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Joana, Leonor and Pipa.



iv



Abstract

We study the existence of solutions for a nonlocal singular second order ordinary differ-
ential equation. We obtain results through Krasnoselskii’s fixed point Theorem and using
some properties of the eigenvalues of the underlying singular linear problem and, on a
different approach, through the monotone method associated with well-ordered lower and
upper solutions.

We deal with second and fourth order problems in infinite intervals, where we prove
the existence of an homoclinic or an heteroclinic solution. For the second order we con-
sider both superlinear and bounded nonlinearities, and prove existence results through
variational methods. A non-variational approach was made for a second order problem
with a dissipative term and a p-laplacian problem was also adressed. Simpler fourth order
bvp’s were also tackled from a variational point of view.

We also analyse fourth order boundary value problems related to beam deflection
theory, generalizing some well known results for the second order. We analysed two types
of problems: the case where the correspondent fourth order operator can be decomposed
in two positive second order operators and the case where that cannot be done. The
results are obtained through topological arguments in association with lower and upper
solutions.

Keywords

Second order boundary value problem, singularities, nonlocal problem, upper and lower
solutions, fourth order boundary value problem, variational methods, unbounded domains,
positivity.
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Resumo

Nesta tese propomos demonstrar resultados de existência (e por vezes também de loca-
lização) para dois tipos de problemas:

(i) Problemas de valores na fronteira (pvf) menos analisados na literatura existente,
como problemas singulares não-locais ou problemas em intervalos ilimitados;

(ii) Problemas de valores na fronteira de quarta ordem mais simples.

A teoria de pvf de segunda ordem num intervalo limitado tem sido desenvolvida há
mais de um século de um modo bastante substancial. Provou-se a existência de soluções
com propriedades espećıficas usando diversos métodos, como por exemplo a teoria do grau
topológico, teoremas de ponto fixo, métodos variacionais, o método monótono, sub e sobre-
soluções associadas a ferramentas topológicas, apenas para mencionar alguns. Nesta tese
damos especial relevo à abordagem do ponto de vista das sub e sobre-soluções, uma vez
que este método apoia-se em vários outros métodos mencionados e providencia informação
sobre a localização das soluções.

Foi em 1893 que se provou pela primeira vez a existência de solução para um problema
para o qual temos uma sub e (ou) uma sobre-solução. Nessa altura, Picard demonstrou a
existência de uma solução para o problema de Dirichlet

−u′′ = f(t, u), u(a) = u(b) = 0,

onde f é crescente em u e f(t, 0) = 0. Provou-se a existência de solução no caso sublinear,
caso existisse uma função �0 > 0 de classe C2 tal que

−�′′
0 < f(t, �0), ∀t ∈ (a, b), �0(a) = �0(b) = 0,

usando uma sucessão aproximante 0 < �0 ≤ �1 ≤ ..., constrúıda do seguinte modo:

−�′′
n = f(t, �n−1), �n(a) = �n(b) = 0 ∀n ∈ ℕ.

Nos anos 30 do século passado, Scorza Dragoni considerou o problema de Dirichlet

−u′′ = f(t, u, u′), u(a) = A, u(b) = B,

supondo que existiam �, � ∈ C2[a, b] com � ≤ � tais que

−�′′ ≤f(t, �, y), ∀t ∈ [a, b], y ≤ �′(t)

�(a) ≤ A, �(b) ≤ B;



−�′′ ≥f(t, �, y), ∀t ∈ [a, b], y ≥ �′(t)

�(a) ≥ A, �(b) ≥ B.

Demonstrou a existência de uma solução u(t), com � ≤ u ≤ �, considerando uma função
f cont́ınua em

E = {(t, u, v) : �(t) ≤ u ≤ �(t)} .
Podemos também relacionar a existência de sub e sobre-soluções com o grau topológico.

Usando uma definição adequada de sub e sobre-soluções estritas, é posśıvel calcular o grau
de um operator integral associado ao problema, no conjunto das funções cont́ınuas entre
a sub e a sobre-solução.

O caso das sub e sobre-soluções na ordem invertida só foi abordado no prinćıpio dos
anos 90, por Gossez and Omari, que demonstraram que em caso de não-ressonância com
os valores próprios associados ao problema, existe uma solução. Nos anos 70, Amman já
tinha apresentado alguns exemplos de problemas com sub e sobre-soluções não ordenadas,
para os quais não existia qualquer solução.

Podemos também usar métodos variacionais para demonstrar a existência de soluções
dadas sub e sobre-soluções ordenadas. Em muitos casos, o funcional de Euler-Lagrange
associado ao pvf tem um mı́nimo local num conjunto de funções admisśıveis entre a a sub
e a sobre-solução.

Estes e outros métodos foram usados para garantir existência de soluções sem a pre-
sença de sub e sobre-soluções. Teoria do grau topológico, Teorema de Schauder, Teorema
de Krasnoselskii, alternativa não-linear, teorema de Leggett-Williams, teoria de Sturm-
Liouville são apenas alguns exemplos.

Relativamente a problemas de segunda ordem, nesta tese estudamos uma equação com
uma singularidade na variável independente e uma dependência não-local da solução. As
soluções consideradas podem ser vistas como soluções radiais de um problema de dimensão
superior. Usamos o Teorema de Krasnoselskii para provar a existência de solução, e numa
outra abordagem ao problema, usamos o método das sub e sobre-soluções com a ajuda de
prinćıpios de máximo não-locais. A equação estudada é a seguinte

−Δu = f

(
u,

∫

U
g(u)

)
.

Procuramos soluções radiais desta equação numa bola de ℝN , reduzindo o problema a
uma só variável, num intervalo limitado. A equação associada é

−v′′(r)− n− 1

r
v′(r) = f

(
v(r), !n

∫ 1

0
sn−1g(v(s)) ds

)
,

singular em r = 0. Este problema foi abordado num artigo de Fijalkowski e Przeradski,
onde a principal condição é f(u, v) ≤ Au+B, com A relacionado com a função de Green
associada. Abordando o problema com a mesma metodologia (Teorema de Krasnoselskii)
e considerando os valores próprios do problema linear singular subjacente, demonstramos
que é posśıvel obter uma estimativa mais geral para a constante A. Abordamos também
este problema do ponto de vista das sub e sobre-soluções. Provamos prinćıpios de máximo
não-locais e construimos uma sucessão monótona, convergente para uma solução radial do
problema.
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Os pvf de quarta ordem têm sido um domı́nio proĺıfico nas duas últimas décadas. Estes
estão relacionados com aplicações importantes na teoria da deformação de vigas, mas a
generalização de resultados bem conhecidos de segunda ordem é provavelmente a principal
razão para o aumento do interesse nesta área.

Os pvf de quarta ordem têm uma estrutura mais complexa quando comparados com
os de segunda ordem, e muitos resultados da segunda ordem não são facilmente genera-
lizáveis. O facto de existirem mais derivadas intermédias não permite o uso das ferramentas
topológicas dispońıveis em ordens inferiores. Um exemplo disso é o teorema da existência
de solução dadas sub e sobre-soluções na ordem invertida. De um modo geral, é verdade
para a segunda ordem, mas são necessárias condições de monotonia para obter resultados
na quarta ordem. Para quarta ordem, Cabada, Cid e Sanchez demonstraram resultados
neste sentido apenas em 2007. No último caṕıtulo analisamos problemas procurando obter
resultados nesse sentido. Demonstramos resultados usando duas abordagens: decompondo
operadores de quarta ordem em dois de segunda ordem quando isso for posśıvel, ou uma
abordagem mais directa analisando algumas propriedades das soluções. Os prinćıpios de
máximo têm um papel preponderante na posśıvel aplicação do método das sub e sobre-
soluções. Estudamos equações do tipo

u(4) = f(x, u, u′′)

no caso das condições de fronteira do tipo “viga apoiada” (u(0) = u(1) = u′′(0) = u′′(1) =
0) e periódicas, e com a não-linearidade sem dependência na segunda derivada no problema
com condições de “viga encastrada” (u(0) = u(1) = u′(0) = u′(1) = 0).

O problema periódico sem dependência em u′′ foi estudado por vários autores através
de prinćıpios de máximo e método monótono. Com dependência linear em u′′, também
foram obtidos resultados usando teoremas de ponto fixo. No caso das condições de “viga
apoiada”, resultados de existência e multiplicidade foram obtidos para equações não de-
pendentes de u′′, com dependência linear em u′′ e no caso sobrelinear.

Neste trabalho abordamos os problemas periódico e de “viga apoiada” considerando
condições de Lipschitz unilaterais para a não-linearidade em u e u′′, supondo que existem
sub e sobre-soluções (bem ordenadas ou na ordem invertida no caso periódico e bem
ordenadas no caso da “viga apoiada”). A nossa abordagem é semelhante à usada num
artigo de Gao, Jiang e Wan para equações de segunda ordem.

Para as condições do tipo “viga encastrada”, existem menos resultados na literatura
uma vez que a decomposição em dois operadores de segunda ordem não é apropriada. A
condição imposta à não-linearidade é

f (x, �(x)) + k�(x) ≤ f(x, u) + k u ≤ f (x, �(x)) + k�(x), �(x) ≤ u ≤ �(x),

dadas sub e sobre-soluções � e �, e um domı́nio de variação para a constante k. A teoria
de valores próprios e o comportamento oscilatório das soluções da equação

u(4) +m4u = 0

desempenham um papel fundamental na nossa demonstração, que faz uso de um resultado
bastante interessante de Schröder.
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O estudo de problemas de segunda e quarta ordem em intervalos ilimitados mereceu
também a nossa atenção nesta tese, onde os métodos variacionais são cruciais na de-
monstração de resultados de existência.

Considerando problemas autónomos de segunda ordem, a análise do plano de fases rela-
tivamente a existência de soluções homocĺınicas e heterocĺınicas é importante no sentido
em que estas são separatrizes de diferentes tipos de comportamento de outras soluções
do problema. Para problemas de quarta ordem não temos o plano de fases para fazer
essa análise, mas os métodos anaĺıticos da segunda ordem funcionam de um modo se-
melhante. O nosso objectivo é extrapolar resultados conhecidos em problemas autónomos
para problemas não-autónomos, tanto na segunda como na quarta ordem.

O problema não-autónomo de segunda ordem

u′′ = a(x)u− g (u) u′(0) = u(+∞) = 0

tem sido estudado nas duas últimas décadas, especialmente no caso em que g(u) é uma
potência sobrelinear. Nesta tese consideramos o caso g(u) sobrelinear e o caso g(u) limi-
tado. Num artigo de Korman, Lazer e Yi são encontrados resultados de existência para
g(u) = up, com p > 1 e a(x) crescente em [0,+∞). Generalizamos alguns destes resultados,
considerando a função a(x) → a ∈ ℝ não necessariamente monótona. Resolvemos uma
sucessão de problemas num intervalo [0, T ] e considerando uma sucessão de T s tendendo
para ∞ adequada, encontramos uma solução do problema em [0,+∞) como limite das
soluções correspondentes uT .

Para o caso onde g(u) é uma função limitada, a mesma abordagem não pode ser
adaptada, tendo sido necessário considerar uma condição mais restritiva para a função
a(x). Estudamos também a equação

u′ + c u′ = a(x)u− g (u) ,

e um problema autónomo com o operador p-Laplaciano. O teorema da passagem da mon-
tanha e o método diagonal são os principais mecanismos usados para provar a existência
de solução por métodos variacionais.

Relativamente a problemas de quarta ordem em intervalos infinitos, estudamos o pro-
blema {

u(4) − c u′′ + a(x)u = ∣u∣p−1 u

u′(0) = u′′′(0) = 0, u(+∞) = u′(+∞) = 0,

considerando a(x) em três situações: o caso limx→+∞ a(x) = +∞, o caso crescente e o
caso autónomo. Os métodos usados para obter resultados de existência são os mesmos dos
da segunda ordem.

Palavras-chave

Problemas de valores na fronteira de segunda ordem, singularidades, problema não-local,
sub e sobre soluções, problemas de valores na fronteira de quarta ordem, métodos varia-
cionais, domı́nios ilimitados, positividade.
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Introduction

In this thesis we propose to prove existence results (in some cases some kind of localization
results too) in two types of problems:

(i) Some second order boundary value problems (bvp) which are less covered by the ex-
isting literature, such as singular nonlocal problems, or problems in infinite intervals
with certain types of nonlinearities;

(ii) Fourth order bvp’s in simpler cases.

The theory of second order bvp’s in a bounded interval has been developed for more
than a century in a very substantial way. The existence of a solution with prescribed prop-
erties has been proved using many different tools such us the classical degree theory, fixed
point theorems, variational methods, the monotone method, lower and upper solutions
together with topological tools, just to name a few. In this thesis, the lower and upper
solutions method was the preferred approach to prove existence results. It also relies on
the other methods and provides some information on the localization of solutions.

The problem of proving the existence of a solution for a problem where we have an
upper and (or) a lower solution has been tackled since 1893. By then, Picard searched for
solutions of the Dirichlet problem

−u′′ = f(t, u), u(a) = u(b) = 0,

where f is increasing in the variable u and f(t, 0) = 0. He proved that in the sublinear
case, if there exists a C2 function �0 > 0 such that

−�′′
0 < f(t, �0), ∀t ∈ (a, b), �0(a) = �0(b) = 0,

then there exists a monotone sequence of approximations 0 < �0 ≤ �1 ≤ ... converging to
a nontrivial solution of the problem. The sequence was built by the following rule:

−�′′
n = f(t, �n−1), �n(a) = �n(b) = 0 ∀n ∈ ℕ.

In the 30’s of last century, Scorza Dragoni considered the general Dirichlet bvp

−u′′ = f(t, u, u′), u(a) = A, u(b) = B,

and assumed that there were functions �, � ∈ C2[a, b] with � ≤ � such that

−�′′ ≤f(t, �, y), ∀t ∈ [a, b], y ≤ �′(t)

�(a) ≤ A, �(b) ≤ B;

−�′′ ≥f(t, �, y), ∀t ∈ [a, b], y ≥ �′(t)

�(a) ≥ A, �(b) ≥ B.



He proved the existence of a solution u(t) with � ≤ u ≤ � assuming that f was a
continuous function on the set

E = {(t, u, v) : �(t) ≤ u ≤ �(t)} .

Note that the differential inequalities satisfied by � and � are not only valid for y = �′(t),
but for a much larger set of values, which is a much more restrictive condition than the
standard definition of lower and upper solutions. To find such functions is not at all a
trivial task and there are no methods to get them in a general case.

By 1937, Nagumo proved the existence of a solution for the problem above, but with
the simpler notion of lower and upper solutions. He assumed that there exist �(t) < �(t)
C1 functions, �′ and �′ with left and right derivatives Dl, Dr,

−Dl,r�
′ ≤ f(t, �, y), ∀t ∈ [a, b], �(a) ≤ A, �(b) ≤ B;

and the reversed inequalities are satisfied by �. Concerning the nonlinearity, he assumed
that f : E → ℝ, ∂f∂u and ∂f

∂v are continuous and f satisfies what became known as a Nagumo
condition:

∣f(t, u, v)∣ ≤ ' (∣v∣) ,
where ' : [0,+∞) → (0,+∞) is continuous and is such that

∫ +∞

0

s

'(s)
ds = +∞.

Several other Nagumo type conditions have been considered to prove a priori bounds for
the derivatives of possible solutions, which is fundamental to apply some usual topological
tools to prove the existence of a solution.

We can also relate topological degree theory to the existence of lower and upper solu-
tions. Basically, by defining strict lower and upper solutions in a convenient way, we are
able to evaluate the degree of an operator associated with the boundary problem in the
open bounded set of continuous functions between the strict lower and upper solutions.
Existence and multiplicity results can be obtained by this approach, that was originally
taken by Amann and more recently developed by De Coster and Habets.

Another relevant problem is to prove existence of a solution if there exist a lower
and an upper solution, but not well-ordered (reversely ordered or not ordered at all). In
the early 90’s, Gossez and Omari dealt with this kind of problem and proved that under
nonressonance with the associated eigenvalues, the problem with non well-ordered upper
and lower solution has a solution. Earlier in the 70’s, Amann had given some counter-
examples for some problems where there were non well-ordered lower and upper solutions,
but there were no solutions.

To prove the existence of a solution provided that an upper and a lower solution
exist, we can use variational tools as well. In many cases, the Euler-Lagrange functional
associated to the bvp has a local minimum in the set of admissible functions that lie
between the lower and upper solutions.

These and other tools have been used to prove existence of solutions in general, with-
out the existence of upper or lower solutions. The degree theory, Schauder’s fixed point
Theorem, Krasnoselskii’s fixed point Theorem in its several versions, the nonlinear alter-
native, Leggett-Williams theorem, Sturm-Liouville comparison theorems, are just some
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examples used in a vast literature, to prove existence, and, in some cases, multiplicity or
nonexistence.

Concerning second order problems, in this thesis we will study a differential equation
with a singularity in the independent variable and a nonlocal dependence on the solution.
The solutions to be considered can be seen as radial solutions of a higher dimension case.
We will use the Krasnoselkii’s fixed point Theorem to prove existence, and in another
approach we will use new nonlocal maximum principles to prove existence via upper and
lower solutions.

Singular boundary value problems arise naturally from physical models, both in the
independent and the dependent variables. General existence results were difficult to prove,
and until the 1990’s, only very specific examples were examined. Usually, the techniques
used in those cases were only applicable to that particular case. More general conclusions
started to appear when new results in inequality and fixed point theory were available,
specially by the end of last century. Concerning singularities in the independent variable,
a very well known case is the Lp-Carathéodory nonlinearities (which is not the case of
the second order singular problem studied here). We say that f : I × ℝN → ℝ is called
Lp-Carathéodory if

(i) the map y → f(t, y) is continuous for a.e. t ∈ I;

(ii) the map t→ f(t, y) is measurable for all y ∈ ℝN ;

(iii) for every c > 0, there exists ℎc ∈ Lp(I) such that

∣y∣ ≤ c⇒ ∣f(t, y)∣ ≤ ℎc(t) for a.e. t ∈ I

Problems of the type
u′′(t) = f(t, u, u′)

where f is Lp-Carathéodory have deserved the attention of researchers in the past two
decades, and many classical results can also be established for this type of problems.
Picard-Lindelöf theorem, Peano’s theorem, local existence theorem in the Carathéodory
setting provide us very general existence criteria. Bernstein-Nagumo theory was funda-
mental to prove existence results for general Sturm-Liouville problems. For some problems,
the existence of ordered lower and upper solutions was enough to provide the existence
of a solution between them, and the study of more adequate weighted Banach spaces to
search solutions of singular problems was also fruitful.

Nonlocal problems have been given a great deal of attention lately. In these problems,
the differential equation (or the boundary conditions) depends directly on the global be-
haviour of the dependent variable. The equation that we study in Chapter 2 is a good
example of that:

−Δu = f

(
u,

∫

U
g(u)

)
.

The Laplacian depends on an integral term of the solution u, which is not a pointwise
dependence. This is a nonlinear Poisson-Boltzman equation, with many physically im-
portant examples associated. We will search for a radial solution of this problem in a
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sphere in ℝN , reducing the problem to one independent variable in a bounded interval.
The differential equation for the one dimensional problem is

−v′′(r)− n− 1

r
v′(r) = f

(
v(r), !n

∫ 1

0
sn−1g(v(s)) ds

)
,

with the obvious singularity for r = 0. This problem came to our attention through the
paper by Fijalkowski and Przeradski [25], where the main assumption is that f grows
at most like Au + B, A being computed by means of a Green’s function. By using a
similar theoretical background (Krasnoselskii’s fixed point Theorem), together with the
consideration of the eigenvalues of the underlying singular linear problem, we show that
an improvement of that bound is possible. We also followed another approach for this
problem: the upper and lower solution method. We establish nonlocal maximum principles
and we use them to build a monotone approximation sequence converging to a radial
solution. We follow an idea used by Jiang, et al. [31] in studying a fourth order periodic
problem.

Fourth order bvp’s has been a prolific domain in the theory of differential equations
in the past two decades. Fourth order problems are related to important applications in
the theory of beam-columns deflection, but the intention to generalize well-known results
of second order problems was probably the main reason for the increase of interest in this
area. Let us describe superficially the relation of fourth order boundary problems with
beam deflection theory, based on a very simplistic model. Consider a beam with length
L = 1 and a symmetric cross section, with end points x = 0 and x = 1. The unknown
function is u(x) and represents the vertical deflection of the point x ∈ [0, 1], positive
downwards. Assume that u(0) = u(1) = 0. When the beam is subjected to both axial
and lateral loads, the bending moments, shear forces, stresses and deflections will not be
proportional to the axial load. Considering an axial compressive force P and a constant
lateral load Q (positive in the u-axis), an element dx between two cross sections has a
shearing force V and a bending moment M , that satisfy the equations

Q =
dV

dx
, V =

dM

dx
− P

du

dx
.

By neglecting the effects of the shearing deformations and shortening of the beam axis,
the expression for the curvature of the axis of the beam is

EI
d2u

dx2
= −M,

where EI represents the flexibility of the beam. Combining these equations, one gets the
fourth order differential equation

EI u(4) + P u′′ = Q .

Let us now analyse some of the most common boundary conditions:

(i) Simply supported boundary conditions; u(0) = u(1) = u′′(0) = u′′(1) = 0.

These obviously represent a beam with both ends at the same level, with null bending
moments, that is, assuming that the beam continued for x < 0 and x > 1, x = 0
and x = 1 would be inflection points of u.

xvi



(ii) Clamped beam boundary conditions; u(0) = u(1) = u′(0) = u′(1) = 0.

These conditions represent a beam with both ends at the same level, clamped in a
wall, and “leaving” the wall with horizontal tangent.

(iii) One side clamped beam boundary conditions; u(0) = u′(0) = u′′(1) = u′′′(1) = 0.

Null bending moment and shearing force at the right end point of the beam, and
clamped on the left end.

(iv) Periodic boundary conditions; u(i)(0) = u(i)(1) for i = 0, 1, 2, 3.

Fourth order boundary value problems have a more complex structure when compared
to second order problems, and many results that are valid for second order are not easy
to generalize. The fact that there are more intermediate derivatives does not allow us
to use the usual topological tools available in the second order. An example of this is
the theorem that states that if a given bvp has well ordered lower and upper solutions,
then it has a solution lying between those two functions. In general, this is true in the
second-order case, but one needs to add monotonicity assumptions to obtain some true
statement in the fourth order case. For problems where there are no well-ordered upper
and lower solutions, at least the paper of Cabada, Cid and Sanchez [11] gave a positive
answer to the existence of a solution in this case.

In the last chapter we propose a step in the direction of establishing this type of
conclusions. We prove some new results using two types of approaches: a decomposition of
the fourth order operator into two second order operators, when that is possible (namely

xvii



in the “simply supported” and periodic boundary conditions cases), and a more direct
approach to the fourth order operator using some analytic properties of possible solutions
of the bvp (this was done for the clamped beam problem). Maximum principles play a
crucial role on the applicability of the monotone method in presence of lower and upper
solutions. The equation studied is of the type

u(4) = f(x, u, u′′)

for the “simply supported” and periodic boundary conditions, and without the dependence
on the second derivative in the harder to tackle “clamped beam” case.

The periodic problem with f not depending on u′′ has been studied before via max-
imum principles and the monotone method. Using fixed point theory, the existence of a
solution for the problem with a linear dependence of f on u′′ was also obtained. For the
“simply supported” problem, existence and multiplicity results for the nonlinearity with-
out dependence on u′′, with linear dependence on u′′ or the superlinear case have been
studied by several authors.

We consider the periodic as well as the “simply supported” boundary conditions, and
prove existence results (considering f one-sided Lipschitz in both variables u and u′′) if
there exist lower and upper solutions (well-ordered or in reversed order for the periodic
case, and ordered in the “simply supported” case). We deal with these problems in the
same way as Gao, et. al. [26] did for the second order. Habets and Sanchez [30] have
obtained similar results using Lipschitz conditions. The main difference is that in our case
only localization is obtainable, no iterative technique is possible.

For the “clamped beam problem”, there are less results in the literature since the
decomposition into two second order operators is inappropriate. We impose that f is
continuous and satisfies the inequality

f (x, �(x)) + k�(x) ≤ f(x, u) + k u ≤ f (x, �(x)) + k�(x), �(x) ≤ u ≤ �(x),

for given ordered lower and upper solutions � and �, and a given range of values of k.
Eigenvalue theory and the oscillatory behaviour of solutions of the fourth order differential
equation

u(4) +m4u = 0

play a crucial role in our proof, where a very interesting result of Schröder in [49] was
used.

The study of second and fourth order bvp’s in infinite intervals has also deserved
our attention in this thesis, where the variational methods play a central role in proving
existence of solutions.

If we have constant solutions, it is important to know whether there exist solutions
with phase plane trajectories (considering second order autonomous problems) that are a
loop curve connecting a single equilibria (homoclinic) or a curve connecting two different
equilibria. These types of trajectories provide us with important data, since they are
separatrices of different types of behaviour of other solutions. For fourth order problems
we do not have the phase plane for such analysis, but functional analytic methods work on
the same basic ideas. Our objective is to extrapolate results of the autonomous problems
for the non-autonomous case, in both second and fourth order problems.
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A detailed compilation of the previous achievements in this area for autonomous prob-
lems can be found in the second chapter of [8].

The second order non-autonomous problem

u′′ = a(x)u− g (u) u′(0) = u(+∞) = 0

has been studied in the last two decades, especially in the case where g(u) is a superlinear
power. Here we are interested in superlinear functions g(u) and also the case where g(u)
is bounded. Korman, Lazer and Yi in [32],[33] gave a variational approach for g(u) = up,
where p > 1 and a(x) is increasing in [0,+∞). Here we partially generalize some of those
results by allowing a to have a different behaviour: while having a limit at +∞, a(x) does
not approach its limit in an increasing, or even monotonic way. We shall solve a sequence
of boundary value problems in [0, T ] and if we consider an appropriate sequence of T ’s
tending to +∞, a nontrivial solution of the infinite interval problem will be found as the
limit of the corresponding solutions uT .

The autonomous problem has been completely solved by Berestycki and Lions [5] as
they gave a necessary and sufficient condition for the problem

{
−u′′ = f(u)

u(±∞) = 0

to have a unique positive homoclinic, and gave some important results concerning the
shape of that solution.

The case where the function g(u) is bounded is also analysed, where the results do not
follow in the same way as in the superlinear case. We also deal with the more general
differential equation

u′ + c u′ = a(x)u− g (u) ,

where the same ideas from the simpler case still work if we deal with weighted Banach
spaces. Autonomous p-Laplacian problems are also analysed. Mountain-Pass Theorem
and the diagonal method were the main results used to prove existence through our vari-
ational approach.

Concerning fourth order infinite interval problems, we deal with the problems

{
u(4) − c u′′ + a(x)u = ∣u∣p−1 u

u′(0) = u′′′(0) = 0, u(+∞) = u′(+∞) = 0,

where we consider a(x) in three different situations: the autonomous case, the case where
a(x) is nondecreasing and the case when limx→+∞ a(x) = +∞. The methods used to
prove the existence of a solution are the same as in the above mentioned second order
problems.
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Chapter 1

Some useful results from

Functional Analysis

In this chapter we present some classical definitions and results from Functional Analysis
that sometimes have several different versions in the literature. Since we will apply those
results later in this thesis, we opted to include them here. We emphasize the Krasnoselskii’s
fixed point Theorem by presenting the proofs of two different versions and also some
auxiliary results.

Definition 1.1. Let X,Y be Banach spaces and T : D ⊆ X → Y an operator. We say
that T is completely continuous if

(i) T is continuous;

(ii) T maps bounded sets into relatively compact sets.

Theorem 1.2 (Schauder’s fixed point Theorem). Let M ∕= ∅ be a bounded closed convex
set of a Banach space X and let T : M → M be a completely continuous operator. Then
T has at least one fixed point in M .

Mapping degree

Let us state some of the basic properties of the Degree theory.

If X is a Banach space and G ⊆ X is a bounded open set, then a mapping F : G→ X
is called admissible if it is completely continuous and F (x) ∕= x for all x ∈ ∂G. Two
admissible mappings F1, F2 are called homotopic if there exists a completely continuous
map H : G× [0, 1] → X such that H(x, t) ∕= x for all (x, t) ∈ ∂G× [0, 1] and H(x, 0) = F1,
H(x, 1) = F2. We shall write F1

∼= F2. With the completely continuous perturbations of
the identity of the form I−F , with F admissible, we can associate an integer deg(I−F,G),
which is uniquely defined if it satisfies the following properties:

(1) Taking F ≡ 0, we have

deg(I,G) =

{
1, 0 ∈ G

0, 0 /∈ G.
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(2) If deg(I − F,G) ∕= 0, then there exists x ∈ G such that F (x) = x.

(3) If G = ∪ni=1Gi for some n ∈ ℕ and F is admissible for G, Gi (i = 1, ...n), then

deg(I − F,G) =

n∑

i=1

deg(I − F,Gi).

(4) If F1 and F2 are homotopic, then deg(I − F1, G) = deg(I − F2, G).

(5) If F (x) = x has no solutions in G, then deg(I − F,G) = 0.

(6) If F (x) ∕= x for all x ∈ C, where C is a closed set, then deg(I − F,G) = deg(I −
F,G ∖ C) (excision property).

(7) The mapping degree deg(I − F,G) depends only of the values of F in ∂G.

Recall that the topological index and the mapping degree are related by the formula

i(F,G) = deg(I − F,G).

Definition 1.3. A closed convex set K is called a cone in a Banach space X if

(i) �K ⊂ K for all � ≥ 0;

(ii) K ∩ (−K) = {0}.
We say that x ≤ y for some x, y ∈ X if y − x ∈ K.

Example 1.0.1. The set of all nonnegative continuous functions in the interval [0, 1] is a
cone in C[0, 1].

Theorem 1.4. [37] Let A be a positive completely continuous operator defined in a cone
K, with A : K → K and R > 0 such that, for all � > 0

Ax ≱ (1 + �)x, ∀x ∈ K such that ∥x∥ = R. (1.1)

Then the operator A has at least one fixed point x0 ∈ K.

Proof. Let

Ã x =

{
Ax, if x ∈ K, ∥x∥ ≤ R

A
(

R
∥x∥x

)
, if x ∈ K, ∥x∥ ≥ R.

The operator Ã is also completely continuous and maps the cone K into a relatively
compact subset of K. By Schauder’s fixed point Theorem (K is convex), there exists
x0 ∈ K such that Ãx0 = x0.

Suppose towards a contradiction that ∥x0∥ > R and define

y0 =
R

∥x0∥
x0.

We have ∥y0∥ = R e consequently

Ãy0 = Ay0 = A

(
R

∥x0∥
x0

)
= Ãx0 = x0 =

∥x0∥
R

y0,

contradicting (1.1).
Then ∥x0∥ ≤ R, and consequently Ax0 = Ãx0 = x0.
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Definition 1.5. We say that A : K → K is a cone compression if there exist r,R > 0
with r < R, such that

Ax ≰ x ∀ x ∈ K, ∥x∥ = r, (1.2)

and for all � > 0
Ax ≱ (1 + �)x ∀ x ∈ K, ∥x∥ = R. (1.3)

Theorem 1.6 (Krasnoselskii’s fixed point Theorem 1). [37] Let A be a cone compression
completely continuous operator. Then A has a nontrivial fixed point in K.

