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PREFACE 

 

 

Cystic fibrosis (CF), the most lethal genetic disease among caucasians is 

caused by mutations in the CFTR gene, which encodes the cystic fibrosis 

transmembrane conductance regulator (CFTR) protein. This makes CF a 

monogenetic disease and simultaneously a good candidate for gene therapy. 

The focus of my research was not the CFTR protein but the gene that underlies 

it and the assembly of a human artificial chromosome (HAC) that could be used as a 

gene therapy tool for CF. Like the protein it encodes, the CFTR gene is not an easy 

one. The gene promoter has no TATA box and resembles, in its characteristics, a 

house keeping gene. However, it is regulated both temporally and spatially, an 

indication of complexity. Definitely, that gene and its regulatory sequences still have 

many secrets for scientists to uncover.  

Let us now speak of gene therapy for CF, the main cause behind this work. 

Gene therapy is a science field still in its infancy, where scientists are groping their 

way in search of answers, it is a path full of difficulties. At the same time, anyone who 

believes seriously in gene therapy knows that quitting is out of the question, as the 

ones who are working in this field right now are aware that they are laying the 

foundations for a future cure of CF. As is mentioned in the General Introduction to 

this thesis, the CF disorder can be caused by a great variability of different mutations 

(the CF data base records over 1700 mutations and the number keeps rising), so it is 

going to be difficult to find a drug that is able to provide cure (and not just an 

alleviation of symptoms) for all cases of disease. Gene therapy, which implies the 

delivery of a normal copy of the CFTR gene to affected cells, on the other hand, is a 

treatment independent of any specific mutation, which makes it an all encompassing 

tool against the multimutation, life-shortening CF disease. However, the target of CF 

gene therapy, the airway epithelium, is well protected against foreign invaders (which 

may include vectors carrying therapeutic genes) by the mucociliary clearance system 

and the glycocalyx. Although these barriers are somehow weakened in CF patients, 

due to the characteristics of the disease, the delivery of a transgene by a gene 

therapy vector is further hindered, in the case of the CF lung, by the presence of a 

thick, dehydrated mucus inherent to the disease. 

Yes, there is a huge amount of hard work ahead of gene therapy researchers 

but as I said above we simply cannot quit because more than just a research field, 

gene therapy is a question of humanity. This work is a humble step towards the 
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advancement of gene therapy and human artificial chromosomes and its parts shall 

be described below.  

Chapter I is divided into two main sections. In section I an overview of CF and 

the CFTR gene and protein is given. Starting with an historical background regarding 

the identification of the CF disease, we then make a description of the disorder and 

its underlying gene and protein. We describe briefly CFTR protein function and how it 

regulates other channels and transporters, like a lord of the channels. Next for this 

multifunctional protein its proposed role as a putative Pseudomonas aeruginosa 

receptor is mentioned. A description of CFTR mutations, namely the most prevalent 

one, F508del, follows. Finally, an account of the pharmacological approaches 

towards a treatment of CF is given. Section II provides a small description of gene 

therapy for CF and gene delivery systems, including both viral and non viral vectors. 

Chapter I finishes by alluding to the centromere as an essential component in any 

human artificial chromosome. 

Chapter II includes the results. A thorough description of the assembly of the 

fusion PAC CF225, carrying a reconstructed CFTR locus, followed by the analysis of 

its stability is made. Next comes the precise identification of the genomic 

insert/vector junctions as well as the two deletions in introns 9 and 10, which led to 

the subsequent determination of the length of the reconstructed locus. The results of 

co-transfecting a lung sarcoma cell line with CF225 and the TTE1 construct carrying 

a selectable marker and centromere to form a de novo human artificial chromosome 

(HAC) are described at the end of the chapter. 

In Chapter III an overall discussion of this work is given. Chapter IV gives a 

description of the materials and methods used in this study. In Chapter V preliminary 

assays to construct a pre-fabricated HAC are mentioned and strategies for the 

continuation of the work are suggested. A pre-fabricated HAC carrying a copy of the 

CFTR gene and its regulatory sequences is essential to attain a CF cure through 

gene therapy. 
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SUMMARY 

 

 

Cystic Fibrosis is an autosomal recessive disorder, which makes it a good 

candidate for gene therapy. Thus cystic fibrosis became one of the first targets for 

gene therapy since apparently it is sufficient to deliver a normal copy of the gene 

encoding the CFTR protein to the affected cells. 

Although promising at first, classical gene therapy to cystic fibrosis has not met 

expectations due to immune response against viral vectors and synthetic vectors, as 

well as short-term expression of cDNA based transgenes. These hurdles can be 

overcome by delivering the complete genomic CFTR gene on non-integrating human 

artificial chromosomes (HACs). Here, we describe the reconstruction of the genomic 

CFTR locus into one P1-based artificial chromosome (PAC), CF225. This is a non-

selectable PAC of 225.3 kb (running from -60.7 kb to +9.8 kb) which resulted from 

the ligation of two PACs, CF1-Met and CF6, with an optimized M470V codon and a 

silent XmaI restriction variant to discriminate transgene from endogenous expression. 

CF225 was shown to be stably maintained and propagated in the E. coli DH10B host. 

After co-transfection of CF225 with the telomerized, blasticidin-S selectable, 

centromere-proficient alpha satellite (cen 5) TTE1 construct into HT1080 

fibrosarcoma lung cells, CF225 was not incorporated into a de novo HAC in 122 lines 

analyzed, but five integrants formed, four of which expressed the transgene, as 

detected by RT-PCR and XmaI restriction analyses. Stability analyses suggest 

feasibility to pre-fabricate a large, tagged CFTR transgene that stably replicates in 

the proximity of a functional centromere. Although definite conclusions about HAC 

proficient construct configurations cannot be drawn at this stage, an important 

transfer resource was generated and characterized, demonstrating promise of de 

novo HACs as potentially ideal gene-therapy vector systems. 

 

 

Keywords: Cystic Fibrosis, CFTR, Gene Therapy, Human Artificial Chromosome 

(HAC), P1 Based-Artificial Chromosome (PAC) 
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RESUMO 

 

 

A terapia génica pode ser definida como a introdução de um gene exógeno 

numa célula receptora para a obtenção de benefícios terapêuticos. Os objectivos a 

longo prazo dos estudos relacionados com a terapia génica são o desenvolvimento 

de vectores como ferramentas para o estudo do genoma e da função cromossómica 

e para transferir genes para as células com fins terapêuticos. 

A Fibrose Quística é uma doença autossómica recessiva, o que implica que 

uma única cópia normal do gene CFTR, que codifica a proteína do mesmo nome, é 

suficiente para restaurar a função CFTR de canal de cloreto ausente em caso de 

mutação em ambos os alelos CFTR. Estas características tornam a Fibrose Quística 

um candidato atraente para a terapia génica, visto bastar transferir uma cópia do 

gene normal para as células afectadas para se obter a cura da doença. Assim, 

pouco tempo após a descoberta do gene CFTR, em 1989, tiveram início os primeiros 

esforços no sentido de tornar a terapia génica da Fibrose Quística uma realidade. 

Contudo, a terapia génica da Fibrose Quística tem como requisitos que o gene 

terapêutico deva ser expresso em todas as células epiteliais onde normalmente 

ocorre expressão, de preferência a níveis comparáveis aos do gene endógeno. Além 

disso, a expressão deverá ser estável e persistente, a fim de ser evitada a 

readministração repetida do gene terapêutico. 

A maioria dos vectores utilizados actualmente em terapia génica consiste em 

cassetes de expressão controlada por promotores heterólogos fortes, 

frequentemente derivados de vírus. Contudo, descobriu-se que muitos destes 

transgenes são expressos apenas durante um período de tempo limitado. A 

capacidade dos vírus para infectar as vias respiratórias fez deles a escolha natural 

inicial para a terapia génica da Fibrose Quística e muitos dos primeiros estudos 

foram efectuados com vectores virais derivados de adenovírus. 

A expressão do gene CFTR é regulada espaciotemporalmente, pelo que a sua 

estabilidade a longo prazo e expressão regulada de forma tecido-específica 

requerem não só o promotor e as porções codificantes do gene como também 

elementos cromossómicos reguladores, tais como os estimuladores e silenciadores, 

associados aos locais hipersensíveis à DNase I (DHS, na terminologia inglesa). 

Estes requisitos exigem a utilização de vectores de grande capacidade, como é o 

caso de vectores cromossómicos, tais como os cromossomas artificiais bacterianos 
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(BACs), os cromossomas artificiais baseados no fago P1 (PACs) e os cromossomas 

artificias humanos (HACs). 

Há duas vantagens essenciais dos sistemas baseados em vectores 

cromossómicos em relação à maior parte dos vectores convencionais usados para 

transferência génica. Em primeiro lugar, o DNA transferido pode ser mantido 

estavelmente sem os riscos associados à inserção e, em segundo lugar, podem ser 

introduzidos grandes segmentos de DNA englobando os genes e os seus elementos 

reguladores, conduzindo à expressão do transgene mais fiável e fisiológica, mais 

próxima da do gene normal. Além disso, os vectores cromossómicos constituídos 

apenas por DNA humano não deverão ser imunogénicos. 

Tratando-se da Fibrose Quística, o epitélio das vias respiratórias é o alvo mais 

importante, uma vez que a doença pulmonar é a que contribui principalmente para a 

morbilidade e a mortalidade. Dado que esta doença, pelo menos nas etapas iniciais, 

afecta essencialmente as vias respiratórias inferiores, é provável que as células 

epiteliais destas vias sejam importantes, sendo consideradas por muitos autores 

como as células alvo apropriadas para a terapia génica da Fibrose Quística. 

Após a produção do constructo genómico CGT21 que contém 

aproximadamente metade do locus do gene CFTR e o último exão e da 

demonstração de que ele era propagado estavelmente em células de sarcoma do 

pulmão, onde era expresso e sofria splicing correcto (Laner et al., 2005), o passo 

lógico seguinte era gerar um constructo CFTR genómico portador dos 27 exões e 

das sequências reguladoras flanqueantes para incorporação num HAC. 

O objectivo consistia na reconstituição do gene CFTR completo clonado num 

PAC [o PAC usado neste trabalho foi o pCYPAC2 (Ioannou et al., 1994)] adequado 

para a preparação em grande escala de DNA de elevada qualidade. Nós 

descrevemos aqui a construção de um locus CFTR contendo os 27 exões e a maior 

parte das potenciais regiões reguladoras num só CF PAC. Partindo de preparações 

de DNA armazenadas em plugs de agarose e previamente caracterizadas (Ramalho 

et al., 2004), contendo parte do gene CFTR em PACs, nós construímos o PAC 

CF225, portador do gene CFTR humano com todos os exões e intrões mais 

sequências reguladoras, ligando dois PACs, CF1-Met e CF6, contendo cada um 

aproximadamente metade do gene CFTR e regiões flanqueantes: o PAC CF1-Met é 

portador de um inserto que vai de -60,7 kb a montante do início da tradução no exão 

1 até ao intrão 10, e o PAC CF6 é portador de um inserto que vai do intrão 10 até 

+9,8 kb a jusante (relativamente ao fim da tradução). Devido à escolha dos PACs 

originais, os intrões 9 e 10 estão substancialmente encurtados em 5,1 kb e 27,1 kb, 

respectivamente. Como consequência, os locais hipersensíveis à DNase I (DHS) 
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descritos no intrão 10 (McCarthy and Harris, 2005) estão excluídos do locus CF225. 

Contudo, este clone tem a vantagem de conter o codão da metionina (M) optimizado 

no locus polimórfico M470V, em comparação com os clones wild type, e uma 

variante de um local de restrição XmaI silencioso sintético, o qual é adequado para 

discriminar entre os produtos de RT-PCR do transgene e os provenientes dos loci 

CFTR endógenos de qualquer célula alvo. 

A fim de concretizar um dos objectivos do presente trabalho, partimos de três 

clones PAC, CF1-Met10-43/-44/-54, cujo exão 10 tinha sido modificado para conter 

metionina (M) em lugar da valina (V) na posição 470, bem como um local de 

restrição para a enzima XmaI, introduzido por uma mutação silenciosa. O conteúdo 

destes clones foi sujeito a diferentes análises antes da construção de CF225: 1) 

amplificações por PCR cujos produtos abarcavam toda a região do exão 10 clonada 

bem como sequências wild-type localizadas a montante e a jusante, as quais 

mostraram que os tamanhos dos produtos de PCR estavam de acordo com o 

esperado nos três clones; 2) sequenciação do exão 10 clonado, que confirmou a 

orientação correcta, a presença do polimorfismo corrigido V470M e que a sequência 

nos três clones não possuía qualquer mutação derivada de PCR; 3) análise de 

restrição, tendo revelado que as bandas esperadas correspondiam aos locais de 

restrição sintéticos XmaI e NotI; 4) digestão de 1/10 de uma plug de agarose dos 

três clones CF1-Met com as enzimas de restrição NotI e/ou BssHII também mostrou 

os tamanhos esperados para os fragmentos obtidos; 5) os tamanhos esperados para 

as bandas foram demonstrados para os três clones por reacções de PCR de longo 

alcance (LR-PCR, segundo a terminologia inglesa) de baixo número de ciclos, 

cobrindo toda a sequência CFTR clonada nos PACs CF1-Met, incluindo a redução 

de 5,1 kb no intrão 9. Estes dados indicam que os clones continham o inserto 

completo sem rearranjos. Como a banda de 31,8 kb do subclone CF1-Met10-43 era 

muito fraca em comparação com os produtos dos outros subclones bacterianos, 

indicando possivelmente uma alteração em algumas das bactérias usadas na 

preparação das plugs, o clone correspondente não foi mais usado. 

Depois de confirmar que a sequência CFTR clonada no PAC CF1-Met tinha a 

mesma estrutura que a clonada no PAC CF1 original, o passo seguinte era fundir o 

PAC CF1-Met com o inserto do PAC CF6, o qual é portador do resto da sequência 

genómica de CFTR com as sequências dos exões e das junções exão/intrão 

correctas. A estratégia de clonagem foi a seguinte: 1) digestão parcial do PAC CF1-

Met (clone 44) com NotI, digestão total de CF6 com NotI seguido por desfosforilação 

para impedir a recircularização do vector; 2) separação dos produtos de digestão por 

electroforese em gel de campo pulsado (PFGE, de acordo com a terminologia 
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inglesa) e excisão das bandas do gel sem exposição a UV; 3) electroeluição dos 

fragmentos de DNA existentes nos pedaços do gel e sua mistura numa razão de 

~1/1 (CF1-Met/CF6); ligação do DNA pela ligase T4; 5) electroporação do produto de 

ligação em E. coli DH10B; 6) selecção, por PCR, das colónias resistentes à 

kanamicina com os primers CFi10fus/R7, específicos da região de fusão entre os 

dois PACs. Foi identificado um clone, mais tarde designado por CF225, positivo para 

a reacção de PCR relativa à região de fusão e para STSs dos exões 4 e 12, 

presentes nos dois PACs que foram ligados. 

Após a identificação do clone positivo, o passo seguinte deveria ser a análise 

da sua estabilidade enquanto clone. Assim, durante o crescimento inicial da cultura 

mãe das bactérias portadoras do PAC CF225, foram plaqueados doze subclones 

individuais e analisados por PCR para avaliação da estabilidade da clonagem. Nove 

dos doze subclones continham os oito STSs testados por PCR e que cobriam o 

locus em diferentes posições ao longo do gene CFTR, incluindo sequências 

localizadas a montante do início da transcrição, a região da fusão entre os dois 

PACs e a região poli (A). Para analisar mais detalhadamente a estabilidade de 

clonagem, três culturas derivadas de clones individuais do PAC CF225 foram 

crescidas durante vários períodos de tempo, simulando um rendimento final 

potencial de 1015, 1021 e 1027 células de E. coli, contendo cada uma até ~10 cópias 

totalmente replicadas do constructo. A digestão do material contido em plugs de 

agarose, proveniente das colónias derivadas dos três subclones individuais, mostrou 

a presença, em todos os casos, de um inserto com o tamanho de 225 kb (SalI) e 

fragmentos idênticos e com os tamanhos previstos (BssHII), indicando uma 

estabilidade de clonagem global elevada para o locus. Os dados indicavam também 

a propagação fiel e estável do locus CFTR no PAC CF225 (inserto de 225,3 kb), 

demonstrando que o gene CFTR pode ser clonado de forma estável em E. coli. 

Ainda continuando a análise estrutural do constructo, seguiu-se a 

sequenciação das suas extremidades, em que o inserto CFTR se liga ao vector. 

Assim, para determinar os extremos de CF225, foram efectuadas reacções de LR-

PCR com primers que se ligam nas extremidades 5’ e 3’ da junção inserto/vector. Os 

fragmentos amplificados foram sequenciados e comparados por meio do programa 

BLAST com o hg built 37.1 no site NCBI. O locus CFTR reconstruído vai do 

nucleótido -60651 relativamente ao início da tradução ao nucleótido +9767 

relativamente ao final da tradução. Ambas as extremidades coincidem com um local 

de restrição para Sau3AI, o que está de acordo com o facto de, para a preparação 

da biblioteca RPCIP704, para a qual foi utilizado o PAC pCYPAC2, que serviu de 
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fonte para a construção de CF225, o DNA genómico ter sido parcialmente digerido e 

clonado no local BamHI do vector. 

Como resultado do procedimento da clonagem, CF225 tem duas deleções nos 

intrões 9 e 10 as quais representam regiões que não estavam incluídas nos PACs 

originais CF1 (intrão 9) e CF6 (intrão 10) e que foram omitidas pela reconstrução do 

exão 10 e das suas sequências intrónicas flanqueantes. Para localizar com precisão 

e determinar a extensão daquelas deleções, foram realizadas reacções de PCR com 

primers que hibridam em regiões que flanqueiam as duas deleções. Os produtos de 

PCR foram sequenciados e comparados por meio do programa BLAST com BACs 

portadores de sequências genómicas humanas publicadas. Ambas as deleções 

foram localizadas com precisão, tendo a deleção no intrão 9 5058 pb, ao passo que 

a deleção no intrão 10 tem 27128 pb. 

Para conseguir a incorporação do locus CFTR num cromossoma humano 

artificial (HAC, na terminologia inglesa) formado de novo, foram efectuadas 

experiências de co-transfecção do locus CFTR clonado com um constructo 

linearizado portador de sequência de DNA alfa-satélite do centrómero e a expressão 

dos clones celulares obtidos analisada. Quatro ensaios independentes de co-

lipofecção do inserto de 225 kb do PAC CF225 com o constructo TTE1 (fragmento 

de 133 kb) contendo um gene marcador de resistência à blasticidina S (BS) 

duplicado e o marcador EGFP, bem como sequências centroméricas, resultaram em 

185 clones celulares, 122 dos quais foram expandidos e analisados por PCR com 

primers específicos para CF225. Cinco clones celulares individuais, BW24, BG32, 

CG13, DG27 e DG5 eram positivos para a reacção de PCR específica, indicando 

que apenas 1 em ~25 clones foram co-transfectados em simultâneo com CF225 e 

TTE1. 

Foram realizadas reacções de RT-PCR com primers que geram um produto 

entre os exões 8 e 10 que, após splicing, tem 391 pb e representa uma mistura de 

produtos dos genes CFTR endógenos da linha celular HT1080 e do locus 

transgénico. Como resultado destas experiências, verificou-se que quatro (BG32, 

CG13, DG27 e DG5) das cinco linhas co-transfectadas expressavam o locus 

transgénico. Todas as linhas que expressavam evidenciavam níveis variáveis de 

expressão CFTR após 30 dias de crescimento sem selecção. Para distinguir entre a 

expressão endógena e a do transgene, os produtos de RT-PCR foram clivados com 

XmaI que digere o exão 10 modificado de CF225 em dois fragmentos de 310 pb e 

81 pb. Nas quatro linhas celulares, proporções variáveis do transcripto CFTR 

resultavam do transgene, o que demonstrava, em muitos casos, níveis de expressão 

do transgene acima dos dos genes endógenos (cujos produtos de RT-PCR não 
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eram clivados por XmaI) e mostravam a ocorrência de splicing correcto. As linhas 

celulares que expressavam e as células HT1080 parentais foram analisadas por 

sequenciação dos produtos de RT-PCR obtidos com os mesmos primers e também 

com o primer CFc3F (exão 3), demonstrando que todas as linhas continham tanto o 

polimorfismo 470M como a variante sintética XmaI no exão 10, confirmando que 

tinham origem no transgene. 

