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Nota prévia

Para a elaboração da presente dissertação, e nos termos do nº 1 do Artigo 41, do regulamento de Estu-

dos Pós-Graduados da Universidade de Lisboa, publicado no Diário da República nº 209, II Série de 30 de Out-

ubro de 2006, foram usados integralmente quatro (4) artigos científicos publicados e dois (2) a subme-

ter para publicação em revistas internacionais indexadas. Tendo os trabalhos referidos sido efectua-

dos em colaboração, o autor da dissertação esclarece que participou integralmente na concepção e exe-

cução de todos os trabalhos apresentados, incluindo o delineamento de experiências, o desenvolvimento,

validação e comparação de métodos, a interpretação e discussão de resultados, assim como na redacção de to-

dos os manuscritos. O autor esclarece ainda que em relação aos artigos apresentados no segundo capítulo

da presente dissertação participou na análise de dados, discussão dos resultados e redação dos artigos.
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Resumo

A distribuição da diversidade genética entre populações de uma espécie, ou entre indivíduos numa popu-

lação, resulta da interacção complexa entre factores selectivos e demográficos. Desde cedo que a biologia

evolutiva, e em particular a genética de populações, pretendem compreender a importância relativa destes

factores. A história demográfica inclui eventos tais como migrações, expansões e colapsos populacionais,

e mistura de populações outrora separadas (admixture). Na biologia da conservação o conhecimento da

história demográfica é fundamental para definir estratégias e programas de conservação.

Avanços recentes em genética de populações (e.g. teoria da coalescência), em estatística Bayesiana, e em

métodos computacionais permitiram progressos significativos na análise de dados genéticos de populações

naturais. Reconstruir a história demográfica a partir desses dados tem sido um dos objectivos principais. Os

métodos paramétricos de inferência baseados em modelos demográficos explícitos demostraram ser bastante

eficazes. Estes métodos, designados de full-likelihood, procuram encontrar a verosimilhança (likelihood)

dos dados observados de acordo com um determinado modelo demográfico. Actualmente, estes métodos,

são utilizados para estimar o tamanho efectivo de populações, taxas de migração entre populações, assim

como datar e quantificar alterações no tamanho populacional. Na maioria dos casos, a verosimilhança é cal-

culada com base na distribuição das frequências alélicas amostradas. No entanto, a definição da função de

verosimilhança de modelos demográficos complexos torna-se rapidamente intratável. Por outro lado, estes

métodos são bastante exigentes computacionalmente, o que limita a sua aplicação à análise de loci múlti-

plos e dados genómicos. Os métodos aproximados, designados por Approximate Bayesian Computation

ou ABC, foram propostos para colmatar estes problemas. O princípio destes métodos consiste no cálculo

aproximado da verosimilhança recorrendo a simulações. Por este motivo, os métodos ABC são consider-

ados uma ferramenta bastante flexível para inferir parâmetros em modelos demográficos complexos. Ao

contrário dos métodos full-likelihood, os métodos ABC são geralmente baseados em estatísticas sumárias

da distribuição das frequências alélicas (e.g. número de alelos, heterozigotia), pelo que se espera que a

qualidade das estimativas seja menor. No entanto, o número de estudos em que a qualidade das estimativas

obtidas com os métodos ABC foi avaliada de forma sistemática é reduzido.

Nesta dissertação pretendeu-se determinar quais as potencialidades e limites de métodos ABC e full-likelihood

na reconstrução da história demográfica utilizando dados genéticos, em particular de espécies ameaçadas.

Especificamente, foram desenvolvidos e investigados métodos para detectar, quantificar e datar eventos de
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x RESUMO

mistura de populações outrora separadas (admixture), e decréscimos populacionais em populações estru-

turadas. Este estudo foi motivado pelas limitações dos métodos existentes, e pelo facto da qualidade das

estimativas e da robustez serem pouco conhecidos. Por outro lado, a inferência de eventos de mistura de

populações e de decréscimo populacional são especialmente relevantes em biologia da conservação. De

facto, a maioria das espécies ameaçadas sofreu decréscimos populacionais acentuados e/ou apresenta dis-

tribuições estruturadas em diversas sub-populações, devido à perda e fragmentação do habitat. A mistura

de populações parece ser outro fenómeno frequente, principalmente na colonização de habitats disponíveis

a partir de diferentes áreas (e.g. colonização a partir de vários refúgios). Os métodos desenvolvidos para

estudar estes eventos demográficos foram aplicados no estudo de duas espécies ameaçadas de ciprinídeos

da Peninsula Ibérica. Assim, esta dissertação teve como objectivos:

1. Desenvolver métodos ABC para modelos de mistura de populações outrora separadas (admixture). Es-

pecificamente, foi testada uma nova abordagem ABC utilizando frequências alélicas. Pretendeu-se ainda

avaliar a qualidade das estimativas obtidas, incluindo a comparação com métodos baseados na verosimil-

hança, e implementar métodos ABC em modelos de admixture complexos;

2. Quantificar a influência da estrutura populacional na detecção de decréscimos populacionais;

3. Desenvolver novas ferramentas (software) de análise de dados genéticos;

4. Aplicar os métodos desenvolvidos e métodos clássicos de genética de populações na caraterização da es-

trutura populacional e da história demográfica de espécies com distribuições fragmentadas. Para tal, foram

escolhidas como espécies alvo, duas espécies ameaçadas de peixes dulciaquícolas: Iberochondrostoma lusi-

tanicum e I. almacai.

No que respeita à mistura de populações outrora separadas, começou por se estudar um modelo relativa-

mente simples e geral, com duas populações parentais, uma população “híbrida”, e a ocorrência de um único

evento de mistura. Pretendeu-se desenvolver métodos para estimar os parâmetros do modelo, nomeada-

mente, a contribuição das populações parentais, os efectivos populacionais e o tempo que decorreu desde o

evento de mistura. Este problema foi a base do desenvolvimento e teste de vários métodos ABC. Um dos

aspectos mais controversos destes métodos é o facto de utilizarem estatísticas sumárias dos dados observa-

dos, o que conduz inevitavelmente à perda de informação. Neste estudo, testou-se uma nova abordagem

utilizando directamenete as frequências alélicas, i.e. a mesma informação que nos métodos baseados na

verosimilhança. Foi ainda desenvolvido um método ABC clássico baseado em estatísticas sumárias, que

pudesse ser utilizado como termo comparativo. A qualidade das estimativas destes dois métodos foi avali-

ada através da análise de dados simulados com parâmetros conhecidos, e da comparação com um método

baseado na verosimilhança (full-likelihood). Os resultados indicam que o erro das estimativas dos méto-

dos ABC (frequências alélicas e estatísticas sumárias) é reduzido e semelhante ao das estimativas obtidas

com o método full-likelihood, confirmando que os métodos ABC permitem obter estimativas de qualidade.
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Os métodos ABC foram posteriormente implementados para estimar parâmetros de modelos envolvendo

até três populações parentais e dois eventos de mistura, para os quais não existem métodos baseados na

verosimilhança. Em geral, a contribuição das diferentes populações parentais e os efectivos populacionais

foram estimados com precisão utilizando múltiplos loci independentes (20 loci de microssatélites). É de

destacar que estes resultados sugerem que este tipo de dados permitem estimar parâmetros de modelos de-

mográficos bastante complexos.

A comparação de vários modelos demográficos com o intuito de seleccionar aquele que melhor explica as

observações tem merecido um interesse crescente. Nesta dissertação, foi desenvolvido e testado um método

ABC para estimar a probabilidade relativa da adequação de modelos demográficos alternativos aos dados.

Especificamente, desenvolveu-se e testou-se um método ABC capaz de separar cenários com eventos de

mistura, de cenários com divergência de populações sem mistura. Os resultados confirmam que o método

ABC permite distinguir e identificar, com elevada credibilidade, eventos de mistura. Assim, é possível esti-

mar se os padrões genéticos observados em populações naturais são o resultado de eventos de mistura ou de

polimorfismo ancestral. Os métodos ABC acima referidos foram implementados num programa informático

gratuito e disponível para a análise de dados de microssatélites.

No que respeita à detecção de alterações no tamanho das populações, pretendeu-se caracterizar em que situ-

ações a estrutura populacional origina padrões genéticos semelhantes aos esperados após declínios popula-

cionais. Foram simulados dados de acordo com modelos em que existe fluxo genético entre sub-populações

que mantêm um tamanho populacional constante ao longo do tempo. Estes dados foram depois analisados

com um método full-likelihood (MSVAR) muito utilizado para estimar alterações no tamanho populacional

em espécies ameaçadas. Este método, tal como a maioria dos métodos existentes, ignora a estrutura popu-

lacional, pelo que este estudo permitiu estudar a sua robustez. Foram investigados os efeitos do modelo de

estrutura (n-island model e stepping-stone model), esquema de amostragem, número de loci, variação nos

níveis de fluxo genético e variação nas taxas de mutação. Na maioria dos casos foram detectados declínios

populacionais na análise das amostras de populações estruturadas, que não sofreram alterações no tamanho

populacional. A probabilidade de se obterem estimativas incorrectas parece aumentar com níveis de fluxo

genético reduzidos e taxas de mutação e/ou tamanho das populações elevados. Estes resultados confirmam

que a estrutura populacional afecta significativamente a detecção de eventos demográficos passados. Dado

que a maior parte dos métodos ignora a estrutura populacional, estes resultados indicam que talvez seja

necessário reavaliar as inferências e conclusões de estudos anteriores em que foram detectados decrésci-

mos populacionais. Por outro lado, estes resultados indicam que para reconstruir a história demográfica é

necessário considerar a estrutura populacional, o que terá certamente várias implicações.
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A estrutura populacional e a história demográfica de populações de I. lusitanicum e I. almacai foram carac-

terizadas através da análise de 6 loci de microssatélites e DNA mitocondrial utilizando os métodos desen-

volvidos. As populações de ambas as espécies apresentaram uma diversidade genética limitada e uma difer-

enciação genética elevada, principalmente entre populações de bacias hidrográficas distintas. Inicialmente,

a semelhança de uma população (“híbrida”) com outras duas populações (“parentais”) em I. lusitanicum foi

interpretada como um evento de mistura de populações nesta espécie. No entanto, a reanálise dos dados

com os métodos ABC desenvolvidos sugere que esses padrões genéticos reflectem mais provavelmente o

polimorfismo ancestral, tendo resultado simplesmente da separação das populações. De um modo geral, os

dados estão de acordo com uma separação das populações nas diferentes bacias hidrográficas. Em alguns

casos, foi encontrada uma diferenciação genética significativa entre populações da mesma bacia. Uma das

explicações para esta diferenciação é a fragmentação e perda do habitat que, de acordo com dados ecológi-

cos, tem vindo a afectar estas espécies. Esta hipótese é corroborada pela evidência genética de um declínio

populacional acentuado e recente, encontrado na maioria das populações com o método MSVAR. No en-

tanto, como verificado nesta tese, na origem destes resultados pode estar a estrutura populacional e não um

verdadeiro decréscimo populacional. De modo a excluir esta possibilidade, os resultados foram comparados

com os de simulações que indicam os valores esperados caso a estrutura populacional fosse o único factor

em causa. Ambas as espécies apresentaram estimativas claramente distintas das simulações. Tal indica

que as populações estão provavelmente a sofrer um declínio populacional e que estão sob elevado risco de

erosão genética e de extinções locais. Estas espécies parecem ser um sistema particularmente interessante

para estudar os efeitos genéticos de eventos demográficos antigos (e.g. separação das bacias hidrográficas),

e a sua interacção com eventos recentes (e.g. fragmentação do habitat). Uma melhor compreensão destes

fenómenos poderá ter implicações nestas e noutras espécies.

Em suma, os resultados obtidos nesta dissertação confirmam que a análise de dados genéticos com méto-

dos baseados em modelos demográficos explícitos permitem obter estimativas de parâmetros demográficos

relevantes e separar entre cenários demográficos alternativos. No entanto, existe o risco de se tirarem con-

clusões incorrectas quando os modelos ignoram aspectos importantes, tais como a estrutura das populações.

Com esta dissertação pretendeu-se contribuir para uma melhor compreensão do potencial e dos limites da

utilização de dados genéticos na reconstrução da história demográfica de populações naturais, o que terá

implicações na sua aplicação futura em genética da conservação.

Palavras-chave: Estrutura populacional, Mistura de populações (admixture), Declínio populacional, Ap-

proximate Bayesian computation, Genética da conservação, Iberochondrostoma



Abstract

Reconstructing the demographic history of populations with genetic data from present-day samples is a

challenging inference problem. The general aim of this thesis is to determine whether major demographic

events can be detected, quantified and dated using model-based inference approaches. The emphasis is on

the study of admixture events and population size changes, which are relevant for conservation biology.

Approximate Bayesian computation (ABC) methods were developed to make inference under models in-

volving admixture. These methods were first implemented into a general and relatively simple model and

later improved to deal with up to four populations and two admixture events. An ABC approach based on

allele-frequencies was tested and compared in detail with a full-likelihood methods. Several aspects of the

ABC methodology were investigated in a simulation study, such as the choice of summary statistics and

distance metrics. The estimates obtained with the ABC approximated well the full-likelihood. Moreover, a

model choice procedure was developed to assess the relative probability of alternative admixture and popu-

lation split models. The results indicate that the ABC approach is able to identify with high probability the

correct model. These methods have been implemented in a user-friendly software.

The effect of population structure on estimates of population size change was also investigated. A simula-

tion study was performed to assess the robustness of full-likelihood methods to deviations due to population

structure. The results show a clear effect of population structure, leading to the detection of spurious bot-

tlenecks, which depends on the sampling scheme and is stronger with limited gene-flow level, and higher

scaled mutation rate.

The methods developed and investigated here were applied to study two critically endangered freshwater

fish species, Iberochondrostoma lusitanicum and I. almacai. Results suggest that both species were highly

structured, and suffered recent population declines. The re-analysis of I. lusitanicum data with the ABC

method developed suggested that the potential admixture events were likely due to shared polymorphism.

Regarding the bottleneck signatures, the results suggest that the observed data cannot be explained by the

population structure alone, indicating that these species are undergoing a population decline.

Overall, the results of this thesis may contribute to a better understanding of the potential and limitations of

model-based inference methods using genetic data.

Keywords: Population structure, Admixture, Population decline, Approximate Bayesian computation, Con-

servation, Iberochondrostoma
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CHAPTER 1

General Introduction

1.1. Demographic history and population genetics

The evolutionary history of natural populations involves the interplay between mutation, natural selection

and demographic processes. Thus, the biological (genetic and phenotypic) diversity of a species is influ-

enced by historical demographic events, such as admixture (e.g Barton 1979; Chakraborty 1986; Dowling

and Secor 1997), founder events (e.g Templeton 1980; Barton and Charlesworth 1984), population size

changes (e.g. Nei et al. 1975; Reich and Goldstein 1998) and range expansions and contractions (e.g He-

witt 1996). According to Hey and Machado (2003) demographic history is defined as “the reproductive

history of a population or group of populations”, which can include variation over space and time in pop-

ulation sizes, sex ratios and migration rates. It is now widely accepted that genetic data capture relevant

information about main aspects of the demography of populations (e.g. Nei et al. 1975; Nei and Tajima

1981; Maruyama and Fuerst 1985; Slatkin 1987; Tajima 1989; Slatkin and Hudson 1991; Felsenstein 1992;

Rogers and Harpending 1992). This coincided with the increasing availability of genetic data for many

organisms, including endangered (Kohn et al. 2006), invasive (Morin et al. 2004), pathogenic (Rambaut

et al. 2004) and domesticated species (Charlier et al. 2008). Today, molecular markers such as mitochon-

drial DNA (mtDNA), microsatellites and single nucleotide polymorphisms (SNPs) are widely used to study

natural populations (Morin et al. 2004), and genomic data are becoming available for many species (Chikhi

and Bruford 2005; Kohn et al. 2006). Multilocus and genomic data are a promising source of information

as demographic history appears to shape global genomic patterns, whereas selection seems to act on spe-

cific functional regions (Bamshad and Wooding 2003; Luikart et al. 2003; Wakeley 2004; Beaumont 2005;

Nielsen 2005). Moreover, recent developments in population genetic theory (e.g. coalescent theory) resulted

in major improvements in modelling and inference methods (Beaumont and Rannala 2004; Marjoram and

Tavaré 2006). Taken together, all these developments led to an impressive growth of studies based on ge-

netic data to study past demographic events (Goldstein and Chikhi 2002; Hey and Machado 2003; Luikart

et al. 2003; Beaumont and Rannala 2004; Morin et al. 2004). There is increasing awareness that knowl-

edge about the demographic history is of practical importance in several areas, such as human population

1
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genetics (Goldstein and Chikhi 2002; Akey et al. 2004; Beaumont 2004; Jorde 2005), conservation biology

(Beaumont 2003b; Kohn et al. 2006; Allendorf et al. 2008), biogeography (Avise 2000) and epidemiology

(Archie et al. 2009). For instance, the susceptibility of some human populations to certain diseases has

been shown to be related with colonization and admixture (Chakraborty and Weiss 1988; McKeigue 1998;

Wright et al. 1999; Goldstein and Chikhi 2002; Linz et al. 2007). In conservation biology, the definition

of management plans depends on estimates of population sizes, migration rates and population divergence

(Morin et al. 2004; Wayne and Morin 2004; Chikhi and Bruford 2005).