Proof. With no loss of generality, we may assume that r < 1 < R.
Let ℎ0 ∈ K be such that

∥ℎ0∥ >
1

1− r

(
r2 + r sup

y∈K,∥y∥=r
∥Ay∥

)
. (1.4)

Setting

Ã x =

⎧
⎨
⎩

∥x∥
r A

(
r

∥x∥x
)
+ (1− r)ℎ0, if ∥x∥ ≤ r2

∥x∥
r A

(
r

∥x∥x
)
+ ∥x∥

r ⋅ r−∥x∥
∥x∥ ℎ0, if r2 ≤ ∥x∥ ≤ r

Ax, if r ≤ ∥x∥ ≤ R

A
(

R
∥x∥x

)
, if x ∈ K, ∥x∥ ≥ R,

we have Ã completely continuous and mapping K into a relatively compact subset of K.
By Schauder’s fixed point Theorem, there exists a fixed point x0 of Ã.

Assume that ∥x0∥ ≤ r2. Then

x0 =
∥x0∥
r

A

(
r

∥x0∥
x0

)
+ (1− r)ℎ0,

and therefore

∥ℎ0∥ ≤ 1

1− r

(
r2 + r

∥∥∥∥A
(

r

∥x0∥
x0

)∥∥∥∥
)
,

which contradicts (1.4).
Let us now assume that r2 ≤ ∥x0∥ ≤ r. We have

r

∥x0∥
x0 = A

(
r

∥x0∥
x0

)
+
r − ∥x0∥
∥x0∥

ℎ0,

so r
∥x0∥x0 ≥ A

(
r

∥x0∥x0
)
, which contradicts (1.2).

Finally, assuming that ∥x0∥ > R, we have

x0 = A

(
R

∥x0∥
x0

)
= (1 + �)

R

∥x0∥
x0, (with � =

∥x0∥
R

− 1 > 0)

and since
∥∥∥ R
∥x0∥x0

∥∥∥ = R, we get a contradiction with (1.3).

Excluded the cases above, we must have r ≤ ∥x0∥ ≤ R, and consequently x0 is a fixed
point of A.
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We can consider a slightly simpler definition of compression, which is easier to work
with:

Definition 1.7. A completely continuous operator T : K → K is a cone compression if
there exist positive constants r,R with r < R such that

Tx ≰ x ∀x ∈ K such that ∥x∥ = r, (1.5)

Tx ≱ x ∀x ∈ K such that ∥x∥ = R. (1.6)

The cone expansion definition is somehow the opposite:

Definition 1.8. A completely continuous operator T : K → K is an cone expansion if
there exist positive constants r,R with r < R such that

Tx ≱ x ∀x ∈ K such that ∥x∥ = r, (1.7)

Tx ≰ x ∀x ∈ K such that ∥x∥ = R. (1.8)

Definition 1.9. Let X be a Banach space and r : X → M ⊆ X a continuous function
such that r(x) = x for all x ∈M . Then r is called a retraction and M a retract of X.

Proposition 1.10. [52] Every closed convex set of a Banach space X is a retract of X.

Theorem 1.11 (Krasnoselskii’s fixed point Theorem 2). [52] Let X be a Banach space
and K a cone in X. Let T : K → K be a cone compression or expansion. Then T has a
fixed point x in K and r < ∥x∥ < R.

Proof. We will only prove the result for the compression case, since the expansion case is
similar.

From the previous proposition we know that there exists a retraction r : X → K, and
if we consider the operator T ∘ r, it will coincide with T in K. In the following we will
denote abusively the operator T ∘ r by T . Since r is continuous and can be taken mapping
bounded sets into bounded sets, the new operator T is still completely continuous. Note
that the fixed points of the new operator are obviously fixed points of the original operator.

Setting

U = {x ∈ X : ∥x∥ < r} , and

V = {x ∈ X : ∥x∥ < R} ,

by the excision property of the topological degree, we know that

deg
(
I − T, V ∖ U

)
= deg (I − T, V )− deg (I − T,U) .

Suppose that deg (I − T,U) ∕= 0. We can pick a value a > 0 such that ∥Tx∥ ≤ a in U ,
x0 ∈ K with ∥x0∥ > r + a and set H(x, t) = Tx+ tx0.

If H(x, t) = x for some (x, t) ∈ ∂U× [0, 1], we obviously have x ∈ K and (x − Tx) ∈ K
(or equivalently Tx ≤ x). But by the definition of cone compression that cannot happen,
so H is an homotopy and

deg (I −H(⋅, 1), U) = deg (I − T,U) ∕= 0.
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Hence, there exists x ∈ U such that Tx+ x0 = x, which implies ∥x0∥ ≤ a+ r. Since this
is a contradiction, we conclude that deg (I − T,U) = 0.

Let us prove that deg (I − T, V ) = 1. Setting

H(x, t) = tTx,

if H(x, t) = x for some (x, t) ∈ ∂V × [0, 1], then t ∕= 0 and x ∈ K, and therefore
Tx = x/t ≥ x. Again the definition of cone compression rules out this possibility, so we
conclude that

deg (I − T, V ) = deg (I −H(⋅, 0), V ) = deg (I, V ) = 1.

Consequently
deg

(
I − T, V ∖ U

)
= 1,

which implies the existence of a fixed point satisfying the required properties.

Definition 1.12. A cone P of a Banach space is called normal if for all u, v ∈ P , with
u ≤ v, we have ∥u∥ ≤ C ∥v∥, for some constant C > 0. If C = 1 the cone is called
monotonic.

We now state a corollary of the Krasnoselskii’s fixed point Theorem, which is the most
used version of that Theorem in the literature:

Corollary 1.13. Let P be a monotonic cone in a Banach space and T : P → P a com-
pletely continuous operator. If there exist positive constants r < R such that

∥Tx∥ ≥ ∥x∥ , for all x ∈ P such that ∥x∥ = r,

∥Tx∥ ≤ ∥x∥ , for all x ∈ P such that ∥x∥ = R,

then T has a fixed point x in P such that r < ∥x∥ < R.

For completeness, we will also present the usual formulation of the Mountain-Pass
Theorem. Given a Banach space X, we say that f ∈ C1(X,ℝ) satisfies the Palais-Smale
condition at the level c ∈ ℝ if, for all the sequences (un)n∈ℕ such that f(un) → c and
f ′(un) → 0, c is a critical value of f .

Theorem 1.14 (Mountain-Pass Theorem). Let f ∈ C1(X,ℝ), u, v ∈ X, r > 0 such that

∥u− v∥ > r, inf
∥x−u∥=r

f(x) > max (f(u), f(v))

and consider the value
c = inf


∈Γ
max
t∈[0,1]

f(
(t)),

where
Γ = {
 ∈ C([0, 1],X) : 
(0) = u, 
(1) = v} .

Then, if f satisfies the Palais-Smale condition at the level c, c is a critical value of f .
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Chapter 2

Radial solutions for a second order

nonlocal boundary value problem

2.1 Introduction

This chapter is dedicated to the nonlocal boundary value problem considering the domain
U = B(0, R) of ℝn:

−Δu = f

(
u,

∫

U
g (u)

)
(2.1)

u∣∂U = 0, (2.2)

where f and g are continuous functions. For simplicity we shall take R = 1. We want to
study the existence of positive radial solutions

u(x) = v(∥x∥). (2.3)

of (2.1)-(2.2). This may be seen as the stationary problem corresponding to a class of
nonlocal evolution (parabolic) boundary value problems related to relevant phenomena in
Engineering and Physics. Some hints on the motivation for the study of this mathematical
model can be found in the paper by Bebernes and Lacey [4] and more recent developments
can be seen in [15] and the references therein.

When dealing with a nonlinear term with rather general dependence on the nonlocal
functional as in (2.1), new difficulties arise with respect to the treatment of standard
boundary value problems. Differences of behaviour which are met in general elliptic and
parabolic problems are already present in simple models as those we shall analyse in this
chapter. For instance, the use of the powerful lower and upper solutions method (good
accounts of which can be consulted in the monographs of Pao [43] and De Coster and
Habets [16]) is seriously limited by the absence of general maximum principles. Even for
linear problems with nonlocal terms the issue of positivity is far from trivial and may
require a detailed study via the analysis of the Green’s operator.

The purpose of this chapter is twofold. First, we want to improve a quite recent
result of P. Fijalkowski and B. Przeradski [25]: these authors have proved the existence
of positive radial solutions of (2.1)-(2.2) by using Krasnoselski’s fixed point Theorem in
cones; the main assumption is that f may grow at most like Au + B, the bound on A
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being computed by means of a Green’s function. By using a similar theoretical background,
together with the consideration of the eigenvalues of the underlying linear problem, we
show that an improvement of that bound is possible. Second, while remaining in the same
simple general setting, we shall handle (2.1)-(2.2) from the point of view of the lower and
upper solution method. We establish a nonlocal maximum principle and we use it as a
device to obtain a monotone approximation scheme for the radial solutions of (2.1)-(2.2)
in presence of lower and upper solutions. We follow an idea used by D. Jiang, W. Gao,
A. Wan [31] in studying a fourth order periodic problem.

Note that we could use similar methods to consider the case where U = B(0, 1)∖B(0, �),
with 0 < � < 1. Similar results could then be reached. We remark also that for special
classes of functions f and g, different approaches are needed. For instance, in [28] varia-
tional methods have been used to study existence and multiplicity when f(u, v) = g(u)/vp

(p > 0) and g behaves as an exponential function.

2.2 Nonlinearities with linear growth in u: a positive solu-

tion

It is well known that the existence of a solution for some boundary value problems is
equivalent to the existence of a fixed point of a certain operator. For our purpose we need
to consider a second order ordinary differential equation of the form

−
(
p (t)u′ (t)

)′
= p(t)f (t, u(t)) , (2.4)

with boundary conditions
u′(0) = u(1) = 0, (2.5)

where f is a continuous function in [0, 1] × ℝ and p ∈ C[0, 1] is positive and increasing in
(0, 1].

If p > 0 in [0, 1], it is well known that the problem is fully regular, having a standard
reduction to a fixed point problem:

u = Tf(⋅, u(⋅)) in C[0, 1],

where T is the linear operator that takes v ∈ C[0, 1] into the unique solution u of

−
(
p (t) u′ (t)

)′
= p(t)v(t), u′(0) = u(1) = 0. (2.6)

In addition, we can write explicitly

Tv(t) =

∫ 1

0
G(t, s) v(s) ds,

where G(t, s) is the Green’s function associated to the problem. The Green’s function is
continuous in [0, 1] × [0, 1] , so T is a completely continuous linear operator in C[0, 1].

We are interested in the case where p(t) > 0 in (0, 1] only, that is, p(0) = 0. Under
certain assumptions we still have a continuous Green’s function for the linear problem
(2.6). The reader can find a more general approach in [27], but for completeness we
include here a simple version which is sufficient for our purpose:
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Lemma 2.2.1. Let p be continuous, increasing in [0, 1], p(0) = 0 and p > 0 in (0, 1]. If
the function

p(s)

∫ 1

s

1

p(�)
d�

is continuously extendible to [0, 1], then the operator T : C[0, 1] → C[0, 1] previously con-
sidered is well defined, linear and completely continuous.

Proof. Consider the equation

−
(
p (t)u′ (t)

)′
= p(t)v(t), (2.7)

with boundary conditions (2.5). Integrating both sides we get

−p(t)u′(t) =
∫ t

0
p(s)v(s) ds.

Integrating again, we obtain

u(t) =

∫ 1

t

d�

p(�)

∫ �

0
p(s)v(s) ds

=

∫ t

0
p(s)v(s) ds

∫ 1

t

1

p(�)
d� +

∫ 1

t
p(s)v(s) ds

∫ 1

s

1

p(�)
d�

=

∫ 1

0
G(t, s) v(s) ds,

where

G(t, s) =

{
p(s)

∫ 1
t

1
p(�) d�, t ≥ s

p(s)
∫ 1
s

1
p(�) d�, t ≤ s

is clearly continuous in [0, 1] × [0, 1], so that the operator

Tv(t) =

∫ 1

0
G(t, s) v(s) ds =

∫ t

0
p(s)

∫ 1

t

1

p(�)
d� v(s) ds +

∫ 1

t
p(s)

∫ 1

s

1

p(�)
d� v(s) ds

is completely continuous in C[0, 1].

It is trivial to see that Tv(1) = 0 and, if we differentiate the expression for Tv(t), we
obtain

(Tv)′(t) = p(t)

∫ 1

t

1

p(�)
d� v(t) +

∫ t

0
−p(s)v(s)

p(t)
ds− p(t)

∫ 1

t

1

p(�)
d� v(t)

= −
∫ t

0

p(s)v(s)

p(t)
ds,

and thus

(Tv)′(0) = lim
t→0

−
∫ t

0

p(s)v(s)

p(t)
ds = − lim

t→0
v(0)

∫ t
0 p(s)

p(t)
= 0.
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Remark 2.2.2. The continuous functions p(t) = tn, with n > 0, satisfy the assumptions
of the lemma.

Let f : ℝ+ ×ℝ → ℝ+ and g : ℝ+ → ℝ be continuous functions. The radial solutions v
of the problem (2.1)–(2.2) solve the ordinary differential equation

−v′′(r)− n− 1

r
v′(r) = f

(
v(r), !n

∫ 1

0
sn−1g(v(s)) ds

)
(2.8)

which is equivalent to

−
(
rn−1v′(r)

)′
= rn−1f

(
v(r), !n

∫ 1

0
sn−1g(v(s)) ds

)
,

with boundary conditions
lim
r→0+

v′(r) = v(1) = 0, (2.9)

where !n is the superficial measure of the unit sphere in ℝn.
The homogeneous equation −v′′− (n−1)v′/r = 0, with the boundary conditions (2.9),

has only the trivial solution, and therefore there exists a Green’s function associated to
the linear problem. In fact, the Green’s function may be written, according to lemma
2.2.1 (see also [25]), in the following way:

(i) for n > 2,

G(r, t) =
tn−1

n− 2

(
1

max(r, t)n−2
− 1

)
;

(ii) and for n = 2,
G(r, t) = −t ln (max (r, t)) .

Hence the boundary value problem (2.8)–(2.5) is equivalent to the integral equation

v(r) =

∫ 1

0
G(r, t)f

(
v(t), !n

∫ 1

0
sn−1g(v(s)) ds

)
dt. (2.10)

In C [0, 1], the Banach space of continuous functions in [0, 1] with the usual norm, let
P be the cone of the nonnegative functions. The radial solutions of (2.1)–(2.2) are exactly
the fixed points of the completely continuous operator S : P → P , defined by

S(v)(r) =

∫ 1

0
G(r, t)f

(
v(t), !n

∫ 1

0
sn−1g(v(s)) ds

)
dt. (2.11)

In [25], the following theorem is proved:

Theorem 2.2.3. Let f : ℝ+ × ℝ → ℝ+ and g : ℝ+ → ℝ be continuous functions, and


 = sup
r∈[0,1]

∫ 1

0
G(r, s) ds.

Suppose there exist constants A,B ∈ ℝ such that 0 ≤ A < 
−1 and

f(v, y) ≤ Av +B

for all v ≥ 0 and y ∈ ℝ.
Then the problem (2.1)–(2.2) has a positive radial solution.
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We will show that the estimate on the constant A in the previous result can be im-
proved.

Consider the problem (2.8)–(2.9) and the associated eigenvalue problem:

−v′′(r)− n− 1

r
v′(r) = � v(r), with lim

r→0+
v′(r) = 0 and v(1) = 0. (2.12)

We have

−v′′(r)− n− 1

r
v′(r) = �v(r) ⇔

⇔
(
rn−1v′ (r)

)′
+ �rn−1v(r) = 0.

To find the eigenvalues, it is useful to consider the auxiliar initial value problem:

(
rn−1v′ (r)

)′
+ rn−1v(r) = 0, v(0) = 1 and v′(0) = 0. (2.13)

The solution v(r) to this problem is well defined in [0,+∞), oscillates, and has zeros
{�n ∣ n ∈ ℕ} such that 0 < �1 < �2 < . . .→ +∞, with �n+1 − �n → � (see [51]).

Define u(r) = v(�r). Then

u′(r) = �v′(�r) and u′′(r) = �2v′′(�r).

Using (2.13), we have

(n− 1)(�r)n−2v′(�r) + (�r)n−1v′′(�r) + (�r)n−1v(�r) = 0 ⇔

⇔
(
rn−1u′ (r)

)′
+ �2rn−1u(r) = 0.

It is obvious that u′(0) = 0, so it remains to find � such that u(1) = 0. As u(1) = v(�),
we get � = �n for some n ∈ ℕ, hence � = �n and, therefore, the eigenvalues of (2.12) are

�n = �2 = �n
2.

Let us identify the zeros of the unique solution of (2.13). We have

(
rn−1v′ (r)

)′
+ rn−1v(r) = 0 ⇔

⇔ rn−3
(
r2v′′ + (n − 1)rv′ + r2v

)
= 0,

and the last equation has the form

t2u′′ + atu′ + (b+ ctm) u = 0,

which is easily reduced to a Bessel equation (cf.[50]). Using the new independent variable

y = r
n−2
2 v,

we obtain the transformed equation

r2y′′ + ry′ +

(
r2 −

(
n− 2

2

)2
)
y = 0,
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whose solutions are well known, and thus we get:

(i) v(r) = c1r
−n−2

2 Jn−2
2
(r) + c2r

−n−2
2 Kn−2

2
(r) if n is even, or

(ii) v(r) = c1r
−n−2

2 Jn−2
2
(r) + c2r

−n−2
2 J 2−n

2
(r) if n is odd,

where c1, c2 are constants and Ji, Ki are Bessel functions of order i, of the first and the
second kind respectively.

Taking into consideration the boundary conditions, the constant c2 must be zero in
both cases (otherwise we would have limr→0+ v(r) = ∞), so that

v(r) = c1r
−n−2

2 Jn−2
2
(r).

For our boundary value problem we know that 
−1 = 2n (see [25]). If we compare
√
2n

with �1 – the zeros of these Bessel functions are well known – we can see that

√
2n < �1

and hence,

−1 < �1 (first eigenvalue of (2.12)).

For instance, for n = 2 or n = 4 we have

√
4 = 2, 000 < �1(J0) ≈ 2, 404,

√
8 ≈ 2, 828 < �1(J1) ≈ 3, 832.

By adapting the approach of [25], we shall prove the following improved version of theorem
2.2.3:

Theorem 2.2.4. Let f : ℝ+ × ℝ → ℝ+ and g : ℝ+ → ℝ be continuous functions, and �1
defined as above.

Suppose there exist constants A,B ∈ ℝ such that 0 ≤ A < �1, and

f(v, y) ≤ Av +B, for all v ≥ 0 and y ∈ ℝ.

Then the problem (2.1)–(2.2) has a positive radial solution.

Let � be an eigenfunction associated with the first eigenvalue �1. We have

−�′′ − n− 1

r
�′ = �1� and �′(0) = 0 = �(1). (2.14)

Since our computation above shows that we may assume that �(r) = v(�1r), where

v(r) = r−
n−2
2 Jn−2

2
(r), it is clear that � > 0 in [0, 1), (and, by the way, �′(1) < 0). We may

therefore consider the norm

∥v(r)∥X = sup
[0,1)

∣v(r)∣
�(r)

in the Banach space

X =

{
v ∈ C[0, 1] :

∣v(r)∣
�(r)

bounded

}
.
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Then, as stated before, we can write problem (2.8)–(2.9) as v = Sv, where

S(v)(r) =

∫ 1

0
G(r, t)f

(
v(t), !n

∫ 1

0
sn−1g(v(s)) ds

)
dt, for v ∈ X. (2.15)

Let T denote the operator introduced above, with p(s) = sn−1. This operator acts in
C[0, 1]. Let K be the restriction of T to X and v ∈ X. Since

∣v(t)∣ ≤ ∥v∥X �(t),

and ∫ 1

0
G(r, t)�(t) dt =

�(r)

�1
,

we have

∣K (v) (r)∣ ≤
∫ 1

0
G(r, t) ∣v(t)∣ dt ≤ ∥v∥X

∫ 1

0
G(r, t)�(t) dt

so that
∣K(v)(r)∣
�(r)

≤ ∥v∥X
�1

.

Taking the least upper bound in the left hand side of last inequality, we obtain

∥K(v)∥X ≤ ∥v∥X
�1

. (2.16)

Lemma 2.2.5. The operator S : X → X is completely continuous.

Proof. Since the embedding i1 : X → C[0, 1] is obviously continuous, the Nemytskii oper-
ator N : X → C[0, 1] given, for each v ∈ X, by

N(v) = f

(
v, !n

∫ 1

0
sn−1g(v(s)) ds

)
,

is also continuous. Moreover it takes bounded sets into bounded sets.

Now let us consider the following decomposition of T :

C[0, 1]
T∗−→ C2

∗ [0, 1]
i2−→ C1

∗ [0, 1]
i3−→ X, (2.17)

where

C2
∗ [0, 1] =

{
u ∈ C2[0, 1] : u′(0) = u(1) = 0

}
,

C1
∗ [0, 1] =

{
u ∈ C1[0, 1] : u(1) = 0

}
,

i2, i3 are embeddings, and T∗ is the operator T acting between those two spaces.

The operator (T∗)
−1 takes u into −u′′ − (n−1)

r u′; it is obviously linear continuous and
bijective and, therefore, using the Open Map Theorem, we get that T∗ is continuous. The
embedding i2 is a well known completely continuous operator and using L’Hospital’s rule
we can prove that i3 is also continuous. Since S = i3i2T∗i1, the conclusion of the lemma
is now straightforward.
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Proof of theorem 2.2.4. The proof is similar to that of theorem 2.2.3 and so we only
outline it. If f(0, !n

g(0)
n ) = 0, then v ≡ 0 is obviously a fixed point of the operator S, so

let us suppose that f(0, !n
g(0)
n ) > 0. Then there exist positive constants M and � such

that

f

(
v(t), !n

∫ 1

0
sn−1g(v(s)) ds

)
≥M, for all ∥v∥X ≤ �.

A simple computation yields

∥Sv∥X ≥M sup
r∈(0,1)

∫ 1

0

G(r, t)

�(r)
dt =M�,

if ∥v∥X ≤ �, where we have set � := supr∈(0,1)
∫ 1
0
G(r,t)
�(r) dt.

If we define Ω1 = {v ∈ X ∣ ∥v∥X < min(M�/2, �)}, in ∂Ω1 we have

∥Sv∥X ≥M�> ∥v∥X .

Defining Ω2 = {v ∈ X ∣ ∥v∥X < ∥TB∥X /(1 −A′/�1)} with A < A′ < �1, then for v ∈
P ∩ ∂Ω2 we have (using the positivity of T and the estimate (2.16))

∥Sv∥X ≤ ∥T (Av +B)∥X ≤ ∥AKv∥X + ∥TB∥X

<
A′/�1 ∥TB∥X
1−A′/�1

+
∥TB∥X −A′/�1 ∥TB∥X

1−A′/�1
= ∥v∥X .

Applying Krasnoselskii’s fixed point Theorem 1.13 (compression version) we find a
fixed point of S, and therefore a positive radial solution of (2.1)–(2.2).

In both theorems above, as mentioned in [25], the condition on f does not depend
on the second variable, and, therefore, nothing is restraining the behaviour of g. The
arguments used there are also valid for the same problem with f(v(r), �(v)), for any
continuous functional � in X.

A similar procedure allows us to us prove a result in the spirit of the one considered
in [25] where g is restrained, but the condition on f is weakened:

Theorem 2.2.6. Let f : ℝ+ × ℝ → ℝ+ and g : ℝ+ → ℝ be continuous functions.

Suppose there exist positive constants A < �1, B, C, D, p and q with pq ≤ 1 such that

f(v, y) ≤ Av +B + C ∣y∣p for all v ≥ 0 and y ∈ ℝ

and

∣g(v)∣ ≤ D ∣v∣q for all v ∈ ℝ

where � is the eigenfunction associated with �1.

Then problem (2.1)–(2.2) has a positive radial solution.
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Remark 2.2.7. We could have considered in equation (2.8) a right-hand side of the form

f
(
r, v(r), !n

∫ 1
0 s

n−1g(v(s)) ds
)
, continuous in [0, 1]×ℝ×ℝ. Indeed we might even work

with a nonlinear nonnegative function f(r, v, w) continuous in (v,w) for a.e. r ∈ [0, 1],
and measurable in r for all (v,w) ∈ ℝ× ℝ. However in this case, defining

Lpk(0, 1) =

{
u : u is measurable in (0, 1),

∫ 1

0
sk ∣u(s)∣ ds < +∞

}

we should confine ourselves to Lpn−1(0, 1) Carathéodory functions f , i.e.

∀M > 0 sup
∣v∣+∣w∣≤M

∣f (⋅, v, w)∣ ∈ Lpn−1(0, 1),

where p > n is fixed. Under this restriction, it can still be shown that the analogue
of Lemma 2.2.5 holds, because we can obtain an analogue of T acting compactly from
Lpn−1(0, 1) to C

1
∗ [0, 1].

2.3 Lower and upper solutions and monotone approxima-

tion

We will now apply the lower and upper solution method to find solutions of problem
(2.8)–(2.9). We will use two different types of conditions concerning the given functions
f and g, and construct monotone convergent sequences to solutions of the problem.

Let us define the linear operator

Lu(r) = −u′′(r)− n− 1

r
u′(r) + �u(r).

Lemma 2.3.1 (Maximum Principle 1). Let � ≥ 0, and u ∈ C1[0, 1] ∩ C2(0, 1) be such
that Lu(r) ≥ 0 in (0, 1], u′(0) ≤ 0 and u(1) ≥ 0. Then u(r) ≥ 0 for all r ∈ [0, 1].

Proof. Towards a contradiction, assume that u(r0) < 0 for some r0 ∈ (0, 1). There are
two cases to consider:

(i) u(r) < 0 in some interval (c, d) ⊂ [0, 1], with u(c) = u(d) = 0.

Let us consider first the case where � > 0. Then there must exist p ∈ (c, d) such
that u′(p) = 0, and u′′(p) ≥ 0, and since u(p) < 0, we get Lu(p) < 0, which is a
contradiction.

If � = 0, integrating in [c, d], we get the contradiction

0 < dn−1u′(d)− cn−1u′(c) ≤ 0.

(ii) u(r) < 0 in some interval [0, c[⊂ [0, 1], with u(c) = 0.

If u′(0) < 0, the same argument applies. If u′(0) = 0, integrating in [0, c], we get

0 > −cn−1u′(c) + �

∫ c

0
rn−1u(r) dr ≥ 0.
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From now on we assume that f : ℝ× ℝ → ℝ and g : ℝ → ℝ are continuous functions.
Consider the boundary value problem

−u′′(r)− n− 1

r
u′(r) = f

(
u(r), !n

∫ 1

0
sn−1g (u(s)) ds

)
for 0 < r ≤ 1, (2.18)

and
u′(0) = 0 = u(1). (2.19)

We say that �(r) is a lower solution of (2.18)–(2.19) if

−�′′(r)− n− 1

r
�′(r) ≤ f

(
�(r), !n

∫ 1

0
sn−1g (� (s)) ds

)
, for 0 < r ≤ 1,

�′(0) ≥ 0 and �(1) ≤ 0.

A function � satisfying the reversed inequalities is called an upper solution.
Let �0 be a lower solution and �0 an upper solution of (2.18)–(2.19). Consider the re-

striction L0 of the operator L to the subspace
{
u ∈ C1[0, 1] ∩ C2(0, 1): u′(0) = u(1) = 0

}
.

With the notations above, to get a solution of problem (2.18)–(2.19) is equivalent to find
a fixed point of the completely continuous operator in C[0, 1]

Φu ≡ L−1
0

(
f

(
u, !n

∫ 1

0
sn−1g (u (s)) ds

)
+ �u

)
.

Let us define

Rf (u, v1, v2) =
f(u, v2)− f(u, v1)

v2 − v1
and Rg(u1, u2) =

g(u2)− g(u1)

u2 − u1
.

Lemma 2.3.2. Let �0 be a lower solution and �0 an upper solution of (2.18)–(2.19) such
that �0 ≤ �0 in [0, 1]. Suppose f(u, v) is such that

f(u2, v)− f(u1, v) ≥ −�(u2 − u1),

for some � ≥ 0, v ∈ ℝ, u1, u2 such that for some r ∈ [0, 1], �0(r) ≤ u1 ≤ u2 ≤ �0(r), and
Rf , Rg have the same sign for all u1, u2 such that �0(r) ≤ u1, u2 ≤ �0(r) for some r ∈ [0, 1].

Then, for any two functions u1(r), u2(r) ∈ C[0, 1] such that

�0(r) ≤ u1(r) ≤ u2(r) ≤ �0(r),

we have
Φu1(r) ≤ Φu2(r).

Proof. The Green’s function G� associated with the operator L0 is nonnegative according
to Lemma 2.3.1. We have

Φu2(r)− Φu1(r) =

=

∫ 1

0
G�(r, t)

[
f

(
u2, !n

∫ 1

0
sn−1g (u2 (s)) ds

)
−f
(
u1, !n

∫ 1

0
sn−1g (u2 (s)) ds

)]
dt+

+

∫ 1

0
G�(r, t)

[
f

(
u1, !n

∫ 1

0
sn−1g (u2 (s)) ds

)
−f
(
u1, !n

∫ 1

0
sn−1g (u1 (s)) ds

)]
dt+

+

∫ 1

0
G�(r, t)� (u2 − u1) dt ≥

∫ 1

0
G�(r, t) [−� (u2 − u1) + � (u2 − u1)] dt ≥ 0.
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Remark 2.3.3. Clearly if f and g are C1 functions, the hypotheses of the last theorem
are satisfied provided that

∂f

∂u
≥ −�, and ∂f

∂v
,
∂g

∂u
have the same sign.

Theorem 2.3.4. Suppose that f and g satisfy the assumptions of Lemma 2.3.2. Let �0, �0
be lower and upper solutions, respectively, of (2.18)–(2.19). If we put

�n+1 = Φ�n and �n+1 = Φ�n, for all n ∈ ℕ0,

we obtain
�0 ≤ �1 ≤ ⋅ ⋅ ⋅ ≤ �n ≤ ⋅ ⋅ ⋅ ≤ �n ≤ ⋅ ⋅ ⋅ ≤ �1 ≤ �0.

The monotone bounded sequences (�n)n∈ℕ0
and (�n)n∈ℕ0

defined above are convergent
in C[0, 1] respectively to the minimal and maximal solutions of (2.18)–(2.19) in the interval
[�0, �0].

Proof. Since

L�1 = f

(
�0, !n

∫ 1

0
sn−1g (�0 (s)) ds

)
+��0, and L�0 ≤ f

(
�0, !n

∫ 1

0
sn−1g (�0 (s)) ds

)
+��0,

we have
L (�1 − �0) ≥ 0, (�1 − �0)

′ (0) ≤ 0, (�1 − �0) (1) ≥ 0,

and therefore, by Lemma 2.3.1, we have �0 ≤ �1.
Using similar arguments, we can prove that �1 ≤ �0.
We are now able to apply Lemma 2.3.2 to �0 and �1 which gives �1 ≤ �2. By iteration

of this argument, we prove that (�n)n∈ℕ0
is an increasing sequence and stays below �0.

