
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

EVALUATING GROUPWARE USABILITY
AT THE COGNITIVE LEVEL

OF HUMAN ACTION

António Manuel Silva Ferreira

DOUTORAMENTO EM INFORMÁTICA
ESPECIALIDADE DE ENGENHARIA INFORMÁTICA

2010





UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

EVALUATING GROUPWARE USABILITY
AT THE COGNITIVE LEVEL

OF HUMAN ACTION

António Manuel Silva Ferreira

DOUTORAMENTO EM INFORMÁTICA
ESPECIALIDADE DE ENGENHARIA INFORMÁTICA

2010

Tese orientada pelo Prof. Doutor Pedro Alexandre de Mourão Antunes





Abstract

This dissertation explores the importance of the cognitive level of human
action in the evaluation and improvement of groupware usability. This
research is motivated by the problem that current methods focus on the
rational and social levels of human action and yet an increasing number of
users relies on computers to fulfil collaborative tasks dominated by perceptual,
cognitive, and motor skill.

The first contribution of this research is a groupware interface model that
leverages existing knowledge on cognitive-level behaviour with single-user
interfaces by expanding its application to multi-user interfaces. To do this,
I show that the key differences between users interacting with the computer
and interacting with other users through the computer can be supported by
specialised groupware information flows and input/output devices.

The second contribution of this dissertation is a pair of methods for
predicting groupware usability at the cognitive level of human action. The
first method applies to scenarios of collaboration occurring routinely in
shared workspaces. The second aims at capturing the intertwined nature of
mixed-focus collaboration, encompassing shared and private workspaces. I
use the methods to evaluate and compare the usability of competing designs
in four scenarios of collaboration. The methods do not require user testing or
functioning prototypes, so they can be integrated into the iterative process
of interactive systems design.

The third contribution of this research is the evaluation of an attentive
electronic brainstorming tool, which implements a novel attentive device
that adjusts the delivery of group awareness information according to users’
natural task switching between doing individual work and attending to the
group. I present results from a laboratory experiment, which indicate that

v



vi Abstract

groups produced 9.6 % more ideas when compared to the immediate broad-
cast of ideas and provide evidence suggesting that the usability improvement
was due to the mitigation of information overload.

Keywords: evaluation, groupware, usability, attention.



Resumo (Portuguese Abstract)

Esta dissertação explora a importância do nível cognitivo da actividade
humana, no qual as tarefas demoram segundos a realizar e são tipicamente
repetitivas, na avaliação e melhoria da usabilidade de sistemas de trabalho
cooperativo suportado por computador, também designados por groupware.

Estes sistemas de computadores permitem que grupos de interesse, como
amigos e colegas, possam partilhar e organizar actividades de forma flexí-
vel e económica, onde o tempo e a distância deixam de ser obstáculos à
colaboração. Alguns exemplos de groupware incluem os mensageiros instan-
tâneos, usados por centenas de milhões de pessoas no mundo inteiro, os jogos
multi-utilizador, que já atingiram cerca de dezasseis milhões de jogadores,
bem como uma gama cada vez mais alargada de aplicações de escritório que
estão a ser disponibilizadas na Internet. Com base nesta evidência, uma
assumpção desta dissertação é que os sistemas de groupware estão a ficar
cada vez mais ubíquos.

O problema abordado nesta investigação é que os métodos actuais de
avaliação da usabilidade de groupware omitem o nível cognitivo da activi-
dade humana, e, no entanto, as nossas características psicológicas, como a
percepção, cognição, e capacidade motora, dominam a execução de tarefas
de colaboração rápidas, mas normalmente muito repetitivas.

Uma consequência desta situação é que faltam instrumentos aos designers
e investigadores de groupware que lhes permitam fazer optimizações de
usabilidade de granularidade fina. Isto acontece porque os métodos actuais de
avaliação da usabilidade visam tarefas colaborativas de relativa longa duração
(que demoram minutos, horas, ou mais, a completar) e, portanto, baseiam-se
em abstracções para conter o grau de complexidade da avaliação. Desta
forma, as optimizações tendem a abranger vários passos de colaboração de

vii



viii Resumo

granularidade fina de uma só vez, o que causa problemas porque a usabilidade
de sistemas de groupware, como na maioria dos sistemas computacionais,
está inerentemente ligada aos detalhes da interface com o utilizador. Estas
optimizações, mesmo que de pequena expressão individual, podem acarretar
um efeito multiplicador significativo dado o crescente número de utilizadores
de groupware, especialmente na Internet.

Outra consequência do nível cognitivo da acção humana ser negligenciado
das avaliações de usabilidade de groupware é que o design da interface
com o utilizador pode estar indevidamente alinhado com as características
psicológicas humanas, o que pode fazer com que as tarefas colaborativas
exijam uma carga de trabalho que excede as nossas capacidades limitadas de
processamento de informação. Aliás, os utilizadores que realizam trabalho
em grupo estão particularmente expostos a uma sobrecarga de informação
porque têm de acompanhar o que se passa no grupo para além de realizarem
trabalho individual, isto é, têm de dividir a atenção entre múltiplos fluxos
de informação. Esta carga de trabalho pode penalizar a usabilidade dos
sistemas de groupware devido ao aumento da probabilidade dos utilizadores
não serem capazes de colaborar adequadamente.

Dada esta situação, a minha questão de investigação é: como fazer avali-
ações ao nível cognitivo da actividade humana para melhorar a usabilidade
de tarefas colaborativas realizadas através de sistemas de groupware?

As avaliações de usabilidade ao nível cognitivo são bastante conhecidas
no contexto das aplicações mono-utilizador, ao ponto de um conjunto de
conhecimentos da psicologia aplicada ter sido reunido em modelos de en-
genharia de desempenho humano que predizem tempos de execução numa
gama variada de tarefas de interacção pessoa-máquina. Estes modelos foram
já, inclusivamente, aplicados no contexto de trabalho de grupo, mas sempre
com a limitação de os utilizadores estarem restringidos a papéis individua-
listas e de a colaboração ficar de fora dos limites do sistema ou então ser
abstraída. Em contraste, nesta dissertação estou interessado em avaliar as
tarefas de colaboração realizadas através do sistema de groupware.

A primeira contribuição desta investigação é um modelo da interface
do groupware, o qual alavanca o conhecimento existente sobre o compor-
tamento humano com interfaces mono-utilizador, baseado em modelos de
engenharia que predizem o desempenho humano, através da expansão da



Resumo ix

sua aplicação a interfaces multi-utilizador. Para fazer isto mostro que as
diferenças fundamentais entre os utilizadores interagirem com o computador
(para trabalharem individualmente) e interagirem com outros utilizadores
através do computador (para colaborar) podem ser suportadas por fluxos de
informação e dispositivos de input/output especializados. Este modelo tem
como propósito ajudar o designer a organizar o espaço de soluções numa
gama alargada de sistemas de groupware.

A segunda contribuição desta dissertação é um par de métodos para ava-
liar a usabilidade de sistemas de groupware ao nível cognitivo da actividade
humana. O primeiro método é aplicável a cenários críticos de colaboração
que ocorram rotineiramente em espaços de trabalho partilhados e define usa-
bilidade em termos do tempo necessário para executar tarefas colaborativas,
tal como estimado pelos modelos de engenharia de desempenho humano.
Na dissertação aplico este método para avaliar e comparar a usabilidade de
alternativas de design em três casos de colaboração em espaços partilhados.

O segundo método visa capturar a natureza complexa e entrecruzada
da colaboração que abrange tanto espaços partilhados como privados, bem
como capturar os objectivos frequentemente conflituosos dos utilizadores
enquanto estão a trabalhar individualmente ou quando estão a interagir
com o grupo. Para fazer isto, combino estimativas de tempos de execução
de tarefas com contribuições dessas tarefas para a progressão do grupo em
direcção a um objectivo comum, em termos de produtividade individual,
oportunidades criadas para os outros, e restrições para o trabalho de outros
utilizadores. Na dissertação aplico este método a um jogo colaborativo, e
mostro que, se para alguma outra coisa mais, este método serve para forçar
o designer de groupware a pensar sobre as contrapartidas entre uma interface
que permite aos utilizadores enquanto indivíduos serem mais produtivos e
outra que permite um melhor desempenho do grupo enquanto um todo.

Os dois métodos de avaliação não requerem testes com utilizadores ou
a construção de protótipos de groupware para produzirem resultados de
usabilidade, o que atesta a sua natureza formativa, e permite a sua integração
no processo iterativo de design de sistemas interactivos.

A terceira contribuição desta investigação é a avaliação da usabilidade de
um sistema de groupware atentivo, que implementa um novo dispositivo de
gestão da atenção humana, chamado opportunity seeker , o qual tem como



x Resumo

propósito mitigar a sobrecarga de informação em cenários de colaboração
síncrona, isto é, em que todos os elementos do grupo estão a trabalhar em
simultâneo. O opportunity seeker intercepta e guarda numa memória tampão
a informação de estado sobre o grupo e ajusta automaticamente a entrega
dessa informação a cada utilizador em função da alternância natural entre
este estar a realizar trabalho individual e estar a prestar atenção ao grupo.
Na dissertação mostro como este dispositivo pode ser adaptado e instalado
numa ferramenta electrónica para geração de ideias, chamada ABTool, e
como a fronteira entre os dois estados de atenção pode ser detectada através
de actividade no teclado.

Para avaliar os efeitos do opportunity seeker na usabilidade da ferramenta
ABTool, realizei uma experiência de laboratório em que pedi a grupos de
voluntários para submeterem ideias em paralelo o mais rapidamente possível,
e recolhi evidência de que quando os grupos estiveram sob a influência
do opportunity seeker o número de ideias geradas aumentou em 9.6 % em
comparação com a condição em que todas as ideias eram imediatamente
difundidas por todos os utilizadores.

Adicionalmente, levei a cabo uma análise post-hoc que mostra que o
opportunity seeker reduziu o número de entregas de ideias em 44.1 %, pois
combinou as ideias em pequenos lotes, e que isso se traduziu em 54.7 % mais
tempo para os utilizadores escreverem ideias sem serem interrompidos pela
recepção de ideias de outros utilizadores. Nestas condições, os utilizadores
foram 18.8 % mais rápidos a alternar entre a escrita de uma ideia, o que
fizeram em 16.3 % menos tempo, e ler novas ideias de outros utilizadores.

Estes resultados evidenciam que o opportunity seeker criou condições
para mitigar a sobrecarga de informação e mostram que a usabilidade de
sistemas de groupware pode ser melhorada através de avaliações focadas nas
limitações da capacidade de processamento de informação humana.

Com este conjunto de contribuições, mostrei que o nível cognitivo da
actividade humana tem um papel determinante na avaliação da usabilidade
de sistemas de groupware, complementando os níveis racional e social que
têm sido tradicionalmente considerados por outros métodos de avaliação.

Palavras-chave: avaliação, trabalho cooperativo suportado por computa-
dor, usabilidade, atenção.



Acknowledgements

I would like to give thanks to my adviser, Professor Pedro Antunes, for
his interest and availability to have discussion meetings, his continuous
insistence on the writing and submission of papers, and his initiative to
submit project proposals that financed travel and conference expenses.

Thank you also to Professor José Pino from Universidad de Chile for his
contributions in two papers and his perseverance as corresponding author.

I also thank Valeria Herskovic from Universidad de Chile for helping
with the staging and execution of the laboratory experiment, assisting on
the data analysis, co-writing one paper, and discussing ideas.

My thanks also go to Bruno Coelho and Pedro Custódio for their logistics
support, and to all volunteers who participated in the laboratory experiment.

Part of this research was supported by the Portuguese Foundation for
Science and Technology, through project PTDC/EIA/67589/2006 and the
Multiannual Funding Programme.

xi





Dedicado à Sofia,
família, e amigos





Contents

Abstract v

Resumo vii

Acknowledgements xi

Contents xv

List of Figures xix

List of Tables xxiii

1 Introduction 1
1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement and Research Question . . . . . . . . . . 5
1.3 Objectives and Research Methods . . . . . . . . . . . . . . . 6
1.4 Overview of the Dissertation . . . . . . . . . . . . . . . . . . 8

2 Groupware Evaluation 11
2.1 Types of Evaluation . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Formative . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Summative . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Comparative . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Other Types . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Context-Based . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Usability-Oriented . . . . . . . . . . . . . . . . . . . 26

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xv



xvi Contents

3 The Roots of Cognitive-Level Evaluation 33
3.1 Background and Concepts . . . . . . . . . . . . . . . . . . . 33
3.2 Evaluation Methods and Tools . . . . . . . . . . . . . . . . . 36

3.2.1 Keystroke-Level Model . . . . . . . . . . . . . . . . . 36
3.2.2 Card, Moran, and Newell GOMS . . . . . . . . . . . 38
3.2.3 Natural GOMS Language . . . . . . . . . . . . . . . 39
3.2.4 Cognitive, Perceptual, Motor GOMS . . . . . . . . . 42

3.3 Application Domains . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Individual Work . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Group Work . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Modelling Groupware at the Cognitive Level 49
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 The Collaborative User . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Group Tasks . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Coordination Modes . . . . . . . . . . . . . . . . . . 54

4.3 The Groupware Interface . . . . . . . . . . . . . . . . . . . . 57
4.3.1 Information Flows . . . . . . . . . . . . . . . . . . . 57
4.3.2 Input/Output Devices . . . . . . . . . . . . . . . . . 63
4.3.3 Virtual Workspaces . . . . . . . . . . . . . . . . . . . 66

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Evaluating the Usability of Shared Workspaces 71
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Method Description . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Using the Method . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Locating Updated Objects . . . . . . . . . . . . . . . 75
5.3.2 Reserving Objects . . . . . . . . . . . . . . . . . . . . 81
5.3.3 Negotiating Requirements . . . . . . . . . . . . . . . 85

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



Contents xvii

6 Evaluating the Usability of Mixed-Focus Workspaces 93
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Method Description . . . . . . . . . . . . . . . . . . . . . . . 95
6.3 Application in a Collaborative Game . . . . . . . . . . . . . 97

6.3.1 Evaluating the Initial Design . . . . . . . . . . . . . . 98
6.3.2 Evaluating a Design Alternative . . . . . . . . . . . . 102
6.3.3 Comparing Designs: The Big Picture . . . . . . . . . 106

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Drawing Attention to Cognitive Limitations 111
7.1 Information Overload . . . . . . . . . . . . . . . . . . . . . . 111

7.1.1 Complexities of Group Work . . . . . . . . . . . . . . 112
7.1.2 Influences from Groupware Research . . . . . . . . . 114
7.1.3 Designing for Attention Scarcity . . . . . . . . . . . . 115

7.2 Human Attention . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 Attentive User Interfaces . . . . . . . . . . . . . . . . . . . . 121
7.3.1 In Multi-User Systems . . . . . . . . . . . . . . . . . 122
7.3.2 In Single-User Systems . . . . . . . . . . . . . . . . . 123

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.4.1 Evaluation of Attentive User Interfaces . . . . . . . . 126
7.4.2 Opportunity for Attentive Groupware Research . . . 129

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8 Evaluating an Attentive Groupware System 133
8.1 An Attentive Device for Groupware Systems . . . . . . . . . 133
8.2 Application in Electronic Brainstorming . . . . . . . . . . . 135

8.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 136
8.2.2 Preliminary Study . . . . . . . . . . . . . . . . . . . 136
8.2.3 Model of User Behaviour . . . . . . . . . . . . . . . . 138
8.2.4 Software Architecture and Design . . . . . . . . . . . 139

8.3 Laboratory Experiment . . . . . . . . . . . . . . . . . . . . . 141
8.3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . 142
8.3.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . 143



xviii Contents

8.3.3 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.3.4 Design . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.3.5 Procedure . . . . . . . . . . . . . . . . . . . . . . . . 145

8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.4.1 Group Performance . . . . . . . . . . . . . . . . . . . 146
8.4.2 Group Performance Over Time . . . . . . . . . . . . 147
8.4.3 Post-hoc Analysis at the User Level . . . . . . . . . . 148

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.5.1 Validity of Patterns of User Activity . . . . . . . . . 153
8.5.2 Batch Size and Inactivity Period . . . . . . . . . . . 154
8.5.3 Undelivered Ideas . . . . . . . . . . . . . . . . . . . . 155
8.5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . 155

8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9 Conclusion 161
9.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . 162

9.1.1 Model of the Groupware Interface . . . . . . . . . . . 162
9.1.2 Cognitive-Level Groupware Evaluation Methods . . . 162
9.1.3 Evaluation of an Attentive Groupware System . . . . 163

9.2 Lessons for Practitioners . . . . . . . . . . . . . . . . . . . . 164
9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A Equation for Average Number of Viewport Moves 167

B Materials Used in the Experiment 171
B.1 Consent Form . . . . . . . . . . . . . . . . . . . . . . . . . . 171
B.2 Entrance Questionnaire . . . . . . . . . . . . . . . . . . . . . 172
B.3 Brainstorming Instructions . . . . . . . . . . . . . . . . . . . 172

References 177

Acronyms 211



List of Figures

1.1 Levels of human action . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Formative evaluation in the iterative system design process . . . 12
2.2 Groupware evaluation methods and levels of human action . . . 31

3.1 Model Human Processor . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Fragment of an NGOMSL model for the ‘move text’ task . . . . 40

4.1 User interacting with the computer . . . . . . . . . . . . . . . . 50
4.2 Levels of group task interdependency . . . . . . . . . . . . . . . 53

(a) Pooled
(b) Sequential
(c) Reciprocal

4.3 Feedback information flow . . . . . . . . . . . . . . . . . . . . . 58
4.4 Feedforward information flow . . . . . . . . . . . . . . . . . . . 59
4.5 Groupware interface connecting multiple users . . . . . . . . . . 60
4.6 Information flows between users, mediated by the computer . . 60

(a) Explicit communication
(b) Back-channel feedback
(c) Feedthrough

4.7 Awareness and coupling input/output devices . . . . . . . . . . 65

5.1 Method for evaluating the usability of shared workspaces . . . . 73
5.2 Scenarios for locating updated objects in a shared workspace . . 76
5.3 Predicted execution time for locating an updated object . . . . 80
5.4 Best and worst execution times for reserving objects . . . . . . . 84
5.5 The SQFD shared workspace . . . . . . . . . . . . . . . . . . . 87

xix



xx List of Figures

5.6 The ‘Current Situation’ shared workspace . . . . . . . . . . . . 88

6.1 Method for evaluating the usability of mixed-focus workspaces . 95
6.2 Mixed-focus collaboration game . . . . . . . . . . . . . . . . . . 98
6.3 Opportunities created by each task sequence . . . . . . . . . . . 101
6.4 Variety of instances of task sequence S5 . . . . . . . . . . . . . . 105
6.5 Collaborative overhead versus individual work . . . . . . . . . . 107
6.6 Comparison of productivity, opportunities, and restrictions . . . 107

7.1 Information overflow during group work . . . . . . . . . . . . . 116
7.2 Role of attention in the Model Human Processor . . . . . . . . 117

8.1 Conceptual view of the opportunity seeker . . . . . . . . . . . . 134
8.2 User and group activity during a brainstorming session . . . . . 137
8.3 Model of user behaviour assumed by the opportunity seeker . . 138
8.4 Simulation of activity during a brainstorming session . . . . . . 139
8.5 Types of messages supported by ABTool . . . . . . . . . . . . . 140
8.6 Details of the opportunity seeker implementation on ABTool . . 141
8.7 Opportunity seeker managing the delivery of ideas . . . . . . . . 142
8.8 Apparatus used for the laboratory experiment . . . . . . . . . . 143

(a) Laboratory room
(b) Detail of apparatus

8.9 Number of ideas produced by groups per session per treatment . 146
8.10 Group performance over the brainstorming sessions . . . . . . . 149
8.11 Results of post-hoc analysis at the user level . . . . . . . . . . . 151

(a) Deliveries of ideas per session
(b) Seconds between consecutive deliveries of ideas
(c) Seconds to write an idea
(d) Ideas produced per user per session
(e) Pause between idea submission and typing
(f) Characters per idea
(g) Characters typed per user per session
(h) Deleted characters per user per session

8.12 Distribution of number of ideas per delivery . . . . . . . . . . . 152



List of Figures xxi

8.13 Typing activity with immediate broadcast of ideas . . . . . . . . 153
(a) Pattern 1
(b) Pattern 2

8.14 Distribution of number of undelivered ideas per session . . . . . 155

A.1 Shared workspaces with even and odd X and Y sizes . . . . . . 168

B.1 Consent form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
B.2 Entrance questionnaire . . . . . . . . . . . . . . . . . . . . . . . 174
B.3 Brainstorming instructions . . . . . . . . . . . . . . . . . . . . . 175





List of Tables

2.1 Formative groupware evaluations . . . . . . . . . . . . . . . . . 13
2.2 Formative and summative types of evaluation . . . . . . . . . . 14
2.3 Comparative evaluations in groupware experimental research . . 18
2.4 Groupware comparisons outside experimental research . . . . . 20
2.5 Mechanics of collaboration . . . . . . . . . . . . . . . . . . . . . 29

3.1 KLM operators and predicted execution times . . . . . . . . . . 37

4.1 Task interdependencies and coordination modes . . . . . . . . . 56
4.2 Information flows required for each coordination mode . . . . . 63
4.3 Map of user behaviour in virtual workspaces . . . . . . . . . . . 67

6.1 Textual description of tasks in the critical scenario . . . . . . . 99
6.2 Task sequences for the critical scenario . . . . . . . . . . . . . . 100
6.3 Initial productivity, opportunities, and restrictions . . . . . . . . 101
6.4 Collaborative tasks in the alternative design . . . . . . . . . . . 102
6.5 New task sequences for the critical scenario . . . . . . . . . . . 103
6.6 New productivity, opportunities, and restrictions . . . . . . . . 104

7.1 Attentional phenomena in fast-paced information flows . . . . . 120
7.2 Types of tasks in experimental HCI interruption research . . . . 127
7.3 Effects of deferring interruptions to task boundaries . . . . . . . 129

8.1 Session order/brainstorming question per group and treatment . 145
8.2 Number of ideas per group and treatment . . . . . . . . . . . . 146
8.3 Results of post-hoc analysis at the user level . . . . . . . . . . . 150

xxiii





Chapter 1

Introduction

This dissertation describes a journey into groupware usability evaluation at
the cognitive level of human action, where tasks relevant to collaboration take
seconds to complete and are usually very repetitive, and aims at providing
novel instruments of action and insights to designers and researchers.

This chapter situates the context of the dissertation and explains the
importance of advancing the state of the art in groupware usability evaluation.
I then frame the problem statement, formulate the research question, identify
the objectives of this work, and describe the methods employed in this
research. Finally, I outline the contents of the dissertation.

1.1 Context and Motivation

Groupware allows interest groups, such as friends and coworkers, to share
information and organise activities in flexible and economic ways, where
time and distance are no longer impediments to collaboration. This is made
possible by a combination of three elements:

1. Communications networks, most notably the Internet, mobile data
networks, local area networks in rooms and buildings, and others;

2. Personal computers, including desktop computers, laptops, personal
digital assistants, and other variants; and

3. Software designed to be run collaboratively by multiple users, in the
same or a different place, and at the same or different time.

1



2 Introduction

The word groupware is, thus, connected to hardware and software for
supporting group work. In contrast, singleware is a combination of hardware
and software to assist the work done by a single user.

In this dissertation, I make the assumption that the ubiquity of groupware
systems is bound to keep increasing because people and organisations are
being more exposed than ever to a wider variety of applications designed for
groups, due to the broad acceptance of tools, such as:

• The instant messenger, used by hundredths of millions of people world
wide over the Internet (Leskovec and Horvitz, 2008);

• On-line multi-player games, which have reached sixteen million users
all over the world (Woodcock, 2008);

• Electronic meeting systems, allowing groups to brainstorm, discuss,
and vote ideas (Nunamaker et al., 1991);

• Free collaborative office applications available on the Internet, for
instance, Google Docs and Zoho, which allow users to simultaneously
work on the same documents;1

• Shared workspaces built on top of popular office software suites, such as
Microsoft Office (Dragan, 2003), which enable users to share documents
and collaborate in a familiar environment;

• On-line versions of those shared workspaces, which allow users to colla-
borate without installing software on the computer (Hackman, 2008);

• The Social Web, which allows users to collaboratively create an ency-
clopedia or lets people find information more efficiently by using voting
mechanisms (Chi, 2008); and

• Web-based conference management systems (a commonplace for aca-
demicians), which support a variety of collaborative tasks, including
the evaluation, discussion, and selection of papers.

The second and central assumption I make in this dissertation is that
the importance of evaluating groupware systems at the cognitive level of
human action is increasing relative to evaluation methods grounded on the
rational and social levels (see Figure 1.1).

1 Google Docs is available at http://docs.google.com and Zoho can be tried out at
http:/www.zoho.com, retrieved November 2008.

http://docs.google.com
http:/www.zoho.com


1.1 Context and Motivation 3

Cognitive Level
100 ms, 1 second, 10 s

· · ·
Rational Level
minutes, hours

· · ·
Social Level

days, weeks, months

Figure 1.1: Levels of human action, adapted from Newell (1994, Fig. 3-3). Tasks
at the cognitive level are quick and usually highly repetitive, such as pressing
keys. At the rational level, tasks take longer to execute and are less repetitive, for
example, on-line chatting. At the social level, tasks may take months and may
not be repeatable at all, say coordinating a complex business deal.

The cognitive level of human action comprehends quick (from tenths of
a second to several seconds) and usually highly repetitive tasks, in which
human psychological characteristics, such as perception, cognition, and
motor skill, play a significant role in task performance (Newell, 1994, Ch. 3).
For instance, the succession of visual searches, key presses, and mouse cursor
movements that might be needed to take ownership of a shared resource
may largely dictate the time to complete this task.

In contrast, the other two levels of human action comprise tasks that
are comparatively less frequent, and perhaps not repeatable at all, taking
minutes to hours to complete at the rational level, or even days, weeks, or
months at the social level. An example of the former is chatting on the
Internet, and the latter may be coordinating a complex business deal.

By combining the two previous assumptions, I am arguing that:

It is increasingly important to evaluate groupware support for
quick and repetitive collaborative tasks that are being performed
by an expanding body of users and that are largely driven by our
cognitive characteristics, because even small improvements to the
execution of these tasks can have large net effects.

It may seem paradoxical that in a dissertation about groupware evaluation
the focus is neither on social and cultural aspects, nor on the workplace, not
even on the organisation. After all, these contextual factors have long been
proclaimed central to group performance (Grudin, 1988) and there is plenty
of evidence in the literature to attest their popularity:

• Existing methods, namely evaluative ethnography, cooperation scena-
rios, and perceived value (which I describe in the related work) ground
the evaluation on social and organisational factors;



4 Introduction

• A review of groupware evaluations reveals that about half were field-
based (Pinelle and Gutwin, 2000); and

• Some lessons from field research highlight the importance of the work-
place in group performance, for instance, room lighting and seating
configuration (Nunamaker et al., 1996).

However, the increasing ubiquity of groupware, especially on the Web, ma-
kes it more difficult to obtain generalisable results from field-based methods
for several reasons, including:
• The user community may be very large and heterogeneous;

• The physical workplace in the organisation’s premises may be replaced
by any place with Internet access; and

• The group may be highly volatile, particularly when collaborative work
is carried out by volunteers (as in the Social Web).

Moreover, field-based methods have been criticised for being less than
appropriate for producing design solutions (Neale et al., 2004; Plowman
et al., 1995) and, because they usually require experts to uncover work done
through a functioning groupware system running in the actual workplace,
they do not integrate well in the iterative design and prototype process
inherent to interactive system design (Dix et al., 2003, Ch. 6).

Of course, some groupware evaluation methods are formative, that is,
can be applied during the development or improvement of the system for the
benefit of in-house staff (Scriven, 1981, p. 63). Examples include groupware
heuristic evaluation (Baker et al., 2002) and walkthroughs (Pinelle and
Gutwin, 2002), which share a conceptual framework called the ‘mechanics
of collaboration’ (Gutwin and Greenberg, 2000). These mechanics describe
group work primitives, such as write a message, overhear a conversation,
and handover a resource to another user, which are then incorporated into
the specific evaluation procedure of each method.

These methods can produce results within the time frame of a design and
prototype iteration because the social and organisational aspects are ruled
out of the evaluation. The argument for this approach is that problems in
the human interaction with the groupware, for example, poor or nonexistent
support for the mechanics of collaboration, ‘will almost certainly guarantee
its demise’ (Gutwin and Greenberg, 2000), irrespective of the work context.



1.2 Problem Statement and Research Question 5

In this dissertation, I follow the same approach of grounding the eva-
luation of groupware systems on the usability, or ease of use, of the user
interface. However, my focus is on the cognitive level of human action, rather
than on the rational level, as currently happens.

In fact, existing formative groupware evaluation methods assume that
the mechanics of collaboration are the finest level of activity, meaning they
abstract how collaboration is actually executed by the users through the
groupware interface. There are multiple ways to handover a resource, for
instance, with different implications in user and group performance.

Interestingly, there is research on cognitive-level evaluation applied to
group work, namely the groups of models approach (Kieras and Santoro,
2004) and distributed GOMS (Min et al., 1999), which are both grounded
on the Goals, Operators, Methods, and Selection rules (GOMS) engineering
model of human performance (Card et al., 1983). However, so far there has
been an underlying assumption that group tasks are sequential and that
each user is presumed to play an individualistic role.

Moreover, in both cases the act of collaborating (as in the mechanics of
collaboration, mentioned earlier) was not evaluated at the cognitive level,
but either expected to be carried out outside the limits of the computer
system or replaced by an abstract communication operator derived from
informal observations. In contrast, the focus of my dissertation is precisely
on collaboration tasks done through the groupware system.

To conclude this motivation, I would like to add that some of the concepts
presented in this dissertation inspired the proposal of project PTDC/EIA/
67589/2006, which was accepted by the Portuguese Foundation for Science
and Technology in August 2007 and is scheduled to end in mid 2010.

1.2 Problem Statement and Research Question

The problem addressed by this research is that current groupware usability
evaluation methods overlook the cognitive level of human action, and yet
our psychological characteristics, such as perception, cognition, and motor
skill, dominate the execution of quick (up to several seconds), but usually
highly repetitive, collaboration tasks.



6 Introduction

One consequence of this situation is that groupware designers and resear-
chers are lacking the instruments to make fine-grained usability optimisations.
This is because existing groupware evaluation methods cover relatively long-
running collaboration tasks (taking minutes to hours, or more, to complete)
and so they rely on abstractions to keep the evaluation manageable.

Therefore, current optimisations comprehend multiple fine-grained colla-
boration steps at once, which have to be disambiguated and instantiated
during groupware development, though with little guidance. This may cause
problems because the usability of groupware systems, as in other interactive
systems, is inherently linked to the details of the user interface.

Another consequence of the cognitive level of human action being left
out of groupware usability evaluations is that the design of the user interface
may be misaligned with our psychological characteristics, which may cause
tasks to demand workloads that exceed our limited information processing
capabilities, as illustrated in Eppler and Mengis (2004).

Actually, users doing group work are particularly exposed to information
overload since they have communicate often to coordinate themselves with
the others, have to deal with multiple information sources, and have to
explicitly manage the alternation between doing individual work and keeping
up with the group, including handling interruptions from colleagues. This
extra workload increases the likelihood of users not being able to collaborate
adequately and, thus, may penalise the usability of groupware systems.

From this situation, my research question is:

How to evaluate and improve groupware usability at the cognitive
level of human action?

This is question worth researching as even small usability improvements
achieved at the cognitive-level of collaborative task execution can have large
net benefits, given the increasing body of groupware users.

1.3 Objectives and Research Methods

The vision of this research is to contribute to better groupware usability
through the practical applicability of cognitive-level evaluations. This vision
will be supported by three research activities and corresponding objectives.



1.3 Objectives and Research Methods 7

Objective 1: I will show that the cognitive level of human action
can be useful to organise the design space of groupware interfaces.

This objective will be met by creating a model of the groupware interface
that unifies cognitive-level information processing (perception, cognition,
and motor skill) with computer support for collaborative interactions. This
objective will be successful if the model can be applied in a range of groupware
systems and if it can be integrated in usability evaluations.

Objective 2: I will show that cognitive-level evaluations can predict
the usability of groupware systems in collaboration scenarios.

I will meet this second objective by constructing two usability evaluation
methods based upon the following two common elements:

• Critical scenarios of collaboration, occurring frequently and affecting
individual and group performance; and

• Existing engineering models of human performance, to characterise the
collaboration scenarios at the cognitive level and provide quantitative
performance estimates.

The methods differ in the way usability is defined and measured and in the
type of collaboration that is supported, but in both cases the aim is to provide
a systematic means for quickly comparing competing groupware designs,
without requiring users or functioning prototypes. Thus, this objective will
be achieved if the methods can contribute to formative groupware evaluation
in a variety of collaboration scenarios.

Objective 3: I will show that focusing the evaluation on human in-
formation processing limitations can improve groupware usability.

This objective will be met in two steps: firstly, by designing and imple-
menting a groupware device that adjusts collaborative information flows
according to each user’s state of attention to mitigate information overload
during group work; and secondly, by conducting a laboratory experiment
that compares groupware usability with and without the device in a fast-
paced collaborative task. This objective will be successful if the experiment
is valid and produces statistically significant results.



8 Introduction

1.4 Overview of the Dissertation

This dissertation has nine chapters. After having identified the context,
problem statement, and research objectives, in Chapter 2 I provide a review
of evaluation types and explain how they have been applied to groupware
systems. I also describe groupware evaluation methods and argue that
they are appropriate for the social and rational levels of human action,
except for laboratory experiments, which can cover cognitive-level tasks but
are expensive to plan and execute, and thus less than suitable for quickly
comparing design alternatives.

In Chapter 3 I review existing cognitive-level evaluation methods, and
the underlying engineering models of human performance, which have long
been used for evaluating the usability of single-user interfaces. I also discuss
practical applications and limitations of this approach, with emphasis on
previous evaluations in group work settings, which actually failed to consider
collaborative tasks and, instead, were focused on independent tasks executed
by users playing individualistic roles.

In Chapter 4 I propose a model of the groupware interface that leverages
the insights about human behaviour provided by cognitive-level evaluation.
I refer to the elements in this model all through the dissertation.

In Chapters 5 and 6 I present two evaluation methods grounded on
engineering models of human performance and show how they can be ap-
plied to predict the usability of groupware interfaces in critical scenarios of
collaboration. The first method focuses on collaborative tasks performed
in shared workspaces, for which I provide three evaluation examples. The
second method aims at capturing the intertwined nature of mixed-focus
collaboration, encompassing shared and private workspaces, as well as the
conflicting goals of users working as individuals or as elements of a group. I
suggest three new usability dimensions, and show how to take measurements
in an example application. In these two chapters I also discuss the merits and
limitations of the methods, such as the assumption that users are tireless.

In Chapter 7 I expand the scope of the dissertation and highlight the need
to evaluate groupware usability regarding human information processing
limitations, particularly during information overload, a condition in which
human attention starts discarding relevant information. I review related



1.4 Overview of the Dissertation 9

work, including the goals and limitations of human attention, and existing
attentive user interfaces, and conclude that most research does not address
tackling information overload in group work settings.

So, in Chapter 8 I evaluate the usability of a custom-built groupware
system that features an attentive device designed to mitigate information
overload, and report on a laboratory experiment with groups of volunteers
doing electronic brainstorming sessions, which shows that groups produced
more ideas when they were exposed to the attentive device.

In Chapter 9 I look back at the research, summarise the main findings
and contributions, and assess the fulfilment of the initial research objectives.
I also synthesise some lessons I learned during the investigation, and suggest
a number of directions for future work.

Finally, I also include two appendices with additional support materials:
Appendix A explains the details of an equation that I used to exemplify
one of the proposed groupware evaluation methods; and Appendix B con-
tains samples of the materials used in the laboratory experiment, namely
the consent form, the entrance questionnaire, and the instructions about
brainstorming and the groupware tool.





Chapter 2

Groupware Evaluation

In this chapter, I present a review of the literature concerning groupware
evaluation, organised in two parts: firstly, I describe types of evaluation
and their purposes and show examples of how each type has been applied
to groupware; and secondly, I survey evaluation methods adapted to or
specifically created for groupware systems, and frame them according to the
level of human activity that they cover.

2.1 Types of Evaluation

According to an evaluation thesaurus, evaluation is ‘the process of deter-
mining the merit or worth or value of something; or the product of that
process’ (Scriven, 1981, p. 53). In other words, evaluation can be seen as
a series of activities that ultimately produce an assessment report about
services, products, work processes, or, of particular interest here, computer
support for collaborative work—for the benefit of a target audience.

2.1.1 Formative Evaluation

When the target audience is the in-house staff and the evaluation is conducted
during the development of a programme or product, it is called formative
evaluation, and typically aims at improving something (Scriven, 1981, p. 63).

Some examples of formative evaluations applied to groupware systems
are described in Paul and Morris (2009), Yankelovich et al. (2004), and

11



12 Groupware Evaluation

Design Prototype Evaluate

Revised Requirements / Problem Reports

Initial
Requirements

Figure 2.1: Formative evaluation in the iterative system design process, adapted
from Dix et al. (2003, Figs. 6.5–6.7). In each iteration a new or revised design is
prototyped and evaluated. The results of the evaluation guide the design of the
next prototype. Mature prototypes become end-user systems, which can still be
evaluated in a formative manner to identify improvements for future prototypes.

Prante et al. (2002). These three papers begin with a study of the problems
with existing tools (through interviews with users, for instance), after which
a set of requirements is specified or revised—for collaborative web searches,
distributed meetings, and electronic brainstorming, respectively—which then
guides the design and development of improved groupware tools.

Actually, this application of formative evaluation to groupware is very
common because it matches the prevailing iterative system design, prototype,
and evaluate process (see Figure 2.1), which is used in software engineering
to overcome incomplete specifications of the users’ needs at the beginning
of a project as well as to diagnose and correct problems that arise during
operation and maintenance of the system (Dix et al., 2003, Sect. 6.4).

More illustratively, according to a survey of papers published between
1990 and 1998, about 56 % of groupware evaluations were formative, mostly
involving prototypes (Pinelle and Gutwin, 2000). Additional papers where
this type of evaluation was applied to groupware can be found in Table 2.1.

One characteristic of all studies in Table 2.1 is that they describe multiple
prototypes, whereas many other papers in the literature present and evaluate
a single prototype and mention additional iterations in the future work, as,
for instance, in Du et al. (2009) and Toups et al. (2009).

To conclude this section on formative groupware evaluation, I highlight
the paper by Gruen et al. (2004), shown in Table 2.1, because it systematically
reports on features/design, implementation/prototyping, and user study/e-
valuation of three e-mail client prototypes, including the links between the
user feedback obtained from the evaluations and the new features of the
subsequent prototypes, spanning a period of three years.



2.1 Types of Evaluation 13

Table 2.1: Formative groupware evaluations, ordered by year. Each of these
studies describes the evolution of a groupware system (or a particular feature)
through various design iterations, guided by the evaluation of prototypes.

Study Groupware Purpose Design Iterations

Piper and Hollan (2008) Communication facilitator 2
Szymanski et al. (2008) Group guidebooks 2

Vassileva and Sun (2008) Social file sharing 3
Piper et al. (2006) Multi-player gaming 3
Tang et al. (2006) Tabletop collaboration 2

Gruen et al. (2004) E-mail communication 3
Langton et al. (2004) Group programming 2
Herbsleb et al. (2002) Instant messaging 2
Boehm et al. (2001) Requirements negotiation 4
Nodder et al. (1999) Instant messaging 3

Prinz and Kolvenbach (1996) Workflow management 2
Tollmar et al. (1996) Social availability 3
Ichikawa et al. (1995) Video conferencing 2

Ishii et al. (1993) Group writing 2
Baecker et al. (1993) Group writing 2

Cool et al. (1992) Video conferencing 3

2.1.2 Summative Evaluation

A different type of evaluation applies when the purpose is to decide about
something, mostly after the completion of a programme or product and
usually for the benefit of some external audience or decision-maker. This is
called summative evaluation (Scriven, 1981, p. 150), which, referring again
to the review by Pinelle and Gutwin (2000), represented about 38 % of all
groupware evaluations for the surveyed period.

Table 2.2 synthesises the main differences between the formative and
summative types of evaluation, including when they are generally applied,
their chief purpose and focus, and their typical target audience.

I note that summative evaluation can also be conducted in-house and
during the development of a product or programme, such as when a manager
verifies the progress of an ongoing project against a set of predefined design
goals. This is not formative because there is no intention to make improve-
ments but rather to produce a status report that can be used to decide about
the future of the project or product, as in Kammer et al. (2000), Cockburn
and Dale (1997), and Sohlenkamp and Chwelos (1994).



14 Groupware Evaluation

Table 2.2: Formative and summative types of evaluation: ‘when the cook tastes the soup, that is
formative; when the guests taste the soup, that is summative.’ (Scriven, 1981, pp. 63 and 150).

Evaluation Type When Applied Purpose Focus On Target Audience

Formative During development Improve Process In-house
Summative After completion Decide Outcome External∗

∗May also be conducted for the in-house staff, for example in the form of project status reports.

The next examples of summative groupware evaluations take place in the
more characteristic case in which a decision must be made about the adoption
or rejection of a prospective groupware tool. Perhaps unsurprisingly, this
decision may turn out to be difficult to justify for several reasons:

• The tool under trial is adequate for recurrent tasks, but is less successful
in occasional complex tasks (Bossen, 2006; Tammaro et al., 1997);

• The groupware is regarded as an organisational success, but also as a
technical failure, or the other way around (Blythin et al., 1997);

• Some users benefit from using the tool whereas others feel their work
has become more difficult (Grudin, 1994; Rogers, 1994); and

• Users freely adopt the tool during a trail period, even though they
cannot explain why (Bjerknes and Bratteteig, 1988).

Grudin (1994) identifies additional factors that complicate groupware
adoption decisions, namely the difficulty in learning from past decisions,
which restricts the use of intuition, and the uncertainty about the rate of
adoption, necessary for the tool to be useful to the entire organisation.

In contrast, the rejection of groupware can be summary, as reported in
Parent and Gallupe (2001): all it took was the feeling that the proposed group
support system was best suited to groups undergoing internal conflicts—an
image the decision-maker did not want to pass to others since his people
were working well together.

Returning to groupware adoption, despite the difficulties mentioned
earlier, a typical path taken by decision-makers is to gather a set of require-
ments (sometimes called critical success factors), then search the market for
systems that match those requirements, and finally ask users if they would
prefer switching to a new system. This path is described in Mosier and



2.1 Types of Evaluation 15

Tammaro (1997) and Tammaro et al. (1997), regarding the adoption process
of electronic meeting schedulers and collaborative writing tools.

In fact, the authors of those two companion papers carried out a more
complete summative evaluation by gathering lists of perceived benefits of the
groupware tools under trial, such as being easier to know people availability
or the production of higher quality documents, respectively. Another list of
benefits can be found in Niederman and Bryson (1998), which also covers
the costs introduced by a meeting support system, as perceived by its users.

The last example of a summative evaluation concerns a decision about
the continuation or decommissioning of an active groupware system based
upon its usage over time. The general idea is that if the user base is steady or
growing, then the groupware (or some of its features) is still being useful and
should continue to be supported. This eventually happened with a system
for broadcasting instant messages in a multinational organisation, when
its user community fervently reacted against the shutdown of the system,
claiming it fulfilled critical business needs (Weisz, 2006).

2.1.3 Comparative Evaluation

One of the most popular types of groupware evaluation is the comparative
type, which answers the question (Damianos et al., 1999): is system A better
than system B? This situation is justified by the confluence of several factors,
including the following:

• Comparisons are compatible with both formative and summative
evaluations, which means they can be done between several prototypes
during the various iterations of the software development process or
between functioning systems competing for adoption or for continuing
in active service;

• A standard way of improving the design of systems is to test the effects
of some candidate features on behaviour and check the direction pointed
by the relative differences in performance (Sanders and McCormick,
1992, pp. 24–25). Moreover, these differences may trigger a search for
explanations and lead to more feature comparisons in order to choose
the preferred explanation (Abelson, 1995, pp. 3–6);



16 Groupware Evaluation

• Product evaluations, as those found in consumer reports or those per-
formed in acquisition programs, compare the merits of multiple critical
competitors, so that the best value for money (or other resources) can
be ascertained (Scriven, 1981, pp. 39–40); and

• Comparative evaluations are also used to highlight the advantages of
some proposed system or feature relative to the state of the art. In
fact, this is a customary form of substantiating a contribution to the
body of knowledge in research.

A characteristic of all comparisons is the need to set up common criteria
upon which to base the determination of the value or worth of the options.
Naturally, the selection of these criteria depends upon the types of questions
the evaluation must answer and ultimately involves defining either a set of
dimensions upon which to grade the systems, or, particularly in experimental
research, defining which specific, operational, measures should be collected
(Scholtz and Steves, 2004).

Comparative Evaluations in Experimental Research

One comprehensive review of the measures used in groupware experimental
research lists 120 distinct dependent variables,1 including decision time,
number of decision cycles, system utilisation, number of errors, number of
comments, learning time, and many others (Fjermestad and Hiltz, 1999).

Such a variety of measures has lead to the creation of groupware evaluation
frameworks that consider high level, conceptual, measures, and arrange
them in categories. So, for instance, number of comments is abstracted
into effectiveness, and this, in turn, belongs to the task outcome measures
category. The following is a brief overview of some of the existing frameworks:
• Araujo et al. (2004) suggest measuring the usability of the groupware

system, the level of collaboration that can be achieved, and the cultural
impact of using the system;

• Antunes and Costa (2003) consider task, group, organisation, and tech-
nology categories, and their corresponding measures, such as efficiency,
effectiveness, satisfaction, perceived value, and economic impact;

1 Dependent variables answer the question: what do I want to observe? They are the data,
that is, the results of the experiment—what is measured (Howell, 2007, p. 4).



2.1 Types of Evaluation 17

• Damianos et al. (1999) propose a framework with four layers that, at
the top, aims at measuring how well the groupware supports work tasks,
transition tasks (for instance, setting up a meeting), social protocols,
and group characteristics (such as, size and space/time collocation);

• Tung and Turban (1998) place decision quality, completion on time,
and other measures in the task category; cohesiveness, coordination
competence, communication effectiveness, and more in the group
category; and status, culture, and structure in organisational measures.

All these frameworks are designed to organise and bound the evaluation
space by purposefully identifying only the relevant types of data that should
be collected and compared, though, in practise, they are considerably exten-
sive. From these circumstances, I agree with Sanders and McCormick (1992,
p. 34) in that ‘any attempt to classify criterion measures inevitably leads to
confusion and overlap.’

