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NOTA PRÉVIA  
 

 

A dissertação que agora apresento enquadra-se num projecto desenvolvido no Laboratório 

Marítimo da Guia da Faculdade de Ciências da Universidade de Lisboa em colaboração com a 

Estação Piloto de Piscicultura do Centro Regional de Investigação Pesqueira do Sul do IPIMAR, 

com o objectivo de testar a potencialidade um novo alimento vivo a ser utilizado na primeira 

alimentação larvar de peixes marinhos produzidos comercialmente em aquacultura. O novo 

alimento vivo que foi testado ao longo deste trabalho consistiu na utilização de ovócitos e larvas 

endotróficas do ouriço-do-mar Paracentrotus lividus. Visto que as principais contrariedades no 

cultivo de peixes marinhos com interesse comercial prendem-se com a mortalidade ocorrida 

durante a sua fase larvar, o estudo de novas alternativas alimentares é essencial para tentar 

melhorar a elevada mortalidade que ocorre quando são utilizados os alimentos vivos tradicionais 

(o rotífero Brachionus spp. e os estados larvares do crustáceo Artemia spp.). A escolha de ovócitos 

e larvas endotróficas do ouriço-do-mar Paracentrotus lividus prendeu-se com o facto de ser 

conhecido que as larvas de ouriços-do-mar constituem um abundante alimento natural de larvas de 

peixe no plâncton marinho.  

Pessoalmente, este trabalho foi parcialmente suportado por uma Bolsa de Doutoramento da 

Fundação para a Ciência e Tecnologia (SFRH / BD / 22747 / 2005), visto que durante o tempo de 

realização deste trabalho estive a exercer funções como docente Assistente da Escola Superior 

Agrária de Santarém. 

A presente dissertação está dividida em 5 capítulos em que em alguns destes são 

apresentados trabalhos já publicados ou submetidos para publicação em revistas internacionais da 

especialidade, nos termos do nº 1 do Artigo 41º, Capítulo V, do Regulamento de Estudos Pós-

Graduados da Universidade de Lisboa, publicado no Diário da República – II série Nº 209 de 30 

de Outubro de 2006. Neste contexto refiro que participei de forma integral em todos os trabalhos, 

desde o seu planeamento, concretização e redacção dos manuscritos resultantes. 

O capítulo 1, designado de “General Introduction”, apresenta sumariamente o estado da 

arte relativa à primeira alimentação larvar de peixes marinhos produzidos comercialmente, 

introduz a temática da investigação que foi realizada e apresenta os objectivos da presente tese de 

doutoramento. 

No capítulo 2, “Live Prey Availability and Production”, são apresentados os efeitos que as 

condições de cultivo a que estão sujeitos os ouriços adultos reprodutores (dieta, temperatura, 
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fotoperíodo, densidade e técnica de indução de postura) têm nas respectivas posturas, de forma a 

aferir o potencial quantitativo de produção de presas a serem utilizadas na alimentação de larvas 

de peixes marinhos. Este capítulo é constituído por 1 trabalho publicado na revista Aquatic Living 

Resources (2005), por 1 trabalho submetido à revista Journal of Shellfish Research, e por um 

trabalho submetido à revista Aquaculture International. 

O capítulo 3, designado de “Nutritional quality of Paracentrotus lividus eggs and 

endotrophic larvae for marine fish larvae first-feeding”, avalia a qualidade nutricional dos 

ovócitos e larvas endotróficas do ouriço-do-mar Paracentrotus lividus, para dois nutrientes 

essenciais na dieta das larvas de peixes marinhos (ácidos gordos e aminoácidos). Neste capítulo 

também é analisada a possibilidade de melhoramento nutricional destas presas vivas através da 

manipulação da composição da dieta dos ouriços adultos reprodutores. Este capítulo é constituído 

por 1 trabalho publicado na revista Aquaculture Nutrition (2009) e por um trabalho submetido na 

revista Journal of Shellfish Research. 

No capítulo 4, “Survival and growth of selected marine fish larvae first fed with eggs and 

endotrophic larvae of the sea urchin Paracentrotus lividus”, são apresentados os resultados dos 

ensaios realizados na Estação Piloto de Piscicultura do Centro Regional de Investigação Pesqueira 

do Sul do IPIMAR, onde foram avaliadas as taxas de ingestão, o crescimento e a sobrevivência de 

larvas de peixes marinhos quando alimentadas com ovócitos e larvas endotróficas do ouriço-do-

mar Paracentrotus lividus durante os primeiros tempos de vida. Neste capítulo, os resultados 

obtidos para estas variáveis foram sempre comparados com aqueles que se obtiveram quando as 

larvas de peixes marinhos foram alimentadas com o tradicional primeiro alimento vivo (o rotífero 

Brachionus spp.). Este capítulo é constituído por 1 trabalho aceite para publicação na revista 

Aquaculture Research. 

Finalmente no capítulo 5, denominado de “Final Considerations”, é analisado e discutido o 

potencial geral que os ovócitos e larvas endotróficas do ouriço-do-mar Paracentrotus lividus 

podem ter como primeiro alimento vivo no cultivo larvar de peixes marinhos, assim como são 

sugeridas possíveis novas linhas de investigação dentro desta temática. 

 

 

 

       Lisboa, Dezembro de 2009 

 

        João Gago 
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ABSTRACT 
 

 

Studies carried out both in natural environments and in laboratory indicate that sea urchin 

eggs and larvae are meroplanktonic preys available to marine fish larvae. Therefore, the potential 

of Paracentrotus lividus eggs and endotrophic larvae as first live feed in marine fish larviculture 

was evaluated and compared with the traditional ones used in hatcheries: the rotifer Brachionus 

spp. and the naupliar stages of the brine shrimp Artemia spp. Three main criteria were tested to 

determine the suitability of this organism as a mass produced source of zooplankton for marine 

fish larvae first-feeding: year-round availability of a large number of prey; nutritional quality; and 

prey acceptability. 

The effects of several captive broodstock conditioning factors (captivity time, broodstock 

diet, density and spawning induction methods) on spawning performance and fertilization were 

assessed. Year-round availability of a large number of P. lividus eggs and larvae was obtained 

through a combination of factors like 3 months, simple diets, high densities, intra peristomial 

injection of 1 mL KCl 0.5M. Other spawning induction techniques were also evaluated and 

broodstock emersion for a period of 3 to 6 hours appeared to be a good substitute to KCL 

preventing broodsotck mortality. 

P. lividus eggs and endotrophic larvae fatty and amino acids profiles were comparable to 

either Brachionus spp. and/or Artemia spp. Contrarily to protein composition, it was demonstrated 

the fatty acid enrichment possibilities of eggs and larvae trough manipulation of P. lividus 

broodsotck diet lipid content and composition. 

Results obtained in the prey acceptability trials demonstrated that, in spite of being 

ingested by fish larvae, manipulated P. lividus eggs and endotrophic larvae showed lower ability 

to first feed marine fish larvae when compared to Brachionus spp.  

No added value for marine fish larviculture was found in the use of P. lividus eggs and 

endotrophic larvae as live feed.  

 

 

 

Keywords: Paracentrotus lividus, eggs, endotrophic larvae, live prey, fish larvae first-feeding 
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RESUMO 
 

 

Os trabalhos apresentados nesta tese resultam concomitantemente de uma sugestão baseada 

em factos científicos previamente relatados e de uma hipótese que foi testada no sentido de uma 

nova aplicabilidade dada aos ovócitos e larvas endotróficas do ouriço-do-mar Paracentrotus 

lividus (Echinodermata: Echinoidea) (Lamarck, 1816). 

A sugestão deriva da demonstração da importância das larvas de ouriço-do-mar na 

composição e biomassa do plâncton marinho realizada por alguns estudos ecológicos assim como 

na prova laboratorial de que estas larvas são consumidas por vários predadores zooplanctónicos. 

Ambos estes factos apontam para a existência de uma relação trófica existente entre as larvas de 

peixes e as larvas de ouriço-do-mar nos ecossistemas marinhos.  

Desta forma, a hipótese formulada consistiu na seguinte questão: Dado que as larvas de 

ouriço-do-mar são alimentos naturais de larvas de peixes marinhos será que poderiam ser 

utilizadas massivamente como primeiras presas vivas em piscicultura marinha e desta forma poder 

ser uma alternativa/complemento às presas usadas tradicionalmente (o rotífero Brachionus spp. e o 

naúplio de Artemia spp.)? De realçar que esta hipótese reveste-se de especial importância visto 

que é precisamente no cultivo da fase larvar dos peixes explorados comercialmente que surgem as 

maiores dificuldades quer ao nível da sobrevivência, quer ao nível do crescimento, quer ao nível 

do aparecimento de várias malformações das larvas. Inclusivamente, o insucesso do cultivo nesta 

fase para algumas espécies de peixe condiciona a sua exploração comercial. 

Consequentemente, optou-se por avaliar o potencial dos ovócitos e larvas endotróficas do 

ouriço-do-mar Paracentrotus lividus como primeiras presas vivas em cultivos larvares de peixes 

marinhos. A escolha desta espécie deveu-se ao facto de ser o equinóide mais abundante nas costas 

rochosas de Portugal Continental e a escolha dos ovócitos e estados larvares endotróficos está 

relacionada com a sua dimensão que se pensou ser adequada para a abertura bucal dos primeiros 

estados larvares de peixes marinhos. 

Em concreto, a análise desta potencialidade como alimento vivo centrou-se em 3 questões 

fundamentais.  

1) Primeiramente foi avaliado o efeito que diversos factores de condicionamento dos ouriços 

reprodutores ao cativeiro (tempo de cativeiro, dieta, densidade e técnica de indução da 

postura) tinham no desempenho das suas posturas e na capacidade de fertilização dos seus 

gâmetas, de forma a aferir qual o potencial quantitativo na produção de presas vivas. Como 
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principal resultado pode-se referir que o ouriço-do-mar Paracentrotus lividus se adapta 

muito bem às condições artificiais de cultivo, bastando um tempo reduzido de cativeiro 

(aproximadamente 3 meses), uma dieta simples (por exemplo uma mistura de grãos de 

milho com pedaços da macroalga Laminaria ochroleuca), para quando induzidos 

quimicamente com injecção intra-peristomial de cloreto de potássio (KCl) 0,5 M, 

libertarem uma elevada quantidade de gâmetas viáveis. Desta forma ficou provada a 

capacidade de obtenção de presas vivas durante todo o ano sem necessidade de recurso ao 

meio natural. O principal constrangimento encontrado foi a mortalidade associada à técnica 

de indução da postura, limitando a reutilização do mesmo “stock” de reprodutores. 

Contudo, foram avaliados outros métodos de indução da postura e, de acordo com os 

resultados, parece que a manutenção a seco durante um período de 3 a 6 horas poderá ser 

uma alternativa possível ao cloreto de potássio com grandes vantagens ao nível da 

sobrevivência dos ouriços reprodutores. 

2) Seguidamente foi avaliada a qualidade nutricional destas presas vivas ao nível de dois 

nutrientes fundamentais para o desenvolvimento das larvas de peixes marinhos fazendo a 

sua comparação com as presas vivas usadas comummente em cultivos larvares marinhos: 

conteúdo lipídico e composição em ácidos gordos e conteúdo proteico e composição em 

aminoácidos. De uma forma geral pode-se dizer que os valores encontrados na 

concentração destes dois nutrientes nos ovócitos e larvas endotróficas de P. lividus são 

comparáveis aos existentes nas presas vivas comummente utilizadas. Todavia, esta 

comparação depende grandemente do tipo de emulsão comercial utilizada no 

enriquecimento nutricional dos Brachionus spp. e dos náuplios de Artemia spp. Porém, 

quando se testaram as capacidades de enriquecimento nutricional dos ovócitos e larvas 

endotróficas de P. lividus através da manipulação quer lipídica quer proteica da dieta dos 

seus progenitores, apenas para os ácidos gordos se obtiveram resultados positivos. De 

facto, dietas inertes usadas na alimentação dos ouriços em cativeiro, e formuladas com 

óleos com maior proporção de gorduras insaturadas promovem a incorporação de ácidos 

gordos polinsaturados essenciais para as larvas de peixes nos ovócitos e larvas endotróficas 

de P. lividus. Contrariamente, a manipulação da fonte proteica e da percentagem de 

proteína na dieta dos ouriços reprodutores tem apenas um efeito muito reduzido nos 

ovócitos e larvas de P. lividus resultantes. 

3) Finalmente, os ovócitos e larvas endotróficas de P. lividus foram usados como alimento 

vivo em condições normais de funcionamento de uma maternidade de peixes marinhos. 

Nesta situação foi avaliada a sobrevivência e crescimento das larvas de dourada (Sparus 

aurata) e sargo (Diplodus sargus) desde a eclosão até aos quinze dias de vida, quando 
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alimentadas com estas presas vivas alternativas em diferentes tipos de protocolos 

alimentares. Os valores encontrados nestas variáveis demonstraram a menor qualidade dos 

ovócitos e larvas endotróficas de P. lividus como primeiro alimento vivo quando 

comparada à do rotífero Brachionus spp. Da mesma forma, quando se analisaram as taxas 

de ingestão em 24 horas para cinco diferentes espécies de larvas de peixe exploradas 

comercialmente e que iniciam a sua alimentação exógena, provou-se que as presas vivas 

alternativas testadas são consumidas, mas provavelmente a taxas mais reduzidas que 

Brachionus spp. 

Como conclusão geral pode-se afirmar que a avaliação das presas vivas alternativas testadas 

como primeiro alimento vivo no cultivo larvar de peixes marinhos não apresenta nenhum valor 

acrescentado às presas vivas mais utilizadas na actualidade. Todavia, será aconselhável avaliar o 

potencial como alimento vivo dos ovócitos e larvas endotróficas de P. lividus em outras espécies 

de peixes, particularmente naquelas em que a elevada mortalidade larvar inviabiliza a sua 

exploração comercial, para poder retirar conclusões mais fundamentadas. Igualmente, antes de 

rejeitar esta hipótese de alimentação larvar, deverão ser analisadas outras linhas de investigação: o 

potencial destas presas alternativas no cultivo de larvas de crustáceos marinhos e a utilização da 

sua fase exotrófica onde, dado o comportamento filtrador dos equinopluteus, o potencial de 

enriquecimento nutricional é muito superior pois pode ser feito directamente pela adição de 

substâncias ao meio de cultivo. 

 

 

 

Palavras-chave: Paracentrotus lividus, ovos, larvas endotróficas, presas vivas, primeira 

alimentação de larvas de peixes marinhos 
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GENERAL INTRODUCTION 
 

 

As seafood demand continues to grow, increasing demand is being satisfied from 

aquaculture sources in both developed and developing countries, and currently aquaculture 

accounts for 43 percent of global fish production used for human consumption and is expected to 

grow and compensate for the predicted global shortage of supply from capture fisheries and the 

demands of society (FAO 2009). Good quality food, produced under controlled conditions and in 

increasing quantities can be supplied by aquaculture, but like in the other traditional sectors of 

animal production, the development of aquaculture relies in the intensification of farming systems. 

In this type of intensive systems with very high fish densities there must be a high control level in 

water quality, as well as the fish farmer have the responsibility to provide all the food throughout 

the production cycle. These nutritional features are essential in aquaculture because the survival 

and growth of cultivated specimens depends largely on the quantity and quality of the food 

provided. Moreover, the highest production cost in intensive aquaculture is related with the price 

of the food given, so food formulation and distribution must be optimized to increase profitability.  

Considering marine fish larvae hatcheries, in spite of recent advances with inert artificial 

feed (Cahu & Zambonino 2001, Curnow et al. 2006), live feed is still needed for marine fish 

larvae feeding, particularly during the early larval stages (Shields 2001, Støttrup & McEvoy 

2003). Movement and small size of live prey, related with the predatory behaviour of fish larvae 

are the main reasons pointed out. Additionally, when marine fish larvae starts exogenous feeding 

the gut has very low digestion and assimilation capacities and therefore it is difficult to formulate 

an inert feed which meets the dietary requirements of fish larvae (Kvåle et al. 2007). 

The choice of the species of phytoplankton and zooplankton used as live feed in 

aquaculture hatcheries depends crucially on its size, its nutritional value (chemical composition) 

and easiness of culture. Taking into account microalgae production, the methods are well known 

and currently several microalgae species are produced as direct larval food, or as the first link in 

the food chain in zooplankton production, or even as “green water” medium in rearing systems. 

Considering zooplankton, the food given to carnivorous marine fish larvae, in spite of 

being a highly diverse group, only two taxa have been so far mass produced: the rotifer 

Brachionus spp. and the brine shrimp Artemia spp. Undemanding cultivation, quickness to obtain 

high densities all year-round and enrichment possibilities are the main reasons to use these 

zooplankton taxa in fish larvae feeding. However, it represents a situation of extreme vulnerability 
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that worldwide marine fish larviculture relies solely on the production of these two live feed items, 

so rather than interesting, it is critical to consider new possibilities. Furthermore, new live feeds 

may act as a complement and/or alternative on the fish larvae rearing and may represent the key to 

commercial produce other fish species where larvae mortality is still unsolved. For instance, in 

some marine fish species (i.e. siganids, groupers, snappers) very small zooplankton, such as 

trochophora larvae (~50 µm), need to be used as a starter feed, since the commonly used rotifers 

are still too big (Lavens & Sorgeloos 1996). Due to better nutritional quality, the class Copepoda 

has been presented as a good alternative live feed (Shields et al. 1999; Evjemo et al. 2003, Helland 

et al. 2003, van der Meeren et al. 2008), but yet no mass production has been achieved. Main 

limitations with the use of copepods are related with providing sufficient quantities, the disease 

risk from extensive culture methods, and the labour-intensive and costly intensive culture (Støttrup 

2000; Helland et al. 2003). Similarly, nematodes have also been suggested as alternative live feed 

for first-feeding fish larvae and larval penaeid shrimps, to replace the traditionally used living 

organisms, but they have not yet been tested in marine fish larval species (Schlechtriem et al. 

2004). In this context, the aim of this study was to determine the potential of a new live food for 

marine fish larval aquaculture composed by the eggs and the endotrophic larval forms of the sea 

urchin Paracentrotus lividus (Lamarck, 1816) (Echinodermata: Echinoidea). Some previous 

reasons led to testing this hypothesis: 

1) Several ecological studies have demonstrated the importance of echinoplutei in the 

composition and biomass of zooplankton communities (Rassoulzadegan & Fenaux 1979, Fransz et 

al.1984, Lindley et al.1995, López et al. 1998) suggesting their role not only as herbivores but 

also as prey of other plankton species (Rumrill 1990, McEdward & Miner 2001); 

2) Laboratory studies have demonstrated the selective predation upon sea urchin embryos 

and larvae by several common zooplanktonic predators, including fish species (Rumrill et al. 

1985, Pennington et al. 1986, Allen 2008). Despite this evidence, some caution must be taken 

when evaluating predation upon invertebrate larvae: under natural conditions, planktonic predation 

had been reported as being very low (Johnson and Shanks 1997, 2003); and the presence of 

chemical defence mechanisms were already suggested by Cowden et al. (1984) for echinoderm 

larvae. 

3) The prey size was another good indicator to test the use of P. lividus eggs and 

endotrophic larvae in marine fish larviculture, because free-living endotrophic prey of different 

sizes (from approximately 90 μm diameter in eggs to 350 μm length in four armed plutei, 72 h 

after fertilization) (Fenaux et al. 1985) can be produced from the same P. lividus spawning within 

3 days. This prey size range is wider than rotifer Brachionus spp. (123 to 292 μm lenght) (Snell & 

Carrillo 1984), and is smaller than Artemia spp. nauplius (420-475µm length) (Narciso 2000). 
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Therefore, if sea urchin eggs and larvae are suggested as fish larvae natural preys, they 

may also be used as a mass-produced source of live feed zooplankton in marine fish hatcheries. 

This idea was previously mentioned by Hubbard et al. (2003) for Lytechinus variegatus early 

developmental stages, and this same hypothesis for P. lividus eggs and endotrophic larvae was 

evaluated in the present study. First of all, P. lividus was the sea urchin species chosen because it 

is the dominant littoral sea urchin species along Portuguese rocky shores and its bio-ecology on 

Cascais coastal waters had been recently studied (Gago et al. 2003). 

In spite of sea urchins have been exhaustively studied for several purposes and many 

milestones in biological sciences, such as the observation of fertilisation or the isolation of 

eukaryotic messenger RNA have been carried out using these organisms (Yokota 2002), the 

present study is the first approach to a new utilization of sea urchin larvae as live feed in marine 

fish larviculture. However, the knowledge obtained in the present study can be used to improve 

other sea urchin utilizations. In fact, many sea urchins are edible, and therefore studies on natural 

bio-ecological parameters like diet, growth, and reproduction cycles are needed for protection 

measures implementation on exploited wild populations. The continued demand for sea urchins 

coupled to the high economic value of their fishery has led to its overexploitation and decline in 

many countries (Andrews et al. 2002). Sea urchin roe is highly regarded as a luxury food item and 

according to Kelly (2004), around 100,000 tons of sea urchins are landed annually from the 

world’s fisheries, with a value of over 0.5 billion Euros. Related with this fact, sea urchin culture 

(echinoculture) started to complement roe global demand, to reduce excessive dependence on 

natural stocks and enhance roe content and quality. Therefore, captivity techniques and methods 

have also been studied in order to increase the economic profitability of this culture. Two main 

goals are generally seek at the same time: suppress gametogenesis in order to produce good-

quality gonads for human consumption; or promote gametogenesis for increased production of 

larvae. The present study is included in this second goal, but larvae would not be used for rearing 

but instead for feeding marine fish larvae. 

Considering Paracentrotus lividus, in most of its geographical range, in past or present 

times and on a regular or occasional basis, its gonads have been appreciated as seafood and P. 

lividus has been intensely harvested. Nowadays, the consumption of P. lividus is mainly limited to 

France and Spain, and to a lesser extent to Italy and Greece, although harvesting occurs, or has 

occurred, over a much larger area (e.g. Ireland, Portugal and Croatia) for export (Boudoresque & 

Verlaque 2007 and the references therein). Taking into account P. lividus echinoculture, Grosjean 

et al. (1998) have already described an aquaculture pilot scale facility for the entire life cycle, and 

several studies (e.g. Fernandez & Pergent 1998, Spirlet et al. 2000, 2001, Shpigel et al. 2005, 
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Cook & Kelly 2007) had evaluated the effect of different general rearing conditions on stocking 

yields. 

Additionally, sea urchin eggs and larvae of several species have been exhaustively used as 

live biological tools for embryological and toxicological studies, and to what P. lividus is 

concerned it’s embryonic and larvae development has also already been evaluated for such 

purposes (e.g. Ozretic et al. 1998, His et al. 1999, Marin et al. 2000, Férnandez & Beiras, 2001, 

Pesando et al. 2003, Ghirardini et al. 2005, Aluigi et al. 2008). 

Considering the new utilization proposed in this study for P. lividus eggs and endotrophic 

larvae, several main criteria must be evaluated in order to determine the potential of an organism 

as live prey in marine fish larviculture: year-round availability, large prey production, nutritional 

quality and prey acceptability by fish larvae. These criteria were evaluated in the present study and 

the main results are presented in this report.  
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Abstract – Field studies describe echinoplutei not only as grazers but also as prey of naturally occurring fish and shell-
fish larvae. This finding suggests their potential as live feed in aquaculture. This paper reports on consistent spawnings
of the captive sea urchin Paracentrotus lividus (Lamarck 1816) (Echinodermata: Echinoidea) throughout the year us-
ing diets of plant origin (yellow maize and/or dried seaweed) with fixed environmental conditions equivalent to field
conditions during late spring (14 h of daily illumination and 18 ◦C of temperature). Broodstock maturation without un-
wanted spontaneous spawnings was achieved in two ways: extending the natural season of reproduction and inducing
out-of-season wild specimens to mature. Controlled spawnings of captive sea urchins were induced every month of the
year by KCl 0.5 M injections. The diet maize/seaweed combination gave the best results (79% of the tested urchins) in
terms of consistent large spawnings throughout the year, followed by the pure maize diet (50%) and the pure seaweed
diet (36%). When out-of-season wild sea urchins were induced to maturation, the majority (72%) of tested individuals
required at least 60 days to spawn under KCl injection when fed the combination diet. The results demonstrate the fea-
sibility of producing larval P. lividus in that high numbers of fertilized eggs (up to 5 million per female) can be obtained
year round. The main limitation of exploiting P. lividus as planktonic feed seems to be the mortality of broodstock
after injection with 1 ml KCl 0.5 M, which prevents reutilization. The 1-month post-injection survival rate was 30± 8%
(mean ± SE). All surviving sea urchins spawned again after re-injection 1 month later, with a 1-month survival rate
of 29%.

Key words: Spawning / Gonad maturation / Planktonic feed / Sea urchin / Paracentrotus lividus

Résumé – Performance de pontes de l’oursin, Paracentrotus lividus, tout au long de l’année : intérêt de ses larves
en tant qu’aliment vivant. Des études in situ décrivent les larves d’échinodermes non seulement comme brouteuses
mais aussi comme proies de larves de poissons, crustacés, mollusques. Ce qui laisse présager de leur potentialité en
aquaculture, en tant qu’aliment vivant. Nous présentons ici la reproduction tout au long d’une année de l’oursin violet
en captivité Paracentrotus lividus (Lamarck 1816) (Echinodermata : Echinoidea) nourri d’aliments d’origine végétale
(maïs et/ou graines séchées) en conditions environnementales contrôlées équivalentes à celles observées in situ durant
le printemps (14 h d’éclairage et une température de 18 ◦C). La maturation des géniteurs sans ponte spontanée a été
obtenue selon 2 procédés : en étendant la saison de reproduction et en induisant des spécimens sauvages à atteindre leur
maturité sexuelle hors saison. Des pontes contrôlées d’oursins ont été induites chaque mois de l’année par injections de
KCl 0.5 M. Le régime alimentaire combinant maïs/algues a donné les meilleurs résultats (79 % des oursins), en terme
de pontes importantes tout au long de l’année, suivi par un aliment constitué de maïs (50 % des oursins) et d’algues
(36 % des oursins). Lorsque l’induction de la maturation d’oursins sauvages a été effectuée, la majorité des oursins
(72 %) testés ont demandé 60 jours au moins pour pondre sous injection de KCl et nourris du régime alimentaire
mixte. Les résultats démontrent la faisabilité de produire des larves de P. lividus d’un grand nombre d’œufs fertilisés
(jusqu’à 5 millions par femelle) qui peuvent être obtenus tout au long de l’année. La principale limite à l’exploitation
de P. lividus en tant que nourriture planctonique semble être la mortalité des oursins reproducteurs après l’injection de
1 ml KCl 0.5 M. Le taux de survie des oursins, un mois après injection, était de 30± 8 % (mean ± SE). Tous les oursins
survivants ont pondu à nouveau après ré-injection un mois plus tard, avec un taux de survie de 29 %.

a Corresponding author: ojluis@fc.ul.pt
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1 Introduction

Since the early 20th century, many university laborato-
ries have reared sea urchin larvae for embryological stud-
ies or practical classes. Embryos or pluteus of Paracentrotus
lividus are currently being explored as bioassays for toxico-
logical studies (Bougis et al. 1979; His et al. 1999; Radenac
et al. 2001). However, P. lividus larvae have seldom been the
main objects of rearing studies. Fenaux et al. (1985) estab-
lished equations for larval growth, including gross biochemical
composition, of P. lividus reared to metamorphosis. Studies of
the exploitation of sea urchin larvae for feeding other fish and
shellfish larvae are lacking, although a recent study pointed out
their potential use (Hubbard et al. 2003).

Ecological studies have shown the importance of echino-
plutei, at least seasonally, in the composition and biomass of
zooplankton communities. Although copepods generally dom-
inate, 1980s plankton surveys in the central North Sea (Fransz
et al. 1984) showed that echinoplutei were just as numerous;
subsequent plankton surveys through the early 1990s showed
the reverse situation, in which echinopluteus and ophiopluteus
became more abundant than any single holoplanktonic species
(Lindley et al. 1995). Rassoulzadegan and Fenaux (1979) used
particulate carbon consumption data to estimate that during
periods of larval abundance, echinoplutei account for 3% of
the phytoplankton biomass. A 1998 report of plankton sam-
ples from the Mediterranean (López et al. 1998) recorded peak
P. lividus larval densities of up to 33 m−3. Such high densi-
ties suggest that echinoplutei are important not only as graz-
ers but as prey of naturally occurring fish and shellfish larvae.
McEdward and Miner (2001) suggest that predation might be
one of the major causes of echinoid larval mortality in the field
and can range from 6% to 27% per day.

It follows that if echinoplutei are natural prey, they may
also be useful in the growth of fish and shellfish larvae as a
mass-produced source of zooplankton. To be suitable for such
mass production, any species of zooplankton must meet most
of the following criteria:

– Year-round availability;
– Large number of eggs and larvae;
– Short period of embryonic development;
– Herbivory quality;
– Nutritional quality.

Thus far, only two species have met these criteria: the ro-
tifer Brachionus plicatilis (length, 123–292 µm) (Snell and
Carrillo 1984) and the nauplii of Artemia brine shrimp (length,
420–475 µm). However, some fish and crustacean larvae do
not accept these species as zooplankton food, which has
prompted the search for alternative and reliable sources of liv-
ing zooplankton. The class Copepoda (length, ∼2000 µm) has
been studied for several decades, but the reliability of cope-
pods has yet to be proved, especially in terms of achieving the
numbers required for nourishment of the early developmental
stages of fish larvae (Stottrup 2000). During endotrophic de-
velopment, P. lividus larvae are 125–350 µm in length, which
is comparable with the dimensions of prey commonly used in
aquaculture.