Para verificar a integridade do constructo CF225 nas linhas celulares clonais, 

foram realizadas reacções de PCR com primers para a junção vector/CFTR a 5’ e 

para a junção vector/CFTR a 3’. Das cinco linhas celulares derivadas de HT1080 

apenas DG27 manteve a extremidade 5’ de CF225, confirmada pela sequenciação 

do produto de PCR. Todas as 5 linhas foram negativas para a reacção de PCR 

relativa à extremidade 3’, bem como para duas outras reacções de LR-PCR que 

abrangiam aproximadamente 2 kb e 3 kb desde a extremidade 3’ do vector até ao 

locus CFTR, sugerindo que o DNA de CF225 a 3’ foi perdido em todas as quatro 

linhas que expressavam. 

A fim de averiguar se se tinha formado um cromossoma de novo ou se havia 

ocorrido integração no genoma da célula, foram efectuados ensaios de FISH de 

tripla cor nestas linhas celulares após 30 dias de crescimento com e sem selecção 

por BS. Estas análises revelaram ou integração do locus CF225 num cromossoma 

do hospedeiro ou integração e truncação em todas as cinco linhas celulares clonais. 

Não se observaram HACs portadores do locus CFTR. A linha clonal DG27 mostrou 

co-integração estável próximo do gene CFTR endógeno no cromossoma 7. A linha 

BG32 revelou uma integração distal/telomérica num cromossoma que não o 7. A 

linha celular DG5 mostrou a integração de sinais de CF1, CF6 e E1 (centrómero) 

numa posição distal do cr19q e a linha CG13 mostrou integração de porções de CF1 

e CF6 no braço p de um cromossoma metacêntrico que não o 7, acompanhada por 

truncação. Na linha celular BW24 apenas foram detectadas sequências de CF6 num 

pequeno cromossoma truncado. No geral, podemos concluir que CF225 e o 

centrómero E1 não formaram eficientemente em conjunto uma estrutura de 

replicação estável. Em vez disso, foram seleccionados raros clones estáveis que 

continham pelo menos o marcador BS e várias porções do locus CF225 sem a 

extremidade 3’, que todavia mostraram expressão e splicing correcto da sequência 

do exão 10 em 4 das 5 linhas obtidas. 

No presente trabalho foram também feitas tentativas de construção de um HAC 

de novo (pré-fabricado) por uma abordagem de recombinação in vitro por meio de 

digestão enzimática e ligação, seguida de electroporação em E. coli, de um 

constructo portador do locus CF225 e de TTE1, contendo sequências de DNA 
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centromérico. Escolheu-se uma abordagem de recombinação in vitro para a 

construção porque esta técnica é mais reprodutível e menos propensa a rearranjos 

do que as abordagens de recombinação in vivo. Não foi possível obter o HAC pré-

fabricado e é sugerida uma estratégia para uma futura obtenção do mesmo. A 

produção de um HAC de novo, com todas as vantagens que este tem sobre os 

vectores virais, é muito importante para o desenvolvimento de uma terapia génica de 

sucesso para o tratamento da Fibrose Quística. Este trabalho representa mais um 

passo em frente no sentido de tornar a terapia génica para a Fibrose Quística uma 

realidade e os resultados obtidos aqui deixam antever a possibilidade de criação de 

um cromossoma artificial humano portador do gene CFTR e respectivas sequências 

reguladoras o qual representaria um vector ideal e uma promessa de cura para a 

Fibrose Quística, independentemente da mutação causadora de doença.  

 

 

Palavras-chave:  Fibrose Quística, CFTR, Terapia Génica, Cromossoma Artificial 

Humano (HAC), Cromossoma Artificial Baseado no Fago P1 (PAC) 
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ABBREVIATIONS  
 
A Adenine (base) residue; alanine (amino acid) residue 

aa Amino acid 

AAV Adeno-associated virus 

ABC ATP-binding cassette 

ACH Active chromatin hub 

Ad Adenovirus 

ASL Airway surface liquid 

ATP Adenosine-5’- triphosphate  

BAC Bacterial artificial chromosome 

bp Base pairs 

BS Blasticidin S 

C Cytosine residue 

C-terminus Carboxyl terminus 

cAMP Cyclic adenosine 3’,5’-monophosphate 

cDNA mRNA-complementary DNA 

cen Centromere 

CENP-A Centromere protein A 

CENP-B Centromere protein B 

CF Cystic fibrosis 

CF HAE Human CF ciliated surface airway epithelium 

CFTR Cystic Fibrosis Transmembrane Conductance Regulator 

CIP Calf intestinal phosphatase 

CTCF CCCTC-binding factor 

D Aspartic acid residue 

DEAC Diethylaminocoumarine 

del Deletion 

DHS DNase I-hypersensitive site 

DMEM Dulbecco’s modified Eagle Medium 

DNA Deoxyribonucleic acid 

dNTP Deoxynucleotide Triphosphate 

dUTP Deoxyuridine triphosphate 

EBNA1 Epstein-Barr virus nuclear antigen 1 

EBV Epstein-Barr virus 

EDTA Ethylenediamine tetraacetic acid 

EGFP Enhanced green fluorescence protein 
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ENaC Epithelial sodium channel 

ER Endoplasmic reticulum 

F Phenylalanine residue 

FCS Fetal calf serum 

FISH Fluorescence in situ hybridization  

FITC Fluorescein isothiocyanate 

G Guanine (base) residue; Glycine (amino acid) residue 

GCH1 Guanosine triphosphate cyclohydrolase 1 

GDS Gene delivery systems 

HAC Human artificial chromosome 

HAE Human airway epithelium 

HPRT Hypoxanthine guanine phosphoribosyltransferase 

HSP Heparan sulfate proteoglycan 

HSV Herpes simplex virus 

I Isoleucine residue 

IBMX 3-isobutyl-1-methylxanthine 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

K Lysine residue 

kb Kilobase (1000 base pairs) 

LB Luria Bertani medium 

LINE Long interspersed element  

LMP Low melting point 

LPS Lipopolysaccharide 

LR-PCR Long range-PCR 

M Methionine residue 

MC Minichromosome 

MMCT Microcell-mediated chromosome transfer 

MSD1 and MSD2 Membrane spanning domain 1 and 2 

N Amino terminus; asparagine residue 

NBD1 and NBD2 Nucleotide binding domain 1 and 2 

NHERF-1/-2 Na+/H+ exchanger regulatory factor isoform-1/-2 

NPD Nasal potential difference 

ORCC Outwardly rectifying Cl- channel 

oriP Epstein-Barr virus origin of replication  

P Proline residue 

PAC P1 phage-based artificial chromosome 
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PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PEG Polyethylene glycol 

PEI Polyethylenimine 

PFGE Pulsed field gel electrophoresis 

PGK Phosphoglycerine kinase 

PIV Human parainfluenza virus 

PKA Protein kinase A 

PKC Protein kinase C 

PLGA Poly lactic-co-glycolic acid 

RD Regulatory domain 

RNA Ribonucleic acid 

ROMK Renal outer medullary K+ channel 

RT-PCT Reverse transcription polymerase chain reaction 

SDS Sodium dodecyl sulfate 

SeV Sendai virus 

SINE Short interspersed element 

Sp1 Specificity protein 1 

STS Sequence-Tagged Sites 

T Thymidine (base) residue; threonine residue (amino acid)  

TAE Tris/acetate/EDTA buffer 

Taq Thermus aquaticus 

Tris Tris(hydroxymethyl)aminomethane 

TM Transmembrane segments 

UTR Untranslated region 

UV Ultraviolet 

V Valine residue 

W Tryptophan residue 

wt Wild-type 

X Any amino acid residue 

YAC Yeast artificial chromosome 
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CHAPTER I. GENERAL INTRODUCTION 

 

I. OVERVIEW OF CYSTIC FIBROSIS (CF) AND THE CFTR GENE AND PROTEIN 

 

 

I.1. CYSTIC FIBROSIS 

 

I.1.1 HISTORICAL BACKGROUND  

 

Cystic fibrosis (CF) was first recognized as a separate disease from celiac 

syndrome in 1938 by Dr. Dorothy Hansine Andersen (1901-1963) based on autopsy 

studies of malnourished infants, which allowed to distinguish a disease of mucus 

plugging of the glandular ducts, termed “cystic fibrosis of the pancreas” (Andersen, 

1938). This thick, sticky mucus clogging the ducts of mucus glands throughout the 

body gave rise to the alternative designation “mucoviscidosis” (state of thick mucus) 

(Farber, 1944).  

An important discovery was made during the 1948 heat wave in New York by 

Dr. Paul di Sant’Agnese (1914-2005) who was the first to recognize that babies with 

CF were at increased risk for heat prostration. This observation led to his discovery 

that the sweat is abnormal in patients with CF, presenting a fivefold excess of sodium 

and chloride, which persisted after the heat wave subsided (di Sant'Agnese et al., 

1953). Standardization of the sweat test, which became the primary diagnostic test, 

in 1959 (and still in use today) allowed identification of milder cases, and CF was 

found to be not only a disorder of mucus (Davis, 2006). 

Investigations proceeded in the CF field and in the 1980’s major breakthroughs 

were accomplished. Thus, in 1983, Paul Quinton, studying the ducts of sweat glands, 

identified chloride (Cl-) transport as the basic defect in CF (Quinton, 1983). In another 

line of investigation, Michael Knowles and Richard Boucher found diminished 

chloride movement from epithelia into the airway lumen, accompanied by increased 

sodium reabsorption in the epithelium (Knowles et al., 1983; Boucher et al., 1986). 

The discovery of the CF gene by positional cloning, in 1989, resulted from the 

joint efforts of  three research groups, those of Lap-Chee Tsui (Kerem et al., 1989) 

and Jack Riordan (Riordan et al., 1989) at the Hospital for Sick Children in Toronto, 

and Francis Collins (Rommens et al., 1989) at the University of Michigan. The 

discovery of the CF gene led to the demonstration that the impaired chloride 

transport is due to the failure of a cAMP-regulated Cl- channel. Since then, 
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substantial progress in basic and clinical research raised the median survival age of 

CF patients to ~37 years (Cohn et al., 2005; Wang et al., 2005; Davis, 2006). After 

1989, CF diagnosis could also be made by direct identification of two mutant alleles, 

namely for borderline cases detected by the sweat test (Davis, 2006).  

 

 

I.1.2 DESCRIPTION OF THE DISEASE 

 

CF (MIM no. 219700), the most common life-threatening genetic disease of 

Caucasians (Welsh et al., 2001) is inherited in a Mendelian autosomal recessive 

pattern (Andersen and Hodges, 1946). The disease is caused by mutations in the 

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR; ABCC7). This anion 

selective ion channel is required for the normal function of epithelia lining the 

airways, intestinal tract as well as ducts in the pancreas, salivary and sweat glands 

(Ameen et al., 2007) and the absence of its activity results in the failure of ionic and 

water homeostasis at exocrine epithelial surfaces (Riordan, 2008). 

While practically all exocrine glands are affected in CF, the three main organs 

of greatest clinical importance are the sweat gland (diagnosis), the pancreas 

(malnutrition), and the lung (morbidity/mortality) (Quinton, 2007).  

Clinically, CF disease is characterized by exocrine pancreatic insufficiency, due 

to failure of bicarbonate-rich fluid and enzyme secretion which impair intestinal 

digestion and absorption. CF also causes an increase in sweat NaCl concentration 

[3-5 times higher than in unaffected subjects (Shwachman and Antonowicz, 1962; di 

Sant'Agnese and Powell, 1962)] and male infertility. However, the major cause of 

morbidity and mortality is pulmonary disease due to recurrent bacterial infections. In 

fact, the pulmonary manifestations of CF are responsible for more than 90% of CF-

related mortality (Pilewski and Frizzell, 1999).  

Significant reduction (>90%) of functional CFTR in the plasma membrane of 

airway epithelial cells results in a defect in Cl- secretion, hyperabsorption of sodium 

and other changes that reduce the capacity of cilia to clear bacteria from the airways 

(Gibson et al., 2003; Boucher, 2004). In the lung, there is generation of thick and 

dehydrated mucus and subsequent chronic bacterial infections (mainly by 

Pseudomonas aeruginosa) which lead to bronchiectasis. 

The loss of CFTR from airway epithelial cells also leads to altered regulation of 

other ion channels (e.g., ENaC), significant changes in the composition of airway 

surface liquid (ASL) (Boucher, 2003) and production of pro-inflammatory cytokines 
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(Terheggen-Lagro et al., 2005; Machen, 2006). The ultimate destruction of the CF 

lung is mainly due to inflammation (Chmiel and Davis, 2003). 

The frequency of the disease varies among ethnic groups and is highest in 

individuals of Northern European origin, of which about 1 in 2500 newborns is 

affected. Similarly, in this population the heterozygote frequency reaches the rather 

remarkable value of about 1 in 25 individuals (Collins, 1992). 

In Portugal, the estimated CF incidence is 1 in 6000 newborns (Farrell, 2008). 

Recently, in one study by Lemos and colleagues (Lemos et al., 2010), the CF 

incidence in the central region of the country was calculated as 1 in 14000 newborns, 

i.e., lower than in the country as a whole. 

 

 

I.2 THE CFTR GENE 

 

The CF transmembrane conductance regulator (CFTR) gene is located on the 

long arm of chromosome 7, at the region 7q31.2 (Kerem et al., 1989;Riordan et al., 

1989;Rommens et al., 1989). The gene, and the corresponding mRNA, are both 

relatively large, spanning ~190 kb and 6129 bp, respectively (Collins, 1992), 

including 5’ and 3’ untranslated regions (UTR), of which 4443 bases are amino acid 

coding sequence. The gene consists of a TATA-less promoter and 27 exons (Figure 

I.1), whose sizes vary greatly from 38 bp (exon 14b) to 724 bp (exon 13) (Zielenski et 

al., 1991). It comprises 26 introns ranging in size from 600 bp (intron 22) to 28085 bp 

(intron 10). 

 

 

I.2.1 THE CFTR GENE PROMOTER AND TISSUE-SPECIFIC CFTR EXPRESSION  

 

As the characteristics of the CFTR gene, namely the elements that drive its 

expression, are important for gene therapy, a detailed description of the locus will be 

given here. 

Promoter deletion experiments have defined the minimal promoter as -226 to 

+98 with respect to the transcription start site (+1) at -132 bp 5’ to the first methionine 

codon (Chou et al., 1991). Position +1, defined by Riordan and co-workers (1989) in 

their original description of the CFTR cDNA, is located 121 bp upstream of the ATG 

translation initiation codon and corresponds to position +11 in the numbering system 

used by Chou and co-workers (1991). 
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The CFTR gene has different transcription start sites which vary among cell 

lines expressing it. In one study (Koh et al., 1993) using the numbering system of 

Riordan and co-workers (1989), it was found that low abundance transcripts initiate 

at position -32, while the start site + 50 appears to be the major initiation point for 

CFTR transcription in highly expressing cell lines. 

 

 
Figure I.1 Scheme illustrating the CFTR gene, mRNA, and protein. MSD – membrane-
spanning domain (MSDs 1 and 2); NBD – nucleotide-binding domain (NBDs 1 and 2); R – 
regulatory domain; N – amino terminal; C – carboxyl terminal; aa – amino acid residue. 
[Adapted from (Zielenski and Tsui, 1995) by MD Amaral]. 
 

 

CFTR exhibits tightly regulated expression, both temporally during development 

and spatially in different tissue types (Crawford et al., 1991; Trezise et al., 1993; 

Broackes-Carter et al., 2002). However, the CFTR promoter resembles that of a 

housekeeping gene: it is CpG-rich, contains no TATA box, has multiple transcription 

start sites and has several putative binding sites for the transcription factor Sp1 

[Specificity protein 1; (Yoshimura et al., 1991)]. Consistent with promoters of this 

type, the CFTR promoter is weak and demonstrates no apparent tissue-specificity, 

suggesting the involvement of distal regulatory elements in control of CFTR 

expression. These elements are associated with DHS (DNase I hypersensitive sites) 

within the genomic region encompassing the CFTR locus, both upstream (at -20.9 

kb) and downstream of the coding region (at +5.4, +6.8, +7.0, +7.4 and +15.6 kb) and 

in various introns (Smith et al., 2000; Phylactides et al., 2002). 
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A cell-type-specific DHS was identified within the first intron of CFTR, at 185 + 

10 kb (where 185 is the last base in CFTR exon 1) (Smith et al., 1996), which 

corresponds to a regulatory element that functions as a classical, tissue-specific 

enhancer and can also independently recruit general factors necessary for 

transcription initiation (Smith et al., 1996; Mogayzel, Jr. and Ashlock, 2000; Rowntree 

et al., 2001; Ott et al., 2009b; Ott et al., 2009c). This element was shown to positively 

regulate CFTR promoter activity specifically in intestinal cells both in vitro and in vivo 

(Rowntree et al., 2001).  

Blackledge and colleagues (Blackledge et al., 2007) identified two enhancer-

blocking insulators, also DHS, located upstream and downstream to the CFTR gene 

that have distinct properties. The insulator located at -20.9 kb from the CFTR 

translation start site was associated with a classical CTCF (CCCTC-binding factor)-

dependent insulator element. A second element, located 3’ to CFTR, within a DHS at 

+15.6 kb (with respect to the translational end point) also demonstrated enhancer-

blocking activity but this was independent of CTCF binding. 

Recently, two works (Blackledge et al., 2009; Ott et al., 2009a) reported 

structural and functional evidence for a CFTR transcriptional hub in which intronic 

enhancer elements are brought into close proximity to the CFTR promoter to activate 

cell-type-specific transcription (Figure I.2). This complex looped structure of the 

CFTR locus occurs in cells that express the gene and is absent from cells in which 

the gene is inactive. Close interaction of the CFTR promoter with sequences in the 

middle of the gene about 100 kb from the promoter and with regions 3’ to the locus 

that are about 200 kb downstream was demonstrated. These interacting regions 

correspond to prominent DHS within the locus, which recruit proteins that modify 

chromatin structure (Ott et al., 2009a). 

Other features of the CFTR promoter, which may contribute to both the 

temporal and spatial regulation of gene expression, are the use of multiple 

transcription start sites for the gene (Yoshimura et al., 1991; Koh et al., 1993) and the 

recruitment of alternative upstream exons (Broackes-Carter et al., 2002; Mouchel et 

al., 2003; Lewandowska et al., 2009). Lewandowska and colleagues (Lewandowska 

et al., 2009) identified a novel cis-acting element that contributes to the activity of the 

basal CFTR promoter in airway epithelial cells and showed that a combination of 

epigenetic modifications contribute to the multiple mechanisms regulating the 

promoter of the CFTR gene. 

CFTR exhibits a complex pattern of tissue-specific expression being expressed 

at low levels [in normal individuals, CFTR mRNA transcripts are expressed at 1-2 

copies per cell (Trapnell et al., 1991)] in specialized epithelial cells of gut, airways, 
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pancreas, sweat gland ducts and the male reproductive tract (Crawford et al., 1991; 

Trezise and Buchwald, 1991; Engelhardt et al., 1992; Trezise et al., 1992). 

 

 

 

Figure I.2 A looping model for the active CFTR gene. In CFTR-expressing cell types, 
elements in the CFTR 3’ flanking region are in close proximity to the CFTR promoter. This 3’ 
flanking region includes the tissue-specific +6.8 kb DHS, shown here to bind CTCF, as well as 
other previously described DHS (Nuthall et al., 1999; Blackledge et al., 2007). Protein factors 
bound at each of these sites interact with the promoter-bound transcription machinery, thus 
forming an active chromatin hub (ACH) and helping regulate expression of the CFTR gene. 
Besides the DHS from the 3’ flanking region, intronic DHS such as the intestine-specific intron 
1 element and others may also contribute to the CFTR ACH in a tissue-specific manner (Ott 
et al., 2009b). 
 

 

In the airways, CFTR expression depends on the cell type: high levels have 

been found in serous cells of submucosal glands (Engelhardt et al., 1994). A more 

recent study (Kreda et al., 2005) showed that significant levels of CFTR are found in 

the apical plasma membrane of all ciliated epithelial cells in the superficial epithelium, 

and at the apical surface of ciliated cells in submucosal gland ducts. 

 

 

I.3 THE CFTR PROTEIN 

 

The product of the CFTR gene is a transmembrane glycoprotein of 1480 amino 

acids (Riordan et al., 1989) that functions as a plasma membrane chloride (Cl-) 

channel activated by cyclic AMP (cAMP). 