1.2. Population size, population structure and conservation genetics

Many species are currently threatened due to human activities such as habitat degradation, habitat fragmen-

tation and the introduction of exotic species (e.g. Pimm et al. 1995; Ricciardi and Rasmussen 1999; Chapin

et al. 2000; McCann 2000). According to the International Union for Conservation of Nature (IUCN), bio-

diversity comprises three levels that should be preserved: ecosystem, species and genetic diversity. Thus, it

is currently recognized that genetic diversity is of primary conservation concern and that efforts should be

done to maintain it in natural populations (McNeely et al. 1990).

The genetic diversity of a population reflects the evolutionary history of populations and is quantified by

looking at the genetic differences/similarities among individuals in a population. In this context, it is im-

portant to distinguish variation at functional genomic regions (genes, promoters, enhancers, etc.) that can

be related with the adaptative response, from neutral variation in non-coding regions that are mainly related

with demographic processes (genetic drift and migration) that affect the maintenance and loss of mutations.

Therefore, the patterns of genetic diversity can be used to study the effects of selection at the molecular level

as well as to reconstruct the demographic history (Wayne and Morin 2004). At a given locus, the genetic

diversity is fully characterized by the allelic (or haplotype) frequency distribution, including the mutation

states of each allele. Usually, genetic diversity is measured with summaries of the allelic distribution, such

as the number of alleles (na), expected heterozygosity (He) and nucleotide diversity (π). These summaries

capture different aspects of the allelic distribution, and hence have different properties. In addition to its in-

trinsic conservation value, genetic diversity reflects the relative strength of different evolutionary processes.

For instance, at a neutral locus, the expected heterozygosity He is a function of both the effective size of the

population and the mutation rate. The lower the effective size and the lower the mutation rate the smaller the

expected He. Therefore, He has been used to estimate the effective size of populations and scaled mutation

rates (e.g. Chikhi and Bruford 2005). The study of Knaepkens et al. (2004) clearly illustrates that there is a

relation between the size of populations and expected heterozygosity in a freshwater fish species. These au-

thors found a positive correlation between the census size of populations and He at seven microsatellite loci
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in the endangered Cottus gobio (European bullhead). Thus, they interpreted the low levels of He in some

populations as an indication of low effective sizes, and consequently a high risk of population extinctions.

When a species is subdivided into several populations, the overall genetic diversity depends on the genetic

differentiation among the different populations. In this case, there are also several summary statistics that

measure genetic differentiation, such as FST (Wright 1965; Weir and Cockerham 1984),RST (Slatkin 1995)

and ΦST (Excoffier et al. 1992). These statistics have been widely used to assess the degree of isolation of

populations. For instance, Cook et al. (2007) analysed mitochondrial DNA and five microsatellite loci of

the endangered pygmy perch Nanoperca australis, and found high genetic differentiation levels interpreted

as evidence for the isolation of populations from different streams. This suggested that major rivers were

acting as barriers for gene flow, which was further confirmed by isotope analysis of nitrogen and carbon

from muscle tissues. Taken together, their results indicated that streams could be seen as functional and

independent population units.

Quantifying genetic diversity and genetic differentiation offers information about relevant demographic as-

pects that are valuable for conservation biology (Luikart et al. 2003; DeSalle and Amato 2004; Morin et al.

2004; Kohn et al. 2006). According to Beaumont (2003a), population genetic data have been used to study

two main aspects in conservation biology: (i) viability of populations and adaptative potential, and (ii) evo-

lutionary and demographic history. In the first, the aim is the identification of functional genes associated

with the reproductive success of individuals and genes responsible for local adaptations. In the second, the

aim is to investigate the demographic history of populations. The demography involves both the effective

size and structure of populations. When studying the demography of endangered species, genetic data can

give insight into questions such as: What is the size of the population? Is there evidence of population

size changes? Are the populations structured into sub-populations? Are populations isolated or exchanging

migrants? Are there admixed populations? When did these major demographic events occurred?

This thesis focuses on the study and characterization of population structure (split and admixture events)

and population size changes. Indeed, most endangered species have either fragmented distributions and/or

have undergone severe population declines in their recent history (e.g. Alves and Coelho 1994; Luikart et al.

2003; Salgueiro et al. 2003; Wayne and Morin 2004; Cabral et al. 2005; Goossens et al. 2006; Craul et al.

2009). Habitat loss and fragmentation are considered major causes for biodiversity loss (McCann 2000),

which are thought to reduce levels of gene flow among populations and lead to the isolation of previously

connected populations and population declines (Ezard and Travis 2006; Allendorf and Luikart 2007). How-

ever, it remains unclear what are the effects of these events on the genetic diversity patterns of present-day

populations.
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1.2.1. Population structure: split and admixture events

Most species are geographically structured into several populations that may be isolated or exchanging mi-

grants. Thus, population structure encompasses many situations ranging from the extreme case of ongoing

gene-flow among all populations to the existence of completely isolated populations. The present-day pop-

ulation structure is the result of past events, including population split and admixture.

A population split occurs whenever a single population divides into two or more populations (Hey and

Machado 2003). This includes population splits due to vicariant events (glaciations, marine incursions), and

ecological, behavioral or anthropogenic barriers. After the split event, populations may remain connected

via gene-flow or remain isolated. Knowing the timing of split events and the effective sizes of the differ-

ent populations arising after the split event allows a better understanding of the divergence of populations.

This is fundamental to define taxonomic and conservation units (e.g. Moritz 1994; Waples 1995; Templeton

et al. 2000). For instance, there are several examples in the literature where strong genetic differentiation

among populations was interpreted as the result of ancient population split related to speciation events,

hence leading to discovery of new taxa and the description of new species (e.g. Coelho et al. 2005; Olivieri

et al. 2007). In the other hand, habitat fragmentation may result in recent population split events. For in-

stance, Salgueiro et al. (2003) examined five microsatellite loci of the critically endangered Iberian cyprinid

Anaecypris hispanica and found significant genetic differentiation among the remaining eight fragmented

populations. These authors suggested that the data was in agreement with a strong reduction in gene flow

and increased population isolation in the recent past, and proposed that each fragment should correspond to

a management unit.

Admixture events occur whenever two or more differentiated populations join together contributing to the

creation of a new population (Bernstein 1931; Chakraborty 1986; Futuyma 1998; Beaumont 2003a). This

new population is said to be an admixed or hybrid population, since its gene pool comprises genes from two

or more differentiated populations. The populations contributing to the admixed gene pool are usually called

parental populations. The term admixture has been used to describe different processes in the population

genetic literature. In some cases, it as been used at the individual level to refer to an individual with a

mixed genome, with regions from different parental populations (Pritchard et al. 2000; Falush et al. 2003).

Admixture has also been used to describe situations of ongoing gene flow among populations, in which a

population exchanging migrants with two or more differentiated populations is considered to be admixed.

However, the most common definition for admixture, which is the one meant in this thesis, refers to cases

where a population received a genetic contribution from different differentiated populations in the past,

but current ongoing gene-flow is negligible or absent (Chakraborty 1986; Chikhi et al. 2001; Beaumont
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2003a; Choisy et al. 2004). It is important to note that admixture here is seen as a process occurring at

the population level. Admixture events may happen when there is colonization of new or already occupied

habitats from two or more regions (e.g. refugia), and it appears to be a common event in the history of

many species (Szymura and Barton 1986; Paetkau et al. 1995; Goodman et al. 1999; Choisy et al. 2004),

including human populations (Bernstein 1931; Chakraborty 1986; Goldstein and Chikhi 2002). In addition,

human driven introduction of species that reproduce with native species may also end up in local admixed

populations (Wayne and Jenks 1991; Ellstrand et al. 1999), as well as crosses between domestic and wild

populations (Randi et al. 2001; Beaumont 2003b; Amaral et al. 2007). Population genetic data has been

shown to contain information about past admixture events. For instance, Fraser and Bernatchez (2005)

used seven independent microsatellite loci to study two sympatric and apparently isolated populations of

brook charr (Salvelinus fontinalis) inhabiting the same lake. Based on measures of genetic differentiation

and clustering methods they concluded that the divergence from a common ancestor was unlikely. Instead

they suggested that the two sympatric populations resulted from differential admixture contribution of two

parental populations that colonized the lake in the past.

1.2.2. Separating ancient from recent events

Although genetic data provide information about past demographic events, it is important to recognize that

present-day genetic patterns are affected by ancient events occurring at geological time scales, such as

glaciations, and recent events, such as ongoing gene-flow and anthropogenic habitat fragmentation. One

unsolved question with strong implications for conservation concerns the relative effect of recent anthropo-

genetic activities on the genetic patterns of populations. In other words, two important question are whether

it is possible to disentangle the genetic effects of ancient demographic events from the ones of recent events,

and how this can be done with genetic data. There have been several genetic studies trying to elucidate

the effects of recent events related with anthropogenic impact, including the detection of barriers to gene

flow (e.g. roads, dams, etc.), and quantification of admixture between native and introduced species (e.g.

DeSalle and Amato 2004; Morin et al. 2004). Most of these approaches are based on measures of genetic

differentiation among populations, genetic distances among individuals and/or clustering/assignment meth-

ods that group individuals according to their genotypes (Paetkau et al. 1995; Rannala and Mountain 1997;

Pritchard et al. 2000; Piry et al. 2004; Manel et al. 2005). However, these methods typically ignore past

demographic events. Therefore, it may lead to the misinterpretation of the data because the timing of the

events and other relevant population parameters such as the ancient and current effective sizes are not con-

sidered explicitly. The following example illustrates how opposite conclusions can be reached if the timing

of events is not taken into account. A situation in which two populations exhibit high genetic differentiation

can be interpreted as evidence for an old split event followed by long-term independent evolution. However,
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it can also be obtained after a recent population split event (e.g. habitat fragmentation) followed by a strong

bottlenecks. This example could have implications on the management decisions and there has been an

ongoing debate on how to define management units for conservation purposes based on genetic data (Moritz

1994, 1999; Templeton et al. 2000; Chikhi and Bruford 2005; Green 2005). Some authors claim that high

genetic differentiation is sufficient to indicate that different populations should be managed as distinct units,

reflecting their evolutionary independence (Moritz 1994, 1999; Templeton et al. 2000). However, as seen

above, this has been criticized because genetic differentiation is also affected by recent events (Chikhi and

Bruford 2005). In situations in which high genetic differentiation is due to recent events there is no obvious

reason to consider populations as independent management units.

These caveats may be overcome by model-based inference approaches that consider explicitly past demo-

graphic events. Under this framework it is possible to estimate relevant parameters such as population sizes,

migration rates, and time of population splits, admixtures and declines (e.g. Beaumont 1999; Storz and

Beaumont 2002; Beaumont 2003a). These estimates are useful to quantify the relative impact of recent and

ancient events on present-day population structure. For instance, the study of Goossens et al. (2006) illus-

trates the potential of model-based methods. These authors were able to estimate the magnitude and date

the population decrease of orang-utan populations (Pongo pygmaeus) in Borneo based on 14 microsatellite

loci. It was estimated that populations suffered a very recent population decline starting in the last century,

probably correlated with human activities as agriculture that led to massive deforestation.

1.3. Model-based inference in population genetics

Genetic patterns are the result of the action of different evolutionary forces. At the molecular level this

includes mutation, recombination, selection, drift and migration (Ewens 2004). Most of these evolution-

ary forces involve some source of randomness (e.g. random mutations, random association of gametes),

and hence can be seen as stochastic processes. This poses several statistical challenges (Stephens 2001;

Rosenberg and Nordborg 2002), since the same genetic pattern can be obtained under different evolutionary

scenarios. For instance, the effects of directional selection at a given locus may mimic the effects of a popu-

lation growth (e.g. Nielsen 2005). In addition, different demographic events lead to the same genetic pattern,

e.g. a population can exhibit low genetic diversity due to long-term small effective size or due to a recent bot-

tleneck. Several statistical methods have been developed to address these problems and separate alternative

hypotheses. Model-based inference approaches proved to be an efficient framework to extract information

from genetic data. Model-based approaches in population genetics aim at deriving a simplified version of

reality (i.e. a model) to understand and explain the properties of genetic data (Stephens 2001; Beaumont

and Rannala 2004). These have been implemented into methods to estimate the effective size of populations
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(e.g. Griffiths and Tavaré 1994; Kuhner et al. 1995), population growth (e.g. Beaumont 1999), migration

among populations (e.g. Beerli and Felsenstein 1999), population divergence (e.g. Nielsen and Wakeley

2001), admixture contribution (e.g. Chikhi et al. 2001), recombination (e.g. Stumpf and McVean 2003), and

selection coefficients (e.g. Nielsen and Yang 2003; Williamson et al. 2005). The principle of model-based

inference methods is to obtain the probability of the data (likelihood) under a given demographic model

(Stephens 2001). However, the likelihood is often very complicated to calculate or its computation can be

very slow, reducing the applicability of these methods (Stephens 2001; Hey and Machado 2003; Marjoram

and Tavaré 2006). The so called ’approximate Bayesian computation’ (ABC) methods try to tackle these

problems by using simulations to obtain approximations of the likelihood (e.g. Fu and Li 1997; Tavaré et al.

1997; Weiss and von Haeseler 1998; Pritchard et al. 1999; Beaumont et al. 2002). ABC methods offer a

flexible and promising tool to estimate parameters of complex demographic models (Beaumont et al. 2002;

Marjoram et al. 2003; Excoffier et al. 2005a), and separate among alternative demographic scenarios (Es-

toup et al. 2004). The following sections describe the principles of demographic modelling in population

genetics and a detailed description of the basis of inference methods discusses in this thesis.

1.3.1. From population thinking to the coalescent

The seminal works of Fisher (1930), Wright (1931) and Haldane (1932) established that genetic variation

is the result of the action of natural selection, mutation and drift (Wakeley 2004; Chakraborty 2005). Ac-

cording to Epperson (1999) and Wakeley (2004), the works done in the 1940s and 1950s by Malécot (1941,

1948, 1955) and Kimura (1955a,b) on mathematical models describing molecular evolution as the result

of stochastic processes (drift and mutations) can be seen as the basis for modern population genetics. It is

noteworthy that at that moment results were mainly theoretical. The first molecular genetic studies on nat-

ural populations were done in the mid 1960s by Harris (1966) and Lewontin and Hubby (1966). Important

discoveries in molecular biology were made in this period, namely the genetic code (Crick 1958) and that

only a small part of the eukaryotic genome is involved in protein encoding. According to Neuhauser (2001),

these developments influenced Kimura (1968) and Jukes and Cantor (1969) to propose the neutral theory of

evolution, suggesting that most mutations in the genome have no selective effect and that genetic drift and

mutation play a major role in molecular evolution. Given that the fate of neutral mutations is influenced

by the demographic history and population structure, growing attention has been given to their role shaping

genetic variation, as can be seen by the increase of studies in this area in the 1970s, 1980s and 1990s (Nei

et al. 1977; Maruyama and Fuerst 1984; Watterson 1984; Donnelly 1986; Watterson 1989; Slatkin and Hud-

son 1991; Rogers and Harpending 1992). At the same time, there was a transition from population-driven

to sample-driven descriptions according to Wakeley (2004) and Tavaré (2005), as evidenced by the works

of Ewens (1972), Watterson (1978) and Griffiths (1979). One of the key results was the Ewens sampling



8 1. GENERAL INTRODUCTION

Figure 1.1. Wright-Fisher model and coalescent trees for an haploid population. a) Evolution of a Wright-
Fisher population with N = 5 genes for six generations. Each circle represents a gene copy in the population and
each row corresponds to a generation. b) Same as before but with the genealogy of the genes from present-day
population highlighted. c) Gene tree genealogy and corresponding coalescent events and coalescent times. The
mutations and the MRCA (Most common recent ancestor) are indicated.

formula that predicts the relationship between allele frequencies and the number of alleles in a sample from

a stationary population (Ewens 1972). It was at this moment that it started to be realized that a backward

perspective could be more useful to explain genetic variation of samples. This lead to the formalization of

coalescent theory in 1980s by Kingman (1982), Hudson (1983) and Tajima (1983). Coalescent theory is the

basis for modern population genetics modelling and inference and is briefly presented below in the context

of the Wright-Fisher model. For detailed reviews see Hudson (1990), Nordborg (2001), Hein et al. (2005),

Tavaré (2005) and Wakeley (2009).