Any assessment of P. lividus larvae as a reliable source
of planktonic feed must first prove that captive broodstock

can produce large numbers of fertilized eggs year-round and
for extended periods. There are reports of gametogenesis oc-
curring throughout the year among captive broodstocks of
P. lividus (Grosjean et al. 1998; Spirlet et al. 2000; Shpigel
et al. 2004). However, we lack details concerning the organ-
ism’s spawning performance over the course of a year, and
most studies have centered on the promotion of vitelogenesis
for human consumption or have been short-term. Our report
of year-round controlled spawnings of P. lividus provides evi-
dence that P. lividus larvae could be a reliable source of living
zooplankton, a source that meets at least four of the above-
mentioned criteria.

2 Material and methods
All the sea urchins used in the present work were collected

during full-moon low tides from pools on the central west coast
of Portugal near Cascais (Lisbon). A previous study of this
population (Gago et al. 2003) established the annual variabil-
ity of gonad index, spawning periods, and influence of food
availability on gonad size.

Evaluation of the spawning performance of captive
P. lividus involved three experiments. The first tested the
hypothesis that large numbers of fertilized eggs could be
produced year round by broodstock held captive for extended
periods (long-term experiment). The second experiment was
devised as a backup in case the first yielded negative results:
wild immature sea urchins also were evaluated to see how
fast they could mature in captivity (short-term experiment: in-
duction of maturation during out-of-season gametogenesis).
The final experiment evaluated broodstock mortality follow-
ing injections with a spawning trigger (short-term experiment:
survival tests to KCl injections).

Since gonad production of P. lividus is seasonal and
follows an annual cycle (Gago et al. 2003), control over the
maturity of broodstock and spawnings involves, as with many
other seasonally reproducing marine species, rigorous atten-
tion to three parameters: photoperiod, temperature, and diet.

All experiments used a fixed photoperiod of 14L:10D cy-
cle to mirror the prevailing conditions of mid-spring, when
most sea urchins are mature in the field. Daylight fluores-
cent tubes of 58 W provided artificial illumination over each
tank or aquariumm, generating 700 lux as measured (Gossen
Lunasix 3) at the water surface of the tanks. Sea water was
kept at 18±0.5 ◦C in all three experiments, which also reflects
the conditions of late spring and early summer in the field. We
expected that such a narrow range would favor gonad matu-
ration but not spontaneous spawning in captivity, which could
be easily checked by the presence of gametes over the aboral
hemisphere of sea urchins.

P. lividus is basically an herbivorous echinoid (Verlaque
and Nédelec 1983; Boudouresque and Verlaque 2001; Gago
et al. 2003) and thus was fed appropriate diets of plant ori-
gin. Basuyaux and Blin (1998) established the suitability of
maize-based feeds coupled with algae for the survival and so-
matic growth of P. lividus. Likewise, three convenient plant-
derived diets were tested during the long-term spawning ex-
periment. The first diet consisted of commercial yellow grains
of the maize Zea mays (13.5% moisture). The second diet con-
sisted of the commercial dried seaweed Laminaria ochroleuca
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(Kombu, Algas de Galicia, Algamar, Spain; 13.4% moisture).
The third diet was a combination of the two basic diets wherein
the components were alternated. Maize was presented as dry
grains that were randomly distributed by tank water current
as they sank. Dried seaweed fronds were pre-cut into small
pieces, wetted for 15 min, and then also randomly distributed.
Both of these basic diets are easily purchased and rich in car-
bohydrates (69.8% and 52.1%, respectively). The literature de-
scribes the biochemical compositions (gross, minerals, vita-
mins, and amino acids) of these diets. Crampton and Harris
(1969) tabulated maize composition, and Sáa (2002) analyzed
the dried seaweed. Protein (8.4% for maize and 6.9% for sea-
weed) and lipid contents (4.3% and 1.1%, respectively) were
not very dissimilar. Maize is devoid of vitamins B12 and C
and of the amino acids tryptophan and cystine, but maize has
carotene at a concentration of 1.8 mg kg−1. Most fatty acids
from total lipids are polyunsaturated in maize (linoleic acid,
45%) and monounsaturated in the seaweed (oleic acid, 30%).

Gonad indices (measured in grams of wet gonad
weight/grams of whole animal weight × 100) were determined
immediately after spawning and in the same individuals to en-
sure a close correspondence between gonad size and range of
spawnings. This technique thus might have underestimated go-
nad indices. However, pre-tests with wild sea urchins revealed
this method yielded gonad indices similar to the ones reported
by Gago et al. (2003).

Spawning was induced by injecting 1 ml KCl 0.5 M
through the peristomial membrane using a 0.9 mm (exter-
nal diameter) × 50 mm (length) needle coupled to a 5 ml
syringe; the main environmental trigger of spawning is not
clearly known (López et al. 1998). Each sea urchin was placed
for 30 min in individual plastic beakers filled with 2 L of aer-
ated sea water at 18 ◦C, where oocytes or sperm were even-
tually emitted. Light microscopy (×40) was used to evalu-
ate spawning. Results were measured qualitatively according
to the area occupied by gametes and concurrently compared
with electronic counts. The resultant semi-quantitative classi-
fication of spawning consisted of no spawning (−); spawning
up to 500 thousand oocytes or 200 million spermatozoa (+);
and spawning greater then previous values (++). Precise ga-
mete counts and oocyte size measurement were obtained with
a Coulter Counter (model ZM with 140 µm cell aperture) cou-
pled to a multichannel particle analyzer (Channelyser 256)
during the gametogenesis season (May to September), allow-
ing the spawning performances of wild and captive sea urchins
to be compared simultaneously.

Each batch of emitted oocytes was checked for maturity
(lack of central nucleus) and viability (formation of a fertiliza-
tion membrane after fecundation). Fertilization rates were not
precisely measured, but the large majority of emitted oocytes
(in both wild and captive urchins) were mature and displayed
fertilization membranes.

2.1 Long-term experiment: Year-round production
of fertilized eggs

The evaluation of controlled spawning performance of
broodstock held captive for extended periods took place over

12 months (October 2001 to September 2002) in a recirculat-
ing rearing system with a total volume of 3480 L of unfiltered
natural sea water whose salinity was kept at 34–35 ppt. Sea
urchins were tested in eight cylindrical black fiberglass tanks
that were 0.80 m (base diameter) × 0.80 m (depth), equivalent
to 402 L. No UV water sterilization or chemical/mechanical
filtration was used; sea water treatment was achieved through
biological filtration and high-efficiency protein skimming
(Tunze Aquarientechnik, Venturi type model 3160). Plastic
media (spiny balls) were used as substrate for nitrifying bac-
teria. Water changes took place during feces removal (15% of
monthly total volume). Each tank was stocked with an initial
density of 47 sea urchins/tank, equivalent to 94 sea urchins m−2

(area of base) or 117 sea urchins m−3 with a test diameter of
47 ± 0.7 mm (mean and SE) and a weight of 29 ± 1 g (mean
and SE). Each diet was given to two tanks while the urchins in
the remaining two tanks served as unfed controls. According to
the method described by Spirlet et al. (1998), sea urchins were
fed discontinuously twice a week for a period of 12 months.
Every month, seven urchins were sampled from each treatment
and subjected to induced spawnings immediately followed by
measurement of gonad indices.

A simple rearing method provided a check of larval de-
velopment to early four-armed pluteus. Fertilized eggs from
captive and wild sea urchins, taken from May to July 2002,
were washed on a 30 µm mesh and then placed into 2 L plastic
beakers filled with aerated sea water for 3 days (endotrophic
phase) at a temperature of 18–20 ◦C and salinity of 35 ppt.

2.2 Short-term experiments

The short-term experiments, induction of maturation dur-
ing out-of-season gametogenesis and survival tests to KCl in-
jections, took place in stand-alone aquaria. Wild sea urchins
for both short-term experiments were tested in five glass tanks
(0.425 × 0.345 × 0.250 m) filled with 37 L of natural sea wa-
ter kept at 34–35 ppt. Four tanks were allocated as replicates,
and one tank served as a control. Sea water treatment was
provided through biological, mechanical, and chemical filtra-
tion enclosed in a hang-on external wet/dry filter (Millenium
1000, Aquarium Systems). Protein skimming was also per-
formed (Berlin Air-Lift 60, Red Sea Fish Pharm). Additional
water currents were produced by a power-head (Eheim 1005,
300 L h−1). Nutrient export was ensured by water changes dur-
ing weekly tank siphoning to remove feces.

2.2.1 Induction of maturation during the out-of-season
gametogenesis

The induction of maturation and spawning of sea urchins
during out-of-season gametogenesis (October to April) took
place over two trials of 38 days (from December 2001 to
January 2002) and 61 days (from February to April 2002).
Tested sea urchins were stocked at 15 wild sea urchins per tank
(100 sea urchins m−2). Except for the unfed control group, all
sea urchins were fed the combination diet twice a week. At the
end of each trial, sea urchins were sampled from each replicate
and subjected to induced spawnings immediately followed by
determination of gonad indices.
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2.2.2 Survival tests to KCl injections

Survival tests to 1 ml KCl 0.5 M injections took place dur-
ing four consecutive trials from April to August 2002, the
first three with recently collected wild sea urchins (0, 5, and
10 days of previous captivity) and the last trial with long-term
captive sea urchins. Apart from the control group, sea urchins
were pre-subjected to injections of 1 ml KCl 0.5 M and their
survival was checked over the following 30 days. The surviv-
ing sea urchins were again injected and followed for another
30 days. All sea urchins were fed the combination diet twice
a week and stocked at densities of 33–67 sea urchins m−2, de-
pending on the number of surviving sea urchins. At the end
of each trial, surviving sea urchins from each replicate were
counted and again subjected to induced spawning. To eluci-
date the diverse survival patterns following KCl injections, in-
ternal water volumes of selected wild sea urchins were mea-
sured (N = 19, test diameter ≥38 mm, ≤60 mm). Internal
water was extracted through the peristomial membrane with
a hypodermic syringe equal to the one used to inject KCl.
Linear regression analysis of volume on diameter showed that
V (ml) = −32.013 + 0.916 × D (mm) (R = 0.942, t = 11.617,
p < 0.001).

Data were tested for normality, and one-way ANOVA
(with diet as the source of variation) was used to analyze
both semi-quantitative (arcsine transformed) and quantitative
spawning results. Variations among tanks (duplicates) were
tested by ANOVA, Model II. Differences between two data
means (wild vs. captive, males vs. females) were analyzed us-
ing Student’s t-distribution for independent values. A t-test
was used to determine the significance of the regression co-
efficients of weights on diameters (Bailey 1976).

3 Results

3.1 Long-term experiment: Year-round production
of fertilized eggs

P. lividus is a species quite suited to long-term captivity.
Over 12 months, none of the 376 initially stocked sea urchins
died, including the unfed control group. Pooled data for cap-
tive fed urchins showed an increase in mean diameter from
an estimated 47 ± 0.7 mm (mean and SE) at the beginning
of the experiment to 51 ± 0.4 mm at the end of the exper-
iment (p < 0.001) and in mean weight from 29.1 ± 0.9 g
to 33.6 ± 0.7 g (p > 0.05). Differences in regression coeffi-
cients for the same test diameter showed that captive fed sea
urchins weighed more than wild sea urchins (p < 0.05), a
possible indication of suitability. No correlation was found be-
tween weight and gonad index in wild or captive sea urchins
(p > 0.05).

Gonad indices did not differ significantly between the
sexes (p > 0.05), as Guettaf and San Martin (1995) and Gago
et al. (2003) had reported earlier. Pooled data always showed
that gonad indices were higher in the captive fed groups (mean,
10.5%) than in the concurrent wild population (mean, 6.1%)
during every month of out-of-season gametogenesis (October
to April) (p < 0.001). Although significantly different, the go-
nad indices of the wild sampled sea urchins (6.1%) and the

captive unfed group (5.7%) were very close. Gonad indices
over 10% were easier to achieve using maize or the combi-
nation diet than dried seaweed alone (p < 0.001). There was
no significant difference in gonad indices between maize and
combination treatment. Variations among tanks (duplicates)
were not significant (p > 0.05). Gonad indices reached as high
as 24% in sea urchins fed the combination diet compared with
a maximum of 15% with dried seaweed alone.

Large (++) and/or small (+) spawnings were registered all
the year round for both male and female pooled captive fed sea
urchins (Table 1). Overall analysis showed that when large and
small spawnings are considered simultaneously, pooled male
and female captive sea urchins performed better than wild sea
urchins (p < 0.05). Captive sea urchins also seemed to per-
form better than wild ones when only large spawnings are con-
sidered, but the differences were not significant (p > 0.05).
However, no large spawnings were obtained with the wild sea
urchins between October and January.

When diet is used to compare the results of induced spawn-
ings of captive sea urchins (Table 2), the combination diet
(maize/seaweed) performs best (p < 0.05) in terms of consis-
tent large spawnings (++) of pooled males and females over
a year (79% of tested urchins), followed by the maize diet
(50%). The same applies for large spawnings when only fe-
males are considered (p < 0.01). The seaweed diet was clearly
less efficient (p < 0.05): only 36% of the tested sea urchins
emitted large quantities of oocytes or spermatozoa.

Checks for completeness of larval development from
May to July 2002 showed that, for both wild and cap-
tive urchins, fertilized eggs at 18–20 ◦C developed into en-
dotrophic early larvae (free-living blastula, prism, and pre-
pluteus with 200 µm) within 36 h and then to planktotrophic
four-armed plutei (350 µm long) within 72 h.

Precise counts of oocytes and spermatozoa emitted by cap-
tive sea urchins during the gametogenesis season (May to
September) and compared with concurrent wild samples are
represented in Figure 1. Captive sea urchins performed better
than the wild ones over the entire experimental period. Table 3
shows that the maize diet (mean sperm count, 311 million sper-
matozoa per male) was more favorable (p < 0.05) for sperm
emission than the two other diets (276 and 270 million sper-
matozoa per male). Sperm counts from sea urchins fed any of
the three diets were higher (p < 0.05) than counts from emis-
sions of wild sea urchins. Table 3 also shows that the maize
diet (mean oocyte count, 1788×103 per female) was also more
favorable (p < 0.01) for oocyte emission than any other diet
(1582× 103 and 863× 103 oocytes per female). Oocyte counts
obtained from females fed the seaweed diet were not signifi-
cantly different from those obtained from wild sea urchins.

Oocyte sizes, measured electronically as modal frequen-
cies, were similar for all three diet groups and similar to those
obtained from wild urchins. During the maturation season,
wild and captive sea urchins emitted small (∼65 µm in diam-
eter) and large oocytes (∼90 µm), except during June 2002,
when only large oocytes were produced. Oocyte size distribu-
tions were sometimes bimodal or even trimodal regardless of
the origin of sea urchins. Except with wild males, the number
of emitted gametes did not correlate with test diameters for
either captive or wild sea urchins (p > 0.05).
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Table 1. Induced spawnings in wild and captive fed sea urchins. Each group included 21 sea urchins sampled each month. Results express %
of total sea urchins in each sub-group.

Wild       Captive fed 

 Males Females Males Females 

(#) (+) (++)  (#) (+) (++) (#) (-) (+) (++)  (#) (-) (+) (++)

October 12 58 42 0 9 56 44 0 13 31 46 8 12 50

November 90 10 0 11 100 0 0 9 0 78 22 12 58 42 0

December 7 100 0 0 14 100 0 0 10 60 20 11 18 27

January    62 38 0 13 100 0 0 11 0 82 18 10 30 50 20

February  8 

8 

38 0 13 54 38 8 11 0 73 27 10 50

50

50

March 11 0 82 18 10 0 90 10 10 0 20 11 9 18

April 7 0 29 71 14 0 50 50 0 85 8 0 50

May  9 56 11 12 25 58 17 9 0 33 12 0 8 92

June 10 0 100 11 0 100 7 0 43 57 14 0 7 93

July  7 0

0

0 100 14 0

0

0

7 93 0 82 10 0 70

August 13 0

0

0 100 8 0 50 50 0 90 11 0 36

September 10 20 80 11 100 0 8 0 13 87 13 0 54 46

112 140 122 130

Mean (%) ± se 17 ± 1 37 ± 4 30 ± 2 20 ± 3 40 ± 1 52 ± 1 42 ± 1 45 ± 1

Pooled males and females (+ and ++): wild = 25.5 ± 0.6%, captive = 44.6 ± 0.2%.  t  = 2.29 with df  = 76, p < 0.05. 

Pooled males and females (++): wild = 27.9 ± 1.5%, captive = 48.4 ± 0.5%.  t  = 1.51 with df = 37, p > 0.05. 

(#) Number of sampled sea urchins. 

(-) No spawning; (+) spawning up to 500 thousand oocytes or 200 million spermatozoa; (++) spawning greater than previous

values. 

10

13

11

10

23

20

80

15

18

10

67

0

38

55

73

30

64

(-) (-)

62

33

Table 2. Comparative results of induced spawnings in captive sea urchins fed two basic diets and a combination. Each group included 7 sampled
sea urchins each month during one year. Results express % of total sea urchins in each sub-group.

 

Seaweed Maize (yellow, grain) Combination (maize/seaweed)  Control (unfed) 

 Males  Females Males Females  Males Females Males Females

 (#) (-) (+) (++)  (#) (-) (+) (++) (#) (-) (+) (++) (#) (-) (+) (++) (#) (-) (+) (++) (#) (-) (+) (++) (#) (-) (+) (++) (#) (-) (+) (++)

Oct. 6 0 17 83  1 0 100 0 5 40 40 20 2 0 100 0 2 100 0 0 5 20 0 80 2 0 50 50 1 0 0 100

Nov. 3 0 100 0  4 75 25 0 2 0 50 50 5 60 40 0 4 0 75 25 3 33 67 0 2 100 0 0 5 60 40 0

Dec. 1 100 0 0  6 33 67 0 4 50 50 0 3 0 67 33 5 60 0 40 2 0 0 100 4 100 0 0 3 100 0 0

Jan. 2 0 100 0  5 20 60 20 4 0 100 0 3 67 33 0 5 0 60 40 2 0 50 50 4 100 0 0 3 100 0 0

Feb. 3 0 67 33  4 0 50 50 3 0 33 67 4 0 50 50 5 0 100 0 2 0 50 50 3 100 0 0 4 100 0 0

Mar. 3 0 100 0  4 25 75 0 3 0 100 0 4 0 100 0 4 0 50 50 3 0 33 67 2 100 0 0 5 100 0 0

Apr. 5 0 40 60  2 0 100 0 3 0 0 100 4 0 50 50 5 0 0 100 2 0 0 100 4 100 0 0 3 100 0 0

May 2 0 0 100  5 0 20 80 4 0 25 75 3 0 0 100 3 0 0 100 4 0 0 100

Jun. 2 0 0 100  5 0 20 80 2 0 0 100 5 0 0 100 3 0 0 100 4 0 0 100

Jul. 4 0 0 100  3 0 33 67 4 0 25 75 3 0 33 67 3 0 0 100 4 0 0 100

Aug. 3 0 0 100  4 0 75 25 3 0 0 100 4 0 50 50 4 0 0 100 3 0 33 67 

Sep. 3 0 0 100  4 0 100 0 1 0 0 100 6 0 17 83 4 0 0 100 3 0 0 100

37 47  38 46  47  37  21  24

Mean (%) 29 59 70 16 31 60  45 40 12 72 10 85

± sem 4 4 2 2 3 3  2 3 3 3 1 2

(after angular transformation) 

F-tests:  Females (++) = 6.51 with df = 2, 33 p < 0.01; Males (++) = 0.15 with df = 2, 33 p > 0.05; 

Pooled females and males (++) = 3.41 with df = 2, 69 p < 0.05. Combination diet (78.5% ± 1.7) > maize diet (49.8% ± 1.5) > seaweed diet (36.1% ± 1.3). 

Pooled females and males (+ and ++) =0.01 with df =  2, 141 p  > 0.05. Combination diet (42.7% ± 0.9); maize diet (43.7% ± 0.7); seaweed diet (41.8% ± 0.8). 

(#) Number of sampled sea urchins in each batch of 7 sea urchins. 

(-) No spawning; (+) spawning up to 500 thousand oocytes or 200 million spermatozoa; (++) spawning greater than previous values.   
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Fig. 1. Male (above) and female (below) sea urchin induced spawnings. Quantitative analysis during the gametogenesis season.

3.2 Short-term experiments

3.2.1 Induction of maturation during out-of-season
gametogenesis

Gonad maturation can be induced in wild sea urchins
during out-of-season gametogenesis (October to March), as
shown in Table 4. Both trials showed that 20% of tested
urchins spawned as quickly as 30 days, but most animals
(72%) required at least 60 days to spawn when fed the com-
bination diet. The gonad index decreased by a factor of 3 in
unfed controls, which did not spawn. Once again, sea urchins
were shown to adapt quite well to the experimental conditions

of the stand-alone small aquaria (40 L of volume), given that
no animals died and they readily consumed the combination
diet.

3.2.2 Survival tests to KCl injections

Survival rates 1 month after injection varied between 17%
and 44% over the three trials (30.1% ± 7.8%, mean and SE),
whereas no mortality was registered for any sea urchins as-
signed to the control groups. Survival results from the first
three trials seemed to suggest that the previous captive period
(0, 5, and 10 days respectively) improved survival. However,
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Table 3. Comparison of emitted number of spermatozoa and oocytes during the gametogenesis season by captive fed and wild sea urchins.
# – number of sampled sea urchins.

 Male Female 

Diet 

Emitted spermatozoa  

(x10
6
) (mean ± SE) 

#  Emitted oocytes 

(x10
3
) (mean ± SE) 

# 

Maize  311 ± 33 14 1788 ± 310 21 

Combination 276 ± 19 17 1582 ± 279 19 

Seaweed 270 ± 20 14   863 ± 176 21 

Wild                    244  ±  4   44   788 ± 119 53 

F = 2.88 df  = 3.67; p < 0.05 

All means are significantly different except 

the pair combination/seaweed 

F = 5.31 df  = 3.92; p < 0.01 

All means are significantly different except 

the pair seaweed/wild 

Table 4. Induction to maturation of wild sea urchins during out-of-season gametogenesis. Trials took place in five stand-alone 40 L glass tanks.
All sea urchins, except the unfed control group, were fed the combination diet and were stocked at 15 sea urchins per tank (100 sea urchins m−2).
First trial took place during December 12, 2001 to January 18, 2002 (38 days). The second trial took place from February 5 to April 6, 2002
(61 days) with two sampling dates.

Sampled sea urchins Mean test   Mean GI (%) Induced spawning 

Male  Female Total diameter (mm)  Initial Final Male Female Total 

1st trial 24 15 39 43 6.1 6.7 1 (4%) 4 (27%) 5 (13%) 

2nd trial 

Mar-08 14 11 25 47 4.7 5.4 4 (29%) 3 (27%) 7 (28%) 

Control  3 2 5 48 4.7 4.4 0 0 0 

Apr-06 15 10 25 49 4.4 10 (67%) 8 (80%) 18 (72%)

Control 3 2 5 49 1.6 0 0 0 

mean survival rates were not significantly different (p > 0.05).
In the fourth trial, exclusively carried out on long-term cap-
tive sea urchins, no animals survived. Surviving reinjected
sea urchins spawned again, with a survival rate of 29% after
30 days.

Analysis of the mean test diameters and weights of all
the surviving sea urchins from the first three trials (n = 24)
revealed that they were larger (mean diameter, 60 mm vs.
50 mm; p < 0.001) and heavier (mean weight, 42.6 g vs.
30.7 g; p < 0.001) than the average captive sea urchin
(n = 244). Therefore, although 1 ml KCl 0.5 M effectively
induced spawning, the higher post-injection survival rate in
these larger sea urchins could be due to the dilution of KCl.
We estimated that 1 ml KCl 0.5 M injected into a sea urchin

of 50 mm diameter (13.8 ml of measured internal volume)
was equivalent to an internal KCl concentration of 0.27%. The
same volume of KCl injected into urchins of 40 mm diameter
(4.6 ml of internal volume) and 60 mm diameter (22.9 ml of
internal volume) was equivalent to an internal KCl concentra-
tion of 0.81% and 0.16% KCl, respectively.

4 Discussion

Current research on the aquaculture of sea urchins seeks
to learn how to suppress gametogenesis in order to pro-
duce good-quality gonads for consumption or how to pro-
mote gametogenesis for increased production of seed stock.
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Our studies concern gametogenesis promotion, but only up
to the stage of production of endotrophic plutei, disregard-
ing metamorphosis-competent larvae. In the laboratory, com-
mon predators more readily consume embryos and early-stage
larvae than late-stage larvae (Rumrill et al. 1985; Pennington
et al. 1986). Our aim was to evaluate the feasibility of exploit-
ing sea urchins in the near future as reliable sources of living
zooplankton for rearing fish and shellfish larvae.

The results show that mass production of the early plu-
teus stage of the purple sea urchin P. lividus is feasible given
that (1) high numbers of fertilized eggs (up to 5 million per
female) can be obtained daily all the year round, (2) oocyte
sizes are similar to those obtained from wild urchins, (3) fertil-
ized eggs emitted by captive broodstock fully develop into en-
dotrophic early larvae and then to planktotrophic four-armed
plutei. Therefore, free-living endotrophic prey of different
sizes (125−350 µm) can be produced from the same spawn-
ing within 3 days. Large-scale larvae production has also been
reported for Psammechinus miliaris (Kelly et al. 2000) and
Echinus esculentus (Jimmy et al. 2003), but such production
has been for echinocultural purposes.

P. lividus broodstock are well suited to long-term captiv-
ity in that they showed no mortality and were easy to feed,
readily consuming any of the tested diets. Tank cleaning is
also relatively simple and not time-consuming in that water
siphoning performed during water changes easily removes the
abundant excreta produced by the urchins. Stocking densities
could certainly be increased from the test numbers of about
100 sea urchins m−2 of floor space (3 kg m−2) to the maximum
density in the field of 234 urchins m−2 (Gago et al. 2003) or
even up to 650 urchins m−2 (20 kg m−2), probably without im-
pairing survival or gonad index (Fournier 2001).

The gonad indices of wild sea urchins, determined imme-
diately after induced spawnings and in the same individuals,
were not dissimilar from the ones reported by Gago et al.
(2003). It seems that full spawnings are rare given that even af-
ter large induced gamete releasing, gonad indices were always
significant in captive and wild sea urchins. Spring and sum-
mer spawnings with more than one event have been reported
for the present field population of P. lividus (Gago et al. 2003)
and for another Atlantic population (Crapp and Willis 1975).
The number of oocytes released per spawning can likely be
improved further because it appears that egg production is far
from realizing its potential with current procedures.

Throughout the year, all feeding treatments stimulated sig-
nificantly higher gonad indices and larger induced spawnings
in captive animals than with urchins concurrently sampled
from the field. Urchins fed maize or maize/seaweed had sig-
nificantly higher gonad indices (11.7± 0.5% and 11.5± 0.6%,
respectively) than urchins given seaweed alone (8.2 ± 0.5%).
The combination diet of maize/seaweed achieves dominance
(78.5±1.7% of tested sea urchins) in terms of the ultimate goal
of this study: large spawnings throughout the year. In terms of
cost and availability, maize alone (49.8± 1.5% tested urchins)
is also a good diet if very large spawnings are not required, and
during the maturation season (May to September) the maize
diet was superior even to the combination diet in terms of large
spawnings of oocytes and sperm.

In their natural environment, the studied P. lividus pop-
ulation feeds primarily on erect algae or encrusting algae,
with the former leading to better somatic growth and gonad
size (Gago et al. 2003). The Mediterranean purple sea urchin
is also mostly herbivorous, with 86%–96% of gut contents
being of algal origin (Phaeophyceae, 41%; Rhodophyceae,
19%) (Verlaque and Nédelec 1983). However, the role of con-
sumed algal components in the promotion of gonad growth
is not yet understood. Gonad production is similar when
Strongylocentrotus franciscanus is fed algal or prepared diets
(McBride et al. 1997, 2004) but lower when Loxechinus
albus (Lawrence et al. 1997) or Psammechinus miliaris
(Otero-Villanueva et al. 2004) is fed an algal diet compared
with a prepared diet. Our results also show consistently lower
gonad indices (8.2±0.5%) and lower spawnings (36.1±1.3%)
with sea urchins fed the seaweed diet alone. Prepared feeds,
including extruded feeds, have been used successfully for go-
nad production with P. lividus (Lawrence et al. 1989, 1992,
2001; Fernandez et al. 1996). On the other hand, Frantzsis
and Grémare (1992) suggested similar qualitative nutrient re-
quirements for somatic and gonadal growth of P. lividus. Algal
diets seem to be superior to prepared diets when fed to ju-
venile Strongylocentrotus droebachiensis, suggesting that sea
urchins may not require animal protein for growth (Kennedy
et al. 1999).

