spectroscopy.  

 
 
 

 

 

 R1 R2 R3 pKa1
* pKa2

*Obs pKa3
*Obs 

1 H H H 10.9±0.2 -- -- 

3b H H 7.70±0.05 10.2±0.1 11.3±0.2 

3e H H >12.5 10.64±0.07 10.9±0.1 

3f H H 8.75±0.09 10.7±0.2 11.5±0.1 

3i H H 10.43±0.08 10.45±0.08 11.7±0.2 

3n H H 9.4±0.1 10.3±0.1 9.75±0.06 

3s H H 5.1±0.3 10.4±0.2 9.9±0.6 

3y H H 11.2±0.3 -- -- 

pKa1 – Acid dissociation constant of the terminal nitrogen in the side chain of 3, except for 3y that correspond to the 

ionization of the indole nitrogen atom.; pKa2
Obs

 – Observed acid dissociation group constant in the indolic nitrogen atom 

(N10) of 3; pKa3
Obs

 – Observed acid dissociation group constant in the nitrogen atom attached to C11 (C11-N) of 3. 

The lowest pKa1 value (5.1±0.3) was established for cryptolepine derivative 3s , with the terminal 

amine functionality of the side chain close to an aromatic ring. Corroborating this result, analysis by 

UV-Visible spectroscopy also established a pKa1 value of 5.42±0.02 obtained from data fitted to the 

Henderson-Hasselbalch modified equation (Table 3.1). The proximity of the ionizable functionality to 

the aromatic ring, in which the nitrogen is directly attached to a sp2 carbon with the possibility of 

electron resonance of the lone pair of electrons with the aromatic ring, makes it less available for 

protonation (decreased basicity). 

The derivative with a short side chain (3b) showed the lowest pKa1 value (7.70±0.05), when 

compared with its counterparts with tertiary amines of longer linear side chains 8.75±0.09 (3f). As 

expected, these results showed the contribution of the aromatic electron density of the cryptolepine 

nucleus to the acid dissociation constant of the terminal amine side chain. The closer proximity to the 

aromatic nucleus decreased the basicity due to inductive effects that fall off rapidly with distance and 

consequently increasing the pKa values of derivatives with longer side chains. 

   

Also the substitution on the terminal amine functionality seems to strongly influence the pKa1 

values of this functionality. The substitution of the terminal nitrogen with alkyl groups (electron 

donating groups) would increase the amine basicity (RNH2 < R2NH < R3N). The solvent have also 

contributions to the charge stabilization. Every hydrogen atom attached to the nitrogen will be hydrogen 
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bonded with solvent, helping to stabilize the charge. Thus, the charge stabilization must be due to a 

combination of effects:(321-322)  

i. the increased availability of the lone pair and the stabilization of the charge due to the 

replacement of the hydrogen atom by alkyl groups;  

ii. the stabilization due to solvation, an important part of which is due to hydrogen bonding, 

an effect that decreases with the increasing number of alkyl groups.  

The base strengths of primary, secondary and tertiary terminal amines of side chains (3e-f and 3i, 

respectively) were studied by NMR spectroscopy, which showed that the basicity reduces with the 

substitution of the amine functionality (NH2 > NH-i-Propyl > N(CH3)2, 3e, 3i and 3f, respectively). 

Therefore, due to substitution on the terminal nitrogen, the pKa1
* values decrease with the introduction 

alkyl groups. It seems that the solvent effects play an important role in the basicity of the studied 

cryptolepine derivatives, increasing the basicity of the terminal primary and secondary amines (3e and 

3f, respectively). In fact,  it is well known that a marked base strengthening effect, due to hydration of 

N+H groups, occurs in the following order; primary amines > secondary amines > tertiary amines.(321-323) 

The acid dissociation constants of the indole nitrogen and amine function attached to C11 were 

also established through UV-visible and NMR spectroscopy. However, due to the overlapping values of 

pKa2 and pKa3 the values achieved by means of UV-visible titration spectroscopy, represent an observed 

acid dissociation group constant (pKa2
Obs) comprising all the contributions to the acid base equilibrium 

of the micro species (k1-k4). These observed acid dissociation group constant of cryptolepine derivatives 

3a-y ranges between 10.0 and 11.9 (Table 3.1). No significant differences in pKa2
Obs

 values were found 

between derivatives with aliphatic side chains with different lengths or with cyclic aliphatic side chains. 

However, significant differences were found between the pKa2
Obs aliphatic and aromatic side chains, as 

well as between derivatives with additional withdrawing groups. Lower values were found for 

derivatives with an aromatic side chain attached to C11, namely 10.6, 10.0, 10.8 and 10.3 (for 3r-u, 

respectively).  

Also, in derivatives substituted in the aromatic ring with chlorine (3v-x) a reduction on the 

pKa2
Obs values (11.2, 11.1, 10.3, respectively) was verified, when compared with counterparts (3g and 

3n, pKa2
Obs = 11.6 and 11.6, respectively). The introduction of electron-withdrawing substituents 

(phenyl group and halogens) in the cryptolepine’ nucleus would be expected to decrease the pKa2
Obs 

value, making the indole nitrogen and the nitrogen atom attached to C11 less basic. The inductive 

effects of the electron-withdrawing groups facilitate the stabilization of the negative charge on the 

nitrogens atoms, and this effect is clearly visible when comparing pKa2
Obs values of compounds 3w 

(11.1) and 3x (10.3) with one and two chlorine substitutions, respectively. The introduction of one 

additional chlorine atom in position C8 of the indoloquinoline nucleus (3x), when compared with 3w, 

clearly increases the stabilization of the negative charge on the indolic nitrogen and amine nitrogen 

attached to C11, making the compound more acidic. 
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The observed acid dissociation group constants of the indole nitrogen (pKa2
*Obs) determined 

through NMR spectroscopy for cryptolepine derivatives 3b, 3e-f, 3i, 3n, 3s, and 3y and corresponding 

to the sum of the different contributions of the micro species involved in the acid base equilibrium, 

range from 10.2 to 10.7. The results show that the introduction of the side chain at position C11 did not 

induces significant changes in the acid base equilibrium in the indole nitrogen atom, when compared to 

its counterpart cryptolepine (pKa1
*

 = 10.9).  

Additionally, the values corresponding to the ionization process occurring in the nitrogen directly 

attached to the C11 (pKa3
*Obs) determined by NMR spectroscopy for 3b, 3e-f, 3i, 3n, 3s, and 3y and 

corresponding to the contribution of the equilibrium described by the microconstants pk2 and pk3, range 

between 9.75 and 11.7. Like the indolic nitrogen, the nitrogen attached to C11 shows weak acid 

properties. The nitrogen atom is directly attached to an sp2 carbon and because the nitrogen atom can 

become aromatic (by losing the hydrogen atom), with the lone pair of electrons fully conjugated with 

the aromatic system in a p orbital, the ionized negative charge would be stabilized in sp2 hybridization. 

The lowest value (pKa3
*Obs = 9.75) was found for cryptolepine derivatives 3s, and can be justified by the 

close proximity to an electron-withdrawing side chain, which increases the capability of the ionizable 

functionality to donate the proton, while no significant differences was found in cryptolepine derivatives 

with alkyl side-chains (3b, 3e-f, 3i and 3n).    

Overall, the used methodologies allowed to better understand the acid base chemistry of 

cryptolepine and of its derivatives with a basic amino side chain at position C11 of the indolo[3,2-

b]quinoline nucleus.    
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IV 
Chapter IV - DNA and Haem Binding Properties  

 

“A man’s errors are his  portals  of  d iscovery” 
 

James Joyce (1882-1941)  
 Irish writer and poet 

 

 

Abstract 

Cryptolepine (1) shows DNA binding properties, being a strong intercalating agent with preference for 

GC rich structures containing non-alternated CC sites. These binding properties are responsible for 

cytotoxic properties that can probably explain the antiplasmodial activity and the low selectivity. 

Additionally, it is also recognized that cryptolepine can exert is antimalarial mode of action through 

inhibition of haemozoin formation, due to complexation with haematin. In this study we now report the 

DNA binding properties of 3 and the haem binding properties of the novel cryptolepine and quindolone 

derivatives in order to contribute to a better knowledge of their antimalarial mechanism of action. 

These cryptolepine derivatives 3 bind very strongly to double-stranded d(GATCCTAGGATC)2 and 

single-stranded d(GCCAAACACAGAATCG) oligonucleotides with association constants, Kass, ranging 

from 105 M-1 to 107 M-1. Analysis of structure-binding affinity relationships revealed that linear 

alkyldiamine side chains markedly increase the binding affinity to double-stranded oligonucleotide 

when compared to the parent compound 1. Incorporation of a chlorine atom at C-3 of the 

indoloquinoline moiety further increases binding affinity of 3. All compounds 3 within this series 

showed the ability to interact with strictly monomeric haematin (FPIX-OH), as well as all the 

quindolone derivatives (5, 94 and 95) The association constants (Kass) range between 0.062 and 0.41 

x106 M-1 for the novel cryptolepine derivatives 3 and between 0.074 and 0.14 x106 M-1  for the 

quindolone derivatives, comparable to chloroquine. 
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4.1 Introduction 

on-covalent intramolecular associations are ubiquitous in chemical and biological 

systems. The association or binding constant (Kass) of ligand (L)-receptor (R) 

complexation process provide a fundamental measure of the affinity and stability of the complex, and 

consequently, an important feature to describe and understand molecular interactions. The non-covalent 

interactions between ligands and receptors can be classified generally as either specific or non-specific, 

depending whether the ligand bind with selectivity to a particular region of the receptor. However, 

specific binding ligands can also bind to non-specific regions with lower affinity.(324) The binding of 

ionic ligands to receptors, and specially to nucleic acids, is particularly sensitive to the ionic strength of 

the environment in solution. This is due to the polyelectrolyte nature of nucleic acids, which results in a 

local accumulation to high concentration of cations (e.g. K+, Na+, Mg2+) in the vicinity of the 

oligonucleotide structures, hindering the complex stability.(325) Binding interactions can also be 

classified according to the cooperativity of ligand binding. Cooperativity is a thermodynamic factor that 

reflects the influence of one bound ligand on the binding of a second ligand, and can contribute either 

positively or negatively (second binding is enhanced or reduced with respect to the affinity of the first 

ligand). True cooperativity reflects changes in the intrinsic binding parameters.(326)  

Important binding parameters are the association constants, which are a special case of the 

equilibrium constants, where the equilibrium state is the molecular binding. Many methods for 

determining these binding constants have been described in the literature in the last decades. They can 

be grouped in two separated categories: (327-333)  

i. Separated based methodologies separate the free solute and the bound solute and evaluate 

their concentrations.  

ii. Non-separation based methods monitors the change in specific physicochemical properties 

of the solute or ligand upon complexation.  

Chief among these methodologies are methods based on spectroscopic changes, particular those 

based on absorption, fluorescence or nuclear magnetic resonance properties of receptors and ligands.(334-

N 
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337) Equilibrium binding titration is a technique that allows the determination of dissociation constants 

(Kdiss) of complexation between a ligand and a receptor through saturation analysis.(338) Essentially, a 

solution of receptor at fixed concentration is monitored by a spectroscopic technique on addition of 

serial aliquots of ligand (e.g. DNA or oligonucleotide) and analyzed only for the ligand component in 

terms of free ligand and the resulting complex. 

   The binding equilibrium is described by intrinsic equilibrium association constants that 

normally reflect the binding of only one form of the ligand to yield the complex. Therefore, if multiple 

forms of the ligand exist in equilibrium (e.g. equilibrium between monomer, dimer and tetramer forms), 

then a separate intrinsic binding constant is required to describe the interaction. Similarly, if a ligand 

can bind to the receptor in a number of different modes, then the binding of each mode is described by 

separate intrinsic binding constant.       

The natural occurring indolo[2,3-b]quinoline alkaloid cryptolepine (1) bind to DNA structures 

and several lines of evidence suggest that these interactions can contribute to its broad spectrum of 

biological activities.(3) In 2002, Lisgarten and co-workers(5) showed that cryptolepine  could bind to 

DNA through intercalation with CG-rich sequences containing non-alternating CC sites. This 

interaction with DNA is probably responsible for the cytotoxic effects of cryptolepine through 

inhibition of DNA synthesis and interfering with topoisomerase II activity in the cells.(8, 17)  Bonjean et 

al., investigated the strength and the binding mode of cryptolepine to DNA using calf thymus DNA and 

double-stranded polymers.(17) Cryptolepine acted as a typical intercalating agent, with tight and 

geometrically homogeneous binding. The affinity constant of the drug for double-stranded DNA (ds-

DNA) was comparable to the values of others intercalating agents and there was a noticeable preference 

for GC-rich sequences. Cryptolepine also stabilizes topoisomerase II-DNA covalent complexes and 

stimulates the cutting of DNA at a subset of preexisting topoisomerase II cleavage sites, being cytotoxic 

to B16 melanoma cells.(7, 17) 

An X-ray diffraction study of cryptolepine bound to d(CCATGG)2 showed intercalated 

cryptolepine molecules (Figure 1.17). In the reported crystal structure, two d(CCATGG)2 duplexes 

were located end to end as contiguous duplexes with cryptolepine molecules stacked between them, as 

well as at each extremity of the double-hexamer duplex and intercalated in two CC-GG sites. 

Cryptolepine interacts with the CC-GG sites through base-stacking intercalation, enhanced by the 

asymmetry of the drug, fitting the target with different stacking on both sides (CC and GG).(5, 277) Most 

recent studies further reveal that cryptolepine is capable of interacting with unusual DNA structures like 

triplexes and quadruplexes. Dialysis competition assay confirmed that cryptolepine preferentially binds 

to poly d(GC) rather than poly d(AT) rich duplex sequences, recognizes triplex and quadruplex 

structures, and that DNA or RNA single strands are not good substrates for cryptolepine.(278)  

Also, cryptolepine could elicit its antiplasmodial activity due to its interaction properties with 

haem,(210) inhibiting haemozoin formation, the detoxification process of malaria parasites.(18-21) In 2001, 
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Wright and co-workers in is search for indolo[3,2-b]quinolines with improved antiplasmodial activity 

showed that cryptolepine inhibit -haematin formation in a cell-free system, like chloroquine and 

related 4-aminoquinolines, demonstrating that the antiplasmodial mode of action could be due to the 

inhibition of haemozoin formation.(210)  

Thus the knowledge of the binding properties of the synthesized indoloquinolines to potential 

targets, as DNA and haem, is crucial to better understand their biological properties. Here we describe 

binding affinity and stoichiometry of cryptolepine (1) and its derivatives (3) to a short self-

complementary 12-mer double-stranded oligonucleotide d(GATCCTAGGATC)2, to a single-stranded 

oligonucleotide d(5’-GCCAAACACAGAATCG-3’) and to haematin monomer, as well as the binding 

affinity of quinolones (4, 91a and 91b) and its derivatives (5, 94 and 95) to haematin monomer.   

4.2 Interactions of Cryptolepine and Derivatives with Single- and Double-

Stranded Oligonucleotides 

Binding stoichiometry of the indolo[3,2-b]quinolines were obtained with the Job’s 

methodology(339-342) through fluorescence and UV-visible spectrophotometric experiments. In addition, 

the binding properties of 1 and developed derivatives 3 to single- (ss) and double-stranded (ds) 

oligonucleotides were obtained by means of the described spectroscopic techniques. 

 

4.2.1 Binding Stoichiometry with Double-Stranded Oligonucleotide 

Job’s method of continuous variations is a commonly used procedure for determining the 

composition of complexes in solution. Despite the principle of continuous variation has been employed 

by several authors, this method is normally associated with the name of Job, who in 1928(339) published 

a detailed application of the method to study a wide range of coordination compounds. The method is 

based on plotting measured spectroscopic properties against mole fractions of the two constituents of a 

complex. Thus, a series of solutions are prepared by mixing different volumes of equimolar solutions of 

the two components and diluting to a constant volume, to give solutions having identical total molar 

concentrations. If a single stable complex is formed, a plot of absorvance vs. molar fraction of reactant 

gives a characteristic triangular plot, where the resulting curves, called Job’s plot, yields a maximum (or 

a minimum) indicating the molar fraction value of the stoichiometric composition of the complex. 

However, a number of requirements must be satisfied in order for Job’s method to be applicable. These 

requirements are: 

i. the system must obey the Lambert-Beer’s law;(343) 

ii. complexation must predominate under the conditions of the experiment;(344) 

iii. the total concentration of ligand and receptor must be maintained constant; 

iv. pH and ionic strength must be maintained constant.(343) 
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Job plots (Figure 4.1) were determined for cryptolepine (1) and derivative 3v complexing with 

the d(GATCCTAGGATC)2 duplex in 0.01 M phosphate buffer at pH 7.4 containing 0.1 M NaCl. The 

sum of the concentrations of the ligand and oligonucleotide was kept constant at 

[oligonucleotide]+[Ligand]= 12.5 M for 1 (UV-visible spectroscopy) or 2.5 M for  3v (fluorescence 

spectroscopy). For 1 the absorbance was measured at 368 nm, and for compound 3v, fluorescence was 

measured at 483 nm (with an excitation wavelength of 339 nm). The crossover points were at ligand 

mole fractions of 0.67 (1) and 0.66 (3v) consistent with a ligand:oligonucleotide ratio of 2:1 for both 

complexes. 

a) b)

Figure 4.1 - Job plots for a) cryptolepine (1) and b) 3-chloro-5-methyl-11-(3-
(diethylamino)propylamino)quindolinium chloride (3v) complexed with 12-mer ds oligonucleotide at 
0.01 M phosphate buffer, 0,1 M NaCl at 25 ºC. The sum of the concentrations of the ligand and 
oligonucleotide was kept constant at [ds-DNA]+[Ligand]= 12.5 M (for compound 1) and 2.5 M (for 
compound 3v). For compound 1 absorbance was measured at 368 nm and for compound 3v, 
fluorescence was measured at 483 nm with an excitation wavelength of 339 nm. The crossover points lie 
in 0.67 (1) and 0.66 (3v) consistent with a ligand:oligonucleotide ratio of 2:1. 

The obtained experimental results confirm the anticipated binding stoichiometry to the double-

stranded oligonucleotide that would be a 2:1 (ligand:DNA) complex with intercalation, if it were to take 

place, occurring preferentially in the two CC sites, according to the already published results for 

indolo[3,2-b]quinoline 1. 

4.2.2 Thermal Denaturation Studies with Double-Stranded Oligonucleotide 

Due to the electronic absorption properties of a B-DNA(345) solution, the particular case of 

complexation between a drug and double-stranded nucleic acids, as well as its base content, can be 

characterized by melting temperature studies.(346-348)  A typical UV-visible spectra for a DNA nucleotide 

has an absorption maximum at 260 nm with a molar extinction coefficient () around 6000 M-1cm-1, as 

long as it is in B-DNA conformation. When the duplex is separated into single strands of DNA, such by 

heating or some other means, the absorption intensity at 260 nm is greatly increased, due to the large 

increase of  at 260 nm in any single strand nucleotide. The reduced  of double-stranded DNA resulted 

from the interactions of the π electrons between the aromatic residues when they are stacked vertically 

(hypochromism). Following the changes in the intensity measurement at 260 nm, during the heat 

denaturation, it is possible to monitor the extend of drug binding (particularly intercalation), because the 

base stacking should decrease as the event proceed. The resulting curve is called a “melting curve” of 
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the DNA, as it refers to the dissociation of the duplex and the temperature at midpoint of the transition 

is called melting temperature (Tm), as shown in Figure 4.2, and varies according to base composition 

and the salt concentration in the solution.(349) 

Since thermal denaturation studies 

investigate the ability of a compound to stabilize 

double-stranded DNA on heating, studies with 

cryptolepine (1) and derivatives (3j, n and v) with 

the 12-mer oligonucleotide sequence 

d(GATCCTAGGAT)2 show that the compounds 

bind to the DNA. The ability of the ligands to 

stabilize the ds-DNA were monitored at 260 nm 

for a series of ligand/DNA ratios (0.5, 1, 2, 4 and 

6) in 0.01 M phosphate buffer containing 0.1 M 

NaCl (Figure 4.3).  

The values of Tm and Tm for the ligand:ds-DNA complexes are collected in Table 4.1. The 

results show that all the compounds bind to the ds-DNA. In all cases, 2-state melting curves were 

observed and the transition remained sharp even through the Tm changes. Cryptolepine binds to the 

oligonucleotide sequence with moderate affinity (Tm of 5-6 ºC), decreasing the thermal denaturation 

temperature, which indicates that cryptolepine destabilizes the DNA double strand, with no significant 

difference in binding on increasing the ligand to DNA ratio.  

Table 4.1 – Melting temperatures (Tm) and their variation (Tm) for d(GATCCTAGGATC)2 (2.83 µM)-ligand (1, 
3j,n,w) complex, monitored at 260 nm in phosphate buffer pH 7.4 containing 0.1 NaCl, for a range of ligand 
concentrations. 

Compound R1 R2 R3 
Tm 

DNA alone 

Tm / ºC 
Tm / ºC 

5.66 µM a

2b 
11.31 µM a 

4b 
16.98 µM a

6b 

No ligand -- -- -- 53 (±2) -- -- -- 

1 H H H -- 
48 (±2) 

5 
47 (±2) 

6 
48 (±2) 

5 

3j H H -- 
58 (±3) 

5 
61 (±2) 

8 
62 (±2) 

9 

3n H H -- 
54 (±2) 

1 
55.4 (±0.6) 

2.4 
57 (±3) 

4 

3v Cl H  -- 
62 (±4) 

9 
64 (±2) 

11 
65 (±1) 

12 

a) Ligand concentration b) Ligand/DNA ratio

These results are not in agreement with previously reported for the binding of cryptolepine to calf 

thymus DNA and polyoligonucleotides,(17, 278) but can be explained by the small size and structural 

homogeneity of the oligonucleotide used in our experiments. On the other hand, compounds 3j, 3n and 

3v, increased the thermal denaturation temperature. This stabilizing effect is more pronounced for 3j 

and 3v, which show Tm values ranging from 5 to 12 ºC. Overall, these results are in line with previous 

thermodynamic stability studies performed with N5 methylated indoloquinolines (including 3b, 3c, 3f 

Figure 4.2 – A typical melting curve of double-
stranded DNA 



94 | DNA and Haem Binding Properties 
 

 
  

and 3g)(291) and others indoloquinolines,(289) which showed that both types of compounds are able to 

stabilise G-quadruplex DNA structures on heating. 

a) b)

c) d)

Figure 4.3 – Double strand DNA thermal melting monitored by UV absorbance at 260 nm in 0.01 M phosphate 
buffer containing 0.1 M NaCl, for a) 1 and cryptolepine derivatives b) 3j, c) 3n and d) 3v.  Melting curves 
represent ligand to DNA ratios of 0.5, 1, 2, 4 and 6. 

 

4.2.3 Association Constants (Kass) with Oligonucleotides 

Association constants of cryptolepine and analogues with the studied oligonucleotides were 

obtained through a saturation analysis methodology, performed with spectroscopic binding titration 

technique.   

 At the simplest scenario of binding 

equilibrium, the bimolecular association (one-

site ligand binding), the equilibrium is described 

by Eq. 4.1 and when [L] = Kdiss = 1/Kass, then 

[L][R] = [Rt]/2, being the Rt the total receptor 

concentration. In other words, if the free concentration of L reaches the value of Kdiss the receptor-

binding sites will be half-saturated with ligand. The value of Kdiss is one-half of the maximal binding 

(Bmax). The free ligand concentration at 50% receptor saturation is a measure of Kdiss (or 1/Kass), 

determined in the saturation analysis (Figure 4.4), by non-linear regression analysis with Eq. 4.2.(350) 

Additionally, Eq. 4.2 can be formally analyzed by the Scatchard analysis that is summarized in the 

  

Eq. 4.1 – Binding constant equation of a complexation 
process. (L - ligand, R – receptor; C - complex) 
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Scatchard Plot, which in the case of a bimolecular interaction (one-site ligand binding), this should lead 

to a straight line with a negative slope.(351) In the Scatchard analysis the amount of bound ligand divided 

by the amount of free ligand in solution (y-axis) is plotted against the amount of bound ligand (x-axis), 

as represented in Eq. 4.3. The intercept point with x-axis represents the Bmax value and the absolute 

value of slope represents the Kdiss value. 

Additionally, if a ligand can bind to 

the receptor in a number of different modes, 

then the binding of each mode is described 

by separate intrinsic binding constant. If L, 

R and C are involved in equilibrium in 

addition to what is defined by Eq. 4.1 and 

other possible equilibrium are not explicitly 

considered in the analysis of the interaction, 

then only an “apparent” dissociation 

constant (Kobs) will be obtained from the 

analysis of the binding interaction. This 

“apparent” dissociation constant will be a 

composite parameter reflecting all the 

multiple equilibriums.(350) 

To determine if whether such 

multiples equilibriums exist, it is generally 

examined the ligand-receptor interactions 

over a range of ligand and receptor 

concentrations. If L and R are involved only 

in the equilibrium defined in Eq. 4.1, then 

the value of Kobs will be independent of L 

and R concentration. Otherwise, the 

“apparent” dissociation constant will be a function of the L and/or R and therefore will not represent the 

intrinsic association constant for the reaction in Eq. 4.1.(352) In addition, the experimental data can also 

be fitted to non-linear regression equations that describe another binding process than bimolecular 

association.  

The two-site binding event describes one strong binding event, followed by a second weak 

binding event. Since the second binding event dissociation constant is much higher than the ligand 

concentration, this K2
diss can be neglected, as a constant (the second term of Eq. 4.4 describe the linear 

drift of the two-site binding equation), allowing the achievement of K1
diss, as deducted to Eq. 4.4. 

 

Figure 4.4 – Curve resulting from the saturation analysis of 
complexation between a ligand and a receptor (one-site ligand 
binding). 

 

 
Eq. 4.2 – Saturated analysis non-linear equation of one-site 

ligand binding. (y = change in specific physicochemical 
property) 

 

 

 
Eq. 4.3 – Scatchard equation of the saturated analysis of one-

site ligand binding (n=1), or multiple-site ligand 
binding (n>1).  
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Figure 4.5 – Curve resulting from the saturation 

analysis of complexation between a ligand and a 
receptor (strong binding event followed by a weak 
binding event). 

 Eq. 4.4 – Saturated analysis non-linear equation of 
the two-site ligand binding (strong binding 
event followed by a weak binding event). 

Cryptolepine 

Double-stranded oligonucleotide 

The absorbance titration spectra of 1 in phosphate buffer pH 7.4 at 25 ºC and containing 0.1 M of 

NaCl (Figure 4.6) was used to determine its association constant (Kass) to ds-DNA. Bathochromic and 

hypochromic shifts were observed on addition of oligonucleotide to 1.  

a) b)

Figure 4.6 – a) UV-visible spectra changes at 25.0 ºC on titration of cryptolepine, 1 (5 M) with the 12-mer 
sequence DNA in 0.01 M phosphate buffer at pH 7.40 containing  0.1 M NaCl; b) Plot of the absorbance at 
367 nm vs. [ds-DNA] and the fits to binding models for one- and two-sites binding. The points are 
experimental: the lines are best fit to the two-site binding model. The expanded box show details of the data 
in the region of the 374 nm isosbestic point.  The DNA:Ligand ratio increase as follows: 0 (black bold line),  
0.2, 0.5, 1.0, 1.6, 2.1, 2.6, 3.1, 4, 5, 6.4, 7.6, 8.8, 10.2, 11.3 and 12.3, sequentially from the top in the region 
of 367 nm.  

A shift from 367 to 377 nm and about 60 % hypochromicity was determined for the 367 nm peak 

at high DNA:ligand ratios. Sharp isosbestic points were present at 374, 405 and 460 nm for 

DNA:Ligand ratios from 0 to 2.6, which represents a region of relatively strong binding of the ligand to 

the DNA. Further increases of DNA in solution caused the isosbestic point shift, indicating a second 

weak binding process at higher DNA concentrations, seen as a linear drift in the Abs at 367 nm values 

plotted in Figure 4.6b. Thus, binding of 1 to d(GATCCTAGGATC)2 has at least two types of binding 

sites evident from the two regions (strong binding + linear drift). 
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The data at 367 nm, the maximum absorbance wavelength, fitted to two-sites binding model gave 

an association constant of 0.25±0.01 x106 M-1 for the stronger binding process. The data at 377 nm, the 

appearance of the new peak, also fit to the binding equation but with a Kass of 0.21±0.03 x106 M-1 and as 

ds-DNA concentration increases (>20 µM), the absorbance decreases showing additional classes of 

weak binding site.  

The absorbance data at 374 nm (isosbestic point) for concentration larger than 20 M 

(DNA:ligand ratios higher than 4.0) does not fit to any binding equation, hindering the determination of 

the second association constant for the weaker binding process.  

These results suggest two independent and non-cooperative types of binding as previously 

reported.(6) Although, the Kass determined for the strongest binding process to the 12-mer ds-DNA is 10-

fold weaker (0.25±0.01 x106 M-1) than the Kass reported for cryptolepine binding to calf thymus DNA (3 

x106 M-1)(6), although still in the range of a typical association constant for intercalating agents, 103 - 

106.(7, 353) The spectrofluorometric assay failed with 1 because no quenching was observed with 

increasing concentrations of the oligonucleotide. 

The Kass of 1 with 12-mer double-stranded d(GATCCTAGGATC)2 oligonucleotide in phosphate 

buffer pH 7.4 containing 1 M of NaCl was also determined. Cryptolepine maintains its binding 

capabilities to ds-DNA at high ionic strength solutions (1 M NaCl), showing a 40 % hypochromicity in 

absorbance at 367 nm and no shift in max (Appendix G), with an association constant of 0.10±0.01 x106 

M-1.  

Single-stranded oligonucleotide 

UV-visible spectrophotometric titration 

analysis of 1 with 16-mer single-stranded d(5’-

GCCAAACACAGAATCG-3’) oligonucleotide in 

phosphate buffer pH 7.4 containing 0.1 and 1 M 

of NaCl were also determined. However, no bind 

to single-stranded oligonucleotides was verified in 

solutions containing 0.1 M of NaCl (Figure 4.7) or 

in solutions containing 1 M NaCl.  These results 

show that cryptolepine was not able to bind to 

single-stranded oligonucleotide and interact with 

DNA structures mainly through intercalation. 

Moreover, intercalation binding mode is reinforced since binding of cryptolepine to double-stranded 

was not destroyed at high ionic strength solutions, showing that electrostatic interaction do not play a 

major rule in complex stability.(325) These results are in good agreement with what is already known, 

 

Figure 4.7 – UV-visible spectra of the titration of 1 
with the 16-mer single-stranded oligonucleotide 
in 0.01 M phosphate buffer containing 0.1 M 
NaCl at 25 ºC.  The concentration of 
cryptolepine was 5 M and the DNA:Ligand 
ratio increase as follows: 0 (black bold line), 
0.25, 0.50, 0.75, 1.00, 1.25, 1.50 and 1.75. 



98 | DNA and Haem Binding Properties 
 

 
  

since cryptolepine bind to DNA structures mainly through π-π stacking interactions and in absence of 

hydrogen bonding interactions.(5) 

Cryptolepine derivatives 

Double-stranded oligonucleotide 

The association constants for cryptolepine derivatives with the 12-mer ds-DNA were assessed by 

spectrophotometry or by spectrofluorometry titrations. All titration spectra were recorded at an 

excitation wavelength of 339 nm. Emission of compounds 3 in aqueous solutions was proportional to 

their concentrations up to 20 µM, indicating that there is no significant intermolecular stacking which 

would give rise to a quenching effect. The fluorescence titration spectra of compounds 3 with 

d(GATCCTAGGATC)2 showed in general a 4-10 nm shifts on addition of DNA and 50-65 % 

quenching. The best fit of emission data from compounds 3a-y to one- or two-site binding models gave 

the association constant, Kass, values presented in Table 4.2. 

For instance, Figure 4.8a shows the absorbance titration spectra of 3n on sequential addition of 

d(GATCCTAGGATC)2. Bathochromic (5 nm) and hypochromic ( 50 %) shifts were observed at 

higher DNA/ligand ratios for the maximum absorption band at 356 nm. Two isosbestic points at 365 

and 458 nm were observed for the ds-DNA concentration range of 0 to 4.18 M. Shifts at higher 

concentrations indicate a second weaker type of binding.  

a) b)

Figure 4.8 – a) UV-visible spectral changes at 25.0 °C on titration 3n (5.00 μM) with added aliquots of 12-mer 
d(GATCCTAGGATC)2 oligonucleotide duplex in 0.01 M phosphate buffer at pH 7.40 containing 0.1 M 
NaCl; The expanded box shows detail of the data in the region of the 365  nm isosbestic point. The ds-
DNA:Ligand ratio increase as follows: 0 (black bold line),  0.3, 0.6, 0.8, 1.1, 1.6, 2.2, 2.7, 3.2 and 3.7, 
sequentially from the top spectrum in the region around 356 nm. b) Plot of absorbance at 356 nm vs. [ds-
DNA] and the fits to binding models for 1 and 2 sites. The points are experimental; the lines are best fit to 
the two-site binding model.  

  The plot of absorbance maximum at 356 nm vs. [ds-DNA] appears equally well fit to two-site 

model (R2 = 0.9982) when compared with the one-site binding model (R2 = 0.9966), giving an 

association constants for the stronger binding process of 0.72 x106 M-1 with two-site model and an 

association constant of 0.87 x106 M-1 with one-site model. In order to make an accurate comparison 

between both methods an F-test were performed with GraphPad software. The F test compares the fit of 
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two equations, where the more complicated equation (two-site binding) fits better (has a smaller sum-

of-squares) than the simple equation.(354) The analysis gave an F value of 6.327 which means that the 

two-site binding mode is the preferred, when compared with one-site binding model (one-site model 

would be preferred if F value is around 1).To obtain the second association constant, the data at 365 nm 

(isosbestic point) for ds-DNA concentrations higher than 5 M (after disappearance of the isosbestic 

point) was analysed. However, the experimental data does not fit to any binding equation, hindering the 

determination of the second dissociation constant, for the weaker binding process. 

To demonstrate equivalence between the UV-visible and fluorescence spectroscopic methods, 

compound 3n was also titrated by spectrofluorometry. The spectrofluorometric titration of 3n with ds-

DNA at 0.01 M phosphate buffer at 25 ºC and containing 0.1 M NaCl is presented in Figure 4.9. The 

fluorescence titration spectra of 3n (Figure 4.9a) with ds-DNA shows an 4 nm shift on addition of DNA 

and about 60 % quenching, due to complex formation. The fitting of the fluorescence experimental data 

of 3n to the binding equations (Eq. 4.2 and Eq. 4.4) showed a slightly higher goodness of fit (R2) to the 

two-site binding equation (R2 = 0.9996) than to the one-site binding equation (R2 = 0.9993) and F value 

of 5.151. Thus, an association constant (Kass) for the stronger binding process of 0.74 x106 M-1 was 

established with the two-site binding model (Figure 4.9b). These results are in good agreement with 

those obtained using spectrofluorometric titrations, showing that the methods are equivalent.  

a) b) 

Figure 4.9 – a) Fluorescence emission spectra of 3n (5 µM): the DNA:Ligand increased as follows: 0 (black bold 
line),  0.3, 0.5, 0.8, 1.1, 1.6, 2.1, 2.6 and 3.1 sequentially from the top spectrum into the region of 465 nm 
(the curve with strongest emission, around 465 nm was ligand 3n in the absence of ds-DNA). b) Plot of 
emission at 465 nm vs. [ds-DNA] and the fits to binding models for 1 and 2 sites. The points are 
experimental: the lines are best fit to the two-site binding model. 

Association constants for 3c and 3t with the duplex were also determined in 0.01 M phosphate 

buffer pH 7.4, but with different concentrations of NaCl. For 3c, 0.01 M NaCl was used, and for 3t, 1M 

NaCl. The binding affinity of 3c to ds-DNA increase (Kass = 2.0±0.4 x106 M-1) when compared to those 

in 0.1 M NaCl (Kass = 1.14±0.05 x106 M-1). On the other hand, ds-DNA binding was destroyed at 1 M 

NaCl for 3t as there was no change in emission fluorescence spectra at 460 nm with increase in 

oligonucleotide concentration up to 1 M. Thus, it seems that ionic strength of the solution strongly 

influences the binding of the cryptolepine derivatives to double-stranded oligonucleotides, showing that 

electrostatic interactions do play a major rule in complex stability. 
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Single-stranded oligonucleotide    

The Kass for 3n with the 16-mer single strand oligonucleotide d(GCCAAACACAGAATCG) in 

0.01 M phosphate buffer (pH 7.4) containing 0.1 M NaCl at 25 ºC was calculated by UV-visible 

spectrophotometry titration (Appendix G). The UV-visible spectrophotometry titration with 16-mer 

oligonucleotide showed 40 % of hypochromicity in the absorbance at 358 nm with a shift of 5 nm. 

Sharp isosbestic points were present at 366, 388 and 459 nm representing a relatively strong binding of 

the ligand to the DNA. 

Table 4.2 – Association constants for complexes between cryptolepine (1) and derivatives 3a-y 
with ds-DNA at 25 ºC in 0.01 M phosphate buffer pH 7.4 containing 0.1 M NaCl. 

 

 

 
R1 R2 R3 

Kass (ds-DNA) 
 (x106 M-1) 

 
R1 R2 R3 

Kass (ds-DNA) 
 (x106 M-1)   

1 H H H 0.25±0.01b,c 3m H H 

 

4.3±0.2 b,d 

3a H H  0.85±0.01 a,c 3n H H 
 

0.74±0.03 b,d 

3b H H 
 

3.1±0.7 a,d 3o H H 
 

0.74±0.07 a,d 

3c H H 
 

1.14±0.05 a,d 3p H H 
 

0.68±0.09 a,d 

3d H H 
 

1.9±0.1 a,d 3q H H 0.6±0.3 b,d 

3e H H  0.25±0.01 a,c 3r H H 
 

0.51±0.06 a,c 

3f H H  3.0±0.2 a,d 3s H H 
 

3.4±0.6 b,d 

3g H H 
 

9.1±0.6 a,d 3t H H 
 

0.8±0.3 b,d 

3h H H  2.6±0.4 a,d 3u H H 
 

1.0±0.1 a,d 

3i H H 
 

5.0±0.8 a,d 3v Cl H 
 

17±1 a,d 

3j H H 
 

5.3±0.3 b,d 3w Cl H 
 

4.5±0.4 a,d 

3k H H  1.4±0.1a,c 3x Cl Cl 
 

1.6±0.4 b,d 

3l H H 
 

9±1 a,d 3y H H 
 

0.47±0.06 a,c 

a) One-site  binding model; b) Two-site binding model; c) Determined by UV-Visible spectrophotometry; d) Determined by 
spectrophotofluorimetry with excitation wavelength of 339 nm. 
 

The fitting of the UV-visible data to the two-sites binding model gave an Kass of 0.370 ± 0.001 

x106 M-1 for the stronger binding process. Thus, cryptolepine derivative 3n and probably all the 

cryptolepine derivatives, maintain its binding capabilities to single-stranded oligonucleotides, like in 
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double-stranded oligonucleotides. This results point out that intercalation binding mode is not probably, 

the main driving interaction in complex stabilization with double-stranded oligonucleotides. 

SAR with double-stranded oligonucleotides 

All the tested cryptolepine derivatives (3a-y), reveal stronger affinity for the 12-mer DNA 

oligonucleotide d(GATCCTAGGATC)2 than the lead compound 1. The analysis of the structure-

activity relationship in cryptolepine derivatives, 3a-y complex formation with 12-mer DNA 

oligonucleotide revealed:  

Side chain length: no consistent variation between association constants of derivatives with two 

(3a-d) tree (3e-j) and four (3k-m) carbon side chains at position C11 of the cryptolepine nucleus was 

verified.  

Terminal nitrogen substitution: substitution on terminal nitrogen does not modulate the binding 

affinity to DNA, nor the type of substituents (alkyl or cycloalkyl) neither if it is a secondary or tertiary 

amine.  

Branched side chains: introduction of ramifications in the side chain (3d,h,m) slightly decrease 

the association constants for complex formation when compared with those of counterparts 3c,f,l, 

respectively.  

Alkyl, cycloalkyl and aromatic side chains: compounds with less flexible alkyl side chains 

such as piperidine (3n-q) showed lower binding affinity with 12-mer oligonucleotide and the changing 

of terminal nitrogen from a secondary amine (3n) to a tertiary amine (3o-q) do not introduces 

significant differences in the association constants. Additionally, aromatic side chains showed Kass to 

double-stranded oligonucleotides comparable with those of cycloalkyl compounds with exception of 3s.  

Halogen substitution in the aromatic nucleus: introduction of one halogen on the aromatic 

nucleus of the cryptolepine derivatives at position 3 (3v-w), dramatically increases the association 

constants and the introduction of a second halogen in position 8 (3x) decreases the Kass to values almost 

equivalent to the counterpart with no halogens substitution.  

Side chains without basic nitrogen: side chains without a terminal amine moiety (3r and 3y) 

gave Kass comparable to those with piperidine side chains. However, the lowest Kass of this type of 

compounds (3r, 0.51 x106 M-1) was found for a compound without terminal nitrogen in the side chain, 

reducing probably, the electrostatic interactions with the DNA backbone. 