1.3.2. The coalescent in the Wright-Fisher model

The Wright-Fisher (WF) model is one of the simplest and well studied representation of the evolution of

single idealized populations (Figure 1.1a). The main assumptions are: (i) constant population size N ; (ii)

non-overlapping generations; (iii) random matting and (iv) isolation from other populations (Neuhauser

2001). Reproduction is defined by randomly sampling alleles from the parents to produce the offspring,

which is equivalent to a multinomial sampling scheme. Note that in the case of diploid species, each indi-

vidual has two gene copies of the same locus. Thus, a diploid population can be approximated by an haploid

Wright-Fisher with Nh = 2Nd gene copies, where Nd is the number of diploid individuals and Nh is the

number gene copies (Hein et al. 2005; Wakeley 2009). In the following, the subscripts drop and whenever

the size of the population N is mentioned, it refers to the number of gene copies (haploid population size).

As can be seen in Figure 1.1a and 1.1b, looking forward in time, at each generation there are some gene
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copies that by chance leave no offspring and some that leave one or more. The lineages represent the ge-

nealogy of the genes in the population. Going backward from the present to the past, the number of lineages

decrease until the most recent common ancestor (MRCA) of all lineages is found. Every time two lineages

join together (coalesce) it means that they found a common ancestor. As can be seen in Figure 1.1c, the

gene genealogies of a locus can be described by a tree (Hudson 1990).

The coalescent theory describes the genealogical history of a sample of DNA sequences under a given demo-

graphic model, providing probability distributions for patterns of genetic variation (e.g. allele frequencies,

haplotype frequencies, etc.) (Hudson 1990; Rosenberg and Nordborg 2002). The ancestral history of a

sample of sequences is modelled looking backwards in time, which is simpler and more efficient than in

classical forward population genetic models. The reason is that most of the lineages in a population are lost

and hence do not contribute to the current genetic diversity (Nordborg 2001) (Figure 1.1b). As shown in

Figure 1.1, the allelic states of a sample are determined both by the genealogy (tree topology and branch

lengths) and by the mutations. The genealogy is mainly affected by the demography (size of the population,

number of offspring, etc.), whereas mutations occur at a constant rate. Assuming neutrality, the mutational

and genealogical processes can be modeled independently, and hence mutations can be randomly superim-

posed into the genealogy. The genealogy of a sample can be viewed as a sequence of coalescent events.

The probability of such events are described as a function of the population parameters. In the WF model,

the relevant parameter is the size of the population measured as the number of gene copies. Considering a

sample of two gene copies in an haploid population of size N , the probability that the two have a common

ancestor in the previous generation is 1/N (since there are N possible ancestors) (Wright 1931). Thus, the

number of generations t until the common ancestor is found follows a geometric distribution

P (T2 = t|N) =
(

1− 1
N

)t−1 1
N

These results can be extended to when there are k gene copies (or lineages). In this case, the probability

to select a pair from the k lineages is
(
k
2

)
= k(k − 1)/2. Allowing only one coalescent per generation,

the probability that any pair of lineages coalesce is P (coalescent) = k(k − 1)/2N . Kingman (1982)

generalized these principles assuming continuous-time instead of discrete generations. In the limit where

N tends to infinity, the probability that any pair of k lineages coalesces during the time interval t becomes

exponentially distributed:
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P (Tk = t) =
(
k

2

)
e−(k

2)t

where Tk is the time period when there are k lineages, with time measured in units of Ne. In this time

scale, the genealogy of a sample of n gene copies is then described by a series of independent exponential

distributions Tn, Tn−1, . . . , T2 (Figure 1.1c). Mutations can then be added to the genealogy following a

given mutational model (e.g. infinite sites model, stepwise mutation model, etc.) according to a Poisson

distribution with rate 2Neµ, where µ is the mutation rate per generation. TheNe is the (coalescent) effective

size which is equal to the ratio of the size of the population N over the variance of the distribution of

the number of descents of each gene copy σ2, i.e. Ne = N/σ2 (Kingman 1982). The effective size

reflects the rate of coalescent events and hence it is a measure of drift. As can be seen, the strength of

drift does not depend only on N but also on the sex-ratio, life-history traits and environmental variables

that affect the distribution of the numbers of offspring (σ2). In the WF model the variance on the number

of descents is σ2
WF = 1 and hence Ne = N . In other words, the Ne refers to the size of an idealized

WF population that describes the genetic patterns of a real population with size N (Charlesworth 2009).

Note that other generalizations for the coalescent effective size have been proposed (Sjodin et al. 2005;

Wakeley and Sargsyan 2009). The fact that time is scaled by Ne has several advantages. First, the expected

topology and times of coalescent are identical for anyNe value. Thus, general properties of the genealogical

process can be derived independently of Ne. Second, by using appropriate scaling, it is easy to describe the

genealogies of complex demographic models, such as changes in effective size.

Some properties of the ancestral coalescent process for a population with constant size are illustrated by the

distribution of the time to the MRCA (TMRCA), which is a sum of independent exponential distributions.

E[TMRCA] = E[Tn + Tn−1 + . . .+ T2] = E[Tn] + E[Tn−1] + . . .+ E[T2] = 2(1− 1/n)

var[TMRCA] = 4
n∑

i=2

1
i2(i− 1)2

As the sample size n increases the E[TMRCA] = 2, which corresponds to 2Ne. Note that even with small

sample sizes (e.g. n = 10) the TMRCA ≈ 2Ne, showing that increasing the sample size does not lead to

significant increase in the information regarding TMRCA. Another relevant result is that the variance of the

above sum is very high, reflecting the large stochasticity of the coalescent process (Nordborg 2001). This
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can be illustrated by considering genealogies of independent loci that represent independent replicates of the

evolutionary history. It is expected that the genealogies of independent loci, and hence the TMRCA, would

tend to be very different among loci, despite the fact that the average TMRCA would tend to 2Ne.

Coalescent theory is usually presented in the context of the WF model but it can be applied to the general

Cannings models provided that proper time scaling is used (Wakeley 2009). It is important to note that the

Wright-Fisher model is one of several population genetic models. For instance, the Moran model is similar

to the WF but assumes overlapping generations. Both the WF and the Moran models can be seen as special

cases of the exchangeable models of Cannings (1974). The main characteristic of these Cannings models is

that all gene copies (individuals) in the population have identical distributions for the number of offspring,

i.e. genes are exchangeable. Given that the coalescent is a valid approximation under these general models,

it appears to be a general process. Indeed, it has been shown to be robust to several violations of the main

assumptions (Hein et al. 2005; Wakeley 2009). This suggests that the coalescent approximates reasonably

well the ancestral genealogies even in populations with complex demographic systems (Möhle 2000).

1.3.3. The coalescent for structured populations

When populations are subdivided into sub-populations (demes), genes are no longer exchangeable among

demes. Hence, the probability of coalescent is no longer identical for all gene copies, and instead coalescent

rates depend on the effective size of each deme as well as on the migration rates. This is an apparent

exception to the standard coalescent that led to the development of the structured coalescent (Nordborg

1997; Wakeley 1999). Several models have been proposed to explain the genetic patterns in structured

populations, which can be seen as extensions to the Wright-Fisher (WF). Wright (1931) proposed the island

model which assumes an infinite number of panmictic demes (WF) exchanging migrants at a constant ratem.

This model has been extended to include a finite number of islands (n-island model), differential migration

rates and spatial structure (e.g. stepping stone model) (Kimura and Weiss 1964; Malécot 1951; Sawyer

1976; Nagylaki 1983). Recently, other situations started to be investigated, such as isolation with migration

models that include the ancestral population split into sub-populations (Hey and Nielsen 2004), spatial

explicit continuous isolation by distance models (Rousset 1997, 2001), and metapopulations (Pannell and

Charlesworth 2000; Wakeley 2004).

1.3.4. Further coalescent developments and non-equilibrium models

Coalescent theory have now been applied to many demographic models. The principle is that ancestral

genealogies can be viewed as the result of competing stochastic processes occurring at different rates (e.g.
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Figure 1.2. Demographic models considered in this thesis. a) population decrease; b) population expansion;
c) n-island model with constant migration; d) population split with isolation with migration; e) admixture model.
The effective size of the populations are represented by the shaded areas. Gene genealogies are shown under each
model to exemplify the expected coalescent patterns. The demographic parameters for the different models are
also represented.

mutation rate, recombination rate, migration rate and coalescent rate). With appropriate scaling it is straight-

forward to predict the expected genealogies under different demographic models.

Figure 1.2 shows the main models investigated in this thesis: (i) decrease in population size; (ii) population

expansion; (iii) population structure with two demes (2-island model); (iv) population split model; and

(v) admixture model. As can be seen in Figure 1.2a, when a single population experiences a population

decrease, the coalescent rate decreases going backwards in time. This results in genealogical trees that have

long internal branches. In contrast, in an expanding population (Figure 1.2b), the rate of coalescent increase

going back in time, leading to star shaped genealogies with long external branches. Figure 1.2c shows an

example of a gene tree in a structured population with two independent populations (demes) exchanging

migrants at constant rate. Migration events correspond to an exchange of lineages among populations.

Note that the expected gene trees are similar to the ones in a decreasing population, with short external

branches and long internal branches. The population split model describes an ancestral population that at a

certain point in the past diverged into two populations that can either keep exchanging migrants or evolving

independently without gene flow (Figure 1.2d). In this case, it is harder to obtain general expectations since

the shape of the gene tree is highly dependent on the relation among the time of split, migration rate and

effective size of different populations. The admixture model describes a situation in which one admixed

(or hybrid) population received a contribution from two parental populations (Figure 1.2e). Again, the

shape of the gene trees depends on the contribution of the parental populations, the time of admixture and
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on the effective sizes of the different populations. For some of the simplest models it is possible to derive

mathematical expressions for the expected time of coalescent events, etc. For instance, it is possible to obtain

expectations for the number of segregating sites under certain limiting conditions for the island models, e.g.

infinite number of islands (Wakeley 2001). For more complex demographic models the expectations are

more easily obtained with simulations. It is noteworthy that there is a distinction between non-equilibrium

and equilibrium models. The former refers to situations in which the historical events (e.g. admixture,

population split, etc.) are recent enough to affect present-day genetic variation. The latter refers to cases in

which populations attained equilibrium conditions between drift, migration and mutation, and hence there

is no longer information about historical events (Ewens 2004). For instance, a n-island model (Figure 1.2c)

is an equilibrium model that is completely described by the scaled mutation rate and migration rates. In

contrast, in a population split model (Figure 1.2d) the genetic patterns are highly dependent on the time of

split, in addition to the effective sizes and migration rates. When the population split is ancient enough to

allow populations to reach equilibrium, the genetic patterns can be explained by a n-island model (Nielsen

and Wakeley 2001; Wakeley 2009). One important aspect of most models in population genetics is that they

reflect the stochastic nature of evolutionary and demographic processes (Ewens 2004). Thus, the models are

probabilistic in the sense that the outcomes are uncertain and better expressed as probabilities. This provides

a natural framework for model-based inference.

1.3.5. Bayesian inference

Inference consists in deriving general principles from data obtained through observation (Bernardo 2003;

Paulino et al. 2003). In statistics, the observed data are usually considered random variables, i.e. the out-

come is uncertain. The outcomes depend on the processes underlying the phenomena under study, and

mathematical models formalize the relations between the processes (described by parameters) and the pos-

sible outcomes (Paulino et al. 2003; Bolstad 2004). For instance, the allele frequencies observed in a pop-

ulation are the outcome of evolution (random experiment) and hence can be seen as random variables. The

allele frequencies can be explained by models including evolutionary processes such as mutation, drift and

selection, which are expressed by parameters as the mutation rate, effective size and selection coefficient.

The aim of model-based inference is to estimate the most likely parameter values given the observed data.

There are two main statistical inference paradigms: frequentist and Bayesian. The concept of likelihood

is fundamental in both cases. The likelihood function attributes a probability to each possible dataset D

under a given model M specified by a set of parameters Θ (Paulino et al. 2003). Therefore, it is possible

to obtain the likelihood for the observed data Dobs under a given model PM (Dobs|Θ). Inference is usually

based on the evaluation of the likelihood of the data under different parameter values, and the distribution of

PM (Dobs|Θ) for different parameter values is called the likelihood distribution, represented as LM (Θ|Dobs)
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(Brooks 2003; Beaumont and Rannala 2004). The main difference between frequentist and Bayesian sta-

tistics is related with the definition and nature of the parameters of a model (Bernardo 2003; Paulino et al.

2003).

In frequentist statistics parameters are assumed to be unknown but fixed in reality. Inference is usually based

on the parameter values that maximize the likelihood. In order to characterize the likelihood distribution

and obtain the maximum likelihood values, frequentists use functions of the data called estimators (Paulino

et al. 2003). Under certain conditions the distribution of the estimators converges to the likelihood, making

possible to find the parameter values that maximize the likelihood. However, in models with many parame-

ters, as it is usual in population genetics, it becomes complex to obtain the maximum of the joint likelihood

surface and the respective confidence intervals (Paulino et al. 2003; Beaumont and Rannala 2004).

In Bayesian statistics the parameters are treated as unknown and uncertain, and hence described by prob-

abilities. In other words, both the data and the parameters are considered random variables. Inference is

based on the probability distribution of the parameter values after observing the data, which is described by

the posterior distribution P (Θ|D). The posterior is obtained applying Bayes rule:

P (Θ|D) =
P (D|Θ)P (Θ)

P (D)

.

where P (D|Θ) is the likelihood, P (Θ) is the prior and P (D) is the marginal likelihood. The P (Θ) is

called the prior distribution as it reflects the uncertainty about the parameter values before observing the

data. The definition of the prior has received many criticisms and is the source of a strong debate. On the

one hand, it introduces subjectivity into the analyses, on the other hand it allows incorporation of previous

knowledge in the analysis. As can be seen in the above expression, the higher the information content of

the data (i.e. the likelihood) the less the posterior distribution depends on the prior. The main advantage of

Bayesian statistics is that it is firmly based in probability theory. This makes it possible to deal with highly

parameterized models and infer joint posterior distributions. The marginal posterior probabilities for each

parameter can be easily obtained through integration. Thus, in contrast to Maximum Likelihood, Bayesian

methods are flexible and able to deal with highly parameterized models, which resulted in an explosive

growth of Bayesian methods in population genetics (Beaumont and Rannala 2004).
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1.3.6. From moment-based to likelihood inference

Since the first molecular genetic studies in natural populations that there was an effort to estimate evolution-

ary parameters based on observed quantities, such as the number of alleles in a sample (na) or the expected

heterozygosity (He). Until recently, the most common methods were the so called moment-based estimators

that rely on the moments of a certain statistic (e.g. mean and variance). For instance, in a population evolv-

ing according to the Wright-Fisher model with mutations occurring under the infinite allele model (IAM)

there is a relation between the meanHe and the scaled mutation rate (θ = 4Nµ) given byE[He] = θ/(1+θ)

(Ewens 2004). Given a sample from a population, it is easy to compute the Ĥe of that sample and, replacing

it in the formula, obtain a point estimate for the population θ̂. However, these moment-based estimators

have three main caveats: (i) they have strong bias; (ii) it is difficult to obtain confidence intervals; and (iii)

they are only available under simple models (Slatkin and Hudson 1991; Slatkin 1995; Rogers and Harp-

ending 1992; Reich and Goldstein 1998; Ewens 2004). The reasons are related with the nature of genetic

data, which is the result of random sampling and stochastic evolutionary processes. Another limitation is

that it is difficult to obtain confidence intervals because most asymptotic properties based on the statistical

independence of individuals do not hold in population genetics, as they share a common ancestry and hence

are not independent.

These problems started to be solved in the mid 1990s with the introduction of model-based likelihood meth-

ods. This was mainly due to developments in coalescent theory and Bayesian simulation-based methods,

together with increasing availability of computational power (Stephens 2001; Beaumont and Rannala 2004;

Chikhi and Beaumont 2005; Wakeley 2009). As seen in a previous section, the gene genealogy of a given

locus reflects the demographic history of the population. The key for likelihood-based inference is to include

this genealogical information into the likelihood formulation (Felsenstein 1992). Hence, the likelihood is

derived as a sum over all possible trees:

(1) PM (D|Θ) =
∑

G∈Ω

PM (D|G,Θ)PM (G|Θ)

where PM (D|Θ) refers to the likelihood (probability of the data D given the demographic and mutational

parameters Θ under model M ), and Ω represent all possible genealogical trees G. Coalescent theory pro-

vides the probability distribution for PM (G|Θ), which is the distribution of genealogies under model M

with parameters Θ. Also, the PM (D|G,Θ) can be computed under certain mutation models. Therefore,

since both terms in the right hand of the formula are computable, it is possible to obtain the likelihood of the
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data irrespective of the genealogies (Kuhner et al. 1995; Stephens 2001; Beaumont 2004; Hey and Nielsen

2007; Wakeley 2009). However, the analytical solution for the equation (1) is only possible for very limited

sample sizes. The reason is that the number of ancestral histories grows very quickly and is infinitely large

for typical sample sizes. One solution is to use simulation-based methods, such as Monte Carlo integra-

tion (MC), importance sampling (IS) and Markov chain Monte Carlo (MCMC), which are briefly described

below in the context of population genetics.