Basuyaux and Blin (1998) proposed carbohydrate-rich
compounds like maize as practical diets for rearing P. lividus.
Maize, with 4804 cal g−1 (Crampton and Harris 1969), is as
rich in energy as common prepared diets, but much lower in
protein content (8.4% of dry matter compared with at least
20% of dry matter in prepared diets). Optimal gonad produc-
tion with P. lividus may depend more on high energy than
high protein, which may not be crucial. Frantzsis and Grémare
(1992) also reported that somatic and gonadal growth de-
pended more on the amount of ingested organic matter than
on the amount of ingested protein. Therefore, with similar
efficacy, maize is more economical than prepared feeds as a
source of high energy and protein for P. lividus.

The adopted conditions of photoperiod (fixed cycle of
14L:10D) and temperature (18 ± 0.5 ◦C) seemed to work well
for P. lividus. Broodstock was kept mature throughout the year
without unwanted spontaneous spawnings, as no gametes were
ever observed on the aboral hemisphere of captive sea urchins.
Grosjean et al. (1998) were able to maintain the maturity of
P. lividus broodstock throughout the year at 18–20 ◦C but in to-
tal darkness. More recently, Shpigel et al. (2004) presented ev-
idence that temperatures of 18–22 ◦C enhanced gonad growth
in P. lividus but that gametogenesis was controlled by pho-
toperiod: long days reduced rates of gametogenesis and short
days increased reproductive development. On the other hand,
Spirlet et al. (2000) found temperature to be the main determi-
nant of the reproductive cycle of P. lividus. Obviously, current
data on the best combination of temperature and photoperiod
to achieve continuous gonad growth and gametogenesis with
P. lividus are ambiguous. It seems that any photoperiod works
with captive P. lividus broodstock at the temperature range of
18–22 ◦C as long as diet is appropriate.

P. lividus was clearly able to produce mature gonads and
spawnings in the relatively short period of at least 60 days.
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With the same species, Fernandez et al. (1996) reported full
gonad development in captivity using similar periods.

4.1 Limitations of method

The main drawback of the present method is the mortal-
ity of broodstock after injection of 1 ml KCl 0.5 M to in-
duce spawning. Survival tests showed that only 30% of tested
urchins could survive and spawn again after KCl injection,
thus preventing extensive reuse of the same broodstock. Inter-
nal dilution of KCl in larger sea urchins can be an explanation
to their survival to injections. A study reported full survival
of juvenile green sea urchins at external water KCl concentra-
tions less than or equal to 5%, but survival decreased to 0%
at a 10% concentration (Hagen 2003a). Although the literature
generally recommends injections of 1−2 ml of KCl 0.5 M, re-
sults suggest that lowering the dose of KCl improves smaller
broodstock survival without impairing spawning. Electrostim-
ulation is also common but is ineffective at inducing spawning,
although survival rates (68.6%–91.4%) are better than with
KCl (Hagen 2003b). Other inducers could be sought given that
López et al. (1998) have proposed photoperiod, phytoplankton
blooms, and turbulence as natural triggers of spawning. These
authors also suggested that temperature is the main trigger of
spawning episodes in field populations of P. lividus.

Another critical limitation may be the nutritional value of
sea urchin larvae. While a full biochemical analysis of their
food value is beyond the scope of the present study, the is-
sue is already being addressed. However, at least in terms of
lipid composition, prospects look good. Pantazis et al. (2000)
and Bell et al. (2001) found that the gonads of P. miliaris can
elongate-desaturate considerably from diets low in polyunsat-
urated fatty acids into highly unsaturated fatty acids, including
20:4n-6, 20:5n-3, but only vestigial amounts of 22:6n-3.

A final limitation could rest on the hypothesis that echin-
oderm larvae contain chemical defenses, as the larvae appar-
ently have no structural defenses. Laboratory experiments with
filter-feeding benthic predators showed that echinoderm lar-
vae experienced the highest survival, which constitutes pre-
liminary evidence of chemical defense mechanisms (Cowden
et al. 1984). But experiments with zooplanktonic predators,
including fishes and crustaceans, showed that predation rates
differed with the stage of embryonic and larval development,
with embryos and early larvae being more susceptible than
later-stage echinoplutei (Rumrill et al. 1985; Pennington et al.
1986). Echinoplutei have several defenses that reduce preda-
tion (Rumrill 1990), such as the development of swimming
behavior (Rumrill et al. 1985).

5 Conclusion

The combination of three factors—an appropriate diet
composed of maize grains coupled with a dried seaweed, 18 ◦C
sea water temperature, and a photoperiod of 14 h of artifi-
cial illumination—produced large numbers of viable P. lividus
oocytes and spermatozoa over 1 year, including the period
of out-of-season gametogenesis. However, broodstock survival

following spawn induction must be improved before P. lividus
can be fully considered as a suitable source of larval foods.

Our methods for obtaining the fertilized eggs and larvae of
P. lividus, although targeted to aquaculturists and public aquar-
ium professionals, might also aid toxicological studies since
we have shown that embryos or larvae can be produced year
round regardless of the availability of mature wild adults. In
the same way, these results could help experimental classes in
high schools and undergraduate courses in universities, which
use sea urchin oocytes and sperm to introduce in vitro fertil-
ization and embryology.
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Stocking density and captive sea urchin Paracentrotus lividus (Lamarck, 1816) 

gamete production and fertilization. 
 

 

 

Abstract 

 

Given that sea urchins eggs and larvae have been proposed as new live preys in marine 

larviculture, broodstock rearing conditions must be optimized for this purpose. In the present study, 

adult sea urchins Paracentrotus lividus were reared in 400 L tanks for five months under four 

stocking densities (100, 200, 300 and 400 sea urchins m-2) in order to determine their effect on 

spawning performance and fertilization rate and on broodstock month relative growth (RG). For all 

stocking densities, more than 60% of sea urchins induced to spawn released a large number of 

gametes (more than 200 x 106 spermatozoa or more than 500 x 103 eggs), although the percentage of 

males with large emissions were higher at the 300 sea urchins m-2 density. Irrespective of broodstock 

stocking density, fertilization rate was always higher than 90%. Lower RG was recorded with 300 / 

400 sea urchins m-2 density when compared with 100 m-2. It is concluded that under the rearing 

conditions adopted in this study, captive P. lividus broodstock can be at least reared up to 400 m-2 

without impairing reproductive performance. 

 

 

Key words: Paracentrotus lividus; stocking density; spawning performance; gamete production; 

fertilization rate; broodstock growth. 

 

 

Introduction 

 

Sea urchins are known to be very prolific marine invertebrates, and females of some species, 

for example, can release as many as 100,000,000 eggs in a spawning (Randall et al. 2002). Therefore, 

at least seasonally, high densities of echinoderm larvae are found in plankton surveys (e.g. Franz et al. 

1984; Lindley et al. 1995; López et al. 1998) and predation on these numerous echinoderm eggs and 

larvae seems to be a major cause of mortality (e.g. Rumrill 1990; McEdward and Minner 2001; Allen 
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2008). Although some caution must be taken when comparing invertebrate predation studies in the 

laboratory and under natural conditions (Johnson and Shanks 1997; 2003), that fact, coupled to the 

simple sea urchin broodstock rearing and maturation, spawning induction, fertilization and larvae 

rearing lead to the suggestion of using sea urchin eggs and larvae as another live feed in marine 

larviculture (Hubbard et al. 2003; Luis et al. 2005). For captive sea urchin Paracentrotus lividus in 

particular, Luis et al. (2005) obtained large number of eggs year-round and Gago et al. (2009) 

enhance P. lividus eggs and endotrophic larvae nutritional quality with essential fatty acids for marine 

fish larvae through manipulation of the lipid composition of the captive broodstock diet. 

Consequently, if P. lividus eggs and larvae prove to be viable alternative sources of live feed 

to the commonly used live preys (the rotifer Brachionus spp. and the brine shrimp Artemia spp.), a 

large number of eggs and larvae will be necessary to sustain commercial marine fish hatcheries. As a 

result, P. lividus broodstock rearing conditions must be tested in order to optimize gamete and larval 

production without impairing broodstock survival and even growth. Therefore this study aims to 

analyse the effect of different stocking densities on gamete production and consequent fertilization 

rates. Secondarily, to evaluate general rearing conditions, captive P. lividus broodstock relative 

growth was also assessed. 

 

 

Material and methods 

 

Sea urchin collection and rearing 

 

Adult sea urchins (test diameters above 30 mm and fresh weight above 20 g) were collected 

during full-moon low tides from pools on Cabo Raso (central west coast of Portugal near Cascais - 

Lisbon) during September 2004. Gago et al. (2003) have already studied the influence of habitat 

characteristics on several bio-ecological parameters of this population. 

After collection, sea urchins were immediately transported to the Guia Marine Laboratory (5 

km away from Cabo Raso) in water-filled containers. Then, sea urchins were randomly allocated to 

eight cylindrical black fibreglass 402 L tanks (0.80 m base diameter x 0.80 m depth), in a 

recirculation seawater rearing system with similar physical conditions (35 g L-1 salinity; 18 ± 0.5 ºC 

temperature; 14L:10D photoperiod and 700 lux overhead illumination) as described by Luis et al. 

(2005). Four stocking densities were used: 100, 200, 300 and 400 sea urchins m-2 (area of base), 
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which represents 50, 100, 150, 200 sea urchins per tank, respectively. Each density was tested in 

duplicate. Fifty sea urchins from each tank were measured for test diameter at the ambitus (measuring 

stick calliper to the nearest 1mm) and fresh weight (weighing scale to the nearest 0.01g, after 1 min 

drainage).  

A two-week conditioning period was established during which sea urchins were unfed. 

Afterwards, sea urchins were fed twice a week a mixed diet consisted of, commercial yellow grains of 

the maize Zea mays (13.5% moisture) and of the commercial dried seaweed Laminaria ochroleuca 

(Kombu, Algas de Galicia, Algamar, Spain; 13.4% moisture). Only one component of the diet was 

given in each feeding day after tank cleaning by water siphoning in order to remove the abundant 

excreta produced by the sea urchins. Maize was presented as dry grains that were randomly 

distributed by tank water current as they sank and dried seaweed fronds were pre-cut into small pieces 

(~2 cm2), wetted for 15 min, and then also randomly distributed. The number of maize grains or 

seaweed pieces given in each feeding was equal to the number of sea urchins captive in each rearing 

tank. This diet was chosen because both of the components are easily purchased and, according to 

Luis et al. (2005), led to captivity null mortality and good spawning performance (consistent large 

year-round spawning when sea urchins were induced to spawn). In order to maintain the stocking 

density constant throughout the study period, whenever a sea urchin died it was substituted by another 

one collected in the same above referred coast. However, mortality only occurred for a reduced 

number of sea urchins (14 out of 1000 individuals – 1.4%) and was restricted to the first 20 rearing 

days, probably related with injuries inflicted during collection. 

 

Spawning induction, gamete counting and fertilization rate evaluation 

 

After 5 months of captive period, and thus during out-of-season maturation period, 50 sea 

urchins from each tank were randomly removed and measured (test diameter and fresh weight). 

Relative growth (RG) was calculated on a monthly basis for each rearing tank separately, both in 

terms of weight (RGw) and test diameter (RGtd) according to the formulas expressed in Castell and 

Tiews 1980. 

After measuring, sea urchins were induced to spawn by intracoelomic injection of 1ml 0.5M 

KCl through the peristomial membrane, using a 0.9 mm (external diameter) x 50 mm (length) needle 

coupled to a 5 ml syringe. Each sea urchin was then placed for 30 min in an individual plastic beaker 

filled with 2 L of aerated filtered (1 µm mesh) sea water at 18 ± 0.5 C. Egg release was evaluated by 
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light microscopy (x40) and quantitative egg counts were obtained with a Coulter Counter (Coulter 

Corporation, Miami, USA) model ZM with 140 μm cell aperture. Sperm release was also evaluated 

by light microscopy (x100) and spermatozoa number was estimated semi quantitatively with 

modifications of the scale used by Luis et al. (2005): spawning up to 200 million spermatozoa; or 

spawning greater then previous value. To ensure gamete fertilization, 50 ml of sperm from the one 

apparent best individual emission (number and movement of spermatozoa) from spawned males from 

the same tank, was used to fertilize the 2 L egg volume during 30 minutes. Fertilization rate was 

calculated as the number of fertilized eggs (with fertilization membrane) per one hundred eggs 

observed in a microscopic concave glass and expressed as percentage.  

 

Statistical analysis 

 

The ‘STATISTICA 8 for Windows’ software package was used for statistical analyses. Except 

for the number of emitted eggs, arcsine transformations were calculated to normalize data prior to 

statistical analyses. The Levene statistic was used to test for homogeneity of variances for all data. 

Data were analysed using one-way ANOVA with Tukey’s multiple comparisons to determine 

differences among independent factors (Sokal and Rohlf 1995; Zar 1999). The significance level used 

was P < 0.05. For population variables like RG, percentage of spawned sea urchins and percentage of 

males that released more than 200 x 106 spermatozoa the means and variances were obtained 

according to the results found for the two duplicate tanks for each broodstock stocking density (n = 2). 

In the other determined variables (number of emitted eggs and fertilization rate) mean and variance 

values were determined from all the sea urchins examined. 

 

 

Results 

 

Results obtained for the different variables followed in this study are represented in Table 1. 

For the variables “number of released eggs” and “fertilization rate”, no significant differences were 

found between duplicate tanks (one-way ANOVA, p>0.05) and therefore comparisons were made 

among P. lividus broodstock stocking density.  

After spawning induction with 0.5M KCl, no significant differences (one way ANOVA, 

P>0.05) were found in the percentage of spawned sea urchins according to the broodstock stocking 
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density. More than 60% of the sea urchins emitted gametes and a maximum of spawned sea urchins 

(70.8%) were found for 200 m-2 stocking density treatment. For all stocking densities, more than half 

of the spawning males released more than 200 x 106spermatozoa but a significant highest percentage 

(one-way ANOVA, P<0.05) was achieved with 300 m-2 stocking density, when compared with 100 

and 400 sea urchins m-2. Irrespective of the broodstock stocking density, mean number of released 

eggs was always higher than 500 x 103. The highest but no-significant value (one-way ANOVA, 

P>0.05) was found for 300 m-2 density. 

No-significant differences (one-way ANOVA, P>0.05) were found for fertilization rates 

among broodstock stocking density and more than 90% fertilization rate were obtained for all 

stocking densities.  

Considering RGw values, significant differences (one-way ANOVA, P<0.05) were found in 

RG between 100 and 300 – 400 sea urchins m-2 broodstock stocking density. Taking into account 

RGtd, the same situation also occurred, but in this case significant differences were also found among 

200 and 400 sea urchin m-2 density. 
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Table 1. Values of the several variables determined for Paracentrotus lividus captive population according to broodstock stocking density. 

 

 Paracentrotus lividus broodstock stocking density (sea urchins m-2) 

Variables (mean ± s.e.m.) 100 200 300 400 

1 Spawned sea urchins (%) a  60.8 ± 3.27 

(n = 2) 

70.8 ± 7.63 

(n = 2) 

62.2 ± 1.52 

(n = 2) 

62.6 ± 1.15 

(n = 2) 

2 Female spawning (number of released eggs x 103) a 508 ± 118 

(n = 25) 

562 ± 87.2 

(n = 27) 

723 ± 193 

(n = 27) 

574 ± 92.0 

(n = 27) 

3 Males that released more than 200 x 106 spermatozoa (%) b 55.9 ± 2.94 a 

(n = 2) 

63.9 ± 0.7 ab 

(n = 2) 

76.5 ± 1.39 b 

(n = 2) 

54.3 ± 3.95 a 

(n = 2) 

4 Fertilization rate (%) a 95.1 ± 0.92 

(n = 15) 

93.0 ± 0.79 

(n = 20) 

92.0 ± 0.83 

(n = 16) 

93.5 ± 0.52 

(n = 15) 

5 RGw (% month-1) b 

(initial population weight was 55.5 g ± 0.76 g, n=400) 

0.70 ± 0.06 a 

(n = 2) 

0.64 ± 0.01 ab 

(n = 2) 

0.50 ± 0.01 b 

(n = 2) 

0.53 ± 0.01 b 

(n = 2) 

6 RGtd (% month-1) b 

(initial population test diameter was 46.9 mm ± 0.27 mm, n=400) 

0.96 ± 0.03 a 

(n = 2) 

0.86 ± 0.01 ab 

(n = 2) 

0.76 ± 0.02 bc 

(n = 2) 

0.76 ± 0.01 c 

(n = 2) 

 

 

Mean ± standard error of the mean for the variables 2 and 4 were calculated based on the results obtained from each sea urchin. In these variables the 

factor “tank” was not significant (one-way ANOVA, P>0.05) and therefore the results were pooled according to broodstock stocking density treatment. 

Mean ± standard error of the mean for the variables 1, 3, 5 and 6 were calculated based on the results obtained from the sea urchin stocked populations 

in the two duplicate tanks for each stocking density. 
a No significant differences (one-way ANOVA, P>0.05) were found in variable1, 2 and 4  among broodstock stocking density. 
b Mean values followed by different letters are significantly different (one-way ANOVA, P<0.05) among broodstock stocking density treatment for 

variables 3, 5 and 6. 
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Discussion 

 

According to the results obtained in this study, P. lividus again proved to be a very suitable 

species for captivity (e.g. Gorsjean et al. 1996; Fernandez and Boudoresque 2000; Luis et al. 2005) 

because, irrespective of the stocking density, mortality was almost null and reduced to the initial rearing 

period, and also because broodstock fed on simple diets incremented both the mean size and mean 

weight on a short period of captivity.  

Based on spawning results obtained for both males and females, the majority of the sea urchins 

released large number of eggs or spermatozoa, indicating completeness of gametogenesis. Natural 

spontaneous spawnings should not have occurred because it was never observed gametes over the 

aboral hemisphere of sea urchins, suggesting that sea urchins under constant captivity conditions are not 

stimulated to spawn (pers. obs.). Moreover, energy content is one of the limiting factors for gonad 

growth (Schlosser et al. 2005) and the diet given in this study had already been proved to be 

energetically sufficient to promote both gametogenesis and emission of a large number of gametes (Luis 

et al. 2005). The highest percentage found in males large spawnings were obtained with 200 / 300 m-2 

broodstock stocking density. No precise explanations are forwarded to explain this result, however in 

the natural habitat were these sea urchins were collected, they are found in average densities of 234 sea 

urchins m-2 (Gago et al. 2003) which is an intermediate value between these two experimental densities 

tested. 

In order to be used as larval food, production of a large number of eggs and larvae has also been 

reported for Lytechinus variegatus (Hubbard et al. 2003). With sea urchin aquaculture purposes George 

et al. (2000) for Lytechinus variegatus, Kelly et al. (2000) for Psammechinus miliaris and Jimmy et al. 

(2003) for Echinus esculentus also obtained large-scale larvae production. 

Using similar rearing conditions but with 94 P. lividus m-2 density, Luis et al. (2005) referred a 

higher mean number of emitted eggs (1,582 x 103) when sea urchins were induced to spawn, but the 

rearing period was longer (12 months). 

No density effect was detected on fertilization rate, and irrespective of the tested P. lividus 

broodstock stocking density more than 90% of the eggs were always fertilized. When evaluating the 

fertilization capability of P. lividus stored gametes to be used in bioassay tests, Lera and Pellegrini 

(2006) also referred high fertilization rates (80 to 90%) in the control groups. Successful fertilization 

(99 to 100% fertilization rate) had also been reported for Lytechinus variegatus (George et al. 2000). 

The secondarily assessed population growth of the broodstock allowed to attest for the general good 

rearing conditions adopted in the present study, where growth increments were always attained in every 
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tested treatment after the 5 month period. Significant lower RG percentages obtained with 300 / 400 sea 

urchins m-2 may be explained by higher intraspecific competition for both space and food. Density was 

already referred as an important factor negatively affecting sea urchin growth both in natural 

environments (Levitan 1988) and in captivity (Kelly 2002). 

Comparing our RG results (monthly size increments ranging from 0.36 to 0.43 mm month-1 for 

400 and 100 m-2 densities, respectively, and monthly weight increments ranging from 0.29 to 0.35 g for 

100 and 300 sea urchins m-2, respectively) with studies that used P. lividus identical size classes, diverse 

monthly growth rates are reported. For P. lividus (40 to 45 mm) reared for 6 months with Cymodocea 

nodosa seaweed (Fernandez and Pergent 1998), lower growth rates of 0.10 to 0.32 mm month-1 were 

obtained. The same situation occurred when P. lividus where fed a vegetable formulated feed (0.05 to 

0.35 mm month-1). With animal or mixed formulated feeds higher growths were attained, but the 

authors generally considered growth rate in this size class as being very low. When also testing different 

artificial food for 40 to 45 mm P. lividus, Fernandez and Boudoresque (2000) referred growth rates 

around 0.6 g month-1 for sea urchins fed vegetable artificial food, but higher rates were attained with 

animal and mixed food. However no precise stocking density is referred in the studies referred above. 

When rearing adult P. lividus with three stocking densities Mouzakitis (2006) obtained monthly 

growth rates of between 1 and 1.2 mm month-1, which are values higher than the highest value obtained 

in this study for 100 m-2 sea urchin stocking density (0.43 mm month-1). According to this author, P. 

lividus can be reared at 120 kg m-2 density, and if we assume an average weight of 50 g per sea urchin a 

2,400 sea urchins m-2 density would be achieved. Major differences among this study and our results 

could be explained by different rearing systems. In fact, in our rearing system sea urchins mainly 

occupy the tank base corners (pers. obs.) and therefore, for the same water volume, with a rectangular 

and less deep tank shape as the one used by Mouzakitis (2006), stocking density could certainly 

increase, and additionally the food supply can be given more easily with better distribution among 

individuals. In fact, with the rearing system used in the present study, sea urchins located at a less deep 

position in the tank will get more food particles and with higher frequency than the ones below. In the 

same rearing system used in the present study, Luis et al. (2005) reared adult P. lividus in 94 sea urchin 

m-2 density for 12 months and obtained an average monthly growth of 0.33 mm month-1 and 0.38 g 

month-1, which are respectively a lower and higher growth rate than the ones obtained in the present 

study. Overall, the diverse growth rates obtained in the present and in the other studies analysed 

demonstrate that captive P. lividus growth may depend on factors such as quantity and quality of the 

food and general rearing conditions. Furthermore, sea urchin gonads act as both reproductive and 

nutrient reserve storage organ (Walker et al. 2001), and depending on environmental ecological factors 
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the energy budget among these two functions can be altered and consequently change the energy 

allocated for somatic or reproductive growth. 

According to the results obtained in this study, captive P. lividus can be reared up to 400 m-2 

stocking density without prejudice to broodstock survival, gametogenesis and fertilization rate. 

However, if faster and higher growths are the main goals, some caution must be taken when choosing 

the P. lividus stocking density. These conclusions are important to maximise production of P. lividus 

eggs and larvae to feed marine fish larvae, but also can be used to develop increasing sea urchin 

aquaculture for human consumption, both in terms of seed production and stock growth. 
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Comparison of spawning induction techniques on Paracentrotus lividus 

(Echinodermata: Echinoidea) broodstock. What can trigger its spawning? 
 

 

 

Abstract 

 

The performance of different spawning induction methods were compared on both mature 

wild and captive Paracentrotus lividus populations (N = 20). Thermal, saline and mechanical shocks, 

emersion for different periods of time, addition of co-specific gametes and different KCl 

concentrations were assayed. Percentage of spawners, mean number of released eggs, percentage of 

males that released more than 200 million spermatozoa, and survival after 5 days were the variables 

analysed. Results indicate that both thermal and saline shocks were ineffective methods to trigger 

spawning. Mechanical shock and addition of co-specific gametes were able to promote spawning but 

with a reduced number of released gametes. Emersion for a period of 3h induced spawning with 

100% broodstock survival but longer periods can cause significant broodstock mortality. An injection 

of 1 ml intra-peristomial KCl was an expedite method to obtain P. lividus gametes, but mortality is 

always associated and is related with excessive KCl concentration. When there is need for a small 

number of gametes the mechanical shock technique can be considered since led to 100% survival. 

When large spawnings are required the emersion can be a viable method but further investigation 

must be carried out to assess the best time period to obtain broodstock total survival. 

 

 

Key words: Paracentrotus lividus; spawning; induction technique; gamete production; survival 

 

 

Introduction 

 

A correct knowledge on which factors control the sea urchin Paracentrotus lividus (Lamarck, 

1816) gametogenesis and spawning is essential because there is an increasing demand for eggs and 

larvae. Emergent P. lividus culture requires a continuous supply of eggs and larvae (Grosjean et al. 

1998, Cook & Kelly 2007); mass production of P. lividus eggs and larvae for marine fish larvae 
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feeding is an hypothesis recently proposed (Luis et al. 2005, Gago et al. 2009); and at a small scale, 

P. lividus eggs and larvae are also needed as biological tools for different studies such as in 

embryological and toxicological research (e.g. Ozretic & Krajnovic-Ozretic 1985, Warnau & Pagano 

1994, Aluigi et al. 2008). Several factors like temperature, photoperiod, dietary resources availability 

and water turbulence are pointed out as controlling gametogenesis of wild P. lividus populations 

(Fenaux 1968, Crapp & Willis 1975, Régis 1979, Byrne 1990, Lozano et al. 1995), but taking 

spawning into account the main environmental trigger is not clearly known (López et al. 1998). 

Likewise, the factors that naturally initiate spawning in other sea urchin species are also relatively 

unknown (Cochran & Engelman 1975, 1976, Starr et al. 1990, 1992, Takahashi et al. 1990, 1991). 

Considering wild P. lividus populations, gametogenic cycle seems to be annual, and reproduction 

normally restricted to the spring and summer period, although some differences can occur among 

localities (Byrne 1990, Lozano et al. 1995, Spirlet et al. 1998, Gago et al. 2003, Martínez et al. 2003). 

For this reason, broodstock captivity is essential in order to get an all year-round supply of eggs and 

larvae. Captive P. lividus broodstock maturity has been achieved in a short period of time (Fernandez 

et al. 1996, Luis et al. 2005) by easily controlling the temperature, photoperiod and diet (Grosjean et 

al. 1998, Spirlet et al. 2000, Shpigel et al. 2004, Schlosser et al. 2005). One problematic issue is the 

spawning induction technique applied to mature sea urchins when large spawnings are needed, 

because with the most expedite method (intracoelomic injection of 0.5M KCl), a significant part of 

the broodstock normally die (Luis et al. 2005). Therefore, alternative viable methods must be 

evaluated in order to induce P. lividus to spawn without impairing broodstock survival and even 

reutilization. Therefore, this study is a preliminary survey which analyse the spawning performance 

and survival of captive and wild adult P. lividus subjected to different kinds of inductors (chemical, 

thermal, saline, mechanical and co-specific gamete introduction stimulus). 

 

 

Material and methods 

 

Two groups of sea urchins were tested: captive and wild. Captive sea urchins were cultivated 

for 5 months on a recirculation seawater rearing system with similar physical conditions (35 g L-1 

salinity; 18±0.5 ºC temperature; 14L:10D photoperiod and 700 lux overhead illumination) as 

described by Luis et al. (2005) and Gago et al. (2009). A mix diet of yellow grains of maize Zea 

mays, with fragments of the commercial dried seaweed Laminaria ochroleuca (Kombu) was given 
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alternatively two times per week to these captive sea urchins. With this diet and in this rearing system, 

Luis et al. (2005) referred two months as the required time of captivity for most of broodstock to 

mature and release, after 1ml 0.5M KCl intracoelomic injection, a large number of eggs or 

spermatozoa. The wild sea urchins were collected in low tide pools on Cascais (Lisbon, Portugal) 

coastal waters during June 2006. They were immediately transported to the laboratory in water filled 

containers and subjected to spawning induction. For this population, Gago et al. (2003) referred this 

time period for natural spawning and Luis et al. (2005) found that all wild sea urchins collected in 

June and induced to spawn with 1 ml KCl 0.5 M intracoelomic injection release a large number of 

eggs or spermatozoa. According to the previous explanations it was considered that both captive and 

wild broodstock were mature at the time of spawning induction. The application of the several 

spawning induction methods occurred during a seven day period on June 2006. Twenty adult P. 

lividus (45 mm to 55 mm as maximum test diameter range) were randomly chosen to test each 

spawning induction method which is revised in Table 1. 

The first approach was to subject sea urchins to different kinds of physiological stress. 

Temperature and salinity variations as well as mechanical shake-up and emersion for several periods 

of time were the methods chosen. The second approach was to test the effect of co-specific gamete 

addition on the spawning induction. Finally, different KCl concentrations were tested in order to 

evaluate the concentration effect on both spawning performance and survival. 

Each spawning induction technique was evaluated individually and each sea urchin was placed 

in individual plastic beakers filled with 2 L of aerated sea water, where eggs or sperm were eventually 

emitted. Light microscopy (×40) was used to evaluate spawning. Precise egg counts were obtained 

with a Coulter Counter (model ZM with 140 μm cell aperture). Sperm release was also evaluated by 

light microscopy (x100) and spermatozoa number was estimated semi quantitatively with 

modifications of the scale used by Luis et al. (2005): small spawning (up to 200 million 

spermatozoa); or large spawning (more than 200 million spermatozoa). For all trials, a control 

treatment were performed where ten sea urchins were placed in similar individual plastic beakers 

filled with 2 L of aerated sea water at 18ºC for 3h were spawning were assessed. After performing the 

spawning induction trials, mortality was again individually followed during a five day period in 

plastic beakers filled with 2 L of aerated sea water, at the same conditions of captive broodstock (35 g 

L-1 salinity; 18±0.5 ºC temperature; 14L:10D photoperiod and 700 lux illumination). No tube feet and 

spine movement was the criteria to assess mortality. 
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Table 1. Description of the several techniques performed to Paracentrotus lividus in order to assess 

their spawning induction capacity. 
Spawning induction 

technique  
Description 

Control Sea urchins were placed for 3h at 18ºC. 