In general, compounds with linear side chains show higher binding affinities than the ones with 

cycloalkyl or aromatic chains. These can probably be explained by the higher flexibility of the side 

chain, interacting more effectively with the phosphate backbone and/or bases pairs of the DNA 

sequence, increasing the electrostatic interactions. Rigid side chains are probably unable to permit the 
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desired favourable interactions with DNA due to their reduced degree of freedom.(355)  Taken together, 

cryptolepine derivatives 3 bind strongly to 12-mer ds-DNA as well as to ss-DNA and these bindings 

were destroyed at high ionic strength solutions. These observations, together with the binding 

stoichiometry, indicate that complexation of compounds 3 to DNA involves the simultaneous a non-

intercalative binding of two equivalents of ligand per equivalent of oligonucleotide and would suggests 

a strong influence of ionic and hydrogen bonding interactions, in particular with the phosphate 

backbone, due to the polyelectrolyte nature of DNA.  

4.3 Interactions of Cryptolepine and Quindolone Derivatives with Haematin 

Binding stoichiometry of the indolo[3,2-b]quinolines were obtained with the Job’s methodology 

of continuous variations(339-342) by means of UV-visible spectrophotometric experiments. The binding 

properties of 1 and developed derivatives 3, as well as quindolones 4, 91 and its derivatives 5, 94 and 95 

to haematin monomer (FIPX-OH) were obtained through the described spectroscopy technique. 

However, the experimental data obtained from the Job’s method of continuous variation did not give a 

direct Job’s plot, being necessary to correct the absorbance according to the equation y = -{A-(FPIX-

OH[FPIX-OH]+ compound[compound])b}, where A is the measured absorbance, FPIX-OH and compound 

are the molar absorptivities of hematin and indolo[3,2-b]quinolines, and b the optical path length.(342) 

All the UV-visible experiments were monitored in the Soret region of the haematin spectrum at the 

wavelength of 402 nm.(356) The Soret band is very strong absorption band in the blue region of optical 

absorption spectrum of a porphyrin.(357)   

4.3.1 Binding stoichiometry 

Cryptolepine and derivatives 

Job’s methodology of continuous variation of cryptolepine (1), chloroquine (2) and cryptolepine 

derivatives 3c and 3n complexed with haematin in HEPES buffer pH 5.5 containing 40 % DMSO, in 

order to minimize porphyrin aggregation and µ-oxo dimer formation, were performed using UV-visible 

spectroscopy.(122, 145-146, 358-359) Job’s plots were obtained after correction of the measured absorbance 

(Figure 4.10).(342) 

The sum of the concentrations of the FPIX-OH and ligand was kept constant at [FPIX-

OH]+[Ligand]= 10 µM. The absorbance was monitorized at the Soret band of FPIX-OH ( = 402 nm). 
(356) The cross points were at FPIX-OH mole fractions of 0.52 (1), 0.51 (2), 0.49 (3c) and 0.60 (3n), 

consistent with a FPIX-OH:ligand ratio of 1:1 for the complexes.  

However, for chloroquine, some authors reported, based in mathematical expressions,  the 

stoichiometry of complexation between FPIX-OH and chloroquine to be 1:2 (2:FPIX-OH).(146) 

Nevertheless, Egan and co-workers(360) reported that this stoichiometry only occur at lower ratios of 2 to 
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FPIX-OH, while at higher ratios, the 1:1 complex would be expected to predominate, as found in our 

Job’s methodology assay. 

a)

 

b) 

c) d) 

Figure 4.10 – Job plots for a) cryptolepine (1), b) chloroquine (2), c) derivative 3c and d) 3n complexed with 
FPIX-OH in buffered 40 % DMSO, pH 5.5 at 25 ºC. The sum of the concentrations of the ligand and FPIX-
OH was kept constant [ligand]+[FPIX-OH]=10 µM. The absorbance changes of the Soret band was 
measured at 402 nm. y-axes is the corrected absorbance (y = -{A-(FPIX-OH[FPIX-OH]+ 
compound[compound])b}), where A is the measured absorbance, FPIX-OH and compound are the molar 
absorptivities of hematin and 1, 2, 3c and 3n, and b the optical path length.(342) 

Quindolones and derivatives 

Job’s plots of quindolone (4), and derivatives (5a, 94a and 95a) complexed with haematin 

monomer in the same experimental conditions described for cryptolepine and derivatives were used to 

determine the complexation stoichiometry (Figure 4.11). Also, the sum of the concentrations of the 

FPIX-OH and ligand was kept constant at [FPIX-OH]+[Ligand]= 10 µM.  The cross points were at 

FPIX-OH mole fractions of 0.49 (4), 0.52 (5a), 0.58 (94a) and 0.52 (95a) consistent with a FPIX-

OH:ligand ratio of 1:1 for the complexes.  

4.3.2 Association Constants (Kass) with Haematin  

Association constants of the indolo[3,2-b]quinolines with haematin monomer,  in pH 5.5 HEPES 

buffer (40% DMSO) were obtained  through a saturation analysis methodology and employed to 

establish the binding affinity of cryptolepine, quindolones and derivatives to haematin. Additionally, 

and for comparison purposes, the association constant of chloroquine was also established with the 

same methodology. In the used concentration range, FPIX-OH solutions obey the Beer-Lambert law, 
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indicating that further haeme  aggregation and/or precipitations do not occur under the experimental 

conditions. Like performed for DNA (4.2.3), the absorbance was plotted as a function of drug 

concentration.  

a) b) 

c) d)

Figure 4.11 – Job plots for a) quindolone (4) and derivatives b) 5a, c) 94a and d) 95a complexed with 
FPIX-OH in buffered 40 % DMSO, pH 5.5 at 25 ºC. The sum of the concentrations of the ligand and 
FPIX-OH was kept constant [ligand]+[FPIX-OH]=10 µM. The absorbance changes of the Soret 
band was measured at 402 nm. y-axes is the corrected absorbance (y = -{A-(compound[compound]+ 
FPIX-OH[FPIX-OH])}), where A is the measured absorbance, FPIX-OH and compound are the molar 
absorptivities of hematin and 4, 5a, 94a and 95a, and b the optical path length.(342) 

The binding affinity of indolo[3,2-b]quinolines to haematin were investigated using a 1:1 

stoichiometric complexation model, as previously reported for xanthones(361), quinolines(360) and other 

drugs(362) (Figure 4.12).  The UV-visible experimental data was fitted to the binding equation (Eq. 

4.5)(20) describing a 1:1 stoichiometry complexation, in order to attain the association constants (Kass) 

with FPIX-OH. 

Chloroquine 

 UV-visible titrations of FPIX-OH with 2 clearly cause hypochromic shifts (≈ 50%) on the Soret 

band of FPIX-OH, as shown in Figure 4.13a. Two possible processes can be envisaged which would 

lead to this effect: 

i. addiction of the quinoline induces aggregation of FPIX-OH; 

ii. changes reflect quinoline association with FPIX-OH.  
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However, Shelnutt(363) has shown that association of methyl viologen di-cation with 

Fe(III)uroporphyrin cause ca. 75% of hypochromicity on the Soret band without aggregation, giving the 

evidence for π-π stacking interactions. 

The UV-visible titration experimental 

absorbances at 402 nm (Soret band) were 

analyzed and fitted to Eq. 4.5, as shown in Figure 

4.13b. Chloroquine gave excellent fitting results 

with a goodness of fit (R2) of 0.997 and 

association constant of 0.085±0.005 x106 M-1, 

comparable to the values already reported in the 

literature (Kass = 0.039 x106 M-1(146) or 0.32 x106 

M-1(364)).  

Cryptolepine  

The UV-visible spectra obtained after titration of FPIX-OH with cryptolepine also caused 

hypochromic shifts (≈ 20%) on the Soret band, as shown in Figure 4.13c. The UV-visible experimental 

absorbances at 402 nm (Soret band) were analyzed and fitted to Eq. 4.5 as shown in Figure 4.13d. As 

chloroquine, cryptolepine gave excellent fitting results to the binding equation, with a goodness of fit 

(R2) of 0.997 and it was established an association constant (Kass) with haematin monomer, in pH 5.5 

phosphate buffer containing 40 % DMSO, of 0.045±0.003 x106 M-1. 

Cryptolepine derivatives 

UV-visible titration spectral data of FPIX-OH with cryptolepine derivative 3n is shown in Figure 

4.13e. Addition of 3n to FPIX-OH solution clearly cause hypochromic shifts (≈ 30%) and the data fitted 

to Eq. 4.5 gave an association constant of 0.154±0.006 x106 M-1.    

FPIX-OH titration data with cryptolepine derivatives (3) was also investigated. The data for all 

the cryptolepine derivatives, forms closely to the model were one ligand associates with one FPIX-OH, 

with a goodness of fit (R2) varying from 0.993 to 0.999, in agreement with a 1:1 complexation found in 

the continuous variation technique (Section 4.3.1). Association constants of 3 with haematin monomer 

are shown in Table 4.3. Comparison of the results with other well known polycyclic drugs that complex 

with haematin, like acridines(365-366) and quinolines,(123, 126, 360, 367) suggests that the main interaction of 

the porphyrin ring system with the indolo[3,2-b]quinolines could be π-π stacking interactions as well as 

electrostatic. 

Cryptolepine and its derivatives share with chloroquine the capability to interact with FPIX-OH 

monomer through π-π stacking interactions.(363) The Kass of cryptolepine derivatives (3) with haematin 

 

Figure 4.12 – Models of binding between indolo[3,2-
b]quinolines and haematin monomers. 

 
Eq. 4.5 - Binding equation between one haematin 

monomer with one molecule of ligand.  
(A=absorbance, A0 = Absorbance without 
ligand, A∞ =  absorbance for haem complex, Kass 
= association constant, L = concentration of 
ligand). 
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showed that 3 have enhanced binding ability of five- to ten-fold when compared with the parent 

compound 1, with  Kass values ranging from 0.062 to 0.41 x106 M-1.  

 

a) b) 

c) d) 

e) f) 

Figure 4.13 – a) UV-visible spectral changes at 25.0 °C on titration of haematin (10 μM) with chloroquine (2) 
in HEPES buffer pH 5.5. The 2:haematin ratio increase as follows: 0 (black bold line), 0.05, 0.1, 0.15, 0.2, 
0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.1, 1.5, 2.5, 3, 5 and 7, sequentially from the top spectrum in the 
region around 402 nm. b) Fitting to 1:1 drug:FPIX-OH complex (model 1) of the absorbance at 402 nm vs. 
[2]. The points are experimental: the lines are best fit to binding model for 1:1 drug:FPIX-OH. c) UV-visible 
spectral changes at 25.0 °C on titration of haematin (10 μM) with cryptolepine (1) in HEPES buffer pH 5.5. 
The 1:haematin ratio increase as follows: 0 (black bold line), 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3, sequentially from the top spectrum in the region around 402 nm. 
d) Fitting to 1:1 drug:FPIX-OH complex (model 1) of the absorbance at 402 nm vs. [1]. e) UV-visible 
spectral changes at 25.0 °C on titration of haematin (10 μM) with 3n in HEPES buffer pH 5.5. The 
3n:haematin ratio increase as follows: 0 (black bold line), 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6, 1.8, 2.0 , sequentially from the top spectrum in the region around 402 nm. f) 
Fitting to 1:1 drug:FPIX-OH complex (model 1) of the absorbance at 402 nm vs. [3n]. The points are 
experimental: the lines are best fit to binding model for 1:1 drug:FPIX-OH. 
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SAR with haematin monomer   

The introduction of an alkylamine side chain in position C11 of the indolo[3,2-b]quinoline 

aromatic nucleus increases the binding potency, however no significant structure-activities relationships 

can be drawn from the results. 

Side chain length: there is no consistent variation in Kass when alkyl side chain length is changed 

from two to four carbons, to cycloalkyl or aryl. These results are in line with a study developed by Egan 

and co-works(132)with 4-aminoquinolines in which, it was shown that the side chains length or 

substitution do not play a major rule in the 4-aminoquinoline:FPIX complex formation and suggesting 

that in most of the cases do not interact strongly with FPIX.  

Side chains without basic nitrogen: it seems that the positively charged terminal nitrogen on the 

side chain by itself do not play a major role in the binding interactions, since the derivative 3y, which do 

not have a basic nitrogen in the side chain, have association potency comparable to the other 

cryptolepine derivatives. However, several studies with 4-aminoquinolines indicate that interaction of 

Table 4.3 – Association constants for complexes between cryptolepine (1), chloroquine (2) and 
cryptolepine derivatives 3a-y with haematin monomer at 25 ºC in pH 5.5 HEPES buffer.  

 

  

 R1 R2 R3 
Haematin binding 

Kass
a) 

(x106 M-1) 
 R1 R2 R3 

Haematin binding 
Kass

a) 

(x106 M-1) 

2 -- -- -- 0.085±0.005      

1 H H H 0.045±0.003 3m H H 
 

0.062±0.07 

3a H H  0.127±0.007 3n H H 
 

0.154±0.006 

3b H H  0.120±0.005 3o H H 
 

0.227±0.008 

3c H H 
 

0.41±0.03 3p H H 
 

0.125±0.007 

3d H H 
 

0.148±0.008 3q H H 
 

0.108±0.005 

3e H H  0.18±0.02 3r H H 
 

0.155±0.008 

3f H H  0.066±0.005 3s H H 
 

0.21±0.02 

3g H H 
 

0.127±0.007 3t H H 
 

0.075±0.009 

3h H H  0.069±0.007 3u H H 
 

0.17±0.01 

3i H H 
 

0.20±0.01 3v Cl H 
 

0.11±0.01 

3j H H 
 

0.161±0.008 3w Cl H 
 

0.18±0.01 

3k H H 
 

0.147±0.006 3x Cl Cl 
 

0.12±0.01 

3l H H 
 

0.15±0.01 3y H H 
 

0.19±0.01 

a) 1:1 drug:FPIX-OH complex model  
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the tertiary amino group in the side chain is essential for complexation with FPIX-OH via 

intramolecular hydrogen bonding to haeme carboxylate groups.(77, 108, 121) Nevertheless, both carboxylate 

anions in FPIX-OH are far away from the chromophore aromatic nucleus and any interaction with these 

anions will not interfere with π-electrons. Thus, in our opinion, no significant changes in the Soret band 

of haematin monomer would probably be observed if any interaction between the carboxylate and the 

terminal amine functionality in the side chain exits.  

Halogen substitution in the aromatic nucleus: substitution with chloride atoms in the aromatic 

nucleus of cryptolepine derivatives seems to not interfere with the haem binding affinity. Cryptolepine 

derivatives with one chlorine atom at C3 (3v and 3w) showed Kass values of 0.11 and 0.18 x106 M-1, 

respectively while non-substituted derivatives (3g and 3n) showed Kass values of 0.127 and 0.154 x106 

M-1, respectively. These results do not corroborate a recent in silico study, in which, it was shown that 

organic chlorine atoms are favorably involved in a wide variety of non-covalent binding interactions, 

like in aromatic π–systems.(368-369)  

Quindolones and Derivatives 

Titration of FPIX-OH in pH 5.5 HEPES buffer in 40 % DMSO, with increasing amounts of 

quindolone (4, 91a and 91b), as well as with quindolone derivatives 5, 94 and 95, were performed to 

evaluate the binding affinity of these indolo[3,2-b]quinolines to haemozoin (Appendix H). 

a) 

 

b)

 

c) d) 

Figure 4.14 – UV-visible spectrophotometric experimental data of FPIX-OH (5 µM)in pH 5.5 HEPES 
buffer at 25 ºC titrated with quindolone 4 and derivatives 5a, 94a and 95a fitted to 1:1 drug:FPIX-OH 
complex (model 1). Absorbance at 402 nm vs. a) [4], b) [5a], c) [94a] and d) [95a]. 
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Hypochromic shifts on the Soret band of the FPIX-OH UV-visible spectra, were verified upon 

addition of quindolone and derivatives due to its association with FPIX-OH, giving the evidence for π-π 

stacking interactions between both aromatic nucleus. All experimental data were plotted as a function of 

drug concentration according to Eq. 4.5. Figure 4.14 shows 4, 5a, 94a and 95a UV-visible experimental 

data fitted to 1:1 binding equation and closely correlated with Eq. 4.5, with R2 ranging from 0.989 to 

0.999, corroborating the 1:1 binding stoichiometry verified in Job’s methodology (Section 4.2.1). 

Quindolones 4, 91a and 91b showed association constants (Kass) ranging from 0.055 and 0.10 x106 M-1, 

while quindolone derivatives 5, 94 and 95 range from 0.074 to 0.14 x106 M-1 (Table 4.4). 

Table 4.4 – Association constants for complexes between quindolones (4 and 91) and quindolone derivatives 5, 94 
and 95 with haematin monomer at 25 ºC in HEPES buffer pH 5.5 

 

 

 

 
 

 
4 or 91 

  

 
5 

   Haematin binding  
Kass (M

-1) 

  Haematin binding  
Kass (M

-1)  R1 R2   R1 R2 

4 H H 0.055±0.003  5a H H 0.074±0.006 
91a Cl H 0.10±0.02  5b Cl H 0.076±0.006 
91b Cl Cl 0.076±0.008  5c Cl  Cl 0.115±0.008 

 

 
94 

  

 
95 

   Haematin binding  
Kass (M

-1) 

    Haematin binding  
Kass (M

-1)  R1 R2   R1 R2 

94a H H 0.08±0.01  95a H H 0.096±0.009 

94b Cl H 0.079±0.005  95b Cl H 0.12±0.02 

94c Cl   Cl 0.14±0.02  95c Cl  Cl n.d. 

n.d. – Not determined. 

The introduction of ionizable side chains seems to not interfere with the haem binding affinity, as 

no significant differences were verified between non-alkylated (4, 91a and 91b) and alkylated (5, 94 and 

95) compounds (Table 4.4)  

Additionally, it seems that the introduction of chlorine atoms in the aromatic nucleus of the 

indolo[3,2-b]quinolin-11-one do not affect the binding affinity of the compounds to haem. Changes in 

the association constants between chlorine substituted and non-substituted compounds do not clearly 

affect the π-π interactions between the porphyrin and the quindolone derivatives aromatic nucleus. 
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V 
Chapter V - Molecular Modeling Studies  

 

“God used beauti fu l  mathematics  in creating the world” 
 

Paul A.M. Dirac (1902-1984)  
  British theoretical physicist 

 

 

 

 

Abstract 

Physical-chemical properties of molecules and simulation procedures to predict the binding interactions between 

ligand and receptors are important features to understand a compound mode of action.  In order to understand 

how the molecular properties of the cryptolepine derivatives could modulate the affinity of these compounds to 

molecular targets, here we report a DFT study with 10 representative cryptolepine derivatives 3 and their 

predicted binding properties to DNA structures. Additionally, the cryptolepine and quindolone derivatives binding 

mode to haemozoin dimer is also described. Introduction of alkyldiamine side chain in the cryptolepine aromatic 

nucleus originate high polarized derivatives with increased molar volume. Molecular docking simulations showed 

that, in contrast with parent compound cryptolepine, compounds 3 are predicted to not intercalate into DNA double 

helix, but bind to major/minor groove bases and to phosphate backbone of the oligonucleotides, mainly through 

electrostatic and H-bonding interactions. Also molecular docking simulations showed that both cryptolepine and 

quindolone derivatives bind to haemozoin dimer through π-π stacking interactions between the aromatic nucleus, and 

through H-bond between the protonated terminal nitrogen in the side chain with the carboxylate anion (Fe-COO-) of 

haemozoin dimer.  
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5.1 Introduction 

Hysical and chemical and structural properties of molecules are important features to 

understand concepts such as reactivity of a molecule in a given environment or the affinity 

to a given molecular target. Models have been used by chemists both to predict and to help to 

understand these molecular properties. Plastic models and drawing programs are a useful tool to 

beginning chemistry students and experienced researchers. In a similar way, computational chemistry 

simulates chemical structures and reactions numerically, based in a full or in part on the fundamental 

laws of physics. It allows chemists to study chemical phenomena by running calculations on computers 

rather than examining reactions and compounds experimentally. In this way, it can be provided 

information about molecules and reactions which is very difficult or even impossible to obtain through 

observation. There are two broad areas within computational chemistry devoted to the structure of 

molecules and their reactivity: molecular mechanics and electronic structure theory.(370-371)  

Computational chemistry methods also allow the simulation procedures to predict the 

conformation of a receptor-ligand complex, where the receptor is usually a protein or nucleic acid 

(DNA or RNA) and the ligand is either a small molecule or other protein, and is called molecular 

modeling. Molecular docking simulations may be used to reproduce and understand experimental data 

through docking validation algorithms, where complex conformations obtained in silico are compared 

to structures obtained from x-ray crystallography or NMR. This technique is one of the main tools for 

virtual screening procedures, where a library of several compounds is ”docked” against one drug target 

and returns the best hit.(372-373) Furthermore, another molecular modeling useful technique to understand 

the movements of a molecule and its flexibility is the molecular dynamics. It is also frequently used in 

NMR structure determination as means of molding an initial structure into one that is experimentally 

realistic. Also, molecular docking can be combined with molecular dynamics simulations to more 

accurately dock small molecules into receptors.(373)   

P 
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5.1.1 Molecular Mechanics 

Molecular mechanics simulations predict the structures and properties of molecules, without treat 

the electrons in a molecular system. Instead, they perform computations based upon the interactions 

among the nuclei, using a single classical expression for the energy of the compound, for instance the 

harmonic oscillator, while the electronic effects are implicitly included in force fields (a set of 

parameters that characterize the energies variation, the atom types and its characteristics and define 

force constants). Therefore, molecular mechanics allows the calculation with large systems containing 

many thousands of atoms, but also carries several limitations related with the force fields (limited to 

those molecules for which is parameterized) and unable to solve problems where electronic effects 

predominate (neglect of electrons do not permit describe several processes, like bond formation and 

breaking).(370)  

 

5.1.2 Electronic Structure Methods 

Electronic structure methods use laws of quantum mechanics rather than classical physics as the 

basis for their computations. Quantum mechanics states that the energy and other related properties of a 

molecule may be obtained by solving the Schrödinger equation.  

However, the exact solutions of the Schrödinger equation are not computationally practical and 

electronic structure methods are characterized by their various mathematical approaches to its solutions. 

Several models can be used in electronic structure methods, ranging from highly accurate to very 

approximate, being the highly accurate methods only feasible to small systems. Ab initio quantum 

chemistry methods are based on quantum chemistry and describe with high accuracy a given system, 

while the so-called empirical or semi-empirical methods employ experimental results from acceptable 

related models to approximate some elements of the underlying theory.(370) The ab initio methods uses 

quantum mechanical calculations to solve the molecular Schrödinger equation associated with the 

molecular Hamiltonian (Hamiltonian representing the energy of the electrons and nuclei in a molecule). 

The simplest model used determine the ground-sate wave function and ground-state energy of a 

quantum body system as an extension of the molecular orbital theory, and is called Hartree-Fock (HF) 

or in the old literature self-consistent field method (SCF).(374) 

A third class of electronic structure methods have been developed: density functional methods 

(DFT). These methods are similar to the ab initio HF methods, determining the molecular electronic 

structure, even though many of the most common functionals use parameters derived from empirical 

date, or from more complex calculations. In DFT, the total energy is expressed in a total one-electron 

density rather than a wave function, and is more attractive because it includes the effects of electron 

correlation (the fact that electrons in a system react to one another’s motion and attempt to keep out of 

one another’s way), while HF calculations consider this fact only in a average sense (i.e. each electron 
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reacts to an average electron density). This approximation made in HF methodologies results to be less 

accurate for some types of systems. DFT methods can be very accurate for little computational cost. 

Some methods combine Hartree–Fock exchange term with DFT exchange, along with the DFT 

correlation and are known as hybrid functional methods. 

In this work, all the theoretical calculations using DFT were performed in Gaussian 03 

software.(375) The theoretical models in Gaussian software have been subjected to testing procedures and 

it is recommended for general use with any system for which they are computationally feasible. In 

Gaussian software the chemistry models are characterized by the combination of theoretical procedure 

and a basis set. The theoretical functionals are hierarchized according to the different approximation 

methods (commonly referred to as different levels of theory) and are functions of the electron density 

(Table 5.1).  

 

Table 5.1 – Traditional and hybrid theoretical functionals defined to DFT calculations. 

Functional Type Description 

Traditional 
functionals 

Local exchange and 
correlation functionals 

Involve only the values of the electron spin densities. Slater and X are well known 
functionals and the local spin density treatment of Vosko, Wilk and Nusair (VWN) 
is a widely used local correlation functional. 

Gradient-corrected 
correlation functional 
(non-local functionals) 

Involve both the values of electron spin density and their gradients. A popular 
gradient-corrected exchange functional is one proposed by Becke (B) and the 
gradient-corrected correlation functional proposed by Lee, Yang and Parr (LYP) and 
the combination of both forms the B-LYP method. 

Hybrid Functionals 
. 

Define exchange functional as linear combination of HF, local and gradient 
corrected exchange terms. The best known hybrid functional is Becke’s three-
parameter formulation (B3LYP). Becke-style functional have been proven to be 
superior to the traditional functionals. 

 

The basis set is a mathematical representation of the molecular orbitals within a molecule, 

confining each electron to a particular region of space. Larger basis sets impose fewer constraints on 

electrons and more accurately molecular orbitals are obtained.(376) Gaussian software uses a wide range 

of pre-defined basis sets, which are classified according with the number and basis functions that they 

contain. Table 5.2 summaries some of the standard basis sets pre-defined in Gaussian software. 

 

5.1.3 Molecular Docking 

Molecular docking procedures aim to identify correct poses of ligands in the binding site of a 

given receptor. In other words, molecular docking describes a process by which two molecules fit one in 

each other.(377) The docking methodology can be separated into a number of steps: preparation of the 

ligand, preparation of the target, definition of the target binding site, exploration of ligand flexibility, 

exploration of the ligand orientation in the binding site and scoring the final poses.(372) However, the 

success of the docking procedure depends on two components: the search algorithm and the scoring 

function.(373)  
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Table 5.2 – Standard basis set pre-defined in Gaussian software.(376) 

Basis set type Description 

Minimal basis sets 

Contain the minimal basis functions needed for describe fixed-size atomic-type orbitals of each atom (H: 

1s; C: 1s, 2s, 2px, 2py, 2pz). 

Ex: STO-3G (Slater-type orbitals) 

Split valence basis 

set 

Allow the orbitals to change size. Have two, or more sizes of basis function for each orbital (H: 1s, 1s’; C: 

1s, 1s’, 2s, 2s’ 2px, 2py, 2pz, 2p’x, 2p’y, 2p’z). 

Ex. 3-21G, 6-31G 

      6-311G (triple split valence basis set) 

Polarized basis sets 

Allow the orbitals to change shape (add orbitals with angular momentum), in addition to the size changing 

allowed by the split valence basis set. Polarized basis set add d functions to carbon atoms, f functions to 

transition metals and some of them p functions to hydrogens. 

Ex: 6-31G(d) also known as 6-31G* 

      6-31G(d,p) also known as 6-31G**  

Diffuse basis  

Are large-size versions of s and p type functions that allow orbitals to occupy a larger region of space. For 

instance, basis sets with diffuse functions are important for systems where electrons are relatively far from 

the nucleus, molecules with done pairs, anions and other system with significant negative charge, systems 

with low ionization potentials. 

Ex: 6-31+G(d) is the 6-31G basis set with diffuse functions added to heavy atoms. 

High angular 

momentum basis set 

Is a even larger basis set the add multiple polarization functions per atom. 

Ex: 6-31G(2d) add to d functions per heavy atom 

6-311++G(3df,3pd)  basis set contain three sets of valence, diffuse functions on both heavy and 

hydrogens, and multiple polarization functions: 3d and 1f function on heavy atoms and 3p and 1d 

function on hydrogen atoms. 

Docking applications can be classified by their search algorithm which is defined by a set of 

parameters applied to predict the conformations. There are several docking programs, such as 

DOCK,(378) AUTODOCK,(379) GOLD,(380) MOE(381) and others. Each docking application is based on a 

specific search algorithm such as Monte Carlo and Incremental Construction.(382) The search algorithms 

perform a selection of the best fit between two or more molecules taking into account several 

parameters obtained from the input coordinates, like structure flexibility, interatomic interactions, van 

der Waals radius and charge, among others. At the end of the selection algorithm, the docking software 

returns the predicted orientations (poses) of a ligand in the receptor binding site. After the selection, the 

predicted orientations are classified according with the scoring functions. These functions are able to 

evaluate intermolecular binding, affinity or binding free energy, allowing optimization, ordering and 

ranking the results obtained after the docking procedure. There are three general classes of scoring 

functions: molecular mechanics force field, empirical and knowledge-based scoring functions. In 

molecular mechanics force fields the affinities are estimated by assuming the strength of bonded terms 

that relate to atoms that are linked by covalent bonds, and non-bonded (non-covalent) terms that 

describe the long-range electrostatic and van der Waals forces.(383) Empirical scoring functions are 

based on counting the number of various types of interactions between the two binding molecules. For 

instance, these interaction terms of the function may include hydrophobic contacts (favorable), 

hydrophilic contacts (unfavorable), hydrophilic contacts, among others. The coefficients of the scoring 

functions are usually fit using multiple regression analysis methods. (384) Lastly the knowledge based 
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scoring functions were introduced in 2000 and are based on statistical observations of intermolecular 

contacts in 3D database. These scoring functions are founded in the fact that certain types of atoms 

which interact more frequently are likely to be more energetically favorable than atoms which would 

expect to interact in a random distribution manner and therefore contribute favorably to binding 

affinity.(373, 385)  

 

5.1.4 Molecular Dynamics 

Molecular modeling can also be used to simulate the movement of a molecule by a process called 

molecular dynamics. This is done by subjecting the initial molecular structure to a process called 

simulated annealing, which is very similar to a melting curve analysis.(386) The kinetic energy of the 

atoms in the model structure is increased, such as by raising the temperature (often to 400 – 600 K), and 

then, after a short period of time, it is slowly lowered back to 275 K, where it is allowed to equilibrate 

for further period of time. This kinetic energy increase allows the molecule to explore more 

conformations by allowing bond vibrations and rotations to move more freely. As it “cools back down” 

the potential energy surface of the molecule guides it toward a realistic structure with a relatively lower 

total energy. The structure is then subjected to an energy minimization procedure, based on a force field, 

to remove any additional structural anomalies and produce a lowest-energy structure.(352, 387-389) 

 

5.2 Density Functional Theory (DFT) Calculations  

In order to understand how the molecular properties of the cryptolepine derivatives, such electron 

density, atomic charges and molar volume could modulate the affinity of these compounds to molecular 

targets we performed a DFT study with 10 representative derivatives, including derivatives with linear 

alkyl side chain (3f,i-j), cycloalkyl side chains (3n,q), aromatic side chains (3r-s) and aromatic chlorine 

derivatives (3v-x). Cryptolepine properties were also determined and compared with those of the 

derivatives. In the theoretical we treated the terminal amine functionality of the side chain of 

cryptolepine derivatives as protonated (except for 3s) as it should be at physiological and Plasmodium 

digestive vacuole pH, according to the calculated and predicted pKa values showed in Table 3.4 and 

Appendix D. The proposed geometry of cryptolepine and derivatives were optimized, after a 

conformational search using DFT with the B3LYP(390-392) functionality and the 6-31G+(d,p)(393) basis 

set, which is known to produce accurate geometries, in Gaussian03 software package.(375)  The 

vibrational frequency calculations were performed at the same level of theory to check that all structures 

represented global minima of the potential energy surface (lack of negative vibrational frequencies) and 

to correct the computed energies to zero-point energies. For all calculations the value considered for the 

spin multiplicity was 1, but the charge value was +1 for 1 and derivative 3s (not protonated in the 

terminal amine functionality side chain) and +2 for the derivatives with protonated side chain at C11.  
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The electrical dipole moment, molar volume and natural bond orbital (NBO) charges(394) of the 

nitrogens in cryptolepine and derivatives were also calculated and shown in Table 5.3. The introduction 

of the side chain in the cryptolepine nucleus highly increases the electrical dipole moment from 0.75 

Debye in 1 to 20.37 Debye in 3x, except for those derivatives that have aromatic rings in the side chain 

(3q-s). The molar volume of the cryptolepine derivatives also increases when compared with 1. The 

values range from 2125 in 1 to 3561 bohr3.mol-1 in 3v being the derivatives with chlorine substitutions 

the compounds with the highest values. The N5 NBO charge (Table 5.3) do not differ too much in 

cryptolepine and derivatives ranging from -0.312 in 1 to -0.344 in 3r. For all the cryptolepine 

derivatives the introduction of the alkyldiamine side chain, contributes with a small increase in the N5 

charge, being more pronounced in derivatives with aryl side chain (3r-s).  The charges in N10 ranging 

from -0.558 in 3s to -0.597 in 3n also slightly increase with the introduction of a non-aromatic side 

chain at C11, when compared to cryptolepine.  

Table 5.3 - Electrical dipole moment, molar volume and partial NBO charges in the nitrogens of cryptolepine 
(1) and some derivatives (3). 
 

 

 

 R1 R2 R3 
Electrical dipole 

Moment a) 
Molar 

Volume
 b)

 
q(N5) c) q(N10) c) q(N-C11) c) q(Nter) c) 

1 H H H 0.748 2125 -0.312 -0.563 -- -- 

3f H H 
 

16.748 2562 -0.325 -0.586 -0.661 -0.476 

3i H H 
 

16.439 2596 -0.336 -0.593 -0.623 -0.637 

3j H H 
 

11.744 3363 -0.326 -0.590 -0.476 -0.647 

3n H H 
 

15.708 2742 -0.325 -0.597 -0.643 -0.642 

3q H H 
 

3.059 3290 -0.329 -0.594 -0.631 -0.477 

3r H H 
 

1.948 2177 -0.344 -0.561 -0.589 -- 

3s H H 
 

5.321 3321 -0.351 -0.558 -0.580 -0.486 

3v Cl H 
 

17.280 3561 -0.335 -0.576 -0.636 -0.474 

3w Cl H 
 

19.242 3274 -0.327 -0.596 -0.634 -0.642 

3x Cl Cl  20.366 3491 -0.327 -0.596 -0.634 -0.642 

a) Electrical Dipole moment in Debye B) Molar volume in Bohr3.mol-1 c) Atomic charges in atomic units. 

The additional charges introduced with the nitrogens present in the side chain vary from -0.476 in 

3j to -0.661 in 3f for the nitrogen directly connected to C11 (N11) and from -0.474 in 3v to -0.647 in 3j 

for the terminal nitrogen (Nter) of the side chain. 

The three-dimensional Molecular Electrostatic Potential (MEP) maps were generated for better 

understanding of the short-range interactions between molecules. At each point of the map, the 

electrostatic potential expresses the value of the electrostatic energy of interaction with a unitary 
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positive charge. This type of MEP isosurfaces can account for the interpretation of how interactions 

between two molecules can occur.(395)  

Three-dimensional MEP maps, ranging from -0.4 to 1.0 e/au3, for cryptolepine and derivatives 

are represented in Figure 5.1. The MEP map of 1 shows a positive region extending from the area of C-

1 to C-6, making a diagonal over the middle of ring system. The most negative areas of cryptolepine are 

in the opposite extreme of the molecular structure, over the area of C4 and C9. However, the three 

distinct potential areas described, do not represent a large variation in the electrostatic potential of the 

molecule.  

The introduction of the alkyldiamine side chain at C11 of the cryptolepine nucleus represents a 

substantial variation on the distribution of the electrostatic potential in the molecule. In general, the 

introduction of the alkyldiamine side chain creates a large positive area in the region of C1/C11a, except 

for those who have an aromatic side chain (3r and 3s). The cryptolepine derivatives 3w and 3x with 

chloride atoms in C3 and C3, C7 of the indolo[3,2-b]quinoline nucleus respectively, are the compounds 

with higher polarization. In these compounds, a large positive region appears in the quinolinic ring 

system, when compared to 1. 

From the DFT studies are possible to conclude that the cryptolepine derivatives (3) become more 

polarized molecules capable of interact with molecular targets through electrostatic interactions (dipole-

dipole interactions or London forces that arise from transitory dipoles).  Compounds with chlorine 

substitutions in the aromatic nucleus may have specially propensity to interact with targets presenting 

negative electrostatic potential due to the presence of a large positive electrostatic potential centred over 

the indolo[3,2-b]quinoline nucleus. Additionally, the introduction of more two nitrogens in the side 

chain with electronegative potential charges (q(N11) and q(Nter) in table Table 5.3) can lead to the 

formation of hydrogen bonds and/or ionic bonds (π-cation bond) with molecular targets, increasing 

greatly the binding affinity of a given indolo[3,2-b]quinoline:receptor complex. 

5.3 Docking Studies with Double-Stranded Oligonucleotide 

In order to understand how cryptolepine derivatives interact with double-stranded 

oligonucleotides, docking simulations with a short 12-mer double-stranded d(GATCCTAGGATC)2 

oligonucleotide were performed with MOE (Molecular Operating Environment) software.(381, 396) The 

duplex DNA (B-helix)(345) was constructed with MOE software and minimized with Amber99(397-398) 

force field and born solvation(399-401) scheme. After minimization, the structure was subjected to 

molecular dynamics (MD) with simulation annealing conditions(386) to obtain the most favorable 

conformational structure and relax the system to a minimal energy. After MD and subsequent energy 

minimization the DNA structure was used in the docking study. 
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Figure 5.1 – Molecular Electrostatic Potential (MEP, values in e/au3) maps for cryptolepine and some derivatives. 

It is known that cryptolepine intercalates into DNA, binding to CG-rich sequences containing 

non-alternating CC sites in a base-stacking intercalation mode in absence of hydrogen bond 

interactions.(5) In order to get information on the solidity of our model we docked cryptolepine with the 
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ds d(GATCCTAGGATC)2 oligonucleotide. Due to the asymmetry of our molecule, different orientation 

analyses were required. We considered four different orientations for intercalation, as shown in Figure 

5.2. 

The complexes stability were evaluated 

according to the energy of complex formation 

(Ebind). This energy was determined 

according to Eq. 5.1, where Ecomplex is the 

energy of the oligonucleotide:1 complex, EDNA 

is the energy of the free oligonucleotide and 

Eligand is the energy of the free ligand. The 

most favorable energy of complex formation 

for intercalation of 1 into non-alternating CC 

sites of d(GATCCTAGGATC)2 

oligonucleotide was obtained for pose 2 (Ecf = 

-577 kJ.mol-1) as shown in Table 5.4. The 

docked structure is in excellent agreement 

with the results already described for the 

intercalation of cryptolepine into DNA 

structures containing non-alternated CC 

sites.(5) In the intercalation cavity, the bases are separated by 6.9 Å while in the others the base 

separation is only 3-4 Å. Compound 1 intercalates alongside to the major axis of the base pairing, 

maximizing the occupation of the intercalation cavity. The double-six ring portion of the molecules 

stacks between the two guanines (G8-G9), the positively charged nitrogen (N5) is placed between the 

two oxygens of the consecutive guanines of the major groove and the indole nitrogen (N10) is placed 

between the oxigens of consecutive cytosines (C4-C5) of the minor groove, enhanced the stability of the 

complex as shown in Figure 5.3a. The interactions of 1 with the DNA structure are mainly of van der 

Walls type with absence of H-bonding. Figure 5.3b shows a van der Walls interaction map of the ligand 

with the DNA residues in the intercalation cavity. 

The complex stability is enhanced by mild-polar and hydrophobic interactions, where 

hydrophobic interactions predominate in the plans directly above and below of the four-ring fused plan 

and the mild-polar interactions in the regions of the aromatic hydrogens (equatorial), positioning the 

center of mass of 1 where both hydrophobic and electrostatic interactions are maximized. The absence 

of H-bonding interactions indicates that the stacking forces provide alone the stability of the complex, 

like the - stacking interactions between the 6-member aromatic ring of the double-six ring portion 

and the aromatic rings of the guanines (G8-G9) consecutives bases, as shown in Figure 5.3c. 

 

 

Figure 5.2 – Four different docking orientations 
investigated for intercalation of 1, corresponding to the 
rotation of the molecule around two orthogonal axes 
located in the molecule plan. 
 
 

 

Eq. 5.1 – Energy of complex formation. 
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                           a) 

                          b) 

                         c) 

Figure 5.3 – Stereo view of the projection up the helix axis of a d(GpG)-d(CpC) dinucleotide of the 
double-stranded d(GATCCTAGGATC)2 oligonucleotide with the ligand 1 sandwiched (dot-grey: H-
bond between bases); b) Stereo view of the Van Der Walls interactions map of the ligand 1 intercalated, 
looking into the major groove (blue: mild polar; red: hydrophobic: yellow: H-bonding), shown 
intercalation pocket only for clarity, value in Å); c) Interactions map of ligand 1 intercalated into 
d(GpG)-d(CpC) dinucleotide of the double-stranded d(GATCCTAGGATC)2 oligonucleotide. (blue 

circle: receptor exposure; pink circle: polar; blue: ligand exposure; dot green - interaction; dot purple: 
proximity contour). 

The docking studies of cryptolepine derivatives (3f 3i-j, 3n, 3q-s and 3v-x) with the double-

stranded d(GATCCTAGGATC)2 oligonucleotide reveal a different binding mode when compared with 

parent compound 1. The intercalation docking studies in non-alternated CC sites of compound 3n, in 

pose 2 which is the most favourable orientation according to the results obtained for 1, showed high 

Ebind (537 KJ.mol-1), destroying the Watson and Crick base pairing and consequently the B-like 

conformation helix, as shown in Figure 5.4. The quinolinic double ring portion of the four ring system 

stacks under the G8 base and over the G9 base, which are separated from each other by 8.7 Å, while C4 

and C5 bases are separated by 8.5 Å. The base paring between C4-G9 and C5-G8 is destroyed, where 

the nitrogenns of the six ring portion of G8 interact with the phosphate backbone through H-bonding 

and G9 interact with T3 through H-bonding between the NH and the carbonyl oxygen’s of the bases, 

due to the downshift of G9 orientation.  
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Table 5.4 – Calculated energies of complex formation Ebind = Ecomplex – (EDNA + 
Eligand), van der Walls energy (Evdw) and electrostatic energy (Eele) obtained for 
different orientations of 1 intercalated with d(GATCCTAGGATC)2 

oligonucleotide in non-alternating CC sites, bound to major and minor groove of 
cryptolepine derivatives (3f, 3i-j, 3n, 3q, 3r-s, 3v-x) intercalated and/or bound to 
major and minor groove of d(GATCCTAGGATC)2 oligonucleotide. 