Analogously, we prove that (�n)n∈ℕ0
is a decreasing sequence so that

�0 ≤ �1 ≤ ⋅ ⋅ ⋅ ≤ �n ≤ ⋅ ⋅ ⋅ ≤ �n ≤ ⋅ ⋅ ⋅ ≤ �1 ≤ �0.

Concerning the convergence of the sequences, as the cone of positive functions in C[0, 1]
is normal (since 0 ≤ u ≤ v implies ∥u∥ ≤ ∥v∥), we can use the standard argument ([52],
p.283), which gives the convergence of this iteration method to fixed points of Φ, and these
are exactly the smallest and largest fixed points in [�0, �0] ⊂ C[0, 1].

Example 2.3.5. Let us consider the nonlocal differential equation

−u′′(r)− 2

r
u′(r) =

4

3
�eu

∫ 1

0
s2 (u(s) + 1) ds (2.20)

with boundary conditions u′(0) = u(1) = 0.
In this case we have n = 3, f(u, v) = euv

3 , and g(u) = u+ 1.
Consider �0 ≡ 0 and �0 = 1− r. Then

−�′′
0(r)−

2

r
�′
0(r) = 0 ≤ 4

9
� =

4

3
�e0

∫ 1

0
s2 ds

and �′
0(0) = �0(1) = 0, so �0 is a lower solutions of (2.20)–(2.19).
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For r ∈ [0, 1] we have

−
(
r2�′0

)′
= 2r ≥ 5

9
�r2e1−r =

4

3
�r2e1−r

∫ 1

0
s2 (1− s+ 1) ds,

�′0(0) = −1 and �0(1) = 0. Therefore �0 is an upper solution of (2.20)–(2.19).

The conditions in the Theorem 2.3.2 are satisfied for �0 and �0, so there exists a
solution u of (2.20)–(2.19), such that

0 ≤ u(r) ≤ 1− r, for all r ∈ [0, 1].

This solution is the limit of a monotone sequence constructed as in the statement of
the theorem.

Let us now try another approach using the lower and upper solutions method, where
we drop a part of the monotonicity assumptions.

Lemma 2.3.6 (Maximum Principle 2). Suppose that u ∈ C1[0, 1] ∩C2(0, 1) satisfies

−u′′(r)− n− 1

r
u′(r) + �u(r) +M

∫ 1

0
sn−1 ∣u(s)∣ ds ≥ 0 (2.21)

for some �, M > 0 such that �+M < 1 and u′(0) ≤ 0, u(1) ≥ 0. Then we have u(r) ≥ 0
for all r ∈ [0, 1].

Proof. Suppose by contradiction that there exists a function u0 that satisfies the assump-
tions above and is negative at some point.

Normalizing u0, we can assume that
∫ 1
0 s

n−1 ∣u0(s)∣ ds = 1 without loss of generality,
which implies that

∥∥rn−1u0(r)
∥∥
∞ ≥ 1.

Let us consider the auxiliary problem

−w′′(r)− n− 1

r
w′(r) +M = 0, w′(0) = w(1) = 0. (2.22)

which is equivalent to

(
rn−1w′(r)

)′
= rn−1M, w′(0) = w(1) = 0. (2.23)

Integrating (2.23), we get

w(r) =
M

2n
(r2 − 1) ≤ 0.

As u0 satisfies

−u′′0(r)−
n− 1

r
u′0(r) + �u0(r) +M ≥ 0,

with u′0(0) ≤ 0, u0(1) ≥ 0, we have

−(u0 − w)′′ − n− 1

r
(u0 − w)′ + �(u0 − w) ≥ −�w, (u0 − w)′(0) ≤ 0, (u0 − w)(1) ≥ 0,
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and, therefore, applying Lemma 2.3.1, we get u0 ≥ w. We can easily see that

rn−1u0(r) ≥ rn−1w(r) ≥ −M
2n

> −1,

so the fact that
∥∥rn−1u0(r)

∥∥
∞≥ 1 insures that there exists a > 0 such that u0(a) ≥ 1

an−1 .
If u0 is negative at b > a, there exists c ∈ (a, b) such that u0(c) = 0 (we can assume

that u′0(b) = 0). Using Lagrange’s Theorem, there exists d ∈ [a, c] such that u′0(d) ≤
− 1
an−1 . As d ≥ a, we have dn−1u′0(d) ≤ −1 and therefore there exists e ∈ [d, b] such that

(rn−1u′0(r))
′∣r=e ≥ 1, (we can take e such that en−1u0(e) < 1).

If u is negative at b < a, there exists c < a such that u0(c) = 0. As u0(a) > 1, there
exists d ∈ (c, a) such that u′0(d) ≥ 1. Considering the boundary condition u′0(0) ≤ 0, there
exists e ∈ [0, d) such that u′0(e) = 0 and u′0(r) > 0 for all r ∈ (e, d]. Therefore there exists
f ∈ [e, d] such that u′′0(f) ≥ 1 and u′0(f) > 0 (we can take f such that fn−1u0(f) < 1).
In both cases, we know that for some r0 we have (r

n−1u′0(r))
′∣r=r0 ≥ 1, and rn−1

0 u0(r0) < 1.
Therefore we would get

−(rn−1u′0(r))
′∣r=r0 + �rn−1

0 u0(r0) +M ≤ −1 + �+M < 0,

which is a contradiction.

For a given function u(r) ∈ C[0, 1], consider the boundary value problem

−v′′(r)− n− 1

r
v′(r) + � v(r) = f

(
u(r), !n

∫ 1

0
sn−1g (v(s)) ds

)
+ �u(r),

with v′(0) = 0 = v(1). Using the operator L defined in the beginning of this section, this
equation is equivalent to the fixed point equation in C[0,1]

v = L−1
0

(
f

(
u, !n

∫ 1

0
sn−1g (v (s)) ds

)
+ �u

)
≡ Φuv. (2.24)

Remark 2.3.7. Using a comparison method as the one in the proof of Lemma 2.3.6, we
get

∥∥L−1
0

∥∥ ≤ 1
2n in C[0, 1].

Lemma 2.3.8. If f(u, v) is k1-Lipschitz in v, g is k2-Lipschitz, and k1k2!n < 2n2, then
Φu has a unique fixed point.

Proof. We have

∣Φuv2(r)− Φuv1(r)∣ ≤
1

2n
k1

∣∣∣∣!n
∫ 1

0
sn−1g(v2(s)) ds − !n

∫ 1

0
sn−1g(v1(s)) ds

∣∣∣∣ ≤

≤ 1

2n
k1k2!n

∫ 1

0
sn−1 ∣v2(s)− v1(s)∣ ds ≤

k1k2!n
2n2

∥v2 − v1∥∞ ,

so that

∥Φuv2(r)− Φuv1(r)∥∞ ≤ k1k2!n
2n2

∥v2 − v1∥∞
and therefore Φu is a contraction mapping.
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Lemma 2.3.9. Let f and g be functions defined as in the lemma above, � > 0 such that
k1k2!n + � < 1, and suppose that

f(u2, v)− f(u1, v) ≥ −�(u2 − u1),

for all r ∈ [0, 1], v ∈ ℝ, and u1 ≤ u2.

Let u1(r) ≤ u2(r) be two given functions defined in [0, 1] and v1(r), v2(r) the two
respective solutions of (2.24). Then v1(r) ≤ v2(r).

Proof. We have

− (v2 − v1)
′′ − n− 1

r
(v2 − v1)

′ + �(v2 − v1) =

= �(u2 − u1) + f

(
u2, !n

∫ 1

0
sn−1g (v2) ds

)
− f

(
u1, !n

∫ 1

0
sn−1g (v2) ds

)
+

+ f

(
u1, !n

∫ 1

0
sn−1g (v2) ds

)
− f

(
u1, !n

∫ 1

0
sn−1g (v1) ds

)
≥

≥ −k1k2!n
∫ 1

0
sn−1 ∣v2 − v1∣ ds.

The conclusion follows from Lemma 2.3.6.

Theorem 2.3.10. Suppose that f(u, v) is k1-Lipschitz in v, g is k2-Lipschitz. Assume
that for some � > 0 such that k1k2!n + � < 1, we have

f(u2, v)− f(u1, v) ≥ −�(u2 − u1),

for all v ∈ ℝ, and u1 ≤ u2. Let �0 and �0 be a lower and an upper solution of (2.18)–
(2.19) respectively, with �0 ≤ �0 in [0, 1]. If we take (�n)n∈ℕ0

and (�n)n∈ℕ0
such that,

according to Lemma 2.3.8,

�n+1 = Φ�n�n+1 and �n+1 = Φ�n�n+1, for all n ∈ ℕ0,

we obtain

�0 ≤ �1 ≤ ⋅ ⋅ ⋅ ≤ �n ≤ ⋅ ⋅ ⋅ ≤ �n ≤ ⋅ ⋅ ⋅ ≤ �1 ≤ �0.

The monotone bounded sequences (�n)n∈ℕ0
, (�n)n∈ℕ0

defined above are convergent in
C[0, 1] to solutions of (2.18)–(2.19).

Proof. The computation used here is similar to another one used in [31]. We have

L (�1 − �0) ≥ f

(
�0, !n

∫ 1

0
sn−1g (�1 (s)) ds

)
− f

(
�0, !n

∫ 1

0
sn−1g (�0 (s)) ds

)
≥

≥ −k1k2!n
∫ 1

0
∣�1(s)− �0(s)∣ ds

with

(�1 − �0)
′ (0) ≤ 0, (�1 − �0) (1) ≥ 0,
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and, therefore, using Lemma 2.3.6, we get �0 ≤ �1. Let us prove that �1 ≤ �0. This
comes from

L (�0 − �1) ≥ f

(
�0, !n

∫ 1

0
sn−1g (�0 (s)) ds

)
+ ��0 − f

(
�0, !n

∫ 1

0
sn−1g (�0 (s)) ds

)
+

+ f

(
�0, !n

∫ 1

0
sn−1g (�0 (s)) ds

)
− f

(
�0, !n

∫ 1

0
sn−1g (�1 (s)) ds

)
− ��0 ≥

≥ −� (�0 − �0) + � (�0 − �0)− k1k2!n

∫ 1

0
∣�0(s)− �1(s)∣ ds =

= −k1k2!n
∫ 1

0
∣�0(s)− �1(s)∣ ds.

Applying this Lemma in the following iterations, we prove that

�0 ≤ �1 ≤ ⋅ ⋅ ⋅ ≤ �n ≤ ⋅ ⋅ ⋅ ≤ �n ≤ ⋅ ⋅ ⋅ ≤ �1 ≤ �0

as in the proof of Theorem 2.3.4.
Concerning the convergence of the sequences, there is a slight difference from the usual

method, because in each iteration we use a different operator. But, as

�n+1(r) = L−1
0

(
f

(
�n, !n

∫ 1

0
sn−1g (�n+1 (s)) ds

)
+ ��n

)

and ∥�n∥∞ ≤ max (∥�0∥∞ , ∥�0∥∞), we have that ∥�n+1∥C1 is bounded, and, therefore,

using Àrzela-Ascoli Theorem, there exists a convergent subsequence of �n. Considering
the monotonicity of �n, we get the conclusion by the standard argument.

Remark 2.3.11. It is not difficult to prove that the monotone sequences defined in
theorem 4.10 converge in fact to extremal solutions of the boundary value problem (18)-
(19).

Example 2.3.12. Suppose that

lim inf
(a,b)→(0+,0+)

f(a, !n
n g(b))

a
> �1.

and there exists k > 0 such that f(k, !ng(k)/n) < 0. Suppose in addition that f and g
satisfy the assumptions of Theorem 2.3.10.

Then there exists a positive solution of (2.18)–(2.19). This solution may be approxi-
mated by monotone sequences. In fact, a simple calculation shows that for � > 0 small
enough, �� is a positive lower solution of (2.18)–(2.19). The constant k is clearly an upper
solution. The statement follows.

The fact that we needed the assumption �2 +M < 1 in 2.3.6 is a limitation in the
strength of this maximum principle.

The purpose of what follows is to extend the nonlocal maximum principle so as to
allow its applicability to a large range of values of � > 0 and M > 0.

We will now investigate the admissible range of values in two cases:
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(i) first we consider a simpler model and look for which values of � > 0 and M > 0 do
the inequalities

−u′′(t) + �2u(t) +M

∫ 1

0
∣u(s)∣ ds ≥ 0, u(0) ≥ 0, u(1) ≥ 0

yield a maximum principle;

(ii) then we proceed to the inequality (2.21), related to the important class of radial
problems in a ball.

It turns out that the two situations may be dealt in a similar way, although some compu-
tations are easier in the first case.

In the course of our approach we find it convenient to consider the linear singular
differential equation

−u′′(t)− k

t
u′(t) + �2u(t) = ℎ(t), (2.25)

and find an expression for one of its solutions as

u(t) =

∫ 1

0
H�(t, s)ℎ(s)ds,

where H� is a Green’s function. The solution we have in mind exists for a certain class
of right-hand sides ℎ, and may satisfy boundary conditions u′(0) = a, u(1) = 0, where a
needs not be zero.

Some remarks about the solutions of a linear problem

Let us consider the differential equation

−u′′(t)− k

t
u′(t) + �2u(t) = ℎ(t), t ∈ (0, 1), (2.26)

where k > 1, � > 0 and ℎ ∈ L2
k+2(0, 1) ≡

{
ℎ(t) measurable :

∫ 1
0 �

k+2ℎ(�)2 d� <∞
}
.

We shall use the Hilbert Spaces

Hk(0, 1) =

{
u ∈ AC (0, 1] :

∫ 1

0
�ku′(�)2 d� <∞, u(1) = 0

}
,

with the norm ∥u∥ =
(∫ 1

0 �
ku′(�)2 d�

)1/2
.

Following [7], for u ∈ Hk(0, 1), with k > 1, we have
(∫ 1

0 �
k−2u(�)2 d�

)1/2
≤ 2

k−1 ∥u∥,
so the functional

J(u) :=

∫ 1

0

[
1

2

(
tku′(t)2 + �2tku(t)2

)
+ tkℎ(t)u(t)

]
dt

is well defined in Hk(0, 1), since

∫ 1

0
tkℎ(t)u(t) dt ≤

(∫ 1

0
tk−2u(t)2 dt

)1/2 (∫ 1

0
tk+2ℎ(t)2 dt

)1/2

.

It is obvious that J(u) is a coercive strictly convex functional, so that equation (2.26) has
a unique solution in Hk(0, 1).
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Proposition 2.3.13. If ℎ ∈ L2
1(0, 1) ≡

{
ℎ(t) measurable :

∫ 1
0 �ℎ(�)

2 d� <∞
}
, then the

unique solution u of (2.26) in Hk(0, 1) is in fact in C1[0, 1] and it satisfies u′(0) = 0 (note
that L2

1(0, 1) ⊂ L2
k+2(0, 1)).

Proof. Equation (2.26) is obviously equivalent to

−
(
tku′(t)

)′
+ �2tku(t) = tkℎ(t).

If ℎ ∈ L2
1(0, 1), it is easy to verify that

∣∣tku′(t)
∣∣ satisfies Cauchy’s condition at t = 0,

therefore there exists L ∈ ℝ such that limt→0

∣∣tku′(t)
∣∣ = L. Necessarily L = 0, because

otherwise we would not have u ∈ Hk(0, 1). Applying Cauchy-Schwarz inequality, it follows
that

∣∣∣tku′(t)
∣∣∣ ≤
∣∣∣∣
∫ t

0
�2�ku(�) d�

∣∣∣∣+
∣∣∣∣
∫ t

0
�kℎ(�) d�

∣∣∣∣

≤c1
(∫ t

0
�k−2u(�)2 d�

)1/2

t
k+3
2 + c2

(∫ t

0
�ℎ(�)2 d�

)1/2

tk,

for some constants c1, c2 > 0.
If k+3

2 ≥ k (k ≤ 3), it is obvious that limt→0 u
′(t) = 0. Otherwise, if k > 3, we have

∣∣∣tku′(t)
∣∣∣ ≤ c t

k+3
2 , (2.27)

for some constant c > 0.
In general, if we have

∣∣tku′(t)
∣∣ ≤ c t�, then ∣u(t)∣ ≤ C + Ct�−k+1, for some C > 0,

hence, we can conclude that near t = 0, there exists a constant c3 > 0 such that

(∫ t

0
�k−2u(�)2 d�

)1/2

≤ c3 t
min( k−1

2
, 2�−k+1

2 ).

Consequently, for some c4 > 0, we have

∣∣∣tku′(t)
∣∣∣ ≤ c4 t

min(k+1, �+2) + c2

(∫ t

0
�ℎ(�)2 d�

)1/2

tk,

and setting � = k+3
2 , it is easy to see that with a finite number of iterations of this process,

we will get
∣∣∣tku′(t)

∣∣∣ ≤ c∗ tk
∗
+ c2

(∫ t

0
�ℎ(�)2 d�

)1/2

tk,

where k∗ > k, and then the conclusion follows easily.

It is a standard procedure in the literature to associate solutions of a boundary value
problem to fixed points of some functional operator. In our case, the solutions of the
second order homogeneous differential equation

−u′′(t)− k

t
u′(t) + �2u(t) = 0, (2.28)
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which is equivalent to
(
tku′(t)

)′
= �2tku(t), with initial conditions u(0) = 1, u′(0) = 0,

may be viewed as fixed points of the operator

Tu(t) = 1 +

∫ t

0

�2

�k

∫ �

0
sku(s) ds d�,

defined in some functional space. Considering the space Z = {u ∈ C[0, t0] : u(0) = 1},
for some t0 small enough, T has a unique fixed point since it is a contraction. The
singularity of equation (2.28) is at the point t = 0, so it is obvious that this solution
can be extended to the interval [0, 1]. Let u1 be this solution, and consider the function
v1(t) = u1(t)

∫ 1
t

ds
sku1(s)2

, which is the solution of (2.28) obtained by the standard method

of reducing the order of an ordinary differential equation. The solutions u1 and v1 are
linearly independent and their associated Wronskian is W (t) = u1(t)v

′
1(t) − u′1(t)v1(t) =

−t−k. Furthermore, they satisfy the following properties, which we shall use in the next
proposition: u′1(t) ≥ 0, v1(1) = 0, v1(t) ∼ t−(k−1), and v′1(t) ∼ t−k as t → 0 (we write

f(t) ∼ g(t) as t→ 0 if and only if limt→0
f(t)
g(t) = L ∈ ℝ ∖ {0}).
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Figure 2.1: Graphics of u1 and v1 for a particular case

Let X ≡
{
ℎ(t) measurable : ∃ c ∈ ℝ, ℎ0 ∈ L2

1(0, 1), ℎ(t) =
c
t + ℎ0(t)

}
.

Proposition 2.3.14. The boundary value problem

−u′′(t)− k

t
u′(t) + �2u(t) = ℎ(t), u(1) = 0, for ℎ ∈ X, t ∈ (0, 1] (2.29)

has a unique solution in Hk(0, 1) ∩ C1[0, 1], given by the integral expression

u(t) = −u1(t)
∫ 1

t

v1(s)ℎ(s)

W (s)
ds − v1(t)

∫ t

0

u1(s)ℎ(s)

W (s)
ds. (2.30)

Proof. Let us first note that L2
1(0, 1) ⊂ X ⊂ L2

k+2(0, 1), so that equation (2.26) has a
unique solution in Hk(0, 1), that satisfies u(1) = 0.

Suppose that ℎ ∈ L2
1(0, 1), that is, c = 0. Applying the method of undetermined

coefficients, we see that the unique solution of

−u′′(t)− k

t
u′(t) + �2u(t) = ℎ(t), t ∈ (0, 1], u′(0) = u(1) = 0, (2.31)

is given by the well defined integral expression

u(t) = −u1(t)
∫ 1

t

v1(s)ℎ(s)

W (s)
ds − v1(t)

∫ t

0

u1(s)ℎ(s)

W (s)
ds. (2.32)
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If we differentiate this expression, we get

u′(t) = −u′1(t)
∫ 1

t

v1(s)ℎ(s)

W (s)
ds − v′1(t)

∫ t

0

u1(s)ℎ(s)

W (s)
ds

from which, after some computation, we can confirm that u′(0) = 0.
Suppose now that ℎ(t) /∈ L2

1(0, 1), that is, ℎ(t) =
c
t+ℎ0(t) for some c ∕= 0, ℎ0 ∈ L2

1(0, 1).
In this case, the integral expression (2.30) is still well defined, satisfies equation (2.26),
and

u′(0) = − lim
t→0

v′1(t)
∫ t

0

u1(s)ℎ(s)

W (s)
ds = lim

t→0
c v′1(t)

∫ t

0
u1(s)s

k−1 ds = − c

k
.

Remark 2.3.15. Expression (2.30) can obviously be written in the form

∫ 1

0
H�(t, s)ℎ(s) ds, (2.33)

which allows us to get the explicit form of the Green’s function associated to (2.31). From
the expression of H�, it is a simple matter to verify that it is continuous in [0, 1] × [0, 1]
and positive in (0, 1) × (0, 1).

From the proof of the previous proposition, we infer that formula (2.33), where the
Green’s function H� appears, provides us the unique solution of (2.26) for all the boundary
conditions u′(0) = a ∈ ℝ, u(1) = 0, whenever ℎ(t) + ka

t ∈ L2
1(0, 1).

The boundary value problem

−u′′(t)− k

t
u′(t) + �2u(t) = ℎ(t), u(1) = b,

with b ∕= 0, has also a unique solution in C2(0, 1]∩C1[0, 1] (if we had two different solutions
w1, w2, then w1 −w2 would be the unique solution of the homogeneous problem, which is
identically zero), given by u0(t) +

b
u1(1)

u1(t), where u0(t) is the unique solution of

−u′′(t)− k

t
u′(t) + �2u(t) = ℎ(t),

in Hk(0, 1). Note that for some functions ℎ(t) /∈ X we can still obtain a solution of
equation (2.26) via the Green’s function, which possibly has infinite derivative at t = 0,
or simply does not have derivative at t = 0, but we will not consider these cases.

Consider now the equation for k = 1

−u′′(t)− 1

t
u′(t) + �2u(t) = ℎ(t), t ∈ (0, 1], (2.34)

where � > 0 and ℎ ∈ Lq1(0, 1) ≡
{
ℎ(t) measurable :

∫ 1
0 tℎ(t)

q dt <∞
}
, for some 1 < q < 2.

Consider also the functional

J(u) :=

∫ 1

0

1

2

(
t u′(t)2 + �2t u2(t)

)
+ t ℎ(t)u(t) dt,
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defined in H1(0, 1). We have

∫ 1

0
t ℎ(t)u(t) dt ≤

(∫ 1

0
tu(t)p dt

)1/p(∫ 1

0
tℎ(t)q dt

)1/q

.

Following [23], since for any p > 2 we have up ≤ Ce∣u∣
2−�

, for some C, � > 0, we know
that

∫ 1
0 tu(t)

p dt <∞, and therefore the functional J(u) is well defined in H1(0, 1).

We can state exactly the same results obtained above for k > 1 in the case k = 1, just
noticing that in this case v1(t) ∼ ln t, and v′1(t) ∼ t−1. The fact that 1 < q < 2 allows us
to conclude that with a function ℎ(t) ∼ 1

t , J(u) is well defined, and the associated solution
is the one obtained via Green function, with non-zero derivative at t = 0.

Nonlocal Linear Problems

Let us consider the linear boundary value problem in the interval [0, 1]

−u′′(t) + �2u(t) = ℎ(t), u(0) = u(1) = 0, (2.35)

where � > 0 and ℎ ∈ C[0, 1].

This problem has a well known Green’s function

G�(t, s) =

⎧
⎨
⎩

sinh(�) cosh(�t) sinh(�s)−cosh(�) sinh(�s) sinh(�t)
� sinh(�) , t ≥ s

sinh(�) cosh(�s) sinh(�t)−cosh(�) sinh(�t) sinh(�s)
� sinh(�) , t ≤ s,

and therefore we have

u(t) =

∫ 1

0
G�(t, s)ℎ(s) ds.

Proposition 2.3.16. Let w ∈ C[0, 1] ∩ C2(0, 1) be such that

−w′′(t) + �2w(t) +M

∫ 1

0
w(�) d� = 0, w(0) = w(1) = 0, (2.36)

for some � > 0, M > 0. Then we have w(t) = 0 for all t ∈ [0, 1].

Proof. Assume towards a contradiction that there exists w(t) ∕= 0 satisfying (2.36).

If w(t) ⪈ 0 (by ⪈ we mean ≥ and ∕≡), then w reaches a positive maximum for some
t0 ∈ (0, 1), where we would have the contradiction

0 < −w′′(t0) + �2w(t0) +M

∫ 1

0
w(�) d� = 0.

If w(t) ⪇ 0, we get a contradiction with a similar argument. So w(t) must have a positive
maximum for some t1 ∈ (0, 1) and a negative minimum for some t2 ∈ (0, 1). With t = t1
in (2.36) we get

∫ 1
0 w(�) d� < 0, and with t = t2 in (2.36) we get

∫ 1
0 w(�) d� > 0. The

conclusion now follows.
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Lemma 2.3.17. Let u ∈W 2,1(0, 1) be such that

−u′′(t) + �2u(t) +M

∫ 1

0
u(�) d� = f(t) ≥ 0, u(0) = a ≥ 0, u(1) = b ≥ 0, (2.37)

for some � > 0, M > 0, and consider the C2[0, 1] functions U, V , where U(t) is the unique
solution of (2.35) with ℎ(t) = 1 and V (t) is the unique solution of −V ′′(t) + �2V (t) = 0,
with boundary conditions V (0) = a, V (1) = b (note that U and V depend on �).

Suppose that

M

1 +M
∫ 1
0 U(�) d�

≤ inf
0<t,s<1

G�(t, s)

U(t)U(s)
, and

M U(t)

1 +M
∫ 1
0 U(�) d�

≤ V (t)
∫ 1
0 V (�) d�

. (2.38)

Then we have u(t) ≥ 0 for all t ∈ [0, 1].

Proof. Let v and w be such that

− v′′(t) + �2v(t) = f(t), v(0) = a, v(1) = b,

− w′′(t) + �2w(t) =
M
∫ 1
0 v(�) d�

1 +M
∫ 1
0 U(�) d�

, w(0) = w(1) = 0.

As w(t) =
M

∫ 1
0
v(�) d�

1+M
∫ 1
0 U(�) d�

U(t), it can be easily verified that v −w satisfies (2.37). Proposi-

tion 2.3.16 allows us to conclude that u = v − w, so we only need to prove that v ≥ w.
Using the Green’s function G� defined above and the fact that G�(t, s) = G�(s, t), we

have

v(t) =

∫ 1

0
G�(t, s)f(s) ds + V (t), and

w(t) =
M

1 +M
∫ 1
0 U(�) d�

∫ 1

0
G�(t, �) d�

∫ 1

0

(∫ 1

0
G�(�, s)f(s) ds + V (�)

)
d�

=
M

1 +M
∫ 1
0 U(�) d�

(∫ 1

0
U(t)U(s)f(s) ds + U(t)

∫ 1

0
V (�) d�

)
,

and therefore, if the conditions in (2.38) are verified, we have v ≥ w.

Remark 2.3.18. The explicit form of U and V is:

U(t) =− e−�t
(
−1 + e�t

) (
−e� + e�t

)

(1 + e�)�2

V (t) =
e−�t

(
−be� + ae2� − ae2�t + be�+2�t

)

−1 + e2�
.

Let us now consider the linear boundary value problem

−u′′(t)− k

t
u′(t) + �2u(t) = ℎ(t), u(1) = b, u ∈ C2(0, 1] ∩ C1[0, 1], (2.39)

where k ≥ 1, � > 0 and ℎ ∈ X.
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As stated before, this problem has a unique solution given by

u(t) =

∫ 1

0
H�(t, s)ℎ(s) ds +

b

u1(1)
u1(t),

where, as before, u1(t) is the solution of the homogeneous equation with u1(0) = 1,
u′1(0) = 0.

Lemma 2.3.19. The Green’s function H�(t, s) satisfies the following symmetry property:

tkH�(t, s) = skH�(s, t).

Proof. Let u1, u2 be such that

−u′′i (t)−
k

t
u′i(t) + �2ui(t) = fi(t), u′i(0) = ui(1) = 0, i = 1, 2

for some continuous functions f1, f2. The equations above are obviously equivalent to

−
(
tku′i(t)

)′
+ �2tkui(t) = tkfi(t)

Using this form of the equations, integrating by parts we obtain
∫ 1

0
tkf1(t)u2(t) dt =

∫ 1

0
tkf2(t)u1(t) dt,

and therefore
∫ 1

0

∫ 1

0
tkf1(t)H�(t, s)f2(s) ds dt =

∫ 1

0

∫ 1

0
tkf2(t)H�(t, s)f1(s) ds dt.

Given the arbitrariness of f1 and f2, the conclusion follows now easily.

Proposition 2.3.20. Let w ∈ C2[0, 1] be such that

−w′′(t)− k

t
w′(t) + �2w(t) +M

∫ 1

0
�kw(�) ds = 0, w′(0) = w(1) = 0, (2.40)

for some � > 0, M > 0. Then we have w(t) = 0 for all t ∈ [0, 1].

Proof. We obtain w(t) = 0 using similar arguments to those used in the proof of Proposi-
tion 2.3.16.

Lemma 2.3.21. Let u ∈ C2[0, 1] be such that

−u′′(t)− k

t
u′(t) + �2u(t) +M

∫ 1

0
�ku(�) ds = f(t) ≥ 0, u′(0) = a ≤ 0, u(1) = b ≥ 0,

(2.41)
for some � > 0, M > 0. Suppose that

M

1 +M
∫ 1
0 �

kU(�) d�
≤ inf

0<t,s<1

H�(t, s)

U(t)U(s)sk
, and

M U(t)

1 +M
∫ 1
0 �

kU(�) d�
≤ u1(t)∫ 1

0 �
ku1(�) d�

(2.42)
where U(t) is the unique solution of (2.39) with ℎ(t) = 1, a, b = 0. Then we have u(t) ≥ 0
for all t ∈ [0, 1].
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Proof. Note that f ∈ X. Let v and w be such that

− v′′(t)− k

t
v′(t) + �2v(t) = f(t), v ∈ C2(0, 1] ∩ C1[0, 1], v(1) = b,

− w′′(t)− k

t
w′(t) + �2w(t) =

M
∫ 1
0 �

kv(�) d�

1 +M
∫ 1
0 �

kU(�) d�
, w′(0) = w(1) = 0.

As w(t) =
M

∫ 1
0 �

kv(�) d�

1+M
∫ 1
0 �

kU(�) d�
U(t), it can be easily verified that v−w satisfies (2.41). Propo-

sition 2.3.20 allows us to conclude that u = v −w, so we only need to prove that v ≥ w.
Using the Green’s function H� defined above and the previous lemma, we have

v(t) =

∫ 1

0
H�(t, s)f(s) ds+

b

u1(1)
u1(t), and

w(t) =
M

1 +M
∫ 1
0 �

kU(�) d�

∫ 1

0
H�(t, �) d�

∫ 1

0
�k
(∫ 1

0
H�(�, s)f(s) ds +

b

u1(1)
u1(�)

)
d�

=
M

1 +M
∫ 1
0 �

kU(�) d�

(∫ 1

0
U(t)U(s)skf(s) ds+

bU(t)

u1(1)

∫ 1

0
�ku1(�) d�

)
,

and therefore, if the conditions in (2.42) are verified, we have v ≥ w.