Thermal shock In all “thermal shock” trials, salinity was set at 35 g L-1. 

TS 1 Sea urchins were placed for 3h at 13ºC. 

TS 2 Sea urchins subjected to technique TS 1 were then placed 3h at 23ºC. 

TS 3 Sea urchins were placed for 3h at 23ºC. 

TS 4 Sea urchins subjected to technique TS 3 were then placed 3h at 13ºC. 

TS 5 Sea urchins were placed for 3h at 3ºC. 

TS 6 Sea urchins subjected to technique TS 5 were then placed 3h at 18ºC. 

Saline shock In all “saline shock” trials, temperature was set at 18ºC. 

SS 1 Sea urchins were placed for 30 min at 0 g L-1. 

SS 2 Sea urchins subjected to technique SS 1 were then placed 3h at 35 g L-1. 

SS 3 Sea urchins were placed for 30 min at 20 g L-1. 

SS 4 Sea urchins subjected to technique SS 3 were then placed 3h at 35 g L-1. 

SS 5 Sea urchins were placed for 30 min at 50 g L-1. 

SS 6 Sea urchins subjected to technique SS 5 were then placed 3h at 35 g L-1. 

SS 7 Sea urchins were placed for 30 min at 70 g L-1. 

SS 8 Sea urchins subjected to technique SS 5 were then placed 3h at 35 g L-1. 

Mechanical shock In all “mechanical shock” trials, temperature was set at 18ºC and salinity at 35 g L-1. 

MS 1 Sea urchins were energetically shake-up for 1min out of water and then placed 3h in seawater. 

MS 2 Sea urchins were energetically shake-up for 5 min out of water and then placed 3h in seawater. 

Emersion In all “emersion” trials, temperature was set at 18ºC and salinity at 35 g L-1. 

E 1 Sea urchins were placed out of water for 3h, covered with a wet towel, and then placed 3h in seawater. 

E 2 Sea urchins were placed out of water for 6h, covered with a wet towel, and then placed 3h in seawater. 

E 3 Sea urchins were placed out of water for 12h, covered with a wet towel, and then placed 3h in seawater. 

E 4 Sea urchins were placed out of water for 24h, covered with a wet towel, and then placed 3h in seawater. 

Gamete addition In all “gamete addition” trials, temperature was set at 18ºC and salinity at 35 g L-1. 

GA 1 Sea urchins were placed 3h in seawater with 1 x 103eggs. 

GA 2 Sea urchins were placed 3h in seawater with 10 x 103 eggs. 

GA 3 Sea urchins were placed 3h in seawater with 1 x 106 spermatozoa. 

GA 4 Sea urchins were placed 3h in seawater with 10 x 106 spermatozoa. 

KCl concentration In all “KCl concentration” trials, temperature was set at 18ºC and salinity at 35 g L-1. 

KCl 1 Sea urchins were injected with 1 ml KCl 0.1M through the peristoma and then placed 3h in seawater. 

KCl 2 Sea urchins were injected with 1 ml KCl 0.25M through the peristoma and then placed 3h in seawater. 

KCl 3 Sea urchins were injected with 1 ml KCl 0.5M through the peristoma and then placed 3h in seawater. 

KCl control Sea urchins were injected with 1 ml deionised water through the peristoma and then placed 3h in seawater. 
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Statistical analyses were only performed to the mean female spawning, because considering 

the other variables (percentage of spawned sea urchins, percentage of males that released more than 

200 x 106 spermatozoa and survival), only one value was determined for each sea urchin group (N = 

20) and no replicates were performed. In this case The “STATISTICA 8 for Windows” software 

package was used for statistical analyses. The Levene statistic was used to test for homogeneity of 

variances for all data. Data with homogeneous variances were analysed using two-way ANOVA (with 

broodstock origin: wild or captive P. lividus; and spawning induction method as factors) with Tukey’s 

multiple comparisons to determine differences among independent factors. Data with heterogeneous 

variances were analysed using Kruskal-Wallis statistic followed by multiple comparisons of mean 

ranks for all groups (Sokal & Rohlf 1995; Zar 1999). The significance level used was P<0.05. 

 

 

Results 

 

The spawning performance (percentage of spawned sea urchins, number of released eggs and 

percentage of males that released more than 200 x 106 spermatozoa) and survival results for the 

spawning induction methods tested for both wild and captive sea urchins are showed on Table 2. No 

data is presented in Table 2 for the thermal and saline shocks spawning induction techniques because 

in all the trials performed with these methodologies no sea urchin spawned. However, considering 

mortality some differences were observed. All thermal shock trials led to null mortality. Equally, 

saline shocks SS 3, SS 4, SS 5, SS 6, SS 7 and SS 8 also led to null mortality, but when sea urchins 

were placed in a 0 g L-1 solution for three hours (SS 1) all of then died.  

Considering the mechanical shock trials, it seems that the time of shaking had some effects on 

spawning performance for both wild and captive P. lividus populations. In fact, when sea urchins are 

disturbed only for one minute, the values obtained for the percentage of spawned sea urchins, the 

mean number of released eggs as well as the percentage of large male spawnings are higher than the 

ones achieved when sea urchins were shake for a longer period (5 minutes). For the female spawnings 

the differences are inclusively statistically significant for both wild and captive P. lividus (Tukey test, 

P<0.05). Independently of the induction period, the survival obtained with the mechanical shock 

stimulus was always 100%. 
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Table 2. Spawning performance (percentage of spawned sea urchins, mean number of released eggs and percentage of males that released 

more than 200 x 106 spermatozoa) and survival results for each induction method tested for both wild and captive sea urchins. 

 

A – Mechanical shock (MS). 
 Wild P.lividus Captive P. lividus 

Spawning induction technique * MS 1 MS 2 MS 1 MS 2 

Variables:     

1. Spawned sea urchins (%). 60 20 40 15 

2. Mean (± s.e.m.) female spawning (released eggs x 103). ** 178 ± 59 a 23 ± 10 b 267 ± 21 a 72 ± 16 b 

3. Males that released more than 200 x 106 spermatozoa (%). 25 0 35 0 

4. Survival (%). 100 100 100 100 

* MS 1 - Sea urchins were energetically shake-up for 1min out of water and then placed 3h in seawater. 

   MS 2 - Sea urchins were energetically shake-up for 5 min out of water and then placed 3h in seawater. 

** Mean values of released eggs followed by different letters are significantly different among each sea urchin group (P<0.05)  

 

 

B – Emersion (E). 
 Wild P.lividus Captive P. lividus 

Spawning induction technique * E 1 E 2 E 3 E 4 E 1 E 2 E 3 E 4 

Vari  ables:         

1. Spawned sea urchins (%). 65 80 100 0 40 60 100 0 

2. Mean (± s.e.m.) female spawning (released eggs x 103). 1983 ± 495 2154 ± 386 1889 ± 363 0 2316 ± 249 2212 ± 212 2165 ± 187 0 

3. Males that released more than 200 x 106 spermatozoa (%). 0 11 20 0 0 16.7 33 0 

4. Survival (%). 100 65 0 0 100 55 0 0 

* E 1 - Sea urchins were placed out of water for 3h, covered with a wet towel, and then placed 3h in seawater. 

   E 2 - Sea urchins were placed out of water for 6h, covered with a wet towel, and then placed 3h in seawater. 

   E 3 - Sea urchins were placed out of water for 12h, covered with a wet towel, and then placed 3h in seawater. 

   E 4 - Sea urchins were placed out of water for 24h, covered with a wet towel, and then placed 3h in seawater. 
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C – Gamete addition (GA). 
 Wild P.lividus Captive P. lividus 

Spawning induction technique * GA 1 GA 2 GA 3 GA 4 GA 1 GA 2 GA 3 GA 4 

Vari  ables:         

1. Spawned sea urchins (%). 0 15 0 25 0 10 0 20 

2. Mean female spawning (released eggs x 103). 0 53 ± 14 0 25 ± 11 0 67 ± 16 0 57 ± 15 

3. Males that released more than 200 x 106 spermatozoa (%). 0 0 0 33 0 0 0 50 

4. Survival (%). 100 100 100 100 100 100 100 100 

* GA 1 - Sea urchins were placed 3h in seawater with 1 x 103 eggs. 

   GA 2 - Sea urchins were placed 3h in seawater with 10 x 103 eggs. 

   GA 3 - Sea urchins were placed 3h in seawater with 1 x 106 spermatozoa. 

   GA 4 - Sea urchins were placed 3h in seawater with 10 x 106 spermatozoa. 

 

 

D – Potassium chloride concentration (KCl)  
 Wild P.lividus Captive P. lividus 

Spawning induction technique * KCl 1 KCl 2 KCl 3 
KCl 

control 
KCl 1 KCl 2 KCl 3 

KCl 

control 

Vari  ables:         

1. Spawned sea urchins (%). 75 95 100 15 65 95 100 10 

2. Mean female spawning (released eggs x 103). ** 114 ± 48 a 512 ± 102 a 2226 ± 129 b 0 174 ± 13 a 707 ± 71 a 2738 ± 151 b 0 

3. Males that released more than 200 x 106 spermatozoa (%). 10 44 100 0 25 67 100 0 

4. Survival (%). 75 55 15 100 90 65 30 100 

* KCl 1 - Sea urchins were injected with 1 ml KCl 0.1M through the peristoma and then placed 3h in seawater. 

   KCl 2 - Sea urchins were injected with 1 ml KCl 0.25M through the peristoma and then placed 3h in seawater. 

   KCl 3 - Sea urchins were injected with 1 ml KCl 0.5M through the peristoma and then placed 3h in seawater. 

   KCl control - Sea urchins were injected with 1 ml deionised water through the peristoma and then placed 3h in seawater. 

** Mean values of released eggs followed by different letters are significantly different among each sea urchin group (P<0.05) 
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When wild and captive sea urchins are placed out of water for different periods of time an 

inverse relationship occurred among spawning performance and survival until the total emersion period 

of 12h. The longer emersion time tested (24h) led to both null spawning and null survival, but unviable 

gametes were observed in the aboral surface of the sea urchins test when the wet towel were removed, 

indicating that spawning stimulus had previously occurred. It seems that a 3h to 12h emersion period 

stimulate female spawning with a number of released eggs around 2 x 106 without impairing survival. 

No statistical differences (Tukey test, P>0.05) were found in female spawnings among E1, E2 and E3 

induction method for both wild and captive P. lividus. However, large male spawnings were only 

achieved when sea urchins were placed out of water for 6h and 12h. Although, in these cases, survival 

decrease to values of 65% and 55% in a 6h emersion period for wild and captive P. lividus, respectively, 

while for the 12h period survival is null. Considering the 12h emersion period, some gametes were also 

observed in the aboral surface of the test when the towel were removed, but in these cases, contrarily to 

the 24h emersion period, when the sea urchins were placed in the water they continued to released eggs 

and spermatozoa. However, after the five day period used to assess survival these sea urchins were all 

dead. 

When co-specific gametes were added to the water medium, spawning only occurred with the 

higher concentrations of both eggs and spermatozoa (10 x 103 and 10 x 106, respectively). In these cases 

it seemed that egg addition stimulated more the female spawning and spermatozoa addition stimulated 

more the male spawning. In fact, for both wild and captive P. lividus, large male spawnings were only 

obtained with addition of 10 x 106 spermatozoa. The mean number of released eggs was higher when 10 

x 103 eggs were added to the sea water, but no significant differences (Tukey test, P>0.05) were found 

between GA2 and GA4 induction methods for both wild and captive P. lividus. Nevertheless, as 

expected, in all gamete addition trials, the survival was always 100%. 

Taking into account the KCl concentrations, for both wild and captive P. lividus it was notorious the 

relationship: when KCl concentration increased, larger spawnings were obtained but on the other hand 

the broodstock survival decreased. The mean number of released eggs was statistical higher (multiple 

comparisons of mean ranks for all groups, P<0.05) when both wild and captive P. lividus were injected 

with KCl 0.5M (KCl 3 induction technique) when compared with the number of eggs obtained with 

both the KCl 1 (0.1 M) and KCl 2 (0.25 M) spawning induction technique. Only with the injection of 

1mL deionised water (KCl control), 100% survival was obtained. In this case, some males spawned but 

with very few spermatozoa. 

Considering the control treatment (sea urchins placed in individually plastic beakers 3h at 18ºC 

in seawater) neither spawning nor mortality had ever occurred for all the trials performed. 
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General comparison between wild and captive P. lividus results seemed to indicate that both 

populations were identically stimulated with the same spawning induction methods. However, the 

number of spawned captive sea urchins was smaller than the wild ones, but on the other hand, when 

captive P. lividus spawned the number of released gametes was often higher, although this difference 

was not statistically different considering the female spawnings (Tukey test and multiple comparisons 

of mean ranks for all groups, P>0.05). 

 

 

Discussion 

 

This study also corroborates the fact that the intra peristomial injection of 1ml KCl 0.5 M is a 

viable expedite method to obtain large number of spawners and consistent large spawnings. But as 

expected with this technique, P. lividus broodstock mortality occurs with significant values. As well, 

more reduced KCl concentrations increased survival (although it never achieved 100% values), but the 

number of released gametes was very much reduced. The toxic effect of KCl was already studied by 

Hagen (2003a) on Strongylocentrotus droebachiensis. This author obtained null survival when juveniles 

were reared with 10% KCl external water concentration. In order to increase P. lividus survival, Luis et 

al. (2005) indicated that KCl concentration used on the injections must be related with urchin size and 

its internal volume and therefore suggested to use lower concentrations on smaller sea urchins. 

Similarly, Leahy (1986) for Strongylocentrotus purpuratus indicated that the KCL 0.5M volume 

(around the mean of 0.5 ml) should vary with the size of the sea urchin. However, this author reported 

large spawnings with negligible S. purpuratus mortality and referred that the same broodstock can be 

reutilized several times. 

Considering the alternative spawning induction methods tested, the thermal and saline shock 

induction must not be utilized since no spawning had occurred. In spite of Lopez et al. (1998) indicated 

temperature as the main trigger of spawning episodes in field populations of P. lividus, this effect was 

not detected in the present study. Additionally, Himmelman (2008) showed that Strongylocentrotus 

droebachiensis natural spawning coincided with the first major intrusion of warm surface into a region 

normally dominated by cold upwelling. However, in the present study, even when the sea urchins were 

suddenly placed for 3 h at 23ºC, no gamete release was detected. General different ecological conditions 

prevalent in natural populations where sea urchins are not isolated compared with the individual plastic 

beakers could be one probable explanation for this dissimilarity, or even the 3 h time period used is still 

insufficient to initiate spawning.  
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Saline shock also proved to be an unsuccessful method. Furthermore, null survival obtained with 

0 g L-1 salinity also demonstrated the P. lividus susceptibility to low salinities. Fernandez et al. (2003) 

have already reported P. lividus mass mortality after exceptional rainfall and resultant low salinities as 

low as 7 g L-1. 

The mechanical shake up and co-specific gamete addition stimulus used in the present study 

promoted spawning but with a reduced number of gametes. However, since total survival was obtained 

with these two methodologies, they can be considered in cases of no need to have a large number of 

eggs and spermatozoa such are the cases of embryological and toxicological research as well as 

practical classes. The mechanical shake up stimulus proved to be more efficient when P. lividus were 

shaked for shorter periods (1 min). Maybe, increased time of shaking can instead act as a signal for 

stopping individual biological activities. In fact, when these sea urchins were placed in individual 

plastic beakers to analyse spawning, they were inactive for longer periods. Considering co-specific 

gamete addition stimulus seemed to be effective only when large quantities of gametes were used. 

Presence of co-specific spermatozoa was already suggested by Starr et al. (1990, 1994) as influencing 

Strongylocentrotus droebachiensis spawning, and inclusively, Gaudette et al. (2006), speculated for the 

same species that mass spawning is more likely to occur in large, dense populations where sperm 

concentrations reach high enough levels to trigger spawning. However, Wahle & Gilbert (2002) based 

on S. droebachiensis 50-day fertilization assays considered spawning as a gradual and continuous 

phenomenon without mass spawning events. Our experience on the wild P. lividus populations used in 

the present study also indicate a large spawning period (Gago et al. 2003) and inclusively, mature sea 

urchins are found in high ratio during all spring and summer period (Luis et al. 2005). Nevertheless, the 

co-specific gamete stimulus was detected in the present study but only promoted very few male and 

female large spawnings. Additionally, it seemed that the presence of eggs is also effective for inducing 

spawning on both males and females. However, this methodology is not practical since previous large 

spawnings, obtained by other techniques, are needed in order to have enough gametes to be used as 

inductors. 

The emersion stimulus also promoted the emission of a large number of eggs but the time must 

be controlled. Reduce periods of time out of water (3h) were insufficient to induce large male spawning 

but a very large period (24h) can lead sea urchins to spawn out-of-water impairing the use of the 

gametes for fertilization. Also generalized mortality occurred on longer periods (12 to 24h) probably 

related with desiccation and/or hypoxia. In natural environments, the P. lividus intertidal populations 

only occupies the lower parts of the rocky shores, so even in spring tide periods they are only out-of-

water for reduced periods of time. Furthermore, sea urchins occupy crevices which retain sea water at 
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low tide. Although, because it can be a viable method to obtain large spawnings preventing broodstock 

mortality, this technique should be further assessed and the results should be analysed considering 

shorter time period intervals and considering different air temperatures. 

With the same purposes as the ones referred in the present study (large spawnings coupled to 

higher broodstock survival), Hagen (2003b) analysed the effects of electrostimulation. Although the 

survival rates obtained were better than with KCl injection, this method proved ineffective to induce the 

release of a large number of eggs and spermatozoa.  

This preliminary approach to alternative P. lividus spawning induction techniques to KCl 

injections must only be seen as an introductory study to encourage new studies on this issue. 

Additionally, the description of the results obtained and the discussion performed around them must be 

interpreted with some caution because, except for the number of released eggs, they lack statistical 

validation.  
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Sea urchin eggs and larvae have been suggested as potential

live prey for marine fish larval feeding. This study evaluated

the fatty acid composition of Paracentrotus lividus eggs,

prisms and four-armed plutei, obtained from wild and captive

broodstocks fed on raw diets: maize, seaweed and a combi-

nation of maize and seaweed. Amounts of essential fatty acids

(EFA) for marine fish larvae [arachidonic acid (ARA), eico-

sapentaenoic acid (EPA) and docosahexanoic acid (DHA)]

were determined in eggs and endotrophic larvae. ARA ranged

from 3.93% in eggs from combination to 18.7% in plutei from

maize diets. In any developmental stage, EPA amounts were

always lower than 5% for the raw diets, andDHA showed null

or trace amounts including the wild diet. Thus, broodstock-

prepared diets had to be formulated based on different lipid

sources (Algamac, linseed oil, cod liver oil and olive oil) in

order to test eggs and larvae EFA enhancement. EFA

improvement was possible for all tested prepared diets.

Algamac diet lead to superior EFA enhancement mainly in

DHA (7.24%, 4.92% and 6.09% for eggs, prisms and plutei,

respectively) followed by cod liver oil diet. Only these two lipid

sources should be considered for prepared broodstock diets in

order to obtain suitable live prey for fish larval feeding.
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In the recent years, considerable progress has been achieved

with inert artificial food (Cahu & Zambonino 2001;

Robinson et al. 2005; Curnow et al. 2006), but the rearing of

most marine larvae species still depends on phytoplankton

and/or zooplankton as live feed (Støttrup & McEvoy 2003).

Considering zooplankton only two taxa have been so far

mass produced: the rotifer Brachionus spp. and the brine

shrimp Artemia spp. Other taxa, like Copepoda, have been

investigated in order to improve survival and growth of

current- and future-targeted marine larval species (Lavens &

Sorgeloos 1996; Cutts 2003; Drillet et al. 2006).

The potential use of eggs and larvae of sea urchins as live

feed has also been suggested. Hubbard et al. (2003) devel-

oped cultivation techniques for the sea urchin Lytechinus

variegatus and pointed out the potential use of its early

developmental stages as larval food. Luis et al. (2005)

hypothesized the same idea and reported consistent large

year-round spawnings of the captive sea urchin Paracentrotus

lividus. Both studies refer as main criteria the easy mainte-

nance of broodstock, simple spawning induction with

potassium chloride (KCl), large spawnings, simple larval

rearing and the size similarity with rotifers and brine shrimp.

However, in order to be considered an additional fish larval

food, predator�s acceptance and nutritional quality of sea

urchin eggs and larvae must yet be analysed. Few predation

studies have included sea urchin eggs and larvae. Two fish

species (Pennington et al. 1986) and zoeae of the red crab

Cancer productus (Rumrill et al. 1985) were reported as

predators of embryos and larvae of the Pacific sand dollar

Dendraster excentricus. Egg and/or larval proximate chemi-

cal composition have been studied for Strongylocentrotus

droebachiensis (Thompson 1983), Paracentrotus lividus

(Fenaux et al. 1985), Strongylocentrotus purpuratus and

Lytechinus pictus (Shilling & Manahan 1990), Arbacia lixula

(George et al. 1990), Encope michelini (George et al. 1997)

and S. purpuratus (Meyer et al. 2007). Fatty acids profiles

have only been recently studied for D. excentricus (Schiopu
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et al. 2006) and Paracentrotus lividus exotrophic larvae (Liu

et al. 2007) and were analysed according to the microalgae

species given in the diet.

This paper presents the fatty acid profiles of Paracentrotus

lividus eggs and two endotrophic larval stages and discusses

their value as live feed for early marine fish larvae. Fatty acid

profiles were differentially analysed according to different

captive broodstock diets and compared with the respective

eggs and larvae obtained from wild broodstock.

Sea urchins (test diameters above 40 mm) were collected

during full-moon low tides from pools on the central west

coast of Portugal near Cascais (Lisbon) in two distinct

periods: September 2004 for raw diets tests and September

2005 for prepared diets tests. A previous study on the same

population (Gago et al. 2003) established the annual vari-

ability of gonad index, spawning periods and the influence of

habitat characteristics on energy partition for reproduction

and growth.

After collection, sea urchins were immediately transported

to the laboratory in water-filled containers, and randomly

allocated to eight cylindrical black fibreglass 402 L tanks

(0.80 m base diameter · 0.80 m depth), at 50 sea urchins m)2

density, in a recirculation seawater rearing system with sim-

ilar physical conditions (35 gL)1 salinity; 18 ± 0.5 �C tem-

perature; 14L:10D photoperiod and 700 lux overhead

illumination) as described by Luis et al. (2005).

A two-week conditioning period was established during

which sea urchins were unfed. Afterwards, sea urchins were

fed twice a week one of the tested diets. Tanks were randomly

allocated to each diet and food portions were distributed by

tank water circulation as they sank. Feeding finished when

the majority of sea urchins had captured at least one food

portion.

We used the same diets previously used by Luis et al. (2005)

for spawning performance quantification: (1) commercial

whole yellow grains of maize Zea mays; (2) pieces of the

commercial dried seaweed Laminaria ochroleuca (Kombu)

and (3) combination of the previous diets, where components

were alternately presented. These diets were again chosen

because they are simple to utilize, cheap and promote

P. lividus gametogenesis.

As raw diets lead to insufficient essential fatty acids (EFA)

amounts for feeding fish larvae (see Results), prepared diets

had to be considered. The possibility to enhance eggs and

endotrophic larvae highly unsaturated fatty acids (HUFA)

content through broodstock diet was tested using five iso-

caloric diets based on equal parts of maize flour and wheat

flour but different lipid sources (Table 1). The maize and

wheat flour were chosen because they complement each other

in terms of essential amino acids and vitamins (Crampton &

Harris 1969), and also because they lead to minor percent-

ages of four-armed pluteus malformations (Repolho, pers.

comm.). Each dietary lipid source was chosen to test either

HUFA transfer to eggs and endotrophic larvae or elonga-

tion/desaturation capability. These capabilities were already

evidenced by Pantazis et al. (2000), Cook et al. (2000), Bell

et al. (2001) and Castell et al. (2004) for sea urchin gonads

and by Schiopu et al. (2006) and Liu et al. (2007) for sea

urchin exotrophic larvae. Olive oil and linseed oil were

mainly chosen to provide substrates for elongation/desatu-

ration because both are rich in C18:1n-9 and C18:2n-6 and

linseed oil is also rich in C18:3n-3. Cod liver oil and Algamac

were mainly used to test HUFA, and particularly C22:6n-3

(docosahexanoic acid, DHA), transfer and accumulation in

eggs. However, the metabolic explanations of such processes

were out of scope, as the primary goal was to assess EFA

enhancement of these potential live preys (P. lividus eggs and

endotrophic larvae).

Table 1 Composition of the prepared diets

Ingredients

Dry mass

(g kg)1)

Integral maize flour (�DATERRA�, Ignoramus –

Produtos Naturais Lda, Portugal)

425

Integral wheat flour (�DATERRA�, Ignoramus –

Produtos Naturais Lda, Portugal)

425

Lipid source: Algamac (�2000��); olive oil

(�Azeite Galo�); linseed oil (�Emile Noël�);
cod liver oil (�José M. Vaz Pereira, S.A.)

100

Vitamin mix (�S.N. PV 10/8�, PREMIX –

Especialidades Agrı́colas e Pecuárias Lda, Portugal)

10

Alginic acid, sodium salt – powder (Sigma-Aldrich) 20

Sodium hexametaphosphate (Rhodia) 20

Water was added at a mass ratio of 1 : 1 (water/dry ingredients).
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The ingredients were weighed and dry mixed. After water

addition, the moist feed was transferred to an extruder where

it was pressed to form 5-mm-diameter cylindrical rods. These

rods were oven dried (48 h at 35 �C) and cut into pieces

about 1 cm long.

After 8 months of captive period, sea urchins were randomly

removed from each tank and induced to spawn by injecting

1 mL 0.5 M KCl through the peristomial membrane, using a

0.9 mm (external diameter) · 50 mm (length) needle coupled

to a 5-mL syringe. Each sea urchin was then placed for

30 min in an individual plastic beaker filled with 2 L of

aerated filtered (1 lm) sea water at 18 ± 0.5 �C. Sperm or

egg release was evaluated by light microscopy (40·) and

quantitative egg counts were obtained with a Coulter

Counter (model ZM with 140 lm cell aperture). Only female

sea urchin spawnings over 1 · 106 eggs were selected. For egg

collection, the 2 L volume was filtered onto a 30-lm nylon

mesh and then washed with seawater into a 30-mL centrifuge

tube. After centrifugation (1500 · g, 1 min), the supernatant

was removed by tube inversion and the precipitate resus-

pended with 1 mL deionized water and transferred to 2 mL

eppendorf tubes. In this way, the eppendorf tubes contained

no less than 1 · 106 and no more than 5.6 · 106 eggs. To

obtain endotrophic larvae, 50 mL of sperm from the one

apparent best individual emission (number and movement of

spermatozoa) from the males fed the same diet, was used to

fertilize the 2 L egg volume during 30 min. The fertilized eggs

were then washed onto a 30-lm nylon mesh and placed into

2-L plastic beakers filled with aerated filtered sea water and

reared with the same physical conditions of the captive

broodstock. Beside eggs (�90 lm), two endotrophic stages

were analysed: swimming prism (24 h after fertilization:

�120 lm) and four-armed pluteus (72 h after fertilization:

�370 lm). At the end of each rearing period, the larvae were

filtered through 60 lm nylon mesh and collected like the

eggs. The number of endotrophic larvae collected into each

eppendorf tube was previously estimated by five 1-mL counts

of the 2 L rearing volume. Thus, the number of prisms ran-

ged from 9 · 105 to 3.2 · 106 while the number of plutei

ranged from 4 · 105 to 1.9 · 106.

Egg and larval samples from wild broodstock were ob-

tained from sea urchins collected in low tide pools at the

above-referred coastal waters on July 2005.

All eggs and larvae samples were immediately freeze dried

and stored under nitrogen at )20 �C for subsequent analysis.

Lipids were extracted according to Bligh &Dyer (1959). Lipid

extracts with added 100 lL of internal standard (C19:0) were

subjected to transesterification with boron fluoride-methanol

solution for 45 min at 100 �C under nitrogen (Metcalfe &

Schmitz 1961). After solvent evaporation, fatty acid methyl

esters (FAME) were recovered in 2 mL isooctane and then

1 lL was injected into a capillary column (30 m fused silica,

0.32 mm I.D.) coated with Omegawax (Supelco, Bellefonte,

USA) installed in a Varian Star 3400CX GLC. Helium was

used as carrier gas, at a flow rate of 1 mL min)1; oven

temperature was 180 �C for 7 min and then 210 �C (with a

temperature gradient of 4 �C min)1) over a period of 40 min.

Both the injector port and the FID detector were set at 250 �C.
Fatty acids were identified by co-chromatography with stan-

dards (Sigma-Aldrich, St. Louis, USA) and, in addition, the

peaks of chromatograms were compared with those of the

methyl esters prepared from cod liver oil reference standard.

Peak areas were measured by a computer program (Star

Chromatography Workstation) installed in a IBM PS/1.