1.3.7. Monte Carlo Integration

Monte Carlo integration allows to obtain the likelihood for a given parameter value θ, by simulating m

ancestral histories Gi ∼ P (G|θ) and computing the sum:

PM (D|θ) =
m∑

i=1

P (D|Gi)

The likelihood surface is obtained repeating the same analysis for different values of θ. However, the

variance of these estimators are generally very large as it is expected that the probability of the data will be

close to zero (P (D|Gi) = 0) for most simulated genealogies. Thus, Monte Carlo integration may become

inefficient as an infinitely large number of simulations would be needed to obtain good approximations to

the likelihood (Stephens 2001; Beaumont 2004).

1.3.8. Importance sampling

One solution to this problem is to sample genealogies that explain the observed data, i.e. cases in which

the probability of the data given the genealogy is close to one P (D|Gi) = 1. These genealogies can be

simulated according to a proposal distribution Gi ∼ Q(G|θ) and hence the likelihood is approximated by:

PM (D|θ) =
m∑

i=1

P (D|Gi)
P (Gi|θ)
Q(Gi|θ)

The P (Gi|θ)/Q(Gi|θ) are called importance weights. Note that if the proposal distribution is such that all

genealogies explain the data (i.e. P (D|Gi) = 1), the likelihood becomes a sum of importance weights.

The efficiency of Importance Sampling (IS) methods depend on the choice of the proposal distribution Q.
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The best solution for Q is P (G|D, θ), i.e. sample Gi from the posterior distribution of the genealogies for

a given parameter value. Although this distribution is unknown, it gives some insight into which choices

of Q are reasonable. The IS schemes can be used to evaluate the likelihood at different parameter values,

allowing to characterize the likelihood surface. Griffiths and Tavaré (1994) were the first to use an IS

approach to estimate the scaled mutation rate 4Nµ of a stable population model. Later, Stephens and

Donnelly (2000) improved this IS approach and described more efficient proposal distributions that can be

applied into complex demographic and mutational models. These have been further developed to analyse

problems involving population subdivision, including equilibrium models with migration (Nath and Griffiths

1996; De Iorio et al. 2005) and non-equilibrium models of population divergence without migration (Nielsen

1997). The main caveats of IS arise when dealing with highly parameterized models as it becomes difficult

to select a proposal distribution working well for all parameter value combinations (Stephens and Donnelly

2000). This may lead to bias and makes the efficiency of IS algorithms highly dependent on finding a

suitable proposal distribution (Stephens 2001; Marjoram and Tavaré 2006; Wakeley 2009). At the moment

there is no general way to obtain such proposal distributions, but this continues to be an area of ongoing

research (e.g. Meligkotsidou and Fearnhead 2007; Griffiths et al. 2008; Griffiths and Griffiths 2008).

1.3.9. Markov chain Monte Carlo

The principle of MCMC is to create a Markov chain with stationary distribution proportional to the posterior.

The most used algorithm in population genetics is the Metropolis-Hastings algorithm (Metropolis et al.

1953; Hastings 1970) because it ensures that the chain will converge to the correct stationary distribution

(Stephens 2001). Thus, Markov chain Monte Carlo (MCMC) methods are more flexible than the importance

sampling, in the sense that their performance do not depend entirely on the specification of a good proposal

distribution (Wakeley 2009). Also, MCMC are efficient methods to sample from conditional probabilities

like the posterior, making them especially useful in Bayesian inference (Beaumont and Rannala 2004).

The first application of MCMC methods in population genetics was in 1992 by Guo and Thompson (1992)

to test Hardy-Weinberg equilibrium with multiple alleles. Later, it was used to estimate parameters of a

stable population model by Kuhner et al. (1995), which estimated the scaled mutation rate θ = 4Nµ from a

sample of sequence data. Their inference method had two steps: (i) MCMC to sample genealogies from the

posterior distribution of the genealogies given the data and a given θ0, i.e. Gi ∼ P (G|D, θ0), (ii) IS using

Gi to obtain the relative likelihood for other θ values. Then, maximum-likelihood inference was based on

the relative likelihood surface. This method has been applied to estimate population growth rates of single

populations (Beerli and Felsenstein 1999), migration rates and effective size of equilibrium models (Beerli

and Felsenstein 2001) as well as recombination rates (Kuhner et al. 2000).
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In the Bayesian settings, MCMC have been widely used to estimate the posterior distribution of demo-

graphic parameters. Given that the genealogies G are incorporated into the likelihood computation, the

posterior becomes the joint distribution of the parameters and genealogies given the data PM (Θ, G|D),

which is proportional to the likelihood times the prior, PM (Θ, G|D) ∝ PM (D,G|Θ)P (Θ). The MCMC

runs by updating the parameters and genealogy simultaneously at each iteration. Starting at Θ(i) and

G(i), in the next iteration new values for G(i+1),Θ(i+1) are chosen according to the proposal distribu-

tion P (G(i+1),Θ(i+1)|G(i),Θ(i)). Following the Metropolis-Hastings algorithm these are accepted with

probability

min

(
1,
P (D,G(i+1)|Θ(i+1))
P (D,G(i)|Θ(i))

P (Θ(i+1))
P (G(i))

P (G(i),Θ(i)|G(i+1),Θ(i+1))
P (G(i+1),Θ(i+1)|G(i),Θ(i))

)

otherwise G(i+1) = G(i) and Θ(i+1) = Θ(i). The first term is the likelihood ratio, the second the prior ratio

and the third the Hastings term. Wilson and Balding (1998) were the first to implement this methodology

to estimate the effective size of a single population based on linked microsatellite data. Later, this MCMC

sampling method was applied to estimate population size change of single populations (Beaumont 1999),

recombination (Nielsen 2000; Stumpf and McVean 2003), population divergence with migration (Nielsen

and Wakeley 2001; Hey and Nielsen 2004), and equilibrium models with migration (Beerli 2006; Kuhner

2006). Note that the methods of Beaumont (1999) and Storz and Beaumont (2002) used in this thesis to

estimate population size changes are based on these MCMC algorithms.

The main problem of MCMC methods that jointly explore the parameter and genealogy space is conver-

gence to the correct posterior distributions. This is specially true with highly parameterized models and

large datasets, e.g. when increasing the sample size and number of loci (Beaumont 2003b; Marjoram and

Tavaré 2006). Some suggestions have been made to tackle this caveat, such as importance sampling within

MCMC (Beaumont 2003b), or analytical integration in MCMC (Hey and Nielsen 2007). Given that the for-

mer approach is implemented in the full-likelihood method used this thesis to estimate admixture (Chikhi

et al. 2001), it is briefly described below. The principle is to evaluate the likelihood P (D|Θ) at each MCMC

iteration using an importance sampling scheme. Importance sampling is thus integrating over the genealo-

gies, whereas the MCMC is only exploring the parameter space. The MCMC chain is thus sampling from

P (Θ|D) ∝ P (D|Θ)P (Θ). This increases MCMC efficiency and it has been applied to demographic mod-

els where the effects of mutations may be ignored, e.g. involving recent events such as divergence (O’Ryan

et al. 1998) and admixture (Chikhi et al. 2001). Also it has been applied to estimate parameters based on
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Table 1. Summary of most relevant full-likelihood methods developed until 2005.

MUTATION MODELS: Inf sites – infinite sites model; SMM – Single stepwise mutation model

ALGORITHM: MCMC – Markov chain Monte Carlo; IS – Importance sampling; P( ) - probability; L( ) - Likelihood;  D – observed data; Θ – parameters of the 
model; 
G – gene genealogies; 

SIMULATION STUDY: YES – simulation study performed, an approximate value for the number of simulations is also shown 

Demographic 
Model

Mutation 
Model Parameters Algorithm Data Simulation 

study Paper

Stable population sequence
Kimura-2P θ (2Nµ)

MCMC sampling 
Gi ~ P(G|D, θ0)

IS relative likelihood L(θ)/L(θ0) 

Allele freq.
(mut info) YES (1200)

Kuhner et al. 
(1995)

Stable population microsat
SMM θ (2Nµ) MCMC sampling P(G,Θ|D) Allele freq.

(mut info) YES (140)
Wilson and 

Balding 
(1998)

Stable population 
and Exponential 

growth

sequence
Kimura-2P

θ (2Nµ)
growth rate

MCMC sampling 
Gi ~ P(G|D, θ0)

IS relative likelihood L(θ)/L(θ0)

Haplotype freq
(mut info) YES (2000) Kuhner et al. 

(1998)

Exponential and 
Linear Population 

size change

microsat
SMM

θ (2N0µ); r (N0/N1) ratio 
current/past pop size;

tf (T/N0) scaled time since size 
change

MCMC sampling P(G,Θ|D) Allele freq
(mut info) YES (25) Beaumont 

(1999)

2-island model

sequence
Kimura-2P
microsat

SMM

θ1, θ2, scaled migration 
rates M1, M2- (2Nm)

MCMC sampling 
Gi ~ P(G|D, θ0)

IS relative likelihood L(θ)/L(θ0)
Allele freq
(mut info) YES (2000)

Beerli and 
Felsenstein 

(1999)

4-island model sequence
Kimura-2P

θ, scaled migration 
rate M (2Nm)

MCMC sampling 
Gi ~ P(G|D, θ0)

IS - relative L(θ)/L(θ0) 

Haplotype freq
(mut info) YES (200)

Beerli and 
Felsenstein 

(2001)

Admixture model K allele 
model

scaled time since 
admixture ti=T/Ni, i=1,2,3
admixture contribution p1,
parental allele freq x1,x2

MCMC sampling P(Θ|D)
IS - L(Θ) at each MCMC step

Allele freq 
(no mut into) YES (120) Chikhi et al. 

(2001)

Population split with 
isolation with 

migration (IM) of 
two populations

sequence
Inf sites

θ1,θ2,θA,time split (t=T/N1), scaled 
migration rates M1,M2

MCMC sampling P(G,Θ|D) Haplotype freq
(mut info) YES (300)

Nielsen and 
Wakely 
(2001)

Exponential pop 
size change

microsat
SMM

current size N0, 
past size N1, 

time since sizechange T, 
mutation rate µ

MCMC sampling P(G,Θ|D) Allele freq
(mut used) NO

Storz and 
Beaumont 

(2002)

Exponential pop 
size change

K allele 
model

θ (2N0µ); r (N0/N1) ratio 
current/past pop size;

tf (T/N0) time since size change

MCMC sampling P(Θ|D)
IS - L(Θ) at each MCMC step

Allele freq
(no mut info) YES (60) Beaumont 

(2003)

Population split with 
isolation with 

migration (IM) of 
two populations

SMM, Inf 
sites and 

others

θ1, θ2, θA, time split (t=Tµ), 
migration rates 
M1,M2 (M=mµ)

MCMC sampling P(G,Θ|D) Haplotype freq
(mut info) YES (20)

Hey and 
Nielsen 
(2004)

n-island model microsat
SMM θ, scaled migration M Importance sampling L(Θ) Allele freq 

(mut info) YES (30) De Iorio et 
al. (2005)

IM with size change 
and founder events 
of two populations

SMM, Inf 
sites and 

others

θ1, θ2, θA, time split (t=Tµ), 
migration rates 
M1,M2 (M=mµ), 

s (relative size at split)

MCMC sampling P(G,Θ|D) Haplotype freq
(mut info) YES (60) Hey (2005)

temporal samples, including effective sizes (Berthier et al. 2002) and population size change (Beaumont

2003b).

In summary, full-likelihood methods have been used to estimate parameters of several demographic models

using genetic data (summarized in Table 1). As seen above, the evaluation of the likelihood of relevant demo-

graphic parameters (e.g. effective sizes, time of split, admixture contribution, etc.) is a difficult task because

one needs to integrate over the genealogical space. Nevertheless, it became possible to assess the likeli-

hood for several demographic models due to efficient Monte Carlo algorithms as MCMC and IS. Although
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MCMC and IS methods have seen impressive developments recently and are still an active area of research

(Hey and Nielsen 2007; Meligkotsidou and Fearnhead 2007; Griffiths et al. 2008), there are two main caveats

that limit their applicability (Marjoram and Tavaré 2006). First, these methods require the definition of an

explicit likelihood function for P (D|G,Θ), which remains only feasible for relatively simple demographic

and mutation models. Second, these methods are highly computationally intensive, decreasing their appli-

cability to analyse the ever increasing size of population genetic datasets. The latter aspect is also related

with the difficulty to assess the performance of these methods in simulation studies, as they can become very

time consuming. These problems lead to the development of approximate methods, such as approximate

Bayesian computation (ABC; Beaumont et al. 2002; Marjoram et al. 2003), composite likelihood (Hudson

2001; Nielsen et al. 2005) and product of approximate conditionals (PAC; Li and Stephens 2003; Cornuet

and Beaumont 2007; Roychoudhury and Stephens 2007). Briefly, the principle of composite likelihood and

PAC is to decompose the likelihood into a product of probabilities that are easily computed or approxi-

mated. In the case of composite likelihood, a likelihood function involving several inter-dependent terms

is simplified such that the terms can be treated independently (Hudson 2001; Nielsen et al. 2005). These

methods have been used to estimate parameters such as recombination rate and detect selection sweeps. Al-

though composite likelihood are computational efficient there is a tendency to overestimate the information

in the data resulting in biased likelihood or posterior distributions. The PAC methods are based on the fact

that the likelihood of a sample of n sequences s P (s1, s2, . . . , sn|θ) can be treated as a product of condi-

tional probabilities of the different individual sequences P (s1|θ)P (s2|s1, θ) . . . P (sn|s1, . . . , sn−1, θ) (Li

and Stephens 2003). This is based on sequential importance sampling arguments (Stephens and Donnelly

2000; De Iorio et al. 2005). These methods have been applied to estimate recombination (Li and Stephens

2003), effective sizes (Cornuet and Beaumont 2007) and more recently very complex demographic events

including admixture (Hellenthal et al. 2008).

1.3.10. Approximate Bayesian Computation (ABC)

The principle of ABC methods is to simulate data across a range of parameter values to find the param-

eter values that generate datasets that match the observations (Beaumont et al. 2002). As seen in Figure

1.3 ABC algorithm involves six steps: (i) obtain the observed data Obs; (ii) define the demographic and

mutation models M ; (iii) set the prior distributions for the parameters of the model P (Θ); (iv) simulate

datasets under demographic model M with parameter values drawn from the prior distribution P (Θ); (v)

compare the observed and simulated data using a distance metric, e.g. euclidean distance; and (vi) accept

the parameters that generated datasets similar to the observed data. Hence, the posterior distribution is

PM (Θ|d(Sim,Obs) < δ), where d(Sim,Obs) represents the distance between the observed and simulated

datasets, and δ is an arbitrary threshold called tolerance. ate datasets under demographic model M with
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Figure 1.3. Principles of Approximate Bayesian computation. This example illustrates the estimation of the
effective size Ne of a stable population, based on the observed expected heterozygosity He. Briefly, it involves
six steps: (i) summarize the observed data, in this case the allele frequencies were replaced by the expected
heterozygosity Heobs; (ii) define the model and the parameters of interest, in this a case stable population with
effective sizeNe; (iii) set the prior distributions for the parameters of the model P (Ne), in this case a uniform flat
prior; (iv) simulate datasets under demographic model with parameter values drawn from the prior distribution
P (Ne). For each parameter value there is a simulated dataset with a corresponding heterozygosity; (v) compare
the observed and simulated data using a distance metric, e.g. euclidean distance; and (vi) accept the parameters
that generated datasets similar to the observed data, within a certain tolerance δ. The parameters are an approx-
imation of the posterior distribution P (Ne|Heobs) ≈ P (Ne|d(Heobs,Hesim) < δ). This can be extended to
models with multiple parameters and summary statistics.

parameter values drawn from the prior distribution P (Θ); (v) compare the observed and simulated data us-

ing a distance metric, e.g. euclidean distance; and (vi) accept the parameters that generated datasets similar

to the observed data. Hence, the posterior distribution is PM (Θ|d(Sim,Obs) < δ), where d(Sim,Obs)

represents the distance between the observed and simulated datasets, and δ is an arbitrary threshold called

tolerance. The proportion of accepted simulations (i.e. the acceptance rate) depends on the choice of the

tolerance δ and is called Pδ. Accepting simulations as close as possible to the observed data (i.e. δ → 0)

increases the accuracy of the estimates. However, when the tolerance distance is close to zero (δ → 0)

the acceptance rate decreases and in order to accept a reasonable number of parameter values, there is the

need to increase the number of simulations. Therefore, the choice of the tolerance δ (and of the number of

simulations) reflects to some extent a balance between computability and accuracy (Beaumont et al. 2002;

Marjoram et al. 2003; Plagnol and Tavare 2004).

