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RESUMO 
 

 

O timo é o orgão linfóide primário que tem por função a produção de células T. A 

actividade tímica decresce progressivamente com a idade, mas, apesar de ocorrer uma 

clara involução do timo na puberdade, está claramente demonstrada a produção “de 

novo” de células T até depois dos 60 anos. Esta é considerada essencial para assegurar 

um repertório do receptor de células T (TCR) suficientemente diverso para responder a 

qualquer novo agente patogénico e capaz de prevenir a emergência de estirpes 

resistentes em infecções crónicas como a infecção HIV/SIDA. O compartimento 

periférico de células T é assim mantido não só pela proliferação linfocitária nos órgãos 

linfoides secundários mas também pela entrada contínua de novas células produzidas 

no timo.  

 

Este trabalho tem por objectivo investigar o contributo relativo do timo e da 

periferia para a homeostasia e reconstituição do compartimento de células T através do 

estudo de imunodeficiências.  

 

O FOXN1 é um factor de transcrição expresso pelo epitélio do timo essencial para o 

seu desenvolvimento e também recentemente implicado na prevenção da involução 

tímica. Mutações no gene FOXN1 no ratinho associam-se a ausência de timo e a 

alopécia total, devido ao papel adicional deste na diferenciação dos folículos pilosos 

(“nude-SCID mice”). Os primeiros casos de mutação do FOXN1 foram descritos por 

Pignata et al em duas irmãs da Sicília que apesar da evidência de atímia, apresentavam 

um número significativo de células T circulantes. Identificámos a mesma mutação 
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homozigótica R255X numa criança Portuguesa com alopécia total a quem foi 

diagnosticada, aos 5 meses de idade, disseminação do Bacillus Calmette-Guérin (BCG) 

após vacinação perinatal de rotina com BCG. Nesta altura, apresentava um número de 

células T circulantes próximo do normal que não tinham origem materna. Assim, o 

primeiro objectivo do trabalho consistiu no estudo da população de células T gerada na 

presença de deficiência de FOXN1. 

 

As células T circulantes distribuíam-se igualmente entre as subpopulações CD4, 

CD8 e, aberrantemente, a subpopulação T de células com TCR αβ que não exprimem 

nem CD4 nem CD8 (duplas-negativas, DNαβ), que são geralmente inferiores a 1%. As 

células T apresentavam marcadores de memória e activação; eram oligoclonais e não 

proliferavam após estimulação in vitro. O timo produz também uma população de 

células T reguladoras (Treg) que representam cerca de 5% da subpopulação CD4, com 

propriedades supressoras, fundamental para a prevenção de autoimunidade, 

identificadas pela expressão do factor de transcrição “forkhead box P3” (FoxP3). No 

presente caso, mais de 40% das células CD4 circulantes expressavam altos níveis de 

FoxP3 e um fenótipo claramente supressor. Assim, a deficiência de FOXN1 devida à 

mutação R255X associa-se à presença de células T oligoclonais sugerindo a existência 

de manutenção de desenvolvimento de linfócitos T, embora com alterações da selecção 

positiva/negativa ilustrada pela expansão aberrante de células FoxP3+ e DNαβ.  

 

Uma vez que o defeito se restringia ao epitélio tímico, era plausível que o 

transplante tímico pudesse ser uma estratégia curativa apesar de ser actualmente uma 

terapia experimental nunca anteriormente usada neste contexto. Observou-se uma 

progressiva recuperação imunológica após o transplante tímico realizado aos 14 meses 
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de idade, ilustrada pela associação temporal entre a documentação de respostas T 

específicas ao BCG e a resolução da adenite persistente.  

O estudo da cinética de estabelecimento do compartimento de células T após 

transplante de timo com um grau elevado de incompatibilidade HLA representa um 

contributo único para a compreensão da dinâmica de reconstituição do sistema 

imunitário. Observou-se uma reconstituição progressiva das células T naïve exibindo 

uma diversidade do repertório conservada apesar da incompatibilidade HLA do 

epitélio tímico. O estabelecimento da população Treg teve uma cinética semelhante às 

células CD4 mantendo níveis normais. Dados recentes sugerem que o desenvolvimento 

da população Treg no timo está dependente de um pequeno “nicho” que controla o 

número de células produzidas. É plausível especular que o FOXN1 desempenhe um 

papel nestes “nichos” e contribua para a regulação do número de Treg. Em contraste, 

observou-se a persistência da população DNαβ ao longo dos 5 anos de seguimento, 

sugerindo uma produção mantida eventualmente num possível rudimento tímico 

associado à mutação FOXN1.  

A função do enxerto tímico alogénico foi ainda estimada pela quantificação do 

sj/βTREC, um rácio entre produtos precoces e tardios do rearranjo do TCR no timo, 

que representa uma medida indirecta do número de divisões intra-tímicas e que se 

correlaciona directamente com a produção tímica. O rácio sj/βTREC atingiu níveis 

comparáveis aos observados em crianças saudáveis. No entanto, 4 anos pós-

transplante, documentou-se um declínio marcado do rácio sj/βTREC suportando uma 

diminuição da actividade do enxerto. Apesar disso, observou-se apenas uma pequena 

redução seguida de estabilização das células T naive, sugerindo que após reconstituição 

do sistema imunitário a homeostasia periférica consegue assegurar a manutenção da 

população T naive.  
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Assim, os nosso dados demonstram que é possível adquirir competência 

imunológica com transplante tímico independentemente da compatibilidade HLA, 

mesmo na ausência de sustentabilidade do enxerto sugerida pela diminuição do rácio 

sj/βTREC, o que tem implicações para o desenvolvimento de novas estratégias de 

reconstituição imunológica noutros contextos clínicos.  

 

Estudos recentes sugerem um aumento compensatório da actividade tímica em 

resposta a uma diminuição do compartimento de linfócitos T. Tem sido atribuído um 

papel à citocina IL-7 neste processo para além dos seus efeitos na proliferação 

homeostática das células T na periferia. A infecção pelo HIV está associada a uma 

perda progressiva de células T CD4, sendo ainda controversa a capacidade do timo de 

compensar esta perda bem como de promover a reconstituição desta população após 

terapêutica antiretroviral (ART) em doentes infectados pelo HIV-1. Por outro lado, os 

efeitos periféricos da IL-7 podem minimizar a possível redução da actividade tímica 

quer devida à infecção directa dos timócitos pelo HIV quer mediada pela hiper-

activação generalizada associada à infecção. De facto, a activação persistente do 

sistema imunitário, com a consequente anergia e aumento da susceptibilidade à 

apoptose, é considerada determinante na progressão para SIDA.  

 

O segundo objectivo deste trabalho foi investigar a relação destas vias na infecção 

HIV/SIDA. A originalidade deste estudo residiu na comparação de doentes infectados 

pelo HIV-2, que mesmo na ausência de terapêutica antiretroviral têm virémia 

reduzida, com indivíduos infectados pelo HIV-1 com supressão terapêutica da virémia 

e diferentes graus de recuperação das células T CD4. A comparação com doentes 

infectados pelo HIV-1 não tratados e, portanto, com elevada virémia, permitiu concluir 
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que a linfopénia CD4 se associa a uma perda de células T naive, quer CD4 quer CD8, 

independentemente do tipo de infecção ou exposição à ART. Nos doentes HIV-1+ 

tratados com ausência de recuperação das contagens CD4 apesar de resposta 

virológica, várias estratégias parecem contribuir para suster o declínio das células T 

CD4 e proteger de infecções oportunistas, nomeadamente: menores níveis de activação 

imunológica e uma melhor utilização da IL-7 atestada pelo aumento dos níveis 

intracelulares de Bcl-2, uma molécula anti-apoptótica induzida pela IL-7. 

 

O terceiro objectivo deste trabalho baseou-se no estudo de um doente com Doença 

Granulomatosa Crónica (CGD) e uma linfopénia CD4 persistente na ausência de 

infecção pelo HIV. A CGD constitui a deficiência fagocitária primária mais frequente 

(1:200000 nascimentos) e é causada por defeitos na capacidade oxidativa fagocitária. 

Este doente de 32 anos, com uma clínica de infecções tipicamente associadas à CGD, 

apresentou contagens de células T CD4 inferiores 200 células/l durante mais de 16 

anos. O estudo efectuado revelou uma activação linfocitária generalizada, com 

diferenciação efectora terminal dos linfócitos T CD8 e uma redução da dimensão dos 

telómeros das subpopulações T, sugerindo um turnover celular aumentado devido a 

uma estimulação persistente do sistema imunitário. Além disso, observou-se uma 

depleção marcada das células T naive, com evidência de diminuição da timopoeise 

estimada pelo rácio sj/βTREC, apesar dos níveis elevados de IL-7 sérica. Este perfil 

imunológico tem sido associado a um risco elevado de infecções e sido considerado um 

factor preditivo de morte em indivíduos com idade avançada. O aparente esgotamento 

dos recursos imunológicos é particularmente relevante tendo em conta o aumento de 

esperança de vida dos doentes com CGD, devendo ser considerado na definição de 

indicações terapêuticas, incluindo transplante de células hematopoiéticas. 
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Em conclusão, este trabalho demonstra que diferentes vias podem ser exploradas 

para atingir competência imunológica mesmo na presença de profundas alterações 

linfocitárias. O seu estudo baseado em modelos humanos é fundamental para o 

desenvolvimento de novas estratégias de reconstituição imunológica.  

 

Palavras chave: Células T, Timo, Imunodeficiência, FOXN1, HIV/SIDA, Doença 

Granulomatosa Crónica, Reconstituição Imunológica. 



SUMMARY 
 

 

The thymus is essential for both the establishment of the peripheral T cell pool and 

the generation of the diverse T cell receptor (TCR) repertoire capable of dealing with 

new pathogens and controlling the escape of persistent infections. In humans, the 

thymus is almost fully developed at birth, with the rate of T cell production markedly 

decreasing after puberty. However, it is now clear that this central lymphoid organ 

plays an essential role in the lifetime “de novo” generation of T cells. The maintenance 

of naïve T cells is currently thought to depend upon a combination of peripheral T cell 

proliferation as well as to an age-dependent contribution of recent thymic emigrants. 

 

The overall aim of this work was to investigate the relative roles of the thymus and 

the “periphery” in the maintenance/recovery of the human T cell compartment 

through the study of specific clinical models.  

 

FOXN1 is a transcription factor, expressed by thymic epithelium, crucial for both 

the development of the thymus and prevention of its involution. Defects in FOXN1 in 

mice lead to athymia in association with total alopecia, due to its additional role in hair 

follicle differentiation (“nude-SCID mice”). Human FOXN1 deficiency was first 

reported by Pignata et al. in two sisters from Italy that, despite the evidence of athymia, 

exhibited a significant number of circulating T cells. We identified the same 

homozygous R255X mutation in a Portuguese child, who presented at 5 months of age 

with alopecia, respiratory failure due to Bacillus Calmette-Guérin (BCG) dissemination 

following routine neonatal BCG vaccination, and circulating T cells of non-maternal 
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origin at close to normal numbers. The first aim of this work was to investigate the T 

cell population generated in the presence of FOXN1 deficiency.  

 

Circulating T cells were equally distributed between CD4, CD8 and, strikingly, an 

abnormally increased population of TCR αβ+ cells that expressed neither CD4 nor CD8 

(double-negative, DNαβ), which usually represent less than 1% of the peripheral T cell 

pool. T cells were non-naïve, oligoclonal, activated, and unable to proliferate in vitro. 

The thymus is known to produce a regulatory CD4 T cell subset (Treg), with 

suppressive properties, fundamental for preventing autoimmunity. Currently they are 

best identified by expression of the forkhead box P3 transcription factor FoxP3. 

Notably, more than 40% of the CD4 subset expressed high levels of FoxP3 and had a 

clear regulatory-like T cell (Treg) phenotype. Thus, human FOXN1-deficiency due to 

R255X mutation was associated with significant numbers of oligoclonal T cells 

suggesting that, to a certain extent, T cell development still occured, albeit with altered 

positive/negative selection, as illustrated by the aberrant expansion of FoxP3+ and DN 

subsets.  

 

As FOXN1 mutations impact on thymic epithelium rather than hematopoietic 

precursors, we predicted that thymic transplantation, although never performed before 

in this setting, could be a curative strategy. This was confirmed by the documentation 

of the clinical efficacy of HLA-mismatched thymic transplantation, as attested by the 

temporal association between the clearance of the ongoing BCG adenitis and the 

development of specific responses against mycobacterium antigens.  
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Our study of the kinetics of establishment of the T cell pool after HLA mismatched 

thymic transplantation provides unique data regarding the dynamics of replenishment 

of the immune system.  

A progressive increase of naive (antigen non-experienced cells) T cells was also 

observed, resulting in the generation of a fully diverse CD4 T cell repertoire in spite of 

the HLA-mismatched thymic epithelia.  

Reconstitution of the Treg pool occurred in parallel to that of the CD4 subset, 

leading to stable frequencies within the normal range. Thymic Treg development is 

currently thought to be dependent upon a small developmental niche that tightly 

controls Treg output. It is thus possible that FOXN1 plays a role in such niches, 

contributing to the thymic regulation of Treg numbers.  

In contrast, a significant population of circulating DNαβ persisted, at relatively 

stable frequencies (17% of αβ T cells) and phenotype, throughout 5yrs of follow-up. 

Although the possibility that DNαβ T cells are long-lived cells generated pre-

transplant cannot be excluded, it is also plausible that their persistence may reflect a 

continuous production of this population by a putative thymic rudiment. 

 

The functionality of the allogeneic thymic graft was further estimated by sj/βTREC 

quantification; a ratio between early and late products of TCR rearrangements that was 

shown to represent an indirect measurement of thymocyte division-rate, and a direct 

correlate of thymic output. A progressive increase of the sj/βTREC ratio was observed, 

reaching levels comparable to those found in healthy children. Importantly, a sharp 

decline of sj/βTREC, accompanied by a decrease in the proportion of naïve cells was 

observed 4yrs post-transplant. Notably, these values plateaued thereafter, suggesting 

that steady-state equilibrium could be established after replenishment of the immune 
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system.  

 

Importantly, our data showed that immunocompetence can be achieved through 

HLA-mismatched thymic transplantation, despite the lack of a sustained thymocyte-

division rate (as evidenced by sj/βTREC). These novel data regarding the long-term 

sustainability of allogeneic thymic tissue and the immunological reconstitution 

achieved have implications for the design of immune-based therapeutic strategies to be 

used in other clinical settings.  

 

Recent studies suggested the possibility of a thymic rebound as a compensatory 

feedback loop triggered by emptiness of the peripheral T cell pool, particularly in HIV 

infection. The cytokine IL-7 has been highlighted as a possible factor in this process. IL-

7 has also a central role in peripheral T cell homeostasis. The IL-7 driven peripheral T 

cell proliferation/survival is thought to be able to compensate any putative thymic 

impairment resulting either directly from HIV infection, or from the heightened state 

of immune-activation that characterizes HIV disease. In fact, the persistent immune 

stimulation, and the consequent T cell anergy and susceptibility to apoptosis, are 

considered key determinants of CD4 decline and AIDS progression.  

 

The second specific aim of this work was to investigate the interplay of these 

pathways during HIV/AIDS. The originality of this study mainly resulted from the 

definition of the cohorts under investigation. HIV-1+ patients with discordant 

responses to ART (ART-Discordants, poor CD4 recovery despite suppression of 

viremia) were compared with HIV-2+ patients that exhibited a similar degree of CD4-

depletion and reduced circulating virus in the absence of ART. Untreated HIV-1+ 
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patients who are expected to have high viremia, as well as HIV-1+ patients under ART 

with successful virological and immunological responses were studied in parallel.  

Low CD4-counts were associated with major naïve CD4 and CD8 depletion, 

irrespective of type of infection or ART-exposure. Several pathways were likely to 

contribute to the CD4-count stability and low rate of opportunistic infections 

documented in ART-Discordants in spite of their presumed thymic impairment, 

namely lower levels of T cell activation and a better ability to use IL-7 as indicated by 

the expression levels of the IL-7 induced, anti-apoptotic molecule, Bcl-2.  

 

Our third specific aim was based on the study of an individual with chronic 

granulomatous disease (CGD), a primary defect in the phagocytic oxidative burst, 

who, despite being HIV negative, presented CD4 T cell depletion at levels similar to 

those found in advanced AIDS patients. CGD represents the most prevalent (1:200000 

live births) primary phagocytic defect. This 32-year-old patient, presenting with typical 

CGD-associated infections, had a CD4 lymphopenia of less than 200 cells/l, for more 

than 16 years. Although there are previous reports of diminished T cell numbers in 

CGD patients, these studies did not include phenotypic and functional T cell analysis. 

We found a generalized immune activation, in conjunction with markers of increased 

cell-turnover, including a reduced telomere length of both the CD4 and CD8 subsets, 

and expansion of terminally-differentiated effector CD8 T cells. Additionally a marked 

loss of naïve T cells was found, with evidence of impaired thymic production as 

assessed by sj/βTREC ratio, despite the increased IL-7 levels. This immunological 

profile has been considered a risk for infections, and was shown to be an independent 

predictor of death in aged subjects. Therefore, it is worth considering this putative 

exhaustion of immune resources in the evaluation of long-term therapeutic strategies, 
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including stem-cell transplantation, given the increasing life-expectancy of CGD 

patients.  

 

Overall, our data provide evidence that, although immunodeficiency may be 

associated with profound lymphocyte disturbances, different pathways can be 

exploited to achieve immunological competence. The characterization of these 

pathways in human models is of importance for the definition and design of new 

strategies for immune reconstitution. 

 

Keywords: T cells, Thymus, Immunodeficiency, FOXN1, HIV/AIDS, Chronic 

Granulomatous Disease, Immunological Reconstitution. 

 



CHAPTER 1 

 

Introduction 

 

 
The main function of the immune system is to protect the individual from the 

continual exposure to potentially pathogenic microorganisms. Another fundamental 

property is to discriminate these foreign antigens from self-antigens and thus, to 

maintain immune tolerance. 

 

T lymphocytes play a central role in this process, in two ways. Firstly, they act as 

orchestrators of the many cell types involved in both innate (non-specific) and adaptive 

(specific) immune responses. With regard to the latter, they provide the help necessary 

for B cell differentiation and antibody production. Secondly, they have key effector 

functions, as clearly illustrated by the contribution of cytotoxic T lymphocytes to the 

effective control of intracellular pathogens, particularly viruses. In order to carry out 

these diverse roles, it is necessary for T lymphocytes to possess a broadly reactive TCR 

repertoire able to react against foreign antigens whilst maintaining self-tolerance. 

 

Potential strategies for T cell reconstitution have become a critical research area for 

clinical practice. The newly developed, more aggressive therapeutic interventions in 

the areas of oncology, auto-immune disease, and transplantation are frequently 

associated with a major side-effect: T cell depletion. It has been shown that the 

reconstitution of cellular immunity after hematopoietic stem cell transplantation is a 

critical determinant of its long-term success. On the other hand, in spite of the major 
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impact of antiretroviral therapy (ART) on the survival and morbidity of Human 

Immunodeficiency Virus (HIV)-1 infected patients, it is now clear that immune-based 

complementary therapies are needed to achieve the immunological recovery required 

to allow the discontinuation of the antiretroviral drugs. Moreover, although primary T 

cell immunodeficiencies are rare, they are frequently life-threatening conditions that 

require prompt diagnosis and therapeutic intervention. 

The overall aim of this work is to investigate mechanisms involved in the 

preservation and recovery of the human T cell compartment. Therefore, the 

introduction has been divided into three main sections.  

The first section comprises an overview of T cell physiology, focusing on the 

central role of the thymus in the establishment and maintenance of a diverse T cell 

population.  Moreover, the main mechanisms thought to be involved in T cell 

homeostasis and in the regulation of T cell responses will be discussed.  

The second part addresses the main causes of T cell deficiencies, with particular 

focus on the clinical settings that were explored in this work as a strategy to address 

the relative roles of the thymus and periphery in the maintenance/recovery of the T 

cell pool.  

The final section provides a review of the most important, currently available, 

therapeutic strategies for achieving T cell recovery. 
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1.1 T cell physiology 

1.1.1 T cell generation 

T lymphocytes are produced in the thymus. This primary lymphoid organ provides 

a unique environment that enables the differentiation of bone-marrow derived T cell 

precursors into mature T cells. The key feature of this process is the generation of a 

diverse repertoire of functional T cell receptors (TCR), with a reduced reactivity to self-

antigens. As a primary site for T cell lymphopoiesis, the thymus is active, not only 

during the foetal stages of development, but also throughout postnatal life.  

 

In the mouse, the thymic rudiment is first evident on day 11 of gestation, having 

evolved from the endoderm of the third pharyngeal pouch (1). The development of the 

thymus in humans closely follows that observed in the murine model of thymic 

development. The growth of the thymus primordium from the third pouch coincides 

with the onset of FOXN1 (Forkhead box protein N1) gene expression (2). The forkhead 

transcription factor FOXN1 is the best-known regulator of foetal thymus development 

(3). Its expression has been shown to be required for differentiation of thymic epithelial 

cells (4) and the induction of cortical and medullary differentiation in the thymus (5). 

Before undergoing the differentiation into the medullary and cortex 

compartmentalization, the thymus is colonized by hematopoietic precursors (1, 6, 7). 

 

The thymic architecture consists of distinct anatomical compartments which 

include the subcapsular area, the cortex, the cortical medullary junction and the 

medulla (8). Thymic epithelial cells (TECs) constitute the major component of the 

stromal population. They can be subdivided according to their functional, 
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morphological, and antigen presentation capacity, into two main subpopulations, 

cortical (cTEC) and medullary (mTEC) epithelial cells. In addition to the TEC subsets 

described above, the thymus is composed of other cell types, including populations of 

haematopoietic (dendritic cells, macrophages, B cells) and nonhaematopoietic 

(fibroblasts, endothelial cells and others) origin. This stromal scaffold provides the 

specialized microenvironment necessary for the life-long attraction of haematopoietic 

precursor cells; the signalling infrastructure required to instruct early thymocyte 

differentiation; the factors to guide precursor cells to the different anatomical sub-

compartments; the molecular constraints that are needed for the selection of immature 

T cells; and the molecules necessary for the functionally mature T cells to exit to the 

periphery. The hallmark of T cell development is the generation of T cells that express 

a functional TCR, whether it be TCR or TCR, able to recognize antigenic peptides 

bound to major histocompatibility complex (MHC) molecules on the surface of antigen 

presenting cells (APC). 

  

The CD34+ precursor cells, which originate from bone-marrow stem cells, migrate 

to the thymus to undergo T cell development (9). These precursor cells enter the 

human thymus at the cortico-medullary junction. From this area they migrate towards 

the cortical region where proliferation and differentiation are initiated via interactions 

with the thymic stroma. The distinct stages of T cell development are defined by the 

sequential expression of cell-surface antigens (Figure 1) (10). Rearrangement of the 

TCR ,  and  loci, as well as expression of the CD1a molecule mark the commitment 

to the T cell lineage. The definition of thymocyte differentiation steps is typically based 

on the cell-surface expression of CD4 and CD8, with undifferentiated populations 
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being classified as CD4-CD8- double negative (DN). In humans, three distinct DN 

stages can be recognized: a CD34+CD38-CD1a- stage that represents the most 

immature thymic subset, and the consecutive CD34+CD38+CD1a- and 

CD34+CD38+CD1a+ (Pre-T1) stages. Human DN thymocytes mature via a CD4 

immature single positive (CD4ISP) stage (Pre-T2), which express CD4 in the absence of 

CD8. This population contains precursors for both the  and  T cell lineages. The 

CD4ISP stage is followed by an early double-positive (EDP) stage composed of cells 

expressing CD4 and the  chain of CD8. EDP cells are the immediate precursors of 

double-positive (DP) cells, which are characterized by the co-expression of CD4 and 

the  and  chains of CD8. Following this DP stage, cells differentiate into CD4+ or 

CD8+ SP T cells that express a functional TCR and exit the thymus (8). 

 
 Figure 1: Early stages of T cell development in the thymus. From Spits et al (10). 

 

The DN thymocytes mature in distinct areas within the cortex, as well as in the 

subcapsular region. Their proliferation, survival and differentiation are controlled by a 

combination of cell-autonomous factors and a number of stromal cell-derived signals 
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(including interleukin-7 (IL-7) and stem cell factor (SCF)) secreted by TEC; Wnt 

molecules, Hedgehog (an essential positive regulator of T cell progenitor 

differentiation); and Notch, amongst others (11-13).  

 

TCR gene rearrangement plays a crucial role in thymocyte fate. Thymocytes can 

only survive to maturity if they successfully carry out combinations of gene 

rearrangements that will generate  and ,  or  and , chains, that can support the 

assembly of TCR/CD3, or TCR/CD3 complexes, respectively. The TCR diversity 

that can be generated within the thymocyte pool has been estimated to be as large as 

1020 /-chain combinations. 

The antigen-recognising, variable domains of TCR and  chains are encoded by 

combinations of variable (V), diversity (D), and joining (J) gene segments (TCR 

chains), or V and J gene segments (TCR chains). 

 

D-to-J recombination occurs first in the  chain of the TCR. This process can involve 

either the joining of the D1 gene segment to one of six J1 segments, or the joining of 

the D2 gene segment to one of seven J2 segments. D-to-J recombination is followed 

by V-to-DJ rearrangements leading to the formation of the TCR C chain. 

 

T cell commitment is thought to occur with the initiation of TCR gene 

rearrangement. -selection is the process by which precursor T cells with a productive 

rearrangement of the TCR locus are selected to undergo further differentiation, in the 

form of TCR rearrangements.  The developmental stage at which -selection occurs in 

humans is still the subject of controversy (10). However, it was recently shown to occur 

as early as the CD34+CD38+CD1a+ stage (14). Thymocytes harbouring a rearranged 
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TCR locus generate a TCR molecule that pairs covalently with the invariant pre-

TCR (pT), and noncovalently with CD3 signal-transducing molecules, resulting in 

formation of a pre-TCR complex at the cell surface.  

 

The rearrangement of the  chain of the TCR is followed by  chain rearrangement. 

The subsequent assembly of the  and  chains results in formation of the -TCR that 

is expressed on a majority of T cells. As the TCR gene segments are embedded within 

the TCR locus, the V-to-J rearrangements lead to deletion of the  locus from the 

chromosome (15). 

 

After completion of TCR rearrangements,  T cells are selected by a low-affinity 

interaction of the TCR heterodimer with self-peptides complexed with MHC 

antigens, a process termed positive selection. Thymocytes differentiate into single 

positive (SP) CD4 or SP CD8 thymocytes whose TCR recognises MHC class II or class I 

molecules, respectively. Death by neglect of  thymocytes whose TCR cannot recognise 

antigen in the context of either MHC class I or II molecules ensures that only those 

thymocytes with appropriate TCR specificities survive and differentiate into 

functionally mature T cells (16). Thymocytes that express high-affinity receptors for 

self-peptide–MHC complexes expressed on thymic dendritc cell (DCs) are deleted 

through a process known as negative selection. 