In fact, most groupware experimental research does not make use of the
full spectrum of measures proposed by existing frameworks and, instead,
prefers to focus the evaluation on a relatively small number of conceptual
measures, particularly task effectiveness/efficiency, user satisfaction, and
process gains/losses, as synthesised in Fjermestad and Hiltz (1999).

This situation is corroborated by the literature survey in Table 2.3,
covering almost twenty years of comparative groupware evaluations in experi-
mental research, which reveals that the majority of the studies that compared
at least three options (in most cases, generic groupware features rather than
complete systems) report results for up to five operational measures.

The more elaborate studies in Table 2.3 consider between six and fifteen
operational measures, and more than that in one case. When taken collecti-
vely, these measures can be arranged into the four categories proposed in
Antunes and Costa (2003), though none of the studies comprised them all.
For illustration purposes, I provide the following examples:

• Davey and Olson (1998) compared three decision support systems
along measures from the task category, such as time to reach a solution
and number of solutions considered in a bank investment decision;

• Bose and Paradice (1999) measured attitude towards group judgement-
making process and perceived degree of consensus, among others, in a



18 Groupware Evaluation

Table 2.3: Comparative evaluations in groupware experimental research, ordered by year. These
studies consider at least three competing options (for terseness sake) being compared along a
number of operational measures—that actually produced data. I use number intervals to emphasise
the point that most groupware experiments regard relatively few measures. Most studies compared
generic groupware features and not complete systems, which is common in laboratory settings.

Study Groupware Purpose Options Measures

Pinelle et al. (2009) Tabletop collaboration 4 6–15
Tuddenham and Robinson (2009) Tabletop collaboration 3 6–15

Balakrishnan et al. (2008) Problem solving 4 6–15
Stuckel and Gutwin (2008) Delay mitigation 3 1–5

Fraser et al. (2007) Display trajectories 4 1–5
Nguyen and Canny (2007) Video conferencing 3 1–5

Pawar et al. (2007) Group learning 4 6–15
Söderholm et al. (2007) Telemedicine 3 1–5

Forlines et al. (2006) Group searching 3 1–5
Hauber et al. (2006) Video conferencing 4 >15
Ranjan et al. (2006) Remote assistance 3 1–5
Nacenta et al. (2005) Tabletop collaboration 6 1–5

Tsandilas and Balakrishnan (2005) Interference mitigation 4 1–5
Gutwin et al. (2004) Delay mitigation 3 1–5
Fussell et al. (2003) Remote physical tasks 5 6–15
Yuan et al. (2003) Web-based negotiation 3 6–15

McNee et al. (2002) Group filtering 6 1–5
Yang and Olson (2002) Group navigation 4 1–5

Garau et al. (2001) Avatar expressiveness 4 1–5
Zanella and Greenberg (2001) Interference mitigation 3 1–5

Connell et al. (2001) Impression management 3 1–5
Fussell et al. (2000) Remote physical tasks 3 6–15

Mennecke et al. (2000) Decision and negotiation 4 1–5
Bose and Paradice (1999) Group decision 3 6–15
Davey and Olson (1998) Group decision 3 6–15
Zhao and Stasko (1998) Filtered video 5 1–5

Aytes (1995) Group drawing 3 6–15
Hymes and Olson (1992) Brainstorming 3 1–5

Gale (1991) Shared whiteboard 3 6–15

comparison between two group decision support systems and the option
of not using computers; these measures fit into the group category;

• Gale (1991) compared three variants of shared whiteboards and asked
users to estimate the time savings and productivity increases if the
department or whole site had installed each system, separately; thus,
this evaluation used measures from the organisation category; and



2.1 Types of Evaluation 19

• Hauber et al. (2006) measured the usability of three techniques for
video conference systems through user questionnaires and compared it
with the usability of face-to-face meetings. In this case, the measures
were from the technology category.

I note that some comparative evaluations in groupware experimental
research consider well over fifteen operational measures, but the comparison is
frequently made between using or not using a groupware tool and, sometimes,
between using or not using computers to collaborate. Thus, these studies
tend to be less focused on technology and more interested in the other
categories of measures, particularly task- and group-related.

The best example I could find of this disparity is the study by Michailidis
and Rada (1994), which compared a single-user text editor with a group
writing tool along seven usability measures (overall adequacy, breakdowns
caused by the tools, and support for five aspects of coordination) and sixty-
seven measures concerning the writing task, ranging from text length and
complexity, document and content quality, style clarity, and more.

Comparative Evaluations Outside Experimental Research

In contrast with the previous cases, comparative groupware evaluations
outside the domain of experimental research tend to be more focused on
technology and how well the systems or tools help fulfil group tasks.

This often happens in discussions concerning the state of the art, for
instance to demonstrate that no system supports a feature being proposed
(Aneiros et al., 2003; Roussev et al., 2000; Munson and Dewan, 1994), to
introduce improvements (Sun, 2000; Baecker et al., 1993), to automatise
procedures (Wang et al., 2007), or to draw a map of the degree of technological
development across a range of prototypes (Peng, 1993).

Other examples of groupware comparisons assess the level of support
for task activities, for instance the possibility of facilitating pre-meeting
arrangements (Antunes and Ho, 2001; Dubs and Hayne, 1992) or of organising
ideas after brainstorming sessions (Nunamaker et al., 1991).

Finally, I only found one case in which groupware systems were compared
along a list of design guidelines (Kruger et al., 2004), which is, perhaps,
surprising given the abundance of recommendations that authors often feel



20 Groupware Evaluation

Table 2.4: Groupware comparisons outside experimental research, ordered by year. These studies
compare tools along a set of dimensions, usually to highlight the advantages of a new tool being
proposed or to assess technological support for a list of requirements.

Study Groupware Purpose Options Dimensions

Wang et al. (2007) Group awareness 7 1–5
Kruger et al. (2004) Tabletop collaboration 6 6–15
Aneiros et al. (2003) Group browsing 8 1–5

Antunes and Ho (2001) Meeting preparation 6 1–5
Roussev et al. (2000) Distributed infrastructures 8 6–15

Sun (2000) Group undo 3 6–15
∗Bose and Paradice (1999) Group decision 3 6–15
Munson and Dewan (1994) Object merging 6 6–15

Baecker et al. (1993) Group writing 7 >15
Peng (1993) Group drawing 13 >15

Dubs and Hayne (1992) Group facilitation 7 6–15
Nunamaker et al. (1991) Electronic meetings 13 1–5
∗This study also compared the same groupware systems in an experiment (see Table 2.3).

tempted to make at the end of an evaluation. As Scriven (1981, pp. 131–132)
puts it, ‘a road-tester is not a mechanic,’ and the complexities of computer-
supported cooperative work may be a fine example of useful recommendations
requiring ‘not only local knowledge but very special skills.’

Table 2.4 shows that groupware comparisons made outside experimental
research typically comprise a significant number of options (up to thirteen
tools side-by-side) and that the assessments consider a relatively high number
of dimensions, in contrast with the measure counts in Table 2.3.

Another difference is that the evaluations in Table 2.4 use the categorical
scale of measurement, with simple values such as yes/no, low/medium/high,
none/partial/full, or domain-specific names, whereas most of the comparative
studies in Table 2.3 use interval or ratio scales, with numerical values.

2.1.4 Other Types of Evaluation

The evaluation thesaurus (Scriven, 1981) mentions several other types of
evaluation that have been applied to groupware systems. I describe here
two dichotomies, the first of which is the popular quantitative/qualitative
division, and the second is between holistic and analytic evaluations.



2.1 Types of Evaluation 21

Quantitative Versus Qualitative Evaluations

Quantitative evaluations are based upon numerical measures or numerical
analysis of categorical or ordinal data (Scriven, 1981, p. 126). So, when a
researcher measures task completion times, s/he is following the quantitative
path, and the same happens when s/he summarises the results of questi-
onnaires using counts or percentages of each possible answer. Almost all
studies in Table 2.3 are of this type.

It is usual in quantitative evaluations that large amounts of data be
processed, and treated without special consideration for the context where
they were captured. In contrast, qualitative evaluations do not seek the
statistical significance permitted by large bodies of data and, instead, aim at
making long-term, in-depth, studies with small samples of people performing
relevant collaborative tasks (Miles and Huberman, 1994, p. 27).

One reason why qualitative evaluations last weeks, months, and, someti-
mes, years, is that one of its main goals is to find out how well the interactive
computer system fits with existing work practises. Thus, an essential part
of the evaluation involves understanding the rhythms of work routines, the
movements of people and artifacts, and the social nature of work, including
how people coordinate their activities (Martin et al., 2005). Naturally, this
can become very time-consuming and even unpredictable when the evaluator
assumes a minimally intrusive role in the workplace being studied.

The literature describes several qualitative evaluations applied to group-
ware, typically conducted for large organisations and confined to a physical
space. A recurring theme is the evaluation of time-critical systems in intense
collaboration workplaces, such as hospital wards (Tang and Carpendale,
2008; Bossen, 2006; Martin et al., 2005; Heath and Luff, 1996), air traffic
control rooms (Twidale et al., 1994; Harper et al., 1989), and telecommunica-
tions centres (Whittaker and Amento, 2003). The evaluations conducted in
these, sometimes hectic, workplaces, usually show that when the groupware
does not mesh well with existing work practises, it is easily rejected by the
users, who quickly revert to using the old system, even if paper-based.

Curiously, some qualitative evaluations report that, even though pro-
blems were detected, the groupware system continued to be used because it
facilitated accounting (Bowers et al., 1995; Rogers, 1994).



22 Groupware Evaluation

Finally, I note that some of the summative evaluations mentioned in
Section 2.1.2 are simultaneously qualitative and that more pointers can be
found in Pinelle and Gutwin (2000), which also reveals that about 72 % of all
groupware evaluations surveyed were of this type, versus 7 % for quantitative,
and the remaining 22 % for both types being used in the same study.

Holistic Versus Analytic Evaluations

Another dichotomy in evaluation, less popular, is between the holistic and
analytic types. The former means doing an assessment at the macro-level,
with no need to look into the details to obtain an overall value (Scriven,
1981, p. 72). The latter is done at the micro-level and assumes the value of
the whole is made up of the evaluations of its parts (Scriven, 1981, p. 7).

It could be argued that some qualitative evaluations are holistic, especially
those that are also summative, not the least because this certainly happened
in two assessments, which I recall from Section 2.1.2: the first concluded
users freely adopted a groupware system for no particular reason (Bjerknes
and Bratteteig, 1988), thus making it difficult to ascertain the factors that
contributed to success; and in the second, there was no need to evaluate the
parts of a negotiation tool because the whole system was summarily rejected
by a decision-maker based upon his feeling (Parent and Gallupe, 2001).

Conversely, analytic evaluations are at the core of many comparative
assessments. For instance, the dimensions alluded in Table 2.4 are a way of
spreading out the value of competing groupware systems into their constituent
parts, to allow comparisons to be carried out at a more detailed level.

Similarly, the evaluation frameworks discussed on page 16 are another
way of decomposing the value of a groupware system into multiple categories
of measures, which, by design of the frameworks, are all essential to ascertain
the overall system worth.

Furthermore, because analytic evaluation helps detect the individual
components that drive the success or failure of a system, it may be a useful
approach to formative evaluation (Scriven, 1981, p. 25). In fact, the iterative
nature of interactive system design relies on the identification of problems
in specific parts or features, which are subsequently addressed in the future
prototypes (see Section 2.1.1).



2.2 Evaluation Methods 23

2.2 Evaluation Methods

The types of evaluation in the previous section provide a conceptual overview
of the variety of purposes, target audiences, placements in the software
development process, outcomes, and levels of detail afforded by evaluations.
In this section, I describe operational methods to systematically gather data
and produce results in groupware evaluations.

Some groupware evaluation methods are adaptations of methods origi-
nally designed for the assessment of single-user (singleware) tools. This is
natural, and will likely continue over the next years,2 given that groupware
evaluation can be regarded as a super-set of singleware evaluation. In addi-
tion, there is still a large gap between the number of methods in these two
domains: over a hundredth for singleware evaluation (Ivory and Hearst, 2001)
compared with less than thirteen for groupware (Herskovic et al., 2007).

Other methods were specifically created for, or gained notoriety with, the
evaluation of groupware systems, mainly by considering the organisational
and social contexts as prime components of the assessment, and, contrary to
the focus of the methods I alluded in the previous paragraph, by dispensing
with the classical human-computer interaction measurements, unless deemed
necessary. I explore this duality in the next subsections.

2.2.1 Context-Based Methods

One of the most important trends in groupware evaluation is based upon the
assumption that social, cultural, workplace, and organisational factors are
determinants of group performance and groupware acceptance, so evaluations
should be carried out through field studies in the ‘real world’ instead of
laboratory experiments in artificial settings (Grudin, 1988).

As a consequence of this assumption, one commonly accepted purpose
of evaluations, according to this trend, is to inform about the success and
failure of functioning systems, that is, to check if the groupware fits with
existing work practises (Martin et al., 2005) and delivers what is required of
it in the real context of use (Hughes et al., 1994).

2 To reinforce this point, the methods I propose in Chapter 5 and 6 reuse an analytical
method that was originally devised for evaluating single-user tools in the early 1980s.



24 Groupware Evaluation

The popularity of this trend is well documented in the literature. For
example, the aforementioned paper by Grudin (1988) was the second most
cited over the first twenty years of a major computer-supported cooperative
work conference (Jacovi et al., 2006). Another evidence is that a review of
groupware evaluations revealed that about half were field-based, about the
same proportion as laboratory experiments (Pinelle and Gutwin, 2000).

Finally, some evaluation methods for groupware systems are grounded
on contextual factors, which I have organised in evaluative ethnography,
cooperation scenarios, and perceived value.

Evaluative Ethnography

Ethnography is concerned with producing detailed descriptive accounts of
the everyday life of the people who are the subject of a study. It requires one
or more ethnographers working in the field, who immerse themselves in the
culture under investigation for prolonged periods of time (weeks, months,
and even years) to make visible the real world interactions of a community.3

This contextually-rich characterisation inspired some of the first group-
ware evaluations, which applied ethnography in the workplace to confront
how designers expected the system to be used versus how the users really
collaborated (Hughes et al., 1994; Twidale et al., 1994).

Interestingly, those early evaluations were adaptations of formal ethno-
graphic studies in that the duration of the studies was restricted to between
two and four weeks and also in that the work of the evaluator was more infor-
mal and opportunistic, accounting for less details of the workplace. Another
adaptation reported more recently is to conduct the evaluation in discrete
phases, such as before and after system deployment (Tang and Carpendale,
2008), instead of the more usual continuous workplace immersion.

These simplifications make evaluative ethnography more manageable and
less costly, but even so it is criticised for being expensive and unsuitable for
rapid prototype evaluation (Gutwin and Greenberg, 2000). Another critique
is that it has been considered less than appropriate for producing design
solutions because the translation between the discursive language used in

3 From the definition of ethnography in Encyclopedia Britannica, retrieved December 2008,
http://www.britannica.com/EBchecked/topic/194292/ethnography.

http://www.britannica.com/EBchecked/topic/194292/ethnography


2.2 Evaluation Methods 25

ethnography and the design blueprint may get distorted or misconstrued
(Plowman et al., 1995), which, putting it another way, could simply mean that
the ‘implications for design’ typically suggested at the end of ethnographic
evaluations are not understood by the groupware audience (Dourish, 2006).

Also, its focus on the description of the present state of the workplace
contrasts with the problem-solving, future-oriented, nature of design (Neale
et al., 2004). And, finally, there is the problem of scale, which is particularly
pertinent in the heterogeneous, and physically distributed, workplaces that
are emerging as the computer becomes increasingly ubiquitous and portable
(Crabtree et al., 2009), and even more so with the large and volatile groups
that populate many of the collaborative efforts on the Web (Chi, 2008).

Cooperation Scenarios

Evaluation based upon cooperation scenarios couples field-based studies
with user interviews to elicit new groupware features, which are ultimately
validated in workshops with the users (Stiemerling and Cremers, 1998).

The purpose of the interviews in the workplace is to extract contextual
information, especially work practises, motivation and goals for cooperation,
roles played, and tasks performed. From this, cooperation scenarios are built
and, if necessary, refined by interviewing more users.

Next, scenarios are examined for problems with the current work practises,
possibly explicitly stated by the users themselves, and design solutions are
created, that is, new cooperation scenarios are proposed.

A preliminary evaluation of these scenarios is then conducted based upon
role-oriented analysis (without any users) to predict who would benefit the
most and to estimate task workload for all involved parties.

Finally, the new cooperation scenarios are implemented in the groupware
system and evaluated by the end users through a discussion workshop, where
unexpected design flaws can be discovered.

A variant of cooperation scenarios adds claims analysis and frequency of
use to the evaluation (Haynes et al., 2004). Claims are statements about the
positive and negative effects of using the groupware system in a scenario, as
stated by the users in interviews. In addition, the number of times a scenario
(occurring in everyday work or envisioned) is mentioned in the interviews



26 Groupware Evaluation

is counted, which, together with claims analysis, are then used to establish
priorities for improving the groupware system and to assess how far it is
from the users’ expectations.

Perceived Value

Another method that builds up from the users’ opinions is called perceived
value, which differs from the previous by shifting the focus of the evaluation
away from planned scenarios of use and into open exploration of the group-
ware system (implicitly situated in the organisational and group context),
as well as by involving another type of stakeholder, namely the software
developers (Antunes and Costa, 2003).

The method begins with developers identifying system components that
should be visible to the users and that are considered relevant to the eva-
luation, based upon a preliminary appreciation of the importance of the
technology in the specific organisational context.

Next, a list of concrete evaluation attributes is negotiated between the
developers and the users. Currently, a predefined list of attributes exists
for meeting support systems, covering roles, processes, and resources of the
system at the individual, group, and organisational levels.

Finally, users experience the groupware in a free manner, after which they
fill out an evaluating matrix correlating the perceived contribution of the
system components to the attributes. This can be done either individually
or collectively, in a meeting.

2.2.2 Usability-Oriented Methods

The usability trend in groupware evaluation is based upon the assumption
that if users have difficulties interacting with the groupware they will likely
abandon it and switch to other alternatives that also get the work done,
irrespective of the work context (Gutwin and Greenberg, 2000).

Thus, the focus of usability evaluation is on aspects such as the effec-
tiveness, efficiency, and satisfaction achievable by users while performing
collaborative tasks through the groupware system.

Usability evaluation is well-known in the Human-Computer Interaction
(HCI) field and has been extensively applied to single-user interfaces. Some of



2.2 Evaluation Methods 27

the most popular usability evaluation methods include conducting laboratory
experiments, checking the interface against a set of heuristic guidelines, and
finding problems via walkthroughs of the actions the user would have to
perform to complete a task (Dix et al., 2003, Ch. 9).

These methods have been adapted to groupware usability evaluation for
different reasons. Laboratory experiments enjoy almost universal acceptance
in science, so the transition to the groupware domain is natural, but they
are costly and difficult to setup. The other two methods purposefully reduce
the complexity of the evaluation at the expense of precision and realism.

Laboratory Experiment

The literature on groupware usability evaluation includes numerous references
to laboratory experiments, some of which shown in Table 2.3 on page 18.
Moreover, Pinelle and Gutwin (2000) reveal that about half of all groupware
evaluations surveyed were experiments and that approximately 70 % of those
were assessments of the user interaction through the system.

With this method, the evaluator asks groups of volunteers to perform a
collaborative task via a groupware system/prototype installed in a laboratory
room. Each session is carefully prepared to minimise external influences and
to keep the results precise and comparable.

At the end of the experiment, the evaluator analyses all recorded evidence
to determine if there is a link between preselected usability measures and
the computer features being tested, guided by the hypotheses that originally
motivated the evaluation. Some common usability measures include the
effectiveness, efficiency, and satisfaction achievable by the users while colla-
borating through the interface, which are typically assessed from empirical
measurements and questionnaires.

Despite the popularity of laboratory experiments as a method for eva-
luating groupware usability, the fact is that it is particularly difficult and
costly to perform with groups. This is due to several reasons:

• Groups may be hard to find with the required competencies, may be
geographically distributed, or may simply be unavailable for the time
necessary to accomplish the collaborative tasks, which precludes the
experiment from being executed in a controlled laboratory room;



28 Groupware Evaluation

• A functioning groupware system or prototype is needed, as well as a
large paraphernalia of software instruments to gather data; and

• The experiment itself requires significant time and expertise to setup
and execute, including devising a protocol plan, preparing materials,
arranging the laboratory room, and performing the sessions with users.

Curiously, besides the precision and comparability pursued by experi-
menters, which are indispensable for replicating the tests and increase the
confidence in the results, Greenberg and Buxton (2008) allude that another
factor contributing to the success of laboratory experiments could be the
existence of a methodological bias in academic review committees, possibly
at the expense of creativity and innovation.

∗ ∗ ∗
In contrast with laboratory experiments and context-based methods, the
next two groupware usability evaluation methods can be applied without
users and without functioning systems. In fact, the motivating idea is that
simple mock-ups, for example, made of paper, may be sufficient to detect
most usability problems.

This means that these methods require less time and effort to conduct,
and so they enable more iterations through the design, prototype, and
evaluate process (see Figure 2.1 on page 12). Another way of putting this is
that usability problems can be detected and repaired earlier.

In both methods, group work is represented using the same conceptual
framework, called the ‘mechanics of collaboration’ (Gutwin and Greenberg,
2000), which I briefly describe before presenting the methods themselves.

The mechanics of collaboration are group work primitives, such as write a
message to one or more users, overhear a conversation, know who is currently
on the group, and handover a resource to another user (see more examples
in Table 2.5). Their purpose is to describe general purpose communication
and coordination activities that are needed for users to collaborate.

The mechanics are designed to provide a comprehensive view of group
work, although they may be, and have been, revised and expanded (Pinelle
and Gutwin, 2008; Pinelle et al., 2003). They are also purposefully observable,
so that they can be evaluated one at a time, which might be useful in the
breakdown of complex collaborative tasks.



2.2 Evaluation Methods 29

Table 2.5: Mechanics of collaboration, adapted from Pinelle et al. (2003, Table 1).

Type Category Mechanic Typical Actions

Communication Explicit
communication

Spoken messages Conversation
Written messages Persistent conversation
Gestural messages Drawing, demonstrating
Deictic references Pointing and speaking

Information
gathering

Basic awareness Attending to the group
Feedthrough Changes to objects
Consequential com. Body position, gaze direction
Overhearing Presence of talk
Visual evidence Confirmation of understanding

Coordination Shared access Obtain resource Take objects, occupy space
Reserve resource Notify others of intention
Protect work Notify others of protection

Transfer Handover object Give/take object
Deposit Place object and notify

Groupware Heuristic Evaluation

This method builds upon a list of usability heuristics created for single-user
interfaces, such as ‘provide feedback’ and ‘use the user’s language’ (Nielsen,
1992), by introducing new ones derived from the mechanics of collaboration
(Baker et al., 2002, 2001). These complementary heuristics are guidelines
believed to reflect good usability practises for human-computer interaction
with groupware systems, such as ‘facilitate finding collaborators,’ ‘provide
protection,’ and ‘support people with the coordination of their actions’
(compare with the mechanics of collaboration in Table 2.5).

The method begins with multiple experts visually inspecting the group-
ware interface (which may be almost anything available, from a functioning
system to a paper mock-up) and judging its compliance with the list of
heuristics. Every usability problem is recorded, including details about the
affected heuristic, a severity rating, and optionally a solution to the problem.

These problems are then filtered, classified by heuristic, and consolidated
into an evaluation report, which can be used to improve the interface design.

Groupware heuristic evaluation is likely the cheapest and fastest method
for evaluating the usability of groupware user interfaces, but because it
requires various experts to increase the problem detection rate, it is prone



30 Groupware Evaluation

to multiple subjective assessments, which may be hard to combine in a
meaningful report. Another critique to this method is that it does little to
support the analysis of problem causes, which may lead to inappropriate
solution proposals (Cockton and Woolrych, 2002).

Groupware Walkthrough

This method relies on a set of expert evaluators walking through the steps that
users would have to perform to carry out collaborative tasks, and answering
general questions about the experience with the groupware interface (Pinelle
and Gutwin, 2002). It is based upon cognitive walkthrough, a method for
evaluating the usability of single-user interfaces (Polson et al., 1992), which
was adapted to the multi-user case by abstracting individual tasks and
focusing the evaluation on the collaborative parts of group work.

The method can be applied without a functioning system because the
evaluation is grounded on textual descriptions comprising three types of
information: a) the collaborative tasks, which are ultimately converted into
arrangements of mechanics of collaboration; b) the recommended procedure
to perform the tasks through a particular user interface; and c) the knowledge
and roles expected from the users as they collaborate. This bears some
resemblance with the cooperation scenarios described on page 25, but with
considerable less details, to save time and reduce costs.

During the walk through sessions each evaluator can play one or more roles
within the group, keeping in mind the original goal of the collaboration, the
expected user population, and the recommended procedure. Any problems
encountered are recorded and discussed in a meeting with all experts involved
in the evaluation. Thus, as with groupware heuristic evaluation, it may be
complicated to arrive at a final report based upon multiple opinions.

2.3 Discussion

Confronting the previous methods with the three levels of human activity
mentioned in Figure 1.1 on page 3, it becomes apparent that groupware
evaluation for tasks performed at the rational and social levels (lasting
minutes, hours, days, and more) is covered by several methods, in contrast



2.3 Discussion 31

Cognitive Level
100 ms, 1 second, 10 s

· · ·
Rational Level
minutes, hours

· · ·
Social Level

days, weeks, months

Laboratory Experiment

Evaluative Ethnography
Cooperation Scenarios

Perceived Value

Groupware Walkthrough
Groupware Heuristic Evaluation

Eff
or
t

Figure 2.2: Groupware evaluation methods and levels of human action. The
methods requiring the least effort to apply address computer support for tasks at
the rational level, lasting minutes to hours (see lower middle region). Evaluations
of more complex collaborative tasks, at the social level, consider the group and
organisational contexts, and so are more expensive to conduct (upper right). The
cognitive level of human action is covered by laboratory experiments, which are
expensive to plan and execute (upper left region).

to the quick cognitive level tasks (from tenths of a second to seconds in
duration), which are addressed in laboratory experiments (see Figure 2.2).

This means that a significant amount of effort is needed to evaluate
computer support for small and yet ubiquitous collaboration tasks, because,
for the reasons I mentioned earlier, experiments are expensive to plan and
execute. This is illustrated, for instance, in a long series of experiments solely
dedicated to minimising the disruptive effects caused by communication
delays on simple tasks such as recognising gestures made with telepointers,4

spanning a period of six years, in which a handful of techniques was tested
(Stuckel and Gutwin, 2008; Dyck et al., 2004; Gutwin et al., 2004, 2003;
Gutwin and Penner, 2002).

The other evaluation methods can be applied with varying effort but are
appropriate for higher levels of human action:
• Groupware heuristic evaluations and walkthroughs are confined to

computer-mediated tasks at the rational level because extending their
scope to the social (with more people involved and having to cope with

4 Telepointers are replicated cursors that show the location of the mouse pointer of each
user on a shared workspace, visible to all participants in a common collaborative task.



32 Groupware Evaluation

cultural influences) or cognitive levels (with finer details than those
provided by the mechanics of collaboration) would go against their
original purpose of reducing the evaluation complexity; and

• Perceived value, cooperation scenarios, and evaluative ethnography
are suitable for assessing computer support for situated work practises,
either by involving the users in the evaluation or from the immersion
of ethnographers in the field. It would make little sense to divert the
scope of these methods away from context-based elements and into
context-free, repetitive, details. Moreover, the last two methods are
expensive to apply.

From this situation, the evaluation of alternative designs for doing quick
and repetitive collaborative tasks is currently being constrained in two
ways: a) the high effort required by laboratory experiments, which hampers
formative evaluations; and b) the lack of less expensive methods.

Furthermore, the impact of this constraint is growing with the increasing
adoption of groupware systems, especially on the Web, where the user com-
munity is large, heterogeneous, and volatile. Thus, there is an opportunity
for researching less costly groupware evaluation methods that explore the,
context-independent, cognitive level of human action.

2.4 Summary

In this chapter, I presented a conceptual overview of evaluation types and
how they have been applied to groupware systems, and reviewed groupware
evaluation methods organised according to the context and usability trends.

I argued that existing methods assess computer support for collaborative
tasks at the rational and social levels of human action, except for laboratory
experiments, which also cover the cognitive level but are expensive to conduct.

Given the increasing ubiquity of groupware systems, there is an oppor-
tunity for proposing less costly methods targeting the evaluation of design
alternatives for doing quick and, especially, repetitive tasks that users all
around the world are executing right now. This path has long been ackno-
wledged for the evaluation of single-user tools, which is the subject of the
next chapter.



Chapter 3

The Roots of
Cognitive-Level Evaluation

In this chapter, I review cognitive-level evaluation methods and show how
they can be applied to predict the usability of single-user computer systems,
which, so far, has been the prime application domain of these methods. These
methods have attained considerable success but also have limitations, which
I discuss, particularly regarding some approaches to apply cognitive-level
evaluation in group work settings.

3.1 Background and Concepts

Cognitive-level evaluation, grounded on quick and repetitive tasks that take
between tenths of a second to several seconds to execute, is well-known in
the field of Human-Computer Interaction (HCI). In fact, it has matured
to the point that an extensive body of psychological knowledge has been
packaged into engineering models of human performance, that designers and
evaluators can use to assess the usability of interactive computer systems
(John and Kieras, 1996a; Card et al., 1983).

The original motivation for engineering models of human performance
was to provide an applied information-processing psychology that designers
could use to understand the factors that govern human behaviour during
computer operation. These models would supply the means for doing quick

33



34 The Roots of Cognitive-Level Evaluation

Perceptual
Processor

Motor
Processor

Working
Memory

Cognitive
Processor

Long-Term
Memory

Computer
Interface

1 2 3

45

67

User

Figure 3.1: Model Human Processor, adapted from Card et al. (1983, Fig. 2.1).
The user is represented as processors and memories. The numbers show a sequence
of steps that reflects human information processing with a computer, from the
perception of new information to the corresponding motor activity.

calculations, with good enough approximations of human performance, and
would be based upon task analysis because much of the human behaviour is
dictated by the structure of the task environment (Card et al., 1983, Ch. 1).

To this end, one of the first objectives in the development of engineering
models was to simplify and combine a myriad of theories that were scattered
in the psychological literature, such as Fitt’s Law and the Power Law of
Practise (Card et al., 1983, pp. 51–65), into what became the Model Human
Processor (MHP), illustrated in Figure 3.1.

The MHP represents the user as an architecture composed of dedicated
perceptual, cognitive, and motor processors, as well as working and long-term
memories, each with its own functioning parameters. These components,
together with general principles of operation, provide the bases for explaining
human behaviour and for making predictions of human performance with a
computer (Card et al., 1983, Ch. 2).

For example, the MHP predicts that the time from perception to action,
useful in making micro-movement corrections that lead to our ability to, say,
move the mouse pointer accurately, takes approximately 240 milliseconds.
This is explained as follows (see numbered steps in Figure 3.1):

• The perceptual processor 1) converts an image from the physical world
showing the current position of the mouse pointer into an internal
mental representation and 2) stores it in the working memory (WM).
This typically requires 100 ms;



3.1 Background and Concepts 35

• Then, the cognitive processor 3) recognises the new contents in the
working memory, 4) chooses a corresponding action from the knowledge-
base in the long-term memory (LTM), and 5) stores the selected action
in the working memory. This takes about 70 ms; and

• Finally, the motor processor 6) obeys the new instructions in the
working memory by 7) moving the hand that holds the mouse a little
bit in the desired direction. This usually requires another 70 ms.

Although the Model Human Processor is useful in predicting the execution
time for short tasks, such as the micro-adjustments in the previous example,
it is difficult to use in interactive systems design because users exhibit much
more complex behaviour while interacting with a computer.

This situation motivated the next developments in engineering models,
which, for the sake of bridging the gap between applied psychology and design
practise, concentrated on higher-level models for predicting the behaviour of
experts executing routine tasks.

In these circumstances, actual performance is approximated by error-free
performance, and, because no problem solving is involved, user tasks can
be described via actions such as pressing keys, pointing with the mouse,
locating objects on the computer screen, and others, whose durations can
be derived from the MHP. These higher-level models are known as GOMS
models (John and Kieras, 1996a; John, 1995; Card et al., 1983).

GOMS models represent a task through the user’s knowledge of how to
perform it in terms of Goals, Operators, Methods, and Selection rules.

Goals indicate what the user wants to accomplish and may contain sub-
goals. For example, to edit a paragraph the user needs to locate it in the
text and make the changes (a main goal with two sub-goals).

Operators are actions that the user can do to perceive or act upon the
task environment and are tied to what the computer interface allows the
user to do. Operators are considered indivisible, which distinguishes them
from the goals, and have predetermined durations.

A method is a well-practised sequence of sub-goals and operators for
accomplishing a goal. It reflects one way, possibly among many, in which
the user stores his/her knowledge about a task. For instance, the user knows
that to delete a word s/he may press the ‘delete’ key multiple times.



36 The Roots of Cognitive-Level Evaluation

Finally, selection rules apply when there is more than one method for
fulfilling the same goal. For instance, a rule for deleting a paragraph may be
to press the ‘delete’ key multiple times if the paragraph is short, otherwise
use the mouse to select the entire paragraph and then press the ‘delete’ key
once. The choice of method may be a matter of personal preference or may
be dictated by the user interface, but it is always expected to take place is a
quick and smooth way, reflecting the essence of expert behaviour.

These GOMS concepts are still up-to-date, despite having been presented
more than twenty years ago, and they still provide the foundations for
new research studies. In fact, the contributions of GOMS to the body of
knowledge include a family of GOMS methods for modelling tasks and
predicting user performance, computer tools to facilitate the construction
and validation of task models and automatically estimate user performance,
and numerous success stories of GOMS applications in various contexts.

3.2 Evaluation Methods and Tools

The literature traditionally recognises four GOMS variants and respective
evaluation methods (John and Kieras, 1996b): the Keystroke-Level Model
(KLM) (Card et al., 1980); the GOMS method that appeared in Card et al.
(1983), known as CMN-GOMS; the Natural GOMS Language (NGOMSL)
(Kieras, 1988); and the Cognitive, Perceptual, Motor GOMS (CPM-GOMS)
(John, 1990). These variants differ in task modelling expressivity, underlying
architectural assumptions, and predictive power.

3.2.1 Keystroke-Level Model

The Keystroke-Level Model, or KLM, was first published in Card et al.
(1980) and is the simplest and most practical GOMS method for evaluating
user performance in human-computer interaction tasks. It is essentially
GOMS without goals and selection rules (Card et al., 1983, Ch. 8).

In the KLM, a task is represented as a sequence of operators and the
total execution time is obtained by adding together the individual opera-
tor durations. Therefore, it assumes a serial stage information processing
architecture in which one operator is done at a time.



3.2 Evaluation Methods and Tools 37

Table 3.1: KLM operators and predicted execution times, in seconds, based upon
Card et al. (1983, Fig. 8.1) (left-most numeric column), Olson and Olson (1990,
Fig. 7) (middle numeric column), and Kieras (2003) (right-most column).

Time/s
Operator Description C O K

K Keyboard keystroke 0.28 0.23 0.28
B Press or release mouse button — — 0.10
H Home hand(s) on keyboard or other device 0.40 0.36 0.40
P Point with mouse to target on a display 1.10 1.50 1.10
M Mentally prepare for an action 1.35 1.20 1.20

KLM operators are identified by a letter and typically include: K, a
keyboard or mouse keystroke; B, a mouse button press or release, but not
both in the same movement; H, home the hand on the keyboard or on another
device; P, point the cursor to a target on the display using the mouse; and
M, mentally prepare for an action, such as searching for an object on the
display. Table 3.1 shows the reference durations for these operators.

The M operator is different from the others because it represents non-
observable user behaviour. Its presence in a task model may be hypothetical
in some cases, but one important characteristic is that it is used consistently.
To this end, the KLM includes heuristic rules for the placement of M operators,
which are described in Card et al. (1983, Fig. 8.2).

To illustrate how the KLM can be applied to predict user performance,
consider the following example from an object drag-and-drop task in a typical
graphical desktop: the user searches for the object on the computer display,
an M; then homes one hand on the mouse, an H, points the mouse cursor to
the object, a P, and presses (but does not release) the mouse button, a B.
The next step is to search for the place where the object is to be dropped,
an M, followed by a P to move the cursor to the new location, and, finally, a
B, to release the mouse button. The final KLM model is MHPB MPB and its
predicted execution time is (1.2 + 0.4 + 1.1 + 0.1) + (1.2 + 1.1 + 0.1) = 5.2
seconds (see individual operator times in Table 3.1).

Concerning tools using the KLM, the focus has been on supporting
automatic model generation based upon demonstrations with prototypes.

The CRITIQUE tool (Convenient, Rapid, Interactive Tool for Integrating
Quick Usability Evaluations) is for programmers who develop graphical user



38 The Roots of Cognitive-Level Evaluation

interfaces using the subArctic toolkit, and allows, via transparent modificati-
ons to the toolkit, the recording of events during prototype demonstrations,
which are then used to generate the KLM model (Hudson et al., 1999).

The CogTool is for designers who create interface mock-ups with a
popular Web authoring suite, which has been instrumentalised so that the
Web pages, when demonstrated in a browser, automatically communicate
with an external behaviour recorder that creates the corresponding KLM
model (John et al., 2004).

3.2.2 Card, Moran, and Newell GOMS

The Card, Moran, and Newell GOMS, or CMN-GOMS, is the original GOMS
model presented in Card et al. (1983, Ch. 5), whose building blocks are not
only methods and operators, as in the KLM, but also goals, which may be
decomposed into sub-goals, and selection rules, for choosing among various
possible methods based upon conditional statements.

CMN-GOMS models are usually built using a top-down, breadth-first,
approach, in which goals are decomposed into sub-goals, one layer at a
time, until user actions can be described using operators. In the end, a goal
hierarchy should be apparent, even though no explicit guidelines exist on
how to represent the concepts in the task model. So, for example, operators
may have different names and yet correspond to the same KLM operator,
and selection rules may be described as informal text in side notes.

To predict user performance in a task, the operators’ durations are added
together, similarly to the KLM, thus a serial stage information processing
architecture is also assumed in CMN-GOMS. However, there may be more
than one way to fulfil the same task because of the selection rules. If this
happens, the evaluator must traverse the goals hierarchy taking into account
which methods the user would select in a particular task scenario, to then
calculate the total estimated task duration.

Tool support for CMN-GOMS modelling varies in features and purpose
but at least allows goal hierarchies to be created and user performance to
be predicted from the operators’ durations, as shown in Baumeister et al.
(2000). I describe two tools from that study, namely QGOMS and CATHCI,
and mention an additional tool called VISNU.



3.2 Evaluation Methods and Tools 39

The QGOMS (Quick GOMS) tool provides a graphical tree-like visuali-
sation of the task model and is characterised by the possibility of attaching
probabilities to sub-trees to estimate how frequently they would be executed
in real task executions (Beard et al., 1997).

In contrast, CATHCI (Cognitive Analysis Tool for HCI), cited in Bau-
meister et al. (2000), supports selection rules by querying the user about
which method should be chosen for each particular task instantiation. In
addition, it facilitates the building of plausible models by remembering
the user to consider details such as the position of the hand prior to the
placement of a typing or pointing operator.

The VISNU (Validation of Intelligent Systems aNd Usability) tool sup-
ports GOMS task modelling, as the other tools, and it also provides me-
chanisms for matching the models against logs of users interacting with an
interface prototype (Mosqueira-Rey et al., 2004). This integrated approach
is grounded on the possibility of extracting model instances from the logged
data, which can then be used to confront the predicted and actual execution
times and to identify the most used portions of the model.

3.2.3 Natural GOMS Language

The Natural GOMS Language, or NGOMSL, builds upon CMN-GOMS by
formalising the representation of goals, operators, methods, and selection
rules into a notation that resembles a computer program written in a
procedural language. It also introduces new operators for accessing the
long-term and working memories, which provide a more fine-grained control
over internal information processing than is available through the general
purpose M operator from the KLM (Kieras, 1988).

In NGOMSL, goals and sub-goals are either represented as methods or as
selection rules. In the method form, a goal is a sequence of steps, and a step
may be an operator, a sub-goal invocation, or an explicit indication that the
current goal has concluded. In the selection rule form, a goal is a sequence
of mutually exclusive conditions and corresponding sub-goal invocations.

Figure 3.2 shows an example of an NGOMSL model for a ‘move text’
task, which comprehends two sub-goals, ‘cut text’ and ‘paste text,’ which is
also translated into a textual description in the next paragraphs.



40 The Roots of Cognitive-Level Evaluation

Method for goal: Move text
Step 1. Accomplish goal: Cut text.
Step 2. Accomplish goal: Paste text.
Step 3. Return with goal accomplished.

Method for goal: Cut text
Step 1. Accomplish goal: Select text .
Step 2. Retain that command name is CUT,

and accomplish goal: Issue a command.
Step 3. Return with goal accomplished.

Method for goal: Paste text ...

Selection rule set for goal: Select text
If text is word, then accomplish goal: Select word.
If text is arbitrary , then accomplish goal: Select arbitrary text .
Return with goal accomplished.

Method for goal: Select word
Step 1: Determine position of middle of word. M
Step 2: Move cursor to middle of word. P
Step 3: Double−click mouse button. BBBB
Step 4: Verify that correct word is selected . M
Step 5: Return with goal accomplished.

Method for goal: Select arbitrary text ...

Method for goal: Issue a command
Step 1. Recall command name,

and retrieve from LTM the menu name for it, M
and retain the menu name.

Step 2. Recall menu name,
and determine position of menu on menu bar. M

Step 3. Move cursor to menu on menu bar. P
Step 4. Press mouse button. B
Step 5. Verify that correct menu appears. M
Step 6. Move cursor to command name. P
Step 7. Verify that correct command name is selected. M
Step 8. Release mouse button. B
Step 9. Forget menu name,

and forget command name,
and return with goal accomplished.

Figure 3.2: Fragment of an NGOMSL model for the ‘move text’ task, adapted
from John and Kieras (1996b, Fig. 4). Goals are shown in bold face, and operators
for accessing the working memory in italic. KLM operators (see Table 3.1) are
displayed on the right, when equivalent to the NGOMSL statements on the left.



3.2 Evaluation Methods and Tools 41

To cut the text, the user must first select it in one of two ways, depending
on the quantity of text. Assuming it is simply a word, then ‘select word’
is invoked, which can be be represented by a sequence of KLM operators,
namely MPBBM, with a predicted execution time of 3.7 seconds. After com-
pletion of this goal, the ‘select text’ goal also concludes, and the next action
from the user is step 2 in ‘cut text.’

In this second step, the ‘issue a command’ method is called with an
explicit indication that the name of the command to be issued, CUT, is to
be stored in working memory. Next, the name of the menu that contains
the CUT command is retrieved from long-term memory (LTM) and retained
in working memory so that it can be visually searched for on the computer
screen. Then, the user opens the menu and clicks on the CUT option. The last
step in the ‘issue a command’ method is the removal of both the command
and menu names from the working memory, meaning that these are not
required anymore for the fulfilment of the main goal.

After cutting the text, the user would proceed to the ‘paste text’ sub-goal,
which is not detailed for the sake of brevity.

The previous description shows that NGOMSL assumes a serial stage
information processing architecture because task execution times were ob-
tained from the sum of the operators’ durations (for instance, in the ‘select
word’ method), as in the KLM and CMN-GOMS.

Interestingly, NGOMSL goes beyond predicting task durations and also
estimates procedure learning time through an approximation that takes into
account the number of statements in the model and a measure of similarity
between methods, which roughly translates into: more statements in a task
increase the learning time, and the more consistent the user interface, the
less time it takes to learn the task procedure.

The models in NGOMSL can be processed and executed by GLEAN
(GOMS Language and Evaluation ANalysis), a simulation tool described in
Kieras et al. (1995), for which an explanation of how to build models can be
found in Kieras (2003). This tool compared favourably against two other
GOMS tools because it additionally provides run-time analyses of execution
time and mental workload,1 static analyses of procedural learning times, and

1 The computation of mental workload is based upon the maximum number of items in
working memory during the task simulation. See retain and forget operators in Figure 3.2.



42 The Roots of Cognitive-Level Evaluation

keeps track of the user’s hands to automatically insert homing operators
during the execution of the model, if needed (Baumeister et al., 2000).

3.2.4 Cognitive, Perceptual, Motor GOMS

The Cognitive, Perceptual, Motor GOMS or CPM-GOMS, is the most
complex GOMS method for predicting user performance in human-computer
interaction tasks because it assumes a parallel stage information processing
architecture directly grounded on the Model Human Processor (see Figure 3.1
on page 34). In other words, it dissects KLM operators in terms of cognitive,
perceptual, and motor acts and accepts that these may be performed in
parallel, depending on the task circumstances (John, 1990).

For example, CPM-GOMS assumes that an expert user can press a
keyboard key with one hand at the same time that s/he clicks the mouse
button with the other hand, which suggests that the execution time would
be 0.28 seconds instead of the 0.28 + 0.20 = 0.48 seconds that would be
estimated by the KLM, CMN-GOMS, or NGOMSL, via the serial execution
of the KBB operators (see individual operator times in Table 3.1 on page 37).

The parallelism in CPM-GOMS requires a different notation than the
sequences of operators and goal hierarchies used in the other GOMS variants,
for which PERT charts2 were chosen, with the following elements:

• Perceptual, cognitive, and motor operators, such as separate left and
right hand movement, eye movement, visual perception, and cognitive
recognition, which may be concurrently executed if the task permits;

• Utilisation of these operators over time; and

• Dependencies between operators, to guarantee model plausibility by
preventing situations in which, for instance, a motor operator would
start before the required target location had been perceived by the
eyes and recognised by the cognitive processor.

An example of a CPM-GOMS model for the ‘move text’ task depicted
in Figure 3.2 can be found in John and Kieras (1996b, Fig. 7), which shows
how an expert user can use both hands simultaneously to perform this task.

2 PERT (Program Evaluation and Review Technique) charts are commonly used in project
management to plan and keep track of tasks and resources (Pressman, 2001, Sect. 7.7).



3.3 Application Domains 43

An important property of PERT charts is the critical path, which, in
project management, is the chain of tasks that determines the duration of
the entire project. Analogously, the task execution time in CPM-GOMS is
obtained by adding the durations of the operators on the critical path.

By following this reasoning, CPM-GOMS successfully predicted that a
new system would increase task duration design because the changes would
introduce extra operators on the critical path, despite reducing the number
of operators in other parts of the task (Gray et al., 1993).