Remark 2.3.22. In the two previous results we do not need to consider C2[0, 1] functions,
the same conclusions are valid in C1[0, 1) ∩ C2 (0, 1).

Nonlocal Semi-Linear Problems

Consider the boundary value problem

−u′′(t) + �2u(t) +M

∫ 1

0
∣u(�)∣ d� = f(t), u(0) = a ≥ 0, u(1) = b ≥ 0. (2.43)

Proposition 2.3.23. If f ∈ L1(0, 1) and

M < min
u ∈ H1

0 (0, 1)
u ∕= 0

∫ 1
0 u

′2(�) + �2u2(�) d�
(∫ 1

0 ∣u(�)∣ d�
)2 ,

then problem (2.43) has a unique solution.

Proof. We shall consider two cases:

(i) If f(t) = 0, and a = b = 0, multiplying the equation in (2.43) by u and integrating
by parts, we have

∫ 1

0
u′2(�) + �2u2(�) d� = −M

∫ 1

0
∣u(�)∣ d�

∫ 1

0
u(�) d� ≤M

(∫ 1

0
∣u(�)∣ d�

)2

,

and the conclusion follows.
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(ii) If f(t) ∕= 0, let u1, u2 be such that

−u′′i (t) + �2ui(t) +M

∫ 1

0
∣ui(�)∣ d� = f(t), ui(0) = a, ui(1) = b, i = 1, 2.

Setting w = u1 − u2, we have

−w′′(t) + �2w(t) +M

∫ 1

0
�(�)w(�) d� = 0, w(0) = w(1) = 0,

where �(�) = ∣u1(�)∣−∣u2(�)∣
u1(�)−u2(�) . Since ∣�(�)∣ ≤ 1, using an argument similar to the one

in (i), we get w(t) = 0, and therefore there is a unique solution to (2.43).

Proposition 2.3.24. We have

min
u ∈ H1

0 (0, 1)
u ∕= 0

∫ 1
0 u

′2(�) + �2u2(�) d�
(∫ 1

0 ∣u(�)∣ d�
)2 = min

u ∈ H1
0 (0, 1)

u ∕= 0

∫ 1
0 u

′2(�) + �2u2(�) d�
(∫ 1

0 u(�) d�
)2 .

Proof. If a function u0 minimizes the left-hand side, then, since ∣u0∣ ∈ H1
0 (0, 1), the right-

hand side has the same value.

Let

l1 = min
u ∈ H1

0 (0, 1)
u ∕= 0

∫ 1
0 u

′2(�) + �2u2(�) d�
(∫ 1

0 u(�) d�
)2 = min

u ∈ H1
0 (0, 1)∫ 1

0 u(�) d� = 1

∫ 1

0
u′2(�) + �2u2(�) d�.

To find l1, we need to solve a constrained extrema problem, which we can do using La-
grange Multipliers (the proposition above allows us to use a differentiable restriction). Our
minimizer u0 satisfies

−u′′0(t) + �2u0(t) = m, u0(0) = u0(1) = 0,

where m is the Lagrange Multiplier, so u0(t) = mU(t). Since
∫ 1
0 u0(�) d� = 1, we get

m =
(∫ 1

0 U(�) d�
)−1

, and consequently

l1 =

∫ 1

0
u′0

2
(�) + �2u20(�) d� =

1
∫ 1
0 U(�) d�

.

Theorem 2.3.25 (Maximum Principle 3). Let �,M be positive constants, G� the Green’s
function associated to (2.35), U(t) =

∫ 1
0 G�(t, s) ds, and V (t) the unique solution of

−V ′′(t) + �2V (t) = 0, with boundary conditions V (0) = a ≥ 0, V (1) = b ≥ 0. Sup-
pose that

M

1 +M
∫ 1
0 U(�) d�

≤ inf
0<t,s<1

G�(t, s)

U(t)U(s)
,

V (t)
∫ 1
0 V (�) d�

≥ M U(t)

1 +M
∫ 1
0 U(�) d�

,
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and

M <
1

∫ 1
0 U(�) d�

.

Then, if u ∈ C2[0, 1] satisfies

−u′′(t) + �2u(t) +M

∫ 1

0
∣u(�)∣ d� ≥ 0, u(0) = a ≥ 0, u(1) = b ≥ 0, (2.44)

we have u(t) ≥ 0.

Proof. Let f(t) = −u′′(t) + �2u(t) +M
∫ 1
0 ∣u(�)∣ d� . By Lemma 2.3.17, we know that the

linear problem (2.37) has a nonnegative solution, and therefore, this nonnegative solution
has to be the only solution of (2.43).

Using Mathematica, we have the following estimates relative to the first pair of condi-
tions:

� = 0.2 Mmax ≈ 5.98

� = 0.5 Mmax ≈ 5.92

� = 1 Mmax ≈ 5.71

� = 2 Mmax ≈ 4.89

� = 4 Mmax ≈ 2.74

� = 7 Mmax ≈ 0.62

� = 10 Mmax ≈ 0.09

The last condition is less restrictive, as it is shown by the following graph:
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Figure 2.2: l1(�) =
1∫ 1

0 U(�) d�

Using the same technique, we can reach similar results for the boundary value problem

−u′′(t)−k
t
u′(t)+�2u(t)+M

∫ 1

0
�k ∣u(�)∣ d� = f(t), u′(0) = a ≤ 0, u(1) = b ≥ 0. (2.45)

Let us consider the Hilbert Space

Hk(0, 1) =

{
u ∈ AC (0, 1] :

∫ 1

0
�ku′2(�) d� <∞, u(1) = 0

}
,

with the norm ∥u∥ =
(∫ 1

0 �
ku′2(�) d�

)1/2
. Following [7], for any u ∈ Hk(0, 1) with k > 1,

we have
∫ 1
0 �

ku2 ≤ C ∥u∥2, for some C > 0.
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Remark 2.3.26. Note that if u ∈ Hk(0, 1), then ∣u∣ ∈ Hk(0, 1).

Proposition 2.3.27. If f ∈ X and

M < min
u ∈ Hk(0, 1)

u ∕= 0

∫ 1
0 �

k
(
u′2(�) + �2u2(�)

)
d�

(∫ 1
0 �

k ∣u(�)∣ d�
)2 ,

then problem (2.45) has a unique solution.

Proof. As stated before we can write equation (2.45) in the form

−
(
tku′(t)

)′
+ �2tku(t) +Mtk

∫ 1

0
�k ∣u(�)∣ d� = tkf(t)

We shall consider two cases:

(i) If f(t) = 0, a, b = 0, multiplying the equation in (2.45) by u and integrating by
parts, we have

∫ 1

0
�k
(
u′2(�) + �2u2(�)

)
d� = −M

∫ 1

0
�k ∣u(�)∣ d�

∫ 1

0
�ku(�) d� ≤M

(∫ 1

0
�k ∣u(�)∣ d�

)2

,

and the conclusion follows.

(ii) If f(t) ∕= 0, let u1, u2 be such that

−u′′i (t)−
k

t
u′i(t) + �2ui(t) +M

∫ 1

0
�k ∣ui(�)∣ d� = f(t), u′i(0) = a, ui(1) = b,

Setting w = u1 − u2, we have

−
(
tkw′(t)

)′
+ �2tkw(t) +Mtk

∫ 1

0
∣�(�)∣ �k ∣w(�)∣ d� = 0, w′(0) = w(1) = 0,

where �(�) = ∣u1(�)∣−∣u2(�)∣
u1(�)−u2(�) . Since ∣�(�)∣ ≤ 1, using an argument similar to the one

in (i), we get w(t) = 0, and therefore there is a unique solution to (2.43).

Proposition 2.3.28. We have

min
u ∈ Hk(0, 1)

u ∕= 0

∫ 1
0 �

k
(
u′2(�) + �2u2(�)

)
d�

(∫ 1
0 �

k ∣u(�)∣ d�
)2 = min

u ∈ Hk(0, 1)
u ∕= 0

∫ 1
0 �

k
(
u′2(�) + �2u2(�)

)
d�

(∫ 1
0 �

ku(�) d�
)2 .

Proof. If a function u0 minimizes the left-hand side, then, since ∣u0∣ ∈ Hk(0, 1), the right-
hand side has the same value.
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Let

l2 = min
u ∈ Hk(0, 1)

u ∕= 0

∫ 1
0 �

k
(
u′2(�) + �2u2(�)

)
d�

(∫ 1
0 �

ku(�) d�
)2 = min

u ∈ Hk(0, 1)∫ 1
0 �

ku(�) d� = 1

∫ 1

0
�k
(
u′2(�) + �2u2(�)

)
d�.

So, to find l2, we need to solve another constrained extrema problem. Our minimizer u0
satisfies

−u′′0(t)−
k

t
u′0(t) + �2u0(t) = m, u′0(0) = u0(1) = 0,

where m is the Lagrange Multiplier, so u0(t) = mU(t). Since
∫ 1
0 �

ku0(�) d� = 1, we get

m =
(∫ 1

0 �
kU(�) d�

)−1
, and consequently

l2 =

∫ 1

0
�k
(
u′0

2
(�) + �2u20(�)

)
d� =

1
∫ 1
0 �

kU(�) d�
.

We can now state the following improved version of Maximum principle 2 (Lemma 2.3.6):

Theorem 2.3.29 (Maximum Principle 4). Let �,M be positive constants, H� the Green’s
function associated to (2.39), and U(t) =

∫ 1
0 H�(t, s) ds. Suppose that

M

1 +M
∫ 1
0 �

kU(�) d�
≤ inf

0<t,s<1

H�(t, s)

U(t)U(s)sk
,

M U(t)

1 +M
∫ 1
0 U(�) d�

≤ u1(t)∫ 1
0 �

ku1(�) d�
,

and

M <
1

∫ 1
0 �

kU(�) d�
.

Then, if for 0 < t ≤ 1, u ∈ C2[0, 1] satisfies

−u′′(t)− k

t
u′(t) + �2u(t) +M

∫ 1

0
�k ∣u(�)∣ ds ≥ 0, u′(0) = a ≤ 0, u(1) = b ≥ 0, (2.46)

we have u(t) ≥ 0.

Proof. Let f(t) = −u′′(t) − k
t u

′(t) + �2u(t) + M
∫ 1
0 �

k ∣u(�)∣ ds. By Lemma (2.3.21),
we know that the linear problem (2.41) has a nonnegative solution, and therefore, this
nonnegative solution has to be the only solution of (2.45).

We have the following estimates relative to the cases k = 1, 2, 3:

(i) k=1:

� = 0.25 Mmax ≈ 15.95

� = 1 Mmax ≈ 15.30

� = 5 Mmax ≈ 5.71
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(ii) k=2:

� = 0.25 Mmax ≈ 29.9

� = 1 Mmax ≈ 28.9

� = 5 Mmax ≈ 12.2

(iii) k=3:

� = 0.25 Mmax ≈ 47.9

� = 0.5 Mmax ≈ 47.5

� = 1 Mmax ≈ 46.5

� = 3 Mmax ≈ 36.0

� = 5 Mmax ≈ 21.5

� = 10 Mmax ≈ 2.2

The last condition is also less restrictive. We present here the graph of l2(�) in the
case k = 3:
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Figure 2.3: l2(�) =
1∫ 1

0 �
3U(�) d�

We can now use this Maximum Principle 4 to obtain more general results for the lower
and upper solutions method in our problem.

For a given function u(t) ∈ C[0, 1], consider the boundary value problem

−v′′(t)− n− 1

t
v′(t) + �2v(t) = f

(
u(t), !n

∫ 1

0
sn−1g (v(s)) ds

)
+ �2u(t),

with v′(0) = 0 = v(1). Using the operator Lu = −u′′ − n−1
t u′ + �2u, in the space C∗ ={

u ∈ C2[0, 1] : u′(0) = u(1) = 0
}
, this problem is equivalent to the fixed point equation

v = L−1

(
f

(
u, !n

∫ 1

0
sn−1g (v (s)) ds

)
+ �2u

)
≡ Φuv. (2.47)

It turns out that it is advantageous to look at Φu as an operator from L2
n−1(0, 1)

into itself. Noticing that L−1 is a compact self-adjoint operator in this space with norm
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∥L−1∥ = (�2n + �2)−1 where �n is the first positive zero of the Bessel function Jn−2
2
, it is

easy to see that if f(u, v) is k1-Lipschitz in v, g is k2-Lipschitz, then Φu is Lipschitz with
constant !nk1k2

(�2n+�
2)n

. In particular, when the condition

!nk1k2
(�2n + �2)n

< 1 (2.48)

is satisfied, Φu is a contraction mapping, and therefore has a unique fixed point.
Using maximum principle 2.3.29, we get the following improved version of Theorem

4.10 in [19]:

Theorem 2.3.30. Suppose that f(u, v) is k1-Lipschitz in v, g is k2-Lipschitz. Assume
that M ≡ k1k2!n and � satisfy the hypothesis of the Maximum Principle 2.3.29, condi-
tion (2.48) holds and

f(u2, v)− f(u1, v) ≥ −�2(u2 − u1),

for all v ∈ ℝ, and u1 ≤ u2. Let �0 and �0 be a lower and an upper solution of (2.18)–
(2.19) respectively, with �0 ≤ �0 in [0, 1]. If we take (�n)n∈ℕ0

and (�n)n∈ℕ0
such that,

�n+1 = Φ�n�n+1 and �n+1 = Φ�n�n+1, for all n ∈ ℕ0,

we obtain
�0 ≤ �1 ≤ ⋅ ⋅ ⋅ ≤ �n ≤ ⋅ ⋅ ⋅ ≤ �n ≤ ⋅ ⋅ ⋅ ≤ �1 ≤ �0.

The monotone bounded sequences (�n)n∈ℕ0
, (�n)n∈ℕ0

defined above are convergent in
C[0, 1] to solutions of (2.18)–(2.19).

Example 2.3.31. Let us consider the nonlocal differential equation

−u′′(t)− 2

t
u′(t) = f

(
u, 4�

∫ 1

0
s2
(
u(s)2 + 1

3

)
ds

)
(2.49)

where

f(u, v) =

{
(
√
u+ 1) (sin v + 1) + 4.1, u ≤ 1(

1
u + 1

)
(sin v + 1) + 4.1, u ≥ 1,

with boundary conditions u′(0) = u(1) = 0 and �0 = 1− t2 and �0 =
4
3

(
1− t2

)
.
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Figure 2.4: f(u, v), �0 and �0
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After some computation, we can verify that �0, �0 are respectively a lower and an
upper solution of (2.49), both satisfying the considered boundary conditions (see pictures
below). Since 0 ≤ �0(t) ≤ �0(t) ≤ 4

3 , for all t ∈ [0, 1], we can consider k1 = 2, k2 =
8
9 , and

� = 1. Moreover �3 = �. Setting M = 64�
9 , the conditions of theorem 2.3.30 are satisfied,

and therefore, using the described iterative method, we can approximate a solution u(t)
of (2.49) satisfying u′(0) = u(1) = 0 and 1− t2 ≤ u(t) ≤ 4

3

(
1− t2

)
.
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Figure 2.5: Both sides of (2.49) for �0 and �0

Final remarks

We opted to make a detailed analysis of a particular problem, but it would be interesting
to study also different types of nonlocal problems. Nonlocal problems even without a
singularity deserve more study, that would allow us to better understand the main differ-
ences with the more classical problems. Analysis of problems with nonlocal terms in the
boundary conditions is also an area that seems to be of great interest.



Chapter 3

Boundary value problems in

infinite intervals

3.1 Second order problems

3.1.1 Introduction

The study of existence of positive homoclinics of the ordinary differential equation

u′′(x) = a(x)u− g (u) (3.1)

where g(0) = 0 is partially motivated by a problem in higher dimensions: the search for
special stationary states of the Klein-Gordon type equation

Φtt −ΔΦ+ a2Φ = f (Φ) ,

where Φ : ℝ × ℝN → ℂ is a complex function, a ∈ ℝ and f(� ei�) = f(�)ei�. Looking for
a “standing wave” solution Φ(t, x) = ei!tu(x), one is led to the equation

−Δu+
(
a2 − !2

)
u = f(u). (3.2)

The corresponding Euler-Lagrange functional is

1

2

∫

ℝN

(
∣∇u∣2 +

(
a2 − !2

)
u2 − 2F (u)

)
dx,

where F (u) =
∫ u
0 f(s) ds, and for this integral to be well-defined, ∣u∣ needs to vanish at

+∞. Our problem is somehow the corresponding in dimension one (the case of radial
solutions of (3.2) when N ≥ 2 yields a different kind of ODE), but working with a non-
autonomous term a(x)u instead. In [14], G. Cerami surveys the ℝN non-autonomous
case for ℕ ≥ 3, under several conditions concerning the non-autonomous term. There, an
overall picture is given of what is known in the cases where some symmetry properties in
the domain and in the solution are required, in particular the case of radial solutions. Non
symmetric problems are addressed as well.

Equations of type (3.1) have been studied in the last two decades, especially in the
case where g(u) is a superlinear power. Here we are interested not only in superlinear
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functions g(u), but also in the case where g(u) is bounded. P. Korman and A. Lazer
gave a variational approach for the cases g(u) = u3 in [32] and g(u) = up, where p > 1,
in [33]. In these papers, the coefficient a(x) is increasing in [0,+∞). Here we partially
generalize some of those results by allowing a to have a different behaviour, although we
confine ourselves to the case where a is even, thus reducing our problem to the half line
[0,+∞). We shall solve a sequence of boundary value problems in [0, T ] and if we consider
an appropriate sequence of T ’s tending to +∞, a nontrivial solution of the infinite interval
problem will be found as the limit of the corresponding solutions uT . M. Grossinho,
F. Minhós and S. Tersian also gave a similar variational approach for this problem in [29],
but working with two simultaneous powers in the nonlinear term. Related with these
problems we also mention the papers [3], [24], [41], [45] and [46].

The autonomous problem has been completely solved by H. Berestycki and P. Lions
[5] as they gave a necessary and sufficient condition for the problem

−u′′ = f(u), u(±∞) = 0

to have a unique positive homoclinic (up to translation), and gave some important results
concerning the shape of that solution, which will be used ahead. Some of the hypotheses
used are reminiscent of those used by Berestycki and Lions. In Subsection 3.1.2 we recall
some of those results for the autonomous equation u′′ = au − g(u) and considering the
following hypotheses:

(H1) There exists q > 2 such that

0 < qG(u) ≤ u g(u), ∀u ∈ (0,+∞),

where G(u) =
∫ u
0 g(s) ds.

(H2) g(u) = o (u) at u = 0.

In Subsection 3.1.3, we treat the non-autonomous equation (3.1) in the case where
a(x) is positive and has a behaviour, which, as far as we know, has deserved less attention
in the literature: we mean the case where a(x), while having a limit at +∞, does not
approach its limit in an increasing, or even monotonic way. The arguments that we will
use to deal with equation (3.1) are also valid for the more general equation

u′′ = (a (x) + � b (x))u− c (x) g (u) ,

where a(x) is as above, � is small enough, b(x) and c(x) are bounded functions, with
0 < � ≤ c(x) for some constant �.

Concerning the function g, we assume (H1), (H2). The assumptions for a(x) will be

(A1) there exist 0 < a < A such that 0 < a(x) ≤ A ∀x ≥ 0 and limx→+∞ a(x) = a,

(A2) JA
∗ < 2Ja

∗.

Here Ja
∗ = 2

∫ ua(0)
0 u

√
a− 2

p+1u
p−1du is the value of the Euler-Lagrange functional asso-

ciated with the autonomous problem
{
u′′ = au− up

u′(0) = u(+∞) = 0,
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computed at its nontrivial solution ua.

We also analyse this problem using a different approach - a shooting technique - but
only presenting the computations for the simpler case g(u) = u3. The non-autonomous
term a(x) considered is positive and nondecreasing (does not necessarily have finite limit
when x tends to +∞). We use a connectedness argument used in the paper of H. Beresty-
cki, P. Lions and L. Peletier [6] to prove the existence of a solution satisfying the requested
conditions.

In Subsection 3.1.5 we deal with the problem with a bounded nonlinearity. Without
assuming the strong assumption (H1) (not even partially in an interval [0, r]), the estimates
become less obvious. We restrict ourselves to the case where

(A′
1) 0 < a(x) ≤ A ∀x ≥ 0 and there exists x0 > 0 such that a(x) ≡ a ∀x ≥ x0.

Subsections 3.1.6 and 3.1.7 treat the autonomous and non-autonomous problems for
the differential equation with an extra dissipative term. Weighted Banach spaces play a
crucial role in this generalization.

The last subsection concerns the search of an heteroclinic solution for the differential
equation involving the p-Laplacian operator

(∣∣u′
∣∣p−2

u′
)′

+ cu′ + g(u) = 0,

where p > 1 and g(u) is a type A function in [0, 1], that is, continuous, g(0) = g(1) = 0
and g is positive in (0, 1). We will take a similar approach to the one used in [39].

3.1.2 Autonomous problem

In this subsection we make some considerations for the autonomous differential equation

u′′ = a u− g (u) , (3.3)

with a ∈ ℝ+ and g > 0. We will divide the subsection into two parts: first we deal
with an easier case where g(u) is a power, and then we deal with the more general case.
These are classic results (some of them based in the mentioned paper of H.Berestycki and
P.Lions [5]), which we will use in the next subsection to deal with the non-autonomous

case. Assume that conditions (H1) and (H2) are satisfied. The graph of au
2

2 −G(u) and
the phase plane for the admissible function g(u) = u3 are:

Figure 3.1: au
2

2 −G(u)
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Figure 3.2: phase plane

Hypotheses (H1) and (H2) are well known sufficient conditions for the existence of a
positive solution via the Mountain-pass Theorem for the equation (3.3) with boundary
conditions u′(0) = 0 and u(T ) = 0, for 1 ≤ T < +∞. In fact, for the underlying Euler-
Lagrange functional

Ja,T (u) =

∫ T

0

(
u′(x)2 + a u(x)2 − 2G(u+)

)
dx,

defined in the functional space H∗
T ≡

{
H1[0, T ] : u(T ) = 0

}
, we have Ja,T (0) = 0, and, for

� > 0 small enough, if ∥u∥ = �, then Ja,T (u) > �(�) > 0. The Palais-Smale condition is
satisfied and, setting u� = �(1 − x2), it is easy to see that Ja,T (u

+
� ) < 0 for � > 0 large

enough (independent of T > 1). Since the autonomous problem has a unique solution, the
positive solution obtained via mountain-pass is the well-known phase plane solution.

Consider first the case where g(u) = up, for p > 1, where hypotheses (H1) and (H2)
are obviously verified. In this case the computations are easier to follow.

We know that there exists a positive homoclinic ua(x) at u = 0 passing through (�0, 0),

where �0 = (a(p+1)
2 )

1
p−1 (in the general case g(u), �0 will be the smallest positive value u

such that a u2 − 2G(u) = 0).
Multiplying the differential equation by u′ and integrating, we get

u′2 − a u2 +
2

p+ 1
up+1 = C, C ∈ ℝ. (3.4)

The homoclinic ua corresponds to the constant C = 0, and therefore we have

u′a = −ua
√
a− 2

p+ 1
up−1
a , ua(0) = �0.

Considering the formally associated Euler-Lagrange functional

Ja(u) =

∫ +∞

0

(
u′(x)2 + a u(x)2 − 2

p+ 1
u+(x)

p+1

)
dx,

in the functional space H1[0,+∞), the “critical level” of ua satisfies

Ja(ua) =

∫ +∞

0

(
u′2a + a u2a −

2

p+ 1
up+1
a

)
dx = 2

∫ ua(0)

0
u

√
a− 2

p+ 1
up−1du ≡ Ja

∗.
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Let us now consider the boundary value problem

{
u′′(x) = a u(x)− u(x)p

u′(0) = 0, u(T ) = 0,
(3.5)

and the associated functional

Ja,T (u) =

∫ T

0

(
u′2 + a u2 − 2

p+ 1
u+

p+1

)
dx,

for u ∈ H∗
T . As we have seen, via the Mountain-pass Theorem, the boundary value problem

(3.5) has a nontrivial positive solution ua,T , which we identify also in the phase plane.

Proposition 3.1.1. The solution ua,T of (3.5) satisfies limT→+∞ ua,T (0) = ua(0).

Proof. Using (3.4) we have u′a,T
2 = a ua,T

2 − 2
p+1ua,T

p+1 +CT for some constant CT , and

consequently u′a,T (T )
2 = CT > 0. If there exists a sequence of T ′s tending to +∞ such

that u′a,T (T ) → c < 0, then, by a phase plane analysis, knowing that the trajectories in
the phase plane cannot cross each other, we could easily see that trajectories that cross
the u′ axis close to c, could not be positive for an arbitrarily large interval [0, T ]. So we
must have u′a,T (T ) → 0 and therefore CT → 0. Since CT = −a ua,T (0)2 + 2

p+1ua,T (0)
p+1,

we must have ua,T (0) → �0 = ua(0) and ua,T (0) > ua(0).

Proposition 3.1.2. The critical value Ja,T (ua,T ) tends to Ja
∗ as T tends to +∞.

Proof. We have

Ja,T (ua,T ) =

∫ T

0

(
u′a,T (x)

2 + a ua,T (x)
2 − 2

p+ 1
ua,T

p+1

)
dx =

=

∫ ua,T (0)

0

⎛
⎜⎜⎝2

√
u2
(
a− 2

p+ 1
up−1

)
+ CT − CT√

u2
(
a− 2

p+1u
p−1
)
+ CT

⎞
⎟⎟⎠ du.

For simplicity let f(u) = u2
(
a− 2

p+1u
p−1
)
. Consider the following decomposition:

∫ ua,T (0)

0

CT√
f(u) + CT

du =

∫ ua(0)

0

CT√
f(u) + CT

du+

∫ ua,T (0)

ua(0)

CT√
f(u) + CT

du.

Since f(u) ≥ 0 for u ∈ [0, ua(0)], the first integral is smaller than ua(0)
√
CT . The second

integral has a singularity at u = ua,T (0), and considering the Taylor expansion of f(u) at
u = ua,T (0), we easily check that there exists a constant k > 0 such that

∫ ua,T (0)

ua(0)

CT√
f(u) + CT

du ≤
∫ ua,T (0)

ua(0)

k cT√
ua,T (0) − u

du.

It is now easy to conclude that
∫ ua,T (0)
0

CT√
f(u)+CT

du → 0 and since ua,T (0) → ua(0) and

cT → 0, the result follows.
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Consider now the differential equation (3.3), with g(u) satisfying (H1) and (H2). In
this case, multiplying the equation by u′ and integrating gives us u′2 = a u2 − 2G(u) +C,
C ∈ ℝ, and taking C = 0, we get the phase plane equation of an homoclinic solution ua.
Note that we can assume that u′a(0) = 0, and, consequently, ua(0) is a zero of the function
a u2 − 2G(u). The classic work of Berestycki and Lions [5] allows us to conclude it must
be the first positive zero �0 of that function.

The underlying Euler-Lagrange functional is

Ja(u) =

∫ +∞

0

(
u′(x)2 + a u(x)2 − 2G(u)

)
dx,

and it is easily seen that

Ja(ua) = 2

∫ ua(0)

0

√
a u2 − 2G(u) du ≡ Ja

∗.

The boundary value problem

{
u′′(x) = a u(x)− g (u (x))

u′(0) = 0, u(T ) = 0
(3.6)

has a positive solution ua,T and

Ja,T (ua,T ) =

∫ ua,T (0)

0
2

√
(a u2 − 2G(u)) −

(
a ua,T (0)

2 − 2G(ua,T (0))
)
du+

+

∫ ua,T (0)

0

a ua,T (0)
2 − 2G(ua,T (0))√

(a u2 − 2G(u)) −
(
a ua,T (0)

2 − 2G(ua,T (0))
) du.

A careful analysis of the phase plane implies that limT→+∞ ua,T (0) = ua(0), and after some
computation, knowing that a �0−g (�0) < 0, we can conclude again that Ja,T (ua,T ) → Ja

∗.

3.1.3 Superlinear nonlinearity

In this subsection we will prove the existence of a solution for the non-autonomous problem
in ℝ+, with u′(0) = 0 and u(+∞) = 0.

Let a(x) be a continuous function defined in ℝ+, satisfying (A1) and (A2). Note that
we could as well have taken a(x) to be a piecewise continuous function.

Remark 3.1.3. For g(u) = u3 condition (A2) is the inequality A < 22/3a.

The arguments given in the previous subsection, concerning the existence of positive
mountain-pass solutions for the autonomous case, are also valid for the non-autonomous
case.

Consider the boundary value problem

{
u′′ = a(x)u− up

u′(0) = 0, u(T ) = 0.
(3.7)
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Setting

JT (u) =

∫ T

0

(
u′2 + a(x)u2 − 2

p+ 1
up+1
+

)
dx,

as in the constant case, this functional has a mountain-pass geometry relative to the local
minimum u = 0 in H∗

T ≡
{
H1[0, T ] : u(T ) = 0

}
, and consequently (3.7) has a positive

nontrivial solution uT . We want to find a solution for the infinite domain problem as the
limit of a sequence of solutions uT , with T → ∞. Let cT be the mountain-pass critical value
of JT , that is, cT = JT (uT ). Defining ΓT =

{

(�) : [0, 1] → H∗

T : 
(0) = 0, 
(1) = u+�
}
, we

know that
cT = inf


∈ΓT

max
�∈[0,1]

JT (
(�)) .

Since ΓT1 ⊆ ΓT2 for T1 < T2, we have cT ≤ c1 for T ≥ 1. Also by comparison we prove
the following result:

Lemma 3.1.4. The critical values cT are such that cT ≤ JA,T (uA,T ).

Multiplying the differential equation by u and integrating, we get

−
∫ T

0
u′2T dx =

∫ T

0

(
a(x)u2T − up+1

T

)
dx,

and consequently, we have

JT (uT ) =
p− 1

p+ 1

∫ T

0
up+1
T dx =

p− 1

p+ 1

∫ T

0

(
u′2 + a(x)u2

)
dx. (3.8)

Extending uT to [0,+∞) by uT (x) = 0 for x ≥ T , it follows that:

Proposition 3.1.5. We have uniform estimates for the Lp+1(0,+∞) and H1(0,+∞)
norms of the solutions uT (for T ≥ 1).

Proof. Since JT (uT ) ≤ c1 for all T > 1, (3.8) allows us to conclude the result.

Corollary 3.1.6. There exists k > 0 such that, for all T > 1,

∣uT (x)∣ ,
∣∣uT ′(x)

∣∣ ,
∣∣uT ′′(x)

∣∣ ≤ k ∀x ∈ [0, T ].

As a consequence, using the diagonal argument, we can pick up a sequence of values
T → +∞ such that uT → u C1-uniformly in compact intervals and uT

′ ⇀ u′ weakly in
L2(0,+∞).