The usual end result of these combined selection mechanisms is the generation of a 

naïve T cell pool composed of cells with a stringently selected TCR repertoire, able to 

respond to foreign non-self antigens. They are exported to the periphery where the 

majority of them remain tolerant to the host’s tissues (self). 
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A variety of T cell receptor excision circles (TRECs) are formed from the excised 

DNA generated by the rearrangements of the TCR,  and  loci described above.  

During TCR rearrangement, the end-to-end ligation of the recombination signal 

sequences flanking the -rec locus and the -J locus generates a single TREC 

containing a signal joint (sj) sequence (sjTREC), as shown in Figure 2. Coding-joint 

(cj)TRECs are produced during the TCR rearrangement of V to J gene segments.  

 

 
 

 Figure 2: T cell receptor excision circles. From Spits et al (10). 

 

TRECs are not duplicated during mitosis, and are therefore diluted out with each 

cellular division (17, 18). Since recent thymic emigrants (RTE) are enriched in these 

molecules, TREC levels have been used to assess thymic function, through their 

quantification in peripheral blood using real time PCR technology. 

The quantification of sjTREC as a marker of RTE, and measure of thymic output 

was first utilized by Douek et al (19). As expected, given the gradual loss of thymic 

function during aging, they showed a decreasing number of sjTRECs with age in 
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healthy individuals. Moreover, they also reported that sjTREC levels were decreased in 

HIV infected patients, but rapidly increased during antiretroviral therapy (19).  

Since sjTRECs are not replicated during cell division, their levels can also be 

influenced by events occurring in the periphery, such as cell proliferation and 

differentiation, redistribution, or alterations in cell survival. All of these can lead to a 

dilution of TREC-bearing cells in the periphery. Thus, TREC quantification data 

requires cautious interpretation; particularly in those conditions, such as the process of 

immune reconstitution following bone marrow transplantation or during HIV 

infection, that are associated with the previously described confounding factors.  

 

The level of thymic output has been shown to be primarily determined by the 

intrathymic proliferation of precursor T cells (20). Thus, a new assay was developed to 

estimate the relative changes in intrathymic proliferation occurring between the TN 

and early DP stages (21), as represented in Figure 3. This approach is based not only in 

the quantification of sjTRECs, generated at the DP stage, but also the DJTREC 

created during the previous DJ rearrangement and organization of the TCR locus. 

The proliferation occurring between these stages can then be estimated by the 

measurement of the ratio of TREC to sjTREC (sj/TREC ratio) (21). It was also shown 

that this parameter was not influenced at the periphery, given that both types of TREC 

were equally affected by the rates of proliferation and death of peripheral T 

lymphocytes (21).   
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Figure 3: Schematic representation of intrathymic proliferation occurring between late TN 
and early DP thymocyte differentiation stages and its effects on TREC and sjTREC levels. 
TN: Triple Negative stage; DP: Double Positive stage; SP/RTE: Single Positive/ Recent Thymic Emigrant 
stage. Adapted from Dion, et al (21). 

 

1.1.2 The naïve T cell compartment  

RTEs emigrating from the thymus are incorporated into the pool of naïve T cells. 

The size of this pool remains relatively constant throughout adult life despite 

continuous antigenic stimulation and the reduction of naïve T cell production by the 

thymus. The maintenance of the naïve T cell pool is thought to mainly depend upon 

survival signals, such as those provided through TCR engagement of self-peptide-

MHC complexes and by IL-7 (22-24). IL-7 has been shown to be a key cytokine 

involved in controlling the survival and homeostatic turnover of peripheral T cells (25-

27). Its effects on T cells appear to be multifactorial and are regulated by the expression 

of its specific receptor, a heterodimer consisting of the IL-7 receptor  chain (IL-7R) 

and common gamma chain (c). The binding of IL-7 to its receptor induces several 

signalling cascades, such as the JAK–STAT (Janus kinase–signal transducer and 

activator of transcription) and the PI3K (phosphoinositide 3-kinase) pathways, that 

promote lymphocyte survival (28, 29). Furthermore, IL-7 has been shown to inhibit 

1 TREC / T-cell 

Proliferation → 
dilution of TREC 

sjTREC is generated 
after proliferation 

Dilution of sjTRECs and 
TRECs after proliferation 
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programmed cell death by up-regulating the expression of the anti-apoptotic molecule 

Bcl-2 (30).  

 

Prior to contact with antigen, naive T cells continuously recirculate between blood 

and secondary lymphoid tissues (spleen, lymph nodes, Peyer’s patches and mucosal-

associated lymphoid tissues) (31, 32). Entry into secondary lymphoid tissues is a highly 

regulated process. In the case of lymph nodes and Peyer's patches, specialized blood 

vessels called high endothelial venules (HEVs) serve as the entry point into the tissue. 

HEVs express a unique set of ligands that are recognized by homing receptors 

expressed on the naïve T cells’ surfaces. Amongst the most critical of these are the 

chemokine CCL21, that engages CCR7, and vascular addressins, that interact with 

CD62L (L selectin) (31). Thus, naïve T cells moving along HEV’s encounter IL-7, self-

peptide–MHC complexes and CCR7 ligands, all of which cooperate to produce 

homeostatic survival signals (33). Continuous migration of T cells through the 

secondary lymphoid tissues is a key mechanism in providing antigenic surveillance. 

Within lymphoid tissues, these antigens are presented to T cells in the form of peptide 

fragments bound to MHC molecules expressed upon specialized APC, in particular 

DC. These cells are strategically positioned within a dense network in the T cell zones 

and are continuously surveyed by recirculating T cells for their expression of foreign 

peptide/MHC complexes. 

 

Several surface molecules have been shown to be expressed by, and thus identify, 

naïve T cells. The co-expression of CD45RA and CD62L on CD4+ T cells is frequently 

used, and is currently thought to identify the majority of this population. With respect 

to CD8 T cells, the surface co-expression of CD45RA and CD27 is commonly used to 
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identify the naïve subset (34). However, the combination of these markers with other 

molecules, such as CCR7 or CD28, has enabled a more detailed definition of CD8 T cell 

differentiation states and/or functional capacity (35-37).  

 

Some groups have shown that the CD31 (PECAM-1) molecule is expressed 

preferentially on the cell surface of naïve, TREC-rich T cells that have undergone a low 

number of cell divisions (38, 39). On this basis, Kimmig et al were able to distinguish 

two populations of naive T cells: “true” recent thymic emigrants (thymicnaive CD4 cells, 

that co-expressed CD45RA and CD31 and have high TREC content), and peripherally 

expanded naive CD4 cells (centralnaive CD4 cells) (38), as illustrated in Figure 4. 

As previously discussed, aging is associated with decreased thymic activity that 

results in reduced numbers of thymicnaive CD4 cells (38). Triggering by self 

peptide/MHC complexes is thought to induce thymicnaive CD4 cells to proliferate and 

differentiate into centralnaive CD4 cells (38). This population featured lower TREC levels, 

expressed CD45RA and lacked CD31 expression. Of note, both thymicnaive and 

centralnaive CD4 cells are able to differentiate into CD31-CD45RA-CD45RO+ memory-

effector cells upon antigen encounter (38).   

Importantly, results from our lab suggest that IL-7 may play a role in the 

maintenance of CD31+ naïve CD4 T cells during adult life (40). In adults, this cytokine 

was shown to preferentially drive the proliferation of the CD31+ naive CD4 subset, 

and to increase or sustain the expression of CD31. 
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Figure 4: Post-thymic proliferation of human naive CD4 T cells. From Kohler et al (39).  
 

 

Recently, protein tyrosine kinase 7 (PTK7) was described as a novel marker of 

human CD4 RTEs (41). A fraction of the naïve CD31+ CD4 subset was shown to 

express PTK7 and to contain higher levels of sjTREC as compared with the PTK7-

CD31+ counterpart. Additionally, patients that underwent complete thymectomy were 

shown to have a more pronounced and persistent loss of PTK7+CD31+ than PTK7-

CD31+ naive CD4+ T cells, suggesting that PTK7, unlike CD31, may identify those 

RTEs most recently produced by the thymus (41).  

  

Upon antigen stimulation, naïve T cells differentiate into distinct cell types that 

play important functions during the development of an immune response. 
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1.1.3 The mounting of specific immune responses 

 

Specific immune responses are mostly initiated in the T cell areas of secondary 

lymphoid organs where naïve T lymphocytes encounter antigen-loaded DC. T 

lymphocytes recognize antigen through the interaction of their TCR with foreign 

peptide-MHC complexes displayed on the surface of APCs, through which a tight 

synapse can form (34, 42). Activation of the T cell follows synapse formation and is 

associated with rapid clustering of TCR molecules, bound to peptide/MHC complexes 

upon the APC, and a consequent, local accumulation of intracellular signalling 

molecules. The intensity of signal that a T cell receives is dependent both on the 

number TCRs triggered by the peptide–MHC complexes, and the level of 

costimulatory signals that regulate the activation process (43). A large number of 

costimulatory/adhesion molecules expressed on T cells (CD28, LFA-1, CD40L, ICOS, 

OX40, CD2, CD27, and 41BB) (44, 45) bind to their receptors on the APC. Some 

costimulatory/adhesion molecules provide essential second signals for T cell 

activation, whilst others act by enhancing TCR triggering via stabilization of the 

synapse, and/or through the recruitment of intracellular signalling molecules (46, 47). 

A further level of co-stimulation is provided by the release of various cytokines that 

can act in an autocrine and/or paracrine fashion to enhance the process of T cell 

activation and subsequent downstream events.  

 

The continuous TCR and cytokine stimulation induces T cell to divide and 

progressively differentiate into effector and memory subsets, during which they 

acquire the capacity to produce effector molecules, such as cytokines and cytolytic 

mediators (48, 49). 
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At later stages of the immune response, the clearance of pathogen from the site of 

infection, by effector cells, reduces the influx of antigen-loaded APC into the T cell 

zones.  

After antigen withdrawal, the survival of activated T cells becomes dependent 

upon the expression of anti-apoptotic molecules such as Bcl-2 and the expression of 

receptors for homeostatic cytokines such as IL-7 and IL-15, as discussed below. 

 

1.1.4  Memory-effector T cell subsets  
 

During an immune response, antigen-specific T cells proliferate, generating a large 

number of effector cells that migrate to the distal site of infection to fight the invading 

pathogen. Some of these primed T cells develop into memory cells, which confer 

protection in peripheral tissues, through their ability to mount a more rapid and 

effective response to their cognate antigen. This process is known as a secondary 

immune response. Of note, memory T cells increase progressively with age as a 

consequence of T cell responses to diverse foreign and self-antigens. 

 

Understanding the pathways of memory T cell differentiation in humans has been 

a central issue in immunology. Distinct memory T cell subsets have been defined on 

the basis of homing capacity and effector function (34, 50). These definitions, based on 

the expression of several differentiation markers, have failed to identify a clear 

phenotype for each putative subset. Nevertheless, both in humans and mice, memory 

cells have been shown to comprise of populations of “central” memory (TCM) and 

effector-memory (TEM) T cells. TCM and TEM cells were initially defined in the human 

immune system based on the absence or presence of immediate effector function, and 
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on the expression of homing receptors that allow cells to migrate to secondary 

lymphoid organs vs. nonlymphoid tissues (34, 50). 

 

Human TCM are CD45RO+ memory cells that recirculate between blood and the 

secondary lymphoid organs, entering the latter via high expression of CCR7 and 

CD62L (51). These cells also feature high surface expression of CD127 and CD122, 

which allow them to readily respond to IL-7 and IL-15, promoting survival and 

homeostatic proliferation. Central memory T cells have little or no immediate effector 

function but readily proliferate and differentiate into effector cells in response to 

antigenic stimulation (51). 

 

Effector memory T cells (TEM) migrate to inflamed peripheral tissues and display 

immediate effector function, as evidenced by their rapid production of effector 

cytokines, such as IFN-, and contain large amounts of cytolytic mediators, such as 

perforin. Human TEM are cells that have lost CCR7 expression, have a heterogeneous 

CD62L expression profile, and display characteristic sets of chemokine receptors and 

adhesion molecules that are necessary for homing to inflamed tissues (51). 

 

Memory and effector CD8 T cells have been shown to play an important role in 

viral infections throught their cytotoxic activity and also because of their ability to 

produce various factors involved in suppression of viral replication, including 

cytokines and chemokines (51-53). 

The surface expression of the costimulatory molecules CD27 and CD28 together 

with CD45RA have been used by several authors to discriminate between distinct 

stages of human CD8 T cell differentiation (36, 37, 54). A T cell differentiation pathway 
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has been proposed in which CD27+CD28+CD45RA+ naive cells progress through a 

CD27+/-CD28+/-CD45RA- to a CD27-CD28-CD45RA+ terminally differentiated 

effector phenotype with increased cytotoxic potential and reduced ability to proliferate 

(35, 51, 53). 

 
Both IL-7 and IL-15 have been described as playing a role in the maintenance of 

memory T cells (55). In particular, IL-15 has been shown to have a crucial role in 

memory CD8 T cell generation and/or maintenance, as illustrated by the lack of 

memory CD8 T cells in IL-15R- and IL15-deficient mice (56, 57). Although IL-15 has 

been reported to have only a minimal role in the homeostasis of memory CD4 T cells 

(58), it has been recently published that antigen-specific CD4 memory cells are also 

dependent upon this cytokine for their basal homeostatic proliferation and long-term 

survival (59). 

 

Effector CD4 T cells, also known as CD4 T helper (Th) cells,  can be polarized into 

distinct subsets characterized by the acquisition of cytokine production and other 

specialized functions. Polarization of lymphocytes to T helper 1 (Th1) or Th2 cells is 

promoted by IL-12 and IL-4, respectively (60), as well as by the strength and duration 

of TCR stimulation (61). The differentiation processes involves upregulation of specific 

transcription factors (62, 63) and activation of STAT proteins (64).  

As part of their differentiation programme, Th1 and Th2 cells down-regulate 

lymph-node homing receptors, and up-regulate the expression of those receptors 

necessary to enable their migration to inflamed non-lymphoid tissues, where they exert 

effector functions. Each lineage also expresses unique cytokine receptors, enabling 

them to respond to cytokines produced by accessory cells. Th1 cells are characterized 
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by their secretion of IFN- and are important activators of macrophages, NK cells, and 

CD8 T cells (65). They are thought to be involved in the defense against intracellular 

pathogens. Th2 cells secrete IL-4, IL-13, IL-15, IL-10 and IL-25 and are important for 

barrier defense at mucosal and epithelial surfaces, as well as in the control against 

parasites. These cells mobilize and activate eosinophils, basophils, mast cells and, 

alternatively, activated macrophages (66).  

 

A third subset of IL-17-producing effector T helper cells, referred to as Th17 cells, 

has recently been characterized. The differentiation of Th17 cells is initiated by the 

activation of naive T cells in the presence of IL-6 plus transforming growth factor 

(TGF)-. This leads to the expression of the transcription factor ROR-t, and production 

of IL-17 (67). Th17 cells have been suggested to play a role in the induction of 

autoimmunity and inflammation. They act in concert with neutrophils and are 

important for defense against extracellular bacteria and fungi (68, 69). 

 

Recently, IL-9 producing CD4 T cells have been described as a novel Th subset 

(TH9) (70, 71). Th9 differentiation has been shown, both in humans and mice, to 

require exposure to the cytokines TGF- and IL-4, and to be mediated through the 

expression of the transcription factor GATA-3. Of note, several inflammatory 

cytokines, such as IL-1, IL-6, IL-10, IL-21 and type I IFNs, enhance IL-9 production, 

suggesting a complex regulation of Th9 differentiation (72). The exact role of Th9 cells 

in the immune system has yet to be fully defined. Studies in mice have suggested this 

subset plays a role in tissue inflammation (70), immunity against helminth infections, 

as well as in allergy (71). 
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Follicular helper T cells, or ThF cells, are memory-effector CD4 T cells found in 

lymph nodes and identified by high expression of CXCR5 (73, 74). They are found at 

the periphery of B cell follicles and in germinal centers (GC). They are thought to 

mediate naïve B cell activation and GC formation, probably through the expression of 

CD40 ligand (CD40L) and secretion of IL-21 and IL-10.  

 

1.1.5 Regulatory T cells 

 

An important feature of the immune system is its capacity to discriminate between 

self and non-self, whilst establishing and maintaining a lack self-responsiveness. The 

maintenance of immunological self-tolerance is a tightly regulated process. As 

previously discussed, the deletion of self-reactive cells in the thymus plays a key role in 

this process. As this process is not perfect, autoreactive clones may occasionally escape 

into the periphery, hence the need for other mechanisms to maintain a state of 

tolerance in the periphery. So-called “peripheral tolerance” is maintained through a 

variety of mechanisms, including the presence of a population of regulatory T cells 

(Treg) that actively suppress autoreactive T cells (75-78).  

Treg form a subset of CD4 T cells that either develop in the thymus (naturally 

occurring Treg; nTreg) or in the periphery (induced Treg; iTreg). The latter can be 

generated in a variety of circumstances; such as direct differentiation from naive T cells 

that have undergone TCR-stimulation in the presence of TGF-, or via the conversion 

of other pre-existing T cell subsets. 

 

Treg constitute 5% to 10% of the peripheral CD4 T cell compartment (79). In both 

mice and humans, this population was first defined by their expression of the IL-2 



20                Strategies for T-cell reconstitution: insights from human clinical models 

  

 

receptor -chain (CD25), and their capacity to suppress the proliferation of other T 

cells. CD4+CD25+ Treg were first defined by Sakaguchi et al. (75) in the murine system. 

They showed that the transfer, into athymic nude mice, of lymphoid-cell populations 

depleted of CD4+ T cells expressing CD25 caused the spontaneous development of 

autoimmune disease. Additionally, reconstitution with CD4+CD25+ T cells prevented 

the development of autoimmunity. 

In humans the CD4+ T cell subset expressing the highest levels of CD25 (termed 

CD25bright) was shown to be enriched in cells with regulatory properties (76).  

 

The transcription factor FoxP3 has been shown to be specifically expressed by Treg, 

and is currently considered the most specific marker of these cells. This was further 

supported by the discovery that mutations in the FOXP3 gene in humans cause 

immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX). 

This syndrome is characterized by a high incidence of autoimmune disease, including 

type 1 diabetes and thyroiditis, inflammatory bowel disease, and allergic diseases (80, 

81). The FOXP3 gene has been shown to be a key regulator of Treg development and 

functional activity (82-84). However, due to its nuclear expression, FoxP3 cannot be 

used to purify Tregs (83, 85).  

Importantly, FoxP3 expression can be up-regulated as a result of T cell activation, 

at least in humans (86). The TCR stimulation of human naïve FoxP3-CD4+ cells was 

shown to induce FoxP3 expression without conferring suppressive activity on these 

cells (86). Thus, functional characterization of FoxP3+ cell is of major importance in 

order to definitively confirm their true identity, especially in the context of pathological 

conditions associated with hyperimmune T cell activation. 
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One of the current challenges in the field of regulatory T cell research remains the 

determination of the relative in vivo contributions of nTreg versus iTreg to the Treg 

pool as a whole. nTreg develop in the thymus and exit into the periphery. 

In younger adults, around 10% of Foxp3+ Treg express CD45RA and are 

considered an unprimed, or naïve Treg population (87, 88). In addition, a large 

proportion of CD45RA+ Treg in adults express CD31, however its frequency rapidly 

declines with age (89). However, naïve CD45RA+ Treg have been shown to proliferate 

significantly less than their CD45RO+ counterparts (89, 90). Thus, the contribution of 

different Treg sub-populations to the maintenance of the total Treg pool in adults is yet 

not clear. 

Regarding iTregs, it was recently suggested that human Tregs may be generated 

from rapidly dividing, differentiated memory CD4 T cells (91). Although these 

memory Tregs were highly proliferative, they were also highly susceptible to apoptosis 

and replicative senescence, suggesting they possessed a limited capacity for self-

renewal (91).  

In an attempt to clarify the dynamics of Treg cell differentiation, Sakaguchi et al. 

have recently reported that human FoxP3+CD4+ T cells can be separated into three 

functionally and phenotypically distinct subpopulations based on the expression of 

FoxP3 (90, 92). These included CD45RA+FoxP3low resting Treg cells (rTreg cells); 

CD45RA-FoxP3high activated Treg cells (aTreg cells); and cytokine-secreting CD45RA-

FoxP3low non-Treg cells. Both rTeg and aTreg cells where shown to have in vitro 

suppressive capacity, whereas CD45RA-FoxP3low non-Treg cells did not. Importantly, 

they were able to distinguish the differentiation pathways of these subpopulations. 

FoxP3high aTreg cells were shown to originate from rTreg cells, although some FoxP3high 

Treg cells may also have arisen from FoxP3-CD4+ non-Treg cells (91). Moreover, a 
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large proportion of the FoxP3high aTreg cells proliferated in vivo and appeared to be 

recently activated, whilst nearly all rTreg cells did not express the cycling marker Ki-

67. On stimulation, rTreg cells upregulated FoxP3 expression, and differentiated into 

aTreg cells, a process associated with a concomitant gain of proliferative capacity (90). 

These newly differentiated aTreg were also shown to be highly susceptibility to 

apoptosis. Thus, the identification of the inter-relationship between the variously 

described Treg subpopulations, and the unique and/or common functions they may 

serve, is fundamental to the understanding of their role in both disease states and the 

maintenance of peripheral tolerance. 

Several other molecules, that may be potentially important for Treg function, have 

been shown to be expressed by this T cell subset. In particular, cytotoxic T lymphocyte 

associated protein 4 (CTLA-4) was shown to be constitutively expressed by the 

majority of Treg (93). It is not clear whether CTLA-4 expression is absolutely required 

for Treg generation, regulatory capacity or both. CTLA-4-deficient mice have been 

shown to be able to generate CD4+FoxP3+ Tregs that maintain their suppressive 

capacity in vitro and in vivo (94, 95), supporting the idea that CTLA-4 expression is not 

an absolute requirement for the development or suppressive function of Treg. Another 

molecule, CD39, has been shown to be expressed by immunosupressive Treg (96). 

However, in contrast to mice, where CD39 is ubiquitously expressed upon Treg cells, 

expression of this molecule in humans was shown to be confined to a subset of FoxP3+ 

cells of an activated effector/memory-like suppressor cell phenotype (96). Other 

groups have also shown that FoxP3 expression and suppressive capacity are enriched 

in CD4 T cells that express low levels of IL-7R (CD127), suggesting that the low 

CD127 expression can be used to isolate Treg (97). 
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The expression of the integrin 7 (CD103) has been shown to potentially 

distinguishes a unique functional subset of Foxp3+ T cells with suppressive properties 

in mice (98, 99). CD103 is expressed on CD4+ and CD8+ T cells in the intestine and 

other epithelial compartments. Treg cells expressing this marker were shown to 

display an effector/memory phenotype, possess more potent suppressor activity in 

vitro, and selectively home to inflamed tissue sites in vivo (98-100). However, in 

humans, this markers has been described to be expressed by only a minority of the 

Treg population (101, 102)  

 

Several other surface markers have been put forward as candidates to identify 

Treg. Overall it is not known whether the apparent degeneracy of Treg marker 

expression reflects the existence of discrete in vivo Treg subsets, levels of Treg 

activation or even if it is potentially an artefact of experimental design. 

 

1.1.6 Maintenance of T cell homeostasis 

 

Claude Bernard was the first to realize that the body has control mechanisms able 

to maintain its internal equilibrium (in terms of body temperature and the levels of 

nutrients and waste products) in spite of changes in the environment (103). Later, this 

type of control was given the name homeostasis (104). The immune system is under 

homeostatic control, such that it can react to changes in the environment, enabling the 

maintenance of a relatively constant number of cells throughout the life of an 

individual (105, 106). Therefore, homeostasis of both naïve and memory T cell pool is a 

highly dynamic and tightly regulated process depending on a balance between 

generation, proliferation, differentiation, survival, and death. 
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Cytokines that signal through receptor complexes containing the common  (c or 

CD132) chain receptor subunit are central regulators of lymphocyte homeostasis. These 

include IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. Despite the shared usage of the c chain, 

individual c cytokine family members have diverse roles in lymphocyte development 

and homeostasis. Loss of c signaling in humans result in X-linked severe combined 

immunodeficiency (X-SCID) characterized by functionally deficient B cells and absent 

T and NK cells (107). 

 

IL-7 is considered a key cytokine in T cell homeostasis, acting both during 

thymopoiesis and in the periphery; where it promotes naive T cell proliferation and 

survival, and maintains memory T cells (25-27, 108). It is produced by stromal tissues, 

including the bone marrow and lymph nodes, as well as thymic and intestinal 

epithelial cells (109-111). IL-7 functions by binding to its receptor (IL-7R), a 

heterodimer consisting of the IL-7 receptor alpha chain (IL-7R or CD127) and the c. 

IL-7R has been shown to play an important role in the regulation of IL-7 biology (112, 

113). Transient downregulation of this chain after IL-7 signalling was shown to be an 

important homeostatic mechanism for maximizing IL-7 availability. Thus, cells that 

have received cytokine-mediated survival signals do not compete with unstimulated T 

cells for the remaining IL-7 (112). Moreover, although the biological role of soluble IL-

7R receptor is not yet known, it has been suggested that it could bind circulating IL-7, 

thereby decreasing its bioavailability (114). IL-7R is expressed by naive T cells but is 

downregulated following their activation and subsequent transition to effector cells 

(108, 115). However, IL-7R is re-expressed by a proportion of effector cells and is 

thought to be important for the development and survival of memory T cells (116). 
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Terminally-differentiated effector cells, particularly CD8 T cells were shown to not 

express IL-7R (116). 

Circulating levels of IL-7 increase in clinical settings associated with T cell 

depletion. A marked inverse correlation was observed between the level of circulating 

IL-7 and peripheral CD4 T cell numbers in both children and adults infected with HIV 

(25, 117-119). Following effective antiretroviral therapy (ART), recovery of CD4 

numbers was accompanied by a decline in the level of circulating IL-7 (120, 121). 

Inverse relationships were also described in children and young adults treated with 

cytotoxic chemotherapy for cancer, and in patients with idiopathic CD4 T cell 

lymphopenia (25). Two main mechanisms could underlie the increases in circulating 

IL-7 levels observed in states of T cell lymphopenia. Firstly it could result from 

increased IL-7 production as part of a compensatory feedback loop designed to 

enhance T cell differentiation, survival and/or expansion. Alternatively, it could also 

result from an increased availability of the cytokine due to decreased T cell numbers 

expressing IL-7 receptor (25). 

 

It is expected that increased levels of IL-7 enhance both thymopoiesis and 

peripheral homeostatic expansion of T cell populations, and thus represents an 

important mechanism contributing to the restoration of immune competence in 

lymphopenic individuals (25-27, 108).   

 

Although naive T cells are generally thought to turnover relatively slowly, 

peripheral T cell proliferation could make an important contribution to the 

maintenance of this T cell pool in human adults (122). The contribution of recent 

thymic emigrants and peripheral T cell proliferation to the maintenance of the naive T 
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cell pool has been an issue of investigation both in children and adults, given its 

potential importance to the understanding of human T cell dynamics (122). 