One consequence of the fine-grained level of detail in CPM-GOMS is that
the models tend to be complex and lengthy, requiring intensive labour if
built by hand. This, in turn, increases the likelihood of multiple evaluators
finding discrepancies in some parts of the model.

To address these issues, researchers have been documenting templates of
micro-strategies for carrying out common tasks, such as reading text on the
computer screen (John and Kieras, 1996b, Sect. 2.4) and using the mouse
to point to a target on the screen and click on it (Gray and Boehm-Davis,
2000), which can be reused in many contexts.

In addition, these templates have been integrated into a computer tool
called Apex, which accepts a GOMS hierarchical task description as input,
converts its KLM operators into the corresponding templates, then runs
instances of the task in a Model Human Processor simulator, automatically
adjusting the parallelism among the operators as a function of the run-time
availability of the cognitive resources, and finally produces a PERT chart
as output, whose critical path determines the total predicted task duration
(Vera et al., 2005; John et al., 2002).

3.3 Application Domains

There is a long string of success stories to the credit of engineering models
of human performance and their use in GOMS-based evaluation methods.
The usability predictions provided by these methods have been successively
validated in the evaluation of real-world systems, most often in scenarios of
individual work, although there have also been some applications in group
work settings.



44 The Roots of Cognitive-Level Evaluation

3.3.1 Individual Work

The classic application of engineering models of human performance with
GOMS methods was to predict the performance of a single user doing letter
and table typing, text assemblies, and similar tasks on a document that only
s/he could modify (Card et al., 1983).

This early assumption that a single user is the only person that can
manipulate objects using the options offered by the computer interface, thus
reflecting individual work, became predominant in future studies.

Along these lines, John and Kieras (1996a, Sect. 3) describe GOMS-
based evaluations in scenarios as diverse as computer-aided design, industrial
scheduling, television control, individual training, and call centres. In this
last case, the purpose of the evaluation was to decide about the adoption of
a new telephone operator workstation that promised time savings. However,
the usability estimates predicted a slow down of the operator performance,
a situation that was actually confirmed in empirical field trials.

Additional evaluations using GOMS are outlined in John (1995, p. 85), co-
vering the use of map digitisers, video games, airline schedules, spreadsheets,
and three text editors, in line with the initial GOMS research.

Also, the GOMS tools mentioned earlier indicate more scenarios in which
engineering models have been successfully applied to individual tasks, namely
in conference registration (Hudson et al., 1999), radiology image processing
(Beard et al., 1997), operation of automatic teller machines (Vera et al.,
2005), and personal contacts management (Mosqueira-Rey et al., 2004).

Finally, recent studies have applied GOMS-based methods to evaluate the
usability of mobile phones (Holleis et al., 2007) and remote robot controllers
(Drury et al., 2007).

3.3.2 Group Work

Beyond the individual work domain, with a one-to-one relationship between
a user and a workplace, GOMS methods have also been applied in group
work settings, more precisely in scenarios where users execute a set of
specified procedures using computers. To the best of my knowledge, the
literature includes only two such applications, following two approaches
called distributed GOMS and ‘group of models.’



3.4 Discussion 45

Min et al. (1999) propose an application of GOMS to group work, called
Distributed GOMS (DGOMS), based upon the assumption that the group
task can be successively decomposed until sub-tasks capable of being per-
formed by one person are reached. Then, the sub-tasks are independently
modelled using a modified version of NGOMSL, which additionally inclu-
des a communication operator for coordinating the users’ activities, whose
execution time derives from informal observations.

To go back to the group level of analysis, the sub-tasks in DGOMS are
arranged in a PERT chart and the dependencies between them identified. In
this way, the duration of the group task can be estimated by adding together
the predicted execution times of the tasks on the critical path.

Another application of GOMS to evaluate group work follows the ‘group
of models’ approach (Kieras and Santoro, 2004). The first step is to build
a separate model of user behaviour for each specialised type of interaction
with the computer. In other words, each model represents a specific role
that can be assigned to the users.

These models are then interconnected using a simulated coordination
protocol, based upon the assumption that some external communication
channel, such as a radio intercom, is used to coordinate group tasks. Finally,
the models are instantiated to a specific work scenario (possibly with many
users assigned to the same role), and run in parallel using the GLEAN tool,
which produces a computed estimate of group performance.

3.4 Discussion

The variety of GOMS methods and the wide range of applications in various
domains show that engineering models of human performance offer a sound
basis for assessing the usability of computer systems.

A part of this success comes from the possibility of using GOMS at almost
any stage of the software development process, thus supporting formative
evaluation, benefiting both designers and evaluators:

• Designers can look beyond the user interface building blocks (windows,
buttons, text fields, and so on) and into the cognitive factors that
explain user behaviour with a computer; and



46 The Roots of Cognitive-Level Evaluation

• Evaluators can predict user performance without actual users or func-
tioning prototypes, which means that fewer laboratory experiments
(expensive and time consuming) are required.

This means that more design and evaluate iterations, and more informed
design comparisons, can be carried out in the same time span, which is
instrumental to more usable interactive systems. Another way of putting
this, is that the shorter design and evaluation cycles allow systems to be
developed sooner, which is important in competitive markets.

Moreover, because no users are needed, GOMS also supports summative
evaluation by helping deciding about the adoption of a prospective system
without requiring trial tests in the field.

However, there are some fundamental limitations in GOMS, which have
long been acknowledged by its authors (Card et al., 1980), and also analysed
in Olson and Olson (1990, p. 227): the engineering models of human perfor-
mance are valid for experts doing routine tasks, without making mistakes,
with no interruptions, and without suffering from fatigue.

This suggests that GOMS methods may not be entirely appropriate to
evaluate the usability of computer systems in some task scenarios. Of course,
this situation is intrinsic to engineering models (in a broad sense), whose
approximations are valid only within some well-defined boundaries.

In some cases, these boundaries can be expanded somewhat. For example,
in Holleis et al. (2007) and Drury et al. (2007) the researchers opted to intro-
duce new cognitive-level operators because they posited that the traditional
assumptions regarding human-computer interaction (with a keyboard and
mouse) were not sufficiently held with mobile phones and robot controllers.
So, for instance, in the first study a need was felt for gesture and finger
movement operators, otherwise the model would not be rich enough to reflect
human behaviour with a mobile phone.

This path of introducing additional operators also guided the knowledge
transfer between the individual and group work domains. In fact, both Kieras
and Santoro (2004) and Min et al. (1999) considered an extra communication
operator dedicated to group coordination. However, I argue that existing
applications of GOMS in group work settings add limited value to the design
and evaluation of groupware systems, for a number of reasons.



3.5 Summary 47

Firstly, the proposed communication operator abstracts the work required
to coordinate the group, and yet the dynamic control of activities and data
flows have long been recognised as fundamental features of groupware systems
(Ellis and Wainer, 1994). So, by utilising this operator, the designer is ruling
out further consideration on how group members can coordinate themselves
using the groupware, and s/he is also missing one of the goals of groupware
research which is to reduce the, sometimes high, workload imposed by
complex collaborative work (Carstensen and Nielsen, 2001).

Secondly, the communication operator assumes that group coordination
is carried out through explicit communication between group members, and
yet users often prefer other means to align their activities with those of their
colleagues without interrupting each other (Schmidt, 2002). This ‘smooth’
coordination can be naturally achieved by monitoring the work of others
and by letting the others know what one is doing, forming what is known
as group awareness information (Dourish and Bellotti, 1992). This critical
feature of groupware systems is simply not captured by the communication
operator.

Finally, the approach taken in the two applications of GOMS in group
work settings assumes that each user interaction with the system should
be modelled separately because all users are playing individualistic roles.
However, this view of group work, in which users follow procedures, is difficult
to realise and consolidate, and even harder to evaluate, in the ubiquitous
collaboration scenario where users freely decide their next steps.

Given these circumstances, a fundamental shift is needed in the way a
groupware designer or evaluator applies GOMS-based methods. It is true
that individual work plays its part in group work, but to improve groupware
usability it is essential to focus the design and evaluation on how users can
collaborate using the functionality offered by the computer system.

3.5 Summary

In this chapter, I reviewed usability evaluation methods grounded on engine-
ering models of human performance, known as the family of GOMS methods,
which have been successfully applied since the early 1980s to predict human



48 The Roots of Cognitive-Level Evaluation

performance and provide cognitive-level explanations of human behaviour
with single-user computer systems.

I also described two applications of engineering models in group work and
discussed that they offer little guidance to the design of multi-user interfaces
because the evaluation was restricted to independent tasks executed by users
playing individualistic roles, instead of being focused on the usability of
collaborative tasks done through the computer interface, which, if improved,
could have large net effects, as I argued in Chapter 1. This is the path that
I have followed in this dissertation, beginning in the next chapter.



Chapter 4

Modelling Groupware
at the Cognitive Level

Having presented the concepts and methods for evaluating the usability of
computer systems at the cognitive level of human action, in this chapter
I propose a model of the groupware user interface that combines human
information processing and computer support for collaborative tasks.

By following this approach, I seek to expand the application of existing
engineering models of human performance to groupware, where the user
interacts not only with the computer, as happens in single-user systems, but
also with the other users on the group through the computer.

4.1 Motivation

The construction of a cognitive-level model of the groupware user interface
is motivated by the practical needs of designers and evaluators, who both
require an understanding of the ‘materials’ involved in computer-mediated
collaboration, namely:

• The user, who executes tasks by applying his/her knowledge of how
to collaborate with the others; and

• The computer, which structures the collaboration environment by
providing workspaces and the tools for interacting in them.

49



50 Modelling Groupware at the Cognitive Level

Input
Devices

Output
Devices

Motor
Processors

Perceptual
Processors

Cognitive
Processor

User Computer Interface

Commands

Information

Figure 4.1: User interacting with the computer, based upon a simplified view of
the Model Human Processor in Figure 3.1 and a conceptual computer interface.
The motor processors command the computer via the input devices, such as the
keyboard and mouse. The perceptual processors receive information generated by
the output devices, such as the computer screen and speakers. More information
about the input/output devices can be found in Dix et al. (2003, Ch. 2).

This user/computer duality is fundamental in the user interaction design
(Dix et al., 2003, Sect. 5.2) and, particularly, is at the core of engineering
models of human performance, including the Model Human Processor (MHP)
and the related GOMS models (see Chapter 3).

Engineering models explain human behaviour with a computer using an
architecture with perceptual, cognitive, and motor processors, which reflects
user interaction with input and output devices, such as the keyboard, mouse,
and computer screen. The human processors are, therefore, linked to the
computer devices (see Figure 4.1), as in the following examples:

• The motor processors act upon the input devices, as happens when
the user moves the mouse with the hand or presses keys;

• The perceptual processors capture the information conveyed by the
output devices, for instance, the eyes reading text on the computer
screen or the ears listening to an audio book; and

• The cognitive processor interprets the information supplied by the
perceptual processors and decides which action, if any, to perform
using the motor processors.

In the previous chapter I mentioned several successful applications of
engineering models, but argued that existing approaches to building models
of the user interacting with the computer add limited value to the design
and evaluation of groupware systems, for three reasons (see also page 46):



4.2 The Collaborative User 51

1. Reliance on an abstract communication operator that hides the details
about how users can coordinate themselves using the groupware;

2. Assumption that group coordination is confined to explicit communi-
cation, to the exclusion of other essential coordination styles, such as
monitoring the work of others; and

3. Stipulation that all group members play individualistic roles by fol-
lowing strict procedures.

It is from this incomplete understanding of both the user and computer
involvements in computer-supported collaboration that the opportunity
emerges to propose a model of the groupware user interface grounded on
the cognitive level of human action. To do this, I follow an approach that
shifts the focus from the interactions between the user and the computer to
the interactions between users, mediated by the groupware interface.

4.2 The Collaborative User

The first ‘material’ involved in computer-mediated collaboration is, naturally,
the user, more specifically the person who is part of one or more groups or
organisations. This collaborative user contributes to some collective effort,
which means s/he requires some form of coordination with the other people
on the same group, otherwise conflicts would likely occur.

Therefore, collaboration is characterised not only by the type of group
task, such as negotiation, group decision making, brainstorming, and other
types, but also by the coordination mode adopted by the group. For instance,
a small group may rely on meetings to resolve task conflicts, whereas a large
organisation may tend to establish impersonal formalised rules (Van de Ven
and Delbecq, 1976).

Group tasks and coordination modes are two sides of the same coin—
both are required for the group to effectively produce a combined outcome,
and, more importantly, both dictate the behaviour of collaborative users.
Therefore, in the following I report on reference group task and coordination
mode typologies available in the literature, which will inform the proposal
for the model of the groupware interface.



52 Modelling Groupware at the Cognitive Level

4.2.1 Group Tasks

There are many ways to classify group tasks, but one of the most frequently
cited is the group task circumplex, described in McGrath (1984, Ch. 5).1

This typology organises the group task space in four major quadrants, which
are further subdivided into two more specific task types:

Generate These are tasks asking the group to describe how to carry out
some plan of action (planning tasks), as well as for tasks that require
the production of ideas, as in brainstorming (creativity tasks);

Choose These tasks require the group to find the correct answer for some
problem (intellective tasks), or to reach consensus about the preferred
decision when there is no ‘right’ answer (decision-making tasks);

Negotiate These tasks involve making choices in conditions of intragroup
conflict, caused by opposing interests, as in bargaining (mixed-motive
tasks), or by users systematically using different preference structures
or viewpoints (cognitive conflict tasks); and

Execute These tasks depend most on physical behaviour, such as contests
or battles, in which there is a winner and a looser (competitive tasks),
as well as performances, where the emphasis is on coordinating manual
tasks, as in rowing (psycho-motor tasks).

Given the variety of group task types, which, at their core must have a
way of dividing work among the members of the group, it is not surprising to
find that multiple levels of task interdependence have been identified. This
property represents the extent to which group members are dependent upon
one another to perform their individual tasks (Van de Ven and Delbecq,
1976), comprising three increasing levels of interdependence:

1. In the pooled level, tasks share or produce common resources but are
otherwise independent. Thus, tasks can be executed in parallel with
little or no communication between the group members, which means
that task interdependence is minimal;

1 Other group task classifications are also mentioned in McGrath (1984, Ch. 5), covering a
period from the 1800s onwards, with emphasis on the second half of the twentieth century.



4.2 The Collaborative User 53

Work Enters Group

Work Leaves Group

(a) Pooled.

Work Enters Group

Work Leaves Group

(b) Sequential.

Work Enters Group

Work Leaves Group

(c) Reciprocal.

Figure 4.2: Levels of group task interdependency, adapted from Van de Ven and
Delbecq (1976, pp. 334–335). From left to right, the interdependencies increase:
(a) each person processes a work unit with little or no contact with the other
group members; (b) the work done by a person is dependent on the output of
others; and (c) work is jointly carried out by the group members.

2. In the sequential level, tasks depend on the completion of others before
beginning. In other words, tasks are done sequentially and, thus, some
group members rely on others to timely finish their tasks; and

3. The reciprocal level has high task interdependency because group work
becomes a joint effort where all the members depend mutually on each
other to accomplish the task.

Figure 4.2 shows work flows within a group of three people for each level
of task interdependence. Curiously, such an abstract representation makes it
easier to understand that the same type of group task can be performed under
more than one level. For example, creativity tasks, such as brainstorming,
have been extensively studied and compared in scenarios where a pool of
ideas is formed from the efforts of people working separately, corresponding
to the pooled level of interdependence, versus from the concerted work of a
group of people, at the reciprocal level (Dennis et al., 1994)

More interesting is the possibility of using Figure 4.2 to frame the levels of
task interdependency covered by current applications of engineering models
of human performance in group work settings.

In Section 3.4, I mentioned that both the DGOMS (Min et al., 1999)
and the ‘group of models’ (Kieras and Santoro, 2004) approaches assume
group members play individualistic roles, which is why they build separate
models of the interaction with the computer system for each type of user.
From this point on, the two approaches differ.



54 Modelling Groupware at the Cognitive Level

DGOMS uses a PERT chart to identify the tasks assigned to each group
member over time, as well as the dependencies between those tasks, which
are actually instances of one user passing the control to another. Thus, the
DGOMS approach covers tasks with sequential interdependencies.

The ‘group of models’ approach uses a computer to generate events from
a scripted scenario, which are fed to running instances of the user models,
and trigger voice messages over an intercom channel. Then, the model from
another user specifies how to handle a particular type of message and reacts
accordingly. So, this is again a case of sequential interdependency.

In summary, to the best of my knowledge, engineering models of human
behaviour have so far not been applied in tasks with high interdependency,
and yet these tasks usually require intense, and repetitive, collaborative
behaviour because multiple group members depend on one another and due
to the continuous need to coordinate work.

4.2.2 Coordination Modes

The more interdependent tasks are, the more coordination they need to
be effective, otherwise conflict and duplication of work may occur. In fact,
coordination has been defined as the management of dependencies between
tasks (Malone and Crowston, 1994).

Three coordination modes can be considered, with increasing information
needs and more elaborate collaborative behaviour patterns. In the following
I describe a typology mentioned in Malone and Crowston (1994, p. 114),
with additional ideas from Van de Ven and Delbecq (1976):

1. In the standardisation mode, group members follow prescribed rules
or plans that codify impersonal blueprints of action. This means that
most work can be performed individually, as in a factory assembly line,
with minimal communication with other people on the group;

2. The direct supervision mode corresponds to the hierarchical relationship
between manager and employees, in which conflicts caused by task
interdependencies are resolved by the former on a case-by-case basis.
In this mode, communication is necessary and involves a small number
of people, mostly in the form of one-to-one conversations; and



4.2 The Collaborative User 55

3. In the mutual adjustment mode, each group member continuously
adjusts his/her behaviour to manage task interdependencies, based
upon information emerging from the group, as happens in a meeting.
Communication between people can be used in this mode, but be-
cause the cost of turn-taking and interruptions may become excessive,
workplace monitoring is also used.

It can be seen from the above that there is minimal collaborative cost in
managing dependencies with standardisation, which, of course, is the whole
purpose of this mode. Thus, it is well suited for the pooled level of task
interdependency, shown in Figure 4.2(a), even though rules and plans may
also help, but not drive collaborative behaviour, in the other two modes.

Communication is the main vehicle for resolving task dependencies in
direct supervision, which makes this mode especially adequate for sequential
work, illustrated in Figure 4.2(b), where group members awaiting the output
from others are informed they can proceed.

There is a collaborative cost attached to this coordination mode, which,
reporting on the use of engineering models of human action in group work
settings, is addressed in Min et al. (1999) by using abstract communication
operators whose execution times were obtained from empirical measurements,
whereas Kieras and Santoro (2004) assumes users only send or receive
messages if enough cognitive resources exist.

Regarding the mutual adjustment coordination mode, its reliance on both
communication and monitoring, makes it ideal for resolving task interdepen-
dencies in the reciprocal level, shown in Figure 4.2(c). In fact, the possibility
of monitoring the work of others is one of the preferred ways to keep up
and be aligned with the group, because it does not require interrupting the
other group members (Schmidt, 2002).

Naturally, monitoring in the workplace is only possible because the others
are publicly displaying some relevant aspects of their work, revealing what
is known as group awareness information, necessary for the ‘understanding
of the activity of others, which provides a context for your own activity’
(Dourish and Bellotti, 1992).

Many more definitions and variants of awareness exist, such as of the
social, task, and conversational kinds (Drury and Williams, 2002, Table 1),



56 Modelling Groupware at the Cognitive Level

Table 4.1: Task interdependencies and coordination modes, adapted from Malone and Crowston
(1994) and Van de Ven and Delbecq (1976), including typical collaborative behaviour that group
members adopt to resolve conflicts and to keep work coordination as unobtrusive as possible.

Task Interdependency Coordination Mode Collaborative Behaviour

Pooled Standardisation Minimal communication
Sequential Direct supervision Communication
Reciprocal Mutual adjustment Communication, monitoring, displaying

but perhaps one of the most comprehensive studies about awareness is that of
Gutwin and Greenberg (2002), which focuses on the workspace and includes:

• What information makes up workspace awareness, namely who is on
the group, what is going on, where is activity taking place, and when
and how did changes happen;

• How is workspace awareness information gathered, including via con-
versations between users and observations of body gestures, as well as
how people interact with the environment and manipulate objects (see
also the mechanics of collaboration in Table 2.5 on page 29); and

• How is workspace awareness useful to collaboration, such as to simplify
communication, help coordinate activities, and give support for the
anticipation of events.

The extensive coverage of group awareness in the literature attests the
importance of this concept. In fact, as I alluded earlier, without the dis-
playing and monitoring of awareness information groups could easily become
inundated with internal communication requests just to keep everyone up-to-
date. Thus, collaborative behaviour under mutual adjustment coordination
is more elaborate than in the other two modes (see Table 4.1).

∗ ∗ ∗
In summary, the understanding of the collaborative user behaviour com-
prehends the types of group tasks s/he performs, namely generate, choose,
negotiate, and execute, plus the coordination modes s/he needs to engage to
resolve task interdependencies, shown in Table 4.1. A successful model of
the groupware interface must address these two dimensions of group work,
which is the topic of the next section.



4.3 The Groupware Interface 57

4.3 The Groupware Interface

The second ‘material’ in computer-mediated collaboration is the compu-
ter, more precisely the groupware interface that supports the work of the
collaborative user.

The starting point of this exposition is Figure 4.1 on page 50, which
shows a generic representation of a user interacting with a computer. From
this initial setting, I describe five interaction patterns, or information flows,
identified in the literature, and show which ones are necessary to support
each of the three coordination modes in Section 4.2.2.

All information flows mediated by a computer can be manipulated using
input/output devices, such as the keyboard, mouse, screen, microphone,
speakers, and so on. However, to help understand the complex user beha-
viour inherent to the mutual adjustment mode of coordination, I propose
specialised groupware input/output devices for the monitoring and displaying
of group awareness information.

Finally, I show that the information flows and input/output devices can
be combined into three popular types of workspaces, namely private, shared,
and mixed-focus, and in doing so I synthesise my proposal to organise the
design space of groupware user interfaces.

4.3.1 Information Flows

Figure 4.1 (on page 50) shows that the user and the computer can be seen
as two interlinked information processors, one reacting to the other in cyclic
patterns of interaction. I call these patterns information flows and in the
following I describe five such flows that support the work of the collaborative
user. As will become clear, depending on the coordination mode, different
combinations of information flows will be required for effective collaboration.

Feedback

Feedback corresponds to the computer response to an action initiated by the
user (see Figure 4.3). This feedback can then be used to guide future actions
(Douglas and Kirkpatrick, 1999). For example, when the user clicks with the
mouse on a graphical object, the computer interface alters its appearance,



58 Modelling Groupware at the Cognitive Level

Input
Devices

Output
Devices

Motor
Processors

Perceptual
Processors

Cognitive
Processor

User Computer Interface

1. Command

2. Feedback

Figure 4.3: Feedback information flow: the user activates the motor processors
to command the computer through the input devices (step 1) and the computer
responds by sending feedback information via the output devices, which is captured
by the user’s perceptual processors (step 2), and may guide future actions.

usually by changing the colour of the background surrounding the object, so
that it can be perceived as being selected by the user.

Feedback happens almost constantly during human-computer interaction,
to the point that we find it disturbing when the computer interface does not
give a reply to our commands—we expect the computer to provide feedback
in confirmation to our actions.

Feedforward

The second type of flow concerns the delivery of feedforward information
initiated by the computer to make the user aware of the available action
possibilities (Wensveen et al., 2004). This information, in turn, may or may
not trigger a response from the user (see Figure 4.4).

For example, feedforward happens when the user receives a notification
stating that a large file download has completed or that new e-mail has
arrived; the user may ignore this and resume what s/he was doing, or s/he
may stop the current task and give priority to dealing with the recently
downloaded file or to the new e-mail messages.

∗ ∗ ∗
When feedback and feedforward are combined, they provide just sufficient
computer support for the standardisation mode of coordination. Recalling
Table 4.1, this mode requires minimal, if any, communication to resolve task
interdependencies because the user follows codified plans of action carefully
devised to minimise conflicts among group members.



4.3 The Groupware Interface 59

Input
Devices

Output
Devices

Motor
Processors

Perceptual
Processors

Cognitive
Processor

User Computer Interface

1. Feedforward

2. User Reaction

Figure 4.4: Feedforward information flow: the computer takes the initiative of
generating feedforward information, which is captured by the user’s perceptual
processors (step 1), and this may or may not trigger a motor reaction from the
user (optional step 2).

So, imagining a line worker in a virtual factory, in normal circumstances
s/he is notified of the arrival of a new item via the feedforward information
flow, and, as long as s/he is working (individually) on the item, only feedback
information needs to be processed.

At this point, I note the feedback and feedforward are necessary but not
sufficient to support the added complexity in user behaviour in the more
elaborate modes of coordination. In fact, a change in perspective is needed,
from the interaction between the user and the computer, to the interaction
between the users, mediated by the computer.

This change in perspective has an immediate impact on the previous
models in Figures 4.1, 4.3, and 4.4, in that the groupware interface now has
multiple users connected to it, mediates all sorts of information that comes
and goes between and among the users, and occupies a central position
within the group, as shown in Figure 4.5.

I consider three information flows recurrently managed by groupware
systems to support the higher modes of coordination, namely explicit commu-
nication, back-channel feedback, and feedthrough. These flows are outlined
in Figure 4.5 and I further illustrate them in Figure 4.6.

Explicit Communication

Explicit communication addresses information produced by one user who
explicitly intends it to be delivered to one or more users on the group (Pinelle



60 Modelling Groupware at the Cognitive Level

Input
Devices

Output
Devices

Output
Devices

Input
Devices

Motor
Processors

Perceptual
Processors

Cognitive
Processor

Perceptual
Processors

Motor
Processors

Cognitive
Processor

Explicit Communication,
Back-Channel Feedback,

Feedthrough

User 1 Computer Interface User 2

Figure 4.5: Groupware interface connecting multiple users. The groupware system is at the centre
of the group and mediates various types of information, flowing between and among the users,
namely via explicit communication, back-channel feedback, and feedthrough.

U1 GW

U2

U3

U4

(a) Explicit communication.

U1 GW

U2

U3

U4

Uh-huhUh-huh

(b) Back-channel feedback.

U1 GW

U2

U3

U4

(c) Feedthrough.

Figure 4.6: Information flows between users, mediated by the computer: (a) user 1 (U1) sends a
message to all other users on the group via the groupware (GW); (b) user 3 is saying utterances to
indicate s/he is following the conversation with user 1; and (c) user 1 is working, and the groupware
implicitly reports this fact to the other users.

et al., 2003). This happens, for instance, when a user is discussing a topic
or planning some activity with other users, using speech, text, or gestures
(see more examples in Table 2.5 on page 29).

This flow can be modelled by a computer interface capable of multiplexing
information from input devices to one or more output devices, such as a
user typing a message and the groupware sending it to the computer screens
of the recipients, as shown in Figure 4.6(a).

Explicit communication, together with feedback and feedforward, are
sufficient to support the direct supervision coordination mode (see Table 4.1),



4.3 The Groupware Interface 61

in which a manager or supervisor resolves task interdependencies on a case-
by-case basis through direct communication with small groups of people,
usually in the form of one-to-one conversations.

In fact, as earlier mentioned, explicit communication can also be used in
groups with coordination by continuous mutual adjustments, but because
interruptions and turn-taking may become obtrusive, the groupware system
has to manage additional flows, which I describe next.

Back-Channel Feedback

The back-channel feedback flow concerns unintentional information initiated
by one user and directed towards another user to facilitate communication
(Rajan et al., 2001). This takes place, for instance, when a listener murmurs
‘uh-huh’ to indicate that s/he is following the speaker, as in Figure 4.6(b),
or when s/he nods the head in agreement to what the speaker is saying.

Interestingly, no conversational content is delivered through back-channel
feedback, but, nonetheless, this flow is useful to regulate the exchange of
ideas and avoid pauses to ask if the listener is keeping up with the speaker,
that is, it serves as a coordination mechanism for negotiating actions and
maintaining behavioural norms (Mark et al., 1997).

Back-channel feedback may be automatically captured and produced
by the groupware based upon the users’ vocal expressions and intonation
variations, and also through body movements and facial expressions.

Feedthrough

Finally, the feedthrough flow concerns implicit information automatically
delivered to several users reporting actions executed by one user, and is
necessary to provide group awareness and to construct meaningful contexts
for collaboration (Hill and Gutwin, 2003).

To reiterate, without feedthrough, users would have to manually notify
the others, via explicit communication, on the activities being performed
(Khoshafian and Buckiewicz, 1995, pp. 309–319), an overhead that would
surely impair both group and individual performance.

This information flow is generated by the computer interface as a conse-
quence of the users’ inputs and is directed towards the other users on the



62 Modelling Groupware at the Cognitive Level

group. Various levels of feedthrough information may be considered, with
increasing levels of abstraction:

Low-level user-interface feeds These include, for example, multiplexing
keyboard and mouse movements. In the former case, a user would be
able to see what others are typing, say, in a shared text document;
in the latter, multiple mouse pointers would appear on the computer
display, one per user (these are called telepointers);

High-level user-interface feeds For delivering information about the ma-
nipulation of user-interface elements, such as buttons, menus, input
data fields, and others, which augment the information conveyed by
low-level user-interface feeds. For instance, besides seeing the telepoin-
ters, users would be able to notice that a user is choosing a particular
menu option; and

Application-level feeds For delivering only the events relevant to the
application using filtering and aggregation mechanisms, for instance,
by only delivering information that matches some user-defined criteria
or by only showing complete sentences rather than individual keystrokes
(as in popular instant messengers).

A simple way of supporting feedthrough is by multiplexing feedback
information to several users, as shown in Figure 4.6(c). For instance, in a
scenario where users use their computers to access a public virtual desktop,
when a user clicks on a file icon, s/he receives feedback information indicating
the file is selected, and a copy of this information would automatically be
sent to the other users via feedthrough.

More interestingly, feedthrough does not have to exactly match feedback
as in the previous example. It may convey different shapes and colours,
for instance to reveal delays caused by communication networks (Gutwin
et al., 2004), may impose changes to the delivery timings to save resources
(Junuzovic and Dewan, 2009), and also the type and amount of information
may be controlled by the user (Hill and Gutwin, 2004, Fig. 8).

∗ ∗ ∗
Back-channel feedback and feedthrough complete the quintet of information
flows that are necessary for effective computer support for groups using
mutual adjustment coordination (see Table 4.2).



4.3 The Groupware Interface 63

Table 4.2: Information flows required for each coordination mode. Mutual adjustment is the most
difficult mode to support in a groupware system, because all five information flows should be in
place. At the other end, standardisation only needs feedback and feedforward. Groupware for
groups using direct supervision coordination must additionally support explicit communication.

Coordination Mode
Information Flow Standardisation Direct Supervision Mutual Adjustment

Feedback × × ×
Feedforward × × ×

Explicit communication × ×
Back-channel feedback ×

Feedthrough ×

Of course, explicit communication and back-channel feedback may be used
to resolve some task interdependencies but the most important information
flow in a continuous joint effort is feedthrough, because it enables group
members to pick up what is going on around them and to articulate their
work in conformity, without interrupting the others.

Given the significant role of feedthrough in allowing users to monitor and
display group awareness information (see also Table 4.1), in the next topic I
discuss input/output devices that specifically address this information flow.

4.3.2 Input/Output Devices

All information flows mediated by a computer are naturally processed by
the user’s perceptual, cognitive, and motor processors, and by the computer
input/output devices, such as the keyboard, mouse, screen, microphone,
speakers, and others (see Dix et al. (2003, Ch. 2) for more examples).

However, to help understand user behaviour in the mutual adjustment
coordination mode, particularly regarding the manipulation of the feed-
through information flow, it is useful to abstract the actual physical devices,
and focus on devices specialised in supporting the users’ monitoring and
displaying of group awareness information.

Awareness Input/Output Devices

To this end, I introduce awareness input/output devices in the model of the
groupware user interface, which are specialised in capturing the information



64 Modelling Groupware at the Cognitive Level

users want to display to others, and in delivering it so that the other group
members can monitor what is going on around them. Several examples of
awareness devices are available in the literature, including:

Authorship lines Lines connecting objects to a participant list, to indicate
authorship (cited in Gutwin and Greenberg, 2002);

Availability indicators Senses user activity to inform group members
about the state of availability of each user (Begole et al., 2004);

Cursor’s eye views Show the area adjacent to another user’s cursor in
maximum detail (Gutwin and Greenberg, 2002);

Multi-user scroll bars Multiple bars side-by-side, showing the current
position of each user in the same document (Hill and Gutwin, 2004);

Over-the-shoulder views Miniaturisations of another user’s main view
(Gutwin and Greenberg, 1998);

Participant list Shows a list of the users belonging to the group and their
presence status (Gutwin and Greenberg, 2002);

Radar views Miniaturisations of entire workspaces, showing were all users
are working at the moment (Gutwin and Greenberg, 1998);

Telepointers Show the position of other users’ mouse cursors, usually in
distinct shapes to prevent confusion with the user’s own mouse cursor
(Gutwin et al., 2004);

Video images Shows moving pictures of the other users, typically focusing
on the face of a single user (Dourish and Bly, 1992).

Another feature of awareness input/output devices is that they allow
users to perceive the role and limitations of the computer interface as a
mediator. This is especially relevant when the Internet is used to transport
feedthrough information because the limitations in the available bandwidth
make feedthrough delays less predictable and significantly longer than feed-
back delays (Stuckel and Gutwin, 2008).

Coupling Input Device

A further reason for proposing awareness input/output devices is related to
a characteristic of groupware: it lets users loose the link between executed



4.3 The Groupware Interface 65

Awareness
Input Devices

Coupling
Input Devices

Awareness
Output Devices

Awareness
Output Devices

Coupling
Input Devices

Awareness
Input Devices

Motor
Processors

Perceptual
Processors

Cognitive
Processor

Perceptual
Processors

Motor
Processors

Cognitive
Processor

User 1 Computer Interface User 2

Control at
the Origin

Control at the
Destination

Control at the
Destination

Control at
the Origin

Figure 4.7: Awareness and coupling input/output devices, specialised in supporting the users’
monitoring and displaying of group awareness information. The users’ actions relevant to collabo-
ration are captured by the awareness input devices. The other users can monitor that information
through the awareness output devices. The coupling input devices control the type and amount of
information being shared.

operations and group awareness, a situation called ‘loosely coupled’ (Dewan
and Choudhary, 1995). Two types of coupling control may be considered:

• Users may control coupling at the origin to specify what and when
information produced by or about a user should become public, and to
whom. This addresses the displaying part of collaborative behaviour
during mutual adjustment coordination (see Table 4.1).

• Coupling may be controlled at the destination to restrict the amount
of awareness information that reaches the user, for example through
filters on objects and types of events. So, this is useful for supporting
the monitoring of the workplace (see Table 4.1).

In both cases the user needs cognitive-level activities to control the
capture and delivery of group awareness information, and I model this with
the coupling input device. This device and its interaction with the awareness
input/output devices are shown in Figure 4.7.



66 Modelling Groupware at the Cognitive Level

The conceptual layer comprising the awareness and coupling devices, and
built on top of the physical layer of conventional input/output devices, is
a convenient means to discern the features specific to the various types of
computer-supported workspaces, as I show next.

4.3.3 Virtual Workspaces

Groupware systems structure the collaboration environment by providing
virtual workspaces and the tools for interacting in them. These are user
recognisable and may be classified as follows:

• Private workspaces allow users to work individually with minimal or
no interference from the other group members. They are suited for
doing temporary work, trying out alternatives, and for working in
parallel (Mark et al., 1997). In essence, this type of workspace is well
suited for the standardisation coordination mode;

• Shared or public workspaces are similar to physical workplaces, in that
users work together in a delimited ‘space,’ where objects and tools can
be manipulated to fulfil a joint objective (Dourish and Bellotti, 1992).
However, because the workspace is computer-mediated, users need
not be co-located. Shared workspaces strive to support the mutual
adjustment mode of coordination, as this gives group members more
freedom to collaborate and resolve potential task conflicts;

• Mixed-focus workspaces support work scenarios characterised by users
moving back and forth between doing work individually and interacting
with the group, to keep up with what is going on and to share newly
produced outcomes with the others (Greenberg and Roseman, 2003).
This mixed-focus type of collaboration is supported not only by a
shared workspace accessible to all group members, but also by private
workspaces, where users can engage in individual work.

Given these descriptions of virtual workspaces, the last step in the model-
ling of the groupware user interface is to define them in terms of information
flows and input/output devices. The result is presented in Table 4.3, which
also includes the coordination modes (from which I derived the information



4.4 Discussion 67

Table 4.3: Map of user behaviour in virtual workspaces. The design of virtual
workspaces comprehends the understanding of the coordination mode adopted by
the group to resolve task interdependencies, the information flows for interacting
with the computer and with the other group members, and the input/output
devices for controlling the information flows.

Virtual Coordination Information Input/Output
Workspace Mode Flows Devices

Private Standardisation Feedback
Feedforward

Conventional

Shared Mutual adjustment Feedback
Feedforward

Explicit communication
Back-channel feedback

Feedthrough

Conventional
Awareness
Coupling

or
Mixed-focus

flows) presumed to be appropriate for managing task interdependencies in
each type of virtual workspace.

4.4 Discussion

The model of the groupware user interface proposed in this chapter aims
at representing a variety of user behaviours in collaborative environments,
keeping the focus on the cognitive level of human action.

As any other model, this groupware model covers a part of reality. So, if
on the one hand I mentioned a typology of group tasks, on the other hand I
only derived from that the need to characterise task interdependency levels.

In turn, these levels of task interdependency lead to the identification of
coordination modes that are used to solve conflicts and minimise duplication
of work. These modes reflect patterns of behaviour grounded on communica-
tion between or among users, monitoring of the collaborative environment,
and displaying of information relevant to the others.

In the end, I am giving less importance to group task types and highligh-
ting the coordination modes, not only because coordination is universal, but
also because a link can be established between the modes of coordination and
the information flows supported by groupware systems. In this way, I could
determine which flows are necessary to cover each mode of coordination.



68 Modelling Groupware at the Cognitive Level

Regarding the mutual adjustment coordination mode—the most elaborate
and the preferred by users because it allows a good alignment with the actions
of the other group members without interrupting them—I assumed that all
groupware information flows would be necessary. However, there may be
simpler alternatives that are also adequate, for instance the use of explicit
communication without back-channel feedback.

In reality, the fundamental groupware information flow in the mutual
adjustment coordination mode is feedthrough, which automatically generates
group awareness information, without which the group could become overlo-
aded with internal communication requests to keep everyone up-to-date.

Anyway, there may be occasions in which the quantity of group aware-
ness information generated via feedthrough needs to be adjusted for being
excessive. If this happened in a room, people would naturally regulate their
monitoring and displaying behaviours. Therefore, in the computer-based case
I propose that this adjustment be represented using specialised awareness
and coupling devices.

Finally, the integration of the groupware information flows and input/out-
put devices into virtual workspaces was straightforward. Again, I assumed
that all information flows would be required in the more complex workspaces,
but I admit some scenarios of collaboration could use less.

4.5 Summary

In this chapter, I described a model of the groupware user interface that uni-
fies human behaviour in collaborative scenarios with groupware information
flows and input/output devices.

My intention was to provide insights to groupware designers and evalua-
tors about the design space of collaborative interactions, which can still be
analysed at the cognitive level since the connection between the perceptual,
cognitive, and motor processors and the computer interface was preserved.

I also posited that the model of the groupware interface can serve as
a basis for expanding the applicability of existing cognitive-level usability
evaluation methods, which so far have been confined to single-user interfaces.
I will demonstrate how this can be done in the next two chapters.



4.5 Summary 69

Notes

The groupware interface model described in this chapter is an extension of
work initiated by my adviser and colleagues (Antunes et al., 2005).

From that early model, I participated in the clarification of the placehol-
ders for the awareness and coupling devices, which at the beginning appeared
in both the user and the groupware interface, and which were ultimately
moved to the latter. So, the idea of the user having specialised processors
dedicated to group work was abandoned, in favour of the traditional Model
Human Processor.

That revised model first appeared in the twelfth International Workshop
on Groupware (CRIWG’06), held in Medina del Campo, Spain (Antunes
et al., 2006a), and later in an article for the Information Research journal
(Ferreira et al., 2009).

The present discussion of the model adds theoretical concepts about
group task interdependencies and coordination modes, which help understand
human behaviour in collaborative environments, and attest the usefulness of
the proposed information flows and specialised input/output devices.





Chapter 5

Evaluating the Usability
of Shared Workspaces

In this chapter, I build upon the groupware interface model introduced in the
previous chapter to create a method for evaluating the usability of virtual
shared workspaces, an essential component of groupware systems.

In line with the advantages offered by the engineering models evaluation
approach, the method does not require users or functioning prototypes and
is aimed at providing quantitative usability predictions, the novelty being in
focusing the evaluation on tasks relevant to collaboration.

5.1 Motivation

Virtual shared workspaces (or, simply, shared workspaces) are similar to
physical workplaces but they allows users to be distributed because the
shared workspace and the information flows necessary for collaboration are
supported by the computer infra-structure.

For example, in the physical world a chalkboard can be used collabora-
tively by two or more persons for drawing diagrams, annotating, making
corrections, and so on, whereas in the virtual world the same persons could
be in different cities and have concurrent access to a computer-supported
representation of the chalkboard (see Ignat and Norrie (2006) for an overview
of shared workspace groupware for collaborative drawing).

71



72 Evaluating the Usability of Shared Workspaces

An important feature of shared workspaces is that they conceal much tech-
nical functionality from the users, namely data distribution, synchronisation,
replication, security, persistence, access management, connected/disconnec-
ted modes, and other aspects.

This concealment is challenging for multiple reasons: firstly, the shared
workspace must adequately bridge the gap between what the users perceive
is possible to do and the underlying groupware functionality; secondly, the
user interface must be at the same time compelling, innovative, easy to use,
and useful; and thirdly, there is the question of how to improve the usability
of shared workspaces.

The method I introduce in this chapter addresses the third challenge.
Assuming that the popularity of groupware, and of shared workspaces in
particular, is increasing, as I did in Chapter 1, then such usability improve-
ments, even if small, can have large net effects, and may, as well, become an
important factor to the success of groupware systems.

Moreover, collaboration in shared workspaces is largely defined by quick
and repetitive group interaction tasks, such as giving or taking objects (see
the mechanics of collaboration in Table 2.5 on page 29), which mainly depend
on our perceptual, cognitive, and motor skills to be executed, in contrast
with other contexts, where the emphasis may be on problem solving tasks,
such as group decision making.

Such cognitive level of human action is overlooked by existing groupware
usability evaluation methods (as I showed in Chapter 2) and yet the behaviour
of users working on the shared workspace through the groupware interface
can be approximated using engineering models.

An added benefit is that human performance at the cognitive level,
such as pressing keys and pointing with the mouse, is, to a large extent,
unaffected by the social, cultural, and organisational variations that exist in
the community of groupware users, especially on the Web.

Finally, group work in shared workspaces strongly relies on group awa-
reness and mutual adjustment, which are difficult to support in computer-
mediated collaboration (Gutwin and Greenberg, 2002). I addressed these
two features in the groupware interface model (see previous chapter) by orga-
nising the design space with information flows and specialised input/output
devices, which are a fundamental part of the evaluation method.



5.2 Method Description 73

Groupware
Interface

Critical
Scenarios

Boundary
Selection

Usability
Measurements

Step 1 Step 2 Step 3 Step 4

Figure 5.1: Method for evaluating the usability of shared workspaces: step 1 is to
characterise the groupware interface; step 2 is for identifying critical scenarios of
collaboration; step 3 is to restrict the solution space; and step 4 is for applying
engineering models of human performance to predict shared workspace usability.

5.2 Method Description

The method for evaluating the usability of shared workspaces is composed
of four sequential steps, illustrated in Figure 5.1.

Step 1: Groupware Interface. The method begins with a break down
definition of the groupware interface in shared workspaces. This decom-
position simplifies the modelling of complex groupware tools, which often
organise collaborative activities in multiple intertwined spaces, usually visu-
ally recognisable, and supporting various purposes, objects, and functionality.

Using the model of the groupware interface in Figure 4.7 on page 65
as a reference, I define a shared workspace as a combination of awareness
and coupling devices. I exclude any workspaces not having, at least, one
awareness or coupling device, since they would not involve collaboration.

The outcome of this step is then: 1) a list of shared workspaces; 2) a
description of supported explicit communication, back-channel feedback,
and feedthrough information flows; and 3) a characterisation of supported
awareness and coupling devices. Alternative design scenarios may also be
defined in this step, considering different combinations of interface elements.

Step 2: Critical Scenarios. The second step describes the functionality
associated with the shared workspaces, with a focus on critical scenarios,
which are collaborative actions that have a potentially important effect on
individual and group performance. The functionality may be decomposed
into sub-actions, using a top-down strategy, but care should be taken so that
the descriptions remain generic. As in the previous step, alternative design
scenarios may be defined, considering several combinations of users’ actions.



74 Evaluating the Usability of Shared Workspaces

Step 3: Boundary Selection. This is a focusing step, in which the
possibly infinite configurations of each shared workspace, including its objects
and users, are reduced to particular instances according to the designer’s
intuition, expertise, and goals.

In this step, several characteristics of the shared workspaces may be
controlled by assumptions concerning aspects such as: the position and size
of graphical elements on the computer display, the awareness and coupling
devices; the number of users in the group; the probabilities of user actions;
the placement of objects in the workspace; and others that the designer may
find relevant to workspace usability.

Step 4: Usability Measurements. The final step is dedicated to com-
paring the alternative design scenarios that were defined in the previous
steps. These comparisons require common criteria, for which I selected the
predicted execution time in critical scenarios of collaboration.

To this end, I utilise the Keystroke-Level Model (KLM, see Section 3.2.1
on page 36) because it is relatively easy to use and has been successfully
applied in the evaluation of single-user interfaces. The application of the
KLM in shared workspaces should be focused on critical scenarios having
selected sequences of operators concerning quick and repetitive tasks relevant
to collaboration, possibly involving more than one user at the same time.

For instance, suppose we want to evaluate the usability of several design
options for managing access to objects in a shared workspace. A critical
scenario occurs when a user accesses the object, immediately followed by
another user trying to do the same but finding the object locked. The KLM
may be used to estimate the execution times of these combined operations for
each design option, thus revealing which one minimises the overall execution
time. This will be discussed in one of the cases presented in the next section.

5.3 Using the Method

In this section, I apply the proposed method to evaluate the execution
time in three cases of shared workspace activity: locating updated objects,
reserving objects, and negotiating requirements.