Proposition 3.1.7. uT
′(T ) → 0 as T → +∞.

Proof. If uT
′(T ) ∕→ 0, then, since uT

′ is bounded, there exists a sequence of T ’s tending
to +∞ such that uT

′(T ) → d for some constant d < 0. Consider the initial value problem

{
u′′ = a u− up

u′(0) = d, u(0) = 0.
(3.9)

Let −2c be the largest negative zero of the solution ū of (3.9). We have ū′(−c) = 0,
ū(−c) > 0, ū′(−3c) = 0 and ū(−3c) = −ū(−c). Defining vT (x) = uT (x + T ), we must
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have vT (x) → ū(x) and consequently, for T large enough, we would have uT (T − 3c) < 0,
which is a contradiction since uT does nor vanish before T . Consequently, we must have
uT

′(T ) → 0.

Corollary 3.1.8. Setting lT as the largest maximizer of uT , we have T − lT → +∞.

In the following, let JT (u)
∣∣
[m,n]

=
∫ n
m

(
u′2 + a(x)u2 − 2

p+1u
p+1
+

)
dx.

Lemma 3.1.9. Given an arbitrary positive constant �, there exists x� such that for all
T > 0 and all x > x� we have uT (x) ≤ �.

Proof. Let x�,T = inf {x : ∀t ≥ x, uT (t) ≤ �}. Suppose that x�,T → ∞ as T → ∞. If
uT ≥ � in [0, x�,T ] along a sequence of T ’s, then, because of (3.8), JT (uT ) → ∞, which is
a contradiction.
Claim 1. Given � > 0, JT (uT )

∣∣
[x�,T ,T ]

≤ �(�), where lim�→0 �(�) = 0.

Proof of Claim 1. Multiplying the differential equation by uT and integrating in [x�,T , T ],
we have

JT (uT )
∣∣
[x�,T ,T ]

= −uT (x�,T )uT ′(x�,T ) +
∫ T

x�,T

p− 1

p+ 1
up+1
T dx ≤

≤ � uT
′(x�,T ) + �p−1 p− 1

p+ 1

∫ T

x�,T

u2T dx

Since p− 1 > 0, the conclusion follows easily using Proposition 3.1.5 and Corollary 3.1.6.
Claim 2. Let lT be the largest maximizer of uT . If lT → +∞ as T → +∞, then

JT (uT )
∣∣
[lT ,T ]

→ Ja
∗ as T → +∞.

Proof of Claim 2.Defining vT (x) = uT (x+ lT ), then, along a subsequence, we have vT → v
C1-uniformly in compact intervals, where v′′(x) = a v(x) − v(x)p, v′(0) = 0 and v > 0 in
[0,+∞) by Corollary 3.1.8, that is, v = ua.

Let � > 0 be such that JA
∗ < 2Ja

∗ − 3�. Given an arbitrary � > 0, there exists a
constant c = c(�) such that

∣ua(c)∣ < �,
∣∣u′a(c)

∣∣ < �, (3.10)

and
Ja(ua)

∣∣
[0,c]

> Ja
∗ − �.

For T large enough, uT (x+ lT ) converges uniformly in C1[0, c] to ua(x), so we also have

∣vT (x)− ua(x)∣ < �,
∣∣v′T (x)− u′a(x)

∣∣ < � ∀x ∈ [0, c].

Since lT → ∞, we may assume that ∣a(x)− a∣ < � for x > lT , so we have
∣∣∣JT (uT )

∣∣
[lT ,lT+c]

− Ja(ua)
∣∣
[0,c]

∣∣∣ ≤ (3.11)

≤
∫ c

0

∣∣v′T (x)2 − u′a(x)
2
∣∣+ ∣a(x+ lT )− a∣ vT (x)2+

+ a
∣∣vT (x)2 − ua(x)

2
∣∣+ 2

p+ 1

∣∣vT (x)p+1 − ua(x)
p+1
∣∣ dx ≤ K�
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Using Claim 1, we have

∣∣∣JT (uT )
∣∣
[lT ,T ]

− Ja
∗
∣∣∣ ≤

≤
∣∣∣JT (uT )

∣∣
[lT ,lT+c]

− Ja
∗∣∣

[0,c]

∣∣∣+
∣∣∣JT (uT )

∣∣
[lT+c,T ]

− Ja
∗∣∣

[c,T ]

∣∣∣ ≤ K�+ � + � (�)

and the conclusion follows.

Now, if there is a maximizer lT → ∞, vT (x) is well-defined in [−c, c] and converges
uniformly in C1[−c, c] to ua(x) (considering the even extension of ua). This means that
the solutions uT will have an almost symmetric bell shape (the shape of ua) around lT for
large T . The same arguments used in (3.11) provide us that

∣∣∣JT (uT )
∣∣
[lT−c,lT+c]

− 2Ja(ua)
∣∣
[0,c]

∣∣∣ ≤ K�.

On the other hand, we have

JT (uT )
∣∣
[0,lT−c] =

∫ lT−c

0
u′2T − a(x)u2T − up+1

T dx+

∫ lT−c

0

p− 1

p+ 1
up+1
T dx =

= u′T (lT − c)uT (lT − c) +

∫ lT−c

0

p− 1

p+ 1
up+1
T dx > 0

and consequently, we would conclude that

JA
∗ ≥ JT (uT ) ≥ 2Ja

∗ − 2� −K�− � (�)

This fact contradicts assumption (A2) by Proposition 3.1.2 and Lemma 3.1.4.

In order to show that the limit is not the trivial solution, we need the following

Proposition 3.1.10. There exists a constant c > 0 such that uT (0) > c for all T > 1.

Proof. Suppose towards a contradiction that there exists a sequence of T ′s tending to +∞
such that uT (0) → 0. Then it is obvious that lT tends to +∞ with T . Then we obtain
the same contradiction as in the proof of Lemma 3.1.9.

We are now able to to prove the main result:

Theorem 3.1.11. Under the assumptions (A1), (A2) the boundary value problem

{
u′′ = a(x)u− up

u′(0) = 0, u(+∞) = 0
(3.12)

has a positive solution.

Proof. Using Proposition 3.1.10 and Lemma 3.1.9 we have uT (x) → u(x) C1-uniformly in
compact intervals, with u(x) a positive solution of (3.12).
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Remark 3.1.12. In the case where g(u) is not a power, but satisfies the hypotheses (H1)
and (H2), we have

JT (uT ) =

∫ T

0
(g(u)u − 2G(u)) dx.

Multiplying the differential equation by u and integrating, we get

−
∫ T

0
u′2T dx =

∫ T

0

(
a(x)u2T − uT g(uT )

)
dx,

and consequently, we have

JT (uT ) ≥
(
1− 2

q

)∫ T

0

(
u′2T + a(x)u2T

)
dx =

(
1− 2

q

)∫ T

0
g(uT )uT dx,

so that the same arguments used in the case g(u) = up will provide us similar conclusions.

3.1.4 Cubic nonlinearity and a(x) nondecreasing

Let us focus on the problem

{
u′′ = a(x)u− u3 = u

(
a(x)− u2

)

u′(0) = 0, u(+∞) = 0.
(3.13)

The arguments used below are still valid for a more general power up (with p > 1) instead
of u3, or even more general increasing functions g(u), but for simplicity, we will only
present the calculations for this particular case.

Lemma 3.1.13. Let a(x) be a positive and nondecreasing function defined in [0,+∞). If

u(x) is a solution of (3.13), the energy function E(x) ≡ u′2

2 + u4

4 − a(x)u2

2 is decreasing
in ℝ+.

Proof. Let x1 < x2 ∈ ℝ+. Using the Stieltjes integral, we have

E(x2)− E(x1) =

∫ x2

x1

dE =

∫ x2

x1

(
u′2

2
+
u4

4

)′
dx−

[
a(x)

u2

2

]x2

x1

=

=

∫ x2

x1

a(x)uu′ dx−
[
a(x)

u2

2

]x2

x1

= −
∫ x2

x1

u2

2
da(x) ≤ 0.

Positive solutions of u′′(x) = a(x)u(x) − u(x)3 = u(x)
(
a(x)− u(x)2

)
are concave if

u(x) >
√
a(x) and convex if u(x) <

√
a(x), therefore the graph of the solution of

{
u′′(x) = a(x)u(x) − u(x)3

u(0) = L, u′(0) = 0
(3.14)

where L >
√
a(0), crosses the graph of

√
a(x) at x = cL for some cL > 0, and we may

assume that cL is the minimum value with this property.
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Proposition 3.1.14. As L tends to +∞, cL tends to 0.

Proof. Let us first prove the result for a(x) bounded. Let dL be the minimum value
such that uL(dL) =

L
2 . Suppose towards a contradiction that dL ∕→ 0. This means that

there exists a sequence Ln → +∞ such that dLn > k for some constant k > 0. Let
p = �

2k >
�

2dLn
. Since a(x) is bounded, for n large enough we have a(x) − u2Ln

(x) ≤ −p2
for x ∈ [0, dLn ], so the unique solution v of the initial value problem

{
v′′(x) = −p2v
v(0) = Ln, v′(0) = 0

(3.15)

is such that v(x) ≥ uLn(x) in the interval [0, dLn ]. But v(x) = Ln cos(p x) vanishes at
x = �

2 p = k < dLn , which contradicts v(x) ≥ uLn(x). Consequently we have dL → 0 and
the concavity of uL on [0, cL] implies that cL ≤ 2dL, so we conclude that cL → 0.

In case a(x) is unbounded, consider the bounded auxiliar function

ā(x) =

{
a(x), x ≤ 1

a(1), x > 1.

Applying the result obtained for bounded functions, we get cL < 1 for L > L0 large enough
and since the result only depends on the values of x smaller than cL, the result holds for
the unbounded function a(x).

Corollary 3.1.15. As L tends to +∞, uL
′(cL) → −∞.

Proposition 3.1.16. For L >
√
a(0) large enough, the solution of (3.14) has at least one

zero.

Proof. For simplicity, let us denote cL by c. Given L∗ >
√
a(0) large, let c∗ be the

first value such that the graph of the solution of (3.14) with L = L∗ crosses the graph
of
√
a(x). Taking a sufficiently large L > L∗, the corresponding solution uL of (3.14)

satisfies uL(c) =
√
a(c), for some c < c∗. Suppose towards a contradiction that uL does

not vanish in [0, c∗]. Then, there exists ĉ ∈ [c, c∗] such that uL
′(ĉ) = −

√
a(c)

c∗−c , which is the

slope of the line connecting (c,
√
a(c)) and (c∗, 0), and we have

−
√
a(c)

c∗ − c
− uL

′(c) =
∫ ĉ

c
uL

′′(x) dx ≤
∫ ĉ

c
a(x)uL(x) dx ≤

∫ ĉ

c
a(x)3/2 dx ≤ c∗

√
a(c∗)

3
.

Taking in consideration last corollary, we have a contradiction.

Proposition 3.1.17. Consider the initial value problem (3.14) with L >
√
a(0). If its

solution uL is positive and does not have a local minimum, then uL(+∞) = 0.

Proof. It is obvious that the graph of uL crosses the graph of
√
a(x) with negative deriva-

tive and since the derivative does not vanish again and uL is positive, we must have
u′L(+∞) = 0 and therefore uL(+∞) = k ≥ 0. If k > 0 then

u′′L(+∞) = uL(+∞)
(
a(+∞)− u2L(+∞)

)
> 0

and therefore u′(+∞) = +∞. Then there would exist c ∈ ℝ such that u′L(c) = 0, which is
a contradiction.
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Proposition 3.1.18. If 0 < L <
√

2a(0) then the solution uL of (3.14) is positive in ℝ+

and attains a positive minimum m for some xm ≥ 0.

Proof. Since E(0) = L2

2

(
L2

2 − a(0)
)
< 0, we have E(x) < 0 for every x > 0. If there

exists x0 > 0 such that uL(x0) = 0, then E(x0) =
uL

′(x0)2

2 ≥ 0, which is a contradiction.

If uL does not attain a positive minimum, then uL(+∞) = 0 and u′L(+∞) = 0, and
therefore E(+∞) = 0, which is again a contradiction.

Proposition 3.1.19. If the solution uL of (3.14) attains a positive minimum m for some
xm ≥ 0, then uL is positive for x > xm.

Proof. We can conclude as above, since E(xm) =
m2

2

(
m2

2 − a(xm)
)
< 0.

Theorem 3.1.20. Let a(x) be a positive nondecreasing function. Then problem (3.13)
has at least one positive solution.

Proof. We use a connectedness argument appearing in the paper of H. Berestycki, P. Lions
and L. Peletier [6]. Consider the following subsets of ℝ+:

A =
{
L >

√
a(0) : uL > 0 and uL has a positive minimum

}
,

B =
{
L >

√
a(0) : uL(x0) = 0 for some x0 > 0

}
.

Both sets are nonempty, obviously disjoint, and, by the continuous dependence on the
initial data, open in ℝ. Let u0 = inf B. Since u0 does not belong neither to A or B, we
must conclude that the solution of problem (3.14) with L = u0 is positive and tends to 0
at ∞.

3.1.5 Bounded nonlinearity and a(x) constant in a neighborhood of ∞

In this subsection we prove the existence of a positive solution of the boundary value
problem

u′′ = a(x)u− g(u), u′(0) = u(+∞) = 0. (3.16)

We will consider a(x) satisfying (A2) and a stronger hypothesis than (A1): assume that

(A′
1) 0 < a(x) ≤ A for all x ≥ 0 and there exists x0 > 0 such that a(x) ≡ a for all x ≥ x0.

The function g ∈ C([0,∞), [0,∞)) will be a bounded function that satisfies (H2), and in
addition:

(H3) The function f(u) := a u2−2G(u) has only one negative minimum attained at u = �,
and hence only one zero, say � in (0, �).

(H4) Au
2 − 2G(u) = 0 has also a negative minimum.

(H5) There exists � > 0 such that ∣f(u)− f(v)∣ ≥ �∣u− v∣ ∀u, v in a neighborhood of �,



3.1 Second order problems 49

(H6)
∫ �
0

du√
f(u)−f(�)

= +∞.

Condition (H3) is not absolutely necessary since we could reach the same conclusions in
a more general context, but we included it for simplicity of notations and calculations.
Note that (H1) does not hold. Since we look for positive solutions, in what follows we set
g(u) = 0 for u < 0.

Here we present the graphs of au
2

2 −G(u) and the autonomous phase plane structure
for an admissible function g(u):

Figure 3.3: au
2

2 −G(u)

Figure 3.4: phase plane

For completeness, we present also the same graphs in a case where (H3) is not satisfied,
but the process to find a solution could be used:

Figure 3.5: au
2

2 −G(u)
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Figure 3.6: phase plane

Remark 3.1.21. Before we deal with the problem above, let us consider a slight variation.
Suppose that instead of (A2), a(x) satisfies

√
A tanh(

√
Ax0) <

√
a. (3.17)

If we consider the initial value problem

u′′ = a(x)u− g(u), u(0) = �, u′(0) = 0, (3.18)

it is obvious that for � large the solutions must be convex and therefore larger than �
for every x > 0. If � > 0 is small enough, then, by (H2), we have (u(x, �), u′(x, �)) =
�(v(x), v′(x)) + o(�) uniformly in [0, x0], where v is the solution of the linear problem

v′′ = a(x)v, v(0) = 1, v′(0) = 0.

Since z(x) = v′(x)
v(x) satisfies z′ + z2 = a(x), an elementary comparison theorem shows that

z(x0) ≤
√
A tanh(

√
Ax0).

Now the positive homoclinic at the origin for the autonomous equation u′′ = a u−g(u)
has an image curve in the (u, u′)-plane whose slope at the origin in the half-plane u′ > 0 is
precisely

√
a. Hence by (3.17), for � sufficiently small, (u(x0, �), u

′(x0, �)) lies “inside” the
homoclinic. Since for � large (u(x0, �), u

′(x0, �)) is obviously “outside” the homoclinic,
a connectedness argument based on the Peano phenomenon (see e. g. [44]) allows us
to conclude that there exists a value �0 such that (u(x0, �0), u

′(x0, �0)) is a point of the
homoclinic solution of the autonomous problem. Since for x ≥ x0 we have a(x) = a, there
exists a positive solution of (3.16).

Note that estimate (3.17) works well only if x0 is small.

Consider now the problem assuming conditions (H2)− (H3)− (H4)− (H5)− (H6) and
(A′

1)− (A2). Proceeding as above, we easily see that the boundary value problems

{
u′′ = a(x)u − g(u)

u′(0) = 0, u(T ) = 0
(3.19)
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have a positive solution uT , because the associated modified Euler-Lagrange functionals

JT (u) =

∫ T

0

(
u′2 + a(x)u2 − 2G(u+)

)
dx

have a mountain-pass geometry relative to the local minimum u = 0 in the space H∗
T ≡{

H1[0, T ] : u(T ) = 0
}
. The mountain-pass critical values cT = JT (uT ) are positive, de-

creasing in T and therefore, for T > 1, we have cT ≤ c1. The solution uT must attain a
maximum at a point where uT

′′ ≤ 0 so ∥uT ∥∞ is uniformly bounded in T . The differential
equation allows us to conclude that ∥uT ′′∥∞ is bounded too and consequently the same is
true for ∥uT ′∥∞.

Proposition 3.1.22. uT
′(T ) → 0 as T → +∞.

Proof. If uT
′(T ) ∕→ 0, then there exists a sequence of T ’s tending to +∞ such that

uT
′(T ) → d for some constant d < 0.
If we multiply the differential equation with u = uT by uT

′ and integrate, we get

uT
′2 = a uT

2 − 2G(uT ) +KT , ∀x ≥ x0, (3.20)

where KT is a constant.
Consider the autonomous initial value problem

{
u′′ = a u− g(u)

u′(0) = d, u(0) = 0.
(3.21)

Recall that � is the smallest positive value such that 2G(u) − a u2 = 0 and � is the
maximizer of 2G(u) − a u2. Let d� < 0 be the value of the derivative when u = 0 for the
trajectory that goes to (�, 0) as x→ −∞. This trajectory exists by virtue of (H6) and is
given by u′ < 0 and

u′2 = au2 − 2G(u) + d2�,

where
d2� = −a�2 + 2G(�).

We will divide the proof into three cases, d� < d < 0, d = d� and d < d�:

(1) If d� < d < 0, the correspondent solution u of the autonomous problem (3.21) has a
largest negative zero −c and u′(−c) > 0. For T large enough we have T − c > x0, so
the solutions uT coincide with the autonomous solutions and consequently, since we
have uniform convergence in compact intervals, we would have a contradiction with
the positivity of the solutions uT .

(2) If d = d�, we will distinguish two cases: uT
′(T ) → d� from above and uT

′(T ) → d�
from below. In the first situation, if there exists a local maximum point xT ≥ x0
(let uT (xT ) ≡ �T ) then �T < � and f(�T ) +KT = 0, which implies that �T → � as
T → ∞. We have

JT (uT ) =

∫ T

0

[
uT

′2 + a(x)uT
2 − 2G(uT )

]
dx =

=

∫ x0

0

[
uT

′2 + a(x)uT
2 − 2G(uT )

]
dx+

∫ xT

x0

[
2
(
a uT

2 − 2G(uT )
)
+KT

]
dx+

+

∫ T

xT

[
2
(
a uT

2 − 2G(uT )
)
+KT

]
dx (3.22)
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The first integral is obviously uniformly bounded and, making a change of variable,
we get for the third integral

∫ T

xT

[
2
(
a uT

2 − 2G(uT )
)
+KT

]
dx = (3.23)

=

∫ �T

0

[
√
f(u)− f(�T ) +

f(u)√
f(u)− f(�T )

]
du.

The first part of the integral is obviously bounded and using Fatou’s Lemma and
(H6), we have

+∞ =

∫ �

�−�

du√
f(u)− f(�)

≤ lim inf

∫ �T

�−�

du√
f(u)− f(�T )

,

where � > 0 is such that f(u) < 0 for u ∈ [� − �, � + �]. It is easy to see that this
implies that the second part of integral tends to −∞ and consequently (3.23) also
tends to −∞. For the second integral in (3.22), we have analogously

∫ xT

x0

[
2
(
a uT

2 − 2G(uT )
)
+KT

]
dx =

=

∫ �T

uT (x0)

[
√
a u2 − 2G(u) +KT +

a u2 − 2G(u)√
a u2 − 2G(u) +KT

]
du,

and if uT (x0) does not tend to �, we also have this integral tending to −∞ (otherwise
it is bounded). This implies that JT (uT ) tends to −∞, which contradicts the fact
that the mountain pass critical level is positive. Consider now the case where the
solution uT is decreasing for every x ≥ x0. In this situation we have

JT (uT ) =

∫ x0

0

[
uT

′2 + a(x)uT
2 − 2G(uT )

]
dx+

∫ T

x0

[
2
(
a uT

2 − 2G(uT )
)
+KT

]
dx,

where KT → 2G(�) − a �2. Setting uT (x0) = �T , we have

∫ T

x0

[
2
(
a uT

2 − 2G(uT )
)
+KT

]
dx =

=

∫ �T

0

[
√
a u2 − 2G(u) +KT +

a u2 − 2G(u)√
a(x)u2 − 2G(u) +KT

]
du,

and since we must have �T → � (T − x0 → ∞ implies it), we have a contradiction
of the same type as above.

The case where uT
′(T ) → d� from below can also be treated in a similar way, since

we also must have KT → 2G(�)− a �2. Setting uT (x0) = �T , it follows that �T → �
and therefore we would again reach the contradiction JT (uT ) → −∞.

(3) If d < d�, the correspondent solution w of the autonomous problem satisfies

w′2 = aw2 − 2G(w) + d2.
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This shows that w′(x) < −
√
d2 − d2� for all x < 0, and hence w is unbounded above.

Again by uniform convergence in compact intervals, uT would take arbitrarily large
values for T sufficiently large. This is a contradiction with the uniform boundedness
of uT .

We can therefore conclude that uT
′(T ) → 0.

Corollary 3.1.23. Setting lT as the largest maximizer of uT , we have T − lT → +∞.

In the following, let JT (u)
∣∣
[m,n]

=
∫ n
m

[
u′2 + a(x)u2 − 2G(u+)

]
dx. In order to show

that the limit of the solutions uT cannot be the trivial solution, we need the following

Proposition 3.1.24. There exists a constant k > 0 such that uT (0) > k for all T > 1.

Proof. Suppose towards a contradiction that there exists a sequence of T ′s tending to +∞
such that uT (0) → 0. Then ∣uT (x)∣ + ∣u′T (x)∣ → 0 uniformly in [0, x0] as T → ∞. Since
for u small we have G(u) = o(u2), then JT (uT )

∣∣
[0,x0]

→ 0.

Since JT (uT ) is bounded away from zero, there exists a maximizer xT > x0 (otherwise
we easily would show that JT (uT ) becomes arbitrarily small). It is obvious that xT tends
to +∞ with T . Now, setting �T = uT (xT ), we compute

JT (uT )
∣∣
[x0,xT ]

=

∫ �T

u(x0)

(
2
√
a u2 − 2G(u) +KT − KT√

a u2 − 2G(u) +KT

)
du,

with KT = 2G(�T ) − a �2T , and because of Proposition 3.1.22, it follows that �T → � and
KT → 0. For simplicity we can write the second integral in the simpler form

∫ �T

u(x0)

KT√
f(u) +KT

du =

∫ �

u(x0)

KT√
f(u) +KT

du+

∫ �T

�

KT√
f(u)− f(�T )

du.

Since f(u) ≥ 0 for u ∈ [0, �], the first integral is smaller than �
√
KT . The second integral

has a singularity at u = �T , but using (H5) we easily check that there exists a constant
k > 0 such that ∫ �T

�

KT√
f(u)− f(�T )

du ≤
∫ �T

�

kKT√
�T − u

du

and it follows that this integral tends to zero as well. This implies that

lim
T→∞

JT (uT )
∣∣
[x0,xT ]

= J∗
a .

The same computations are valid for the integral

JT (uT )
∣∣
[xT ,T ]

=

∫ �T

0

(
2
√
a u2 − 2G(u) +KT − KT√

a u2 − 2G(u) +KT

)
du.

Since

JT (uT ) = JT (uT )
∣∣
[0,x0]

+ JT (uT )
∣∣
[x0,xT ]

+ JT (uT )
∣∣
[xT ,T ]
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and as we have seen
lim
T→∞

JT (uT )
∣∣
[0,x0]

= 0,

lim
T→∞

JT (uT )
∣∣
[x0,xT ]

= lim
T→∞

JT (uT )
∣∣
[xT ,T ]

= J∗
a ,

we conclude that:
lim
T→∞

JT (uT ) = 2J∗
a . (3.24)

Let JA,T (u) =
∫ T
0 u′2 +Au2 − 2G(u+) dx.

Claim We have
JT (uT ) ≤ JA,T (zT ),

where zT is a solution to
{
z′′ = Az − g(z)

z′(0) = 0, z(T ) = 0, z > 0 in [0, T ).
(3.25)

Proof of Claim: Let � > 0 be such that A�2 − 2G(�) < 0. Consider the function

u(x) =

⎧
⎨
⎩

�, 0 ≤ x ≤ L

�(L+ 1− x), L ≤ x ≤ L+ 1

0, x ≥ L+ 1.

(3.26)

It is easy to see that for L large enough (and consequently, we take T large also) we have
JA,T (u) < 0. It is obvious that for all u ∈ H∗

T we have

JT (u) ≤ JA,T (u),

so JT (u) is also negative. Defining ΓT = {
(�) : [0, 1] → H∗
T : 
(0) = 0, 
(1) = u}, we may

assume that

JT (uT ) = inf

∈ΓT

max
�∈[0,1]

JT (
(�)) and JA,T (zT ) = inf

∈ΓT

max
�∈[0,1]

JA,T (
(�)) .

For a given 
 ∈ ΓT , we obviously have

max
�∈[0,1]

JT (
(�)) ≤ max
�∈[0,1]

JA,T (
(�))

and taking the infimum of both sides of the inequality, the claim follows.
By arguments already used in the proof, we easily see that this solution zT is given by

z′2T = Az2T − 2G(zT ) + d2T

where dT = z′T (T ) → 0 as T → ∞. Therefore zT (0) → �̄ as T → ∞, where �̄ is the
smallest positive root of Au2 − 2G(u). We conclude that

lim
T→∞

JT (uT ) ≤ J∗
A,

contradicting (3.24) and (A2).
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Theorem 3.1.25. Let a and g satisfy (A′
1) − (A2) − (H3) − (H4) − (H5) − (H6). Then

the problem (3.16) has at least one positive solution.

Proof. Applying the classical diagonal method, we know that there exist a sequence of T ’s
and u ∈ C2[0,+∞) such that uT → u C1-uniformly in compact intervals. Applying the
arguments of the previous proposition, if there exists a maximizer xT > x0 of uT , then
these maximizers must be bounded from above and we must have uT (xT ) → �. It follows
that u ∕= 0 and consequently u must be a branch of the well known homoclinic solution
ua of the autonomous problem for x ≥ x0. Since [0, x0] is a compact interval, we conclude
that u must be a solution of (3.16).

3.1.6 Autonomous problem with a dissipative term

In this subsection we prove the existence of a positive nonincreasing solution of the au-
tonomous problem {

u′′ + c u′ = ℎ(u)

u′(0) = 0, u(+∞) = 0,
(3.27)

where c is a positive constant, ℎ(u) is a continuous function such that ℎ(0) = ℎ(b) = 0 for

some b > 0 and ℎ(u) > 0 for u ∈ (0, b). We consider in addition that lim infu→+∞
ℎ(u)
u =

−∞. We follow a similar approach of the one in [8] (p.133) to reduce the order of this
problem.

Remark 3.1.26. The function ℎ(u) = u−up, where p > 1, satisfies the conditions above.

Lemma 3.1.27. The derivative of a nonincreasing positive solution u of (3.27) does not
vanish on (0,+∞).

Proof. Suppose towards a contradiction that there exists x1 > 0 such that u′(x1) = 0.
Since u′ ≤ 0, we must have u′′(x1) = 0, which implies that u(x1) = b. By the uniqueness
of the initial value problem we would have u(x) ≡ b, which contradicts the condition
u(+∞) = 0.

Let U(x) be a nonincreasing solution of the differential equation in (3.27) defined in
the maximal interval [0, x+) where U > 0. Since U ′(x) < 0 for x ∈ (0, x+) we can consider
the inverse function x(u) of U(x) and define '(u) = U ′(x(u)). We have '′'+ c' = f(u),
and setting  (u) = '(u)2 (noting that '(u) = −

√
 (u)), we have

 ′ = 2c
√
 + 2ℎ(u),  (0) = 0. (3.28)

Let M be the maximum of ℎ(u) for u ∈ (0, b) and consider the initial value problem

 ̂′ = 2c

√
 ̂ + 2M,  ̂(0) = 0. (3.29)

The solution of this problem is given implicitly by the expression

√
 ̂

c
− M

c2
ln

∣∣∣∣c
√
 ̂ +M

∣∣∣∣ = u− M

c2
ln(M).
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By a well known comparison theorem, we have  <  ̂ and consequently,  (u) ≤ ku2 for
some positive constant k. Hence  ′(u) ≤ k̃u+ 2ℎ(u) for some constant k̃, from which we
infer that limu→+∞  ′(u) = −∞. We can now conclude that  vanishes at some positive
value u∗.

Since there exists a solution  of (3.28) that vanishes at some positive value u∗, fol-
lowing the argument used in [8], we can conclude that u(x) defined by

{
u′ = −

√
 

u(0) = u∗
(3.30)

is a solution of the differential equation in (3.27) in the interval [0, x+), where x+ =
∫ u∗
0

du√
 
.

An easy computation gives x+ = +∞ and consequently we have proved the following

Theorem 3.1.28. The autonomous boundary value problem (3.27) has a positive decreas-
ing solution.

3.1.7 Non-autonomous problem with a dissipative term

In this subsection we focus on finding a positive solution of the problem

{
u′′ + c u′ = a(x)u− g(u)

u′(0) = 0, u(+∞) = 0,
(3.31)

where a(x) > � > 0 for all x ≥ 0 and g(u) satisfies the assumptions (H1) and (H2)
mentioned above.

A simple example of functions satisfying these assumptions are the powers g(u) = up

where p > 1.

As in subsection 3.1.3, we will find a solution of (3.31) as the limit of positive solutions
of the boundary value problems

{
u′′ + c u′ = a(x)u− g(u)

u′(0) = 0, u(T ) = 0,
(3.32)

by taking a convenient sequence of T ’s tending to +∞. Let us consider the underlying
Euler-Lagrange functional

JT (u) =

∫ T

0
ec x

(
u′2 + a(x)u2 − 2G(u+)

)
dx,

defined in the functional space Hc
T ≡

{
u ∈ H1(0, T ) :

∫ T
0 ec xu′2 dx < +∞, u(T ) = 0

}
,

with the norm ∥u∥ =
(∫ T

0 ec xu′2 dx
)1/2

. We have JT (0) = 0, and, for � > 0 small enough,

if ∥u∥ = �, then JT (u) > �(�) > 0. The Palais-Smale condition is satisfied and, setting
u� = �(1 − x2), it is easy to see that Ja,T (u

+
� ) < 0 for � > 0 large enough (independent

on T > 1). The Mountain-Pass Theorem allows us to conclude that the boundary value
problems (3.32) have a positive solution. Let cT be the mountain-pass critical value of
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JT , that is, cT = JT (uT ). Defining ΓT =
{

 : [0, 1] → H∗

T : 
(0) = 0, 
(1) = u+�
}
, we know

that

cT = inf

∈ΓT

max
�∈[0,1]

JT (
(�)) .