CFTR plays an important role in both secretion and reabsorption of ions and 

fluid at epithelial surfaces, depending on the electrochemical gradient present. To 

perform this task, i.e., to respond to cAMP-stimulation following phosphorylation by 

protein kinase A (PKA) and protein kinase C (PKC), it should be correctly localized at 

the lumen-facing or apical membrane of epithelial cells (Riordan, 1993). 
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I.3.1 CFTR: A MULTIDOMAIN MEMBRANE PROTEIN  

 

CFTR consists of 2 repeated motifs, each composed of a hydrophobic 

membrane spanning domain (MSD1 and MSD2) containing six helices 

[transmembrane segments (TM)] each which compose the core structure of the pore 

(Tabcharani et al., 1991), and a cytosolic hydrophilic region for binding with ATP, that 

is, nucleotide binding domain [NBD1 and NBD2 (Riordan, 1993)]. These 2 motifs are 

linked by a cytoplasmic regulatory domain (RD), which contains a number of charged 

residues and multiple consensus phosphorylation sites (substrates for PKA and PKC) 

(Figure I.3). 

 

 
Figure I.3  Simplified topological model of the CFTR chloride channel. The channel is 
anchored through the membrane with 12 linked membrane spanning domains (MSD) 
interrupted between the sixth and seventh domains by an intracellular nucleotide binding 
domain (NBD1) and a putative “regulatory” domain (R). A second intracellular nucleotide 
binding domain (NBD2) occurs near the C terminus. During processing of the protein, two 
glycosylated side chains are added to the mature protein to the extracellular loop between 
transmembrane domains (TM) seven and eight. [Adapted from (Chen and Hwang, 2008)]. 
 

 

I.3.1.1 THE ABC SUPERFAMILY  

 

CFTR, or ABCC7, is a member of the superfamily of ATP-binding cassette 

(ABC) transporters, the largest class of proteins encoded by the human genome 

(Amaral, 2006). The family name ABC was applied to reflect the presence in all 

members of two homologous NBDs (Holland et al., 2003). In many ABC transporters, 

both of the ATP-binding sites are hydrolytic, whereas in others, including the human 

ABCC subfamily, to which CFTR belongs, hydrolysis occurs at only one of the sites, 

in the case of CFTR, at NBD2 (Aleksandrov et al., 2002). 
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In humans, 48 ABC proteins, grouped into 7 different classes, have been 

identified (Klein et al., 1999; Dean and Annilo, 2005). CFTR is unique among ABC 

transporters because it has a RD that is phosphorylated by PKA and PKC. CFTR is 

functionally distinct from the other ABC transporters because it permits bidirectional 

permeation of anions rather than vectorial transport of solutes. This adaptation of the 

ABC transporter structure can be rationalized by considering CFTR as a 

hydrolysable-ligand-gated channel with cytoplasmic ATP as ligand (Riordan, 2005; 

Riordan, 2008). 

 

 

I.3.2 MOLECULAR FUNCTION  

 

Based on the high NaCl concentration in the sweat of CF patients, the first 

cellular defect demonstrated in CF was found in the sweat duct, which proved to be 

impermeable to Cl- (Quinton, 2007). Consistently, the most documented function of 

the normal CFTR protein is that of an anion conducting channel. Patch-clamp studies 

have established that the single channel has an anion selectivity pattern of Cl->I->Br-

>NO3
->HCO3

->gluconate (Gray et al., 1989; Berger et al., 1991; Linsdell et al., 1997). 

CFTR is also reported to be involved in the function or regulation of a number of 

other channels, transporters and mechanisms (see section I.5.1 for more details). 

 

 

I.4 CFTR FUNCTION AS A CHLORIDE /BICARBONATE CHANNEL  

 

On the basis of current knowledge only the CFTR protein is required to form an 

ATP- and PKA-dependent low-conductance Cl- channel of the type present in the 

apical membrane of many epithelial cells (Bear et al., 1992). 

CFTR mediates transepithelial salt and water secretion into the lumen of kidney 

tubules, pancreatic ducts, and the intestine (Guggino and Stanton, 2006). 

In the sweat duct the opposite mechanism occurs. The CFTR anion channel 

normally is expressed abundantly in the luminal membrane of the absorptive duct, 

where it absorbs salt (Cohn et al., 1991; Kartner et al., 1992). Thus CFTR provides 

for passive conductance of Cl- ions during reabsorption from the lumen back into the 

extracellular fluid across the cell. During absorption Na+ sets up an electrical driving 

force for the movement of Cl-. That is, Na+ passively enters the duct cell from the 

lumen down its electrochemical gradient through the epithelial Na+ channel (ENaC) in 
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the apical membrane (Quinton, 1981). Simultaneously, the transport of positive 

charge through the cells creates sufficient electrochemical gradients for transcellular 

electroconductive transport of Cl- from the lumen through CFTR in the apical 

membrane and then again through CFTR in the basal membrane to the serosa. 

Since the sweat duct is one of the few epithelia of the body that is relatively water-

impermeable, as Na+ and Cl- leave the duct, water cannot follow, and a steep 

osmotic gradient develops across the duct that parallels the absorption of salt 

(Quinton, 2007). Thus CFTR plays a major role in preventing the body from losing 

too much salt during perspiration. 

In CF, the reabsorptive mechanism fails due to the lack of functioning CFTR 

(Quinton, 1983; Quinton and Bijman, 1983). When the CFTR anion channel is absent 

or inactive, Cl- cannot follow Na+ out of the lumen, and both Na+ and Cl- absorption 

are impeded, an effect understood in terms of electroneutrality. If Cl- cannot be 

removed from the lumen, an equivalent of Na+ must remain with it. Thus, in CF 

patients, neither Cl- nor Na+ can be effectively reabsorbed from the duct, and salty 

sweat appears on the skin surface (Quinton, 2007). 

In CF, the exocrine pancreas produces too little HCO3
-, whose transport also 

fails in this disease. This causes macromolecules and enzymes (which, under normal 

conditions, should be diluted and kept inactive) to aggregate and block the small 

ducts so premature proteolysis and inflammation destroys individual units until the 

exocrine pancreas becomes inadequate for normal digestion (Hadom et al., 1968; 

Johansen et al., 1968). 

 

 

I.5 OTHER CFTR FUNCTIONS – ONE CHANNEL TO RULE THEM ALL  

 

I.5.1 CFTR AS A REGULATOR OF OTHER CHANNELS AND TRANSPORTERS  

 

In addition to its role as a secretory Cl- channel in epithelial cells, CFTR also 

regulates several transport proteins, including the epithelial sodium channel, ENaC 

(Stutts et al., 1997; Ji et al., 2000; Jiang et al., 2000), the outwardly rectifying Cl- 

channels, ORCCs (Gabriel et al., 1993; Jovov et al., 1995; Schwiebert et al., 1995; 

Schwiebert et al., 1999), renal outer medullary K+ channels, such as ROMK1 and 

ROMK2 (Yoo et al., 2004) or inwardly rectifying K+ channels (Schwiebert et al., 

1999), ATP-release mechanisms (Schwiebert et al., 1995), anion exchangers (Lee et 

al., 1999; Ko et al., 2004), sodium-bicarbonate transporters (Shumaker et al., 1999), 
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and aquaporin water channels (Schreiber et al., 1999; Cheung et al., 2003). Figure 

I.4 illustrates some of CFTR multifunctions. 

 

 

 

Figure I.4 Overview of CFTR functions and interactions. CFTR functions as a regulator of 
other ion channels and affects numerous cellular processes: 1) Cl- channel function, which 
facilitates the release of Cl-, HCO3

-, and ATP, 2) negative regulation of epithelial Na+ channels 
(ENaC), 3) positive regulation of outwardly rectifying Cl- channels (ORCC), 4) regulation of 
vesicle trafficking, 5) regulation of intracellular compartment acidification and protein 
processing, 6) modulation of the renal outer medullary potassium channel’s (ROMK) 
sensitivity to sulfonylureas [adapted from (Mueller and Flotte, 2008)]. 
 

 

Importantly for the pathophysiology of CF lung disease, CFTR co-regulates Na+ 

transport through an epithelial Na+ channel, ENaC. Wt-CFTR inhibits ENaC Na+ 

transport (except in sweat ducts where CFTR activates ENaC), whereas ENaC 

activates CFTR, and mutant CFTR allows enhanced Na+ transport, with a 

subsequent increase in Na+ absorption (Stutts et al., 1995; Mall et al., 1996; Reddy et 

al., 1999; Guggino and Stanton, 2006). This interaction between CFTR and ENaC is 

biologically relevant because the balance between CFTR-mediated Cl- secretion and 

ENaC-mediated Na+ reabsorption regulates the net amount of salt and water in 

airway periciliary fluid, and thereby the capacity to clear bacteria and other noxious 

agents from the lungs (Boucher, 2004). 
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Wt-CFTR activates the outwardly rectifying Cl- channels [ORCCs; (Gabriel et 

al., 1993; Schwiebert et al., 1995; Schwiebert et al., 1999)] through the release of 

ATP as an agonist into the extracellular milieu. This CFTR-dependent release of ATP 

out of the cell, allowing interaction with ORCCs, could be conducted by CFTR itself 

or via a closely associated ATP channel. The incidence of ORCCs has been reported 

to be enhanced in the presence of a functional CFTR Cl- channel (Jovov et al., 1995). 

Inwardly rectifying K+ channels (ROMKs) have been identified on the 

basolateral cell membrane in airway epithelia, where they are believed to play a role 

in K+ recycling (Schwiebert et al., 1999). NHERF1 and NHERF2 (Na+/H+ exchanger 

regulatory factor isoform-1/-2) increase the physical interaction between one member 

of this family, ROMK2 (renal outer medullary K+ channel) and CFTR (Yoo et al., 

2004). The NHERF-facilitated interaction between ROMK2 and CFTR enhances 

glibenclamide-induced activation of ROMK2. 

With CFTR regulating so many channels and processes, the thought “one 

channel to rule them all” comes to mind. 

 

 

I.5.2 CFTR AS A PUTATIVE PSEUDOMONAS AERUGINOSA RECEPTOR 

 

CF is characterized by the emergence and persistence of (and, ultimately, the 

inability to clear) chronic infection with a variant of Pseudomonas aeruginosa (mucoid 

P. aeruginosa) that over-produces a surface polysaccharide known as alginate, 

which protects the bacteria from antibiotics and other antimicrobial agents, making 

the infection very difficult if not even impossible to eradicate (Emerson et al., 2002; Li 

et al., 2005). 

Attachment of P. aeruginosa in CF-airways was explained by a mechanism that 

proposes CFTR as a receptor for P. aeruginosa in the airways (Pier et al., 1997), 

indicating an additional function for the CFTR protein. According to some authors, 

CFTR is a cellular receptor for binding, endocytosing, and clearing P. aeruginosa 

from the normal lung. Once P. aeruginosa is bound to epithelial cells, CFTR 

accumulates in the cell membrane at a specific point of contact with the bacterial 

surface. Overall, according to a proposed model (Pier et al., 1997), a specific 

interaction between P. aeruginosa and the first extracellular domain of CFTR triggers 

CFTR-mediated resistance to infection in individuals who have wt-CFTR. Lack of this 

interaction and lack of a functional CFTR protein in most CF patients could contribute 

significantly to the respiratory manifestations of CF. 
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In CF, the diminished or non-existent binding of P. aeruginosa to the CF 

epithelium leads to a reduced initial clearance, allowing the organisms sufficient time 

to take advantage of the dehydrated ASL and remain within the airway lumen by 

binding to mucins via the bacterial FliD protein (Arora et al., 1998). Subsequently 

increased production of alginate occurs (Worlitzsch et al., 2002; Bragonzi et al., 

2005), further serving to protect the microbe from host defences. 

Recently, it was shown that P. aeruginosa chemically modifies lipid A 

(contained in bacterial LPS) and muropeptides (contained in peptidoglycan) as a 

strategy to evade immune system and detection, favouring survival in patients with 

CF (Cigana et al., 2009). 

 

 

I.6 CFTR MUTATIONS 

 

To date, more than 1700 variants have been identified in the CFTR gene 

(http://www.genet.sickkids.on.ca/cftr/StatisticsPage.html), most of them causing CF 

disease. 

 

 
Figure I.5 Molecular consequences of mutations in the CFTR gene. a) CFTR protein correctly 
positioned at the apical membrane of an epithelial cell, functioning as a chloride channel. b) 
Class I. No CFTR mRNA or no CFTR protein formed (e.g., nonsense, frame shift or splice site 
mutation). c) Class II. Trafficking defect. CFTR mRNA formed, but protein fails to traffic to cell 
membrane. d) Class III. Regulation defect. CFTR reaches the plasma membrane but fails to 
respond to cAMP stimulation. e) Class IV. Channel defect. CFTR functions as an altered 
chloride channel. f) Class V. Synthesis defect. Reduced synthesis of defective processing of 
normal CFTR. Chloride channel properties are normal (Proesmans et al., 2008). 
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Mutations in the CFTR gene can be grouped into five different classes 

according to their effect on CFTR function (Gibson et al., 2003) (Figure I.5). Class I 

mutations lead to a premature termination codon (PTC) that results in an unstable 

truncated CFTR transcript and/or no CFTR expression. Missense mutations (Class 

II), including F508del, cause protein misfolding that leads to the retention of the 

misfolded protein in the endoplasmic reticulum and premature degradation. Class III 

mutations result in the reduced capacity of CFTR to secrete Cl- due to abnormal 

channel activation by ATP. Class IV mutations cause a reduced capacity to conduct 

Cl- across membranes. Class V mutations cause abnormal or alternative splicing, 

which reduces the amount of functional protein. 

 

 

I.6.1 F508DEL-CFTR 

 

The most common CF mutation is loss of a phenylalanine (F) residue at 

position 508 (F508del). Up to 70% of individuals with CF are homozygous for the 

F508del mutation, and almost 90% of patients may have at least one F508del allele. 

The finding that F508del is responsible for such a high percentage of all CF 

mutations suggests that there may have been some heterozygote selection or a very 

strong founder effect for this particular mutation in the Northern European population 

(Tsui and Buchwald, 1991; Morral et al., 1994; Alfonso-Sanchez et al., 2010). 

The F508del mutation: (a) retains CFTR in the endoplasmic reticulum (ER) 

where it is subsequently degraded by the proteasome; (b) reduces the capacity of 

CFTR to transport Cl- ions (Gibson et al., 2003; Boucher, 2004; Davis, 2006), (c) 

decreases the plasma membrane half-life of CFTR in polarized human airway 

epithelial cells (Swiatecka-Urban et al., 2005), and (d) reduces the levels of 

transcripts (Ramalho et al., 2002). 

Most F508del-CFTR protein is rapidly removed from the cell through the cellular 

disposal machinery (Amaral, 2005). This mechanism substantially prevents F508del 

from reaching its correct cellular location, the apical membrane of epithelial cells, and 

explains why this mutation is included in class II (Cheng et al., 1990). Additionally, 

F508del causes major defects in channel regulation that interfere with channel 

opening (Wang et al., 2000), and therefore it can also be considered a class III 

mutation. 

In native tissues from F508del-homozygous patients, however, CFTR has been 

described as having an apical localization (Kalin et al., 1999; Penque et al., 2000), 
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although the proportion of cells in which this occurs is significantly lower than in wild-

type controls (Penque et al., 2000). 

Preventing the intracellular retention and degradation of F508del-CFTR, 

however, would be of great therapeutic importance for the treatment of the CF 

disorder, as it is believed that once correctly folded, the mutant will traffic to the 

apical membrane, where it has been reported to retain some function (Denning et al., 

1992; Pasyk and Foskett, 1995; Amaral, 2004). 

 

 

I.6.2 OTHER CFTR MUTATIONS 

 

F508del is the most common CF mutation, but over other 1700 CFTR 

mutations can be found, with frequencies ranging from the relatively high to the rare, 

sometimes occurring only in one or two families. According to one study (Zielenski 

and Tsui, 1995), besides F508del, the most common CFTR mutations in the world, 

with relative frequencies above 1%, are 1898+5G->T (30%), 3120+1G->A (11%), 

I148T (9.1%), G542X (2.4%), G551D (1.6%), N1303K (1.3%), and W1282X (1.2%). 

Most of the molecular alterations in the CFTR gene are point mutations and, 

according to the CFTR mutation database (www.genet.sickkids.on.ca/), 40.24% are 

missense mutations, 16.55% are frameshift mutations, 12.49% splicing mutations, 

and 9.12% nonsense mutations. Both large and small insertions/deletions have also 

been reported, as well as mutations affecting the promoter of the gene and unknown 

mutations. 

With all this mutational variability affecting the CFTR gene, it will be probably 

hard to find a single cure for CF using drugs. In this respect, gene therapy seems the 

perfect answer for the treatment of this disease since, by restoring CFTR function 

through the delivery of a healthy copy of the CFTR gene, it would provide a complete 

cure regardless of the mutation involved, and not just the alleviation of symptoms. 

 

 

I.7 PHARMACOLOGICAL APPROACHES  

 

CF is still a life threatening disease, the current mean life expectancy of CF 

patients being ~37 years. Lung disease is the main cause of morbidity and mortality 

in CF patients and current therapies are aimed at controlling the respiratory 

symptoms by antibiotic and anti-inflammatory treatments (Gibson et al., 2003; Ratjen 

and Doring, 2003). In patients with end-stage lung disease, lung transplantation is 
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the ultimate therapeutic choice (Conese et al., 2007;Proesmans et al., 2008). 

Survival is about 80% at the 1-year mark, and by 4 years is less than 50%, so this is 

not yet a perfect therapy (Davis, 2006). 

While our understanding of CF has increased steadily, the promise of gene 

therapy is a work in progress, as the current work will show, but not yet a reality. In 

the meantime, other approaches are being developed to treat CF patients, namely 

new drugs. 

Drug discovery for CF is focused on identifying drugs that allow F508del-CFTR 

to escape the ER (correctors) and to activate F508del-CFTR channels that reach the 

plasma membrane (potentiators) (Roomans, 2003; Proesmans et al., 2008; 

Kreindler, 2010), since it is the most frequent mutant protein. 

Correction of abnormal CFTR is the process of enabling mutant CFTR to 

escape the cell’s quality control machinery and be expressed in the apical plasma 

membrane where it would function correctly (Kreindler, 2010). 

Early studies with non-pharmacological compounds such as glycerol (Sato et 

al., 1996) and dimethyl sulfoxide (Bebok et al., 1998) provided proof-of-principle that 

F508del-CFTR could be rescued from intracellular degradation to the same degree 

as low-temperature correction (Denning et al., 1992), though the exact mechanism of 

action was unknown. 

The first identified pharmacological corrector of F508del-CFTR was 4-

phenylbutyrate (Rubenstein et al., 1997; Rubenstein and Zeitlin, 1998), which was 

effective both in vitro and in vivo, although the in vivo effects were relatively small. It 

seems to act as a transcriptional activator through inhibition of histone deacetylases 

(Hutt et al., 2010). 

Curcumin, a component of the Indian spice turmeric (Curcuma longa), is a 

SERCA [sarco (endo)plasmic reticulum calcium ATPase] pump inhibitor, for which 

different mechanisms of action have been proposed. The initial publication of the 

results of Curcumin-treated CF mice (Egan et al., 2004) led to high expectations. In 

this study, the electrophysiological defect was corrected in F508del homozygous 

mice treated with oral curcumin, but it has also been observed that some strains do 

not respond to curcumin treatment [e.g., (Grubb et al., 2006)]. In order to improve the 

bioavailability of curcumin, which is low and could vary across strains, in one study 

(Cartiera et al., 2010) poly lactic-co-glycolic acid (PLGA; a widely used biodegradable 

polymer) nanoparticles encapsulating curcumin were used to treat two different CF 

mouse strains. The nasal potential difference (NPD) data from this study suggest that 

oral administration of PLGA nanoparticles encapsulating curcumin enhances the 
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effects of curcumin therapy in CF mice, as compared to delivery of nonencapsulated 

curcumin. 

Another recent study demonstrated that coexpression of F508del/N-half and C-

half CFTR in the presence of correctors VX-325 and 2-(5-chloro-2-

methoxyphenylamino)-4’-methyl-[4,5’bithiazolyl]-phenyl methanone (corr-4a) 

restores interactions between the two halves of F508del-CFTR, thus enhancing 

maturation of the mutant protein (Loo et al., 2009). It has also been reported that 

corr-4a significantly enhanced the protein stability of low-temperature-rescued 

F508del-CFTR for up to 12 hours at 37ºC in airway epithelial cells, although maximal 

function of the channel was not obtained (Jurkuvenaite et al., 2010). 