5.3 Using the Method 75

5.3.1 Locating Updated Objects

The first case considers a graphical shared workspace where several objects
may be updated in parallel by a group of users. An object can be a text
document, a drawing, or any other type of information that is relevant to the
activity of the group. In collaborative scenarios such as this it is important
that users are aware of the updates that are being applied to the objects,
otherwise group performance may degrade because of, for example, wrong
decisions based upon outdated states of the objects, or duplicate work due
to similar objects having been created elsewhere in the meanwhile.

In this case, users can play two roles: the first occurs when they update
one or more objects; the second role is characterised by the need to be aware
of and locate objects that have changed. I will assume that an object was
recently updated, thus the evaluation will be focused on the second role.
The design challenge is that there are many ways to convey object changes
in a shared workspace, and some may be more usable than others.

I note that collaboration in this case is somewhat indirect, in that the
focus is on information flowing from the shared workspace to individual
users, although such flows are a consequence of updates made by other users.
However, these information flows ease the construction of more sophisticated
collaborative scenarios and, thus, their importance should be acknowledged.

Step 1: Groupware Interface. The shared workspace is capable of
storing a large number of objects. However, since computer displays have
limited screen resolution, access to the objects is provided by a viewport
that shows only a small portion of the shared workspace. The viewport can
be moved, so the whole shared workspace is effectively viewable, albeit at a
cost, measured in extra execution time, that depends on the design options.

The first design uses a list of object names on the right side of the screen
to provide awareness to users on objects that have recently been updated
(see top left side of Figure 5.2). Because the list takes up space, the viewport
is smaller than the entire display, which lowers the probability of an object
being shown on the viewport at an arbitrary time. This is design scenario A.

Design scenario B features the viewport and a miniature representation of
the entire shared workspace, also called a radar view (Gutwin and Greenberg,



76 Evaluating the Usability of Shared Workspaces

Sh
ar
ed

W
or
ks
pa

ce

O1*

O2
O3*

O4*

O5

O6*
O7

O8

O9

Viewport Updates

O1 15:00

O3 12:59

O5 10:30

O4 09:15

. . .

Sh
ar
ed

W
or
ks
pa

ce

O1*

O2
O3*

O4*

O5

O6*
O7

O8

O9

Viewport

Radar

Sh
ar
ed

W
or
ks
pa

ce

O1*

O2
O3*

O4*

O5

O6*
O7

O8

O9

Viewport

Computer
Display

Design A

Computer
Display

Design B

Computer
Display

Design C

Figure 5.2: Scenarios for locating updated objects in a shared workspace. In designs A and B
the computer display is partially occupied by a list of recently updated objects and a radar view,
respectively, which are operated with a mouse. In design C, the entire computer display is devoted
to the viewport and navigation is done with the cursor keys.



5.3 Using the Method 77

1999). Whenever an object is updated a dark-filled dot replaces the normal
hollow circle on the radar, thereby making the user aware of the update (see
bottom left side of Figure 5.2). As in the previous design, the radar view
takes up a portion of the display space.

Finally, in design scenario C the entire computer display is devoted to
the viewport. When objects are updated, and if they are not already being
shown on the screen, the border of the viewport is populated with awareness
indicators that look like little arrows pointing in the direction of the said
objects in the shared workspace (see right side of Figure 5.2).

I assume that human input is done using a mouse with a single button
in design scenarios A and B, and with keyboard cursor keys in scenario C.

At the end of this step, the groupware interface is characterised in the
following terms: 1) one shared workspace stores all objects; 2) awareness is
provided in the form of feedthrough information (no explicit communication
or back-channel feedback is allowed); 3) awareness is supported by a viewport
complemented by a list, or a radar view, or pointing arrows, depending on
the design scenario; 4) there is a loose coupling between the changes that
are made to the objects and the awareness that is provided to the users (an
update is simply represented by an asterisk); and 5) the viewport permits
coupling control, showing some objects while omitting others.

Step 2: Critical Scenarios. Regarding the critical scenario of how to
locate an updated object in the shared workspace, I now describe, for each
of the three design scenarios, the actions that users have to perform.

In design scenario A, the user notices that an object (which is outside of
the viewport) has been updated by looking at the list of recently updated
objects. To locate it in the shared workspace s/he clicks the mouse button
on the corresponding item in the list, causing the viewport to be positioned
in such way that the object is shown on the computer display.

With design scenario B, a dark-filled dot appears on the radar view, the
user points the mouse cursor and clicks the button somewhere in the vicinity
of that dot to move the viewport to that location in the shared workspace,
bringing the updated object into sight.

In design scenario C, the user can navigate in the shared workspace by
pressing the cursor keys. The appearance of a pointing arrow at the border



78 Evaluating the Usability of Shared Workspaces

of the viewport means that an object has been updated; to know further
details s/he has to follow the arrow until the object appears on the display.

Step 3: Boundary Selection. In this third step, the shared workspace is
specified in practical and manageable terms, including the computer display
and the viewport, upon which the performance comparison will later be
based. To this end, I define the following assumptions:

1. The computer display has a typical 4 : 3 aspect ratio, with a width of
W units and a height of H units;

2. The size of the shared workspace is a multiple, n, of the size of the
computer display;

3. The shared workspace is filled with nW × nH objects;

4. Every object has the same probability of being changed at any time.

The next two assumptions apply to design scenarios A and B, respectively:

5. The list of objects is H units high and one unit wide;

6. The radar view is approximated to a square, n/5 units high, rounded
up to the nearest integer.

Two more assumptions apply only to design scenario C:

7. By pressing a cursor key, the viewport is moved W units (left and
right keys) or H units (up and down keys) in the respective direction;

8. The opposite borders of the shared workspace are linked together,
making it possible to go, for example, from the leftmost edge to the
rightmost edge directly.

In these circumstances, as the size of the shared workspace increases,
so does the number of objects on it and also the size of the radar view (in
design scenario B), which seems reasonable. Assumption 4 is a convenient
adaptation of reality as some objects, such as text documents, may be more
frequently updated than others over time. Note that in design scenarios
A and B the computer display is not entirely dedicated to the viewport,
because the list of object names and the radar view take up some space.

Step 4: Usability Measurements. In this final step, I use KLM opera-
tors to characterise the actions that users have to execute to locate updated



5.3 Using the Method 79

objects in the shared workspace. The predicted execution time for this
critical scenario will be obtained from the required sequence of operators,
which depends on the design scenarios.

In all three design scenarios the estimated execution time is given by
a weighted sum, T = PiTi + PoTo, considering two possible cases: 1) the
updated object is already visible inside the viewport, with probability Pi

and execution time Ti; or 2) the object is outside of the viewport, with
probability Po and time To.

Pi can be calculated by counting the number of objects that can be seen
on the viewport and dividing this by the total number of objects in the
shared workspace. Po can be obtained by simply subtracting Pi from one.

For example, considering a computer display with W = 4 and H = 3
units, and a shared workspace with eight by six units (n = 2), then: in design
scenario A, the list of object names takes up three units (by assumption 5),
so the number of objects visible on the viewport is nine, and Pi = 0.19; in
design scenario B, the radar view is a square one unit high (by assumption 7),
giving a total of eleven objects on the viewport, so Pi = 0.23; and in design
scenario C, the viewport uses the entire computer display, thus Pi = 0.25.

After obtaining Pi and Po, I now describe the fine-grained details of how
to locate an updated object using sequences of KLM operators, which will
provide the Ti and To execution times. The sequence for the first case is
only an M operator, from performing a visual search on the viewport and
finding the object there. Since the M operator takes up 1.2 s (from Table 3.1
on page 37), Ti = 1.2 s for all three design scenarios.

The calculation of To, for the case in which the updated object is outside
of the viewport, is done as follows: for design scenarios A and B, the user
fails to find the object on the viewport, M; then searches the list of updated
objects (or the radar view), another M; then points the mouse cursor to
the list entry (or to the dark-filled dot on the radar), P; and finally clicks
the mouse button, BB (press and release), causing the updated object to
be shown on the viewport. The complete sequence of operators for design
scenarios A and B is M MPBB, with a predicted execution time of To = 3.7 s.

Regarding design scenario C, since the updated object is initially not
visible on the viewport, the user has to navigate through the shared workspace
using the cursor keys, guided by the pointing arrows at the border of the



80 Evaluating the Usability of Shared Workspaces

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

SIZE OF SHARED WORKSPACE (N)

E
X

E
C

U
T

IO
N

 T
IM

E
 (

S
E

C
O

N
D

S
)

DESIGN SCENARIO

A B C

Figure 5.3: Predicted execution time for locating an updated object in a shared
workspace with size n times greater than the viewport.

display (see Figure 5.2). In this case, the sequence of KLM operators depends
on the size of both the shared workspace and the viewport, because the larger
the portion of the shared workspace that is outside of the viewport, the
more key presses are necessary to reach the object. To simplify, I assume the
existence of an equation, m, that calculates the average number of viewport
moves to reach an updated object in the shared workspace, with unit symbol
‘vm.’ So, for example m = 1 vm corresponds to one viewport move, done
through a single key press (for more details on m, see Appendix A).

The sequence of KLM operators for locating an updated object that is
outside of the viewport, in design scenario C, can finally be expressed as an
M, the search for the object on the viewport (and not finding it), followed by
KM, which is a key press on a cursor key plus a visual search, repeated m

times. The corresponding predicted execution time, in seconds, is given by
To = 1.2 s + 1.48 s/vm×m vm.

At this point, the estimated execution times in the three design scenarios
can be compared. The results for a display with size W = 4 and H = 3 and
various sizes, n, of the shared workspace are illustrated in Figure 5.3.

In summary: 1) there is little difference in using a list of object names or
a radar view to locate an updated object as the predicted execution times in
design scenarios A and B are very similar; 2) the times for design scenarios



5.3 Using the Method 81

A and B rapidly converge to a maximum of 3.7 s; 3) design scenario C has a
lower execution time for shared workspaces with up to five times the size
of the computer display (n ≤ 5); and 4) for larger shared workspaces, the
predicted time in design scenario C increases by about 0.48 s per n.

In addition, I note that the trends displayed in Figure 5.3 are effectively
independent of the size of the computer display, meaning that the graph
may be seen as an easy-to-use tool, whenever the assumptions apply.

5.3.2 Reserving Objects

In this second case, I apply the method to evaluate the performance of a
shared workspace that enables users to reserve selected objects. A reserved
object can only be changed by the user who made the reservation; the other
users have to wait for the object to be released.

In these circumstances, it is important that users be aware of which
objects are currently reserved, otherwise time may be wasted in failed
reservations, or work plans may be rendered inapplicable too often.

When reserving objects, users can experience one of two outcomes: a
successful object reservation or a failure. The design challenge is to minimise
the time wasted on failed reservations in situations where users try to
simultaneously reserve the same object, this being the critical scenario.

Step 1: Groupware Interface. Besides the shared workspace, there are
also private workspaces, allowing users to do individual work on reserved
objects. However, the modelling of these private workspaces is out of scope,
since the method applies to actions done on shared workspaces.

A reservation in the shared workspace is performed in the following way:
first the objects are selected, and then they are dragged out of the shared
workspace into the private workspace. The objects are released when they
are dragged back into the shared workspace. No awareness about the state
of the objects is provided to the group of users; this is design scenario A.

In design scenario B, upon a successful reservation of objects, the shared
workspace displays a letter next to them, identifying the current owner.
This increases group awareness and reduces inadvertent selections of already
reserved objects. The letter disappears when the objects are released.



82 Evaluating the Usability of Shared Workspaces

In design scenario C, while a user is selecting objects, a rectangle that
comprises those objects is shown on the shared workspace. The main reason
for this refinement is the production of fine-grained and up-to-date awareness
information, beyond that provided by an ‘after the fact’ object reservation.

I assume that the user’s motor activities are restricted to a mouse with
a single button in all design scenarios.

In summary, the groupware interface can be defined as follows: 1) one
shared workspace holds all public objects; 2) awareness information is
provided via feedthrough; 3) awareness is supported by an owner letter after
a reservation or by a rectangle during the selection of objects; 4) there is a
loose coupling between individual work and group awareness.

Step 2: Critical Scenarios. The critical scenario occurs when users try
to reserve the same object in parallel. Naturally, only one user will succeed.

In design scenario A, all objects on the shared workspace look the same,
so they appear to be always available. But when users start a reservation on
the same object(s) at the same time, they receive an error message, except
for the one user who succeeds.

In design scenario B, users will not try to reserve objects having owner
letters attached to them. However, because these letters are only shown
after all steps in a reservation have been performed it is possible that two or
more users try to reserve the same, apparently available, objects.

Finally, in design scenario C, besides looking at owner letters, users also
see rectangles being drawn around objects on the shared workspace, meaning
that other users are selecting objects, presumably to reserve them afterwards.
As a consequence, users will likely choose other objects to work on.

Step 3: Boundary Selection. I make four assumptions regarding the
shared workspace and the work patterns of the group of users:

1. All objects on the shared workspace are visible on the computer display;

2. Feedthrough is instantaneous (that is, there is no network delay);

3. It is unlikely that more than two users select or try to reserve the same
object(s) at the same time;



5.3 Using the Method 83

4. The first user entering a competition for the same object(s) always
succeeds in making the reservation.

Assumptions 1, 2, and 4 reduce complexity and make the analysis of the
shared workspace more convenient. Assumption 3 may seem exaggerated
given that all objects fit on the computer display or that the group may have
many users. However, this has little importance because the reservations can,
instead, be done on a large shared workspace (with the help of a viewport),
without changing any of the functional details of a reservation, while making
the assumption more plausible. Thus, for the usability comparison I consider
two users competing for the same object.

Step 4: Usability Measurements. I now focus on the fine-grained
details of how to reserve objects in a shared workspace, to the point in which
this task can be described as KLM operators. It is interesting to note that
the sequence of operators will be the same in all three design scenario and
that the difference in execution time will be caused by the availability and
timeliness of the awareness information during the critical scenario.

Regarding the KLM sequence, I assume that the user must first search
for one or more objects on the shared workspace. This is converted into an M
operator. Once the objects are located, the user moves the mouse pointer to
the top-left corner of an imaginary rectangle that will encompass all objects
of interest, P, then presses the mouse button, B, and moves the pointer to
the opposite corner of the rectangle, P. The user then releases the mouse
button, B, to complete the selection.

The last part of the reservation is done by dragging the selected objects
out of the shared workspace: the user adjusts the mouse pointer so that it
rests on top of one of the selected objects, P, presses the mouse button, B,
drags the selected objects out of the shared workspace, P (no M operator is
required because the workspaces are always in the same place), and releases
the mouse button, B. The complete sequence of operators is MPBPB PBPB,
which has a predicted execution time of 6.0 s.

I now compare the execution times in the critical scenario that occurs
when two users try to reserve the same objects, for designs A and B.

Considering the design scenario A, the best case happens when two users
start the reservation for the same object(s) at the same time. After the



84 Evaluating the Usability of Shared Workspaces

User 1

User 2

Best
Case

MPBPB PBPB

MPBPB PBPB M MPBPB PBPB

13.2 s

User 1

User 2

Worst
Case

MPBPB PBPB

MPBPB PBPB M MPBPB PBPB

19.2 s

Design
Scenario A

User 1

User 2

Best
Case

MPBPB PBPB

MPBPB PBPB M MPBPB PBPB

13.2 s

User 1

User 2

Worst
Case

MPBPB PBPB

M M MPBPB PBPB

14.4 s

Design
Scenario B

User 1

User 2

Best
Case

MPB PBPBPB

MPB M MPBPB PBPB

9.6 s

User 1

User 2

Worst
Case

MPB PBPBPB

M M MPBPB PBPB

10.8 s

Design
Scenario C

Figure 5.4: Best and worst execution times for reserving objects in a shared workspace. No group
awareness is provided in design A; in design B, a ownership letter is attached to reserved objects;
in design C, awareness is produced as the objects are being selected, even before the reservation is
complete. The more awareness is provided, the more usable the shared workspace becomes.

6.0 s needed for a complete reservation, the second user (see assumption 4)
sees an error message (an M operator) and starts again with another object,
which takes another 6.0 s. The best execution time is then 13.2 s. The worst
case happens when the second user begins just after the first finishes a
reservation. Since no awareness information is provided, the total execution
time increases to 19.2 s (see design scenario A in Figure 5.4.

Before progressing to the next design scenario, I highlight the following
point: I assume that the time to notice and interpret an error message is
equal to the duration of the M operator. It may be argued that it is necessary
to test this assumption using laboratory experiments, as others have done



5.3 Using the Method 85

for specific tasks (Olson and Olson, 1990). However, my decision is based
upon the ‘simplifying logic in the KLM’ and, indeed, 1.2 s has been assumed
before as the duration of generic visual perception operators (Kieras, 2003).

For design scenario B, the best case is identical to that of scenario A.
However, the execution time for the worst case is significantly reduced
because the second user can interrupt an ongoing reservation as soon as the
owner letter is displayed on the shared workspace. This situation can be
modelled with two M operators: the first is the initial M of any reservation
and the second M is for interpreting the critical situation. The total execution
time for the worst case is now 14.4 s (see design scenario B in Figure 5.4).

In design scenario C, awareness information is provided as soon as an
object selection starts, that is, after a sequence of MPB, instead of the MPBPB
PBPB needed for a reservation. In these circumstances both the best and
worst cases benefit from reduced execution times (see design scenario C in
Figure 5.4). If the two users start the reservation at the same time, then
at about 2.4 s they both see their simultaneous selections on the shared
workspace. Then, the second user (by assumption 4) stops the current
selection and starts another one, an M followed by a new reservation, taking
a total of 9.6 s. The worst case takes 10.8 s, analogously to the worst case
for scenario B, except that awareness supplied by the owner letter upon a
full reservation is now awareness provided by the selection of the first object.

In summary, the method brought quantitative insights about the role of
awareness information conveyed via feedthrough flows in group work support,
predicting that design scenario C is faster than B by 3.6 s, and that B is
faster than A by about 4.8 s, but only in the worst case scenario.

5.3.3 Negotiating Requirements

In this third case, I demonstrate the application of the method to an existing
groupware tool that supports collaborative software quality assessment, using
the Software Quality Function Deployment (SQFD) methodology (Haag
et al., 1996). The objective of this tool is to facilitate the SQFD negotiation
process by providing mechanisms in a same-time, different-place mode.

The starting point here is a previous experiment with the tool that gathe-
red data in questionnaires and reported some usability problems, namely



86 Evaluating the Usability of Shared Workspaces

that it was considered difficult to use. Further details about this tool and
about the previous evaluation can be found in Antunes et al. (2006b).

Step 1: Groupware Interface. The tool has two shared workspaces:
SQFD matrix and ‘Current Situation.’ The SQFD matrix allows users to look
over a matrix of correlations between product specifications and customer
requirements, as well as to observe which correlations are under negotiation.
Limited awareness information is provided by the matrix, but there is a
coupling mechanism that allows users to look into and modify a cell.

This coupling mechanism leads users to the ‘Current Situation,’ where
they can observe the negotiation state in detail, including the proposed
correlation, positions in favour or against, and supporting arguments, and,
ultimately, express or update his or her arguments and positions. I briefly
characterise the two shared workspaces in terms of awareness input, output,
and coupling input devices in Figure 5.5 and Figure 5.6.

The digits inside cells in Figure 5.5 represent correlations between custo-
mer requirements (listed on the left) and product specifications (top of the
matrix), going from ‘weak’ (1) up to ‘strong’ (9). When consensus is not
verified for a particular cell, the digit is replaced by the symbol ?, and, in
more extreme cases, by an F or an L, meaning that a user has issued a firm
position or locked the cell, respectively.

For the purpose of this case, I focus on the situation in which a negotiation
is in progress. The design challenge is to minimise the time needed for a
user to express or update his or her position to help the group reach a faster
consensus about a particular cell.

Step 2: Critical Scenarios. In this analysis, I assume the user has
arrived at the ‘Current Situation’ shared workspace with the purpose of
examining the negotiation state in detail. As currently implemented by the
tool, this information is hierarchically organised, showing: a) the product
specifications and customer requirements under negotiation; b) the curren-
tly proposed correlation; c) positions in favour and against the currently
proposed correlation; and d) arguments supporting positions in favour or
against. This is design scenario A.



5.3 Using the Method 87

The awareness output device
provides information about selected
correlations (0,1,3,9) and ongoing

negotiations (?,F,L).

The coupling input device allows the
detailed analysis of a negotiation

via double-clicking on a cell.

Figure 5.5: The SQFD shared workspace.

An alternative design scenario B considers a variation in the way status
information is shown to the user. I assume that users assign importance to
aggregate information about the number of positions against or in favour,
neglecting positions where there is a clear push towards one side or the other,
and analysing arguments in detail only when positions are balanced.

The selected critical scenario considers the proposal, by a user, of an
alternative correlation value in ‘Current Situation,’ after having examined
the negotiation state. This is a critical scenario because it reflects a core
and repetitive activity during the negotiation process, therefore it influences
individual and group performance.

I also consider a variation in the number of users involved in the negotia-
tion process. The ‘Current Situation’ displays the positions and arguments



88 Evaluating the Usability of Shared Workspaces

The awareness output device
provides information about

the negotiation status,
including positions in favour
and against, and arguments.

The coupling input device
allows users to open or close
positions and arguments.

The awareness input device
allows users to define their
positions and arguments, for

which feedthrough
information is generated.

Figure 5.6: The ‘Current Situation’ shared workspace.

for up to three users (see Figure 5.6). Beyond this number, the user has to
scroll down the window to completely analyse the situation.

Step 3: Boundary Selection. Since this case is based upon the impro-
vement of an existing tool, the design space for the shared workspace and its
operation by the users has already a practical and manageable dimension.
However, given the nature of design scenario B, I consider the following
three additional assumptions:

1. Users assign importance to aggregate information (see description in
the previous step);

2. Two conditions, with three and six users, form the critical scenario;

3. The probability of having unbalanced positions is 25 %.1

Regarding assumption 2, I assume that having more than six users
negotiating the same cell is a rare event, which merits no further analysis.

1 This is an approximation based upon the probability of an absolute majority with three
voters, that is, having all in favour or against, two out of eight combinations, or 25 %.



5.3 Using the Method 89

Step 4: Usability Measurements. In design scenario A, with three
users, the sequence of KLM operators is given by: the interpretation of
the negotiation status, M, followed by a decision, M, which is expressed by
the selection of a check box using the mouse, a PBB, and pressing the ‘ok’
button, PBB (no M operator is required to locate the ‘ok’ button because it
is always in the same position within the ’Current Situation’ window). This
gives M MPBB PBB, which has a total execution time of 5.0 s. With six users,
the execution time increases to 8.6 s, corresponding to MPBPB M MPBB PBB, in
which the MPBPB operators are related to scrolling.

I note that some M operators considered in the previous paragraph may
extend beyond the routine tasks typically modelled by the KLM. For instance,
the first M in the M MPBB PBB sequence is associated with the interpretation of
the negotiation status, which is significantly more complex that the selection
of a check box modelled by the second M.

However, the intention in this case is not to obtain precise time values but
to compare various sequences of operators in a consistent way across several
alternative designs. Of course, there is a risk associated with modelling
more complex cognitive tasks with a single M, which has to be understood
and assumed by the designer, but the assumption is that this risk is equally
distributed among the alternative designs, so they can still be compared.

Considering design scenario B, two situations may occur: either the po-
sitions are balanced, due to a tie or a simple majority, or they are unbalanced
because of an absolute majority. In the unbalanced case, I assume the user
will neglect arguments and, thus, the sequence of operators is M MPBB PBB
(5.0 s to execute), similar to the previous scenario with three users.

In the balanced case, the user will analyse the positions in detail by first
interpreting the negotiation status, M, followed by the opening of the list
of favourable arguments, PBB (no M operator is needed to locate the list of
favourable/against arguments because these are always in the same position),
and corresponding analysis, M, upon which the list is closed, PBB, to give
room for the opening and interpreting of the against arguments, PBB M, so
that, finally, the decision is made, M, a check box is selected (with the user’s
decision), PBB, and the ’ok’ button is pressed PBB. The total execution time
for the balanced case, M PBB M PBB PBB M MPBB PBB, is, then, 11.3 s. I note that
these measures apply to the scenarios with three and six users.



90 Evaluating the Usability of Shared Workspaces

I also assume that the probability of having unbalanced positions is 25 %
(see assumption 3). Hence, in these circumstances, the average execution
time for scenario B is about 0.75 × 11.3 s + 0.25 × 5.0 s ≈ 9.8 s, which is
higher than scenario A for both three and six users.

In summary, design scenario B may be better than or equal to scenario
A, but there is a 75 % probability that it is worse than scenario A, which
severely penalises the overall appreciation of design scenario B.

5.4 Discussion

The three cases, ‘locating updated objects,’ ‘reserving objects,’ and ‘nego-
tiating requirements’ heavily depend on shared workspaces to orchestrate
multiple users accomplishing collaborative tasks. The design of these work-
spaces is, thus, critical to the overall group performance. The method
described in this chapter provides a common criterion to evaluate shared
workspace usability, namely, execution time in critical scenarios, and allows
designs to be compared to predict which features offer the best performance.

The three shared workspaces evaluated in this chapter are quite distinct.
In the ‘locating updated objects’ case, the differences in execution times
were due to the alternative ways of manipulating a coupling mechanism, a
viewport, to navigate through shared workspaces with varying sizes. In the
‘reserving objects’ case, the focus was on the availability and timeliness of
awareness information, to evaluate the best and worst execution times in
environments where users act opportunistically. Finally, in the ‘negotiating
requirements’ case, the evaluation targeted how a coupling mechanism could
be designed to conserve individual cognitive effort. Taken as a whole, the
method contributed to formative evaluation, and offered indications about
the potential performance of users working with shared workspaces.

The method has three important limitations that have to be considered.
Firstly, it inherits the limitations of engineering models of human perfor-
mance (see Section 3.3 on page 43): it is valid for expert behaviour in routine
tasks, assumes that no errors are made, that all users are entirely committed
and willing to collaborate, and that users do not get tired. This may not
happen in practise, but, on the other hand, the success demonstrated in



5.5 Summary 91

many applications of engineering models in single-user interfaces suggests
that these human characteristics are evenly distributed among several design
alternatives, so the comparisons still make sense.

Secondly, it assumes a narrow-band view about collaboration, restricted
to shared workspaces and their mediation roles. This contrasts with other
groupware evaluation methods (see Chapter 2), which offer a wide-band
view about collaboration, encompassing, for example, coordination policies,
influences from contextual factors, and learning, as well as more complex
types of collaboration, such as group decision making. However, the trade-off
to ponder is that the method restricts the view to increase the detail about the
mediating role of shared workspaces and to allow quantitative comparisons of
design alternatives. This restricted view has ample justification in contexts
in which shared workspaces are heavily used, even when users perform
intellective tasks, such as in the ‘negotiating requirements’ case, where users
apply their expertise to evaluate software quality but are still required to
repetitively operate the tool.

Thirdly, the method is somewhat limited by the selection of the critical
scenarios, as they should have sufficient impact on the overall collaborative
task to deserve a detailed evaluation. I posit that the bias that may exist
in preliminary phases of the design process, induced, for instance, by new
technologies or lack of knowledge about the collaborative context, may be
reduced by applying the method at a later time. This happened in the
‘negotiating requirements’ case, in which usability problems identified by
the users of an existing tool guided the selection of the shared workspaces
and the critical scenarios. This possibility of using the proposed method
in tandem with other evaluation methods, such as field studies, laboratory
experiments, or heuristic-based methods (see Chapter 2), gives designers
and evaluators an additional instrument of action to rely on.

5.5 Summary

In this chapter, I described a method for predicting task execution time in
critical scenarios of collaboration done via shared workspaces, and showed
how it can be applied to compare alternative designs in three distinct cases.



92 Evaluating the Usability of Shared Workspaces

The method is grounded on engineering models of human performance,
so it does not require users or functional prototypes, and is also based upon
the model of the groupware interface, to focus the evaluation on the specific
parts of the interface that involve collaboration.

My aim with this method is that it becomes a practical instrument for
doing groupware evaluations, affording quick measurements and calculations,
which drive usability optimisations, and complementing the perspectives
and outcomes provided by other evaluation methods.

Notes

An earlier version of this method, with only three steps, was presented at
the twelfth International Workshop on Groupware (CRIWG’06), held in
Medina del Campo, Spain (Antunes et al., 2006a). At that time, the method
was applied to evaluate the usability of two of the three shared workspaces
described in this chapter.

Later, I added a fourth step to the method by making the boundary
selection explicit, updated the two previous evaluations in conformity, and
used the method to predict the usability of a third shared workspace. The
results of this research were published in the Information Research journal
(Ferreira et al., 2009).



Chapter 6

Evaluating the Usability
ofMixed-FocusWorkspaces

In this chapter, I present a method for evaluating the usability of groupware
systems that specifically addresses computer support for mixed-focus colla-
boration, in which users alternate between doing individual work in private
workspaces and interacting with the group in shared workspaces (see also
Section 4.3.3 on page 66). This usually originates conflicts between the goals
of the users and the goals of the group, which have to be pondered in the
design of the groupware interface.

In contrast with the previous method (see Chapter 5), the evaluation
developed here extends to tasks done in private workspaces because the
intertwinement between individual and collaborative tasks that characterises
mixed-focus collaboration influences the usability of the groupware system.

6.1 Motivation

Group work is often characterised by users moving back and forth between
doing individual work and interacting with the group (Greenberg and Ro-
seman, 2003). To address this mixed-focus type of collaboration, several
groupware systems provide support not only for a shared workspace accessi-
ble to all users on the group, but also for private spaces, where users can
engage in individual work.

93



94 Evaluating the Usability of Mixed-Focus Workspaces

For example, in the ShrEdit text editor users may write directly in the
joint document as long as not in the same region where another user is
already working on, and there is also the option of writing text in a private
workspace and then moving it to the joint document (Dourish and Bellotti,
1992). Mixed-focus workspaces are also popular in Single Display Groupware
(SDG) systems, in which users gathered in the same room interact with a
large public display and also have access to private workspaces (Sugimoto
et al., 2004; Scott et al., 2003, pp. 165–166).

An important challenge in the design of mixed-focus workspaces is that
the shared and private workspaces are driven by different requirements, often
reflecting conflicting goals for users as individuals versus users as a group.
For instance, a distributed group benefits if all users see the same part of the
shared workspace since this reduces the time spent with coordination tasks,
but individual users gain from being able to navigate freely in the shared
workspace (Gutwin and Greenberg, 1998). This means that improvements in
the usability of mixed-focus workspaces often favour one side at the expense
of the other, making it difficult to evaluate the overall result.

Another difficulty in evaluating the usability of mixed-focus workspaces
is that tasks performed individually in private workspaces are usually not
self-contained, that is, they often depend on the completion of tasks executed
by other users and may also restrict the work of others. In the same way, the
outcomes produced by a user will allow other users to advance. This task
intertwinement is characteristic of ‘concerted work,’ in which a continuous
combined effort is required from all users on the group so that a common goal
is reached (Nunamaker et al., 1996). In these circumstances, the usability of
the mixed-focus workspace is variable because some interaction tasks may
not be possible as long as other tasks are being fulfilled.

The two previous issues, namely the trade-offs between user and group
goals and the difficulties caused by task intertwinement, are addressed by the
method that I describe in this chapter. As with the method in Chapter 5, the
evaluation is grounded on critical scenarios of collaboration and execution
times are predicted by engineering models of human performance. The main
difference is that, in this case, the scenarios are evaluated not only for how
much time they take but also for their contributions to group progression
towards the common goal.



6.2 Method Description 95

Characterise
Group Goal

Describe
Critical Scenarios

Predict Task
Execution Times

Focus on
User Goals

Focus on
Group Goals

Step 1 Step 2 Step 3 Step 4 Step 5

Figure 6.1: Method for evaluating the usability of mixed-focus workspaces: step 1 is for characteri-
sing the group goal; step 2 is to describe critical scenarios comprising tasks for doing individual work
and for interacting with the group; step 3 is for predicting task execution times using engineering
models of human performance; step 4 is to focus the evaluation on the user goals; and step 5 is for
evaluating how much tasks contribute to the fulfilment of the group goal.

6.2 Method Description

The method for evaluating the usability of mixed-focus workspaces is com-
posed of five sequential steps, illustrated in Figure 6.1.

Step 1: Characterise the Group Goal. The method begins with a
characterisation of the common goal that the group needs to accomplish.
This is done in terms of a conceptual metric called goal unit, or gu. The
meaning of a goal unit depends on the context but it should be based upon
an analysis of atomic contributions that users as individuals can give to the
group. Thus, the group goal is defined by a quantity of goal units.

Step 2: Describe Critical Scenarios. In this step, critical scenarios of
collaboration are described using text. As in the previous evaluation method
(see Section 5.2 on page 73), the choice of critical scenarios is based upon
the potential effects on individual and group performance. In addition, each
scenario must reflect an effective contribution to the group goal, which means
that it comprises tasks done in the private as well as in the public workspaces.
Furthermore, tasks that reflect individual work should be distinguished from
tasks involving collaboration, usually related to group coordination.

Step 3: Predict Task Execution Times. This step is for estimating
execution times for each individual and collaborative task that comprises
the critical scenarios. This can be done with the Keystroke-Level Model
(KLM) (see Section 3.2.1 on page 36) by converting the textual descriptions
into sequences of perceptual, cognitive, and motor operators, which specify
the fine-grained details of user behaviour with the groupware interface.



96 Evaluating the Usability of Mixed-Focus Workspaces

Step 4: Focus on User Goals. In this step, the evaluation proceeds
with an analysis of critical scenarios that contrasts the proportion of time for
doing individual work in the private workspace with the proportion of time
for interacting with the group. Alternative scenarios may be considered and
it is likely that, from the user point of view, the preference goes to scenarios
with lower collaboration overhead, as this increases individual productivity.
However, because tasks are intertwined in a mixed-focus workspace, usability
is not only in the eye of the user. This is explored in the next step.

Step 5: Focusing on Group Goals. In this final and most complex step,
the critical scenarios of collaboration are evaluated against three orthogonal
usability dimensions: 1) production of goal units; 2) creation of new goal
opportunities for the other users; and 3) restrictions to the work of the other
users while the current scenarios is being performed.

The productivity dimension measures the number of goal units produced
per time unit, or gu/s or gu/min. The greater the value, the faster the group
may progress towards the common goal. In individual work this dimension
is enough to assess how fast a complex task can be fulfilled. However, group
productivity in a mixed-focus workspace is not simply a combination of
individual productivities and this is captured in the next two dimensions.

The opportunities dimension is related to the intertwined nature of
mixed-focus collaboration: if a user stops, then the group will likely slow
down, and eventually stop without reaching the common goal. This suggests
that collaboration is bound by opportunity dependencies created by the
achievement of user goals. The measurement unit for this dimension is new
goal unit opportunities potentially created per time unit, or gu/s or gu/min.
The greater the opportunities, the faster the group may progress.

The restrictions dimension reflects a possible negative consequence of
coordination in mixed-focus workspaces: the prevention of conflicts and
duplicate efforts (positive outcomes) may slow down or even impede the
work of other users. Restrictions are measured in inaccessible goal units
times the duration of the critical scenario, or gu s or gu min. This unit of
measurement emphasises fast and unobtrusive execution of individual tasks:
the greater the restrictions value, the slower the group may progress, because
users will probably spend more time waiting to proceed.



6.3 Application in a Collaborative Game 97

These three dimensions provide a more comprehensive view of the usa-
bility of a mixed-focus workspace as they go beyond task execution time
and link it to group progression towards the common goal. For example, a
critical scenario may take the same time to fulfil in two design alternatives,
but if there are differences in the opportunities and restrictions, these will
determine which alternative is more usable.

6.3 Application in a Collaborative Game

I now show how the method can be applied to evaluate the usability of a
collaborative game, where multiple players draw either vertical or horizontal
connections between adjacent pairs of points in a matrix-like board.

The game is over when the board is filled with connections, but players
must observe this rule: to be able to draw a connection between two adjacent
points there must already exist a perpendicular connection between one of
those points and a third point. For instance, if player Sophie is an expert
in drawing vertical connections then she must consider adjacent pairs of
points that contain, at least, one horizontal connection to a third point. The
behaviour of an expert in horizontal connections, say, Charles, is analogous.

For illustration purposes, the board is characterised by a matrix-like
arrangement of contiguous cells, numbered 1 to 9, and by an initial state
that contains at least one horizontal and one vertical connection lines (see
Figure 6.2). The game features a shared workspace for displaying a public
view of the board and private workspaces where players can connect cell
points. All user input is done using a mouse with a single button.

In order to connect points, players must first reserve them by selecting
and dragging the corresponding cell into the private workspace. Later, the
modifications on the cell will be made public when the cell is dragged back
to the shared workspace, which releases the cell.

To minimise inadvertent selections of reserved cells, the shared workspace
provides awareness information by showing a letter next to the cell number,
that identifies the current owner (see letters ‘C’ and ‘S’ next to cells 2 and
4 in Figure 6.2). Additionally, the game impedes concurrent reservations
of the same pairs of adjacent points. For example, if two players select the



98 Evaluating the Usability of Mixed-Focus Workspaces

Sophie’s Private
Workspace

4

Shared
Workspace

1 2C 3

4S 5 6

7 8 9

Charles’s Private
Workspace

2

Figure 6.2: Mixed-focus collaboration game. The game board is shown in a shared
workspace and players drag parts of the board (called cells) to private workspaces,
where they can draw connections between points. While this happens, cells in
the shared workspace are annotated with an indication of the current owner and
cannot be dragged to another private workspace. After a cell has been worked it
is dragged back to the shared workspace to make the updates visible to the group.

same cell or vertically or horizontally neighbour cells, and simultaneously
try to reserve them, then only one player will accomplish the cell reservation,
while the other is notified that the cell cannot be reserved.

It is expected that the cells remain reserved for a small amount of time
due to the players’ expertise and their eagerness to fulfil the common goal.

In this collaborative game all players must perform in harmony to quickly
connect all pairs of adjacent points: the more horizontal connections exist,
the more vertical connections can be drawn, and vice versa. Conversely, if
one player stops drawing connections, the other players will have to proceed
slower and may even have to stop too. In other words, the tasks executed
by the players tasks are intertwined.

6.3.1 Evaluating the Initial Design

The previous paragraphs describe the initial design of the collaborative game
and contain enough detail to apply the usability evaluation method.

Step 1: Characterise the Group Goal. The game ends when all points
are connected with vertical and horizontal lines. For this to happen, players
have to gradually draw connection lines, so a goal unit in this case corresponds
to one connection line. Considering the board shown in Figure 6.2, the group
goal is that all 24 connections are drawn, which gives a total of 24 gu.



6.3 Application in a Collaborative Game 99

Table 6.1: Textual description of tasks in the critical scenario. The RESERVE and RELEASE tasks
require interacting with the shared workspace. DRAW applies to both horizontal and vertical
connection lines, and is entirely done in private workspaces.

Task Type Description

RESERVE Collaborative 1) Locate cell in shared workspace; 2) point mouse cursor to cell; 3)
press mouse button; 4) point mouse cursor to private workspace; and
5) release mouse button

DRAW Individual 1) Locate cell point in private workspace; 2) point mouse cursor to
cell point; 3) press mouse button; 4) point mouse cursor to adjacent
point in cell; and 5) release mouse button

RELEASE Collaborative 1) Locate cell in private workspace; 2) point mouse cursor to cell; 3)
press mouse button; 4) point mouse cursor to shared workspace; and
5) release mouse button

Step 2: Describe Critical Scenarios. There is one critical scenario in
the collaborative game, which comprises three separate tasks: 1) dragging
a cell from the shared to the private workspace; 2) drawing connection
lines between points in the cell; and 3) dragging the cell back to the shared
workspace. The tasks are identified by the names RESERVE, DRAW, and RE-
LEASE, and are described in detail in Table 6.1, which also distinguishes
between the individual or collaborative nature of each task.

Step 3: Predict Task Execution Times. To estimate the time needed
to execute each of the tasks in Table 6.1, the textual descriptions have to
be converted into sequences of KLM operators (see list of operators and
corresponding execution times in Table 3.1 on page 37). For instance, the
sequence for the RESERVE task is obtained as follows: in step 1 the player
locates a cell in the shared workspace, an M, then points the mouse cursor
to the cell in step 2, a P, and presses the mouse button (step 3), a B; in step
4, the player moves the mouse pointer to the private workspace, a P (no
M operator is needed because the private workspace is always in the same
place), and finally the mouse button is released in step 5, a B. The total
predicted execution time is calculated by adding together the individual
times, which for MPBPB gives 1.2 + 1.1 + 0.1 + 1.1 + 0.1 = 3.6 seconds. The
KLM representation for the DRAW and RELEASE tasks is also a MPBPB, hence
the execution time is the same.



100 Evaluating the Usability of Mixed-Focus Workspaces

Table 6.2: Task sequences for the critical scenario, predicted execution times (in
seconds), and proportion of time for interacting with the shared workspace versus
doing individual work in the private workspace.

S# Tasks Time/s Collaborative Individual

S1 1) RESERVE 3.6 + 7.2 s
10.8 s = 67 % 3.6 s

10.8 s = 33 %2) DRAW 3.6 +
3) RELEASE 3.6 = 10.8

S2 1) RESERVE 3.6 +
7.2 s
14.4 s = 50 % 7.2 s

14.4 s = 50 %2) DRAW 3.6 +
3) DRAW 3.6 +
4) RELEASE 3.6 = 14.4

Step 4: Focus on User Goals. Given an appropriate cell in the shared
workspace, each player carries out individual work by following one of two
possible sequences of tasks, shown in Table 6.2. Sequence S1 corresponds
to drawing a single connection between two points; sequence S2 applies to
cases in which two connections can be drawn in the same cell.

Table 6.2 shows that in sequence S1 the majority of the time goes to
collaborative tasks RESERVE and RELEASE, with 7.2 s or 67 % of the total
predicted time; the actual connection drawing takes up only 33 %. It is
therefore likely that the groupware designer admits that players will avoid
such situation and instead prefer sequence S2, due to its lower collaboration
overhead (50 %). However, S2 takes more time to execute, which means that
other players will not be able to use the cell for a longer time span. This is
discussed in the next step.

Step 5: Focus on Group Goals. In this step, task sequences S1 and
S2 are evaluated in terms of productivity, opportunities, and restrictions.
Table 6.3 shows that S2 is more productive than S1 because it takes 14.4 s to
draw 2 line connections, thus the 8.3 gu/min, in contrast with the 5.5 gu/min
of S1. Additionally, S2 also compares favourably with S1 in creating new
opportunities for the other players: 20.8 gu/min versus 11.1 gu/min.

The logic behind the number of opportunities for each task sequence is
illustrated in Figure 6.3. With sequence S1 only one vertical connection
can be drawn by Sophie in cell 5, which, in the best case, opens two new
opportunities to Charles since he will be able to draw two extra horizontal



6.3 Application in a Collaborative Game 101

Table 6.3: Productivity, opportunities, and restrictions for the two sequences of
tasks that implement the critical scenario. Sequence S2 is more productive and
potentially creates more new opportunities for the other players, but it restricts
access to the cell for a longer period of time.

S# Productivity Opportunities Restrictions

S1
1 gu

10.8 s = 5.5 gu/min 2 gu
10.8 s = 11.1 gu/min 1 gu× 10.8 s = 0.18 gu min

S2
2 gu

14.4 s = 8.3 gu/min 5 gu
14.4 s = 20.8 gu/min 1 gu× 14.4 s = 0.24 gu min

Sequence S1

1 2 3

4 5 6

7 8 9

Sequence S2

1 2 3

4 5 6

7 8 9

Initial Connections

New Connections

New Opportunities

Inaccessible Connections

Figure 6.3: Opportunities created by each task sequence. Sequence S1 creates up
to two new opportunities for other players to draw connections. S2 creates five
opportunities at best, which suggests that it allows the group to progress faster.

connections at the top and bottom of cell 6. The missing bottom connection
in cell 5 is not an opportunity because it was already available via the left
vertical connection in cell 5. Actually, that bottom connection is inaccessible
to the other players while Sophie is doing S1. In S2 up to 5 opportunities
can be created after the left and right vertical lines are drawn in cell 5.

The only dimension in which task sequence S1 is preferable to S2 is the
restrictions to the work of the other players. Its lower 0.18 gu min versus
0.24 gu min of S2 is only due to its lower execution time, 10.8 s versus 14.4 s,
since the number of inaccessible goal units during the execution of the task
sequence is the same in both cases: a single connection drawing (for instance,
the bottom horizontal connection in cell 5 in Figure 6.3).

The data in Table 6.2 and Table 6.3 provide a basis for doing comprehen-
sive comparisons of groupware usability, beyond task execution time, by
highlighting the trade-offs between user and group performance associated
with each critical scenario supported by the groupware interface.



102 Evaluating the Usability of Mixed-Focus Workspaces

Table 6.4: Collaborative tasks in the alternative design. Players now have the
possibility of reserving or releasing multiple cells at the same time.

Task Description/KLM Representation Time/s

SELECT_1 1) Locate cell in workspace; 2) point mouse cursor to
cell; and 3) press and release mouse button
1) M 2) P 3) BB 2.5

SELECT_N 1) Locate cell in workspace; 2) point mouse cursor to
cell; 3) press mouse button; 4) locate second cell that
defines the selection rectangle; 5) point mouse cursor
to second cell; and 6) release mouse button
1) M 2) P 3) B 4) M 5) P 6) B 4.8

RESERVE_B 1) Press mouse button; 2) point mouse cursor to private
workspace; and 3) release mouse button
1) B 2) P 3) B 1.3

RELEASE_B 1) Press mouse button; 2) point mouse cursor to shared
workspace; and 3) release mouse button
1) B 2) P 3) B 1.3

6.3.2 Evaluating a Design Alternative

I now evaluate a design alternative for the collaborative game that features
multiple cell reservations and releases as well as the display of awareness
information while players select cells in the shared workspace. The motivation
is twofold: a) the impact of collaborative overhead decreases with the number
of connections that can be drawn consecutively in the private workspace;
and b) selecting cells in the shared workspace is faster than reserving them,
which means that awareness information will be more up-to-date.

The new features introduce changes in the collaborative tasks that define
the critical scenario: two novel tasks are used for selecting single and multiple
cells, SELECT_1 (a single click on a cell selects it) and SELECT_N (a click and
drag movement for selecting consecutive cells); additionally, the reserves
and releases, RESERVE_B and RELEASE_B, are now slightly simpler because
players do not need to search for a cell or cells that they have just selected
(cell selections always precede cell reservations or releases).

Table 6.4 shows the textual descriptions for the new tasks and also
includes the sequences of KLM operators and predicted execution times,
combining steps 2 and 3 of the evaluation method (step 1 was unchanged).