 

 

 

  

 R1 R2 R3 
Docking 

Mode 
Ebind

 a) Evdw
a)

 Eele
 a) 

1 H H H 

Intercal. 1b)

Intercal. 2 b) 
Intercal. 3 b) 
Intercal. 4 b) 
Major gro. 
Minor gro. 

-542 
-577 
-566 
-574 
-307 
-331 

-977 
-1214 
-1193 
-1197 
-1230 
-1234 

-15798 
-16056 
-16437 
-16249 
-16820 
-16676 

3f H H  
Major gro. 
Minor gro. 

-348 
-452 

-1265 
-1265 

-16652 
-17389 

3i H H 
 

Major gro. 
Minor gro. 

-546 
-606 

-1255 
-1279 

-17613 
-17633 

3j H H 
 

Major gro. 
Minor gro. 

-382 
-516 

-1249 
-1299 

-17517 
-17723 

3n H H 
 

Major gro. 
Minor gro. 

-482 
-534 

-1265 
-1318 

-17092 
-17243 

3q H H 
 

Major gro. 
Minor gro. 

-493 
-564 

-1242 
-1299 

-17517 
-17723 

3r H H 
Major gro. 
Minor gro. 

-334 
-377 

-1252 
-1276 

-16837 
-16882 

3s H H 
 

Major gro. 
Minor gro. 

-364 
-408 

-1244 
-1232 

-16474 
-16883 

3v Cl H 
 

Major gro. 
Minor gro. 

-478 
-310 

-1293 
-1284 

-17386 
-17756 

3w Cl H 
 

Major gro. 
Minor gro. 

-491 
-500 

-1261 
-1302 

-17169 
-17802 

3x Cl Cl 
 

Major gro. 
Minor gro. 

-574 
-552 

-1266 
-1287 

-17517 
-17524 

a) Energy in kJ.mol-1 b) Docking orientation pose 

The major interactions contribution to the complex stabilization are the - stacking and the -

cation between 3n and G8 and the H-bonding between the nitrogens of the side chain and the indole NH 

with the phosphate backbone of the DNA helix. The intercalation studies for the other cryptolepine 

derivatives reveal similar results. These mean that the final docking mode for these compounds is not 

the intercalation of the ligand, due to its expulsion from intercalation cavity, after energy minimization 

of the complex. A possible explanation for this change in DNA binding mode when a diamine side 

chain is introduced at C11 of cryptolepine nucleus, is the observed increased molar volume of the 

derivatives 3 when compared to 1 (Table 5.3), leading to the separation of the bases in the intercalation 

cavity, so breaking H-bonding between base pairs, prompting a structural rearrangement of the DNA 

helix.  
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Subsequent docking experiments 

showed that interaction of the cryptolepine 

derivatives with ds-DNA occurs preferentially 

with the minor or major grooves. For instance, 

molecular docking simulations of cryptolepine 

derivative 3n with such DNA models, showed 

that interactions for minor groove binding 

turned out to be more favorable (Ebind = -534 

kJ.mol-1), than for major groove binding 

(Ebind = -482 kJ.mol-1), maximizing the 

interactions between the ligand and the DNA. 

Compound 2n interacts with the DNA bases 

and phosphate backbone (Figure 5.5a), in 

which the two phosphate chains of the 

interaction cavity are separated by 9 Å, the 

same distance as in the absence of ligand. 

Binding occurs with the ligand four-ring 

aromatic system plane positioned in the minor 

groove axis. The charged nitrogen (N5) is 

located on the outside of the DNA helix, 

interacting with DNA phosphate groups of T6 

and T11 nucleotides through ionic interactions 

(Figure 5.5a and b). The indole nitrogen (N10) and the alkyldiamine side chain are turned directly to the 

DNA helix core, enhancing the stability of the complex due to formation of hydrogen bonds (Figure 

5.5b). H-bonding interactions of ligand 3n to the DNA helix are mainly through the terminal amine 

functionality on the alkyldiamine side chain with the carbonyl oxygen of T3 and the indole NH with the 

aromatic nitrogen of A10, representing an important contribution (1.89 Å of bound length) to the 

complex stability. The hydrophobic interactions above and below the four-ring fused plane and on the 

aliphatic ring of the side chain with the phosphate backbone (red in Figure 5.5a), also contribute to the 

stability of the complex. The weakly polar interactions (blue in Figure 5.5a) occur between the aromatic 

hydrogens of 3n with the bases and phosphate backbone of the DNA. 

For the other compounds studied (except 3v and 3x), the binding interactions energies are more 

favourable for the minor groove binding (Table 5.4). Similarly to 3n, these cryptolepine derivatives 

bind to DNA aligning with the minor groove curvature, perpendicularly to the DNA major axis, and 

with the four-fused ring system surface interacting with the phosphate backbone through hydrophobic, 

weakly polar and ionic forces (Appendix I). However, we cannot find any specificity in the binding 

orientation of these cryptolepine derivatives. The indole nitrogen of 3j, and 3q-s faces the helix core, 

while for 3f, 3i and 3w it is in the opposite direction. The binding to the DNA minor groove is also 

 

Figure 5.4 – Final docking complex of 3n intercalated in 
pose 2 into GC-sites of double-stranded oligonucleotide 
d(GATCCTAGGATC)2. (grey dot-lines:H-bond between 
bases: dashed-black: H-Bond; dashed-red: ionic binding; 
dashed-green: π-π interactions; phosphate backbone was 
removed for clarity) 
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through H-bonding involving the side chain terminal amine and the indole group (N10) and through 

hydrophobic and weakly-polar interactions involving the aromatic system. The H-bonding is mainly 

established with the phosphate backbone although in some cases (3j, 3n and 3v) it is with the bases of 

the DNA helix. 

a) 

 

b) 

 

Figure 5.5 – a) Model of 3n interacting with minor groove and phosphate backbone (blue: weakly polar; red: 
hydrophobic: yellow: H-bonding; dashed-black: H-Bond; dashed-red: ionic binding); b) Interactions map of 3n with 
the minor groove and phosphate backbone of the double-stranded d(GATCCTAGGATC)2 oligonucleotide. (blue 
circle: receptor exposure; pink circle: polar; blue: ligand exposure; arrow dashed green:  H-bonding with chain; 
dashed red: ionic binding; dashed purple: proximity contour; values are in Å). 

The cryptolepine derivatives 3v and 3x bind preferentially to the major groove of the DNA helix 

(Table 5.4). The binding occurs with the four-ring fused plane aligned parallel to the DNA phosphate 

backbone plane. Compound 3v shows H-bonding and -cation interactions between the terminal amine 

function of the side chain or the C11 amine group and the DNA bases (Appendix I). Compound 3x 

binds also to the major groove, but only with H-bonding between the ligand and the DNA phosphate 

chain. For instance, the terminal amine functionality of the side chain and the N10 of 3x, make H-

bonding interactions with the phosphate groups of T6 and A7 of the major groove (Figure 5.6). The 

hydrophobic interactions between the four ring-fused plane and the DNA helix occur in the region of 

G8 and A7, with the DNA phosphate chains and bases. 

These docking experiments showed that interaction of the cryptolepine derivatives with ds-DNA 

occurs preferentially with the minor or major grooves, mainly through H-bonding as well as 

hydrophobic interactions of the aromatic four-fused rings system with the phosphate backbone and 

bases.  
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Additionally, our results are consistent 

with previously reported molecular modeling 

studies on interactions between C11-

alkyldiamine-quindoline derivatives and 

guanine-quadruplex structures that show that this 

type of compounds are not that intercalative and 

nitrogen atoms in the alkyl side chain are able to 

form H-bonds with the phosphate diester 

backbone of DNA structures, hence contributing 

to the stabilization of the ligand:DNA 

complex.(289) Most of the cryptolepine 

derivatives studied are predicted to bind 

preferentially to the minor groove, as shown by 

the decreasing energies for complex formation 

(Table 5.4), except for 3v and 3x which bind 

preferentially to the major groove. Once again, 

these differences can probably be explained by 

the increased molar volume of these two 

compounds (Table 5.3), meaning that 

compounds bind to the DNA region where their size allow a good fit to the DNA structure, and 

consequently interactions between the ligand and the DNA are maximized. 

5.4 Docking Studies with Haemozoin Dimer 

In the light of the finding that derivatives 3, 5, 94 and 95 have affinity to FPIX-OH monomer, as 

chloroquine, cryptolepine and their counterparts indoloquinolines 1, 4, 91a and 91b (Section 4.3), we 

decided to evaluate in silico their binding properties in order to gain an understanding of the SAR of this 

family of compounds, as well as their main interaction with drug receptors.  

A molecular docking simulation with several cryptolepine and quindolone derivatives should be 

performed with three-dimensional structure of haematin monomer, for further comparison with in vitro 

results. However, this structure was not available and had to be modelled. Thus, we performed the 

docking experiments with the haemozoin dimer, obtained from the Cambridge Crystallographic Data 

Centre (CCDC),(63) in order to obtain structural motifs of these compounds interacting with the target 

haemozoin. The docking simulations were performed with Genetic Optimisation for Ligand Docking 

(GOLD) algorithm(380) which performs a stochastic search for preferred orientation and conformation of 

the ligand in relation to the receptor.(402)  As receptor was used the structure of haemozoin (PDB file 

obtained from CCDC), and chosen as active site one of the iron atoms, in the centre of the porphyrin 

ring, and including all the atoms within a radius of 12 Å. The results presented here correspond to the 

best-scored solutions of 2500 docking runs for each structure. Table 5.5 shows the GoldScore values of 

 

Figure 5.6 – H-bond interaction of 3x with the phosphate 
backbone in the major groove region. 

(DNA bases removed for clarity, dashed black: H-bond; 
dashed red: ionic binding; Value in Å.) 
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the best docking solutions between haemozoin dimer and chloroquine, cryptolepine and its derivatives 

3f-h, 3j, 3l, 3n, 3s, 3u-v, 3x-y. 

Chloroquine  

The algorithm was validated by docking chloroquine with the structure of the haemozoin dimer. 

The proposed geometry of chloroquine was optimized after a conformational search using DFT with the 

B3LYP(390-392) functionality and the 6-31G+(d,p)(393) basis set in Gaussian03 software package.(375) The 

calculations were performed on the receptor with chloroquine in the diprotonated form as it should be at 

pH 5.5 (pKa1 = 8.55 and pka2 = 9.81),(403) in the Plasmodium sp. digestive vacuole.(51-52) Docking results 

of chloroquine, performed for comparison purposes, showed binding of 2 to haemozoin dimer through 

π-π stacking interactions and H-bonding, in good agreement with already described molecular 

modeling(121) and nuclear magnetic resonance(118, 124) results with haem. The docking results are shown 

in Figure 5.7a and Figure 5.7b. 

a) 

 

b)

c) 

 

d)  

 
Figure 5.7 - Model of chloroquine (2) and cryptolepine (1) interacting with haemozoin dimer. a) chloroquine top-

view; b) chloroquine; c) cryptolepine top-view; d) cryptolepine. (dashed-black. H-bond; solid green: π-π 
interactions; solid-black: distances; values in Å). 

 
The quinoline ring stacks over of the center porphyrin ring of haemozoin dimer, which has a 

planar flat region of approximately 35 Å2. Chloroquine interact mainly through π-π stacking 

interactions, with an intermolecular distance between ligand and aromatic receptor nucleus of about 3 Å 
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and of about 3.6 Å of the iron atom (iron atom is above the aromatic ring). The charged nitrogen of the 

aminoquinolines side chain interacts with the carboxylate oxygens (Fe-COO-), mainly through H-bond 

with a distance between the oxygen and the proton in the charged nitrogen of 2.2 Å. Furthermore, the 

docking results showed that the interatomic distances between the hydrogen donators in the ligand (Nquin
 

- Ndiethyl = 8.59 Å) and the interatomic distances between the acceptors in the in the receptor (Fe – COO- 

of c.a 8.3 – 8.6 Å) are essential the same (Figure 5.7). These results seem to indicate that a two-point 

interaction may be the major role for haemozoin-drug complexation. However, it was expected to see 

binding interactions between the central acceptor in the porphyrin ring and the quinolinic nitrogen, but 

no binding interactions were verified between these two moieties.  

 

5.4.1 Cryptolepine and Derivatives 

Cryptolepine (1) and some of its C11 alkyldiamine derivatives (3f-h, 3j, 3l, 3n, 3s, 3u-v, 3x-y) 

were docked with haemozoin dimer. The calculations were performed on the receptor with the 

cryptolepine derivatives in an ionization state according to their pKa values (Table 3.4 and Appendix 

D). The proposed geometry of cryptolepine and derivatives was optimized, after a conformational 

search using DFT with the B3LYP(390-392) functionality and the 6-31G+(d,p)(393) basis set in Gaussian03 

software package.(375) For all the cryptolepine derivatives, with exception of 3s and 3u, the ionization 

state was +2, due to the protonation of the terminal nitrogen of the side chain as it should be at pH 5.5. 

Calculation with derivatives 3s and 3u were conducted with a ionization state of +1, with the terminal 

nitrogen on the side chain in the neutral form.  

Cryptolepine 

Docking results of cryptolepine with haemozoin dimer are shown in Figure 5.7c and Figure 5.7d. 

Like chloroquine, cryptolepine stacks over the center of porphyrin ring, interacting exclusively by π-π 

stacking interactions, in which the lone pair of electrons of the nitrogens of N10 seems to be involved. 

The complex stability is assured with cryptolepine aromatic nucleus staying at ca. 3.0 Å of the 

porphyrin ring, and with the N5 of the indoloquinoline staying at 3.7 Å of the iron atom. Chloroquine 

showed a GoldScore value of 32.89 while cryptolepine showed a value of 40.32. From the analysis of 

the scoring results it seems that the increased π-π stacking interactions, due to the higher aromatic 

region of cryptolepine when compared with chloroquine, contribute greatly to the complex stabilization. 

Cryptolepine derivatives    

Also cryptolepine derivatives 3f-h, 3j, 3l, 3n, 3s, 3u-v, 3x-y interact with porphyrin ring through 

π-π stacking interactions, like cryptolepine. However, most of them showed also the ability to interact 

with carboxylate ions through H-bonding between the protonated terminal nitrogen of the side chain and 

the oxygen atom. Cryptolepine derivatives without protonated terminal nitrogen (3s, 3u and 3y) are an 
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exception. In these cases the complex stability is enhanced only by π-π stacking interactions. In addition 

to the π-π stacking and H-bonding interactions, some derivatives (3n, 3f, 3h, 3j, and 3x) also showed 

ionic interactions with the haemozoin dimer. The proximity of the positively charged nitrogen in side 

chain to the negatively charged carboxylate oxygen (COO-), attracts each other, with formation of the 

ionic interactions.  

 For example, cryptolepine derivative 3g, stacks over the center of the porphyrin ring (Figure 

5.8a,b) and like chloroquine and cryptolepine with a distance of approximately 3 Å, separating the 

porphyrin ring and the indolo[3,2-b]quinoline nucleus. However, the inserted alkyldiamine side chain of 

3 carbons length, introduces a hydrogen donor with the necessary distance (approximately 8.2 Å) to 

interact with the carboxylate group of the haemozoin dimer. Thus, the complex stability is enhanced by 

π-π stacking interactions between the aromatic moieties of the ligand and receptor and by H-bond 

between the protonated terminal nitrogen in the side chain and with the oxygen of the carboxylate 

linked to the iron atom in the porphyrin ring (bond length of 2.0 Å).  

Docking of cryptolepine derivative with a piperidine side chain 3n (Figure 5.8c,d), showed that 

the complex stability is also enhanced by π-π interactions, but due to the reduced side chain length, the 

aromatic nucleus of the indolo[3,2-b]quinoline lies on the edge of the porphyrin ring, allowing the 

formation of H-bonding between the protonated nitrogen in the side chain and the carboxylate group 

(Fe-COO). Additionally, the rigid character of the piperidine side-chain introduces some steric 

hindrance. The optimal distance between the two aromatic nucleus seems to be around 3 Å, and to be 

centre in the porphyrin ring, the indolo[3,2-b]quinoline nucleus of 3n, would probably be at a distance 

exceeding this value, and thus reducing the complex stability. In Figure 5.8e,f is showed the docking 

results for the cryptolepine derivative 3y. The complex stability is only achieved by π-π interaction, due 

to the absence of a basic side chain and like for 3n, the steric hindrance introduced by the diethylamine 

group in C11, put away the indolo[3,2-b]quinoline nucleus from the center of the porphyrin ring. 

Docking results of the cryptolepine derivative not described above are shown in Appendix J.   

The cryptolepine derivatives showed GoldScore values ranging between 29.79 and 49.54, being 

most of them very close to the cryptolepine GoldScore value (40.32). These results show that the main 

driving forces for the complex stability are the π-π stacking interactions, but being dependent of the side 

chain structure. The analysis of the scored docking results (Table 5.5) allows us to deduce some 

structure-activity relationships (SAR) for the binding of these compounds to haematin dimer.  

SAR with haemozoin dimer 

Terminal nitrogen substitution and branched side chains: GoldScore results for the 

cryptolepine derivatives with a side chain of three carbons length (3f-h and 3j) showed that bulky 

substituents on the terminal nitrogen (3g and 3j) have higher binding affinities than derivatives with 
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smaller substituents (3f) and the introduction of branched side chains (3h) reduce the complex stability 

when compared with linear ones (3f).  

 

a) 

 

 

b) 

 

c) 

 

 

 

d) 

 

e) 

 

 

 

f) 

 

Figure 5.8 - Model of cryptolepine derivatives 3g, 3n and 3y interacting with haemozoin dimer. a) 3g top-view; b) 
3g; c) 3n top-view; d) 3n; e) 3y top-view; f) 3y. (dashed-black. H-bond; solid green: π-π interactions; 
dashed-red: ionic binding; solid-black: distance; values in Å). 
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Table 5.5 – GoldScore(380) values of the doctking studies of chlorquine (2), cryptolepine (1) 

and derivatives 3f-h, 3j, 3l, 3n, 3s, 3u-v, 3x-y with haematin dimer using GOLD software. 

 

 R1 R2 R3 GoldScore 

2 -- -- -- 32.89 
1 H H -- 40.32 

3f   40.44 

3g H H 46.06 

3h H H 31.93 

3j H H 49.54 

3l H H 46.60 

3n H H 39.58 

3s H H 29.79 

3u H H 44.52 

3v Cl H 47.50 

3x Cl Cl 39.00 

3y H H 33.98 

 
 

    
 

 Halogen substitution in the aromatic nucleus: The introduction of one chlorine atom (3v) and 

two chlorine atoms (3x) did not affect significantly the binding affinity of these derivatives to 

haemozoin dimer when compared with its counterparts 3g and 3n, respectively. 

Additionally, a conformational analysis of the cryptolepine derivatives 3f, 3l and 3n showed that 

these derivatives share some structural features with some common antimalarials (Figure 5.9). 

Geometry optimizations calculations were determined using density functional theory (DFT) with 

B3LYP(390-392) parameterization of the density functional and the 6-31+G(d,p) basis set,(393) using the 

Gaussian03 software package.(375) The vibrational frequency calculations were accomplished at the 

same level of theory. The results showed that the cryptolepine derivatives with side chains of three or 

four carbons have similar bioactive conformation as chloroquine and amodiaquine. Cryptolepine 

derivatives showed distances between the quinolinic nitrogen (N5) and the terminal nitrogen atom in the 

side chain ranging from 8.037 and 9.795 Å, while chloroquine and amodiaquine have values of 8.38 and 

8.30 Å, respectively.(134)     

Overall, the results suggest that the cryptolepine derivatives are able to complex with haemozoin 

through π-π stacking interactions between the two aromatic nucleus. Additionally, the terminal amine 

side chain is also able to form H-bond with the carboxylate groups (Fe-COO). The side chain length and 

its substitution pattern seems to strong influence the interactions with the haemozoin dimer. 
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a) 

 
b) c) 

Figure 5.9 – Conformational analysis of the cryptolepine derivatives a) 3f, b) 3l and c) 3n, determined using 
density functional theory (DFT) with B3LYP.  

5.4.2 Quindolone and Derivatives 

Quindolones (4, 91a and 91b) and their derivatives 5, 94 and 95 were also docked against the 

haemozoin dimer. Also, the proposed geometries were optimized, after a computational search with 

DFT, using the B3LYP(390-392) functionality and the 6-31G+(d,p)(393) basis set in Gaussian03 software 

package.(375) The calculations were performed with the compounds in the ionization state according to 

the SPARC predicted pKa values shown in Appendix D. Thus, the geometries optimizations of 4, 91a 

and 91b were performed with the ionization state value of zero, 5 with the ionization state of +2, 94 

with the ionization state of +2 and 95 with the ionization state of +1.  

Quindolones 

Docking results of 4 with haemozoin dimer are shown in Figure 5.10. Like chloroquine, 

cryptolepine and derivatives, also quindolone 4 stacks over the porphyrin aromatic ring, with an 

intermolecular distance of ca. 3 Å. The main interactions seem to be due to π-π stacking interactions 
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between the aromatic nucleus, in which the lone pair of electrons of both nitrogens seems to be 

involved. Docking with quindolones 91a and 91b showed similar results to those of 4 and the docking 

fitness values are shown in Table 5.6. Quindolone 4 showed a GlodScore of 42.65, while 91a and 91b 

showed values of 44.17 and 45.26, respectively. The results seem to point out that the introduction of 

chlorine atoms stabilizes the complex formation, thus corroborating the in silico studies showing that 

organic chlorine atoms are constructively involved in a wide variety of non-covalent binding 

interactions with aromatic π-systems.(368-369)  

a) 
 

 

b) 

Figure 5.10 – Model of quindolone (4) interacting with haemozoin dimer. a) quindolone top-view; b) quindolone. 
(dashed-black. H-bond; solid green: π-π interactions; solid-black: distances; values in Å). 

Quindolone derivatives 

Quindolone derivatives 5, 94 and 95 were also docked against haemozoin dimer. The results for 

5a, 94a and 95a are shown in Figure 5.11. Quindolone 5a stacks over the porphyrin ring with an 

intermolecular distance of ca. 3 Å. Like to the other indolo[3,2-b]quinolines the complex stabilization is 

achieved due to the π-π stacking interactions between both aromatic rings. The distance between the 

terminal nitrogen in the side chain linked into N10 is approximately 7 Å, which due to its H-bond with 

carboxylate groups, in addition to the sterical hindrance induced by the orientation of the side chain,  

obligates the indolo[3,2-b]quinoline ring to stay on the edge of the porphyrin ring. The side chain linked 

to N5 stays above the plan of the indolo[3,2-b]quinoline ring with the terminal nitrogen interacting with 

the porphyrin ring through π-stacking interactions.    

The quindolone derivatives 5b and 5c showed similar results to those described for 5a. Also 

quindolone derivatives 94a and 94b docked with haemozoin stack over the porphyrin aromatic ring with 

a intermolecular distance of ca. 3 Å. Complex stability with 94a is also achieved due to π-π stacking 

interactions between both aromatic nucleus and due to the H-bond between the protonated terminal 

amine side chain and the carboxylate anions of haemozoin dimer. However, for 95a the stability of the 
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complex is only enhanced by π-π stacking interactions in absence of H-bond involving terminal amine 

side chain.   

 

a) 
 

 

b) 

c) 
 

 

d) 

e) 
 

 

f) 

Figure 5.11 – Model of quindolone derivatives 5a, 94a and 95a interacting with haemozoin dimer. a) 5a top-
view; b) 5a; c) 94a top-view; d) 94a; e) 95a top-view; f) 95a. (dashed-black. H-bond; solid green: π-π 
interactions; dashed-red: ionic binding; solid-black: distance; values in Å). 
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For derivative 94a, the side chain attached to N10 is positioned above the plane of the indolo[3,2-

b]quinoline ring an unable to interact with the haemozoin dimer. As described for quindolone derivative 

5a, the formation of H-bond between the terminal amine of the side chain and the sterical hindrance 

induced by the side chain orientation, force the indoloquinoline aromatic nucleus to stack on the edge of 

the porphyrin ring system. 

Table 5.6 – GoldScore(380) values of the docking studies of quindolones (4, 91a and 91b), as well as of its 
derivatives 5, 94 and 95 with haematin dimer using GOLD software. 

 

 

 
 

 
 

4 or 91 

  

 
5 

 R1 R2 GoldScore 
 

 R1 R2 GoldScore 
 

4 H H 42.65  5a H H 37.50 
91a Cl H 44.17  5b Cl H 37.21 
91b Cl   Cl 45.26  5c Cl   Cl 37.83 

 

 
94 

  

 
95 

 R1 R2 GoldScore 
 

 R1 R2 GoldScore 
 

94a H H 44.17  95a H H 47.13 
94b Cl H 44.35  95b Cl H 48.34 
94c Cl   Cl 46.04  95c Cl   Cl 49.19 

The docking fitness values for the quindolone derivatives 5, 94 and 95 presented in Table 5.6 

showed that derivatives 95 have the highest GoldScore values, ranging between 47.13 and 49.19, 

pointing out that these derivatives have higher degree of fitting with the haemozoin dimer than 5 and 94. 

The lowest values was found to derivatives 5, ranging between 37.50 and 37.83, and probably reflect 

the orientation of the side chain that stays above the plan of indolo[3,2-b]quinoline, away from possible 

interactions with the porphyrin ring. Nevertheless, derivatives 94 also have a side chain out of the plane 

and the GoldScore values are substantially higher than those of 5, ranging from 44.17 to 46.04. As 

already verified to the quindolones themselves, the introduction of chlorine in the indolo[3,2-

b]quinoline aromatic nucleus seems to point out to an increase of the binding affinity with the 

haemozoin dimmer. 

Overall, the docking results suggest that quindolone derivatives 5, 94 and 95 are able to stack 

over the porphyrin ring of haemozoin due to the formation of π-π stacking interactions. Also the 
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terminal amine side chain can form H-bonding between one of the protonated terminal amine side 

chains with the carboxylate groups of the porphyrin ring. 

 

 

 



 
 

 

VI 
Chapter VI – General Discussion and Conclusions  

 

“A man should look for  what is ,  and not  for  what  he 

th inks should be…”  

Albert Einstein (1879-1955)  
 German-born Swiss-American theoretical physicist 

 

 

 

Abstract 

Cryptolepine and quindolone derivatives have been synthesized through the incorporation of basic side-chains in 

the 10H-indolo[3,2-b]quinoline scaffold and evaluated for their antiplasmodial and cytotoxicity properties. 

Cryptolepine derivatives 3 with propyl, butyl and cycloalkyl diamine side-chains significantly increased 

antiplasmodial activity against both chloroquine-resistant and chloroquine-sensitive P. falciparum strains when 

compared with the parent compound, while cytotoxicity was in general lower than that of cryptolepine. The 

derivative containing a conformationally restricted piperidine side-chain presented IC50 values of 23-44 nM 

against chloroquine-resistant strains and a selectivity index value of ca 1400, i.e. a 1000-fold improvement in 

selectivity when compared with the parent compound. Introduction of a basic terminal amine promotes 

accumulation inside the acid digestive vacuole to an extent similar to that of chloroquine. However, Localization 

studies inside parasite blood stages suggest a dual mechanism of action, oscillating between inhibition of 

haemozoin formation and cytotoxicity induced by DNA interactions. The quindolone derivatives with one or two 

basic side chains (5, 94 and 95) were evaluated for antiplasmodial activity against chloroquine-resistant P. 

falciparum W2 strain and cytotoxicity for HepG2 A16 hepatic cells. By incorporating alkylamine side chains and 

chlorine atoms in the quindolone nucleus we transformed the inactive tetracyclic parent quindolones into moderate 

or highly active and selective compounds to the resistant P. falciparum W2 strain. The most active and selective 

compound, 5c, showed an IC50 = 51 nM for P. falciparum and a selectivity ratio of 98. However, the 

aantiplasmodial activity of bis-alkylamine quindolone derivatives cannot be entirely justified by their affinity to 

haematin monomer. 
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6.1 Introduction 

he emergence and spread of chloroquine-resistance Plasmodium falciparum parasites has 

been a major global health problem and contributes to the continued high prevalence of 

malaria.(104, 404) Thus, new and safe drugs active against multi-resistant P. falciparum strains are needed. 

Over the centuries, medicinal plants have been used for treating parasitic diseases, including malaria, 

and since the beginning of the last century constitute an important source of molecules for new lead 

compounds.(129, 188-189, 405) 

Cryptolepine, 1 is an indolo[3,2-b]quinoline alkaloid first isolated  in 1929(1) from the roots of 

Cryptolepis sanguinolenta, a traditional herb used in traditional medicine for the treatment of malaria in 

Central and West Africa.(4, 198) The antimalarial mode of action it is not yet clarified, but it was shown 

that the activity is due, at least in part, to a chloroquine-like action, i.e, inhibition of haemozoin 

formation (the haem detoxification path way of the malaria parasite) in the parasite digestive vacuole, 

via π-π stacking interactions with the porphyrin moiety.(77, 119, 134, 160, 210) However, cryptolepine possess 

cytotoxic properties which precluded its clinical used. These cytotoxic properties are likely to be due to 

its DNA interactions properties and its ability to intercalate into GC-rich sequences, inhibit 

topoisomerase II as well as DNA synthesis.(5-8) In addition, a cellular localization  study  by Arzel and 

co-workers showed that cryptolepine accumulates into specific structures of the parasite that could 

correspond to the parasite nucleus, showing that its antiplasmodial activity could also be due to the 

interactions with the DNA.(255) This suggests that the affinity of 1 for haeme may not be sufficient to 

drive its accumulation on the digestive vacuole in the absence of a pH-dependent trapping mechanism, 

as proposed for chloroquine.(406) 

Additionally, a previous study developed in our research unit, showed that cryptolepine natural 

derivatives substituted in position C11 with acidic groups had no in vitro antiplasmodial activity.(198) 

Thus, we decided to introduce in this position a basic amino side chain, which is the major requirement 

for chloroquine accumulation inside the parasite digestive vacuole.(407) The basic amino side chain 

would increase the accumulation inside the acid digestive vacuole of the parasite, as well as, bind to the 

propionate group of haeme, through ionic and/or hydrogen bond, increasing the drug:haem complex 

stability and thus inhibiting the growth of  haemozoin crystal.(77) In addition, we also decided to initiate 

a second line of research, based on the indolo[3,2-b]quinoline scaffold. Based on quindolone structure 

T 
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(4 and 91) we decided to introduce a basic amino side chain in position N5 and N10 of the aromatic 

nucleus. As for the cryptolepine derivatives 3 an ionisable side chain is expected to promote the 

accumulation of compounds in the parasite acidic digestive vacuole and target haemozoin crystal 

growing faces. 

6.2 Chemistry and Structural Characterization 

Cryptolepine and quindolones derivatives were synthesized through a common synthetic 

methodology that allowed us to achieve key indolo[3,2-b]quinolones (4 and 91) intermediates. 

Cryptolepine derivatives 3 and quindolone derivatives 5 were synthesized according to the route 

depicted in Scheme 6.1, based on the procedure developed by Görlitzer and Weber(11-12) and adapted by 

Bierer,(13-14) via intermediate 93 for derivatives 3 and intermediate 4 or 91 for derivatives 5. 

Anthranilic acids, 88, were treated with bromoacetyl bromide to afford the corresponding 

bromoacetyl derivatives 89, which were then reacted with the appropriate aniline to give compounds 90. 

Acid-catalyzed cyclization of 90 with polyphosphoric acid (PPA) gave the indolo[3,2-b]quinolin-11-

ones (quindolones) 4 or 91, which, by reaction with POCl3, gave the corresponding substituted 11-

chloro-indolo[3,2-b]quinolines (11-chloroquindolines) 92. Hydrogenation of 92a with 10 % Pd-C at 60 

psi, provided the indolo[3,2-b]quinoline (quindoline) 25. N5 methylation of 25 and 92 was achieved by 

reaction with methyl triflate and the 5-methyl-indolo[3,2-b]quinoline derivatives were then treated with 

hydrochloric acid to afford the corresponding cryptolepine chlorides, 93. Finally, cryptolepine 

derivatives 3a-n and 3r-y were obtained generally in good yields (30-82%) by aromatic nucleophilic 

substitution on 93 with excess of appropriate amine. Compounds 3o-q were synthesized by reaction of 

3n with isobutyraldehyde, benzylaldehyde and salicyladehyde, and subsequent reduction with 

NaBH3CN, in 59, 66 and 30 % yields, respectively (Scheme 6.1). 

For derivatives 3d, 3j, 3l, and 3t, it was necessary to synthesize the corresponding diamines 

required for the substitution reaction with 93. Thus, N1,N1-dimethylpropane-1,2-diamine, 97, used for 

the synthesis of 3d, was prepared by reductive amination of N,N-dimethylaminopropanone, 96, with 

ammonium acetate and NaBH3CN (Scheme 2.10). 3-(Piperidin-1-yl)propan-1-amine, 100, required for 

the synthesis of 3j, was prepared via Gabriel synthesis, using phthalimide 98 as starting material 

(Scheme 2.10). N1,N1-Diethylbutane-1,4-diamine, 103, required for the synthesis of 3l, was prepared by 

reductive alkylation of 101 with acetaldehyde and NaBH3CN, followed by removal of the Boc 

protecting group with triflouroacetic acid (Scheme 2.10). Compound 3t was synthesized by reaction of 

93a with acetamide, 105, which was obtained by Mannich reaction of phenol 104 with formaldehyde 

and diethylamine (Scheme 2.10).  
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Scheme 6.1 – Synthesis of the cryptolepine derivatives (3) and quindolone derivatives (5). 

 i) Bromoacetyl bromide, DMF/1,4-dioxane (1:1), r.t., overnight;  ii)  DMF, 120 ºC, 18 to 96h:  iii) PPA, 130 ºC, 
2h;  iv) POCl3, reflux, 2h;   v) H2, Pd-C 10% NaOAc, AcOH, 60 psi, 2h or EtSiH, 10% Pd-C, MeOH, 20 min; vi) 
MeOTf, toluene, r.t., 24h.;  vii) MeOTf, toluene, r.t., 24h.; viii) AcOEt, diamine, reflux, 24h; ix) 3n, aldehyde, 
anhydrous Na2SO4, NaBH3CN, dry MeOH, r.t., 24 h  x) 2-chloro-N,N-diethylethanamine, dry acetone, K2CO3, 
NaI, reflux, overnight. 

Structures of all key intermediates and final compounds were established on the basis of NMR 
1H-1H homonuclear correlation spectroscopy (COSY and NOESY) and 1H-13C heterocorrelation 

experiments (HMQC and HMBC). Position of the side chain at C11 was confirmed by NOE difference 

experiments (Section 2.2.3). Both, cryptolepine and quindolone derivatives were also characterized with 
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C, N, H elemental analysis, showing that the purity of all compounds submitted for biological testing 

were in all cases  95%. 

Cryptolepine derivatives 3 showed a shield effect on 1H chemical shifts of N5-CH3 of 0.1 to 0.45 

ppm when compared with 93. Additionally, the 13C chemical shifts of C10a and C11a showed an 

upfield shift in the order of 10 ppm and for N5-CH3 of 3 ppm when compared to 1 and 93, whereas the 

chemical shift of C11 showed a deshielding effect of ca. 10 to 15 ppm when compared with the parent 

compounds 1 and 93. 

a) 

b) 

c) 

Figure 6.1 – Natural bond orbitals (NBO) charges of 1, 93 and cryptolepine derivatives 3n. 
(Atomic charges in atomic units, a.u.) 
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Analysis of the Natural Bond Orbitals (NBO) charges of the cryptolepine derivatives 3 in 

comparison with the parent compounds 1 and 93 allow us to understand their nuclear magnetic 

resonance behaviour. Figure 6.1 shows the NBO charges of 1, 93 and derivative 3n. The introduction of 

the side chain in position C11 of the indolo[2,3-b]quinoline nucleus induce a reduction of NBO charge 

in the carbon attached to N5 (N5-CH3) of 4 atomic units for 3n (increased electron density), when 

compared with 1 and 93, justifying the shielding effect verified on the 13C NMR chemical shifts of CH3-

N5. Although, NBO charges do not explain the upfield shift of N5-CH3 protons on the 1H NMR spectra, 

since in the charge analysis it is observed and increase of charge (≈ 3 a.u.) in these protons, prefiguring 

a decrease on electron density on the hydrogens. Additionally, the verified upfield 13C NMR shift of 

C10a and C11a could be justified by the increased electron density in these atoms, due to the 

introduction of the side chain. The predicted NBO charges, which showed a reduction of the charge ca. 

40 and 20 a.u. for C10a and C11a, respectively, when compared with 1 and 93, justifying the verified 

upfield shift. The introduction of the side chain in C11 decreases the electron density in this atom as 

verified with the increasing of ca. 300 a.u. in the NBO charge, which is also verified in 13C NMR with a 

downfield shift of ca. 10 to 15 ppm when compared to the parent compounds 93 and 1, respectively. 

Quindolone derivatives 5 were synthesized from the common intermediate 4 or 91 after reaction 

with 2-chloro-N,N-diethylethanamine in presence of base, yielding from 19 to 23 %. Although, due to 

the tautomeric resonance in the quindolone aromatic ring (Figure 2.16) in presence of base, the oxygen 

nucleophilic species are more reactive than the N5 nucleophilic species, and thus synthetic methodology 

gave two more products besides 5, the 10-(2-(diethylamino)ethyl)-10H-indolo[3,2-b]quinolin-11-

yl)oxy)-N,N-diethylethanamines 94 and the 10H-indolo[3,2-b]quinolin-11-yl)oxy)-N,N-

diethylethanamines 95 (Figure 2.18). The major products of the reactions were compounds 94, yielding 

between 34 and 55% (Table 2.3.).   

The synthetic methodology adapted by Bierer,(13-14) was applied to the synthesis of the 

indolo[3,2-b]quinolines and proved to be efficient, allowing the synthesis of cryptolepine derivatives. 

Derivatives 3 were obtained from the intermediate 93, with large chemical diversity, good yields and 

high degree of purity. Also, this synthetic methodology showed to be efficient for the synthesis of 

quindolone derivatives from the common intermediate 4 or 91, allowing the possible exploration of the 

chemical diversity and substitution on the aromatic nucleus, giving compounds in good yields and with 

high degree of purity. 

6.3 Antiplasmodial Activity, Cytotoxicity and Mode of Action 

6.3.1 Cryptolepine and Derivatives 

In vitro Antiplasmodial Activity in human red blood cells and cytotoxicity  

The synthesized cryptolepine derivatives 3 were evaluated in vitro for their antiplasmodial 

activity in Human red blood cells infected with 1% ring stage P. falciparum(408-409) strains with different 
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drug resistance phenotypes (Dr. Phil Rosenthal laboratory): W2 (chloroquine-resistant), 3D7 

(chloroquine-sensitive), V1/S (chloroquine- and pyrimethamine-resistant) and D6 (chloroquine-

sensitive, mefloquine-resistant). The in vitro cytotoxicity of compounds 3 and cryptolepine was 

evaluated using mammalian Vero cells (Dr. Cecília Díaz laboratory). Table 6.1 shows the in vitro 

antiplasmodial activity (IC50) and cytotoxic activities (IC50) against Vero cells of 3 together with their 

selectivity index (IC50
Vero/IC50

W2) and resistance index (RI), as expressed by the ratio IC50
W2/IC50

3D7. 

The IC50 values are calculated from experiments carried out in triplicate and compared with CQ. The 

cryptolepine derivative (3n) was also evaluated against liver stages of the rodent malaria parasite P. 

berghei.  

The in vitro antiplasmodial activity data (IC50) showed that these cryptolepine derivatives 

showed good antimalarial activity (IC50 ranging from 21 to 1252 nM against W2 strain) and low RI 

(ranging from 0.2 to 3.5), suggesting that the introduction of the diamine side chains is very well 

tolerated and a promising approach to the development of indolo[3,2-b]quinoline based antimalarials. 

Also, a comparison  of SI results, reveals that compounds 3 were significantly more selective than the 

parent compound 1,with 3a, 3k and 3n being 60- to 85-fold less cytotoxic than cryptolepine. 

Cryptolepine was found to be 2- to 3.5-fold more active against the CQ-S strains than to CQ-R 

strains with RI value of 2.9, similar to that published in previous reports, while chloroquine showed a RI 

value of 25.(4, 9, 198, 210, 410) The introduction of an alkyldiamine side chain at C11 (3a-y) improved 

significantly the antiplasmodial activity against P. falciparum chloroquine-resistant strains W2 and 

V1/S (IC50 values range from 20 to 455 and from 20 to 536 nM, respectively) and against P. falciparum 

chloroquine-sensitive strains 3D7 and D6 (IC50 values ranging from 15 to 422 and from 24 to 287 nM, 

respectively). Also, the introduction of the diamine side chain reduced notably the resistance index, in 

almost cases, when compared with 1 (RI values range from 0.2 to 3.5). The introduction of a tertiary 

amine at C11 of the cryptolepine nucleus without terminal basic nitrogen (3y), reduced appreciably the 

antiplasmodial activity against all studied strains (IC50 values range from 1252 to 2205 nM). These 

results clearly indicate that an alkyldiamine side chain with weak basic properties is a requirement for 

the antiplasmodial activity of the new cryptolepine derivatives. The exception seems to be derivatives 3 

containing a terminal primary amine, as these compounds displayed reduced activity, particularly 

against CQ-S strains 3D7 and D6, when compared with compounds with secondary (3e vs. 3i) or 

tertiary terminal amines (e.g. 3a vs. 3c,  3e vs. 3g and 3k vs. 3l). The reason for these differences in 

activity is not obvious and an extended evaluation of terminal amines will be necessary to further 

understand the loss of potency in compounds 3 with a terminal primary amine. Also, these compounds 

(3a, 3e and 3k) showed to be significantly more selective (higher SI) than the parent compound. 