Hazenberg et al. have shown that in healthy children, an age-related increase in 

total body numbers of naive and memory T cells was not accompanied by an increase 

in absolute numbers of TRECs, suggesting a proliferation-dependent expansion of the 

naïve T cell pool (122). Indeed, they found that the proportion of dividing CD4 T cells, 

as assessed by Ki-67 expression, was highest in infants and declined with increasing 

age. This was observed in both naive and memory T cell subsets (122). Their data 

suggest that peripheral expansion may be an important factor in the establishment of 

both the naive and memory T cell pools. 

 

Regarding human adults, Vrisekoop et al. have used in vivo labelling with stable 

isotopes, in combination with mathematical analysis, to study both T cell decay and 

production rates, and follow the fate of recently produced T cells (recent thymic 

emigrants, RTE). By measuring of the deuterium enrichment in DNA, following 

deuterated water-labelling, they showed that newly produced naive T cells tended to 

live longer than the average cell in the naive T cell population (123). This would 

suggest that the few, newly-produced naive T cells are preferentially incorporated into 

the peripheral naïve T cell pool. This model argues that the preferential incorporation 

of RTEs into the resident naive T cell pool provides an efficient way to continuously 

rejuvenate the naive T cell pool, and thus the T cell repertoire (123).  

 

Important questions regarding lymphocyte kinetics/turnover remain to be 

addressed in human diseases such as HIV infection, other clinical conditions associated 

with immunodeficiency, and in clinical settings requiring immune reconstitution. 
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All of these conditions are often associated with high levels of immune activation 

(124-126). In particular, chronic hyper-immune activation has been well characterized 

in the context of HIV infection, and has been suggested as the driving force behind 

CD4 depletion in this disease (127, 128). With respect to HIV infection, it has been 

reported to be associated with ineffective control of virus replication (129, 130); 

accelerated apoptosis and turnover of T and B lymphocytes (131-133); increased 

frequency of T cells expressing markers of activation and proliferation (CD38, HLA-

DR, Ki-67) (128, 134); and elevated serum levels of proinflammatory cytokines (135). 

Chronic immune activation can also lead to severe immune dysfunctions such as 

anergy and enhanced activation-induced cell death. Any and all of these mechanisms 

can contribute to alterations in T cell homeostasis, which is of particular importance in 

those clinical settings associated with immunodeficiency. 

 

1.2 T cell deficiencies 

1.2.1 Overview of immunodeficiencies 

 

Immunodeficiency usually results in increased susceptibility to life-threatening 

infections, but may also be associated with other immunological manifestations such as 

allergy, autoimmune disease and lymphoproliferation. 

 

Immunodeficiency diseases may affect any part of the immune system and have 

been traditionally grouped in defects in cell-mediated immunity and/or humoral 

immunity. Qualitative and/or quantitative defects of the innate immune system also 

fall within this category, such as impairments in phagocytic cell function, or damage to 

anatomical barriers such as the skin and the mucosal surfaces. 
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An immunodeficiency may be caused either by an inborn defect in the cells of the 

immune system, or by extrinsic factors or agents. In the case of an inborn, or congenital 

defect, the disease is designated a primary immunodeficiency (PID). 

Immunodeficiencies caused by extrinsic factors are referred as a secondary or acquired 

immunodeficiency. PIDs were originally considered to be very rare, but there is 

evidence now showing that they are more common than previously thought. 

Secondary immunodeficiencies are a much more common occurrence with the most 

frequent cause being that associated with bad nutrition.  Another prevailing secondary 

immunodeficiency is the one caused by infection with HIV. 

 
 

1.2.2 Primary immunodeficiency 
 

1.2.2.1 Classification 

 

PIDs comprise a large number of disorders that affect the development and/or 

function of the immune system (136). The estimated overall prevalence of PIDs is of 

approximately 1:10000 live births. However, this rate is much higher amongst 

populations with high consanguinity, and/or in populations considered to be 

genetically isolated (137). 

Patients with PIDs provide unique models to study the consequences of various 

immune defects that may underlie other clinical conditions such as autoimmunity, 

lymphoproliferation, allergy and cancer. They are often referred to as “experiments of 

nature”.  

Infections are the hallmark of PIDs (138). The type of infection/pathogen involved 

provides a guide to which part of the immune system is deficient. Thus, recurrent 
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infection with extracellular encapsulated bacteria is suggestive of a defect in antibody, 

complement or phagocyte function, reflecting the role of these components of the 

immune system in host defence against this type of pathogen. By contrast, a history of 

recurrent viral infections is more suggestive of a defect in host defence mediated by T 

lymphocytes. 

 

In the last few years, advances in molecular genetics have resulted in the 

identification of a growing number of gene defects causing PIDs in human subjects and 

a better understanding of the pathophysiology of these disorders (139-143). 

Identification of the molecular defect in the various forms of PIDs is important, given 

the observation that the same immunological and clinical phenotype can result from 

distinct gene defects. This information not only provides basic clues as to how the 

immune system functions, but also has important medical applications for diagnosis, 

genetic counselling, prognosis, and potential therapeutic intervention strategies that 

can be made available to affected patients. 

 

PIDs are classified according to which component of the immune system is 

primarily involved. Every two years, an update of the classification system is carried 

out by The International Union of Immunological Societies Expert Committee on 

Primary Immunodeficiencies to allow for the inclusion of newly described PIDs (144). 

As shown in Table I, this classification groups PIDs into 6 major categories, that cover a 

large number of already identified immunodeficiencies.  

In the following sections of the introduction, a summary of the PIDs investigated in 

this work, as well as those other major PIDs associated with deficiencies or alterations 

in the T cell compartment will be provided. 
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Table I – Classification of primary immunodeficiencies. Adapated from Notarangelo et al. (144) 

 

Combined T and B-cell immunodeficiencies 

Predominantly antibody defects 

Other well defined immunodeficiency syndromes 

Diseases of immune dysregulation 

Congenital defects of phagocyte (number, function, or both) 

Defects in innate immunity 

Autoinflammatory disorders 

Complement deficiencies 

 

 

1.2.2.2 Primary immunodeficiencies investigated in this work 

1.2.2.2.1 Defects mainly targeting T cells  

 

Combined Immunodeficiencies comprise a heterogeneous group of disorders 

characterized by impaired development and/or function of T and/or B cells that may 

or may not be accompanied by NK cell impairments (145). Some of the most frequent 

defects affect T cell development (see Figure 5). Severe combined immunodeficiencies 

(SCID) represent the most severe form of combined immunodeficiencies, featuring a 

lack of functional peripheral lymphocytes due to a profound block in lymphocyte 

differentiation (107, 145). Usually, SCID is associated with thymic hypoplasia. Studies 

of patterns of inheritance, immunological characteristics, and, more recently, 

genotypes have led to the identification of several distinct SCID conditions (146).  
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Figure 5: Protein and gene defects in T cell development ad function. 
From Cunningham-Rundles et al. (147). 

 

Affected infants present in the first few months of life with frequent episodes of 

diarrhea, pneumonia, otitis, sepsis, and cutaneous infections. Persistent infections with 

opportunistic organisms such as Candida albicans, Pneumocystis jiroveci, Varicella-zoster 

virus, Parainfluenza 3 virus, Respiratory syncytial virus, Adenovirus, Cytomegalovirus 

(CMV), and Epstein-Barr virus (EBV) are common. Infections caused by live vaccines 

are also frequent, especially Bacillus Calmette-Guérin (BCG) in countries, such as 

Portugal, where BCG is part of the vaccination plan. Skin rash may reflect graft-versus-

host disease caused by maternal T cell engraftment, or tissue damage caused by 

infiltration of activated autologous T lymphocytes (148). 

 

SCID defects are classified, according to the immunologic phenotype, into 2 main 

groups: SCID with absence of T lymphocytes but presence of B lymphocytes (T-B+ 

SCID) or SCID with absence of both T and B lymphocytes (T-B- SCID) (144). Both 

groups include forms with or without NK lymphocytes (144). SCIDs have a prevalence 

of approximately 1:50000 live births. Examples include c deficiency, adenosine 

deaminase (ADA) deficiency, Janus kinase 3 (Jak3) deficiency, IL-7 receptor -chain 
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deficiency (IL-7R), recombination-activating gene (RAG-1 or RAG-2) deficiencies, 

Artemis deficiency, CD3 -, ε-, and ζ-chain deficiencies, and CD45 deficiency (107, 144).  

The severity of the clinical manifestations makes SCID a medical emergency that, in 

the absence of treatment, leads to death within the first year of life. Approaches to 

achieve immune reconstitution in these patients include bone marrow transplantation, 

and gene therapy; and will be discussed on sections 1.3.3 and 1.3.5 of the introduction, 

respectively. 

 

Hypomorphic mutations in the RAG genes, which impair, but not completely 

abolish V(D)J recombination process are associated with a severe primary 

immunodeficiency known as Omenn Syndrome (OS) . This leads to the generation of 

only a few productive antigen receptor gene rearrangements (149, 150). Defects in 

other genes involved in lymphocyte differentiation have also recently been described 

to account for OS (151). As a consequence of this defect, the T cell repertoire of effected 

patients is greatly restricted (152) resulting in activated oligoclonal T cells (152). These 

cells infiltrate and expand in peripheral tissues, including the skin and the 

gastrointestinal tract, causing profound tissue damage (153, 154). Circulating B cells are 

usually low or absent. 

 

The thymus from patients with OS is markedly abnormal (155). It was recently 

shown that the few autoreactive T cells that differentiate in the thymus of these 

patients likely escape negative selection and expand in the periphery, thereby leading 

to the autoimmune manifestations characteristic of OS (156). This loss of central 

tolerance was suggested to be associated with a deficiency in Autoimmune regulator 

element (AIRE) expression in these patients. The analysis of AIRE expression in the 
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thymi of two Omenn syndrome patients, by real-time RT-PCR and 

immunohistochemistry, demonstrated a profound reduction in the levels of AIRE 

mRNA and protein as compared with a normal control subjects (155). AIRE is a 

transcription factor expressed by medullary thymic epithelial cells. It regulates the 

ectopic expression of tissue-specific proteins in the thymus, normally restricted to the 

periphery, suggesting that it has a key role in the maintenance of central tolerance 

(157). Mutations in the AIRE gene result in decreased expression of the transcription 

factor, and, consequently, impaired presentation of self-antigens by mTEC and 

dendritic cells to developing T cells (158). As a result, central tolerance to a number of 

self-antigens is lost, thereby inducing multiple autoimmune disorders as autoreactive T 

cells escape into the periphery. Mutations in AIRE have been shown to be the cause of 

autoimmune polyendocrinopathycandidiasis-ectodermal dystrophy (APECED), a 

monogenic disease characterized by autoimmune manifestations (159, 160). 

 

Anther gene defect associated with thymic impairments is FOXN1 deficiency. The 

human FOXN1 deficiency is caused by mutations of the winged–helix–nude (WHN) 

gene, also known as FOXN1 gene. FOXN1 gene encodes a forkhead-winged helix 

transcription factor, which is absolutely required for the early development of the 

thymus. FOXN1 expression is restricted to thymic epithelium, epidermis and hair 

follicles (161, 162). Mutations in the highly conserved FOXN1 gene are associated with 

severe immunodeficiency due to athymia, total absence of hair, and nail dystrophy 

(163). It is considered the human homologue of the nude mouse and it is the first 

example of a human PID caused by defects in a gene not expressed in hematopoietic 

cells (163).  
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The phenotype associated with FOXN1 deficiency was originally described in two 

siblings from consanguineous parents originating from a small community in southern 

Italy (163). The sequencing of the FOXN1 gene revealed a homozygous C-to-T 

transition at nucleotide position 792 in exon 5 that led to a nonsense mutation at 

residue 255 (R255X) (GenBank accession no. Y11739) (164). In the same community, 

four additional children from previous generations were affected with congenital 

alopecia and died in early childhood because of severe infections (165). Geographically, 

this community is located in an isolated village lying in the mountains between Naples 

and Salerno, and presents an elevated rate of endogamy. A genealogical study of 55 

heterozygous carriers of the R255X mutation in this village (6.52% of the inhabitants) 

allowed the identification of the ancestral origin of the mutation, to one couple, born at 

the beginning of the 19th century (165). 

 

Both Italian siblings lacked a thymic shadow on radiologic examination and 

presented with a similar immunological phenotype (163). Although circulating T cells 

of non-maternal origin were present in both sisters, their frequency was below the 

normal range for the age. In agreement with the absence of a functional thymus, no 

naive CD4 lymphocytes were detected in the periphery. Severe functional lymphocyte 

impairment was demonstrated characterized by a lack of proliferative responses to 

mitogens and failure to upregulate activation markers following mitogen stimulation 

(163). 

One of the children died at 12 months of age as a result of recurrent infections (163). 

The other child was submitted to an allogeneic, HLA-identical bone marrow 

transplantation, from her unaffected brother before the diagnosis of FOXN1 deficiency 

was performed (166). Given that the genetic alteration does not affect the 
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hematopoietic system but primarily the thymus, it was not surprising that the bone 

marrow transplantation was not associated with recovery of the naive T cell pool in 

this patient (166). 

 

DiGeorge syndrome (DGS) is caused by developmental defects in the third and 

fourth pharyngeal pouches during early embryogenesis. It is characterized by variable 

degrees of alterations of the thymus (hypoplasia, aplasia or unaffected) and 

parathyroid glands, heart abnormalities and facial dysmorphisms (167). The majority 

of the patients show microdeletions of specific DNA sequences in chromosome 22q11.2 

(168). 

In most cases, referred as partial DGS, there is mild-to-moderate T cell deficiency, 

reflecting residual thymic development. In less than 1% of cases, there is profound 

immunodeficiency due to a total absence of thymus (athymia) (169). Athymic patients 

are categorized as having complete DGS (170) and have been shown to have less than 

50 naïve T cells/l, and low TREC levels (171). They usually die within the first 2 years 

of life due to severe, recurrent infections. Patients with complete DGS can present with 

either a "typical" or "atypical" phenotype (172). Infants with complete DGS are usually 

born with the “typical” phenotype (very low T cell numbers and absence of rash) (172). 

At some point, they switch to an “atypical” phenotype characterized by the presence of 

oligoclonal T cell populations, associated with rash and lymphadenopathy (173). These 

oligoclonal T cells undergo extensive in vivo activation and infiltrate the skin and other 

organs (173).   

Reconstitution of the T cell pool in patients with complete DGS has been 

successfully achieved by thymus transplantation as shown by the 75% survival after a 

mean three years of follow-up (172). 
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In recent years, autoimmune manifestations have emerged as important symptoms 

of many types of PID (174-176). This provides strong evidence that the immune 

sytem’s ability to maintain tolerance to self is of equal importance to the host as its 

ability to provide protection from pathogenic organisms.  Regulatory T cells (Treg) 

play a key role in this context, as illustrated by the association between autoimmunity 

and PIDs that result from defects in the development, and/or function of these cells.  

 

This is best exemplified by Immunodysregulation, polyendocrinopathy, 

enteropathy X-linked (IPEX) syndrome. This syndrome is most often caused by 

mutations in the FOXP3 gene that encodes a transcription factor critical for the 

development and peripheral function of Treg (177-179). 

 

Several mutations in the FOXP3 gene have been identified in IPEX patients (180). 

However, sequencing of the FOXP3 gene in a large cohort of individuals diagnosed 

with IPEX revealed that not all of these patients had FOXP3 mutations (180). IPEX in 

those individuals lacking FOXP3 mutations has been proposed to result from 

mutations in genes whose products interact with FOXP3. Neutrophil and lymphocyte 

numbers were normal in these patients, but eosinophilia was frequently observed 

(180). Despite the severe disease clinical phenotype associated with IPEX, T 

lymphocyte numbers, including CD4 and CD8 subsets, are usually within the normal 

range. Proliferative responses to mitogens, and specific antigens, are also normal, or 

only slightly decreased (181). Depletion of naïve CD4 and CD8 T cell subsets is, 

however, frequently observed (182, 183).  



Chapter 1: Introduction 
   

 

37

 

IPEX is usually lethal in infancy unless treated with hematopoietic stem cell 

transplantation. It’s extremely severe clinical manifestations highlight the critical 

importance of regulatory T cells in preventing autoimmunity (184). 

 

1.2.2.2.2 Defects mainly targeting other immune populations but also 

leading to T cell alterations  

 

Defects of T cells can also be found in immunodeficiencies mainly involving other 

compartments of the immune system. 

Chronic granulomatous disease (CGD) (185, 186) is a PID associated with 

phagocyte defects. Normally, these cells play a key role in defence against bacteria and 

fungi. Thus, individuals who have deficits in phagocytic cell number and/or function 

usually experience recurrent and severe infections caused by these types of organism. 

Chronic CGD is the classic example of a disorder related to phagocyte dysfunction. It is 

caused by defects in the nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase complex, which is required for the generation of reactive oxygen species (187). 

During phagocytosis, the activation of the NADPH oxidase complex results in 

production of microbicidal compounds (superoxide radicals and hydrogen peroxide) 

and activation of lytic enzymes (cathepsin G, elastase and myeloperoxidase), leading to 

intracellular killing of bacteria and fungi. Thus, the main types of infections observed 

in CGD patients reflect this inability to kill phagocytosed bacteria and fungi. The 

defective respiratory burst characteristic of CGD patients renders them susceptible to 

infections with catalase-positive organisms such as Staphylococcus aureus. Other 

common bacterial infections associated with this immunodeficiency include Serratia 

marcescens, Burkholderia cepacia, and Nocardia species whilst Candida and Aspergillus 
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species cause most of the associated fungal infections (188). Granulomatous 

manifestations of the disease are also very common. Given the anti-inflammatory 

effects of oxygen species (189), the defects in the NADPH system, and defective 

reactive oxygen species generation, have been recently suggested to underlie the 

inflammatory phenotype observed in CGD patients (190). 

The most common form of CGD is X-linked, and is caused by mutations in the gene 

encoding the gp91phox subunit of NADPH oxidase (CYBB gene). The second most 

common form is autosomal recessive and is due to a mutation in the gene coding for 

p47phox. Mutations in genes expressing p22phox and p67phox subunits have also 

been described (187, 191). 

 

The diagnosis of CGD is usually made by flow-cytometric measurement of 

dihydrorhodamine oxidation. The X-linked carriers of gp91phox have two populations 

of phagocytes due to the random inactivation of one of the X chromossomes: one able 

to produce superoxide and another that does not, giving carriers a characteristic 

mosaic pattern on oxidative testing. Lupus erythematosus-like symptoms has been 

reported to be common in CGD carriers (192, 193). The mechanisms underlying this 

association are not known. It is possible that impairments in the regulation of T and B 

lymphocytes are implicated (194, 195). 

In addition to their important microbicidal role, reactive oxygen species have been 

shown to play a role in the regulation of transcription factor function, proliferation, 

apoptosis, and cytokine production (196-199). A defective NADPH oxidase function 

has been shown to be associated with other immunological disturbances in CGD 

patients (185, 186, 200). These patients were shown to have a profound depletion of B 

cells expressing the memory B cell marker CD27 in conjunction with increased CD5 
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expressing B cells (186). In addition, X-linked carriers of CGD revealed a significant 

correlation between the percentage of CD27-positive B cells and the percentage of 

neutrophils with normal NADPH activity, suggesting a role for NADPH in the process 

of memory B cell generation (186). Alterations in T lymphocytes have also been 

described (185), with the authors showing that a cohort of CGD patients of more than 3 

years of age had decreased numbers of CD3, CD4 and CD8 T cells suggesting that 

quantitative and qualitative defects in T cells may occur in the context of CGD. 

 

1.2.3 Acquired immunodeficiency 

1.2.3.1 Classification 

 

Human immunodeficiencies can develop as a result of factors extrinsic to the 

immune system. The main cause of secondary immunodeficiency world-wide is 

protein–calorie malnutrition due to poverty and poor intake. Other causes include 

malabsorption or excessive loss of nutrients. Protein–calorie malnutrition is associated 

with a progressive loss of T cell production and function due to atrophy of primary 

and secondary lymphoid organs, together with an impaired antibody production 

capacity and neutrophil function (201, 202). The second most frequent cause is 

HIV/AIDS immunodeficiency. 

 

Secondary immunodeficiencies can also develop as a consequence of surgery or 

trauma, or following administration of immunosuppressive drugs such as 

corticosteroids and cytostatics. Immunodeficiency can also be present in premature 

children or with aging due to senescence of the immune system. 

Environmental factors have also been reported to lead to immunodeficiency and 

include ultraviolet light (203), ionizing radiation (204), and cold, heat or hypoxia (205). 
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Importantly, several infectious agents can lead to secondary immunodeficiency. 

These include, amongst others, EBV, CMV and Influenza virus. As previously stated, 

the most frequent infectious agent causing immunodeficiency is the human 

immunodeficiency virus (HIV).  

 

1.2.3.2 HIV/AIDS 

 

The first cases of AIDS (acquired immunodeficiency syndrome) were reported in 

the early 1980’s (206-208). The etiologic agents of AIDS, HIV type 1 (HIV-1) and HIV-2, 

were first described in 1983 and 1986, respectively (209-211). The AIDS pandemic 

represents one of the most important health-care issues world-wide. It is estimated that 

in 2010, around 33.4 million people are infected by HIV (212). The number of new 

infections per year is around 2.7 million and over 2 million people die each year 

from AIDS (212). 

HIV-2 was first identified in West Africa and the infection has been largely 

confined to this area (211). However, infected patients can be identified in European 

countries, mostly in Portugal where the prevalence is significant due to its connections 

with ex-colonies in this region. 

 

HIV is a lentivirus, belonging to the Retroviridae family, which makes use of the 

reverse transcriptase enzyme to convert viral genomic RNA into double-stranded 

proviral DNA. This proviral DNA enters the cell nucleus and integrates into the host 

cell’s genome using the virally encoded integrase enzyme. The integrated provirus 

constitutes the primary template for the subsequent transcription of the virus’ 

structural, regulatory, and accessory genes. 
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The HIV genome consists of three main structural genes, gag, pol and env, flanked 

by long terminal repeat (LTRs) sequences. The gag gene encodes the structural proteins 

of the virion capsid, the pol gene encodes precursors for several viral enzymes required 

for its replication and integration (protease, reverse transcriptase, RNase, and 

integrase) and the env gene, which encodes the viral envelope glycoproteins. The viral 

genome also contains a number of genes that encode a series of small regulatory (Tat 

and Rev) and accessory (Nef, Vif and Vpr, and Vpu in HIV-1 or Vpx in HIV-2) proteins 

(213).  

 

Viral entry into cells usually requires the interaction of the envelope glycoprotein 

of the virus with the CD4 molecule and one of several chemokine receptors that 

function as a co-receptor (214). CCR5 and CXCR4 were identified as the main co-

receptors for HIV-1, whilst HIV-2 is able to use a broader range of chemokine receptors 

(215). 

 

The acute phase of HIV infection is characterized by viral dissemination 

throughout the lymphoid tissue. At this stage, a peak in viral replication occurs and is 

accompanied by a marked depletion of circulating and mucosal memory CD4 T cells 

(216). HIV replication occurs very efficiently in a very small number of activated CD4 T 

cells, whilst the majority of infected lymphocytes harbour the latent proviral genome 

(217). Thus, a cellular reservoir of the virus is most probably established soon after 

primary infection. Following initial infection, the viremia decreases, mainly due to the 

response of virus specific CD8 T lymphocytes (218). An expansion of CD8 cells, both 

HIV-specific and non-specific, occurs leading to the inversion of the CD4/CD8 ratio. 
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Following this stage, a chronic and persistent infection is established that is 

associated with an asymptomatic period named clinical latency. Ongoing virus 

replication can be detected in the plasma and in lymphoid tissue during this phase of 

infection. Despite the immune response against the virus, the infection eventually leads 

to a progressive immune dysregulation and CD4 T cell loss. 

A CD4 T cell count of less than 200 CD4+ T cells/μl is usually associated with the 

development of characteristic opportunistic infections and tumours, leading to the 

diagnosis of AIDS. 

The hallmark of HIV infection is progressive CD4 depletion (219). Given that CD4 

T cells are the main cell target for HIV infection, it was initially thought that the 

depletion of CD4 lymphocytes was a direct consequence of viral replication, and of its 

cytopathic effect upon infected cells (220). However, it is now clear that HIV infection 

induces profound qualitative changes in various components of the immune system, 

which also contributes to the characteristic CD4 depletion. 

 

Several lines of evidence suggest that chronic immune activation is the driving 

force for CD4 depletion in HIV infection. Studies of Simian Immunodeficiency Virus 

(SIV)-infected primates showed, that upon SIV infection, Rhesus macaques suffered a 

progressive CD4 depletion and progression to AIDS that is associated with marked T 

cell activation (221). In contrast, SIV-infected sooty mangabeys and African green 

monkeys, which are natural hosts of SIV, do not develop AIDS and exhibit minimal T 

cell activation despite high levels of viral replication (222). 

 

In humans, the levels of T cell activation, as measured by the expression of CD38 

on CD8 T cells, were reported to predict an adverse prognosis in infected patients (223, 
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224). Several authors subsequently confirmed a direct correlation between disease 

progression and CD8 T cell activation levels (225-227). In addition, results from our 

laboratory suggest that CD4 T cell depletion is directly linked to immune activation, 

both in HIV-2 and HIV-1 infections, and only indirectly to viral load (127, 128). 

 

The development of ART has been one of the most dramatic achievements in the 

history of medicine. In the majority of the cases, ART is associated with a marked 

decrease in the plasma viral load followed by an increase in CD4 T cell counts and 

gradual reconstitution of the immune system (228). The introduction of ART has been 

associated with a decrease in the morbidity and mortality of HIV-infected patients 

(229, 230).  However, following its introduction, it has become clear that antiretroviral 

agents fail to eliminate the virus entirely, despite prolonged suppression of viremia, as 

the provirus can persist in a latent, integrated form in CD4 T cells (231-233). 

Furthermore, other data suggests ongoing low-level of HIV replication occurs in both 

these latent viral pools and in sequestered sites, neither of which are effectively 

targeted by current ART modalities (234). 

Antiretroviral drugs are broadly classified by the phase of the retrovirus life-cycle 

that they inhibit. The first drugs made available for clinical use were inhibitors of the 

HIV reverse transcriptase. These drugs are nucleoside analogues that act by 

terminating DNA elongation. They are competitive inhibitors that serve as substrates 

for the reverse transcriptase, which incorporates them into the elongating HIV proviral 

DNA, resulting in premature termination of proviral genome replication. The 

non-nucleoside reverse transcriptase inhibitors are a group of structurally diverse 

agents which bind to reverse transcriptase at a site distant to the active site. This results 
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in conformational changes at the active site and inhibition of enzyme activity. The 

protease inhibitors bind competitively to the substrate binding site of the viral protease 

resulting in the production of immature virus particles (235, 236). Integrase inhibitors 

are a recently discovered class of antiretroviral drugs designed to block the action of 

the integrase enzyme. The first approved integrase inhibitor was Raltegravir. It has 

been shown to be virologically effective in phase II and phase III clinical trials. Finally, 

entry inhibitors, also known as fusion inhibitors, are a new class of drugs that interfere 

with the binding, fusion and entry of the virus into the host cell.  