6.3 Application in a Collaborative Game 103

Table 6.5: New task sequences for the critical scenario. S3 and S4 in the alternative
design are similar to S1 and S2 in the initial design. S5 is entirely new, and allows
multiple cells to be selected, reserved, worked, and finally released.

S# Tasks Time/s Collaborative Individual

S3 1) SELECT_1 2.5 +

7.6 s
11.2 s = 68 % 3.6 s

11.2 s = 32 %
2) RESERVE_B 1.3 +
3) DRAW 3.6 +
4) SELECT_1 2.5 +
5) RELEASE_B 1.3 = 11.2

S4 1) SELECT_1 2.5 +

7.6 s
14.8 s = 51 % 7.2 s

14.8 s = 49 %

2) RESERVE_B 1.3 +
3) DRAW 3.6 +
4) DRAW 3.6 +
5) SELECT_1 2.5 +
6) RELEASE_B 1.3 = 14.8

S5 1) SELECT_N 4.8 + 12.2 s/total (3.6 s× n)/total
2) RESERVE_B 1.3 + n = 1→ 77 % n = 1→ 33 %
3) DRAW× n 3.6× n + n = 2→ 63 % n = 2→ 37 %
4) SELECT_N 4.8 + n = 3→ 53 % n = 3→ 47 %
5) RELEASE_B 1.3 = total n = 4→ 46 % n = 4→ 54 %

The results in Table 6.4 show that SELECT_1 requires less time to execute
than the previous RESERVE task in Table 6.2 (2.5 s versus 3.6 s). This means
that players should experience less time dealing with coordination conflicts,
as awareness information (for instance, a letter identifying the player who is
selecting the cell) is displayed in a more up-to-date fashion. On the other
hand, the time to reserve a single cell slightly increases because now it takes
a SELECT_1 followed by a RESERVE_B, with a total of 3.8 s. This trade-off
seems acceptable because the extra 0.2 s is much less than the time to recover
from a reservation conflict, which would require a minimum of 1.2 s (an M
operator) for recognising and resolving with it.

Table 6.5 shows the new task sequences for fulfilling the critical scenario
as well as the new time proportions for interacting with the group and for
doing individual work. This corresponds to step 4 of the evaluation method.

As expected, if players can only select single cells, they will probably
prefer reserving those in which they can draw two connection lines using
sequence S4, in detriment of S3. This is because in S4 the overhead caused



104 Evaluating the Usability of Mixed-Focus Workspaces

Table 6.6: Productivity, opportunities, and restrictions for tasks in the alternative design. The
results are ordered by restrictions (ascending), then by productivity (descending), and finally by
opportunities (descending), to highlight tasks that are less obtrusive to the work of others.

S# Productivity Opportunities Restrictions

S3
1 gu

11.2 s = 5.4 gu/min 2 gu
11.2 s = 10.7 gu/min 1 gu× 11.2 s = 0.2 gu min

S4
2 gu

14.8 s = 8.1 gu/min 5 gu
14.8 s = 20.3 gu/min 1 gu× 14.8 s = 0.3 gu min

S5(a)
4 gu

26.6 s = 9.0 gu/min 8 gu
26.6 s = 18.0 gu/min 4 gu× 26.6 s = 1.8 gu min

S5(b)
6 gu

33.8 s = 10.6 gu/min 10 gu
33.8 s = 17.8 gu/min 6 gu× 33.8 s = 3.4 gu min

S5(c)
8 gu

41.0 s = 11.7 gu/min 13 gu
41.0 s = 19.0 gu/min 9 gu× 41.0 s = 6.2 gu min

S5(e)
9 gu

44.6 s = 12.1 gu/min 12 gu
44.6 s = 16.1 gu/min 10 gu× 44.6 s = 7.4 gu min

S5(d)
12 gu
55.4 s = 13.0 gu/min 16 gu

55.4 s = 17.3 gu/min 14 gu× 55.4 s = 12.9 gu min

S5(f)
12 gu
55.4 s = 13.0 gu/min 16 gu

55.4 s = 17.3 gu/min 16 gu× 55.4 s = 14.8 gu min

S5(g)
16 gu
69.8 s = 13.8 gu/min 21 gu

69.8 s = 18.0 gu/min 21 gu× 69.8 s = 24.4 gu min

by collaborative tasks, 51 %, is lower than the 68 % in S3 (as had happened
with S1 and S2 in the initial design, shown in Table 6.2). However, if players
get a chance to reserve multiple cells at once, then they will likely use
sequence S5 when at least four connections (n ≥ 4) are drawable in those
cells, because in these circumstances the impact of the collaborative tasks is
46 %, this being unmatched by sequences S3 and S4.

Table 6.6 shows the new group performance values afforded by the
groupware interface in the alternative design, obtained by applying step 5
of the evaluation method to task sequences S3 and S4, as well as to several
variants of sequence S5, illustrated in Figure 6.4.

The first rows in Table 6.6 contain sequences S3 and S4, which are less
restrictive and offer good opportunities, albeit with lower productivity. In



6.3 Application in a Collaborative Game 105

S5(a), n = 4 S5(b), n = 6 S5(c), n = 8

S5(d), n = 12 S5(e), n = 9

S5(f), n = 12 S5(g), n = 16

New Opportunities
Initial Connections New Connections

Inaccessible Connections

Figure 6.4: Variety of instances of task sequence S5. The n value corresponds to
the number of cells that are reserved simultaneously. Greater values of n increase
individual productivity by lowering collaborative overhead (see Table 6.5) but also
the bigger the region in the game board that is unavailable for the other players.



106 Evaluating the Usability of Mixed-Focus Workspaces

the last rows are the more productive variants of S5, which are also the most
restrictive and offer only normal opportunities to the other players. This
arrangement of results facilitates the detection of sequences of tasks that
have equal productivities and equal opportunities, but different restrictions.
In such conditions group performance is better when users execute sequences
of tasks that impose lower restrictions to the other members: for instance,
S5(d) is better for the group than S5(f).

I end the evaluation of the design alternative by noting that the S5 vari-
ants in Figure 6.4 are ideal cases and that actual group performance afforded
by the groupware interface depends upon the evolving state of the board.
However, an exhaustive analysis of S5 variants is clearly unmanageable.
By focusing on ideal cases of S5, a reasonable basis for making usability
comparisons can be established.

6.3.3 Comparing Designs: The Big Picture

I now compare the two competing designs using the outcomes from the
evaluation method. Figure 6.5 shows the impact of collaborative overhead in
total predicted execution time for all task sequences that support the critical
scenario. The entries in the figure are sorted by collaborative overhead to
facilitate the detection of the task sequences that are more costly to perform
in the shared workspace.

The data in Figure 6.5 show that sibling task sequences S3/S1 have
similar collaborative overhead, and that the same happens with S4/S2. So
far, it is difficult to tell which design to prefer. However, the variants of
S5 have the best proportions of individual work in total predicted time.
These results seem to indicate that the alternative design is preferable to
the initial design, even more so because, intuitively, collaborative overhead
has a negative effect in group performance.

However, this intuition may be wrong in some cases because it only
reflects the user point of view. In fact, in the case of the collaborative game
this intuition is actually wrong. I start by stating the following proposition:
lower proportions of collaborative overhead for achieving the critical scenario
lead to higher group performance towards the common goal. Now, consider
the succession of S5 variants, with equal ordering in Figure 6.5 and Figure 6.6.



6.3 Application in a Collaborative Game 107

S
3

S
1

S
4

S
2

S
5(

A
)

S
5(

B
)

S
5(

C
)

S
5(

E
)

S
5(

D
)

S
5(

F
)

S
5(

G
)

0%

20%

40%

60%

80%

100%
P

R
O

P
O

R
T

IO
N

 O
F

 P
R

E
D

IC
T

E
D

 T
IM

E

INDIVIDUAL WORK

COLLABORATIVE OVERHEAD

Figure 6.5: Collaborative overhead versus individual work for all task sequences
that implement the critical scenario. S1 and S2 are from the initial design and
the other sequences are from the alternative design.

0

5

10

15

20

25

G
U

/M
IN

S
3

S
1

S
4

S
2

S
5(

A
)

S
5(

B
)

S
5(

C
)

S
5(

E
)

S
5(

D
)

S
5(

F
)

S
5(

G
)

0

5

10

15

20

25

30
G

U
.M

IN

PRODUCTIVITY OPPORTUNITIES RESTRICTIONS

Figure 6.6: Comparison of productivity, opportunities, and restrictions. Sequences
of tasks with greater productivity also impose much greater restrictions, and
opportunities remain relatively constant.



108 Evaluating the Usability of Mixed-Focus Workspaces

Reading both plots in synchrony from left to right, the proportion of collabo-
rative overhead steadily decreases (see Figure 6.5), productivity increases in
a symmetrical way, opportunities remain relatively constant and restrictions
increase at a much higher rate (see Figure 6.6). So, contrary to the proposi-
tion, the lower the proportion of collaborative overhead in the variants of
S5 the slower the group progresses towards the common goal because users
will spend more time waiting to proceed.

Given this somewhat puzzling scenario the designer must still find an
optimal equilibrium between user and group goals. Where this equilibrium
could be is the subject of further work. At the moment the big picture is
still getting clearer.

6.4 Discussion

The method presented in this chapter addresses a recurrent trade-off in the
design of groupware systems for mixed-type collaboration: should priority be
given to the users, so they can be more productive when working individually,
or is group performance more important? What the method shows is that
there is no easy answer, for two reasons.

Firstly, it would appear that by considering a more comprehensive view of
groupware usability, comprising productivity, opportunities, and restrictions,
which aims at capturing computer support for the intertwined nature of
mixed-focus collaboration, the choice would become more clear. However,
as I concluded at the end of the previous section, these three dimensions
may very well confront the designer with yet another trade-off.

Secondly, the method concentrates on a very specific type of mixed-focus
collaboration: one in which the group has a quantifiable goal to accomplish
and in which critical scenarios executed by individual users offer measurable
contributions to group progression towards the common goal. However, this
is not frequently found in practise because group work often cannot be broken
down into predetermined units. It is much more usual to find collaborative
tasks in which both the common goal and the individual contributions are
unmeasurable and even unknown beforehand, such as in decision making,
planning, and idea generation.



6.5 Summary 109

Nevertheless, the example in this chapter shows that the method can
be applied to evaluate the usability of a collaborative game, which suggests
that video games may be a real-world application area.

At any rate, the three proposed dimensions of groupware usability raise
the designer’s awareness on the complexities of designing for users and for
groups, and might eventually contribute to better decisions by pointing at
three distinct directions, rather than simply to task execution time.

6.5 Summary

In this chapter, I presented a method for evaluating the usability of mixed-
focus workspaces, a type of groupware in which users can work individually
in private workspaces and interact with the group via a shared workspace,
and showed how it can be applied in a collaborative game.

The method begins with the identification of critical scenarios of collabo-
ration, whose task execution times are predicted using engineering models
of human performance. Then, these execution times are combined with
work measures, namely productivity, opportunities, and restrictions (see
page 96), which aim at simultaneously capturing the intertwined nature of
mixed-focus collaboration and the usually conflicting goals of users working
as individuals or as elements of a group.

With this method, the groupware designer has a more comprehensive view
of usability in mixed-focus workspaces, which may lead to better decisions.

Notes

A preliminary version of this method, with only three steps, was presented
by my adviser at the tenth International Conference on Computer Supported
Cooperative Work in Design (CSCWiD’06), held in Nanjing, China (Ferreira
and Antunes, 2006a).

Later, I added two steps to the method, namely the characterisation of
the group goal and the description of the critical scenarios, and updated the
collaborative game evaluation. This research was published in a compilation
of selected papers, CSCW in Design III (Ferreira and Antunes, 2007b).





Chapter 7

Drawing Attention to
Cognitive Limitations

In the previous chapters, I described my contributions to formative evaluation
of groupware usability using engineering models of human performance, with
the purpose of providing instruments to make fine-grained optimisations
without requiring real users or functioning prototypes. These models have
shown to be representative of real users in numerous scenarios of human-
computer interaction (see Section 3.3 on page 43), despite assuming users
are tireless experts who never make mistakes.

In this chapter, I highlight the need for evaluating groupware usability
with a focus on human information processing limitations, in particular
regarding information overload, which, in broad terms, happens when the
inflow of information exceeds our attentive capacity. I will present arguments
for the increased likelihood of information overload happening during group
work, which justifies an expansion of cognitive-level groupware evaluations
beyond the application domain of methods grounded on engineering models.

7.1 Information Overload

Information overload is an important problem in our information-rich world:
it is estimated that 23 exabytes (or 2.3× 1019 bytes) of new data were produ-
ced in 2003, comprising paper, film, magnetic, and optical storage mediums,

111



112 Drawing Attention to Cognitive Limitations

as well as electronic flow mediums such as radio, television, telephony, and
the Internet, the latter accounting for approximately 530 petabytes (or
5.3× 1017 bytes) of new or updated content in Web sites, conversations via
e-mail, and instant messaging (Lyman and Varian, 2003).

More recently, the size of the ‘digital universe’ was estimated to be 281
exabytes (or 2.8× 1020 bytes) in 2007, comprising databases, e-mail, video
conferences, instant messages, telephony, television, office applications, and
other worldwide data sources (Gantz, 2008). Furthermore, about 35 % of
these data originated in organisations, mostly from workers at their desks
or on the road, corresponding to approximately 98 exabytes. In addition,
the same report predicts that the amount of information produced in 2011,
but not necessarily consumed or even stored, will be 1.8 zettabytes (or
1.8× 1021 bytes), for an expected 60 % annual growth.

An even more recent study concluded that in 2008 an average American
consumer was exposed to 34 gigabytes (or 3.4× 1010 bytes) of data on an
average day, emanating from sources such as newspapers, books, television,
radio, telephony, movies, computer games, cameras, Internet communication,
and so on, but excluding information at work (Bohn and Short, 2009).

Such immense quantity of information makes heavy demands on human
processing capabilities, namely it creates a scarcity of attention: we simply
cannot attend all information that surrounds us.

This condition has long been acknowledged within organisations and,
in fact, four decades ago Simon (1971) had already warned that ‘a wealth
of information creates a poverty of attention’ and had highlighted the
need for efficient allocation of attention. Thus, organisations have been
adopting countermeasures against information overload such as data filters
and summarisers (Eppler and Mengis, 2004, Table 5) and yet the problem
persists in diverse scenarios, for example, information search, decision making,
investment analysis, and many others (Eppler and Mengis, 2004, Table 1).

7.1.1 Complexities of Group Work

Following up on the idea that human attention must be preserved, I argue
that during group work users are more exposed to information overload
because collaboration is more demanding compared to individual work:



7.1 Information Overload 113

• People working on a group have to deal with larger amounts of infor-
mation due to the extra communication effort needed to coordinate
work; this effort usually grows exponentially with the size of the group
and may quickly outweigh the benefit of admitting new people, a
situation that has been captured in Brooks’s Law: adding manpower
to a late project makes it later (Brooks, 1995, Ch. 2);

• Besides the increase in the quantity of information, users doing group
work have to attend to multiple information sources, such as messages
from colleagues and various displays with different perspectives of group
activity (see Section 4.3.2 on page 63); this multiplicity of sources is
known to be more important than the rate of information presentation
in degrading user performance, as people tend to sample fewer sources
when under stress (Sanders and McCormick, 1992, pp. 69–76);

• Group members have to explicitly manage the trade-offs between
doing individual work and attending to the group, including handling
interruptions from colleagues; this work fragmentation is estimated to
occur in 57 % of the tasks of information workers, and may become
detrimental due to the stress in keeping up with multiple task states
and the extra cognitive cost in resuming work (Mark et al., 2005).

In these circumstances, human attention is more likely exercised to the
point that relevant information is discarded or quickly forgotten, stress and
confusion build up, errors become more frequent, among other symptoms
compiled in Eppler and Mengis (2004, Table 4). In fact, there is a growing
body of evidence showing that memory failures regarding tasks yet to
be performed are becoming a significant problem for information workers,
leading people to devise countermeasures such as emailing reminders to
themselves (Czerwinski et al., 2004).

Naturally, the net influence of these symptoms may reduce the group’s
ability to build and maintain a shared awareness of the current situation
and may also penalise the understanding of how the group plans its activi-
ties. Ultimately, information overload may also restrict the development of
organisational memory, potentially leading to cases in which no one knows
where documents are or how to conduct certain work processes (Khoshafian
and Buckiewicz, 1995, pp. 40–43).



114 Drawing Attention to Cognitive Limitations

7.1.2 Influences from Groupware Research

To complicate matters concerning information overload during group work,
a popular and influential trend in groupware research has been to design
systems that provide ever greater awareness information about the presence
and actions performed by users on a group. This trend has been driven by
the need to counter the relative inefficiency and clumsiness of collaboration
via computer-controlled communication channels compared to face-to-face
interaction (Gutwin and Greenberg, 2002), and has been pointing towards
the discovery of a comprehensive set of group awareness devices, an intention
perhaps made more explicit in Raikundalia and Zhang (2005).

It is thus unsurprising that a significant research effort has been devoted
to the development of toolkits designed to facilitate the rapid prototyping
and testing of groupware tools and, more importantly here, to provide off-
the-shelf group awareness devices that can be quickly arranged and reused in
multiple ways, and even extended with additional devices, as needed. Some
recent and early toolkits and their motivations include:

• MAUI, or Multi-User Awareness UI Toolkit, which contains groupware-
specific devices and adaptations of existing single-user devices to the
group context, and aims at ‘simplifying the construction and testing
of rich groupware interfaces’ (Hill and Gutwin, 2004);

• GroupKit, which provides group session management and a set of
graphical user interface elements for building conferencing applications,
and emphasises the ‘belief that programming groupware should be only
slightly harder than building functionally similar single-user systems’
(Roseman and Greenberg, 1996);

• Rendezvous, which offers replicated views and graphical interface
components to ‘simplify the construction of multi-user applications for
real-time collaboration’ (Hill et al., 1994);

• MMConf, which offers shared workspace management for teleconfe-
rencing, and aims at supporting ‘highly graphical, highly interactive
applications’ (Crowley et al., 1990);

• LIZA, which provides shared windows and remote cursors in an ‘ex-
tensible system for exploring multi-user interfaces’ (Gibbs, 1989).



7.1 Information Overload 115

In other words, a major design problem being addressed by groupware
researchers especially through the use of groupware toolkits is that of in-
formation scarcity: more group awareness devices must be discovered and
made readily available to answer questions such as who is collaborating,
where is activity being carried out, and what is going on; and in this way
computer-mediated collaboration will become more natural and efficient.

However, this trend seems to ignore that more may be less if information
overload occurs, as this possibility is rarely, if ever, mentioned, despite early
evidence showing precisely the contrary (Stefik et al., 1986). In addition,
this approach may actually be going against its intended motivation, as
collaboration under information overload is likely to become even less efficient
and more unnatural.

7.1.3 Designing for Attention Scarcity

Given this situation, I argue that the features and usability of groupware
systems influence the likelihood of information overload arising during colla-
boration, and consider two opposing effects in human attention:
• A poorly designed system, for example, with many simultaneous
information sources and too much information overall, may impose
stress to the users’ capacity to attend to the information flows; and

• More importantly in the context of this dissertation, users may benefit if
the groupware system is designed to support the goals and compensate
the limitations of human attention.

Thus, instead of following the dominant trend of presenting more infor-
mation to the users through an array of group awareness devices, I propose
an approach that aims at preserving the users’ attention via novel attentive
devices adapted to scenarios of information overload. Figure 7.1 shows the
contrast between designing for information versus attention scarcity.

As a matter of fact, the use of computers to support human attention
is gaining momentum, as evidenced by recent research on Attentive User
Interfaces (AUI) (Vertegaal, 2003; Roda and Thomas, 2006). However,
because of its roots in the Human-Computer Interaction (HCI) field, the focus
of AUI has been mostly on single-user systems, which means that evaluating
the usability of attentive groupware systems is largely an unexplored area.



116 Drawing Attention to Cognitive Limitations

Group
Work

Multiple
Information
Sources

Large
Quantities of
Information

Doing Individual
Work plus Atten-
ding to the Group

User Information
Overflow

Inefficient
and Clumsy
Collaboration

More Group
Awareness
Devices

Design for Information Scarcity

New
Attentive
Devices

Goals and
Limitations
of Attention

Design for
Attention
Scarcity

Figure 7.1: Information overflow during group work. Users working on a group are subject
to large quantities of information, have to attend to multiple information sources, and must
manage the alternation between doing individual work and keeping up with the group. These
circumstances increase the likelihood of information overload occurring, which highlights the need
for designing groupware systems for attention scarcity, through novel attentive devices that manage
the information reaching each user, an approach represented by the cycle. However, an
influential trend in groupware research is driven by the need for more group awareness information
(the cycle) as a way to handle inefficient and clumsy collaboration, which may actually
exacerbate information overflow. In addition, information overflow may make collaboration even
less efficient and more unnatural (the link).

In the next sections, I review the goals and limitations of human attention,
and then provide an overview of existing AUI technologies designed to support
attention in multi-user and single-user computer systems.

7.2 Human Attention

Human attention is associated with the selection of relevant information and
attenuation or discard of non-relevant data. It is a process that optimises
the use of our limited cognitive resources so that we can perceive and act
accurately and quickly (Anderson, 2005, Ch. 3; Sternberg, 2003, Ch. 3;
Eysenck and Keane, 2000, Ch. 5).



7.2 Human Attention 117

Perceptual
Processor

Motor
Processor

Working
Memory

Cognitive
Processor

Long-Term
Memory

Computer
Interface

Information

Response

Early
Filter/Attenuator

Late
Filter

User

Figure 7.2: Role of attention in the Model Human Processor, adapted from Figure 3.1 on page 34 and
based upon theories illustrated in Sternberg (2003, Figs. 3.5 and 3.6), Anderson (2005, Fig. 3.5), and
Eysenck and Keane (2000, Fig. 5.2). Theoretically, attention is a filtering/attenuation mechanism
that reduces the amount of information reaching the working memory to preserve resources in the
cognitive processor and facilitate the selection of a response.

Depending on the theory, attention is thought to act as an early or late
information selection mechanism. According to Broadbent’s theory, stated
in 1958, attention is an early filter that rejects non-relevant information
before it reaches the perceptual processor. Another theory, by Treisman in
1964, argues that attention is an early attenuator of information importance
that does not completely block any particular piece of information.

These filtering and attenuation mechanisms can be represented in the
Model Human Processor to the left of the perceptual processor, intercepting
the flow of information generated by the computer interface (see Figure 7.2).

A third theory, by Deutsch and Deutsch in 1963, posits that attention is
a late filtering mechanism that acts after some form of sensory analysis has
taken place in the perceptual processor, shown in Figure 7.2 as a late filter.1

Despite the different theories, a common assumption is that attention
is a bottleneck through which only the most relevant information passes on
to the working memory, so that less interpretation effort is imposed on the
cognitive processor, thus allowing for faster response times.

1 More information about these three theories can be found in Anderson (2005, pp. 75–79),
Sternberg (2003, pp. 92–95), and Eysenck and Keane (2000, pp. 121–123).



118 Drawing Attention to Cognitive Limitations

The goals and limitations of the attentional bottleneck have been of
interest for psychologists over the decades: the goals are usually defined in
terms of accuracy and speed responding, both contributing to decrease task
execution times; the limitations occur when we take longer to respond to a
stimulus or when we fail to detect changes in the information before us, thus
penalising task performance, and are associated with phenomena such as
the psychological refractory period, attention blink, and change blindness.

7.2.1 Goals of Attention

Two of the main goals of attention are accuracy, to perceive specific objects
or to execute particular tasks, and speed responding, to perceive objects or
execute tasks after the presentation of a predictive cue (LaBerge, 1999).

Accuracy occurs when we successfully remove or attenuate the influence of
extraneous and confusing information (LaBerge, 1999, pp. 45–46), as happens
when we manage to keep track of a conversation in a crowded room—the
‘cocktail party’ phenomenon (Anderson, 2005, pp. 91–92; Eysenck and Keane,
2000, p. 121). Curiously, people with low working memory seem more likely
to suddenly realise their name was spoken elsewhere, which suggests they
may have more difficulty blocking out distractions (Conway et al., 2001).

Regarding groupware support for attentional accuracy, one of the few
examples is GAZE-2, a video conferencing system that automatically regula-
tes the sound volume of overlapping conversations according to the direction
each user is gazing at (Vertegaal et al., 2003). I provide a more detailed
description of this system in the next section.

Speed responding manifests itself when we are able to respond faster to an
anticipated event following the presentation of a predictive cue, and almost
always involves an expectation of an upcoming time to initiate the response
(LaBerge, 1999, pp. 45–47).

For instance, consider the traffic lights, which, in some countries, turn
red, then yellow, and finally green instead of switching directly from red to
green. The extra yellow light is a predictive cue that prepares the driver to
react more quickly to the green light. Another example, from an experiment
concerning visual attention, shows that the response to expected signals is
about 11 % faster than to unanticipated signals (Anderson, 2005, p. 80).



7.2 Human Attention 119

Groupware support for speed responding is almost ubiquitous given that
most Internet instant messengers have typing indicators turned on by default
(Saunders, 2004). As the system detects user activity whose final outcome
may be pertinent to another user, such as when someone is typing a reply, it
generates a predictive cue, for instance, a swinging pencil next to the photo
of the user who is typing, to prepare the recipient for the imminent arrival
of a new message and thus make the conversation more efficient.

7.2.2 Limitations of Attention

As we all know, human attention is limited; distraction is part of everyday
life and we find it natural that sometimes we react slowly to external stimuli
or even miss them altogether. Psychologists have conducted numerous expe-
riments to determine the circumstances in which our attentional resources
restrict performance, of which I highlight three phenomena that are well do-
cumented in the literature and that are related to the processing of dynamic
flows of information, typical of fast-paced group work settings.

The first phenomenon is the psychological refractory period, or PRP,
and corresponds to a slowdown in the response speed to the second of two
stimuli presented in rapid succession, an effect that is still observable after
tremendous training (Eysenck and Keane, 2000, pp. 137–138).

Experiments with the PRP are characterised by two distinct tasks which
must be executed as fast as possible in response to two different types of
stimuli; for example, the stimuli may be a tone and a light and the tasks may
be pressing a key and saying a word, respectively (Wickens and McCarley,
2008, pp. 10–13). Interestingly, response time to the first stimulus is generally
constant, which is compatible with the view of attention as an information
processing bottleneck, in that only one stimulus is attended to at a time.
In other words, if the second stimulus is presented before the first one is
completely processed, a delay occurs because the second task is put on hold.

Another phenomenon is the attentional blink, or AB, which happens
when we have difficulty detecting the second of two targets presented in
rapid succession amid a series of distractors (Shapiro et al., 1997).

Despite also exposing people to fast-paced information, attentional blink
experiments differ from PRP research in a number of ways (based upon



120 Drawing Attention to Cognitive Limitations

Table 7.1: Attentional phenomena in fast-paced information flows. The psycholo-
gical refractory period (PRP) and the attentional blink (AB) occur in distinct
circumstances and are assessed differently but both reduce performance in the
second of two tasks, where attention to a second stimulus is required.

Phenomenon Stimuli Distractors Tasks Performance

PRP Distinct No Distinct Response time
AB Similar Yes Similar Detection rate

Wong, 2002): firstly, the stimuli are all of the same type, say two target
letters; secondly, the stimuli are surrounded by distractors, such as other
letters; thirdly, the tasks are very similar, for example to detect and identify
the first and second target letters; and fourthly, task performance is measured
in target detection rate rather than response time (see Table 7.1).

Nevertheless, as also happens in the psychological refractory period
phenomenon, performance under the attentional blink is generally constant
for the first stimulus, and gradually improves for the second stimulus as
the time between consecutive stimuli2 increases, up to a natural limit (for
instance, compare Marois and Ivanoff, 2005, Figs. 1b and 3a).

This evidence suggests that groupware systems should compensate for
the PRP and AB phenomena, for instance, by transforming unpredictable
bursts of information generated in parallel by the users on a group into more
steady flows of information, perhaps delivered in batches. To the best of my
knowledge, this manipulation has not been tried.

The third attentional phenomenon is change blindness, or CB, which
occurs when we fail to notice that something is different from what it was
in the environment around us, even when the changes are large, repeatedly
made, and anticipated (Simons and Rensink, 2005; Rensink, 2002, p. 246),
and even without user fatigue or stress (Durlach, 2004).

Numerous scenarios with change blindness have been documented in the
literature, such as drivers not noticing that the car ahead now has its brake
lights on and pilots failing to notice changes in the flight mode (Wickens and
McCarley, 2008, pp. 22–23). Surprisingly, we may not even detect that the

2 The time between consecutive stimuli is usually called stimulus onset asynchrony, or
SOA (Marois and Ivanoff, 2005; Wong, 2002; Shapiro et al., 1997) and also interstimulus
interval, or ISI (Wickens and McCarley, 2008, p. 11).



7.3 Attentive User Interfaces 121

person we were speaking to was swapped by someone new during a casual
face-to-face conversation (Anderson, 2005, Fig. 2.30).

The evidence on this phenomenon suggests that unless we are focusing our
attention on a changing object, we tend to miss the modifications, especially
if they fit into the context (Anderson, 2005, pp. 69–70). If we do want to
check if anything has changed, then we have to engage in a very slow process
of scanning the full picture in front of us, one object at a time. This happens
because, although we can attend to four or five objects simultaneously, we
can only detect one change at a time (Simons and Rensink, 2005).

The effect of change blindness in users doing group work is pertinent,
since groups share a common context and the existence of several users
contributing to the same goal stimulates scenarios in which multiple changes
can occur simultaneously. This creates the conditions for people not noticing
changes, which may affect the users’ ability to catch up with the group and
also likely damages reciprocal task interdependence.

To compensate for change blindness, groupware systems should highlight
or bundle the changes so that they occur less frequently and are easier to
notice. One example of both these techniques is the ubiquitous use of a bold
face to highlight the arrival of a batch of new messages in e-mail in-boxes.

7.3 Attentive User Interfaces

In contrast with the previous overview of the goals and limitations of human
attention, which is very much focused on the internal processes and behaviour
of the human being, research on Attentive User Interfaces (AUI) is mostly
concerned with providing technology to support attention.

During the late 1990s several researchers from the Human-Computer
Interaction (HCI) field became interested in AUI and since then this area is
gaining momentum, as evidenced by special issues in the Communications
of the ACM (Vertegaal, 2003) and in Computers in Human Behavior (Roda
and Thomas, 2006), and by specific conference sessions.3

3 The Human Factors and Computing Systems conference (http://www.sigchi.org/
conferences/chi) organised sessions on ‘don’t interrupt me’ in 2007, and ‘attention and
interruption’ and ‘task and attention’ in 2008.

http://www.sigchi.org/conferences/chi
http://www.sigchi.org/conferences/chi


122 Drawing Attention to Cognitive Limitations

A prime motivation for AUI is the recognition that as the needs for
information and communication rise so do the costs of not paying attention
and being interrupted. So, instead of assuming the user is always focused on
the entire computer screen, AUI negotiate, rather than impose, the user’s
attention by prioritising information presentation. To this end, researchers
are enhancing input/output devices so that the user remains focused on a
primary task without getting too much distracted by secondary tasks.

However, most research on AUI is directed towards single-user systems,
whereas multi-user attentive interfaces are situated in video conferencing,
which means that there is ample room for studying the application of AUI
on other types of groupware systems.

7.3.1 Attentive Devices in Multi-User Systems

Research on attentive devices for groupware systems is mainly focused on
the use of eye-trackers to facilitate the detection of who is talking to whom
in remote meetings. The first such system was GAZE and it worked by
showing photos of up to three users on the computer display, which could
be rotated by intervention of eye-trackers placed in front of each user to
reinforce the impression that some users are looking at the current speaker
(Vertegaal, 1999). Afterwards, when the third user stops talking and looks
at the photo of another user, that user knows s/he was given floor control
and may begin to speak. In this way, the group turn taking process is more
natural and requires less interruptions to determine who will speak next.

In GAZE-2, the photos of the users are replaced by live videos and also
multiple simultaneous conversations are allowed (Vertegaal et al., 2003). In
this system, the face of each user is captured by three video cameras from
slightly different angles and an automated camera director chooses the best
video stream to send to each one of the other users based upon the amount
of parallax error as determined by an eye-tracker. As in GAZE, the virtual
representation of each user is rotated to reflect his or her focus of attention,
which typically corresponds to the current speaker.

Another feature of GAZE-2 is the automatic filtering of voices when
multiple conversations are being held at the same time. Depending upon
the user in focus, so is the respective audio stream amplified and the other



7.3 Attentive User Interfaces 123

streams attenuated (but not eliminated). If the focus of interest suddenly
changes, as sensed by the eye-tracker, the audio is again adjusted.

The concepts in GAZE-2 were further explored in eyeView, a groupware
system that supports large remote meetings by manipulating the size of
video windows and the voice volumes of each user on the group as a function
of the current focus of attention (Jenkin et al., 2005).

7.3.2 Attentive Devices in Single-User Systems

In contrast with groupware systems that mainly rely on eye-trackers to
augment human attention, a variety of input/output devices has been tested
on attentive interfaces for single-user applications, including:

• Sensors that detect the user’s focus of attention based upon eye-gaze
and body orientation;

• Physiological sensors that assess the user’s mental workload by measu-
ring heart rate variability and pupil dilatation;

• Sensor-based statistical models that determine adequate moments to
interrupt and communicate with the user; and

• Displays that present information at various levels of detail, depending
upon the user’s current focus of attention.

The following is a description of several applications of these input/output
devices that I compiled from a survey of the literature.

Eye-Gaze and Body Orientation Sensors

Regarding the use of eye-trackers to support human attention, applications
include magnifying the graphical window on which the user is currently
focused, controlling a robotic directional microphone coupled to a video
camera to overhear a specific conversation taking place in a remote room,
and detecting eye contact to automatically choose which electronic appliance
should obey to voice commands (Vertegaal et al., 2006, Figs. 7, 11, and 3).

In addition, Zhai (2003) used eye-gaze to point a cursor on the screen with
minimal manual intervention, and Hyrskykari et al. (2000) monitored the
user’s gaze path during the reading of a foreign book to provide automatic
translation when s/he pauses at a difficult word or re-reads a sentence.



124 Drawing Attention to Cognitive Limitations

Body orientation sensors are less precise than eye-trackers in depicting
the user’s focus of attention. Nonetheless, they have been tested in an office
environment to regulate the transparency of cubicle walls—opaque when
the user does not wish to attend requests from others—and to control noise
cancellation in headphones (Vertegaal et al., 2006, Figs. 9 and 10).

Physiological Sensors

Concerning physiological sensors, these are used in AUI to assess mental
workload, which is considered a surrogate of attentional capacity: the greater
the workload, the lower the available attentional resources, for example, to
handle unexpected emergencies (Wickens and McCarley, 2008, p. 4).

Chen and Vertegaal (2004) used heart rate variability to distinguish
between at rest, moving, thinking, and busy states, and installed a regulator
of notifications on a mobile phone that, for instance, minimises disruptions
during a face-to-face conversation by automatically activating the phone’s
silent mode and setting the instant messenger status to busy. In the late
1990s, Rowe et al. (1998) had already suggested that heart rate variability
could be used to assess conditions of excessive mental effort, that is, with
information overload, in the monitoring of increasingly complex displays.

More recently, Bailey and Iqbal (2008) proposed using changes in pupil
dilatation as an indicator of mental workload and combined this measure with
GOMS models (see Section 3.2.2 on page 38) of route planning, document
editing, and e-mail classification tasks. They realised that the workload
depends on the type of task, that it varies during the execution of any of
these tasks, and, most importantly, that it decreases at sub-task boundaries.
Thus, they predict that an adequate moment to interrupt the user is between
the completion of a sub-task and the beginning of the next.

Sensor-Based Statistical Models

Another approach to detect the best time to interrupt the user is to em-
ploy statistical models that continuously estimate and balance the value of
information with the cost of interrupting, using sensors that capture work
patterns, ambient noise, body posture, and also data from selected software
applications, such as appointments in the personal calendar (Horvitz et al.,



7.4 Discussion 125

2003). The initial model was hand-made by asking users to annotate video
recordings with a description of their state of interruptibility at that moment
and by relating this information with the data that had been recorded by
the sensors, as explained in Horvitz and Apacible (2003).

Sensor-based statistical models were also used in Fogarty et al. (2005a) but
with the following differences: firstly, the self-assessments of interruptibility
were made intermittently while the users were working in their offices, instead
of retrospectively in a separate video analysis session; secondly, the sensors
recorded speech, writing, the number of people in the office, and whether
the door was opened or closed; and thirdly, the sensors were simulated via
the manual coding of the recorded video feeds. One of the results of this
study is that statistical models can estimate human interruptibility as well
as people do concerning high-level, social engagement, situations.

Interestingly, the same authors also conducted an experiment with low-
level software sensors embedded in an integrated development environment
that captured a myriad of events related to coding, navigating, debugging,
among other activities that occur during a typical computer programming
session (Fogarty et al., 2005b). To assert the state of user interruptibility, a
secondary task was introduced, namely to do a mental multiplication, which
could only be completed when the user clicked on a flashing notification
button; the time between the notification appearing on the screen and
the corresponding button press was then classified by humans in terms of
interruptible, engaged, and deeply engaged. Results for this experiment were
less conclusive, despite the favourable comparison against other systems.

Attentive Displays

Finally, the last attentive device that I refer to is a display that decreases the
level of detail in the areas surrounding the user’s visual focus of attention to
reduce the viewer’s mental workload (Baudisch et al., 2003).

7.4 Discussion

Confronting existing Attentive User Interfaces (AUI) with groupware usabi-
lity evaluation and the information overload problem, I found no evidence



126 Drawing Attention to Cognitive Limitations

that such a research has been conducted before. In fact, most evaluation
studies are directed towards the technological devices per se and do not
consider the outcomes of using the devices in work settings.

For example, to the best of my knowledge, the GAZE-2 groupware system
was evaluated through a user questionnaire that measured the users’ self-
perception of eye-contact and distraction, as well as changes in colour and
brightness during camera shifts (Vertegaal et al., 2003), but no attempt was
made to determine if GAZE-2 introduced any benefits to group work.4

Actually, a similar concern was expressed in Fogarty and Hudson (2007),
regarding the trend to focus the evaluation of sensor-based statistical models
of interruptibility on technical innovations and on analyses of model reliability,
in detriment of determining the impact of these models on how people interact
with computers. They proposed a toolkit to simplify the deployment of such
models in applications, arguing that this will encourage researchers to look
in new directions, despite the inevitable errors made by statistical models.

7.4.1 Evaluation of Attentive User Interfaces

Some studies do address the evaluation of AUI techniques in terms of
task execution and user performance, most of them, if not all, inspired by
experimental HCI research on dual-task performance, which, in turn, has
been driven by the proliferation of computer systems and applications that
proactively send notifications to users, for instance, to signal the arrival of
new e-mail (McCrickard and Chewar, 2003).

The purpose of a typical dual-task experiment is to evaluate the effects
on the execution of a primary task caused by the user being interrupted
with requests to attend to secondary tasks. Table 7.2 shows a list of HCI
studies concerning dual-task experiments, for which the earliest reference I
could get access to dates back to the late 1980s (Field, 1987).5

4 In contrast, the MultiView system, which shares GAZE-2’s goal of aiding floor control
but does not consider user attention, has been evaluated for group trust formation and no
difference was found compared to face-to-face collaboration (Nguyen and Canny, 2007).

5 Bailey and Konstan (2006) mention an even earlier study with calculator-based tasks,
whose reference is: J. G. Kreifeldt and M. E. McCarthy. Interruption as a test of the
user-computer interface. In MC’81: Proceedings of the seventeenth annual conference on
Manual control, pages 655–667, Pasadena, CA, USA, 1981. Jet Propulsion Laboratory.



7.4 Discussion 127

Table 7.2: Types of tasks in experimental HCI interruption research, ordered by year. The studies
in this table assume that one user performs a primary task while being interrupted one or more
times by a request to execute a secondary task. The task names have been adapted for consistency.

Study Primary Task Secondary Task Interruption Rate

Iqbal and Bailey
(2008)

Programming Read hints 0.13 per minute
Diagram editing Read news (over 2 hours)

(other tasks)∗

Gluck et al. (2007) Memory game Read hints 0.92 per minute
(over 17 minutes)

Bailey and Konstan
(2006)

Mental arithmetic News title decision †

Word counting
Image comprehension
Reading comprehension

Form registration
Word selection

Iqbal and Bailey
(2006)

Video editing Stock decision 0.36 per minute
Route planning (over 5–6 minutes)
Text editing

Collage generation
Form design

Fogarty et al.
(2005b)

Programming Mental arithmetic 0.33 per minute
(over 70 minutes)

Iqbal and Bailey
(2005)

Route planning News title decision †

Text editing
E-mail classification

Adamczyk and
Bailey (2004)

Text editing News title decision †

Video description
Web searching

McFarlane (2002) Action game Match symbols 17.8 per minute
(over 4.5 minutes)

Cutrell et al. (2001) List evaluation Mental arithmetic †

Czerwinski et al.
(2000)

Drawing Stock decision †

Spreadsheet editing
Text editing

Field (1987) Database search Numeric sequence †

Manual search
∗Users were allowed to check e-mail and read news during the execution of the primary task.

†The user was interrupted one or two times throughout the primary task rather than recurrently.



128 Drawing Attention to Cognitive Limitations

In this dual-task paradigm, it could well be that users are exposed to
information overload, especially if the primary and secondary tasks involve
large amounts of information and the user is interrupted often.

However, Table 7.2 shows that in most studies the secondary task exposes
users to small amounts of information (for instance, two numbers that must
be added) and that the interruption rate is low or even not applicable because
in about half of the experiments the user was interrupted only once or twice
over the duration of the primary task, instead of recurrently.

The exceptions to these considerations are the studies by McFarlane
(2002) and, to a lesser extent, Gluck et al. (2007), in which the user was
bombarded with interruptions while s/he was playing a simple, repetitive,
computer game.

Even though there is little evidence of information overload occurring
during the work tasks in Table 7.2, it is accepted that its likelihood increases
if the user is frequently interrupted (Speier et al., 1999). Moreover, some of
the studies from the same table show that as little as one or two interruptions
to a primary task can have negative consequences:

• Bailey and Konstan (2006) reported that the time on the primary task
increased up to 27 %, with an average of 13 %;

• Iqbal and Bailey (2005) showed that users felt about 89 % more annoyed
when exposed to interruptions and that the computer was roughly
45 % less respectful of their work; and

• Adamczyk and Bailey (2004) obtained similar results, with about 97 %
more annoyance and 33 % less respect due to interruptions, plus around
92 % more frustration and 27 % increased mental effort.

It was from this kind of evidence—which had already been advanced in
previous studies such as Cutrell et al. (2001), Czerwinski et al. (2000), and
Field (1987)—that a corpus of research began to emerge with the purpose
of designing and evaluating AUI so that effective techniques could be found
to reduce the cost of interrupting the user.

One technique that has been capturing the interest of researchers in
recent years is to postpone interruptions until the user reaches sub-task
boundaries within the primary task, where it has been posited that mental
workload is lowest, thus leaving more attentional resources available for the



7.4 Discussion 129

Table 7.3: Effects of deferring interruptions to task boundaries, relative to the condition in which
interruptions occurred at random moments. This AUI technique has been successfully applied to
programming, text and diagram editing, web searching, and other tasks shown in Table 7.2.

Study E
rr
or
s

R
ea
ct
io
n

T
im

e

R
es
um

pt
io
n

T
im

e

A
nn

oy
an

ce

Fr
us
tr
at
io
n

A
nx

ie
ty

T
im

e
P
re
ss
ur
e

R
es
pe

ct

Iqbal and Bailey (2008) −25 % ∗ −13 %
Bailey and Konstan (2006) −50 % −36 % −46 %
Iqbal and Bailey (2005) −64 % −28 % +39 %

Adamczyk and Bailey (2004) −30 % −17 % −27 % +27 %
∗Measured, but no effect was found.

user to handle secondary tasks (Bailey and Iqbal, 2008). In other words,
rather than being immediately interrupted at random moments relative to
the primary task, the AUI defers the delivery of, say, an e-mail notification,
until the user finishes the current sub-task or the main task itself.

Table 7.3 shows that this so-called defer-to-boundary (DTB) technique
induces positive effects on users’ performance and affective state: the number
of errors while on the primary task was reduced by half; the reaction time to
attend to the secondary task and the subsequent resumption time decreased;
users felt less annoyed, less frustrated, less anxious, and less pressed by time;
and the computer was found more respectful of the users’ work.

To complete this picture of AUI evaluation, I add that Bailey and Konstan
(2006) also contrasted the time on both the primary and secondary tasks with
immediate versus deferred interruptions, and found no difference in the time
users spent to complete the primary task, whereas deferring interruptions
marginally increased the time on the secondary task.

7.4.2 Opportunity for Attentive Groupware Research

The results from the previous studies suggest that one way to mitigate
information overload during computer-based tasks is to use an Attentive
User Interface that defers interruptions to task boundaries, despite the
existence of some contradictory data:



130 Drawing Attention to Cognitive Limitations

• On the one hand, typical consequences of information overload, such as
a greater propensity for errors, and the buildup of stress and confusion
(Eppler and Mengis, 2004, Table 4), seem to be favourably addressed
by the DTB technique, as shown in Table 7.3;

• On the other hand, the extra time on the primary task due to inter-
ruptions at random moments (see page 128) was not counterbalanced
at all by the DTB technique, and to make matters worse, the time on
the secondary task increased (Bailey and Konstan, 2006).

I note that the theoretical basis for the DTB technique is plausible: it
is logical to interrupt the user when mental workload is lowest (as long as
immediateness is not critical) and it is reasonable to assume that task swit-
ching is less costly when the user has just completed an activity. Moreover,
there seems to be more evidence in favour of deferring interruptions to task
boundaries than against it, and I point out that the effects on primary and
secondary task performance have only begun to be researched.

I view this situation as an opportunity to expand the body of knowledge
on AUI by transferring the defer-to-boundary technique to groupware systems
and investigating it in novel circumstances, as follows.

Firstly, regarding the type of work, a group of users would be collaborating,
rather than a single user doing individual work, as in every study in Table 7.2.
This would allow testing the DTB technique in scenarios where information
overload is more likely to occur due to the complexity of group work (see
Section 7.1.1 on page 112), namely the higher interruption rate. In addition,
if human attention is effectively supported by this technique, the benefits
might be experienced not only at the individual level but also at the group
level, such as through better user coordination.