Compound 3e showed the highest acid dissociation constant in the terminal nitrogen of the side chain 

(pKa1
* > 12.5, Table 3.4) of all the evaluated derivatives, and it is predicted to be fully protonated at 

physiological pH. Thus, this protonation state, may difficult the passage through biological membranes 

and induce lower cytotoxic effects when compared with the others derivatives 3. 
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In vitro antiplasmodial activity SAR  

The variations in the antiplasmodial IC50 values of 3 can be attributed to several factors and some 

structure activity relationships can be drawn:  

Side chain length: side chains with three (3e-j) and four carbons (3k-m) present better 

antiplasmodial activity than compounds with side chains with two carbons(3a-d) and in general side 

chains with four carbons presents lower RI (3k-m). For instance, the N,N-diethylaminopropyl and N,N-

diethylaminobutyl derivatives, 3g and 3l, are about 2.5 times more potent that their ethyl counterpart, 

3c, against the CQ-resistant W2 strain. These results are largely consistent with reports that 4-

aminoquinoline derivatives with shortened side chains retain activity against CQ-resistant strains.(411-412)  

Branched side chains: the introduction of branched side chains produce compounds with 

reduced antiplasmodial activity, independently of the side chain length, when compared with their 

counterparts (two carbons: 3d vs. 3a-c, three carbons: 3h vs. 3e-g,i-j, four carbons: 3m vs. 3k-l). 

Furthermore, compound 3m, containing a side chain identical to that of chloroquine, displayed reduced 

activity against both CQ-resistant and CQ-sensitive P. falciparum strains (IC50 ranging from 120 to 275 

nM),  being 2- to 6-fold less potent than its linear butyl counterpart 3l. These results are in line with the 

observation that 4-aminoquinolines containing the chloroquine side chain give consistently lower 

potency than those with a propyl side chain against both 3D7 and W2.(138)   

Cycloalkyl side chains: Compounds with less flexible piperidine side chain (3n) was highly 

active against both CQ-resistant and CQ-sensitive strains, suggesting that a conformational constraint 

between the distal basic center and the indolo[3,2-b]quinoline scaffold may improve potency. 

Appending a sterically demanding iso-butyl or benzyl group to the nitrogen atom of the piperidine 

moiety (3o and 3p, respectively) did not significantly alter antiplasmodial activity. To our surprise, the 

derivative containing a 2-hydroxybenzyl group, 3q, was 2- to 10-fold less active than its benzyl 

counterpart, 3p, since it is recognized that introduction of H-bond acceptors increase the antiplasmodial 

activity.(137)  

Aromatic side chains: side chains with higher electron density (3r-s, u) reduced significantly the 

antiplasmodial activity of these cryptolepine derivatives, when compared to derivatives with aliphatic 

side chains. In contrast, compound 3t, which contains a 2-diethylaminomethylphenol moiety, exhibited 

IC50 values of about 20 nM and 54 nM against the CQ-sensitive and CQ-resistant strains, respectively. 

The 2-diethylaminomethylphenol and related α-aminocresol motifs are commonly found in potent 

antimalarials such as amodiaquine (14) and its isomer isoquine,(144-145, 406) and it has been postulated that 

intramolecular hydrogen bonding between the protonated amine (H-bond donor) and the hydroxyl (H-

bond acceptor) may be an important feature for activity against CQ-resistant P. falciparum strains.(137) 

Although, incorporation of isoquine’s α-aminocresol motif at C11 (i.e. 3t), resulted in a cytotoxicity 

level comparable to that of cryptolepine, despite the improvement in SI. 



146 | General Discussion and Conclusions 
 

 
  

Table 6.1 – In vitro antiplasmodial activity (IC50) against P. falciparum W2, V1/S, 3D7 and D6 strains, cytotoxicity 
activity (IC50) against Vero cells, selectivity index (SI), resistance index (RI), association constants (Kass) in pH 5.5 
DMSO solutions with haematin at 25 ºC and Kass in phosphate buffer pH 7.4 containing 0.1 M NaCl with ds-DNA at 
25 ºC of cryptolepine (1), derivatives 3 and chloroquine (2). 

 R1 R2 R3 
In vitro antiplasmodial activity  

IC50
a (nM) 

IC50 
Vero cells 

(µM) 
SIb RIc 

Haeme 
binding  

Kass (106 M-1) 

ds-DNA 
binding  

Kass (106 M-1) W2 V1/S 3D7 D6 

2 -- -- -- 138±16 89±31 5.5±0.3 14.2±0.3 - -- 25 
0.085±0.005 

-- 

1 H H H 755±1 424±78 259±29 222±5 1.05±0.03 1.4 2.9 
0.045±0.003 0.25±0.01 

3a H H  89±8 115±68 156±40 107±10 60±20 678 0.6 
0.127±0.007 0.85±0.01 

3b H H  50±8 62±3 85±26 66±8 5.5±0.5 111 0.8 
0.120±0.005 3.1±0.7 

3c H H 
 

82±23 130±18 72±1 70±5 2.8±0.5 34 1.2 
0.41±0.03 1.14±0.05 

3d H H 
 

142±2 202±47 165±25 78±5 3±1 23 0.9 
0.148±0.008 1.9±0.1 

3e H H  26±5 54±16 133±3 71±10 10±4 371 0.2 
0.18±0.02 0.25±0.01 

3f H H  20±1 24±2 51±1 46±5 2.2±0.04 109 0.4 
0.066±0.005 3.0±0.2 

3g H H 
 

32±5 20±8 29±3 32±2 2.5±0.3 78 1.1 
0.127±0.007 9.1±0.6  

3h H H  184±21 146±22 144±6 250±25 3±1 18 1.3 
0.069±0.007 2.6±0.4 

3i H H 
 

22±2 26.1±0.6 28±1 34±1 3±1 125 0.8 
0.20±0.01 5.0±0.8 

3j H H  36±2 23±9 28±7 34±5 2.0±0.3 56 1.3 
0.161±0.008 5.3±0.3 

3k H H  65±1 190±59 422±15 245±71 >85 1307 0.2 
0.147±0.006 1.4±0.1 

3l H H 29±2 22.3±0.4 66±7 71±2 10±3 358 0.4 
0.15±0.01 9±1  

3m H H 
 

122±3 145±5 274±25 161±9 13±5 103 0.4 
0.062±0.07 4.3±0.2 

3n H H 
 

44±1 23±5 60±12 59±1 62±9 1408 0.7 
0.154±0.006 0.74±0.03 

3o H H 
 

70±1 70±34 76±1 86±25 5±1 70 0.9 
0.227±0.008 0.74±0.07  

3p H H 108±19 56±16 59±2 86±15 2.2±0.1 21 1.8 
0.125±0.007 0.68±0.09 

3q H H 276±31 536±7 418±76 185±29 2.6±0.7 10 0.7 
0.108±0.005 0.6±0.3 

3r H H 
 

265±70 291±241 128±2 154±29 0.6±0.2 2 0.2 
0.155±0.008 0.51±0.06 

3s H H 
 

455±18 375±56 176±17 287±67 4.83±0.07 11 2.6 
0.21±0.02 3.4±0.6  

3t H H 52±1 56±22 15±2 24±1 0.8±0.3 17 3.5 
0.075±0.009 0.8±0.3 

3u H H 
 

180±14 247±34 279±71 166±2 2.6±0.6 14 0.6 
0.17±0.01 1.0±0.1  

3v Cl H 
 

21±1 34±15 40±12 70±9 1.3±0.4 60 0.5 
0.11±0.01 17±1  

3w Cl H 
 

45(±1) 65±4 52±4 70±16 4.4±0.2 98 0.9 
0.18±0.01 4.5±0.4  

3x Cl Cl 
 

48±6 31±12 35±4 30±2 0.8±0.3 16 1.4 
0.12±0.01 1.6±0.4 

3y H H 
 

1252±98 2205±689 1773±70 1289±69 3±2 2 0.7 
0.19±0.01 0.47±0.06 

a)The IC50 values are calculated from experiments carried out in triplicate and compared with CQ, b)Selectivity index expressed by 

the ratio IC50
Vero/IC50

W2, c)Resistance index expressed by the ratio IC50
W2/IC50

3D7 
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Halogen substitution in the aromatic nucleus: the introduction of substituents in the aromatic 

nucleus of cryptolepine does not affect significantly the antiplasmodial activity or the RI. The 3-chloro 

and 3,8-dichloro derivatives, 3w and 3x, respectively, were equipotent (IC50 ≈ 45 nM) with their 

unsubstituted counterpart, 3n, against the panel of CQ-sensitive and CQ-resistant strains, suggesting 

that introduction of electron-withdrawing substituents in the indolo[3,2-b]quinoline moiety does not 

significantly affect antiplasmodial activity when a diaminoalkane side chain is present at C11. 

Interestingly, it has been reported that 3-chlorocryptolepine is equipotent to cryptolepine against the P. 

falciparum K1 strain, while its 8-chloro counterpart is inactive.(9) In contrast 2,8-dichlorocryptolepine 

was found to be 10-fold more potent than cryptolepine, in the same screen. However, adding chlorine 

atoms to the indolo[3,2-b]quinoline with piperidine side chain (3w and 3x) led to an increase in 

cytotoxicity, when compared to the unsubstituted counterpart, 3n. 

Basic distal amine functionally: the importance of a basic distal amine for antiplasmodial 

activity comes from the observation that compound 3y which lacks a distal basic amine group is poorly 

active, with IC50 values of 1299 to 2200 nM against CQ-sensitive and CQ- resistant strains. 

In vitro antiplasmodial activity in human hepatoma cells  

Cryptolepine and derivative 3n were also assayed against liver stages of the rodent malaria 

parasite P. berghei up to a concentration of 5 µM, using a recently described fluorescence activated cell 

sorting (FACS)-based method (Dr. Maria M. Mota laboratory).(413) This method is based on the 

measurement of the fluorescence of Huh-7 cells, a human hepatoma cell line, following infection with 

GFP-expressing P. berghei sporozoites. Both compounds were inactive in this assay, a result that points 

toward the selectivity of 1 and derivatives 3 for erythrocytic stage malaria parasites. 

In vivo antiplasmodial activity in Swiss Webster female mice 

Prompted by the great improvement in the in vitro antiplasmodial activity and selectivity of 3, we 

evaluated compound 3n and in an in vivo drug screening against P. berghei in Swiss Webster female 

mice (Dr. Phil Rosenthal laboratory).(408) However, administration of cryptolepine derivative 3n 50 

mg/kg twice per day via intraperitoneal route, led to the death of the animals at day 2.  

Probing the site of action at cellular level 

It is well known that cryptolepine may exert its antiplasmodial mode of action due to interactions 

with FPIX-OH (Fe3+), inhibiting haemozoin formation in a mechanism similar to that of chloroquine 

and related aminoquinolines.(210) However, it is also known that cryptolepine exert its cytotoxic 

properties due to its DNA intercalating properties and can accumulate in parasite DNA-containing 

structures,(255) which led to the conclusion that cryptolepine interferes with the parasite’s replication due 

to its DNA intercalating ability.(255)  
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In order to investigate if compounds 3 retain the ability to accumulate inside the blood stages of 

the parasite, the intracellular distribution of 3n in blood stages of P. falciparum was studied by 

fluorescence microscopy (Dr. Maria M. Mota Laboratory). Figure 6.2 shows the contrast phase and 

fluorescence images of P. falciparum-infected erythrocytes after incubation of P. falciparum cultures 

with the compounds. 

 

Figure 6.2 – Intracellular localization of 1 and 3n in P. falciparum-infected erythrocytes. 

Cells were incubated for 3 hours at room temperature, in the dark, with 5 µM of cryptolepine and its derivative 3n and 
immediately observed after washed with PBS using a fluorescence microscope. The yellow lines indicate the regions 
corresponding to the plot profiles on the right. Green – compounds 1 or 3n; blue – nuclei; gray line – gray scale intensity 
of phase contrast image. 

Our data show that 1 and its derivative 3n accumulate inside erythrocytic ring-stage parasites and 

the observed intensity of fluorescence indicates that nucleus and food vacuole are parasite organelles 

targeted by both compounds. It should be noted that hematin quenches very efficiently the fluorescence 

of cryptolepine derivative 3n, around 60% for a 1:1 ligand:hematin concentration (Erro! A origem da 

referência não foi encontrada.a), a problem also reported for the fluorescence of acridine 

conjugates(414), but DNA only quenches 20% the fluorescence of 3n (Erro! A origem da referência 

não foi encontrada.b). This result suggests that quenching of 3n in the food vacuole may occur as a 

result of the presence of hematin, thus underestimating the vacuolar signal when compared with the 

nonvacuolar signal arising from accumulation in the nucleus.   

Thus, cryptolepine and its derivatives 3 do not seem to show any specific preference for a 

parasite organelle and are able to accumulate also inside digestive vacuole. 
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Antiplasmodial potential targets - Haem 

Localization of 3n inside blood stages of parasite suggests that haemozoin crystal growing can be 

a mechanism of action for these compounds and our results showed that the presence of a distal basic 

nitrogen atom is important for potency, thus suggesting that accumulation in the acid digestive vacuole, 

where haemozoin formation occurs, is a requirement for biological activity of compounds 3. 

a) b) 

Figure 6.3 – a) Fluorescence emission spectrum (ex = 339 nm) of 1 µM 3n in the presence (dashed line) and 
absence (solid line) of 1µM FPIX-OH. b) Fluorescence emission spectrum (ex = 339 nm) of 0.5 µM 3n in 
the presence (dashed line) and absence (solid line) of 0.69 µM ds-DNA. 

To predict the extent of their accumulation into the acidic parasite digestive vacuole, the pKa 

values for cryptolepine (1) and derivatives 3b, 3e, 3f, 3i, 3n, 3s and 3y were determined using a 

spectrophotometric and nuclear magnetic resonance methods, in addition to the pKa values for the 

remain cryptolepine derivatives determined with spectrophotometric methods and predicted using the 

SPARC v3.2 on-line calculator (Appendix D). 

A. Predicted accumulation in digestive vacuole of parasites  

According to Kaschula and co-workers,(123) the extent of pH trapping of quinolines (vacuolar 

accumulation ratios, VAR), into the parasite digestive vacuole can be estimated from the corresponding 

pKa values according to Eq. 6.1 where [Q]v and [Q]e represent the vacuolar and external concentrations 

of the compound, respectively, and [H+]v and [H+]e represent the vacuolar and external hydrogen ion 

concentrations. The calculation presupposes that equilibrium is achieved and assumes that the cellular 

membranes are completely impervious to the ionized aminoquinoline species. 

 

  

Eq. 6.1 - Predicted vacuolar accumulation ratios(123) 
[Q]v/[Q]e,  assuming indoloquinolines with two 
acids dissociation constants (digestive vacuole pH 
= 5.5(123) and an external pH = 7.4) 

Eq. 6.2 - Predicted vacuolar accumulation ratios 
[IQ]v/[IQ]e, assuming indoloquinolines with three 
acids dissociation constants (digestive vacuole pH 
= 5.5(123) and an external pH = 7.4). 
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According with these assumptions, the extent of pH trapping of the cryptolepine derivatives 3, 

can be estimated using Eq. 6.1. This vacuolar accumulation was estimated using de observed acid 

dissociation group constants pKa2
Obs (Table 3.1), determined by UV-visible spectroscopy, which 

comprise the different contributions of the micro species in the acid base equilibrium occurring in the 

indole nitrogen and in the nitrogen atom attached to C11, in addition to the pKa1 values for the terminal 

amine in the side chain, predicted by SPARK (Appendix D).  

The predicted vacuolar accumulation ratios, [Q]v/[Q]e, assuming a digestive vacuole pH value of 

5.5(123) and an external pH value of 7.4, are presented in Table 6.2. Also included in Table 6.2 are the 

accumulation ratios relative to chloroquine, α, and the normalized IC50 values, i.e., the IC50 values 

theoretically expected if the compounds accumulated in the vacuole to the same extent as chloroquine.  

Nevertheless, since the cryptolepine derivatives present three possible acid base equilibriums, we 

derived Eq. 6.2 (Appendix K) to calculate the extent of its pH trapping into the parasite digestive 

vacuole and to validate the predicted VAR obtained with Eq. 6.1 (presuppose only two acid dissociation 

constants). The predicted VAR, [Q]v/[Q]e, for cryptolepine and derivatives (3b, 3e-f, 3i, 3n, 3s and 3y), 

assuming a digestive vacuole pH value of 5.5,(123) external pH value of 7.4 and the acid dissociation 

constants (pKa1
*, pKa2

*Obs, pKa3
*Obs) determined by NMR spectroscopy (Table 3.4), are presented in 

Table 6.2. Also included in Table 6.2 are the accumulation ratios relative to chloroquine, α, and the 

normalized IC50 obtained from the calculated VAR. The analysis of the results (Table 6.2) allows us to 

verify that both approaches used to calculate VAR, gave similar results, being Eq. 6.1 and Eq. 6.2 in 

good agreement. 

As shown in Table 6.2, the concentration of the majority of the cryptolepine derivatives 3 in the 

acidic digestive vacuole of the parasite is predicted to be close to that of chloroquine, i.e. ≈ 6000-fold 

higher than that in the extracellular fluid and the normalized IC50 values are almost identical to their 

experimental antiplasmodial IC50 values (W2 strain). In contrast, the predicted accumulations (), 

relative to chloroquine, of 1 and some of its derivatives, like 3r, 3s, 3u and 3y, range between 0.013 and 

0.015, so their normalized IC50 values are smaller than the corresponding experimental values. 

However, these large differences in VAR arise because compounds 1, 3r, 3s, 3u and 3y do not 

have an additional side chain with a weak basic nitrogen, and these large differences are not consistent 

with an antiplasmodial potency comparable to chloroquine, suggesting that additional mechanism of 

action may be involved.  

In Table 6.2 it can also be seen that the two fold decrease in antiplasmodial activity of ethyl 

derivative 3b when compared to the propyl counterpart 3f is likely due to decreased basicity of the 

distal amine group with a consequent two fold decrease in the vacuolar accumulation ratio. However, 

the extent of pH trapping inside the parasite digestive vacuole does not explain the decrease of 

antiplasmodial activity observed for compounds with branched alkyl side chains (3d, 3h and 3m).
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Table 6.2 – Vacuolar accumulation ratios (Acc ratio and α) and normalized antiplasmodial IC50 values (IC50 × α), 
calculated from UV-visible pKa2

Obs group constant values and pKa1 SPARC predicted values, of chloroquine 
(2), cryptolepine (1) and derivatives 3, and vacuolar accumulation ratios (Acc ratio and α) and normalized 
antiplasmodial IC50 values (IC50 × α), calculated from NMR pKa1, pKa2 and pKa3 acid constant values, of 
cryptolepine (1) and its derivatives 3b, 3e-f, 3i, 3n, 3s and 3y. 

R1 R2 R3 
Two pKa values 

(UV-visible and SPARC prediction pKa) 
Three pKa values  

(NMR spectroscopy pKa
*) 

Acc ratioa α b IC50 (nM)× α c Acc ratiod α a IC50 (nM)× α b 

2 -- -- -- 5896,2e 1,000 138 -- -- -- 

1 H H H 79.4 0,013 10.2 79.4f 0.013 10.2 

3a H H  3515 0,596 53.1 -- -- -- 

3b H H 
 

3086 0,524 26.2 4227 0,791 35.8 

3c H H 
 

3086 0,524 42.9 -- -- -- 

3d H H 
 

5612 0,952 135.2 -- -- -- 

3e H H  5915 1,003 26.1 6306 1.070 27.8 

3f H H  5612 0,952 19.0 6043 1.025 20.5 

3g H H 
 

5612 0,952 30.5 -- -- -- 

3h H H  5612 0,952 175.2 -- -- -- 

3i H H 
 

6086 1,032 22.7 6304 1.069 23.5 

3j H H 
 

5731 0,972 35.0 -- -- -- 

3k H H  6266 1,063 69.1 -- -- -- 

3l H H 
 

6238 1,058 30.7 -- -- -- 

3m H H 
 

6247 1,060 129.3 -- -- -- 

3n H H 
 

6222 1,055 46.4 6248 1.060 46.6 

3o H H 
 

5851 0,992 69.5 -- -- -- 

3p H H 
 

3933 0,667 72.0 -- -- -- 

3q H H 
 

6100 1,035 285.6 -- -- -- 

3r H H 
 

79.4 0,013 3.6 -- -- -- 

3s H H 
 

86.4 0,015 6.7 110.16 0.019 8.5 

3t H H 
 

6304 1,069 55.6 -- -- -- 

3u H H 
 

87.2 0,015 2.7 -- -- -- 

3v Cl H 
 

5766 0,978 20.5 -- -- -- 

3w Cl H 
 

6218 1,055 47.5 -- -- -- 

3x Cl Cl 
 

6218 1,055 50.6 -- -- -- 

3y H H 
 

79.4 0,013 16.9 79.4 f 0.013 16.9 

aVacuolar accumulation ratio calculated using Eq. 6.1; b Accumulation ratio relative to chloroquine; cNormalized IC50 (IC50 × α); 
d Vacuolar accumulation ratio calculated Using Eq. 6.2; e Accumulation ratio calculated using Eq. 6.1 and assuming pKa values 
of 8.55 and 9.81;(9, 403) f Accumulation ratio calculated using Eq. 6.1. 
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A. In vitro binding to haematin monomer 

Since the cryptolepine derivatives are predicted to improve ability to accumulate inside the 

parasite DV, when compared to cryptolepine, and in order to gain some insight into its possible 

mechanism of action, the corresponding equilibrium binding constants (Kass) with haematin monomer 

(FPIX-OH) were determined through UV-visible titration (Section 4.3.2).(145-146) 

Cryptolepine and its derivatives share with chloroquine the capability to interact with FPIX-OH 

monomer and the introduction of the side-chain at C11 of the cryptolepine aromatic nucleus slightly 

increase the interactions when compared with the parent compound 1. These haem binding properties 

by themselves could justify the antiplasmodial activity of cryptolepine and some of its derivatives with 

lower VAR (3r, 3s, 3u and 3y). Association of cryptolepine derivatives with haematin by itself could 

probably lead to an accumulation of the drug inside the digestive vacuole, independently of the pH-

trapping mechanism. However, studies with chloroquine have shown that the association with haematin, 

in the IC50 range of concentrations, is negligible in the absence of pH-trapping, because the affinity for 

haematin is too weak.(123)    

From the UV-visible spectroscopic titrations data of FPIX-OH with cryptolepine derivatives 

(Section 4.3.2), no significant structure-activities relationships could be drawn. The differences in Kass 

between the various cryptolepine derivatives are very small, nevertheless some interesting 

generalizations can be made on the strength of the data. It seems that the positively charged terminal 

nitrogen on the side chain by it self do not represent a crucial feature for haematin monomer binding, 

like reported to several 4-aminoquinolines with different side chain lengths,(132) since 3y, which do not 

have basic nitrogen in the side chain, has comparable FPIX-OH binding potency to the other 

cryptolepine derivatives. Additionally, the changes on side chain length do not induce obvious 

relationships in the FPIX-OH binding affinity. Several authors(77, 108, 121) suggest that the interactions of 

the charged terminal nitrogen in the side chain with the propionate groups of haematin, via 

intermolecular hydrogen bonding, are essential for complex formation. However, if such interactions 

exist, they occur in a region distant from the chromophore aromatic centre, and probably not detectable 

through UV-visible spectroscopic titrations.   

No correlation between the antiplasmodial activity (IC50) and the abilities of these compounds to 

complex with FPIX-OH was found. This data suggests that cryptolepine derivatives may exert their 

antiplasmodial activity by an additional mechanism than interaction with haematin monomer. The 

association constants to FPIX-OH were measured with the monomeric form (40 % DMSO) and the 

biological relevant dimer for haemozoin crystallization is the tethered head-to-tail dimer (Figure 1.5). 

The associations with this dimer are likely to be similar to that with monomeric form, which are 

governed by π-π and van der Walls interactions as described.(415-416) Also, binding to one or more 

haemozoin growing crystal faces needs to be taken in account, when considering these compounds, 

being probably responsible for their antiplasmodial activity, and those interactions can not be measured 
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in FPIX-OH 40% DMSO binding assay. The titration of haematin monomer with indoloquinolines 

clearly cause hypochromic shifts on the FPIX-OH Soret band, which in comparison with other well 

known polycyclic drugs that complex with haematin, like acridines(365-366) and quinolines,(123, 126) 

suggests that the main interaction between the porphyrin ring system and the cryptolepine derivatives 

could be π-π stacking interactions. 

B. Docking studies with haemozoin 

To a better knowledge of the possible interactions between cryptolepine and derivatives with 

FPIX-OH, we performed a molecular docking simulation with the haemozoin dimer to predict how the 

these indolo[3,2-b]quinolines would bind to haematin receptor (Section 5.4.1). The three-dimensional 

structure of FPIX-OH was not available and had to be modelled. Thus, we decide to used the three-

dimensional structure of haemozoin, obtained from the Cambridge Crystallographic Database.(63) The 

docking results obtained with chloroquine, performed for comparison purposes, are analogous to the 

results obtained by nuclear resonance spectroscopy.(118, 124) 

The docking results of cryptolepine and derivatives with haemozoin dimer are coherent with the 

concept of electrostatic potential complementary.(126) Haemozoin dimer denotes the presence of 

negative values of potential in the central region of coordination with iron(III)(125) and in the regions of 

carboxylate groups in the propionic chains.(126) Cryptolepine derivatives are highly polarized molecules 

with vast regions of positive potential (Figure 5.1) and denote to positive regions in the quinolinic 

nitrogen atom (N5) and in the terminal nitrogen atom of the side, complementary to haemozoin negative 

regions. The interactions occur mainly between the aromatic nucleus of cryptolepine and derivatives 3 

with the porphyrin through π-π stacking interactions (Figure 5.7 and Figure 5.8). The complex stability 

is assured with cryptolepine aromatic nucleus staying at ca. 3.0 Å of the porphyrin ring. The protonated 

terminal amine side chain docked with the area of negative potential over the carbonyl group of the 

carboxylate group (Fe-COO), interacting with oxygens through H-bonding. In fact, contrary to what 

was verified in the binding titration assays with FPIX-OH, the terminal amine side chain seems to 

contribute to the stability of the complex between the cryptolepine derivatives and haemozoin. The best 

docking score was found for derivatives with three of four carbon side chain (3g, 3l, 3j and 3v) and 

bulky groups as substituents in the terminal amine.  

Side chain length seems to be an important factors contributing to the complex stability.  In the 

three-dimensional crystal structure of haemozoin dimer, the carboxylate groups are separated from the 

iron atom about 8.5 Å (Figure 5.7). Like chloroquine, docked cryptolepine derivatives with three (3g) 

and four carbons (3l) side chains have a separation between the quinoline nitrogen (N5) and the terminal 

nitrogen in the side chain (Nter) of c.a 8.4 and 9.7 Å, respectively (Figure 5.9), allowing an exact fit 

between the indoloquinoline aromatic nucleus with the porphyrin ring and the terminal nitrogen with the 

carboxylate (Fe-COO). Additionally, branched side chains (3h) showed reduced docking fitness value 

when compared with non-branched derivative 3f (Table 5.5). The sterical hindrance induced by the 
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branched side chains, seems to reduce the contact area between the indolo[3,2-b]quinoline nucleus and 

the porphyrin ring (Appendix J), forcing the aromatic nucleus to stack on the edge of porphyrin. Thus, 

these reduced interactions could probably reduce the haematin complex stability and consequently 

explain the reduced antiplasmodial activity of derivatives with branched side chains (Table 6.1), since 

their extent of pH trapping is quite close to the other derivatives with weak basic properties (Table 6.2). 

However, this hypothesis is not corroborated by our results as we could not find any correlation 

between the GoldScore values and the antiplasmodial activity. 

Overall, these results suggest that although pH trapping may contribute significantly to the 

antiplasmodial potency of 3, the activity of these cryptolepine derivatives does not result entirely from 

their association with haematin monomer, as already noticed for chloroquine derivatives.(417) 

Chloroquine can also inhibit haemozoin crystal growth by binding to its crystal faces.(77) According to 

this haemozoin crystal growth model, the flat and well exposed face of the crystal shows series of 

propionic acid groups separated by 8.0 Å which may be the target of positively charged groups.(130) 

Remarkably, we found that the distances between the positively charged N5 nitrogen atom and the distal 

amine groups of piperidine (3n), propyl (3f) and butyl (3l) derivatives are ≈ 8.5 Å (Figure 5.7), which is 

consistent with binding to the haemozoin crystal flat face {100}. Additionally, co-facial binding and the 

implicated interaction energies involved in the complexation with FPIX-OH, haematin µ-oxo dimer and 

haemozoin growing crystals surfaces are reported to be similar.(129)  

 

Antiplasmodial potential targets - DNA 

Localization of 3n inside P. falciparum-infected erythrocytes, through fluorescence microscopy 

(Figure 6.2) also suggest that parasite DNA could also be a target for the cryptolepine derivatives 3, has 

already reported for cryptolepine.(255) In view of this, the mode and strength of binding of C11 diamine 

cryptolepine derivatives to DNA is of crucial importance for a better knowledge of its antiplasmodial 

mode of action.  

A. In vitro binding to single- and double-stranded oligonucleotides  

Cryptolepine showed an association constant  (Kass) value of 0.25x10-6, 10-fold weaker than Kass 

reported for cryptolepine binding to calf thymus DNA (Kass = 3.2x10-6 M-1),(17) while the cryptolepine 

derivatives showed Kass values ranging from 0.25 to 17 x10-6 M-1.  

Cryptolepine did not show binding affinity to single-stranded oligonucleotide, being consistent 

with an intercalating mode of binding, as well as the maintenance of binding to ds-DNA at high ionic 

concentrations, revealing a binding mode where ionic and H-bond interactions contribute little to the 

stability of the complex compared with hydrophobic forces. 

In contrast with 1, cryptolepine derivatives 3 bound to ss-DNA and the binding to ds- and ss- 

oligonucleotides were destroyed at high ionic strength solutions. These observations indicate that 
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compounds 3 do not intercalate into DNA and suggest a strong influence of ionic and H-bonding 

interactions, especially with the phosphate backbone, stabilizing the complex formation with single- and 

double-stranded oligonucleotides. Thermal denaturation studies with three selected cryptolepine 

derivatives (3j, 3n and 3v) showed that these compounds stabilise the ds-DNA structure (Table 4.1). 

This stabilizing effect is more pronounced for 3j and 3v, which show Tm values ranging from 5 to 12 

ºC. Also, the observed magnitudes of Tm are consistent with association constants determined by 

spectroscopic titration, since both studies show that compound 3n has lower binding affinity to ds-DNA 

than 3j and 3v (Table 4.1 and Table 4.2). 

B. Docking studies with double-stranded oligonucleotide 

Molecular docking simulations indicated that 1 intercalates into 12-mer ds-DNA at nonalternated 

(CC)-(GG)-sites, being the complex stabilized mainly by - stacking interactions between the aromatic 

ring of the quinoline moiety of the cryptolepine and the aromatic rings of the consecutive guanine bases, 

in complete agreement with the X-ray diffraction studies.(277)  

The docking simulation studies of cryptolepine derivatives 3 (Section 5.3) with the double-

stranded d(GATCCTAGGATC)2 oligonucleotide showed that these compounds do not intercalate into 

DNA structures, in the manner of  parent compound 1, confirming the conclusions from the in vitro 

binding studies. A possible explanation for this change in DNA binding mode when a diamine side-

chain is introduced at C11 of cryptolepine nucleus, is the observed increased molar volume of the 

derivatives when compared to 1 (Table 5.3), leading to the separation of the bases in the intercalation 

cavity, so breaking H-bonding between base pairs, prompting a structural rearrangement of the DNA 

helix (Appendix I). Most of the cryptolepine derivatives studied are predicted to bind preferentially to 

the minor groove, except for 3v and 3x which bind preferentially to the major groove. However, the 

binding stoichiometry of the cryptolepine derivative 3v:DNA complex from the Job plot was 

determined as 2:1 (Figure 4.1), indicating that cryptolepine derivatives can bind to the major and to the 

minor grooves of the same molecule of DNA, although only small differences in preference for minor 

or major grooves is evidenced by the complex formation energies (Table 5.4). 

In an attempt to understand these observed structure-binding relationships, molecular properties 

of ten selected cryptolepine derivatives (3f, 3i-j, 3n, 3q-s and 3v-x) were studied by DFT (Table 5.3). 

However, we must conclude that DFT studies alone were not able to consistently explain the differences 

in binding affinities observed in titration experiments of the compounds series presented in this work. 

Incorporation of basic side-chain into the indoloquinoline scaffold shifts the binding mode from 

intercalation, as for cryptolepine, to interaction via electrostatic interactions, most likely to the 

phosphate backbone. Another major finding is that the novel cryptolepine derivatives also bind more 

strongly to double and single-stranded DNA than cryptolepine itself. Analysis of structure-binding 

affinity relationships revealed that linear alkyldiamine side-chains and a chlorine atom at position 3 of 
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the indoloquinoline moiety markedly increase the binding affinity to the double-stranded 

oligonucleotide.  However, no correlation with antiplasmodial activity or cytotoxicity was found.  

 Overall, cryptolepine derivatives seems to accumulate inside the digestive vacuole of parasites 

and are able to complex with FPIX-OH at the same extent as chloroquine, which means that they can 

inhibit haemozoin formation. Additionally, cryptolepine derivatives are also able to complex with DNA 

structures, which could justify its antiplasmodial activity due to induced cytotoxicity. As such, these 

results suggest that the cryptolepine derivatives mode of action could probably be a combination of 

effects due to inhibition of haemozoin inside the digestive vacuole and cytotoxicity induced by 

interaction with DNA structure in the parasite nucleus. 

6.3.2 Quindolones and Derivatives 

In vitro Antiplasmodial Activity in human red blood cells and cytotoxicity  

The synthesized quindolones (4, 91a and 91b) and derivatives derivatives 5, 94 and 95 were 

evaluated in vitro for their antiplasmodial activity in Human red blood cells infected with 1% P. 

falciparum(408-409) strains with the chloroquine resistance phenotype W2. Also, The in vitro cytotoxicity 

of quindolone 4 and of quindolone derivatives 5, 94 and 95a  was evaluated using human hepatoma cell 

line HepG2 A16 (Dr. Virgílio do Rosário laboratory). Table 6.3 shows the in vitro antiplasmodial 

activity (IC50) and cytotoxic activities (IC50) against HepG2 A16 cells of 4 and derivatives, together 

with their selectivity index (cytotoxicity/antiplasmodial ratio).  

From the data in Table 6.3 it can be concluded that introduction of an alkylamine side chain (95) 

is essential for antiplasmodial activity as unsubstituted quindolones 4, 91a and 91b are inactive (IC50 

ranging from 8 to >10 µM). The introduction of a second alkylamine side chain further increased 

antiplasmodial activity, with derivatives 5 and 94 showing IC50 values between 51 and 539 nM. 

Analyzing the influence of chlorine substitution on antiplasmodial activity of bis-alkylated derivatives 5 

and 94, it can be clearly seen that halogenation increases antiplasmodial activity of N,O- derivatives 94, 

whereas mono or di-halogenation of N,N- derivatives 5 has no effect on antiplasmodial activity. 

Improved antiplasmodial activity with introduction of chlorine atoms in quinolines have been referred 

but the reason to justify that observation was never clearly found.(412) As a consequence of the structure-

activity relationships discussed above, the dihalogenated and bis-alkylated quindolone derivative 94c 

emerges as the more active compound of the series with an IC50 of 51 nM, more active than chloroquine 

(Table 6.1) Also, monoalkylated derivatives 95a-c are weakly (IC50 of 2.6-1.3 µM) or moderated active 

(IC50 of 0.55 µM). Chlorine atoms in both aromatic rings also improved antiplasmodial activity, being 

the monohalogenated derivative 95b two-times more active than 95a and the dihalogenated derivative 

95c even more active than 95b. Cytotoxicity was determined for the hepatic cell line HepG2 A16 and 

IC50 values of quindolone 4 and derivatives 5, 94 and 95a range from 4.3 to 20 µM (Table 6.3). 

Introduction of alkylamine side chains slightly increased cytotoxicity but no structure-cytotoxicity 
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pattern was observed for quindolone derivatives. The low cytotoxicity of alkylamine-quindolone 

derivatives indicates selectivity for erythrocytic stages of malaria parasite, as shown by the selective 

index (SI, Table 6.3), determined as the cytotocity IC50/antiplasmodial IC50 ratio, higher than 10 for all 

bis-alkylated quindolone derivatives 5 and 94. The most active compound 94c is also the most selective 

one, being 100-folds more toxic to the parasite than to the human hepatic cells HepG2. 

Probing the site of action at cellular level 

 Investigation of the proposed mechanism of antiplasmodial activity of quindolone derivatives 

was performed by determining equilibrium binding constants (Kass) with hematin monomer (FPIX-OH), 

by UV-visible titration carried out in pH 5.5,(146, 361-362, 418) and by docking studies with haematin dimer.  

Antiplasmodial potential targets - Haem 

A. In vitro binding to haematin monomer 

Association constants shown in Table 4.4 were determined from the fitting of the experimental 

data to a binding model with stoichiometry of one quindolone molecule to one FPIX-OH, according to 

the binding stoichiometry determined with Job’s methodology (Section 4.3.1). Kass values for 

quindolones 4, 91a and 91b and derivatives 5, 94 and 95 ranges from 0.074 and 0.14 x106 M-1, 

comparable to Kass value determined in our assay for chloroquine (Table 4.3). From this experiment it 

can also be concluded that binding affinity of quindolone derivatives (5, 94 and 95) to FPIX-OH 

monomer is only due to their aromatic tetracyclic structure as their Kass are not significantly different 

from those of parent quindolones 4. Additionally, chlorine atoms in the aromatic structure of quindolone 

seems to not affect the π-π interactions with porphyrin, since no significant differences was found 

between Kass.  

B. Docking studies with double-stranded oligonucleotide 

In fact, the docking studies with haemozoin showed that the formation of H-bond between the 

protonated terminal nitrogen and the oxygen of the carboxylate group (Fe-COO) occurs. The formation 

of the hydrogen bond can modulate the fitting of both aromatic nucleus. The two carbon side chain 

length, has a distance between the terminal amine in the side chain and the quinolinic nitrogen (N5) of 

6.94 and 7.37 Å in derivative 5 and 94, respectively, which is small compared with the ca. 8.5 Å of 

distance between the center of the porphyrin rin (Fe3+) and the oxygen of the carboxylate. These 

differences obligate the aromatic ring of the quindolone derivatives to stacks on the edge of the 

porphyrin (Figure 5.11 and Appendix J), when compared with its counterparts 4, 91a and 91b (Figure 

5.10 and Appendix J).   

Withal, the molecular docking simulations with haemozoin dimer also showed improved ligand 

binding (GoldScore, Table 5.6) with the introduction of chlorines in the aromatic nucleus. As already 

showed with 4-aminoquinolines, the presence of organic chlorine atoms can probably favour the 
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formation Coulombic interaction with the porphyrin ring, such as Cl···CH3, and thus stabilize the 

complex with haemozoin.(77)    

Taken together, and even though no correlation was found between the antiplasmodial activity 

with binding constants (Kass) and docking fitness values (GoldScore), the results suggest that alkylamine 

quindolone derivatives 5, 94 and 95 may share with chloroquine the same antiplasmodial mechanism of 

action, i.e., by inhibition of haemozoin formation, as far as they reach the target inside digestive 

vacuole. In fact, the increased antiplasmodial activity when compared with their counterparts 4, 91a and 

91b is probably due to the increased accumulation in the parasite digestive vacuole, (18, 130) since 

derivatives with two side chains 5 and 94, would probably accumulate more efficiently in the DV than 

95 (one side chain) and are around c.a ten-fold more active against the P. falciparum W2 strain. 

Furthermore, the experimental result with FPIX-OH and docking studies with haemozoin dimer suggest 

that the antiplasmodial activity does not results entirely from association with haematin, but can also be 

due to the inhibition of haemozoin crystal growth by a capping effect on the crystal surface.(77, 127-128, 419)   

Table 6.3 - In vitro antiplasmodial activity (IC50) against P. falciparum W2 strains, cytotoxicity activity (IC50) 
against HepG2 A16 and selectivity index (SI) of quindolones 4, 91a and 91b and derivatives 5, 94 and 95. 
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4 H H > 10 000 21±2 < 2 5a H H 267±30 4.33±0.02 16 

91a Cl H 8424±26 -- -- 5b Cl H 202±8 7±1 33 

91b Cl  Cl > 10 000 -- --  5c Cl  Cl 334±14 11±2 31 
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 R1 R2 

IC50
a 

P. falciparum 
W2  

(nM) 

IC50 
Cytotoxicity 
HepG2 A16  

(µM) 

SIb 
 

94a H H 539±87 7±1 12  95a H H 2638±22 9±1 3.6 

94b Cl H 186±3 8±2 44  95b Cl H 1332±20 -- -- 

94c Cl  Cl 51±5 5.0±0.9 98  95c Cl  Cl 550±40 -- -- 
a)The IC50 values are calculated from experiments carried out in triplicate and compared with CQ, b)Selectivity Index (IC50

HepG2 

A16/IC50
W2). 
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6.4 Conclusions 

 

The main objective of this project was to synthesise novel derivatives of the antimalarial natural 

compound cryptolepine as part of a larger project of development of safer and potent antimalarial drugs, 

at an affordable cost. The proposed approach was to synthesise new cryptolepine derivatives (3) with an 

ionisable diamine side chain at position C11 of the alkaloid scaffold, which was expected to improve 

the antimalarial activity and the selectivity against Plasmodium through an increase in the concentration 

of the compounds inside the acidic vacuole of the intraerythrocytic parasite. Additionally, we decided to 

start a second line of research based on the indolo[3,2-b]quinoline chemical structure 4 Derivatives 5 

were designed based on the same rationale.  