The main goal of ART is to reduce, and maintain plasma viral load levels to below 

the threshold of detection of the current viral load assays (< 40 copies/ml). 

The development of resistance to therapy by the virus, especially in regimens that 

are only partially suppressive, is one of the main reasons for ART failure. If there is 

resistance to several drug classes, the number of alternative treatment regimens is 

limited and the virological success of subsequent therapies may be only short-lived. 

The rapid development of resistant variants is due to the high turnover of HIV and the 

exceptionally high error rate of reverse transcriptase. This leads to a high mutation rate 

and constant production of new viral strains, even in the absence of treatment. In the 

presence of antiretroviral drugs, resistant strains are selected as the dominant species 

(237). 

 

Successful ART results in an increase in the number of circulating CD4 T cells and 

the functional reconstitution of the immune system. After ART initiation, peripheral 

CD4 T cell counts start and continue to rise for at least 3-5 years (238). The initial 

increase in CD4 cell count is very rapid and is usually observed in the first 3-6 months 
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(239). This phenomenon is associated with a reduction in T cell activation, and 

primarily results from a release of memory CD4 T cells trapped in the lymphoid tissue 

(240). A second phase, characterized by a slower increase in CD4 T cell numbers, 

follows, until this parameter stabilizes at 4–6 years of therapy (241). During this second 

phase, naïve, as well as memory CD4 T lymphocytes, contribute to the reconstitution of 

the CD4 T cell pool. The increase in the proportion of naïve cells has been shown to be 

accompanied by an increase in TREC levels (19, 242). 

 

Achieving a CD4 cell count over a specific threshold has been shown to depend on 

baseline CD4 cell count and to take substantially longer in patients who initiate 

antiretroviral therapy at a lower CD4 T cell frequency (243, 244). The factors that 

determine CD4 T cell rebound during therapy are only partially understood, and most 

likely depend upon both the host and the viral factors. 

Virological, immunological and clinical parameters can be evaluated as indicators 

of successful or failed ART. Virological treatment success is defined by the 

achievement of suppression of viral load to below the level of detection of 40 

copies/ml. Definitions of immunological responses to treatment have varied in 

different studies. Achievement of a CD4 T cell count higher than 300 cells/l or 

increases of 50 or 100 CD4+ cells/l after at least one year upon ART have been used 

(245-247). Both virological and immunological therapeutic success contributes to an 

overall clinical treatment success. Failure to achieve immunological or virological 

therapeutic goals is referred as a discordant response. Several studies have reported 

patients with discordant immunological or virological responses (245, 248, 249).  

Around 20% of patients on ART maintain a high CD4 T cell count in the face of 

sustained viral replication under ART (238, 249). Mechanisms shown to be involved 
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include modifications in viral fitness and acquisition of resistance mutations to drugs, 

decreased viral cytopathicity, and increased half-life of CD4 cells related to decreased T 

cell apoptosis (250, 251). 

In 5 to 27% of HIV-1-infected patients, a failure to recover circulating CD4 T cells 

despite apparently complete suppression of viral replication is observed (252-254). 

Poor CD4 reconstitution under ART has been shown to be associated with older age 

and/or a more advanced disease stage at the beginning of treatment (252-257). Clinical 

data are limited but these patients appear to have low rates of opportunistic infections 

(245, 246, 252). 

 

Thus, the ability of ART alone to restore immunecompetence in HIV-1 infected 

patients is far from absolute. As a result, new strategies to improve T cell reconstitution 

have been devised, best illustrated by cytokine-based therapies. 

 

1.3. Strategies for T cell reconstitution 

 

1.3.1 Overview 

 
Severe T cell deficiency in humans can develop in the context of several clinical 

settings such as PIDs or infection with HIV. Strategies to improve the recovery and 

function of T cells currently include cytokine-based therapies, hematopoietic stem cell 

transplantation, thymic transplantation and gene therapy. 
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1.3.2 Cytokine based therapies  
 

The common -chain cytokines, IL-2, IL-7 and IL-15, have crucial roles in the 

development, proliferation, survival and differentiation of T cells. Cytokine-based 

therapies with -chain cytokines have been used concomitantly with ART in the 

context of HIV infection to help reconstitute the T cell compartment. 

 

IL-2 has been tested experimentally in HIV infection in phase I and II studies since 

the early years of the AIDS epidemic. Two large clinical trials were conducted in ART 

treated individuals to assess whether the effects of IL-2 therapy on CD4 T cell 

restoration in HIV-1-infected patients would translate into clinical benefit: the 

Evaluation of Subcutaneous Proleukin in a Randomized International Trial (ESPRIT) 

and the Subcutaneous, Recombinant, Human IL-2 in HIV-Infected Patients with Low 

CD4 Counts under Active Antiretroviral Therapy (SILCAAT) studies (258, 259). The 

ESPRIT study (258) compared IL-2 plus antiretroviral therapy with antiretroviral 

therapy alone in patients with CD4+ T cell counts >350 cells/l, whilst the SILCAAT 

(259) study was focused on patients with CD4+ T cell counts between 50 and 299 

cells/l. Although the average CD4 T cell count over time was significantly greater in 

the IL-2 arms of both studies than in the respective control arms, no statistically 

significant differences were found in the clinical endpoints. Thus, the increase in CD4 T 

cells did not translate into a reduced risk of HIV-1-associated opportunistic diseases or 

death, as compared with volunteers who were on ART alone (260). 

 

Interestingly, administration of IL-2 to HIV-infected patients on ART has been 

reported to increase the numbers of T cells with a classical Treg phenotype (261). IL-2-
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expanded Tregs suppressed proliferation of effector cells in vitro and therefore shared 

functional characteristics of Treg cells (261). The authors reported that patients with a 

marked expansion of this population had a higher relative risk of clinical progression 

to AIDS, suggesting a link between Treg expansion in these individuals and their 

clinical outcome.  

However, these cells were not strongly suppressive in ex vivo assays, thus their 

function in vivo remains the subject of debate (262). 

 

As previously detailed, IL-7 is a key player in T cell homeostasis, and is essential 

for T cell development in humans (263). This cytokine modulates thymic output and 

mediates the expansion and survival of naive and memory T cells (108, 264). It also 

inhibits the apoptosis of CD4 and CD8 T cells from HIV-infected patients in vitro (265). 

These findings provided a rationale for the consideration of IL-7 as a therapeutic agent 

for immune reconstitution.  

 

The first clinical trial of IL-7 initiated in humans involved patients with 

nonlymphoid cancer that was refractory to standard therapy (266). The therapy was 

associated with an expansion of CD4 and CD8 T cells bearing a diverse TCR repertoire. 

This was shown to be primarily mediated by increased peripheral cell cycling and 

augmented cell survival (266).  

 

Prior to the IL-7 trials in humans, it was reported that IL-7 therapy in SIV-infected 

macaques was associated with a consistent but transient increase in peripheral blood T 

cells, both CD4 and CD8 T cells (267, 268).  
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The safety and efficacy of IL-7 administration to HIV-1-infected subjects has 

recently been evaluated in a phase I/IIa trial (269). IL-7 was administrated to HIV-1 

infected patients presenting persistently low CD4 T cell counts despite virological 

suppression under ART (ART-Discordants). IL-7 therapy was associated with 

significant increases in circulating naive and memory CD4 and CD8 T cells. The 

expanded CD4 and CD8 T cells were shown to respond in vitro to TCR stimulation, and 

to produce intracellular cytokines after polyclonal and antigen-specific stimulation 

(269). In addition, another phase I study, from the AIDS Clinical Trials group (ACTG) 

5214, also reported increased numbers of circulating CD4 and CD8 T cells after IL-7 

therapy, predominantly with a central memory phenotype (270). Thus, these initial 

human trials suggest that IL-7 therapy may improve T cell recovery and function in the 

context of ART-treated HIV-1 infection.  

Of note, exogenous IL7 has been reported to up-regulate the ex vivo expression of 

HIV-1 in latently infected cells from HIV-1-infected individuals on suppressive ART 

(271). Accordingly, it has been suggested that IL-7 therapy, besides having beneficial 

immunological effects, could potentially purge the latent reservoirs of HIV-1, formed 

by the pool of latently infected CD4 T lymphocytes, promoting viral clearance. 

 

1.3.3 Hematopoietic stem cell transplantation  

 

Developments in the field of transplantation have accelerated remarkably since the 

discovery of human MHC. Currently, hematopoietic stem cell transplantation (HSCT) 

is the treatment of choice for various haematological diseases. The main aim of this 

procedure is the reconstitution of all blood cell lineages following administration of 

hematopoietic stem cells. The potential sources of hematopoietic stem cells include 
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bone marrow, peripheral blood or cord blood. Stem cell transplantation may be 

performed with cells from a family member or an unrelated volunteer (allogeneic 

transplantation) or with stem cells previously collected from the patient (autologous 

transplantation). 

This transplant technique involves donor and recipient matching for HLA antigens. 

The ideal donor is an HLA-identical sibling, although transplants with only partially 

matched HLA antigens can be performed. Generally, the recipient undergoes a 

conditioning regimen. This involves dosing with immunosuppressive agents to ablate 

the recipient's immune system in order to prevent it rejecting the donor's stem cells, 

and to facilitate engraftment (272). 

 

In the context of PIDs, HSCT was first reported for the treatment of patients with 

SCID (273). SCID is a medical emergency and is usually fatal unless diagnosed 

promptly and treated successfully. With few exceptions, in which alternative strategies 

can be used (gene therapy, enzyme replacement therapy), HSCT represents the single 

most effective form of treatment, and potential cure for these disorders, since most 

SCIDs are related to hematopoietic defects. In addition, SCID patients presenting with 

lack of T cells represent a unique situation since immunosuppression is usually not 

required. 

 

 HLA-identical or haploidentical transplantation of SCID patients have reported 

survival rates close to 80%, for more than 20 years post-transplantation (107, 274). The 

effectiveness of HSCT in SCID is best illustrated by the normalization of the number 

and function of T lymphocytes achieved after transplantation. Post-transplant T cell 

reconstitution involves two main mechanisms. Firstly, clonal expansion of mature 
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donor T lymphocytes co-infused, along with donor HSC, into the recipient; and 

secondly, de novo thymic generation of donor T lymphocytes (275). The development of 

immune function in patients transplanted with a graft containing mature donor T 

lymphocytes can be detected around 2 weeks and is due to the expansion of donor 

cells. In contrast, newly generated, naïve T lymphocytes do not appear in circulation 

until 3-4 months after HSCT, irrespective of the type of transplant (107, 145). The 

thymic contribution to post-transplant T cell recovery is dependent upon several 

factors including the degree of age-associated thymic involution, the engraftment of 

donor-derived haematopoietic stem cells, the occurrence of GvHD, the extent of thymic 

damage caused pre-transplant by treatments, and by the conditioning regimen utilized 

(275).  

 

Several studies have now been published that analyze long-term immune 

reconstitution in patients who underwent transplantation for PID and survived more 

than 10 years (275-277). Importantly, the long-term analysis of the outcome of these 

patients demonstrates, in many cases, cure with a relatively good quality of life. 

 

1.3.4 Thymic transplantation 

 

Thymic transplantation has been used as an investigational treatment for pediatic 

patients with severe PID with athymia due to non-hematopoietic defects, specifically 

DGS (171, 172).  Donors of the thymic tissue are usually infants less than 6 months of 

age who underwent corrective cardiac surgery, during which thymus tissue requires 

excision to expose the operative field. The harvested thymic tissue is then aseptically 
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sliced into small pieces and cultured ex vivo in the presence of nutrient medium and 

deoxyguanosine to deplete the hematopoietic cells, for around 12-21 days (278).  

The allogeneic thymus tissue slices are then transplanted for example in the 

quadriceps of the athymic patient. Bone marrow stem cells migrate to the allograft 

where they develop into naïve T cells (279). Since patients with typical complete DGS 

completely lack T cells, immunosuppression is only necessary in patients with atypical 

complete DGS, as rejection of the thymic allograft by the few oligoclonal T cells these 

individuals have may occur before immune reconstitution is achieved (280).  

Results from thymic transplantation performed in 60 patients with DGS reported 

by Markert et al. showed evidence of effective thymopoiesis in biopsies of the 

transplanted tissues 2 months after transplantation with naïve T cells appearing in 

peripheral blood approximately 3-5 months post-transplantation in 20 of the patients 

(171). This T cell reconstitution was also associated with development of a diverse T 

cell repertoire. 

 

Thymic transplantation is usually performed without HLA-matching between the 

thymus donor and the recipient (171). How T cell selection occurs in this setting is not 

yet clear. Murine studies have suggested that recipient bone marrow-derived cells such 

as antigen presenting cells or thymocytes may play a role in positive selection in the 

thymus (281-283).  Alternatively, circulating host-derived epithelial progenitors may 

migrate to the thymus and provide signal for positive selection of the developing 

thymocytes (284). With respect to negative selection, it is likely that recipient bone 

marrow derived dendritic cells that are able to colonize the thymic graft may play a 

role in this process.  
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Nevertheless, thymic transplantation performed in the context of complete DGS is 

associated with reconstitution of the T cell compartment, leading to increased survival 

of a significant proportion of treated patients.  

 

1.3.5 Gene therapy 

 

Gene therapy is a therapeutic strategy that involves the genetic modification of a 

target cell by the transfer of an exogenous gene. Since the mid 1980s, gene therapy has 

been attempted for a wide range of conditions, including SCIDs, cystic fibrosis, 

hemophilia A and B, and type I diabetes. However, some issues require careful 

consideration prior to the selection of a gene therapy approach, such as the 

pathogenesis of the disease, the target cell intended for modification, the therapeutic 

gene to be used, and the vector used to transfer this gene into the target cell (285). 

Several vectors have been designed with the capacity to deliver the corrective gene. 

Those based upon retroviruses have long been preferred because of their ability to 

integrate permanently into the genome of the target cells. Retroviral vectors can be 

engineered, through recombinant DNA technology, to carry the cDNA of the desired 

human gene, with high efficiency into target cells, such as hematopoietic stem cells, 

and integrate the gene into the chromosomal DNA of these cells. The integrated 

provirus behaves as a gene transcription unit, with the therapeutic gene copied into 

daughter cells during cell replication. Stable persistence of the corrective gene is 

essential when targeting cells such as hematopoietic stem cells, as they have to 

undergo massive proliferation to produce mature progeny cells. Although integration 

offers the advantage of maintaining the foreign gene in dividing cells, it carries the risk 

of leukemia generation due to insertional mutagenesis (286). 
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Gene therapy, as a therapeutic treatment option, has proved successful for 

treatment of inherited immunodeficiencies including c-deficiency (287-289), adenosine 

deaminase (ADA)-deficient SCID (290, 291), and, more recently, X-linked chronic 

granulomatous disease (292). 

 

The first clinical trial for gene therapy was designed at the National Institutes of 

Health, targeting peripheral blood T lymphocytes from patients with ADA-deficient 

SCID (293), the first human SCID to be characterized in terms of  biochemical and 

genetic etiology (294). ADA-deficiency is an autosomal recessive SCID caused by 

defects of the enzyme adenosine deaminase (ADA). This is a purine enzyme, expressed 

in all tissues of the body that catalyzes the deamination of deoxydenosine. Deficiency 

of this enzyme results in the accumulation of metabolic substrates, leading to 

impairments in lymphocyte development and function. Although several patients were 

initially treated, the early trials were unsuccessful, mainly because patients treated 

with gene therapy continued to receive ADA enzyme replacement therapy (293). This 

was later proven to blunt the putative selective advantage conferred to ADA-corrected 

lymphocytes (286). However, second generation trials, utilising improved methods for 

gene transfer combined with more efficient vectors, and ADA-deficient SCID patients 

not receiving ADA enzyme replacement therapy were associated with immunological 

and metabolic reconstitution in a large number of patients (295, 296). 

 

Two gene therapy trials for c deficiency have been conducted in Europe, one at the 

Necker Hospital in Paris, and the second at Great Ormond Street Hospital in London 

(146, 288). In both protocols CD34+ cells were isolated from bone marrow, activated 
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with cytokines, and exposed to a supernatant containing retroviral vectors carrying the 

gene of interest. The results in the first two subjects were reported in 2000, and 

demonstrated a rapid and robust production of T lymphocytes, with lesser 

improvements in the numbers of circulating B and NK cells (287). Subsequent reports 

demonstrated similar responses in 9 of 10 subjects proving that gene therapy for c 

deficiency is associated with significant immune reconstitution (289). Another trial at 

UCL Institute of Child Health using similar techniques achieved immune 

reconstitution in 10 subjects (288). However, 2–5 years after the treatment, leukemia 

developed in 5 of 20 treated subjects in these trials (297, 298). The leukemias were 

found to result from an outgrowth of a clonal population of T cells containing the 

retroviral vector integrated adjacent to one or more cellular proto-oncogenes (299, 300).  

 

Phase I gene therapy trials were carried out for CGD due to mutations in p47phox 

or gp91phox genes. The initial trials for CGD also had modest results, as indicated by 

the reported low frequencies of corrected granulocytes in the peripheral blood. (301, 

302). 

Subsequently, a trial performed in Germany reported relatively high levels of 

corrected leukocytes in peripheral blood (20%) of two patients in the first months 

after the gene therapy procedure and these rose to as high as 80% over the first year 

(292). The vector integration sites were studied in the CGD patients and revealed a 

highly restricted pattern, with the majority of vector integrants in the engrafted stem 

cells being near one of a few genes known to be involved in myeloid cell proliferation. 

However, these two patients developed myelodysplasia, a preleukemic condition. One 

subject subsequently had a bone marrow transplant and the other died of an acute 

infection, associated with a loss of the restored neutrophil function (292). Recently, a 
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study reported successful results in two patients, who demonstrated a fully sustained 

correction of neutrophil oxidase activity with a concomitant resolution of infections 

(303). 

Gene therapy is a promising therapeutic option for the treatment of PIDs. 

Continuous technological progress in gene targeting, manipulation of viral vectors, 

and stem cell manipulation should improve the safety and efficacy of this type of 

therapy in the future. 

 

Advances in the investigation of the biology of immune reconstitution have 

elucidated the pathways that lead to the recovery of T cells. Particularly, remarkable 

progress has been achieved in relation to understanding the biology of lymphoid 

precursors, thymic development and peripheral T cell homeostasis, coupled with an 

improved understanding of the molecules involved in these processes. This progress 

will in turn allow the development of new strategies for immune reconstitution that 

will improve the clinical outcome in patients experiencing a variety of T cell 

deficiencies. 
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CHAPTER 2 

 

Aim and Work Plan 

 

The overall aim of this work is to investigate the relative roles of the thymus and 

the “periphery” in the maintenance/recovery of the human T cell compartment, 

through the study of particular clinical models.  

 

Specific Aim 1 

 

The thymus is essential for both the establishment of the peripheral T cell pool and 

the generation of the diverse T cell receptor repertoire capable of dealing with new 

pathogens and controlling the escape of persistent infections. In humans, the thymus is 

almost fully developed at birth, with the rate of T cell production markedly decreasing 

after puberty. However, it is now clear that this central lymphoid organ plays an 

essential role in the lifetime “de novo” generation of T cells.  

 

FOXN1 is a transcription factor, expressed by thymic epithelium, crucial for both 

development of the thymus and prevention of its involution. 

Although FOXN1 deficiency in humans and mice has been associated with 

athymia, significant number of circulating T cells were found in a Portuguese patient, 

followed by us, and in two patients, reported by Pignata et al., that had the same 

homozygous R255X mutation in the FOXN1 gene.  
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These data raised the possibility that either FOXN1 mutations may allow the 

development of a thymic rudiment capable of supporting T cell differentiation, or that 

extrathymic lymphopoiesis may occur in the context of athymia. 

 

Thus, our first specific aim was to investigate the phenotype and function of the T 

cells we observed in our patient described above.  

Since this patient had a primary defect in the thymic epithelium, without evidence 

of hematopoietic defects, we speculated that transplantion could provide a curative 

strategy, although this procedure had never been performed in this clinical setting. 

Thus, the patient was submitted to a thymic transplantation, fully mismatched for 

HLA class I and matched for only one class II allele.  Another important objective of 

this work was the sequential study of the immunological recovery and of the potential 

acquisition of immunecompetence post-thymic transplantation.  

 

Importantly, this study could also provide unique data on the kinetics of 

establishment of the T cell pool after HLA mismatched thymic transplantation, and 

insights regarding the dynamics of replenishment of the immune system after 

establishment of the T cell pool following T cell depletion. 

 

Chapter 3.1. features the results of the clinical and immunological data pre and 

post thymic transplantation of two patients with FOXN1 deficiency. The data on the 

French patient (subject 2) included in this work results from collaboration with 

University Paris René Descartes - Necker School and Duke University Medical Center, 

and we did not contribute to the related experiments or results generated. The 
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immunological studies of the patient with R255X mutation are further detailed in the 

chapter 3.2 of the results. 

 

 

Specific Aim 2 

 

Despite the progressive replacement of the perivascular spaces with fat, the 

remaining cortical and medullary tissue in the aging thymus is histologically normal. 

The maintenance of naïve T cells (antigen non-experienced cells) is currently thought to 

depend upon proliferation of peripheral T cells as well as to an age-dependent 

contribution of recent thymic emigrants, as demonstrated through the measurement of 

excision circles generated by intrathymic TCR gene rearrangement (TRECs). Moreover, 

recent studies suggested the possibility of a thymic rebound as a compensatory 

feedback loop triggered by emptiness of the peripheral T cell pool. The cytokine IL-7 

has been highlighted as a possible factor in this process, and has also been shown to 

play an important role in the peripheral homeostatic proliferation of naïve and central 

memory T cells. 

 

There is significant debate regarding the contribution of maintained thymic activity 

in the context of HIV infection; both with respect to the rate of disease progression and 

successful immunological reconstitution under antiretroviral therapy (ART).  

Peripheral mechanisms such as IL-7 driven T cell proliferation/survival have been 

suggested to be able to compensate any potential thymic impairment resulting from 

HIV infection. On the other hand, the persistent immune stimulation that leads to a 
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heightened state of activation, and the associated T cell anergy and susceptibility to 

apoptosis, may also play a significant role. 

 

The second specific aim of this work was to investigate the interplay of these 

pathways during HIV/AIDS using cohorts of patients with different degrees of CD4 

depletion, possible thymic impairment, and viral load.  

 

To this end, both untreated and ART-treated HIV-1 infected patients who achieved 

suppression of viral replication under therapy were studied. Of note, these treated 

individuals included a cohort lacking CD4 recovery despite their adequate virological 

response to ART, usually referred to as an immunologically discordant response to 

ART (ART-Discordants), and thought to be in part related to thymic impairment.  

The originality of the study was further enhanced by including a comparison with 

HIV-2 infected patients. HIV-2 infection represents an attenuated form of HIV/AIDS 

and is associated with very low levels of circulating virus in the absence of ART. 

Nevertheless, CD4 depletion does occur, although at a much slower rate than in HIV-1 

infected patients. Our laboratory has previously shown that this may be in part related 

to a better preservation of thymic function.  

The inclusion of HIV-2 infected patients also allowed us to compare ART-

Discordant patients to HIV infected individuals with the same levels of CD4 depletion 

and viremia. To better understand the relative influence of viremia, CD4 depletion and 

ART, we also included in the study a cohort of untreated HIV-1 infected patients with 

similarly low CD4 counts and expected high viremia, together with ART-treated HIV-1 

infected patients with successful virological and immunological responses. 
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The results generated from these cohorts are detailed and discussed in Chapter 4 of 

this thesis. 

 

Specific Aim 3 

 

Interestingly, we have been able to follow, through our primary immunodeficiency 

centre, a HIV negative individual with marked CD4 depletion that reaches levels 

similar to those found in advanced AIDS patients. This patient has a defect in the 

phagocytic oxidative burst, namely a mutation in the CYBB gene encoding the 

gp91phox subunit of NADPH oxidase. We hypothesised that the investigation of the 

immunological profile of this patient could provide unique insights into mechanisms 

of T cell homeostasis. 

 

Thus, our third specific aim was to perform a parallel investigation of the T cell 

perturbations in the context of this oxidative defect, and in untreated HIV-1 infected 

patients with a similar degree of CD4 depletion. 

 

These data are presented in chapter 5 of this thesis. 

 

The personal contribution of the candidate Adriana S. Albuquerque for chapters 

3.2, 4 and 5 of this Thesis consisted in performing research, analysing the data, 

discussing the results and participating in the writing of the manuscripts for 

submission to publication. Regarding the chapter 3.1, her contribution was performing 

research and analysing the data related to subject 1.  
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CHAPTER 3 
 

T cells in FOXN1 deficiency and kinetics of their recovery upon 

thymic transplantation 

 

 

We present in this chapter, two manuscripts reporting the FOXN1 deficiency 

phenotype and the follow-up post-thymic transplantation. The first manuscript 

describes the clinical and immunological presentation and the follow-up after thymic 

transplantation of a Portuguese and a French patient born with FOXN1 mutations. The 

patients have different mutations in the FOXN1 gene. The mutation found in the 

French patient was associated with an absence of circulating T lymphocytes. In the 

Portuguese patient there is a significant number of circulating T cells. In the second 

manuscript we aim to investigate the T cell compartment associated with the mutation 

that we found in the Portuguese patient associated with the absence of thymus and 

following thymic transplantation.  
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Abstract    

 

FOXN1 deficiency is a primary immunodeficiency characterized by athymia, alopecia 

totalis, and nail dystrophy. Two infants with FOXN1 deficiency were transplanted 

with cultured postnatal thymus tissue. Subject 1 presented with disseminated Bacillus 

Calmette-Guérin infection and oligoclonal T cells with no naïve markers. Subject 2 had 

respiratory failure, Human Herpes Virus 6 infection, cytopenias, and no circulating T 

cells. The subjects were given thymus transplants at 14 and 9 months of life, 

respectively. Subject 1 received immunosuppression before and for 10 months after 

transplantation. With follow up of 4.9 and 2.9 years, subjects 1 and 2 are well without 

infectious complications. The pretransplantation mycobacterial disease in subject 1 and 

cytopenias in subject 2 resolved. Subject 2 developed autoimmune thyroid disease 1.6 

years posttransplantation. Both subjects developed functional immunity. Subjects 1 

and 2 have 1,053/mm3 and 1,232/mm3 CD3+ cells, 647/mm3 and 868/mm3 CD4+ T 

cells, 213/mm3 and 425/ mm3 naïve CD4+ T cells, and 10,200 and 5,700 TRECs per 

100,000 CD3+ cells, respectively. They have normal CD4 T cell receptor beta variable 

repertoires. Both subjects developed antigen specific proliferative responses and have 

discontinued immunoglobulin replacement. In summary, thymus transplantation led 

to T cell reconstitution and function in these FOXN1 deficient infants. 
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Introduction 

 

The nude/severe combined immunodeficiency (SCID) phenotype due to deficiency 

of the transcription factor FOXN1 was first described in mice by Flanagan in 1966, who 

noted an absence of hair, poor growth, early mortality, and susceptibility to infection.1 

Subsequent investigations revealed that the immunodeficiency resulted from athymia 

caused by mutations in the WHN gene, since renamed FOXN1.2-4 The first human cases 

of FOXN1 deficiency were reported by Pignata in two children with athymia, reduced 

T cell numbers, absence of hair, and nail dysplasia.5 One child died and the other 

received bone marrow transplantation without reconstitution of the naïve T cell pool.6 

In the same community, four other children with alopecia had died early in life from 

severe infections, which suggested that they, too, had the same FOXN1 mutation.7 

 

Here we report 2 unrelated infants who presented with congenital athymia due to 

the human nude/SCID phenotype resulting from mutations in FOXN1.  We treated the 

2 infants with FOXN1 deficiency with thymus transplantation, taking advantage of the 

experience using this therapy to achieve immunoreconstitution in infants with athymia 

secondary to complete DiGeorge anomaly.8  In this report, we describe the presentation 

of the research subjects and their clinical and immune outcomes.   
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Materials and Methods 

 

Research subjects:   

Both subjects were enrolled in protocols that were approved by the Duke 

University Health System Institutional Review Board (IRB) and were reviewed by the 

Food and Drug Administration under an Investigational New Drug (IND) application.8  

The parents of each subject provided written informed consent.  The clinical trial 

registration numbers are NCT00579709 “Thymus Transplantation with 

Immunosuppression” for subject 1 and NCT00576407 “Thymus Transplantation in 

DiGeorge Syndrome” for subject 2.  