Other drugs are currently being investigated to determine their efficacy as 

F508del-CFTR correctors (http://www.cff.org/research/DrugDevelopmentPipeline/). 

F508del-CFTR has also a channel problem, and one way of overcoming this 

problem of decreased channel activity is to treat CF patients with a CFTR 

“potentiator” (Ameen et al., 2007). CFTR potentiators are molecules that have little or 

no impact upon the trafficking defects of mutant CFTR, but improve its channel 

gating characteristics, namely by increasing the open probability (Po) of mutant 

channels (Pedemonte et al., 2005b; Van Goor et al., 2006; Verkman et al., 2006). 

The first recognized potentiator of CFTR was 3-isobutyl-1-methylxanthine 

(IBMX), a phosphodiesterase inhibitor that potentiated the cAMP-stimulated Cl- 

currents in Xenopus oocytes injected with either F508del- or G551D-CFTR (Drumm 

et al., 1991). 

Genistein, a flavonoid and tyrosine kinase inhibitor, activates G551D-CFTR 

channels (Illek et al., 1999) — which are present in the plasma membrane, but are 

inactive — and F508del-CFTR channels (Hwang et al., 1997; Schmidt et al., 2008). 

Therefore, genistein might be useful in individuals with the G551D mutation, and 

might enhance F508del-CFTR-mediated Cl- secretion in patients who also receive a 

corrector that increases the membrane expression of F508del-CFTR (Guggino and 

Stanton, 2006). 

Using a fluorescence-based high-throughput screen, Pedemonte and 

colleagues (Pedemonte et al., 2005a; Pedemonte et al., 2005b) identified 

sulfonamides as potentiators of F508del and phenylglycines as potentiators of 

F508del, G551D, and other mutant CFTR. 

Another high-throughput approach led to the identification of 4-methyl-2-(5-

phenyl-1H-pyrazol-3-yl)phenol (VRT-532) (Van Goor et al., 2006), which has also 

been shown to act as a corrector (Wang et al., 2006), and VX-770, which increases 
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the amount of time that wt-, G551D- and F508del-CFTR channels are open (Van 

Goor et al., 2009). 

It is unlikely that potentiators alone will yield an effective therapy for patients 

bearing the F508del mutation, since potentiators rely on being able to increase the 

activity of channels that are already present in the plasma membrane (Ameen et al., 

2007). Thus, a combination of drugs acting on both channel activity (potentiators) 

and protein folding (correctors) will probably need to be utilized (Ameen et al., 2007; 

Proesmans et al., 2008). Interestingly, in a very recent study Mills and colleagues 

(Mills et al., 2010) have designed a hybrid molecule containing potentiator and 

corrector fragments linked through an ester bond. Cleavage of the hybrid molecule 

by intestinal enzymes under physiological conditions produced active potentiator and 

corrector fragments, providing proof-of-concept for small-molecule potentiator-

corrector hybrids as a single drug therapy for CF caused by the F508del mutation. 

Although all the above mentioned efforts are commendable, synthesis of a drug 

that can treat all CF cases would be difficult, if not impossible, given the CFTR 

mutational variability already pointed out. Thus, being non mutation-specific, gene 

therapy emerges as what could be called the perfect therapy for CF, since it could 

encompass all disease cases. 

 

 

II. GENE THERAPY AND HUMAN ARTIFICIAL CHROMOSOMES (HACS) 

 

II.1 GENE THERAPY FOR CF 

 

Gene therapy can be defined as the introduction of an exogenous gene into a 

recipient cell to achieve a therapeutic benefit (Basu and Willard, 2005; Basu and 

Willard, 2006). 

Cystic Fibrosis (CF) is an autosomal recessive disorder, which implies that a 

single copy of the wild-type CFTR gene is sufficient for normal function. Hence, CF 

became one of the first targets for gene therapy since apparently it is sufficient to 

supply the affected cells with a gene that expresses the CFTR protein. The 

therapeutic gene should be expressed in all epithelial cell types normally showing 

expression, preferably at levels comparable to the endogenous gene. It was shown 

that delivery of CFTR to as few as 6-10% of human CF airway epithelial cells in vitro 

could restore normal levels of chloride ion transport to levels comparable to those 

measured in non-CF cells, and as little as 8% of normal transcripts seem to preserve 

normal lung function (Chu et al., 1992). However, these experiments were performed 
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in homogeneous epithelial cell types that over-expressed CFTR using a retro-viral 

based vector and were polarized but undifferentiated. Thus, the cells analyzed did 

not represent the morphological characteristics of the human ciliated airway 

epithelium in vivo (Johnson et al., 1996). More recently, using a novel, recombinant 

virus vector (human parainfluenza virus, PIV) targeting ciliated cells and an in vitro 

model of human CF ciliated surface airway epithelium (CF HAE), it has been shown 

that restoration of airway surface liquid volume and mucus transport to CF HAE 

requires CFTR expression in ~25% of surface epithelial cells or approximately 30% 

of ciliated cells (Zhang et al., 2009). Although in vivo experimentation in appropriate 

models is required to confirm these data, the authors predict that a future goal for 

corrective gene transfer to the CF human airways in vivo would attempt to target at 

least 25% of surface epithelial cells to achieve mucus transport rates comparable to 

those in non-CF airways. 

Moreover, expression should be stable and persistent, to avoid repeated re-

administration of the therapeutic gene. The CFTR gene shows spatiotemporal 

expression regulation. Thus, long-term stability and regulated expression in a tissue-

specific manner requires not only the promoter and coding portions of the CFTR 

gene but also regulatory and functional chromosomal elements such as enhancers 

and silencers associated with DNase I hypersensitive sites (DHS). 

The airway epithelium is the most important target, as lung disease contributes 

mainly to morbidity and mortality in CF patients. The airway epithelium is a highly 

complex, multifunctional tissue. It lines the tubular structure of the airways from the 

nasal cavity, via the trachea into the intricately branched structure of the bronchial 

tree and consists of several epithelial cell types. These include, among others, 

mucus secreting goblet cells that produce a protective coating and ciliated cells that 

are involved in clearance of bacterial pathogens and other microscopic particles 

(Klink et al., 2004). However, the airway epithelial cell surface has innate barriers that 

seriously impair entry of therapeutic vectors, both viral and nonviral. These barriers 

have a very important function, given the masses of foreign DNA entering the lung 

during a lifetime, for example in the form of pollen, which might cause expression of 

birch genes, in the case of efficient gene transfer. The most important of these 

barriers is probably that birch genes are not stable in humans. In addition, the 

mucociliary clearance system and the glycocalyx (Pickles, 2004), a dense mucus-like 

mixture of carbohydrate, glycoproteins, and polysaccharides residing on the luminal 

surface of the epithelium of the airways (Kolb et al., 2006) efficiently prevent an 

accumulation of exogenous material. In the case of CF patients, the thick, sticky 
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sputum, consisting of inflammatory cells, cell debris, mucus and DNA, which is not 

effectively cleared out, forms an additional obstacle to vector uptake. 

Given that CF, at least in the early stages, presents as a disease of the small 

airways, airway epithelial cells are likely to be important and considered by many to 

be the appropriate target cell for CF gene therapy (Griesenbach and Alton, 2009). 

The long-term aims of gene therapy studies are the development of vectors as 

tools for studying genome and chromosome function and for delivering genes into 

cells for therapeutic applications (Grimes and Monaco, 2005). 

 

 

II.2 GENE DELIVERY SYSTEMS (GDS) 

 

An ideal gene-transfer vehicle would be a high-capacity, non-integrating vector 

that is capable of autonomous replication and maintenance in the host cell and 

capable of long-term regulated gene expression (Basu and Willard, 2005). 

A gene delivery system (GDS) generally consists of a polynucleotide, encoding 

the therapeutic gene, and a carrier (Klink et al., 2004). The carrier must condense the 

polynucleotide, protecting it from mechanical stress and enzymatic attack. 

Furthermore, the carrier should facilitate transport of the therapeutic gene from the 

extracellular space into the cell and finally the nuclear compartment, where 

transcription can take place. In nature, specialists in gene delivery have evolved, 

namely viruses, which consist of a polynucleotide genome packaged in a protein 

structure called a capsid. The capsid proteins are well adapted to allow efficient 

binding of the virus to receptor proteins in target cells, facilitate intracellular transport 

and subsequent import of the viral genome into the nucleus. By replacing 

dispensable portions of the viral genome with a therapeutic gene, a recombinant 

virus can be created, which can be used as a natural GDS. 

Nonviral gene delivery systems rely on cellular uptake mechanisms. 

Polycations complexed to DNA result in positively charged polyplexes that interact 

electrostatically with negatively charged proteoglycans of the plasma membrane, 

followed by endocytosis (Erbacher et al., 1999). To enhance specificity of cell uptake, 

attempts are made to shield the cationic aspect of the complexes with polyethylene 

glycol (PEG) moieties (Ogris et al., 1999; Rudolph et al., 2002; van Steenis et al., 

2003). 

Human artificial chromosomes (HACs) packed into cationic polymers are one 

such nonviral GDS. The primary aim of using HACs in gene therapy is to directly 

transfer HAC DNA to the target cells, where HACs form. Thus, therapeutic DNA can 
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be produced in high quantity and quality. In addition, several groups have attempted 

to isolate HACs once formed in cultured cells in a quantity sufficient to treat the large 

number of target cells of a patient. These latter HACs must be transferred out of the 

cell line in which they were generated and into therapeutically relevant cells for use in 

gene therapy applications (Irvine et al., 2005). 

To date, studies have focused on generating HACs in HT1080 cells which allow 

efficient HAC formation and analysis due to the pseudostable karyotype of this 

telomerase positive lung sarcoma cell line (Ebersole et al., 2000; Grimes et al., 2001; 

Ikeno et al., 2002; Laner et al., 2004; Kaname et al., 2005; Kotzamanis et al., 2005; 

Laner et al., 2005; Suzuki et al., 2006). 

There are several different methods for the transfer of HACs between cell types 

but, with the exception of microcell-mediated chromosome transfer (MMCT) (Kakeda 

et al., 2005), methods for transferring HACs into human somatic cells require an 

initial purification step to isolate HACs from other human chromosomes and 

chromosome fragments. Flow cytometric sorting is the most efficient method of 

isolating populations of purified human chromosomes with their associated chromatin 

modifications intact, which is possible to some degree of purity for chromosomes of a 

minimal size of around 60 Mb, similar to human chromosome 21 (deJong et al., 

1999). Transfection or microinjection could also be used to transfer HACs into human 

somatic cells, should the purification of functional populations of HACs be achieved 

(Irvine et al., 2005). 

Another approach under development for a direct delivery of large DNA 

molecules is the bacterial invasin system (Grillot-Courvalin et al., 1998; Narayanan 

and Warburton, 2003; Laner et al., 2005). A PAC construct of 160 kb containing a 

large genomic CFTR cassette was stably propagated in a bacterial vector and 

transferred into HT1080 cells where it was transcribed and correctly spliced, 

indicating transfer of an intact functional region of at least 80 kb (Laner et al., 2005). 

After entering the cell and having reached the perinuclear region, the 

heterologous DNA must enter the nucleus for transcription. In principle, there are two 

ways for viral and nonviral vectors to deliver their genetic material into the nucleus. 

First, the vector resides in the cytosol until the nuclear envelope is disassembled 

during mitosis. The vector genome is then included into the newly assembling nuclei 

of the daughter cells. Alternatively, the genomic material can be delivered by active 

transport through the envelope of the interphase nucleus (Whittaker, 2003; Klink et 

al., 2004). 
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II.2.1 VIRAL VECTORS  

 

GDS have been derived from various viruses. Adenovirus [Ad; (St George, 

2003; Mueller and Flotte, 2008)], adeno-associated virus [AAV; (Zhang et al., 1998; 

Ostedgaard et al., 2002; Buning et al., 2003; Ostedgaard et al., 2005; Fischer et al., 

2007; Daya and Berns, 2008; Li et al., 2009)], Sendai virus [SeV; (Bitzer et al., 

2003a; Bitzer et al., 2003b; Griesenbach et al., 2005; Ferrari et al., 2007; Rakonczay, 

Jr. et al., 2008)], herpes simplex virus [HSV; (Wade-Martins et al., 2001; Shah et al., 

2003; Wade-Martins et al., 2003; Inoue et al., 2004; Moralli et al., 2006)], and 

Epstein-Barr virus [EBV;(Wade-Martins et al., 2000; Mazda, 2002; Stoll and Calos, 

2002; Black and Vos, 2002; Magin-Lachmann et al., 2003; Conese et al., 2004; 

Kotzamanis et al., 2009) ] based-vectors, among others, are investigated for gene 

transfer. Viruses’ innate ability to infect the airways made them a natural initial choice 

for CF gene therapy, and many of the earlier studies were performed with viral 

vectors derived from adenovirus. 

In general, the main advantage of viral vectors is the high transduction 

efficiency in vivo, compared to current synthetic systems. Further, the use of 

integrating viral vectors such as Adeno-associated virus (AAV) and lentiviral vectors 

would allow stable expression in the targeted cell pool (Verma and Somia, 1997). 

On the down side, viral-based gene therapy poses serious safety concerns like 

generation of an acute host defense response (Crystal et al., 1994; Zhang et al., 

2001; Harvey et al., 2002), and a cytotoxic T-lymphocyte response which can 

develop against cells that produce viral antigens encoded by the vector (St George, 

2003). Another disadvantage of virally based non-integrating vectors is their failure to 

segregate in a regulated manner (Basu and Willard, 2005). In the case of integrating 

vectors, insertional mutagenesis is a major concern, as for oncoretroviral vectors 

(Hacein-Bey-Abina et al., 2003; Fischer et al., 2004; Conese et al., 2007). 

Most gene therapy constructs currently in use consist of cDNA expression 

cassettes driven by strong heterologous and often virally derived promoters. 

Unfortunately, many such transgenes have been found to be expressed only for a 

limited period of time (Porteous et al., 1997). One of the reasons may be that viral 

promoters are known to be switched off through the action of cytokines (Paillard, 

1997). 
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II.2.2 SYNTHETIC VECTOR SYSTEMS 

 

A method for overcoming both the lack of packaging capacity of AAV vectors 

(which are associated with a low incidence of inflammation) and the immunogenicity 

of viral vectors in general for gene transfer is to make synthetic GDS. These consist 

generally of DNA encoding the therapeutic gene, combined with a carrier that mimics 

the properties of viral capsids, to package and deliver therapeutic genes. Carriers 

include cationic lipids complexed with DNA and compacted DNA nanoparticles 

(cationic polymers) and can potentially package any size of DNA. They condense the 

polynucleotide molecule, bind to cells, and help the vector to escape from the 

endosomal compartment, avoiding degradation (Klink et al., 2004; Kreindler, 2010). 

Although many carriers have been used successfully in vitro, their in vivo use is 

less straightforward. Initial studies and clinical trials that targeted airway epithelia 

were performed with cationic liposomes, which were used as nonviral gene transfer 

vectors for treating CF. Cationic lipid-mediated DNA transfer to the nasal epithelium 

of CF patients were promising, but failed to demonstrate persistent correction of 

nasal potential difference (NPD) abnormalities (Caplen et al., 1995; Goddard et al., 

1997; Mueller and Flotte, 2008; Kreindler, 2010). Nonetheless, proof of principle was 

established that marker genes and CFTR could indeed be expressed in this way 

(Caplen et al., 1995). One of the most successful studies on CF patients was 

conducted by Alton et al. where cationic liposomes containing the CF gene were 

delivered by a nasal perfusion to CF patients (Alton et al., 1999). There was, 

however, an innate inflammatory response from the CF patients to inhalation of the 

complexes. 

Liposomes are attractive, as by themselves they appear to be 

nonimmunogenic. However, when used in gene therapy (i.e., with plasmid inside), 

they generate a significant immune response, probably triggered by the CpG 

sequences in the vector, and while repeated delivery is feasible, the overall efficiency 

of transgene expression is low (Kay et al., 1997; Sallenave et al., 1997). Thus, 

through extensive nucleotide optimization, the UK CF Gene Therapy Consortium has 

generated a CFTR expression plasmid, which is completely depleted of all CpG 

sequences (Hyde et al., 2008). 

The other class of synthetic nonviral vectors used for gene therapy in CF is 

cationic polymers such as poly-L-lysine (Poly-K), polyethylenimine (PEI), and 

polyamidoamine dendrimers. Like cationic liposomes, polymers are able to condense 

DNA into small nuclease-resistant particles. Due to their net positive charge, cationic 

polymers can bind to cells via electrostatic interactions with the negatively charged 
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membrane (Mueller and Flotte, 2008). One such polymer is a polyethyleneglycol 

(PEG)-substituted 30-mer polylysine peptides (polymer of 30 lysines) that complexes 

with DNA to form essentially charge-neutral DNA nanoparticles. A double-blind, 

placebo controlled dose escalation trial of DNA nanoparticles to the nasal epithelium 

of CF subjects demonstrated gene transfer and transient correction of NPD 

abnormalities without evidence of local or systemic inflammation (Konstan et al., 

2004). 

 

 

II.2.3 CHROMOSOMAL VECTORS  

 

Drawbacks in the use of classical gene transfer vectors include i) immune 

response to viral proteins or ii) to unmethylated CpG motifs contained in bacterially-

derived vector DNA, and iii) shut-off of viral promoters (Conese et al., 2007). 

Nonviral vectors have attracted a large amount of attention in recent years 

because of lack of specific immune responses, endogenous virus recombination or 

oncogenic effects, as can occur with viral gene transfer agents (Thomas et al., 2003). 

There are two essential advantages of chromosome-based vector systems over 

most conventional vectors for gene delivery. First, the transferred DNA can be stably 

maintained without the risks associated with insertion, and second, large DNA 

segments encompassing genes and their regulatory elements can be introduced, 

leading to more reliable and physiological transgene expression, more closely 

resembling that of the normal gene. Furthermore, chromosomal vectors comprised 

solely of human DNA should not be immunogenic (Vassaux, 1999; Saffery and Choo, 

2002; Grimes and Monaco, 2005). 

The concept of artificial chromosomes was introduced nearly thirty years ago in 

S. cerevisiae (Murray and Szostak, 1983), referring to the construction of a fully 

functional chromosome from its component parts. 

Stripped to its essentials, a typical chromosome is composed of centromeres, 

telomeres, origins of replication, and genes. Telomeres are responsible for capping 

and protecting the linear ends of chromosomes from degradation and recombination. 

Perhaps most important from the standpoint of long-term stability, the centromere is 

the cis-acting chromosomal structure responsible for mediating the establishment of 

the kinetochore, a trilaminar protein/DNA complex responsible for establishing 

attachments to and movements of the chromosome along the mitotic spindle 

apparatus (Wade-Martins et al., 1999 ;Lipps et al., 2003). Origins of replication, 

although unidentified on the sequence level, [reviewed in (Gilbert, 2001)] do not 
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seem to pose a problem since in the presence of centromeric DNA large pieces of 

DNA (few tens of kb) are generally competent for replication (Conese et al., 2004). 

There have been two main approaches used for generation of chromosome-

based vectors (Figure I.6). These involve either 1) the use of telomeric DNA to 

sequentially truncate human chromosomes and generate smaller derivative 

minichromosomes (“top-down” approach), and 2) a fundamentally different strategy, 

which involves a “bottom-up” approach in which cloned chromosomal elements, 

including alpha-satellite DNA, telomeric DNA, and genomic DNA, are preassembled 

into a defined artificial chromosome vector or are assembled spontaneously by the 

host cell through a combination of nonhomologous recombination and DNA repair 

mechanisms (Harrington et al., 1997; Ikeno et al., 1998; Grimes and Monaco, 2005). 

 

 

 

Figure I.6 Strategies for the construction of HACs. (a) The “bottom up” or de novo approach 
involves the transfection of deproteinated α-satellite DNA arrays and a selectable marker 
gene, with or without telomeric DNA and human genomic DNA, into a permissive cell line. (b) 
HAC formation by the “top down” approach involves sequential rounds of random and/or 
targeted truncation of human chromosomes through interstitial insertion of terminal telomeric 
DNA sequences. The long arm of the chromosome is denoted by q and the short arm by p. 
[Adapted from (Irvine et al., 2005)]. 
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The molecules obtained from the de novo (bottom-up) and top-down approach 

share some important similarities. They are mitotically stable and maintained at low 

copy numbers and are 1 – 10 Mb in size and composed of alphoid DNA confirming 

the primary role of the centromeric DNA in chromosome maintenance (Conese et al., 

2004). Beyond these similarities, de novo chromosomes, with the exception of a few 

linear examples, are suspected to be circular, even when produced with linear 

constructs. The fact that they are larger than the input DNA is probably due to a 

multimerization process that produces an undefined structure (Conese et al., 2004). 