Since ΓT1 ⊆ ΓT2 for T1 < T2, we have cT ≤ c1 for T ≥ 1.

Multiplying the differential equation by ec x and then by u and integrating, we get

−
∫ T

0
ec xu′2T dx =

∫ T

0
ec x

(
a(x)u2T − uT g(uT )

)
dx,

and consequently, using (H1), we have

JT (uT ) ≥
(
1− 2

q

)∫ T

0
ec x
(
u′2T + a(x)u2T

)
dx =

(
1− 2

q

)∫ T

0
ec xg(uT )uT dx. (3.33)

Extending uT to [0,+∞) by uT (x) = 0 for x ≥ T , and considering the functional space

Hc(0,+∞) ≡
{
u ∈ H1

loc[0,+∞) :

∫ +∞

0
ec xu′2 dx < +∞, u(+∞) = 0

}

with the norm ∥u∥ =
(∫ +∞

0 ec xu′2 dx
)1/2

, the following result holds:

Proposition 3.1.29. We have uniform estimates for the Hc(0,+∞) norms of the solu-
tions uT (for T ≥ 1).

Proof. Since JT (uT ) ≤ c1 for all T > 1, (3.33) allows us to conclude the result.

The next lemma plays an important role in what follows.

Lemma 3.1.30. [1] For u ∈ Hc(0,+∞) we have

∥u∥L∞(s,+∞) ≤
e−

c s
2√
c

∥u∥ .

Proof. By Schwarz inequality we have

∣u(T )− u(s)∣ =
∫ T

s
e−ct/2ect/2u′(t) dt ≤

(
e−cs − e−cT

c

∫ T

s
ectu′(t)2 dt

) 1
2

.

Taking T → +∞ in both sides of the inequality, the conclusion follows.

Corollary 3.1.31. There exists k > 0 such that, for all T > 1,

∣uT ∣ ,
∣∣uT ′∣∣ ,

∣∣uT ′′∣∣ ≤ k ∀x ∈ [0, T ].

Proof. The previous result implies the uniform estimate for uT . Setting v = u′T , from the
differential equation it follows that ∣v′ + cv∣ is uniformly bounded by some constant K:
since v(0) = 0, this implies ∣v∣ ≤ K/c. Again using the differential equation, we conclude
the uniform boundedness of u′′T .
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As a consequence, using the diagonal argument, we can pick up a sequence of values
T → +∞ such that uT → u C1-uniformly in compact intervals and u′T ⇀ u′ weakly in
L2(0,+∞). With this it is easy to prove the following

Lemma 3.1.32. Given an arbitrary positive constant �, there exists x� such that for all
T ≥ 1 and all x > x� we have uT (x) ≤ �.

Proof. By the previous lemma, for x� large enough we have

∣uT (x)∣ ≤
e−

c x�
2 c1√
c

≤ � ∀x > x�, T ≥ 1.

In order to show that the limit function u is not the trivial solution, we need the
following

Proposition 3.1.33. There exists a constant c0 > 0 such that uT (0) > c0 for all T ≥ 1.

Proof. Suppose towards a contradiction that there exists a sequence of T ’s tending to
∞ such that uT (0) → 0. We have a(x) ≥ � > 0 and for uT (0) small enough we have
u′′T (0) > 0, so the solutions uT must have a local maximizer lT → +∞. Using the

differential equation it is easy to see that g(uT (lT ))
uT (lT ) ≥ a(lT ) > �, and since for u close

enough to 0 we have g(u)
u < �, we can conclude that uT (lT ) is bounded from below by a

positive constant k�. Taking � < k� , we have a contradiction with the fact that uT (lT ) < �
when lT > x�.

We are now able to prove the main result:

Theorem 3.1.34. The boundary value problem (3.31) has a positive solution.

Proof. Of course the limit function u is a nonnegative solution of the given equation. Now
we only need to apply Lemma 3.1.32 and Proposition 3.1.33, so as to argue, respectively,
that u(+∞) = 0 and u ∕≡ 0.

Remark 3.1.35. If instead of a positive constant c we take a continuous function c(x)
with 0 < c1 ≤ c(x) ≤ c2, the arguments used above are still valid for the differential
equation u′′ + c(x)u′ = a(x)u− g(u).

3.1.8 Heteroclinics for some equations involving the p-Laplacian

Consider the p-Laplacian partial differential equation

ut =
∂

∂x

(∣∣∣∣
∂u

∂x

∣∣∣∣
p−2 ∂u

∂x

)
+ g(u), (3.34)

where p > 1 and g(u) is a type A function in [0, 1], that is, continuous, g(0) = g(1) = 0 and
g is positive in (0, 1). A positive travelling wave solution of (3.34) is a positive solution of
the form u(x, t) = u(�) where � = x − c t for some c > 0 (this value c is the propagation
speed of the wave). We will focus on travelling wave solutions such that u is defined in ℝ,
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u(−∞) = 1 and u(+∞) = 0. These travelling wave solutions will be heteroclinic solutions
of the ordinary differential equation

(∣∣u′
∣∣p−2

u′
)′

+ cu′ + g(u) = 0, (3.35)

connecting the equilibria u = 1 and u = 0.
Our objective is to prove the existence of an heteroclinic of (3.35). We will take an

approach somehow close to the one used in [39] and for simplicity, we will call the variable
x instead of �.

We shall obtain existence results for 1 < p < 2. Recently Pang et al. [42] have studied
related problems for p > 2.

Lemma 3.1.36. The derivative of a nonincreasing solution u of (3.35) with 0 < u(x) < 1
does not vanish. We also have u′(±∞) = 0.

Proof. If there exists x0 such that u′(x0) = 0 and 0 < u(x0) < 1, using the differen-

tial equation we would have
(
∣u′∣p−2 u′

)′
∣(x=x0) < 0 and ∣u′(x0)∣p−2 u′(x0) = 0, which

contradicts the fact that ∣u′∣p−2 u′ ≤ 0 for all x ∈ ℝ.
Concerning the limit of the derivative we will only prove for +∞, being the −∞ case

similar. Suppose towards a contradiction that lim infx→+∞ u′(x) = −� < 0. We can take
two sequences tn and sn tending to +∞ such that u′(tn) → 0 and u′(sn) → −�. Integrating
the differential equation in [0, tn], we easily conclude that the sequence

∫ tn
0 g(u(x)) dx is

bounded and therefore
∫ +∞
0 g(u(x)) dx is convergent. Consequently we have

∫ sn

tn

(∣∣u′
∣∣p−2

u′
)′

+ cu′ + g(u) dx =

=
∣∣u′(sn)

∣∣p−2
u′(sn)−

∣∣u′(tn)
∣∣p−2

u′(tn) + c (u(sn)− u(tn)) +

∫ sn

tn

g(u) dx = 0

and making n→ ∞ we would get the contradiction −�p−1 = 0.

Let U(x) be a nonincreasing solution of the differential equation in (3.35) defined in
the maximal interval ]x−, x+[ where 0 < U(x) < 1. Since U ′(x) < 0 for x ∈ (x−, x+) we
can consider the inverse function x(u) of U(x) and define '(u) = U ′(x(u)). We have

d

du

(
∣'(u)∣p−2 '(u)

) du
dx

+ c'(u) + g(u) = (p− 1) ∣'∣p−2 ''′ + c'+ g(u) = 0,

and setting  (u) = ∣'(u)∣p (noting that ' = − 1/p), we have
{
 ′ = p

p−1c 
1
p − p

p−1g(u)

 (0) =  (1) = 0,
(3.36)

that is,  is a positive type A solution of (3.36).
Conversely, if we have type A solution  of (3.36), defining u(x) as the solution of the

Cauchy problem {
u′ = − (u)

1
p

u(0) = 1
2

(3.37)
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then u is a solution of the differential equation in (3.35) in the interval (x−, x+), where

x− = −
∫ 1
1/2

du
 1/p and x+ =

∫ 1/2
0

du
 1/p . A solution of (3.36) satisfies  ′ ≤ p

p−1c 
1
p and

therefore  ≤ cu
p

p−1 . Since x′(u) = − 1
 1/p , we have x(0) ≥ 1

c

∫ 1/2
0

du
u1/(p−1) , which is a

divergent integral if p ≤ 2. If we have an extra condition g(u) ≤M(1−u)p−1, we are able
to prove in a similar way that x− = −∞.

Proposition 3.1.37. Suppose that s(u) is a C1-function in [0, 1] such that s(0) = 0,
s(u) > 0 if u ∈ (0, 1) and for all u ∈ [0, 1],

s′(u) ≤ p

p− 1
c s(u)

1
p − p

p− 1
g(u). (3.38)

Then (3.36) has a unique type A solution.

Proof. We prove this result by a simple adaptation of the arguments used in [8] (p.135).
Since a linear function k u, with k large enough, is an obvious upper solution, it is well
known that there exists a positive solution  (u) of the differential equation in (3.36) with
 (0) = 0 such that s(u) ≤  (u) ≤ k u. If  (1) = 0 we already have a type A solution. If
 (1) > 0, we consider the solution  ̄ of the initial value problem

 ̄′ =
p

p− 1
c
∣∣ ̄
∣∣ 1p − p

p− 1
g(u),  ̄(1) = 0.

We may assume that  ̄ ≥ 0 in [0, 1] since u = 0 is an obvious lower solution. Let us
prove that 0 <  ̄(u) <  (u) for all u ∈ (0, 1). If u0 is the largest zero of  ̄ in (0, 1), then
the differential equation implies  ̄′(u0) < 0, which is a contradiction with the positivity
of  ̄. If there exists u1 ∈ (0, 1) such that  ̄(u1) =  (u1), then by the uniqueness of
solution we would have  ̄ =  , which contradicts the fact that  ̄(1) = 0. By continuity
we have  ̄(0) = 0, so it is a type A solution. Concerning the uniqueness, if we assume that
there exist two distinct solutions  1,  2 of type A. We know that these solutions must be
ordered for u ∈ (0, 1), so let us assume that  1 <  2. But the differential equation shows
that  2 −  1 is increasing, so we cannot have  1(1) =  2(1) = 0, and therefore we have a
contradiction.

Proposition 3.1.38. Assume that g(u) ≤ Mu1/(p−1) for 1 < p < 2 and M > 0. Then
there exists a constant c∗ > 0 (depending on M) such that (3.36) admits a unique positive
solution if and only if c ≥ c∗.

Proof. GivenM > 0 it is obvious that for c large enough, the inequality �−c �1/p+M < 0
has positive solutions �. For one such solution, let s(u) = �up/(p−1). Then, for all u ∈ [0, 1],
we have

s′(u) =
p

p− 1
� u1/(p−1) ≤

(
c �1/p −M

) p

p− 1
u1/(p−1) ≤ c

p

p− 1
s(u)

1
p − p

p− 1
g(u).

The previous proposition allows us to conclude that for such value c, the boundary value
problem (3.36) has a unique positive solution.

Now let c∗ be the infimum of the values c > 0 such that problem (3.36) has a unique
positive solution. Let us prove that for all c > c∗, problem (3.36) has a solution. Given
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ĉ > c∗, let us consider a value c̃ such that (3.36) has a positive solution  c̃ and c
∗ < c̃ < ĉ.

For all u ∈ [0, 1] we have

 ′
c̃ = c̃

p

p− 1
 

1
p

c̃ − p

p− 1
g(u) ≤ ĉ

p

p− 1
 

1
p

c̃ − p

p− 1
g(u),

so  c̃ is a lower solution for the problem with c = ĉ and by the previous proposition, we
conclude the solvability for (3.36) with c = ĉ.

To prove the solvability for c = c∗, consider a decreasing sequence cn tending to c∗ and
the correspondent positive solutions  n. For all u ∈ [0, 1] we have

 ′
n+1 = cn+1

p

p− 1
 n+1

1
p − p

p− 1
g(u) ≤ cn

p

p− 1
 n+1

1
p − p

p− 1
g(u),

so again by the previous proposition we conclude that  n+1 ≤  n, for all n ∈ ℕ, that
is,  n is a nonincreasing sequence. Let us define  ∗(u) := infn∈ℕ  n(u). By Lebesgue’s
dominated convergence Theorem, we can conclude that  ∗ is a solution of the differential
equation in (3.36) for c = c∗ and satisfies  ∗(0) = 0. Applying the same argument used
in the proof of the previous proposition, we can conclude that there exists a solution  ̂∗

also satisfying the boundary condition  ̂∗(1) = 0, and, consequently, a positive solution
of (3.36).

Let us now prove that c∗ ∕= 0. Consider the initial value problem

 ′ =
p

p− 1
c 

1
p − p

p− 1
g(u),  (1) = 0. (3.39)

For c = 0 we have  (u) =
∫ 1
u

p
p−1g(u) du and by the continuous dependence of the initial

data, in a compact interval [�, 1], for c close enough to 0 we have ∥ c −  0∥∞ ≤ �(�), where
�(�) tends to zero with �. If there was a type A solution for such small values of c, then
the derivative of the corresponding  c, by the mean value theorem, would have to take
values close to  0(0)

� , which is as large as we want. A simple analysis of the differential
equation rules out that possibility, and therefore there are no type A solutions of (3.39)
for c small enough.

We are now able to state the main result of this subsection.

Theorem 3.1.39. If c ≥ c∗, 1 < p < 2 and g(u) ≤ Mu1/(p−1), g(u) ≤ M(1 − u)p−1

for some constant M > 0, then (3.35) has an heteroclinic decreasing solution such that
u(−∞) = 1, u(+∞) = 0 and 0 < u(x) < 1 for all x ∈ ℝ.

Remark 3.1.40. The case p = 2 is the regular Laplacian which is already well studied
in several papers by Malaguti and Marcelli [39],[40], and the for case p > 2 we cannot be
sure anymore that x(0) = +∞ and therefore it would be a “degenerated” heteroclinic.

3.2 Fourth order problems

3.2.1 Introduction

The phase plane plays for the second order autonomous problems a very important role
to search possible homoclinic solutions, but when we deal with fourth order problems we
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do not have that possibility. The larger number of intermediate derivatives between u and
u(4) is an obstacle for the generalization of such well-known results of the second order.
In the following subsection we prove some results concerning the existence of a homoclinic
solution for the autonomous problem, and in the final subsection we prove existence for
some non-autonomous equations.

We deal with the problems
{
u(4) − c u′′ + a(x)u = ∣u∣p−1 u

u′(0) = u′′′(0) = 0, u(+∞) = u′(+∞) = 0,

where we consider a(x) in three different situations: the autonomous case, the case where
a(x) is nondecreasing and the case when limx→+∞ a(x) = +∞.

3.2.2 Autonomous problem

In this subsection we prove the existence of a nontrivial solution of the problem
{
u(4) − c u′′ + a u = ∣u∣p−1 u

u′(0) = u′′′(0) = 0, u(+∞) = u′(+∞) = 0,
(3.40)

where a and c are positive constants and p > 1. The solution of (3.40) will be found as a
limit of solutions to the boundary value problems

{
u(4) − c u′′ + a u = ∣u∣p−1 u

u′(0) = u′′′(0) = 0, u(T ) = u′(T ) = 0,
(3.41)

by taking T → +∞.

Proposition 3.2.1. The boundary value problem (3.41) has a nontrivial solution.

Proof. Consider the functional

JT (u) =

∫ T

0

(
u′′2 + c u′2 + a u2

)
dx

defined in H2(0, T ) and let us minimize it in the manifold

MT =

{
u ∈ H2(0, T ) : u′(0) = u(T ) = u′(T ) = 0,

∫ T

0
∣u∣p+1 dx = 1

}
.

Since the interval is bounded, MT is weakly closed in H2[0, T ], so that there exists such
a minimum uT , and by the Lagrange multipliers theory, there exist �T ∈ ℝ and uT ∈MT

such that uT
′′′(0) = 0 and

∫ T

0

(
uT

′′v′′ + c uT
′v′ + a uT v

)
dx = �T

∫ T

0
∣uT ∣p−1 uT v, ∀v ∈MT ,

that is, as it is well known from standard arguments, uT is a classical solution of

u(4) − c u′′ + a u = �T ∣u∣p−1 u, u′(0) = u′′′(0) = 0, u(T ) = u′(T ) = 0.
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By taking v = uT , we get

∫ T

0

(
uT

′′2 + c uT
′2 + a uT

2
)
dx = �T

∫ T

0
∣uT ∣p+1 dx = �T ,

and since
∫ T
0 ∣uT ∣p+1 dx = 1, uT cannot be the trivial solution.

Remark 3.2.2. If we take a sequence of values T tending to +∞, the corresponding
sequence �T is decreasing (if T1 < T2, then MT1 ⊆ MT2). Considering the obvious ex-
tensions of the functions u ∈ H2(0, T ), it is obvious that JT (u) is an equivalent norm of
H2(0,+∞), therefore uT is a bounded sequence in H2(0,+∞) and, consequently, there
exists a constant k > 0 such that ∥uT ∥∞ ≤ k. We have

1 =

∫ T

0
∣uT ∣p+1 dx ≤ kp−1

∫ T

0
uT

2 dx ≤ KJT (uT ) with K = kp−1�T
a
> 0,

so the sequence �T tends to a strictly positive value.

Proposition 3.2.3. There exists a constant c > 0 such that uT (0) > c for all T > 1.

Proof. Suppose towards a contradiction that there exists a sequence of T ′s tending to +∞
such that uT (0) → 0.

Consider the differential equation with u = uT and multiply it by uT
′. By simply

integrating, we get

uT
′′′uT

′ − uT
′′2

2
− c

uT
′2

2
+ a

uT
2

2
− ∣uT ∣p+1

p+ 1
= cT , (3.42)

for some constant cT . If we integrate this expression in [0, T ], we get

∫ T

0
−3

2
u′′T

2 − c
uT

′2

2
+ a

uT
2

2
− ∣uT ∣p+1

p+ 1
dx = cT T.

Since ∫ T

0

∣∣∣∣∣−
3

2
u′′T

2 − c
uT

′2

2
+ a

uT
2

2
− ∣uT ∣p+1

p+ 1

∣∣∣∣∣ dx

is bounded by 3
2�1+1 and �T is decreasing in T , we conclude that cT must tend to 0 as T

tends to +∞. Considering the initial sequence of T ’s, (3.42) implies that u′′T (0) → 0 (we
already know that u′T (0) = u′′′T (0) = 0 and assumed that uT (0) → 0). As a consequence,
by the continuous dependence on initial data, the solutions uT have their last maximizer
mT tending to +∞ (we may assume it is a maximizer since −uT is also a solution with
the same properties). We have

1 =

∫ T

0
∣uT ∣p+1 dx ≤ ∥uT ∥p−1

∞

∫ T

0
uT

2 dx ≤ �T
a

∥uT ∥p−1
∞ ,

so we can conclude that ∥uT ∥∞ ≥
(
a
�T

) 1
p−1

. We already know that ∥uT ∥∞ is bounded

independently of T .
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Claim All the derivatives u′T , u
′′
T , u

′′′
T and u

(4)
T are bounded, independently of T .

Proof of Claim: Setting w = u′′T , we have, taking (3.42) into account

w′′ − cw is bounded, w′(0) = 0 and w(T ) is bounded.

Therefore u′′T is also bounded independently of T , and considering the differential equation,
we have that uT

(4) is also bounded. As a consequence, all the intermediate derivatives are
bounded too, independently of T .

Let us now consider two auxiliar functions vT and wT defined in the following way:

vT (x) =

{
uT (x+mT ) x ∈ [0, T −mT ]

0, x ∈ [T −mT , T ],
, wT (x) =

⎧
⎨
⎩

uT (mT − x), x ∈ [0,mT ]

�(x), x ∈ [mT ,mT + �]

0 x ∈ [mT + �, T ],

where � > 0 and �(x) = uT (0)
2 (cos(�� (x − mT )) + 1). Since uT (mT ) ≥

(
a
2

) 1
p−1 and uT

′

is bounded, we can take a constant � small enough such that mT + � < T for T large.
Let �T =

∫ T
0 ∣vT ∣p+1 dx and �T =

∫ T
0 ∣wT ∣p+1 dx. The uniform boundedness of uT

′ implies
that each of these integrals cannot be arbitrarily small. We have �T+�T = 1+�(T ), where

�(T ) = uT (0)
2

p+1 ∫ �
0

(
cos(� x� ) + 1

)p+1
dx. If T → +∞ then � → 0. For all z ∈ H2(0, T )

such that z′(0) = z(T ) = z′(T ) = 0 we have

JT (z) ≥ �T ∥z∥2Lp+1(0,T ) ,

since z
∥z∥p+1

∈MT for z ∕≡ 0. Furthermore

JT (uT ) = JT (vT ) + JT (wT )− �1(T ),

where �1(T ) → 0: indeed, for a suitable constant C > 0, we get �1(T ) ≤ CRT
2, where RT

stands for the norm of � in L2[0, �]. It is now possible to conclude that

JT (uT ) ≥ �T

(
∥vT ∥2Lp+1(0,T ) + ∥wT ∥2Lp+1(0,T )

)
− �1(T ) = �T

(
�T

2
p+1 + �T

2
p+1

)
− �1(T ).

The fact that �T and �T do not tend to 0 and

�T + �T = 1 + �(T )

with �(T ) small enough, implies that

(
�T

2
p+1 + �T

2
p+1

)
> K > 1,

where K is independent of T . Indeed, let 
 ∈ (0, 1) be a lower bound for �T and �T and
recall that � := 2

p+1 ∈ (0, 1): then the ratio between ��+�� and �+ � attains a minimum

value K > 1 on the pairs (�, �) ∈ [
, 1]2 such that � + � ≤ 3
2 , and the estimate above

holds, provided that �T ≤ 1
2 . It follows that for T large

JT (uT ) > �T ,

which is a contradiction.
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Using the diagonal argument, we can pick up a sequence of values T → +∞ such that
uT → u C3-uniformly in compact intervals and u(x) is a solution of

{
u(4) − c u′′ + a u = � ∣u∣p−1 u

u′(0) = u′′′(0) = 0, u(+∞) = u′(+∞) = 0,
(3.43)

where � = limT→+∞ �T . Since uT (0) > c > 0 for all T > 1, we have u(x) ∕≡ 0, so that
u∗ := �1/(p−1)u is a nontrivial solution of the given equation, and we can conclude the
main result of this subsection:

Theorem 3.2.4. There exists a nontrivial solution of (3.40).

Corollary 3.2.5. The equation in (3.40) has a nontrivial homoclinic at u = 0.

Proof. The function u∗(x) = �
1

p−1u(x) solves the half-line problem (3.40). Since u∗(−x)
is also a solution of the differential equation and u′(0) = u′′′(0) = 0, the conclusion
follows.

If we consider the manifold

M+
T =

{
u ∈ H2(0, T ) : u′(0) = u(T ) = u′(T ) = 0,

∫ T

0
u+

p+1 dx = 1

}
,

where u+ = max(0, u), the arguments used above will still provide a solution of
{
u(4) − c u′′ + a u = u+

p

u′(0) = u′′′(0) = 0, u(+∞) = u′(+∞) = 0.
(3.44)

The following lemma allows us to prove that for c large enough, this solution is positive.

Lemma 3.2.6. Let y ∈ C2(0,+∞) be a bounded function such that y′(0) = 0 and � > 0
a constant. Then, if y′′ − � y = ℎ(x) ≥ 0, we have y ≤ 0.

Proof. Assume towards a contradiction that y ∕≤ 0. If y(0) > 0, then y′′(0) > 0 and since
y′(0) = 0, we must have y(x) > y(0) for x > 0 close to 0. It is then obvious that y is a
convex function and stays above a line of positive slope. This is a contradiction because
y is bounded. If y(0) = 0 we obviously get y ≡ ℎ ≡ 0. If y(0) < 0 and there exists a value
x0 > 0 such that y(x0) = 0, then we could apply the same argument as above and reach
a contradiction.

Theorem 3.2.7. If c2 ≥ 4 a, then the boundary value problem (3.40) has a positive solu-
tion.

Proof. Consider the solution u of (3.44). Let �1 and �2 be the solutions of x
2−c x+a = 0.

Since c2 > 4 a, c > 0 and a > 0, these values are positive and we can write the differential
equation in the form

(
D2 − �1

) (
D2 − �2

)
u = u+(x)

p = ℎ(x) ≥ 0.

Setting y(x) =
(
D2 − �2

)
u, we have y′(0) = 0 and y′′ = �1y + ℎ(x). Since u is a solution

of (3.44), we know (by the arguments of the Claim in the proof of Proposition 3.2.3) that
u and u′′ are bounded and, therefore, y is bounded. Applying the previous lemma we have
y ≤ 0. Applying the same lemma to −u we conclude that u ≥ 0 and, therefore, is also a
solution of (3.40).
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3.2.3 Non-autonomous problems

Consider the boundary value problem

{
u(4) − c u′′ + a(x)u = ∣u∣p−1 u

u′(0) = u′′′(0) = 0, u(+∞) = u′(+∞) = 0
(3.45)

where a(x) is a nondecreasing function with limx→+∞ a(x) = a ∈ ℝ+, c is a positive
constant and p > 1. We will follow the approach of the previous subsection, so let uT be
defined as above (with a(x) substituted for a).

Proposition 3.2.8. There exists a constant c > 0 such that ∣uT (0)∣ + ∣u′′T (0)∣ > c for all
T > 1.

Proof. Suppose towards a contradiction that there exists a sequence of T ′s tending to
+∞ such that ∣uT (0)∣ + ∣u′′T (0)∣ → 0. Let vT (x) and wT (x) be defined in the proof of
Proposition 3.2.3. We have

JT (vT ) =

∫ T

mT

[
uT

′′(x)2 + c uT
′(x)2 + a(x−mT )uT (x)

2
]
dx ≤

≤
∫ T

mT

[
uT

′′(x)2 + c uT
′(x)2 + a(x)uT (x)

2
]
dx, (3.46)

and

JT (wT ) =

∫ mT

0

[
uT

′′(x)2 + c uT
′(x)2 + a(mT − x)uT (x)

2
]
dx+

+

∫ mT+�

mT

[
�′′(x)2 + c�′(x)2 + a(x)�(x)2

]
dx. (3.47)

Given � > 0, there exists x0(�) such that a− a(x) < � if x ≥ x0.

By continuous dependence on parameters, for T large enough, we have ∣uT (x)∣ < � for
all x ∈ [0, x0], therefore

∫ x0

0
a(mT − x)uT (x)

2 dx ≤ a x0 �
2. (3.48)

We can assume that mT ≥ 2x0, so that both inequalities x ≥ x0 and mT − x ≥ x0 hold
for x0 ≤ x ≤ mT /2. By the uniform boundedness in T of the L2[0, T ] norms (let K be
such bound), we can conclude that

∫ mT
2

x0

(a(mT − x)− a(x)) uT (x)
2 dx ≤ �

∫ mT
2

x0

uT (x)
2 dx ≤ K�. (3.49)

Since a(mT − x) ≤ a(x) for x ∈ [mT
2 ,mT ] we have

∫ mT

mT
2

a(mT − x)uT (x)
2 dx ≤

∫ mT

mT
2

a(x)uT (x)
2 dx



3.2 Fourth order problems 67

and therefore
∫ mT

0
a(mT − x)uT (x)

2 dx ≤ a x0 �
2 +

∫ mT

x0

a(x)uT (x)
2 dx+K�. (3.50)

We can now make the following estimates:

JT (uT ) ≥
∫ mT

0

[
uT

′′2 + c uT
′2
]
dx+

∫ x0

0
a(x)uT

2 dx+

∫ mT

x0

a(x)uT
2 dx+ JT (vT ) ≥

≥
∫ mT

0

[
uT

′′2 + c uT
′2
]
dx+

∫ x0

0
a(x)uT

2 dx+

+

∫ mT

0
a(mT − x)uT

2 dx− a x0 �
2 −K�+ JT (vT ) ≥

≥ JT (vT ) + JT (wT )−
∫ mT+�

mT

[
�′′2 + c�′2 + a(x)�2

]
dx− a x0 �

2 −K�

(we have used (3.46) in the first inequality, (3.50) in the second one and (3.47) in the
third one). The terms of negative sign can be taken arbitrarily small, so we can repeat
the arguments from the previous subsection and reach a contradiction.

Now the following result can be proved exactly as in the foregoing subsection.

Theorem 3.2.9. Let a(x) be a nondecreasing function with limx→+∞ a(x) = a ∈ ℝ, c > 0
and p > 1. Then problem (3.45) has a solution.

Let us now consider the boundary value problem (3.45), but now assuming that a(x)
is a positive function in ℝ+ such that limx→∞ a(x) = +∞. We will prove the existence of
a nontrivial solution by proving that the functional

J(u) =

∫ +∞

0

[
u′′2 + c u′2 + a u2

]
dx

defined in H2(0,+∞) has a minimum in the manifold

M =

{
u ∈ H2(0,+∞) : u′(0) = 0,

∫ +∞

0

up+1

p+ 1
dx = 1

}
.

Let m be the infimum of J(u) in M (m ≥ 0) and consider a sequence un, with n ∈ ℕ such
that J(un) → m. Obviously, J(un) is bounded and un is bounded in L∞(0,+∞) (since it
is bounded in H2(0,+∞)), so we have

p+ 1 =

∫ +∞

0
un

p+1 dx ≤ ∥un∥∞
p−1

∫ +∞

0
un

2 dx,

and hence
∫ +∞
0 un

2 dx ≥ c1 := (p+ 1)C1−p.
On the other hand, for all positive L, there exists x0(L) > 0 such that a(x) > L for

x > x0(L), so

L

∫ +∞

x0(L)
un

2 dx ≤
∫ +∞

x0(L)
a(x)un

2 dx ≤ c2,
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where c2 is the upper bound of J(un), and consequently
∫ +∞
x0(L)

un
2 dx ≤ c2

L . Considering L

large enough, we have
∫ +∞
x0(L)

un
2 dx ≤ c1

2 , and therefore
∫ x0(L)
0 un

2 dx ≥ c1
2 , which implies

that the limit u of the convergent subsequence of un cannot be the trivial solution.
Now it is easy to get the following result:

Theorem 3.2.10. Let a(x) be a positive function in ℝ+ such that limx→∞ a(x) = +∞
and c a positive constant. Then problem (3.45) has a solution.

Final remarks

In the problem studied in subsection 3.1.5 we would like to consider condition (A1) instead
of (A′

1), but we were not able to prove the existence result using similar arguments to the
ones of subsection 3.1.3, so we had to go for a less general scenario. Nonetheless we feel
that the more general result should hold without asking more from the nonlinearity.

Maybe similar ideas can be used with Φ-Laplacian cases. If we consider the autonomous
boundary value problem

(
Φ(u′)

)′
= a (u) − g(u) = 0, u′(0) = u(+∞) = 0, (3.51)

where Φ and  are homeomorphisms with  (0) = Φ(0) = 0, the differential equation can
be written in the system form

{
u′ = Φ−1(z)

z′ = a (u)− g(u).