Secondly, concerning task interdependence, the assumption that the
primary and secondary tasks are unrelated—adopted in almost all studies in
Table 7.2, with the exception of the first two, in which the user was notified
with messages containing predetermined hints—may not hold in group work.
In fact, collaboration is usually characterised by intertwined tasks (McDaniel
et al., 1996), whose outcomes are dependent on the activities of several users,
who aim to contribute to the shared group goal. One possible consequence
of this interdependence is that users may feel similar motivation to fulfil the



7.5 Summary 131

various tasks at hand and this might cancel the extra time on the secondary
task reported in Bailey and Konstan (2006).6

Finally, on using AUI to manage information flows, the transfer of the
defer-to-boundary technique to groupware presents new challenges since its
application has so far been confined to feedforward flows that inform users
about discrete action possibilities (via notifications or full-screen windows),
but computer-mediated cooperative work needs a richer set of information
flows (see Section 4.3.1 on page 57).

In particular, the feedthrough flow is a good candidate for leveraging the
potential benefits of the DTB technique because this information flow is
essential for users to maintain an up-to-date awareness of the group, that
is, the costs of not paying attention to it are high, and also because it may
convey fast-paced information about the actions of the other users, especially
with larger groups.

These three differences between collaborative and individual work call
for further investigations on the effectiveness of AUI and set the stage for
the design and development of novel attentive groupware systems.

7.5 Summary

In this chapter, I argued for the need to evaluate groupware usability regar-
ding information overload because this important problem in our information-
rich world is more likely to occur during group work. Thus, I posited that
groupware systems should be sensitive to the goals and limitations of human
attention, and proposed an approach that highlights the importance of
designing for attention scarcity (see Figure 7.1 on page 116).

To this end, I reviewed the state of the art in Attentive User Interfaces
but found no evidence of research that uses computers to tackle information
overload during collaborative work.

I also noted that several studies addressing individual work in dual-task
scenarios suggest interruption management, especially the defer-to-boundary
technique, is one way of optimising the user’s attention. Consequently, I

6 The conjecture stated in Bailey and Konstan (2006, pp. 697–698) was that users spent
more time on the secondary task with the DTB technique because they were not pressed
to finish the ongoing primary task had the interruption occurred at a random moment.



132 Drawing Attention to Cognitive Limitations

proposed transferring this technique to groupware systems and highlighted
the novel circumstances and challenges introduced by such a move.

From this situation, I set out to evaluate the usability of a custom-made
groupware system that is sensitive to the users’ state of attention, which is
the subject of the next chapter.

Notes

My first public discussion of the ideas in this chapter took place at the
Doctoral Consortium of the twelfth International Workshop on Groupware
(CRIWG’06), held in Medina del Campo, Spain.

My first paper concerning the need to address human attention in the
design of groupware systems was published in the proceedings of the second
edition of the Portuguese Conferência Nacional em Interacção Pessoa-
Máquina (Interacção’06), held in Braga (Ferreira and Antunes, 2006b).

Additional research made me aware of the defer-to-boundary technique,
which I first mentioned in a presentation at the first Workshop on Adaptation
and Personalisation in Social Systems (SociUM’07), held in Corfu, Greece
(Ferreira and Antunes, 2007a).

In those two previous papers, I had hypothesised about the development
of specialised attentive devices for groupware systems, but subsequent rese-
arch found that only one of those devices was worth further investigation,
which I document in the next chapter.

Finally, the research on the goals and limitations of human attention
and a variation of the diagram in Figure 7.1 on page 116 are to appear in
the Group Decision and Negotiation journal (Ferreira et al., 2010).



Chapter 8

Evaluating an Attentive
Groupware System

Having presented the arguments for evaluating groupware usability regar-
ding information overload, and having posited that groups may benefit if
groupware systems are designed to support human attention, in this chapter
I go from words to action. To this end, I propose a novel attentive groupware
device, called opportunity seeker, designed to leverage group attention by
adapting the defer-to-boundary technique to the ubiquitous fragmented
nature of group work.

I explain how the attentive device can be applied to an electronic brains-
torming tool that allows users to submit many ideas in parallel, and report
on a laboratory experiment, which shows that groups produced more ideas
when exposed to the opportunity seeker, thus attesting its contribution to
improve groupware usability.

8.1 AnAttentiveDevice forGroupwareSystems

To deal with information overload in groupware systems, I considered the
limitations of human attention in Section 7.2.2 on page 119, the recom-
mendations for interruption management in Section 7.4, and the groupware
information flows in Section 4.3.1, and compiled a set of design guidelines
for attentive groupware devices, as follows:

133



134 Evaluating an Attentive Groupware System

Group Feedthrough

Buffer with Group
Awareness Information

Doing Individual Work

Attending to the Group

User

Figure 8.1: Conceptual view of the opportunity seeker attentive device. The feedthrough flow that
conveys group awareness information is directed to an internal buffer, whose contents are gradually
delivered in batches to the user as s/he switches from doing individual work to attending to the
group. The opportunity seeker manages one buffer per user.

1. Feedthrough should be intercepted and manipulated as this flow con-
veys all sorts of information about the actions executed by users and
about the state of the group, and, thus, is the most likely source of
information overload during group work;

2. Unpredictable bursts of information should be converted into more
steady information flows to address our difficulty in detecting multiple
items presented in rapid succession, that is, to attenuate the effects of
the attentional blink phenomenon;

3. Updates about changes occurring within the group should be bundled
together so that users are less frequently interrupted, to make those
changes more salient, and to mitigate the effects of change blindness;

4. The delivery of group awareness information should be deferred until
task boundaries are reached and these should be assessed independently
for each user on the group.

From these guidelines, I devised the opportunity seeker, an attentive
device for synchronous groupware systems that redirects the feedthrough flow
(design guideline 1) to a temporary buffer (guideline 2) and automatically
manages the timing and quantity of group awareness information to be
delivered to each user based upon his or her attention state (guidelines 3 and
4). A conceptual view of the opportunity seeker is illustrated in Figure 8.1.

There is a trade-off in managing the delivery timing and quantity of group
awareness information that reaches users, related to the balance between
group focus and distraction (Ellis et al., 1991), which is ingrained in the
fragmented nature of group work (Mark et al., 2005):



8.2 Application in Electronic Brainstorming 135

• Too few updates may give the wrong impression about what the group
is doing, which reduces the effectiveness of reciprocal task interdepen-
dence because the group would more likely engage in conflicting or
repetitive actions; and

• Too many deliveries may provide up-to-date awareness information
but become distracting, which affects the users’ capacity to properly
attend to the group and increases group coordination overhead.

I address this trade-off by leveraging the typical alternation between
users attending to the group and doing individual work to find natural
opportunities to interrupt each user. Thus, regarding the delivery timing,
the opportunity seeker only sends group awareness information to the user
when s/he is likely not doing individual work, more specifically, at the
transition to paying attention to the group (see Figure 8.1).

This choice of providing feedthrough information between tasks follows
from design guideline 4 and, in addition, is aligned with a study about
dual-task interference in group support systems (Heninger et al., 2006). This
study showed that participants in a text discussion had more difficulties in
processing new information because of the need to simultaneously contribute
to the discussion. Consequently, the authors proposed the introduction of
formal stages so that the users stayed focused on one task at a time.

I note, however, that there is no need to adapt the initial task, as in the
previous study, as long as task boundaries can be detected automatically.

Finally, concerning the quantity of information to deliver in a single
batch, it should be neither too little (from design guideline 3) nor too much,
to avoid overloading the user if his or her work pace differs too greatly from
the rhythm of the group.

8.2 Application in Electronic Brainstorming

I implemented the opportunity seeker device on ABTool, a custom-made
electronic brainstorming tool with built-in sensors of keystroke-level user
activity, to dynamically manage the delivery timing and quantity of ideas
sent to each user over brainstorming sessions.



136 Evaluating an Attentive Groupware System

8.2.1 Motivation

Brainstorming is one of the most studied group tasks and this has enabled
the identification of many factors that drive creativity gains, such as sy-
nergism and encouragement, and losses, including evaluation apprehension
(withholding of ideas due to fear of negative opinions from others), produc-
tion blocking (users forgetting an idea because they had to wait for their
turn to speak), and others (Shaw et al., 2002; Nunamaker et al., 1991).

Technology, namely electronic brainstorming, has addressed some of the
loss factors by letting users be anonymous to mitigate evaluation apprehen-
sion and by letting users submit ideas in parallel, instead of serially as in
group turn-taking, to attenuate production blocking (Hymes and Olson,
1992; Connolly et al., 1990).

However, electronic brainstorming tools may also create new conditions
that induce creativity losses, in particular information overload, which has
long been reported in the literature (Grisé and Gallupe, 1999; Nagasundaram
and Dennis, 1993; Nunamaker et al., 1991). To see why this may occur, it is
necessary to consider two cognitive tasks that follow from the original rules
of brainstorming (Osborn, 1963):

1. Produce as many ideas as possible because quantity is wanted; and

2. Read, or at least look at, the other users’ ideas because combination
and improvement of ideas is sought.

In electronic brainstorming users can submit ideas in parallel, which puts
more effort in the second cognitive task. As the number of ideas increases,
for example because the group is large and productive, users may no longer
be able to process the ideas, and may even become distracted by them.

The role of ABTool is precisely to compensate for this type of information
overload: as the number of ideas from others increases, the opportunity
seeker installed on ABTool stores them in a buffer until it determines the
best moment to raise the user’s attention with feedthrough.

8.2.2 Preliminary Study

I faced two major challenges in applying the opportunity seeker to ABTool,
which I addressed via a preliminary study with users. The challenges were:



8.2 Application in Electronic Brainstorming 137

0 50 100 200 300 400 500 600 700 800 900

2

0

2

4

6

8

10

12

14

16

18

SESSION TIME IN SECONDS

A
C

T
IV

IT
Y

 O
V

E
R

 P
E

R
IO

D
S

 O
F

 2
 S

E
C

O
N

D
S KEY PRESSES WHILE TYPING AN IDEA

SUBMISSION OF IDEA TO THE GROUP

DISPLAY OF IDEAS FROM THE GROUP

Figure 8.2: User and group activity during a brainstorming session with ABTool, with immediate
broadcast of ideas to everyone on the group, without the opportunity seeker. Above the X-axis are
aggregated counts of user key presses. The spikes occurred when the user pressed the delete or
cursor keys. The circles on the X-axis show when the user submitted the idea s/he was typing to
the group. Below the X-axis are the instants in time when the user received ideas written by the
other users on the group.

• Characterise how users brainstorm in a scenario were the computer
immediately broadcasts new ideas to the group; and

• Find a way to detect task switching during electronic brainstorming,
especially between individual work and group attending.

To this end, I gathered groups of five volunteers in a room and asked them
to simulate a distributed work setting by using only the tool to communicate,
that is, no face-to-face interaction was allowed during the brainstorming
sessions. I recorded three types of events: a) user key presses while typing
ideas; b) the moments when the user submitted an idea to the group; and c)
the instants when group ideas were delivered to each user’s computer screen.

Figure 8.2 shows a sample of the data obtained and illustrates the results
for an entire fifteen minute session, in which 152 ideas were produced.



138 Evaluating an Attentive Groupware System

Typing
an Idea

Reading Other
Users’ Ideas

Key Press

No Key Press Over Period of Time

Idea Submitted to Group

Key Press

No Key Press Over Period of Time

Figure 8.3: Model of user behaviour assumed by the opportunity seeker on ABTool:
the user is either typing an idea (doing individual work) or reading other users’
ideas (attending to the group). Compare this with the generic model in Figure 8.1.

The evidence collected in this preliminary study was subject to a visual
analysis from which three patterns of user activity emerged:

1. Users typically did not stop typing when they received ideas from the
other users, thus, I assume they continued focused on the individual
task of generating ideas;

2. Users usually stopped typing for a brief period after having put forward
an idea, presumably to keep up with the group; and

3. There were numerous periods of time with no typing activity, sometimes
lasting more than half a minute (not shown in Figure 8.2).

Regarding the third pattern, I could not tell if the user inactivity was
because of lack of imagination or due to free riding, that is users relying on
others to do the work (Nunamaker et al., 1991).

8.2.3 Model of User Behaviour

Based upon these three patterns, I hypothesise that a task boundary, that is,
an opportunity to deliver ideas from others, occurs when the user submits
an idea to the group. In addition, new ideas should be delivered after a
period of inactivity (currently, ten seconds) so that the user does not get
the impression that the group is not producing ideas too.

Figure 8.3 shows the resulting state transition diagram that models the
behaviour of the user as assumed by the opportunity seeker on ABTool.

Another feature of the opportunity seeker on ABTool is that it imposes a
limit on the maximum number of ideas from others that can be displayed at
once (currently, ten). As I mentioned earlier, this is to avoid overloading the



8.2 Application in Electronic Brainstorming 139

User Sending (↓) and Receiving (↑) Ideas

Computer Mediation with Immediate Broadcast of Ideas

Other Users Producing Ideas

Computer Mediation with the Opportunity Seeker

User Sending (↑) and Receiving (↓) Ideas

1

1

1

2

2

2

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9

10

10

10

3

3

11

11

12

12
1,2 4,5,6,7,8 9,10

Figure 8.4: Simulation of group and user activity during a brainstorming session
with immediate broadcast of ideas (upper region) and with the opportunity seeker
(lower region). In both cases the user produces three ideas (numbered 3, 11, and
12) but his or her exposure to the nine ideas from the other users is different. For
illustration purposes, I do not show the propagation of ideas 3, 11, and 12 to the
group, and limit the number of ideas in each delivery to five.

user, for example by filling up the entire computer screen with new ideas,
when the user is working at a slower pace than the other users. Figure 8.4
shows a simulation that exemplifies the delivery of ideas with the opportunity
seeker compared to the immediate broadcast of ideas.

8.2.4 Software Architecture and Design

Technically, ABTool is characterised by a client-server architecture, in which
the server manages the delivery of group awareness information via feed-
through. The server also collects performance data, which are stored in an
XML (eXtensible Markup Language) log. The purpose of the clients, one
per user, is to receive input from the users and pass it on to the server, and
to display new ideas as they become available from the server.

ABTool is written in C# and is built on top of the Microsoft .NET
Framework 2.0. Communication between the clients and the server is done
via TCP/IP sockets and all messages, such as ideas, key presses, users joining
or retiring the group, sessions starting or ending (see Figure 8.5 for more



140 Evaluating an Attentive Groupware System

source : string
destination : string
whenGenerated : DateTime

MessageArgs

idea : string

IdeaMessageArgs

JoinMessageArgs

keyChar : char
keyCode : Keys
keyType : KeyType

KeyPressMessageArgs

KEY_CHAR
KEY_CODE

«enumeration»
KeyType

RetireMessageArgs

question : string
groupSize : int
timeLeft : int
state : SessionState

SessionMessageArgs

RUNNING
PAUSED
ENDED

«enumeration»
SessionState

Figure 8.5: Types of messages supported by ABTool, reflecting activity in electronic
brainstorming, namely key presses during the typing of an idea, submission of
ideas, users joining in and retiring from the group, and definition of the session
status, such as the brainstorming question, group size, and time left until it ends.

details) are automatically serialised and deserialised using BinaryFormatter
objects attached to NetworkStream instances.

Within the client and server applications, messages are propagated
using events, to which consumer objects can subscribe themselves. Given
that almost all ABTool classes handle message events, namely the user
interfaces, the opportunity seeker, and the classes responsible for receiving
and sending messages from/to the network, I defined an IHandlesMessages
interface and a default implementation for it, DefaultHandlesMessages. This
default implementation class relies on reflection to allow other classes to
transparently delegate the determination of the method to run as a function
of the type of message associated with the event.

Figure 8.6 shows that the opportunity seeker derives from the Attenti-
veDevice generalisation, which actually implements immediate delivery of
ideas from the users to the group. The OpportunitySeeker class alters this
default behaviour by maintaining separate buffers, one per user, containing
ideas that have been put forward by the other users. The buffer is stored in
the UserNode, which also keeps a Timer object that every verificationPeriod
milliseconds verifies the time of the most recent key press by the user, and
if it was more than activationTimeSpan milliseconds ago, then it delivers up
to ideasAtOnce ideas to the user.



8.3 Laboratory Experiment 141

start()
pause()
stop()

name : string

AttentiveDevice

DefaultHandlesMessages

fireNewMessage()
subscribeNewMessage()
routeNewMessage()
unsubscribeNewMessage()

«interface»
IHandlesMessages

users : IDictionary<string, UserNode>
activationTimeSpan : int
ideasAtOnce : int
verificationPeriod : int

OpportunitySeeker

ideasOnHold : Queue<string>
whenLastKeyPress : DateTime
timer : Timer

UserNode

1 0..*

«uses»

Figure 8.6: Details of the opportunity seeker implementation on ABTool.

The AttentiveDevice and OpportunitySeeker classes implement three meth-
ods: start() is run when a session starts or resumes; pause() is executed
when, for some reason, the session needs to be paused; and stop() is run at
the end of a session. Other methods handle the reception and forwarding of
messages, but I omitted those for brevity reasons.

To conclude the presentation of ABTool, I show in Figure 8.7 two screen
shots of the client-side interface with the opportunity seeker running, taken in
quick succession when the user was finishing typing an idea and submitted it
to the group. Note the large shared workspace in the middle of the application
window, showing ideas from others, and a smaller private workspace at the
bottom, where the user writes one idea at a time.

In conformance with the model of user behaviour in Figure 8.3, as long
as the user is typing, he or she is not attending to the group, so ideas from
other users are not shown in the shared workspace (see left-hand screen
shot in Figure 8.7). However, when s/he submits an idea to the group, the
opportunity seeker delivers a batch of ideas from the group that were stored
in a buffer, which are shown immediately after the user’s own idea (see
right-hand screen shot).

8.3 Laboratory Experiment

I now describe a laboratory experiment that I set up to evaluate the usability
of ABTool regarding information overload. To do this, I operationalised



142 Evaluating an Attentive Groupware System

User is about to send
this idea to the group

Ideas available
before the user
started typing
the current idea

No new ideas are shown
here while the user is
typing the current idea

Latest idea
from the user

Batch of ideas from
the other users,
previously held
in a buffer up to
the moment when
the user submitted
his/her latest idea

Figure 8.7: Opportunity seeker managing the delivery of ideas on ABTool. Left: while typing an
idea, the user receives no new ideas from the group. Right: when the user submits an idea to the
group, new ideas from others are displayed. Note that in ABTool all ideas are anonymous.

groupware usability in terms of the number of ideas produced by the group
and hypothesised that if the opportunity seeker mitigates information over-
load, then the number of generated ideas is greater when groups are under
the influence of the opportunity seeker.

8.3.1 Participants

A total of 11 groups of 5 people, for a total of 55 volunteers, 44 men and
11 women, participated in the experiment. The median age was 23 years,
ranging from a minimum of 20 years up to a maximum of 29. 51 participants
were students (40 undergraduate, 10 MSc, 1 PhD), and the remaining 4
comprised researchers, a software developer, and a translator.

A self-assessment of typing experience with computer keyboards, in a
three-point rating scale, revealed that participants were skilled, since 86 %
chose the highest score and the remaining 14 % chose the middle score. No
one selected the lowest score. This suggests that typing experience was



8.3 Laboratory Experiment 143

(a) Laboratory room. (b) Detail of apparatus.

Figure 8.8: Apparatus used for the laboratory experiment. Five tables were placed side-by-side in
a row, with one laptop each. The laptops were interconnected by a local wired network and had a
Web camera on top of the screen. The paper to the right of each laptop is a consent form.

reasonably homogeneous among the participants, which is desirable because
otherwise disparities would have likely influenced the speed at which ideas
were typed, which would affect the number of ideas produced.

A convenience sampling was used to select participants, who were re-
cruited from social contacts and posters on corridors at the University of
Lisbon. No monetary reward was offered and the only information available
was that the experiment would concern brainstorming.

8.3.2 Apparatus

The experiment was conducted in a laboratory room having five laptops with
identical hardware and software specifications (an Intel Pentium M processor
operating at 1.2GHz, 1GByte of memory, 60GBytes of disk, Microsoft
Windows XP SP2, .NET Framework 2.0), interconnected by a dedicated
100Mbit/s Ethernet network.

Figure 8.8(a) shows that the layout of the room where the experiment
was conducted comprised a single row with five work desks. I chose this
configuration to minimise eye contact between the participants (to reduce
distractions) while keeping staging costs manageable. After some training, a
team of two was able to make all preparations in about half an hour.



144 Evaluating an Attentive Groupware System

Each laptop had screen-recording software (ZD Soft Screen Recorder
1.4.3), and a Web camera (Creative WebCam Live!) affixed to the top of
the screen, which can be seen in Figure 8.8(b). Also, keyboard sensitivity,
desktop contents, display resolution, and brightness were controlled. The
client application of ABTool was installed on the five laptops.

8.3.3 Task

Participants completed practise and test tasks, consisting of anonymous
brainstorming sessions, which were identical in form but different in duration.

The practise task allowed participants to get familiar with electronic
brainstorming in general and with ABTool in particular. A question was given,
namely ‘What would you do with an extra finger?,’ and then participants
were asked to generate as many ideas as possible by typing on the keyboard
and by reading other users’ ideas on the laptop display. Speech and other
forms of communication were disallowed to simulate a distributed work
environment and to mitigate extraneous influences.

In the test task, the brainstorming session lasted for fifteen minutes,
instead of the five minutes for the practise task, and the questions were the
following four, which I identify with letters: A, How to preserve the envi-
ronment?; B, How to promote tourism?; C, How to improve the university?;
and D, How to stimulate sports practise?1

8.3.4 Design

I used a repeated measures design for the experiment (Howell, 2007, pp. 440–
441). The independent variable was device type and each group of participants
was exposed to both a control treatment, with immediate broadcast of
ideas to the group, and an experimental treatment, with the opportunity
seeker controlling the delivery timing and quantity of ideas to each user
(see simulation of these two treatments in Figure 8.4 on page 139). The
dependent variable, group performance, was calculated from the sum of the
number of ideas produced by users on the group per brainstorming session.

1 The practise question and some of the questions in the test task were inspired in the
literature; see Shaw et al. (2002, pp. 8–9) for a compilation.



8.3 Laboratory Experiment 145

Table 8.1: Session order/brainstorming question per group and treatment. The
questions were: A, How to preserve the environment?; B, How to promote tourism?;
C, How to improve the university?; and D, How to stimulate sports practise?

Groups
Treatment 1 2 3 4 5 6 7 8 9 10 11

Control 1/C 2/D 4/C 3/B 1/B 1/A 2/C 3/B 2/B 3/C 1/A
Experimental 3/B 1/A 2/B 4/C 3/C 2/B 3/A 1/C 1/C 2/A 3/B

The order of exposure to the treatments and the questions used are
depicted in Table 8.1, which shows, for example, that group 1 was exposed
to the control treatment in the first session, in which ideas for question C
were put forward (this corresponds to the top-left cell marked 1/C).2

8.3.5 Procedure

A trial started when a group of participants arrived at the laboratory
room. Then, a brief introduction to this research was given and participants
were informed on their privacy rights and asked to sign a consent form.
Next, participants filled out an entrance questionnaire about gender, age,
occupation, and typing experience. Written instructions on the rules of
brainstorming and on ABTool were then handed in to all participants and
read out loud. I provide all these materials in Appendix B on page 171.

After the initial formalities, participants were asked to carry out the
practise task for five minutes, after which questions about ABTool were
answered. The group then fulfilled the test tasks in succession, each lasting for
fifteen minutes, with a brief rest period in between. I chose this session length
to stress the importance of generating ideas at a fast pace for a relatively
small duration, in which participants would need to remain attentive—
interestingly, Dennis et al. (1996) suggest that time constraints increase the
rate of idea generation—and also because I wanted to avoid fatiguing the
participants due to the nature of the repetitive measures design.

At the end of the trial, answers were given to the questions participants
had about this research, comments were annotated, and I gave thanks in
acknowledgement of their participation in the experiment.

2 I note that session order is sometimes greater than two and that four questions were used,
because I am reporting here a part of a larger experiment with two additional treatments.



146 Evaluating an Attentive Groupware System

Table 8.2: Number of ideas per group and treatment. M is the mean, or average, number of ideas
per session considering all groups, and SD is the corresponding standard deviation.

Groups
Treatment 1 2 3 4 5 6 7 8 9 10 11 Total M SD

Control 152 83 133 91 264 77 48 53 66 104 70 1141 103.7 62.0
Experimental 192 108 113 117 258 77 68 61 76 116 65 1251 113.7 60.8

Difference 40 25 −20 26 −6 0 20 8 10 12 −5 110 10.0 17.2

8.4 Results

Results are organised in three parts: I start with an analysis of overall
group performance, which is central to the hypothesis being tested in the
experiment; I then decompose group performance over consecutive periods
through the duration of brainstorming sessions; finally, I show results of a
post-hoc analysis based upon fine-grained data collected at the user level.

8.4.1 Group Performance

Groups produced an average of 9.6 % extra ideas per session, equivalent to
10 additional ideas per session, when under the exposure of the opportunity
seeker than when under the control treatment, totalling 1251 versus 1141
ideas for the 11 groups, as shown in Table 8.2. Figure 8.9 shows boxplots
for the data in Table 8.2, which further reveals that the difference between
treatment medians was 25 ideas per session (83 versus 108).

CONTROL EXPERIMENTAL

60

80

100

120

140

ID
E

A
S

 P
E

R
 S

E
S

S
IO

N

Figure 8.9: Number of ideas produced by groups per session per treatment.3
Outliers omitted to improve plot legibility. See more details in Table 8.2.



8.4 Results 147

The Shapiro-Wilk normality test indicated that the normality assumption
could not be accepted for both the control and experimental data distributi-
ons (W = 0.795, p = 0.008; and W = 0.797, p = 0.009, respectively).4

Therefore, I opted for a non-parametric, distribution-free, approach to
test the null hypothesis that there is no difference in group performance
under the control and experimental treatments. To this end, I applied the
Wilcoxon matched-pairs signed-ranks test (Howell, 2007, Sect. 18.7), which
revealed a 3.7 % probability of chance explaining the differences in group
performance, or p = 0.037. In addition, the results W+ = 45.5 and W− = 9.5
from the same test indicate that the biggest differences were due to the
experimental scores being greater than the control scores.5

I also analysed possible confounding influences from the questions or
session order on group performance to see if there was a bias introduced
by popular questions or a learning effect due to the nature of the repeated
measures design. I applied the Wilcoxon signed-ranks test to both scenarios,
which found no significant influences: p > 0.205 and p > 0.343, respectively.

In these conditions, I can conclude that the results support the hypothesis
that groups generated more ideas with the opportunity seeker, which suggests
that it contributes to mitigate information overload. I provide more evidence
on this in the third part of the analysis, concerning user-level performance.

8.4.2 Group Performance Over Time

Concerning the analysis of group performance through the duration of the
brainstorming sessions, I broke down the 900 seconds that each session

3 The rectangles in the boxplots show, from bottom to top, the first, second, and third
quartile (or Q1, Q2, Q3) of the data distribution. The second quartile is also the median
and is represented by a slightly stronger horizontal line (Howell, 2007, Sect. 2.10). The
difference between Q3 and Q1 is called inter-quartile range, or IQR. The position of
the lower whisker is given by the smallest data value that is greater than or equal to
Q1 − 1.5× IQR. The upper whisker is given by the largest data value that is less than or
equal to Q3 + 1.5× IQR.

4 These results were obtained by calling the shapiro.test function in the R software pac-
kage (http://www.r-project.org). Small values of W are evidence of departure from
normality. A value of p < 0.05 rejects the supposition of normality.

5 I used the wilcox.test R function to obtain these results. This test calculates the differences
between the experimental and control scores (as in Table 8.2), and converts them into
ranks, where the first rank is for the smallest difference. W+ is the sum of ranks for
positive differences, going for the experimental treatment, and W− is for the negative
differences. In Howell (2007, Sect. 18.7), W+ and W− are written T+ and T−.

http://www.r-project.org


148 Evaluating an Attentive Groupware System

lasted into consecutive periods of 300, 150, and 30 seconds and counted the
number of ideas produced during each period. By following this approach, I
intended to highlight specific periods when one of the devices would enable
better group performance. For example, a brainstorming session may be
decomposed into at the beginning, when users usually have plenty of ideas,
at the middle, and at the end, when users are typically more passive.

This decomposition is depicted in the top region in Figure 8.10, which
shows that in all three periods of 300 seconds groups produced more ideas
with the opportunity seeker than with the control device. I obtained similar
results at the 150 seconds level of aggregation, as depicted in the middle
region in Figure 8.10. Finally, for periods of 30 seconds, groups performed
better with the opportunity seeker in 21 out of 30 cases,6 as shown in the
bottom region in Figure 8.10.

From the evidence collected, there seems to be no particular phase when
group performance with the opportunity seeker could be considered worse
than with the control device.

8.4.3 Post-hoc Analysis at the User Level

I also conducted a post-hoc analysis based upon the fine-grained user activity
data stored in the log files of ABTool (see message types in Figure 8.5
on page 140). The purpose of this analysis was to characterise the users’
capability to attend to the others’ ideas, comprising multiple aspects of user
performance and the deliveries of ideas that they were exposed to, with and
without the opportunity seeker.

To this end, I defined user performance in terms of the following variables:
ideas, number of ideas produced per user per session; tidea, seconds to
write an idea; pause, seconds between a user submitting an idea to the
group and restart typing; cidea, number of characters per idea; chars,
total number of characters typed per user per session; and dchars, total
number of characters deleted per user per session.

6 Assuming the null hypothesis that the opportunity seeker has no greater effect on group
performance than mere luck, the Binomial test (Howell, 2007, Sect. 5.9), binomial.test
function in R, indicates that there is a 2.1 % probability of chance explaining the 21 out
of 30 better results at the 30 seconds period. This can be seen as extra evidence for the
experimental treatment, despite the relatively arbitrary selection of periods.



8.4 Results 149

AGGREGATION PERIOD: 300 SECONDS

AGGREGATION PERIOD: 150 SECONDS

AGGREGATION PERIOD: 30 SECONDS

0 90 180 270 360 450 540 630 720 810 900
0

50

100

150

200

250

300

350

400

450

500

550

SESSION TIME IN SECONDS

ID
E

A
S

 P
E

R
 A

G
G

R
E

G
A

T
IO

N
 P

E
R

IO
D

EXPERIMENTAL

CONTROL

Figure 8.10: Group performance through the duration of the brainstorming sessions under the
control and experimental treatments. Top: number of ideas per period of 300 seconds. Middle and
bottom: same, considering periods of 150 and 30 seconds, respectively.

Regarding the characterisation of the deliveries of ideas that users were
exposed to, I considered variables dlvr, deliveries of ideas per session and
tbdl, seconds between consecutive deliveries.

Table 8.3 shows a summary of the results obtained at the user level,
including separate descriptive statistics for the two cases in which the users
were under the exposure of the control and experimental treatments (creating
two large conceptual groups, without and with the opportunity seeker), as
well as the output of the Wilcoxon signed-ranks test, which I use here to
prioritise the data presentation rather than to do null hypotheses significance
testing. Thus, no family-wise corrections were made. Figure 8.11 shows
boxplots for the results in Table 8.3, presented in the same order.

Starting with the dlvr variable, the opportunity seeker reduced by an
average of 44.1 % the number of deliveries of group ideas that reached a user
per session, from a mean value of 82.7 deliveries to 46.2. This difference
was due to each delivery having comprised a batch of 1.9 ideas on average
(SD = 1.2), with up to 5 ideas in 99.8 % of the cases and a maximum batch



150 Evaluating an Attentive Groupware System

Table 8.3: Results of post-hoc analysis at the user level, ordered by p-value.

Control Experimental Difference Wilcoxon Test
Variable M SD M SD M SD W+ W− p

dlvr 82.7 48.1 46.2 4.6 −36.5 37.4 0 1540 0.000
tbdl 13.7 5.9 21.2 6.1 7.5 3.2 1540 0 0.000
tidea 25.7 17.3 21.5 11.8 −4.2 12.9 422 1118 0.004
ideas 20.7 15.0 22.7 13.8 2.0 7.4 929 397 0.006
pause 34.1 34.3 27.7 19.2 −6.4 21.7 469 1071 0.012
chars 1044.8 511.2 1110.4 529.8 65.6 321.4 936.5 603.5 0.164
cidea 45.6 12.7 43.9 12.9 −1.7 9.5 613 872 0.266

dchars 206.7 163.0 199.3 133.3 −7.4 121.9 724 816 0.703

size of 9 ideas (see Figure 8.12), unlike with the control device, which exposed
users to immediate broadcasts of ideas, one by one, from the group.

Another consequence of the opportunity seeker, shown in variable tbdl,
is that users had 54.7 % more time, on average, to think about and type ideas
without receiving new ideas from others, corresponding to uninterrupted
periods with a mean duration of 21.2 s versus 13.7 s with the control device.

The results for dlvr and tbdl suggest that the opportunity seeker did
indeed create the conditions to mitigate information overload by trading
up-to-date broadcasts of new ideas for less frequent deliveries of manageable
batches of ideas. However, this could have penalised the alternation between
doing individual work and attending to the group if, for instance, users had
slowed down because of the apparent delays in group awareness updates.

In fact, variable tidea reveals that users spent an average of −16.3 %
of time to write an idea under the experimental treatment, equivalent to a
mean cut down of 4.2 s per idea when users typed their ideas without being
interrupted with ideas from the group. I also found, through variable pause,
that users switched 18.8 % more rapidly, or 6.4 s faster, on average, from
submitting an idea to the group to start typing the next idea, presumably
reading ideas from others in between.

Considering the variable ideas, users produced an average of 2.0 extra
ideas per session when exposed to the opportunity seeker, corresponding to
an improvement of 9.6 %, which was actually expected since this was the
percentage of change recorded at the group level (see Section 8.4.1). If there
is anything new in this result it is the low p-value of 0.6 %, which further



8.4 Results 151

CONTROL EXPERIMENTAL

20

40

60

80

100

120
D

E
LI

V
E

R
IE

S

(a) dlvr: deliveries of ideas per session.

CONTROL EXPERIMENTAL

5

10

15

20

25

30

S
E

C
O

N
D

S

(b) tbdl: seconds between consecutive deliveries.

CONTROL EXPERIMENTAL

10

20

30

40

S
E

C
O

N
D

S

(c) tidea: seconds to write an idea.

CONTROL EXPERIMENTAL

10

20

30

40

50

ID
E

A
S

(d) ideas: ideas produced per user per session.

CONTROL EXPERIMENTAL

5

10

15

20

25

30

S
E

C
O

N
D

S

(e) pause: pause between idea submission & typing.

CONTROL EXPERIMENTAL

20

30

40

50

60

C
H

A
R

A
C

T
E

R
S

(f) cidea: characters per idea.

CONTROL EXPERIMENTAL

500

1000

1500

2000

2500

C
H

A
R

A
C

T
E

R
S

(g) chars: characters typed per user per session.

CONTROL EXPERIMENTAL

100

200

300

400

500

D
E

LE
T

E
S

(h) dchars: characters deleted per user per session.

Figure 8.11: Results of post-hoc analysis at the user level. See more details in Table 8.3.



152 Evaluating an Attentive Groupware System

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

IDEAS PER DELIVERY

F
R

E
Q

U
E

N
C

Y
 (

%
)

Figure 8.12: Distribution of number of ideas per delivery. The maximum number
of ideas delivered to a user was nine, and this happened only once.

supports the results obtained at the group level, as long as it can be accepted
that better user performance implies better group performance.7

For the remaining variables in Table 8.3, results revealed smaller differen-
ces between the control and experimental treatments, thus likely explained
by chance. The number of characters typed per user in a session, chars,
was 6.3 % higher, on average, with the opportunity seeker, influenced by the
higher number of ideas produced (see Table 8.2), but balanced by slightly
fewer characters per idea (cidea had a mean difference of −3.7 %). Fi-
nally, the number of deleted characters, dchars, was 3.6 % lower under the
experimental treatment, on average.

8.5 Discussion

Having presented the results for group and user performance, which show
the opportunity seeker improved the usability of ABTool and which suggest
it mitigated information overload in electronic brainstorming, in this section
I discuss: a) the validity of the patterns of user activity that regulate the
detection of task switching and which were presumed from a preliminary
study; b) the adequacy of the operating parameters of the opportunity seeker
(batch size and inactivity period), which were not derived from theory; c) the
potential problem of some ideas not being delivered because of the buffering
technique employed; and d) the limitations of the evaluation.

7 This is plausible in brainstorming, where one of its rules is that users should produce as
many ideas as possible to further encourage group creativity (see page 136).



8.5 Discussion 153

[0..1[ [1..2[ [2..3[ [3..4[ [4..5[
0

1

2

3

4

TIME INTERVALS (IN SECONDS)

K
E

Y
 P

R
E

S
S

E
S

(a) Pattern 1.

[0..1[ [1..2[ [2..3[ [3..4[ [4..5[
0

1

2

3

4

TIME INTERVALS (IN SECONDS)

K
E

Y
 P

R
E

S
S

E
S

(b) Pattern 2.

Figure 8.13: Typing activity with immediate broadcast of ideas. The first and second patterns of
user activity, which were originally identified through visual analysis (see page 138), are supported
by the data gathered in the experiment. Left: users did not stop typing during the five seconds
following the reception of an idea from the group (pattern 1). Right: typing activity was almost
nonexistent in the five seconds coming after the submission of an idea to the group (pattern 2).

8.5.1 Validity of Patterns of User Activity

Earlier, I identified three patterns of user activity in electronic brainstorming
with immediate broadcast of ideas from the visual analysis of plots such
as the one shown in Figure 8.2 on page 137. These patterns are important
because they supply the basis for the model of user behaviour depicted in
Figure 8.3, which determines the moments when group awareness information
should be delivered to the user.

I now provide additional evidence for patterns 1 and 2—that users
typically do not stop typing when they receive new ideas from the group and
that users usually pause after putting forward an idea, respectively (see also
page 138)—based upon fine-grained data stored in the log files of ABTool
and gathered throughout the laboratory experiment (see Figure 8.13).

On the one hand, in the five seconds following the reception of new ideas
from the group, users continued typing their idea at a mean rate between
1.4 and 1.6 key presses per second (SD between 0.7 and 0.8). On the other
hand, following the submission of an idea to the group, users almost stopped
typing for at least five seconds, with a mean key rate of between 0.1 and
0.2 key presses per second (SD between 0.2 and 0.3). This should provide
enough evidence to validate the two patterns mentioned above.



154 Evaluating an Attentive Groupware System

8.5.2 Batch Size and Inactivity Period

These two operating parameters are at the core of the opportunity seeker
and, as alluded in Section 8.2.3 on page 138, their values on ABTool were not
derived from theory but, rather, are educated guesses from common-sense.

Considering with the maximum batch size of 10 ideas per feedthrough
delivery, I do not have strong evidence regarding this decision. However, I
note that the average number of ideas per delivery during the experiment
was 1.9 and that 99.8 % of all deliveries had 5 ideas or less (see text near
Figure 8.12). These results seem to indicate that the specified batch size
actually had no impact on the experiment, and indeed may be of secondary
importance for small groups.

However, care should be taken with large groups. For instance, if a group
has 20 or more users, and assuming an average rate of 1.5 ideas per minute
per user and a mean time to write an idea of 21.5 seconds,8 then the Poisson
probability (Taha, 2003, Ch. 17) of more than 10 ideas arriving during the
time to generate an idea would be greater than 50 %. In other words, the
number of ideas arriving would likely be greater than the batch size, causing
increasing delays in the delivery of ideas, and ultimately leading to several of
them not being presented to the users. This could hamper group creativity
and productivity, although the benefits of delivering those extra ideas in
larger batches (at a rate of 30 per minute) would certainly be outweighed
by the cost of information overload.

Regarding the inactivity period of 10 seconds that triggers the next
delivery of a batch of ideas to a user, again, I do not have strong evidence to
support this decision. However, the data in Table 8.3 reveals that the average
pause duration when participants were exposed to the control treatment
was 34.1 seconds. This might indicate that the inactivity period should be
longer because it may well be that users need more than the established 10
seconds to think about an idea without being interrupted.

Interestingly, the same data shows that with the opportunity seeker the
average pause duration was reduced to 27.7 seconds, which suggests that it
leveraged the users’ alternations between doing individual work and paying
attention to the group, as intended.

8 These data were taken from Table 8.2 and Table 8.3, for the experimental condition.



8.5 Discussion 155

0 1 2 3 4 5 6 7
0

20

40

60

80

UNDELIVERED IDEAS PER SESSION

F
R

E
Q

U
E

N
C

Y
 (

%
)

Figure 8.14: Distribution of number of undelivered ideas at the end of brainstor-
ming sessions. A value of 0 means the opportunity seeker delivered all ideas.

8.5.3 Undelivered Ideas

One of the concerns of buffering ideas during brainstorming sessions, instead
of immediately broadcasting them, is that ideas submitted near the end of
the session may not be delivered to some of the users. This may happen if a
user is less productive than the others, either because s/he types very slowly
or does not type at all due to lack of inspiration. In these circumstances the
opportunity seeker delays the delivery of new ideas from others, limited to a
predefined quantity, until the user finally submits the idea to the group or
until a timeout occurs (see also Section 8.2.3 on page 138).

To measure undelivered ideas, I subtracted the number of ideas delivered
to users by the opportunity seeker from the number of ideas produced by the
group. Figure 8.14 shows that in 72.7 % of the cases (40 sessions out of 55)
all ideas were delivered to users and that in 20.0 % of the times one or two
ideas were not delivered. The remaining 7.3 % were for cases with between
three and seven undelivered ideas, each occurring in only one session.

In other words, the users’ natural work rhythm was rapid enough so that
less than one idea (M = 0.6, SD = 1.4) was not delivered at the end of a
session with the opportunity seeker, which seems reasonable.

8.5.4 Limitations

Recalling the problem identified at the beginning of this chapter, the main
objective of this evaluation was to determine if information overload would
be mitigated by a groupware device designed to augment human attention.



156 Evaluating an Attentive Groupware System

Ideally, such an evaluation should be based upon direct measures of infor-
mation overload and human attention, and upon measurements taken in
identical tasks with and without the attentive device.

I did not follow this path, however, because, to the best of my knowledge,
those direct measures do not exist. Instead, researchers have been using in-
direct or surrogate measures, namely: performance measures in primary and
secondary tasks, subjective measures, and physiological measures (Wickens
and McCarley, 2008, pp. 120–123; Wickens and Hollands, 2000, pp. 459–470).
All these types of surrogate measures pose challenges to the researcher:

• It is common sense that primary task performance may improve for
reasons not related to information overload. Also, the measure used is
dependent of the context, which makes it harder to do comparisons;

• Secondary task performance is grounded on the fulfilment of standard
tasks9 which may interfere with the execution of the primary task;

• Subjective measures are based upon self-assessments of the perceived
difficulty of doing a task, which may be influenced by other factors,
such as dislike of or unfamiliarity with the task; and

• Physiological measures require specialised equipment (see some exam-
ples on page 124), which may be hard to obtain, may impose physical
constraints to the users, and may produce quantities of data that are
hard to manage, especially with multiple users on a group.

The path I have chosen for the evaluation is, thus, based on primary task
performance measures, meaning that, in the end, I can not assess to which
degree users were subject to information overload, if any.

Nonetheless, considering the electronic brainstorming sessions with AB-
Tool, the number of ideas produced by groups when exposed to the opportu-
nity seeker was higher, which suggests that more cognitive resources were
available to generate ideas and to attend to other users’ ideas, and even more
so because the time to type ideas without being interrupted also increased
by action of the opportunity seeker.

9 Examples of standard secondary tasks include: generating random numbers, reacting to
probes, production of constant time intervals, and retrospectively estimating elapsed time
(Wickens and Hollands, 2000, pp. 463–464).



8.5 Discussion 157

Another limitation of the evaluation is that the three patterns of user
activity in Section 8.2.3 on page 138 could not be observed in the video feeds
of the computer screen and the users’ faces (see apparatus in Section 8.3.2
on page 143). I was particularly interested in finding out:

• If users are able to attend to other users’ ideas and simultaneously write
their own ideas, which would challenge the distinction between the two
states in the model of human behaviour assumed by the opportunity
seeker on ABTool (see Figure 8.3 on page 138);

• If the pause in typing activity after the submission of an idea coinci-
des with the user looking at others’ ideas, which would confirm the
corresponding transition between the two states in the same model of
human behaviour; and

• If periods of inactivity correspond to lack of imagination, distraction,
or engaged reading, which would better inform the appropriate moment
to interrupt the users with additional ideas from the group.

However, the videos showed users who appeared to be focused on the
task and computer screen most of the time. Very occasionally, there was
an outward reaction to reading an idea, such as a frown or a smile, and it
was also infrequent to observe users acting distracted, for example, staring
somewhere else than the computer screen. Thus, it was not possible to
accurately distinguish when a user was reading ideas, pausing, or distracted,
so these data had to be discarded.

Concerning the operating parameters of the opportunity seeker, they
remained constant for the entire experiment: no more than ten ideas were
delivered at once and the inactivity period after which ideas would be sent
to the user was ten seconds. I could have tried other values but that would
have increased the complexity of the experimental design beyond available
logistics possibilities.

Finally, the evaluation excluded an analysis of the quality of the ideas,
an ever present topic in brainstorming research. Then again, quantity is
one the goals of brainstorming (Osborn, 1963) and it is mainly because of
quantity that information overload is likely to occur.



158 Evaluating an Attentive Groupware System

8.6 Summary

In this chapter, I evaluated the usability of an attentive groupware system,
which features a device that intercepts feedthrough and applies buffering of
group awareness information to mitigate information overload (see Figure 8.1
on page 134). The attentive device, called opportunity seeker, considers the
natural rhythms of group work to time the delivery of awareness information
with the situations in which users are most likely to benefit from them.

I showed how this device can be implemented on an electronic brains-
torming tool and how task boundaries can be detected via keystroke-level
activity. I provided evidence that the opportunity seeker increased the work
done by groups, and that the improvement amounts to 9.6 % in the number
of ideas produced in electronic brainstorming tasks.

In addition, results from a post-hoc analysis show that the opportunity
seeker reduced the number of deliveries of ideas by 44.1 % by combining ideas
in small batches and that this translated into 54.7 % more time for users
to think about and type ideas without receiving new ideas from others. In
these conditions, users were 18.8 % faster in alternating between generating
an idea, which they did in 16.3 % less time, and reading other users’ ideas.

Given these results, I can conclude that focusing the evaluation on human
information processing limitations can improve groupware usability.