Conversely, the minichromosomes (MCs) maintain the linear structure of the 

natural chromosomes from which they derive and have functional telomeres. 

Moreover, it has recently been shown that de novo chromosomes exhibit a higher 

frequency of segregation errors with respect to natural chromosomes. Two common 

types of errors have been observed: nondisjunction and anaphase lag. The 

frequency of these defects is statistically different between natural and artificial 

chromosomes suggesting that the latter may be less stable (Rudd et al., 2003). 

Although MCs have not been tested for segregation errors, analysis of their mitotic 

stability revealed a decreased stability of small MCs with respect to larger molecules 

of the same origin, suggesting the requirements of an optimal size for full 

chromosome function. 

There remain significant technical challenges that must be overcome before 

vectors carrying the therapeutic gene will be ready for gene transfer applications, the 

most important being determination of the optimal structure and size of the gene of 

interest and delivering it efficiently to target cells. 

 

 

II.2.3.1 YACS 

 

Because yeast artificial chromosomes (YACs) are maintained as linear 

molecules, they are prone to shearing by mechanical stresses. YACs can also be 

difficult to purify from similarly sized endogenous yeast chromosomes as they are 

typically separated from endogenous chromosomes by pulse field gel electrophoresis 

(PFGE) of agarose-embedded yeast cells. Furthermore, YAC libraries have a high 

rate of insert chimerism, i.e. cloning of non-contiguous sequences in a single clone, 

and insert rearrangements/deletions, a result of the active homologous 

recombination machinery of the yeast host (Neil et al., 1990; Kouprina et al., 1994; 

Larionov et al., 1994). 
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YACs containing the human CFTR locus (Chr 7q31) were isolated shortly after 

the identification of the CFTR gene (Anand et al., 1991). However, yeast elements 

are not stable in higher eukaryotes (Klink et al., 2004). 

 

 

II.2.3.2 BACS AND PACS 

 

Because of the inherently unstable nature of YACs, alternative cloning systems 

able to propagate large genomic fragments were sought. The first YAC alternative 

developed was the P1 phage cloning system (Sternberg, 1990; Glover and Hames, 

1995). The P1 cloning system has many advantages over YACs. The bacterial host 

is recA-, and therefore does not readily rearrange the genomic insert by homologous 

recombination (Sternberg, 1990). Additionally, the P1 clones are maintained as a 

single copy (Sternberg, 1990). Moreover, the supercoiled, circular nature of P1 

clones makes them less susceptible to mechanical shearing. While P1 phage clones 

are much more stable than YACs, the size of their genomic insert is more limited. 

The P1 phage head can accommodate up to only 110 kb of DNA (Glover and 

Hames, 1995; Giraldo and Montoliu, 2001). 

The bacterial artificial chromosome (BAC) cloning system is based on the 

Escherichia coli (E. coli) fertility (F) factor (Shizuya et al., 1992). The maximum 

observed mammalian genomic insert size carried by BACs is around 300 kb (Shizuya 

et al., 1992; Kim et al., 1996). As with the P1 phage system, BACs are circular 

molecules resistant to mechanical shearing and can be isolated using conventional 

plasmid purification protocols (Yang et al., 1997). Just as with P1 phage clones, 

BACs are maintained in a recA- host and are much more stable than YACs (Heaney 

and Bronson, 2006). 

Phage artificial chromosomes (PACs) were developed to combine the unique 

features of BACs and P1 phage (Ioannou et al., 1994; Frengen et al., 2000). The 

PAC is a modified version of the P1 phage plasmid that, after ligation to partially 

digested genomic DNA, is electroporated as a circular molecule into the bacterial 

host, rather than being packaged into bacteriophage particles (Strong et al., 1997). 

By averting the packaging step, PAC clones can be maintained as genomic inserts of 

the same size as BACs (Ioannou et al., 1994). Additionally, some PACs contain the 

P1 lytic replicon, which can be activated by IPTG to increase PAC copy number prior 

to DNA purification, resulting in increased DNA yield (Ioannou et al., 1994). 

The stability and relatively large insert capacity of BAC and PAC clones have 

made them ideal for high-resolution physical mapping. As such, BACs and PACs 
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were the cloning system of choice for constructing physical maps of the publicly-

funded human and mouse genome sequencing projects. With the current sequence 

information available for most BAC and PAC clones, these artificial chromosomes 

have become a popular resource for artificial chromosome-based transgenes 

(Heaney and Bronson, 2006). 

The identification of genomic loci takes advantage of the PAC and BAC libraries 

that have been mainly produced for genome sequencing and that constitute a source 

of 50-250 kb fragments ordered in contig maps. It is usually possible to identify 

PAC/BAC vectors spanning the locus of interest by querying suitable databases 

(e.g., http://bacpac.chori.org/). But since PAC and BAC libraries have been produced 

by a shotgun approach, the locus of interest often needs to be assembled from two 

or more different vectors according to the contig maps (as was the case in the 

present work). This may be a difficult and time consuming step, although methods 

based on Red gene-mediated homologous recombination supplied by defective 

lambda prophage, have been developed to retrofit and modify PAC/BAC vectors (Lee 

et al., 2001;Kotzamanis et al., 2005). The generation of BAC vectors containing the 

entire cystic fibrosis transmembrane regulator (CFTR) and factor VIII genes 

assembled from overlapping BACs using homologous recombination and their 

expression have been reported (Perez-Luz et al., 2007; Kotzamanis et al., 2009). 

A PAC has been engineered to contain a large region of the CFTR gene (140 

kb) including its natural promoter, fused to a synthetic exon encoding eGFP. 

Expression from the CFTR promoter by RT-PCR, splicing of all 10 exons, and correct 

translation of the expected CFTR-eGFP fusion protein as well as reliable detection of 

a stable copy has been demonstrated in mammalian cells (Laner et al., 2005). We 

describe here the assembly of a CF PAC from previously characterized PAC 

resources (Ramalho et al., 2004) carrying a 225 kb genomic insert including virtually 

the whole CFTR gene (with the exception of two deletions in introns 9 and 10) and 

flanking genomic regions. 

 

 

II.2.4 HUMAN ARTIFICIAL CHROMOSOMES (HACS) 

 

Normal mammalian chromosomes are linear and have three essential 

functional elements: telomeres (for protection and maintenance of chromosome 

ends), replication origins (for DNA duplication), and a centromere (for equal 

segregation at cell division; for more details about the centromere, see section 

II.2.4.1 below). 
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Human artificial chromosomes (HACs) are autonomous molecules that can 

function and segregate as normal chromosomes in human cells (Monaco and Moralli, 

2006). HACs may be either linear or circular molecules with clearly defined 

centromeric (alpha-satellite DNA), replication origin, and, where relevant, telomeric 

elements, all of which typically are cloned into a BAC, YAC, or PAC vector backbone 

(Ebersole et al., 2000; Schueler et al., 2001; Grimes et al., 2002; Mejia et al., 2002; 

Ohzeki et al., 2002; Kouprina et al., 2003; Rudd et al., 2003; Laner et al., 2004). 

The purpose of engineering and manipulating HACs for gene transfer 

studies/applications is twofold. First, most mammalian genes are large, certainly 

larger than can be packaged as a genomic fragment into viral vector capsids (Somia 

and Verma, 2000). Second, the properly controlled expression of mammalian genes 

often depends on as yet poorly defined genomic regulatory elements (associated 

with DHS) that can reside a substantial distance from the coding sequences 

themselves (Li et al., 2002). Thus, HACs contain all the functional elements for long-

term stability within cells offering the possibility of long-term gene expression in 

human cells and the development of future somatic gene therapy. HACs are 

validated by confirming their de novo composition and high mitotic stability when 

grown for long periods in culture without selection (Grimes and Monaco, 2005). 

Two approaches can be used to load the therapeutic gene into an HAC: i) site 

specific recombination into a preformed HAC (in vivo recombination), and ii) 

assembly of a de novo chromosome with the gene of interest and centromere 

sequences (in vitro recombination) (Conese et al., 2007). Systems that have been 

developed for the in vivo recombination approach include site-specific recombination 

at loxP sites catalyzed by Cre recombinase from the E. coli phage P1 (Mejia and 

Larin, 2000), Red-mediated recombination enzymes from phage lambda (Kotzamanis 

and Huxley, 2004; Kotzamanis et al., 2005), and bacterial transposition (Basu et al., 

2005b); methods that have been used for the in vitro recombination approach include 

conventional subcloning with restriction digestion and ligation (Mejia and Monaco, 

1997), (this work), and in gel site specific recombination (Schindelhauer and Cooke, 

1997). 

In the present work an attempt was made at assembling a de novo HAC by an 

in vitro recombination approach using restriction digestion and ligation of a construct 

carrying the therapeutic gene (CFTR) and adjacent genomic sequences, and a PAC-

based vector containing centromeric DNA sequences. An in vitro recombination 

approach was chosen for the assembly of a de novo HAC because these are more 

reproducible and less rearrangement prone than in vivo recombination approaches. 
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As already implied above, the main purpose for constructing HACs is the 

delivery of therapeutic genes into patients’ cells. As a proof-of-principle, several 

studies have demonstrated the efficacy of de novo HACs for delivery and expression 

of large human transgenes in human cell lines. Mitotically stable HACs expressing 

either the human hypoxanthine guanine phosphoribosyltransferase (HPRT) (Mejia 

and Larin, 2000; Grimes et al., 2001) or the guanosine triphosphate cyclohydrolase 

(GCH1) (Ikeno et al., 2002) genes were constructed either using a co-transfection 

strategy or from pre-assembled vectors. 

Although progress has been made in the development of gene expressing 

HACs, we still have a long way ahead of us before being able to control the whole 

process of HAC construction. Currently, the process of de novo HAC assembly within 

cells is poorly understood and has been achieved in a limited number of human cell 

lines, predominantly the fibrosarcoma cell line HT1080 (Irvine et al., 2005). A stable 

HAC was also formed in primary pig cells and Hiroshi Masumoto and colleagues 

formed a HAC in murine cells (Dirk Schindelhauer, personal communication). 

Additionally, the de novo HACs reported to date typically are formed by an 

uncontrolled concatemerization of the starting vector, to form mega-base-sized 

derivatives (Harrington et al., 1997; Ikeno et al., 1998; Mejia et al., 2001; Schueler et 

al., 2001; Grimes et al., 2002; Ohzeki et al., 2002; Rudd et al., 2003; Basu et al., 

2005a; Basu et al., 2005b). 

The centromere and the kinetochore which is assembled upon it are two cell 

structures essential for assuring episomal maintenance and transmission of HACs to 

daughter cells during cell division. To date, several groups have demonstrated that 

the centromere-specific histone variant, CENP-A (centromere protein A), is deposited 

on de novo artificial chromosomes, consistent with its central role in kinetochore 

formation (Masumoto et al., 1998; Grimes et al., 2001; Grimes et al., 2002; Ikeno et 

al., 2002; Ohzeki et al., 2002). However, the efficiency of de novo HAC formation and 

stability depends on the presence of another protein, CENP-B, which binds to a 

sequence called CENP-B box (Ohzeki et al., 2002; Basu et al., 2005b) and, to some 

extent, on the chromosome origin of the alphoid template and the longer length of the 

alphoid array (>100 kb) (Kaname et al., 2005). Given the role played by both the 

centromere and the kinetochore in the formation of an independently replicated, 

persistent HAC, their structure and composition will be further described below. 
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II.2.4.1 THE CENTROMERE 

 

The centromere is the key functional component of an autonomous, mitotically 

stable gene therapy vector since it directs the equal segregation of genomic material 

into daughter cells during mitosis. It is a complex proteinaceous structure which 

appears as the cytologically visible primary constriction on mitotic chromosomes of 

higher eukaryotes. 

Human centromeres are composed of 0.2-7 megabases of a 171 bp sequence 

(alpha-satellite motif) repeated in tandem head-to-tail arrangement (Maio, 1971; 

Choo et al., 1991). They play multiple roles in the control of segregation at cell 

division, including: assembly of a kinetochore and spindle attachment, maintenance 

of sister chromatid cohesion until anaphase onset, and movement of chromosomes 

to opposite poles (Cleveland et al., 2003; Vagnarelli et al., 2008). 

The principal class of centromeric DNA in higher eukaryotes is the above 

mentioned alpha-satellite DNA. Alpha-satellite can be subdivided into two types 

(Ikeno et al., 1994; Alexandrov et al., 2001). Type 1 forms regular higher order repeat 

arrays, is associated with centromere function and contains a 17 bp motif known as 

the CENP-B box which represents the binding site for CENP-B (Earnshaw and 

Rothfield, 1985; Earnshaw et al., 1987; Masumoto et al., 1989). Type 2 is monomeric 

alpha-satellite and lacks a regular higher-order organization. This type of alpha-

satellite DNA usually flanks the type 1 array and is often interrupted by LINE and 

SINE sequences (Prades et al., 1996). 

The importance of alpha-satellite DNA is highlighted by the fact that it is the 

only element capable of independently nucleating centromere formation de novo and 

members of certain human alpha satellite DNA families were found to form active 

centromeres de novo when transfected into mammalian cells (Harrington et al., 1997; 

Saffery et al., 2001). The mechanism by which cloned alpha-satellite DNA serves as 

a template for the recruitment of centromere-specific proteins and the assembly of a 

functional kinetochore remains to be elucidated (Basu and Willard, 2005). 

Kinetochores are the large protein complexes that mediate segregation in 

higher eukaryotes. They interact on one side (inner kinetochore) with the 

chromosomes and on the other side (outer kinetochore) with the spindle 

microtubules. Thus, the kinetochore serves as the protein interface between the 

chromosomes and the spindle apparatus that drives chromosome segregation 

(Kanizay and Dawe, 2009). The centromeres serve as scaffolds for kinetochores, 

which are assembled immediately before and during the first steps of mitosis 

(Vagnarelli et al., 2008; Cheeseman and Desai, 2008). The kinetochore is composed 
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of a number of constitutive proteins, including CENP-A, as well as the centromeric 

chromatin-associated proteins CENP-B and -C, which form the foundation on which 

the kinetochore assembles. 

It is well established that epigenetic factors (methylation, acetylation, and 

phosphorylation of amino acids), and not the DNA sequence, are responsible for 

centromere identity (Dalal, 2009). A key component of this epigenetic marking 

system is the centromere-specific CENP-A protein (Palmer et al., 1991). CENP-A is a 

member of a family of evolutionarily conserved, centromere-specific histone H3s that 

package centromeric DNA at the kinetochore into a specialized chromatin structure 

(Sullivan et al., 2001; Amor et al., 2004). Centromeres are identified by their 

interaction with CENP-A (Kanizay and Dawe, 2009). 

Recent studies revealed that CENP-B, another component of the kinetochore, 

has a dual role, on the one hand recruiting CENP-A to the chromatin during de novo 

centromere formation, and on the other actively enhancing the H3K9Me3 (histone H3 

tri-methylated at lysine 9) modification of chromatin containing chromosomally-

integrated alpha-satellite DNA without stimulating CENP-A assembly (Okada et al., 

2007). 
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OBJECTIVES  

 

The high mutational variability affecting the CFTR gene and consequently the 

great phenotype variability of the CF disease is a major impairment to the design of a 

single therapy for CF using drugs. Gene therapy, being non mutation-specific, seems 

the perfect answer for the treatment of this common genetic disease. By restoring 

CFTR function through the delivery of a healthy copy of the CFTR gene to the 

affected cells, it would provide a cure regardless of the mutation involved. 

Unfortunately, gene therapy in general and for CF is not a straightforward strategy, 

as many variables have to be taken into consideration (such as, among others, the 

most appropriate vector to be used, the level of expression desired, gene silencing, a 

possible immune response, and reducing the need for administration of repeated 

doses), all of which make gene therapy a work in progress and not yet a reality. 

Despite all the work that has already been achieved in the field, there are still some 

steps to be carried out before a CF cure by gene therapy can become a reality. In 

this work we addressed CF gene therapy in a specific way, having as final aim the 

formation of a human artificial chromosome (HAC) expressing the CFTR gene under 

the control of the endogenous promoter that could be delivered to CF affected cells. 

In order to achieve this important step for CF gene therapy, the objectives of the 

present work were: 

 

• To design and produce a construct containing the CFTR locus in an appropriate 

vector which would allow the formation of a CFTR HAC. And we obtained this by: 

• Assembling a tagged CFTR locus containing all 27 exons and flanking 

genomic regions in a single PAC, from characterized DNA preparations of 

resource PACs. 

 

• To determine if the CFTR locus was expressed and HAC formation could occur in 

human pulmonary cells. In order to answer these questions, we: 

• Co-transfected human pulmonary cells with the CFTR construct and a 

centromere proficient alpha-satellite construct.  

 

• To assemble a de novo HAC by ligating the CFTR construct and a PAC-based 

vector containing centromeric and telomeric DNA sequences plus a selectable 

marker and cloning it into E. coli cells. 
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CHAPTER II. RESULTS 

 

 

1. SUMMARY 

 

Classical gene therapy to cystic fibrosis has had limited success due to immune 

response against viral vectors and short-term expression of cDNA based transgenes. 

These limitations could be overcome by delivering the complete genomic CFTR gene 

on non-integrating human artificial chromosomes (HACs). Here, the reconstruction of 

the genomic CFTR locus into one P1-based artificial chromosome (PAC), CF225, is 

reported. CF225 is a midsized, non-selectable PAC (225.3 kb, -60.7 kb to +9.8 kb) 

ligated from two PACs with optimized codons and a silent XmaI restriction variant to 

discriminate transgene from endogenous expression. After co-transfection with 

telomerized, blasticidin-S selectable, centromere-proficient alpha satellite constructs 

into HT1080 cells, CF225 was not incorporated into a de novo HAC in 122 lines 

analyzed, but integrants expressed. Stability analyses suggest feasibility to pre-

fabricate a large, tagged CFTR transgene that stably replicates in the proximity of a 

functional centromere. Although definite conclusions about HAC proficient construct 

configurations cannot be drawn at this stage, important transfer resources were 

generated and characterized, demonstrating promise of de novo HACs as potentially 

ideal gene-therapy vector systems. 

 

 

2. INTRODUCTION 

 

The primary transcript of the CFTR gene is ~189 kb long  and comprises 27 

exons (Rommens et al., 1989). The adjacent genes, GASZ and CORTBP2, show 

different nuclear localization in human cells, depending on their differently regulated 

expression (Zink et al., 2004; Sadoni et al., 2008), and therefore sequences of these 

genes are unlikely to belong to the chromatin domain that regulates CFTR. The 

distance between the genomic regions of the primary transcripts of the adjacent 

genes is 283 kb, suggesting that the size of the functional CFTR locus is between 

189 and 283 kb. The gene order and exon structure around the CFTR locus is highly 

conserved in vertebrates (Sadoni et al., 2008), posing the question why this order 

was maintained over 500 M years in the absence of gene regulatory constraints. It is 
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presently not known if all intronic and extragenic sequences of the CFTR locus are 

required for normal gene expression or play a role in locus stability. 

Since CF is a recessive disorder, a single copy of the normal CFTR gene is 

sufficient to achieve functional CFTR levels that avoid CF, making CF an attractive 

candidate disease for gene therapy. It is expected that low levels of stable 

expression of the CFTR gene inside defective cells, or correction of even a fraction of 

cells of the epithelium could alter pathological epithelial physiology, thus being of 

clinical benefit (Dorin et al., 1996; Ramalho et al., 2002). 

Thus, successful gene therapy requires persistent tissue specific expression of 

the transgene, which should be optimally achieved by delivery of a complete locus of 

genomic DNA including native regulatory and promoter elements. To avoid random 

integration into the host chromosomes and allow stable inheritance, additional 

genetic elements are required. The most important of these elements is a functional 

centromere. Human artificial chromosomes (HACs) based either on centromeric 

alpha satellite DNA (i.e. long arrays of tandem repeats > 80 kb) as the only human 

component in a circular P1 phage-based artificial chromosome (PAC), or on linear, 

telomerized alpha-satellite DNA, faithfully replicate and segregate during mitosis for 

many cell divisions in the absence of selection (Ebersole et al., 2000; Grimes et al., 

2001). 