The �STATISTICA 7 for Windows� software package was

used for statistical analyses. The Levene statistic was used to

test for homogeneity of variances for all data. Data with

homogeneous variances were analysed using one-way ANOVAANOVA

with Tukey�s multiple comparisons to determine differences

among independent factors. Data with heterogeneous vari-

ances were analysed using Kruskal–Wallis test statistic fol-

lowed by multiple comparisons of mean ranks for all groups

(Sokal & Rohlf 1995; Zar 1999). The significance level used

was P < 0.05. Except for ratios, arcsine transformations

were calculated to normalize data prior to statistical analyses.

Major fatty acid composition of the raw and prepared diets

tested is shown in Table 2. Considering raw diets, C18:2n-6,

C18:1n-9 and C16:0 were the three more abundant fatty acids

for maize, while for seaweed, besides C16:0 and C18:1n-9,

HUFA were also present with 9.84% and 7.76% for C20:4n-6

(arachidonic acid, ARA) and C20:5n-3 (eicosapentaenoic

acid, EPA), respectively. Broodstock fed on combination diet

should have ingested the same dietary fatty acids of maize

and seaweed but on a different amount basis.
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Concurring with the lipid source used for each prepared

diet, C16:0 and DHA were the major fatty acids for Algamac

diet; linseed oil diet was rich in C18:1n-9, C18:2n-6 and

C18:3n-3; cod liver oil diet presented high percentages for

C16:0, C18:1n-9 and C18:2n-6, and moderate amounts of

HUFA with 2.92% for EPA and 5.01% for DHA; olive oil

diet was mainly rich in C18:1n-9.

The proportion of broodstock fed on the pure seaweed diet

that spawned was not only lower than broodstock fed on the

other diets, but the number of eggs and spermatozoa emitted

were also considerably lower (only four out of eight females

emitted more than 1 · 106 eggs). Thus, only the nutritional

value of eggs was considered for this diet given the insuffi-

cient number of eggs for larval rearing.

Table 3 presents the fatty acid composition of eggs, prisms

and four-armed plutei obtained from broodstock fed on raw

and wild diets. The saturated fatty acids (SFA), C14:0, C16:0

and C18:0, were the most abundant with C16:0 being the

more representative, irrespectively of the developmental stage

considered.

Unsaturated fatty acids represented the majority of egg fatty

acid profile irrespective of the broodstock diet considered

(Table 3). Egg monounsaturated fatty acids (MUFA) rep-

resented around 30%; polyunsaturated fatty acids (PUFA)

ranged from 27.9% on the combination to 38.1% on maize

diets; and HUFA ranged from 6.25% on combination to

14.8% on seaweed diets. Egg MUFA mainly included

C18:1n-9 with higher percentage on maize and combination

diets compared with eggs from seaweed and wild diets

(P < 0.001); C20:1n-9 accounted for 6.43% in eggs from wild

diet, which was significantly higher than eggs from maize and

combination diets (P < 0.05). Major egg PUFA included

C18:2n-6, although represented only in trace amounts in eggs

from wild diet; C20:2D5, 11 non-methylene-interrupted

dienoic fatty acids (NMID) for eggs from all the diets with

major significant percentage in eggs from wild diet

(P < 0.05) compared with eggs from seaweed diet; and

C20:2n-6 with significant higher percentage in eggs from

maize diet compared with eggs from wild diet (P < 0.05).

Considering HUFA, ARA was the most abundant in eggs

from any of the diets; EPA was present with significant

higher percentage in eggs from wild diet than in eggs from

combination diet (P < 0.05) and DHA was detected at only

minor percentages in eggs from maize and seaweed diets.

Fatty acids of the n-6 series were represented at larger per-

centages than n-3 fatty acids in eggs from all the diets, but

this fact was more evident in eggs from maize and combi-

nation diets as showed by n3/n6 ratios. The DHA/EPA ratios

were very low or nil. The EPA/ARA ratios were significantly

superior in eggs from seaweed and wild diets than in eggs

from maize and combination diets (P < 0.001).

Unsaturated fatty acids, particularly PUFA, irrespective of

diet, dominated the fatty acid profile of the prism stage

(Table 3). MUFA percentages were significantly higher in

Table 2 Major fatty acid composition

(mass percentage of total lipid fatty acid

methyl esters, FAME) of the raw and

prepared diets

Fatty acid

(% FAME)

Raw diets Prepared diets

Maize Seaweed Algamac Linseed oil Cod liver oil Olive oil

C14:0 3.43 13.4 3.64

C16:0 14.2 27.5 28.0 5.41 14.7 9.60

C16:1n-7 2.01 5.98 5.98

C18:0 2.00 1.74 3.28 3.41 2.79

C18:1n-9 32.0 21.4 3.92 26.3 23.7 69.5

C18:1n-7 3.96 2.81

C18:2n-6 47.5 6.25 8.46 29.0 12.3 13.9

C18:3n-3 1.08 3.57 30.1 1.05

C18:4n-3 8.25

C20:1n-9 7.07

C20:4n-6 (ARA) 9.84

C20:5n-3 (EPA) 7.76 2.92

C22:1n-11 4.17

C22:5n-6 6.88

C22:6n-3 (DHA) 19.9 5.01

Values are the mean from the analyses of three independent samples. For each diet only fatty

acids present at >1% are included in the table.
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prisms from combination diet than in prisms from the other

diets (P < 0.05), mainly as a result of the significant higher

percentages in C18:1n-9 (P < 0.01), C20:1n-7 (P < 0.01) and

C22:1n-9 (P < 0.05). PUFA percentages were significantly

more abundant in prisms from maize and wild diets

(P < 0.001), with HUFA percentages significantly different

among diets (P < 0.001). Thus, C18:2n-6 (P < 0.001),

C20:2n-6 (P < 0.001) and C20:3n-6 (P < 0.001) were sig-

nificantly more abundant in prisms from maize diet, whereas

ARA (P < 0.01) and especially EPA (P < 0.001) were sig-

nificantly more abundant in prisms from wild diet. The

amount of DHA was also significantly higher in prisms from

wild diet (P < 0.001), although only represented at trace

amounts. The n3/n6 ratio was only greater than 1 in prisms

from the wild diet, whereas in prisms from maize and com-

bination diets, due to the majority of n-6 fatty acids, the ratio

was around 0.1. Like eggs, prism DHA/EPA ratios were also

reduced. The EPA/ARA ratio was significantly greater in

prisms from wild than in prisms from maize and combination

diets (P < 0.001).

Plutei unsaturated fatty acids were still the dominant fatty

acids with percentages around 75% for the three diets (Ta-

ble 3), PUFA being the major component (52.1%, 47.1%

and 41.8%, in plutei from maize, combination and wild diets,

respectively). MUFA were more represented in plutei from

wild diet mostly as a result of significant higher percentage

for C20:1n-9 (P < 0.001). The fatty acids C18:2n-6

(P < 0.05), C20:2n-6 (P < 0.001) and C20:3n-6 (P < 0.001)

had significantly higher percentages in plutei from maize and

combination diets than in plutei from wild diet. HUFA

percentages were similar in plutei from any of the diets

(around 20%), being ARA and EPA (significantly higher in

plutei from wild diet, P < 0.001) the more abundant. Plutei

from wild diet had a significantly superior n3/n6 ratio

(P < 0.05), when compared with plutei from maize diet, and

EPA/ARA ratio (P < 0.001), when compared with the other

two diets. Irrespective of diet, the DHA/EPA ratios were also

much reduced.

Irrespective of diet, the lipid amounts decreased during the

endotrophic phase, as noted by the significant total lipid

minor percentage (P < 0.05) on the four-armed plutei stage

compared with eggs and prisms. The fatty acid composition

also presented a general evolution based on the decrease of

SFA and MUFA percentages and an increase of PUFA.

However, for wild diet, prisms had higher EPA percentages

(P < 0.01), while plutei had higher C20:1n-9 percentages

(P < 0.001) when compared with the other developmental

stages.

The proportion of broodstock fed on olive oil diet that

spawned, as already occurred for seaweed raw diet, produced

also an insufficient number of available eggs for sea urchin

larval rearing (only four out of seven females emitted more

than 1 · 106 eggs). Therefore, for this diet, only the nutri-

tional value of eggs was evaluated.

Table 4 shows the fatty acid composition in the three EFA

for fish larvae: ARA, EPA and DHA (Sargent et al. 1999),

on sea urchin�s three developmental stages from broodstock

fed on prepared diets. There were no significant differences

on egg total lipid and ARA resulting from broodstock fed on

the tested prepared diets (P > 0.05). However, EPA had a

significantly higher percentage in eggs from cod liver oil diet

than in eggs from olive oil diet (P < 0.05). DHA amounts

(P < 0.001) and DHA/EPA ratios (P < 0.05) showed always

significantly higher values in eggs from Algamac diet, while

the EPA/ARA ratios were superior in eggs from cod liver oil

diet when compared with eggs from olive oil diet (P < 0.05).

Prism total lipid from cod liver oil diet was significantly

higher than prism total lipid from Algamac diet (P < 0.05),

while DHA amounts (P < 0.05) and DHA/EPA ratios

(P < 0.05) were significantly higher in prisms from Algamac

diet than in prisms from linseed oil diet.

Regarding plutei, significant differences were only recorded

for the DHA contents resulting from Algamac and linseed oil

diets (P < 0.05).

For all the prepared diets analysed, during the endotrophic

phase, there was a significant decrease in total lipid up to

four-armed plutei (P < 0.01), and a general EFA increase. In

spite of DHA and EPA percentages decrease in prisms from

Algamac diet, values were not significantly different when

compared with egg EPA percentages and with eggs and plutei

DHA percentages (P > 0.05).

Comparing eggs and endotrophic larvae fatty acid com-

position based on raw diets (Table 3) and prepared diets

(Table 4), it seems clear that their EFA enhancement was

possible through broodstock prepared diet (Fig. 1). Raw

diets resulted in poor EPA contents of eggs and endotrophic

larvae, except eggs from wild and seaweed diets. Prepared
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diets increased EPA amounts to more than 5.80%, except for

eggs from olive oil diet. Irrespective of the raw diet analysed

and the developmental stage considered, DHA percentage

was always lower than 1% but with prepared diets this value

reached a maximum of 7.24% in eggs from Algamac diet.

Olive and linseed oil diets resulted in lower DHA enrichment,

while cod liver oil and especially Algamac diets led to DHA

percentages several times higher than raw diets for any

developmental stage. Regarding ARA, a general slight in-

crease can be obtained with prepared diets, but this EFA was

already present in considerable amounts in all sea urchins�

developmental stages even with raw diets. Therefore, for all

developmental stages, DHA/EPA ratio was always enhanced

with prepared diets, especially Algamac and cod liver oil

diets. The EPA/ARA ratio was also enhanced in eggs, prisms

and plutei from prepared diets, when compared with maize

and combination diets but not when compared with wild and

seaweed diets.

Two months are generally considered the required time of

captivity for most of broodstock to mature and spawn under

KCl injection (Fernandez et al. 1996; Luis et al. 2005). Thus,

the 8-month captive period used in the present study was

largely sufficient to promote broodstock gametogenesis.

However, as also found by Luis et al. (2005), the raw diet

based on the seaweed Laminaria ochroleuca proved to be

inefficient in terms of consistent large spawning. Less energy

from seaweed diet may be a reason for fewer emitted eggs:

estimated caloric yield from its proximate analysis give a

gross energy content of 14.6 kJ g)1, while for maize the

estimated value is 18.8 kJ g)1. Likewise, olive oil prepared

diet also prevented the emission of sufficient number of eggs

for sea urchin larvae rearing. Since broodstock fed on olive

oil diet took much more time to ingest the diet pieces (pers.

obs.), organoleptic features associated to olive oil may have

played a role on the few spwaning observed. Therefore, if the

objective is to produce large numbers of eggs and larvae to

feed marine fish larvae, both these captive broodstock diets

should be avoided.

Considering P. lividus endotrophic development from all

diets analysed, there was a general tendency for total lipid

content and SFA and MUFA percentages to decreaseT
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certainly related with energy consumption, while the more

structural PUFA tended to increase. Sewell (2005) for Eve-

chinus chloroticus and Meyer et al. (2007) for Strongylocen-

trotus purpuratus also noted an exponential decrease in lipid

content during embryogenesis to fuel metabolism. However,

some exceptions occurred when wild diet was taken into

consideration: prisms from wild diet had higher EPA, while

plutei from wild diet had higher C20:1n-9 percentages when

compared with other developmental stages. No certain

explanation was found for these results. Firstly, there is no

precise information about the wild diet. Secondly, each egg

and larva wild samples were obtained from different wild

males and females. Therefore, untested factors like the pre-

cise fatty acid composition of the food ingested by the wild

broodstock could be one of the reasons for this variation. In

addition, the lowest percentage for total lipid and FAME

was found in plutei from wild diet, resulting in a pronounced

percentage increase variation among the more and less

abundant fatty acids.

Unusual marine fatty acids like NMID were also found in

the present work on P. lividus eggs and endotrophic larvae

from all the tested diets analysed, being C20:2D5, 11 NMID

the most abundant. The same fatty acids were previously

found by Takagi et al. (1980), Cook et al. (2000) and Castell

et al. (2004) for sea urchin gonads, and by Schiopu et al.

(2006) and Liu et al. (2007) for sea urchin exotrophic larvae.

As these fatty acids were absent from any of captive

broodstock diets, we also concur that P. lividus is capable of

de novo synthesis of these NMID fatty acids and their

transfer to the eggs.

Given the high growth rates of marine fish larvae, it is

essential for efficient production that their nutritional

requirements be fully met, both qualitatively and quantita-

tively (Sargent et al. 1997). The content of EFA in live feeds

has long been considered as a major factor in determining

their dietary value (Watanabe et al. 1983). Several studies

with marine fish larvae (Koven et al. 1990; Watanabe 1993;

Reitan et al. 1994; Rodrı́guez et al. 1997) have demonstrated
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Figure 1 Mean percentages (±SE) of

total lipid essential fatty acids: arachi-

donic acid (ARA), eicosapentaenoic acid

(EPA) and docosahexanoic acid (DHA),

according to broodstock diet and

developmental stage considered. Sea-

weed and olive oil diets were not in-

cluded since no data were obtained for

prisms and four-armed plutei.
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the importance of DHA and EPA as essential for fish larval

survival and growth. Regarding these two fatty acids, the

tested raw and wild diets results showed EPA percentages

lower than 5% (but significantly higher in eggs, prisms and

plutei from the wild broodstock), whereas DHA, when

present, was always detected in trace amounts.

As ARA, like EPA, has an essential function in producing

eicosanoids, it has been more recently considered an addi-

tional EFA for fish larval nutrition (Sargent et al. 1997, 1999;

Bessonart et al. 1999; Estévez et al. 1999). Considering raw

and wild diets, P. lividus eggs showed ARA percentages

around 5% that increased in the prism and pluteus stages

reaching 18.7% in plutei from maize diet. Therefore, it seems

that no deficiencies are found in this EFA in P. lividus eggs

and endotrophic larvae.

The rotifer Brachionus plicatilis fed on baker�s yeast and

unenriched Artemia spp nauplii (newly hatched) have re-

duced amounts of the three EFA. Rodrı́guez et al. (1997)

found for rotifers fed on baker�s yeast, less than 0.05%,

2.15% and 1.08% for ARA, EPA and DHA respectively,

while Estévez et al. (1999) found 1.2%, 5.3% and 0.0% for

the same fatty acids in unenriched Artemia spp nauplii.

Comparing the tested raw and wild diets results with the

EFA profile of these two live preys, P. lividus eggs and

endotrophic larvae had higher amounts of ARA. Depending

on the diet and developmental stage considered, EPA content

may be lower, similar or higher than rotifers fed on baker�s

yeast and unenriched Artemia spp nauplii. Likewise, low

DHA percentages were also found in P. lividus eggs and

endotrophic larvae.

Because of competitive interactions in fish larval metabo-

lism, Sargent et al. (1999) suggested that DHA, EPA and

ARA cannot be considered in isolation, rather it is necessary

to consider larvae requirements in DHA:EPA:ARA ratios.

In this context, the tested raw diets results showed reduced

DHA/EPA ratios like Brachionus plicatilis fed on baker�s

yeast and unenriched Artemia spp nauplii (Bell et al. 2003),

due mainly to absence or trace amounts of DHA. The EPA/

ARA ratio in eggs from seaweed and wild diets and in prisms

from wild broodstock was about 1.0 which was considered as

an optimal dietary ratio for sea bass larvae, but as insufficient

for turbot and halibut larvae that need 10:1 or greater

(Sargent et al. 1999).

Regarding captive broodstock fed on raw diets as well as wild

broodstock, it seems, therefore, quite obvious that P. lividus

eggs and endotrophic larvae, like unenriched rotifer or Art-

emia spp nauplii, are deficient in EFA, particularly DHA, in

order to be selected as a marine fish larval feeding. However,

these eggs and larvae can also be enriched in EFA through

prepared broodstock diets, or like rotifers and Artemia spp.

nauplii, by using microalgae or commercial emulsions during

the exotrophic phase. The first issue was positively tested in

the present study as demonstrated by increased EFA con-

tents in eggs and endotrophic larvae from prepared brood-

stock diets.

Sea urchin parental nutritional condition seems to have a

reduced effect on larval growth parameters (Bertram &

Strathmann 1988; Meidel et al. 1999), but as shown by the

present study, lipid composition of the broodstock diet is

strongly reflected on eggs and larvae lipid composition.

Palmtag et al. (2006) compared EFA composition of the

standard live feeds for larviculture, Brachionus plicatilis and

Artemia spp nauplii, reared under seven different enrich-

ments. Considering only the prepared diets results of this

study, ARA content was higher on P. lividus eggs and endo-

trophic larvae when compared with any of the determinations

of Palmtag et al. (2006). Eggs, prisms and plutei from pre-

pared diets (except olive oil) show always higher EPA per-

centages than Artemia spp nauplii. Comparing with rotifers,

depending on the enrichment used by Palmtag et al. (2006),

P. lividus eggs and endotrophic larvae EPA percentages were

higher than one, similar to three, or lower than three of the

enrichments. DHA enhancement on eggs, prisms and plutei

from Algamac and cod liver oil diets showed higher per-

centages than Artemia spp nauplii obtained from four of the

enrichments. Comparing with rotifers, eggs, prisms and plutei

from Algamac diet had also higher DHA percentages than

four of the enrichments. According to Palmtag et al. (2006),

Algamac was the enrichment that led to superior DHA per-

centages on rotifers (21.8%) and was the second best for

Artemia spp nauplii (8.9%). Our results also showed higher

DHA percentages in eggs, prisms and plutei from broodstock

fed on the prepared feed based on this enrichment media. On

the contrary, EPA/ARA ratios from both enriched rotifers

and Artemia spp are always higher than all P. lividus eggs and

endotrophic larvae analysed, mainly because of their higher

ARA percentages. Regarding DHA/EPA ratio, except on

eggs from Algamac diet, values were always lower than 1, like

in four of the treatments used by Palmtag et al. (2006) for

rotifers and Artemia spp nauplii.

Liu et al. (2007) for P. lividus exotrophic larvae (21 days),

fed with microencapsulated formulated feeds (larvae

length > 500 lm), found for ARA, EPA and DHA per-

centages around 17%, 11% and 7%, respectively. Direct
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comparison with these exotrophic larvae show values only

slightly higher to the mean percentages found in eggs and

endotrophic larvae from captive P. lividus fed on prepared

diets. Depending on the microalgae used in the diet, Schiopu

et al. (2006) determined for 4, 6 and 8-arm Dendraster ex-

centricus larvae ARA, EPA and DHA percentages ranging

from 0.72–3.87, 2.86–11.5 and 1.45–6.89, respectively.

P. lividus eggs and endotrophic larvae ARA and EPA per-

centages for raw, prepared and wild diets fit in these inter-

vals, while for DHA, occurs the same situation but only

when results from prepared diets are regarded.

Copepods are considered as live preys with better EFA

profile than both enriched rotifer and Artemia spp (McEvoy

et al. 1998; Nanton & Castell 1999; Sargent et al. 1999;

Shields et al. 1999; Evjemo et al. 2003), but its use is still

limited in marine fish larvae culture mainly due to problems

with providing sufficient quantities, as well as increased dis-

ease risk from extensive culture methods (Støttrup 2000).

In conclusion, given that P. lividus broodstock raw diets led

to eggs and endotrophic larvae with fatty acid poor nutri-

tional value (mainly in DHA), and wild broodstock just

spawn during the summer (Gago et al. 2003), prepared diets

must be considered in order to obtain enhanced nutritional

quality live preys year-round. From the results obtained in

this study, it seems clear that the best EFA composition is

achieved with the Algamac prepared diet. Because EFA

composition of endotrophic larvae from cod liver oil diet did

not significantly differ from the Algamac diet, the former

enrichment oil should also be elected as a lower cost alter-

native for enhanced broodstock prepared diets.

The full implications of these findings for marine fish

production await evaluation of survival and growth perfor-

mance outcomes of fish larvae reared on these improved live

feeds. This question will also assess, for selected fish larval

species, the differential acceptability between P. lividus eggs

and endotrophic larvae. This issue is currently being inves-

tigated by our research team. Others subjects like free amino

acid profile of P. lividus eggs and endotrophic larvae are also

being currently investigated in order to better ascertain the

nutritional value of this proposed potential live prey for

marine fish larvae.
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Protein and amino acid nutritional quality of sea urchin Paracentrotus lividus 

(Lamarck 1816) eggs and endotrophic larvae: relevance for first feeding of 

marine larval fish. 
 

 

 

Abstract 

 

Eggs, prisms and pre-plutei total and soluble protein content and eggs amino acid (AA) 

composition of Paracentrotus lividus were determined according to different broodstock prepared 

diets used in adult rearing and compared with the one obtained from wild broodstock. Prepared 

diets differed on protein source (fish meal or textured soy protein) and on protein content (10, 20, 

30 and 40 percent of dry weight (DW) diets). No major differences for all the above parameters 

analysed were found between the resultant alternative live feeds, suggesting that AA composition 

can not be enhanced through broodstock diet manipulation. Total and soluble protein determined 

for P. lividus eggs and larvae were always higher than 400 g Kg-1 and 200 g Kg-1 respectively. 

Indispensable AA (IAA) percentage of the protein-bound fraction (PAA) was approximately 50%. 

Eggs free AA (FAA) weight ranged from 59.5 to 96.3 µg mg DW-1. IAA percentage of FAA 

ranged from 10% to 20%. Glycine was the most abundant FAA with more than 75% of FAA 

concentration. Similarities were found between P. lividus eggs and endotrophic larvae AA 

nutritional quality and rotifer Brachinonus spp. and for this reason, dietary AA deficiencies for 

marine fish larvae first feeding are considered equivalent. 

 

 

Keywords: Paracentrotus lividus, eggs, endotrophic larvae, broodstock diets, protein, protein 

bound amino acids, free amino acids, Brachionus spp., marine fish larval nutrition. 

 

 

Introduction 

 

Studies carried out both in natural environments and in laboratory  indicate that sea urchin 

eggs and larvae are prey for marine larvae fish (McEdward & Miner 2001, Allen 2008). For this 

reason, these natural marine zooplankton species have already been suggested as a potential live 

feed for marine larviculture (Hubbard et al. 2003). For Paracentrotus lividus, Luis et al. (2005) 
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reported undemanding maintenance of broodstock, simple spawning induction, large spawnings 

and simple larval rearing as main criteria for considering their eggs and endotrophic larvae as 

potentially viable live preys. Another criterion is the size range because it goes from 

approximately 90 µm in eggs to approximately 370 µm in pluteus (72 h after hatching). Therefore 

in a three day period it can be obtained a live prey which can compete with the rotifer (123-292 

µm, Snell & Carrillo 1994) for marine fish larvae first feeding. Considering nutritional quality, 

Gago et al. (2009) studied the P. lividus eggs and endotrophic larvae fatty acid profile and 

demonstrated that manipulating the lipid composition of the captive broodstock diet, the eggs and 

endotrophic larvae can be readily improved on essential fatty acids for marine fish larvae. 

However, no published data was available for protein composition and amino acid profile of these 

potential alternative live feeds. 

Nutritional requirements of marine fish larvae must be fulfilled in larviculture both in 

terms of quantity and quality of the diets provided. In this context, fish larvae amino acid 

requirements and utilization (Rønnestad et al. 1999, 2003; Conceição et al. 2003; Aragão et al. 

2004a; Saavedra et al. 2006; Kvåle et al. 2007), concomitantly with the protein composition of 

marine fish larvae feeds, particularly free and protein bound amino acids profiles (Helland et al. 

2000, 2003; Aragão et al. 2004b; Srivastava et al. 2006), are becoming increasingly studied. This 

fact is related with the importance of these nutrients since they are the major components of fish 

larvae dry weight and function both as structural molecules and as the main sources of energy 

(Fyhn 1989; Rønnestad et al. 2003). Also due to rapid growth of marine fish larvae (Kamler 1992; 

Conceição et al. 1997; Otterlei et al. 1999) the demand for dietary amino acids for protein 

accretion and catabolism is especially high. Therefore, the supply of all amino acids, both 

indispensable and dispensable, may become critical for sustaining fish larvae optimal survival and 

growth (van der Meeren et al. 2008). 

Although recent advances have been achieved with inert artificial food (Cahu & 

Zambonino 2001; Curnow et al. 2006), the greatest successes in marine fish production so far 

have resulted from the use of live feeds as the initial form of nutrition after the fish larvae convert 

to exogenous feeding (Shields 2001; Støttrup & McEvoy 2003). The most commonly used live 

feeds in marine fish larvae feeding are the rotifer Brachionus spp. and the brine shrimp Artemia 

spp. The amino acid profiles of these live preys have been studied according to the enrichments, 

based on microalgae species or commercial products, used in order to improve their nutritional 

quality (Helland et al. 2000; Aragão et al. 2004b; Srivastava et al. 2006). Artemia spp. can not 

always be used as first feeding because its nauplius is too large for several marine fish larvae 

mouth opening, so rotifers are usually used as the sole live preys during the first days of feeding in 

small mouth fish. Due to good protein quality and amino acid composition (Helland et al. 2003; 
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Drillet et al. 2006; van der Meeren et al. 2008) the taxa Copepoda, particularly their naupliar 

stages, has also been suggested as an alternative live prey for marine fish larvae. Main limitations 

with the use of copepods are related with providing sufficient quantities, the disease risk from 

extensive culture methods, and the labour-intensive and costly intensive culture (Støttrup 2000; 

Helland et al. 2003).  

Therefore this study aims to 1) evaluate the protein and amino acid nutritional quality of 

Paracentrotus lividus eggs and endotrophic larvae obtained from captive broodstock fed with 

artificial diets and compared with wild broodstock, 2) study improvement possibilities through the 

manipulation of the broodstock diets protein source and content 3) compare P. lividus eggs and 

endotrophic larvae nutritional value as live feed with the currently used live prey during first 

feeding in production hatcheries (Brachionus spp.) and 4) evaluate the potential protein and amino 

acid deficiencies of these alternative live preys by analysing the published values found for these 

nutrients in selected marine fish larvae. 

 

 

Materials and methods 

 

Sea urchin collection and rearing 

 

Sea urchins (test diameters above 40 mm) were collected during full-moon low tides from 

pools on the central west coast of Portugal near Cascais (Lisbon) during March 2008. A previous 

study on the same population (Gago et al. 2003) established the annual variability of gonad index, 

spawning periods, and the influence of habitat characteristics on energy partition for reproduction 

and growth. After collection, sea urchins were immediately transported to the laboratory in water-

filled containers. They were randomly allocated to 16 rectangular dark blue plastic containers (50 

cm length x 30 cm width x 25 cm depth) placed in the surface of a seawater recirculating rearing 

system consisting of 8 cylindrical black fibreglass 402 L tanks (0.80 m base diameter x 0.80 m 

depth; 35 g L-1
 salinity; 18±0.5 ºC temperature; 14L:10D photoperiod and 700 lux overhead 

illumination) as described by Luis et al. (2005). In each plastic container 25 individuals 

(approximately 166 sea urchins m-2) were placed, and there were two containers in each 

cylindrical tank of the recirculating system. To maximize water circulation in the plastic 

containers, they were perforated with multiple 1 cm diameter holes. 
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Broodstock diets 

 

A two week conditioning period was established during which sea urchins were unfed. 

Afterwards sea urchins were fed three times a week one of the 8 tested diets. Each diet was 

randomly allocated to two of the sixteen plastic containers (2 replicates for each diet). Food 

portions were distributed by hand. Feeding finished when all sea urchins had captured at least one 

food portion. 

The diets differed in the percentage of protein (10%, 20%, 30% and 40%) and in the 

protein source ingredient (fish meal – FM, or textured soy protein – TSP). The carbohydrate 

source was wheat starch type I – unmodified S-5127 (Sigma-Aldrich, St. Louis, USA). The lipid 

percentage was 10% for all the diets and the main lipid source was cod liver oil. A vitamin mix 

(‘S.N. PV 10/8’, PREMIX – Especialidades Agrícolas e Pecuárias Lda, Viana do Castelo, 

Portugal) was incorporated in order to get 1% dry mass in all the diets. Alginic acid (sodium salt 

powder, Sigma-Aldrich, St. Louis, USA) and Sodium hexametaphosphate (Rhodia, Paris, France) 

were also used as binders in all diets and each one represented 2% of their dry mass. In order to 

obtain the desired protein percentage for each diet, matrix calculation was performed with Winmat 

software in order to obtain the dry mass of the ingredients (Table 1). 