Notes

The work in this chapter has reached three distinct communities of rese-
archers, as evidenced by the published papers. One is the group decision
and negotiation community, which has particularly welcomed the laboratory
experiment with ABTool. I presented a paper at the ninth Meeting on Group
Decision and Negotiation (GDN’08), held in Coimbra, in which I focused
on the brainstorming task and did not mention any of the ABTool internal
details (Ferreira and Antunes, 2008a). An improved version of that paper,
which reflects much of the recent work in this chapter, is to appear in the
Group Decision and Negotiation journal (Ferreira et al., 2010).

Another paper about ABTool, which included a more elaborate discussion
about the implications of using a buffering technique during group work,



8.6 Summary 159

was presented by my adviser at the fourteenth International Workshop on
Groupware (CRIWG’08), held in Omaha, USA (Ferreira et al., 2008). It was
with this community that, two years before, in the Doctoral Colloquium, I
presented the first results of an experiment with attentive groupware devices.

Finally, the inspiration for the model of user behaviour came during the
preparation of the paper that I presented at fifteenth International Workshop
on Design, Specification, and Verification of Interactive Systems (DSV-IS’08),
held in Kingston, Canada (Ferreira and Antunes, 2008b).





Chapter 9

Conclusion

This dissertation has explored the importance of the cognitive level of
human action in the evaluation and improvement of groupware usability.
The research was motivated by the problem that current methods target the
rational and social levels of human action and yet an increasing number of
users is relying on computers to fulfil quick and repetitive collaborative tasks
that are dominated by perceptual, cognitive, and motor skill. Therefore,
there is increasing value in optimising groupware usability at the cognitive
level because even small improvements can have large net effects.

In addition, our information-rich world imposes considerable demand on
our limited information processing capabilities, especially on users doing
group work as they have to attend to multiple information flows and thus
are more likely exposed to information overload, which further justifies doing
usability evaluations at the cognitive level of human action.

My research perspective has been that of the groupware designer who
seeks to improve the usability of collaborative tasks done through the
computer by conducting cognitive-level evaluations of human performance
in routine and potentially fast-paced scenarios of collaboration.

This chapter concludes the dissertation and has three parts. In the first,
I revisit the research goals stated in Chapter 1 and present my contributions
to the groupware body of knowledge. In the second part, I summarise the
lessons I learned during the investigations, hoping that other practitioners
find them valuable. In the third, I describe opportunities for future work
along the vision that guided this research.

161



162 Conclusion

9.1 Main Contributions

The research question underlying this dissertation was how to evaluate and
improve groupware usability at the cognitive-level of human action. To
address it, I stated three objectives which I now consider alongside the
contributions of my work.

9.1.1 Model of the Groupware Interface

The first objective of this work was to show that the cognitive level of human
action can be useful to organise the design space of groupware interfaces.

I determined that I would create a groupware model grounded on
cognitive-level information processing, and that this objective would be
met if the model can be applied in a range of groupware systems and if it
can be integrated in usability evaluations.

The first contribution of this research is the groupware interface model
described in Chapter 4. The model leverages existing knowledge about human
behaviour with single-user systems by expanding its application to multi-user
systems. To do this I have shown that the fundamental differences between
users interacting with the computer to do individual work and interacting
with other users through the computer to collaborate can be supported by
specialised groupware information flows and input/output devices.

The model is instrumental in the first step of the method for evaluating
shared workspace usability in Chapter 5, and I have applied it to define the
interface of three distinct groupware systems (see Section 5.3 on page 74). I
have also referred to the model in the description of the opportunity seeker
attentive device in Section 8.1 on page 133. This provides evidence for the
accomplishment of the first objective.

9.1.2 Cognitive-Level Groupware Evaluation Methods

The second objective was to show that cognitive-level evaluations can predict
the usability of collaborative tasks done through groupware systems.

I determined that I would construct two groupware usability evaluation
methods, differing in the way usability is measured and in the type of
collaboration supported, both grounded on existing engineering models of



9.1 Main Contributions 163

human performance, and that this objective would be met if the methods
can contribute to formative evaluation of groupware usability in a variety of
scenarios of collaboration.

The second contribution of this dissertation is a pair of methods for
evaluating the usability of groupware systems at the cognitive level of human
action. The first method, presented in Chapter 5, applies to critical scenarios
of collaboration occurring routinely in shared workspaces and defines usability
in terms of time to execute collaborative tasks, as predicted by engineering
models of human performance.

I have used this method to evaluate and compare the usability of compe-
ting designs in three distinct cases of shared workspace activity.

The second method, in Chapter 6, aims at capturing the intertwined
nature of mixed-focus collaboration, encompassing shared and private work-
spaces, as well as the often conflicting goals of users working as individuals or
as members of a group. To do this, I have combined predicted task execution
times with task contributions to group progression towards a common goal,
in terms of individual productivity, opportunities created for others, and
restrictions to the work of the other users.

I have applied this method in a collaborative game, and have shown that
the method challenges the groupware designer to think about the trade-offs
between an interface that allows users as individuals to be more productive
and another that permits greater overall group performance.

The two evaluation methods do not require user testing or functioning
groupware prototypes to produce usability results, which attests their forma-
tive nature, and facilitates their integration into the prevailing interactive
system design process. Thus, the second objective is met.

9.1.3 Evaluation of an Attentive Groupware System

The third objective was to show that focusing the evaluation on human
information processing limitations can improve groupware usability.

I determined that I would design and implement a device that automati-
cally adjusts collaborative information flows according to each user’s state
of attention to mitigate information overload, and that I would carry out a
laboratory experiment to compare usability with and without the device in a



164 Conclusion

fast-paced collaborative task, and I also decided that the objective would be
met if the experiment is valid and produces statistically significant results.

The third contribution of this research is the evaluation of an attentive
groupware system, in Chapter 8, which implements a novel attentive device,
called the opportunity seeker, that automatically adjusts the delivery of
group awareness information according to users’ natural task switching
between doing individual work and attending to the group. I have shown
how this device can be implemented on an electronic brainstorming tool,
called ABTool, and how task boundaries can be detected via the keyboard.

I have conducted a laboratory experiment with ABTool in which I told
users to submit ideas in parallel as fast as possible, and collected evidence
that when groups were exposed to the opportunity seeker the number of
ideas produced increased by 9.6 % when compared to the condition in which
ideas were immediately broadcasted to all users.

I also have carried out a post-hoc analysis showing that the opportunity
seeker reduced the number of deliveries of ideas by 44.1 % since it combined
ideas in small batches, and that this translated into 54.7 % more time for
users to type ideas without being notified of other users’ ideas. In these
conditions, users were 18.8 % faster in switching between writing an idea,
which they did in 16.3 % less time, and reading ideas from the other users.

These results indicate that focusing the evaluation on human information
processing limitations has lead to improvements in groupware usability,
which meets the third objective.

∗ ∗ ∗
With this set of contributions, I have shown that the cognitive level of
human action plays an important role in groupware usability evaluation,
complementing the rational and social levels that have traditionally been
the focus of other evaluation methods.

9.2 Lessons for Practitioners

One thing I learned in this research is that groupware systems have the
power to shape new ways for people to collaborate. The trends I mentioned
in Chapter 1 indicate that the Web is fast becoming a prime platform for



9.3 Future Work 165

collaboration, complementing or even replacing the traditional physical work-
place. Of course, millions of people already use the Internet to communicate
with others, share content, and play multi-player games.

In these circumstances, if a denominator has to be found upon which to
do usability evaluations of collaborative tasks done through the groupware
interface it is the cognitive level of human action, because it is largely
unaffected by the social, cultural, and organisational heterogeneity that
exists in on-line communities. So, the first lesson is that it is increasingly
important to invest in evaluations of quick and routine collaborative tasks
executed by a growing number of users because even small improvements in
usability can have large net effects. I show how this can be done with the
methods in Chapter 5 and Chapter 6.

Another thing I learned is that groupware systems should be evaluated
regarding information overload, a contemporary problem in our information-
rich world, which worsens as the needs for collaboration rise. This is because,
as I mentioned in Chapter 7, users doing group work have to divide their
attention between doing individual work and keeping up with the group,
which by itself is a potential generator of large quantities of information.

One way of tackling this problem is by buffering group awareness infor-
mation and releasing it in convenient batches according to each user’s state
of attention. This approach alters the way groupware information flows are
managed and requires sensors of human attention, which can be as simple
as keyboard activity, but it successfully contributed to improve the usability
of an electronic brainstorming tool. Thus, the second lesson is that there is
a need for attentive groupware systems and I hope that many more appear
in the future, perhaps created along the guidelines I present in Section 8.1.

9.3 Future Work

Future work will carry on the research on attentive groupware systems
under project Attentive CSCW, PTDC/EIA/67589/2006, funded by the
Portuguese Foundation for Science and Technology. In fact, the opportunity
seeker, described in Section 8.1 on page 133, is the most successful of a total
of four devices that I have already tested with groups of volunteers, and I



166 Conclusion

will continue to do experiments with new devices and new groupware tools.
By following this path I will address many questions raised by this

research: will the opportunity seeker improve the usability of other types of
collaborative tasks done through computers? For instance, will it be useful
in convergence tasks, such as in the group negotiation scenario described
in Section 5.3.3 on page 85, where users can post arguments in parallel,
thus potentially causing information overload? What other devices may be
created to augment human attention in group work settings? The road is
open for many more experiments and applications.



Appendix A

Equation for Average
Number of Viewport
Moves

In this appendix, I present the equation for m, which plays a role in the
analytical evaluation of shared workspace performance of the critical scenario
‘locating updated objects,’ in Section 5.3.1, page 75. The purpose of m is
to compute the average number of viewport moves to reach an arbitrary
object that is not currently visible on the computer display1 but is located
elsewhere on the shared workspace.

To specify m, I considered the relevant assumptions about the shared
workspace described on page 78, namely that its size is multiple of the size
of the computer display (assumption 2), the uniform distribution of updated
objects (assumptions 3 and 4), and the navigation around the workspace
(assumptions 7 and 8). Concerning the latter point, the cursor keys can
be used to move the viewport a screen-full to the desired direction and it
is possible to go directly from one extreme region to the opposite side (for
example, from the leftmost to the rightmost region) of the shared workspace.

In the original assumptions, the shared workspace is a larger version of
the computer display, that is, it has the same width × height proportion, only
enlarged by a factor of n. Here, I consider a more general purpose equation,

1 The viewport takes up the entire space of the computer display.

167



168 Equation for Average Number of Viewport Moves

1 2 2 1
1 2 3 3 2
2 3 4 4 3
2 3 4 4 3
1 2 3 3 2

1 2 1
1 2 3 2
2 3 4 3
2 3 4 3
1 2 3 2

X = 5 X = 4

Y = 5
1 2 2 1

1 2 3 3 2
2 3 4 4 3
1 2 3 3 2

1 2 3 2 1
1 2 3 4 3 2
2 3 4 5 4 3
1 2 3 4 3 2

X = 5 X = 6

Y = 4

Figure A.1: Shared workspaces with even and odd X and Y sizes. The numbers in the cells indicate
the minimum number of viewport moves to reach those regions of the shared workspace starting
from the top left corner (with grey background), where the viewport is currently located.

one in which the shared workspace may be a rectangle of any proportion, so
I replaced n with integers X and Y . Figure A.1 shows examples of several
shared workspaces; for instance, the rightmost one is six times wider than
the computer display (X = 6) and four times higher (Y = 4).

Each region of the shared workspace is annotated with integers that
indicate the minimum number of viewport moves to reach objects in those
regions, starting from the top-left corner, where the viewport is located. The
colours indicate areas of interest with common properties, which are useful
for the computation of m. Actually, each of the four shared workspaces in
Figure A.1 represent a special case, which I analyse independently.

Starting with the case in which both X and Y are odd integers, the three
areas of interest are highlighted in Equation A.1, which adds that there are
four areas equal to the yellow area (see leftmost example in Figure A.1),
and that both the green and violet areas have one replica, located in the
topmost row and leftmost column, respectively. The terms inside the big
round parentheses compute the sum of all possible viewport moves, which is
divided by the total number of regions on the shared workspace (except the
one region shown by the viewport) to give the average, m.

m(X, Y ) =
4

[ ∑X−1
2

x=1
∑Y −1

2
y=1 (x + y)

]
+ 2

[ ∑X−1
2

x=1 x

]

+ 2
[ ∑Y −1

2
y=1 y

]÷ (XY − 1)

= X + Y

4 if X is odd, Y is odd. (A.1)



Equation for Average Number of Viewport Moves 169

Equation A.2 and Equation A.3 can be used for cases where one of X or
Y is odd and the other is even, which introduces two more areas of interest,
making a total of five different terms inside the big round parentheses (see
two examples nearest to the centre of Figure A.1).

m(X, Y ) =
4

[ ∑X
2 −1

x=1
∑Y −1

2
y=1 (x + y)

]
+ 2

[ ∑Y −1
2

y=1

(
X
2 + 1 + (y − 1)

) ]

+ 2
[ ∑X

2 −1
x=1 x

]
+ X

2 + 2
[ ∑Y −1

2
y=1 y

]÷ (XY − 1)

= X(Y 2 + XY − 1)
4(XY − 1) if X is even, Y is odd. (A.2)

m(X, Y ) =
4

[ ∑X−1
2

x=1
∑Y

2 −1
y=1 (x + y)

]
+ 2

[ ∑X−1
2

x=1

(
Y
2 + 1 + (x− 1)

) ]

+ 2
[ ∑X−1

2
x=1 x

]
+ 2

[ ∑Y
2 −1

y=1 y

]
+ Y

2

÷ (XY − 1)

= Y (X2 + XY − 1)
4(XY − 1) if X is odd, Y is even. (A.3)

Equation A.4 is for the case where both X and Y are even, which needs
to take into consideration a total of eight different areas of interest (see
rightmost example in Figure A.1).

m(X, Y ) =
4

[ ∑X
2 −1

x=1
∑Y

2 −1
y=1 (x + y)

]
+ 2

[ ∑X
2 −1

x=1

(
Y
2 + 1 + (x− 1)

) ]

+ 2
[ ∑Y

2 −1
y=1

(
X
2 + 1 + (y − 1)

) ]
+
[

X
2 + Y

2

]
+ 2

[ ∑X
2 −1

x=1 x

]

+ X
2 + 2

[ ∑Y
2 −1

y=1 y

]
+ Y

2

÷ (XY − 1)

= XY (X + Y )
4(XY − 1) if X is even, Y is even. (A.4)

For convenience, the complete set of equations to compute the average
number of viewport moves to locate an object on the shared workspace, con-
sidering all combinations of odd/even X and Y , is gathered in Equation A.5.



170 Equation for Average Number of Viewport Moves

bug

m(X, Y ) =



0 if X = 1, Y = 1,

X + Y

4 if X is odd, Y is odd,

X(Y 2 + XY − 1)
4(XY − 1) if X is even, Y is odd,

Y (X2 + XY − 1)
4(XY − 1) if X is odd, Y is even,

XY (X + Y )
4(XY − 1) if X is even, Y is even.

(A.5)

As a final note on this topic, the data in Figure 5.3 on page 80 were
calculated by applying Equation A.5 to cases where X = Y = n, with n

ranging from two to nine.



Appendix B

Materials Used in the
Experiment

This chapter contains samples of the materials used in the electronic brains-
torming experiment, described in Chapter 8.3 on page 141. A total of three
documents were handed in to all participants in each trial of the experiment:
the first is the consent form, which had to be accepted and signed before
a participant could be admitted; next is the entrance questionnaire, to
characterise the participants while preserving their privacy; and finally, the
instructions about brainstorming in general and about the electronic tool
that would be used during the trail. For more details about the experimental
procedure in the laboratory room, see Section 8.3.5 on page 145.

Please note that the materials are written in Portuguese because the
experiment took place in Portugal. I have chosen to keep the original versions
in the illustrations and do the translations to English in the text.

B.1 Consent Form

Figure B.1 exhibits the consent form that all participants signed to be
admitted to the experiment. Starting from the top, sentence 1) authorises
the storage and processing of all data generated by the participant. Sentences
2) and 3) are about the expected behaviour during and after the experiment,
namely that the participant will be respectful to the others and will not

171



172 Materials Used in the Experiment

disclose the brainstorming questions and ideas generated by the group during
the days scheduled for the experimental trials. Sentences a) and b) inform
about the rights to privacy and to quit the experiment at any time.

B.2 Entrance Questionnaire

Figure B.2 shows the entrance questionnaire that was filled out by each
participant after s/he accepted and signed the consent form. The purpose of
this questionnaire was to characterise the participants in terms of sex and
age, occupation (mostly students), familiarity with the other members of
the group (almost all participants have worked or knew at least one other
person on the group), and typing skill (almost everyone reported having a
good typing skill). The detailed results from this questionnaire are given in
Section 8.3.1 on page 142.

B.3 Brainstorming Instructions

Before the start of the brainstorming sessions, more precisely, before the
practise session, I handed in written instructions about the rules of brains-
torming to the participants (I also read them out loud). These instructions
are depicted in Figure B.3 and are as follows: 1) accept all ideas from the
group; 2) new ideas can be based upon existing ideas; 3) ideas should be
concise and terse; 4) write ideas as fast as possible; and 5) be silent.

The instructions in Figure B.3 also explain the elements of the user
interface of the electronic brainstorming tool that participants would use
for the group sessions. This tool, ABTool, is characterised in Section 8.2.4
on page 139. The instructions state that the large shared workspace in the
middle region of the window shows group ideas; on top of it is the question
that triggers the brainstorming session, and at the bottom is the text field
where the participant can write his/her current idea. The right-most region
is dedicated to the session status: if it is running or has stopped, how many
minutes to the end of the session, the number of people on the group, and
how many ideas have been put forward so far.



B.3 Brainstorming Instructions 173

Departamento de Informática — FCUL 

Contacto: António Ferreira, asfe@di.fc.ul.pt 

Outubro de 2007 

 

 

Documento de Autorização 
Para a experiência de brainstorming 

 

 
Eu, abaixo-assinado: 

 

1) Autorizo o uso e tratamento dos dados por mim gerados nesta experiência 

pelas pessoas responsáveis pela mesma; 

2) Comprometo-me a ter uma postura respeitadora relativamente às pessoas 

envolvidas e à experiência em si; 

3) Comprometo-me a não divulgar o conteúdo específico da experiência 

(questões de brainstorming, ideias produzidas pelo grupo) entre 8 e 19 de 

Outubro. 

 

Declaro ter conhecimento dos meus direitos: 

 

a) À privacidade; 

b) De poder desistir livremente da experiência. 

 

 
 

 

 

___________________________________________________ 
(o voluntário) 

Figure B.1: Consent form (in Portuguese).



174 Materials Used in the Experiment

Departamento de Informática — FCUL 

Contacto: António Ferreira, asfe@di.fc.ul.pt 

Outubro de 2007 

 

 

Questionário Inicial 
 
Sexo: 

  Masculino 

  Feminino 

 

Idade: _____ 

 

Profissão: 

  Estudante do ____º ano 

  Outra _______________________________________ 

 

Relacionamento com os outros participantes nesta sessão de brainstorming: 

  Não conheço ninguém deste grupo de brainstorming. 

  Conheço alguém mas não costumo trabalhar em grupo com essa(s) 

pessoa(s). Quantas? ____ 

  Costumo trabalhar em grupo com outras pessoas deste grupo de 

brainstorming. Quantas?_____ 

 

Qual a sua experiência de utilização do teclado do computador? 

  Muita 

  Razoável 

 Pouca 

Figure B.2: Entrance questionnaire (in Portuguese).



B.3 Brainstorming Instructions 175

Departamento de Informática — FCUL 

Contacto: António Ferreira, asfe@di.fc.ul.pt 

Outubro de 2007 

 
 
 

Regras das Sessões de Brainstorming 
 
 

1. Aceitar todas as ideias do grupo; 
2. Ideias podem ser baseadas nas já existentes; 
3. Escrever ideias de forma sucinta; 
4. Gerar ideias o mais rapidamente possível; 
5. Permanecer em silêncio. 

 
 
 

Instruções do Software de Brainstorming 
 

 
 

Para enviar uma ideia para o 
grupo, carregue na tecla ‘enter’ 

ou então neste botão 

Para cancelar uma ideia, 
carregue na tecla ‘esc’ 

Número de 
elementos no 

grupo: 5 

Número de 
ideias geradas 
pelo grupo: 3 

Minutos até 
ao fim da 
sessão: 15 Ideias geradas 

pelo grupo até 
este momento 

Escreva aqui as 
suas ideias, uma 

de cada vez 

Estado da sessão: Paused, 
Running, Ended 

Identificador do 
participante: Green 

Figure B.3: Brainstorming instructions (in Portuguese).





References

Robert P. Abelson. Statistics as principled argument. Lawrence Erlbaum
Associates, Hillsdale, NJ, USA, 1995. ISBN 0-8058-0528-1.

Piotr D. Adamczyk and Brian P. Bailey. If not now, when? the effects
of interruption at different moments within task execution. In CHI’04:
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 271–278, Vienna, Austria, April 2004. ACM Press. ISBN
1-58113-702-8.

John Anderson. Cognitive psychology and its implications. Worth Publishers,
New York, NY, USA, sixth edition, 2005. ISBN 0-7167-0110-3.

Maria Aneiros, Vladimir Estivill-Castro, and Chengzheng Sun. Group unified
histories: An instrument for productive unconstrained co-browsing. In
GROUP’03: Proceedings of the 2003 international ACM SIGGROUP
conference on Supporting group work, pages 330–338, Sanibel Island, FL,
USA, November 2003. ACM Press. ISBN 1-58113-693-5.

Pedro Antunes and Carlos J. Costa. Perceived value: A low-cost appro-
ach to evaluate meetingware. In CRIWG’03: Proceedings of the ninth
international workshop on Groupware, pages 109–125, Autrans, France,
September 2003. Springer. ISBN 3-540-20117-3.

Pedro Antunes and Tânia Ho. The design of a GDSS meeting preparation
tool. Group Decision and Negotiation, 10(1):5–25, January 2001. ISSN
0926-2644.

Pedro Antunes, Marcos R. Borges, José A. Pino, and Luis Carriço. Analy-
zing groupware design by means of usability results. In CSCWID’05:

177



178 References

Proceedings of the ninth international conference on Computer supported
cooperative work in design, pages 283–288, Conventry, UK, May 2005.
IEEE Press. ISBN 1-84600-002-5.

Pedro Antunes, António Ferreira, and José A. Pino. Analyzing shared
workspaces design with human-performance models. In CRIWG’06: Pro-
ceedings of the twelfth international workshop on Groupware, pages 62–77,
Medina del Campo, Spain, September 2006a. Springer. ISBN 3-540-39591-
1.

Pedro Antunes, João Ramires, and Ana Respício. Addressing the conflicting
dimension of groupware: A case study in software requirements validation.
Computing and Informatics, 25:1001–1024, 2006b. ISSN 1335-9150.

Renata M. Araujo, Flávia M. Santoro, and Marcos R. Borges. A conceptual
framework for designing and conducting groupware evaluations. Interna-
tional Journal of Computer Applications in Technology, 19(3-4):139–150,
May 2004. ISSN 0952-8091.

Kregg Aytes. Comparing collaborative drawing tools and whiteboards: An
analysis of the group process. Computer Supported Cooperative Work, 4
(1):51–71, March 1995. ISSN 0925-9724.

Ronald M. Baecker, Dimitrios Nastos, Ilona R. Posner, and Kelly L. Mawby.
The user-centred iterative design of collaborative writing software. In
CHI’93: Proceedings of the INTERACT’93 and CHI’93 conference on
Human factors in computing systems, pages 399–405, Amsterdam, Nether-
lands, April 1993. ACM Press. ISBN 0-89791-575-5.

Brian P. Bailey and Shamsi T. Iqbal. Understanding changes in mental
workload during execution of goal-directed tasks and its application for
interruption management. ACM Transactions on Computer-Human Inte-
raction, 14(4), January 2008. ISSN 1073-0516.

Brian P. Bailey and Joseph A. Konstan. On the need for attention-aware
systems: Measuring effects of interruption on task performance, error rate,
and affective state. Computers in Human Behavior, 22(4):685–708, July
2006. ISSN 0747-5632.



References 179

Kevin Baker, Saul Greenberg, and Carl Gutwin. Heuristic evaluation of group-
ware based on the mechanics of collaboration. In EHCI’01: Proceedings
of the eight IFIP working conference on Engineering for human-computer
interaction, pages 123–138, Toronto, Canada, May 2001. Springer. ISBN
3-540-43044-X.

Kevin Baker, Saul Greenberg, and Carl Gutwin. Empirical development
of a heuristic evaluation methodology for shared workspace groupware.
In CSCW’02: Proceedings of the 2002 ACM conference on Computer-
supported cooperative work, pages 96–105, New Orleans, LA, USA, No-
vember 2002. ACM Press. ISBN 1-58113-560-2.

Aruna D. Balakrishnan, Susan R. Fussell, and Sara Kiesler. Do visualizations
improve synchronous remote collaboration? In CHI’08: Proceedings of the
twenty-sixth annual SIGCHI conference on Human factors in computing
systems, pages 1227–1236, Florence, Italy, April 2008. ACM Press. ISBN
978-1-60558-011-1.

Patrick Baudisch, Doug DeCarlo, Andrew T. Duchowski, and Wilson S.
Geisler. Focusing on the essential: Considering attention in display design.
Communications of the ACM, 46(3):60–66, March 2003. ISSN 0001-0782.

Lynn K. Baumeister, Bonnie E. John, and Michael D. Byrne. A comparison
of tools for building GOMS models. In CHI’00: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 502–509, The
Hague, Netherlands, April 2000. ACM Press. ISBN 1-58113-216-6.

David V. Beard, Scott Entrikin, Pat Conroy, Nathan C. Wingert, Corey D.
Schou, Dana K. Smith, and Kevin M. Denelsbeck. Quick GOMS: A
visual software engineering tool for simple rapid time-motion modeling.
Interactions, 4(3):31–36, May 1997. ISSN 1072-5520.

James Begole, Nicholas E. Matsakis, and John C. Tang. Lilsys: Sensing
unavailability. In CSCW’04: Proceedings of the 2004 ACM conference on
Computer-supported cooperative work, pages 511–514, Chicago, IL, USA,
November 2004. ACM Press. ISBN 1-58113-810-5.



180 References

Gro Bjerknes and Tone Bratteteig. The memoirs of two survivors: Evaluation
of a computer system for cooperative work. In CSCW’88: Proceedings
of the 1988 ACM conference on Computer-supported cooperative work,
pages 167–177, Portland, OR, USA, September 1988. ACM Press. ISBN
0-89791-282-9.

Steve Blythin, John A. Hughes, Steinar Kristoffersen, Tom Rodden, and
Mark Rouncefield. Recognising ‘success’ and ‘failure’: Evaluating group-
ware in a commercial context. In GROUP’97: Proceedings of the internati-
onal ACM SIGGROUP conference on Supporting group work, pages 39–46,
Phoenix, AZ, USA, November 1997. ACM Press. ISBN 0-89791-897-5.

Barry Boehm, Paul Grunbacher, and Robert O. Briggs. Developing group-
ware for requirements negotiation: Lessons learned. IEEE Software, 18
(3):46–55, 2001. ISSN 0740-7459.

Roger E. Bohn and James E. Short. How much information? 2009: Report
on American consumers. Technical report, Global Information Industry
Center, University of California, San Diego, CA, USA, December 2009.
URL http://hmi.ucsd.edu. Retrieved January 2010.

Utpal Bose and David B. Paradice. The effects of integrating cognitive
feedback and multi-attribute utility-based multicriteria decision-making
methods in GDSS. Group Decision and Negotiation, 8(2):157–182, March
1999. ISSN 0926-2644.

Claus Bossen. Representations at work: a national standard for electronic
health records. In CSCW’06: Proceedings of the 2006 ACM conference
on Computer-supported cooperative work, pages 69–78, Banff, Canada,
November 2006. ACM Press. ISBN 1-59593-249-6.

John Bowers, Graham Button, and Wes Sharrock. Workflow from within
and without: Technology and cooperative work on the print industry
shopfloor. In ECSCW’95: Proceedings of the fourth european conference
on Computer-supported cooperative work, pages 51–66, Stockholm, Sweden,
September 1995. Kluwer. ISBN 0-7923-3697-6.

Frederick P. Brooks. The mythical man-month. Addison Wesley, Boston,
MA, USA, anniversary edition, 1995. ISBN 0-201-83595-9.

http://hmi.ucsd.edu


References 181

Stuart K. Card, Thomas P. Moran, and Allen Newell. The keystroke-level
model for user performance time with interactive systems. Communications
of the ACM, 23(7):396–410, July 1980. ISSN 0001-0782.

Stuart K. Card, Allen Newell, and Thomas P. Moran. The psychology of
human-computer interaction. Lawrence Erlbaum Associates, Mahwah, NJ,
USA, 1983. ISBN 0-89859-859-1.

Peter H. Carstensen and Morten Nielsen. Characterizing modes of coor-
dination. In GROUP’01: Proceedings of the 2001 international ACM
SIGGROUP conference on Supporting group work, pages 81–90, Boulder,
CO, USA, September 2001. ACM Press. ISBN 1-58113-294-8.

Daniel Chen and Roel Vertegaal. Using mental load for managing interrup-
tions in physiologically attentive user interfaces. In CHI’04: Extended
abstracts on Human factors in computing systems, pages 1513–1516, Vi-
enna, Austria, April 2004. ACM Press. ISBN 1-58113-703-6.

Ed H. Chi. The social web: Research and opportunities. Computer, 41(9):
88–91, September 2008. ISSN 0018-9162.

Andy Cockburn and Tony Dale. CEVA: A tool for collaborative video analy-
sis. In GROUP’97: Proceedings of the international ACM SIGGROUP
conference on Supporting group work, pages 47–55, Phoenix, AZ, USA,
November 1997. ACM Press. ISBN 0-89791-897-5.

Gilbert Cockton and Alan Woolrych. Sale must end: Should discount
methods be cleared off HCI’s shelves? Interactions, 9(5):13–18, September
2002. ISSN 1072-5520.

Joanie B. Connell, Gerald A. Mendelsohn, Richard W. Robins, and John
Canny. Effects of communication medium on interpersonal perceptions:
Don’t hang up on the telephone yet. In GROUP’01: Proceedings of the
2001 international ACM SIGGROUP conference on Supporting group
work, pages 117–124, Boulder, CO, USA, September 2001. ACM Press.
ISBN 1-58113-294-8.



182 References

Terry Connolly, Leonard M. Jessup, and Joseph S. Valacich. Effects of
anonymity and evaluative tone on idea generation in computer-mediated
groups. Management Science, 36(6):689–703, June 1990. ISSN 0025-1909.

Andrew R. Conway, Nelson Cowan, and Michael F. Bunting. The cocktail
party phenomenon revisited: The importance of working memory capacity.
Psychonomic Bulletin and Review, 8(2):331–335, June 2001. ISSN 1531-
5320.

Colleen Cool, Robert S. Fish, Robert E. Kraut, and C.M. Lowery. Iterative
design of video communication systems. In CSCW’92: Proceedings of the
1992 ACM conference on Computer-supported cooperative work, pages 25–
32, Toronto, Canada, November 1992. ACM Press. ISBN 0-89791-542-9.

Andy Crabtree, Tom Rodden, Peter Tolmie, and Graham Button. Ethno-
graphy considered harmful. In CHI’09: Proceedings of the twenty-seventh
international conference on Human factors in computing systems, pages
879–888, Boston, MA, USA, April 2009. ACM Press. ISBN 978-1-60558-
246-7.

Terrence Crowley, Paul Milazzo, Ellie Baker, Harry Forsdick, and Raymond
Tomlinson. MMConf: An infrastructure for building shared multimedia
applications. In CSCW’90: Proceedings of the 1990 ACM conference on
Computer-supported cooperative work, pages 329–342, Los Angeles, CA,
USA, November 1990. ACM Press. ISBN 0-89791-402-3.

Edward Cutrell, Mary Czerwinski, and Eric Horvitz. Notification, disrup-
tion, and memory: Effects of messaging interruptions on memory and
performance. In Interact’01: Proceedings of the eight IFIP international
conference on Human-Computer Interaction, pages 263–269, Tokyo, Japan,
July 2001. IOS Press. ISBN 1-58603-188-0.

Mary Czerwinski, Edward Cutrell, and Eric Horvitz. Instant messaging:
Effects of relevance and timing. In HCI’00: Proceedings of the HCI
conference, pages 71–76, Sunderland, UK, September 2000. Springer.
ISBN 1-85233-318-9.



References 183

Mary Czerwinski, Eric Horvitz, and Susan Wilhite. A diary study of
task switching and interruptions. In CHI’04: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 175–182, Vienna,
Austria, April 2004. ACM Press. ISBN 1-58113-702-8.

Laurie Damianos, Lynette Hirschman, Robyn Kozierok, Jeffrey Kurtz, An-
drew Greenberg, Kimberley Walls, Sharon Laskowski, and Jean Scholtz.
Evaluation for collaborative systems. ACM Computing Surveys, 31(2),
June 1999. ISSN 0360-0300.

Ann Davey and David Olson. Multiple criteria decision making models
in group decision support. Group Decision and Negotiation, 7(1):55–75,
January 1998. ISSN 0926-2644.

Alan R. Dennis, Joseph S. Valacich, and Jay F. Nunamaker. Group, sub-
group, and nominal group idea generation: New rules for a new media?
Journal of Management, 20(4):723–736, 1994. ISSN 0149-2063.

Alan R. Dennis, Joseph S. Valacich, Terry Connolly, and Bayard E. Wynne.
Process structuring in electronic brainstorming. Information Systems
Research, 7(2):268–277, June 1996. ISSN 1047-7047.

Prasun Dewan and Rajiv Choudhary. Coupling the user interfaces of a
multiuser program. ACM Transactions on Computer-Human Interaction,
2(1):1–39, March 1995. ISSN 1073-0516.

Alan Dix, Janet Finlay, Gregory D. Abowd, and Russell Beale. Human-
computer interaction. Prentice Hall, Essex, UK, third edition, 2003. ISBN
0-13-046109-1.

Sarah A. Douglas and Arthur E. Kirkpatrick. Model and representation: The
effect of visual feedback on human performance in a color picker interface.
ACM Transactions on Graphics, 18(2):96–127, 1999. ISSN 0730-0301.

Paul Dourish. Implications for design. In CHI’06: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 541–
550, Montreal, Canada, April 2006. ACM Press. ISBN 1-59593-178-3.



184 References

Paul Dourish and Victoria Bellotti. Awareness and coordination in shared
workspaces. In CSCW’92: Proceedings of the 1992 ACM conference on
Computer-supported cooperative work, pages 107–114, Toronto, Canada,
November 1992. ACM Press. ISBN 0-89791-542-9.

Paul Dourish and Sara Bly. Portholes: Supporting awareness in a distributed
work group. In CHI’92: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 541–547, Monterey, CA, USA, May
1992. ACM Press. ISBN 0-89791-513-5.

Richard V. Dragan. Collaborating with Office 2003. PC Magazine, Septem-
ber 2003. URL http://www.pcmag.com/article2/0,2817,1273092,00.
asp. Retrieved November 2008.

Jill Drury and Marian G. Williams. A framework for role-based specification
and evaluation of awareness support in synchronous collaborative appli-
cations. In WETICE’02: Proceedings of the eleventh IEEE international
workshops on Enabling technologies, pages 12–17, Pittsburgh, PA, USA,
June 2002. IEEE Press. ISBN 0-7695-1748-X.

Jill L. Drury, Jean Scholtz, and David Kieras. Adapting GOMS to model
human-robot interaction. In HRI’07: Proceedings of the ACM/IEEE inter-
national conference on Human-robot interaction, pages 41–48, Arlington,
VA, USA, March 2007. ACM Press. ISBN 978-1-59593-617-2.

Honglu Du, Mary B. Rosson, John Carroll, and Craig Ganoe. I felt like a
contributing member of the class: Increasing class participation with Clas-
sCommons. In GROUP’09: Proceedings of the ACM 2009 international
conference on Supporting group work, pages 233–242, Sanibel Island, FL,
USA, May 2009. ACM Press. ISBN 978-1-60558-500-0.

Shelli Dubs and Stephen C. Hayne. Distributed facilitation: A concept whose
time has come? In CSCW’92: Proceedings of the 1992 ACM conference on
Computer-supported cooperative work, pages 314–321, Toronto, Canada,
November 1992. ACM Press. ISBN 0-89791-542-9.

Paula Durlach. Change blindness and its implications for complex monitoring
and control systems design and operator training. Human-Computer
Interaction, 19(4):423–451, 2004. ISSN 0737-0024.

http://www.pcmag.com/article2/0,2817,1273092,00.asp
http://www.pcmag.com/article2/0,2817,1273092,00.asp


References 185

Jeff Dyck, Carl Gutwin, Sriram Subramanian, and Christopher Fedak. High-
performance telepointers. In CSCW’04: Proceedings of the 2004 ACM
conference on Computer-supported cooperative work, pages 172–181, Chi-
cago, IL, USA, November 2004. ACM Press. ISBN 1-58113-810-5.

Clarence Ellis and Jacques Wainer. A conceptual model of groupware.
In CSCW’94: Proceedings of the 1994 ACM conference on Computer-
supported cooperative work, pages 79–88, Chapel Hill, NC, USA, October
1994. ACM Press. ISBN 0-89791-689-1.

Clarence A. Ellis, Simon J. Gibbs, and Gail Rein. Groupware: Some issues
and experiences. Communications of the ACM, 34(1):39–58, 1991. ISSN
0001-0782.

Martin Eppler and Jeanne Mengis. The concept of information overload:
A review of literature from organization science, accounting, marketing,
MIS, and related disciplines. The Information Society, 20(5):325–344,
2004. ISSN 0197-2243.

Michael W. Eysenck and Mark T. Keane. Cognitive psychology: A student’s
handbook. Psychology Press, East Sussex, UK, fourth edition, 2000. ISBN
0-86377-550-0.

António Ferreira and Pedro Antunes. Quantitative evaluation of workspace
collaboration. In CSCWID’06: Proceedings of the tenth international
conference on Computer supported cooperative work in design, pages 1065–
1070, Nanjing, China, May 2006a. IEEE Press. ISBN 1-4244-0164-X.

António Ferreira and Pedro Antunes. Dispositivos de gestão da atenção em
sistemas colaborativos. In Interacção’06: Actas da segunda conferência
nacional em Interacção pessoa-máquina, pages 57–60, Minho, Portugal,
October 2006b. Grupo Português Computação Gráfica. ISBN 972-98464-
7-2.

António Ferreira and Pedro Antunes. On the need for a framework for
attentive groupware systems. In SociUM’07: Proceedings of the first
workshop on Adaptation and personalisation in social systems, pages 5–15,
Corfu, Greece, June 2007a.



186 References

António Ferreira and Pedro Antunes. A technique for evaluating shared
workspaces efficiency. In Weiming Shen, editor, CSCW in design III, pages
82–91. Springer, Berlin, Germany, 2007b. ISBN 978-3-540-72862-7.

António Ferreira and Pedro Antunes. Tackling information overload in
electronic brainstorming. In GDN’08: Proceedings of the ninth Group
decision and negotiation meeting, pages 83–89, Coimbra, Portugal, June
2008a. Instituto de Engenharia de Sistemas e Computadores de Coimbra.

António Ferreira and Pedro Antunes. An attentive groupware device to
mitigate information overload. In DSV-IS’08: Proceedings of the fifteenth
international workshop on Design, specification, and validation of interac-
tive systems, pages 29–42, Kingston, Canada, July 2008b. Springer. ISBN
978-3-540-70568-0.

António Ferreira, Valeria Herskovic, and Pedro Antunes. Attention-based
management of information flows in synchronous electronic brainstorming.
In CRIWG’08: Proceedings of the fourteenth international workshop on
Groupware, pages 1–16, Omaha, NE, USA, September 2008. Springer.
ISBN 978-3-540-92830-0.

António Ferreira, Pedro Antunes, and José A. Pino. Evaluating sha-
red workspace performance using human information processing mo-
dels. Information Research, 14(1), March 2009. ISSN 1368-1613. URL
http://informationr.net/ir/14-1/paper388.html.

António Ferreira, Pedro Antunes, and Valeria Herskovic. Improving group at-
tention: An experiment with synchronous brainstorming. Group Decision
and Negotiation, 2010. ISSN 0926-2644. To appear.

Graeme E. Field. Experimentus interruptus. SIGCHI Bulletin, 19(2):42–46,
1987. ISSN 0736-6906.

Jerry Fjermestad and Starr Hiltz. An assessment of group support systems
experimental research: Methodology and results. Journal of Management
Information Systems, 15(3):7–149, 1999. ISSN 0742-1222.

James Fogarty and Scott E. Hudson. Toolkit support for developing and
deploying sensor-based statistical models of human situations. In CHI’07:

http://informationr.net/ir/14-1/paper388.html


References 187

Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 135–144, San Jose, CA, USA, April 2007. ACM Press.
ISBN 978-1-59593-593-9.

James Fogarty, Scott E. Hudson, Christopher G. Atkeson, Daniel Avrahami,
Jodi Forlizzi, Sara Kiesler, Johnny C. Lee, and Jie Yang. Predicting human
interruptibility with sensors. ACM Transactions on Computer-Human
Interaction, 12(1):119–146, March 2005a. ISSN 1073-0516.

James Fogarty, Andrew J. Ko, Htet Htet Aung, Elspeth Golden, Karen P.
Tang, and Scott E. Hudson. Examining task engagement in sensor-based
statistical models of human interruptibility. In CHI’05: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 331–
340, Portland, OR, USA, April 2005b. ACM Press. ISBN 1-58113-998-5.

Clifton Forlines, Chia Shen, Daniel Wigdor, and Ravin Balakrishnan. Ex-
ploring the effects of group size and display configuration on visual search.
In CSCW’06: Proceedings of the 2006 ACM conference on Computer-
supported cooperative work, pages 11–20, Banff, Canada, November 2006.
ACM Press. ISBN 1-59593-249-6.

Mike Fraser, Michael R. McCarthy, Muneeb Shaukat, and Phillip Smith.
Seconds matter: Improving distributed coordination by tracking and
visualizing display trajectories. In CHI’07: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 1303–1312, San
Jose, CA, USA, April 2007. ACM Press. ISBN 978-1-59593-593-9.

Susan R. Fussell, Robert E. Kraut, and Jane Siegel. Coordination of communi-
cation: Effects of shared visual context on collaborative work. In CSCW’00:
Proceedings of the 2000 ACM conference on Computer-supported coope-
rative work, pages 21–30, Philadelphia, PA, USA, December 2000. ACM
Press. ISBN 1-58113-222-0.

Susan R. Fussell, Leslie D. Setlock, and Robert E. Kraut. Effects of head-
mounted and scene-oriented video systems on remote collaboration on
physical tasks. In CHI’03: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 513–520, Ft. Lauderdale, FL,
USA, April 2003. ACM Press. ISBN 1-58113-630-7.



188 References

Stephen Gale. Adding audio and video to an office environment. In John M.
Bowers and Steve Benford, editors, Studies in computer supported coo-
perative work: Theory, practice and design, pages 49–62. North-Holland,
Amsterdam, Netherlands, 1991. ISBN 0-444-88811-X.

John F. Gantz. The diverse and exploding digital universe. Technical re-
port, International Data Corporation, Framingham, MA, USA, March
2008. URL http://www.emc.com/collateral/analyst-reports/
diverse-exploding-digital-universe.pdf. Retrieved January 2010.

Maia Garau, Mel Slater, Simon Bee, and Martina A. Sasse. The impact of eye
gaze on communication using humanoid avatars. In CHI’01: Proceedings
of the SIGCHI conference on Human factors in computing systems, pages
309–316, Seattle, WA, USA, March 2001. ACM Press. ISBN 1-58113-327-8.

Samuel J. Gibbs. LIZA: An extensible groupware toolkit. SIGCHI Bulletin,
20(SI):29–35, March 1989. ISSN 0736-6906.

Jennifer Gluck, Andrea Bunt, and Joanna McGrenere. Matching attentional
draw with utility in interruption. In CHI’07: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 41–50, San
Jose, CA, USA, April 2007. ACM Press. ISBN 978-1-59593-593-9.

Wayne D. Gray and Deborah A. Boehm-Davis. Milliseconds matter: An
introduction to microstrategies and to their use in describing and predicting
interactive behavior. Journal of Experimental Psychology: Applied, 6(4):
322–335, 2000. ISSN 1076-898X.

Wayne D. Gray, Bonnie E. John, and Michael E. Atwood. Project Ernestine:
Validating a GOMS analysis for predicting and explaining real-world task
performance. Human-Computer Interaction, 8(3):237–309, 1993. ISSN
0737-0024.

Saul Greenberg and Bill Buxton. Usability evaluation considered harmful
(some of the time). In CHI’08: Proceedings of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems, pages 111–
120, Florence, Italy, April 2008. ACM Press. ISBN 978-1-60558-011-1.

http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf


References 189

Saul Greenberg and Mark Roseman. Using a room metaphor to ease tran-
sitions in groupware. In Mark S. Ackerman, Volkmar Pipek, and Volker
Wulf, editors, Sharing experience: Beyond knowledge management. MIT
Press, Cambridge, MA, USA, 2003. ISBN 0-262-01195-6.

Mary-Liz Grisé and R. Brent Gallupe. Information overload: Addressing
the productivity paradox in face-to-face electronic meetings. Journal of
Management Information Systems, 16(3):157–185, December 1999. ISSN
0742-1222.

Jonathan Grudin. Why CSCW applications fail: Problems in the design
and evaluation of organizational interfaces. In CSCW’88: Proceedings
of the 1988 ACM conference on Computer-supported cooperative work,
pages 85–93, Portland, OR, USA, September 1988. ACM Press. ISBN
0-89791-282-9.

Jonathan Grudin. Groupware and social dynamics: Eight challenges for
developers. Communications of the ACM, 37(1):92–105, January 1994.
ISSN 0001-0782.

Daniel Gruen, Steven L. Rohall, Suzanne Minassian, Bernard Kerr, Paul
Moody, Bob Stachel, Martin Wattenberg, and Eric Wilcox. Lessons from
the reMail prototypes. In CSCW’04: Proceedings of the 2004 ACM confe-
rence on Computer-supported cooperative work, pages 152–161, Chicago,
IL, USA, November 2004. ACM Press. ISBN 1-58113-810-5.

Carl Gutwin and Saul Greenberg. Design for individuals, design for groups:
Tradeoffs between power and workspace awareness. In CSCW’98: Proce-
edings of the 1998 ACM conference on Computer-supported cooperative
work, pages 207–216, Seattle, WA, USA, November 1998. ACM Press.
ISBN 1-58113-009-0.

Carl Gutwin and Saul Greenberg. The effects of workspace awareness support
on the usability of real-time distributed groupware. ACM Transactions
on Computer-Human Interaction, 6(3):243–281, September 1999. ISSN
1073-0516.