To achieve this goal for CF, in addition to the complete CFTR genomic locus 

(including the promoter and regulatory sequences in introns and outside of the 

primary transcript) vectors to be transfected into CFTR expressing epithelial cells 

should also carry a functional centromere and telomeres. Furthermore, correct 

splicing and expression of the transgene must also occur from the de novo formed 

HAC. The stability and relatively large insert capacity of P1 and F factor based 

artificial chromosomes (PACs/BACs) make them ideal for cloning large genomic 

sequences (Shizuya et al., 1992; Ioannou et al., 1994). 

The de novo formation of HACs following transfer of naked DNA molecules is a 

poorly understood process of DNA assembly, concatemerization, and 

chromatinization, which leads to individual genetic entities (i.e. novel chromosomes) 

in the recipient cells. Some of the assembled structures from a co-transfection may 

contain all transferred sequences in a composition suitable to acquire the different 

chromatin regions that are required for the different functional domains of a HAC. 

Regulated gene expression requires open chromatin in suitable cell types. A 

specialized open chromatin domain and faithfully replicating portions of 

heterochromatin are required for centromere formation, ensuring attachment to the 

mitotic spindle and segregation (Nakano et al., 2008). Active centromeres are 
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marked by the histone H3 variant CENP-A, and need to be protected from adjacent 

gene expression. Co-transfections of large DNA sequences are usually inefficient, 

but in combination with intact DNA preparations can represent a workable strategy to 

characterize function of a cloned DNA fragment and determine suitability for the 

further pre-fabrication of a HAC construct containing all required sequences in a 

single molecule. 

After the production of the genomic construct CGT21 (Figure II.1A) containing 

about one half of the CFTR gene locus and a tagged last exon, and the 

demonstration that it was stably propagated in lung sarcoma cells, where it was 

expressed and correctly spliced (Laner et al., 2005), the next logical step was to 

generate a tagged genomic CFTR construct carrying all 27 exons and flanking 

regulatory sequences for incorporation into a HAC. 

We describe herein for the first time, the assembly of a tagged CFTR locus 

containing all 27 exons and most of the potential regulatory regions in a single PAC. 

Starting from stored, characterized DNA preparations of resource PACs containing 

CFTR, we ligated two PACs, CF1 and CF6, with a corrected exon 10/intron junction 

fragment and obtained a clone of interest, termed CF225 (Figure II.1A). This clone 

has the advantage of containing the optimized methionine (M) codon at the 

polymorphic M470V locus compared to the wt resource clones and a synthetic, silent 

XmaI restriction variant, which is suitable for discrimination of RT-PCR products of 

the transgene from the endogenous CFTR loci of any target cell. 

Here, to achieve incorporation of the CFTR locus into HACs, we co-transfected 

the cloned CFTR loci with centromere proficient alpha-satellite constructs and 

analysed their expression. 

 

 

3. RESULTS 

 

3.1 CONSTRUCTION OF THE FUSION PAC CF225 FROM CHARACTERIZED RESOURCE 

CLONES 

 

Here, we aimed at constructing a tagged version of the entire genomic CFTR 

gene cloned in a P1-phage suitable for large scale, high quality DNA preparation. In 

addition to the previously described construct CGT21 carrying a tagged half locus 

(Laner et al., 2005) we constructed PAC CF225 carrying the human CFTR gene with 

all exons and introns plus regulatory sequences by ligating two PACs, CF1-Met (i.e. 

with M at the M470V locus) and CF6, each containing roughly half of the CFTR gene 
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and flanking regions (Figure II.1). PAC CF1-Met carries an insert running from -60.7 

kb upstream from the start of translation in exon 1 to intron 10, and PAC CF6 carries 

an insert running from intron 10 to +9.8 kb (relative to the end of translation) of 

downstream DNA. Due to the choice of the resource PACs, both introns 9 and 10 are 

substantially shortened by 5.1 and 27.1 kb, respectively (Figure II.1A). As a 

 

 
 

Figure II.1 Schematic of the CFTR locus, constructs and resource clones drawn to scale. (A) 
The size bar shows the position on the chromosome 7 sequence, according to build 37.1 of 
the hg sequence. The primary transcripts of the CFTR gene and the differently regulated, 
adjacent genes GASZ and CORTBP2 are shown with their intron and exon structure and 
transcript direction. Three construct inserts (bold lines) are shown and the CFTR exon/intron 
content and adjacent regions are given. CGT21 contains one half of the CFTR locus and is 
based on PAC CF1, which was joined to an engineered exon 10 (open box) consisting of 
partial exon 10, EGFP-coding, and partial exon 24 sequences, including the stop codon of 
CFTR and 0.5 kb 3' region. Regions not covered by the construct are joined by thin lines. 
Intron 9 of construct CGT21 lacks 5.1 kb, which was known to not impair expression and 
correct splicing (Laner et al., 2005). Construct CF225 is based on a modified PAC CF1 (CF1-
Met required during construction of CGT21) and CF6, which were joined with an engineered 
exon 10 sequence including splice junctions. Intron 9 lacks 5.1 kb and intron 10 lacks 27.1 kb 
regions not present in the chosen resource PACs. Both, CGT21 and CF225 contain an 
optimized sequence in exon 10 (asterisk) encoding the 470M variant and contain the silent 
XmaI variant introduced for the unambiguous transcript detection compared to endogenous 
human CFTR genes. Construct 5A represents the entire wt CFTR locus and extends into 
adjacent genes, suggesting presence of all regulatory regions of the CFTR related chromatin 
domain. (B) Shown are 13 long range PCR reactions covering the entire CFTR locus, except 
a 3 kb gap between reactions 8 and 9 in intron 14. LR-PCR based fine mapping was used to 
compare the structure of the CFTR locus cloned in the different PAC resources (Table 1). All 
products were obtained from the different sources. For comparison, positions of BssHII (Bs) 
restriction sites are given. (C) Characterized resource PACs with published exon/intron 
junction sequences (Ramalho et al., 2004) covering the CFTR locus. 
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consequence, the described DNase I hypersensitive sites (DHS) in intron 10 

(McCarthy and Harris, 2005) are excluded from locus CF225. 

The nine PAC clones, CF1-CF10 (Figure II.1C) covering the human CFTR gene 

locus (a resource from the human genome project) were analysed here for exon 

content by using PCR. Since approximately 1 in 25 caucasians carries a CFTR 

mutation, and functionally relevant polymorphisms exist, all exons and splice 

junctions of the resource PACs were sequenced prior to construction. PCR primers 

and sequencing data are summarized online (Ramalho et al., 2004) and sequences 

are available under EMBL/GenBank accession numbers AJ574939-AJ575055. PACs 

CF1-CF5 were found to contain the common splice variant (TG)11T7 described to 

result in a small proportion of an alternatively spliced product lacking exon 9 

(Cuppens et al., 1998; Ramalho et al., 2002), but mostly producing a normal 

transcript. Exon 10 of PACs CF3-CF5 was found to encode valine at amino acid 

position 470, which was exchanged to methionine during construction of CF1-Met 

PAC, giving rise to a 1.7 fold higher chloride conductance activity (Cuppens et al., 

1998). Construction of the CF1-Met PAC required a number of engineering steps. In 

short, we used here again a stored DNA preparation of a cloning intermediate based 

on PAC CF1 which was used for the construction of CGT21, a synthetic half CFTR 

locus that was shown to be functional and expressed the intended M470 variant and 

tag sequences (Laner et al., 2005). Using the silent XmaI restriction variant 

introduced into exon 10 downstream of M470, the EGFP/exon 24 portion of CGT21 

was replaced by the missing exon 10 and flanking intronic sequences by ligating a 

PCR fragment of this region from PAC CF3, resulting in PAC CF1-Met. PAC ligation 

with the exon 10 fragment resulted in three clones (CF1-Met10-43/-44/-54) 

containing the novel exon 10 cloning junction as assessed by PCR prior to agarose 

plug preparation (performed by Sulith Christan). 

Amplification by PCR using primer pairs In9F/P77-B (spanning exon 10), 

In9F/MetR (spanning from intron 9 to part of exon 10), In9F/CF10R, and 

CF10F/CF10R (both amplify the entire cloned exon 10 sequence, as well as wild-

type upstream and downstream sequences, see primers in Table 2) showed that 

sizes of the PCR products were as expected for the three clones. Sequencing of the 

cloned exon 10 using primers In9F/P77-B confirmed the right orientation, presence of 

the corrected V470M polymorphism and that the sequence in all three clones had no 

PCR derived mutation. Restriction analysis of the In9F/P77-B PCR product revealed 

the expected bands corresponding to the synthetic restriction sites XmaI and NotI. 

Digestion of 1/10 of an agarose plug from all three CF1-Met clones with restriction 

enzymes NotI and/or BssHII also showed the expected fragment sizes of 9.1 kb, 
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52.1-kb, 91 kb (BssHII) and 8 kb, 15 kb, 52.1 kb, 76 kb (BssHII and NotI), 

respectively. In addition, the expected band sizes were shown for all clones by a 

semi-quantitative, low cycle number, long-range PCR (LR-PCR) using reaction 

numbers 2-6 (see Table 1, Figure II.1B, Figure II.2B) covering the entire CFTR 

sequence cloned in PAC CF1-Met (see map of CGT21 in Figure II.1A), including the 

5.1 kb sized reduction of intron 9 in reaction 6 (Figure II.2B). These data indicate that 

the clones contained the complete insert without rearrangement. As the 31.8 kb band 

of subclone CF1-Met10-43 (lane 3 of reaction 5 in Figure II.2B, compare Table 1) 

was very faint compared to the products of the other bacterial subclones, possibly 

indicating a change in some of the bacteria used for plug preparation, the 

corresponding clone was not further used. 

 
Figure II.2 Stability analysis of the CFTR locus cloned in PACs using size mapping of 
restriction fragments and LR-PCR reactions on pulsed field gels (ethidium bromide stained). 
(A) The PFGE gel shows the SalI inserts of CF225 subclones 5 (left lane), 3 (middle lane), 
and 2 (right lane) after prolonged culture simulating an expansion to a theoretical yield of 1015, 
1021, and 1027 E. coli cells, respectively. Albeit loading differences, all preparations after 5 
(1015), 9 (1021), and 13 (1027) days of growth, show the expected size of 225 kb. The smear at 
the bottom of the lanes corresponds to SalI digested bacterial DNA (unpurified plugs), midII, 
lambda multimers (MidRange II marker, New England BioLabs, Ipswich, MA, USA). (B) LR-
PCR based fine mapping of the CFTR locus contained in single cell derived subclones 43 (3), 
44 (4), and 54 (5) of PAC CF1-Met. LR-PCR reaction numbers 2-6 (Figure II.1B) are given at 
the bottom. All three subclones show an identical product size for reactions 2 (18.8 kb ), 3 
(18.1 kb), 4 (30.2 kb), and 6* (14.6 kb), the latter also indicating the 5058 bp deletion in intron 
9 compared to the 19.6 kb wt size of reaction 6. Subclone 43 (3) showed a weak full size 
product for reaction 5 (31.8 kb) compared to the other subclones and was not used for the 
construction of CF225. These reactions exemplify cloning stability and suggest presence of 
genuine CFTR loci in the PACs. 
 

 

After confirming that the CFTR sequence cloned in PAC CF1-Met had the same 

structure as the original PAC CF1, the next step was to fuse CF1-Met PAC with the 

insert of PAC CF6, which carries the rest of the CFTR genomic sequence with 
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correct exon and intron junction sequences (Ramalho et al., 2004). The cloning 

strategy was as follows: 1) partial digestion of CF1-Met PAC (clone 44) with NotI, 

total digestion of CF6 with NotI followed by dephosphorylation to suppress 

circularization; 2) separation by pulsed-field gel electrophoresis (PFGE) of NotI 

restriction products and excision of the bands without UV exposure; 3) electroelution 

of the DNA fragments from the gel slices and mixture at a ratio ~1/1 (CF1-Met/CF6); 

4) T4 DNA ligation; 5) electroporation into E. coli DH10B; 6) PCR screening of kanR 

colonies with primers CFi10fus/R7 (Table 2) specific for the fusion region between 

the two PACs. One clone, later designated CF225, was found to be positive for the 

fusion and for STSs of exons 4 and 12 of both PACs. 

 

 

TABLE 1.  SUMMARY OF THE LR-PCR REACTIONS USED FOR STRUCTURAL ANALYSES OF 
CLONED CFTR LOCI 

 
Reaction 
number 
(Figure 
II.1B, 
II.2B) 

Primers CF1 
Prep 
CF1'', 
CF1- 
Met 
44+55 

CF1 
Prep 
CF1- 
Met 43 

CF6 
Prep 
CF6' 

CF225 
Prep  

Product  
size 
(kb) 

2 CF-37F/ 
CF-18R 

+ + n.d. n.d. 18.8 

3 CF-18F/ 
CF-1R 

+ + n.d. n.d. 18.1  

4 CF-1F/CF3R + + n.d. n.d. 30.2 
5 CF3F/CF7bR + (+/-) n.d. n.d. 31.8 
6 CF7bF/CF10R +* +* n.d. n.d. 19.6/ 

*14.6 
8 CF11F/CF14cR n.d. n.d. + n.d. 7.4 
9 CF14iF/ 

CF17bR 
n.d. n.d. + n.d. 14.1 

10 CF17bF/CF21R n.d. n.d. + n.d. 41.5 
11 CF19cF/ 

CFaM2R 
n.d. n.d. + n.d. 41.4 

14 CF19cF/aB5R n.d. n.d. + n.d. 44.0 
15 aMF/P86 n.d. n.d. + n.d. 10.5 
16 P77/12R n.d. n.d. + n.d. 0.7 
17 SP6/CF1-5R n.d. n.d. n.d. + 0.3 
18 CF6-4F/Sp6 n.d. n.d. n.d. + 0.6 
*product with other than wt size 

 

 

3.2 ANALYSIS OF THE CLONING STABILITY OF CF225  

 

During initial growth of the obtained CF225 PAC master culture, twelve single 

E. coli cell derived subclones were plated and analyzed by PCR to assess cloning 
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stability. Nine subclones contained the eight tested PCR-STSs covering the locus at 

positions -18 kb (CF-18F/R), -1 kb (CF-1F/R), exon 3 (CF3F/R), exon 10 corrected/ 

fusion (CFi10fus/R7), exon 11 (CF11F/R), exon 17 (CF17bF/R), exon 21 (CF21F/R) 

and the poly A region (CFaF/R; primer sequences are described in Table 2).To 

further analyze cloning stability, three single cell derived cultures of PAC CF225 were 

grown for various time periods simulating a potential final yield of 1015, 1021, and 1027 

E. coli cells, each containing up to ~10 completely replicated copies of the construct 

(Ioannou et al., 1994). A DNA yield of a 1015 cell preparation represents a normal 

laboratory scale required for functional testing. The 1021 scale may represent the 

upper range required for extensive testing in a multicenter gene therapy trial. Larger 

cell numbers could perhaps represent the range of a continuous production of a DNA 

based drug for the clinical setting. 

Restriction digestion of plug material from the three single cell derived colonies 

of CF225 showed an identical insert size of ~225 kb (SalI) (Figure II.2A) and identical 

BssHII fragments of the predicted sizes of 96.5 kb, 83.4 kb, 52.1 kb, and 9.1 kb (not 

shown), indicating a very high overall cloning stability of the locus. These data 

indicate a faithful and stable propagation of the CFTR locus in PAC CF225 (225.3 kb 

insert). 

 

 

3.3 STRUCTURAL ANALYSIS OF CLONED CFTR LOCUS 

 

3.3.1 LR-PCR 

 

To analyse the stability of the cloned CF1-Met insert, genomic regions were 

analysed in detail using LR-PCR spanning the whole insert. For this analysis, a 

minimum of 5 overlapping PCR products were generated (Figures II.1B, II.2B). 

Primer pairs and sizes of these 5 and other products used to confirm the structure 

and internal order within the large DNA insert from PACs CF1-Met10 and CF6, or to 

analyze end products, are given in Table 1. The PCR products showed identical 

fragment sizes for all genomic regions from the three different CF1-Met10 clones 

(Figure II.2B and Table 1). Thus, the long PCR and pulsed field restriction analysis 

demonstrates presence of the expected structure and a lack of internal 

rearrangements in the three clones. The data obtained for PACs CF1-Met10 (Figure 

II.2B, Table 1), CF6 (Table1) and CF225 (Figure II.2A) indicate that the entire CFTR 

gene can be stably cloned in E. coli. Occasionally, deletions have been observed 

under pro-recombinatorial conditions in E. coli expressing recE and recT in the PAC 
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host DH10B, which is RecA negative for the stable propagation of large inserts 

(Shizuya et al., 1992; Ioannou et al., 1994), as reported for a repetitive region 50 kb 

3' to the beta globin locus (Imam et al., 2000). Overall, these structural analyses 

indicate a very high cloning stability of the CFTR locus in E. coli, suggesting that a 

genomic DNA of clinical use can be produced in sufficient quantity and quality. 

 

3.3.2 END SEQUENCING OF LOCUS CF225 

 

To determine the ends of CF225, LR-PCR reactions were carried out with 

primer pairs SP6/CF1-5R (5' end) and CF6-4F/SP6 (3' end) (Tables 1, 2). These 

were found to amplify 605 bp and 265 bp products (Figure II.3B), respectively. SP6 

hybridizes to a sequence present on both sides of the ligated PAC vector backbone 

of CF225. The amplified fragments were sequenced and blasted against the hg built 

37.1 at NCBI. The reconstructed CFTR locus runs from nucleotide position -60651 

relative to the start of translation to nucleotide position +9767 relative to the end of 

translation. Both ends coincide with a Sau3AI site, in agreement with the partially 

digested genomic DNA cloned in the BamHI site of the PAC vector pCYPAC2 in 

library RPCIP704 (Ioannou et al., 1994). 

As a result of the cloning procedure, CF225 has two deletions within introns 9 

and 10 representing regions which were not covered by the genuine PACs CF1 

(intron 9) and CF6 (intron 10) and were omitted by reconstructing exon 10 and its 

flanking intron sequences. The resulting 5.1 kb deletion in intron 9 was already 

known from the functional analysis of CGT21 (Laner et al., 2005) not to affect 

expression and correct splicing in this region. To precisely locate and determine the 

extent of those deletions, PCR reactions were carried out with primer pairs 

In9F/C16D (intron 9/exon 10), and CFi10fus/CF11R (intron10/intron 11) (Table 2), 

which generate DNA fragments of 735 bp and 773 bp, respectively. The PCR 

products were sequenced and blasted against published human BAC sequences. 

In9F hybridizes to nucleotide positions 73794 – 73816, and C16D to nucleotide 

positions 79552 – 79529 on the CFTR genomic sequence (relative to the start of 

translation). The deletion in intron 9 is located from nucleotide position 74148 to 

79204 and is 5058 bp long. CFi10fus hybridizes to nucleotide positions 80085 – 

80105, and CF11R to nucleotide positions 107929 – 107952. The deletion in intron 

10 runs from nucleotide positions 80281 to 107408 and is 27128 bp long. DNA from 

HT1080 cells served as a control for the absence of amplification from wt-CFTR loci 

(not shown). 
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3.4 CO-TRANSFECTION EXPERIMENTS 

 

In order to analyze the functional incorporation of the obtained CFTR locus in a 

de novo formed human artificial chromosome (HAC), we employed simple co-

transfection experiments with linearized DNA components. HAC formation by co-

transfection is not efficient, but has successfully been used to incorporate a HPRT 

gene into a de novo formed HAC (Grimes et al., 2001). In addition, it is advantageous 

not to pre-fabricate a fixed composition regarding the size of the locus, the orientation 

with respect to the centromere, and the type of centromere included. Indeed, co-

transfection of the HAC components separately may to some extent increase the 

flexibility of the assembly of a HAC, which may adopt some rules of how stable 

structures need to be composed. On the other hand, the ongoing repair and 

recombination processes required to generate a stable genetic entity may by chance 

alter the input DNA. Thus, co-transfections represent a workable tool to initialize HAC 

formation studies. 

Four rounds of co-lipofection of the 225 kb insert of PAC CF225, with the 

characterized preparation of construct TTE1 (133 kb fragment) containing a 

duplicated BS selectable marker gene and the EGFP marker, resulted in 185 (white 

and green) cell clones, 122 of which were expanded and screened by PCR with 

primers CFi10fus/R7 (Table 2), specific for CF225. Five individual cell clones, BW24, 

BG32, CG13, DG27, and DG5 were positive for the exon 10 junction region, 

indicating that only 1 in ~25 cell clones was co-transfected with both CF225 and 

TTE1 DNA. Although the ratio of intact molecules per liposome preparation was not 

further assessed in the four individual transfer experiments resulting in the 122 

analyzed clones, there is no obvious explanation for this low co-transfection 

efficiency. Other co-transfections >100 kb regularly approached efficiencies of 1 in 

~3-10 clones when equimolar DNA preparations were used under similar conditions, 

regardless if one or both components carried the BS marker. Successful co-

transfections leading to HAC formation were possible at higher efficiency even if one 

component lacked telomeric repeats, as was the case here for the CF225 insert. 