 

Thymus transplantation:   

Unrelated allogeneic thymus tissue, routinely discarded during cardiac surgery, 

was collected from infants less than 9 months of age.  The tissue was used for 

transplantation after informed consent was obtained under protocols approved by the 

Duke IRB and reviewed by the FDA.  Detailed descriptions of the procedure are 

published.8-10    

 

Immune testing: 

Standard flow cytometry and proliferation assays were performed as previously 

described. In brief, antibodies for flow cytometry included CD3, CD4, CD8, CD14, 

CD16, CD19, CD45, CD45RA, CD56 and CD62L (all from BD Biosciences, San Jose, 

CA).  The TCRBV analysis by flow cytometry used the Beta Mark TCR Vβ repertoire 

kit (#IM3497, Immunotech, Beckman Coulter, Marseille, France). The proliferative 

response to phytohemagglutinin (PHA) was performed in triplicate using 100,000 cells 
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per well with 3 concentrations of mitogen. Tritiated thymidine incorporation was 

measured on days 3 and 4.  Cultures with purified protein derivative (PPD, 5 μg/ml, 

Statens Serum Institut), Candida albicans (40 μg/ml, Greer Laboratories), varicella zoster 

virus (VZV, 1 μg/ml, Virusys Corp.), and tetanus toxoid (20 μg/ml, Virusys Corp.) 

were performed in quadruplicate and then pulse labeled and harvested on day 6.   

Spectratyping was performed using RNA isolated from cells separated 

magnetically with CD3, CD4, or CD8 microbeads (Miltenyi Biotec, Auburn, CA).  After 

capillary gel electrophoresis, the data (Gene Scan Software, Applied Biosystems, Foster 

City, CA) were uploaded onto a web accessible analysis program, SpA.11-13 The result 

was reported as the Kullback-Leibler divergence (DKL) score.  High scores reflect 

oligoclonal repertoires (highly divergent from normal) whereas low scores reflect 

polyclonal repertoires.13   

Signal joint (sj) T cell receptor rearrangement excision circle (TREC) analyses were 

performed as described.11   

Immunohistochemistry was performed on allograft biopsies as described.14, 15 

To evaluate for maternal engraftment, DNA was obtained from isolated circulating 

T cells in the subject, from maternal peripheral blood, and from the subject’s own 

buccal swab. The hospital laboratory compared the samples using multiplex PCR 

amplification for 8 microsatellite markers followed by electrophoretic separation of 

each sample.  The limit of detection was 2%. 
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Results 

 
Subject 1  

  

Subject 1 was born at term to Portuguese parents who were distant cousins.  The 

female infant had nail dystrophy and no hair.  Genetic analysis revealed a 

homozygous nonsense mutation at residue 255 (R255X) in exon 4 (formerly exon 5) in 

FOXN1.   

 

Slowly progressive Bacillus Calmette-Guérin (BCG) adenitis and mild 

erythroderma had been apparent at 3 months of life.  At day 157 of life, the subject was 

admitted with respiratory failure and noted to have marked posterior cervical adenitis 

and inguinal adenitis.  Gastric and bronchoalveolar lavage secretions grew 

Mycobacterium bovis resistant to isoniazid; treatment included streptomycin, 

rifampicin, ethambutol, itraconazole, trimethoprim/sulfamethoxazole and 

intravenous immunoglobulin.   

 

The initial immune evaluations were performed when the subject presented with 

respiratory failure and the subsequent pre-transplantation evaluations are included in 

Table 1.  Although circulating T cells were present, naïve T cells were profoundly low.  

The striking feature of the immune profiles in the first year of life was the expansion of 

double negative (CD4-CD8-) T cells.  The TCR population composed approximately 

one third of the double negative population (unpublished data); the remainder of the 

double negative T cells were thus TCRαβ positive.   

 



94                Strategies for T-cell reconstitution: insights from human clinical models 

  

 

The T cell receptor beta variable (TCRBV) repertoire was evaluated before thymus 

transplantation by flow cytometry and spectratyping.  The CD4 TCRBV repertoire 

assessment of subject 1 by flow cytometry on day 297 of life (127 days prior to thymus 

transplantation) showed expansions of T cells expressing BV3 and BV22 (Figure 1A); 

the spectratyping analysis of CD4 RNA was markedly oligoclonal (Figure 2A).13  

Additional flow cytometry evaluations of TCRBV repertoire are shown in Figures 1A 

and 1B.  Lastly, sjTREC analysis on day 409 of life (15 days prior to transplantation) 

revealed <100 TRECs per 100,000 CD3+ T cells.   Overall, these data were consistent 

with a lack of thymic function in subject 1.   

 

 

Figure 1:  T cells are oligoclonal in subject 1 prior to transplantation but are polyclonal after 
transplantation in both subjects by flow cytometry.  T cell receptor diversity for CD4 (A) and 
CD3 (B) T cells was assessed for subject 1 prior to transplantation.   Panel C shows the latest 
diversity assessment in subject 1; panel D shows the latest assessment in subject 2.  Note that 
the Y axis in the CD4 panel A differs from the Y axis in CD4 panels C and D.  The shaded area 
in panels A, C, and D represents the normal range ± 3 SD based on data from 19 healthy adults.   
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Figure 2: CD4 RNA spectratyping shows oligoclonality in subject 1 prior to transplantation 
and polyclonality in both subjects after transplantation. Subject 1 at A) day -127 and B) day 
873 after transplantation; Subject 2 at C) day 368 after transplantation.   The DKL score for subject 
1 pre-transplantation (panel A) is 1.38 compared with the DKL score of 0.19 after transplantation 
(panel B).  For subject 2, the post transplantation DKL was 0.08 (panel C).  Lower DKL scores 
reflect greater diversity in the T cell receptor repertoire.  The “X” indicates panels with 
insufficient RNA concentrations.  These panels were not included in the calculation of the DKL 
score.   
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The T cell proliferative responses to PHA were initially low but unexpectedly 

increased to over 100,000 counts per minute (cpm) prior to transplantation (Table 1).  

Evaluation for possible maternal engraftment was performed at the time of diagnosis 

and 9 days prior to transplantation.  No evidence of circulating maternal T cells was 

found.    

 
Table 1: Presenting immunophenotypes prior to transplantation 

 

* For subject 1, naïve T cells were defined by the phenotype CD4+CD45RA+CD27+ for the first 3 values done in  the referring center and 
by the phenotype CD4+CD45RA+CD62L+ in the transplant center.  Naïve CD8 cells (unpublished) were similarly very low. 
† Abbreviation: bkg, medium plus cells background.  
‡  The first two PHA assays for subject 1 were performed in the referring center ; the lower limit of normal is 20,000 cpm.  The remaining 
PHA assays in this table were performed at the transplantation center laboratory in which the lower limit of normal is 75,000 cpm.    
§  The T cell numbers were too low for accurate determination of the naïve percentages.  

 

Beginning prior to transplantation, the subject was treated with cyclosporine, 

steroids, and rabbit anti thymocyte globulin as described previously.8 The 

immunosuppression was initiated because of the increased T cell proliferation in 

response to PHA, the large numbers of oligoclonal double negative T cells, and the 

increased levels of T cell activation markers (unpublished data).  One dose of 

daclizumab, 1 mg/kg, was also given shortly prior to transplantation.  The female O+ 

blood type subject was transplanted with cultured thymus tissue from an unrelated 

Subject 
Day of life 

(day prior to 
transplant) 

CD3+ 
/mm3 

CD4+ 
/mm3 

CD8+ 
/mm3 

CD3+CD4-CD8- 
/mm3 

Naïve 
CD4+*

% 

CD19 
/mm3 

CD16+  and/or 
CD56+, CD3- 

/mm3 

PHA (bkg)† 
cpm‡ 

Eosinophils 
/mm3 

166 (-258) 2,219 660 612 678 <1% 3,940 51  53 
215 (-209) 6,250 1,950 1,737 1,507 <1% 1,507 886 4,189 

(654) 
4,155 

254 (-170) 2,296 745 576 749 <1% 1,307 487 2,582 
(584) 

2,436 

297 (-127) 1,463 446 246 752 <1% 1,946 1,667 18,912 
(103) 

1,613 

408 (-16) 964 4043 146 411 <2% 3632 582 63,733 
(413) 

468 

1 

418 (-6) 1,010 473 155 381 <1% 2,734 409 104,246 
(154) 

510 

140 (-126) 2§     315 273   
252 (-14) 1§     638 167  36 

2 

255 (-11)        635 
(205) 

76 
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female A- infant who was under 1 month of age.  The HLA types for the subject and 

thymus donor are shown in Table 2.   

 

Table 2.  HLA typing of subjects and thymus donors 

 HLA-A HLA-B HLA-C HLA-DRB1 HLA-DQB1 

Subject 1 2601, 3101 3503, 3801 1203 0701, 1201 0202, 0301* 

Thymus 1 0101, 2301 0801, 4901 0701 1101, 1301 0301, 0603 

Subject 2 2402, 2501 1501, 4402 0303, 0501 0404, 1301 0302,0603 

Thymus 2 0101, 0201 0801, 4002 0202, 0701 0301, 0408 0201, 0301 

*  The bold specificities indicate sharing between the recipient and the thymus donor. 
 

Clinical course after transplantation:   

Subject 1 was weaned off steroids and cyclosporine by 10 months after 

transplantation.  Pneumocystis pneumonia prophylaxis and immunoglobulin 

replacement were stopped at 33 months after transplantation.   

The subject had several serious infections in addition to M. bovis.  A severe 

rotavirus infection was present from the time of admission for transplantation 

until discharge.  After transplantation, she developed a Klebsiella pneumoniae 

urine infection on day 19;  pneumocystis pneumonia requiring oxygen therapy 

on day 53 (despite pentamidine prophylaxis); a central venous catheter 

infection with blood cultures positive for K. oxytoca and Enterococcus faecalis at 6 

months; and varicella at 8 months that was treated with intravenous acyclovir 

with an uneventful course.  By 18 months after transplantation, adenopathy 

from BCG had resolved. The anti-mycobacterial medications were stopped 33 

months after transplantation. 
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Immune results following thymus transplantation:  

A biopsy of the allograft was performed on day 99 after thymus transplantation.  

Figure 3 (panels A and B) shows evidence of thymopoiesis with a Hassall body and 

medullary thymocytes.   

 

Figure 3: Biopsy evaluation of thymus allografts shows thymopoiesis. Subject 1 in panels A 
and B, subject 2 in panels C and D.  Cytokeratin reactivity in A and C, CD3 reactivity in B and 
D.  Bar is 50 μm.  The microscope was an Olympus VANOX AHBS3.  The magnification was 
40x using a 40x numerical aperture objective lens (Olympus SPLAN 40X).  The 
photomicrograph was taken at room temperature.  Neither imaging media nor fluorochromes 
were used.  The camera used was an Olympus DP70 digital imaging camera.  Acquisition 
software was Olympus DP Controller.  Subsequently Adobe Photoshop 6.0 was used to 
compose this figure.  

 

Subject 1 had presented with circulating T cells that were predominantly CD4-CD8- 

(Table 1).  By 6 months after transplantation, the CD4 T cells outnumbered the double 

negative T cells (Figure 4A).  Naïve T cells began increasing 1 year after 

transplantation (Figure 4B).  The most recent naïve CD4 count at 4.9 years after 

transplantation is 213 cells/mm3 (normal 420-1500, 10th – 90th percentile).16 No thymus 
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donor T cells nor maternal T cells were detected when tested at day 101 after 

transplantation. 

 

 
 
Figure 4: T cell subtype populations and PHA responses before and after thymus 
transplantation.  Subject 1 is shown in panels A, B, and C; and subject 2 in panels D, E, and F.  
Panels A and D show T cell phenotypes; panels B and E show naïve T cells, and panels C and F 
show proliferative responses to PHA.  In panels A and B, the data points starting at 2.1 years 
were obtained by the referring hospital laboratory.  In panels D and E, the first 3 data points 
and the data points starting at 1.4 years after transplantation were obtained by the referring 
hospital laboratory.  The phenotypes of the naïve CD4+ and CD8+ T cells are as described in 
Table 1.  In panels C and F, the asterisks indicate the values obtained in the referring hospital 
laboratories.  The mean (solid line) and ± 2 SD (dotted lines) for healthy adult data are shown 
in Panel C for the referring and transplant center laboratories.  In Panel F, the lower limits of 
the normal PHA response observed in the referring hospital laboratory is indicated by the 
single dotted line.     

  

 Antigen specific T cell responses developed after transplantation.  At 17 months 

after transplantation, subject 1 developed a proliferative response to PPD (Table 3). An 

antigen specific proliferative response to VZV was detected when assayed at 45 
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months after transplantation (Table 3).  The proliferative response to PHA is normal 

(Figure 4C). 

 

Table 3: T cell proliferative responses to antigens 

Antigen Month after 
transplantation 

Antigen stimulated 
cells (cpm) 

Unstimulated cells 
(cpm) 

Stimulation index 

Subject 1     
7 686 700 1 
17 16,167 630 26 
36 31,063 243 128 

PPD 

45 22,019 430 34 
17 645 630 1 C. albicans 
45 6,732 430 10 

Tetanus 
toxoid 

45 15,240 430 24 

VZV 45 17,938 430 28 
Subject 2     

15 18,500 3,000 6 Tetanus 
toxoid 35.4 27,000 700 39 

15 20,500 3,000 7 
C. albicans 

35.4 74,500 700 106 

 

The CD4 TCRBV repertoire as assessed by spectratyping improved significantly 

after transplantation (Figure 2B) compared to the previous analysis (Figure 2A). The 

spectratyping results correlated with an improvement in the flow cytometry 

assessment of the repertoire, which no longer contained  expansions of VB3, VB4, 

VB14 or VB22 (Fig 1C).  The sjTREC analysis at 2 years after transplantation showed 

10,220 TRECs per 100,000 CD3+ T cells, a value within the normal range for age.17   

 

Subject 1 stopped immunoglobulin replacement approximately 2.7 years after 

transplantation. By this time, subject 1 had developed normal serum IgA and IgM 

levels, both of which had been undetectable early in life (Table 4). Serum IgG levels 

were within the normal range 4 of 5 times when tested after discontinuation of 

immunoglobulin therapy (Table 4). At 3.2 years after transplantation, the subject 

demonstrated an excellent response to tetanus toxoid immunization (Table 4). 
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Subject 2 

 

Subject 2 was born at term to unrelated parents of mixed French/African origin 

who came from nearby communities. The male infant had no hair and dystrophic nails. 

Genetic analysis revealed a homozygous missense mutation in exon 6 of FOXN1, 

C987T (R320W). The subject was not given BCG vaccination at birth. At 3 months of 

life, the infant presented in respiratory distress and was mechanically ventilated for 15 

days. No microorganism was recovered by bronchoalveolar lavage, but he was treated 

with antibiotics including trimethoprim/sulfamethoxazole and liposomal 

amphotericin. One month later, after transfer to a tertiary hospital, Human Herpes 

Virus 6 (HHV6) infection, was detected (140,000 copies/ml) associated with mild 

anemia and neutropenia. Thrombocytopenia, felt likely to be related to HHV6 

infection, developed at 8 months of life. The initial immune evaluation at 4 months of 

life revealed no T cells and no proliferative response to PHA (Table 1). Flow cytometry 

evaluations of TCRBV repertoire and sjTREC analysis were not performed in subject 2 

due to lack of T cells prior to transplantation. 
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Table 4.  B cell function in subjects after stopping immunoglobulin replacement  

Age 
(years) 

Year 
after 
tx* 

Serum 
IgG 

(mg/dl) 

Serum 
IgA 

(mg/dl) 

Serum 
IgM 

(mg/dl) 

Serum IgE 
(IU/ml) 

Other titers 

Subject 1 - stopped immunoglobulin replacement at 3.9 years of life, 2.7 years after transplantation 
0.4 -0.7 126 <22 <17 409  
4.0 2.8 761 68 104   
4.2 3.0 775 93 80   
4.3 3.1 686 93 103 13 Tetanus titer (pre vaccine) 1 μg/ml 
4.4 3.2     Tetanus titer (post vaccine) 135 μg/ml 
4.7 3.5 568 82 116   
5.5 4.4 831 110 162   
Normal, age 

4 - 6 years 
640 – 
1,420 

52 - 220 40 -  180 <52  

Subject 2 - stopped immunoglobulin replacement at 1.8 years of life, 1.1 years after transplantation 
0.4 -0.3 292 15 55   
2.1 1.4 477 26 99   

2.1 1.4     
Tetanus titer:  1.24 IU/ml† ; Hemophilus 
titer: 17.4 μg/ml (>1†) ; Polio #1: 15 (<5‡) 

Polio #2: >160 (<5‡); Polio #3: 80 (<5‡) 
2.3 1.6 432 32 103   
2.5 1.8 408 39 87   
2.9 2.2 504 39 110   

3.6 2.9 506 96 112  
HBs: 70 mIU/ml (<10‡) 

Rubella: 154 IU/ml (<10‡) 
3.6 2.9     Anti-A: 1:32 (IgM)†; Anti-B: 1:16 (IgM)† 
3.7 2.9     Mumps: 351 (<50‡); Measles: 265 (<70‡) 
3.7 2.9    7.7 IU/ml  

Normal, age 2 years 0-126  
Normal, age 3 years 

582 -1200 46 -157 54 -155 
3-135  

* Abbreviations:  tx, transplantation; † This is a normal response. ‡ This control value indicates absence of immunity  

 

Subject 2 did not receive any immunosuppression.  Thymus transplantation was 

performed at 9 months of life.  The male O+ blood type subject received thymus tissue 

from a type O+ female who was less than 9 months old.  The HLA types for the subject 

and thymus donor are shown in Table 2.   

 

Clinical course after transplantation:   

The HHV6 viral load was 110,000 copies/ml at 1 month after transplantation and 

dropped to 600 copies/ml 18 months later. The thrombocytopenia resolved 3 months 

after transplantation. At 4 months after transplantation, the subject developed a 

polymicrobial central line infection. At month 11 after transplantation, he developed a 

mild but chronic urticaria. Immunoglobulin replacement and 
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trimethoprim/sulfamethoxazole prophylaxis were stopped at 13 and 16 months after 

transplantation, respectively. At 1.6 years after transplantation, subject 2 developed 

autoimmune hypothyroidism with positive anti-thyroglobulin, anti-thyroid 

peroxidase, and anti-thyroid stimulating hormone (TSH) receptor antibodies.  Three 

years post thymus transplantation, the subject is well without recurrent or chronic 

infection.  He has a normal life and normal growth with thyroid hormone 

replacement.   

 

Immune results following thymus transplantation:  

Subject 2 underwent a biopsy of the allograft on day 53 after thymus 

transplantation.  The biopsy showed lacy cytokeratin and the presence of CD3+ 

thymocytes (Figure 3, panels C and D).  Scattered thymocytes were Ki-67 (nuclear 

proliferation marker) and CD1a positive (not shown).  These markers are characteristic 

of cortical thymocytes.    

T cell numbers began to increase at 5.5 months after thymus transplantation 

(Figure 4D).  Naïve T cells appeared by 9 months (Figure 4E).  At 16.5 months after 

transplantation, all T cells were shown to be genetically host.  The most recent total 

CD4+ T cell and naïve CD4+ T cell numbers (obtained at 2.9 years after transplantation) 

are in the normal range for the age of the subject (3.6 years of life).16  The total CD8+ T 

cell and naïve CD8+ T cell numbers remain below the 10th percentile for age. 16 

The CD4 TCRBV repertoire spectratype analysis was polyclonal when tested at one 

year after thymus transplantation, comparable to those of healthy controls (Figure 2C). 

The flow cytometry evaluation of the CD4 TCRBV repertoire was similarly polyclonal 

(Figure 1D).  An sjTREC assessment at one year revealed 5,700 TRECs per 100,000 

CD3+ cells. 
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The subject demonstrated a normal T cell response to PHA response by 9 months 

after transplantation (Figure 4F) and antigen proliferative responses by 15 months 

after transplantation (tetanus toxoid and Candida albicans) (Table 3).  Both responses 

remained normal over time.  The subject was given a live measles, mumps, and rubella 

(MMR) vaccine 33 months after transplantation without any adverse sequelae.  

Antibody function was tested after immunoglobulin replacement was stopped 1.1 

years after transplantation.  Table 4 shows the serum immunoglobulin levels and 

several antibody responses to immunizations.  Although the serum IgG levels are 

slightly low compared to the age matched range, all specific antibody titres tested 

were within the protective range.   

 

Discussion 

 

We report here for the first time the use of allogeneic thymus transplantation for 

the treatment of athymia and its associated lack of naïve T cells in two human subjects 

with the nude/SCID phenotype due to FOXN1 mutations. The two subjects are well 5 

and 3 years post transplantation. They both developed functional T and B cell immune 

reconstitution. 

 

The subjects were diagnosed after severe infections (disseminated BCG in subject 1, 

and a severe respiratory infection of unknown etiology in subject 2). They presented 

with absence of naïve T cells, total alopecia and nail dystrophy. FOXN1 deficiency was 

suspected and genetically confirmed in both subjects. Subject 1 was homozygous for 

the same mutation previously described in southern Italy7 and present in the first 

FOXN1 deficient human described.7, 18 Subject 2 was homozygous for a novel missense 
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mutation, C987T (R320W) in exon 6. This mutation is in the middle of the forkhead 

domain that is involved in DNA binding and is highly conserved among species.3, 19  

This homozygous mutation would likely abolish FOXN1 activity, although protein 

function was not tested.       

 

The presentation of subject 1 to the transplantation center bore a striking 

resemblance to the presentation of infant patients with atypical complete DiGeorge 

anomaly. 20 Infants with complete DiGeorge anomaly characteristically present with a 

heart defect, hypoparathyroidism and athymia. These athymic infants with complete 

DiGeorge anomaly represent less than 5% of all infants with DiGeorge anomaly.21-23 

The diagnosis of athymia is based on the absence of naïve T cells. Some patients with 

complete DiGeorge anomaly develop a rash and circulating oligoclonal T cells after 

birth. 20 They are said to have “atypical” complete DiGeorge anomaly. 20 In occasional 

patients, the oligoclonal T cells infiltrate the liver or the gut and lead to graft versus 

host like-disease in these organs. This presentation resembles that of Omenn 

syndrome. 20, 24  

 

Similar to patients with atypical complete DiGeorge anomaly, subject 1 presented 

to the transplant center at 13.7 months of life with oligoclonal T cells (which were 

predominantly double negative T cells), absence of naïve T cells, and a T cell 

proliferative response to PHA within the normal range (although the PHA response 

had initially been low per the laboratory standards at the referring institution). This 

subject had lymphadenopathy, although this finding was likely related to the 

underlying M. bovis infection, and eosinophilia. The skin manifestations in subject 1 

were different from those in atypical complete DiGeorge anomaly since subject 1 
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presented only with mild erythroderma. The proliferative response to PHA observed 

in subject 1 was unusually high compared to other infants with athymia. Only 3 

patients with complete DiGeorge anomaly (out of 60 transplanted with thymus tissue) 

have developed PHA responses greater than 100,000 cpm prior to transplantation (data 

not shown).   

 

We find it interesting that the first subject reported with FOXN1 deficiency had an 

Omenn syndrome-like appearance with erythroderma and lymphadenopathy 

associated with circulating T cells that did not proliferate to mitogens, including anti-

CD3.5 That subject’s FOXN1-deficient sibling also had erythroderma and circulating T 

cells that did not proliferate in culture. These features suggest that these two subjects, 

who were reported previously, had circulating oligoclonal T cells. Subject 1, who had 

the same mutation as the previously reported patients, also presented with 

erythroderma. This phenotype contrasts with subject 2, who carries a different 

mutation and had no circulating T cells. 

The oligoclonal T cells of atypical complete DiGeorge anomaly and 

Omenn/atypical FOXN1 deficiency may have an extra-thymic origin or may arise 

secondary to a nest of thymus epithelium able to support atypical development of T 

cells. Studies of nude mice have also demonstrated the presence of oligoclonally 

expanded T cells.25, 26  The mechanisms for the proliferation and lack of homeostasis by 

these oligoclonal T cells are poorly understood.20 

 

Because of athymia in FOXN1 deficiency, thymus transplant was chosen as the 

appropriate treatment, although bone marrow transplantation had been performed in 
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one child with the nude/SCID phenotype due to FOXN1 deficiency.6  That child did 

not develop naïve T cells, as might be expected given the absence of a thymus.6 

 

In determining the strategy to use for thymus transplantation in the 2 subjects 

presented in this report, we drew on our experience with infant patients who have 

complete DiGeorge anomaly. Immunosuppression has not been necessary in patients 

with typical complete DiGeorge anomaly who have few if any T cells.8, 11  Thus, 

immunosuppression was not used for subject 2. Atypical complete DiGeorge anomaly 

patients, who have oligoclonal T cell expansions, have required immunosuppression to 

prevent graft rejection.8, 14  The same immunosuppression regimen was used for subject 

1. 

 

Just as seen in thymus transplantation for complete DiGeorge anomaly patients, 

both FOXN1 deficient subjects developed naïve T cells, T cell function, and diverse 

TCR repertoires after thymus transplantation. The development of an in vitro 

proliferative T cell response to PPD in subject 1 was temporally associated with the 

clearance of BCG infection (Table 3). Subject 2 also developed in vitro proliferative T 

cell responses against antigens, namely tetanus toxoid and C.albicans (Table 3). 