190 References

Carl Gutwin and Saul Greenberg. The mechanics of collaboration: Deve-
loping low cost usability evaluation methods for shared workspaces. In
WETICE’00: Proceedings of the ninth IEEE international workshops on
Enabling technologies, pages 98–103, Gaithersburg, MD, USA, June 2000.
IEEE Press. ISBN 0-7695-0798-0.

Carl Gutwin and Saul Greenberg. A descriptive framework of workspace
awareness for real-time groupware. Computer Supported Cooperative Work,
11(3):411–446, September 2002. ISSN 0925-9724.

Carl Gutwin and Reagan Penner. Improving interpretation of remote gestures
with telepointer traces. In CSCW’02: Proceedings of the 2002 ACM
conference on Computer-supported cooperative work, pages 49–57, New
Orleans, LA, USA, November 2002. ACM Press. ISBN 1-58113-560-2.

Carl Gutwin, Jeff Dyck, and Jennifer Burkitt. Using cursor prediction
to smooth telepointer jitter. In GROUP’03: Proceedings of the 2003
international ACM SIGGROUP conference on Supporting group work,
pages 294–301, Sanibel Island, FL, USA, November 2003. ACM Press.
ISBN 1-58113-693-5.

Carl Gutwin, Steve Benford, Jeff Dyck, Mike Fraser, Ivan Vaghi, and Chris
Greenhalgh. Revealing delay in collaborative environments. In CHI’04:
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 503–510, Vienna, Austria, April 2004. ACM Press. ISBN
1-58113-702-8.

Stephen Haag, M.K. Raja, and L.L. Schkade. Quality function deployment
usage in software development. Communications of the ACM, 39(1):41–49,
January 1996. ISSN 0001-0782.

Mark Hackman. Microsoft to take Office to the Web, finally. PC Ma-
gazine, October 2008. URL http://www.pcmag.com/article2/0,2817,
2333441,00.asp. Retrieved November 2008.

Richard R. Harper, J.A. Hughes, and Dan Z. Shapiro. Working in har-
mony: An examination of computer technology in air traffic control. In

http://www.pcmag.com/article2/0,2817,2333441,00.asp
http://www.pcmag.com/article2/0,2817,2333441,00.asp


References 191

ECSCW’89: Proceedings of the first european conference on Computer-
supported cooperative work, pages 73–87, Gatwick, UK, September 1989.

Jörg Hauber, Holger Regenbrecht, Mark Billinghurst, and Andy Cockburn.
Spatiality in videoconferencing: Trade-offs between efficiency and social
presence. In CSCW’06: Proceedings of the 2006 ACM conference on
Computer-supported cooperative work, pages 413–422, Banff, Canada,
November 2006. ACM Press. ISBN 1-59593-249-6.

Steven R. Haynes, Sandeep Purao, and Amie L. Skattebo. Situating eva-
luation in scenarios of use. In CSCW’04: Proceedings of the 2004 ACM
conference on Computer-supported cooperative work, pages 92–101, Chi-
cago, IL, USA, November 2004. ACM Press. ISBN 1-58113-810-5.

Christian Heath and Paul Luff. Documents and professional practise: ’bad’
organisational reasons for ’good’ clinical records. In CSCW’96: Proceedings
of the 1996 ACM conference on Computer-supported cooperative work,
pages 354–363, Boston, MA, USA, November 1996. ACM Press. ISBN
0-89791-765-0.

William G. Heninger, Alan R. Dennis, and Kelly M. Hilmer. Individual
cognition and dual-task interference in group support systems. Information
Systems Research, 17(4):415–424, December 2006. ISSN 1047-7047.

James D. Herbsleb, David L. Atkins, David G. Boyer, Mark Handel, and
Thomas A. Finholt. Introducing instant messaging and chat in the work-
place. In CHI’02: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 171–178, Minneapolis, MN, USA, April 2002.
ACM Press. ISBN 1-58113-453-3.

Valeria Herskovic, José A. Pino, Sergio F. Ochoa, and Pedro Antunes.
Evaluation methods for groupware systems. In CRIWG’07: Proceedings
of the thirtieth international workshop on Groupware, pages 328–336,
Bariloche, Argentina, September 2007. Springer. ISBN 978-3-540-74811-3.

Jason Hill and Carl Gutwin. Awareness support in a groupware widget toolkit.
In GROUP’03: Proceedings of the 2003 international ACM SIGGROUP



192 References

conference on Supporting group work, pages 258–267, Sanibel Island, FL,
USA, November 2003. ACM Press. ISBN 1-58113-693-5.

Jason Hill and Carl Gutwin. The MAUI toolkit: Groupware widgets for
group awareness. Computer Supported Cooperative Work, 13(5):539–571,
December 2004. ISSN 0925-9724.

Ralph D. Hill, Tom Brinck, Steven L. Rohall, John F. Patterson, and Wayne
Wilner. The Rendezvous architecture and language for constructing mul-
tiuser applications. ACM Transactions on Computer-Human Interaction,
1(2):81–125, June 1994. ISSN 1073-0516.

Paul Holleis, Friederike Otto, Heinrich Hussmann, and Albrecht Schmidt.
Keystroke-level model for advanced mobile phone interaction. In CHI’07:
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 1505–1514, San Jose, CA, USA, April 2007. ACM Press.
ISBN 978-1-59593-593-9.

Eric Horvitz and Johnson Apacible. Learning and reasoning about inter-
ruption. In ICMI’03: Proceedings of the fifth international conference on
Multimodal interfaces, pages 20–27, Vancouver, Canada, November 2003.
ACM Press. ISBN 1-58113-621-8.

Eric Horvitz, Carl Kadie, Tim Paek, and David Hovel. Models of atten-
tion in computing and communication: From principle to applications.
Communications of the ACM, 46(3):52–59, March 2003. ISSN 0001-0782.

David C. Howell. Statistical methods for psychology. Wadsworth, Belmont,
CA, USA, sixth edition, 2007. ISBN 0-495-09361-0.

Scott E. Hudson, Bonnie E. John, Keith Knudsen, and Michael D. Byrne.
A tool for creating predictive performance models from user interface
demonstrations. In UIST’99: Proceedings of the twelfth annual ACM sym-
posium on User interface software and technology, pages 93–102, Asheville,
NC, USA, November 1999. ACM Press. ISBN 1-58113-075-9.

John Hughes, Val King, Tom Rodden, and Hans Andersen. Moving out from
the control room: Ethnography in system design. In CSCW’94: Proce-
edings of the 1994 ACM conference on Computer-supported cooperative



References 193

work, pages 429–439, Chapel Hill, NC, USA, October 1994. ACM Press.
ISBN 0-89791-689-1.

Charles M. Hymes and Gary M. Olson. Unblocking brainstorming through
the use of a simple group editor. In CSCW’92: Proceedings of the 1992
ACM conference on Computer-supported cooperative work, pages 99–106,
Toronto, Canada, November 1992. ACM Press. ISBN 0-89791-542-9.

Aulikki Hyrskykari, Päivi Majaranta, Antti Aaltonen, and Kari-Jouko Räihä.
Design issues of iDICT: A gaze-assisted translation aid. In ETRA’00:
Proceedings of the 2000 symposium on Eye tracking research and applica-
tions, pages 9–14, Palm Beach Gardens, FL, USA, November 2000. ACM
Press. ISBN 1-58113-280-8.

Yusuke Ichikawa, Ken ichi Okada, Giseok Jeong, Shunsuke Tanaka, and
Yutaka Matsushita. MAJIC videoconferencing system: Experiments,
evaluation and improvement. In ECSCW’95: Proceedings of the fourth
european conference on Computer-supported cooperative work, pages 279–
292, Stockholm, Sweden, September 1995. Kluwer. ISBN 0-7923-3697-6.

Claudia-Lavinia Ignat and Moira C. Norrie. Draw-together: Graphical editor
for collaborative drawing. In CSCW’06: Proceedings of the 2006 ACM
conference on Computer-supported cooperative work, pages 269–278, Banff,
Canada, November 2006. ACM Press. ISBN 1-59593-249-6.

Shamsi T. Iqbal and Brian P. Bailey. Investigating the effectiveness of mental
workload as a predictor of opportune moments for interruption. In CHI’05:
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 1489–1492, Portland, OR, USA, April 2005. ACM Press.
ISBN 1-58113-998-5.

Shamsi T. Iqbal and Brian P. Bailey. Leveraging characteristics of task
structure to predict the cost of interruption. In CHI’06: Proceedings of
the SIGCHI conference on Human factors in computing systems, pages
741–750, Montreal, Canada, April 2006. ACM Press. ISBN 1-59593-178-3.

Shamsi T. Iqbal and Brian P. Bailey. Effects of intelligent notification
management on users and their tasks. In CHI’08: Proceedings of the



194 References

twenty-sixth annual SIGCHI conference on Human factors in computing
systems, pages 93–102, Florence, Italy, April 2008. ACM Press. ISBN
978-1-60558-011-1.

Hiroshi Ishii, Minoru Kobayashi, and Jonathan Grudin. Integration of inter-
personal space and shared workspace: ClearBoard design and experiments.
ACM Transactions on Information Systems, 11(4):349–375, October 1993.
ISSN 1046-8188.

Melody Y. Ivory and Marti A. Hearst. The state of the art in automating
usability evaluation of user interfaces. ACM Computing Surveys, 33(4):
470–516, December 2001. ISSN 0360-0300.

Michal Jacovi, Vladimir Soroka, Gail Gilboa-Freedman, Sigalit Ur, Elad
Shahar, and Natalia Marmasse. The chasms of CSCW: A citation graph
analysis of the CSCW conference. In CSCW’06: Proceedings of the 2006
ACM conference on Computer-supported cooperative work, pages 289–298,
Banff, Canada, November 2006. ACM Press. ISBN 1-59593-249-6.

Tracy Jenkin, Jesse McGeachie, David Fono, and Roel Vertegaal. eyeView:
Focus+context views for large group video conferences. In CHI’05: Exten-
ded abstracts on Human factors in computing systems, pages 1497–1500,
Portland, OR, USA, April 2005. ACM Press. ISBN 1-59593-002-7.

Bonnie John. Why GOMS? Interactions, 2(4):80–89, 1995. ISSN 1072-5520.

Bonnie John, Alonso Vera, Michael Matessa, Michael Freed, and Roger
Remington. Automating CPM-GOMS. In CHI’02: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 147–
154, Minneapolis, MN, USA, April 2002. ACM Press. ISBN 1-58113-453-3.

Bonnie E. John. Extensions of GOMS analyses to expert performance
requiring perception of dynamic visual and auditory information. In
CHI’90: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 107–116, Seattle, WA, USA, April 1990. ACM
Press. ISBN 0-201-50932-6.



References 195

Bonnie E. John and David E. Kieras. Using GOMS for user interface design
and evaluation: Which technique? ACM Transactions on Computer-
Human Interaction, 3(4):287–319, December 1996a. ISSN 1073-0516.

Bonnie E. John and David E. Kieras. The GOMS family of user interface
analysis techniques: Comparison and contrast. ACM Transactions on
Computer-Human Interaction, 3(4):320–351, December 1996b. ISSN 1073-
0516.

Bonnie E. John, Konstantine Prevas, Dario D. Salvucci, and Ken Koedin-
ger. Predictive human performance modeling made easy. In CHI’04:
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 455–462, Vienna, Austria, April 2004. ACM Press. ISBN
1-58113-702-8.

Sasa Junuzovic and Prasun Dewan. Lazy scheduling of processing and
transmission tasks in collaborative systems. In GROUP’09: Proceedings
of the ACM 2009 international conference on Supporting group work,
pages 159–168, Sanibel Island, FL, USA, May 2009. ACM Press. ISBN
978-1-60558-500-0.

Peter J. Kammer, Gregory A. Bolcer, Richard N. Taylor, Arthur S. Hitomi,
and Mark Bergman. Techniques for supporting dynamic and adaptive
workflow. Computer Supported Cooperative Work, 9(3-4):269–292, August
2000. ISSN 0925-9724.

Setrag Khoshafian and Marek Buckiewicz. Introduction to groupware, work-
flow, and workgroup computing. Wiley, New York, NY, USA, 1995. ISBN
0-471-02946-7.

David Kieras. Towards a practical GOMS model methodology for user
interface design. In Martin Helander, editor, The handbook of human-
computer interaction, pages 135–158. Elsevier, Amsterdam, Netherlands,
1988. ISBN 0-444-88673-7.

David Kieras. GOMS models for task analysis. In Dan Diaper and Neville
Stanton, editors, The handbook of task analysis for human-computer



196 References

interaction, pages 83–116. Lawrence Erlbaum Associates, Mahwah, NJ,
USA, 2003. ISBN 0-8058-4432-5.

David E. Kieras and Thomas P. Santoro. Computational GOMS modeling
of a complex team task: Lessons learned. In CHI’04: Proceedings of
the SIGCHI conference on Human factors in computing systems, pages
97–104, Vienna, Austria, April 2004. ACM Press. ISBN 1-58113-702-8.

David E. Kieras, Scott D. Wood, Kasem Abotel, and Anthony Hornof.
GLEAN: A computer-based tool for rapid GOMS model usability evalua-
tion of user interface designs. In UIST’95: Proceedings of the eight annual
ACM symposium on User interface software and technology, pages 91–100,
Pittsburgh, PA, USA, November 1995. ACM Press. ISBN 0-89791-709-X.

Russell Kruger, Sheelagh Carpendale, Stacey D. Scott, and Saul Greenberg.
Roles of orientation in tabletop collaboration: Comprehension, coordina-
tion and communication. Computer Supported Cooperative Work, 13(5-6):
501–537, December 2004. ISSN 0925-9724.

David LaBerge. Attention. In Benjamin M. Bly and David E. Rumelhart,
editors, Cognitive Science, pages 44–98. Academic Press, San Diego, CA,
USA, 1999. ISBN 0-12-601730-1.

John T. Langton, Timothy J. Hickey, and Richard Alterman. Integrating
tools and resources: A case study in building educational groupware for
collaborative programming. Journal of Computing Sciences in Colleges,
19(5):140–153, May 2004. ISSN 1937-4771.

Jure Leskovec and Eric Horvitz. Planetary-scale views on a large instant-
messaging network. In WWW’08: Proceedings of the seventhieth inter-
national conference on World Wide Web, pages 915–924, Beijing, China,
April 2008. ACM Press. ISBN 978-1-60558-085-2.

Peter Lyman and Hal R. Varian. How much information? Technical
report, School of Information Management and Systems, University of
California, Berkeley, CA, USA, 2003. URL http://www.sims.berkeley.
edu/how-much-info-2003. Retrieved May 2009.

http://www.sims.berkeley.edu/how-much-info-2003
http://www.sims.berkeley.edu/how-much-info-2003


References 197

Thomas W. Malone and Kevin Crowston. The interdisciplinary study of
coordination. ACM Computing Surveys, 26(1):87–119, 1994. ISSN 0360-
0300.

Gloria Mark, Jörg M. Haake, and Norbert A. Streitz. Hypermedia use in
group work: Changing the product, process, and strategy. Computer
Supported Cooperative Work, 6(4):327–368, December 1997. ISSN 0925-
9724.

Gloria Mark, Victor M. Gonzalez, and Justin Harris. No task left behind?
examining the structure of fragmented work. In CHI’05: Proceedings of
the SIGCHI conference on Human factors in computing systems, pages
321–330, Portland, OR, USA, April 2005. ACM Press. ISBN 1-58113-998-5.

René Marois and Jason Ivanoff. Capacity limits of information processing
in the brain. Trends in Cognitive Sciences, 9(6):296–305, 2005. ISSN
1364-6613.

David Martin, Mark Rouncefield, Jacki O’Neill, Mark Hartswood, and Dave
Randall. Timing in the art of integration: That’s how the Bastille got
stormed. In GROUP’05: Proceedings of the 2005 international ACM
SIGGROUP conference on Supporting group work, pages 313–322, Sanibel
Island, FL, USA, November 2005. ACM Press. ISBN 1-59593-223-2.

D. Scott McCrickard and Christa M. Chewar. Attuning notification design
to user goals and attention costs. Communications of the ACM, 46(3):
67–72, March 2003. ISSN 0001-0782.

Susan E. McDaniel, Gary M. Olson, and Joseph C. Magee. Identifying
and analyzing multiple threads in computer-mediated and face-to-face
conversations. In CSCW’96: Proceedings of the 1996 ACM conference on
Computer-supported cooperative work, pages 39–47, Boston, MA, USA,
November 1996. ACM Press. ISBN 0-89791-765-0.

Daniel C. McFarlane. Comparison of four primary methods for coordina-
ting the interruption of people in human-computer interaction. Human-
Computer Interaction, 17(1):63–139, 2002. ISSN 0737-0024.



198 References

Joseph E. McGrath. Groups: Interaction and performance. Prentice Hall,
Englewood Cliffs, NJ, USA, 1984. ISBN 0-13-365700-0.

Sean M. McNee, Istvan Albert, Dan Cosley, Prateep Gopalkrishnan,
Shyong K. Lam, Al Mamunur Rashid, Joseph A. Konstan, and John Riedl.
On the recommending of citations for research papers. In CSCW’02: Pro-
ceedings of the 2002 ACM conference on Computer-supported cooperative
work, pages 116–125, New Orleans, LA, USA, November 2002. ACM Press.
ISBN 1-58113-560-2.

Brian E. Mennecke, Joseph S. Valacich, and Bradley C. Wheeler. The
effects of media and task on user performance: A test of the task-media
fit hypothesis. Group Decision and Negotiation, 9(6):507–529, November
2000. ISSN 0926-2644.

Antonios Michailidis and Roy Rada. Comparative study on the effects of
groupware and conventional technologies on the efficiency of collaborative
writing. Computer Supported Cooperative Work, 3(3):327–357, September
1994. ISSN 0925-9724.

Matthew B. Miles and Michael Huberman. Qualitative data analysis: An
expanded sourcebook. Sage Publications, Thousand Oaks, CA, USA, 1994.
ISBN 0-8039-5540-5.

Daihwan Min, Sanghoe Koo, Yun-Hyung Chung, and Bokryeul Kim. Dis-
tributed GOMS: An extension of GOMS to group task. In SMC’99:
Proceedings of the IEEE international conference on Systems, man, and
cybernetics, pages 720–725, Tokyo, Japan, October 1999. IEEE Press.
ISBN 0-7803-5731-0.

Jane N. Mosier and Susan G. Tammaro. When are group scheduling tools
useful? Computer Supported Cooperative Work, 6(1):53–70, March 1997.
ISSN 0925-9724.

Eduardo Mosqueira-Rey, Julio Rivela-Carballal, and Vicente Moret-Bonillo.
Integrating GOMS models and logging methods into a single tool for
evaluating the usability of intelligent systems. In SMC’04: Proceedings
of the IEEE international conference on Systems, man, and cybernetics,



References 199

pages 5142–5147, The Hague, Netherlands, October 2004. IEEE Press.
ISBN 0-7803-8566-7.

Jonathan P. Munson and Prasun Dewan. A flexible object merging framework.
In CSCW’94: Proceedings of the 1994 ACM conference on Computer-
supported cooperative work, pages 231–242, Chapel Hill, NC, USA, October
1994. ACM Press. ISBN 0-89791-689-1.

Miguel A. Nacenta, Dzmitry Aliakseyeu, Sriram Subramanian, and Carl
Gutwin. A comparison of techniques for multi-display reaching. In CHI’05:
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 371–380, Portland, OR, USA, April 2005. ACM Press.
ISBN 1-58113-998-5.

Murli Nagasundaram and Alan R. Dennis. When a group is not a group:
The cognitive foundation of group idea generation. Small Group Research,
24(4):463–489, November 1993. ISSN 1046-4964.

Dennis C. Neale, John M. Carroll, and Mary B. Rosson. Evaluating computer-
supported cooperative work: Models and frameworks. In CSCW’04: Pro-
ceedings of the 2004 ACM conference on Computer-supported cooperative
work, pages 112–121, Chicago, IL, USA, November 2004. ACM Press.
ISBN 1-58113-810-5.

Allen Newell. Unified theories of cognition. Harvard University Press,
Cambridge, MA, USA, 1994. ISBN 0-674-92101-1.

David Nguyen and John Canny. MultiView: Improving trust in group
video conferencing through spatial faithfulness. In CHI’07: Proceedings of
the SIGCHI conference on Human factors in computing systems, pages
1465–1474, San Jose, CA, USA, April 2007. ACM Press. ISBN 978-1-
59593-593-9.

Fred Niederman and John Bryson. Influence of computer-based meeting
support on process and outcomes for a divisional coordinating group.
Group Decision and Negotiation, 7(4):293–325, July 1998. ISSN 0926-
2644.



200 References

Jakob Nielsen. Finding usability problems through heuristic evaluation.
In CHI’92: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 373–380, Monterey, CA, USA, May 1992. ACM
Press. ISBN 0-89791-513-5.

Chris Nodder, Gayna Williams, and Deborah Dubrow. Evaluating the
usability of an evolving collaborative product: Changes in user type, tasks
and evaluation methods over time. In GROUP’99: Proceedings of the
international ACM SIGGROUP conference on Supporting group work,
pages 150–159, Phoenix, AZ, USA, November 1999. ACM Press. ISBN
1-58113-065-1.

Jay F. Nunamaker, Alan R. Dennis, Joseph S. Valacich, Douglas R. Vogel,
and Joey F. George. Electronic meeting systems to support group work.
Communications of the ACM, 34(7):40–61, July 1991. ISSN 0001-0782.

Jay F. Nunamaker, Robert O. Briggs, Daniel D. Mittleman, Douglas R.
Vogel, and Pierre A. Balthazard. Lessons from a dozen years of group
support systems research: A discussion of lab and field findings. Journal of
Management Information Systems, 13(3):163–207, December 1996. ISSN
0742-1222.

Judith Olson and Gary Olson. The growth of cognitive modeling in human-
computer interaction since GOMS. Human-Computer Interaction, 5(2):
221–265, 1990. ISSN 0737-0024.

Alex F. Osborn. Applied imagination: Principles and procedures of creative
problem-solving. Scribner, New York, NY, USA, third edition, 1963. ISBN
684-41393-0.

Michael Parent and R. Brent Gallupe. The role of leadership in group
support systems failure. Group Decision and Negotiation, 10(1):405–422,
January 2001. ISSN 0926-2644.

Sharoda A. Paul and Meredith R. Morris. CoSense: Enhancing sensemaking
for collaborative web search. In CHI’09: Proceedings of the twenty-seventh
international conference on Human factors in computing systems, pages



References 201

1771–1780, Boston, MA, USA, April 2009. ACM Press. ISBN 978-1-60558-
246-7.

Udai S. Pawar, Joyojeet Pal, Rahul Gupta, and Kentaro Toyama. Multiple
mice for retention tasks in disadvantaged schools. In CHI’07: Proceedings
of the SIGCHI conference on Human factors in computing systems, pages
1581–1590, San Jose, CA, USA, April 2007. ACM Press. ISBN 978-1-
59593-593-9.

Chengzhi Peng. Survey of collaborative drawing support tools. Computer
Supported Cooperative Work, 1(3):197–228, September 1993. ISSN 0925-
9724.

David Pinelle and Carl Gutwin. A review of groupware evaluations. In
WETICE’00: Proceedings of the ninth IEEE international workshops on
Enabling technologies, pages 86–91, Gaithersburg, MD, USA, June 2000.
IEEE Press. ISBN 0-7695-0798-0.

David Pinelle and Carl Gutwin. Groupware walkthrough: Adding context
to groupware usability evaluation. In CHI’02: Proceedings of the SIG-
CHI conference on Human factors in computing systems, pages 455–462,
Minneapolis, MN, USA, April 2002. ACM Press. ISBN 1-58113-453-3.

David Pinelle and Carl Gutwin. Evaluating teamwork support in tabletop
groupware applications using collaboration usability analysis. Personal
and Ubiquitous Computing, 12(3):237–254, January 2008. ISSN 1617-4909.

David Pinelle, Carl Gutwin, and Saul Greenberg. Task analysis for groupware
usability evaluation: Modeling shared-workspace tasks with the mechanics
of collaboration. ACM Transactions on Computer-Human Interaction, 10
(4):281–311, December 2003. ISSN 1073-0516.

David Pinelle, Mutasem Barjawi, Miguel Nacenta, and Regan Mandryk. An
evaluation of coordination techniques for protecting objects and territories
in tabletop groupware. In CHI’09: Proceedings of the twenty-seventh
international conference on Human factors in computing systems, pages
2129–2138, Boston, MA, USA, April 2009. ACM Press. ISBN 978-1-60558-
246-7.



202 References

Anne M. Piper and James D. Hollan. Supporting medical conversations
between deaf and hearing individuals with tabletop displays. In CSCW’08:
Proceedings of the 2008 ACM conference on Computer-supported coopera-
tive work, pages 147–156, San Diego, CA, USA, November 2008. ACM
Press. ISBN 978-1-60558-007-4.

Anne M. Piper, Eileen O’Brien, Meredith R. Morris, and Terry Winograd.
SIDES: A cooperative tabletop computer game for social skills development.
In CSCW’06: Proceedings of the 2006 ACM conference on Computer-
supported cooperative work, pages 1–10, Banff, Canada, November 2006.
ACM Press. ISBN 1-59593-249-6.

Lydia Plowman, Yvonne Rogers, and Magnus Ramage. What are workplace
studies for? In ECSCW’95: Proceedings of the fourth european confe-
rence on Computer-supported cooperative work, pages 309–324, Stockholm,
Sweden, September 1995. Kluwer. ISBN 0-7923-3697-6.

Peter G. Polson, Clayton Lewis, John Rieman, and Cathleen Wharton.
Cognitive walkthroughs: A method for theory-based evaluation of user
interfaces. International Journal of Man-Machine Studies, 36(5):741–773,
1992. ISSN 0020-7373.

Thorsten Prante, Carsten Magerkurth, and Norbert Streitz. Developing
CSCW tool for idea finding: Empirical results and implications for design.
In CSCW’02: Proceedings of the 2002 ACM conference on Computer-
supported cooperative work, pages 106–115, New Orleans, LA, USA, No-
vember 2002. ACM Press. ISBN 1-58113-560-2.

Roger S. Pressman. Software engineering: A practitioner’s approach.
McGraw-Hill, New York, NY, USA, 2001. ISBN 0-07-365578-3.

Wolfgang Prinz and Sabine Kolvenbach. Support for workflows in a ministe-
rial environment. In CSCW’96: Proceedings of the 1996 ACM conference
on Computer-supported cooperative work, pages 199–208, Boston, MA,
USA, November 1996. ACM Press. ISBN 0-89791-765-0.

Gitesh K. Raikundalia and Hao L. Zhang. Newly-discovered group awareness
mechanisms for supporting real-time collaborative authoring. In AUIC’05:



References 203

Proceedings of the sixth Australasian conference on User interface, pages
127–136, Newcastle, Australia, January 2005. Australian Computer Society.
ISBN 1-920682-22-8.

Sonya Rajan, Scotty D. Craig, Barry Gholson, Natalie K. Person, and
Arthur C. Graesser. AutoTutor: Incorporating back-channel feedback
and other human-like conversational behaviors into an intelligent tutoring
system. International Journal of Speech Technology, 4(2):117–126, 2001.
ISSN 1381-2416.

Abhishek Ranjan, Jeremy P. Birnholtz, and Ravin Balakrishnan. An explo-
ratory analysis of partner action and camera control in a video-mediated
collaborative task. In CSCW’06: Proceedings of the 2006 ACM conference
on Computer-supported cooperative work, pages 403–412, Banff, Canada,
November 2006. ACM Press. ISBN 1-59593-249-6.

Ronald A. Rensink. Change detection. Annual Review of Psychology, 53(1):
245–277, 2002. ISSN 0066-4308.

Claudia Roda and Julie Thomas. Attention aware systems: Introduction to
special issue. Computers in Human Behavior, 22(4):555–556, July 2006.
ISSN 0747-5632.

Yvonne Rogers. Exploring obstacles: Integrating CSCW in evolving or-
ganisations. In CSCW’94: Proceedings of the 1994 ACM conference on
Computer-supported cooperative work, pages 67–77, Chapel Hill, NC, USA,
October 1994. ACM Press. ISBN 0-89791-689-1.

Mark Roseman and Saul Greenberg. Building real-time groupware with
GroupKit, a groupware toolkit. ACM Transactions on Computer-Human
Interaction, 3(1):66–106, March 1996. ISSN 1073-0516.

Vassil Roussev, Prasun Dewan, and Vibhor Jain. Composable collaboration
infrastructures based on programming patterns. In CSCW’00: Proceedings
of the 2000 ACM conference on Computer-supported cooperative work,
pages 117–126, Philadelphia, PA, USA, December 2000. ACM Press. ISBN
1-58113-222-0.



204 References

Dennis W. Rowe, John Sibert, and Don Irwin. Heart rate variability:
Indicator of user state as an aid to human-computer interaction. In
CHI’98: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 480–487, Los Angeles, CA, USA, April 1998.
ACM Press. ISBN 0-201-30987-4.

Mark S. Sanders and Ernest J. McCormick. Human factors in engineering
and design. McGraw-Hill, New York, NY, USA, seventh edition, 1992.
ISBN 0-07-112826-3.

Christopher Saunders. Get your IM in shape: A workplace guide for 2004.
Datamation, January 2004. URL http://itmanagement.earthweb.com/
entdev/article.php/3294811. Retrieved May 2009.

Kjeld Schmidt. The problem with awareness. Computer Supported Coopera-
tive Work, 11(3-4):285–298, September 2002. ISSN 0925-9724.

Jean Scholtz and Michelle P. Steves. A framework for real-world software
systems evaluations. In CSCW’04: Proceedings of the 2004 ACM confe-
rence on Computer-supported cooperative work, pages 600–603, Chicago,
IL, USA, November 2004. ACM Press. ISBN 1-58113-810-5.

Stacey D. Scott, Karen D. Grant, and Regan L. Mandryk. System guidelines
for co-located, collaborative work on a tabletop display. In ECSCW’03:
Proceedings of the eighth european conference on Computer-supported coo-
perative work, pages 159–178, Helsinki, Finland, September 2003. Springer.
ISBN 978-1-4020-1573-1.

Michael Scriven. Evaluation thesaurus. Edge Press, Point Reyes Station,
CA, USA, third edition, 1981. ISBN 0-918528-18-6.

Hanna M. Söderholm, Diane H. Sonnenwald, Bruce Cairns, James E. Man-
ning, Greg F. Welch, and Henry Fuchs. The potential impact of 3D
telepresence technology on task performance in emergency trauma care.
In GROUP’07: Proceedings of the 2007 international ACM conference on
Supporting group work, pages 79–88, Sanibel Island, FL, USA, November
2007. ACM Press. ISBN 978-1-59593-845-9.

http://itmanagement.earthweb.com/entdev/article.php/3294811
http://itmanagement.earthweb.com/entdev/article.php/3294811


References 205

Kimron L. Shapiro, Karen M. Arnell, and Jane E. Raymond. The attentional
blink. Trends in Cognitive Sciences, 1(8):291–296, 1997. ISSN 1364-6613.

Duncan Shaw, Colin Eden, and Fran Ackerman. Evaluating group support
systems: Improving brainstorming research methodology. RP 02-09, Aston
Business School Research Institute, Birmingham, UK, May 2002.

Herbert A. Simon. Designing organizations for an information-rich world. In
Martin Greenberger, editor, Computers, communication, and the public
interest, pages 37–72. Johns Hopkins University Press, Baltimore, MD,
USA, 1971. ISBN 0-8018-1135-X.

Daniel J. Simons and Ronald A. Rensink. Change blindness: Past, present,
and future. Trends in Cognitive Sciences, 9(1):16–20, 2005. ISSN 1364-
6613.

Markus Sohlenkamp and Greg Chwelos. Integrating communication, coope-
ration, and awareness: The DIVA virtual office environment. In CSCW’94:
Proceedings of the 1994 ACM conference on Computer-supported coope-
rative work, pages 331–343, Chapel Hill, NC, USA, October 1994. ACM
Press. ISBN 0-89791-689-1.

Cheri Speier, Joseph S. Valacich, and Iris Vessey. The influence of task
interruption on individual decision making: An information overload
perspective. Decision Sciences, 30(2):337–360, 1999. ISSN 0011-7315.

M. Stefik, Daniel G. Bobrow, Stan Lanning, Deborah Tatar, and Greg
Foster. WYSIWIS revised: Early experiences with multi-user interfaces.
In CSCW’86: Proceedings of the 1986 ACM conference on Computer-
supported cooperative work, pages 276–290, Austin, TX, USA, December
1986. ACM Press. ISBN 1-23-456789-0.

Robert J. Sternberg. Cognitive psychology. Wadsworth, Belmont, CA, USA,
third edition, 2003. ISBN 0-155-08535-2.

Oliver Stiemerling and Armin B. Cremers. The use of cooperation scenarios
in the design and evaluation of a CSCW system. IEEE Transactions on
Software Engineering, 24(12):1171–1181, December 1998. ISSN 0098-5589.



206 References

Dane Stuckel and Carl Gutwin. The effects of local lag on tightly-coupled
interaction in distributed groupware. In CSCW’08: Proceedings of the
2008 ACM conference on Computer-supported cooperative work, pages
447–456, San Diego, CA, USA, November 2008. ACM Press. ISBN 978-1-
60558-007-4.

Masanori Sugimoto, Kazuhiro Hosoi, and Hiromichi Hashizume. Caretta: A
system for supporting face-to-face collaboration by integrating personal
and shared spaces. In CHI’04: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 41–48, Vienna, Austria, April
2004. ACM Press. ISBN 1-58113-702-8.

Chengzheng Sun. Undo any operation at any time in group editors.
In CSCW’00: Proceedings of the 2000 ACM conference on Computer-
supported cooperative work, pages 191–200, Philadelphia, PA, USA, De-
cember 2000. ACM Press. ISBN 1-58113-222-0.

Margaret H. Szymanski, Paul M. Aoki, Rebecca E. Grinter, Amy Hurst,
James D. Thornton, and Allison Woodruff. Sotto Voce: Facilitating social
learning in a historic house. Computer Supported Cooperative Work, 17
(1):5–34, February 2008. ISSN 0925-9724.

Hamdy A. Taha. Operations research: An introduction. Prentice Hall, Upper
Saddle River, NJ, USA, seventh edition, 2003. ISBN 0-13-048808-9.

Susan G. Tammaro, Jane N. Mosier, Nancy C. Goodwin, and G. Spitz.
Collaborative writing is hard to support: A field study of collaborative
writing. Computer Supported Cooperative Work, 6(1):19–51, March 1997.
ISSN 0925-9724.

Anthony Tang, Melanie Tory, Barry Po, Petra Neumann, and Sheelagh
Carpendale. Collaborative coupling over tabletop displays. In CHI’06:
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 1181–1190, Montreal, Canada, April 2006. ACM Press.
ISBN 1-59593-178-3.

Charlotte Tang and Sheelagh Carpendale. Evaluating the deployment of
a mobile technology in a hospital ward. In CSCW’08: Proceedings of



References 207

the 2008 ACM conference on Computer-supported cooperative work, pages
205–214, San Diego, CA, USA, November 2008. ACM Press. ISBN 978-1-
60558-007-4.

Konrad Tollmar, Ovidiu Sandor, and Anna Schömer. Supporting social
awareness at work: Design and experience. In CSCW’96: Proceedings
of the 1996 ACM conference on Computer-supported cooperative work,
pages 298–307, Boston, MA, USA, November 1996. ACM Press. ISBN
0-89791-765-0.

Zachary O. Toups, Andruid Kerne, William Hamilton, and Alan Blevins.
Emergent team coordination: From fire emergency response practice to a
non-mimetic simulation game. In GROUP’09: Proceedings of the ACM
2009 international conference on Supporting group work, pages 341–350,
Sanibel Island, FL, USA, May 2009. ACM Press. ISBN 978-1-60558-500-0.

Theophanis Tsandilas and Ravin Balakrishnan. An evaluation of techni-
ques for reducing spatial interference in single display groupware. In
ECSCW’05: Proceedings of the ninth european conference on Computer-
supported cooperative work, pages 225–245, Paris, France, September 2005.
Springer. ISBN 1-4020-4022-9.

Pihlip Tuddenham and Peter Robinson. Territorial coordination and work-
space awareness in remote tabletop collaboration. In CHI’09: Proceedings
of the twenty-seventh international conference on Human factors in com-
puting systems, pages 2139–2148, Boston, MA, USA, April 2009. ACM
Press. ISBN 978-1-60558-246-7.

Lai-lai Tung and Efraim Turban. A proposed research framework for distri-
buted group support systems. Decision Support Systems, 23(2):175–188,
June 1998. ISSN 0167-9236.

Michael Twidale, David Randall, and Richard Bentley. Situated evaluation
for cooperative systems. In CSCW’94: Proceedings of the 1994 ACM con-
ference on Computer-supported cooperative work, pages 441–452, Chapel
Hill, NC, USA, October 1994. ACM Press. ISBN 0-89791-689-1.



208 References

Andrew H. Van de Ven and André L. Delbecq. Determinants of coordination
modes within organizations. Americal Sociological Review, 41(2):322–338,
April 1976. ISSN 0003-1224.

Julita Vassileva and Lingling Sun. Evolving a social visualization design
aimed at increasing participation in a class-based online community. In-
ternational Journal of Cooperative Information Systems, 17(4):443–466,
December 2008. ISSN 0218-8430.

Alonso H. Vera, Bonnie E. John, Roger Remington, Michael Matessa, and
Michael A. Freed. Automating human-performance modeling at the
millisecond level. Human-Computer Interaction, 20(3):225–265, 2005.
ISSN 0737-0024.

Roel Vertegaal. The GAZE groupware system: Mediating joint attention in
multiparty communication and collaboration. In CHI’99: Proceedings of
the SIGCHI conference on Human factors in computing systems, pages
294–301, Pittsburgh, PA, USA, May 1999. ACM Press. ISBN 0-201-48559-
1.

Roel Vertegaal. Attentive user interfaces: Introduction. Communications of
the ACM, 46(3):31–33, March 2003. ISSN 0001-0782.

Roel Vertegaal, Ivo Weevers, Changuk Sohn, and Chris Cheung. GAZE-2:
Conveying eye contact in group video conferencing using eye-controlled
camera direction. In CHI’03: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 521–528, Ft. Lauderdale, FL,
USA, April 2003. ACM Press. ISBN 1-58113-630-7.

Roel Vertegaal, Jeffrey S. Shell, Daniel Chen, and Aadil Mamuji. Designing
for augmented attention: Towards a framework for attentive user interfaces.
Computers in Human Behavior, 22(4):771–789, July 2006. ISSN 0747-5632.

Yao Wang, Wolfang Gräther, and Wolfgang Prinz. Suitable notification
intensity: The dynamic awareness system. In GROUP’07: Proceedings of
the 2007 international ACM conference on Supporting group work, pages
99–106, Sanibel Island, FL, USA, November 2007. ACM Press. ISBN
978-1-59593-845-9.



References 209

Justin D. Weisz. Synchronous broadcast messaging: The use of ICT. In
CHI’06: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 1293–1302, Montreal, Canada, April 2006. ACM
Press. ISBN 1-59593-178-3.

S.A. Wensveen, J.P. Djajadiningrat, and C.J. Overbeeke. Interaction frogger:
A design framework to couple action and function through feedback and
feedforward. In DIS’04: Proceedings of the 2004 conference on Designing
interactive systems, pages 177–184, Cambridge, MA, USA, July 2004.
ACM Press. ISBN 1-58113-787-7.

Steve Whittaker and Brian Amento. Seeing what you are hearing: Co-
ordinating responses to trouble reports in network troubleshooting. In
ECSCW’03: Proceedings of the eighth european conference on Computer-
supported cooperative work, pages 219–238, Helsinki, Finland, September
2003. Springer. ISBN 978-1-4020-1573-1.

Christopher D. Wickens and Justin G. Hollands. Engineering psychology
and human performance. Prentice Hall, Upper Saddle River, NJ, USA,
third edition, 2000. ISBN 0-321-04711-7.

Christopher D. Wickens and Jason S. McCarley. Applied attention theory.
CRC Press, Boca Raton, FL, USA, 2008. ISBN 0-8058-5983-7.

Kin F. Wong. The relationship between attentional blink and psychological
refractory period. Journal of Experimental Psychology: Human Perception
and Performance, 28(1):54–71, February 2002. ISSN 0096-1523.

Bruce Woodcock. An analysis of MMOG subscription growth, May
2008. URL http://www.2008.loginconference.com/session.php?id=
53692. Lecture presented at the 2008 ION Game conference. Retrieved
November 2008.

Huahai Yang and Gary M. Olson. Exploring collaborative navigation: The
effect of perspectives on group performance. In CVE’02: Proceedings of
the fourth international conference on Collaborative virtual environments,
pages 135–142, Bonn, Germany, September 2002. ACM Press. ISBN
1-58113-489-4.

http://www.2008.loginconference.com/session.php?id=53692
http://www.2008.loginconference.com/session.php?id=53692


210 References

Nicole Yankelovich, William Walker, Patricia Roberts, Mike Wessler, Jo-
nathan Kaplan, and Joe Provino. Meeting central: Making distributed
meetings more effective. In CSCW’04: Proceedings of the 2004 ACM con-
ference on Computer-supported cooperative work, pages 419–428, Chicago,
IL, USA, November 2004. ACM Press. ISBN 1-58113-810-5.

Yufei Yuan, Milena Head, and Mei Du. The effects of multimedia communi-
cation on web-based negotiation. Group Decision and Negotiation, 12(2):
89–109, March 2003. ISSN 0926-2644.

Ana Zanella and Saul Greenberg. Reducing interference in single display
groupware through transparency. In ECSCW’01: Proceedings of the sixth
european conference on Computer-supported cooperative work, pages 339–
358, Bonn, Germany, September 2001. Springer. ISBN 978-0-7923-7163-2.

Shumin Zhai. What’s in the eyes for attentive input. Communications of
the ACM, 46(3):34–39, March 2003. ISSN 0001-0782.

Qiang A. Zhao and John T. Stasko. Evaluating image filtering based
techniques in media space applications. In CSCW’98: Proceedings of the
1998 ACM conference on Computer-supported cooperative work, pages 11–
18, Seattle, WA, USA, November 1998. ACM Press. ISBN 1-58113-009-0.



Acronyms

AB Attentional Blink (p. 119)

AUI Attentive User Interface (p. 121)

CATHCI Cognitive Analysis Tool for HCI (p. 39)

CB Change Blindness (p. 120)

CMN-GOMS Card, Moran, Newell GOMS (p. 38)

CPM-GOMS Cognitive, Perceptual, Motor GOMS (p. 42)

CRITIQUE Convenient, Rapid, Interactive Tool for Integrating Quick
Usability Evaluations (p. 37)

DGOMS Distributed GOMS (p. 45)

DTB Defer-To-Boundary (p. 129)

GLEAN GOMS Language and Evaluation ANalysis (p. 41)

GOMS Goals, Operators, Methods, and Selection rules (p. 35)

GU Goal Unit (p. 95)

HCI Human-Computer Interaction

ISI InterStimulus Interval (p. 120)

KLM Keystroke-Level Model (p. 36)

LTM Long-Term Memory (p. 35)

MAUI Multi-User Awareness UI Toolkit (p. 114)

MHP Model Human Processor (p. 34)

NGOMSL Natural GOMS Language (p. 39)

PERT Program Evaluation and Review Technique (p. 42)

211



212 Acronyms

PRP Psychological Refractory Period (p. 119)

QGOMS Quick GOMS (p. 39)

SDG Single Display Groupware (p. 94)

SOA Stimulus Onset Asynchrony (p. 120)

SQFD Software Quality Function Deployment (p. 85)

TCP/IP Transport Control Protocol/Internet Protocol (p. 139)

UI User Interface

VISNU Validation of Intelligent Systems aNd Usability (p. 39)

WM Working Memory (p. 34)

XML eXtensible Markup Language (p. 139)


	Abstract
	Resumo
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Problem Statement and Research Question
	Objectives and Research Methods
	Overview of the Dissertation

	Groupware Evaluation
	Types of Evaluation
	Formative
	Summative
	Comparative
	Other Types

	Evaluation Methods
	Context-Based
	Usability-Oriented

	Discussion
	Summary

	The Roots of Cognitive-Level Evaluation
	Background and Concepts
	Evaluation Methods and Tools
	Keystroke-Level Model
	Card, Moran, and Newell GOMS
	Natural GOMS Language
	Cognitive, Perceptual, Motor GOMS

	Application Domains
	Individual Work
	Group Work

	Discussion
	Summary

	Modelling Groupware at the Cognitive Level
	Motivation
	The Collaborative User
	Group Tasks
	Coordination Modes

	The Groupware Interface
	Information Flows
	Input/Output Devices
	Virtual Workspaces

	Discussion
	Summary

	Evaluating the Usability of Shared Workspaces
	Motivation
	Method Description
	Using the Method
	Locating Updated Objects
	Reserving Objects
	Negotiating Requirements

	Discussion
	Summary

	Evaluating the Usability of Mixed-Focus Workspaces
	Motivation
	Method Description
	Application in a Collaborative Game
	Evaluating the Initial Design
	Evaluating a Design Alternative
	Comparing Designs: The Big Picture

	Discussion
	Summary

	Drawing Attention to Cognitive Limitations
	Information Overload
	Complexities of Group Work
	Influences from Groupware Research
	Designing for Attention Scarcity

	Human Attention
	Goals
	Limitations

	Attentive User Interfaces
	In Multi-User Systems
	In Single-User Systems

	Discussion
	Evaluation of Attentive User Interfaces
	Opportunity for Attentive Groupware Research

	Summary

	Evaluating an Attentive Groupware System
	An Attentive Device for Groupware Systems
	Application in Electronic Brainstorming
	Motivation
	Preliminary Study
	Model of User Behaviour
	Software Architecture and Design

	Laboratory Experiment
	Participants
	Apparatus
	Task
	Design
	Procedure

	Results
	Group Performance
	Group Performance Over Time
	Post-hoc Analysis at the User Level

	Discussion
	Validity of Patterns of User Activity
	Batch Size and Inactivity Period
	Undelivered Ideas
	Limitations

	Summary

	Conclusion
	Main Contributions
	Model of the Groupware Interface
	Cognitive-Level Groupware Evaluation Methods
	Evaluation of an Attentive Groupware System

	Lessons for Practitioners
	Future Work

	Equation for Average Number of Viewport Moves
	Materials Used in the Experiment
	Consent Form
	Entrance Questionnaire
	Brainstorming Instructions

	References
	Acronyms