The ingredients were weighed and dry mixed. The textured soy protein was previously 

minced. After water addition, the moist feed was transferred to an extruder where it was pressed to 

form 5 mm diameter cylindrical rods. These rods were oven dried (48 hours at 35 ºC) and cut into 

pieces about 1cm long. 

 

 

Table 1. Composition of the 8 broodsotck diets tested 

 

 Protein Source 
 Fish meal (FM) Textured soy protein 

(TSP) 
Ingredients (dry mass – g Kg-1) 10% 20% 30% 40% 10% 20% 30% 40% 
Fish meal (‘Narciso Dias’, Peniche Portugal) 161 323 484 645 - - - - 
Textured soy (‘Protisoja’, Salutem, A. Centazzi, Lda, 
Lisboa, Portugal) - - - - 200 400 600 800 

Wheat starch type I – unmodified S-5127 (Sigma-Aldrich, 
St. Louis, USA) 702 553 405 256 652 454 256 58 

Cod liver oil (‘José M. Vaz Pereira, S.A.’, Lisboa, 
Portugal)) 87 74 61 49 98 96 94 92 
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Spawning induction, egg collection and larvae rearing 

 

After 5 months of captive period, all sea urchins were induced to spawn by injecting 1ml 

0.5M KCl through the peristomial membrane, using a 0.9 mm (external diameter) x 50 mm 

(length) needle coupled to a 5 ml syringe. Each sea urchin was then placed for 30 min in an 

individual plastic beaker filled with 2 L of aerated filtered (1 μm mesh) sea water at 18 ± 0.5 ºC. 

Sperm or egg release was evaluated by light microscopy (x40) and quantitative egg counts were 

obtained with a Coulter Counter (Coulter Corporation, Miami, USA) model ZM with 140 μm cell 

aperture. Spermatozoa number was evaluated semi quantitatively according to the scale used by 

Luis et al. (2005). For egg collection the 2 L volume was filtered onto a 30 μm nylon mesh and 

then washed with seawater into a 30 ml centrifuge tube. After centrifugation (3.000 rpm, 1min) the 

salty supernatant was removed by tube inversion and the precipitate resuspended with 1 ml 

deionised water and transferred to 2 ml Eppendorf tubes. To obtain endotrophic larvae, 50 ml of 

sperm from the one apparent best individual emission (number and movement of spermatozoa) 

from the males fed the same diet, was used to fertilize the 2 L egg volume during 30 minutes. The 

fertilized eggs were then washed trough a 30 μm nylon mesh to get rid of excess spermatozoa, and 

placed into 2 L plastic beakers filled with aerated filtered sea water and reared with the same 

physical conditions of the captive broodstock. Beside eggs (~90 μm), two endotrophic stages were 

analysed: swimming prism (24h after fertilization: ~120 μm) and pre-pluteus (48h after 

fertilization: ~250 μm). At the end of each rearing period the larvae were filtered through 60 μm 

nylon mesh and collected like the eggs. The number of endotrophic larvae collected into each 

eppendorf tube was previously estimated by five 1ml counts of the 2L rearing volume. There were 

also obtained egg and larval samples from wild sea urchins collected in low tide pools at the above 

referred coastal waters on July 2008, using the same procedure as referred above. All eggs and 

larvae samples were immediately freeze-dried and stored under nitrogen at -20 ºC for subsequent 

analysis. 

The number of eggs, prisms and pre-plutei samples collected into the eppendorf tubes 

ranged from 1 x 106 to 9 x 106 eggs; 5 x 105 to 5 x 106 prisms; and 4 x 105 to 3 x 106 pre-plutei. 

Two egg, prism and pre-pluteus samples from each diet replicate (plastic container) were used for 

total protein determination and protein-bound and free amino acid analysis, while for soluble 

protein, three samples were used. 
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Protein and amino acid analysis 

 

Total protein was determined using LECO instrument Model FP-528 nitrogen analyzer (St. 

Joseph, Miami, USA). This instrument uses the Dumas method which consists of (a) converting 

all the forms of N into gaseous nitrogen oxides (NOx) by complete combustion in an induction 

furnace, (b) reducing the NOx gases to N2 and (c) quantifying N2 by thermal conductivity 

(Sweeney & Rexroad 1987; Jones 1991). Total protein was estimated by the usual N x 6.25 

multiplication factor. 

For soluble protein determination and amino acid (AA) analysis, sub-samples (2-10 mg) of 

the freeze-dried samples were extracted in Eppendorf tubes in 1 ml 6% tri-chloro-acetic acid 

(TCA) under rotation (VWR, Pennsylvania, USA, model VV 3) for 24 h at 4ºC. After 

centrifugation (15,000хg, 10 min, 4ºC) the supernatant was used for free amino acid (FAA) 

analysis. The precipitate was dissolved in 1 ml of 0.5M NaOH by rotation for 48h at room 

temperature. An aliquot (25 µl) of this solution were used for total soluble protein determination 

with “Bio-Rad RC DC Protein Assay Kit II” (Bio-Rad Laboratories, California, USA) based on 

Lowry et al. (1951) with bovine serum albumin in 0.5M NaOH as standard and 0.5M NaOH as 

blank. The sample absorbance was read on a Pye Unicam SP6, Model 550 spectrophotometer (Pye 

Unicam Ltd, Cambridge, England) at 750 nm. Another aliquot (20µl) of this solution was used for 

protein-bound amino acids (PAA) determination. This analysis was performed in an Alliance 

reverse-phase HPLC System – Waters (Waters Corporation, Massachussets, USA) at 254 nm after 

pre-column derivatization with phenylisothiocyanate (PITC). Hydrolysis and pre-column 

derivatization of samples were performed in a Waters Pico-Tag Workstation (Waters Corporation, 

Massachussets, USA), which has vacuum and nitrogen connections for drying and sealing the 

samples, as well as a thermostatically controlled oven. Four replicates of each sample were 

weighed in glass tubes containing Norleucine as internal standard. For cysteine quantification, 2 

tubes were subject to performic acid oxidation before acid hydrolysis (vacuum, HCl 6N, 1% 

phenol, 24h at 110ºC). For the other amino acids there was no need for the previous performic acid 

oxidation. During hydrolysis with HCl asparagine and aspartic acid are converted into a single 

species (ASX), as well as glutamine and glutamic acid which are converted to GLX. Since 

tryptophan is completely destroyed during hydrolysis it was not determined in PAA analysis. The 

same procedure was used for FAA determination but without previous acid hydrolysis. PAA and 

FAA analysis were just done for P. lividus eggs since it was considered that if differences occur, 

along egg and larval development, between the several broodstock diets tested, they will appear 

right in the egg stage. Additionally, given that soluble protein values obtained in P. lividus eggs 

derived from the different broodstock diets studied did not showed significant differences among 
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them (see below), it was just chosen 3 diet treatments (Wild, FM 30% and TSP 30%) for P. lividus 

eggs PAA qualitative evaluation. 

 

Statistical analysis 

 

The “STATISTICA 8 for Windows” software package was used for statistical analyses. 

The Levene statistic was used to test for homogeneity of variances for all data. Data with 

homogeneous variances were analysed using one-way ANOVA with Tukey’s multiple 

comparisons to determine differences among independent factors. Data with heterogeneous 

variances were analysed using Kruskal-Wallis statistic followed by multiple comparisons of mean 

ranks for all groups (Sokal & Rohlf 1995; Zar 1999). The significance level used was P<0.05. 

Arcsine transformations were used to normalise total and soluble protein percentage data prior to 

statistical analyses. Since no differences were found between diet replicates (two plastic containers 

for each diet) for all the variables studied (spawning, total protein, soluble protein, PAA and 

FAA), the results presented subsequently are compared according to the P. lividus broodstock 

diets analysed. 

 

 

Results 

 

Spawnings 

 

The average number of emitted eggs of the females that were fed the different diets is 

represented in figure 1. Irrespective of diet (either considering protein source or protein 

percentage) all mean spawnings were higher than 1,500 x 103. The highest mean female spawning 

was obtained when they were fed the TSP 40% diet and the lowest when they were fed FM 20% 

diet. These two diets were the only ones to present significant differences on the number of 

emitted eggs (Kruskal-Wallis, P<0.05). 

Regarding males, 82% of all the spawnings were classified in the highest class of the semi-

quantitative scale (more than 200 million spermatozoa), while the rest were classified in the 

preceding class (up to 200 million spermatozoa). 
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* Only between FM 20% and TSP 40% broodstock diet treatments were found significant differences (Kruskal-Wallis, P<0.05) on the number of emitted eggs. 

*

Figure 1. Quantitative female sea urchin spawnings (mean + standard error of the mean) according to broodstock diet. 

*

 FM – fish meal 
 TSP – textured soy protein 
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Total protein 

 

Total protein values of eggs, prisms and pre-plutei obtained from sea urchins that were fed 

with the different tested diets are presented in Figure 2. As shown for the majority of the diets, 

there is a general trend for a slight decrease of total protein percentage along larval development. 

Exceptions were observed for TSP 10%, FM 20% and FM 30% where pre-plutei values were 

higher than the prisms, but significant differences between these two stages were only found for 

FM 30% (one way ANOVA, P<0.01). Overall, eggs presented a significant higher (one-way 

ANOVA and Kruskal-Wallis, P<0.01) total protein mean value than prims and pre-plutei when 

analysing either all diets together or each diet separately (except for wild diet). Total protein mean 

percentage for eggs obtained from all the broodstock diets studied is always higher than 530 g Kg-

1 DW and reach a maximum of 593 g Kg-1 DW for TSP 40% diet. For prism and pre-plutei stage 

the lowest values in total protein mean values (409 and 441 g Kg-1 DW) were obtained from 

broodstock fed FM 30% and FM 10% diets respectively, while the highest values (543 and 507 g 

Kg-1 DW) derived from Wild and TSP 30% diets respectively. Analysing the P. lividus 

developmental stages independently it was not found significant differences (Kruskal-Wallis, 

P>0.05) between diets for eggs, and for pre-plutei larvae just TSP 30% and FM 10% diets 

presented significant differences (Kruskal-Wallis, P<0.01). Only for prism stage there was a 

considerable variation in total protein content between diets. No significant differences (one-way 

ANOVA, P>0.05) were only found among FM 10% – TSP 20% – TSP 30% – TSP 40%; TSP 

10% – FM 20% – FM 40%; and Wild – TSP 40% diet groups. 

 

Soluble protein 

 

Soluble protein values of eggs, prisms and pre-plutei obtained from sea urchins fed with 

the different tested diets are presented in Figure 3. Unlike total protein no trend for decrease along 

larval development was clear, however when comparing all diets together eggs presented 

significant higher mean soluble protein percentage than prisms and prisms presented significant 

higher mean percentages than pre-plutei (Kruskal-Wallis, P<0.01). Considering each diet 

separately only eggs obtained from broodstock fed TSP 20% and TSP 40% diets had significant 

higher mean values (261 and 282 g Kg-1 DW, respectively) than pre-plutei (one-way ANOVA, 

P<0.05). For all the other diets no significant differences in mean soluble protein percentage were 

found among P. lividus developmental stages (one-way ANOVA and Kruskal-Wallis, P>0.05). 

Highest mean value was found for eggs obtained from wild broodstock (316 g Kg-1 DW), while 

pre-plutei obtained from TSP 40% diet presented the lowest mean value (228 g Kg-1 DW). 
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Regarding each development stage independently there were not found significant differences 

(one-way ANOVA and Kruskal-Wallis, P>0.05) among broodstock diets.  

Soluble protein fraction of total protein in eggs represents 46.4% (using FM 30% diet) to 

57.8% (wild diet) while in prisms and pre-plutei this fraction ranged from 46.3% (wild diet) to 

69.0% (FM 30% diet) and 46.9% (TSP 40% diet) to 61.9% (FM 30% diet) of total protein, 

respectively. 

 

Protein-bound amino acids 

 

The content of protein-bound amino acids (PAA) in P. lividus eggs obtained from Wild, FM 30% 

and TSP 30% broodstock diet treatments is shown in Table 2. For all the parameters analysed, non 

significant differences (one-way ANOVA, P>0.05) were found among broodstock diet treatments. 

The sum of all PAA determined in weight (∑PAAw) represents approximately 27% of the eggs 

dry weight (DW). The indispensable amino acid (IAA) fraction, both considering it in weight and 

concentration (IAAw and IAAc), represents approximately 50%, for all the diets analysed. 

Hystidine (HYS) and Methionine (MET) are the less abundant IAA comparing with the more 

abundant IAA Leucine (LEU), Valine (VAL) and Isoleucine (ILE). P. lividus eggs dispensable 

amino acids (DAA) determination showed GLX (Glutamic acid + Glutamine) and ASX (Aspartic 

acid + Asparagine) as the more abundant DAA, and Tyrosine (TYR) as the less abundant DAA. 

 

Free amino acids 

 

In Table 3 is represented the content of free amino acids (FAA) determined in P. lividus eggs 

obtained from all the broodstock diet treatments analysed. Non significant differences (one-way 

ANOVA and Kruskal-Wallis, P>0.05) were found among broodstock diet treatments for all the 

variables analysed. Considering FAA weight percentage it ranged from 5.95% (in TSP 30% diet) 

to 9.63% (in FM 40% diet) of eggs DW. The IAA percentage of FAA weight ranged from 10.3% 

to 20.2% in eggs obtained from P. lividus fed the FM 20% and FM 10% diets respectively, while 

when considering IAA percentage in concentration the highest value was also found in eggs 

derived from FM 10% broodstock diet (11.6%), but the lowest values was found in eggs derived 

from TSP 40% broodstock diet (5.20%). Low concentrations were determined for all IAA (less 

than 30 nmol mgDW-1), especially for Phenylalanine (PHE) and Tryptophan (TRP). Arginine 

(ARG) was the most abundant IAA found in P. lividus eggs FAA fraction. Small amounts were 

also observed for DAA, except for Glycine (GLY) that was by far the more abundant FAA with 
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concentrations superior to 597 nmol mgDW-1 and reaching a maximum of 928 nmol mg DW-1 in 

P. lividus eggs obtained from broodstock fed the FM 20% diet. 
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Figure 2. Total protein (g Kg-1 DW) of Paracentrotus lividus eggs, prisms and pre-plutei, according to broodstock diet. Values are the mean ± 
standard error of the mean from the analyses of 4 samples (2 samples from each replicate). 
 FM – fish meal 
 TSP – textured soy protein 
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Figure 3. Soluble protein (g Kg-1 DW) of Paracentrotus lividus eggs, prisms and pre-plutei, according to broodstock diet. Values are the mean ± 
standard error of the mean from the analyses of 6 samples (3 samples from each replicate). 
 FM – fish meal 
 TSP – textured soy protein 
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* Only on TSP 20% and TSP 40% broodstock diet treatments significant differences (one-way ANOVA, P<0.05) were found between eggs 
 and pre-plutei soluble protein content. 
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Table 2              
Content of protein-bound amino acids (PAA) in P. lividus eggs obtained from Wild, FM 30% and TSP 30% broodstock diet treatments. 
FM - fish meal; TSP - textured soy protein                       
P. lividus egss Abbreviations  P. lividus broodstock diets 
   Wild FM 30% TSP 30% 
PAA in weighta (µg mg DW-1) ∑PAAw  280 ± 24.9  286 ± 23.3  258 ± 17.3 
Indispensable amino acids (µg mg DW-1) ∑IAAw  154 ± 13.2  154 ± 13.4  138 ± 9.46 
Indispensable amino acids (%) IAAw/PAAw  55.1 ± 0.58  53.6 ± 0.40  53.8 ± 0.18 
Indispensable to dispensable ratio IAAw/DAAw  1.23 ± 0.03  1.16 ± 0.02  1.16 ± 0.01 
PAA concentration (nmol mg DW-1) ∑PAAc  2.17 ± 0.19  2.26 ± 0.17  1.96 ± 0.13 
Indispensable amino acids (nmol mg DW-1) ∑IAAc  1.10 ± 0.09  1.12 ± 0.09  0.97 ± 0.06 
Indispensable amino acids (%) IAAc/PAAc  51.0 ± 0.60  49.8 ± 0.15  49.3 ± 0.38 
Indispensable to dispensable ratio IAAc/DAAc  1.04 ± 0.02  0.99 ± 0.01  0.97 ± 0.01 
            
Indispensable amino acids (nmol mg DW-1) IAA           
Leucine LEU  219 ± 16.2  218 ± 17.3  187 ± 12.6 
Valine VAL  167 ± 11.9  172 ± 12.4  148 ± 10.2 
Lysine LYS  127 ± 16.9  146 ± 11.6  113 ± 10.9 
Isoleucine ILE  158 ± 9.8  154 ± 8.74  139 ± 9.69 
Arginine ARG  109 ± 11.4  118 ± 13.3  100 ± 6.71 
Phenylalanine PHE  117 ± 7.54  108 ± 7.14  99.4 ± 7.46 
Threonine THR  87.1 ± 9.69  86.9 ± 5.47  78.3 ± 7.84 
Methionine MET  67.5 ± 6.53  69.9 ± 6.03  62.0 ± 4.15 
Histidine HIS  48.4 ± 6.52  51.2 ± 6.44  41.8 ± 2.99 
            
Dispensable amino acids (nmol mg DW-1) DAA           
Glutamic acid + Glutamine GLX (GLU + GLN)   214 ± 22.2  230 ± 16.9  203 ± 11.2 
Aspartic acid + Asparagine ASX (ASP + ASN)  195 ± 18.6  219 ± 11.3  190 ± 10.0 
Alanine ALA  159 ± 15.1  166 ± 14.0  138 ± 10.0 
Glycine GLY  173 ± 16.2  189 ± 16.5  167 ± 12.07 
Serine SER  113 ± 10.2  124 ± 11.6  110 ± 10.1 
Proline PRO  133 ± 13.5  122 ± 5.54  115 ± 9.02 
Tyrosine TYR  78.7 ± 7.45  82.1 ± 7.08  72.1 ± 5.26 
            
Values are the mean ± standard error of the mean from the analyses of four samples (two samples from each replicate).    
Non significant differences (one-way ANOVA, P>0.05) were found among P. lividus broodstock diet treatment for all the factors analysed. 
Tryptophan was not determined since it is destroyed during acid hydrolisis.           
a PAA in weight were calculated as the sum of all amino acids weigth.             
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Table 3                                    

Content of free amino acids (FAA) in P. lividus eggs obtained from Wild and captive broodstock fed the different tested diets .                     

FM - fish meal; TSP - textured soy protein                                     

                                    

P. lividus egss Abbreviations  P. lividus broodstock diets 

   Wild  FM 10%  TSP 10%  FM 20%  TSP 20%  FM 30%  TSP 30%  FM 40%  TSP 40% 

FAA in weighta (µg mg DW-1) ∑FAAw  74.5 ± 9.69  77.6 ± 13.9  63.6 ± 11.3  88.3 ± 9.23  75.3 ± 4.07  87.9 ± 7.38  59.5 ± 3.41  96.3 ± 7.17  84.3 ± 4.45 

Indispensable amino acids (µg mg DW-1) ∑IAAw  13.5 ± 5.19  14.1 ± 1.99  8.78 ± 1.41  8.81 ± 1.67  10.2 ± 2.42  10.5 ± 1.56  6.94 ± 1.14  14.5 ± 4.65  9.18 ± 0.54 

Indispensable amino acids (%) IAAw/FAAw  17.0 ± 4.25  20.2 ± 5.11  14.8 ± 3.50  10.3 ± 2.00  13.5 ± 2.76  11.8 ± 1.15  11.6 ± 1.70  14.5 ± 3.90  10.9 ± 0.38 

Indispensable to dispensable ratio IAAw/DAAw  0.22 ± 0.07  0.27 ± 0.09  0.18 ± 0.05  0.12 ± 0.02  0.16 ± 0.04  0.13 ± 0.01  0.13 ± 0.02  0.18 ± 0.06  0.12 ± 0.00 

FAA concentration (nmol mg DW-1) ∑FAAc  845 ± 98.2  886 ± 181  749 ± 144  1070 ± 123  871 ± 51.1  1049 ± 79.4  701 ± 39.0  1107 ± 79.0  997 ± 49.1 

Indispensable amino acids (nmol mg DW-1) ∑IAAc  93.3 ± 36.7  87.5 ± 10.2  59.1 ± 13.6  56.3 ± 8.82  61.1 ± 15.5  66.4 ± 9.98  41.2 ± 7.74  86.5 ± 27.7  51.9 ± 3.32 

Indispensable amino acids (%) IAAc/FAAc  10.4 ± 3.13  11.6 ± 3.49  9.03 ± 3.39  5.49 ± 1.04  7.08 ± 1.73  6.24 ± 0.66  5.82 ± 0.98  7.64 ± 2.24  5.20 ± 0.19 

Indispensable to dispensable ratio IAAc/DAAc  0.12 ± 0.04  0.14 ± 0.05  0.10 ± 0.04  0.06 ± 0.01  0.08 ± 0.02  0.07 ± 0.01  0.06 ± 0.01  0.08 ± 0.03  0.05 ± 0.00 

                              

Indispensable amino acids (nmol mg DW-1) IAA                             

Leucine LEU  18.0 ± 9.12  13.4 ± 2.69  7.05 ± 1.53  9.04 ± 0.73  6.78 ± 2.21  9.20 ± 2.60  4.60 ± 1.52  9.59 ± 3.12  3.54 ± 0.42 

Valine VAL  17.3 ± 8.60  12.7 ± 3.06  6.08 ± 1.76  8.46 ± 0.58  5.50 ± 2.02  8.71 ± 1.78  3.98 ± 1.49  8.36 ± 2.93  2.85 ± 1.05 

Lysine LYS  6.83 ± 2.83  22.9 ± 7.18  4.39 ± 1.48  6.58 ± 5.17  15.1 ± 5.51  8.62 ± 3.95  8.10 ± 2.51  16.7 ± 9.91  12.4 ± 1.72 

Isoleucine ILE  12.0 ± 6.27  7.96 ± 1.68  3.44 ± 1.32  5.64 ± 0.37  3.30 ± 1.51  5.84 ± 1.34  1.95 ± 1.21  5.00 ± 2.23  1.55 ± 0.57 

Arginine ARG  14.5 ± 1.99  16.2 ± 10.3  19.0 ± 2.74  15.0 ± 4.49  18.1 ± 3.16  17.8 ± 2.71  13.0 ± 1.67  29.0 ± 7.39  21.2 ± 1.28 

Phenylalanine PHE  0.00 ± 0.00  0.33 ± 0.33  0.70 ± 0.32  0.00 ± 0.00  1.03 ± 0.41  0.64 ± 0.37  1.13 ± 0.08  1.94 ± 0.72  0.94 ± 0.40 

Threonine THR  18.4 ± 8.56  6.33 ± 0.51  7.74 ± 1.86  8.56 ± 1.72  8.00 ± 2.55  10.7 ± 1.86  5.69 ± 1.75  11.5 ± 2.22  6.61 ± 0.71 

Methionine MET  4.06 ± 2.48  3.18 ± 1.37  2.12 ± 0.71  1.89 ± 0.70  1.63 ± 0.96  2.86 ± 0.33  0.80 ± 0.80  2.80 ± 1.11  1.20 ± 0.40 

Histidine HIS  1.99 ± 1.50  1.74 ± 0.65  2.12 ± 0.46  1.10 ± 0.38  1.14 ± 0.39  1.32 ± 0.44  1.84 ± 0.12  1.29 ± 0.45  1.61 ± 0.61 

Tryptophan TRP  0.20 ± 0.20  2.77 ± 2.51  0.39 ± 0.22  0.00 ± 0.00  0.46 ± 0.27  0.62 ± 0.62  0.18 ± 0.18  0.36 ± 0.21  0.00 ± 0.00 
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Table 3 (Cont.) 
 

P. lividus egss Abbreviations  P. lividus broodstock diets 

   Wild  FM 10%  TSP 10%  FM 20%  TSP 20%  FM 30%  TSP 30%  FM 40%  TSP 40% 

                                      

Dispensable amino acids (nmol mg DW-1) DAA                                   

Glycine GLY  646 ± 64.3  712 ± 174  615 ± 147  928 ± 130  700 ± 62.1  891 ± 53.1  598 ± 30.1  886 ± 80.0  839 ± 37.4 

Taurine TAU  2.62 ± 1.27  1.86 ± 0.29  1.55 ± 0.63  2.57 ± 0.59  2.91 ± 0.41  1.99 ± 0.11  2.03 ± 0.36  2.67 ± 0.77  2.93 ± 0.26 

Alanine ALA  39.2 ± 11.8  25.8 ± 8.34  22.9 ± 4.11  29.1 ± 4.81  25.7 ± 8.00  26.3 ± 6.49  14.4 ± 2.40  43.1 ± 4.62  25.7 ± 2.87 

Glutamine GLN  10.7 ± 3.60  10.6 ± 3.61  11.7 ± 1.20  15.3 ± 3.19  14.5 ± 6.42  17.3 ± 6.31  11.8 ± 4.55  24.1 ± 4.40  12.2 ± 4.09 

Proline PRO  11.8 ± 6.52  7.99 ± 1.70  3.70 ± 1.45  6.12 ± 0.44  3.13 ± 1.43  6.13 ± 0.82  2.31 ± 0.88  5.92 ± 2.26  1.66 ± 0.67 

Asparagine ASN  12.1 ± 4.53  11.2 ± 4.22  7.00 ± 1.46  8.66 ± 3.30  12.3 ± 3.60  7.67 ± 1.83  6.11 ± 0.64  12.4 ± 3.72  10.7 ± 1.05 

Serine SER  10.6 ± 4.32  10.3 ± 5.57  19.4 ± 2.36  17.5 ± 10.2  42.3 ± 10.6  22.6 ± 6.70  15.7 ± 1.89  35.2 ± 11.3  44.1 ± 7.70 

Gamma-amino butyric acid GABA  5.62 ± 2.44  5.17 ± 0.95  3.33 ± 0.52  3.82 ± 0.32  4.02 ± 1.13  3.95 ± 0.55  2.50 ± 0.39  4.46 ± 0.68  3.12 ± 0.39 

Tyrosine TYR  1.07 ± 0.71  1.80 ± 1.17  2.36 ± 0.85  2.06 ± 1.19  3.24 ± 0.99  2.84 ± 1.02  2.46 ± 0.56  4.25 ± 1.23  1.90 ± 0.64 

Cysteine CYS  4.01 ± 1.90  1.35 ± 1.35  1.39 ± 0.80  0.57 ± 0.57  0.65 ± 0.65  0.00 ± 0.00  2.81 ± 0.26  0.71 ± 0.71  3.08 ± 2.45 

Ornithine ORN  10.2 ± 6.28   10.3 ± 4.55  1.59 ± 0.59  0.79 ± 0.79   1.02 ± 0.38  2.42 ± 1.65  2.00 ± 1.35   1.41 ± 0.18   0.43 ± 0.25 

                                    

Values are the mean ± standard error of the mean from the analyses of four samples (two samples from each replicate).                          

Non significant differences (one-way ANOVA and Kruskal-Wallis, P>0.05) were found among P. lividus broodstock diet treatment for all the factors analysed.                 

Due to high interferences in the cromathogram area, Glutamic acid and Aspartic acid were not detected and quantified in FAA composition.                    
a FAA in weight were calculated as the sum of all amino 
acids weigth.                                      
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Discussion 

 

Spawnings 

 

Because wild Paracentrotus lividus just spawn during spring and summer at Cascais 

coastal waters (Gago et al. 2003), broodstock must be kept in captivity in order to get all year-

round spawnings (Luis et al. 2005), and few months of captivity are sufficient for broodstock 

maturation (Fernandez et al. 1996). In these conditions, artificial diets are presently generally used 

due to their durability, year-round availability, biochemical formulation and independency of 

natural food collection (George et al. 2000). 

Fish meal and textured soy protein are ingredients that can be used in order to obtain high 

protein concentrations for animal and vegetable base artificial diets respectively. In comparison to 

fish meal, soy bean has lower protein content, therefore in this study the maximum protein 

percentage used in the diets was limited to 40% that is approximately the maximum possible value 

using soy bean as protein source. The different protein concentrations used for the artificial diets 

tested tried to evaluate the possible gains in eggs and endotrophic larvae protein nutritional value 

without impairing the spawning performance which seems to be essentially related with energy 

content of the diet (Luis et al. 2005; Schlosser et al. 2005). Considering spawning performance, all 

the tested diets proved to be adequate to either promote P.lividus gametogenesis and to release 

high number of gametes when both males and females were induced to spawn. Therefore it seems 

that spawning performance is not related with dietary protein concentration, at least for the two 

protein sources used and for the dietary protein percentage range tested. In spite of Luis et al. 