The kinetics of appearance of T cells and the ultimate T cell numbers of the two 

FOXN1 deficient subjects fall within the ranges seen for infants with complete 

DiGeorge anomaly who receive postnatal allogeneic thymus transplants.8, 10 Naïve T 

cells in subject 1 developed later than in most patients with complete DiGeorge 

anomaly who are given immunosuppression.10 A slower development of naïve T cells 

in subject 1 was expected given the presence of M. bovis infection.27, 28  Subject 2 also 

showed slightly delayed development of naïve T cells compared to most subjects with 
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typical complete DiGeorge anomaly10 who usually develop naïve T cells before 6 

months after transplantation.8 Of note, in these subjects and the infants with complete 

DiGeorge anomaly who are given thymus transplantation, the CD8+ T cell numbers 

are substantially below the 10th percentile for age in the first years after thymus 

transplantation.8 As in the infants with complete DiGeorge anomaly, the low CD8 

numbers have not resulted in clinical infection. 

 

In subject 1, concern arose that the preexisting infection with M. bovis would 

suppress thymopoiesis.27, 28 The most recent T cell count for this subject (1,053 

cells/mm3 at 58 months after transplantation) indicates that the thymus transplantation 

has been successful in restoring relatively normal T cell numbers. The success in this 

subject gives hope for future athymic subjects who have mycobacterial infection. 

 

Our data indicate that B cell function was restored after thymus transplantation. Both 

subjects were able to discontinue immunoglobulin replacement, maintain normal 

serum immunoglobulin levels, and generate protective antigen specific titers. Of 

particular note, both subjects received the MMR vaccine without any adverse events. 

Normal post-vaccine antibody responses to these three viruses were confirmed in 

subject 2 (Table 4). 

 

It is remarkable that functional immunity developed in subject 1 with only one 

HLA match (HLA-DQB1) and in subject 2 without any HLA matches. This is similar to 

the findings in infants with complete DiGeorge anomaly for whom matching for HLA 

Class I and Class II has not been found to affect CD4 or CD8 T cell counts after thymus 

transplantation.9 
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The mechanisms involved in positive and negative thymic selection after 

unmatched thymus transplantation are not clear. Classically, it has been hypothesized 

that cortical thymic epithelium is necessary for positive selection to occur.29 Murine 

studies suggest that recipient bone marrow-derived cells such as antigen presenting 

cells30, 31 or thymocytes32, 33 may also play a role in positive selection in the thymus. 

Alternatively, circulating host-derived epithelial progenitors34-37 may migrate to the 

thymus. These recipient epithelial cells could then provide signals for positive selection 

of the developing thymocytes. In our subjects, even though the thymus graft is 

unmatched to the recipient, the recipients develop T cells that proliferate in response to 

antigens presented by recipient antigen presenting cells (Table 3) and provide help for 

B cell antibody production leading to protective antibody titers after vaccination (Table 

4). 

 

Regarding negative selection, dendritic cells have been shown to be involved.38, 39 

Thus, it is likely that recipient bone marrow derived dendritic cells that colonize the 

thymic graft may play a role. This putative mechanism for negative selection appears 

to be able to prevent the development of a graft versus host disease like syndrome 

mediated by the genetically host T cells that develop in the thymus. 

 

Negative selection in the thymus does not prevent all autoimmune disease. Subject 

2 developed autoimmune thyroid disease at 1.6 years after transplantation. The 

urticaria seen in subject 2 may have been related to the presence of anti-thyroid 

antibodies, as observed in approximately 30% of patients with chronic urticaria.40, 41 

Thyroid disease (Hashimoto or Graves) has occurred in 16 of 60 patients with complete 

DiGeorge anomaly after thymus transplantation (unpublished, 8, 10). The mechanism for 
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the increased prevalence of thyroid disease remains unclear. These data further 

emphasize the importance of continuing surveillance of these subjects for autoimmune 

disease.   

 

In summary, after thymus transplantation in two FOXN1-deficient subjects, naïve T 

cells and diverse T cell receptor repertoires developed in parallel with normalization of 

T cell proliferative responses and immunoglobulin levels. More importantly, the 

associated clearance of the ongoing disseminated infections raises the expectation that 

this therapeutic approach may have long-term clinical benefit for subjects with athymia 

secondary to FOXN1 deficiency. Overall, thymus transplantation offers a promising 

treatment for FOXN1 deficiency (nude/SCID). 
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Abstract 

 

How T-cell progenitors and thymic epithelium interact to generate T-cells is 

incompletely understood.  FOXN1 is a transcription factor expressed by thymic 

epithelium crucial for both development of the thymus1,2 and prevention of its 

involution3. Investigation of the phenotype of FOXN1-deficiency in a patient with 

homozygous R255X mutation4,5, which causes alopecia universalis, absence of thymus 

and consequent T-cell immunodeficiency unexpectedly revealed a high number of 

circulating T-cells displaying a regulatory T-cell-like phenotype which was normalized 

following HLA-mismatched thymic transplantation. Conversely, a large population of 

αβ T-cells expressing neither CD4 nor CD8 (double-negative, DN) persisted 5 years 

post-transplant despite the evidence that functional immune-competence had been 

achieved. Our data suggest that FOXN1 mutations may allow the development of a 

thymic rudiment that supports T-cell development albeit with disturbances of 

positive/negative selection, as indicated by the expansion of DN and FOXP3+ subsets. 
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Results and Discussion 

 

The unique ability of the thymic microenvironment to generate and select T-cells 

requires specialized epithelium that is regulated by FOXN11-3.  Defects in FOXN1 lead 

to athymia in association with total alopecia (“nude-SCID”), due to its additional role 

in hair follicle differentiation1,2,6.  

 

Human FOXN1 deficiency was first reported by Pignata et al. in two sisters from 

Campania4,7. Notwithstanding the evidence of athymia, these children had a significant 

number of circulating T-cells5. We identified the same homozygous R255X mutation4,5,8, 

in a Portuguese child, who presented at 5 months of age with alopecia universalis and 

respiratory failure due to Bacillus Calmette-Guérin (BCG) dissemination following 

routine neonatal vaccination with this live-attenuated mycobacterium. Circulating T-

cells of non-maternal origin were observed at close to normal numbers (2219 cells/µl), 

with similar proportions of CD4+, CD8+ and, strikingly, also of αβ-cells that expressed 

neither CD4 nor CD8 (double-negative, DNαβ) which usually are less than 1%. 

Athymia was diagnosed based on absent thymus-shadow on x-ray, lack of naïve T-

cells, undetectable single-joint T-cell receptor excision circles (sjTREC), and an 

oligoclonal repertoire, according to spectratyping (submitted manuscript). We report 

here that CD4+ T-cells exhibited an activated memory-effector phenotype with 

preserved IL-2, IFN-γ and IL-4 production (Fig.1a). CD8+ T-cells showed a similar 

activated phenotype with no terminal-effector differentiation, as illustrated by the 

maintenance of CD45RO/CD28/CD27 expression (Fig.1b) and the low frequency of 

perforin-producing cells (3%). The aberrantly expanded DNαβ T-cells also expressed 

CD45RO and were mostly CD27+ and IL-2-producing cells in agreement with lack of 
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terminal-effector differentiation (Fig.1c). A significant proportion of T-cells were 

cycling (Ki-67+, Fig.1d), and it is likely that IL-7 played a role in their 

maintenance/expansion given the preserved expression of IL-7 receptor α-chain 

(CD127, see ahead Fig.2d) and evidence of IL-7 used based on the lack of increased IL-7 

serum levels associated with lymphopenic settings. In agreement, IL-7 serum levels 

increased transitorily from 6.3pg/ml to 44.3pg/ml during the lymphopenic peri-

transplant period.  

 

Figure 1:   Peripheral T-cells in a patient with R255X FOXN1 mutation. CD4+ (a), CD8+ (b), 
and DNαβ T-cells (c) exhibited a memory-effector activated phenotype and were able to 
produce significant amounts of IL-2, IFN-γ and IL-4. Dot-plots show analysis after gating on the 
respective populations; numbers within each quadrant represent the proportion of cells 
expressing the respective molecules. Cytokine production was assessed after 4h stimulation of 
PBMC with PMA plus Ionomycin in the presence of Brefeldin A. Intracellular CD69 staining 
was used as a control for T-cell activation. (d) Proportion of cycling cells within CD8+, CD4+, 
DNαβ and γδ T-cells. Histograms show levels of intracellular Ki-67 expression within these 
populations; percentages of Ki-67+ cells are shown. Proportions within PBMC and absolute 
counts at day 166 of life were: 10.4% (660 cells/µl) for CD4+ T-cells; 9.7% (612 cells/µl) for 
CD8+ T-cells; and 10.7% (676 cells/µl) for DNαβ T-cells.     
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Figure 2: Expansion of circulating Treg-like (FoxP3+) cells in a patient with R255X FOXN1 
mutation. (a) Analysis of FoxP3 expression within total lymphocytes showing that FoxP3 is 
restricted to CD3+ cells. (b) Expression of CD4 and CD8 within total αβ cells (grey) and within 
FoxP3+ cells (black). Within total FoxP3+ cells there were 67% CD4+, 17% DNαβ and 12% cells 
co-expressing CD4 and CD8 (DP).  DP represented 3% of total αβ cells and 26% of them were 
FoxP3+. FoxP3+ cell count was 328 cells/µl. (c) Expression of the mucosal homing molecule 
CD103 within T-cells according to FoxP3 expression. (d) Analysis of the concomitant expression 
of FoxP3 with other Treg markers namely: CTLA-4, CD39, CD127, or Ki-67 within total CD4+ T-
cells. (e) Lack of cytokine production by FoxP3+ cells. Analysis performed upon short-term 
PMA and Ionomycin stimulation in the presence of Brefeldin A. Dot-plots show analysis after 
gating on the populations mentioned on the top; numbers inside quadrants represent the 
proportion of cells expressing the respective molecules. (f) Vβ distribution within FoxP3+ and 
FoxP3- CD4+ T-cells. Graph show the proportion of FoxP3+ CD4+ T-cells (black) and FoxP3- 
CD4+ T-cells (grey) belonging to a given Vβ family as assessed by flow cytometry.  

 

The thymus is known to produce a regulatory CD4+ T-cell subset (Treg), 

fundamental for preventing autoimmunity, currently best identified by expression of 

the forkhead transcription factor FoxP39-11. We found that up to 40% of the CD4 subset 

(328 cells/µl) expressed high levels of FoxP3, and also observed atypical populations of 

FoxP3+ DNαβ and double-positive T-cells (Fig.2a-b). FoxP3 can also be up-regulated in 

non-Treg T-cells upon activation11’12. Nonetheless, several findings support these cells 
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being bona fide Treg. In agreement with human Treg phenotype11, these cells expressed 

FoxP3 at high intensity concomitantly with other Treg-associated markers (CTLA-4, 

CD25 and CD39) and reduced levels of CD127 (Fig.2c-d). Moreover, in contrast to 

activated T-cells, they did not produce IL-2 or IFN-γ (Fig.2e). Importantly, comparison 

of the relative representation of different Vβ families within the FoxP3+ and FoxP3- 

CD4 sub-populations revealed distinct oligoclonal expansions, further supporting that 

FoxP3+ cells are a separate CD4 lineage (Fig.2f).  

The Treg compartment has been recently investigated in other clinical settings 

associated with peripheral oligoclonal T-cell proliferation following thymic 

impairment either due to hypomorphic mutations in hematopoietic precursors (Omenn 

syndrome)13-15, or due to developmental defects associated with variable degrees of 

thymic hypoplasia (DiGeorge syndrome)16,17. In these settings, Treg frequencies were 

found to be unaltered or reduced13-17, emphasizing the particularity of the FOXN1 

mutation.  

 

Our data raise important questions regarding T-cell origin in the context of 

athymia. It is possible that a thymic rudiment persisted, facilitating the limited 

production of T-cells that subsequently expanded in the periphery. FoxP3 induction 

can occur in early stages of both murine and human T-cell differentiation18. In mice, the 

Foxn1 gene was shown not to be required for the initial formation of the thymic 

primordium19, and there is evidence of functional T-cells in nude-SCID mice20. 

However, at least some of these T-cells seem to be generated extra-thymically, mainly 

in mesenteric lymph nodes21. CD4+ and CD8+ αβ T-cells accumulate with aging in 

nude-SCID mice22, however, characterization of their putative Treg compartment has 

not been conducted. Of note, significant DNαβ as well as FoxP3+ cells were found in a 
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mouse model of extra-thymic lymphopoiesis induced by Oncostatin M, a cytokine that 

induces thymic atrophy and lymph node alterations that support T-cell 

differentiation23.  

Since all patients reported with R255X FOXN1 mutation presented circulating T-

cells, it is plausible that these patients retained a dysplastic thymic rudiment capable of 

supporting T-cell differentiation, albeit with a narrow TCR repertoire and impaired T-

cell selection, allowing the emergence of atypical DNαβ and Treg. Alternatively, this 

thymic rudiment could allow T-cell commitment of precursors for subsequent extra-

thymic development. Progenitor T-cell commitment was shown to occur in the thymus 

prior to their extra-thymic development in mouse models24. Notably, no circulating T-

cells were recently found in a patient with a different FOXN1 mutation (submitted 

manuscript).  

 

As FOXN1 mutations impact on thymic epithelium rather than hematopoietic 

precursors, we predicted that thymic transplantation, although never performed before 

in this setting, could be a curative strategy. This was confirmed by the documentation 

of the clinical efficacy of HLA-mismatched thymic transplantation, as attested by the 

temporal association between the clearance of ongoing BCG adenitis and development 

of PPD-specific proliferative responses (submitted manuscript). The child remains free 

of significant infections 3yrs after having stopped all prophylaxis therapies. 

 

The post-transplant kinetics of T-cell recovery and the fate of the expanded pre-

transplant Treg-like and DNαβ T-cell populations were investigated. A slow 

progressive increase in the proportion of circulating naïve T-cells was observed 

(Fig.3a), accompanied, as expected, by increasing sjTREC levels (Fig.3b). Notably, in 
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spite of the HLA-mismatch of the thymic epithelia, naïve CD4+ T-cells showed a fully 

diverse TCR repertoire 5yrs post-thymic transplant (Fig.3c). The functionality of the 

allogeneic thymic graft was further estimated by sj/βTREC quantification; a ratio 

between early and late products of TCR rearrangements representing an indirect 

measurement of thymocyte division-rate and a direct correlate of thymic output25,26. A 

progressive sj/βTREC increase was observed (Fig.3b), reaching levels comparable to 

those observed in healthy children. Importantly, a sharp decline of sj/βTREC, 

accompanied by a decrease in sjTREC levels and proportion of naïve cells was 

observed 4yrs post-transplant (Fig.3a-b). Notably, these values plateau thereafter 

(Fig.3a-b), suggesting that a steady-state equilibrium could be established after 

replenishment of the immune system. These data provide novel evidence regarding the 

long-term sustainability of allogeneic thymic tissue, with implications for other clinical 

settings aimed at immunological reconstitution.  
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Figure 3:  Immunological reconstitution and recovery of the Treg compartment upon HLA-
mismatched thymic transplantation in a patient with R255X FOXN1 mutation. (a) Kinetics of 
the frequency of cells with a naïve phenotype (CD45RA+CD27+) within CD4+ and CD8+ T-
cells; histogram shows CD31 expression within naïve CD4+ T-cells at 58 month post-transplant, 
a marker associated with recent thymic emigrants. (b) Longitudinal quantification of sjTREC 
(left) and sj/βTREC ratio (right). (c) Assessment of TCR repertoire by spectratyping analysis of 
the CDR3 Vβ regions of purified naïve CD4+ T-cells at 59 month post-transplant. (d) 
Longitudinal analysis of the frequency of cells expressing FoxP3 and/or CD25 within total 
CD4+ T-cells. (e) Phenotype of circulating FoxP3+ cells at 36 month post-transplant; analysis 
was performed after successive gates on CD4+ and FoxP3+ T-cells; numbers inside quadrants 
represent the frequency of cells expressing the mentioned molecules. (f) Graph shows the 
proportion of FoxP3+ (black bars) and FoxP3- (grey bars) CD4+ T-cells belonging to each of the 
Vβ families assessed by flow cytometry at 48 month post-transplant. 

 

CD8+ T-cell recovery was disproportionally low (92 cells/µl, 9% of T-cells), as 

described following HLA-mismatched thymic transplantation in DiGeorge 

syndrome27,28. Importantly, the kinetics of naïve cell expansion within CD8+ subset 

paralleled that observed for their CD4+ counterparts (Fig.3a), and, in agreement, 
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similar sjTREC levels were found in purified CD4+ and CD8+ T-cells (7155 and 7540 

sjTREC/105 cells; respectively, 30 months post-transplant). Moreover, CD8+ T-cells 

were apparently functional and able to differentiate, as illustrated during varicella-

zoster virus infection (Supplementary Fig.1).  

 

 

 

 

 

 

 

 

 

Supplementary Figure 1: Reduced but functional CD8+ T-cell compartment after fully-
mismatched HLA class I thymus transplantation. 58 month post-transplant the frequency of 
circulating CD8+ αβ T-cells was 5% (83 cells/µl). CD8+ T-cells were analysed in terms of: (a) 
naïve/memory/effector phenotype assessed by CD45RA and CD27 expression, activation 
markers expression (CD38 and HLA-DR), IFN- or IL-2 production upon PMA+ionomycin 
stimulation, ex vivo frequency of cycling cells (Ki67+), and ex vivo frequency of apoptotic cells 
assessed by annexin V staining evaluated in gated CD8+ T-cells by flow cytometry; (b) TCR 
repertoire diversity evaluated by spectratype of CDR3 Vβ regions of purified CD8+ T-cells. (c) 
Graph shows the timely increase in the proportion of terminally differentiated cells defined as 
CD45RA+CD27neg cells within total CD8+ T-cells during Varicella and its decrease in parallel 
with the clinical resolution of the infection.  

 

A parallel reconstitution of the Treg pool and CD4 subset was observed, leading to 

stable frequencies within the normal range (Fig.3d). Of note, distribution of Vβ-families 

within FoxP3+ and FoxP3- CD4+ T-cells was strikingly similar despite the HLA-

mismatch between thymic epithelia and host (Fig.3e). Thymic Treg development is 

currently thought to be dependent on a small developmental niche that tightly controls 

Treg output29,30. It is possible that FOXN1 plays a role in such niches, contributing to 
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the thymic regulation of Treg numbers.  

 

By contrast, a significant population of circulating DNαβ persisted, at relatively 

stable frequencies, throughout the 5yrs of follow-up (Fig.4a). These cells were not 

previously observed following HLA-mismatched thymus transplant 27 (submitted 

manuscript), and were shown to disappear after effective naïve reconstitution in 

complete DiGeorge patients that presented with this atypical phenotype before thymic 

transplant27. Remarkably, DNαβ cells maintained a similar memory phenotype (Fig.4b) 

and skewed repertoire, as assessed by spectratyping (Fig.4c), despite the lack of 

terminal-effector differentiation (Fig.4d-e), and ability to produce IL-2 (Fig.4f). Thus, it 

is unlikely that they are activated terminally-differentiated CD8+ T-cells that lost CD8 

expression, as has been suggested in other clinical settings associated with abnormal 

expansions of circulating DNαβ cells31. Moreover, they expressed high levels of IL-2 

and IL-7 receptors as well as high levels of Bcl-2, suggesting in vivo responsiveness to 

IL-7 (Fig.4g); further supported by their ability to phosphorylate STAT-5 upon IL-7 or 

IL-2 stimulation (Fig.4h). On the other hand, the low ex vivo frequency of cycling cells 

(Fig.4i), and their reduced proliferative response to these cytokines (Fig.4j), suggest 

that the DNαβ cell maintenance may be largely dependent on cytokine-induced 

survival. Notwithstanding the possibility of DNαβ T-cells being long-lived cells 

generated pre-transplant, their persistence 5yrs post-transplant favors a thymic rather 

than an extra-thymic origin for these cells, since any putative extra-thymic 

lymphopoiesis is likely to be shut-down upon thymic transplantation21.  
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Figure 4: Persistence of DNαβ T-cells in a patient with R255X FOXN1 mutation upon thymic 
transplantation. (a) Absolute counts and proportion of DN, CD8+, CD4+ cells within 
circulating + T-cells. Analysis of DN T-cells revealed: (b) a relatively undifferentiated 
memory phenotype with increased expression of mucosal homing molecules; (c) a skewed 
repertoire as assessed by spectratype of CDR3 Vβ regions; (d) increased CD25 expression in the 
absence of other activation or Treg-associated markers; (e) no terminal-effector differentiation 
accordingly to CD27, CD57 and perforin expression (histogram compares perforin levels within 
DN, CD8+ and CD4+ T-cells); (f) low ability to produce IFN-γ, IL-4, or IL-17 but high IL-2 
production upon PMA+ionomycin; (g) preserved expression of IL-7Rα with high levels of Bcl-2 
(histogram compares Bcl-2 expression within DN, CD8+ and CD4+ T-cells); (h) up-regulation 
of p-STAT5 upon 15min stimulation with IL-7 (50ng/ml), IL-2 (100U/mL) or IL-15 (25ng/ml), 
bars represent p-STAT5 MFI within gated DN, CD8+ and CD4+ T-cells; (i) low levels of 
circulating cycling cells (Ki67+) despite the increased CD25 expression; (j) marked up-
regulation of CD25 levels but no preferential proliferation of DNαβ upon 5-day culture in the 
presence of IL-7 (10ng/ml), IL-2 (10U/mL), or IL-15 (12.5ng/ml) or anti-CD3 plus anti-CD28 
stimulation, graphs represent the fold change of CD25MFI and frequency of Ki67+ cells with 
respect to medium, within gated DN, CD8+ and CD4+ T-cells. 59 month post-transplant data 
are shown. Numbers inside dot-plots represent frequency of cells expressing the mentioned 
molecules acquired in a FACSCanto (p-STAT5 and 5-day cultures) and FACSCalibur flow 
cytometers. 
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Overall, human FOXN1-deficiency due to R255X mutation was associated with 

significant numbers of oligoclonal T-cells suggesting that T-cell development to a 

certain extent still occurs, albeit with altered positive/negative selection, as illustrated 

by the aberrant expansion of FoxP3+ and DN subsets. Importantly, immune-

competence can be achieved through HLA-mismatched thymic transplantation, 

despite the lack of a sustained thymocyte-division rate (as evidenced by sj/βTREC), 

and this has implications for the design of immunological reconstitution strategies to 

be used in other clinical settings.  
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Methods  

 

Patient 

Female child, born at term to consanguineous Portuguese parents, admitted at day 

157 of life with respiratory failure due to Bacillus Calmette-Guérin (BCG) 

dissemination, following routine neonatal BCG vaccination. The FOXN1 mutation 

identified is a homozygous C-to-T transition at nucleotide position 792 (GenBank 

accession no. Y11739) leading to nonsense mutation at residue 255 (R255X) in exon 4 

(formerly exon 5)8. Maternal chimerism was assessed using AmpFISTR Identifiler PCR 

Amplification Kit (Applied Biosystems, detection limit 1/100). Patient’s clinical data 

was the subject of another manuscript (submitted manuscript). Failure to thrive and 

progressive nutritional status deterioration were observed despite 

antibiotic/tuberculostatic therapy and intravenous immunoglobulin G. Thymus 

transplantation was performed (day 424 of life), under protocols approved by the Duke 

Institutional Review Board (IRB) and reviewed by the Food and Drug Administration 

under an Investigational New Drug (IND) application, as described (submitted 

manuscript). Unrelated allogeneic thymus tissue, routinely discarded from infants with 

less than 9 months of age undergoing cardiac surgery, was used for transplantation 

after informed consent27,28,32,33. Studies were performed with the parent informed 

consent under the ethical guidelines of the respective institutions.   

 

Cell isolation and cell sorting 

Peripheral blood mononuclear cells (PBMC) were isolated immediately after 

collection by Ficoll-Hypaque; naïve CD4+ T-cells using the EasySep CD4+ naïve T-cell 

enrichment magnetic kit (StemCell Technologies); and DNαβ and CD8 T-cells using the 
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BD FACSAria High Speed Cell Sorter (BD Biosciences) after surface staining for CD3, 

CD4, CD8 and TCRαβ; population purity higher than 98%. 

 

Flow Cytometry  

Lymphocyte subsets were characterized using fresh whole blood after acquiring at 

least 100,000 events within a lymphogate using a FACSCalibur flow cytometer (BD 

Biosciences). TCR Vβ family frequency was quantified in whole blood using IOTest 

Beta Mark (Beckman Coulter). PBMC were stained intracellularly for CTLA-4 (clone 

BNI3) and/or Ki-67 (clone MOPC-21) both from BD Biosciences, and FoxP3 (clone 

PCH101) using eBiosciences’s kit after surface staining, as described18. FoxP3 

expression post-transplant was assessed in fresh PBMC, whereas cryopreserved PBMC 

were used for time-points prior to thymic transplantation. Apoptosis was assessed in 

fresh PBMC using Annexin V-FITC Apoptosis Detection Kit (BD Biosciences) and 

propidium iodide (PI) staining. Analysis was done using FlowJo software (TreeStar). 

Results were expressed as median intensity of fluorescence (MFI) of a molecule or 

percentage of positive cells, and absolute numbers calculated by multiplying their 

percentage by the absolute lymphocyte count. 

 

Assessment of cytokine production at the single-cell level  

Cytokine production was assessed at the single-cell level after 4h PBMC culture 

with PMA/ionomycin in the presence of brefeldin A, as described34, with mAb against 

IFN-γ (clone 4S.B3), IL-2 (clone MQ1-17H12), and IL-4 (clone MP4-25D2) from BD 

Biosciences; IL-10 (clone JES3-9D7); and IL-17 (clone eBio64DEC17) from eBiosciences.  
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STAT5 tyrosine phosphorylation analysis 

STAT-5 phosphorylation (p-STAT5) was evaluated by flow cytometry on fresh 

PBMC stimulated for 15min with IL-7 (50ng/ml), IL-2 (100U/mL) or IL-15 (25ng/ml) 

or medium alone as described35. 

 

Proliferative response to cytokines  

Fresh PBMC were stimulated with IL-7 (10ng/ml), IL-2 (10U/mL), IL-15 

(12.5ng/ml, immobilized anti-CD3 (1µg/ml) plus anti-CD28 (1µg/ml) or medium for 

5d. The fold change of the percentage of Ki-67+ cells and CD25 MFI with respect to 

medium alone were evaluated by flow cytometry on gated DNαβ, CD4+ and CD8+ T-

cells.   