In contrast to the previous model-based methods, ABC are applicable to situations in which there is no

explicit likelihood functions. Thus, ABC are very flexible tools to obtain estimates under complex demo-

graphic and mutational models (Marjoram and Tavaré 2006). There are two main approximations done in

ABC methods. First, the accepted datasets are not exactly identical to the observed data. Second, in most

studies, the full data set (e.g. allele or haplotype frequencies) is replaced by a set of summary statistics S.

Thus, the obtained joint posterior distribution is PM (θ|d(Ssim, Sobs) < δ), where Ssim and Sobs refer to the
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simulated and observed summary statistics, respectively. As can be seen in this expression, the quality of

the ABC inference depends on the selected summary statistics S, the distance metric d(.) and the tolerance

δ. Note that when the selected summary statistics extract all information from the data about the parameters

of interest (i.e. sufficient statistics), in the limit when the tolerance tends to zero δ → 0, the ABC approxi-

mation tends to the correct distribution, i.e. PM (θ|d(Ssim, Sobs) < δ) = PM (θ|D). The main advantage of

ABC methods is their flexibility as they may be applied in principle to any model provided that it is possible

to simulate datasets under that model. Given that the coalescent theory allows simulation of data under a

variety of complex demographic models, ABC are promising methods to deal with complex demographic

scenarios. Also, another advantage is that it is relatively straightforward to assess the performance of ABC

methods (Excoffier et al. 2005a). The reason is that when there are enough simulations to characterize the

joint posterior distribution, other datasets with similar sample sizes and number of loci can be analysed

without the need to repeat the simulation procedure, which is the most time consuming part.

The most relevant studies using ABC methods until 2006, when this thesis started, are summarized in the

Table 2. This table shows the demographic and mutation models considered, the parameters of interest,

the type of marker used, as well as the algorithm and simulation study details. Due to their flexibility,

ABC methods have been applied in the last few years to different problems in population genetics, ranging

from the estimation of effective population size (Tallmon et al. 2004), to the detection of population size

changes (Chan et al. 2006; Thornton and Andolfatto 2006), the study of colonization routes (Estoup et al.

2004; Pascual et al. 2007; Rosenblum et al. 2007; Bonhomme et al. 2008; Neuenschwander et al. 2008),

population divergence (Becquet and Przeworski 2007) and admixture events (Excoffier et al. 2005a). In ad-

dition, it allowed the analysis of recombination (e.g. Becquet and Przeworski 2007), and complex mutation

models (e.g. Excoffier et al. 2005a), which are difficult to implement using MCMC and IS. Note that many

of these works were published during the same period as this thesis, and hence are not included in Table 2.

As can be seen in Table 2, the simplest ABC rejection methods were developed in the late 1990s to estimate

effective sizes and population growth rates (Fu and Li 1997; Tavaré et al. 1997; Weiss and von Haeseler

1998; Pritchard et al. 1999). Since then a number of suggestions have been made to increase the efficiency

of ABC methods (Beaumont et al. 2002; Marjoram et al. 2003; Estoup et al. 2004; Sisson et al. 2007).

For instance, Beaumont et al. (2002) proposed weighting the accepted parameter values according to their

distance to the observed data, and correcting for the linear relation between the accepted parameter values

and the summary statistics in the vicinity of the observed values, assuming a local linear regression model.

They used a simple demographic model with a single panmictic population and were able to show a clear

decrease in the dependency of the quality of the approximations to the choice of the tolerance level. Mar-

joram et al. (2003) suggested a MCMC method in which the likelihood ratio evaluation is replaced by the
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Table 2. Summary of ABC methods developed until 2006

Demographic 
model

Data 
(mutation 

model)

Parameters Algorithm Summary 
statistics 

Simulation 
study

Distance
metric

Model 
Choice

Paper

Stable population sequence (IS) TMRCA Rej S - Ratio Ssim / Sobs - Tavaré et al. (1997)

Stable population sequence (IS) TMRCA Rej S,kmax YES
1000

Absolute differences 
(accepted if Sobs=Ssim) - Fu and Li (1997)

Exponential growth sequence (TN) θ, time expansion, 
expansion magnitude Rej S, k - Absolute differences - Weiss and von Haseler 

(1998)

Exponential growth microsat (GSM) θ, growth rate, 
time expansion Rej He, nh

var(var(size)) - Absolute differences YES Pritchard et al. (1999)

Complex population 
split using historical 
information 

microsat (GSM) 
allozymes

Effective sizes, 
duration bottleneck, 

time of recovery
Rej na, He, 

FST, var(size) - Standardized 
absolute difference YES Estoup et al. (2001)

Estoup and Clegg (2003)

Stable population and
Exponential growth microsat (SMM) θ, growth rate, 

time expansion Rej Reg
na, He, FST, LD,

var(size), kurt(size), 
var(var(size)), 

max(freq)

YES
200 Euclidean distance - Beaumont et al. (2002)

Stable population sequence (F) θ Rej MCMC S, H - Absolute difference - Marjoram et al. (2003)
Plagnol and Tavaré (2003)

Stable population microsat
(K-allele) Effective size Rej Reg var(He), var(na), 

var(Theta_W)

YES 
MCMC, ML

20000
Euclidean distance - Tallmon et al. (2004)

Spatial expansion in 
two-dimensional 
stepping-stone

sequence (FS) 
microsat (SMM)

θ, time expansion, 
migration rates

Rej Reg S, k, H, hd,na,He,
var(size), FST

YES
1000

Weighted Euclidean 
distance - Hamilton et al. (2005)

Spatial expansion 
using historical 
information

microsat
(K-allele)

θ, founders, founding 
ratio, migration rate Rej Reg FST, na differences, 

He,var(size)  - Euclidean distance YES Estoup et al. (2004)

Admixture model microsat
(GSM)

Effective sizes, 
admixture, time 

admixture and split, 
mutation rates

Rej Reg na, He, MGW,FST, 
Gdist, mY, LD D

YES - ML
2000 Euclidean distance - Excoffier et al. (2005)

Population split model sequence
(FS)

Effective sizes, 
time of split

Rej Reg
(hierarchical 
procedure)

K,  θW, 
Var(K-θW), Knet

YES - MCMC
12000 

Euclidean distance – 
sumstat sorted to 
minimize distance

- Hickerson et al. (2006)

Stable population sequence
(FS)

θ, 
recombination rate Rej S, H, k, RH

YES
400 Absolute differences - Haddrill et al. (2005)

Bottleneck with 
recombination

sequence
(FS)

Botleneck 
magnitude, 

bottleneck duration, 
time of recovery

Rej var(k), H,  HFW - Absolute 
differences - Thornton and Andofalto 

(2006)

MUTATION MODELS: IS – infinite sites model; FS – finite sites model; TN – Tamura-Nei mutation model; F – Felsenstein mutation model; SMM – Single stepwise 
mutation model; GMM – Generalized stepwise mutation model; K-allele – K-allele model.

PARAMETERS: TMRCA – Time to most recent common ancestor; θ = 2Nµ.

ALGORITHM: Rej – Rejection step; Reg – Regression step of Beaumont et al. (2002); Rej MCMC – ABC MCMC approach of Marjoram et al. (2003).

SUMSTAT for sequences: S – number of segregating sites; k – average number of pairwise differences; kmax – maximum number of pairwise differences; H – 
number of haplotypes; hd – haplotype diversity; θW – Waterson estimator of θ; knet – overall populations average number of pairwise differences; RH – Hudson 
estimator of the minimum number of recombination events; HFW – Fay and Wu (2000) H statistic.

SUMSTAT for microsatellites: na – number of alleles; He – expected heterozygosity; var(size) – variance of allele size distribution; FST – pairwise FST; nh -  number of 
distinct haplotypes (linked loci); var(var(size)) – variance of the variance in allele size distribution; kurt(size) – kurtosis of the variance in allele size distribution; 
max(freq) – maximum frequency of allele distribution; LD – Linkage disequilibrium D statistics; θWeir – Weir estimator of θ; MGW – Garza Williamson (2000) M statistics; 
mY – Bertorelle and Excoffier (1998) coalescent admixture estimator; Gdist – Goldstein et al. (1995) genetic distance.

SIMULATION STUDY: YES – simulation study performed and number of simulations performed; MCMC – Comparison with Bayesian MCMC full-likelihood method; 
ML – Comparison with Maximum Likelihood full-likelihood method.

simulation of datasets, accepting to move to the new state according to the distance between the observed

and simulated summary statistics. More recently, Sisson et al. (2007) proposed a sequential approach, in

which the prior distribution is sequentially updated to obtain better approximations of the posterior, which

was further examined by Beaumont et al. (2009).
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Although ABC has been used in some relatively complex problems, there are still several aspects that de-

serve further research (Beaumont et al. 2002). First, one major problem stemming from the use of summary

statistics is that it may be difficult or even impossible to define a suitable set of sufficient statistics (Marjoram

et al. 2003). Actually, there is no objective way to select the summary statistics. In this thesis this problem

was examined using the allele frequencies directly, instead of statistics of the allele frequency distribution.

Second, it remains unclear what is the effect of the choice of summary statistics and distance metrics on

the estimates. For instance, increasing the number of summary statistics and hence the amount of infor-

mation extracted from the data does not necessarily improve the accuracy of the results (Beaumont et al.

2002; Marjoram et al. 2003). This was shown by Beaumont et al. (2002) in a simulation study comparing

the estimates obtained with three and five statistics, and the explanation seems to be related with the fact

that increasing the number of summary statistics decreases the possibility of finding a match between the

observed and simulated datasets (‘curse of dimensionality’). Third, it is also unclear what are the effects of

the tolerance level Pδ and number of simulations, and in practice there is no general answer on how to select

these values. Fourth, the effect of the distance metric has not been clearly evaluated. Fifth, there is a lack

of full-likelihood Bayesian methods for complex models against which ABC approaches can be compared

to and hence it is difficult to have a clear characterization of the performance of these methods. As can be

seen in Table 2, when this thesis started, there were only a few studies addressing these questions and the

number of data sets compared was relatively limited (Beaumont et al. 2002; Tallmon et al. 2004; Excoffier

et al. 2005a). These limitations lead to a detailed examination of the above mentioned aspects in this thesis.

Special attention was given to the problem of selecting the summary statistics, and an ABC method using

the allele frequencies was developed, tested and validated.

Recently, there has been a growing interest in population genetics to go beyond the estimation of parameters

of a given model, and assess the model fit to the data and select the most likely model from a set of alternative

scenarios (e.g. Akey et al. 2004; Beaumont and Rannala 2004; Estoup et al. 2004; Ray et al. 2005). Actually,

in addition to the estimation of parameters of demographic models, ABC are also useful and flexible tools to

perform model-choice analyses. This was first done by Pritchard et al. (1999) who applied ABC to estimate

the most likely model among two alternative scenarios. These authors compared a population growth model

against a stable population model, and used the ABC principles to obtain an approximation of the posterior

distribution of the two alternative models. The idea was to generate datasets according to each model, with

a prior of 0.5 for each alternative scenario, accepting the simulations close to the observed data. Then, the

posterior distribution of each model would be approximated by the proportion of accepted points simulated

under each model. Since then, this approach has been applied to perform other model-choice comparisons,

as can be seen in Table 2 (Estoup et al. 2004; Fagundes et al. 2007). However, little is known about the

performance of ABC methods under model-choice problems. This was investigated in this thesis, and an
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extensive simulation study was performed to evaluate the performance of ABC in separating scenarios with

admixture from population split without admixture.

In this thesis, model-based methods as full-likelihood and ABC were investigated and developed under

general demographic models that can be applied to several species. The methods investigated were applied

to analyse genetic data from two freshwater fish species presented in the next section.

1.4. Case studies: Iberochondrostoma lusitanicum and I. almacai

The distribution area of I. lusitanicum and I. almacai is shown in Figure 1.4. The detailed description of

the two species can be found in Coelho et al. (2005). In the following sections, the main aspects related

with the taxonomy, biogeography, ecology and conservation status of these two species are described. This

information may be important to explain the genetic patterns found, and formulate hypotheses to elucidate

the demographic history of these two species.

1.4.1. Systematics and biogeography of Iberochondrostoma

The Iberian Peninsula freshwater fish fauna is dominated by cyprinids belonging to four main genera: Chon-

drostoma, Anaecypris, Squalius and Barbus (Mesquita 2005). The genus Iberochondrostoma has been

recently described following a revision of the Chondrostoma genus (sensu Agassis 1832) based on mor-

phological and molecular data by Robalo et al. (2007a). Previous to this revision, the species of the genus

Chondrostoma were found throughout south and central Europe, from the Atlantic to the Caspian Sea and

from the Mediterranean to the Baltic Sea, as well as in minor Asia, the Caucasus, and Mesopotamia (Durand

et al. 2003). The number of species varied according to the data used in the classification, and there is an

ongoing debate on the delimitation of the Chondrostoma genus. At the moment of the revision of the genus

(Robalo et al. 2007a), there was a total of 35 species classified as Chondrostoma. There is a wide consensus

pointing to an Asian origin of the cyprinids during the Tertiary followed by a later colonization of Europe

during the Oligocene (Darlington 1957; Bănărescu 1973; Bănărescu and Coad 1991; Cavender 1991). In

central Europe Chondrostoma genus is characterized by a lower number of species with wide distributions,

whereas in the Mediterranean drainages of southern Europe there are several endemic species (Durand et al.

2003). This geographical distribution with increasing number of species going south has lead to several

biogeographic and phylogenetic studies to explain speciation processes in this taxon.

Two main hypothesis regarding the colonization of Iberian Peninsula by cyprinids have been proposed: (i)

recent and direct colonization of southern Europe from East Asia with dispersal around the Mediterranean
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Figure 1.4. Distribution area of Iberochondrostoma lusitanicum and Iberochondrostoma almacai

Sea during the Messinian (5.5-5.3MY) salinity crisis (Bianco 1990); and (ii) and older and gradual dispersal

across Central Europe through river connections to the south, during the development of the drainages from

the Oligocene until late Pliocene (33.9-1.8 MY) (Bănărescu 1960; Almaça 1976). Recent comparative phy-

logenetic studies based on mitochondrial DNA and nuclear genes support the latter hypothesis (Mesquita

et al. 2007; Robalo et al. 2007b). After colonization of the Iberian Peninsula there were two main specia-

tion periods according to Doadrio and Carmona (2004): (i) earlier differentiation due to Iberian endorheic

drainages phase (rivers draining to inland lakes) in the Miocene (11-5 MY); and (ii) more recent differen-

tiation due to transition to exorheic drainage system (rivers draining to the sea), and formation of current

drainage system during Plio-Pleistocene (2.5-1.8 MY). Molecular studies based on molecular clocks support

this two-phase hypothesis as an explanation for the main groups of species in Squalius and Chondrostoma

genera (Mesquita et al. 2007; Robalo et al. 2008). The revision of the Chondrostoma genus lead to five new

genera, reflecting these biogeographic processes (Robalo et al. 2007a).

In Iberian Peninsula there are 14 endemic species which were previously classified as Chondrostoma (Robalo

et al. 2008). The C. lusitanicum was described in 1980 by Collares-Pereira (1980) based on morphological

traits. The distribution area would include Tejo, Sado, Mira and small Atlantic drainages in south-western

Portugal. Later, morphological studies showed morphological differences between two groups comprising

the southern (Mira and Arade) and northern drainages (Sado and Tejo) (Collares-Pereira 1983; Rodrigures

1993). Molecular studies based on allozymes (Coelho et al. 1997) and mitochondrial DNA data (Mesquita

et al. 2001) also supported the high levels of genetic differentiation between these two groups. This lead

to further morphological studies and to the description of a new species, C. almacai (Coelho et al. 2005).