(2005) obtained greater spawnings in P. lividus fed maize than fed seaweed Laminaria 

ochroleuca, the dietary protein concentrations are not so different (84 and 69 g Kg-1 DW, 

respectively), and dissimilarities in the other nutrients of the diets may have played a more 

important role. However, when considering other biological parameters than spawning better 

performances are achieved when P. lividus are fed artificial diets with higher protein content based 

on fish meal or soy bean: Fernandez (1997) concluded that the use of artificial feed containing fish 

meal favours storage of reserves in P. lividus gonad, gut and even in the test in the form of lipids 

and/or carbohydrates; Fernandez & Pergent (1998) obtained higher growth for captive P. lividus 

when fed formulated feed with fish meal than when fed plant meal or natural feed; Fernandez & 

Boudoresque (2000) obtained higher absorption value, assimilation efficiency, digestibility and 

growth in P. lividus fed a fish meal based diet when compared with lower protein content diets; 

Spirlet et al. (2001) and Schlosser et al. (2005) reported P. lividus enhanced gonadal growth for 

mixed fish meal and soy bean artificial diet. Therefore it is considered that captive P. lividus 
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spawning is not influenced by dietary protein content in artificial diets. Another possible 

explanation for the inexistence of significant differences, in spawnings among diets found in this 

study (except between FM 20% and TSP 40%), might have be the non limiting quantity of the 

food ingested, since sea urchins were fed quite often and always captured at least one food portion. 

 

Total and soluble protein 

 

Total protein results obtained in present study for P. lividus eggs ranged from 593 g Kg-1 

DW (eggs obtained from TSP 40% diet) to 531 g Kg-1 DW (eggs obtained from TSP 10% diet). 

These values are lower than the ones obtained by Fernandez (1997) for P. lividus gonads 

(approximately 720 g Kg-1 DW for P. lividus captured in August), which might indicate that other 

gonad tissues than oocytes presents higher protein content and/or the sea urchins analysed were at 

different stage of gametogenesis. The general tendency for protein content slight decrease along 

development is concurrent with the results obtained by Gago et al. (2009) for lipids. However, for 

lipids there is a sharp decrease considered to fuel development, whereas proteins may play a more 

structural role. Similar results were found for the tropical echinoid Tripneustes gratilla (Byrne et 

al. 2008). In spite of some significant differences were found among diet treatments (especially for 

the prism stage), it seems that P. lividus eggs and endotrophic larvae total protein content do not 

considerable varied according to either the protein source and the protein content of the 

broodstock diet. This fact might underline that protein inputs in the oocyte during gametogenesis 

is more genetically determined than dependent on environmental factors.  

When considering early fish larvae nutrition, soluble protein might be a more reliable indicator of 

nutritional quality than total protein, since it has been showed that soluble proteins are more 

available for fish larval digestion and absorption than are insoluble proteins (Carvalho et al., 2004, 

Tonhein et al. 2007). 

Likely to total protein, soluble protein values found for P. lividus eggs (ranging from 247 

to 316 g Kg-1 DW) are lower than the ones found for gonads (approximately 430 g Kg-1 DW; 

Fernandez 1997), which is also suggestive of higher soluble protein content of other gonad tissues 

than oocytes and/or the sea urchins analysed were at different stage of gametogenesis. The 

decrease of soluble protein along development was not so evident but it might occur since 

statistical differences were found between developmental stages when considering all tested diets. 

Even more evidently than insoluble protein, was the null effect found for protein source and 

protein content of the broodstock diet on the soluble protein content of P. lividus eggs, prisms and 

pre-plutei. These results also emphasize the genetic control of individual protein content. 
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The protein content in the common used live prey during first feeding of marine larvae fish 

(Brachionus spp.) has been reported in several studies (Lubzens et al. 1989; Lie et al. 1997; Øie et 

al. 1997; Aragão et al. 2004b; Srivastava et al. 2006) but the determined values present a wide 

variation. Srivastava et al. (2006) reported that this great variation in reported levels is more likely 

the reflection of the different methodologies used rather than true variations in Brachionus spp. 

protein content. However, comparisons can be made with studies that used identical analytical 

procedures with the ones used in this study. Lie et al. (1997), based on nitrogen content, reported 

570 g Kg-1 DW as the total protein content for Brachionus plicatilis, which is a value only slightly 

higher than the ones found in the present study for P. lividus prisms and pre-plutei, but similar to 

the ones found for eggs. For Brachionus rotundiformis, Aragão et al. (2004b) based on Lowry 

method, found amounts of soluble protein ranging from 280 to 371 g Kg-1 DW according to the 

rotifer’s diet treatment, which are values slightly superior to the ones obtained for P. lividus eggs, 

prisms and pre-plutei. When evaluating both protein fractions Shrivastava et al. (2006) reported 

that soluble protein constituted 50.6% of total B. plicatilis protein content. This value is in the 

range found for P. lividus eggs and endotrophic larvae. Considering marine fish eggs, their total 

AA content is in range of 40-60% (Ketola 1982, Fyhn 1989, Rønnestad & Fyhn 1993, Rønnestad 

et al. 1999) and therefore it is comparable to total AA content found either in the traditional live 

feed used during first feeding (Brachionus spp.), either in the potential alternative live feeds (P. 

lividus eggs and endotrophic larvae). 

 

Amino acids  

 

The PAA and FAA composition determined in P. lividus eggs did not show statistical 

differences according to the broodstock diet given in adult rearing. Such result must highlight the 

genetic control of individual protein and AA composition. In fact, protein synthesis inside the cells 

is the result of DNA transcription and RNA translation which are molecules genetically inherited. 

Additionally, likely to every cell, the genetically determined integral proteins present at the plasma 

membrane of oogonia and oocytes, control both the active and passive transport of substances 

through the cell, which can not pass by diffusion. Therefore it seems evident in this study that P. 

lividus eggs and endotrophic larvae can not be enhanced in protein content and AA composition 

through manipulation of the broodstock diet. These results seem to differ from the ones obtained 

by Gago et al. (2009) for P. lividus eggs and endotrophic larvae lipid content and fatty acid 

composition. However, these molecules can pass through cell membrane by diffusion and 

therefore can be accumulated in cells during oogenesis. For Brachionus spp., the nutritional 

enhancement is done using different commercial enrichment media or microalgae species. In this 
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context, Aragão et al. (2004b) determined Brachionus rotundiformis PAA and FAA composition 

according to different enrichments and found that IAA percentage in the PAA fraction expressed 

in weight varied between 45% and 50%, which are values slightly lower than the ones obtained in 

this study for P. lividus eggs. Lower IAA percentages in Brachionus plicatilis were found by 

Srivastava et al. (2006) and van der Meeren et al. (2008) (47.5% and 48.4%, respectively), but 

with calculations based on Øie et al. (1997) data, 55.3% to 56.1% is the B. plicatilis IAA 

percentage range obtained. Considering PAA composition, the more and less abundant IAA and 

DAA found in P. lividus eggs are somehow the same found for Brachionus spp.: HIS and MET 

and TRP (when determined) were found to be the less abundant IAA (Øie et al. 1997, Aragão et 

al. 2004b, Srivastava et al. 2006, van der Meeren et al. 2008); while LEU, VAL, and ILE were 

considered the more abundant IAA (Aragão et al. 2004b, van der Meeren et al. 2008). Contrarily 

to P. lividus eggs ARG (Øie et al. 1997) and LYS (Srivastava et al. 2006) were also found to be 

ones of the most abundant IAA in B. plicatilis; GLX (GLU + GLN) and ASX (ASP +ASN) were 

also found to be the more abundant DAA and TYR the less abundant DAA in B. plicatilis by 

Srivastava et al. (2006) and van der Meeren et al. (2008); for Aragão et al. (2004b), CYS and PRO 

were also found to be the less abundant DAA for B. rotundiformis; and for Øie et al. (1997), GLY 

is also one of the less abundant DAA for B. plicatilis. 

In spite of the major contribution to dietary AA profile came from PAA, FAA are vital 

nutrients for first feeding of the stomach less and low intestinal proteolytic and absorptive 

capacities marine fish larvae. FAA have considerably higher retention efficiencies and are faster 

and more absorbed than proteins (Rønnestad et al. 2000, Tonhein et al. 2005), and also function as 

substrate for energy production (Fyhn 1989). A high FAA content is typically found in marine 

invertebrates and other planktonic organisms (Yancey et al. 1982, Fyhn et al. 1993) which are 

natural preys of fish larvae, and in marine fish eggs (Rønnestad et al. 1999). In this context, the 

FAA weight found in P.lividus eggs range from 59.5 to 96.3 g Kg-1 of the egg’s dry weight. A 

similar amount found for rotifers, in the literature analysed, was only determined by Aragão et al. 

(2004b) for B. rotundiformis fed Tetraselmis chui microalgae, while when fed other enrichments 

the FAA DW percentage was always lower than 4.2%. For B. plicatilis, 1.14% to 1.90%, 2.2% to 

5% and 1.66%, are FAA DW determinations found by Øie et al. (1997), Srivastava et al. (2006) 

and van der Meeren et al. (2008), respectively. Regarding the IAA percentage of the FAA 

fraction, higher values were found for B. plicatilis than the ones found in this study for P.lividus 

eggs: Srivastava et al. (2006) reported 48.7% and van der Meeren et al. (2008) reported 34.7% and 

30.6% for AA expressed in weight and concentration, respectively. Aragão et al. (2004b) also 

found higher concentrations of IAA for B. rotundiformis FAA fraction. Considering FAA 

composition GLY was found to be the most concentrated FAA in P. lividus eggs, which alone 
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correspond to more than 75% of FAA concentration. This situation was not found for Brachionus 

spp. in the literature analysed and only Aragão et al. (2004b), refer GLY as the second more 

abundant DAA in FAA fraction, but with much lower concentrations (less than 100 nmol mgDW-

1) than the ones found for P. lividus eggs. GLY is an AA implicated in purine synthesis and 

osmoregulation and in the free form has been shown to stimulate feeding behaviour in seabream 

larvae (Kolkovski et al. 1997) and in turbot larvae (Knutsen 1992). Similarities were found 

between Brachionus spp. and P. lividus eggs IAA composition of the FAA fraction. ARG was also 

the most abundant IAA found in rotifers, while MET and TRP were the less abundant IAA as well 

(Øie et al. 1997, Aragão et al. 2004b, Srivastava et al. 2006, van der Meeren et al. 2008). 

Considering the DAA of FAA fraction in Brachionus spp., ALA always appeared as one of the 

most abundant DAA (Øie et al. 1997, Aragão et al. 2004b, Srivastava et al. 2006, van der Meeren 

et al. 2008), but others DAA are also reported as abundant (e.g. GLU, ASP and ALA). Taurine 

(TAU) has been suggested as an essential nutrient for larval and juvenile marine fish (Conceição 

et al. 1997, Takeuchi et al. 2001), but very small amounts were found in P. lividus eggs and 

endotrophic larvae. Comparing with Brachionus rotundiformis, Aragão et al. (2004b), found 

higher TAU concentrations, particularly with Tetraselmis chui enrichment. 

Ornithine (ORN) was present in the FAA fraction of P .lividus eggs, but in the literature 

revised, was not detected in Brachionus spp.. This AA is not incorporated into protein but is 

generally important as an intermediate in the reactions of the urea cycle and in ARG synthesis. 

Considering marine fish larvae IAA requirements, major IAA deficiencies found for 

rotifers seems to be related with THR, LEU, ARG, MET, LYS and HIS (Conceição et al. 1997, 

2003, Aragão et al. 2004a, Saavedra et al. 2006, Saavedra et al. 2007). Comparing the amounts of 

these IAA determined for P. lividus eggs and endotrophic larvae with the values reported in the 

above mentioned studies for Brachionus spp. it seems that, in spite of some minor differences, 

only for THR the weight percentage is lower. However this AA was considered the first limiting 

AA for sea bream larvae (Conceição et al. 2003) and when directly compare P. lividus eggs and 

endotrophic IAA profile with IAA profile of both Diplodus sargus (Saavedra et al. 2006) and 

Diplodus puntazzo larvae (Saavedra et al. 2007) all of these IAA are deficient in the studied 

alternative preys. Considering IAA profile of eggs and young larvae of Asian seabass Lates 

calcarifer (Dayal et al. 2003), potential deficiencies in P. lividus eggs and endotrophic larvae are 

minimized and are mainly found for THR.  
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Conclusion 

 

It is concluded in this study that, in spite of being very hard to enhance the AA profile of P. 

lividus eggs and endotrophic larvae through manipulation of broodstock diet, resultant alternative 

live feeds are comparable to rotifer Brachionus spp. in what protein content and AA composition 

is concerned. Only the IAA percentage of the FAA fraction could possibly be not favourable to P. 

lividus eggs and endotrophic larvae, but the amount of FAA in these alternative live feeds appears 

to be higher than in Brachionus spp. However, like Brachionus spp., these alternative live feeds 

may present several AA nutritional imbalances for marine fish larvae first feeding and due to the 

more economic production of Brachionus spp. they do not bring any AA nutritional advantage for 

marine fish larvae rearing. In fact, Brachionus spp. use as live feed in production larviculture is 

more due to their ability to grow and reproduce in high density cultures rather than being 

nutritional superior to other live feed organisms (Srivastava et al. 2006). Therefore, since both 

rotifers and the studied alternative live feeds seem to be not nutritionally adequate for marine fish 

larvae feeding, it is important to continue to investigate the improvement of AA quality of feeds 

(live and artificial) and supplements given to commercial marine fish larvae species. Finally, to 

really determine the suitability of P. lividus eggs and endotrophic larvae for marine fish larvae first 

feeding and compare it to rotifers, it is necessary to evaluate the survival and growth performance 

outcomes of selected fish larvae reared on these potential alternative live feeds. This question is 

presently being addressed by our research team. 
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Survival and growth of selected marine fish larvae first fed with eggs and 

endotrophic larvae of the sea urchin Paracentrotus lividus. 
 

 

 

Abstract 

 

Two sets of experiments were carried out to evaluate the potential of eggs and endotrophic 

larvae of captive Paracentrotus lividus as alternative live prey for marine fish larvae first feeding. 

The first consisted in rearing sparids, Diplodus sargus and Sparus aurata, larvae until 15 days 

after hatching in a recirculation system. Compared with the commonly used live prey – rotifer 

Brachionus spp. – general lower values of survival and growth were obtained when fish larvae 

were fed with the alternative live prey. Among these, eggs showed to be the preferred feeding. 

Broodstock feed showed to play a fundamental role on prey quality and consequent fish larvae 

survival. In the second set of experiments, the 24-hour ingestions of the first feeding larvae in 

static water were determined for five currently cultured fish larvae species. Except for larger and 

more predatory Dicentrarchus labrax larvae, there was a trend for higher P. lividus egg ingestion, 

followed by pre-plutei and prisms. Prey size, colour and movement affected food selection by fish 

larvae. It is concluded that, in spite of the alternative live prey being readily consumed by all 

tested fish larvae, however they cannot presently compete with rotifers in marine fish larvae first 

feeding. 

 

 

Keywords: Paracentrotus lividus, eggs, endotrophic larvae, marine fish larvae, survival, growth, 

ingestion rates.  

 

 

Introduction 

 

It is not yet clear which specific organism(s) are preyed upon by a marine fish larva when 

starts the exogenous feeding, although it is found that larvae of marine invertebrates and other 

small zooplankters are generally exploited (Hunter, 1981). In this context several ecological 

studies have demonstrated the importance of echinoplutei in the composition and biomass of 

zooplankton communities (e.g. Rassoulzadegan & Fenaux 1979; Fransz, Miquel & Gonzalez 
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1984; Lindley, Gamble & Hunt 1995; López, Turon, Montero, Palacín, Duarte & Tarjuelo 1998). 

Moreover, McEdward & Miner (2001), based on field and laboratory studies, suggested that 

predation must be the major cause of echinoid larval mortality. Therefore, these facts suggest 

echinoid larval consumption by marine fish larvae. Consequently, it seems that if echinoplutei are 

natural prey they can also be used in marine larviculture as live feed. In this perspective, the 

potential use of early developmental stages of Lytechinus variegatus as larval food was already 

suggested by Hubbard, Wolcott & Baca (2003), and the same utilization was preconized by Luis, 

Delgado & Gago (2005) and Gago, Repolho & Luis (2009) for Paracentrotus lividus eggs and 

endotrophic larvae. The body size of these larval stages suggests that this organism could be 

appropriate to feed early larvae of marine fish. 

Several criteria were already analysed to determine the suitability of P. lividus eggs and 

endotrophic larvae as a mass-produced source of zooplankton to feed marine fish larvae. Besides 

having a short period of embryonic development (Fenaux, Cellario & Etienne, 1985), Luis et al. 

(2005) reported consistent large year-round spawnings of captive P. lividus and Gago et al. (2009) 

enhanced their eggs and endotrophic larvae nutritional quality with essential fatty acids for fish 

larvae. But to fully determine the potential of these alternative live prey in larviculture it is 

necessary to evaluate the ingestion, survival and growth performance outcomes of marine fish 

larvae reared with these live feeds. Therefore, several chronological experiments were performed 

in this study to analyse these parameters for the first-feeding period of marine fish larvae. Several 

fish larvae species had to be selected because laboratory sea urchin larvae mortality changes not 

only with larval size or age but also with type of predator (Rumrill 1990, Allen 2008). Primarily, 

gilthead seabream (Sparus aurata L.) and white seabream (Diplodus sargus L.) larvae were reared 

until 15 days after hatching (DAH) with different live prey. These two species were chosen 

because S. aurata continues to be a major produced species in southern Europe and D. sargus is 

considered to be a promising new species with high market price and demand (Pousão-Ferreira, 

Dores, Morais & Narciso 2001; Ozorio, Valente, Pousão-Ferreira & Oliva-Teles 2006). 

Additionally, in order to more precisely clarify general prey acceptability, 24h ingestion rates were 

also evaluated for S. aurata, D. sargus and other commercial important marine fish larvae 

(Diplodus vulgaris G.S.H., Solea senegalensis K., Dicentrarchus labrax L.), fed on P. lividus eggs 

and endotrophic larvae. These last ingestion experiments also contribute to discuss the P. lividus 

eggs and endotrophic larvae potential as live feed for marine fish larviculture on a more enlarged 

basis. 
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Material and methods 

 

1. Paracentrotus lividus broodstock rearing 

 

Sea urchin collection took place in September from 2007 to 2009 period, on the central 

west coast of Portugal near Cascais (Lisbon). After collection, sea urchins were transported to 

“Guia Marine Laboratory” and placed in a rearing system, as described by Luis et al. (2005) with 

the same physical-chemical conditions, for at least a 5 month period. This period is considered far 

enough to complete P. lividus gametogenesis (Fernandez, Dombrowski & Caltagirone 1996; Luis 

et al. 2005). After this broodstock conditioning period, fully matured sea urchins were transported 

in aerated seawater filled containers to the Aquaculture Research Station of IPIMAR (300 km 

away), in Olhão, South of Portugal, where fish larvae experiments took place. 

For the first fish larvae experiments (Experiment 1 – sea urchin prey from broodstock on 

raw feed) sea urchins were fed twice a week with commercial whole yellow grains of maize Zea 

mays. This raw diet was chosen because grains of maize are a practical diet (Basuyaux & Blin, 

1998) and lead to consistent large year-round spawnings (Luis et al. 2005).  

For all the other fish larvae experiments sea urchins were fed with a prepared diet which 

have cod liver oil as the main lipid source, as described by Gago et al. (2009). This prepared diet 

was chosen because resultant P. lividus eggs and endotrophic larvae are enriched with essential 

fatty acids (EFA) for marine fish larvae (Gago et al. 2009). 

 

2. Production of P. lividus eggs and endotrophic larvae 

 

Whenever sea urchins eggs and endotrophic larvae were needed to feed fish larvae, 

randomly selected P. lividus broodstock was induced to spawn by injecting 1ml KCl 0.5M through 

the peristomial membrane. Each sea urchin was then placed for 30 min in an individual plastic 

beaker filled with 2 L of aerated filtered sea water. Sperm or egg release was evaluated 

macroscopically. To obtain endotrophic larvae 50 mL of sperm was used to fertilize the 2L egg 

volume during 30 minutes after which this volume was filtered using a 30 μm mesh in order to 

remove sperm excess. Besides eggs (~90 μm in diameter), two endotrophic stages were used: 

swimming prism (24h after fertilization: ~120 μm in diameter) and pre-pluteus (48h after 

fertilization: ~250 μm in length) that were reared in 7 L cylindro conical plastic beakers. The 

precise number of P. lividus eggs and endotrophic larvae given to feed fish larvae was estimated 

by 1 mL counts of the rearing volume, using a glass pipette observed through a binocular lens. 
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3. Fish larvae experiments 

 

Two approaches were used to test the general viability of the use of P. lividus eggs and 

endotrophic larvae as first feeding of marine fish larvae. The first consisted of rearing sparids 

Diplodus sargus and Sparus aurata larvae until 15 days after hatching (DAH). The second 

approach consisted in testing larvae’s 24h ingestion rates for 5 different fish species. Thus, for 

both approaches, 4 different live feed items were used: Brachionus spp. (the standard live feed: 

lorica diameter of 167 µm ± 3.83 µm, mean ± s.e.m., n = 50) and P. lividus eggs, prims and pre-

plutei (the alternative live prey under analysis). 

Fish eggs of all the species studied were obtained from captive fish broodstock natural 

spawnings. 

 

3. 1. Rearing of Diplodus sargus and Sparus aurata larvae 

 

After collected from the egg incubators, newly hatched larvae were transferred to 20L 

cylindro conical white fibreglass tanks at a density of 100 larvae L-1. The system was operated in 

an open circuit and before entering the tanks, water passed through a cartridge filter (50 µm) and 

was sterilized by UV. Rearing water was maintained at 18.0±0.8 ºC and at a salinity of 35.6±0.9 g 

L-1. Constant slight aeration was provided assuring that oxygen was always above 80% saturation. 

Water flow was 0.6 L min-1 and photoperiod was 14 h light: 10 h dark. Larvae were fed from 

mouth opening (~3 DAH) to 15 DAH and during this period, a mixture of microalgae 

(Nanocloropsis oculata and Isochrysis galbana) was added 2 times per day to the rearing tanks in 

order to obtain a total concentration of approximately 150 x 103 N. oculata cells mL-1 and 50 x 103 

I. galbana cells mL-1.  

 

3.1.1. Feeding schemes used in the rearing of D. sargus and S. aurata larvae  

 

Four feeding experiments were chronologically performed where fish larvae were fed 

different live food items (Table 1). Only in the first experiment (Experiment 1 – sea urchin prey 

from broodstock on raw feed) P. lividus eggs, prisms and pre-plutei were obtained from 

broodstock fed maize. These prey lead to null fish larvae survival at 15 DAH (see results) and as a 

result two hypotheses were formulated: the fish larvae did not ingested the alternative prey or 

these prey are nutritional poor. Therefore ingestion rates were evaluated (see point 3.2.) and other 

set of experiments were done in the rearing of D. sargus and S. aurata larvae: In the second 
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experiment (Experiment 2 – sea urchin prey from broodstock on prepared feed) and in the 

subsequent ones P. lividus broodstock were fed the enhanced prepared diet. In these first two 

experiments, fish larvae were only fed one of the live prey that were tested independently. Since 

P. lividus eggs demonstrated to be the best alternative live prey (see results), a third experiment 

(Experiment 3 – sea urchin eggs from broodstock on prepared feed – feeding frequency and 

combination) was carried out where P. lividus eggs obtained from the broodstock fed the prepared 

diet were given to fish larvae in different combinations and frequencies (Table 1 and Figure 1). In 

order to test if the low survival of fish larvae obtained with the alternative live prey in previous 

trials (see results) was only due to the vulnerability of young first feeding larvae, a fourth 

experiment (Experiment 4 –sea urchin prey from broodstock on prepared feed presented only at 8 

DAH) was also carried out. All D. sargus larvae were only first fed with Brachionus spp. and then 

the potential live prey (P. lividus eggs, prisms and pre-plutei obtained from the broodstock fed the 

prepared diet) were presented since the 8th DAH. 

 

 

 

For all the experiments, Brachionus spp. was used as larvae feed comparative treatment. 

Brachionus spp. were enriched for 24 h with DHA Protein Selco (INVE Aquaculture, Belgium), 

and for all food items each feeding was given at a 5 prey per millilitre ratio. Additionally a 

starvation treatment was used in all experiments as control. All diets including the starvation 

treatment were tested in triplicate tanks and at the end of the rearing period fish larvae mean 

survival and growth were estimated. Survival was calculated as the ratio of the total number of 

surviving fish larvae divided by the numbers stocked, and expressed as percentage. Larval growth 

was estimated as the total length increase from hatching to 15 DAH. Samples of 20 fish larvae per 

tank were used for the length measurements. 
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Table 1. Feeding schemes used in the rearing of Diplodus sargus and  Sparus aurata for the four fish larvae experiments performed. 
 

 

 

Experiment Duration Fish species P. lividus  

broodstock diet 

Feeding treatment  Feeding distribution method 

1 

sea urchin prey 

from broodstock 

on raw feed 

D. sargus and 

S. aurata 

Grains of maize 

2 

sea urchin prey 

from broodstock 

on prepared feed 

D. sargus and 

S. aurata 

1 – Brachionus spp 

2 – P. lividus eggs 

3 - P. lividus prisms 

4 - P. lividus pre-plutei 

5 – Starvation 

5 preys mL-1, two times a day 

(total of 10.000 preys L-1 day-1) 

3 

sea urchin eggs 

from broodstock 

on prepared feed 

– feeding 

frequency and 

combination 

 

 

 

 

 

From 0 to 

15 DAH 

D. sargus and 

S. aurata 

1 – Brachionus spp 

2 – P. lividus eggs (2T) 

3 - P. lividus eggs (3T) 

4 - P. lividus eggs (PP) 

5 – Co-feeding of P. lividus eggs 

and Brachionus spp (CF) 

6 – Starvation 

Feeding treatment 1 and 2: 5 preys mL-1, two times a day (2T) 

                                               (total of 10.000 preys L-1 day-1) 

Feeding treatment 3: 5  preys mL-1, three times a day (3T) 

                                    (total of 15.000 eggs L-1 day-1) 

Feeding treatment 4: 200.000 eggs day-1 given continuously as shown in Figure 1 

(PP) 

Feeding treatment 5: 5  preys mL-1 (co-feeding 1:1), two times a day (CF)  

                            (total of 5.000 Brachiounus spp. and 5.000 eggs  L-1 day-1) 

4 

sea urchin prey 

from broodstock 

on prepared feed 

presented only at 

8 DAH 

 

From 8 to 

15 DAH 

D. sargus 

 

 

 

 

 

 

Prepared diet with  

cod liver oil 

1 – Brachionus spp 

2 – P. lividus eggs 

3 - P. lividus prisms 

4 - P. lividus pre-plutei 

5 – Starvation 

5  preys mL-1, two times a day 

(total of 10.000 preys L-1 day-1) 

 

Until the 8th DAH D. sargus larvae were fed Brachionus spp. 
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Figure 1. Schematic functioning of feeding treatment 4 used in Experiment 3: 200,000 P. lividus 

eggs were stocked in an aerated 7 L plastic beaker (PB) and pulled by a peristaltic pump (PP) 

through a capillary (3mm internal diameter) and then distributed in the fish larvae rearing tank 

(FLRT) by 3 aquarium taps (AT 1, 2 and 3) placed equidistantly in the top border of the FLRT. PP 

flow rate was always 500 mL h-1. 

 

 

 

3.2. First-feeding fish larvae ingestion rates 

 

 Fish larvae’s 24h ingestion rates were determined for 5 different commercially important 

fish species: Diplodus sargus, Diplodus vulgaris, Sparus aurata, Solea senegalensis and 

Dicentrarchus labrax. This evaluation was performed to better assess the general sea urchin prey 

acceptability by marine fish larvae and also to possibly link ingestion information with previous 

determined S. aurata and D. sargus survival and growth data. Gut analysis was previously tested 

but great difficulty was encountered to either determine the type and number of prey. Only with 

the rotifer diet, the mastax was sometimes observed in the gut of fish larvae. 

Ten fish larvae with an age of two days after mouth opening were placed in a transparent 

glass beaker with 100 mL filtered sea water. This larval age was chosen to ensure prey ingestion 

by fish larvae. For instance, according to Yúfera et al. (1993), S. aurata larvae do no start to eat 

until 4 or 5 DAH. No aeration was provided to the beakers. Four to five prey per mL were then 

given and the beakers were placed on an acclimated room with 19º C temperature and a 14h light: 

10 h dark photoperiod for a 24 hour period. After this period the water in the beakers was filtered 

through a 500 µm mesh to remove the fish larvae and then this volume was filtered again through 
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a 30 µm mesh to retain the remaining live prey. The mesh was then washed to a beaker and all this 

volume was scrutinized to count all the remaining live prey. Counts finished when all the volume 

in the beaker was observed with a binocular lens using a glass pipette. This number was then 

subtracted to the initial quantity of live prey given to fish larvae in order to obtain the ingestion 

rates, expressed as number of prey ingested by fish larva per hour. Four types of live prey were 

tested for all fish species: Brachionus spp., P. lividus eggs, prisms and pre-plutei. A treatment with 

just ten fish larvae and no prey in the beaker was used to test fish larvae mortality, and another one 

just with a precise number of prey was also used to verify if the prey did not disrupt during the 24 

hour period. All of these treatments were tested in triplicate. Just for S. aurata and D. sargus an 

additional similar experiment was performed with 8 DAH larvae and special care was taken to 

avoid the recollection of Brachionus spp. to the beaker volume.  

 

4. Statistical analysis 

 

The “STATISTICA 8 for Windows” software package was used for statistical analyses. 

The Levene statistic was used to test for homogeneity of variances for all data. Data with 

homogeneous variances were analysed using one-way ANOVA with Tukey’s multiple 

comparisons to determine differences among independent factors. Data with heterogeneous 

variances were analysed using Kruskal-Wallis statistic followed by multiple comparisons of mean 

ranks for all groups (Sokal & Rohlf 1995; Zar 1999). The significance level used was P<0.05. Fish 

larvae survival was arcsine transformed to normalise data prior to statistical analyses. 