Cryptolepine and quindolones derivatives were synthesized from a common synthetic 

methodology that allowed us to achieve the indolo[3,2-b]quinolones intermediates (4 and 91) for their 

synthesis.(13-14) Introduction of alkyldiamine and alkylamine side chains in cryptolepine and quindolone 

aromatic nucleus was achieved in general with good yields and with high degree of purity ( 95 %). 

Cryptolepine derivatives 3 showed strong antiplasmodial activity against both CQ-resistant and 

CQ-sensitive P. falciparum strains when compared with the parent compound, and those with IC50 

values below 100 nM share the following features:  

i. they all contain basic amine side chains;  

ii. they all form complexes with FPIX-OH;  

iii. they all are predicted to accumulate in digestive vacuole in the same extend as 

chloroquine;  

iv. they all form strong complexes with double-stranded oligonucleotides.  

Maximum potency, against Plasmodium sp. was achieved with propyl and butyl side-chains, 

while branched linkers seem to be poorly tolerated. Introduction of the basic terminal amine are 

predicted to increase accumulation inside the acid digestive vacuole of the parasite, improving the 

antiplasmodial activity. However, the antiplasmodial activity of these cryptolepine derivatives does not 

result entirely from their association with haematin and binding to the haemozoin crystal cannot be 

excluded. The cytotoxicity profile was also improved, with compound containing the conformationally 

restricted piperidine side-chain, 3n, presenting a selectivity index value of ca 1400, i.e. a 1000-fold 

increase when compared with the parent compound 1. This study revealed also that these cryptolepine 

derivatives are active against the blood-stages, but not to the liver-stages, of the parasite. Localization of 

3n inside blood stages of parasite suggests that the mechanism of action for these compounds besides 

inhibition of haemozoin crystal growth can also be due to interaction with DNA structures. 
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In the indolo[3,2-b]quindolin-11-one  skeleton the introduction of two alkylamine side chains 

generally improves antiplasmodial activity, probably by increasing accumulation in acidic digestive 

vacuole. On the other hand, substitution by chlorine atoms at positions 3 and 7 of quindolone skeleton 

improves antiplasmodial activity for N,O- bis-alkylamine derivatives but not for N,N-di-substitued ones, 

what is an interesting finding that deserves further investigation. Additionally, antiplasmodial activity of 

bis-alkylamine quindolone derivatives cannot be entirely justified by their affinity to haematin 

monomer. Taken together, these results indicate that the quindolone nucleus is a suitable scaffold for the 

design of active and selective compounds targeting parasite haem detoxification pathway and bis-

alkylamine quindolones are a novel chemotype with potential for development as antimalarial agents. 

Overall, cryptolepine and quindolone derivatives containing basic side-chains have been 

confirmed as promising lead compounds for the development of new agents active against the blood 

stages of P. falciparum malaria with improved activity and increased selectivity for the Plasmodium sp. 
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7.1 General 

7.1.1 Chemicals 

Reagents and solvents were purchased from Aldrich Chemical Company LTd., (Spain) and 

used without further purification.  

Water and buffers: all water used was distilled and purified by ion exchange and charcoal using 

a MilliQ system (Millipore Ltd.). All buffers were prepared from analytical reagent grade material 

according to standard procedures.(420) 

7.1.2 Instrumentation 

Nuclear Magnetic Resonance (NMR): NMR spectra were record in a Bruker ultrashield 400 

MHz (9.4 T) spectrometer equipped with a 5 mm Quad Nuclear Probe (QNP), operating at 400.1 MHz  

for 1H NMR and 100.6 MHz for 13C NMR (Faculty of Science, University of Lisbon ) or recorded in a 

Bruker ultrashield 300 MHz (7.05 T) spectrometer (Avance-300) equipped with a 5 mm single-axis Z-

gradient quattro nucleus probe, operating at 300.1 MHz for 1H NMR and 75.5 MHz for 13C NMR 

(School of Pharmacy and Pharmaceutical Sciences, University of Manchester, UK). Chemical Shifts () 

are reported in parts per million (ppm), using solvent as internal reference, tetramethylsilane (TMS) or 

2,2,3,3-tetradeutero-3-trimethylsilylpropionic acid (TSP). Coupling constants (J) are in Hz. Data are 

reported using the following convention: splitting patterns are abbreviated as: s (singlet), d (doublet), t 

(triplet), q (quartet) and m (multiplet). 

UV-visible spectrophotometry (UV-Vis): UV-Visible spectra were record in 1 cm pathlength 

quartz cuvettes at 25 ºC using a Shimadzu UV-1603 UV-visible spectrometer with a temperature-

controlled (25 ºC) cell holder or using a Varian Cary-4000 UV-visible spectrophotometer (Varian Ltd. 

Mulgrave Victoria, Australia) connected to a Cary Peltier-thermostatted cuvette holder (School of 

Pharmacy and Pharmaceutical Sciences, University of Manchester, UK). 

Florescence spectroscopy (FS): Fluorescence emission and excitation spectra were record in 4-

sided quartz cuvettes using a Cary-Eclipse fluorescence spectrophotometer equipped with a Cary 

Peltier-thermostatted cuvette holder (School of Pharmacy and Pharmaceutical Sciences, University of 

Manchester, UK).   

Infrared spectroscopy (IV): Infrared spectra were record in a Nicolet Impact 400 FTIR 

Spectrophotometer in KBr homogenized powder samples and pressurized into a thin pellet. 

Mass spectrometry (MS): Mass spectra were recorded using a Micromass Autospec 

spectrometer with electronic impact as ionization method and high resolution mass spectra (accurate 

mass) were record on a Bruker Microtof spectrometer with ESI-TOF as ionization method (Unit of 

Mass spectrometry, University of Santiago de Compostela, Spain). 
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Elemental analysis (EA): C, H and N analyses were carried out by the Unit Elemental Analysis, 

University of Santiago de Compostela, Spain, on a LECO model CHNS-932 elemental analyzer. 

Melting points: Melting points were determined using an Bock-Monoscop M melting apparatus 

(temperature range 0-330 ºC) and are uncorrected. 

Determination of pH: Values of pH and pH* (measurement in D2O solutions) were measured 

using a HI 9321 microprocessor pH metter from Hanna Instruments, calibrated with standard buffers 

(4.00±0.01, 7.00±0.01 and 10.00±0.01, Sigma-Aldrich at 20 ºC). 

7.1.3 Methods 

Thin-layer chromatography (TLC): Reactions were followed by thin-layer chromatography 

using coated silica gel plates (Merck, aluminum sheets, silica gel 60 F254, 200 µm layer-thickness, 25 

µm particle size) or in aluminium oxide matrix (60 Å medium pore diameter and 200 µm layer-

thickness) with fluorescent indicator in PET support.  

Preparative thin-layer chromatography (P-TLC): P-TLC were performed in coated silica-gel 

plates (Merk, silica gel 60 GF254, 750 µm layer-thickness) capable of separating around 10-50 mg, 

depending on separation efficiency. 

Column chromatography: Purification of compound by column chromatography was 

performed using silica-gel (Sigma-Aldrich, silica-gel 220-240 mesh, 35-70 m pore size, flash 

cromatography) or in aluminum oxide (Sigma-Aldrich,50-150 m of pore size and Brockmann activity 

I) as stationary phase. 

7.2 Chemistry 

7.2.1 Synthesis of 2-(2-Bromoacetamido)benzoic Acids (89) 

7.2.1.1 General procedure A: synthesis of 2-(2-Bromoacetamido)benzoic acid (89a) 

A solution of 2-amino-benzoic acid (10.0 g, 72.9 mmol) in DMF (30 mL) and dioxane 

(30 mL) was cooled to 0 ºC. Bromoacetyl bromide (8.0 mL, 91.7 mmol, 1.25 eq.) was 

added dropwise over a 20 min period, keeping the internal temperature between 0 and 5 

ºC. After the addition was complete, the ice bath was removed and stirring was 

continued overnight at room temperature. The reaction mixture was added to water (300 mL), and the 

light yellow precipitate which formed was filtered, washed with water until neutral pH, and then dried 

to give 18.1 g (96%) of 89a as a white solid, mp 162-165 ºC. 1H NMR (400 MHz, DMSO) δH (ppm) 

11.23 (s, NH), 8.06 (d, J = 8.4 Hz, 1H), 7.62 (dd, J = 7.9, 1.4 Hz, 1H), 7.24 (dd, J = 8.4, 7.3 Hz, 1H), 

6.82 (dd, J = 7.9, 7.3 Hz, 1H), 3.87 (s, 2H). 13C NMR (101 MHz, DMSO) δC (ppm) 169.20, 165.04, 

139.92, 134.06, 131.11, 123.45, 119.99, 117.06, 30.65. 
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7.2.1.2 Synthesis of 2-(2-Bromoacetamido)-4-chlorobenzoic acid (89b) 

Reaction of 2-amino-4-chloro benzoic acid (10 g, 58.2 mmol) and bromoacetyl 

bromide (14.7 g, 6.3 mL, 72.8 mmol, 1.25 eq.) according to general procedure A, 

gave 17.1 g (99 %) of 89b as a light yellow solid. mp 166-168 ºC. 1H NMR (400 

MHz, DMSO) δH (ppm) 11.73 (s, NH), 8.54 (d, J = 2.1 Hz, 1H), 7.98 (d, J = 8.6 Hz, 

1H), 7.24 (dd, J = 8.6, 2.1 Hz, 1H), 4.28 (s, 2H). 13C NMR (101 MHz, DMSO) δC (ppm) 169.03, 

165.92, 141.54, 138.95, 133.26, 123.73, 119.61, 115.91, 30.98. 

7.2.2 Synthesis of 2-[2-(Phenylamino)acetamido]benzoic Acids (90) 

7.2.2.1 General procedure B: synthesis of 2-(2-(phenylamino)acetamido)benzoic acid (90a) 

A solution of 89a (15.0 g, 58.1 mmol) and aniline (19.0 mL, 208.3 mmol, 3.5 eq.) 

in DMF (30 mL) was heated at 120 ºC for 18 hours. After cooling the reaction 

mixture was poured into ice-water (500 mL), aqueous 5 % KOH was added to 

solubilize the solid product and adjust the pH to 10-11. Then the mixture was 

extracted with dichloromethane (3x300 mL). The combined dichloromethane extracts were set aside and 

aqueous layer was acidified to pH 3 with a solution of 5 % HBr. The precipitate which formed was 

collected, washed with water and then dried, yielding 11.0 g (70 %) of 90a as a white solid, mp 194-197 

ºC. 1H NMR (400 MHz, DMSO) δH (ppm) 11.96 (s, NH), 8.61 (d, J = 8.7 Hz, 1H), 7.83 (d, J = 7.9 Hz, 

1H), 7.47 (dd, J = 8.7, 8.0 Hz, 1H), 7.02 (dd, J = 8.0, 7.9 Hz, 1H), 6.98 (d, J = 7.3 Hz,  2H), 6.50 (d, J 

= 7.7 Hz, 1H), 6.48 (dd, J = 7.7, 7.3 Hz, 2H), 6.39 (s, NH), 3.73 (s, 2H). 13C NMR (101 MHz, CD3OD) 

δC (ppm): 170.82, 169.01, 148.08, 140.52, 134.03, 131.08, 128.92, 122.60, 119.32, 116.98, 116.12, 

112.36, 48.89. 

7.2.2.2 Synthesis of 4-chloro-2-[2-(phenylamino)acetamido]benzoic acid (90b) 

Reaction of 89b (15g, 51.3 mmol) with aniline (16.7g, 16.3 mL, 179.6 mmol, 

3.5 eq) according to general procedure B  gave 11.8 g of 90b (76 %) as a white 

solid, mp 217-220 ºC. 1H NMR (400 MHz, DMSO) δH (ppm) 12.13 (s, NH), 

8.83 (d, J = 2.2 Hz, 1H), 7.94 (d, J = 8.6 Hz, 1H), 7.21 (dd, J = 8.6, 2.2 Hz, 

1H), 7.10 (dd, J = 8.0, 7.4 Hz, 2H), 6.63 (d, J = 7.4 Hz, 1H), 6.59 (d, J = 8.0 Hz, 2H), 3.86 (s, 2H). 13C 

NMR (101 MHz, DMSO) δC (ppm) 171.96, 168.80, 148.46, 141.99, 139.03, 133.33, 129.45, 123.08, 

119.16, 117.63, 115.16, 112.90, 49.36. 
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7.2.2.3 Synthesis of 4-chloro-2-{2-[(3-chlorophenyl)amino]acetamido}benzoic acid (90c) 

A solution of 89b (3.0 g, 10.2 mmol) and 3-chloroaniline (4.04 g, 3.34 mL, 

31.7 mmol, 3 eq.) in DMF (10 mL) was heated at 120 ºC for 72 hours and 

treated according to general procedure B to gave 3.0 g of 90c (84 %) as a white 

solid, mp 223-226 ºC. 1H NMR (400 MHz, DMSO) δH (ppm) 12.10 (s, NH), 

8.80 (d, J = 2.2 Hz, 1H), 7.95 (d, J = 8.6 Hz, 1H), 7.20 (dd, J = 8.6, 2.2 Hz, 1H), 7.11 (dd, J = 8.0 Hz, 

1H), 6.84 (s, NH), 6.55 (m, 2H), 6.54 (dd, J = 8.2, 1.4 Hz, 1H), 3.92 (d, J = 5.5 Hz, 2H). 13C NMR (101 

MHz, DMSO) δC (ppm) 171.29, 168.95, 149.99, 141.93, 139.03, 134.00, 133.34, 131.02, 123.13, 

119.16, 117.04, 115.24, 112.41, 111.32, 48.80. 

7.2.2.4 Synthesis of 4-chloro-2-{2-[(4-chlorophenyl)amino]acetamido}benzoic acid (90d) 

Reaction of 89b (3.0 g, 10.2 mmol) and 4-chloroaniline (4.04 g, 3.34 mL, 

31.7 mmol, 3 eq.) in DMF (10 mL) was heated at 120 ºC for 48 hours and 

than treated according to general procedure B to give 2.47 g (70 %) of 90d 

as a white solid, mp 194-197 ºC. 1H NMR (400 MHz, DMSO) δH (ppm) 

12.07 (s, 1H), 8.81 (s, 1H), 7.95 (d, J = 8.6 Hz, 1H), 7.22 (dd, J = 8.6, 2.2 Hz, 1H), 7.13 (d, J = 8.8 Hz, 

2H), 6.73 (s, 1H), 6.60 (d, J = 8.9 Hz, 2H), 3.88 (d, J = 4.9 Hz, 2H). 13C NMR (101 MHz, DMSO) δC 

(ppm) 171.48, 168.87, 147.39, 141.94, 139.05, 133.35, 129.17, 123.15, 120.91, 119.17, 115.15, 114.31, 

49.13. 

7.2.2.5 Synthesis of 4-chloro-2-{2-[(4-(trifluoromethyl)phenyl)amino]acetamide} benzoic acid 

(90e) 

A solution of 89b (4.0 g, 13.6 mmol) and 4-trifluoromethyl-aniline (4.39 g, 

3.39 mL, 27.3 mmol, 2 eq.) in DMF (15 mL) was heated at 120 ºC for 72 

hours and treated according to general procedure B, to give 3,23 g (64 %) 

of 90e as a white solid, mp 201-203 ºC. 1H NMR (400 MHz, DMSO) δH 

(ppm) 12.04 (s, NH), 8.80 (s, 1H), 7.94 (d, J = 8.5 Hz, 1H), 7.43 (d, J = 8.5 Hz, 2H), 7.20 (m, 2H), 6.73 (d, J 

= 8.5 Hz, 2H), 3.98 (s, 2H). 13C NMR (101 MHz, DMSO) δC (ppm) 170.97, 169.00, 151.55, 141.93, 

139.09, 133.34, 129.46, 126.78, 124.26, 123.19, 119.19, 115.11, 112.47, 48.52. 

7.2.2.6 Synthesis of 4-chloro-2-(2-((4-methoxyphenyl)amino)acetamido)benzoic acid (90f) 

Reaction of 89b (3.0 g, 10.25 mmol) and 4-methoxy-aniline (3.79 g, 

30.75 mmol, 3 eq.), in DMF (10 mL) was heated at 120 ºC for 96 hours 

and treated according to general procedure B, gave 2.52 g (72 %) of 90f 

as a light brown solid, mp 191-193 ºC. 1H NMR (400 MHz, DMSO) δH 

(ppm) 12.16 (s, NH), 8.84 (d, J = 2.2 Hz, 1H), 7.94 (d, J = 8.5 Hz, 1H), 7.21 (dd, J = 8.5, 2.2 Hz, 1H), 

6.73 (d, J = 8.9 Hz, 2H), 6.54 (d, J = 8.9 Hz, 2H), 3.79 (s, 2H), 3.62 (s, 3H). 13C NMR (101 MHz, 
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DMSO) δC (ppm) 172.25, 168.70, 152.03, 142.52, 141.99, 138.99, 133.32, 123.02, 119.15, 115.22, 

115.02, 113.90, 55.63, 50.16. 

7.2.2.7 Synthesis of 4-chloro-2-(2-((4-methylphenyl)amino)acetamido)benzoic acid (90g) 

A solution of 89b (4.0 g, 13.6 mmol) and 4-methyl-aniline (2.93 g, 27.3 

mmol, 2 eq.) in DMF (15 mL) was heated at 120 ºC for 48 hours and 

treated according to general procedure B, to give 3.68 g (83 %) of 90g as 

a light yellow solid, mp 187-189 ºC. 1H NMR (400 MHz, DMSO) δH 

(ppm) 12.13 (s, 1H), 8.83 (d, J = 2.0 Hz, 1H), 7.94 (d, J = 8.5 Hz, 1H), 7.21 (dd, J = 8.5, 2.0 Hz, 1H), 

6.91 (d, J = 8.3 Hz, 2H), 6.49 (d, J = 8.3 Hz, 2H), 3.81 (s, 2H), 2.14 (s, 3H). 13C NMR (101 MHz, 

DMSO) δC (ppm) 172.15, 168.74, 146.19, 142.00, 139.02, 133.32, 129.88, 126.05, 123.04, 119.14, 

115.14, 112.96, 49.67, 20.53.  

7.2.3 Synthesis of 5H-Indolo[3,2-b]quinolin-11(10H)-ones (4 and 91) 

7.2.3.1 General procedure C: Synthesis of 5H-indolo[3,2-b]quinolin-11(10H)-one (4) 

A mixture 90a (6.0 g, 21.5 mmol) and polyphosphoric acid (PPA, 160 g) was 

heated with mechanical stirring at 130 ºC for 2 hours. The reaction mixture was 

poured into-ice water (500 mL), neutralized with saturated KOH solution, and then 

extracted with EtOAc (3x500 mL). The extract was washed with water and brine, dried (anhydrous 

Na2SO4), and then concentrated. The product was recrystallized from AcOEt with diethyl ether:hexane 

(9:1) to give 3.47 g (67 %) of 4 as a light green solid, mp > 300 ºC. 1H NMR (400 MHz, DMSO) δH 

(ppm) 12.81 (s, 1H), 11.69 (s, 1H), 8.35 (d, J = 8.0 Hz, 1H), 8.28 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 8.4 

Hz, 1H), 7.68 (dd, J = 8.4, 7.5 Hz, 1H), 7.50 (d, J = 8.2, 1H), 7.49 (dd, J = 8.2, 7.4 Hz, 1H), 7.28 (dd, J 

= 8.0, 7.5 Hz, 1H), 7.20 (dd, J = 8.0, 7.4 Hz, 1H). 13C NMR (101 MHz, DMSO) δC (ppm) 167.77, 

139.54, 139.05, 130.99, 129.44, 127.84, 125.57, 123.48, 123.24, 121.63, 120.87, 119.25, 118.28, 

116.38, 112.98. Infrared (KBr, cm-1): 3350 (NH); 3169 (CHaromatic); 1625 (CO). Anal. (C, H, N) Cal. for 

C15H10N2O
.4H2O: C, 58.82, H, 5.92, N, 9.15, found: C, 58.53, H, 5.70, N, 9.43. 

7.2.3.2 Synthesis of 3-chloro-5H-indolo[3,2-b]quinolin-11(10H)-one (91a) 

A mixture of 90b (2.0 g, 6.6 mmol) and PPA (60 g) was treated according 

general procedure C, giving 0.630 g (36 %) of 91a as a light green solid, mp > 

300 ºC. 1H NMR (400 MHz, DMSO) δH (ppm) 12.56 (NH, 1H), 11.81 (NH, 

1H), 8.35 (d, J = 8.7 Hz, 1H), 8.15 (d, J = 8.1 Hz, 1H), 7.73 (d, J = 1.8 Hz, 1H), 7.51 (d, J = 6.2 Hz, 

1H), 7.49 (dd, J = 7.3, 6.2 Hz 1H), 7.30 (dd, J = 8.7, 1.8 Hz, 1H), 7.23 (dd, J = 8.1, 7.3 Hz, 1H). 13C 

NMR (101 MHz, DMSO) δC (ppm) 167.30, 140.02, 139.08, 135.65, 129.40, 128.10, 127.94, 123.64, 

121.96, 121.31, 121.15, 119.62, 117.13, 116.14, 113.17. Infrared (KBr, cm-1): 3421 (NH); 3190 
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(CHaromatic); 1631 (CO). Anal. (C, H, N) Cal. For C15H9ClN2O
.2.3H2O: C, 58.09, H, 4.42, N, 9.03, 

found: C, 58.35, H, 4.77, N, 9.13. 

7.2.3.3 Synthesis of 3,8-dichloro-5H-indolo[3,2-b]quinolin-11(10H)-one (91b) 

Compound 90c (2.0g, 5.90 mmol) was reacted with PPA (60 g) according to 

general procedure C. After extraction, the solvent was removed at reduced 

pressure and the residue purified by flash chromatography (silica gel 230-400 

mesh, 40-63 µm, AcOEt:hexane 6:4) to  give 0.271 g (15 %) of 91c as light green solid, mp > 300 ºC. 
1H NMR (400 MHz, DMSO) δH (ppm)  12.27 (s, NH), 11.33 (s, NH), 8.36 (d, J = 2.0 Hz, 1H), 8.34 (d, 

J = 8.8 Hz, 1H), 7.49 (d, J = 0.9 Hz, 1H), 7.46 (d, J = 7.1 Hz, 1H), 7.33 (dd, J = 8.8, 2.0 Hz, 1H), 7.24 

(dd, J = 7.1, 0.9 Hz, 1H). 13C NMR (101 MHz, DMSO) δc (ppm) 167.49, 140.50, 139.88, 135.94, 

128.69, 127.60, 127.45, 126.41, 124.33, 121.87, 121.73, 119.76, 118.64, 113.84, 112.24. Infrared (KBr, 

cm-1): 3432 (NH); 3156 (CHaromatic); 1635 (CO).  

7.2.3.4 Synthesis of 3,7-dichloro-5H-indolo[3,2-b]quinolin-11(10H)-one (91c) 

Reaction of 90d (2.0 g, 5.9 mmol) with PPA (60 g) according to general 

procedure C, gave 0.725 g (40%) of 91c, as a light green solid, mp > 300 ºC. 1H 

NMR (400 MHz, DMSO) δH (ppm) 12.57 (s, NH), 12.02 (s, NH), 8.33 (d, J = 

8.7 Hz, 1H), 8.20 (d, J = 1.7 Hz, 1H), 7.69 (d, J = 1.8 Hz, 1H), 7.54 (d, J = 8.8 

Hz, 1H), 7.49 (dd, J = 8.8, 1.7 Hz, 1H), 7.31 (dd, J = 8.7, 1.8 Hz, 1H). 13C NMR (101 MHz, DMSO) δc 

(ppm) 167.54, 140.08, 137.34, 136.04, 128.52, 128.03, 127.97, 124.51, 123.73, 121.91, 121.55, 120.41, 

117.15, 117.03, 114.91. Infrared (KBr, cm-1): 3417 (NH); 3173 (CHaromatic); 1628 (CO). Anal. (C, H, N) 

Cal. for C15H8Cl2N2O
.0.4H2O: C, 48.02, H, 4.30, N, 7.47, found: C, 48.36, H, 4.52, N, 7.03. 

7.2.3.5 Synthesis of 3-chloro-7-trifluoromethyl-5H-indolo[3,2-b]quinolin-11(10H)-one (91d) 

Reaction of 90e (1.5 g, 4.4 mmol) with PPA (45 g) according to general 

procedure C, gave 0.457 g (33 %) of 91d, as a light green solid, mp >300 ºC. 
1H NMR (400 MHz, DMSO) δH (ppm) 12.93 (s, NH), 12.22 (s, NH), 8.97 (s, 

1H), 8.34 (d, J = 8.7 Hz, 1H), 8.05 (d, J = 8.8 Hz, 1H), 7.76 (d, J = 1.7 Hz, 

1H), 7.56 (d, J = 8.7 Hz, 1H), 7.32 (dd, J = 8.8, 1.7 Hz, 1H). 13C NMR (101 MHz, DMSO) δc (ppm) 

168.11, 141.03, 140.17, 135.94, 130.19, 128.72, 127.92, 124.57, 124.33, 122.18, 122.02, 121.66, 

117.31, 116.04, 15.63. Infrared (KBr, cm-1): 3456 (NH); 3123 (CHaromatic); 1632 (CO). Anal. (C, H, N) 

Cal. for C16H8ClF3N2O
.2.3H2O: C, 52.77, H, 4.04, N, 7.69, found: C, 52.92, H, 4.29, N, 7.59. 

7.2.3.6 Synthesis of 3-chloro-7-methoxy-5H-indolo[3,2-b]quinolin-11(10H)-one (91e) 

Reaction of 90f (1.0 g, 3.0 mmol) with PPA (30 g) according to general procedure C, gave 0.242 g (27 

%) of 91e, as a light green solid, mp >300 ºC. 1H NMR (400 MHz, DMSO) δH (ppm) 12.50 (s, NH), 

11.63 (s, NH), 8.33 (d, J = 8.7 Hz, 1H), 7.70 (d, J = 1.7 Hz, 1H), 7.61 (d, J = 2.2 Hz, 1H), 7.44 (d, J = 
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9.0 Hz, 1H), 7.28 (dd, J = 8.7, 1.7 Hz, 1H), 7.15 (dd, J = 9.0, 2.2 Hz, 1H), 

3.87 (s, 3H). 13C NMR (101 MHz, DMSO) δc (ppm) 167.35, 153.49, 139.99, 

135.63, 134.47, 129.17, 127.98, 124.30, 121.75, 121.13, 119.19, 117.00, 

115.93, 114.27, 101.51, 55.86. Infrared (KBr, cm-1): 3482 (NH); 3143 

(CHaromatic); 1625 (CO). Anal. (C, H, N) Cal. for C16H11ClN2O2
.0.5H2O: C, 62.45, H, 3.93, N, 9.10, 

found: C, 62.76, H, 3.92, N, 9.08. 

7.2.3.7 Synthesis of 3-chloro-7-methyl-5H-indolo[3,2-b]quinolin-11(10H)-one (91f) 

Reaction of 90g (1.5 g, 4.7 mmol) with PPA (45 g) according to general 

procedure C, gave 0.697 g (52 %) of 91f, as a light green solid, mp >300 ºC. 1H 

NMR (400 MHz, DMSO) δH (ppm) 12.53 (s, NH), 11.67 (s, NH), 8.33 (d, J = 

8.7 Hz, 1H), 7.92 (s, 1H), 7.72 (d, J = 1.7 Hz, 1H), 7.42 (d, J = 8.5 Hz, 1H), 

7.32 (d, J = 8.5 Hz, 1H), 7.28 (dd, J = 8.7, 1.7 Hz, 1H), 2.47 (s, 3H). 13C NMR (101 MHz, DMSO) δc 

(ppm) 167.23, 139.98, 137.57, 135.55, 129.89, 129.05, 128.31, 127.92, 123.86, 121.88, 121.19, 120.33, 

117.07, 116.24, 112.95, 21.61. Infrared (KBr, cm-1): 3432 (NH); 3179 (CHaromatic); 1627 (CO). Anal. (C, 

H, N) Cal. for C16H11ClN2O
.H2O: C, 63.90, H, 4.36, N, 9.31, found: C, 64.16, H, 4.38, N, 9.14. 

7.2.4 Synthesis of 11-Chloro-10H-indolo[3,2-b]quinolines (92) 

 

7.2.4.1 General procedure D: Synthesis of 11-chloro-10H-indolo[3,2-b]quinoline (92a) 

A solution of 4 (1.5 g, 6.58 mmol) in POCl3 (20 mL) was refluxed for 2 hours. 

The reaction mixture was cooled, poured into ice, neutralized with a cold saturated 

solution of KOH while keeping the internal temperature below 45 ºC. The aqueous 

solutions was then extracted with EtOAc (3x200 mL), and then the combined 

organic extracts was washed with water and brine, dried (anhydrous Na2SO4), and the solvent redmoved 

at reduced pressure to give 0.95 g (60 %) 92a, as a strong yellow solid, mp 180-185 ºC. 1H NMR (400 

MHz, DMSO) δH (ppm) 11.88 (s, 1H), 8.37 (d, J = 7.7 Hz, 1H), 8.29 (m, 2H), 7.75 (m, 2H), 7.68 (dd, J 

= 6.9, 8.0 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.35 (dd, J = 7.3, 7.7 Hz, 1H). 13C NMR (101 MHz, 

DMSO) δC (ppm) 146.52, 144.61, 144.28, 130.87, 130.57, 129.74, 127.33, 126.86, 124.08, 122.61, 

122.19, 121.63, 120.71, 118.43, 112.51. Infrared (KBr, cm-1): 3271 (NH); 3031 (CHaromatic). 

7.2.4.2 Synthesis of 3,11-dichloro-10H-indolo[3,2-b]quinoline (92b) 

According with general procedure D, 91a (1.5 g, 4.42 mmol) was reacted with 

POCl3 (20 mL) to give 1.0 g of 92b (66%) as a light orange solid, mp 171-176 

ºC. 1H NMR (400 MHz, DMSO) δH (ppm) 11.98 (s, NH), 8.33 (d, J = 7.8, 1H), 

8.29 (d, J = 2.1, 1H), 8.28 (d, J = 9.2, 1H), 7.73 (m, 1H), 7.68 (dd, J = 7.0, 1.1, 1H), 7.63 (d, J = 8.1, 

1H), 7.35 (dd, J = 7.8, 7.0, 1H). 13C NMR (101 MHz, DMSO) δC (ppm) 147.43, 144.85, 144.34, 131.76, 
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131.27, 130.69, 128.07, 127.20, 124.66, 122.74, 122.35, 121.31, 120.89, 118.68, 112.64. Infrared (KBr, 

cm-1): 3254 (NH); 3093 (CHaromatic). 

7.2.4.3 Synthesis of 3,8,11-trichloro-10H-indolo[3,2-b]quinoline (92c) 

Reaction of 91b (0.25 g, 1.6 mmol) with POCl3 (10 mL) according with 

general procedure D gave 0.13 g of 92c (49 %) as a strong orange solid, mp 

167-170 ºC. 1H NMR (400 MHz, DMSO) δH (ppm) 12.14 (s, NH), 8.34 (d, J = 

8.4, 1H), 8.31 (d, J = 1.9, 1H), 8.30 (d, J = 4.9, 1H), 7.77 (dd, J = 9.1, 2.0, 1H), 7.62 (s, 1H), 7.37 (dd, J 

= 8.3, 1.7, 1H). 13C NMR (101 MHz, DMSO) δC (ppm) 146.48, 145.34, 144.56, 135.68, 132.23, 130.99, 

128.04, 127.57, 124.82, 123.84, 122.82, 121.28, 120.19, 119.36, 112.29. Infrared (KBr, cm-1): 3298 

(NH); 3134 (CHaromatic). 

7.2.4.4 Synthesis of 3,7,11-trichloro-10H-indolo[3,2-b]quinoline (92d) 

A solution of impure 91c (0. 725 g, 2.4 mmol) in POCl3 (5 mL) was reacted 

according to general procedure D, giving 0.58 g (75 %) of 92d as a strong 

yellow solid, mp 163-166 ºC. 1H NMR (400 MHz, DMSO) δH (ppm) 12.36 (s, 

NH), 8.34 (d, J = 1.8 Hz, 1H), 8.29 (d, J = 2.1 Hz, 1H), 8.28 (d, J = 9.1 Hz, 1H), 

7.76 (dd, J = 9.1, 2.1 Hz, 1H), 7.71 (dd, J = 8.7, 1.8 Hz, 1H), 7.65 (d, J = 8.7 Hz, 1H). 13C NMR (101 

MHz, DMSO) δC (ppm) 145.00, 143.31, 132.66, 131.40, 131.26, 127.79, 127.04, 125.22, 124.93, 

122.85, 121.84, 121.79, 121.65, 114.44, 113.47. Infrared (KBr, cm-1): 3345 (NH); 3079 (CHaromatic).  

7.2.4.5 Synthesis of 3,11-dichloro-7-trifluoromethyl-10H-indolo[3,2-b]quinoline (92e) 

A solution of 91d ( 0.5 g, 1.5 mmol) in POCl3 (10 mL) was reacted according 

to general procedure D to give 0.21 g (53 %) of  92e, as a light brown solid, mp 

176-179ºC. 1H NMR (400 MHz, DMSO) δH (ppm) 12.54 (s, NH), 8.87 (s, 1H), 

8.32 (d, J = 2.0 Hz, 1H), 8.30 (d, J = 9.1 Hz, 1H), 8.25 (dd, J = 8.6, 1.5 Hz, 

1H), 7.77 (dd, J = 9.1, 2.1 Hz, 1H), 7.72 (d, J = 8.6 Hz, 1H). 13C NMR (101 MHz, DMSO) δC (ppm) 

167.74, 147.35, 147.11, 144.70, 132.28, 132.15, 131.28, 128.25, 127.63, 124.88, 124.01, 123.29, 

122.98, 121.16, 119.59, 112.58. Infrared (KBr, cm-1): 3295 (NH); 3045 (CHaromatic). 

7.2.4.6 Synthesis of 3,11-dichloro-7-methoxy-10H-indolo[3,2-b]quinoline (92f) 

A solution of 91e (0.4 g, 1.3 mmol,) in POCl3 (10 mL) was reacted according to 

general procedure D to give  0.33 g (78 %) of  92f, as a light brown solid, mp 

161-164 ºC.1H NMR (400 MHz, DMSO): δH (ppm) 11.89 (s, NH), 8.28 (d, J = 

9.1, 1H), 8.25 (d, J = 2.2, 1H), 7.77 (d, J = 2.1, 1H), 7.74 (dd, J = 9.1, 2.1, 1H), 

7.55 (d, J = 8.8, 1H), 7.34 (dd, J = 8.8, 2.2, 1H), 3.91 (s, 3H). 13C NMR (101 MHz, DMSO) δC (ppm) 

154.53, 146.00, 142.90, 139.82, 132.27, 131.32, 127.34, 126.92, 124.85, 122.50, 121.60, 120.67, 

119.92, 113.77, 103.70, 56.09. Infrared (KBr, cm-1): 3346 (NH); 3115 (CHaromatic). 
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7.2.4.7 Synthesis of 3,11-dichloro-7-methyl-10H-indolo[3,2-b]quinoline (92g) 

A solution of 91f (0.5 g, 1.8 mmol,) in POCl3 (10 mL) was reacted according 

to general procedure D to give  0.34 g (64 %) of  92g, as a strong yellow solid, 

mp 173-175 ºC. 1H NMR (400 MHz, DMSO): δH (ppm) 11.82 (s, NH), 8.26 

(d, J = 4.6 Hz, 1H), 8.25 (d, J = 2.2 Hz, 1H), 8.12 (s, 1H), 7.71 (dd, J = 9.1, 

2.1 Hz, 1H), 7.51 (s, 2H), 2.51 (s, 3H). 13C NMR (101 MHz, DMSO) δC (ppm) 147.32, 144.22, 143.10, 

132.57, 131.60, 130.90, 129.90, 128.02, 127.08, 124.62, 122.67, 121.96, 121.41, 118.44, 112.34, 21.34. 

Infrared (KBr, cm-1): 3345 (NH); 3040 (CHaromatic).          

7.2.5 Synthesis of 5-Methyl-11-chloro-10H-indolo[3,2-b]quinolin-5-ium Chlorides (93) 

7.2.5.1 General procedure E: Synthesis  of 5-methyl-11-chloro-10H-indolo[3,2-b]quinolin-5-ium 

chloride (93a) 

To a suspension of 92a (2.0 g, 7.91 mmol) in anhydrous toluene (50 mL) was 

added methyl triflate (3.82 g, 23.7 mmol, 2.55 mL, 3 eq.) and the mixture was 

stirred at room temperature for 24 hours. The formed solid was filtered, 

suspended in sodium carbonate 5 % (400 mL) and extracted with chloroform 

(3x400 mL). The purple base chloroform extracts were washed with water and brine, dried (anhydrous 

Na2SO4), and then concentrated to a small volume. The solution was acidified with HCl in diethyl ether, 

to a orange end point, to give after filtration and drying, 2.15 g (90 %) of pure 93a, as an orange solid, 

mp 269-272 ºC. 1H NMR (400 MHz, DMSO) δH (ppm) 13.39 (s, NH), 8.88 (d, J = 9.4 Hz, 1H), 8.85 (d, 

J = 8.9 Hz, 1H), 8.69 (d, J = 8.3 Hz, 1H), 8.30 (dd, J = 9.4, 7.7 Hz,  1H), 8.12 dd, J = 8.3, 7.7 Hz,  1H), 

8.01 (dd, J = 8.4, 7.7 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.58 (dd, J = 8.9, 7.7 Hz, 1H), 5.04 (s, 3H).13C 

NMR (101 MHz, DMSO) δC (ppm) 146.33, 139.03, 136.15, 134.90, 133.20, 132.11, 129.30, 128.79, 

126.98, 124.97, 123.73, 122.45, 119.21, 114.78, 113.94, 40.97. Anal. (C, H, N) Cal for 

C16H12Cl2N2.HCl.H2O: C: 53.73, H: 4.23, N: 7.83, found: C, 54.00, H, 4.28, N, 7.82. 

7.2.5.2 Synthesis of 3,11-dichloro-5-methyl-10H-indolo[3,2-b]quinolin-5-ium chloride (93b) 

A suspension of 92b (0.15 g, 0,52 mmol) was treated with methyl triflate 

(0.169g, 1.04 mmol, 114 µL, 2 eq.) according to general procedure E, giving 

0.139 g of 93b (79 %) as an orange solid, mp 234-237 ºC. 1H NMR (400 MHz, 

DMSO) δH (ppm) 13.63 (NH, 1H), 9.00 (d, J = 1.7 Hz, 1H), 8.80 (d, J = 8.5 Hz, 1H), 8.60 (d, J = 9.1, 

1H), 8.09 (dd, J = 9.1, 1.7 Hz, 1H), 7.96 (dd, J = 8.5, 7.4 Hz, 1H), 7.87 (d, J = 8.5 Hz, 1H), 7.53 (dd, J = 

8.5, 7.4 Hz, 1H), 4.98 (s, 3H). 13C NMR (101 MHz, DMSO) δC (ppm)146.60, 139.54, 138.36, 136.52, 

135.29, 132.30, 129.40, 129.34, 127.10, 126.98, 122.67, 122.52, 118.68, 114.73, 114.06, 41.27. 
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7.2.5.3 Synthesis of 3,8,11-trichloro-5-methyl-10H-indolo[3,2-b]quinolin-5-ium chloride (93c) 

A suspension of 92c (50 mg, 0.16 mmol) was treated with methyl triflate 

(52.0 mg, 0.32 mmol, 35 µL, 2 eq.) according to general procedure E, giving 

26.1 mg of 93c (46%) as an orange solid, mp 229-233 ºC. 1H NMR (400 

MHz, DMSO) δH (ppm) 13.47 (s, NH), 9.00 (s, 1H), 8.82 (d, J = 9.0, 1H), 

8.62 (d, J = 9.1, 1H), 8.12 (d, J = 9.1, 1H), 7.81 (d, J = 1.5, 1H), 7.57 (dd, J = 9.0, 1.5, 1H), 4.95 (s, 3H). 
13C NMR (101 MHz, DMSO) δC (ppm) 146.69, 140.11, 139.05, 138.83, 136.77, 132.64, 129.97, 129.63, 

128.70, 127.06, 123.19, 122.77, 118.73, 113.73, 113.41, 41.26. 

7.2.5.4 Synthesis of 3,11-dichloro-5-methyl-7-substituted-10H-indolo[3,2-b]quinolin-5-ium 

chlorides (93d-g) 

Since the synthesis of the compounds 3,11-dichloro-5-methyl-7-susbtituted-10H-

indolo[3,2-b]quinolin-5-ium chlorides (93d-g) with the procedure E did not work, 

different  methodologies were attempted to alkylate these compounds. 