Today, these two species are classified as belonging to the Iberochondrostoma genus (Robalo et al. 2008).
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1.4.2. Ecology of I. lusitanicum and I. almacai

There is a limited number of ecological studies in these two species, with virtually none in I. lusitanicum,

and only some in I. almacai (Magalhães et al. 2002b, 2003; Santos and Ferreira 2008). Both species inhabit

typical Mediterranean-type streams with clear waters with low to medium flow. These ecosystems are

characterized by habitat heterogeneity due to flooding in the wet season and drought in the dry season

(Alves and Coelho 1994; Moyle 1995; Gasith and Resh 1999). The intensity and timing of the dry and wet

seasons exhibit significant variation from year to year, resulting in strong fluctuations in the abundance and

age structure of fish populations (e.g. Bernardo et al. 2003; Magalhães et al. 2003; Mesquita et al. 2006). In

the dry summers fish are confined to refugia such as pools and small reaches maintaining flowing waters,

increasing the risk of mortality from desiccation, predation and anoxia (Coelho et al. 1997; Magalhães

et al. 2002b). Massive mortality occurs in very dry years or when the dry period is extended for more than

one year (Magalhães et al. 2002a). Moreover, spring floods in the wet season may also lead to adult fish

mortality, as has been found for I. almacai (Magalhães et al. 2002a; Pires et al. 2008). Nevertheless, native

fish in these Mediterranean streams appear to some extent resilient to the seasonal droughts (Magalhães

et al. 2007). This may reflect the maintenance of these conditions for long period of time. Indeed, both

I. lusitanicum and I. almacai exhibit life-history traits that according to Schlosser (1990) are characteristic

of species inhabiting unstable environments. Both species are small (maximum total length of 148mm

for I. almacai and 151 for I. lusitanicum), with low growth rate, short life-span (up to four years), and

early maturation (Magalhães et al. 2003; Coelho et al. 2005; Robalo et al. 2009). In I. almacai individuals

become sexually mature at the age of two years, with high fecundity and reproductive allocation (Magalhães

et al. 2003). Another explanation for the recovery of these species after dry season is that native species

are generalist in terms of refugia usage. This has been suggested for I. almacai and Squalius torgalensis

in the Mira drainage (Magalhães et al. 2002b), but data from Santos and Ferreira (2008) support some

specialist habitat use of I. almacai in the Arade drainage. In both Iberochondrostoma species reproduction

occurs during the wet season. In I. lusitanicum it occurs mainly in April and May, with individuals forming

spawning aggregations (Robalo et al. 2009). In I. almacai reproduction starts in January and lasts till April,

with a peak in March. The analysis of the age structure of I. almacai populations shows that there is a

relation between reproductive timing and dispersal ability. Since this species spawns during wet season

when there is greater availability and connectivity among streams, this allows young individuals to disperse

before the dry season (Magalhães et al. 2002a). In a study including samples from 1991 to 1996, the

local abundance of I. almacai in Torgal river (main tributary of Mira drainage) ranged from 22-78 fish

in transects of 50m, suggesting that this species can reach high local densities (Magalhães et al. 2003).

Moderate fluctuations were observed in population abundance, which seem largely driven by environmental

factors. Landscape aspects such as increased rainfall and drainage area have been found to be correlated
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with higher abundance of I. almacai (Mesquita et al. 2007). In addition, habitat characteristics as vegetation

and current velocity were also found to be correlated with abundance (Mesquita et al. 2007; Santos and

Ferreira 2008). There is also evidence that increased predation pressure and density-dependent factors

due to increased biotic interactions and competition is higher in the pools used as refugia in dry season

(Godinho et al. 1997; Magalhães et al. 2002b). Iberochondrostoma species appear to be mainly sedentary

and have limited dispersal. However, there is still lack of data connecting dispersion ability at different ages

with environmental variables affecting habitat preferences and stream connectivity (Magalhães et al. 2003;

Collares-Pereira and Cowx 2004; Mesquita et al. 2007).

1.4.3. Conservation status and major threats of Iberian freshwater fish species

Freshwater fauna in regions with Mediterranean climate is declining at a higher rate than in any other

ecosystem (Moyle 1995; Gasith and Resh 1999; Saunders et al. 2002). It is estimated that around 56%

of endemic freshwater fish species in the Mediterranean are endangered (Smith and Darwall 2006). The

reason is that water supply is limited and most of these regions are under high human occupation and

intensive agricultural production, putting humans and fish in direct competition for water (Moyle 1995).

Moreover, these regions have high endemicity levels, making them of special concern for conservation

(Almaça 1995; Filipe et al. 2004). Most native species are apparently adapted to certain extent to the

seasonal conditions of Mediterranean rivers, but many seem to be living at the edge of their tolerance limits

(Collares-Pereira and Cowx 2004; Smith and Darwall 2006). In Iberian peninsula, the major threats are

impoudment of rivers (dams, water abstraction), deterioration of water quality (pollution, eutrophication,

acidification), channeling, land use change, mineral and sand extraction, as well as the introduction of

exotic species (Alves and Coelho 1994; Almaça 1995; Collares-Pereira and Cowx 2004; Cabral et al. 2005).

Iberian Peninsula has been historically under strong anthropogenic impact (Almaça 1995; Mittermeier et al.

2004). Geological data indicate sudden changes in river sedimentations over the last ≈ 2000 years, that

have been interpreted as the result of human activities related with agriculture (channeling, water extraction,

changes in vegetation), grazing and mining (Dabrio et al. 2000; Lobo et al. 2005; Terrinha et al. 2006). Also,

there has been a series of introductions of exotic species dating back to the times of the Roman occupation

(≈ 2000−1600 years ago) (Almaça 1995). Taken together, this resulted in major habitat loss, fragmentation

and extinction of native fish species (Almaça 1995; Aparicio et al. 2000; Collares-Pereira and Cowx 2004;

Cabral et al. 2005).

In Portugal, 69% of freshwater fish species are considered threatened (Cabral et al. 2005). From the 19

endemic cyprinids found in Portugal, only five species are of least concern and most are either endangered

(five species) or critically endangered (five species) (Cabral et al. 2005). This is the case of I. lusitanicum and
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I. almacai, which are considered critically endangered by the Portuguese Red List (Cabral et al. 2005). Both

species have very restricted and highly fragmented distributions and suffered strong population declines in

the last decades (Alves and Coelho 1994; Cabral et al. 2005). A recent study comparing species assemblages

with environmental and geographic data suggest that historical factors, namely the drainage boundaries,

are the main responsible for the current distribution of cyprinid species in Iberian peninsula (Filipe et al.

2009). Nevertheless, it remains unclear what is the role of historical barriers to dispersal in comparison with

contemporary factors, namely the relative importance of the anthropogenic impacts.

1.5. Objectives and structure of the present thesis

The main goal of this thesis was the investigation and development of statistical methods to reconstruct the

demographic history of structured populations based on genetic data. The emphasis was on the study of

admixture and population size change models, which are relevant for conservation biology. In particular,

the methods developed and examined in this thesis were applied to two case study species of the genus

Iberochondrostoma (I. lusitanicum and I. almacai ). These are critically endangered Iberian cyprinids and

represent good examples of species with very restricted and fragmented distributions.

In detail, there were four specific objectives addressed in this thesis:

1. Develop new approximate Bayesian computation (ABC) methods for models involving admixture events.

Specifically, the purpose was to test a new approach using the full-allelic distributions in an ABC framework,

and compare the performance of ABC with full-likelihood methods. The aim was first to develop, test and

validate ABC methods under a relatively simple admixture model, and then implement these methods into

more complex demographic models.

2. Quantify the effect of population structure in the detection of population decrease. The aim was to assess

the robustness to deviations due to population structure of a full-likelihood method (Beaumont 1999), which

is widely used in conservation genetic studies to estimate population size changes.

3. Develop new user-friendly software to estimate relevant parameters of admixture models.

4. Apply classical and the newly developed methods to characterize the genetic structure and demographic

history of species with fragmented distributions: Iberochondrostoma lusitanicum and I. almacai

This thesis is divided in six chapters. Chapter 1 is a general introduction where the state of the art of

model-based inference methods to reconstruct the demographic history of populations using genetic data
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are presented, together with their applications to conservation genetics. Also, the systematics, biogeography

and ecology of the two case study species are described. Chapters 2 to 4 comprise six manuscripts in which

the main objectives were addressed, Chapter 5 is a general discussion and Chapter 6 contains the concluding

remarks and perspectives. The Chapter 2 describes the conservation genetic studies of the two species (I.

lusitanicum and I. almacai). These two studies are presented before the other chapters because the results

obtained for I. lusitanicum and I. almacai in this chapter contributed to developments presented in Chapter

3 and 4. Chapter 3 presents the development and test of new ABC methods to infer admixture events.

Chapter 4 focuses on the robustness of methods to estimate population size changes in populations that are

subdivided. Note that the analysis of genetic data from the Iberochondrostoma species were performed in

parallel to the theoretical and methodological studies, and the results are discussed in Chapters 2 to 4. In the

following the structure of Chapters 2 to 6 is described in more detail.

Chapter 2 comprises two conservation genetic studies of two closely related freshwater fish species, I. lusi-

tanicum and I. almacai. Both species are critically endangered (Cabral et al. 2005) and exhibit highly

fragmented distributions in the south-western Iberian Peninsula. The aims of these studies were to charac-

terize the population structure, and quantify and date changes in effective population sizes. In particular,

the objective was to disentangle the effects of recent events from the effects of ancient demographic events

on the present-day genetic patterns. Results are presented and discussed in sections 2.1 and 2.2 that cor-

respond to two published papers in Conservation Genetics and Animal Conservation, respectively. The

analysis were performed using commonly used methods to study population structure, including classical

FST statistics, analysis of molecular variance (AMOVA) and clustering methods based on genotypic infor-

mation implemented in STRUCTURE (Pritchard et al. 2000), PARTITION (Dawson and Belkhir 2001) and

BAPS (Corander et al. 2004). In addition, population size changes were investigated with the model-based

methods of Beaumont (1999) and Storz and Beaumont (2002). Low levels of genetic diversity and high

differentiation were found in both species, mainly among samples from different drainages. These results

raised several questions related with the fact that populations were apparently highly structured. First, in I.

lusitanicum there was evidence for one potential admixture event. Second, the population structure could

be influencing the estimates of the population size change. These results led to further developments on de-

mographic models involving admixture events and population size changes that are described and discussed

in Chapter 3 and Chapter 4, respectively.

Chapter 3 describes model-based inference methods to quantify the contribution of different parental popu-

lations to an admixed (or hybrid) population. This was first developed on a relatively simple demographic

model with two parental and one admixed population. The admixture model considered assumes that the

species is structured into two parental and one admixed population that do not experience migration. The
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aim was to develop Approximate Bayesian Computation (ABC) approaches to estimate the parameters of

such a model, and at the same time investigate several fundamental aspects of ABC methodology. Also, one

objective was to compare the performance of ABC methods with existing full-likelihood method. One of the

main criticisms of ABC methods is that they rely on the choice of a set of summary statistics. In this work,

a new ABC approach that uses directly the sample allelic frequencies (i.e. the same information as several

full-likelihood methods) instead of summary statistics was described and examined. The performance of the

new ABC algorithm using allele frequencies was assessed in a simulation study, and compared with the per-

formance of a full-likelihood method implemented under the same admixture model. Also, the performance

was compared with a typical ABC approach using summary statistics that was developed specifically for this

study. Other general aspects of ABC methods, including the effect of the distance metric, the tolerance level,

and the regression step were examined. The results were published in Genetics and are presented in section

3.1. Appendix A shows the results of the application of the ABC algorithms developed to the analysis of

simulated multilocus SNP datasets The ABC methodology using summary statistics was then implemented

in a user-friendly program to analyse microsatellite data and estimate admixture parameters under more

complex admixture models, involving up to three parental populations and two admixture events. Again,

the accuracy and precision of the estimates obtained with this method were investigated in a simulation

study. This is described in section 3.2, which was published in Molecular Ecology Resources, and the de-

tailed results are shown in Appendix B. The last chapter of this part focuses on an area that has received

growing attention in the last few years which is the use of genetic data to perform model choice analyses.

In this case, the aim is not to estimate parameters of a given model, but rather assess what is the model

that better explains the observed data from a set of alternative demographic models. In this work, an ABC

algorithm was developed and implemented to separate among alternative admixture and population split

models. The performance of the model-choice ABC procedure was assessed in a simulation study. These

results are presented in section 3.3, in the form of a manuscript under preparation. Finally, the freshwater

fish data were re-analysed to determine whether the potential past admixture event identified in section 2.1

for I. lusitanicum was real. These results are shown in section 3.3 and in Appendix C.

Chapter 4 describes a simulation study aiming to quantify the effect of population structure on the estimates

of population size changes. Simulations were performed assuming an equilibrium model with population

structure (n-island and stepping-stone), in which each deme (population) had a constant and stationary effec-

tive size. The simulated datasets were then analysed with the full-likelihood method (MSVAR) (Beaumont

1999), widely used in conservation genetic studies to estimate changes in population size. The aim was to

evaluate the robustness of this method to deviations from panmixia. The effect of varying the levels of gene

flow, population structure model (n-island and stepping-stone), sampling scheme and number of loci were

investigated. Then, the results obtained in the simulation study were compared with the results obtained
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for I. lusitanicum and I. almacai, to assess if the population decrease signatures found in natural popula-

tions could be explained by the population structure alone. These results are discussed in Chapter 4 that

corresponds to a manuscript under preparation.

The main contributions of the present thesis are discussed in the General Discussion (Chapter 5). In particu-

lar, the results obtained in the first studies on I. lusitanicum and I. almacai are revisited in terms of potential

admixture events and population collapse. Finally, the questions that remained open and the ones that were

raised and deserve further studies are discussed in the Concluding Remarks and Perspectives (Chapter 6).
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Abstract The endemic and critically endangered cyprinid

Chondrostoma lusitanicum has a very restricted distribu-

tion range. In order to estimate genetic diversity,

characterize population structure and infer the demo-

graphic history, we examined six microsatellite loci and

cytochrome b (mtDNA) sequences from samples taken

throughout C. lusitanicum’s geographical range. Estimates

of genetic diversity were low in all samples (average

He \ 0.35). The microsatellite data pointed to a major

difference between northern (Samarra and Tejo drainages)

and southern (Sado and Sines drainages) samples. This

separation was not so clear with mtDNA, since one sample

from the Tejo drainage grouped with the southern samples.

This could be related with ancestral polymorphism or with

admixture events between northern and southern sites

during the late Pleistocene. Nevertheless, both markers

indicate high levels of population differentiation in the

north (for microsatellites FST [ 0.23; and for mtDNA

UST [ 0.74) and lower levels in the south (FST \ 0.05;

UST \ 0.40). With microsatellites we detected strong sig-

nals of a recent population decrease in effective size, by

more than one order of magnitude, starting in the last

centuries. This is consistent with field observations

reporting a severe anthropogenic-driven population decline

in the last decades. On the contrary mtDNA suggested a

much older expansion. Overall, these results suggest that

the distribution of genetic diversity in C. lusitanicum is the

result of both ancient events related with drainage system

formation, and recent human activities. The potential effect

of population substructure generating genetic patterns

similar to a population decrease is discussed, as well as

the implications of these results for the conservation of

C. lusitanicum.

Keywords Endangered endemic Cyprinidae �
Chondrostoma lusitanicum � Demographic history �
Population structure � Microsatellites �Mitochondrial DNA

Introduction

Efforts to conserve endangered populations are increas-

ingly based on both ecological and genetic data. In

particular, neutral genetic markers have proven very useful

to describe genetic diversity both within and among pop-

ulations, and infer their demographic history (e.g., Saillant

et al. 2004; Mesquita et al. 2005; Goossens et al. 2006). It

is also increasingly recognised that the separation of

ancient and recent demographic events is crucial for an

efficient management of endangered species (Chikhi and

Bruford 2005). For instance, a low genetic diversity could

be the result either of small long-term effective population
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size (Ne) or of a recent population collapse. In the latter

case, it would be urgent to take management measures,

whereas in the former case, the low diversity could rep-

resent the natural state of the species. However, it is

difficult to quantify the relative importance of ancient vs.

recent events since the same genetic pattern can be found

as the result of very distinct demographic histories.

Nevertheless, in the last decades, the use of different types

of markers, such as microsatellites and mtDNA, and recent

algorithms have shown that it is possible to detect genetic

signatures of major demographic events, such as popula-

tion collapses and expansions, that have occurred in

different time scales (e.g., Chikhi et al. 2002; Storz and

Beaumont 2002; Saillant et al. 2004; Gagnon and Angers

2006; Goossens et al. 2006).

Chondrostoma lusitanicum Collares-Pereira 1980 is a

small Iberian endemic cyprinid fish listed as critically

endangered in the Portuguese Vertebrate Red Data Book

(Cabral et al. 2005), with a distribution area restricted to

some tributaries of the Tejo and Sado drainages, and

some small coastal Atlantic basins, in Portugal (Fig. 1).