 

 

Results 

 

1 Rearing of Diplodus sargus and Sparus aurata larvae 

 

In Experiment 1 (sea urchin prey from broodstock on raw feed) all the larvae of Diplodus 

sargus and Sparus aurata died except when using the Brachionus spp. feeding treatment (mean 

survival at 15 DAH of 36.2% and 31.2% for D. sargus and S. aurata, respectively). For the other 

feeding treatments there was a difference in the day for which survival was null. For both species, 

all larvae died between 8 to 9 DAH, 10 to 11 DAH, 12 to 13 DAH and 14 to 15 DAH for the 

starvation, pre-plutei, prisms and eggs feeding treatment, respectively. Mean growth determined in 

Experiment 1 was 2.60 mm and 2.03 mm at 15 DAH for D. sargus and S. aurata larvae fed 

114

Chapter 4

114



 

 

 

Brachionus spp., respectively. 

In Experiment 2 (sea urchin prey from broodstock on prepared feed), similarly to the 

results obtained in Experiment 1, the starvation treatment led to null survival between the 8th and 

9th DAH for both species. However null survival for pre-plutei treatment occurred later (13 to 14 

DAH) for both species. For the remaining treatments survivals are represented in Figure 2. The 

Brachionus spp. seemed to be the better live feed treatment for both fish larvae species (45.7% and 

32.0% mean survival at 15 DAH for D. sargus and S. aurata, respectively). For P. lividus eggs 

and prisms, mean survivals were 5.19% and 1.58% for D. sargus and 4.28% and 2.19% for S. 

aurata, respectively. Significant differences (P<0.05) were found between prisms and Brachionus 

spp. treatment for both species. No significant differences (P>0.05) in survival were found 

between the two fish larvae species when considering each diet treatment separately. Mean growth 

determined at 15 DAH in Experiment 2 for both larvae species is represented in Figure 2 and was 

1.07 mm and 2.49 mm for D. sargus larvae fed P. lividus eggs and Brachionus spp., respectively. 

Mean growth for S. aurata larvae was 0.99 mm and 1.98 mm when fed P. lividus eggs and 

Brachionus spp., respectively. For both species, significant differences (P<0.001) were found in 

larvae growth between the two feeding treatments. Due to the reduced number of surviving fish 

larvae obtained with prisms feeding treatment the mean larvae growth was not calculated in either 

species. When considering larvae species as the categorical predictor (factor), there were no 

significant differences (P>0.05) in mean larvae growth considering eggs as the dependent variable. 

Considering Brachionus spp. as the dependent variable mean larvae growth was significantly 

higher (P<0.05) in D. sargus than in S. aurata larvae. 

Mean survivals obtained in Experiment 3 (sea urchin eggs from broodstock on prepared 

feed – feeding frequency and combination) for the different fish larvae diet treatments at 15 DAH 

are represented in Figure 3. Brachionus spp. treatment continued to be a better diet with survivals 

similar to the ones obtained in Experiment 2 (32.4% and 30.8% mean survival for D. sargus and S. 

aurata, respectively). For the other diet treatments the mean survival results obtained in 

decreasing order, respectively for D. sargus and S. aurata larvae, were: 14.4% and 13.8% with the 

Co-feeding treatment (CF); 9.50% and 7.41% with the P. lividus eggs given 3 times a day 

treatment (3T); 1.50% and 1.31% with the P. lividus eggs given 2 times a day treatment (2T); 

1.30% and 1.02% with the P. lividus eggs given by a peristaltic pump treatment (PP). Equally, all 

fish larvae in the starvation treatment, in Experiment 3, died between the 8th and 9th DAH for both 

species. Comparisons between feeding treatments for both larvae species revealed that Brachionus 

spp. treatment led to significantly higher survival (P<0.001) than all the alternative treatments. 

The significantly lowest survivals (P<0.01) were obtained with 2T and PP treatments. As in 
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Experiment 2, no significant differences in survival (P>0.05) were found between fish larvae 

species when considering each diet treatment separately. Mean growth determined in Experiment 

3 for both larvae species is represented in Figure 3 and was 1.27 mm, 1.71 mm and 2.00 mm for 

D. sargus larvae fed 3T, CF (see Table 1) and Brachionus spp., respectively. Mean growth for S. 

aurata larvae was 1.19 mm, 1.62 mm and 1.92 mm when fed 3T, CF and Brachionus spp., 

respectively. For both species, significant differences (P<0.001) were found in larval growths 

between the three feeding treatments. Due to the reduced number of surviving fish larvae obtained 

with 2T and PP feeding treatments the mean larvae growth was not calculated in either species. 

When considering larvae species as the categorical predictor (factor), there were no significant 

differences (P>0.05) in mean growth, between the D. sargus and S. aurata larvae, considering all 

the diets.  

In the fourth experiment (sea urchin prey from broodstock on prepared feed presented only 

at 8 DAH) significant higher mean survivals (P<0.05) were obtained with P. lividus eggs and 

Brachionus spp. feeding treatments (36.2% and 35.9%, respectively) (Figure 4). Significant lower 

survivals (P<0.05) were obtained with P. lividus pre-plutei and starvation treatments (5.89% and 

3.84%, respectively). Survival obtained with P. lividus prisms treatment was significantly different 

(P<0.05) from all the other treatments and had an intermediate value. In Figure 4 are represented 

the D. sargus larvae growths at the end of the experiment (15 DAH) for the different feeding 

treatments. The significantly highest (P<0.05) mean growth value was obtained when using 

Brachionus spp. as live feed (3.02 mm) and the significantly lowest (P<0.05) was obtained using 

P. lividus eggs (1.45 mm) and starvation feeding treatments (1.63 mm). Significant (P<0.05) in-

between mean values were found using P. lividus prisms (2.06 mm) and pre-plutei (1.92 mm). 
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Figure 2. Mean survival (above) and mean growth (below) ± standard error of the mean of Sparus aurata and Diplodus sargus fish larvae reared from 
mouth opening to 15 DAH with different live preys (P. lividus eggs, prisms and Brachionus spp) – Experiment 2. No data is presented for pre-plutei and 
starvation due to null survival obtained with these feeding treatments. No growth data is presented for prisms feeding treatment due to low number of 
surviving larvae. Different letters placed on the top of each bar represent significant differences between fish larvae diet treatment (Kruskal-Wallis, P < 
0.05 for survival, and one-way ANOVA, P < 0.05).
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Figure 3. Mean survival (above) and mean growth (below) ± standard error of the mean of Sparus aurata and Diplodus sargus fish larvae reared from 
mouth opening to 15 DAH with different live preys (2T, 3T, CF, PP and Brachionus spp (see Table 1 and Figure 1)) – Experiment 3 . No growth  data 
is presented for 2T and PP due to low number of surviving larvae obtained with these feeding treatments Different letters placed on the top of each bar 
represent significant differences between fish larvae diet treatment (one-way ANOVA, P < 0.05).
2T-preys given two times a day; 3T-preys given three times a day; CF-co-feeding (Brachionus spp. + P. lividus eggs); PP-continuous feeding with peristaltic pump.
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Figure 4. Mean survival (above) and 
mean growth (below) ± standard error 
of the mean of Diplodus sargus fish 
larvae reared from 8 DAH to 15 DAH 
with different live preys (P. lividus
eggs, prisms and pre-plutei, 
Brachionus spp.) and one where the 
fish larvae were in starvation –
Experiment 4. From mouth opening 
until the 8th DAH larvae were fed 
Brachionus spp., including the 
starvation feeding treatment. Different 
letters placed on the top of each bar 
represent significant differences 
between fish larvae diet treatment 
(one-way ANOVA, P < 0.05).
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First-feeding fish larvae ingestion rates 

 

In Figure 5 are represented the 24 hour ingestion rates for the several fish larvae species 

analysed. Considering first feeding (FF), except for D. labrax there was a general tendency for 

higher egg ingestion rate (ranging from 1.04 to 1.42 eggs larva-1 h-1) followed by pre-plutei (ranging 

from 0.57 to 0.76 pre-plutei larva-1 h-1) and lower for prisms (ranging from 0.17 to 0.51 prims larva-1 

h-1). This higher egg ingestion rate was significant (P<0.05) for all these larvae species, except when 

considering S. aurata. Lower prism ingestion rate was significant (P<0.05) for D. vulgaris and S. 

aurata. In the other hand, D. labrax egg ingestion rate (0.52 eggs larva-1 h-1) was significantly lower 

(P<0.05) than prisms (1.17 prisms larva-1 h-1) and pre-plutei (1.26 pre-plutei larva-1 h-1). For S. 

aurata and D. sargus 8 DAH larvae the ingestion rates followed the general tendency with 

significant higher (P<0.05) egg ingestion rate (1.21 and 1.26 eggs larva-1 h-1, respectively), followed 

by pre-plutei (0.52 and 0.77 pre-plutei larva-1 h-1, respectively) and then prisms (0.30 and 0.53 

prisms larva-1 h-1, respectively), but only for D. sargus larvae there was a significant difference 

(P<0.05) between prisms and pre-plutei ingestion rates. Comparing D. sargus and S. aurata fish 

larvae at FF and at 8 DAH significant differences (P<0.05) were only found in D. sargus for prisms 

and pre-plutei feeding treatments where the ingestion rates were significantly higher at 8 DAH. 

Brachionus spp. results were not presented because after 24 hours the number of rotifers was always 

higher than in the beginning of the experiment, both in rotifer feeding treatment and in the treatment 

with just this prey, due to the fast reproduction capacity of this species. Additionally, large 

variability was found in the number of rotifers among replicates and therefore it was impossible to 

determine the exact ingestion rates in the rotifer feeding treatment, using this methodology. After the 

24 hour period, for all larvae species, in the control treatment just with fish larvae the mortality was 

always null and in the other control just with the alternative live prey (P. lividus eggs, prisms and 

pre-plutei) no noteworthy differences in the number of prey were observed (error always less than 

3%). 
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Discussion 

 

Generally, when rearing S. aurata and D. sargus fish larvae until 15 DAH the best results 

for survival and growth were always obtained with the Brachionus spp. feeding treatment. 

Considering survival in all the experiments carried out in the present study, the values obtained 

with this diet ranged from 32.4% to 45.7% for D. sargus and 30.8% to 32.0% for S. aurata. For 45 

DAH, Saavedra, Conceição, Pousão-Ferreira & Dinis (2006) found 18.7% survival in D. sargus 

larvae fed on live feed and for 25 DAH, in more recent works, Saavedra, Pousão-Ferreira, Yúfera, 

Dinis & Conceição (2009a) and Saavedra, Barr, Pousão-Ferreira, Helland, Yúfera, Dinis & 

Conceição (2009b) referred respectively, 6.2% and 8.6% survival. For S. aurata larvae, Parra & 

Yúfera (2001) referred 15-20% survival rate at the end of the first month of culture. Higher 

survival values were obtained by Parra & Yúfera (2000) where survival of S. aurata larvae at 15 

DAH was 39.3% and 91.1% when fed 1 and 10 rotifers mL-1, respectively. Higher survival value 

at 15 DAH (approximately 78%) was also obtained in another study by Yúfera, Fernández-Díaz, 

Pascual, Sarasquete, Moyano, Díaz, Alarcón, Garcia-Gallego & Parra (2000) where S. aurata were 

fed 10 rotifers mL-1. Testing the effect of rearing salinity, Tandler, Anav & Choshniak (1995) 

obtained 11.7% survival at 32 DAH with 32.5 g L-1. When testing the effect of green water in S. 

aurata larvae rearing, Papandroulakis, Divanach & Kentouri (2002) obtained 44% survival at 20 

DAH. In the study of Pousão-Ferreira, Santos, Carvalho, Morais & Narciso (2003), survival of S 

aurata larvae reared until 22 DAH with Brachionus spp. feeding ranged approximately from 10% 

to 50%. These values point out the marine fish larvae survival high variability obtained in 

hatcheries, but it is considered that the survival results obtained in the present work with 

Brachionus spp. feeding treatment are consistent with the expected range with the rearing 

conditions used. 

For both species the starvation treatment in all experiments led to null survival always 

between the 8th and 9th DAH. Yúfera, Polo & Pascual (1993) also obtained a peak of mortality by 

starvation around the 9th DAH for S. aurata larvae. According to the experience obtained at the 

hatchery of Aquaculture Research Station of IPIMAR, D. sargus larvae in starvation also die 

around the 9th DAH when yolk reserves are exhausted. 

When using the alternative live prey (P. lividus eggs, prisms and pre-plutei) it is notorious 

the difference in survivals obtained in Experiment 1 and 2. The null survival at 15 DAH in 

Experiment 1, obtained with all the alternative live prey feeding treatments, must be related with 

nutritional deficiencies in these prey consequence of the P. lividus broodstock diet (grains of 

maize). Gago et al. (2009) found little amounts of essential fatty acids (EFA) for fish larvae in P. 
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lividus eggs and endotrophic larvae resulting from broodstock fed this diet, particularly 

docosahexanoic acid (DHA). Mortality due to food rejection was not considered because of the 

larvae ingestion rates results. The larvae fed P. lividus eggs and endotrophic larvae died some days 

after the larvae kept in starvation which might indicate that fish larvae acquired some energy and 

raw materials through food consumption. Null survivals were first achieved with pre-plutei 

followed by prisms and then eggs feeding treatment which could reflect a nutritional quality 

increasing order also found by Gago et al. (2009) when considering lipid quantity which was 

related with the energy necessary to fuel P. lividus larval development. 

In Experiment 2, the broodstock enhanced prepared diet was used to enrich P. lividus eggs 

and endotrophic larvae with EFA. In this experiment the fish larval survival improved for the 

alternative live prey feeding treatments when compared to Experiment 1, particularly for eggs, but 

values are lower than the ones obtained with Brachionus spp. For pre-plutei survival was still null 

at 15 DAH but occurred 3 days later than in Experiment 1. As Gago et al. (2009) showed, these 

results reflect higher P. lividus eggs and endotrophic larvae nutritional quality (particularly on 

polyunsaturated fatty acids) when the broodstock is fed with this enhanced prepared diet compared 

with grains of maize. The high variability among replicates for all diet treatments led to the 

inexistence of data normality and therefore the non parametric Kruskal-Wallis test had to be 

performed. This fact could explain why, in Experiment 2, the significant differences were only 

found for prisms and Brachionus spp. treatments in both species. 

In spite of P. lividus eggs had proved to be the best alternative diet in experiment 2, they 

have negative buoyancy and it was supposed that this fact leads to a minor availability of these 

prey to the fish larvae in the rearing tanks, because they start to fall immediately after each feeding 

presentation, and consequently could lead to a minor survival when compared with Brachionus 

spp. which continues to swim in tank water column. Therefore, the Experiment 3, carried out to 

verify this hypothesis, showed that feeding the fish larvae two times a day (2T treatment) leads to 

similar survival as feeding them with the same quantity of eggs given continuously (PP treatment). 

However when supplying P. lividus eggs three times a day (3T treatment) the fish larvae survival 

obtained was significantly higher for both fish species but still significantly lower than the 

Brachionus spp. treatment. These results show that, instead of negative buoyancy, lower 

nutritional quality seems to be the main constraint of P. lividus eggs in fish larvae first feeding. 

Better results with 3T treatment might be explained by higher consumption of these more 

numerous, but still of poor quality live prey. Survival obtained with co-feeding (CF) is 

significantly lower than the one obtained with Brachionus spp. feeding treatment which also 

confirms the lower quality of P. lividus eggs when compared with Brachionus spp., since this 
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better quality live prey were only present at half density in this feeding treatment. Considering this 

factor, in spite of P. lividus eggs and endotrophic larvae being enhanced in highly unsaturated 

fatty acids (HUFA) through broodstock fed with the prepared diet which have cod liver oil as the 

main lipid source (Gago et al. 2009), the enrichment used in this study for Brachionus spp. (DHA 

Protein Selco) leads to superior HUFA quality, particularly in DHA/EPA ratio (as by manufacturer 

specifications, INVE Aquaculture, Belgium). 

When considering mean larvae growth, in the Experiments 1, 2 and 3 it is possible to 

conclude that Brachionus spp. seems to be the better diet treatment although good results are also 

obtained with the co-feeding treatment in Experiment 3. The same reasons used for survival rates 

can be used to explain these results and those reasons are mainly the poorer nutritional quality of 

P. lividus eggs and larvae when compared to enriched Brachionus spp. Besides nutritional quality, 

the capability of rotifers to reproduce may also explain the differences obtained both in survival 

and growth since prey density is always higher for this feeding treatment.  

When fed Brachionus spp., S. aurata larvae growth obtained in other studies (Polo, Yúfera 

& Pascual 1992, Yúfera et al. 1993, Parra & Yúfera 2000) is slightly higher than the ones obtained 

in the present study but there were differences in rearing conditions. In those studies constant 

illumination, 24 h feeding and 300L rearing volume, may have contributed to maximize S. aurata 

larvae growth. Nevertheless, in spite of higher tank volume, but under similar rearing conditions to 

the ones used in the present study, Pousão-Ferreira et al. (2003) also obtained approximately 2 

mm length increment on S. aurata larvae reared until 15 DAH. 

Overall, in the fourth experiment where P. lividus eggs, prisms and pre-plutei were only 

presented after 8 DAH to D. sargus larvae fed Brachionus spp., the results continue to 

demonstrate in more developed young fish larvae the lower value of the alternative live prey 

compared with rotifers. In spite of similar survival rates were obtained with P. lividus eggs and 

Brachionus spp. feeding treatments, the former D. sargus larvae mean growth is significantly 

lower which may also reflect the lower P. lividus eggs nutritional quality. For prisms and pre-

plutei feeding treatments the survival continues to be significantly lower and the lowest survival 

continues to be found in pre-plutei feeding treatment. Since rotifers have a high reproductive 

capability they were observed in all the tanks at the end of the experiment. Aragão, Conceição, 

Fyhn & Dinis (2004) also refer that during the early fish larval stages of S. aurata and S. 

senegalensis, due to the low water exchange and the low larvae feeding rates, the prey may stay 

inside the tanks for several hours. For this reason, higher mean growth obtained with these two 

feeding treatments (prisms and pre-plutei) compared with eggs must be due to the lower fish 

larvae survival and therefore higher rotifer availability per surviving fish larvae, that continues to 
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feed on green water. This reason may also explain why D. sargus larvae mean growth obtained in 

starvation feeding treatment was similar to the one observed in P. lividus eggs feeding treatment. 

In the literature revised for D. sargus larvae, it was not found growth values expressed as increases 

in total length, and in the few studies analysed (Saavedra et al. 2006, Saavedra et al. 2009a, 

Saavedra et al. 2009b) dry weight was the variable determined, making the direct comparison 

impossible. 

When analyzing first feeding 24 hour ingestion rates, except for D. labrax, there was 

higher P. lividus egg consumption than prisms and pre-plutei. Egg slow downfall coupled with its 

brown-orange color may explain this higher ingestion by very young and low motile fish larvae. 

Motility could also explain the lower ingestion rate for prisms that are the most active of the 

alternative live prey making them harder to be captured by fish larvae. Pre-plutei are not so mobile 

which can explain higher consumption than prisms, but their transparency and larger size may 

explain why its consumption was lower than eggs. It seems that the previous explanations may 

also apply to S. aurata and D. sargus larvae with 8 DAH which might indicate that feeding 

behavior in these two fish larvae species does not change significantly during this period. 

However, for 8 DAH D. sargus larvae there was a significant increase in prisms and pre-plutei 

consumption which might indicate a higher ability to catch these prey.  

The different pattern observed in D. labrax larvae ingestion rates could be the consequence 

of its larger mouth size and predatory activity (according to Aquaculture Research Station of 

IPIMAR data) which is reflected in higher prism and pre-plutei consumptions. S. senegalensis also 

have a wider mouth at first feeding than S. aurata and Diplodus spp. but its feeding behavior is 

less predatory than D. labrax (according to Aquaculture Research Station of IPIMAR data), which 

might explain the dissimilarities among these two fish larvae species. These results corroborate 

that marine fish larvae are selective feeders both for type and size of prey, and moreover, this prey 

selectivity may play an important role during early larval development (Fyhn 1989). Rumrill, 

Pennington & Chia (1985) also observed a higher predation by the red crab Cancer productus 

zoea on the sand dollar Dendraster excentricus eggs than on prisms and pre-plutei. Selective 

predation upon embryos and larvae of D. excentricus by several zooplanktonic predators, 

including fish species, were also observed by Pennington, Rumrill & Chia (1986) and Allen 

(2008). For S. aurata larvae, it was considered that prey size is the determinant factor in prey 

selection, both considering live and inert feed (Polo et al.1992, Fernández-Dias, Pascual & Yúfera 

1994). Thus, ingestion, digestion and assimilation may depend strongly on the physical and 

chemical properties of the food particle irrespective of its nutritional quality (Yúfera, Fernández-

Díaz & Pascual 1995). 
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When analyzing the feeding rates of S. aurata larvae on microcapsules, Yúfera et al. 

(1995) referred values ranging from 3 to 35 particles larva-1 h-1 and the lower values corresponded 

to larvae at first-feeding. Nevertheless, these ingestion values are always higher than the ones 

found in the present study for P. lividus eggs, prisms and pre-plutei. Since Yúfera et al. (1995) 

considered that microcapsules are ingested at similar rates to commonly used living prey, it is 

supposed that the alternative live prey tested are ingested at lower rates than Brachionus spp. 

Additionally for 6 DAH S. aurata larvae, Parra & Yúfera (2000) referred ingestion rates of 0.79 

and 0.83 µg larva-1 h-1 when they were fed 1 and 10 rotifer ml-1, respectively. If these values are 

divided by 0.16µg (the Brachionus plicatilis weight found by Theilaker & McMaster, 1971) it is 

obtained a feeding rate of approximately 5 rotifers larva-1 h-1. This value is also indicative of a 

higher Brachionus spp. ingestion as compared with the calculated best value of 1.42 P. lividus 

eggs larva-1 h-1 found in the present study for S. senegalensis. In spite of some caution in these 

comparisons since the rearing conditions were different, this fact could also explain the lower 

survival and growth obtained with P. lividus eggs, prisms and pre-plutei feeding treatments when 

rearing S. aurata and, probably D. sargus, larvae until 15 DAH compared with Brachionus spp. 

feeding treatment. 

The results obtained in the experiments carried out in this study suggest the conclusion 

that, although the alternative live prey are ingested by fish larvae, which are concordant with 

plankton ecological studies and laboratory experiments, they cannot compete with rotifers when 

considering young marine fish larval survival and growth. It is suggested that nutritional aspects 

may be the main reason for such differences. Besides fatty acid composition, other nutrients may 

also play an important role. In this context protein and amino acid composition of P. lividus eggs 

and endotrophic larvae are being investigated by our research team, and preliminary results 

indicate low quantity of indispensable amino acids in the free form which seems to be vital for fish 

larvae survival and growth (Fyhn 1989; Rønnestad, Tonheim, Fyhn, Rojas-García, Kamisaka, 

Koven, Finn, Terjesen, Barr & Conceição 2003; Kvåle, Nordgreen, Tonhein, & Hamre 2007). 

Therefore, unless more efficient procedures are found to enrich these endotrophic prey, they 

showed no advantage to be used at least in marine fish first feeding. 
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FINAL CONSIDERATIONS 
 

 

Three main criteria (1 – live prey availability and production; 2 – nutritional quality; 3 – 

survival and growth performance outcomes of fish larvae during first-feeding) were studied to 

assess the potential to use Paracentrotus lividus eggs and endotrophic larvae as marine fish larvae 

live prey during first-feeding.  

Considering the first criteria, examined in Chapter 2 (“Live Prey Availability and 

Production”), it was concluded that a combination of three factors used on captive P. lividus 

broodstock conditioning (an appropriate diet, 18 º C sea water temperature and a photoperiod of 

14 h of artificial illumination) is suitable to promote P. lividus gametogenesis on a short period of 

time and to obtain a large number of viable eggs and spermatozoa after spawning induction. 

Moreover, it was proven that P. lividus captive broodstock can be reared up to 400 m-2 stocking 

density without prejudice to broodstock survival, gametogenesis, spawning performance and 

fertilization rate. Therefore, it was demonstrated that a large number of P. lividus eggs and 

endotrophic larvae can be obtained year-round without need for repeated sea urchin collection on 

natural habitats, and thus demonstrating, for this criteria, their feasibility as live preys. The main 

drawback detected on this evaluation was P. lividus broodstock mortality (mean of 30%) after 

spawning induction with potassium chloride intra-peristomial injection, preventing broodstock 

reutilization. A first suggestion made to overcome this problem was to reduce potassium chloride 

internal concentration on smaller P. lividus individuals. Nevertheless, other alternative P. lividus 

spawning induction techniques were preliminary tested and it seemed that other inductor signals, 

particularly the P. lividus emersion for 3 to 6 hours, can replace potassium chloride injections, 

with gains on broodstock survival. Other methods like the mechanical stimulus and the addition of 

co-specific gametes also proved to induce spawning without broodstock mortality, but with small 

number of released gametes. 

In all the experiments reported in Chapter 2, basic diets composed by grains of maize Zea 

mays, and/or fragments of the seaweed Laminaria ochroleuca were used. These raw diets proved, 

through the studies carried out in Chapter 3 (“Nutritional quality of Paracentrotus lividus eggs and 

endotrophic larvae for marine fish larvae first-feeding”), to be nutritional inferior to prepared 

diets, considering the profile in essential fatty acids for marine fish larvae existent in resultant P. 

lividus eggs and endotrophic larvae. Additionally, the first trials performed in Chapter 4 (“Survival 

and growth of selected marine fish larvae first fed with eggs and endotrophic larvae of the sea 
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urchin Paracentrotus lividus”), revealed the unsuitability of P. lividus eggs and larvae obtained 

from broodstock fed these basic raw diets, on rearing gilthead sea bream Sparus aurata and white 

seabream Diplodus sargus larvae. Therefore, enrichment of the potential alternative live feeds had 

to be evaluated through manipulation of broodstock diet composition due to the endotrophic 

character of both P. lividus eggs and larvae phases chosen to be used in the present dissertation. In 

this context, the effect of the lipid and protein source used in P. lividus broodstock prepared diets 

was studied on the resultant eggs and endotrophic larvae fatty acid and amino acid profile. These 

profiles were also compared with the commonly used live preys during marine fish larvae first-

feeding (the rotifer Brachionus spp. and the naupliar stages of the brine shrimp Artemia spp.). 

Main results indicate that fatty acid enrichment is viable trough the utilization of specific lipid 

sources (“Algamac”, cod liver oil) with high percentage of polyunsaturated fatty acids, on P. 

lividus broodstock diet preparation. On the other hand, P. lividus eggs and endotrophic larvae 

protein and amino acid enhancement through prepared diet protein composition proved to be 

ineffective. Comparing the resultant P. lividus eggs and endotrophic larvae fatty acid and amino 

acid profile with Brachionus spp. and/or Artemia spp., it was demonstrated the similitude among 

them. Nevertheless, in some nutritional characteristics like the docosahexanoic acid (C22:6n-3) / 

eicosapentanoic acid (C20:5n-3) ratio, and the percentage of indispensable amino acids on the free 

form, the enriched traditional live feeds seems to be better fish larvae feeding. However, the 

amount of amino acids in the free form on P. lividus eggs was found to be higher than in 

Brachionus spp. 

 In the later experiments performed in Chapter 4, P. lividus eggs and endotrophic larvae 

used as first-feed to evaluate the growth, survival and ingestion of selected marine fish larvae, 

were already enhanced in their fatty acid profile. In spite of these manipulated live feeds were 

readily ingested by young marine fish larvae, the growth, survival and ingestion rates results 

indicate their minor suitability as live first-feed when compared with Brachionus spp.  

Considering the three main criteria used to evaluate the potential of an organism as a live 

prey in marine fish larviculture, it can be concluded that P. lividus eggs and endotrophic larvae fail 

partially in the second criteria (nutritional quality) and fail almost totally in the third (survival and 

growth performance outcomes of fish larvae during first-feeding). Therefore, as main conclusion 

of this dissertation it can be said that no added value for marine fish larviculture was found in the 

use of P. lividus eggs and endotrophic larvae as live feed. However, before discard this hypothesis, 

further investigations should be carried out. For instance, the survival and growth performance 

outcomes could be evaluate on other marine fish larvae species such as groupers and snappers, as 

well as crustacean species such as spiny lobster phyllosoma, where larval phases mortality is still 

unsolved. Similarly, the potential to use the P. lividus exotrophic larvae phase as live feed on fish 

Final Considerations

136



and crustacean larvae with wider mouth opening should also be analysed, since in this case the 

nutritional enrichment can be done through the rearing water media as done for Brachionus spp. 

and Artemia spp. 

As a final remark, it must be said that in spite of the general negative result obtained in the 

present dissertation (potential of P. lividus eggs and endotrophic larvae as marine larval fish first-

feeding), the knowledge obtained can be used for several other purposes where sea urchin larvae 

are needed. For instance, maximization of sea urchin eggs and larvae production can be used to 

develop increasing sea urchin aquaculture for human consumption and to restocking programmes. 

At a small scale, sea urchin eggs and larvae production is also needed for embryological and 

toxicological studies and as biological tools in practical classes of several courses. 
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