Nevertheless, the co-transfections of CF225 still represented a workable means of 

selecting out stable clones allowing an initial functional assessment of the locus not 

carrying a selectable marker. 
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Figure II.3  Expression of CFTR constructs and analysis of locus ends. (A) Lines co-
transfected with CF225 (225 kb) and TTE1 (133 kb) were analysed with primers B3F/C16D 
resulting in a 391 bp product composed of endogenous and transgene transcripts 
(arrowhead). A (normal) fraction of transcripts showing exon 9 skipping is indicated (asterisk). 
(B) End specific PCR reactions SP6/CF1-5R (0.6 kb, 5' end) and CF6-4R (0.3 kb, 3' end) 
specific for construct CF225 showed that only line DG27 retained the 5' end, whereas all lines 
obtained from the co-transfections showing presence of the exon 10 region specific to CF225 
(5 out of 122 lines) showed loss of the 3' end. Nevertheless, 4 out of 5 lines showed 
expression of the CF225 specific RT-PCR product as shown in C. (C) XmaI restriction 
analysis of RT-PCR products of CF225 lines and comparison with Calu-3 and the weakly 
expressing HT1080 cells. The products of both controls are not cut with XmaI. Varying 
proportions of the 391 bp products of lines BG32, DG27, and DG5 are cut into 310 and 81 bp 
bands (arrowheads), indicating presence of functional CF225 transgenes. The minor product 
of 208 bp indicating (normal) exon 9 skipping is also cut with XmaI, which is present in exon 
10, leading to a 121 bp band (asterisks). Ethidium bromide stained agarose gels with the 1 kb 
ladder (Invitrogen, Carlsbad, CA, USA) size standard. (D) A section of the electropherogram 
of the sequencing of the RT-PCR product of line DG27 showing presence of the introduced 
XmaI site CCCGGG sequence (underlined), in addition to the endogenous transcripts of 
HT1080 showing the wt sequence CCTGGC, both encoding P and G at aa positions 499 and 
500. 
 

 

RT-PCRs were carried out with primers B3F and C16D (Table 2) generating a 

spliced product of 391 bp between exons 8 and 10, which represents a mixture of 

products from endogenous CFTR genes of the HT1080 cell line and the transgene 

loci. RNA/cDNA preparations were controlled using β-actin primers (Figure II.3A). All 

lines showed varying levels of CFTR expression after 30 days off selection. To 

DG27 
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distinguish between endogenous and transgene expression, the RT-PCR products 

were digested with XmaI cutting the engineered exon 10 from CF225 into two 

fragments of 310 bp and 81 bp (Figure II.3C). In four cell lines, varying proportions of 

the CFTR transcript resulted from the transgene, which demonstrated expression 

levels of the transgene above wt background in most cases, and showed correct 

splicing (Figure II.3C). Cell line BW24 did not express the transgene (not shown). 

The expressing cell lines and parental HT1080 cells were further analyzed by 

sequencing of the RT-PCR products with the same primers and primer CFc3F (Table 

2), demonstrating that all lines contained both the 470M polymorphism and the 

synthetic XmaI variant in exon 10, confirming transgene origin. Figure II.3D shows a 

section of the electropherogram from sequencing of line DG27, evidencing both the 

XmaI site (CCCGGG) expressed from CF225 and the wt sequence (CCTGGC) from 

the HT1080 loci, both encoding wt amino acids 499P and 500G (corresponding to 

silent exchanges). 

 

 

 

Figure II.4 FISH based HAC detection. Triple colour FISH analysis of line DG27 containing 
the CF225 (225 kb) and TTE1 (133 kb) cotransfected material integrated into chromosome 7 
close to the endogenous CFTR locus (arrow). Probe CF1 (red), probe CF6 (green), and 
traces of probe E1 (pink) staining the centromere 5 alpha satellite DNA and related 
centromeres of chromosomes 1 and 19 are present at the site of integration. A rare case (1 in 
130 metaphases) of fragility at the site of integration suggests presence of multiple copies 
(right inset). Vector probe rsf spanning the BS marker (red) is present at the integrated locus 
marked by the CF6 probe (green) and the cen5 probe E1 (pink) (left inset).(Data generated by 
Sulith Christan, reproduced here with permission). 
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To check the integrity of construct CF225 in the clonal cell lines, PCR reactions 

were carried out with primer pairs SP6/CF1-5R for the left vector/CFTR junction of 

605 bp, and CF-4F/SP6 for the right CFTR/vector junction of 265 bp (Table 2). Of the 

5 cell lines which were positive for the exon 10 junction PCR, line DG27 has kept the 

left end of CF225, confirmed by sequencing the PCR product. All 5 lines were 

negative for the right end junction PCR (Figure II.3B) and for two other LR-PCR 

reactions extending approximately 2 kb and 3 kb from the right end into the CFTR 

locus (not shown), suggesting that 3’ DNA of CF225 was lost in all four expressing 

lines. Loss of locus ends may have occurred during integration or subsequent 

propagation. 

Triple colour FISH analyses of these cell lines after 30 days of growth on and 

30 days off BS selection revealed either integration of the CF225 locus into host 

chromosomes, or integration and truncation in all five clonal cell lines. No HACs 

carrying the CFTR locus were observed. Clonal line DG27 showed a stable co-

integration close to the endogenous CFTR gene on chr7 (arrow in Figure II.4), which 

was positive for CF1, CF6, and rsf signals on and off selection. Weak signals for E1 

were regularly visible at the site of integration. Line BG32 revealed a distal/telomeric 

integration into a chromosome (non-7), which was positive for CF1, CF6, and rsf, but 

not for E1 signals, indicating that the alpha satellite DNA was either not co-

transfected or lost. Cell line DG5 showed integration of CF1, CF6, and E1 signals in 

a distal position of chr19q, and line CG13 showed integration of CF1 and CF6 

portions in the p arm of a metacentric chromosome (non-7) accompanied by 

truncation. The truncated portion containing the endogenous centromere and signals 

for CF1 and CF6 was stably maintained whereas the p arm portion positive for 

signals E1 and CF6, but not CF1, was frequently lost. In cell line BW24 only CF6 

sequences were detected on a small truncated chromosome. Overall, we conclude 

that CF225 and the E1 centromere did not efficiently form a stably replicating 

structure together. Instead, rare stable clones were selected out which contained at 

least the BS marker and various portions of locus CF225 lacking the very 3' end, 

which nevertheless showed expression of the tagged exon 10 sequence in 4 out of 5 

lines obtained. 
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CHAPTER III. OVERALL DISCUSSION 

 

 

CF gene therapy, with delivery of the correct CFTR gene to cells, promises a 

great benefit for all CF patients, irrespective of the type of mutations. However, 

classical gene therapy to CF has had limited success due to immune response or 

short term transgene expression of cDNA delivered by viral vectors or cationic lipids 

due to silencing. These limitations could be overcome by delivering the complete 

CFTR gene with relevant regulatory regions within its genomic context on non-

integrating human artificial chromosomes. Thus, for gene therapy success, a stable 

and functional CFTR locus containing all exons, introns, and regulatory elements 

should be inserted into a human artificial chromosome (HAC) vector that can be 

delivered to cells. 

CGT21, a genomic construct containing about one half of the CFTR locus from 

which expression and correct splicing was demonstrated (Laner et al., 2005), is a 

functional gene with 10 exons encoding a non-functioning CFTR protein derivative. 

Due to its reduced size and the tagged exon, such construct can ease certain 

transfer studies.  

Here, we aimed at producing and analysing the stable incorporation of a 

reconstructed CFTR locus (including all exons and introns, and most regulators) on a 

de novo HAC, which could be used for gene therapy. The de novo approach based 

on the transfection of "naked" DNA molecules to the cells of the patient offers a 

technically feasible strategy towards long term gene therapy, provided sufficient 

numbers of large constructs can be produced in a functional form and delivered. 

We describe the successful generation of a large construct containing the 

CFTR locus with a reduced size (PAC "CF225"), constructed from characterized 

CFTR PAC resources, with a functionally optimized polymorphism and a silent 

restriction variant in exon 10. Other experiences were carried out in the same 

laboratory using the 296.8 kb sized BAC 5A (Figure II.1A) covering the entire wt 

CFTR locus with all regulators [work performed by Lucia Rocchi (Rocchi et al., 

2010)]. 

For reconstructing the tagged CFTR locus, CF225, we adopted a technically 

simple approach based on a "rare cutter" (NotI) restriction site present at the PAC 

vector boundary, thus allowing "conventional" cloning on a genomic scale, followed 

by electroporation of the entire CFTR fusion PAC into E. coli DH10B cells. To our 
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knowledge, cloning of PAC fragments of this size, which is based on intact DNA 

preparations, represents a novel method to assemble genomic loci. 

To define the CFTR locus, we used our previous data, describing that the 

human CFTR gene and its adjacent genes localize individually and differentially to 

distinct nuclear regions, according to their transcriptional activity. This suggests that 

the principal CFTR regulatory information is contained within the limits of the two 

adjacent genes, i.e., < 283 kb (Zink et al., 2004; Sadoni et al., 2008). In addition to 

developmentally regulated alternative 5' exons (Mouchel et al., 2003) numerous 

DNase I hypersensitive sites (DHS) have been described and analysed within this 

region (McCarthy and Harris, 2005; Ott et al., 2009a). Most of these are included in 

CF225, namely DHSs that lie at: -20.9 kb (to the start of translation), in introns 1, 2, 

3, 11, 16, 17a, 18, 20 and 21 and 3’ to the gene at +5.4, +6.8, +7, and +7.4 kb 

relative to the end of translation. DHSs not present in CF225 likely belong to the 

adjacent genes, or are in the reduced region of intron 10, including the DHS that has 

been shown to be active in intestinal cells (Ott et al., 2009a), and DHSs at +15.6 kb, 

+17.2 kb, and +20.1 kb (to the end of translation). The latter are placed in the vicinity 

of the start position of a ~17 kb transcript mapped in opposite direction of the CFTR 

gene (source: hg build 37.1 at NCBI), running in from the intergenic region between 

CFTR and CORTBP2 towards the end of the CFTR transcript. 

Similar transcripts in the opposite strand can be found in the 3' region of many 

genes, for example the genes FOXP2, MDFIC, CAV2, CAV1, MET, CAPZA2, just to 

name a few in the vicinity of the CFTR locus (unpublished observation). The common 

presence of such 3' transcripts suggests an important genetic function, for example 

for gene regulation, formation of a chromatin domain, or for stability. 

By co-transfecting CF225 and TTE1, we obtained five BS resistant cell lines 

which, however, did not show a de novo formation of HACs. All obtained integrated 

cell lines have lost the 3' end of CF225 DNA, which could include loss of DHS at 

+5.4, +6.8, +7 and +7.4 kb. Although these DHS are potentially absent and the ones 

at +15.6 kb and downstream are not in the construct, it was possible to detect the 

XmaI specific, correctly spliced transcript in RT-PCR products from 4 out of 5 cell 

lines, albeit at varying levels relatively to the endogenous CFTR genes of HT1080. 

Due to the poor co-transfection efficiency observed with PAC CF225, it remains 

unknown whether the CF225 locus is complete and replication-competent 

(autonomously) when ligated to a centromere. It seems possible that additional 3' 

sequences, such as an origin of replication, or chromatin barriers separating gene 

expression from centromere function could be required on a pre-fabricated HAC. 

PAC CF225 contains three NotI sites at both locus ends and in intron 10, which is 27 
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kb reduced in size compared to the wt locus. Thus, the possibly critically short 3' end, 

or the lacking DHS in intron 10 can easily be altered by cloning suspected regulatory 

regions into the NotI sites, representing an interesting system to verify expression 

regulation and stability on a HAC in suitable cell or animal models. 

To study incorporation of three distinct versions of the E. coli cloned CFTR 

locus into de novo HACs, co-lipofection experiments were carried out in HT1080 

cells. A workable number of 24 and 25 clones, respectively, revealed a de novo 

formation of a stable HAC when using either a short, BS selected construct CGT21 

(151 kb, linearized with I-SceI; Figure II.1A) and the BS selected cen 17 construct 

B2T8 (~200 kb, linearized with I-SceI) (Laner et al., 2005), or when using the long, 

not selected wt locus 5A (~300 kb SalI insert; Figure II.1A) and the BS selected cen 5 

construct TTE1 (133 kb, linearized with NotI) (Rocchi et al., 2010). In contrast, the 

more elaborate analysis of 122 clones from the co-transfection of the midsized, non 

selected locus CF225 (225 kb, SalI insert; Figure II.1A) with the BS selected cen 5 

construct TTE1 (133 kb, linearized with NotI) did not reveal HAC formation. Only 5 

integrated lines positive for CF225 were obtained. Although the numbers are not 

sufficient to conclude that CF225 is less HAC competent than 5A, it is tempting to 

speculate that CF225 is prone to instability. While the larger 5A construct has kept 

both locus ends in 2 individual cell lines (out of 25 analysed lines, which represent 

<25 individual lines, due to double picked ones, which were excluded when 

identified) including an integrated and the HAC line (Rocchi et al., 2010), all 5 

integrated lines of the midsized locus CF225 (out of 122 lines) have lost the 3' end of 

the locus. Nevertheless, the specific RT-PCR analysis demonstrated that CF225 is 

expressed in 4 out of 5 cell lines, and that the introduced XmaI variant in exon 10 can 

be used to distinguish between transgene and endogenous transcripts. It is possible 

that CF225 underwent a 3' trimming process to generate a stable structure, which 

may have reduced the co-transfection efficiency and thus HAC incorporation. 

The HAC present in cell line EC14 [derived from the co-transfection of locus 5A 

and the BS selected cen 5 construct TTE1 into HT1080 cells (Rocchi et al., 2010)] 

was highly stable on and off BS selection and contained the entire wt-CFTR locus. 

Moreover, the cen 5 alpha-satellite DNA present on the HAC bound CENP-A, 

indicating formation of an active centromere (Rocchi et al., 2010). Accordingly, the 

HAC in line EC14 represents the first de novo formed human artificial chromosome 

carrying the entire CFTR locus. Cell line EC14 showed expression of the CFTR locus 

above the endogenous background on and off selection, suggesting that the 

functional locus was transferred. Unambiguous proof of expression from the CFTR 

genomic construct that localizes in the vicinity of the active centromere is not 
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possible at present, since high copy numbers are likely to be present on the HAC, 

resulting in a larger distance to the centromere of some copies. Moreover, HAC 

material integrated into chr1 could also contribute to expression (Rocchi et al., 2010). 

It was previously demonstrated that PAC cloned, >100 kb sized human alpha-

satellite arrays with ~99% identical 2 kb repeats did not result in internal 

recombination or deletion during a prolonged growth period of 2 x ~400 E. coli 

generations in a colony re-plating experiment (Schindelhauer and Schwarz, 2002). 

Here, we provide extensive structural data including a set of LR-PCR reactions 

covering the CFTR loci from different cloning sources and show stability. Moreover, 

we could confirm cloning stability after the prolonged growth periods in fluid culture, 

which would be required to test and produce a HAC based DNA therapeutic product. 

Overall, the cumulative data presented here suggest that the construction of a pre-

fabricated CFTR-HAC based on the defined resource clones is feasible. These 

results are thus promising for the development of a HAC based therapy. 
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CHAPTER IV. MATERIALS AND METHODS  

 

 

1. PAC CLONES COVERING THE CFTR LOCUS 

 

Details of the isolation of clones carrying the CFTR locus from PAC library 

RPCIP704 (Ioannou et al., 1994), the sequencing procedure, and primers are 

available online (Ramalho et al., 2004). The PAC vector used both in preparation of 

PAC library RPCIP704 and in this work was pCYPAC2 (Figure IV.1).The ends of 

PAC CF1 were mapped by pulsed field gel electrophoresis (PFGE) and amplified 

using primers In9F and T7 (3') or directly sequenced with PAC end primer SP6 (5'). 

The ends of PAC CF6 were mapped using primers P77 and CF12R (5') and primers 

aMF and P86 in a long PCR reaction (3'). For construction of the intermediate 

construct CF1-Met, primers MetF and MetR (Table 2) were used for the V470M 

exchange by site directed mutagenesis in a plasmid containing an intron 9 and exon 

10 portion during construction of CGT21, and primers E10XcF and CF10NMR (Table 

2) for the introduction of the silent XmaI variant and intronic NotI site for PAC ligation. 

Introduced primers and PCR products were sequenced in the resulting clones. 

Construct CGT21 (EMBL/Genbank accession number BN000167), and the 

centromere construct TTE1 containing a 116 kb sized alpha-satellite array of 

chromosome 5 in vector pTT (26-kb) were described elsewhere (Laner et al., 2005). 

PCR products were sequenced and blasted to the human genome sequence (build 

37.1). The expected size of the insert was confirmed by pulsed field gel analysis. 

 

 

2. E. coli GROWTH AND AGAROSE PLUG PREPARATION  
 

E. coli DH10B strain (F mcrA ∆(mrr-hsdRMS-mcrBC) (Φ80dlacZ∆M15) ∆lacX74 

deoR recA1araD139 ∆(ara-leu)7697 galU galK rpsL (SmR) endA1 λ nupG) was 

grown in LB broth or agar medium. PAC clones were selected with 30 µg/ml 

kanamycin. Telomerized PAC clone TTE1 was selected with both 30 µg/ml 

kanamycin and 50 µg/ml ampicillin. 

For large scale growth simulation, single cell subclones 2, 3 and 5 of the master 

culture of CF225 were established at day 1, grown in 50 ml LB cultures at 37°C and 

tested for STS content with follow ups during subsequent growth phases, indicating 

full stability. For the prolonged growth periods, the subclones were grown in 1 l of 

rich, buffered LB medium at 30°C, from which agaros e plugs containing ~1015 cells 
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were prepared at day 5. Subsequently, 1 ml of subclones 2 and 3 was transferred to 

1 l of fresh medium every other day, resulting in a theoretic number of ~1021 and 

~1027 bacteria at day 9 and 13, respectively, when agarose plugs were prepared. 

 

 

 
Figure IV.1 A schematic of PAC vector pCYPAC2. The pCYPAC2 vector has been 
constructed for the cloning of large DNA fragments following electroporation. This vector has 
been constructed by removing the stuffer fragment from the pAd10SacBII vector (Pierce et 
al., 1992) and inserting a pUC plasmid into the BamHI cloning site. The pUC-Link is a stuffer 
fragment, being replaced by insert DNA during cloning. 
(http://bacpac.chori.org/pCYPAC2.htm). 
 