Individuals are usually found in shallow streams with

medium flow currents and some vegetation on the banks

(Alves and Coelho 1994). Field observations suggest that

most populations suffered severe demographic decline

and habitat fragmentation in recent years due to anthro-

pogenic impact (Alves and Coelho 1994; Cabral et al.

2005). Studies using allozyme data of C. lusitanicum have

shown a high degree of population subdivision within

Tejo drainage (Alves and Coelho 1994), and between

these and populations from the Samarra and Sado drain-

ages (Coelho et al. 1997). More recent studies using

mtDNA data (Mesquita et al. 2001; Robalo et al. 2007)

showed that the high levels of between-drainage differ-

entiation are typically observed in C. lusitanicum,

particularly between the Tejo and the southern Sado

drainage populations.

In the present study we aim to complement the above

mentioned allozyme and mtDNA studies, through the use

of nuclear microsatellite markers associated with more

extensive sampling of individuals. In particular, the

objectives were to: (i) determine the amount of genetic

diversity within the different rivers sampled, (ii) describe

the patterns of genetic differentiation between rivers using

both classical and more recently developed clustering

methods, and (iii) detect, quantify and date potential

demographic events, more specifically bottlenecks or

expansions. Furthermore, (iv) we compare the results

obtained for mtDNA and microsatellites, and discuss the

problems arising when trying to separate recent from

ancient demographic events. Finally, (v) we discuss the

implications of these results for the conservation of

C. lusitanicum.

Material and methods

Sampling, microsatellite genotyping and cytochrome b

sequencing

A total of 212 individuals were collected by electrofishing

(specimens were returned to the stream) at 6 locations that

comprise the geographical range of C. lusitanicum: 43 from

SM1 sample (small Samarra drainage), 48 from TJ1 (Tejo

drainage), 40 from TJ2 (Tejo drainage), 30 from SD1

(Sado drainage), 21 from SD2 (Sado drainage) and 30 from

SN1 (small Sines drainage) (Fig. 1). All samples were

collected once between January and February 2005. For

SM1, there was an extra sampling in December 2005. The

clips from pelvic fins were preserved in 100% ethanol at

4�C and genomic DNA was extracted following the

adapted proteinase K/phenol-chloroform protocol descri-

bed in Mesquita et al. (2003).

The totality of individuals was genotyped for six mi-

crosatellite loci that exhibit polymorphism in other

cyprinid species of the Leuciscinae family, using three

primers from Luxilus cornutu (LCO3, LCO4 and LCO5;

Turner et al. 2004), two primers from Squalius aradensis

(N7J4 and N7K4; Mesquita et al. 2003) and one primer

from Squalius alburnoides (E1G6; Pala and Coelho 2005).

The PCR reactions followed the conditions used by

Mesquita et al. (2003). The amplified products were

analysed with an automated sequencer (CEQ 2000XL –

Beckman Coulter). The allele lengths were determined

using the CEQTM 8000 Genetic Analysis System (Beckman

Coulter). In order to detect amplification errors due to the

presence of null alleles, stuttering or large allele dropout,

the bootstrap approach implemented in MICRO-

CHECKER 2.2.3 was used (Van Oosterhout et al. 2004).

Amplification and sequencing of 1128 bp of the mtDNA

cytochrome b gene were undertaken for a subset of 82

sampled individuals: 17 from SM1, 15 from TJ1, 25 from

TJ2, 10 from SD1, 6 from SD2 and 9 from SN1. The

cytochrome b gene was amplified using the same primers

and conditions as in Mesquita et al. (2001). Double-stran-

ded amplification products were purified with QUIAquick

PCR purification Kit (Quiagen) and sequenced in both

directions, with the same primers, by MACROGENE*.

Cytochrome b sequences were aligned using SEQUEN-

CHER version 4.1 (Gene Codes Corporation).

Microsatellite data analysis—genetic diversity and

population structure

Genetic diversity was measured as the mean allelic rich-

ness (AR), mean number of alleles across loci (MNA),

observed heterozygosity (Ho), and unbiased expected
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heterozygosity (He) estimated according to Nei (1978).

Departures from linkage equilibrium, estimated with the

correlation coefficient of Weir (1979), were assessed with

10,000 permutations. These analyses were performed using

the GENETIX 4.01 software (Belkhir et al. 2000), with the

exception of allelic richness which was computed using

HP-RARE (Kalinowski 2005).

We used two approaches to analyse population struc-

ture: F-statistics and model-based clustering algorithms

that detect hidden population structure. Wright’s F-statis-

tics were estimated according to the method of Weir and

Cockerham (1984) and their significance was tested with

10,000 permutations using the GENETIX 4.01 (Belkhir

et al. 2000). We used the method of Vitalis and Couvet

(2001), implemented in ESTIM 1.0, to estimate the

parameter F for each sample, which is a measure of pop-

ulation substructure (equivalent to a within population

measure of FST). Since northern populations (SM1, TJ1

and TJ2) exhibited large pairwise FST values whereas

southern populations (SD1, SD2 and SN1) only exhibited

low pairwise FST values, we analysed the two sets inde-

pendently. This analysis was performed to quantify the

effect of population structure on the signals of population

collapse (see below).

The hidden population genetic structure was examined

using two Bayesian model-based clustering approaches

developed by Pritchard et al. (2000) and Dawson and

Belkhir (2001). These methods aim at detecting the struc-

ture of a genetic sample without prior information on the

geographical origin of individuals. Hence, they do not

depend on the units defined by our sampling strategy and

try to recover any hidden partition in the data.

The Pritchard et al. (2000) and Falush et al. (2003)

method, implemented in STRUCTURE 2.1, groups indi-

viduals into K homogeneous clusters (populations) using a

Markov chain Monte Carlo (MCMC) approach. In order to

estimate the number K of genetically differentiated popu-

lations, we ran the program for a range of K values, and

analysed the distribution of the ‘estimated likelihood of K’

for each clustering result, which is an ad hoc approxima-

tion of the likelihood of K. We also applied the Evanno

et al. (2005) ad hoc summary statistic DK, which is based

on the rate of change of the ‘estimated likelihood’ between

successive K values. Simulations indicate that the K value

with higher DK corresponds to the uppermost hierarchical

level of population structure (Evanno et al. 2005). We ran

the program under the admixture and no admixture models,

considering independent allele frequencies, for K values

between 1 and 8. For each K value, we performed 20 runs

with a 104 burnin period followed by 104 steps (we tested

different run lengths ranging from 104 to 106 and found that

convergence was achieved after 104 steps). The average

and standard deviation of the ‘log estimated likelihood’

[L(K)] were calculated for each K value, to obtain the

values of the DK statistic as DK = m(|L(K + 1)–2L(K) +

L(K–1)|)/s[L(K)], where m and s represent the average and

standard deviation of the corresponding values across 20

runs, respectively.

The Dawson and Belkhir (2001) method implemented in

PARTITION 2 program also uses a MCMC approach, but

Fig. 1 Sampling site locations

and distribution range of C.
lusitanicum. Sampled drainages:

small Samarra drainage: SM1

(n = 43); Tejo drainage: TJ1

(n = 48), TJ2 (n = 40); Sado

drainage: SD1 (n = 30), SD2

(n = 21); small Sines drainage:

SN1 (n = 30). The independent

small drainage systems are

boxed
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contrary to the Pritchard et al. (2000) method, in this case

the number K of genetically differentiated populations

(partitions) is considered a parameter of the model. It

becomes therefore possible to estimate the posterior prob-

ability distribution of K, i.e., the probability distribution of

K given the observed genotypes. We set the maximum

value of K = 8 and ran 3 independent MCMC chains, with

different starting values and random seeds, for at least 106

steps, discarding the first 104 (burnin period).

Microsatellite data analysis—demographic history

The detection of changes in effective population size was

investigated using three different but complementary

approaches as in Goossens et al. (2006). The first uses

summary statistics to detect population size changes, while

the others are full-likelihood Bayesian methods that permit

to detect, quantify and date the changes in population

effective size.

The first approach, developed by Cornuet and Luikart

(1996), is implemented in BOTTLENECK 1.2.02 program.

In order to test for significant deviations from the null

hypothesis (stationary population), 10,000 He values were

simulated and compared to the observed values, using the

Wilcoxon Sign Rank Test, under three mutational models:

infinite allele model (I.A.M.), stepwise mutation model

(S.M.M.), and a two-phase model (T.P.M.), in which, 30%

of mutations were allowed to occur in a multi-step manner.

The Beaumont (1999) method implemented in the

MSVAR 0.4.2 program assumes that a stable population of

size N1 started to decrease (or increase) ta generations ago

to the current population size, N0. The change in population

size is assumed to be either linear or exponential, and

mutations are assumed to occur under a SMM model, with

rate h = 2N0l, where l is the locus mutation rate. Using a

Bayesian coalescent-based MCMC approach, the method

estimates the posterior probability distributions of (1) the

magnitude of population size change r = N0/N1, (2) the

time since the population started changing size tf = ta/N0,

scaled by N0, and (3) the scaled mutation rate h = 2N0l.

The method uses the information present in the full allelic

distribution allowing the quantification of the population

increase or decrease. However, this cannot be dated since

time is scaled by N0, which remains unknown. For each

sampled population the analyses were performed both

under the linear and exponential models and at least three

independent runs were performed, using different param-

eter configurations, starting values and random seeds. In

this method, wide uniform prior distributions were chosen

(between –5 and 5 on a log10 scale) for log(r), log(h), and

log(tf). Positive log(r) values, corresponding to a popula-

tion expansion, were set as the MCMC starting point. The

total number of iterations was always larger than 2.9 · 109

with a thinning interval varying between 2.5 · 104 and

5.0 · 104.

For the sampled populations where we detected a strong

signal of population expansion or collapse, we used the

method developed by Storz and Beaumont (2002) imple-

mented in the MSVAR 1.3 program to quantify the

effective population sizes N0 and N1, as well as the time T

since the population change (in generations). In order to

express time in years we considered that the generation

time of C. lusitanicum was 2 years, based on data from the

closely-related C. almacai (Magalhães et al. 2003) that

until the work by Coelho et al. (2005) was classified as C.

lusitanicum. In this model, prior distributions for N0, N1, T,

and h, are assumed to be log normal. Wide ‘uninformative’

priors and multiple runs with different starting points and

different hyperprior parameters were used. At least 5 runs

were performed for each sample with a total number of

iterations always larger than 3.6 · 109 steps. Different sets

of priors were used to test their influence on the posteriors,

but in most of the runs we set prior means for N0, N1, T (on

a log10 scale) with means 4.0, 4.0 and 5.0, respectively;

varying the standard deviations between 1 and 5. For h we

set a mean of –3.5 with standard deviation of 0.25, so that

values for the mutation rate in the region 10–4 to 10–3 had

reasonable support, as widely assumed in demographic

analysis (Storz and Beaumont 2002). Since we were

interested in separating anthropogenic from evolutionary

factors in causing signals of population collapse we tried to

estimate the relative probability of recent versus ancient

events by determining whether the data favoured events

that were older or more recent than T = 100 years. In

practice, the weights of evidence of the hypothesis that

time is £100 years vs [100 years, were assessed using

approximate ‘‘Bayes factors’’ (bf), i.e., the ratio of the

posterior densities of the two alternative hypothesis, over

the ratio of the prior densities of the same two alternative

hypothesis. Since this date is to some extent arbitrary we

repeated the analysis for T = 1000 years. Bayes factors

greater than 3 indicate positive evidence and greater than 7

are usually considered significant (e.g., Storz and Beau-

mont 2002).

It is worth noting that the two Bayesian analyses were

performed using the monomorphic locus E1G6. While it

may seem counterintuitive to use a monomorphic locus in

analyses trying to quantify changes in population sizes, it has

been shown by Beaumont (1999) that the exclusion of

monomorphic loci can lead to an overestimation (rather than

an underestimation) of the population decrease magnitude

(as measured by log(N0/N1)). Moreover, in the dataset

analysed by Beaumont (1999), the monomorphic loci were

polymorphic in a related species. This situation is very

similar to ours since E1G6 is polymorphic in C. almacai.
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However, in order to test if there was any bias related with

the inclusion of this locus, we repeated some of the MSVAR

0.4.2 analyses using the data without this locus. Due to the

fact that the method is computationally demanding we only

repeated the analyses for the exponential model.

The fact that C. lusitanicum populations appeared to be

highly differentiated suggests that substructure could lead

to an overestimate of the population collapse’s magnitude

(see Goossens et al. 2006 for a discussion). To test if there

was a relationship between population substructure and

MSVAR results, we looked at whether the magnitude of

population collapse was affected by the amount of popu-

lation structure by means of a regression of the F estimates

(obtained for each sample with ESTIM) over the posterior

modes of Log(N0/N1).

mtDNA cytochrome b analysis—genetic variability and

population structure

Genetic diversity was measured in each sample as the

number of haplotypes, haplotype diversity (h) and nucle-

otide diversity (p) using ARLEQUIN v.3.01 (Excoffier

et al. 2005).

We used three approaches to investigate the population

structure based on cytochrome b sequences: UST statistics,

haplotype-network and model-based clustering algorithms

that detect hidden population structure.

Pairwise UST statistics were computed according to

Excoffier et al. (1992), and significant departures from the

null hypothesis (no genetic differentiation) were tested

after 10,000 permutations using ARLEQUIN v.3.01 (Ex-

coffier et al. 2005). The geographic distribution pattern of

haploypes was investigated with a haplotype-network

constructed using the median-joining algorithm of NET-

WORK 4.1.1.2 (Bandelt et al. 1999). The hidden

population structure was investigated using the program

BAPS 4.1 (Corander et al. 2007), which allows the analysis

of sequence data. Given a maximum value of partitions, the

algorithm uses a stochastic optimization procedure to find

the clustering solution with the highest ‘marginal likeli-

hood’ of K (i.e., an approximation of the most probable

number of differentiated genetic populations conditional on

observed data). We set the maximum number of partitions

K ranging from 2 to 8, and in each case, we ran the analysis

20 times, recording the best partition found and the cor-

responding ‘marginal likelihood’.

mtDNA cytochrome b analysis—demographic history

Two approaches were used to investigate the demographic

history of C. lusitanicum using cytochrome b sequences:

the first was based on summary statistics and the second on

the mismatch-distribution.

First, a set of statistics were computed that are known to

be affected by the demographic history of populations,

namely Tajima’s (1989) D, Fu’s (1997) FS statistic, as

implemented in ARLEQUIN 3.01 (Excoffier et al. 2005),

and Fu and Li’s (1993) D* and F* statistics, as imple-

mented in DNASP 4.10.4 (Rozas et al. 2003). Significance

of these statistics was assessed using 10,000 coalescent

simulations based on the observed number of segregating

sites in each sample.

Second, the parameters of a sudden demographic

expansion were estimated based on the mismatch-distri-

butions mean and variance, according to Excoffier et al.

(2005). The specific hypothesis of a sudden expansion

according to the estimated parameters was tested using the

‘sum of square differences’ statistic (SSD), which com-

pares the observed (mismatch) distribution of pairwise

differences between individuals to the expected under the

expansion hypothesis. The significance of SSD was asses-

sed with 10,000 parametric bootstrap replicates (Schneider

and Excoffier 1999), as implemented in ARLEQUIN 3.01.

A rough estimate of the time since the expansion was

achieved according to the relation s = 2ut, where s is mode

of the mismatch distribution, u is the mutation rate per

generation of the DNA region under study, and t is the time

in generations since demographic expansion (Rogers and

Harpending 1992). Values of s were estimated using AR-

LEQUIN 3.01, u values were obtained as lmT, where l is

the mutation rate per nucleotide and mT the number of

nucleotides assayed. The values of l used were based on

the most recent and accepted molecular clock for cyto-

chrome b in cyprinids, calibrated by Dowling et al. (2002),

namely 1.05% (unconstrained) and 1.31% (constrained)

divergence per pairwise comparison per million years

(MY).

Results

Genetic diversity within samples

As Table 1 shows, with the exception of locus E1G6, all

loci were polymorphic with five to fifteen alleles per locus

across samples. Locus LCO4 was monomorphic in the SD2

and SN1 samples. The mean allelic richness per locus per

population was low and varied between 1.95 in SN1 and

3.42 in TJ1. Averaged expected heterozygosity (He) across

loci ranged from 0.23 in SN1 to 0.35 in SM1. Despite these

differences on the average He, all samples exhibited high

standard deviations of He with overlapping values among

samples, suggesting that estimates based on these loci

should not be taken at face value and hence that there are
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Table 1 Genetic diversity measures for microsatellite data estimated for each sampled location

Sample SM1 TJ1 TJ2 SD1 SD2 SN1 Na

Microsatellite locus n = 43 n = 48 n = 40 n = 30 n = 21 n = 30

LCO3

Allelic range 245–255 245–259 247–249 247–251 247–249 247–249 6

Nb alleles 3 3 2 3 2 2

He 0.1726 0.1436 0.0962 0.3712 0.2509 0.3339

Ho 0.1860 0.0870 0.1000 0.4667 0.2857 0.2759

FIS –0.0790 0.3970 –0.0400 –0.2630 –0.1430 0.1760

N.S. * N.S. N.S. N.S. N.S.