Methylating agents such as methyl triflate or trimethyloxonium tetrafluoroborate 

with different reaction conditions were performed as described below, however without success.    

7.2.5.4.1 Method 1 

To a solution of 92d-g in dry dichloromethane and inert atmosphere was added methyl triflate (4 eq.), 

and the mixture was allowed to react at room temperature. After 48 hours there was no formation of 

products of the reaction and the mixture was refluxed for more 48 hours. The solvent was removed at 

reduced pressure and the crude mixture suspended in sodium carbonate 5 % (400 mL). The aqueous 

solution was extracted with chloroform (3x400 mL). The chloroform extracts were washed with water 

and brine, dried (anhydrous Na2SO4), and then concentrated to a small volume. The solution was 

acidified with HCl in diethyl ether and the precipitate filtered, washed with Et2O and then dried 

7.2.5.4.2 Method 2 

To a solution of 92d-g in dry acetone and inert atmosphere was added methyl triflate (6 eq.) and   

refluxed for 48 hours. The solvent was removed at reduced pressure and the crude mixture suspended in 

sodium carbonate 5 % (400 mL). The aqueous solution was extracted with chloroform (3x400 mL). The 

chloroform extracts were washed with water and brine, dried (anhydrous Na2SO4), and then 

concentrated to a small volume. The solution was acidified with HCl in diethyl ether and the precipitate 

filtered, washed with Et2O and then dried. 

7.2.5.4.3 Method 3 

To a solution of 92d-g in anhydrous DMF and inert atmosphere was added methyl triflate (4 eq.). The 

mixture was reacted at 80 ºC during 24 hours. After this period was added methyl triflate (4 eq.) and the 

mixture allowed to react at 80 ºC for more 72 hours. The solvent was removed at reduced pressure and 

the crude mixture suspended in sodium carbonate 5 % (400 mL). The aqueous solution was extracted 
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with chloroform (3x400 mL). The chloroform extracts were washed with water and brine, dried 

(anhydrous Na2SO4), and then concentrated to a small volume. The solution was acidified with HCl in 

diethyl ether. The precipitate was filtered and washed with Et2O and dried.  

7.2.5.4.4 Method 4 

To a solution of 92d-g in anhydrous DMF and inert atmosphere was added trimethyloxonium 

tetrafluoroborate (4 eq.). The mixture was reacted at 80 ºC during 48 hours. After this period was added 

trimethyloxonium tetrafluoroborate (4 eq.) and the mixture allowed to react at 80 ºC for more 72 hours. 

The solvent was removed at reduced pressure and the crude mixture suspended in sodium carbonate 5 % 

(400 mL). The aqueous solution was extracted with chloroform (3x400 mL). The chloroform extracts 

were washed with water and brine, dried (anhydrous Na2SO4), and then concentrated to a small volume. 

The solution was acidified with HCl in diethyl ether. The precipitate was filtered and washed with Et2O 

and dried. 

7.2.6 Synthesis of 10H-Indolo[3,2-b]quinoline (25) 

7.2.6.1.1 Method 1 

To a portion of 8a (0.27 g, 1.07 mmol), sodium acetate (1.1 g, 13.4 mmol) and 10 

% Pd/C catalyser in acetic acid (25 mL) was hydrogenated at 60 psi for 2 hours. 

The reaction mixture was filtered to remove Pd/C catalyst, the solvent 

concentrated to a small volume, basified with ice-cold saturated solution of NaHCO3 and then extracted 

with EtOAc (3x25 mL). The combined organic extracts was washed with water and brine, dried 

(anhydrous Na2SO4), and the solvent was removed under reduced pressure to give 0.199 g of pure 25 

(85%), as a yellow solid. 

7.2.6.1.2 Method 2 

To a solution of 8a (0.2 g, 0,79 mmol) in dry methanol, 10 % Pd/C catalyst (15 % w/w of 8a) was added 

dropwise triethylsilane (1.37g, 1.89 mL, 11.8 mmol, 15 eq.). The reaction mixture was allowed to react 

at room temperature and closed atmosphere for 20 minutes. The reaction mixture was filtered with 

Celite® 501 and the solvent removed at reduced pressure. The crude mixture was purified by column 

chromatography using as eluent dichloromethane:hexane (8:2), giving 0.134 g of pure 25 (78 %), as a 

yellow solid.   

mp 200-203 ºC. 1H NMR (400 MHz, DMSO) δH (ppm) 11.43 (s, NH), 8.36 (d, J = 7.7 Hz, 1H), 8.29 (s, 

1H), 8.20 (d, J = 8.5 Hz, 1H), 8.11 (d, J = 8.1 Hz, 1H), 7.63 (m, 1H), 7.60 (m, 1H), 7.57 (m, 2H), 7.29 

(dd, J = 7.8, 7.0 Hz, 1H). 13C NMR (101 MHz, DMSO) δC (ppm) 145.04, 143.34, 142.71, 131.75, 

128.98, 128.01, 126.80, 126.03, 125.32, 124.15, 120.67, 120.29, 118.63, 112.31, 110.81. 
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7.2.7 Synthesis of 5-Methyl-10H-indolo[3,2-b]quinolin-5-ium Trifluoromethanosulfonate 

(1) 

A suspension of 25 (0.085 mg, 0.38 mmol) in anhydrous toluene (2 mL) was 

treated with methyl triflate (0.104 g, 0.638 mmol, 70 µL, 1.7 eq.) and the mixture 

was stirred at room temperature for 24 hours. After this period diethyl ether was 

added (5 mL) and the orange precipitate which formed was filtered, washed with 

diethyl ether and then dried to give 0.092 g (62 %) of pure 1, mp > 300 ºC. 1H NMR (400 MHz, 

DMSO) δH (ppm) 12.76 (s, 1H), 9.17 (s, 1H), 8.70 (d, J = 7.7 Hz, 1H), 8.65 (d, J = 8.5 Hz, 1H), 8.46 (d, 

J = 7.4 Hz, 1H), 8.05 (dd, J = 8.5, 6.4 Hz, 1H), 7.83 (dd, J = 8.5 6.4 Hz, 2H), 7.74 (d, J = 8.0 Hz, 1H), 

7.41 (dd, J = 8.2, 7.7 Hz, 1H), 4.92 (s, 3H). 13C NMR (101 MHz, DMSO) δC (ppm) 144.73, 137.06, 

134.34, 132.97, 132.27, 131.44, 128.85, 126.09, 125.29, 125.24, 123.85, 120.41, 116.84, 112.86, 

112.20, 39.21. Anal. (C, H, N) Cal. for C17H13F3N2O3S.H2O: C, 51.00, H, 3.78, N, 7.00, found: C, 

50.86, H, 3.80, N, 6.74. 

7.2.8 Synthesis of Cryptolepine Derivatives (3) 

7.2.8.1 General procedure F: Synthesis of 5-methyl-11-[(2-aminoethyl)amino]-10H-indolo[3,2-

b]quinolin-5-ium chloride (3a) 

To a suspension of 93a (40 mg, 0.132 mmol) in EtOAc (5 mL) was added ethane-

1,2-diamine (15.8 mg, 0.263 mmol, 17.7 µL, 2 eq.). The reaction mixture was 

refluxed for 24 hours and the resulting precipitate was collected, washed with dry 

diethyl ether and dried. The solid was suspended in 5 % sodium carbonate (20 

mL) and extracted with chloroform (3x20 mL). The combined organic extracts 

were washed with water, dried with brine (20 mL) and anhydrous Na2SO4 and dried under reduced 

pressure. Recrystallization from chloroform with HCl in diethyl ether gave 61 % (26.3 mg) of pure 3a, 

as a light yellow solid, mp 293-295 ºC. 1H NMR (400 MHz, DMSO)  ppm 12.29 (s, NH) 9.24 (s, NH), 

8.84 (d, J = 8.2 Hz, 1H), 8.51 (d, J = 8.4 Hz, 1H), 8.44 (s, NH2), 8.31 (d, J = 8.8 Hz, 1H), 8.01 (d, J = 

8.3 Hz, 1H), 7.97 (dd, J = 8.8, 7.4 Hz, 1H), 7.68 (dd, J = 8.3, 7.6 Hz, 1H), 7.64 (dd, J = 8.2, 7.4 Hz, 

1H), 7.32 (d, J = 8.4, 7.6 Hz, 1H), 4.58 (s, 3H), 4.44 (m, 2H), 3,32 (m, 2H). 13C NMR (101  MHz, 

DMSO)  ppm 143.46, 142.90, 137.02, 135.65, 132.27, 130.52, 124.63, 124.29, 123.88, 120.75, 117.24, 

115.95, 115.31, 114.32, 113.72, 42.41, 38,85, 38.08. Anal. (C, H, N) Cal. for C18H19ClN4.HCl.0.8H2O: 

C, 57.24, H, 5.76, N, 14.83, found: C, 57.30, H, 5.39, N, 14.54. 

7.2.8.2 Synthesis of 5-methyl-11-{[2-(dimethylamino)ethyl]amino}-10H-indolo[3,2-b] quinolin-5-

ium chloride (3b) 

To a suspension of 93a (40.0 mg, 0.132 mmol, 1 eq.) in EtOAc (5 mL) was added commercial N1,N1-

dimethylethane-1,2-diamine (23.3 mg, 0.264 mmol, 29 µL, 2 eq.). The reaction mixture was refluxed 
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for 24 h and the resulting precipitate was collected, washed with diethyl ether and 

dried. The product was recrystallized from methanol-EtOAc to give 62 % (29.2 

mg) yield of pure 3b, as a dark yellow solid, mp 260-262 ºC. 1H NMR (400 MHz, 

CD3OD) δH (ppm) 8.71 (d, J = 8.4 Hz, 1H), 8.48 (d, J = 8.2 Hz, 1H), 8.28 (d, J = 

8.1 Hz, 1H), 8.03 (dd, J = 8.1, 7.6 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.73 (dd, J 

= 8.4, 7.6 Hz, 1H), 7.69 (dd, J = 8.2, 7.5  Hz, 1H), 7.40 (dd, J = 8.2, 7.5 Hz, 1H), 

4.64 (s, 3H), 4.61 (t, J = 6.2 Hz, 2H), 3.72 (t, J = 6.2 Hz, 2H), 3.05 (s, 6H).13C NMR (101 MHz, 

CD3OD) δC (ppm) 143.73, 143.16, 137.37, 136.93, 132.41, 131.06, 124.51, 123.78, 123.65, 121.19, 

116.85, 116.74, 115.78, 114.67, 113.35, 56.55, 42.68, 40.51, 37.51. Anal. (C, H, N) Cal. for 

C20H23ClN4
.2HCl.0.4H2O: C, 55.22, H, 5.98, N, 12.88, found: C, 55.60, H, 6.24, N, 12.68. 

7.2.8.3 Synthesis of 5-methyl-11-{[2-(diethylamino)ethyl]amino}-10H-indolo[3,2-b] quinolin-5-

ium chloride (3c) 

After recrystallization from methanol with ethyl acetate the compound 3c was 

obtained in 35 % yield (18.4 mg) as a dark yellow solid, mp >330 ºC, from 93a 

(40.0 mg, 0.132 mmol) and commercially available N1,N1-diethylethane-1,2-

diamine (30.7 mg, 0.264 mmol, 37.1 µL, 2 eq.) according to general procedure 

F. 1H NMR (400 MHz, CD3OD) δH (ppm) 8.82 (d, J = 8.4 Hz, 1H), 8.53 (d, J = 

8.1 Hz, 1H), 8.30 (d, J = 8.2 Hz, 1H), 7.98 (dd, J = 8.2, 7.7 Hz, 1H), 7.77 (d, J 

= 8.6 Hz, 1H), 7.70 (dd, J = 8.6, 7.2 Hz, 1H), 7.66 (dd, J = 8.2, 7.7 Hz, 1H), 7.34 (dd, J = 8.1, 7.2 Hz, 

1H), 4.57 (s, 3H), 4.14 (broad s, 2H), 2.98 (broad s, 2H), 2.71 (q, J = 7.0 Hz, 4H), 0.95 (t, J = 7.0 Hz, 

6H). 13C NMR (101 MHz, CD3OD) δC (ppm) 144.50, 143.39, 137.53, 135.48, 132.52, 130.71, 124.74, 

124.51, 124.19, 120.83, 118.07, 117.68, 115.60, 115.55, 114.01, 53.41, 47.66, 44.62, 38.24, 11.27. 

Anal. (C, H, N) Cal. for C22H27ClN4
.HCl.0.5H2O: C, 61.68, H, 6.82, N, 13.08, found: C, 61.61, H, 6.81, 

N, 13.05. 

7.2.8.4 Synthesis of 5-methyl-11-[1-(diethylamino)propan-2-yl)amino]-10H-indolo[3,2-b] 

quinolin-5-ium chloride (3d) 

The title compound was obtained in 28 % yield (13.9 mg) as an orange solid, mp 

272-276 ºC, by reaction of 93a (40.0 mg, 0.132 mmol) and N1,N1-

dimethylpropane-1,2-diamine (26.6 mg, 0.264 mmol, 2 eq.) according to general 

procedure F, and recrystallized from CHCl3:MeOH (1:1) with EtOAc:Et2O (3:2). 
1H NMR (400 MHz, DMSO+D2O) δH (ppm) 8.69 (d, J = 8.5 Hz, 1H), 8.53 (d, J = 

8.4 Hz, 1H), 8.30 (d, J = 8.9 Hz, 1H), 8.04 (dd, J = 7.1, 8.9 1H), 7.86 (d, J = 8.5 

Hz, 1H), 7.77 (dd, J = 7.4, 8.5 Hz, 1H), 7.73 (d, J = 7.1, 8.5 Hz, 1H), 7.42 (dd, J = 7.4, 8.4 Hz 1H), 5.11 

(m, 1H), 4.62 (s, 3H), 3.81 (t, J = 11.7 Hz, 1H), 3.45 (d, J = 11.9 Hz, 1H), 2.88 (s broad, 6H), 1.44 (d, J 

= 6.3 Hz, 3H). 13C NMR (101 MHz, DMSO+D2O) δC (ppm) 143.73, 143.11, 137.49, 135.73, 133.30, 

132.04, 130.69, 125.17, 125.04, 124.82, 122.02, 117.76, 116.30, 115.01, 114.07, 60.90, 47.64, 44.03, 
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38.47, 20.56. Anal. (C, H, N): Cal. for C21H25ClN4
.HCl.3.7H2O: C, 53.44, H, 7.13, N, 11.87, found: C, 

53.49, H, 7.04, N, 13.80. EI/MS (m/z): Cal. for C21H25N4
+: 333.21 found: 333.204910 (26.9 %), 

332.201430 (100%). 

7.2.8.5 Synthesis of 5-methyl-11-[(3-aminopropyl)amino]-10H-indolo[3,2-b]quinolin-5-ium 

chloride (3e) 

To a suspension of 93a (40.0 mg, 0.132 mmol) was added commercial propane-

1,3-diamine ( 19.5 mg, 0.264 mmol, 22.0 µL, 2 eq.) according to general 

procedure F. The product was  recrystallized from CH2Cl2:MeOH (8:2) with Et2O 

to give 24.3 mg (54 %) of 3e as an yellow solid, mp 243-245 ºC. 1H NMR (400 

MHz, DMSO) δH 12.28 (s, NH), 9.27 (s, NH), 8.90 (d, J = 8.6 Hz, 1H), 8.56 (d, J 

= 8.5 Hz, 1H), 8.36 (d, J = 8.9 Hz, 1H), 8.20 (s, NH2), 8.03 (d, J = 8.0 Hz, 1H), 

8.01 (dd, J = 8.9, 8.1 Hz, 1H), 7.73 (dd, J = 8.0, 7.6 Hz, 1H), 7.68 (dd, J = 8.6, 8.0 Hz,1H), 7.37 (dd, J = 

8.5, 7.6 Hz, 1H), 4.61 (s, 3H), 4.32 (d, J = 6.0 Hz, 2H), 3.01 (d, J = 5.7 Hz, 2H), 2.17 (dd, J = 6.0, 5.7 

Hz, 2H). 13C NMR (101 MHz, DMSO) δC 144.01, 143.21, 137.65, 135.83, 132.76, 130.88, 124.89, 

124.74, 124.39, 121.17, 117.83, 116.59, 115.68, 114.75, 114.18, 42.86, 38.51, 36.75, 28.05. Anal. (C, 

H, N): Cal. for C19H21ClN4.HCl.H2O: C, 57.73, H 6.12, N, 14.17, found: C, 57.43, H, 5.88, N, 14.52. 

7.2.8.6 Synthesis of 5-methyl-11-{[3-(dimethylamino)propyl]amino}-10H-indolo[3,2-b] quinolin-

5-ium chloride (3f) 

After recrystallization from methanol-ethyl acetate 3f was obtained in 34 % yield 

(16.3 mg) as a dark yellow solid, mp 277-280 ºC, from 93a (40.0 mg, 0.132 mmol) 

and commercial N1,N1-dimethylpropane-1,3-diamine (26.9 mg, 0.264 mmol, 33.2 

µL, 2 eq.), according to general procedure F. 1H NMR (400 MHz, CD3OD) δH 

(ppm) 8.65 (d, J = 8.4 Hz, 1H), 8.53 (d, J = 8.1 Hz, 1H), 8.30 (d, J = 8.1 Hz, 1H), 

8.05 (dd, J = 8.1, 7.0 Hz, 1H), 7.92 (d, J = 8.1 Hz, 1H), 7.77 (dd, J = 8.1, 7.1 Hz, 

1H), 7.73 (dd, J = 8.4, 7.0 Hz, 1H), 7.44 (dd, J = 8.1, 7.1 Hz, 1H), 4.67 (s, 3H), 4.32 (t, J = 6.9 Hz, 

2H), 3.37 (t, J = 7.9 Hz, 2H), 2.39 (quintet, J = 7.5 Hz, 2H), 2.92 (s, 6H). 13C NMR (101 MHz, 

CD3OD) δC (ppm) 143.63, 143.34, 137.46, 136.45, 134.47, 132.22, 130.71, 124.22, 123.62, 123.23, 

120.93, 116.63, 115.51, 114.63, 113.13, 54.79, 42.50, 42.08, 37.22, 25.09. Anal. (C, H, N): Cal. for 

C21H25ClN4
.2HCl.H2O: C, 54.85, H, 6.36, N, 12.18, found: C, 54.86, H, 6.33, N, 13.74. EI/MS (m/z): 

Cal. for C21H25N4
+: 333,21, found: 333.202807 (24.7 %), 332.199995 (100%). 

7.2.8.7 Synthesis of 5-methyl-11-{[3-(diethylamino)propyl]amino}-10H-indolo[3,2-b] quinolin-5-

ium chloride (3g) 

The title compound was obtained in 82 % yield (43.1 mg) as a dark yellow solid, mp 274-277 ºC, by 

reaction of 93a (40.0 mg, 0.132 mmol) and commercially available N1,N1-diethylpropane-1,3-diamine 

(34.4 mg, 0.264 mmol, 41.6 µL, 2 eq.), according to general procedure F. 1H NMR (400 MHz, CD3OD) 

δH (ppm) 8.62 (d, J = 8.5 Hz, 1H), 8.47 (d, J = 8.1 Hz, 1H), 8.25 (d, J = 8.5 Hz, 1H), 8.04 (dd, J = 8.5, 
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7.4 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.74-7.70 (m, 2H), 7.41 (dd, J = 8.1, 7.7 

Hz, 1H), 4.59 (s, 3H), 4.29 (t, J = 7.0 Hz, 2H), 3.38 (t, J = 7.8 Hz, 2H), 3.26 

(q, J = 7.2 Hz, 4H), 2.36 (quintet, J = 7.5 Hz, 2H), 1.34 (t, J = 7.2 Hz, 6H).13C 

NMR (101 MHz, CD3OD) δC (ppm) 143.57, 143.36, 137.46, 136.35, 132.37, 

130.81, 124.35, 123.68, 123.39, 121.08, 116.70, 116.53, 115.52, 114.63, 

113.27, 49.08, 47.27, 42.84, 37.33, 24.65, 7.87. Anal. (C, H, N): Cal. for 

C23H29ClN4
.2HCl.0.5H2O: C, 57.69, H, 6.74, N, 11.70, found: C, 57.27, H, 6.93, N, 12.97. EI/MS (m/z): 

Cal. for C23H29N4
+: 361,24, found: 361.234997 (29.5%), 360.231795 (100%). 

7.2.8.8 Synthesis of 5-methyl-11-{[3-(dimethylamino)-2,2-dimethylpropyl]amino}-10H-

indolo[3,2-b]quinolin-5-ium chloride (3h) 

Reaction of 93a (51.2 mg, 0.164 mmol) and commercial N1,N1-2,2-

tetramethylpropane-1,3-diamine (21.3 mg, 1.64 mmol, 0.26 mL, 10 eq.) according 

to general procedure F, gave 3h in 78 % yield (52.6 mg), as an orange solid, mp 

171-173 ºC. 1H NMR (400 MHz, DMSO) δH (ppm) 10.75 (s, NH), 8.51 (d, J = 8.1 

Hz, 1H), 8.33 (d, J = 8.5 Hz, 1H), 8.20 (d, J = 7.9 Hz, 1H), 8.00 (dd, J = 8.5, 7.5 

Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.75 (dd, J = 7.9, 7.5 Hz, 1H), 7.67 (dd, J = 8.1, 

7.6 Hz, 1H), 7.32 (dd, J = 8.1, 7.6 Hz, 1H), 4.56 (s, 3H), 4.21 (s, 2H), 2.59 (s, 2H), 2.44 (s, 6H), 1.13 (s, 

6H). 13C NMR (101 MHz, DMSO) δC (ppm) 144.59, 143.08, 137.67, 135.60, 132.62, 130.61, 124.83, 

124.56, 123.11, 120.99, 118.02, 116.63, 115.58, 114.88, 114.18, 70.03, 57.33, 48.18, 38.31, 35.51, 

25.38. Anal. (C, H, N): Cal. for C23H29ClN4
.H2O: C, 66.57, H, 7.53, N, 13.50, found: C, 66.09, H, 7.13, 

N, 13.18. 

7.2.8.9 Synthesis of 5-methyl-11-{[3-(isopropylamino)propyl]amino}-10H-indolo[3,2-b] quinolin-

5-ium chloride (3i) 

After recristallization from methanol-ethyl acetate, 3i was obtained in 56 % 

yield (28.7 mg) as a yellow solid, mp >330 ºC, from 93a (40.0 mg, 0.132 

mmol) and commercial N1-isopropylpropane-1,3-diamine (30.6 mg, 0.264 

mmol, 36.9 µL, 2 eq.), according to general procedure F. 1H NMR (400 MHz, 

CD3OD) δH (ppm) 8.67 (d, J = 8.3 Hz, 1H), 8.54 (d, J = 8.2 Hz, 1H), 8.30 (d, J 

= 8.4 Hz, 1H), 8.05 (dd, J = 8.4, 7.3 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.75 

(dd, J = 8.1, 7.2 Hz, 1H), 7.73 (dd, J = 8.3, 7.3 Hz, 1H), 7.44 (dd, J = 8.2, 7.2 

Hz, 1H), 4.68 (s, 3H), 4.34 (t, J = 7.0 Hz, 2H), 3.42 (quintet, J = 6.5 Hz, 1H), 3.27 (t, J = 7.6 Hz, 2H), 

2.43 (quintet, J = 7.3 Hz, 2H), 1.37 (d, J = 6.5 Hz, 6H). 13C NMR (101 MHz, CD3OD) δC (ppm) 

143.86, 143.76, 137.68, 135.73, 132.43, 130.92, 124.43, 123.82, 123.43, 121.16, 116.85, 115.72, 

114.79, 113.30, 50.86, 42.65, 42.22, 37.43, 26.93, 17.91. Anal. (C, H, N): Cal. for 

C22H27ClN4
.HCl.0.5H2O: C, 61.68, H, 6.82, N, 13.08, found: C, 61.86, H, 6.55, N, 12.97. 



Material and methods | 179 

7.2.8.10 Synthesis of 5-methyl-11-{[3-(piperidin-1-yl)propyl]amino}-10H-indolo[3,2-b] quinolin-5-

ium chloride (3j) 

The title compound was obtained in 71 % yield (38.3 mg) as a light orange solid, 

mp 289-293 ºC, after reaction of 93a (40.0 mg. 0.132 mmol) with 3-piperidine-

1yl-propan-1-amine (37.5 mg, 0.264 mmol, 2 eq.) according to general procedure 

F, and recrystallization from CHCl3:MeOH (5:1) with EtOAc:Et2O (8:1). 1H 

NMR (400 MHz, DMSO) δH (ppm) 12.31 (s, NH), 9.21 (s, NH), 8.87 (d, J = 8.1 

Hz, 1H), 8.55 (d, J = 8.1 Hz, 1H), 8.34 (d, J = 8.9 Hz, 1H), 8.01 (m, 2H), 7.71 

(dd, J =7.5, 6.5 Hz, 1H), 7.68 (dd, J =8.1, 4.9 Hz, 1H), 7.36 (dd, J = 8.1, 6.5 Hz, 

1H), 4.60 (s, 3H), 4.31 (m, J = 5.5 Hz, 2H), 3.43 (m, 2H), 3.23 (m, 2H), 2,86 (m, 2H), 2.30 (m, 2H), 

1.78 (m, 4H), 1.69 (m, 1H), 1.38 (m, 1H). 13C NMR (101 MHz, DMSO) δC (ppm) 143.41, 142.61, 

137.02, 135.16, 132.12, 130.20, 124.44, 124.09, 123.70, 120.52, 117.15, 116.06, 115.02, 114.17, 

113.58, 53.24, 51.81, 42.93, 37.89, 23.86, 22.12, 21.28. Anal. (C, H, N): Cal. for 

C24H29ClN4
.2HCl.1.7H2O: C, 56.24, H, 6.77, N, 10.93, found: C, 56.28, H, 6.64, N, 10.91. 

7.2.8.11 Synthesis of 5-methyl-11-[(4-aminobutyl)amino]-10H-indolo[3,2-b]quinolin-5-ium 

chloride (3k) 

To a suspension of 93a (40.0 mg, 0.132 mmol) was added commercial butane-

1,4-diamine (23.2 mg, 0.264 mmol, 26.6 µL, 2 eq.) according to general 

procedure F. The product was recrystallized from CH2Cl2:MeOH (7:3) with 

Et2O to give 21.2 mg (45 %) of 3k as an yellow solid, mp 263-265 ºC. 1H NMR 

(400 MHz, DMSO) δH (ppm) 8.89 (d, J = 8.5 Hz, 1H), 8.55 (d, J = 8.2 Hz, 

1H), 8.34 (d, J = 8.5 Hz, 1H), 8.00 (dd, J = 8.3, 7.3 Hz, 1H), 7.95 (d, J = 8.3 

Hz, 1H), 7.71 (dd, J = 7.8, 7.3 Hz, 1H), 7.67 (dd, J = 8.3, 7.3 Hz, 1H), 7.36 (dd, J = 8.2, 7.3 Hz, 1H), 

4.60 (s, 3H), 4.22 (t, J = 6.6 Hz, 2H), 2.85 (t, J = 7.4 Hz, 2H), 1.89 (m, 2H), 1.75 (m, 2H). 13C NMR 

(101 MHz, DMSO) δC (ppm) 144.20, 143.13, 143.08, 137.77, 137.73, 132.70, 130.77, 125.01, 124.69, 

124.26, 121.12, 117.78, 115.67, 114.93, 114.18, 45.18, 38.78, 38.45, 27.12, 24.75. Anal. (C, H, N): Cal. 

for C20H23ClN4
.2HCl: C, 56.15 H, 5.89 N, 13.10, found: C, 56.33, H, 5.52, N, 12.74. 

7.2.8.12 Synthesis of 5-methyl-11-{[4-(diethylamino)butyl]amino}-10H-indolo[3,2-b] quinolin-5-

ium chloride (3l) 

The title compound was obtained in 70 % yield (44.9 mg) as an orange solid, 

mp 268-272 ºC by reaction of 93a (47.0 mg, 0.155 mmol) with N1,N1-

diethylbutane-1,4-diamine 103 (44.8 mg, 0.31 mmol, 2 eq.) according to 

general procedure F, and recrystallization from MeOH with EtOAc:Et2O 

(2:3). 1H NMR (400 MHz, DMSO) δH (ppm) 12.36 (s, NH), 9.24 (d, J = 1.3 

Hz, NH), 8.89 (d, J = 8.1 Hz, 1H), 8.55 (d, J = 8.1 Hz, 1H), 8.33 (d, J = 8.6 

Hz, 1H), 8.01 (dd, J = 8.6, 7.6 Hz, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.72 (dd, J 
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= 8.1, 7.6 Hz, 1H), 7.68 (dd, J = 8.1, 7.6 Hz, 1H), 7.38 (dd, J = 8.1, 7.6 Hz, 1H), 4.60 (s, 3H), 4.23(q 

broad, 2H), 3,10 (m, 6H), 1.89 (m, 4H), 1.21 (t, J = 7.1 Hz, 6H). 13C NMR (101 MHz, DMSO) δC 

(ppm) 143.75, 142.58, 137.38, 135.13, 132.78, 132.23, 130.28, 124.58, 124.18, 123.76, 120.63, 117.26, 

115.16, 114.40, 113.67, 50.27, 45.97, 44.76, 37.95, 26.82, 20.51, 8.34. Anal. (C, H, N): Cal. for 

C24H31ClN4
.2HCl.0.5H2O: C, 58.48, H, 6.95, N, 11.37, found: C, 58.01, H, 7.16, N, 11.47. 

7.2.8.13 Synthesis of 5-methyl-11-{[5-(diethylamino)pentan-2-yl]amino}-10H-indolo[3,2-b] 

quinolin-5-ium chloride (3m) 

Reaction of 93a (40.0 mg, 0.132 mmol) N1,N1-diethylpentane-1,4-diamine 

(41.7 mg, 0.264 mmol, 51 µL, 2 eq.), according to general procedure F and 

recrystallization from MeOH with EtOAc:Et2O (1:1), gave 3m in 30 % yield 

(17.2 mg), as an orange solid, mp 240-243 ºC. 1H NMR (400 MHz, DMSO) 

δH (ppm) 8.85 (d, J = 8.6 Hz, 1H), 8.58 (d, J = 8.1 Hz, 1H), 8.58 (d, J = 8.1 

Hz, NH), 8.37 (d, J = 8.5 Hz, 1H), 8.04 (dd, J = 8.5, 7.8 Hz, 1H), 7.96 (d, J = 

8.5 Hz, 1H), 7.76 (dd, J = 8.5, 7.7 Hz, 1H), 7.71(dd, d, J = 8.6, 7.8 Hz, 1H), 

7.39 (dd, J = 8.1, 7.7 Hz, 1H), 4.92 (m, 1H), 4.64 (s, 3H), 3.13-2.93 (m, 6H), 2.14-1.98 (m, 2H), 1.91-

1.81 (m, 2H), 1.47 (d, J = 6.2 Hz, 3H), 1.14 (t, J = 7.1 Hz, 6H). 13C NMR (101 MHz, DMSO) δC (ppm) 

144.24, 143.36, 140.38, 138.04, 136.08, 132.93, 131.09, 125.73, 124.98, 124.46, 121.39, 118.04, 

116.04, 115.25, 114.41, 51.01, 46.88, 46.69, 38.87, 34.15, 22.55, 20.75, 9.01. Anal. (C, H, N): Cal. for 

C25H33ClN4
.HCl.2.7H2O: C, 58.86, H, 7.79, N, 10.98, Found: C, 58.96, H, 8.08, N, 11.40. 

7.2.8.14 Synthesis of 5-methyl-11-(piperidin-4-ylamino)-10H-indolo[3,2-b]quinolin-5-ium 

chloride (3n) 

Reaction of 93a (50.0 mg, 0.165 mmol) and piperidin-4-amine (29.7 mg, 0.296 

mmol, 31.1 µL, 1.8 eq.), according to general procedure F, gave 3n in 66 % yield 

(40.3 mg) , as an orange solid, mp 325-327 ºC. 1H NMR (400 MHz, DMSO) δH 

(ppm) 12.16 (s, NH), 8.66 (d, J = 8.5 Hz, 1H), 8.56 (d, J = 9.0 Hz, 1H), 8.51 (s, NH), 

8.29 (d, J = 8.3 Hz, 1H), 8.09 (dd, J = 9.0, 7.4 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.83 

(dd, J = 8.3, 7.4 Hz, 1H), 7.81 (dd, J = 8.4, 7.7 Hz, 1H), 7.44 (dd, J = 8.5, 7.7 Hz, 1H), 4.80 (s, 3H), 4.14 (d, 

J = 12.6 Hz, 2H), 3.86 (dd, J = 12.6, 11.0 Hz, 2H), 3.50 (m, 1H), 2.29 (d, J = 11.5 Hz, 2H), 2.05 (dd J = 11.5, 

11.0 Hz, 2H). 13C NMR (101 MHz, DMSO) δC (ppm) 147.20, 144.42, 138.12, 137.78, 132.71, 132.46, 

126.54, 125.66, 125.54, 125.04, 121.60, 120.70, 118.63, 114.71, 114.18, 51.13, 47.60, 39.61, 30.68. 

Anal. (C, H, N): Cal. for C21H23ClN4
.2HCl.0.4H2O: C, 56.42, H, 5.82, N, 12.53, found: C, 56.52, H, 

6.01, N, 13.80. ESI-TOF/MS (m/z): Cal. for  C21H23N4
+: 331,19, Found: 331.1917. 
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7.2.8.15 Synthesis of 5-methyl-11-[(1-isobutylpiperidin-4-yl)amino]-10H-indolo[3,2-b] quinolin-5-

ium chloride (3o) 

To a solution of 3n (40.0 mg, 0.108 mmol), anhydrous Na2SO4 (2g) and 

isobutyraldehyde (24.8 mg, 0.432 mmol, 31.2 µL, 4 eq.) in dry MeOH (5 mL) 

was added NaBH3CN (33.9 mg, 0.54 mmol, 5 eq.) and the reaction allowed to 

proceed at room temperature, for 24 h. The anhydrous Na2SO4 was filtered off 

and solvent removed under reduced pressure. The resulting residue was 

dissolved in water (5 mL) and basified with aqueous KOH 2M to pH=12. The 

aqueous solution was then extracted with CH2Cl2 (3x20 mL) and the combined organic extracts washed 

with water and brine, dried (anhydrous Na2SO4) and concentrated to a small volume under reduce 

pressure. HCl in Et2O was added and the precipitate which formed was collected, washed with Et2O and 

then dried, yielding 27.3 mg (59 %) of 3o as a orange solid, mp 270-274 ºC. 1H NMR (400 MHz, 

CD3OD) δH (ppm) 8.64 (d, J = 8.2 Hz, 1H), 8.51 (d, J = 8.3 Hz, 1H), 8.46 (d, J = 8.2 Hz, 1H), 8.13 (dd, 

J = 8.3, 7.6 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.88 (dd, J = 8.2, 7.6 Hz, 1H), 7.84 (dd, J = 8.4, 7.3 Hz, 

1H), 7.50 (dd, J = 8.2, 7.3 Hz, 1H), 4.90 (s, 3H), 4.27 (d, J = 12.6 Hz, 2H), 3.92 (t, J = 12.2 Hz, 2H), 

3.70 (m, 1H), 3.09 (d, J = 7.2 Hz, 2H), 2.52 (d J = 11.2 Hz, 2H), 2.26 (qd, J = 12.1, 3.6 Hz, 2H), 2.16 

(m, 1H), 1.16 (d, J = 6.7 Hz, 6H). 13C NMR (101 MHz, CD3OD) δC (ppm) 148.15, 146.06, 139.80, 

139.53, 133.83, 133.81, 127.47, 126.81, 126.74, 126.07, 122.92, 122.55, 118.88, 115.94, 114.71, 56.97, 

53.37, 52.21, 39.89, 30.22, 27.66, 20.52. Anal. (C, H, N): Cal. for C25H31ClN4
.2HCl.0.5H2O: C, 59.47, 

H, 6.79, N, 11.10, found: C, 59.09, H, 6.99, N, 12.05. ESI-TOF/MS (m/z): Cal. for  C25H31N4
+: 387.25, 

Found: 387.2543. 

7.2.8.16 Synthesis of 5-methyl-11-[(1-benzylpiperidin-4-yl)amino]-10H-indolo[3,2-b] quinolin-5-

ium chloride (3p) 

To a solution of 3n (40.0 mg, 0.108 mmol) and anhydrous Na2SO4 (2g) in 

dry MeOH (5 mL) was added benzaldehyde (45.8 mg, 43.6 µL, 0.432 

mmol, 4 eq.) and the mixture stirred for 1 hour. NaBH3CN (33.9 mg, 0.54 

mmol, 5 eq.) was added and the mixture left to react for a further 20 h. The 

anhydrous Na2SO4 was filtered off and the solvent removed under reduced 

pressure. The residue was dissolved in H2O (5 mL) and the pH adjusted to 12 with 2M KOH.  The 

aqueous solution was extracted with CH2Cl2 (3x20 mL) and the combined extracts washed with water, 

brine and dried with anhydrous Na2SO4. After concentration under reduced pressure HCl in Et2O was 

added to precipitate the product as a salt, which was filtered and recrystallized with MeOH:AcOEt (2:5) 

and Et2O to give 3p as a deep yellow solid, mp 275-277 ºC, in 66 % yield. 1H NMR (400 MHz, DMSO) 

δH (ppm) 8.63 (d, J = 8.2 Hz, 1H), 8.50 (d, J = 8.5 Hz, 1H), 8.47 (d, J = 8.2 Hz, 1H), 8.12 (dd, J = 8.5, 

7.6 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.87 (dd, J = 8.2, 7.6 Hz, 1H), 7.83 (dd, J = 8.1, 7.6 Hz, 1H), 7.66 

(d, J = 5.9 Hz, 2H), 7.56 (d, J = 6.7 Hz, 1H), 7.52 (dd, J = 6.7, 5.9 Hz, 2H), 7.48 (dd, J = 8.2, 7.6 Hz, 

1H), 4.88 (s, 3H), 4.44 (s, 2H), 4.27 (d, J = 12.5 Hz, 2H), 3.92 (t, J = 12.5 Hz, 2H), 3.77 (t, J = 10.3 Hz, 
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1H), 2.58 (d, J = 11.6 Hz, 2H), 2.28 (q, J = 11.6 Hz, 2H). 13C NMR (101 MHz, DMSO) δC (ppm) 

146.67, 144.61, 138.35, 138.06, 135.98, 132.38, 132.35, 131.28, 129.71, 129.37, 129.01, 126.03, 

125.32, 124.61, 121.46, 121.12, 117.42, 114.47, 113.27, 54.92, 50.73, 48.32, 38.46, 28.93. Anal. (C, H, 

N): Cal. for C28H29ClN4
.1.5H2O

.2HCl: C, 60.38, H, 6.15, N, 10.06, found: C, 60.68, H, 5.76, N, 10.00. 

7.2.8.17 Synthesis of 5-methyl-11-{[1-(2-hydroxybenzyl)piperidin-4-yl]amino}-10H-indolo[3,2-

b]quinolin-5-ium chloride (3q) 

Reaction of 3n (40.0 mg, 0.108 mmol) with salicylaldehyde (52.7 mg, 

0.432 mmol, 45 µL, 4 eq.) according to the procedure described for 3o, 

gave 3q, in 30 % yield (15.8mg), as an orange solid, mp 277-280 ºC. 1H 

NMR (400 MHz, DMSO) δH (ppm) 12.18 (s, NH), 9.47 (d, J = 1.2 Hz, 

NH), 8.67 (d, J = 8.1 Hz, 1H), 8.58 (d, J = 8.8 Hz, 1H), 8.30 (d, J = 8.3 

Hz, 1H), 8.10 (dd, J = 8.8, 7.1 Hz, 1H), 7.99 (d, J = 8.6 Hz, 1H), 7.86 (dd, J = 8.3, 7.1 Hz, 1H), 7.82 

(dd, J = 8.6, 7.3 Hz, 1H), 7.56 (d, J = 7.2 Hz, 1H), 7.46 (dd, J = 8.1, 7.3 Hz, 1H), 7.28 (dd, J = 7.8, 6.9 

Hz, 1H), 7.04 (d, J = 7.8 Hz, 1H), 6.89 (dd, J = 7.2, 6.9 Hz, 1H), 4.82 (s, 3H), 4.23 (s, 2H), 4.17 (d, J = 

12.2 Hz, 2H), 3.85 (t, J = 11.5 Hz, 2H), 3.53 (m, 1H), 2.46 (d broad, 2H), 2.23 (q, J = 5.8 Hz, 2H). 13C 

NMR (101 MHz, DMSO) δC (ppm) 155.99, 146.54, 143.94, 137.56, 137.28, 132.21, 132.19, 131.95, 

131.63, 130.34, 125.97, 125.04, 124.60, 121.15, 121.07, 119.04, 118.24, 118.13, 115.44, 114.19, 

113.67, 53.78, 50.74, 42.04, 39.27, 28.39. Anal. (C, H, N): Cal. for C28H29ClN4O
.2HCl.0.5H2O: C, 

60.60, H, 5.81, N, 10.10, found: C, 60.55, H, 5.89, N, 10.79. 