It is easy to see that dz
du = a (u)−g(u)

Φ−1(z) and therefore F (z) − aΨ(u) + G(u) = c, where

F (z) =
∫ z
0 Φ−1(s) ds, Ψ(u) =

∫ u
0  (s) ds and G(u) =

∫ u
0 g(s) ds. The fact that z(0) = 0

implies that c = 0 , so that the solutions of (3.51) have trajectories given by F (z) =
aΨ(u) − G(u). The similarities to the second order problem conservation law (3.4) are
evident. If we consider the Euler-Lagrange functionals

Ja,T (u) =

∫ T

0

(
F̃ (u′(x)) + aΨ(u(x))−G(u(x))

)
dx, where F̃ (z) =

∫ z

0
Φ(s) ds

defined in the Orlicz spaces

OT =

{
u ∈ H1[0, T ] :

∫ T

0

(
F̃ (u′(x)) + aΨ(u(x))

)
dx < +∞, u(T ) = 0

}
,

it seems that a mountain-pass geometry can be found with the adequate restrictions on
Φ,  and g and the Palais-Smale condition can be proved.

The results obtained in subsection 3.1.8 suggest also that we investigate whether the
heteroclinic connections for p > 2 may exist and be found by some different technique.

Finally, the study that we made for infinite domain non-autonomous fourth order
problems is only a beginning and it may also be of interest to make a deeper analysis.



Chapter 4

Fourth order boundary value

problems in a bounded interval

4.1 Introduction

It is well known that fourth order boundary value problems are related to the theory
of beam deflection. Recently, several authors have studied existence and multiplicity of
solutions of the equation

u(4)(x) = f
(
x, u(x), u′′(x)

)
, x ∈ [0, 2�] (4.1)

with different boundary conditions. We will address the periodic boundary conditions

u(0) = u(2�), u′(0) = u′(2�), u′′(0) = u′′(2�), u′′′(0) = u′′′(2�),

the “simply supported” boundary conditions

u(0) = u(�) = u′′(0) = u′′(�) = 0

and the “clamped beam” boundary conditions

u(0) = u(1) = u′(0) = u′(1) = 0.

We considered different lengths of the interval for convenience and for no other special
reason.

The periodic problem with f not depending on u′′ has been studied by Cabada [10], via
maximum principles and the monotone method. Jiang, Gao and Wan [31] obtained results
for the full nonlinear problem using the monotone method. Allowing a linear dependence
on f on u′′, Li [35] and Liu and Li [36] have obtained existence results using fixed point
theory.

In the “simply supported” case, Bai and Wang [2] have obtained existence and mul-
tiplicity results without dependence on u′′. With linear dependence on u′′, we can find
results of existence in Li [35] and existence and multiplicity in Yao [48]. Cabada, Cid
and Sanchez [11] obtained results for the problem without dependence on u′′, using up-
per and lower solutions in reversed order. The superlinear case has been studied by B.
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R. Rynne [47] using a bifurcation technique. The “clamped beam” problem has deserved
less attention in the literature as far as we know.

In the first two sections, we deal with fourth order boundary value problems in a way
that Gao, Weng, Jiang and Hou [26] did for second order. We consider equation (4.1) with
periodic as well as “simply supported” boundary conditions, and prove existence results
(considering f one-sided Lipschitz in both variables u and u′′) if there exist lower and
upper solutions (ordered or in reversed order for the periodic case, and ordered in the
“simply supported” case).

Habets and Sanchez [30] have obtained similar results to the ones we obtain here,
using Lipschitz conditions. The main difference is that in our case only localization is
obtainable, no iterative technique is possible.

In these cases, the decomposition of the fourth order operator in two operators of
second order was the key to prove monotonicity of the associated fourth order operator.
In the case of clamped beam conditions, the fourth order problem

{
u(4)(x) + (m+M)u′′(x) +mM u(x) = f(x),

u(0) = u′(0) = u(1) = u′(1) = 0,
(4.2)

for a given positive continuous function f(x), can still be divided in two second order
problems, which are {

u′′(x) +mu(x) = v(x),

u(0) = u(1) = 0,

and ⎧
⎨
⎩

v′′(x) +M v(x) = f(x),
∫ 1
0 sinh

(√
∣m∣(1− s)

)
v(s) ds = 0,

∫ 1
0 sinh

(√
∣m∣s

)
v(s) ds = 0,

if m < 0; ⎧
⎨
⎩

v′′(x) +M v(x) = f(x),∫ 1
0 s v(s) ds = 0,∫ 1
0 (1− s) v(s) ds = 0,

if m = 0; or ⎧
⎨
⎩

v′′(x) +M v(x) = f(x),∫ 1
0 sin (2m� (1− s)) v(s) ds = 0,∫ 1
0 sin (2m� s) v(s) ds = 0,

if m > 0.
Now if we look at the boundary conditions of the second operator one immediately

realizes that there exists no possibility for v to be positive for allm ≤ 1/4, so the arguments
used for example in [20] can not be applied.

Concerning this problem, we will focus on the differential equation u(4) = f(x, u).
Adding k u to both sides of the equation, we will use topological arguments for negative
values of k to prove the existence of a solution, and for k > 0 we will prove the positivity
of the associated Green’s function using a very interesting result of Schröder’s paper [49].
The procedure after knowing the values of k for which we have positivity will be similar
to the one taken in [11].
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4.2 Existence and localization for periodic boundary condi-

tions

We start by proving two maximum principles, that are the key to prove the existence
results we look for.

Lemma 4.2.1 (Maximum Principle 1). Let L < 0, p, q, r ∈ ℝ with p < r < q and
y ∈ C[p, q] ∩W 2,1(p, r) ∩W 2,1(r, q) such that

y′′(x) + Ly(x) = f(x) ≥ 0 a.e. x ∈ (p, q), y(p) = y(q), y′(p) ≥ y′(q), y′(r+) ≥ y′(r−).

Then y(x) ≤ 0 for all x ∈ [p, q]. Moreover, if y′′(x) + Ly(x) ∕≡ 0, then y(x) < 0 for all
x ∈ (p, q).

Proof. Suppose that y(x) > 0 for all x ∈ (p, q). Then we would have the contradiction

0 ≥ y′(r−)− y′(r+) + y′(q)− y′(p) =
∫ r

p
f(x)− Ly(x) dx+

∫ q

r
f(x)− Ly(x) dx > 0.

If y(p) > 0, then y(q) > 0 and therefore there exist two intervals [p, p1] and [q1, q] where
y > 0, y(p1) = y(q1) = 0, y′(p1) ≤ 0 and y′(q1) ≥ 0. If r belongs to one of the intervals,
then we would have the contradiction

0 ≥ y′(r−)−y′(r+)+y′(q)−y′(p)+y′(p1)−y′(q1) =
∫ p1

p
f(x)−Ly(x) dx+

∫ q

q1

f(x)−Ly(x) dx > 0,

otherwise, the contradiction is the same, without the terms involving r.
If y(p) < 0 then the exists an interval (p1, q1) where y > 0 and y(p1) = y(q1) = 0, and

we can apply the arguments used in the first case.

Lemma 4.2.2 (Maximum Principle 2). Let 0 < L < 1
4 , p < r < q with q − p ≤ 2� and

y ∈ C[p, q] ∩W 2,1(p, r) ∩W 2,1(r, q) such that

y′′(x) + Ly(x) = f(x) ≥ 0, y(p) = y(q), y′(p) ≥ y′(q), y′(r+) ≥ y′(r−).

Then y(x) ≥ 0 for all x ∈ [p, q]. Moreover, if y′′(x) + Ly(x) ∕≡ 0, then y(x) > 0 for all
x ∈ (p, q).

Proof. It follows easily combining the arguments used in the proof of the previous lemma
and the proof of Proposition 2.3 in [30].

Consider the fourth order equation

u(4)(x) = f
(
x, u(x), u′′(x)

)
, x ∈ [0, 2�] (4.3)

where f is a L1-Carathéodory function, with periodic boundary conditions

u(0) = u(2�), u′(0) = u′(2�), u′′(0) = u′′(2�), u′′′(0) = u′′′(2�). (4.4)

We say that � ∈W 4,1(0, 2�) is a lower solution of the boundary value problem (4.3)–
(4.4) if

�(4)(x) ≤ f
(
x, �(x), �′′(x)

)
, x ∈ [0, 2�]
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�(0) = �(2�), �′(0) = �′(2�), �′′(0) = �′′(2�), �′′′(0) ≤ �′′′(2�).

A function � ∈W 4,1(0, 2�) satisfying the reversed inequalities is called an upper solution.
Let �, � be respectively a lower and an upper solution of (4.3)–(4.4), such that �(x) ≤

�(x) for all x ∈ [0, 2�].
In the following, let us assume the hypothesis

(H1) there exist constants C,D > 0 with D2 > 4C, such that

f (x, u2, v2)− f (x, u1, v1) ≥ −C (u2 − u1) +D (v2 − v1) (4.5)

for a.e. x ∈ [0, 2�], �(x) ≤ u1 ≤ u2 ≤ �(x), v1 ≤ v2.

Remark 4.2.3. If f(x, u, v) is a C1 function in (u, v), the inequality in (H1) is equivalent
to ∂f

∂u ≥ −C and ∂f
∂v ≥ D.

5 10
C

3

6

D

Figure 4.1: Admissible values C,D

Let m,M < 0 be the two roots of the equation x2 + Dx + C = 0 (note that C =
mM, D = −(m+M)).

Setting a(x) = �′′(x)+m�(x) and b(x) = �′′(x)+m�(x), we have the following result

Proposition 4.2.4. If f is a L1-Carathéodory function satisfying (H1) for �(x), �(x)
lower and upper solutions such that �(x) ≤ �(x) for all x ∈ [0, 2�], then b(x) ≤ a(x).

Proof. Setting y(x) = b(x)−a(x), then y(0) = y(2�) and y′(0) ≥ y′(2�). Suppose towards
a contradiction that there exists x0 ∈ [0, 2�] such that y(x0) > 0.

If y(x) > 0 for all x ∈ [0, 2�], we have (noting that b(x)−m�(x) ≥ a(x)−m�(x) and
m2 +mD + C = 0)

y′′(x) +My(x) =b′′(x)− a′′(x) +Mb(x)−Ma(x)

=�(4)(x) + (m+M)�′′(x) + (m+M)m�(x) −m2�(x)−
− (�(4)(x) + (m+M)�′′(x) + (m+M)m�(x) −m2�(x))

≥f(x, �(x), b(x) −m�(x))− f(x, �(x), a(x) −m�(x))+

+ (m+M)y(x)−m2(�(x) − �(x)) ≥ 0,

and this is a contradiction, since by the Maximum Principle 4.2.1 we would have y(x) ≤ 0.
Otherwise, considering if necessary the periodic extension of y(x), there exists an

interval [p, q], with q − p < 2�, such that y(p) = y(q) = 0, y′(p) > 0 > y′(q), and
y(x) > 0 for x ∈ (p, q). Applying the same argument in [p, q] as above, we reach again a
contradiction.
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Let

p(x, z) =

⎧
⎨
⎩

b(x), z < b(x)

z, b(x) ≤ z ≤ a(x)

a(x), z > a(x).

Consider the boundary value problem

u′′(x) +mu(x) ≡ Lm u(x) = q(x), u(0) = u(2�), u′(0) = u′(2�),

with q ∈ L1[0, 1]. Since m < 0, the operator Lm is invertible, so that we can write its
unique solution u as u = L−1

m q, and by the Maximum principle 4.2.1 we know that if
q(x) ≥ 0 then u(x) ≤ 0. Since �(x) = L−1

m a(x), �(x) = L−1
m b(x) and b(x) ≤ p(x, z(x)) ≤

a(x), for any function z(x) we have

�(x) ≤ L−1
m p(x, z(x)) ≤ �(x).

Let us consider the modified problem

z′′(x) +Mz(x) = (Fz)(x) ≡ f
(
x,L−1

m p(x, z(x)), p(x, z(x)) −mL−1
m p(x, z(x))

)
+

+ (m+M)p(x, z(x)) −m2L−1
m p(x, z(x)), z(0) = z(2�), z′(0) = z′(2�). (4.6)

Considering the operator Φ : C[0, 2�] → C[0, 2�] with Φz = L−1
M (Fz), since p(x, z(x)) and

L−1
m p(x, z(x)) are bounded and f is a Carathéodory function, there exists a L1[0, 2�] func-

tion g(x) such that ∣(Fz)(x)∣ ≤ g(x) for a.e. x ∈ [0, 2�]. Therefore, applying Schauder’s
fixed point Theorem, we can conclude that Φ has a fixed point z(x) which is a solution of
the modified problem (4.6).

Proposition 4.2.5. Let z(x) be a solution of the modified problem (4.6). Assuming (H1),
for given lower and upper solutions �(x) and �(x), with � ≤ � for all x ∈ [0, 2�], we have

b(x) ≤ z(x) ≤ a(x).

Proof. We will only prove that z(x) ≤ a(x), since the other inequality can be obtained
with similar arguments.

We have

a′′(x) +Ma(x) ≤ f
(
x,L−1

m a(x), a(x) −mL−1
m a(x)

)
+ (m+M)a(x)−m2L−1

m a(x),

a(0) = a(2�), a′(0) ≤ a′(2�).

Setting y(x) = z(x) − a(x), then y(0) = y(2�), y′(0) ≥ y′(2�). Suppose towards a
contradiction that there exists x0 ∈ [0, 2�] such that y(x0) > 0.

If y(x) > 0 for all x, then z(x) > a(x) and, therefore, p(x, z(x)) = a(x), so

z′′(x) +Mz(x) =f
(
x,L−1

m a(x), a(x) −mL−1
m a(x)

)
+ (m+M)a(x)−m2L−1

m a(x) ≥
≥a′′(x) +Ma(x),

which is a contradiction, since by the Maximum Principle 4.2.1 we would have y(x) ≤ 0.
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Otherwise, considering if necessary the periodic extension of y(x), there exists an
interval [p, q] with q − p < 2� such that y(p) = y(q) = 0, y′(p) > 0 > y′(q), y(x) > 0 for
x ∈ (p, q) and (recalling that L−1

m p(x, z(x)) ≥ L−1
m a(x))

y′′(x) +My(x) =z′′(x) +Mz(x)− a′′(x)−Ma(x) ≥
≥f
(
x,L−1

m p(x, z(x)), p(x, z(x)) −mL−1
m p(x, z(x))

)
−

− f(x,L−1
m a(x), a(x) −mL−1

m a(x))+

+(m+M)y(x) −m2(L−1
m p(x, z(x)) − �(x)) ≥ 0,

so, we reach again a contradiction by the Maximum Principle 4.2.1.

Theorem 4.2.6. Assuming (H1), for given lower and upper solutions � and �, with
� ≤ �, the boundary value problem (4.3)–(4.4) has a solution u(x) ∈W 4,1(0, 2�).

Proof. Let u(x) = L−1
m z(x), where z(x) is a solution of the modified problem (4.6). Since

z(x) = u′′(x)+mu(x), we have z′′(x)+Mz(x) = u(4)(x)−Du′′(x)+Cu(x). On the other
hand,

z′′(x) +Mz(x) =f
(
x,L−1

m p(x, z(x)), p(x, z(x)) −mL−1
m p(x, z(x))

)
+

+ (m+M)p(x, z(x)) −m2L−1
m p(x, z(x)) =

=f
(
x, z(x), u′′(x)

)
−Du′′(x) +Cu(x),

so u(x) satisfies (4.3)–(4.4).

We can reach a similar conclusion, assuming the following hypothesis

(H1’) there exist constants C,D > 0 with D < 4C + 1/4 and D2 > 4C, such that

f (x, u2, v1)− f (x, u1, v2) ≥ −C (u2 − u1)−D (v1 − v2) (4.7)

for a.e. x ∈ [0, 2�], �(x) ≤ u1 ≤ u2 ≤ �(x), v1 ≤ v2.

Remark 4.2.7. If f(x, u, v) is a C1 function in (u, v), the inequality in (H1’) is equivalent
to ∂f

∂u ≥ −C and ∂f
∂v ≤ −D.
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Figure 4.2: Admissible values C,D

Let 0 < m,M < 1
4 be the two roots of the equation x2 − Dx + C = 0 (note that

C = mM, D = m+M)).
Defining a(x) and b(x) as above, we have the following result:
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Proposition 4.2.8. If f is a L1-Carathéodory function satisfying (H1’) for �(x), �(x)
lower and upper solutions such that �(x) ≤ �(x), then b(x) ≥ a(x).

Proof. Setting y(x) = b(x) − a(x), we have y(0) = y(2�) and y′(0) ≥ y′(2�). Suppose
towards a contradiction that there exists x0 ∈ [0, 2�] such that y(x0) < 0. We can reach
a contradiction with similar arguments from the ones used in Proposition 4.2.4, using
instead the Maximum principle 4.2.2.

Using the same arguments as in the previous case, we prove the following result:

Theorem 4.2.9. Assuming (H1’), for given lower and upper solutions � and �, with
� ≤ �, the boundary value problem (4.3)–(4.4) has a solution u(x) ∈W 4,1(0, 2�).

Now we prove similar results from the ones above, but with lower and upper solutions
in reversed order, that is �(x) ≤ �(x), for all x ∈ [0, 2�].

(H2) there exist constants C,D with C < 0 and D > −4C − 1/4, such that

f (x, u1, v2)− f (x, u2, v1) ≥ −C (u1 − u2) +D (v2 − v1) (4.8)

for a.e. x ∈ [0, 2�], �(x) ≤ u1 ≤ u2 ≤ �(x), v1 ≤ v2.

Remark 4.2.10. If f(x, u, v) is a C1 function in (u, v), the inequality in (H2) is equivalent
to ∂f

∂u ≤ −C and ∂f
∂v ≥ D.
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Figure 4.3: Admissible values C,D

Let M < 0 and 0 < m < 1
4 be the two roots of the equation x2 +Dx + C = 0 (note

that C = mM, D = −(m+M)).

Defining a(x) = �′′(x) + m�(x) and b(x) = �′′(x) + m�(x), we have the following
result:

Proposition 4.2.11. If f is a L1-Carathéodory function satisfying (H2) for �(x), �(x)
lower and upper solutions such that �(x) ≤ �(x), then b(x) ≤ a(x).
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Proof. Setting y(x) = b(x)−a(x), then y(0) = y(2�) and y′(0) ≥ y′(2�). Suppose towards
a contradiction that there exists x0 ∈ [0, 2�] such that y(x0) > 0.

If y(x) > 0 for all x, then (noting that b(x)−m�(x) ≥ a(x)−m�(x))

y′′(x) +My(x) ≥f(x, �(x), b(x) −m�(x)) − f(x, �(x), a(x) −m�(x))+

+ (m+M)y(x)−m2(�(x)− �(x)) ≥ 0,

and this is a contradiction, since by the Maximum Principle 4.2.1 we would have y(x) ≤ 0.
Otherwise, considering if necessary the periodic extension of y(x), there exists an

interval [p, q] with q−p < 2� such that y(p) = y(q) = 0, y′(p) > 0 > y′(q), and y(x) > 0 for
x ∈ (p, q). Applying the same argument in [p, q] as above, we reach again a contradiction.

Let

p(x, z) =

⎧
⎨
⎩

b(x), z < b(x)

z, b(x) ≤ z ≤ a(x)

a(x), z > a(x).

Consider the boundary value problem

u′′(x) +mu(x) ≡ Lm u(x) = q(x), u(0) = u(2�), u′(0) = u′(2�),

with q ∈ L1[0, 1]. Since m < 1 , the operator Lm is invertible, so that we can write its
unique solution u as u = L−1

m q, and by the Maximum principle 4.2.2 we know that if
q(x) ≥ 0, then u(x) ≥ 0. Since �(x) = L−1

m a(x), �(x) = L−1
m b(x) and b(x) ≤ p(x, z(x)) ≤

a(x) for any functions z(x), we have

�(x) ≤ L−1
m p(x, z(x)) ≤ �(x).

Let us consider the modified problem

z′′(x) +Mz(x) =(Fz)(x) ≡ f
(
x,L−1

m p(x, z(x)), p(x, z(x)) −mL−1
m p(x, z(x))

)
+

+ (m+M)p(x, z(x)) −m2L−1
m p(x, z(x)), z(0) = z(2�), z′(0) = z′(2�).

(4.9)

Considering the operator Φ : C[0, 2�] → C[0, 2�] with Φz = L−1
M (Fz) since p(x, z(x)) and

L−1
m p(x, z(x)) are bounded and f is a Carathéodory function, there exists a L1[0, 2�] func-

tion g(x) such that ∣(Fz)(x)∣ ≤ g(x) for a.e. x ∈ [0, 2�]. Therefore, applying Schauder’s
fixed point Theorem, we can conclude that Φ has a fixed point z(x) which is a solution of
the modified problem (4.9).

Proposition 4.2.12. Let z(x) be a solution of the modified problem (4.9). Assuming
(H2), for given lower and upper solutions � and �, with � ≤ �, we have

b(x) ≤ z(x) ≤ a(x).

Proof. The proof is similar to the one of proposition 4.2.5.

Theorem 4.2.13. Assuming (H2), for given lower and upper solutions � and �, with
� ≤ �, the boundary value problem (4.3)–(4.4) has a solution u(x) ∈W 4,1(0, 2�).
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Proof. The proof is similar to the one of theorem 4.2.6.

We can reach a similar conclusion, assuming the following hypothesis

(H2’) there exist constants C,D with C < 0 and D < 4C + 1/4 such that

f (x, u1, v1)− f (x, u2, v2) ≥ −C (u1 − u2)−D (v1 − v2) (4.10)

for a.e. x ∈ [0, 2�], �(x) ≤ u1 ≤ u2 ≤ �(x), v1 ≤ v2.

Remark 4.2.14. If f(x, u, v) is a C1 function in (u, v), the inequality in (H2’) is equivalent
to ∂f

∂u ≤ −C and ∂f
∂v ≤ −D.
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Figure 4.4: Admissible values C,D

Let m < 0 and 0 < M < 1
4 be the two roots of the equation x2 −Dx + C = 0 (note

that C = mM, D = m+M)).

Defining a(x) and b(x) as above, we have the following result:

Proposition 4.2.15. If f is a L1-Carathéodory function satisfying (H2’) for �(x), �(x)
lower and upper solutions such that �(x) ≤ �(x), then b(x) ≥ a(x).

Proof. Setting y(x) = b(x) − a(x), we have y(0) = y(2�) and y′(0) ≥ y′(2�). Suppose
towards a contradiction that there exists x0 ∈ [0, 2�] such that y(x0) < 0. We can reach
a contradiction with similar arguments from the ones used in Proposition 4.2.11, using
instead the Maximum principle 4.2.2.

Using the same arguments as in the previous case, we prove the following result:

Theorem 4.2.16. Assuming (H2’), for given lower and upper solutions � and �, with
� ≤ �, the boundary value problem (4.3)–(4.4) has a solution u(x) ∈W 4,1[0, 2�].
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4.3 Existence and localization for “simply supported” bound-

ary conditions

We start by stating the following maximum principles that will allow us to conclude the
pretended existence results.

Lemma 4.3.1 (Maximum Principle 3). Let L < 1 and y ∈W 2,1(0, �) such that

y′′(x) + Ly(x) ≥ 0, y(0) ≤ 0, y(�) ≤ 0.

Then y(x) ≤ 0 for all t ∈ [0, �]. Moreover, if y′′(x) + Ly(x) ∕≡ 0, then y(x) < 0 for all
t ∈ (0, �).

Lemma 4.3.2 (Maximum Principle 4). Let L < 1, M ∈ ℝ and y ∈W 2,1(0, �) such that

y′′(x) + Ly+(x)−My−(x) ≥ 0, y(0) ≤ 0, y(�) ≤ 0,

where y+, y− are respectively the positive and negative parts of y. Then y(x) ≤ 0 for all
x ∈ [0, �].

Consider the fourth order equation

u(4)(x) = f
(
x, u(x), u′′(x)

)
, x ∈ [0, �] (4.11)

where f is a L1 − Carathéodory function, and the boundary conditions

u(0) = u(�) = u′′(0) = u′′(�) = 0. (4.12)

We say that � ∈ W 4,1[0, �] is a lower solution of the boundary value problem (4.11)–
(4.12) if

�(4)(x) ≤ f
(
x, �(x), �′′(x)

)
, x ∈ [0, �]

�(0) ≤ 0, �(�) ≤ 0, �′′(0) ≥ 0, �′′(�) ≥ 0.

A function � ∈W 4,1[0, �] satisfying the reversed inequalities is called an upper solution.
Let �, � be respectively a lower and an upper solution of (4.3)–(4.4), such that �(x) ≤

�(x) for all x ∈ [0, �].
In the following, let us assume the hypothesis

(H3) there exist constants C,D such that C < 0 or D > 0, with D > −C − 1, D2 > 4C ,
and

f (x, u2, v2)− f (x, u1, v1) ≥ −C (u2 − u1) +D (v2 − v1) (4.13)

for a.e. x ∈ [0, 2�], �(x) ≤ u1 ≤ u2 ≤ �(x), v1 ≤ v2.

Remark 4.3.3. If f(x, u, v) is a C1 function in (u, v), the inequality in (H3) is equivalent
to ∂f

∂u ≥ −C and ∂f
∂v ≥ D.

Let m < 0 and M < 1 be the two roots of the equation x2 +Dx + C = 0 (note that
C = mM, D = −(m+M)).

Defining a(x) = �′′(x) + m�(x) and b(x) = �′′(x) + m�(x), we have the following
result:
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Figure 4.5: Admissible values C,D

Proposition 4.3.4. If f is a L1-Carathéodory function satisfying (H3) for �(x), �(x)
lower and upper solutions such that �(x) ≤ �(x), then b(x) ≤ a(x).

Proof. Setting y(x) = b(x) − a(x), then y(0) ≤ 0 and y(�) ≤ 0. Suppose towards a
contradiction that there exists x0 ∈ [0, �] such that y(x0) > 0. The result follows using
similar arguments to the ones of Proposition 4.2.4 (using Maximum principle 4.3.1 instead).

Let

p(x, z) =

⎧
⎨
⎩

b(x), z < b(x)

z, b(x) ≤ z ≤ a(x)

a(x), z > a(x).

Consider the boundary value problem

u′′(x) +mu(x) ≡ Lm u(x) = q(x), u(0) = 0, u(�) = 0,

with q ∈ L1[0, 1]. Since m < 0, the operator Lm is invertible, so that we can write its
unique solution u as u = L−1

m q.
Let us define ã(x) such that ã′′ +mã = 0, ã(0) = �(0), ã(�) = �(�), and b̃(x) such

that b̃′′ +mb̃ = 0, b̃(0) = �(0), b̃(�) = �(�). It is obvious that ã(x) ≤ 0 and b̃(x) ≥ 0 for
all x ∈ [0, �].

We have �(x) = L−1
m a(x) + ã(x) and �(x) = L−1

m b(x) + b̃(x), so, by the Maximum
principle 4.3.1, for any function z(x) we get

�(x) ≤ L−1
m p(x, z(x)) ≤ �(x).

Proceeding in a similar way as in the previous cases, we can reach an analogue con-
clusion:

Theorem 4.3.5. Assuming (H3), for given lower and upper solutions � and �, with
� ≤ �, the boundary value problem (4.11)–(4.12) has a solution u(x) ∈W 4,1[0, �].

Let us now consider an hypothesis somehow different from the ones considered above.
Suppose that

(H4) there exist constants C,D with C > 0, 0 < D < 1 , and

f (x, u2, v2)− f (x, u1, v1) ≥ C (u2 − u1)−D ∣v2 − v1∣ (4.14)

for a.e. x ∈ [0, 2�], �(x) ≤ u1 ≤ u2 ≤ �(x), v1, v2 ∈ ℝ.
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Remark 4.3.6. If f(x, u, v) is a C1 function in (u, v), the inequality in (H4) is equivalent

to ∂f
∂u ≥ C and

∣∣∣∂f∂v
∣∣∣ ≤ D.

Let m < 0 be such that C + Dm − m2 > 0 and D − m < 1. Defining a(x) =
�′′(x) +m�(x) and b(x) = �′′(x) +m�(x), we have the following result:

Proposition 4.3.7. If f is a L1-Carathéodory function satisfying (H4) for �(x), �(x)
lower and upper solutions such that �(x) ≤ �(x), then b(x) ≤ a(x).

Proof. Setting y(x) = b(x)− a(x), then y(0) ≤ 0, y(�) ≤ 0 and

y′′(x) =�(4)(x)− �(4)(x) +m(�′′(x)− �′′(x)) +m2(�(x)− �(x)) −m2(�(x)− �(x)) ≥
≥f(x, �(x), b(x)−m�(x)) − f(x, �(x), a(x)−m�(x))+my(x)−m2(�(x)−�(x)) ≥
≥C(�(x)− �(x))−D ∣y(x)−m(�(x)− �(x))∣ +my(x)−m2(�(x)− �(x)) ≥
≥(C +Dm−m2)(�(x)− �(x)) −D ∣y(x)∣+my(x).

In order to apply Maximum principle 4.3.2, we can rewrite the previous inequality as

y′′(x) + (D −m)y+(x) + (D +m)y−(x) ≥ 0

and conclude that y(x) ≤ 0.

Proceding in a similar way as above, we can reach an analogue conclusion:

Theorem 4.3.8. Assuming (H4), for given lower and upper solutions � and �, with
� ≤ �, the boundary value problem (4.11)–(4.12) has a solution u(x) ∈W 4,1[0, �].

4.4 Existence and localization for “clamped beam” bound-

ary conditions

In this section we study the boundary value problem

{
u(4)(x) = f(x, u(x)), x ∈ [0, 1],

u(0) = u′(0) = u(1) = u′(1) = 0.
(4.15)

We prove existence results using the method of lower and upper solutions. In order to
apply this method, in the first three subsections we study the positivity of an auxiliar
fourth order operator.

As it was said before, positivity results for this type of problems cannot be obtained as
in the previous sections, because the usual technique of decomposing the operator into two
second order operators does not work appropriately in this case. We found the answer by
applying a very interesting result of J. Schröder in [49] concerning the oscillation properties
of the solutions of a differential equation (subsection 4.4.2). The main result is given in
the last subsection.
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Positivity for the operator u
(4) −m

4
u

We begin by stating a general result of linear eigenvalue problems. Let X be a Banach
space with an order cone X+ having a nonempty interior and let T : X → X be a linear
and completely continuous operator with spectral radius r(T ).

A cone X+ defines the partial ordering in X given by x ⪯ y if and only if y−x ∈ X+.
We use the notation x ≺ y for y − x ∈ X+ ∖ {0} and x � y for y − x /∈ X+, moreover
x ≪ y means y − x ∈ int(X+). We will say that operator T is strongly positive if and
only if 0 ⪯ T (0) and the following property holds:

0 ≺ x implies 0 ≪ T x for all x ∈ D(T ). (4.16)

Consider the equation

Tx = �x, x ≻ 0

and the correspondent inhomogeneous equation

�x− Tx = y, y ≻ 0. (4.17)

In the sequel, we enunciate a classical result for the existence and uniqueness of solutions
for equation (4.17), depending on the spectral radius of operator T .