 

TCR - chain CDR3 spectratyping 

Total RNA was extracted from 105 to 106 cells with RNeasy kit (Qiagen) and first 

strand cDNA synthesized from 1-2µg of RNA with the Superscript III kit (Invitrogen) 

using an equivolume mixture of random hexamers and oligo (dT). Amplification of the 

TCRVB CDR3 was performed using primers specific for each V family36 except for VB6 

and VB2137 and a common CB reverse primer36; followed by a run-off reaction that 

extends each different PCR product with a constant CB FAM labelled primer; and a 

third step, in which each different VB PCR labelled fragment is separated on a capillary 

electrophoresis based DNA automated sequencer. Data was collected and analyzed 

with GeneMapper v4.0 (Applied Biosystems) for size and fluorescence intensity 

determination. 
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TREC analysis 

Signal joint (sj) and DJ T-cell receptor rearrangement excision circle (TREC) 

analyses were conducted as described25. Briefly, PBMC were lysed in Tween-20 

(0.05%), NP-40 (0.05%) and proteinase K (100µg/mL) for 30min at 56ºC, and then 

15min at 98ºC. Multiplex PCR amplification was performed for sjTREC together with 

the CD3 chain, in a final volume of 100µl (10min at 95ºC, then 22 cycles of 30s at 95ºC, 

30s at 60ºC, 2min at 72ºC) using outer 3’/5’ primer pairs. PCR conditions in the 

LightCycler™ experiments, performed on 1/100th of the initial PCR products, were: 1 

min at 95ºC, then 40 cycles of 1s at 95ºC, 10s at 60ºC, 15s at 72ºC. Measurements of the 

fluorescent signals were performed at the end of annealing steps. TREC and CD3 

LightCycler™ quantifications were performed in independent experiments, using the 

same first-round serial dilution standard curve. Similarly, DJ1TRECs (DJ1.1 to 1.6) and 

DJ2TRECs (DJ2.1 to 2.7) were quantified in multiplex quantitative PCR assays. This 

highly sensitive nested quantitative PCR assay made it possible to detect one copy in 

105 cells for any excision circle. The sjTREC, DJ1TRECs and DJ2TRECs were quantified 

in triplicate for each sample. The sj/TREC ratio, sj/TREC=sjTREC/105cells / 

(DJ1TRECs/105cells+DJ2TRECs/105cells), was calculated as described25. 
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Abstract 
 
 
A significant proportion of HIV-1+ patients with suppression of viremia under 

antiretroviral therapy fail to recover CD4+ T-cell counts (ART-Discordants). Similarly, 

untreated HIV-2+ patients can also exhibit major CD4-depletion in spite of 

undetectable viremia. We characterize here the immunological disturbances associated 

with major CD4-lymphopenia in these two scenarios as compared to untreated viremic 

HIV1+ patients with similar CD4-lymphopenia and HIV1+ patients with successful 

immunological and virological responses under ART. Low CD4-counts were 

associated with major naïve CD4 and CD8 depletion, irrespective of type of infection or 

ART-exposure. However, ART-Discordants exhibited lower levels of T-cell activation 

as compared to both untreated HIV-2 and HIV-1 cohorts, and a less marked increase in 

circulating IL-7 despite similar CD4-depletion. Nevertheless, ART-Discordants showed 

a preserved Bcl-2 expression, suggesting increased IL-7 consumption, which in 

conjunction with the relatively lower T-cell activation may contribute to their CD4-

count stability and low rate of opportunistic infections.  
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Introduction 

 

Antiretroviral therapy (ART) is associated in 5 to 27% of HIV-1+ patients with 

failure to recover circulating CD4+ T-cells despite apparently complete suppression of 

viral replication [1-3]. Low-level CD4 reconstitution under ART has been shown to be 

associated with older age and an advanced disease stage at the beginning of treatment 

[1-7]. Although clinical data are limited, these patients appear to have low rates of 

opportunistic infections [1, 8, 9].  

 

HIV-2 infection is also associated with major CD4-depletion despite low to 

undetectable viremia and a favourable outcome with limited impact on the survival of 

the majority of infected adults [10]. As in HIV-1 infection, CD4-counts decline 

progressively, but at a much slower rate [11, 12]. HIV-2+ patients maintain low viremia 

in the absence of ART irrespective of the degree of CD4-depletion [13-18], in agreement 

with the reduced frequency of successful virus isolation from the peripheral blood [19] 

and the reduced rates of both horizontal and vertical transmissions [20, 21]. Of note, 

HIV-2 immunodeficiency has been shown to be associated with the same clinical 

spectrum as HIV-1 disease [12]. Given the past connections of Portugal with West 

Africa where HIV-2 infection is endemic, HIV-2 infection has reached a significant 

prevalence in the autochthon Portuguese population, a situation that is unique within 

the countries with access to all antiretroviral drugs [15]. Therefore, we were able to 

study a Portuguese cohort of untreated HIV-2 patients that exhibit low CD4 counts and 

reduced viremia like the HIV-1+ patients with discordant response to ART.  
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CD4 lymphopenia is known to have significant impact per se upon the immune 

system. Therefore, the comparison of discordant patients with cohorts with similar 

degrees of CD4 depletion may add significantly to the previous studies that were 

essentially based on the comparison with patients with good immunological ART 

responses as well as seronegative individuals.   

 

Here, we compared HIV-1+ patients with discordant responses to ART with HIV-

2+ patients that exhibited a similar degree of CD4-depletion and reduced circulating 

virus in the absence of ART, with respect to fundamental determinants of HIV-

associated immunodeficiency namely, loss of naïve CD4 and CD8 T-cells, immune 

activation, IL-7R expression and circulating IL-7 levels. Untreated HIV-1+ patients 

with similarly low CD4-counts who are expected to have high viremia, as well as HIV-

1+ patients under ART with successful virological and immunological responses were 

studied in parallel, in order to evaluate the relative contributions of viremia, CD4-

depletion and ART in relation to these parameters. 
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Patients and Methods 

 

Study population 

A cross-sectional study was performed involving 65 HIV-1+ and 18 HIV-2+ 

patients with no evidence of ongoing opportunistic infections or tumours, currently 

living in Portugal and attending outpatient’s clinics in Lisbon. The following cohorts 

were studied: a) HIV-1+ patients with discordant responses to ART (ART-Discordants): 

defined as viremia below 50 RNA copies/ml and less than 300 CD4+ cells/l after at 

least one year of triple ART; b) HIV-1+ patients with virological and immunological 

responses to ART (ART-Responders) defined as viremia below 50 copies/ml, and more 

than 100 CD4+ cells/l increase reaching levels above 300 cells/l; c) ART-naïve HIV-

1+ patients with less than 300 CD4+ cells/l (Untreated HIV-1); d) ART-naïve HIV-2+ 

patients with less than 300 CD4+ cells/l (Untreated HIV-2); and, finally, e) 

seronegative age-matched controls. Their epidemiological and clinical features are 

detailed in Tables 1 and 2. The study was approved by the Ethical Board of the Faculty 

of Medicine of Lisbon. 
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Table 1: Clinical and epidemiological features of the cohorts 
 

 Healthy 
Controls 

ART 
Responders 

ART 
Discordants 

Untreated 
HIV-1 

CD4<300 

Untreated 
HIV-2 

CD4<300 

Number (males/females) 16 (7/9) 11 (8/3) 11 (5/6) 27 (15/12) 18 (7/11) 

Age, years 46±4 (26-84) 47±4 (35-79) 52±5 (32-77) 42±2 (21-63) 48±3 (21-63) 

Race      

White 13 10 10 15 7 

Other 3 1 1 12 11 

HIV transmission category      

Heterosexual n.a. 7 5 20 15 

Homosexual/bisexual n.a. 4 4 3 1 

Injection drug user n.a. 0 2 3 0 

Blood transfusion n.a. 0 0 0 2 

Unknown n.a. 0 0 1 0 

Lymphocyte count  
(x106 cells/l) 

2327±174 
(1323-3381) 

2162±183 
(1180-3140) 

1665±210 
(847-2880) 

1647±213 
(294-5913) 

1214±110 
(533-2080) 

CD4 count, cells/L 
1050±105 
(567-2163) 

630±57 
(398-981) 

206±25 
(20-300) 

161±21 
(1-300) 

182±22 
(28-292) 

CD8 count, cells/L 
594±76 

(234-1236) 
722±71 

(320-999) 
775±144 
(94-1605) 

730±95 
(32-2210) 

646±92 
(126-1456) 

Viremia, RNA copies/ml n.a. <50 <50 
287489±11962

5 (1915-
3072371) 

518±300a 
(200-3607) 

Proviral DNAb,  
copies/106 PBMC 

n.a. 
185±105 
(5-1161) 

1002±334 
(92-3210) 

773±291 
(5-3695) 

2264±1415 
(5-8895) 

NOTE: Data are mean±SEM (range) unless indicated otherwise. ART, highly active antiretroviral therapy. n.a., 
not applicable. 
a HIV-2 viral load was quantified in 16 HIV-2 patients and 13 had viremia below 200 RNA copies/ml. In these 
cases the cut-off value of the test was considered for the calculation of the mean. 
b The sensitivity of the HIV-1 and HIV-2 Proviral DNA real-time assays were 5 copies/106PBMC. Quantifications 
were below this value in 6/11 ART-Responder, 1/14 Untreated HIV-1, and 2/7 Untreated HIV-2 patients tested 
and in these cases it was considered for the calculation of the mean. Proviral DNA was quantified in 10/11 ART-
Discordants. 
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Table 2: Characterization of the HIV-1 Cohorts under ART 
 

 ART   
Responders 

ART  
Discordants 

Length of HIV-1 diagnosis, months 118±17 (65-217) 82±15 (18-148) 

CD4 T-cells/L at the beginning of ART 222±53a  111±29 

Plasma HIV-1 RNA copies/ml at the beginning of 235276±83446b 193234±81638 

Length of ART, months 68±7 (18-98) 45±6 (16-77) 

Drugs used:   

NRTI, n 1 2 

NRTI + PI, n 6 6 

NRTI + NNRTI, n 4 3 

ZDV containing, n 5 6 

Mean CD4 count increase, cells/L 400±57 95±30 

Length of previous double or mono therapy, 3 (78±28) 3 (38±17) 

Positive HCV antibody, n 1 1c 

Positive HBs Ag, n 0 0c 

NOTE: Data are presented as mean±SEM with limits in brackets. ART, highly active antiretroviral therapy; 
NRTI, nucleoside reverse transcriptase inhibitor; NNRTI, non-nucleoside reverse transcriptase inhibitor; PI, 
protease inhibitor; ZDV, zidovudine; HBV, hepatitis B virus; HCV, hepatitis C virus. 
a Data from 10 ART-Responder patients. 
b Data from 9 ART-Responder patients. 
c HCV antibody and HBs Ag were unknown in 2/11 ART-Discordant patients. 

 

Cell preparation and flow cytometric studies 

Freshly isolated peripheral blood mononuclear cells (PBMC) were stained and 

analysed for cytokine production at the single cell level using a FACSCalibur flow 

cytometer and Cellquest software (BD Biosciences, San Jose, CA) as described [10, 22]. 

Briefly, PBMC were resuspended in PBS containing 1% bovine serum albumin (BSA; 

Sigma-Aldrich, St Louis, MO) and 0.1% sodium azide (AZ; Sigma-Aldrich), stained for 

20 min with monoclonal antibodies at room temperature, washed three times with 

PBS/BSA/AZ and fixed with 1% formaldehyde. Intracellular staining of Bcl-2 was 

performed after fixation of PBMC with 2% formaldehyde and permeabilization with 
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PBS containing 1% bovine serum albumin and 0.5% saponin (Sigma-Aldrich). Cytokine 

production was assessed at the single-cell level after short-term culture of PBMC with 

phorbol 12-myristate 13-acetate (PMA, 50 ng/ml; Sigma-Aldrich) plus ionomycin (500 

ng/ml; Calbiochem, Merck Biosciences, Nottingham, UK) in the presence of brefeldin 

A (10 g/ml; Sigma). After fixation with 2% formaldehyde, PBMC were surface-

stained, permeabilized and intracellular stained as described above. Absolute numbers 

of lymphocyte subsets were found by multiplying their representation by the absolute 

lymphocyte count obtained at the clinical laboratory. 

 

IL-7 quantification 

Serum IL-7 levels were measured using Quantikine HS ELISA kit (R&D Systems, 

Minneapolis, MN), as previously reported [23]. 

 

Proviral load quantification 

HIV-2 and HIV-1 cell-associated proviral load was quantified by real-time PCR, as 

described [17]. Briefly, genomic DNA was extracted from 106 PBMC using an AbiPrism 

6100 Nucleic Acid Extractor (Applied Biosystems, Foster City, CA) and quantified 

using a NanoDrop ND-10 spectrophotometer (NanoDrop technologies, Wilmington, 

DE). Standard curves were generated by serially diluting plasmids containing HIV-2 

gag, HIV-1 gag (106 copies-5 copies), or albumin (106-10 copies) sequences. Samples 

were run in duplicate and the input level of DNA was normalized relative to the 

albumin copy number. Data were expressed as number of HIV DNA copies per 106 

PBMC.   
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Plasma viral load assessment 

HIV-1 viremia was quantified by RT-PCR (Ultrasensitive Test; detection threshold: 

50 RNA copies/ml; Roche, Branchburg, NJ) and HIV-2 viremia by a RT-PCR assay 

(detection threshold: 200 RNA copies/ml) [15]. 

 

Statistical analysis 

Statistical analysis was performed using GraphPad Prism version 4 (GraphPad 

Software Inc., San Diego, CA). Data are presented as arithmetic mean±SEM, assessed 

for distribution and compared using variance analysis ANOVA or Kruskal-Wallis test, 

and unpaired t test or Mann-Whitney test, as well as Pearson’s coefficient. p<0.05 was 

considered significant.  

 

Results  

 

Naïve/memory/effector T-cell subsets  

Similar levels of lymphopenia were observed in the cohorts with less than 300 

CD4+ T-cells/l, irrespective of plasma viral load, type of infection or ART-exposure 

(Table 1). Regarding the CD4 subset, a similar decrease in the proportion of naïve cells, 

was documented in ART-Discordants and untreated HIV-1+ or HIV-2+ patients (Fig. 

1A). An equivalent expansion of the CD8+ T-cell subset accompanied by a major 

reduction of the proportion of naïve CD8+ T-cells were also observed in these cohorts 

(Table 1 and Fig. 1B).  

 

ART-Discordants, as previously described for HIV-2+ patients [22], had a less 

marked expansion of cells with an intermediate-stage of differentiation, as defined by 
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the expression of CD27 in the absence of CD45RA, than the untreated HIV-1 cohort 

(Fig. 1B), suggesting, as others have proposed, a failure to fully differentiate CD8+ T-

cells in viremic patients [24]. Moreover, the untreated HIV-1 patients also 

demonstrated a diminished frequency of IL-2 producing CD8+ T-cells that is 

apparently recovered in ART-Discordants (19.0±3.2% IL-2+ cells within the CD8 subset 

for ART-Discordants, p= 0.3220, 10.6±1.4% for Untreated HIV-1, p<0.0001, in 

comparison with 23.3±2.7% for healthy controls). As shown in Table 1, the high levels 

of viremia observed in the untreated HIV-1 cohort contrast with the low to 

undetectable ones found in untreated HIV-2+ patients (maximum: 3607 RNA 

copies/ml), but similar levels of proviral DNA were observed in the two infections, as 

previously reported [14, 17, 18, 25, 26]. Worth noting, there were no statistical 

differences between the cell-associated viral burden for all the cohorts, which could be 

due to the slow kinetics of proviral DNA decline under ART [7, 27].  
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Figure 1: T-cell differentiation. Comparison of treated HIV-1 patients without significant CD4 
recovery despite undetectable viremia (ART-Discordants), with therapy-naive HIV-2+ 
(Untreated HIV-2) and HIV-1+ (Untreated HIV-1) patients with the same degree of CD4 
depletion, as well as with HIV-1+ patients with successful immunological response under ART 
(ART-Responders), and healthy controls with respect to: (a) Frequency of naïve 
(CD45RA+CD62L+) and Bcl-2+ cells within the CD4+ subset; (b) CD8+ T-cell differentiation - 
proportion of the following populations within CD8+ T-cells: CD45RA+CD27+, CD45RA-CD27+ 
and CD45RA+CD27-. The numbers of untreated HIV-1 and HIV-2 patients investigated were 
respectively: 25 and 18 for naïve CD4 T-cells; 6 and 8 for Bcl-2+; and 9 and 10 for CD8+ T-cell 
subsets. These groups are representative of the respective cohorts in terms of the data showed 
in Table 1. Bars represent mean±SEM. Analysis of variance was significant (1-way ANOVA) 
and p values of two-group comparisons (t test) are shown as follows: * p<0.05; ** p<0.01 and *** 
p<0.001. 
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Circulating IL-7 levels and expression of the IL-7R 

IL-7 is a non-redundant cytokine with critical roles in thymopoiesis and 

maintenance of the peripheral T-cell pools [28]. An inverse correlation between 

circulating IL-7 and CD4-counts has been shown in untreated HIV-1 and HIV-2 

infections [23, 29, 30], as well as in other CD4-lymphopenic clinical settings [28]. As 

shown in Fig. 2, serum IL-7 levels were significantly increased in ART-Discordants as 

compared to healthy subjects and ART-Responders. However, the increase observed in 

ART-Discordants was significantly lower than that found in untreated HIV-1+ and 

HIV-2+ patients.  

 

Figure 2: Circulating IL-7 levels. Comparison of serum IL-7 levels as quantified by ELISA, in 
treated HIV-1 patients without significant CD4 recovery despite undetectable viremia (ART-
Discordants), with therapy-naive HIV-2+ (Untreated HIV-2) and HIV-1+ (Untreated HIV-1) 
patients with the same degree of CD4 depletion, as well as with HIV-1+ patients with successful 
immunological response under ART (ART-Responders), and healthy controls. Each dot 
represents one individual, bars represent means. Analysis of variance was significant (1-way 
ANOVA) and p values of two-group comparisons (t test) are shown as follows: * p<0.05; ** 
p<0.01 and *** p<0.001. 
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Since IL-7 effects are modulated by its receptor expression on T-cells [31], we 

evaluated IL-7R levels on naïve and memory/effector CD4+ and CD8+ T-cell subsets 

(Fig. 3). The frequency of IL-7R+ cells was decreased in ART-Discordant as compared 

to ART-Responder and healthy cohorts within both the naïve and the memory CD4+ 

subsets, as well as within the naïve CD8+ subset. Progressive differentiation of CD8+ T-

cells, as assessed by CD45RA and CD27 expression, was associated with reduced levels 

of IL-7R+ expression in all cohorts, as expected [23]. ART-Discordants exhibited a 

lower level, but the significance of the differences became progressively weaker as 

compared to the healthy cohort and lost significance as compared to ART-Responders. 

These data are in agreement with previous reports [2]. Of note, the levels documented 

in ART-Discordant patients do not differ significantly from the ones observed in the 

limited number of untreated HIV-1 and HIV-2 patients that we were able to assess for 

IL-7R, except for the CD8+CD45RA-CD27+ subset (Fig. 3). 

 

IL-7 mediates its effects in part by the up-regulation of the anti-apoptotic protein 

Bcl-2 [32]. When we analysed intracellular Bcl-2 expression, the ART-Discordants 

exhibited levels similar to ART-Responders as well as to healthy subjects, in contrast to 

the reduced levels documented in untreated HIV-1 and HIV-2 patients in spite of the 

higher circulating IL-7 levels (Fig. 1A).  
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Figure 3: IL-7R expression. Percentage of IL-7R+ cells within the CD4+ naïve (CD4+CD45RA+) 
and memory (CD4+CD45RA-) subsets, as well as within CD8+ T-cell subpopulations defined 
according to their degree of differentiation as assessed by CD45RA and CD27 expression 
(CD8+CD45RA+CD27+, CD8+CD45RA–CD27+, CD8+CD45RA–CD27– and CD8+CD45RA+CD27–), 
as described at the top of each graph. Analysis was performed on freshly isolated PBMC. 
Treated HIV-1 patients without significant CD4 recovery despite undetectable viremia (ART-
Discordants) were compared with HIV-1+ patients with successful immunological response 
under ART (ART-Responders), and healthy controls, as well as with a subgroup of the therapy-
naive HIV-2+ (Untreated HIV-2, n=3) and HIV-1+ (Untreated HIV-1, n=3) cohorts. Bars 
represent mean±SEM. Analysis of variance was significant (Kruskal-Wallis test) and p values of 
two-group comparisons (Mann-Whitney test) are shown as follows: * p<0.05; ** p<0.01 and *** 
p<0.001. 
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CD4+ and CD8+ T-cell activation 

There is now increasing evidence that persistent immune activation is directly 

related to CD4-depletion in HIV/AIDS and to reduced CD4-gains under ART [7, 10, 

33-36].  

 

We found a significant increase in the proportion of CD4+ T-cells expressing the 

MHC class II molecule, HLA-DR, in ART-Discordants compared to ART-Responders 

and to controls (Fig. 4a). However, ART-Discordants exhibited significantly lower 

levels than untreated HIV-1 or HIV-2 patients. Of note, both the proportion of CD8+ T-

cells that express CD38 and its mean intensity of fluorescence, which has been shown 

to be an independent prognostic factor for disease progression [37], were increased in 

untreated HIV-1 and HIV-2 cohorts, whereas ART-Discordants had levels similar to 

that seen in ART-Responders and healthy controls (Fig. 4b and 4c). Moreover, the ART-

Discordants exhibit a trend to a higher proportion CD8+ T-cells that express HLA-DR 

in the absence of CD38, a population that has been associated with a favourable 

prognosis in HIV-1 infection [38], as shown in Fig. 4b. 
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Figure 4: T-cell activation. T-cell activation was compared in treated HIV-1 patients without 
significant CD4 recovery despite undetectable viremia (ART-Discordants), with therapy-naive 
HIV-2+ (Untreated HIV-2, n=8) and HIV-1+ (Untreated HIV-1, n=15) patients with the same 
degree of CD4 depletion, as well as with HIV-1+ patients with successful immunological 
response under ART (ART-Responders), and healthy controls. The phenotypic studies were 
performed in freshly isolated PBMC by flow cytometry. (a) Proportion of CD4+ T-cells that 
express HLA-DR. (b) Frequency of HLA-DR+CD38neg, HLA-DR+CD38+ as well as total CD38+ 
cells within the CD8+ T-cell subset. (c) Mean fluorescence intensity (MFI) of CD38 expression 
within CD8+ T-cells. The Untreated HIV-2 and HIV-1 groups are representative of the 
respective cohorts in terms of the data showed in Table 1. Bars represent mean±SEM. In the 
cases where analysis of variance was significant (1-way ANOVA), the p values of two-group 
comparisons (t test) are shown as follows: * p<0.05; ** p<0.01 and *** p<0.001. 
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Discussion 

 

The study of a natural “attenuated” form of HIV disease, HIV-2, in parallel with 

ART induced aviremic HIV-1 infection represents a novel approach to gain insights 

into the mechanisms of CD4 depletion and recovery in HIV/AIDS. 

 

Correlations between the degree of CD4-depletion and the loss of both naïve CD4+ 

and CD8+ T-cells have been reported in HIV-1 infection by Roederer et al., and we have 

reported similar findings in HIV-2 disease [10, 39]. The observation of comparative 

imbalances in naïve T-cell compartments in ART-Discordants and untreated HIV-1+ 

and HIV-2+ patients strengthens the possibility that a compromise in naïve T-cell 

production or survival ultimately determines CD4+ T-cell counts.  

 

Although a similar degree of expansion of the CD8+ T-cell subset was observed in 

the three cohorts with major CD4-depletion, the analysis of the patterns of CD8+ 

differentiation suggest that viremia may impair achievement of a fully-differentiated 

effector phenotype,  in agreement with previous reports [24].  

 

IL-7 is a key cytokine for T-cell development and homeostasis. The increase in 

circulating IL-7 in lymphopenic clinical settings has been viewed as an increase in 

production to enable enhanced thymopoiesis and/or peripheral T-cell survival [29]. 

We found, as expected, augmented IL-7 levels for all cohorts with CD4-depletion. 

However, ART-Discordants had a significantly lower increase than untreated HIV-1+ 

and HIV-2+ patients, suggesting a defective compensatory response that could limit 
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immune reconstitution. Previous reports of circulating IL-7 quantification in treated 

HIV-1+ patients without CD4 recovery generated conflicting data due to variations in 

patient selection or in the definition of immunological failure [1, 2, 40, 41]. Although, 

IL-7 was reported to be increased in ART-Discordants as compared to seronegatives in 

the majority of the studies, some reports did not find statistically significant differences 

in comparison with patients with good immunological plus virological response under 

ART [1, 40].  

Rather than a deficit in IL-7 production, the reduced IL-7 levels that we observed in 

ART-Discordants may reflect higher IL-7 consumption. This is in agreement with the 

hypothesis suggested by Fry and Mackall as well as other authors, that explains the 

increase in circulating IL-7 in lymphopenic settings as a result of diminished usage due 

to the reduction of cellular targets [23, 28, 31]. The high Bcl-2 levels documented in 

ART-Discordants would fit this alternative interpretation, suggesting a maintained IL-7 

consumption that could account for the reduced circulating IL-7 levels in this cohort as 

compared to the untreated HIV-2 and HIV-1 cohorts with similar CD4 depletion. Our 

data is in agreement with previous reports showing over-expression of Bcl-2 within the 

CD4 subset in ART-discordant cohorts [40]. The preserved Bcl-2 levels within the CD4 

subset and the possible maintained ability to use IL-7 may contribute to the sustained 

CD4-counts and low rate of opportunistic infections that is usually observed in HIV-1+ 

ART-Discordant patients [1]. 

 

Persistent generalized immune activation is a main determinant of the low CD4 T-

cell counts in HIV infection and of its recovery under ART [7, 10, 33-36]. Of note, 

although CD4+ and CD8+ T-cell activation was increased in ART-Discordants, it was 

significantly lower than that observed in both untreated HIV-1 and HIV-2 cohorts. 
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Several factors could contribute to this observation, namely, re-setting of the levels of 

activation through the rapid reduction of circulating virus during the first weeks of 

ART [36, 42], a direct effect of the antiretroviral drugs per se [43], or differences in the 

amount of ongoing viral replication. The latter case would imply unexpectedly high 

viral replication rates in the untreated HIV-2+ patients despite low level viremia, a 

possibility that remains so far unsupported [18]. 

 

Most studies addressing mechanisms involved in low CD4 recovery under ART in 

patients with an effective suppression of viremia compare these individuals with full 

ART-Responders and healthy controls. However, given the likely impact of 

lymphopenia per se upon the immune system, it is important to evaluate the 

homeostatic responses in this context through the comparison with cohorts of patients 

with similar degrees of CD4 depletion. In this respect, our study generates unique data 

through the inclusion of an HIV-2 cohort that shares some features of the ART-

Discordants namely CD4 depletion in the absence of viremia.  

 

In summary, we found a similar loss of CD4 and CD8 naïve T-cells in patients with 

low CD4 counts irrespective of type of infection, viremia or ART-exposure. However, 

in spite of similar levels of CD4-depletion and absence of viremia, HIV-1+ patients 

with discordant responses to ART exhibited lower circulating IL-7 in association with 

preserved Bcl-2 expression as well as  lower T-cell activation levels when compared to 

advanced untreated HIV-2 infected patients, suggesting distinct immunological 

disturbances associated with major CD4-lymphopenia in these two scenarios. 