 

7.2.8.18 Synthesis of 5-methyl-11-(phenylamino)-10H-indolo[3,2-b]quinolin-5-ium chloride (3r) 

Following general procedure F, a suspension of 93a (40.0 mg, 0.132 mmol) was 

allowed to react with aniline (22.1 mg, 21.7 µL, 0.24 mmol, 1.8 eq.) to give 3r 

(75 %), mp 269-271 ºC, after recristalization with MeOH:AcOEt (1:2) and Et2O. 
1H NMR (400 MHz, DMSO) δH (ppm) 8.49 (d, J = 8.6 Hz, 1H), 8.44 (d, J = 8.5 

Hz, 1H), 8.34 (d, J = 8.7 Hz, 1H), 8.03 (dd, J = 8.7, 7.6 Hz, 1H), 7.69 (dd, J = 8.6, 

7.6 Hz, 1H), 7.65 (dd, J = 8.2, 7.6 Hz, 1H), 7.53 (d, J = 8.2 Hz, 1H), 7.41 (dd, J = 7.8, 7.5 Hz, 2H), 7.35 

(dd, J = 8.5, 7.6 Hz, 1H), 7.28 (d, J = 7.5 Hz, 1H), 7.18 (d, J = 7.8 Hz, 2H), 4.65 (s, 3H). 13C NMR (101 

MHz, DMSO) δC (ppm) 143.26, 139.75, 138.78, 137.94, 137.48, 133.65, 132.87, 130.98, 130.51, 

126.69, 126.09, 125.34, 125.04, 122.76, 122.32, 118.39, 118.18, 115.27, 114.22, 38.83. Anal. (C, H, N): 

Cal. for C22H18ClN3
.0.5H2O: C, 71.64, H, 5.19, N, 11.39, found: C, 71.13, H, 4.58, N, 11.29. 
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7.2.8.19 Synthesis of 5-methyl-11-{[4-(piperidin-1-yl)phenyl]amino}-10H-indolo[3,2-b] quinolin-

5-ium chloride (3s) 

Reaction of 4-(piperidin-1-yl)benzenamine (41.6 mg, 0.236 mmol, 1.8 eq.) 

with 93a (40 mg, 0.132 mmol) according to general procedure F, gave 3s as a 

yellow solid, mp 311-312 ºC in 66 % yield, after recrystallization using 

MeOH:AcOEt (1:3) and Et2O. 1H NMR (400 MHz, DMSO) δH (ppm) 8.65 (d, 

J = 8.1 Hz, 1H), 8.57 (d, J = 8.1 Hz, 1H), 8.42 (d, J = 8.1 Hz, 1H), 8.10 (dd, J 

= 8.1, 7.7 Hz, 1H), 7.76 (dd, J = 8.1, 7.7 Hz, 1H), 7.71 (dd, J = 8.0, 7.6 Hz, 

1H), 7.60 (d, J = 8.0 Hz, 1H), 7.43 (dd, J = 8.1, 7.6 Hz, 1H), 7.31 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 8.1 

Hz, 2H), 4.81 (s, 3H), 3.37 (s broad, 4H), 1.80 (s broad, 4H), 1.69 (d, J = 4.6 Hz, 2H). 13C NMR (101 

MHz, DMSO) δC (ppm) 152.10, 143.89, 141.13, 139.22, 137.94, 136.79, 132.58, 132.35, 129.48, 

125.95, 125.87, 125.31, 125.21, 122.48, 118.32, 118.25, 116.21, 114.45, 113.30, 51.89, 39.01, 26.85, 

25.23. Anal. (C, H, N): Cal. for C27H27ClN4
.1.5H2O: C, 69.00, H, 6.43, N, 11.92, found: C, 69.24, H, 

6.01, N, 11.93. 

7.2.8.20 Synthesis of 5-methyl-11-{{4-[(diethylamino)methyl]-3-hydroxyphenyl}-amino}-10H-

indolo[3,2-b]quinolin-5-ium chloride (3t) 

A solution of 105 (47.2 mg, 0.199 mmol, 1.5 eq.) and 93a (40 mg, 0.132 

mmol) in HCl 6M (10 mL) was refluxed for 20 hours. After this period the 

solution was concentrated under reduced pressure and the residue dissolved 

in Na2CO3 5 % (25 mL). The aqueous solution was extracted with CH2Cl2 

(3x20 mL) and the combined fractions washed with water and then dried 

with NaCl (sat.) and with anhydrous Na2SO4. After concentration under reduced pressure, HCl in Et2O 

was added and the precipitate formed filtered off and dried in a vacuum line, to give 3t as a orange 

solid, mp 228-231 ºC, in 31 % yield. 1H NMR (400 MHz, DMSO) δH (ppm) 11.84 (s, NH), 10.98 (s, 

OH), 10.63 (s, NH), 8.67 (d, J = 8.9 Hz, 1H), 8.60 (d, J = 8.5 Hz, 1H), 8.58 (d, J = 8.5 Hz, 1H), 8.09 

(dd, J = 8.5, 7.0 Hz, 1H), 7.78 (dd, J = 8.2, 6.2 Hz, 1H), 7.76 (d, J = 8.2 Hz, 1H), 7.74 (dd, J = 8.5, 7.0 

Hz, 1H), 7.46 (d, J = 8.3 Hz, 1H), 7.43 (dd, J = 8.9, 6.2 Hz, 1H), 6.95 (d, J = 2.0 Hz, 1H), 6.67 (dd, J = 

8.3, 2.0 Hz, 1H), 4.83 (s, 3H), 4.20 (d, J = 4.8 Hz, 2H), 3.13 (m, 4H), 1.29 (t, J = 7.1 Hz, 6H). 13C 

NMR (101 MHz, DMSO) δC (ppm) 157.28, 144.25, 142.71, 142.22, 137.68, 136.58, 136.19, 133.43, 

132.91, 132.32, 125.61, 125.22, 124.93, 120.99, 118.48, 117.94, 114.94, 113.60, 113.36, 111.83, 

107.90, 49.49, 46.05, 39.32, 8.50. Anal. (C, H, N): Cal. for C27H29ClN4O
.H2O

.2HCl: C, 58.75, H, 6.03, 

N, 10.15, found: C, 58.16, H, 5.45, N, 9.71. 
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7.2.8.21 Synthesis of 5-methyl-11-(pyridin-3-ylamino)-10H-indolo[3,2-b]quinolin-5-ium chloride 

(3u) 

To a solution of 93a (40.0 mg, 0.132 mmol) in DMF (5 mL) was added pyridin-3-

amine (37.2 mg, 0.396 mmol, 3 eq.), and the mixture heated at 100 ºC for 48 h. 

Solvent was removed under reduced pressure. The remaining crude mixture was 

dissolved in Na2CO3 5 % (20 mL) and extracted with CH2Cl2 (3x30 mL). The 

combined organic extracts were washed with water and brine and dried with 

anhydrous Na2SO4. After concentration under reduced pressure HCl in Et2O was added and the formed 

precipitate was filtered, washed with Et2O and dried in a vacuum line, to give 3u as a brown solid (22.6 

mg), mp 157-159 ºC , in 48 % yield. 1H NMR (400 MHz, DMSO) δH (ppm) 11.64 (s, NH), 8.79 (d, J = 

8.4 Hz, 1H), 8.69 (d, J = 8.4 Hz, 1H), 8.64 (s, 1H), 8.63 (d, J = 7.2 Hz, 1H), 8.46 (d, J = 8.2 Hz, 1H), 

8.13 (dd, J = 8.2, 7.2 Hz, 1H), 7.82 (dd, J = 8.4, 7.2 Hz, 1H), 7.79 (dd, J = 7.8, 7.5 Hz, 1H), 7.67 (d, J = 

7.8 Hz, 1H), 7.63 (d, J = 5.7 Hz, 1H), 7.51 (dd, J = 8.2, 5.7 Hz, 1H), 7.44 (dd, J = 8.4, 7.2 Hz, 1H), 4.86 

(s, 3H). 13C NMR (101 MHz, DMSO) δC (ppm) 143.65, 143.62, 141.60, 137.89, 137.44, 137.42, 

132.83, 132.58, 128.32, 125.62, 125.53, 125.37, 124.77, 124.55, 121.95, 118.69, 118.49, 115.16, 

113.88, 49.05. Anal. (C, H, N): Cal. for C21H17ClN4
.2H2O: C, 63.55, H, 5.33, N, 14.12, found: C, 63.12, 

H, 5.59, N, 13.94. 

7.2.8.22 Synthesis of 3-chloro-5-methyl-11-{[3-(diethylamino)propyl]amino}-10H-indolo[3,2-b] 

quinolin-5-ium chloride (3v) 

To a suspension of 93b (40.0 mg, 0.118  mmol) in EtOAc (5 mL) was added 

commercial N1,N1-diethylpropane-1,3-diamine ( 21.2 mg, 0.212 mmol, 21.4 

µL, 1.8 eq.), according to general procedure F, giving 25.1 mg (53 %) of 3v, as 

dark yellow solid, mp 231-234 ºC. 1H NMR (400 MHz, DMSO): δH (ppm) 

12.49 (s, NH), 9.41 (s, NH), 8.91 (d, J = 9.1 Hz, 1H), 8.55 (d, J = 8.4 Hz, 1H), 

8.46 (s, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.72 (dd J = 

9.1, 7.4 Hz, 1H), 7.37 (dd, J = 8.4, 7.4 Hz, 1H), 4.59 (s, 3H), 4.32 (s broad, 2H), 3.30 (s broad, 3H), 

3.11 (q broad, 2H), 2.26 (s broad, 2H), 1.22 (t, J = 6.7 Hz, 6H). 13C NMR (101 MHz, DMSO) δC (ppm) 

144.12, 143.29, 138.45, 137.87, 135.95, 131.01, 127.17, 124.71, 124.56, 121.35, 117.52, 117.24, 

116.94, 114.79, 114.41, 48.56, 46.49, 43.60, 38.83, 24.39, 8.87. Anal. (C, H, N): Cal. for 

C21H28Cl2N4
.2HCl.0.5H2O: C, 53.81, H, 6.09, N, 10.91, found: C, 53.56, H, 5.87, N, 10.74. 

7.2.8.23 Synthesis of 3-chloro-5-methyl-11-(piperidin-4-ylamino)-10H-indolo[3,2-b] quinolin-5-

ium chloride (3w) 

To a suspension of 93b (30.0 mg, 0.088 mmol) in EtOAc (5 mL) was added piperidin-4-amine (17.7 

mg, 0.177 mmol, 18.6 µL, 2 eq.), according to general procedure F, giving 18.8 mg ( 53 %) of 3w, as 

dark yellow solid, mp  320-322 ºC. 1H NMR (400 MHz, DMSO): δH (ppm) 12.37 (s, NH), 8.71 (s, 1H), 
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8.66 (d, J = 8.2 Hz, 1H), 8.63 (s, NH), 8.28 (d, J = 9.1 Hz, 1H), 8.03 (d, J = 

8.0 Hz, 1H), 7.88 (d, J = 9.1 Hz, 1H), 7.82 (dd, J = 8.0, 7.7 Hz, 1H), 7.44 

(dd, J = 8.2, 7.7 Hz, 1H), 4.79 (s, 3H), 4.18 (d, J = 11.6 Hz, 2H), 3.92 (t, J = 

10.7 Hz, 2H), 3.54 (m, 1H), 2.33 (d, J = 11.6 Hz, 2H), 2.07 (q, J = 10.7 Hz, 

2H). 13C NMR (101 MHz, DMSO) δC (ppm) 147.35, 144.48, 138.78, 137.90, 

137.69, 132.52, 128.75, 125.82, 125.59, 124.90, 121.76, 119.25, 118.00, 114.63, 114.33, 51.38, 47.54, 

39.49, 30.72. Anal. (C, H, N): Cal. for C21H22Cl2N4
.2HCl.1.5H2O: C, 50.32, H, 5.43, N, 11.18, found: C, 

50.03, H, 5.06, N, 11.33. 

7.2.8.24 Synthesis of 3,8-dichloro-5-methyl-11-(piperidin-4-ylamino)-10H-indolo[3,2-b] quinolin-

5-ium chloride (3x) 

To a suspension of 93c (21.7 mg, 0.058 mmol) in EtOAc (5 mL) was 

added piperidin-4-amine (10.8 mg, 0.116 mmol, 11.3 µL, 1.8 eq.), 

according to general procedure F, giving 7.7 mg (30 %) of 3x, as a 

orange solid, mp 315-317 ºC. 1H NMR (400 MHz, MeOD): δH (ppm) 

8.55 (d, J = 8.9 Hz, 1H), 8.53 (s, 1H), 8.35 (d, J = 9.1 Hz, 1H), 7.90 (s, 

1H), 7.80 (d, J = 9.1 Hz, 1H), 7.41 (d, J = 8.9 Hz, 1H), 4.75 (s, 3H), 4.23 (d, J = 12.1 Hz, 2H), 3.91 (t, J 

= 12.1 Hz, 2H), 3.64 (s broad, 1H), 2.38 (d, J = 11.4 Hz, 2H), 2.15 (d, J = 11.4 Hz, 2H). 13C NMR (101 

MHz, DMSO) δC (ppm) 148.61, 145.94, 140.28, 140.16, 139.76, 139.18, 129.34, 127.27, 126.67, 

124.91, 123.55, 120.84, 118.38, 114.47, 114.23, 52.29, 49.22, 39.93, 31.62. Anal. (C, H, N): Cal. for 

C21H21Cl3N4
.2HCl: C, 49.58, H, 4.56, N, 11.01, found: C, 49.76, H, 4.94, N, 11.06. 

7.2.8.25 Synthesis of 5-methyl-11-(diethylamino)-10H-indolo[3,2-b]quinolin-5-ium chloride (3y) 

To a solution of 93a (40 mg, 0.132 mmol) in DMF (10 mL) was added 

diethylamine (38.6 mg, 54.8 µL, 0.528 mmol, 4 eq.) and allowed to react 

overnight at room temperature. The solvent was removed at reduced pressure, the 

solid suspended in 5 % sodium carbonate (20 mL) and extracted with chloroform 

(3x20 mL). The combined organic extracts were washed with water, dried with 

brine (20 mL) and anhydrous Na2SO4 and solvent removed under reduced pressure. Recristalization 

from chloroform with HCl in diethyl ether gave 65% (29.3 mg) of pure 3y, as a light yellow solid, mp 

251-254 ºC. 1H NMR (400 MHz, MeOD) δH (ppm) 8.54 (d, J = 8.5 Hz, 1H), 8.45 (d, J = 8.5 Hz, 1H), 

8.41 (d, J = 9.0 Hz, 1H), 8.02 (dd, J = 9.0 8.4 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.75 (dd, J = 8.5, 8.4 

Hz, 1H), 7.71 (dd, J = 8.4, 7.7 Hz, 1H), 7.39 (dd, J = 8.5, 7.7 Hz, 1H), 4.80 (s, 3H), 4.00 (q, J = 7.1 Hz, 

4H), 1.30 (t, J = 7.1 Hz, 6H). 13C NMR (101 MHz, MeOD) δC (ppm) 145.73, 142.53, 136.62, 135.73, 

130.64, 130.41, 125.44, 125.35, 123.26, 122.90, 120.89, 119.68, 115.68, 113.10, 111.49, 45.78, 36.73, 

11.27. Anal. (C, H, N): Cal. for C20H22ClN3
.HCl.0.3H2O: C, 62.93, H, 6.23, N, 11.01, found: C, 62.92, 

H, 6.30, N, 10.74. 
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7.2.9 Synthesis of Quindolone Derivatives (5) 

7.2.9.1 General procedure G: Synthesis of 5,10-bis[2-(diethylamino)ethy])-5H-indolo[3,2-

b]quinolin-11(10H)-one (5a) 

To a solution of  4 (40 mg, 0.17 mmol), K2CO3 (352.4 mg, 2.55 mmol, 15 eq.), NaI (101.9 mg, 0.68 

mmol, 4 eq.) in dried acetone (15 mL) was added 2-chloro-N1,N1-diethylethanaminium chloride (117.0 

mg, 0.68 mmol, 4 eq.) and refluxed overnight. At the end of time, solvent was removed at reduced 

presure and the remain solid suspended in H2O (30 mL). The aqueous solution was extracted with 

CH2Cl2 (3x30 mL) and the combined organic extracts, washed with water, dried with brine and 

anhydrous Na2SO4 and reduced to small volume. The crude mixture was purified by preparative thin 

layer chromatography (P-TLC) using as eluent CH2Cl:MeOH (9:1) to afford the compounds: 5,10-

bis[2-(diethylamino)ethyl]-5H-indolo[3,2-b]quinolin-11(10H)-one (5a, 16.9 mg, 23 %, Rf 0.43), 2-{11-

[2-(diethylamino)ethoxy]-10H-indolo[3,2-b]quinolin-10-yl}-N,N-diethylethanamine (94a, 40.8 mg, 55 

%, Rf 0.56) and 2-[(10H-indolo[3,2-b]quinolin-11-yl)oxy]-N,N-diethylethanamine (95a, 9.6 mg, 17 %, 

Rf 0.75) as light yellow solids. Compounds were precipitated as hydrochlorides with HCl in Et2O.           

5,10-bis[2-(diethylamino)ethyl]-5H-indolo[3,2-b]quinolin-11(10H)-one (5a): mp 

228-231 ºC; 1H NMR (400 MHz, CDCl3) H (ppm) 8.69 (d, J = 8.3 Hz, 1H), 8.25 

(d, J = 8.4 Hz, 1H), 7.70 (m, 2H), 7.59 (d, J = 8.3 Hz, 1H), 7.54 (dd, J = 8.3, 7.6 

Hz, 1H), 7.34 (dd, J = 8,3, 7.5 Hz, 1H), 7.24 (dd, J = 8.4, 7.6 Hz, 1H), 5.00 (t, J = 

8.0 Hz, 2H), 4.84 (t, J = 7.8 Hz, 2H), 3.03 (t, J = 8.0 Hz, 2H), 2.92 (t, J = 7.8 Hz, 

2H), 2.71 (q, J = 15.4, 7.1 Hz, 8H), 1.09 (t, J = 15.4, 7.1 Hz, 12H). 13C NMR 

(101 MHz, CDCl3) C (ppm) 169.13, 139.70, 139.65, 131.38, 130.62, 127.32, 

126.86, 124.89, 122.69, 122.60, 120.95, 119.52, 115.14, 114.11, 110.63, 53.17, 50.87, 47.69, 47.35, 

43.10, 11.85. Anal. (C, H, N): Cal. for C27H36N4O
.0.4HCl: C, 72.52 , H, 8.20, N, 12.53, found: C, 72.26, 

H, 8.33, N, 12.27. 

 

2-{11-[2-(diethylamino)ethoxy]-10H-indolo[3,2-b]quinolin-10-yl}-N,N-diethyleth 

anamine (94a): mp 144-146 ºC; 1H NMR (400 MHz, CDCl3) H (ppm)  8.55 (d, J 

= 7.7 Hz, 1H), 8.40 (d, J = 8.2 Hz, 1H), 8.33 (d, J = 8.5 Hz, 1H), 7.70 (dd, J = 8.5, 

6.8 Hz, 1H), 7.66 (dd, J = 8.2, 7.4 Hz, 1H), 7.58 (dd, J = 8.2, 6.80 Hz, 1H), 7.52 (d, 

J = 8.2 Hz, 1H), 7.35 (dd, J = 7.7, 7.4 Hz, 1H), 4.73 (t, J = 7.70 Hz, 2H), 4.32 (t, J 

= 6.3 Hz, 2H), 3.10 (t, J = 6.3 Hz, 2H), 2.79 (t, J = 7.70 Hz, 2H), 2.70 (q, J = 7.1 Hz, 4H), 2.62 (q, J = 

7.1 Hz, 4H), 1.13 (t, J = 7.1 Hz, 6H), 1.00 (t, J = 7.1 Hz, 6H). 13C NMR (101 MHz, CDCl3) C (ppm) 

148.59, 145.83, 144.80, 144.58, 129.69, 129.31, 126.65, 124.87, 124.68, 122.46, 122.23, 122.08, 
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121.27, 119.86, 109.17, 74.51, 52.93, 51.71, 47.69, 47.62, 43.51, 12.06. Anal. (C, H, N): Cal. for 

C27H38N4O
.4HCl: C, 55.87, H, 7.29, N, 9.65, found: C, 55.43, H, 7.39, N, 9.24. 

2-[(10H-indolo[3,2-b]quinolin-11-yl)oxy]-N,N-diethylethanamine (95a): mp 

193-195 ºC; 1H NMR (400 MHz, CDCl3) δH (ppm) 12.63 (s, NH), 8.56 (d, J = 

7.8 Hz, 1H), 8.34 (d, J = 8.3 Hz, 1H), 8.32 (d, J = 8.6 Hz, 1H), 7.67 (dd, J = 8.6, 

7.0 Hz, 1H), 7.60 (dd, J = 9.1, 7.1 Hz, 1H), 7.54 (dd, J = 8.3, 7.0 Hz, 1H), 7.46 

(d, J = 8.1 Hz, 1H), 7.32 (dd, J = 7.8, 7.1 Hz, 1H), 4.58 (t, J = 7.5 Hz, 2H), 3.07 

(t, J = 7.5 Hz, 2H), 2.90 (q, J = 7.2 Hz, 4H), 1.26 (t, J = 7.2 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 

148.68, 145.54, 144.65, 143.52, 129.38, 128.95, 126.47, 124.23, 123.95, 122.58, 122.20, 121.48, 

120.96, 119.37, 111.04, 73.99, 55.09, 48.51, 11.33. Anal. (C, H, N): Cal. for C21H23N3O
.2.8HCl: C, 

57.91, H, 5.97, N, 9.65, found: C, 57.56, H, 5.82, N, 9.83. 

7.2.9.2 Synthesis of 3-chloro-5,10-bis[2-(diethylamino)ethyl]-5H-indolo[3,2-b]quinolin-11(10H)-

one (5b) 

According to general procedure G, 91a (40 mg, 0.118 mmol) was reacted with 2-chloro-N1,N1-

diethylethanaminium chloride (64.5  mg, 0.472 mmol, 4 eq.). After purification by preparative thin layer 

chromatography (P-TLC) using as eluent CH2Cl2:MeOH (9:1) the compounds were isolated: 3-chloro-

5,10-bis[2-(diethylamino)ethyl]-5H-indolo[3,2-b]quinolin-11(10H)-one (5b, 11.6 mg, 21 %, Rf 0.22), 2-

{[3-chloro-10-(2-(diethylamino)ethyl)-10H-indolo[3,2-b]quinolin-11-yl]oxy}-N,N-diethylethanamine 

(94b, 18.3 mg, 33 %, Rf 0.38) and 2-[(3-chloro-10H-indolo[3,2-b]quinolin-11-yl)oxy]-N,N-

diethylethanamine (95b, 3.0 mg, 7 %, Rf 0.70) as light yellow solids.     . 

 3-chloro-5,10-bis[2-(diethylamino)ethyl]-5H-indolo[3,2-b]quinolin-11(10H)-

one (5b): mp 223-225 ºC; 1H NMR (400 MHz, CDCl3) δH (ppm) 8.57 (d, J = 

8.7 Hz, 1H), 8.18 (d, J = 8.4 Hz, 1H), 7.72 (d, J = 1.6 Hz, 1H), 7.59 (d, J = 8.4 

Hz, 1H), 7.54 (dd, J = 8.4 Hz, 1H), 7.27 (dd, J = 8.7, 1.6 Hz, 1H), 7.23 (d, J = 8.8 

Hz, 1H), 4.97 (t J = 7.3 Hz, 2H), 4.77 (t, J = 7.4 Hz, 2H), 3.02 (d, J = 7.4 Hz,  

2H), 2.90 (t, J = 7.3 Hz,  2H), 2.69 (q, J = 7.1 Hz, 8H), 1.07 (t, J = 7.1 Hz, 6H), 

1.06 (t, J = 7.2 Hz, 6H). 13C NMR (101 MHz, CDCl3) δC (ppm) 168.61, 

140.36, 139.72, 137.70, 130.62, 128.43, 127.56, 123.26, 122.78, 122.46, 121.66, 119.84, 115.05, 

114.33, 110.77, 53.12, 51.10, 47.73, 47.67, 47.57, 43.08, 12.03. Anal. (C, H, N): Cal. for 

C27H35ClN4O
.3.8HCl: C, 53.55, H, 6.46, N, 9.25, found: C, 53.22, H, 6.36, N, 9.09. 

2-{[3-chloro-10-(2-(diethylamino)ethyl)-10H-indolo[3,2-b]quinolin-11-yl] 

oxy}-N,N-diethylethanamine (94b): mp 153-156 ºC; 1H NMR (400 MHz, 

CDCl3) δH (ppm) 8.51 (d, J = 7.7 Hz, 1H), 8.39 (d, J = 9.0 Hz, 1H), 8.32 (d, J = 

1.9 Hz, 1H), 7.67 (dd, J = 7.3 Hz, 1H), 7.51 (m, 2H), 7.35 (dd, J = 7.7, 7.3 Hz, 

1H), 4.69 (t, J = 7.5 Hz, 2H), 4.28 (t, J = 6.1 Hz, 2H), 3.06 (t, J = 6.1 Hz, 2H), 

2.80 (t, J = 7.5 Hz, 2H), 2.69 (q, J = 7.1 Hz, 4H), 2.60 (q, J = 7.1 Hz, 4H), 1.12 (t, 
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J = 7.1 Hz, 6H), 0.98 (t, J = 7.1 Hz, 6H). 13C NMR (101 MHz, CDCl3) δC (ppm) 149.45, 146.03, 144.92, 

144.70, 132.34, 130.02, 128.00, 125.54, 124.95, 122.86, 122.23, 122.18, 120.68, 120.05, 109.29, 74.92, 

53.04, 51.76, 47.71, 47.63, 43.60, 12.10, 11.91. Anal. (C, H, N): Cal. for C27H37ClN4O
.4.8HCl: C, 

50.35, H, 6.54, N, 8.70, found: C, 50.09, H, 6.87, N, 8.98. 

2-[(3-chloro-10H-indolo[3,2-b]quinolin-11-yl)oxy]-N,N-diethylethanamine 

(95b): mp 199-202 ºC;  1H NMR (400 MHz, CDCl3) δH (ppm) 8.51 (d, J = 7.8 

Hz, 1H), 8.31 (d, J = 1.9 Hz, 1H), 8.25 (d, J = 9.0 Hz, 1H), 7.61 (dd, J = 8.6, 

7.8 Hz 1H), 7.49 (d, J = 8.6 Hz, 1H), 7.47 (dd, J = 9.0, 1.9 Hz, 1H), 7.32 (dd, 

J = 7.8, 7.8 Hz, 1H), 4.62 (t, J = 4.3 Hz, 2H), 3.14 (t, J = 4.3 Hz, 2H), 2.97 (q, 

J = 7.01Hz, 4H), 1.29 (t, J = 7.1 Hz, 6H). 13C NMR (101 MHz, CDCl3) δC 

(ppm) 148.60, 145.66, 143.71, 132.16, 129.78, 127.69, 125.52, 125.15, 123.75, 122.33, 122.23, 119.73, 

119.62, 111.26, 54.90, 48.70, 11.06. Anal. (C, H, N): Cal. for C21H22ClN3O
.1.9HCl: C, 57.70, H, 5.51, 

N, 9.61, found: C, 57.51, H, 5.82, N, 9.36. 

7.2.9.3 Synthesis of 3,7-dichloro-5,10-bis[2-(diethylamino)ethyl]-5H-indolo[3,2-b]quinolin-

11(10H)-one (5c) 

According to General procedure G, 92c (40 mg, 0.13 mmol) was reacted with 2-chloro-N1,N1-

diethylethanaminium chloride (72.1 mg, 5.28 mmol, 4 eq.). After purification by preparative thin layer 

chromatography (P-TLC) using as eluent CH2Cl2:MeOH (9:1) the following compounds were isolated: 

3,7-dichloro-5,10-bis[2-(diethylamino)ethyl]-5H-indolo[3,2-b]quinolin-11(10H)-one (5c, 12.6 mg, 19 

%,  Rf 0.39), 2-{[3,7-dichloro-10-(2-(diethylamino)ethyl)-10H-indolo[3,2-b]quinolin-11-yl]oxy}-N,N-

diethylethanamine (94c, 22.5 mg, 34 %, Rf 0.56) and 2-[(3,7-dichloro-10H-indolo[3,2-b]quinolin-11-

yl)oxy]-N,N-diethylethanamine (95c, 2.65 mg, 5 %, Rf 0.80) as light yellow solids.      

 

3,7-dichloro-5,10-bis[2-(diethylamino)ethyl]-5H-indolo[3,2-b]quinolin-

11(10H)-one (5c): mp 230-233 ºC; 1H NMR (400 MHz, CDCl3) δH (ppm) 

8.57 (d, J = 8.7 Hz, 1H), 8.27 (d, J = 1.6 Hz, 1H), 7.72 (d, J = 1.6 Hz, 1H), 

7.57 (t, J = 10.5 Hz, 1H), 7.51 (dd, J = 9.0, 1.7 Hz, 1H), 7.30 (d, J = 8.7 Hz, 

1H), 4.96 (t, J = 7.4 Hz, 2H), 4.72 (t, J = 7.8 Hz, 2H), 3.04 (t, J = 7.8 Hz, 

2H), 2.92 (t, J = 7.4 Hz, 2H), 2.71 (q, J = 7.1 Hz, 8H), 1.13 (t, J = 7.1 Hz, 6H), 

1.05 (t, J = 7.1 Hz, 6H). 13C NMR (101 MHz, CDCl3) δC (ppm) 168.73, 

140.44, 138.04, 137.96, 129.74, 128.43, 127.82, 125.38, 123.32, 123.18, 121.84, 121.76, 115.68, 

114.30, 111.96, 53.22, 50.91, 47.78, 47.53, 43.35, 11.93. Anal. (C, H, N): Cal. for 

C27H34Cl2N4O
.3.7HCl: C, 50.96, H, 5.97, N, 8.80, found: C, 50.79, H, 5.76, N, 8.83. 
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2-{[3,7-dichloro-10-(2-(diethylamino)ethyl)-10H-indolo[3,2-b]quinolin-11-

yl]oxy}-N,N-diethylethanamine (94c) : mp 145-148 ºC; 1H NMR (400 

MHz, CDCl3) δH (ppm) 8.45 (d, J = 2.0 Hz, 1H), 8.37 (d, J = 9.0 Hz, 1H), 

8.26 (d, J = 2.0 Hz, 1H), 7.59 (dd, J = 8.7, 2.0 Hz, 1H), 7.50 (dd, J = 9.0, 

2.0 Hz, 1H), 7.42 (d, J = 8.7 Hz, 1H), 4.69 (t, J = 7.3 Hz, 2H), 4.27 (t, J = 

6.0 Hz, 2H), 3.05 (t, J = 6.0 Hz, 2H), 2.77 (t, J = 7.3 Hz, 2H), 2.69 (q, J = 

7.1 Hz, 4H), 2.56 (q, J = 7.1 Hz, 4H), 1.12 (t, J = 7.1 Hz, 6H), 0.93 (t, J = 7.1 Hz, 6H). 13C NMR (101 

MHz, CDCl3) δC (ppm) 148.10, 146.15, 145.09, 143.16, 132.65, 129.86, 128.04, 125.87, 125.56, 

125.36, 123.33, 122.91, 121.72, 120.80, 110.48, 75.06, 53.07, 51.88, 47.69, 47.58, 43.88, 12.07, 11.89. 

Anal. (C, H, N): Cal. for C27H36Cl2N4O
.4HCl: C, 49.94, H, 6.21, N, 8.63, found: C, 49.58, H, 6.28, N, 

8.30. 

2-[(3,7-dichloro-10H-indolo[3,2-b]quinolin-11-yl)oxy]-N,N-diethylethan-

amine (95c): mp 190-194  ºC; 1H NMR (400 MHz, CDCl3) δH (ppm) 12.69 

(s, NH), 8.48 (d, J = 1.9 Hz, 1H), 8.28 (d, J = 1.8 Hz, 1H), 8.24 (d, J = 9.0 

Hz, 1H), 7.54 (dd, J = 8.6, 1.9 Hz, 1H), 7.47 (dd, J = 9.0, 1.8 Hz, 1H), 7.39 

(d, J = 8.6 Hz, 1H), 4.63 (t, J = 4.4 Hz, 2H), 3.15 (t, J = 4.4 Hz, 2H), 2.97 (q, 

J = 7.3 Hz, 4H), 1.28 (t, J = 7.3 Hz, 6H). 13C NMR (101 MHz, CDCl3) δC via 

HMQC (ppm) 129.63, 127.55, 125.36, 122.30, 121.63, 112.07, 73.19, 54.58, 48.27, 10.74. Anal. (C, H, 

N): Cal. for C21H21Cl2N3O
.3HCl: C, 49.29, H, 4.73, N, 8.21, found: C, 49.42, H, 4.98, N, 8.25. 

7.2.10 Synthesis of N1,N1-Dimethylpropane-1,2-diamine (97) 

To a solution of NH4OAc (5.26 g, 68.2 mmol, 8 eq.), NaBH3CN (0.634 g, 10 mmol, 1.2 

eq.), anhydrous MgSO4 (8 g) in dry MeOH was added 1-(dimethylamino)propan-2-one 

(0.863 g, 8.5 mmol, 1 mL). The reaction mixture was refluxed for 20 hours. After this period the 

MgSO4 was removed and the reaction mixture acidified with concentrated HCl until pH=2. The solvent 

was removed at reduced pressure and the crude product dissolved in water (50 mL). The aqueous 

solution was washed with Et2O (3x20 mL), basified with NaOH 10 % until pH=10 and extracted with 

CH2Cl2 (3x20 mL). The organic extracts were washed with water and brine, dried (anhydrous Na2SO4) 

and the solvent removed at reduced pressure to give 97, 24 % (204.2 mg), as a light brown oil. 1H NMR 

(400 MHz, CDCl3) δH (ppm) 3.00 (m, 1H), 2.18 (s, 6H), 2.12 (d, J = 10.1 Hz, 1H), 2.04 (dd, J= 4.2, 4.1 

Hz, 1H), 1.01 (d, J = 6.89 Hz, 3H). 13C NMR (101 MHz, CDCl3) δC (ppm) 68.20, 45.82, 44.14, 21.07. 

7.2.11  Synthesis of 2-(3-(Piperidin-1-yl)-propyl)isoindoline-1,3-dione (99) 

To a solution of N-(3-bromopropyl)phthalimide (2.71 g,  10.1 mmol), TEA (1.22 

g, 24.2 mmol, 1.67 mL, 2.4 eq.) in CH2Cl2 (40 mL) was added piperidine (0.86 

g, 10.1 mmol, 1 mL, 1 eq.). Reaction mixture was refluxed 30 hours and after 

this period, the solvent was removed at reduce pressure. The crude residue was purified by column 
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chromatography (CH2Cl2 and CH2Cl2:MeOH (9:1)) to afford 99, 1.45 g (51 %) as a white solid, mp 

266-267 ºC. 1H NMR (400 MHz, CDCl3) δH (ppm) 7.83 (dd, J = 5.2, 3.1 Hz, 2H), 7.73 (dd, J = 5.2, 3.1 

Hz, 2H), 3.78 (t, J = 6.57 Hz, 2H), 3.06-2.66 (m, 6H), 2.23 (quintet, J = 7.2 Hz, 2H), 1.90 (m, 4H), 1.57 

(m, 2H). 13C NMR (101 MHz, CDCl3) δC (ppm) 168.18, 134.08, 131.81, 123.28, 55.63, 53.64, 35.66, 

23.93, 23.38, 22.58. 

7.2.12 Synthesis of 3-Piperidin-1-yl-propan-1-amine (100) 

To a solution of 99 (0.5 g, 1.83 mmol) in EtOH (30 mL) was added hydrazine (0.568 

g, 4.38 mmol, 0.552 mL, 2.4 eq.). The reaction mixture was refluxed 3 hours. The 

white precipitate which formed was collected and the solvent removed at reduced pressure. The crude 

product was dissolved in CH2Cl2, the precipitate was again collected and the solvent evaporated at 

reduce pressure to give 100, 71 % yield (178 mg), as a light brown oil. 1H NMR (400 MHz, CDCl3) δH 

(ppm) 2.98 (s, 1H), 2.75 (t, J = 6.3 Hz, 2H), 2.39 (m, 6H), 1.63 (quintet, J = 6.9 Hz, 2H), 1.54 (m, 4H), 

1.38 (m, 2H). 13C NMR (101 MHz, CDCl3) δC (ppm) 57.19, 54.34, 40.69, 28.86, 25.62, 24.07. 

7.2.13 Synthesis of Tert-butyl-4-(diethylamino)butylcarbamate (102) 

A solution of tert-butyl 4-aminobutylcarbamate 101 (98.4 mg, 0.52 mmol, 0.1 

mL), anhydrous MgSO4 (2 g) and NaBH3CN (70.4 mg, 1.25 mmol, 2.4 eq.) in 

dry MeOH (5 mL) was cooled to 0 ºC. Acetaldehyde (1 mL) was added and 

reaction continued for 2 hours at in a ice bath. After this period the anhydrous MgSO4 was collect by 

filtration and the solvent removed at reduced pressure. The crude product was then dissolved in water (5 

mL), basified with aqueous solution of KOH 5% until pH=10 and extracted with CH2Cl2 (3x20 mL). 

The combined organic extracts was washed with water and brine, dried (anhydrous Na2SO4) and 

evaporated at reduced pressure to give 102, 94 % yield (119.9 mg), as a yellow oil. 1H NMR (400 MHz, 

CDCl3) δH (ppm) 5.42 (s, NH), 2.95 (d, J = 5.3 Hz, 2H), 2.43 (q, J = 7.1, Hz 4H), 2.32 (t, J = 6.5 Hz, 

2H), 1.36 (s broad, 4H), 1.27 (s, 9H), 0.90 (t, J = 7.1 Hz, 6H). 13C NMR (101 MHz, CDCl3) δC (ppm) 

155.77, 78.21, 51.96, 46.09, 39.89, 27.99, 27.65, 23.55, 10.55. 

7.2.14 Synthesis of N1,N1-Diethyl-butane-1,4-diamine (103) 

A solution of 102 (119.9 mg, 0.49 mmol) in CH2Cl2:TFA (1:1, 2 mL) was stirred at 

room temperature for 1 hour. After this period the solvent was removed at reduced 

pressure, and the crude residue neutralized with aqueous solution of KOH (2 M). 

The aqueous solution was then extracted with CH2Cl2 (3x10 mL). The combined organic extracts were 

washed with water and brine, dried (anhydrous Na2SO4) and evaporated at reduced pressure, to give 

103, 63 % yield (44.8 mg), as a yellow oil. 1H NMR (400 MHz, CDCl3) δH (ppm) 4.02 (s, NH2), 2.70 (t, 

J = 6.2 Hz, 2H), 2.50 (q, J = 7.1 Hz, 4H), 2.39 (t, J = 6.7 Hz, 2H), 1.50 (m, 4H), 0.97 (t, J = 7.1 Hz, 

6H). 13C NMR (101 MHz, CDCl3) δC (ppm) 52.14, 45.98, 40.92, 30.01, 24.12, 10.60. 
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7.2.15 Synthesis of N-(4-((Diethylamino)-methyl)-3-hydroxyphenyl)-acetamido (105) 

To a solution of N-(3-hydroxyphenyl)acetamide 104 (2 g, 13.2 mmol), formaldehyde 

(0.792 g, 0.73 mL, 26.4 mmol, 2 eq.) in EtOH (20 mL) was added diethylamine (1.93 

g, 2.74 mL, 26.4 mmol, 2 eq.). The mixture was refluxed for 96 h and after this 

period the solvent was removed at reduced pressure. The remains residue was 

dissolved in CH2Cl2 (20 mL) and extracted with HCl 0.1 M (4x50 mL). The 

combined aqueous extracts were basified to achieve pH 10 with KOH 5 % and 

extracted with CH2Cl2 (3x 20 mL). The organic extracts were washed with H2O and dried with NaCl 

(sat.) and anhydrous Na2SO4. Evaporation of the solvent gave 105, as yellow oil, yielding 55 %. 1H 

NMR (400 MHz, CDCl3) δH (ppm) 8.08 (s, OH), 7.05 (d, J = 7.9 Hz, 1H), 6.90 (s, 1H), 6.88 (d, J = 7.9 

Hz, 1H), 3.71 (s, 2H), 2.60 (q, J = 6.7 Hz, 4H), 2.11 (s, 3H), 1.08 (t, J = 6.7 Hz, 6H). 13C NMR (101 

MHz, CDCl3) δC ppm 168.46, 158.08, 138.12, 128.25, 117.41, 110.34, 107.19, 55.86, 45.70, 24.01, 

10.63. 

7.3 Acid Dissociation Constants (pKa) 

7.3.1 UV-visible Spectrophotoscopy 

Solutions of cryptolepine, quindolone and derivatives (5 µM) were prepared in HCl or NaOH 

aqueous solutions, ranging from pH 3 to 13.7. All spectra were record at 25 ºC. The acid dissociation 

constants were obtained after nonlinear regression fitting of the absorbance data at fixed wavelengths 

and at different pH values to the modified Henderson-Hasselbalch equation {single pKa, 

Y=[U+L*(10(pH-pKa))/(10(pH-pKa)+1)]; two pKa, Y=[M+L*(10(pH-pKa1))/(10(pH-pKa1)+1)]- [U-M*(10(pH-

pKa2))/(10(pH-pKa2)+1)]} were U is the upper limit of absorbance, M is medium value and L is the lower 

limit) with GraphPad Prism computer program (GraphPad software, Version 5.00,  San Diego, CA). 