Theorem 4.4.1. [52, Corollary 7.27] For every y ≻ 0, equation (4.17) has exactly one
solution x ≻ 0 if � > r(T ) and no solution x ≻ 0 if � ≤ r(T ).

Moreover, given �, � ∈ ℝ, the equation �x − T x = � y, for y ≻ 0, has a positive
solution x ≻ 0 if sgn(�) = sgn(�− r(T )).

Remark 4.4.2. For the case � = −1, we have that if 0 < � < r(T ), then equation
Tx− �x = y has a unique positive solution x ≻ 0.

Let m > 0 be given, and consider the boundary value problem

{
u(4)(x) = m4u(x), x ∈ [0, 1],

u(0) = u′(0) = u(1) = u′(1) = 0.
(4.18)

It is not difficult to verify that this problem has a nontrivial solution if and only if m
solves the equation

cos(m) cosh(m) = 1. (4.19)

Moreover the first positive root of equation (4.19) is m1 ≈ 4, 73004.

Consider the boundary value problem (4.18) in the form

u = m4 T u,

where T : C[0, 1] → C[0, 1] is the operator that gives the unique solution u of u(4) = y
satisfying the boundary conditions u(0) = u′(0) = u(1) = u′(1) = 0, i.e.,

T y(t) =

∫ 1

0
G0(t, s) y(s) ds, y ∈ C[0, 1], (4.20)
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where

G0(t, s) = −1

6

⎧
⎨
⎩

s2 (t− 1)2 (s − 3 t+ 2 s t), if 0 ≤ s ≤ t ≤ 1,

t2 (s− 1)2 (t− 3 s+ 2 s t), if 0 ≤ t < s ≤ 1.

The regularity of this Green’s function G0 in [0, 1]× [0, 1] and its positivity in (0, 1)×
(0, 1), imply that T is a linear, completely continuous and strongly positive operator.

It is obvious that the values � = 1
m4 , where m > 0 solves (4.19), are the eigenvalues of

operator T , and therefore, r(T ) = 1
m1

4 .
The theorem above allows us to conclude the following result:

Theorem 4.4.3. Given y ∈ C[0, 1] a nontrivial function such that y(x) ≥ 0 for all
x ∈ [0, 1], the boundary value problem

{
u(4)(x)−m4 u(x) = y(x), for all x ∈ [0, 1],

u(0) = u′(0) = u(1) = u′(1) = 0,
(4.21)

has a unique positive solution u if 0 ≤ m < m1 and no positive solution if m ≥ m1.

Remark 4.4.4. If we refer to an arbitrary interval [a, b], we have that the maximum
principle holds for 0 ≤ m < m1/(b− a).

Positivity for the operator u
(4) +m

4
u

In this subsection we establish the range of values m > 0 for which it is true that
{
u(4) +m4u ≥ 0

u(0) = u′(0) = u(1) = u′(1) = 0
(4.22)

implies u ≥ 0.
We say that [0, 1] is an interval of non-oscillation for the differential equation u(4) +

m4u = 0 if no nontrivial solution of the equation u(4)+m4u = 0 has more than three zeros
in [0, 1] (the definition of interval of oscillation can be set as the opposite, that is, there
exists u solving u(4) +m4u = 0 with at least four zeros in the given interval).

In [49], Schröeder proved that if [0, 1] is an interval of non-oscillation for the differential
equation u(4) +m4u = 0, then (4.22) implies u ≥ 0 in [0, 1]. In the following, we will find
for which values of m is [0, 1] an interval of non-oscillation.

It is clear that the solutions of the fourth order linear homogeneous equation

u(4) +m4u = 0 (4.23)

are given by the following expression

u(x) = e
mx√

2

(
A cos

(
mx√
2

)
+B sin

(
mx√
2

))
+ e

−mx√
2

(
C cos

(
mx√
2

)
+D sin

(
mx√
2

))
,

(4.24)
with A,B,C,D ∈ ℝ.

Since the equation is autonomous, if u is a solution of (4.23) for a givenm and u(x0) = 0
for some x0 ∈ ℝ, then v(x) = u(x − x0) is also a solution of (4.23) and v(0) = 0, so we
can restrict ourselves to the solutions of (4.23) that vanish at x = 0, that is, we can take
C = −A in (4.24).
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Lemma 4.4.5. If [0, 1] is an interval of oscillation of (4.23) for a given m∗, then it is
also an interval of oscillation for all m > m∗.

Proof. Suppose that u is a solution of u(4) +m∗4u = 0 and u(0) = u(a) = u(b) = u(c) = 0

with 0 < a < b < c ≤ 1. Then v(x) = u
(
m
m∗
x
)
satisfies v(4) +m4v = 0, v (0) = v

(
m∗
m a
)
=

v
(
m∗
m b
)
= v

(
m∗
m c
)
= 0 and m∗

m c < c ≤ 1.

This lemma allows us to conclude that the set of values m > 0 for which [0, 1] is an
interval of non-oscillation of (4.23) is an interval too. Such interval can be empty and it
is bounded from above by m = 3�

√
2. This last property holds as a direct consequence

of the previous lemma by using the fact that the function e
mx√

2 sin
(
mx√
2

)
is a solution of

equation (4.23) that vanishes four times in [0, 1] for m = 3�
√
2.

To characterise the values of positive m for which [0, 1] is a non-oscillation interval, we
are interested in finding the infimum of the values m for which exists a solution of (4.23)
with four zeros in [0, 1]. The next lemma allows us to confine our search to the solutions
of (4.23) that vanish at x = 1.

Lemma 4.4.6. Consider m such that there exists a solution u(x) of (4.23) such that
u(0) = u(a) = u(b) = u(c) = 0 with 0 < a < b < c < 1. Then m is not the smallest value
for which [0, 1] is an interval of oscillation of (4.23).

Proof. Let v(x) = u(c x)
c . We have v(4) + (cm)4v = 0, v(0) = v

(
a
c

)
= v

(
b
c

)
= v(1) = 0.

Since cm < m, the result follows.

Remark 4.4.7. Notice that in the proof of the previous result we have that v′(0) = u′(0).

Taking u(1) = 0 and assuming that m√
2
= n� for some natural n, we deduce A = 0

and, in consequence, the expression (4.24) is reduced to

u(x) = e−n� x
(
Be2n�x +D

)
sinn�x.

Clearly this function has at most three zeros in [0, 1] when n = 1. So, from Lemma
4.4.5, we deduce that interval [0, 1] is non-oscillatory for all m ∈ (0,

√
2�].

Now, by choosing D = −2B ∕= 0, we have that for n = 2 the previous function vanishes
four times in [0, 1]. Thus, by using Lemma 4.4.5 again, we know that [0, 1] is oscillatory
for all m ≥ 2

√
2�.

So if m√
2
is not a positive multiple of �, we restrict our investigation to the values

m ∈ (
√
2�, 2

√
2�). If it is the case, we deduce that, in equation (4.24), the following

equality holds:

B = −e−
√
2m

(
A
(
e
√
2m − 1

)
cot

(
m√
2

)
+D

)
.

Now, define m0 ≈ 5.553 as the smaller positive solution of the equation

tanh
m√
2
= tan

m√
2
. (4.25)
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Let us now consider the set of solutions u such that u′(0) = 0. In this case, the solutions
u of (4.23) such that u(0) = u(1) = u′(0) = 0 follow the expression

u(x,m,A) = 2A sin

(
mx√
2

)
sinh

(
mx√
2

)(
coth

(
m√
2

)
− coth

(
mx√
2

)
+ cot

(
mx√
2

)
− cot

(
m√
2

))
.

It is trivial to see that cot
(
m√
2

)
− coth

(
m√
2

)
is a one-to-one map for m ∈ (0,m0], so if

0 < m ≤ m0, we know that

cot

(
mx√
2

)
− coth

(
mx√
2

)
∕= cot

(
m√
2

)
− coth

(
m√
2

)
for all x ∈ [0, 1).

Since mx√
2
< 2�, the equation sin

(
mx√
2

)
= 0 cannot have more than one solution for

x ∈ (0, 1) and consequently u does not vanish more than three times for 0 < m ≤ m0.
Now consider the set of solutions u such that u′(0) ∕= 0. Given u(x) such that u′(0) ∕= 0,

then v(x) = u(x)
u′(0) satisfies v′(0) = 1 and v(x) has exactly the same zeros of u(x), so we

can just refer to the case u′(0) = 1. In consequence we study the functions given by the
expression

u(x,m,A) =
e
−mx√

2

(
−1 + e

√
2m
)
m

[
A
(
e
√
2m − 1

)(
e
√
2mx − 1

)
m cos

(
mx√
2

)
+

+

((
e
√
2m − e

√
2mx
)(√

2− 2Am
)
−A

(
e
√
2m − 1

)(
e
√
2mx − 1

)
m cot

(
m√
2

))
sin

(
mx√
2

)]
=

=
2 sinh

(
mx√
2

)
sin
(
mx√
2

)

m

[√
2

2

(
coth

(
mx√
2

)
− coth

(
m√
2

))
+

+Am

((
cot

(
mx√
2

)
− cot

(
m√
2

))
−
(
coth

(
mx√
2

)
− coth

(
m√
2

)))]
(4.26)

Now, we study this set of solutions. The obtained result is the following:

Proposition 4.4.8. If
√
2� < m ≤ m0, then the solutions (4.26) of (4.23) have at most

three zeros.

Proof. If u(x,m,A) = 0 for some x ∈ (0, 1), then it is easy to write A as a function of m
and x. Replacing A for A(x,m) in the expression of the first derivative of u(x,m,A) we
get that the double zeros of u(x,m,A) belonging to (0, 1) must satisfy the condition

sinh
(
m(1−x)√

2

)
sinh

(
mx√
2

)

sinh
(
m√
2

) =
sin
(
m(1−x)√

2

)
sin
(
mx√
2

)

sin
(
m√
2

) . (4.27)

In [11], Cabada, Cid and Sanchez proved that

sin (m∗x) sin (m∗(1− s))

sin (m∗)
<

sinh (m∗x) sinh (m∗(1− s))

sinh (m∗)
, ∀x, s ∈ (0, 1), � < m∗ ≤ k0,

where k0 is the smallest positive solution of the equation tan k = tanh k.
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Taking m∗ = m√
2
and s = x, we have that (4.27) cannot have any solution if

√
2� <

m ≤ m0 ≡
√
2 k0, and, consequently, there are no solutions u(x,m,A) with a double zero

in the interval (0, 1).

Claim 4.4.9. Given A < 0 fixed, there exists mA >
√
2� close enough to

√
2� such that

u(x,m,A) > 0 for all x ∈ (0, 1) and all m ∈ (
√
2�,mA).

To prove this, we will use the second expression in (4.26).

1. If x ∈ (0,
√
2�

2m ), we have that cot
(
mx√
2

)
− coth

(
mx√
2

)
< 0 and sin

(
mx√
2

)
> 0 for all

m ∈ (
√
2�, 2

√
2�). Moreover there is �1 > 0 such that cot

(
m√
2

)
−coth

(
m√
2

)
> 0 for

all m ∈ (
√
2�,

√
2� + �1). So the function u is positive for some values of m >

√
2�

close enough to
√
2�.

2. If x ∈ (
√
2�

2m ,
√
2�
m ), we have that sin

(
mx√
2

)
> 0 for all m ∈ (

√
2�, 2

√
2�) and there

exists �2 > 0 such that cot
(
mx√
2

)
− cot

(
m√
2

)
≪ 0 and coth

(
mx√
2

)
− coth

(
m√
2

)
≈ 0

for all m ∈ (
√
2�,

√
2�+ �2). So again we have u(x,m,A) > 0 for m in such interval.

3. If x ∈ (
√
2�
m , 1), by choosing m close enough to

√
2� we can have the derivative of

− cot
(
mx√
2

)
bounded from bellow in the given interval by a value as large as we

want. Since

∣∣∣∣
(
coth

(
mx√
2

))′∣∣∣∣ < 1 and sin
(
mx√
2

)
< 0, it is easy to conclude that

u(x,m,A) > 0 and the claim is proven.

Let us now now focus on the possible double zeros at x = 1. We have

u′(1,m,A) =
(√

2Am− 1
) sin

(
m√
2

)

sinh
(
m√
2

) −
√
2Am

sinh
(
m√
2

)

sin
(
m√
2

) ,

so, for x = 1 to be a double zero we must have

√
2Am =

sin2
(
m√
2

)

sin2
(
m√
2

)
− sinh2

(
m√
2

) . (4.28)

Since ∣sin(x)∣ < ∣sinh(x)∣ for all x > 0, for the previous equality to be true, we must have
A < 0. In consequence, function u(x,m,A) has no double zeros in [0, 1] for all A ≥ 0 and
all m ∈ (

√
2�, 2

√
2�). In such a case, by using the fact that the first derivative at x = 0

and x = 1 is positive, we have that function u(x,m,A) has exactly three zeros in [0, 1].

For the double zeros at x = 1 we can write

A(m) =
sin2

(
m√
2

)

√
2m
(
sin2

(
m√
2

)
− sinh2

(
m√
2

))
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and

u′′(1,m,A(m)) = −
√
2m
(
cosh

(
m√
2

)
sin
(
m√
2

)
− cos

(
m√
2

)
sinh

(
m√
2

))

sin2
(
m√
2

)
− sinh2

(
m√
2

) ,

so the double zeros at x = 1 must have positive second derivative at x = 1 for m < m0.
A careful analysis of the function on the right-hand side of the equality (4.28) allows

us to conclude that given A < 0, there exist at most one value of m ∈ (
√
2�,m0] such that

u(x,m,A) has a double zero at x = 1.
So, fix A < 0 and denote

mA = inf{m ∈ (
√
2�,m0], such that u(x,m,A) > 0 for all x ∈ (0, 1)}.

If mA ≥ m0, we have that function u(x,m,A) is strictly positive in (0, 1). Otherwise,
by increasing the value of m from mA to m0 (where the continuous dependence on the
parameter m is obvious), there exists just one m1 ∈ [mA,m0] for which u(1,m1, A) has a
double zero.

If m < m0 we have that u
′′(1,m1, A) > 0 and, in consequence, the double zero can only

provide one extra zero and the solutions u(x,m,A) cannot have more than three zeros in
[0, 1].

When m = m0 we have that u(1,m0, A) = u′(1,m0, A) = u′′(1,m0, A) = 0. Therefore,
u′′′(1,m0, A) ∕= 0 and the double zero only gives one extra zero as in the previous case.

We can now state the following

Theorem 4.4.10. If m ∈ (0,m0], then [0, 1] is an interval of non-oscillation for the
differential equation u(4) +m4u = 0.

Proof. We have proven in Proposition 4.4.8 that [0, 1] is an interval of non-oscillation for
all m ∈ (

√
2�,m0]. From Lemma 4.4.5 we deduce that the same property holds for all

m ∈ (0,
√
2�].

The next result shows us that the previous theorem is optimal.

Theorem 4.4.11. If m > m0 then there exists a solution of (4.23) with at least four zeros
in [0, 1].

Proof. Considering the expression (4.27) of the double zeros in (0, 1), let us define

f(x,m) =
sinh

(
m(1−x)√

2

)
sinh

(
mx√
2

)

sinh
(
m√
2

) , g(x,m) =
sin
(
m(1−x)√

2

)
sin
(
mx√
2

)

sin
(
m√
2

) .

In the following we will prove that for m > m0 there exists a solution u(x,m,A) with a
double zero for some x ∈ (0, 1) and that a small change of the value A provides two zeros
in (0, 1) and, consequently, four zeros in [0, 1].

If m0 < m < 2
√
2�, we have

f

(
1

2
,m

)
− g

(
1

2
,m

)
=

1

2

(
tanh

(
m

2
√
2

)
− tan

(
m

2
√
2

))
> 0.
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On the other hand we have

f(0,m)− g(0,m) = f ′(0,m) − g′(0,m) = 0

and

f ′′(0,m)− g′′(0,m) = m2

(
cot

(
m√
2

)
− coth

(
m√
2

))
< 0,

so there exists x1 small enough such that f(x1,m)− g(x1,m) < 0.

Since f and g are continuous functions in the considered domain, for each m0 < m <
2
√
2� there exists xm ∈ (0, 12) such that f(xm,m) = g(xm,m) and consequently there is

Am < 0 for which the solution u(x,m,Am) has a double zero in (0, 1).

Let us now see that with the same value of m, a small change of A must provide two
zeros in (0, 1). For simplicity let us write the second expression in (4.26) in the compacted
form

u(x,m,A) ≡ f1(x,m)(f2(x,m) +Af3(x,m)).

Obviously
∂u

∂A
(x,m,A) = f1(x,m)f3(x,m).

On the other hand, since u(xm,m,Am) = 0, we have that

f1(xm,m) f2(xm,m) = −Am f1(xm,m) f3(xm,m).

Since 0 < xm < 1
2 , we have that f1(xm,m) > 0 and f2(xm,m) > 0. Therefore

Am f3(xm,m) ∕= 0 and we can conclude that ∂u
∂A (xm,m,Am) ∕= 0. This means that a

small change of Am in one of the directions makes the solution break the y = 0 line,
providing two zeros for the solution.

Now, from Lemma 4.4.5, we deduce that [0, 1] is an interval of oscillation for all m >
m0.

Following the results given by Schröeder in [49] we can state the main result of this
subsection:

Theorem 4.4.12. If 0 < m ≤ m0, then (4.22) implies u ≥ 0.

Remark 4.4.13. If we refer to an arbitrary interval [a, b], we have that the anti - maximum
principle is fulfilled for 0 ≤ m ≤ m0/(b− a).

Let us now see that this last theorem is an equivalence. It is well known that the
positivity of the operator is verified if and only if the associated Green’s function is positive.
For this we will use the Green’s function (which is hard to deal with to prove positivity
in this case, but relatively easy to prove non-positivity). Before to consider such function
we use the following result that can be proven in the same way that [13, Theorem 3.1].

Lemma 4.4.14. Suppose that there exist m̃ > 0 and um̃ ∕≥ 0 in [0, 1] satisfying inequalities
(4.22). Then for all m > m̃ there is um ∕≥ 0 in [0, 1] fulfilling (4.22). In other words: if
the related Green’s function Gm̃ changes sign in [0, 1]× [0, 1] the same holds for all m > m̃.
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The Green’s function is given by the following expression:

Gm(t, s) =
1

4
√
2m3

{
2e

m(t−s)√
2

([
−1 + e

√
2m(s−t)

)
cos

(
m(t− s)√

2

)

+
(
1 + e

√
2m(s−t)

)
sin
(
m(t−s)√

2

)]

− 1

cos
(√

2m
)
+ cosh

(√
2m
)
− 2

[
2e

−m(3s+t−4)√
2

(
−1 + e

√
2mt
)
×

[(
e
√
2m(s−2) − e2

√
2m(s−1)

)
cos
(
m(s−2)√

2

)
+
(
−e

√
2m(s−2) + e2

√
2m(s−1)

)
cos
(
ms√
2

)

+
(
e
√
2m(s−2) − e

√
2m(s−1) + e2

√
2m(s−1) − e

√
2m(2s−3)

)
sin
(
ms√
2

)]
sin
(
mt√
2

)

− e
−m(s+t)√

2

((
1 + e

√
2ms
)
cos
(
m(s−2)√

2

)
+
(
−2 + e

√
2m + e

√
2m(s−1) − 2e

√
2ms
)
cos
(
ms√
2

)

+
(
−1 + e

√
2ms
)
sin
(
m(s−2)√

2

)
+
(
e
√
2m − e

√
2m(s−1)

)
sin
(
ms√
2

))
×((

−1 + e
√
2mt
)
cos
(
mt√
2

)
−
(
1 + e

√
2mt
)
sin
(
mt√
2

))]}

when 0 ≤ s ≤ t ≤ 1, and

Gm(t, s) ≡ Gm(s, t) if 0 ≤ t ≤ s ≤ 1.

From Theorem 4.4.12 we know that the Green’s function Gm is nonnegative in [0, 1]×
[0, 1] for all m ∈ (0,m0].

Theorem 4.4.15. Function Gm changes sign for all m > m0.

Proof. Let us see that such function changes sign in [0, 1] × [0, 1] for all m > m0, m close
enough to m0.

First note that for all m > 0 it is verified that

Gm

(
1

2
,
1

2

)
=

cos
(
m√
2

)
+ cosh

(
m√
2

)
− 2

2
√
2m3

(
sin
(
m√
2

)
+ sinh

(
m√
2

)) ,

which is strictly positive for all m > m0.
On the other hand, one can verify that

Gm (0, s) =
∂

∂t
Gm (0, s) = 0 for all s ∈ [0, 1].

Moreover

∂2

∂t2
Gm (0, s) = − e

m(4−3s)√
2

√
2m
(
cos
(√

2m
)
+ cosh

(√
2m
)
− 2
)
[(
e
√
2m(s−2) − e2

√
2m(s−1)

)
×

cos
(
m(s−2)√

2

)
+
(
−e

√
2m(s−2) + e2

√
2m(s−1)

)
cos
(
ms√
2

)

+
(
e
√
2m(s−2) − e

√
2m(s−1) + e2

√
2m(s−1) − e

√
2m(2s−3)

)
sin
(
ms√
2

)]
.

Now, by defining
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ℎ(s) ≡ ∂2

∂t2
Gm0/s (0, s) ,

we deduce that

ℎ(1) = ℎ′(1) = ℎ′′(1) = 0

and

ℎ′′′(1) =
e
− 3m0√

2 m0

2
(
cos
(√

2m0

)
+ cosh

(√
2m
)
− 2
)2
{
3
(
e3

√
2m0

(√
2− 2m0

)
+ 4

√
2e

√
2m0

− 4
√
2e2

√
2m0 − 2m0 −

√
2
)
cos
(
m0√
2

)

+ 3e
√
2m0

(
2m0 + e

√
2m0

(
2m0 +

√
2
)
−

√
2
)
cos
(
3m0√

2

)

−
[
e3

√
2m0

(
3
√
2− 2m0

)
+ 2m0 + e

√
2m0

(
38m0 − 9

√
2
)
− e2

√
2m0

(
38m0 + 9

√
2
)

+ 2e
√
2m0

(
e
√
2m0

(
3
√
2− 2m0

)
+ 2m0 + 3

√
2
)
cos
(√

2m0

)
+ 3

√
2
)
sin
(
m0√
2

)]}

≈ 3.4412

Thus, we know that there is � > 0 such that ℎ(s) < 0 for all s ∈ (1 − �, 1). In conse-

quence, for all m̄ > m0 close enough tom0, there exist s̄ ∈ (0, 1) satisfying
∂2

∂t2
Gm̄(0, s̄) < 0

and we conclude that there is � > 0 for which

Gm̄(t, s̄) < 0 for all t ∈ (0, �).

The result holds from Lemma 4.4.14.

Non-homogeneous boundary conditions

In this subsection we prove the positivity for the operator Tm = u(4) +m4u in function
spaces where the elements do not necessarily verify the boundary conditions in (4.22).
First, we enunciate the following result (the proof follows from a direct computation):

Lemma 4.4.16. Let ℎ be a continuous function and a, b, c, d ∈ ℝ. Assume that the
boundary value problem

{
u(4) +m4u = ℎ(x)

u(0) = a, u(1) = b, u′(0) = c, u′(1) = d
(4.29)

has only the trivial solution for ℎ ≡ 0 and a = b = c = d = 0.
Then (4.29) has a unique solution given by

u(x) =

∫ 1

0
Gm(x, s)ℎ(s) ds + awm(x) + bwm(1− x) + c ym(x)− d ym(1− x),

where wm and ym are defined respectively as the unique solutions of
{
u(4) +m4u = 0

u(0) = 1, u(1) = u′(0) = u′(1) = 0
(4.30)
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and {
u(4) +m4u = 0

u′(0) = 1, u(0) = u(1) = u′(1) = 0.
(4.31)

Theorem 4.4.17. If 0 < m <
√
2�, then

{
u(4) +m4u ≥ 0

u(0) ≥ 0, u(1) ≥ 0, u′(0) = u′(1) = 0
(4.32)

implies u ≥ 0.

Proof. Note that
√
2� < m0, so we only need to prove that wm is positive for x ∈ (0, 1).

The explicit expression of wm is

1

cos
(√

2m
)
+ cosh

(√
2m
)
− 2

[
cos

(
mx√
2

)
cosh

(
m(x− 2)√

2

)
− sin

(
mx√
2

)
sinh

(
m(x− 2)√

2

)
+

+

(
cos

(
m(x− 2)√

2

)
− 2 cos

(
mx√
2

))
cosh

(
mx√
2

)
+ sin

(
m(x− 2)√

2

)
sinh

(
mx√
2

)]

(4.33)

and

w′
m(x) =

√
2m

cos
(√

2m
)
+ cosh

(√
2m
)
− 2

[(
cosh

(
mx√
2

)
− cosh

(
m(x− 2)√

2

))
sin

(
mx√
2

)
+

+

(
cos

(
m(x− 2)√

2

)
− cos

(
mx√
2

))
sinh

(
mx√
2

)]
. (4.34)

It is easy to see that w′
m(x) < 0 form <

√
2� which proves that wm is positive. Computing

the second derivative, we have

w′′
m(1) =

4m2 sin
(
m√
2

)
sinh

(
m√
2

)

cos
(√

2m
)
+ cosh

(√
2m
)
− 2

,

so for
√
2� < m < 2

√
2� we have wm(x) < 0 for x close enough to 1 and therefore the

result is sharp.

Remark 4.4.18. We just mention without proof that if u(0) = u(1), the previous result
can be improved. We have the positivity for m ≤ m0, since zm(x) = wm(x) + wm(1− x)
is nonnegative for m ≤ mz, where mz ≈ 6, 689 is the least positive solution of equation

tanh

(
m

2
√
2

)
= − tan

(
m

2
√
2

)
.

The following result concerns the positivity of Tm without the boundary conditions on
u′ being satisfied.
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Theorem 4.4.19. If 0 < m ≤ m0, then
{
u(4) +m4u ≥ 0

u(0) = u(1) = 0, u′(0) ≥ 0, u′(1) ≤ 0
(4.35)

implies u ≥ 0.

Proof. In this case, for simplicity, we will not present the long expression for ym(x), but
let us remark that this solution is one of the solutions in (4.26) (we have u(0) = u(1) = 0
and u′(0) = 1). Computing the second derivative, we have that

y′′m(1) =
2
√
2m
(
cosh

(
m√
2

)
sin
(
m√
2

)
− cos

(
m√
2

)
sinh

(
m√
2

))

cos
(√

2m
)
+ cosh

(√
2m
)
− 2

,

which is positive for m < m0 and negative for m > m0 close enough to m0. Since there
are no double zeros in (0, 1) for m < m0 and for m close enough to 0 we obviously have
ym(x) > 0 for x ∈ (0, 1), we conclude that ym is a positive function for m < m0. The fact
that y′′m(1) < 0 for m > m0 implies that ym takes negative values close enough to x = 1,
which allows us to conclude that the result is sharp.

For the case u′(0) = −u′(1) ≥ 0, even if ym(x) + ym(1 − x) is still positive for larger
values of m, we cannot improve the conclusion since m0 is the maximum value for which
the Green function is positive.

Corollary 4.4.20. If 0 < m <
√
2�, then

{
u(4) +m4u ≥ 0

u(0) ≥ 0, u(1) ≥ 0, u′(0) ≥ 0, u′(1) ≤ 0
(4.36)

implies u ≥ 0.

Main result

Now we prove the existence of solution for the boundary value problem
{
u(4)(x) = f(x, u(x)),

u(0) = u′(0) = u(1) = u′(1) = 0.
(4.37)

Definition 4.4.21. We say that � ∈ C4[0, 1] is a lower solution of (4.37) if
{
�(4)(x) ≤ f(x, �(x)),

�(0) ≤ 0, �(1) ≤ 0, �′(0) ≤ 0, �′(1) ≥ 0.
(4.38)

We say that � ∈ C4[0, 1] is an upper solution of (4.37) if � satisfies the reversed inequalities
of the definition of lower solution.

Let us consider the following inequality that will appear later:

f (x, �(x)) + k�(x) ≤ f(x, u) + k u ≤ f (x, �(x)) + k�(x), �(x) ≤ u ≤ �(x). (4.39)

We now state the main existence result:
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Theorem 4.4.22. Suppose that f : [0, 1] × ℝ → ℝ is a continuous function and �, � are
respectively a lower and an upper solution of (4.37). If � ≤ � and there exists 0 ≤ k ≤ 4�4

for which (4.39) holds, then there exists a solution u(x) of (4.37) and �(x) ≤ u(x) ≤ �(x).

Proof. Let Tk : C[0, 1] → C[0, 1] be the completely continuous operator that such Tkℎ(x)
is the unique solution of

{
u(4)(x) + k u(x) = f(x, ℎ(x)) + k ℎ(x),

u(0) = u′(0) = u(1) = u′(1) = 0
(4.40)

and consider the usual notation for the functional interval [u, v] = {w ∈ C[0, 1] : u ≤ w ≤ v}.
Given ℎ1, ℎ2 ∈ C[0, 1] with ℎ1(x) ≤ ℎ2(x), then, considering the two correspondent solu-
tion ui = Tkℎi for i = 1, 2 and defining w = u2 − u1, we have

{
w(4)(x) + k w(x) ≥ 0,

w(0) = w′(0) = w(1) = w′(1) = 0.
(4.41)

Theorem 4.4.12 implies w ≥ 0 and hence u2 ≥ u1. Taking in consideration inequality
(4.39) and corollary 4.4.20, we can easily check that � ≤ Tk�, � ≥ Tk� and because Tk
is nondecreasing, we also have Tk[�, �] ⊂ [�, �]. Since [�, �] is a convex, closed bounded
nonempty set of C[0, 1], Schauder’s fixed point Theorem implies the existence of a solution
of (4.37) in [�, �].

Remark 4.4.23. If we consider upper and lower solutions with extra conditions, we can
improve the previous result using the correspondent results from last subsection:

(i) if �(0) = �(1) = �(0) = �(1) = 0,

(ii) if �(0) = �(1), �(0) = �(1) and �′(0) = �′(1) = �′(0) = �′(1) = 0,

(iii) if �(0) = �(1) = �(0) = �(1) = 0 and �′(0) = �′(1) = �′(0) = �′(1) = 0,

we can take 0 ≤ k ≤ m0
4.

Note that inequality (4.39) with k < 0 is always more restrictive than with k = 0,
so the main theorems that we present here are only consequence of the results obtain in
subsection 4.4.2. The positivity for the operator in subsection 4.4.1 was not used in the
applications.

Final remarks

With the positivity results and the maximum principles that we obtained, it might be
possible to search positive solutions using Krasnoselskii’s fixed point Theorem in some ap-
propriate cone, or some other fixed point theorem. Maybe that way it could be possible to
introduce a dependence on intermediate derivatives in the nonlinearity. Variational meth-
ods may also be used, but that confines us to linear dependence on the second derivative
(and no dependence on other intermediate derivatives). Even though, that would be a
breakthrough.
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For an approach more related to the beam deflection applications, it would be inter-
esting to search for results that provide us solutions satisfying a priori bounds. As an
example, we could search for conditions on the nonlinearity implying that solutions satisfy
∥u′′∥∞ ≤ k for a given constant k. This could show us how to maximize the load of the
beam and also to find an optimal distribution of that load under that specific constraint.
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