 

3. PREPARATION OF INTACT DNA 

 

Long DNA preparations in agarose plugs were carried out according to the 

protocol of Smith, Klco and Cantor (Smith et al., 1988), supplemented by purification 

steps to remove E. coli fragments and damaged DNA fractions from the circular DNA 

preparations as described (Schindelhauer and Cooke, 1997). 
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TABLE 2. OLIGODEOXYNUCLEOTIDES USED IN THIS STUDY 

Primer Sequence (5’-3’) Location Reference Used for  

P77-B GGTCGAGCTTGACATTGTAGG pCYPAC2 
(reverse) 

This work PCR, End 
Sequencing 

P86 TGGGCGATCTGCCGTTTCGAT
CC 

pCYPAC2 This work End 
mapping 

T7 TAATACGACTCACTATAGGG pCYPAC2 Schindelhauer, 
2002; 
 Laner, 2005 

PCR 

R7 CCTCTCCCTATAGTGAGTCG pCYPAC2 
(reverse 
complement 
of T7) 

This work PCR 

SP6 ATTTAGGTGACACTATAG pCYPAC2 Anand, 1991 LR-PCR 
End 
sequencing 

CF1-5R GTTCCAATTCTATAAGATTATC
AG 

CFTR 
(5’ region of 
CF1) 

This work LR-PCR 
End 
mapping/ 
sequencing 

CF-37F CGTGTTAGGCTGATTTTGCAG
C 

CFTR 
(5’ region) 

This work LR-PCR 

CF-37R CGACCAGCACATAACAACTCA
GC 

CFTR 
(5' region) 

This work LR-PCR 

CF-18F GATGTCCTGCAACTGGCAGA
G 

CFTR 
(5’ region) 

This work LR-PCR 

CF-18R CAGAGATCTACATGTGAGGG
C 

CFTR 
(5’ region) 

This work LR-PCR 

CF-1F CTCAGAGAGTTGAAGATGGC
G 

CFTR 
(5’ region) 

This work LR-PCR 

CF-1R GTGAGTGAACTCCAAGGGTG
G 

CFTR 
(5’ region) 

This work LR-PCR 

A1R CGAGAGACCATGCAGAGGTC CFTR 
(exon 1) 

This work; 
Laner, 2005 

RT-PCR 

CF3F CTTGGGTTAATCTCCTTGGA CFTR 
(intron 2) 

This work; 
Zielenski,1991 

LR-PCR 

CF3R ATTCACCAGATTTCGTAGTC CFTR 
(intron 3) 

This work; 
Zielenski,1991 

LR-PCR 

CFc3F GGGATAGAGAGCTGGCTTC CFTR 
(exon 3) 

This work RT-PCR 
Sequencing 

CF4F TCACATATGGTATGACCCTC CFTR 
(intron 3) 

This work; 
Zielenski,1991 

PCR 

CF4R TTGTACCAGCTCACTACCTA CFTR 
(intron 4) 

This work; 
Zielenski,1991 

PCR 

CF7bF AGACCATGCTCAGATCTTCCA
T 

CFTR 
(intron 6) 

This work; 
Zielenski,1991 

LR-PCR 

CF7bR GCAAAGTTCATTAGAACTGAT
C 

CFTR 
(intron 7) 

This work; 
Zielenski,1991 

LR-PCR 

B3F AATGTAACAGCCTTCTGGGAG CFTR 
(exon 8) 

Ramalho,2002 RT-PCR 
Sequencing 

In9F CAAGTAGCAGGTGAAGCAAG
TGC 

CFTR 
(intron 9) 

This work PCR 
Sequencing 

CF10F GCAGAGTACCTGAAACAGGA CFTR 
(intron 9/  
exon 10) 

This work; 
Zielenski, 
1991 

PCR 

CF10R CATTCACAGTAGCTTACCCA CFTR 
(intron 10) 

This work; 
Zielenski, 
1991 

PCR 
LR-PCR 
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TABLE 2. OLIGODEOXYNUCLEOTIDES USED IN THIS STUDY (CONT.)  

Primer Sequence (5’-3’) Location Reference Used for  
MetF* GACTTCACTTCTAATGATGATT

ATGGGAGAACTGG 
CFTR 
(intron 10) 

This work PCR, 
V470M 
exchange 

MetR* CCAGTTCTCCCATAATCATCAT
TAGAAGTGAAGTC 

CFTR 
(exon 10) 

This work PCR, 
V470M 
exchange 

E10XcF* GGATTATGCCCGGGACCATTA
AAGAAAATATCATCTTTGG 

synthetic/ 
CFTR  
(exon 10)  

This work PCR, 
XmaI site 

CF10NMR* CGGTGGTACGCGTGCGGCCG
CCCTAACATTTACAGCAATAA 

synthetic/ 
CFTR  
(exon 10) 

This work PCR, 
NotI/MluI site 

C16D GTTGGCATGCTTTGATGACGC
TTC 

CFTR 
(exon 10, 
reverse) 

Ramalho, 
2002 

PCR 
Sequencing 
RT-PCR 

CFi10fus GTGACTGCAATTCTTTGATGC CFTR 
(intron 10) 

This work PCR 
Sequencing 

CF11F CAACTGTGGTTAAAGCAATAGT
GT 

CFTR 
(intron 10) 

This work; 
Zielenski, 
1991 

PCR 

CF11R GCACAGATTCTGAGTAACCATA
AT 

CFTR 
(intron 11) 

This work; 
Zielenski,199
1 

PCR 
Sequencing 

CF12F GTGAATCGATGTGGTGACCA CFTR 
(intron 11) 

This work; 
Zielenski, 
1991 

PCR 

CF12R CTGGTTTAGCATGAGGCGGT CFTR 
(intron 12) 

This work; 
Zielenski,199
1 

PCR 

CF17bF TTCAAAGAATGGCACCAGTGT CFTR 
(intron 17a) 

This work; 
Zielenski, 
1991 

PCR 

CF17bR ATAACCTATAGAATGCAGCA CFTR 
(intron 17b) 

This work; 
Zielenski, 
1991 

PCR 

CF21F AATGTTCACAAGGGACTCCA CFTR 
(intron 20) 

This work; 
Zielenski, 
1991 

PCR 

CF21R CAAAAGTACCTGTTGCTCCA CFTR 
(intron 21) 

This work; 
Zielenski, 
1991 

PCR 

CFaF CTAGGGTGATATTAACCAGGG CFTR 
(poly(A)-
region) 

This work PCR 

CFaR GAGGCTTGAAGACATTATGCT
AG 

CFTR 
(poly(A)- 
region) 

This work PCR 

CF6-4F CTCTGTGAAGGAGGTTCTAAG
AAC 

CFTR 
(stop, + 9.5 
kb) 

This work LR-PCR 
End 
sequencing 

AcF GCACTCTTCCAGCCTTCC β-actin This work; 
Laner, 2005 

RT-PCR 

AcR AGAAAGGGTGTAACGCAACTA
AG 

β-actin This work RT-PCR 

* Modified primers 
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4. CONSTRUCTION OF CF225 

 

4.1 IN GEL RESTRICTION DIGESTION AND DEPHOSPHORYLATION   

 

For partial digestion of CF1-Met PAC clones, 1 ml of NotI buffer with 150 U of 

enzyme (New England BioLabs, Ipswich, MA, USA) was added to 7 agarose plugs 

(~20 µg) while for total digestion of CF6, 600 U of enzyme in 500 µl reaction buffer 

with 1x BSA was added directly onto a slice containing ~20 plug equivalents (~100-

µg in 2 ml). The plugs were left overnight at 0ºC. The following day, another 200 U of 

NotI was added directly on the CF6 slice. Digestions were carried out for 1 h at 37ºC 

for the CF1-Met plugs and for 4 h at 37ºC in a wet chamber for the CF6 plugs. The 

partial digestion of the CF1-Met PACs was stopped on ice by adding 10% 0.5 M 

EDTA, pH 7.9, and later NDS buffer (0.5 M EDTA, pH9; 1% N-Lauroylsarcosine) 

containing proteinase K (10 µg/ml), incubated at 55ºC overnight, while CF6 was 

immediately dephosphorylated as follows. After removal of NotI buffer, the CF6 plug 

slice was washed with bidistilled water, placed on ice, and incubated with 460 µl of 5x 

calf intestinal phosphatase (CIP) buffer containing 20 µl CIP (New England BioLabs, 

Ipswich, MA, USA), which was directly added onto the plug slice and incubated for 

2h. Incubation for 30 min at 37ºC was stopped on ice using 250 µl of 0.5 M EDTA, 

pH 7.9. CIP was inactivated overnight with NDS buffer containing proteinase K (10 

µg/ ml) at 55ºC in a humid chamber. After equilibrating in 0.5x TAE, the slice was 

loaded on a 1% agarose pulsed-field gel. 

 

 

4.2 PFGE SEPARATION AND DNA ISOLATION  

 

After a 20 h run at 6 V/cm with a switch time of 1- 30 s in 0.5x TAE at 12ºC 

(CHEF DRII, Bio-Rad, Hercules, CA, USA), the PAC DNA bands were cut from the 

gel without UV exposure, and kept at 0ºC. DNA was recovered from gel slices by 

electroelution using a Bio Trap BT1000 (Biometrics, Schleicher & Schuell, Dassel, 

Germany) placed in a CHEF DRII or III PFGE chamber in 0.5x TAE. 

 

 

4.3 LIGATION AND ELECTROPORATION  

 

The ligation reaction was carried out with 200 µl of eluate, 1x T4 DNA ligase 

buffer, and 20 µl of T4 DNA ligase (New England BioLabs, Ipswich, MA, USA), at 
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12ºC, overnight. Reaction mixtures without ligase were used as controls. 4 µl of the 

ligation reaction was added to 5 µl of electrocompetent E. coli DH10B cells 

(ElectroMAX DH10B Cells, Invitrogen, Carlsbad, CA, USA) in a volume of 80 µl 

of bidistilled water and electroporated (Bio-Rad Gene Pulser II) at 1.2-1.4 kV, 100 Ω, 

and 25 µF using 0.1 cm gap cuvettes (Bio-Rad, Hercules, CA, USA) chilled on ice. 

500 µl of warm S.O.C. medium was immediately added to the cuvette and the 

content transferred to sterile 10 ml white cap tubes containing 5 ml of LB medium for 

growth for 1 h at 37ºC with moderate shaking. Spun bacteria were spread on LB agar 

containing 30 µg/ml kanamycin (Sigma, Munich, Germany), and incubated for a 

minimum of 24 h at 37ºC. 

 

 

4.4 E. COLI SCREENING 

 

Individual colonies were picked into 30 µl of TTE buffer (0.01% Triton X-100, 

20-mM Tris-HCl, pH8, 2 mM EDTA, pH8), heated 1 min at 95ºC and spun for 15 min 

at 10000 rpm. 2 µl of supernatant was used in a final volume of 50 µl for a PCR of 30 

cycles with an annealing temperature of 55ºC with primer pair CFi10fus/R7 (Table 2). 

2-µl of ligation reaction was used for the positive control. Aliquots of the PCR product 

were run on a 1% standard + 1% low melting agarose gel. 

 

 

5. VERY LONG PCR 

 

Agarose plug sections with purified, intact PAC template of ~10 µl were added 

to a total reaction volume of 50 µl containing tuning buffer (1x Eppendorf), 0.5-mM 

dNTPs, 0.5 µl Mg(OAC)2, 0.2 mM primers, 2 U Taq polymerase, and 2 U of the 

TripleMaster Enzyme Mix (Eppendorf). The programme has an initial denaturation at 

92 °C for 30 sec, 6-9 cycles of denaturation for 12  sec, annealing at 60-64 °C for 1-

min, and elongation at 66°C for 15-45 min (20-60 kb ), and a final extension at 66°C 

for 5 min. 10-20 µl of the gelly product (0.2% LMP agarose) is mixed with 10 µl 

loading buffer (Ficoll) and analyzed on a pulsed field gel. 
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6. GENERATION OF STABLE HT1080 LINES 

 

Linearized DNA was isolated using appropriate restriction enzymes (New 

England Biolabs). NotI was used for TTE1, and SalI for the CF225 insert. PFGE 

separation, excision without UV illumination, and electroelution was as described 

(Laner et al., 2005) with the modification of placing the BioTrap elution chamber in a 

CHEF DRII apparatus. 

 

 

6.1 CELL CULTURE  

 

HT1080 cells were grown in DMEM (PAA Laboratories, Pasching, Austria) 

supplemented with 10% FCS (PAA Laboratories), 1% Glutamine 100X (Gibco, 

Karlsruhe, Germany), and 2% (v/v) penicillin/streptomycin (Gibco, Karlsruhe, 

Germany) at 37ºC and 5% CO2. 

 

 

6.2 LIPOFECTION 

 

10-cm tissue culture plates containing ~50% confluent HT1080 cells were 

washed with PBS (PAA Laboratories, Pasching, Austria). For each plate, 6 µl 

Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA, USA) and 294 µl Opti-MEM I 

(Gibco, Karlsruhe, Germany) were mixed and incubated for 5 min at RT. Variable 

volumes of DNA eluate were gently mixed with Opti-MEM, resulting in a volume of  

300-µl, which was gently added to the Lipofectamin/Opti-MEM mixture. The tube was 

turned twice and incubated for 20 min at RT. The solution was directly added onto 

PBS rinsed cells using wide bore plastic Pasteur pipettes to avoid DNA shearing. 

Plates were incubated at 37ºC for 12 h, the cells washed with medium, and incubated 

for 1 day without selection. Medium supplemented with 4 µg/ml blasticidin S 

(InvivoGen, Toulouse, France) was added at day 3 and changed every other day. 

 

 

6.3 CLONE EXPANSION AND ISOLATION  

 

Transfected plates were screened by bright field and fluorescence microscopy 

using an Axiovert 10 (Zeiss, Oberkochen, Germany) in a dark room equipped with a 

100 W Hg lamp and filters for blue excitation and green detection of EGFP. Individual 
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BS-resistant cell clones were isolated using cloning rings, and expanded in 12-well 

dishes, 25 and 75 cm2 flasks for PCR screening, growth on and off selection, DNA 

extraction, RNA extraction, freezing, and FISH analyses. DNA for PCR screening 

was extracted using lysis buffer (0.1 M Tris pH 8.3, 5 mM EDTA, 0.2 M NaCl, 0.2% 

SDS, 10 µg/ ml proteinase K) and ethanol precipitation. 

 

 

7. EXPRESSION ANALYSIS AND SEQUENCING  

 

7.1 RT-PCR 

 

Total RNA was isolated from confluent BS-resistant cells grown in T25 flasks 

using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA), according to the 

manufacturer’s protocol, with the additional DNase digestion (Ambion, Austin, TX, 

USA). The reverse transcription (RT) reaction was also performed according to the 

Invitrogen protocol, using SuperScript III One-step RT-PCR kit. Primer sequences 

used for RT-PCR are shown in Table 2. Efficiency of RNA extraction and the RNA 

levels in the various samples were controlled by RT-PCR with 1 µl of each RNA 

sample to amplify a β-actin fragment of 385 bp using primers AcF and AcR (Table 2). 

Primers B3F/C16D were used to amplify a 391 bp product indicating correct splicing, 

and a minor product of 208 bp indicating skipping of exon 9. B3F/C16D were also 

used for analyzing a silent XmaI variant present in transgene CF225 as follows. To 

distinguish CF225 and endogenous CFTR transcripts in the respective lines, 15 µl of 

the RT-PCR reactions were digested in a 25 µl reaction with 20 U of XmaI resulting in 

310 and 81 bp fragments derived of the transgene (and a reduction of the minor 208 

bp band to 121 bp from exon 9 skipping of the transgene). Fragments were analysed 

on 1% standard + 1% low melting agarose gels and images registered on an UV 

Gene Genius BioImaging System digital analyser (Syngene, Cambridge, England). 

RT-PCR products corresponding to the main transcript (without exon 9 skipping) 

were cut out from agarose gels, purified and sequenced. 

 

 

8. FISH ANALYSES  

 

Fluorescence in situ hybridization (FISH) was carried out as described (Laner et 

al., 2004) after 30 days on and off BS selection. After initial screening, a minimum of 

20 (mostly > 30) metaphases were analyzed for each growth phase. The probes 



MATERIALS AND METHODS 

 67 

used were rsf for the vector sequence including the BS marker (Laner et al., 2005) 

labelled by PCR with biotin-16-dUTP (Roche, Mannheim, Germany) and Cy3.5 

avidin, nick translated PAC inserts CF1 (biotin-16-dUTP, Cy3.5, red) and CF6 

(digoxigenin-11-dUTP, FITC, green), nick translated 2.6 kb EcoRI repeats excised of 

PAC B2 containing the cen 17 alpha-satellite array (digoxigenin-11-dUTP, FITC), and 

a PCR generated, nicktranslated probe E1 of vector TTE1 (DEAC, pink), hybridizing 

to cen 5 and alpha-satellite arrays on chromosomes 1 and 19. Signals were 

visualized on an Axiovert 200 microscope and digitally captured (Zeiss, Oberkochen, 

Germany). 
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CHAPTER V. FUTURE DIRECTIONS 

 

 

Before we can speak of the future, we must start with the past and then get to 

the present. Past, present and future are connected. So we shall start by describing 

our past unsuccessful experiences and then suggest ways to turn them into 

achievements. 

In this work attempts were made to construct a HAC, which was one of the 

objectives of the study. First, we started by ligating both the linearized CFTR 

reconstructed locus CF225 and the linearized BS selected cen 5 TTE1 construct. 

The next step was electroporating the whole structure into E. coli DH10B as we had 

done for cloning CF225. All our attempts were fruitless, probably because it is very 

difficult to electroporated an artificial chromosome of ~360 kb into E. coli cells without 

breaking it. Another possible explanation is that CF225 is not competent to originate 

an autonomous replicating unit together with the centromere proficient TTE1 (see 

below). 

We also focused on producing a de novo HAC inside the HT1080 fibrosarcoma 

cell line following a different strategy, since our first rounds of co-transfection (CF225 

and TTE1) resulted in integration of the CF225 construct into endogenous 

chromosomes. The CF225 construct carries no selection and it could be a handicap 

to produce the HAC, so we decided to insert a selectable marker into the construct in 

order to facilitate the formation of a CF HAC. In the first assays, the strategy was to 

ligate a PGK-neo cassette, i.e., the neomycin resistance gene under the control of 

the PGK promoter, which drives gene expression both in bacteria and in mammalian 

cells, to the CF225 construct, followed by electroporation into E. coli cells. Again our 

attempts met with failure, most likely due to the large size of the structure being 

electroporated. 

We did not give up and another strategy was chosen. This consisted in 

disrupting the sacBII gene in the pCYPAC2 vector (Figure IV.1) with a zeocin 

resistance cassette from the pZeoSV plasmid (Invitrogen), which provides selection 

in E. coli and mammalian cells. The sacBII gene was essential for establishing the 

PAC library RPCIP704 (Ioannou et al., 1994) but afterwards it is no longer needed, 

so it can be disrupted without causing any damage to the cells carrying the PAC 

vector. In order to accomplish the task proposed above the following steps were 

taken: 1) PCR amplification of sacBII 5’ and 3’ homology arms (DNA fragments about 

500 bp long) using specific primers; 2) digestion of both homology arms and plasmid 
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pZeoSV with appropriate restriction enzymes; 3) double ligation of sacBII homology 

arms on both sides of the zeocin resistance cassette; 4) Electroporation of both 

CF225 and the zeocin resistance cassette flanked by sacBII homology arms into E. 

coli modified strain SW106 (Warming et al., 2005), which contains the lambda 

prophage recombineering system based on Red gene-mediated homologous 

recombination (Lee et al., 2001), made electrocompetent (and previously grown at 

42ºC for 20 minutes for induction of the Red genes). It was expected that the sacBII 

gene in PAC vector pCYPAC2 would be substituted by the zeocin resistance 

cassette flanked by sacBII homology arms after homologous recombination has 

occurred. Although we did not succeed in ligating the zeocin resistance cassette to 

the sacBII homology arms we still think this is a valuable strategy to bear in mind for 

the future. 

Although no de novo HAC was obtained from co-transfecting CF PAC CF225 

(225.3 kb; Figure II.1A) and TTE1 into HT1080 cells we know that this HAC strategy 

is promising since a HAC was obtained from co-transfecting the unselected CF BAC 

5A (~300 kb; Figure II.1A) and TTE1 into the same cell line, despite in this case an 

integration of HAC material into chromosome 1 also occurred (Rocchi et al., 2010). 

The results observed in this work raised the question whether the CF225 locus is 

capable of autonomous replication when coupled to a centromere or even stable 

considering it lost its 5’ end in 4 out of 5 cell lines created and the 3’ end was lost 

from all cell clones upon integration into the cell genome. Blackledge and colleagues 

(Blackledge et al., 2007)  proposed the DHS located at +15.6 kb to the end of 

translation as the 3’ boundary of the CFTR gene functional unit and so it seems 

reasonable to extend the 3’ end of locus CF225 from +9.8 to +15.6 kb relative to the 

translation endpoint. To further complete locus CF225, reduced in intron 10 by 27 kb 

relative to the wt locus, which causes loss of one DHS from CF225, the missing 

sequence from intron 10 should also be included in the reconstructed CFTR locus. 

Both alterations are feasible as NotI sites are present at the 3’ end and in intron 10 of 

CF225 and these could be used to add additional sequences. Then the novel CFTR 

locus could be retested again.  

The production of a functional CFTR HAC has major advantages over other 

types of gene therapy based on delivery of the CFTR gene to CF affected cells by 

viral vectors, such as high-capacity, autonomous replication, maintenance of the 

transgene in the host cell and long-term regulated expression in a tissue-specific 

manner (Basu and Willard, 2005; Grimes and Monaco, 2005), all necessary 

characteristics in the implementation of a successful gene therapy for CF. The work 

accomplished here raised the expectations in fulfilling every CF patient’s dream of 
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having a cure for CF available to them. The results obtained here and the 

possibilities that arise from them are very important in the field of CF therapy and 

give hope that in the future it will be possible to obtain a single cure for all CF 

patients independently of the CFTR mutation they carry. 
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