7.3.2 Nuclear Magnetic Resonance (NMR) 

The determination of the acid dissociation constants (pKa) by nuclear magnetic resonance for 

cryptolepine (1) and for some cryptolepine derivatives were obtained after nonlinear regression fitting 

of the chemical shifts in the 1H-NMR spectra, of selected protons, at different pH* values to the 

Henderson-Hasselbalch equation {single pKa, Y=[U+L*(10(pH-pKa))/(10(pH-pKa)+1)]; two pKa, 

Y=[M+L*(10(pH-pKa1))/(10(pH-pKa1)+1)]- [U-L*(10(pH-pKa2))/(10(pH-pKa2)+1)]} were U is the upper limit, and 

L is the lower limit) with GraphPad Prism computer program (GraphPad software, Version 5.00,  San 

Diego, CA). The NMR spectra were record in DMSO-d6/D2O (40:60), at 25 ºC and with the 3-

(trimethylsilyl)propionic acid (TSP-d4) as internal reference. 
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7.4 Interaction with Oligonucleotides 

7.4.1 Determination of Oligonucleotides Concentration  

Single and double-stranded oligonucleotides were purchased from ATDBio Ltd., Southampton 

(UK). From received oligonucleotide aqueous solution was taken an aliquot (1-2 µL) and the volume 

made up to 1 mL with water. UV-visible absorption spectrum was then record at 25 ºC with base line 

correction to water. The concentrations of the samples were determined from the absorbance at 260 nm 

and the molar extinction coefficients (ɛ) of the oligonucleotides according to the Beer-Lambert law.   

7.4.2 Binding Stoichiometry 

Binding stoichiometries for cryptolepine and derivatives with 12-mer double-stranded 

oligonucleotide were monitored by spectrophotofluorimetry or UV-Visible spectrophotometry using the 

Job method of continuous variation.(352) The total concentration of DNA and cryptolepine ligand in the 

solutions was kept constant, and the changes in fluorescence or absorbance intensity monitored as a 

function of the mole fraction of cryptolepine ligand.  The intercept of the two best-fit lines obtained by 

least squares linear regression analysis, performed with Graph Pad Prism computer program (GraphPad 

software, Version 5.00, San Diego, CA), indicated the binding stoichiometry of the complex. 

7.4.3 Association Constants (Kass) 

Titrations were carried out using spectrophotofluorimetry or UV-visible spectrophotometry in a 1 

cm quartz cuvettes by adding aliquots of a stock solution (0.027 mM or 0.27 mM) of 12-mer 

oligonucleotide duplex to a solution (0.5 M, 1 M or 5 M) of the ligand in 0.01 M phosphate buffer 

(pH 7.4) containing 0.1 M NaCl. All the spectrophotofluorimetric titration spectra were recorded at an 

excitation wavelength of 339 nm and an emission wavelength between 450 and 500 nm. Dissociation 

constants of cryptolepine analogs in complex with the 12-mer ds-DNA oligonucleotide 

(d(GATCCTAGGATC)2) were determined by fitting the experimental data to the appropriate equation 

using least squares nonlinear regression analysis. In some cases the best model was a single binding site 

model (obeying the equation, F = Fmax.[DNA]/(Kd + [DNA]), where F is the observed value of the 

experimental parameter followed, Fmax, its limiting value at high values of [DNA] and Kd the 

dissociation constant).  In other cases, the required equation was that for two binding sites sequestering 

ligand independently of each other and with relatively weak binding in the second binding equilibrium 

detectable at higher values of [DNA] (described by parameters, F’max and K’d. Two independently 

acting binding sites would fit the equation, F = {Fmax.[DNA]/(Kd + [DNA])} + { F’max.[DNA]/(K’d + 

[DNA]}.  If K’d >> [DNA], this reduces to F = ({Fmax.[DNA]/(Kd + [DNA]} + F’max.[DNA]/K’d). Data 

were fit to the equations supplied with GraphPad Prism computer program (GraphPad software, Version 

5.00, San Diego, CA) or to appropriate variants written into that program.  Best models were evaluated 

by analysis of the F-test between one- and two-site binding models, performed by the GraphPad Prism 
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software.(354) Association constants were calculated from dissociation constants and its standard 

deviations from those associated to the dissociation constants through propagation of uncertainties as 

described elsewhere.(421) 

7.4.4 Melting Curves  

DNA thermal melting was monitored by UV absorbance at 260 nm using a Cary 4000 

spectrophotometer. Different amounts of cryptolepine analogs were mixed with 2.83 M 12-mer 

oligonucleotide duplex in 0.01 M phosphate buffer (pH 7.4) containing 0.1 M NaCl. The sample 

temperature was typically varied from 5 to 85 ºC with a ramp rate of 0.5 ºC/min. Melting temperatures 

(Tm) were determined from the cooling profile and values reported are based on the 1st derivative 

method of the absorbance-temperature curve. Standard deviations for Tm values were calculated from 

three independent measurements, using standard statistical methods. 

7.5 Interactions with Haem 

7.5.1 Binding Stoichiometry 

Binding stoichiometries for compounds:haematin complexes were monitored by UV-Visible 

spectrophotometry using the Job method of continuous variation.(352) The total concentration of DNA 

and cryptolepine ligand in the solutions was kept constant (10 µM), and the changes in absorbance 

intensity monitored as a function of the mole fraction of ligand.  The intercept of the two best-fit lines 

obtained by least squares linear regression analysis, performed with Graph Pad Prism computer program 

(GraphPad software, Version 5.00, San Diego, CA), indicated the binding stoichiometry of the complex. 

Job’s plot were obtained after correction of the absorbance according to the equation: y-axes is the 

corrected absorbance (y = -{A-(FPIX-OH[FPIX-OH]+ compound[compound])b}), where A is the measured 

absorbance, FPIX-OH and compound are the molar absorptivities of hematin and 1, 2, 3c and 3n, and b the 

optical path length.(342) 

7.5.2 Association Constants (Kass) 

Titration of haematin in buffered 40% DMSO (pH 5.5) with chloroquine, cryptolepine and 

derivatives were made according to the procedure: Stocks solutions of haematin, chloroquine, 

cryptolepine and derivatives (ligands) were obtained by dissolving accurately weighed haematin, 

chloroquine, cryptolepine and derivatives  in UV-spectroscopy grade DMSO to a concentration of 1 

mM, and stored in the dark. Buffered 40 % DMSO solution was usually prepared in 250 mL volumetric 

flasks using DMSO (100 mL), aqueous HEPES (1M, 5ml) and making up to the mark with distilled 

deionised water. Aqueous buffered DMSO solutions (40 % v/v) of the haematin, chloroquine, 

cryptolepine and derivatives were prepared daily by mixing an accurately measured sample of the stock 

solution 100 μL (via microsyringe) and making up to 1 mL with buffered 40% DMSO solution. 

Haematin solutions of 10 μM were prepared with buffered 40 % DMSO solution and transferred to a 
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cuvette and also used as reference cell. Solutions of chloroquine, cryptolepine and derivatives (100 μM) 

were initially added to the cuvette in amounts as small as 2 μL (gradually increasing the volume in 

subsequent additions) until final concentrations higher than that of  haematin concentration. After each 

addition the cuvette was stirred for one minute before the absorbance was measured. UV-Visible 

titrations were performed using a Shimadzu UV-visible spectrophotometer fitted with a thermostated 

(20 ºC) cell holder. Scans were run between 230 nm and 500 nm to incorporate the Soret band of the 

porphyrin. The UV-Visible spectra obtained after each titrated addition was analyzed and stacked 

against the corresponding absorbances. Dissociation constants of chloroquine, cryptolepine and 

derivatives complexed with the FPIX-OH were determined by fitting the experimental data to the 

appropriate equation models(360-361) using least squares nonlinear regression analysis with Graph Pad 

Prism computer program (GraphPad software, Version 5.00, San Diego, CA). Association constants 

were calculated from dissociation constants and its standard deviations from those associated to the 

dissociation constants through propagation of uncertainties as described elsewhere.(421) 

7.6 Computational Details 

7.6.1 Density Functional Theory Optimizations 

Geometry optimizations and energy calculations for cryptolepine and derivatives were 

determined using density functional theory (DFT) with B3LYP(390-392) parameterization of the density 

functional and the 6-31+G(d,p) basis set,(393) using the Gaussian03 software package.(375) The 

vibrational frequency calculations were accomplished at the same level of theory.  Subsequently, the 

charges of cryptolepine and derivatives were calculated by the natural bond orbital (NBO) analysis 

methods,(394, 422-423) at the B3LYP/6-31G+(d,p) level.  

7.6.2 Double-Stranded DNA Docking Studies 

The duplex DNA was constructed with the Molecular Operating Environment (MOE) 

software(396) and minimized with a gradient of 0.00001 Kcal.mol-1.Å-1 using the Amber99(397-398) force 

field and Born solvation scheme.(399-401) After minimization, the model was subjected to molecular 

dynamics (MD) simulation annealing (MD conditions: durantion: 100 ps, final temperature: 300 K, heat 

time: 10 ps, initial temperature: 150 K, time step: 0.001 ps, temperature relaxation: 0.1 ps, pressure 

relaxation: 0.1 ps) using a Nosé–Poincaré–Andersen algorithm(424) to sample, a constant-temperature, 

constant-volume ensemble (NVT) and the Amber99 force field. The molecular dynamics procedure 

followed closely a previous protocol to study allopsoralen-DNA binding modes.(425) After the MD 

simulation, a final energy minimization was performed. The resulting DNA-model was used in the 

docking. All docking studies were performed using MOE, with the simulated annealing docking 

algorithm.(426-427) After docking, a final energy minimization was performed with Amber99 force field 

and Born solvation scheme. The interaction energies between the ligand and ds-DNA, were calculated 
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from the final complex energy, subtracting the sum of the energies of the separated moieties (Ebind = 

Ecomplex - (EDNA+Eligand)). 

7.6.3 Haematin Dimer Docking Studies 

The molecular modeling simulations were performed using the docking algorithm GOLD 2.1 

software (Cambridge Crystallographic Data Centre, CCDC, Cambridge, UK).(380) and the GOLD energy 

score.(380, 428) A generic algorithm-based software were employed using chloroquine and 

indoloquinolines structures and the three-dimensional structure of the haemozoin dimer, obtained from 

the CCDC.(63) The active site midpoint was on Fe1, in the centre of the porphyrin ring, and included all 

atoms within a radius of 12 Å. Top positions for each compound were scored and ranked with GOLD 

energy score,(380) after 5000 runs, keeping at the final the best 25 scored solutions.  The docking results 

visualization and all images were carried out using MOE.(429) 
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Appendix A. 1H and 13C NMR chemical shifts (ppm) of cryptolepine (1) and derivatives (3) 

               

 

 

   

     Aromatic nucleus  Side chain 

Compound R1 R2 R3 R4 H1 H2 H3 H4 CH3 H6 H7 H8 H9 10NH H11 11NH Ha Hb Hc Hd He Hf Hg Hh NH NH2 

1 H H H H 8.46 7.83 8.05 8.70 4.92 8.65 7.41 7.83 7.74 12.76 9.17 -- -- -- -- -- -- -- -- -- -- -- 

3a H H H  8.84 7.64 7.97 8.31 4.58 8.51 7.32 7.68 8.01 12.29 -- 9.24 4.44 3.32 -- -- -- -- -- -- -- 8.44 

3b H H H 
 

8.71 7.73 8.03 8.28 4.64 8.48 7.40 7.69 7.91 n.d. -- n.d 4.61 3.72 3.05 -- -- -- -- -- -- -- 

3c H H H 
 

8.82 7.66 7.98 8.30 4.57 8.53 7.34 7.70 7.77 n.d -- n.d 4.14 2.98 2.71 0.95 -- -- -- -- -- -- 

3d H H H 
 

8.69 7.73 8.04 8.30 4.62 8.53 7.42 7.77 7.86 n.d -- n.d. 5.11 
3.81 

3.45 
2.88 1.44 -- -- -- -- -- -- 

3e H H H  8.90 7.68 8.02 8.36 4.61 8.56 7.37 7.73 8.03 12.28 -- 9.27 4.32 2.17 3.01 -- -- -- -- -- -- 8.20 

3f H H H 
 

8.65 7.73 8.05 8.30 4.67 8.53 7.44 7.77 7.92 n.d -- n.d 4.32 2.39 3.37 2.92 -- -- -- -- -- -- 

3g H H H 
 

8.62 7.72 8.04 8.25 4.59 8.47 7.41 7.72 7.91 n.d -- n.d 4.29 2.36 3.38 3.26 1.34 -- -- -- -- -- 

3h H H H 
 

8.20 7.75 8.00 8.33 4.56 8.51 7.32 7.67 7.93 10.75 -- 10.75 4.21 -- 2.59 2.44 1.13 -- -- -- -- -- 

3i H H H 
 

8.67 7.73 8.05 8.30 4.68 8.54 7.44 7.75 7.93 n.d -- n.d 4.34 2.43 3.27 3.42 1.37 -- -- -- n.d -- 

3j H H H 
 

8.87 7.68 8.01 8.34 4.60 8.55 7.36 7.71 8.01 12.31 -- 9.21 4.31 2.30 3.23 
3.43 

2.86 
1.78 

1.69 

1.38 
-- -- -- -- 

3k H H H 
 

8.89 7.67 8.00 8.34 4.60 8.55 7.36 7.71 7.95 n.d -- n.d 4.22 1.89 1.75 2.85 -- -- -- -- -- n.d 

n.d. – Not determined 
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     Aromatic Nucleus Side chain 

Compound R
1

R
2

R
3

R
4 

H
1
 H

2
 H

3
 H

4
 CH3 H

6
 H

7
 H

8
 H

9
 

10
NH 

11
NH H

a
 H

b
H

c
 H

d
 H

e
 H

f
 H

g
 H

h
 NH OH 

3l H H H 

 

8.89 7.68 8.01 8.33 4.60 8.55 7.38 7.72 7.98 12.36 9.24 4.23 1.89 1.89 3.10 3.10 1.21 -- -- -- -- 

3m H H H 
 

8.85 7.71 8.04 8.37 4.64 8.58 7.39 7.76 7.96 n.d n.d 4.92 2.05 1.86 3.03 3.03 1.14 1.47 -- -- -- 

3n H H H 
 

8.29 7.83 8.09 8.56 4.80 8.66 7.44 7.81 7.98 12.16 8.51 3.50 
2.29 

2.05 

4.14 

3.86 
-- -- -- -- -- n.d. -- 

3o H H H 

 

8.64 7.88 8.13 8.46 4.90 8.51 7.50 7.84 7.94 n.d. n.d 3.92 
2.52 

2.26 

3.70 

3.09 
2.26 2.16 1.16 -- -- -- -- 

3p H H H 

 

8.47 7.87 8.12 8.50 4.88 8.63 7.48 7.83 7.93 n.d. n.d. 3.77 
2.58 

2.28 

4.27 

3.92 
4.44 7.66 7.52 7.56 -- -- -- 

3q H H H 

 

8.30 7.86 8.10 8.58 4.82 8.67 7.46 7.82 7.99 12.18 9.47 3.53 
2.46 

2.23 

4.17 

3.85 
4.23 7.04 7.28 6.89 7.56 -- -- 

3r H H H 
 

8.49 7.69 8.03 8.34 4.65 8.44 7.35 7.65 7.53 n.d. n.d. 7.18 7.41 7.28 -- -- -- -- -- -- -- 

3s H H H 
 

8.65 7.76 8.10 8.42 4.81 8.57 7.43 7.71 7.60 n.d. n.d. 7.31 7.16 3.37 1.80 1.69 -- -- -- -- -- 

3t H H H 

 

8.60 7.74 8.09 8.58 4.83 8.67 7.43 7.78 7.76 11.84 10.63 6.67 6.95 7.46 4.20 3.13 1.29 -- -- -- 10.98 

3u H H H 
 

8.79 7.82 8.13 8.64 4.86 8.69 7.44 7.79 7.67 11.64 n.d. 8.63 7.63 8.46 7.51 -- -- -- -- -- -- 

3v Cl H H 
 

8.91 7.73 -- 8.46 4.59 8.55 7.37 7.72 8.00 12.49 9.41 4.32 2.26 3.11 3.30 1.22 -- -- -- -- -- 

3w Cl H H 
 

8.28 7.88 -- 8.63 4,79 8.66 7.44 7.82 8.03 12.37 n.d 3.54 
2.33 

2.07 

4.18 

3.92 
-- -- -- -- -- n.d. -- 

3x Cl H Cl 
 

8.35 7.80 -- 8.53 4.75 8.55 7.41 -- 7.90 n.d n.d 3.64 
2.38 

2.15 

4.23 

3.91 
-- -- -- -- -- n.d. -- 

3y H H H 
 

8.45 7.75 8.02 8.41 4.80 8.54 7.39 7.71 7.81 -- -- 4.00 1.30 -- -- -- -- -- -- -- -- 
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n.d. – Not determined 

  3a 3b 3c 3d 3e 3f 3g 3h 3i 3j 3k 3l 3m 

  

 
  

 
 

     
 

 

A
ro

m
at

ic
 n

u
cl

eu
s 

C1 124.63 123.65 124.51 124.82 124.89 123.23 123.39 123.11 123.43 124.44 125.01 124.58 125.73 

C2 123.88 124.51 124.19 125.17 124.39 124.22 124.35 124.83 124.43 123.70 124.26 123.76 124.46 

C3 132.27 132.41 132.52 133.30 132.76 132.22 132.37 132.62 132.43 132.12 132.70 132.23 132.43 

C4 117.24 116.74 117.68 117.76 117.83 116.63 116.70 118.02 116.85 117.15 117.78 117.26 118.04 

C4a 137.02 137.37 137.53 137.49 137.65 137.46 137.46 137.67 137.68 137.02 137.77 137.38 138.04 

C5a 135.65 136.93 135.48 135.73 135.83 136.45 136.35 135.60 135.73 135.16 137.73 135.13 136.08 

C5b 114.32 114.67 115.55 115.01 114.75 114.63 114.63 114.88 114.79 113.58 114.93 114.40 115.25 

C6 124.29 123.78 124.74 125.04 124.74 123.62 123.68 124.56 123.82 124.09 124.69 124.18 124.98 

C7 120.75 121.19 120.83 122.02 121.17 120.93 121.08 120.99 121.16 120.52 121.12 120.63 121.39 

C8 130.52 131.06 130.71 132.04 130.88 130.71 130.81 130.61 130.92 130.20 130.77 130.28 131.09 

C9 113.72 113.35 114.01 114.07 114.18 113.13 113.27 114.18 113.30 114.17 114.18 113.67 114.41 

C9a 143.46 143.73 143.39 143.73 143.21 143.34 143.36 143.08 143.76 142.61 143.13 142.58 143.25 

C10a 115.95 116.85 118.07 130.69 116.59 134.47 116.53 116.63 n.d. 116.06 n.d 132.78 140.36 

C11 142.90 143.16 144.50 143.11 144.01 143.63 143.57 144.59 143.86 143.41 144.20 143.75 144.38 

C11a 115.31 115.78 115.60 116.30 115.68 115.61 115.52 115.58 115.72 115.02 115.67 115.16 116.04 

C12 38.08 37.51 38.24 38.47 38.51 37.22 37.33 38.31 37.43 37.89 38.78 37.95 38.87 

S
id

e 
ch

ai
n

 

C13 42.41 40.51 44.62 47.64 42.86 42.50 42.84 57.33 42.65 42.93 45.18 44.76 51.01 

C14 38.85 56.55 53.41 60.90 28.05 25.09 24.65 35.51 26.93 23.86 27.12 20.51 34.15 

C15 -- 42.68 47.66 44.03 36.75 54.79 49.08 70.03 42.22 53.24 24.75 26.82 20.75 

C16 -- -- 11.27 20.56 -- 42.08 47.27 48.18 50.86 51.81 38.45 50.27 46.88 

C17 -- -- -- -- -- -- 7.87 25.38 17.91 22.12 -- 45.97 46.69 

C18 -- -- -- -- -- -- -- -- -- 21.28 -- 8.34 9.01 

C19 -- -- -- -- -- -- -- -- -- -- -- -- 22.55 

n.d. – Not determined 
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  3n 3o 3p 3q 3r 3s 3t 3u 3v 3w 3x 3y 

  

 

   

 

 
 

 

 
  

 

A
rom

atic n
u

cleu
s 

C
1
 126.54 127.47 126.03 125.97 125.04 125.31 125.61 125.37 127.17 128.75 129.34 125.35 

C
2
 125.54 126.74 125.32 124.60 126.09 125.95 113.60 125.62 131.01 125.82 126.67 123.26 

C
3
 132.71 133.83 132.38 132.19 133.65 132.58 132.91 132.83 138.45 138.78 139.18 130.64 

C
4
 118.63 118.88 117.42 118.24 118.39 118.25 117.94 118.49 116.94 125.59 118.38 115.68 

C
4a

 138.12 139.80 138.35 137.56 137.94 137.94 137.68 137.42 137.87 137.90 140.16 136.62 

C
5a

 137.78 139.53 138.06 137.28 137.48 136.79 136.58 137.89 135.95 137.69 139.76 135.73 

C
5b

 114.71 115.94 114.47 113.67 115.27 113.30 114.94 115.16 114.41 114.63 114.23 113.10 

C
6
 125.66 126.07 124.61 125.04 125.34 125.21 124.93 125.53 124.56 124.90 127.27 122.90 

C
7
 121.60 122.55 121.46 121.07 122.32 122.48 120.99 121.95 121.35 121.76 123.55 119.68 

C
8
 132.46 133.81 132.35 132.21 132.87 132.35 132.32 132.58 124.71 132.52 140.28 130.41 

C
9
 114.18 114.71 113.27 114.19 114.22 114.45 125.22 113.88 114.79 114.33 114.47 111.49 

C
9a

 144.42 146.06 144.61 143.94 143.26 141.13 142.71 143.62 143.29 144.48 145.94 142.53 

C
10a

 125.04 126.81 121.46 131.63 130.98 143.89 144.25 124.55 117.24 119.25 124.91 125.44 

C
11

 147.20 148.15 146.67 146.54 139.75 139.22 136.19 121.95 144.12 147.35 148.61 145.73 

C
11a

 120.70 122.92 121.12 121.15 118.18 116.21 118.48 118.69 117.52 118.00 120.84 129.89 

C
12

 39.61 39.89 38.46 39.27 38.83 39.01 39.32 49.05 38.83 39.49 39.93 36.73 

S
id

e chain
 

C
13

 47.60 56.97 54.92 53.78 138.78 129.48 142.22 137.44 43.60 47.54 49.22 45.78 

C
14

 30.68 30.22 28.93 28.39 122.76 128.87 111.83 141.60 24.39 30.72 31.62 11.27 

C
15

 51.13 52.21 50.73 50.74 130.51 118.32 133.43 143.65 48.56 51.38 52.29 -- 

C
16

 -- 53.37 48.32 42.04 126.69 152.10 113.36 124.77 46.49 -- -- -- 

C
17

 -- 27.66 131.28 155.99 -- 51.89 157.28 128.32 8.87\ -- -- -- 

C
18

 -- 20.52 129.71 115.44 -- 26.85 107.90 -- -- -- -- -- 

C
19

 -- -- 129.01 130.34 -- 25.23 49.49 -- -- -- -- -- 

C
20

 -- -- 129.37 119.04 -- -- 46.05 -- -- -- -- -- 

C
21

 -- -- -- 131.95 -- -- 8.50 -- -- -- -- -- 

C
22

 -- -- -- 118.13 -- -- -- -- -- -- -- -- 
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Appendix B. 1H and 13C NMR chemical shifts (ppm) of quindolones (4 and 91a-c) and their derivatives (5, 94 and 95) 

 

 
 

       

 R1 R2 H1 H2 H3 H4 5NH H6 H7 H8 H9 10NH 

4 H H 8.35 7.28 7.68 7.81 12.80 8.28 7.22 7.48 7.53 11.69 

91a Cl H 8.35 7.30 -- 7.73 12.56 8.15 7.23 7.49 7.51 11.80 

91c Cl Cl 7.49 7.54 -- 8.20 12.57 7.69 -- 7.31 8.33 12.02 

 

 R1 R2 C1 C2 C3 C4 C4a C5a C5b C6 C7 C8 C9 C9a C10a C11 C11a 

4 H H 125.57 120.87 130.99 118.28 139.64 129.44 116.38 121.63 119.25 127.84 112.98 139.05 123.48 167.77 123.24 

91a Cl H 127.94 121.31 135.65 117.13 140.02 129.40 116.14 121.15 119.62 128.10 113.17 139.08 123.64 167.30 121.96 

91c Cl Cl 127.97 114.91 136.04 120.41 140.08 128.52 117.15 117.03 124.51 121.55 128.03 137.54 123.73 167.54 121.91 
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   Aromatic Nucleus Side chain 
 R

1 
R

2
H

1
 H

2
 H

3
 H

4
 H

5
 H

6
 H

7
 H

8
 H

a
 H

b
 H

c
 H

d
 H

e
 H

f
 H

g
 H

h
 

5a H H 8.69 7.34 7.70 7.70 8.25 7.24 7.54 7.58 5.00 2.92 2.71 1.09 4.84 3.03 2.71 1.09 
5b Cl H 8.57 7.27 -- 7.72 8.18 7.23 7.54 7.59 4.97 3.90 2.69 1.07 4.72 2.90 2.69 1.06 
5c Cl Cl 8.57 7.30 -- 7.72 8.27 -- 7.51 7.57 4.97 2.92 2.71 1.13 4.77 3.04 2.71 1.05 

 

 

   Aromatic Nucleus Side chain 

 R
1 

R
2 C

1
 C

2
 C

3
 C

4
 C

4a
 C

5a
 C

5b
 C

6
 C

7
 C

8
 C

9
 C

9a
 C

10a
 C

11
 C

11a
 C

a
 C

b
 C

c
 C

d
 C

e
 C

f
 C

g
 C

h
 

5a H H 126.86 120.95 123.73 114.70 139.65 130.62 115.14 122.60 119.52 127.32 110.62 139.70 122.69 169.13 124.89 43.10 53.17 47.69 11.85 47.35 50.87 47.69 11.85 

5b Cl H 128.43 121.66 137.70 114.33 140.36 130.62 115.05 122.46 119.84 127.56 110.76 139.72 123.26 168.61 122.78 43.08 53.12 47.73 12.03 47.57 51.10 47.67 12.03 

5c Cl Cl 128.43 121.84 138.04 114.30 140.44 129.74 115.68 121.76 125.38 127.82 111.96 137.96 123.32 168.63 123.18 43.35 53.22 47.78 11.93 47.53 50.91 47.78 11.93 
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    Aromatic Nucleus Side chain 
 R1 R2 R3 H1 H2 H3 H4 H6 H7 H8 H9 10NH Ha Hb Hc Hd He Hf Hg Hh 

94a H H 

 

8.40 7.58 7.70 8.33 8.55 7.34 7.66 7.52 -- 4.73 2.79 2.62 1.00 4.32 3.10 2.70 1.13 

94b 
Cl H 

 
8.39 7.51 -- 8.32 8.51 7.35 7.67 7.51 -- 4.69 2.80 2.60 0.98 4.28 3.06 2.69 1.12 

94c 
Cl Cl 

 
8.37 7.50 -- 8.26 8.45 -- 7.59 7.42 -- 4.69 2.77 2.56 0.93 4.27 3.05 2.69 1.12 

95a H H H 8.34 7.54 7.67 8.32 8.56 7.32 7.60 7.46 12.63 -- -- -- -- 4.58 3.07 2.90 1.26 
95b Cl H H 8.25 7.47 -- 8.31 8.51 7.32 7.61 7.49 12.69 -- -- -- -- 4.63 3.15 2.97 1.28 
95c Cl Cl H 8.24 7.47 -- 8.28 8.48 -- 7.54 7.39 -- -- -- -- -- 4.63 3.15 2.97 1.28 

 

    Aromatic Nucleus Side chain 

 R1 R2 R3 C1 C2 C3 C4 C4a C5a C5b C6 C7 C8 C9 C9a C10a C11 C11a Ca Cb Cc Cd Ce Cf Cg Ch 

94a H H 
 

121.27 124.68 126.65 129.31 145.83 148.59 122.23 122.08 119.86 129.69 109.17 144.80 124.87 144.58 122.46 43.51 51.71 47.62 12.06 74.51 52.93 47.62 12.06 

94b Cl H 
 

120.68 124.95 132.34 128.00 146.03 149.45 122.23 122.18 120.05 130.02 109.29 144.70 125.54 144.92 122.86 43.60 51.76 47.63 12.10 74.92 53.04 47.71 11.91 

94c Cl Cl 
 

122.91 125.87 132.65 128.04 146.15 148.10 123.33 121.72 125.56 129.86 110.48 143.16 125.36 145.09 120.80 43.88 51.88 47.58 12.07 75.06 53.07 47.69 11.89 

95a H H H 128.95 124.23 126.47 120.96 145.54 148.68 122.58 122.20 119.37 129.38 111.04 143.52 123.95 144.65 121.48 -- -- -- -- 73.99 55.09 48.51 11.33 

95b Cl H H 123.75 125.15 132.16 127.69 145.66 148.60 122.33 122.23 119.62 129.78 111.26 143.71 125.52 n.d 119.73 -- -- -- --     

95c Cl Cl H 122.30 125.36 n.d 127.55 n.d. n.d. n.d. 121.63 n.d. 129.63 112.07 n.d. n.d. n.d. n.d. -- -- -- -- 73.19 54.58 48.27 10.74 

n.d. – Not determinated
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Appendix C. Fitting of the UV-visible Vs pH experimental data of the cryptolepine 

derivatives (3) to the Henderson-Hasselbalch equation 

 

 R1 R2 R3 UV-Visible stacked spectra UV-Visible date vs. pH fitting 

3a H H 

 

3b H H 

 

3c H H 

 

3d H H 

 

3e H H 
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3f H H 

 

3g H H 

 

3h H H 

 

3i H H 

 

3j H H 

 

3k H H 
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3l H H 

 

3m H H 

 

3n H H 

 

3o H H 

 

3p H H 

 

3q H H 
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3r H H 

 

3s H H 

 

3t H H 

 

3u H H 

 

3v Cl H 

 

3w Cl H 
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3x Cl Cl 

 

3y H H 
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Appendix D. Acid dissociation constants (pKa) of cryptolepine and derivatives (3a-y) 

as well as of quindolones (4, 91a and 91b) and derivatives (5, 94 and 95) predicted by 

SPARC software (release W4.2.1405-s4.2.1408) 

Acid dissociation constants for cryptolepine (1) and derivatives 3 predicted by SPARC software. 

 
 

    SPARC
(315-317)

 
 R1 R2 R3 pKa1 pKa2 pKa3 pKa4 

1 H H H 15.21 -- -- -- 
3a H H 7.49 16.50 16.90 -- 

3b H H 7.37 16.58 18.65 -- 

3c H H 7.37 16.59 18.65 -- 

3d H H 8.30 16.58 18.65 -- 

3e H H 8.57 15.52 17.08 -- 

3f H H 8.30 16.60 18.65 -- 

3g H H 8.30 16.60 18.65 -- 

3h H H 8.30 16.60 18.56 -- 

3i H H 8.83 16.60 18.16 -- 

3j H H 8.39 16.60 18.90 -- 

3k H H 9.56 16.52 17.19 -- 

3l H H 9.34 16.60 19.03 -- 

3m H H 9.40 16.61 18.65 -- 

3n H H 9.25 16.61 18.65 -- 

3o H H 8.50 16.59 18.84 -- 

3p H H 7.61 16.57 18.62 -- 

3q H H 8.86 16.57 18.65 10.28 

3r H H -- 15.48 15.51 -- 

3s H H 4.46 15.77 16.11 -- 

3t H H 10.47 15.72 15.53 10.15 

3u H H 3.00 15.37 14.01 -- 

3v Cl H 8.42 16.54 18.54 -- 

3w Cl H 9.23 16.53 18.48 -- 

3x Cl Cl 9.23 16.04 18.42 -- 

3y H H -- 15.96 -4.44 -- 

pKa1 – Deprotonation of the terminal nitrogen in the side chain of 3; pKa2 – 
Ionization of the indolic nitrogen (N10) of 3 ; pKa3 – Ionization of the nitrogen 
attached to C11of 3; pKa4 –Ionization of the hydroxyl function in the side chain of 
3q and 3t. 
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The pKa values for 4, 91a and 91b presented, represent the removal of the hydrogen to give the 

respective anionic quindolone. Additionally, quindolones have another possible acid dissociation 

reaction, which correspond to the removal of the hydrogens of the diprotonated quindolone (N5 and 

N10). The SPARC predicted pKa values for these dissociation reactions in N5 of 4, 91a and 91b range 

between 3.3 and 4.2. The remain pKa values presented (5, 94 and 94) represents the deprotonation 

reaction of the cationic forms of the nitrogen, except the pka3 values of 95 which correspond to removal 

of the indole nitrogen to give the anionic quindolone.   

Acid dissociation constants for quindolones (4 and 91) and quindolones derivatives (5, 94 and 95) predicted by 
SPARC software. 

 

 

 
 
 
 

4 or 91 

 

 
5 

   SPARC   SPARC 
 R1 R2 pKa1 pKa2   R1 R2 pKa1 pKa2 
4 H H 12.33 16.79  5a H H 7.90 8.92 

91a Cl H 11.85 16.69  5b Cl H 7.86 8.92 
91b Cl Cl 11.52 16.28  5c Cl Cl 7.84 8.90 

 

 
94 

 

  
95 

 

   SPARC     SPARC 
 R1 R2 pKa1 pKa2 pKa3   R1 R2 pKa1 pKa1 pKa3 

94a H H 4.21 7.24 8.59  95a H H 4.23 7.24 17.2 
94b Cl H 3.62 7.22 8.59  95b Cl H 3.63 7.23 17.5 
94c Cl Cl 3.38 7.21 8.56  95c Cl Cl 3.40 7.21 16.7 

 

 

 



Appendix E| 243 
 

 

 

Appendix E. UV-Visible Spectrophotometry Determination of Binding Constants to 

DNA in buffer solutions containing 0.1 M NaCl 

Binding to double strand 12-mer oligonucleotide d(GATCCTAGGATC) 

UV-visible spectra of the titration of cryptolepine derivatives 3a, 3e, 3k, 3q, 3r, and 3y with the 12-mer 
oligonucleotide in 0.01 M phosphate buffer, 0.1 M NaCl at 25 ºC and experimental data at 357  and 347 nm, 
respectively, fitting to binding models. The concentration of cryptolepine derivative were 5 M.  

 R1 R2 R3  

3a H H 

 

3e H H 

 

3k H H 

3q H H 

 

3r H H 
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3y H H 

 

 

Binding to single strand 16-mer oligonucleotide d(GCCAAACACAGAATCG) 

UV-visible spectra of the titration of cryptolepine (1) and cryptolepine derivatives 3n  with the 16-mer single 
strand oligonucleotide in 0.01 M phosphate buffer containing 0.1 M NaCl at 25 ºC and experimental data at 368  
and 358 nm, respectively, fitting to binding models. The concentration of cryptolepine and cryptolepine derivative 
3n were 5 M and the DNA/Ligand ratio increase as follows: 0 (black bold line), 0.25, 0.50, 0.75, 1.00, 1.25, 1.50 
and 1.75. 

 R1 R2 R3  

1 H H H 

3n H H 

 

 

 

 

 

 



Appendix F| 245 
 

 

 

Appendix F. Spectrophotofluorimetry Determination of Binding Constants to DNA in 

buffer solutions containing 0.1 M NaCl 

Binding to double strand 12-mer oligonucleotide d(GATCCTAGGATC)2 

Spectrophotofluorimetry titration data of the cryptolepine derivatives 3b-d, 3f-j, 3l-q and 3s-x 
(spectrophotofluorimetric data and fitting binding models) with 12-mer double strand oligonucleotide 
d(GATCCTAGGATC)2 

 R1 R2 R3   

3b H H 
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3g H H 
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3m H H 
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Appendix G. Spectrophotometric Determination of Binding to DNA in buffer 

solutions containing 0.01 M or 1.0 M NaCl 

Binding to double strand 12-mer oligonucleotide d(GATCCTAGGATC) 

UV-visible spectrophotometry titration data of the cryptolepine (1) with 12-mer oligonucleotide in 0.01 M 
phosphate buffer containing 1 M NaCl at 25 ºC. The concentration of 1 was 5 M and the ligand/DNA ratio 
increase as follows: 0, 0.3, 0.8, 1.1, 1.4, 1.7, 2.3, 2.8, 3.4, 4,5 and 5.0. 

 R1 R2 R3  

1 H H H 

 

 

Spectrophotofluorimetry titration data of the cryptolepine analogues 3c and 3t with 12-mer double strand 
oligonucleotide in 0.01 M phosphate buffer at 25 ºC: 3c 0.01 M NaCl; 3t 1 M NaCl. 
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Binding to single strand 16-mer oligonucleotide d(GCCAAACACAGAATCG) 

UV-visible spectra of the titration of cryptolepine analogues 3n with the 16-mer single strand oligonucleotide in 
0.01 M phosphate buffer, containing 1 M NaCl at 25 ºC and experimental data at 358 nm. The concentration of 
cryptolepine analogue 3n was 5 M and the DNA/Ligand ratio increase as follows: 0 (black bold line), 0.25, 0.50, 
0.75, 1.00, 1.25 and 1.50. 

 R1 R2 R3  

3n H H 

 

 



 
Appendix H| 252 

 
 
 

Appendix H. UV-Visible Spectrophotometry Determination of Binding Constants to 

FPIX-OH in pH 5.5 HEPES buffer (40 % DMSO)  

 

Cryptolepine derivatives 

UV-visible spectra λmax changes of FPIX-OH (10 µM) Soret band at 25 ºC, titrated with 3 in buffered pH 5.5, 40 % 
DMSO , increasing the 3/FPIX-OH molar ratios sequentially from the top in the region of 401 nm. Soret band 
wavelength (401 nm) of FPIX-OH (10 µM) titrated with 3, fitted to the 1:1 (IQ:FPIX-OH) binding equation (model 
1). 

 R1 R2 R3 UV-visible spectra λmax changes Fitting to 1:1 binding equation model 
3a H H 

 

 

3b H H 

 

 

3c H H 

 

 

3d H H 
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3e H H 

 

3f H H 

 

3g H H 

 

3h H H 

 

3i H H 

 

3j H H 
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3k H H 

 

3l H H 

 

3m H H 

 

3n H H 

 

3o H H 

 

3p H H 
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3q H H 

 

3r H H 

 

3s H H 

 

3t H H 

 

3u H H 

 

3v Cl H 
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3w Cl H 

 

3x Cl Cl 

 

3y H H 
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Quindolone derivatives 

Soret band wavelength (402 nm) of FPIX-OH (10 µM) titrated with quindolones 4, 91a and 91b and analogues 5, 

94 and 95, fitted to the 1:1 (IQ:FPIX-OH) binding equation (model 1). 

 

  

 

 

 R1 R2  

4 H H 

91a Cl H 

91b Cl Cl 

 

 

 

 R1 R2  

5a H H 

5b Cl H 

5c Cl Cl 
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 R1 R2  

94a H H 

94b Cl H 

94c Cl Cl 

 

 

 

 R1 R2  

95a H H 

95b Cl H 

95c Cl Cl  
 

-- 
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Appendix I. Docking studies with DNA  

a) 3D model of the van der Walls interactions map of cryptolepine and analogues with double-stranded 
d(GATCCTAGGATC)2 oligonucleotide (blue: mild polar; red: hydrophobic: yellow: H-bonding), shown 
intercalation pocket only for clarity; b) Interactions map of cryptolepine and analogues bind to the double-stranded 
d(GATCCTAGGATC)2 oligonucleotide (blue circle: receptor exposure; pink circle: polar; blue: ligand exposure; 
arrow dot green H-bonding with chain; arrow dot ble: H-donding with backbone; dot red: ionic binding; dot purple: 
proximity contour; values are in Å). 

 

 Binding site  

3f a)   Minor groove b) 

3i a) Minor groove b) 
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3j a) Minor groove 

 

b) 

 

3n a) Minor groove 

3q a) Minor groove b) 
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3r a) Minor groove b) 

 

3s a) Minor groove b) 

3v a) Major groove b) 
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3w a) Minor groove  

 

b) 

 

3x a) Major groove 
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Appendix J. Docking studies with haemozoin dimer 

Cryptolepine derivatives 

Model of cryptolepine derivatives interacting with haemozoin dimer. (dashed-black: H-bond; solid green: π-π 
interactions; dashed-red: ionic binding; solid-black: distance; values in Å). 

3f 3h 

 
  

3j 3l 

 
  

3s 3u 
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3v 3x 

 
 

 

Quindolone derivatives 

Model of quindolones and derivatives interacting with haemozoin dimer. (dashed-black: H-bond; solid green: π-π 
interactions; dashed-red: ionic binding; solid-black: distance; values in Å). 

91a 91b 

  

5b 5c 

  

94b 94c 
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95b 95c 
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Appendix K. Derivation of vacuolar accumulation ratio equation 

Considering an synthesized indolo[3,2-b]quinoline (IQ) with three acid dissociation constants: 

 

The acid-base equilibrium equations will be: 

 

Solving all equilibrium equations in function of the unprotonated form [IQH], becomes: 

 

The total concentration of indoloquinoline ([IQ]t) in solution is the sum of the concentrations of all 

ionizable species in solution, and can be described as. 

 

Substituting by the equilibrium equations in function of the unprotonated specie [IQH], becomes: 

 

Considering the vacuolar pH and the external pH, the accumulation ratio between the two pH’s will be: 
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A fundamental premise of the pH trapping hypothesis is that the non protonated form [IQH] can diffuse 

across membranes and so the concentration of this species is equal on both sides of the membrane (if 

equilibrium is reached), and since [IQH]v = [IQH]e the accumulation ratio equation becomes: 

 

 

Eq. 6.2 
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