Longitudinal studies will be important to address their relevance, but it is reasonable 

to speculate that the relatively lower immune activation in conjunction with an 
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apparent better ability to use IL-7 may play a role in the stability of CD4 counts and the 

low rate of opportunistic infections that are features of ART-Discordants. 
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Abstract  
 

Chronic Granulomatous Disease (CGD) results from primary defects in phagocytic 

oxidative-capacity. A 32-year-old X-linked CGD patient, with typical infections, also 

presented long-lasting CD4-lymphopenia, associated with persistent immune-

activation and impaired T-cell production. The occurrence of immunological-

exhaustion is clinically relevant given increasing CGD life-expectancy and the ongoing 

debate regarding early aggressive intervention. 
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Introduction 

 

Chronic Granulomatous Disease (CGD) results from genetic defects in the 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase leading to an 

impaired oxidative capacity of monocytes and neutrophils [1]. CGD represents the 

most frequent phagocytic defect, with an estimated prevalence of 1:200000 live births 

[1].  Several mutations in the four genes coding for NADPH oxidase subunits have 

been reported, but the most frequent, accounting for approximately 65% of cases, occur 

in the CYBB (gp91phox) gene on the X chromosome (X-linked), while the remainder are 

autossomal recessive mutations. The generation of reactive oxygen species (ROS), 

namely superoxide anion, hydroxyl radical and hydrogen peroxide, by NADPH 

oxidase is essential for the efficient clearance of microorganisms. Thus, CGD patients 

typically present with prolonged infections, usually due to fungi, or catalase-positive 

bacteria that are able to further degrade the little hydrogen peroxide produced. In 

accordance with its name, CGD is also associated with granuloma and chronic 

inflammation although the mechanisms involved remain poorly defined [1], as well as 

with an increased incidence of autoimmune manifestations in patients and relatives [2].  

 

Although CGD is a primary phagocytic defect, a decreased frequency of memory B 

cells [3] and diminished T-cell numbers have been reported in a large American CGD 

cohort [4] [5]. However, these studies did not include phenotypic and functional T-cell 

analysis. We report here a clinical case of a 32-year-old patient with X-linked CGD with 

persistent CD4 lymphopenia below 200cells/l for more than 16 years. We 

investigated here the pathways involved in T cell production and peripheral 

homeostasis, given the clinical relevance of a possible immunological exhaustion in 
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view of the increased life-expectancy of CGD patients. The immunological 

disturbances we described are remarkably similar to the ones found in untreated HIV-

1 infected patients, with a similar degree of CD4 depletion, studied in parallel.  

 

Case report 

A 32-year-old male with X-linked CGD (mutation at the extreme end of exon 8 of 

CYBB gene causing a G-897 to A change resulting in mRNA missplicing) presented 

with sustained depletion of CD4 T-cells with levels below 200cells/µl, since 15-year-old 

(Figure 1A). At the time of the CGD diagnosis, at the age of 13, a significant T-cell 

depletion already existed (48% T-cells), mainly related to CD4+ T-cells (13%, 

338cells/l). It is important to stress the delay in CGD diagnosis, which would have 

been easily achieved by an oxidative burst test. In fact, this patient had a past history 

typical of CGD, namely: neonatal Staphylococcus aureus sepsis; Salmonella enteritidis 

sepsis at 7-year-old; multiple liver abscesses due to Staphylococcus aureus requiring 

partial hepatectomy at 10-year-old; and persistent axilar and cervical suppurative 

lymphadenitis and subcutaneous abscesses. Following CGD diagnosis, prophylactic 

cotrimoxazole and itraconazole were prescribed. No major infections have been 

reported since, except Pseudomonas aeruginosa keratoconjunctivitis at 16-year-old. A 

tendency for clinical improvement with aging has been previously reported in CGD 

patients [1], and this has been linked with the ongoing development of acquired 

immunity [1]. However, it is notable that the patient presented a long-lasting CD4 T-

cell lymphopenia at levels usually associated with major opportunistic infections in 

HIV infected patients [6] and in patients with idiopathic CD4 lymphopenia [7]. HIV-1, 

HIV-2, HTLV-1 and HTLV-2 infections were excluded by PCR-based assays.  
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As a strategy to better understand the mechanisms involved, we combined the 

longitudinal study of the patient with parallel evaluation of untreated HIV-1+ patients 

with similar levels of CD4 depletion (mean CD4 counts=73±23 cells/µl; n=9) and 

healthy subjects (mean CD4 counts=933±53 cells/µl; n=25). All subjects gave written 

informed consent under the approval of Ethical Committee of the Faculdade de 

Medicina da Universidade de Lisboa. The CGD patient, similarly to untreated HIV-1+ 

patients, showed: marked loss of naive CD4 (Figure 1B) and CD8 (Figure 1C) T-cells; 

an inverse CD4/CD8 ratio (0.17, at 30-year-old), with expansion of terminally 

differentiated effector CD8 T-cells illustrated by the marked high levels of production 

of IFNγ and perforin (Figure 1C-D); increased levels of expression of activation 

markers, exemplified by HLA-DR and CD38, within both the CD4 (Figure 1E) and CD8 

(Figure 1C) subsets; as well as reduced in vitro lymphoproliferative responses to 

mitogens and recall antigens, revealing impaired T-cell function (Figure 1F). The pro-

inflammatory cytokine IL-17 has been shown to have a role on the pathogenesis of 

chronic inflammatory and granulomatous disorders as well as in a mouse model of 

CGD [8]. Likewise, an increased frequency of CD4 T-cells producing IL-17 was 

observed in the CGD patient (Figure 1F). The control of the immunopathology 

associated with these hyper-activated states is thought to be in part achieved by a 

population of regulatory CD4 T-cells with suppressive properties (Treg), best 

identified by the expression of high levels of the α-chain of the IL-2 receptor, CD25, 

and the fork-head transcription factor FoxP3. The CGD patient had preserved 

circulating Treg levels (Figure 1F). The past-replicative history of cells can be estimated 

by telomere length. These repeat regions at the chromosome’s ends are progressively 

lost upon cell-division [9]. Both CD4 and CD8 T cells showed reduced telomere length 

(Figure 1G), as assessed by flowFISH [9], further supporting persistent immune 
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stimulation and increased cell turnover. The low telomere length is also in agreement 

with an impaired replenishment of the T-cell pool by recently produced cells. Indeed 

we found evidence of impaired thymopoiesis based on the quantification of products 

of T-cell receptor (TCR) rearrangements generated during thymic T-cell development 

(sj and β TCR rearrangement circles, TREC) that progressively decline as the thymus 

involutes with aging [10]. The CGD patient showed a remarkable reduction of the 

sj/TREC ratio for his age (Figure1H). This ratio is considered to estimate intrathymic 

precursor T-cell proliferation and to directly correlate with thymic output [10]. Thymic 

activity declined in spite of the levels of IL-7, a crucial cytokine for T-cell development 

and homeostasis [11, 12], being markedly enhanced (Figure1I). An inverse correlation 

between circulating IL-7 levels and CD4 T cell counts has been reported in 

lymphopenic clinical settings [11-13] . The CGD patient has circulating IL-7 levels 

much above those observed in untreated HIV-1 infection (Figure 1), measured by 

ELISA, as we have previously reported [11]. In agreement with existing data [3], a 

reduced proportion of memory cells (6%; CD27+) within B lymphocytes was observed. 

Overall, this CGD patient presented B-cell and T-cell disturbances usually associated 

with AIDS progression in HIV-1+ individuals. Nevertheless, the patient’s clinical 

profile featured no major opportunistic infections in the last 20 years, just episodic 

suppurative lymphadenitis and pustulous acne.  

 



Chapter 5: An AIDS-like immunological picture in a primary defect of the phagocytic oxidative burst 
   

 

167

 

 

 

 

Figure 1. Immunological profile. (A) CGD patient longitudinal CD4 and CD8 T-cell absolute 
counts. (B) Frequency of naive cells within the CD4 subset in the CGD patient at different ages 
and in HIV-1+ patients with less than 200 CD4 cells/µl (n=9) and healthy subjects (n=25). (C) 
Expression of T-cell differentiation and activation markers, as well as of intracellular perforin 
and IFNγ within the CD8 subset of the CGD patient at 30-year-old. (D) Frequency of IFNγ-
producing cells within the CD8 subset in the subjects described in (B). (E) Expression of T-cell 
differentiation and activation markers, as well as of intracellular IL-2, IFNγ, TNFα, IL-17 and 
FoxP3 within the CD4 subset of the CGD patient at 30-year-old. (continue, next page) 
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Discussion 
 
 

We report here a case of a patient with X-linked CGD presenting infections 

typically linked to this NADPH oxidase defect, in association with a sustained long-

term CD4 T cell lymphopenia and an AIDS-like immunological profile.  

 

Reduced T cell numbers have been previously reported as a feature of CGD [4, 5]. It 

is expected that the number of CGD patients with severe CD4 lymphopenia will 

increase given the impact on their life-expectancy of the currently available therapies. 

Therefore, much effort should be devoted to the understanding of the mechanisms 

underlying this process and their clinical implications. 

 

The most striking immunological alterations relate to the inflammatory and 

hyper-activated state. Of note, persistent immune activation is currently considered a 

major driving force of the CD4 decline in HIV/AIDS [6].  

 
 
 
 
 
 
Figure 1 (continued) 
(F) Peripheral blood mononuclear cells (PBMC) proliferation to mitogens (PHA 20 g/ml, anti-
CD3 1g/ml, anti-CD3 1g/ml+anti-CD28 1 g/ml, and PMA 50 ng/ml + I 500 ng/ml) and 
antigens (Candida albicans 40 g/ml and Purified Protein Derivative, PPD 5 g/ml) were 
assessed by 3H-Thy incorporation, as previously described [6]. Results are expressed as 
stimulation indexes (ratio of mean counts per minute (cpm) of replicates in the presence of a 
given stimulus over mean cpm in its absence). (G) Telomere length of gated CD4 and CD8 
subpopulations from the CGD patient at 30-year-old and healthy subjects, estimated by 
flowFISH. (H) sjTREC levels and sj/βTREC ratio from PBMC of the CGD patient at 23-year-old 
and healthy subjects assessed by nested PCR, as previously reported [10], in relation to age. (I) 
Serum IL-7 levels assessed by ELISA, in the CGD patient, HIV-1+ patients and healthy subjects 
in relation to CD4 count. Each symbol represents one individual. Bars represent mean±SEM. 
Flow cytometric analysis was performed after acquisition of at least 100,000 events using a 
FACSCalibur. Cytokine production at the single-cell level was assessed after short-term culture 
of PBMC with PMA plus ionomycin in the presence of brefeldin A, as previously described [12].  
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In CGD mouse models, inflammation has been linked to a defective production of 

the immunossupressive molecule L-kynurenine [8], an intermediate of tryptophan 

catabolism generated by the enzyme indoleamine 2,3-dioxygenase (IDO), as this 

reaction requires superoxide that is limited by the defective NADPH oxidase function. 

Although, this represents an attractive hypothesis in view of the key regulatory role of 

IDO in the immune system [14], recent data revealed that CGD patients had no 

alterations in the IDO pathway [15].  

The high frequency of CD4 T-cells producing the pro-inflammatory cytokine IL-17 

may contribute to the hyper-activated state [8], though, given its putative role in 

controlling fungal infections, it may also occur in order to counter-act the increased 

susceptibility to fungal infections observed in CGD patients [1; 16].   

 

The levels of circulating IL-7 are much higher than those found in individuals with 

similar levels of T-cell depletion [11, 13]. This lead us to speculate that they may be in 

part related to an increased liver production of IL-7 as an acute-phase response due to 

persistent microbial products, as has been recently reported upon TLR-signalling in 

mouse models [17]. The massive IL-7 levels may contribute to the exaggerated immune 

stimulation. Nevertheless, impaired thymopoiesis and a reduced replenishment of the 

naive compartment with de novo produced T-cells also seem to significantly contribute 

to the T-cell disturbances.  

Remarkably, the patient’s immunological alterations also resemble the profile of 

immune-senescence documented in aged individuals, as well as in patients that have 

been thymectomized early in life as part of the surgical protocols for correction of 

congenital cardiac defects [18]. This profile has been considered of immunological risk 

of infections, and was shown to be an independent predictor of death in aged subjects 
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[18]. Therefore, it is worth considering this putative exhaustion of immune resources in 

the evaluation of long-term therapeutic strategies for CGD, including stem-cell 

transplantation [19]. 

 

In conclusion, we report here a case of long-lasting severe CD4 lymphopenia in 

CGD, probably due to persistent immune-activation and impaired T-cell production. 

Although the impaired adaptive immunity did not translate into major infections, its 

putative long-term implications favour an aggressive early therapeutic intervention in 

CGD. 
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CHAPTER 6 

 
 
Conclusion and Future Perspectives 
 

The maintenance and/or recovery of T lymphocytes are currently thought to 

depend on a combination of “peripheral mechanisms” and an age-dependent 

contribution of the thymus. We addressed the role of these mechanisms by studying 

discrete human clinical cohorts, all of which are associated with lymphopenia.  

 

The FOXN1 gene is expressed in thymic epithelial cells and has been shown to 

regulate the differentiation and proliferation of these cells (1-2). Mutations in the 

FOXN1 gene lead to athymia. Nevertheless, we found significant numbers of 

circulating T cells in a Portuguese patient with a R255X mutation in the FOXN1 gene.  

Notably, naïve T cells represented less than 1% of these cells.  

 

The investigation of the phenotype of the T cells present in this individual revealed 

an expansion of circulating DN T cells to proportions similar to those observed for 

the CD4 and CD8 subsets. In healthy individuals, DNT cells only represent a small 

subpopulation, usually less than 1% of the circulating lymphocytes. 

In addition, we also found that up to 40% of the CD4 subset expressed high levels 

of FoxP3. Although FoxP3 expression can be up-regulated in non-Treg cells upon 

activation (3-4), our data suggest that these cells represent a Treg-like population. In 

particular, the co-expression of other Treg markers, such as CD25, CTLA-4 and CD39, 

in parallel with FoxP3 supports this hypothesis. Moreover, in contrast to activated T 

cells, they did not produce IL-2 or IFN-. Interestingly, alterations in the development 
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and function of Treg cells were recently reported in Omenn Syndrome, an 

immunodeficiency associated with thymic impairment due to hypomorphic mutations 

in hematopoietic precursors (5). A severe reduction of FoxP3+ cells was documented in 

the lymph nodes and thymus of these patients. However, the frequency of FoxP3+ cells 

in peripheral blood was within normal range in 3 patients and markedly increased in 

another patient. In all of these subjects, isolated CD4+CD25high T cells failed to suppress 

proliferation of allogenic activated CD4 T cells (7). The disturbances in the Treg pool in 

this clinical setting were suggested to be related to abnormal TCR rearrangement and 

compensatory peripheral homeostatic proliferation (5).  

Our findings raise important questions regarding T cell origin in the context of 

athymia. Althought it was reported that the R255X mutation at FOXN1 gene would 

lead to a complete absence of functional protein (6), it is possible that technical 

constrains did not allowed the measurement of small amounts of FOXN1 expression. 

This hypothetic low level of expression of FOXN1 might allow the development of a 

thymic rudiment. Alternatively, a thymic rudiment could develop even in the absence 

of FOXN1 that support T cell differentiation, albeit with a skewed TCR repertoire, and 

altered T cell selection that generated the DN and FoxP3+ subsets. Interestingly, the 

first two cases of FOXN1 deficiency reported by Pignata et al. had the same R255X 

mutation and also presented with T cells in circulation (7). In contrast, no circulating T 

cells were found in a French patient presenting a different FOXN1 mutation.  

However, we cannot exclude the possibility that T cells were generated by extra-

thymic lymphopoiesis. Significant numbers of FoxP3+ and DN T cells were also 

found in a mouse model of extra-thymic lymphopoiesis induced by Oncostatin M. This 

cytokine induces thymic atrophy and drives alterations in the lymph nodes, rendering 
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them able to support T cell development similar to that normally observed in the 

thymus (8). 

Since FOXN1 deficiency is associated with defects in thymic epithelial cells rather 

than hematopoietic precursors, thymic transplantation was proposed, for the first time 

in this clinical setting, as a treatment strategy. Thymic transplantation, in this context, 

was associated with a progressive increase in the frequency of naïve T cells in parallel 

with increasing TREC levels. In addition, despite the HLA-mismatch between the 

thymic epithelia and the patient, we showed that the pool of naïve CD4 T cells had a 

fully diverse TCR repertoire. However, around 4 years after the transplant, we 

documented a marked decline in TREC levels accompanied by a decrease in the 

proportion of naïve cells that eventually stabilised. This finding may suggest the 

establishment of a steady-state equilibrium following the replenishment of the immune 

system. In this regard, we think that a PET-computed tomography scan would be 

interesting to perform in order to assess any remaining thymic activity in both the 

transplanted tissue and/or any putative thymic rudiment. 

 

Following thymic transplantation, the FoxP3+ population recovered in parallel 

with the CD4 subset, reaching frequencies within the normal range. In contrast, the 

DN T cells persisted throughout 5 years of post-transplant follow-up, at a fairly 

stable frequency. The maintenance of this population was observed, despite a 10 

month post-transplant period of immunosuppression. The population of DN T cells 

also maintained a similar pre-transplant memory phenotype. Moreover, they had a 

skewed TCR repertoire despite the lack of terminal-effector differentiation.  We were 

able to show that they expressed high levels of CD25, CD127 and Bcl-2, and were also 

able to phosphorylate STAT-5 upon IL-2 or IL-7 stimulation. Moreover, there was no 
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evidence of significant ex vivo turnover or proliferative responses to either IL-2 or IL-7 

which could suggest that this population may be maintained by these cytokines.  In the 

future, the assessment of telomere length, as an indicator of this population’s 

replicative history, could provide a better understanding of the processes underlying 

its persistence. 

Importantly, after the transplant, the patient was able to mount adequate antigen-

specific responses, and develop T cell memory. This is illustrated by the resolution of 

the Bacillus Calmette-Guérin (BCG) adenitis that had been present since the initial 

diagnosis, as a result of the BCG vaccination this individual received, that occurred in 

temporal association with the development of specific in vitro proliferative responses to 

PPD. Moreover, despite the low post-transplant CD8 recovery, a varicella infection was 

associated with increased frequency of terminally differentiated CD8 T cells and the 

development of in vitro specific proliferative responses to the varicella antigen. The 

child remains free of significant infections 3 years after having stopped all prophylactic 

therapies and is now attending school. 

  

Although we did not assess the expression of the gene at the protein level, we can 

speculate that the FOXN1 mutation in our patient could be associated with a certain 

degree of protein expression. In this regard, we think that the study of different FOXN1 

gene mutations’ effects upon protein expression, and their associated phenotype in a 

mouse model could provide a greater understanding of the human FOXN1 deficiency 

phenotype. 

 

Importantly, our data provide evidence that despite the HLA-mismatch, thymic 

transplantation was associated with achievement of immunocompetence and futher 
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supporting its use as a strategy for immune reconstitution in specific clinical settings 

associated with thymic defects.  

Although thymic activity dramatically decreases during adulthood, it is now clear 

that generation of new T cells in the human thymus continues throughout life. In 

HIV/AIDS infection, the thymus has been shown to have a role in the maintenance of 

T cells and the immune reconstitution that can occur under antiretroviral therapy 

(ART)  (9-10). In addition, T cells are also maintained by a variety of peripheral 

homeostatic mechanisms such as the IL-7/IL-7R network. Notably, an inverse 

correlation between circulating IL-7 levels and CD4 T cell counts has been 

demonstrated in HIV infection (11). The increased circulating levels of IL-7 in this, and 

other lymphopenic clinical settings, have been suggested to result from increased 

production of this cytokine, aimed at enhancing thymopoiesis and/or peripheral T cell 

survival (11, 12).  

On the other hand, chronic immune activation has also been suggested to play a 

major role in the CD4 depletion associated with HIV infection (13). We studied the 

contribution of both T cell activation and circulating IL-7 levels in HIV infected 

patients in the context of differing CD4 depletion, thymic impairment and viral load. 

 

Effective ART is usually associated with a decline in plasma viral load in parallel 

with an increase in CD4 T cell count, allowing a gradual quantitative and qualitative 

recovery of the immune system (14, 16). However, around 5 to 27% of HIV-1 infected 

patients fail to recover circulating CD4 T cells despite apparently complete suppression 

of viral replication under ART (ART-Discordants) (15-17). Several mechanisms have 

been reported to be involved in low CD4 recovery under ART. An impairment in 

thymic function seems likely to contribute, at least in part, to the failure of these 
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patients to restore circulating CD4 T cell numbers after suppression of HIV-1 

replication. This is supported by the decrease naïve CD4 T cells and low TREC levels 

(18, 19) observed in these individuals. Chronic T cell activation, and its association with 

high levels of apoptosis and increased T cell proliferation, has also been suggested to 

have a role in the low CD4 recovery in these patients (19, 20). Mavigner et al. showed 

that the levels of CD4 and CD8 activation, as assessed by HLA-DR and CD38 

expression, were positively correlated with the residual viremia in poor immunological 

responders (21). These authors developed an ultrasensitive assay with a limit of 

detection of 2.5 copies/ml, able to measure residual viremia. Using this assay, they 

demonstrated that the plasma of poor immunological responders contained more 

residual HIV-1 RNA than that of good immunological responders, suggesting that 

ongoing low-level viral production that occurs despite ART, might also contribute to 

persistent immune activation, and thus impact upon the reconstitution of the CD4 T 

cell pool.  

 

HIV-2 infection is also associated with a major CD4 depletion and causes AIDS in 

the majority of infected patients (22, 23). As in HIV-1 infection, CD4 counts decline 

progressively, but at a much slower rate (24, 25). HIV-2 infection is also characterized 

by low viremia in the absence of ART, irrespective of the degree of CD4 depletion (26), 

30]. Thus, we thought to compare cohorts of patients with a similar degree of CD4 

depletion and reduced circulating virus, namely ART-Discordants and untreated HIV-

2 infected patients. We also studied in parallel, cohorts of untreated HIV-1 patients 

with similarly low CD4 counts, who are expected to have high viremia, and ART-

treated HIV-1 patients with successful virological and immunological responses. The 
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combined study of the above cohorts allowed the evaluation of the relative impact of 

viremia, CD4 depletion and ART upon the process of immune reconstitution. 

Specifically, we investigated whether T cell activation, and/or IL7, could play a 

role in the relatively stable CD4 T cells counts and low rate of opportunistic infections 

observed in ART-Discordants (17, 27, 31). In this respect, we noted that, although T cell 

activation was increased in ART-Discordants, it was significantly lower than that 

observed in both untreated HIV-1 and HIV-2 cohorts. Moreover, although increased 

IL-7 levels were found in all cohorts with CD4 lymphopenia, the ART-Discordants 

showed a less marked increase in comparison to the untreated HIV cohorts. The 

reduced IL-7 levels observed in ART-Discordants may reflect a deficit in IL-7 

production or higher IL-7 consumption. One of the mechanisms by which IL-7 exerts 

its effects is via the up-regulation of Bcl-2, which, through its anti-apoptotic properties, 

is thought to increase cell survival (28). We found that ART-Discordants featured a 

preserved Bcl-2 expression which could suggest increased IL-7 consumption that, in 

conjunction with the relatively lower T cell activation, could contribute to the stability 

their CD4 count and low rate of opportunistic infections. 

 

Finally, we investigated impairments in the T cell compartment of a patient with 

Chronic Granulomatous Disease (CGD) and marked CD4 lymphopenia.  CGD is a gene 

defect of phagocytic cells that fail to generate a respiratory burst in response to 

stimulation, rendering patients highly susceptible to infections.  

Besides having a defect in phagocytic cells, our patient also presented with a 

persistent (more than 15 years) CD4 depletion. The magnitude of reduction of his CD4 

T cell pool is similar to that observed in untreated HIV-1 infected patients at an 

advanced stage of disease. Thus, we compared the long-term clinical impact and the 
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immunological disturbances associated with the CD4 depletion in this individual with 

those observed in untreated HIV-1 infected patients matched for the degree of CD4 

depletion.  

 

We found that the patient’s CD4 lymphopenia was associated with a marked and 

persistent depletion of naïve T cells at levels comparable to those found in the 

untreated HIV-1 cohort. Moreover, sj/TREC levels were also significantly decreased 

in the CGD patient suggesting an impairment of thymopoiesis in this individual. Also, 

as in the case of AIDS patients, the patient’s T cells showed an effector-memory and 

activated phenotype. In particular, a high proportion of the CD8 lymphocytes were 

IFN- producing cells and expressed increased levels of perforin. This chronic immune 

activation, possibly related to the patient’s past history of persistent infections, could 

contribute to the CD4 lymphopenia. The fact that we observed a decreased telomere 

length in T cells from the CGD patient further support an increased T cell turnover and 

the idea of an exhaustion of the immune system, due to persistent antigen challenge. 

Of note, a recent report suggested that impaired activation of the immunoregulatory 

indoleamine 2,3-dioxygenase (IDO) pathway contributed to the activated and 

inflammatory phenotype of the mouse model of CGD (29). IDO is an enzyme that uses 

superoxide as a “cofactor” for oxidative cleavage of tryptophan, yielding the 

intermediate L-kynurenine. It is considered a key regulator of immune responses, 

amongst its other effects, suppressing T cell responses and inflammation (30). This 

enzyme is upregulated during inflammation by proinflammatory stimuli, most notably 

IFN- (29). However, the IDO pathway was recently reported to be functional in 

monocyte-derived DCs from peripheral blood of CGD patients, despite their defect in 

NADPH oxidase function (31). Although this suggests that the hyperinflammatory and 
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activated phenotype seen in these patients could not be atributed to disabled IDO 

activity (31), a possible impairment of IDO function in the tissues was not excluded.  

A strong correlation between circulating IL-7 levels and CD4 T cell counts has been 

described in lymphopenic clinical settings as a homeostatic response to T cell depletion 

(11). Accordingly, we found a major increase in circulating IL-7 levels, much above 

those we observed in the untreated HIV-1 cohort. Nevertheless, we cannot exclude the 

possibility that this marked increase in circulating IL-7 was due to its production by 

the liver, as part of an acute-phase response, a phenomenon recently reported to occur 

as a result of TLR-signalling (37).  

 

Our observations regarding the CGD patient suggest an AIDS-like immunological 

picture. However, the patient’s clinical history was typical of CGD, with no evidence of 

the opportunistic infections normally seen in AIDS patients.  

 

Reduced T cell numbers were also demonstrated in a large American CGD cohort 

(32). Current improved care and treatment of the infections in CGD patients are 

associated with an increased longevity. Thus, it is plausible to speculate that an 

increasing number of CGD patients with CD4 lymphopenia will be identified, 

emphasizing the importance of clarifying the main mechanisms involved.  

Bone marrow transplantation has been performed as an attractive option for the 

definitive cure of CGD patients and is associated with resolution of infections (33). 

However, the improved outcome of the patients and their high clinical variability in 

the disease course make selection of eligible patients for HSCT difficult (33). 
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The immune system is composed of a network, both pleiotropic and redundant, 

that is capable of protecting the individual against disease. The data collected in this 

thesis illustrates possible pathways and strategies to overcome immunodeficiency and 

to achieve clinical and immunological competence, even in situations characterized by 

major impairments of multiple components of the immune system, as exemplified by 

patients with primary immunodeficiency or HIV infection. 
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