LCO4

Allelic range 239–257 227–269 229–275 235–237 237 237 15

Nb alleles 5 10 6 2 1 1

He 0.6107 0.7033 0.3152 0.1266 0.0000 0.0000

Ho 0.6279 0.7234 0.3500 0.1333 0.0000 0.0000

FIS –0.0290 –0.0290 –0.1120 –0.0550 – –

N.S. N.S. N.S. N.S. – –

LCO5

Allelic range 151–157 151–157 151–163 149–151 149–153 149–151 6

Nb alleles 3 2 3 2 3 2

He 0.5480 0.3130 0.0972 0.4881 0.4170 0.5079

Ho 0.4884 0.3404 0.1000 0.4667 0.5238 0.6333

FIS 0.1100 –0.0890 –0.0300 0.0450 –0.2640 –0.2520

N.S. N.S. N.S. N.S. N.S. N.S.

E1G6

Allelic range 171 171 171 171 171 171 1

Nb alleles 1 1 1 1 1 1

He 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Ho 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FIS – – – – – –

N7J4

Allelic range 111–113 111–113 113–133 113 113–117 107–113 5

Nb alleles 2 2 2 1 2 2

He 0.2079 0.0612 0.4807 0.0000 0.3159 0.1266

Ho 0.1860 0.0625 0.7750 0.0000 0.3810 0.1333

FIS 0.1060 –0.0220 –0.6250 – –0.2120 –0.0550

N.S. N.S. *** – N.S. N.S.

N7K4

Allelic range 152–170 156–170 154–170 158–168 158–170 158–170 10

Nb alleles 5 6 7 5 5 4

He 0.5871 0.7129 0.5453 0.5814 0.4782 0.4136

Ho 0.5116 0.7111 0.4500 0.5862 0.5500 0.3571

FIS 0.1300 0.0020 0.1770 –0.0080 –0.1550 0.1390

N.S. N.S. N.S. N.S. N.S. N.S.
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no obvious differences in genetic diversity across popula-

tions. No consistent signal was found for Linkage

Disequilibrium, suggesting that the loci can be considered

independent for the analyses performed here. No null

alleles or other amplification errors were detected with

MICRO-CHECKER.

The alignment of the 82 cytochrome b sequences was

straightforward, and within the aligned 945 bp, 41 substi-

tutions were found (GenBank Accession Numbers

EU015994–EU016075). A total of 20 haplotypes were

detected, with an overall haplotype diversity (h) of 0.90

(±0.02), and a nucleotide diversity of 0.0121 (±0.0003).

We found two shared haplotypes among samples: haplo-

types 15 and 17. Haplotype 15 was found in SN1 and both

samples from the Sado drainage (SD1, SD2), and haplotype

17 was found in SN1 and SD1 samples. There were,

however, no other shared haplotypes between samples. The

number of haplotypes within each sample varied between 1

in SM1 and 10 in TJ2 (Table 2). Similarly, and excluding

the non variable SM1 population, h and p varied markedly

among samples, with values ranging from 0.45 to 0.88; and

0.0007 to 0.0065, respectively, the highest values being

observed in TJ2. Samples TJ1, SD1, SD2 and SN1 exhibit

similar h and p values (Table 2).

Population structure—F and U statistics

For microsatellite data, we found a considerable level of

genetic differentiation over all samples (average FST =

0.390; P \ 0.001). Table 3 shows however, that the

pairwise FST values were not distributed evenly and ranged

from a low 0.011 (NS) to a very high and highly significant

0.536 (P \ 0.001). In fact, most values were above 0.22

with the exception of the three pairwise comparisons of the

southernmost SD1, SD2 and SN1 samples for which FST

were all below 0.05.

For mtDNA data, pairwise UST values ranged from

0.107 (NS) to 0.993 and all were significant, apart from the

comparison between SD1 and SD2, both located in the

south (Table 3). As with microsatellite data, we found that

differentiation was lower between the southern SD1, SD2

and SN1 samples than in the other comparisons, but the

signal is not as clear as for microsatellites, as UST values as

high as 0.4 are found between southern samples.

As Fig. 2 shows, the haplotype-network is divided in

two sets of haplotypes separated by a minimum of 13

mutations. The higher differentiation in the Samarra (H1)

and Tejo (H2–H14) drainage is evidenced by the absence

of shared haplotypes and higher distance between haplo-

types. The lower differentiation in the Sines and Sado

drainages (H15–H20) is evidenced by the group of closely

related haplotypes. The TJ2 sample has most of the hapl-

otypes closer to the southern samples (SD1, SD2 and SN1),

which explains the lower UST values.

Hidden population structure

The results found using STRUCTURE under the admixture

and no-admixture models were congruent, with likelihood

values slightly higher in the latter case. The maximum

value for the ‘estimated likelihood of K’ was found at

K = 8, but for K values higher than 4, the likelihood values

showed only a slight increase, suggesting the presence of 4

differentiated populations (Supplementary Figure S1).

However, the DK distribution showed a bimodal distribu-

tion with a higher peak at K = 2 and a lower peak at K = 4,

Table 1 continued

Sample SM1 TJ1 TJ2 SD1 SD2 SN1 Na

Total

He 0.3544 0.3223 0.2557 0.2612 0.2437 0.2303

SD He 0.2438 0.3284 0.2900 0.2614 0.2444 0.2433

Ho 0.3333 0.3207 0.2958 0.2755 0.2901 0.2333

He1 0.4253 0.3868 0.3069 0.3134 0.2924 0.2764

SD He1 0.2023 0.3224 0.2808 0.2503 0.2224 0.2402

Ho1 0.4000 0.3849 0.355 0.3306 0.3481 0.2799

FIS 0.0601 0.0050 –0.1591 –0.0556 –0.1963 –0.0129

N.S. N.S. ** N.S. * N.S.

AR 2.91 3.42 3.00 2.21 2.33 1,95

AR1 3.29 3.90 3.40 2.45 2.60 2.14

Average number of alleles per locus across samples (Na), unbiased expected Heterozygosity (He), observed Heterozygosity (Ho), mean allelic

richness per sample (AR) and FIS values for all loci and samples

N.S. non significant, * P \ 0.05, ** P \ 0,01, *** P \ 0.001, n sample size, SD standard deviation. 1 locus E1G6 not considered
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which, as noted by Evanno et al. (2005), suggests a hier-

archic genetic structure comprising, in this case, two

differentiated groups at the uppermost level. For K = 2 the

individuals from SM1, TJ1 and TJ2 samples were always

separated from the individuals from SD1, SD2 and SN1

(Fig. 3a). As suggested by Evanno et al. (2005), we repe-

ated the analysis within each of these two groups in order

to detect lower level structure. In each analysis, we set K to

vary between 1 and 5. For the SM1, TJ1, TJ2 group, the

distribution of DK exhibited two peaks of similar height at

K = 2 and K = 3, both when assuming admixture and no

admixture. In the first case (K = 2), individuals from SM1

and TJ2 form two distinct populations, with TJ1 appearing

as a mixture of these two populations (Fig. 3b). In the

second case (K = 3), SM1, TJ2 and TJ1 samples corre-

spond to three differentiated populations, with some signals

of admixture or migration (Fig. 3c). For the SD1, SD2,

SN1 group, the highest likelihood of K values was found

for K = 1 (implying that DK could not be computed),

Table 2 Genetic diversity measures for cytochrome b (mtDNA) estimated for each sampled location

SM1 TJ1 TJ2 SD1 SD2 SN1

n = 17 n = 15 n = 25 n = 10 n = 6 n = 9

S 0 3 27 3 1 2

N 1 3 10 4 3 2

h 0.00 ± 0.00 0.45 ± 0.13 0.88 ± 0.04 0.53 ± 0.18 0.53 ± 0.17 0.55 ± 0.17

p 0.0000 ± 0.0000 0.0007 ± 0.0006 0.0065 ± 0.0028 0.0008 ± 0.0007 0.0006 ± 0.0006 0.0009 ± 0.0008

j 0.00 ± 0.00 0.61 ± 0.51 6.10 ± 3.00 0.76 ± 0.61 0.53 ± 0.51 0.89 ± 0.68

Number of segregating sites (S), number of haplotypes (N), haplotype diversity (h), nucleotide diversity (p) and mean number of pairwise

differences between haplotypes (k). Sequences have GenBank Accession Numbers EU015994–EU016075

Table 3 Estimated pairwise FST (microsatellite data, above

diagonal), and pairwise UST (cyt. b mtDNA data, below diagonal)

SM1 TJ1 TJ2 SD1 SD2 SN1

SM1 0.232 0.407 0.396 0.403 0.437

TJ1 0.945 0.226 0.430 0.456 0.469

TJ2 0.809 0.779 0.521 0.530 0.536

SD1 0.986 0.964 0.435 0.039 0.011NS

SD2 0.993 0.968 0.399 0.107NS 0.047

SN1 0.985 0.963 0.452 0.197 0.400

NS non significant (P [ 0.05)

Fig. 2 Median-joining network

of cytochrome b haplotypes.

SM1 ( ), TJ1 ( ), TJ2 ( ),

SN1(h), SN2 ( ), SDI(j)
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confirming that there is no strong differentiation between

these samples (Fig. 3d).

The posterior distribution of K obtained with PARTI-

TION had a maximum at K = 2 (Supplementary Table S1),

with individuals of SM1, TJ1 and TJ2 co-assigned to one

population, and individuals of SD1, SD2 and SN1 co-

assigned to the other population, as in STRUCTURE

analysis. Within the northern group, the maximum pos-

terior distribution of K was for K = 2, whereas in the

southern group, it was for K = 1.

For mtDNA data the maximum ‘marginal likelihood’

found with BAPS was at K = 5. However, one of the

clusters contained only 3 individuals and the ‘marginal

likelihood’ of K = 5 was very similar to K = 4. In a recent

simulation study, Latch et al. (2006) have suggested that

BAPS tends to overestimate K creating sometimes artificial

clusters with few individuals. In such cases, these authors

showed that one should preferentially choose the lowest K

value. In this case, this suggests that mtDNA also supports

a partition comprising four differentiated populations. As

with microsatellite data, SM1, TJ1 and TJ2 correspond to

three well-identified and differentiated populations, with 3

individuals from TJ2 sample being closest to TJ1 haplo-

types, whereas SD1, SD2 and SN1 are grouped into one

population. In order to determine whether individuals from

TJ1 and TJ2 identified as potential migrants using the

microsatellite data were potentially different at the mtDNA

level, we checked their cytochrome b sequences. None of

these individuals exhibited haplotypes that were closer to

the population identified as a potential source (TJ2 or

SM1). Moreover, it is noteworthy that for K = 2, we found

that TJ2 groups with the southern samples. These results

confirm that mtDNA and microsatellite data give different

results, in particular regarding the position of TJ2.

In sum, it appears that both markers and analyses are

consistent with a high differentiation in the northern sam-

ples, forming probably three subgroups, whereas southern

samples are much less differentiated from each other. At a

larger scale, microsatellites support a major division

between northern and southern samples (Fig. 3), whereas

mtDNA suggest the separation of northern SM1 and TJ1

samples from TJ2, SD1, SD2 and SN1.

Demographic history—detection of effective

population size expansions and collapses

For microsatellites the results of the BOTTLENECK

analysis showed that there is no strong or consistent signal

for a bottleneck departure from mutation drift equilibrium

under the different mutation models (Supplementary Table

S2). In fact, we found slightly significant P-values sug-

gesting a population expansion, rather than a population

decrease, in the three northern samples (SM1, TJ1 and TJ2)

under the SMM (stepwise mutation model).

Using the Beaumont (1999) method we found a clear

signal of population collapse in the northern samples (SM1,

TJ1, TJ2), and in the SN1 sample. As Fig. 4 shows,

regardless of the model (exponential versus linear), the

posterior mode (log(N0/N1) & –2) indicates a decrease in

effective population size of about two orders of magnitude.

Fig. 3 Most likely population

structure, obtained with

STRUCTURE under the ‘‘no

admixture’’ and ‘‘independent

frequencies’’ model (see text for

details)
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In SD1 and SD2, there is no support for demographic

collapse or expansion, the posterior distribution being

similar to the prior distribution. The results for the pos-

terior distribution of log(N0/N1) were similar whether we

used or excluded the monomorphoic locus (Supplementary

Figure S2). However, as shown by Beaumont (1999), the

distributions were shifted to the left, supporting even

higher population collapse magnitudes when the mono-

morphic locus was excluded.

We found a significant and positive linear correlation

between the magnitude of the population collapse and F

values (Supplementary Figure S3). Interestingly, the

expected value of Log(N0/N1) is –1.1, and not zero for

F = 0 (i.e., when there is no population structure), sug-

gesting that both population structure and a ten-fold

population collapse are responsible for the overall signal.

Figure 5 shows that the posterior distributions of log(N0)

and log(N1) have very limited overlap (it is highest for

SN1), with respective modes of approximately 2.0 (Ne &
100) and 4.0 (Ne & 10,000) in SM1, TJ1 and TJ2 sam-

ples, and 2.0 (Ne & 100) and 3.0 (Ne & 1000) in SN1.

This indicates a strong population collapse of the same

order of magnitude in northern samples (SM1, TJ1, TJ2),

and less dramatic in the southern sample SN1. Also, the

posteriors are very different from the priors and converged

approximately to the same distributions whatever the priors

used, which strongly suggest that the data contains a signal

for a population decrease. The posterior log(N0) distribu-

tions point to a reduced present effective population size,

with most values concentrated between approximately 1.1

and 2.5 in log scale (50% Highest posterior density –

HPD), corresponding to 15 and 300, respectively. The

posteriors distributions of log(T), the time since population

started to decrease, shows a mode around 3.0 (t & 1000

years) and a distribution skewed to the left in most runs,

with 50% HPD between 0 and 2,600 years, whichever prior

distribution was used. This would correspond to a popu-

lation decrease starting in the last centuries (Fig. 5). The

Bayes factors analysis indicates that there is positive

evidence for the hypothesis that the population collapse

took place in the last century (T £ 100 years) in SM1

(bf = 2.95). For the hypothesis of a population collapse

taking place in the last 10 centuries (T £ 1000 years),

significant evidence was found in SM1 (bf = 7.28), and

positive evidence was found in SN1 (bf = 4.38) and TJ2

(bf = 2.98).

For mtDNA data, none of the summary statistics used

(Tajima D, Fu FS, Fu and Li D* and F*) appears to show

values that are significantly different from zero, in any of

the samples. The mismatch distributions also appear to be

less informative due to the small sample sizes. Neverthe-

less, the distributions appear to fit a sudden expansion

model in all populations except SM1, corresponding to a

considerable demographic increase from a possibly very

low initial size (Supplementary Table S3). Despite the

broad confidence intervals, point estimates of the time

since expansion ranged from 32,000 years in TJ1 and SD2,

to 196,000 years in TJ2.

Discussion

Genetic diversity and differentiation

Overall, the microsatellite data showed that genetic diver-

sity was relatively low with expected heterozygosity (He)

values below 0.42 in all populations. Although compari-

sons with other species is a delicate issue due to

ascertainment biases (e.g., Turner et al. 2004), the average

He values across loci observed here are apparently lower or

similar to those observed in other endangered cyprinid

species such as Hybognathus amarus (He [ 0.57, Moyer

et al. 2005), Notropis mekistocholas (He [ 0.70, Saillant

et al. 2004) and the Iberian Squalius aradensis (0.24 \
He \ 0.64, Mesquita et al. 2005).

Given that all the loci used in the present study have

been identified in other species it is expected that

there should be an ascertainment bias leading to an
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Fig. 4 Posterior distributions of

the effective population size

change, log(N0/N1). Solid lines

correspond to the exponential

population size change model.

Dashed lines correspond to the

linear population size model.

Log(N0/N1) represents the ratio

of present (N0) to past (N1)

population size. The dashed

vertical line corresponds to the

absence of population size

change (Log(N0/N1) = 0). The

prior distribution is shown for

comparison (flat dotted line)
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underestimation of diversity in our species. Usually this

effect is not very strong but we could not quantify it

because no He values were available in the original studies,

with the exception of locus N7K4. For this locus, identified

in S. aradensis (Mesquita et al. 2003), our species does not

seem to exhibit a lower diversity, and hence this confirms

that the overall effect is probably not too strong. Moreover,

we note that results from other species using the same loci,

show similar ranges of He (Salguiero et al. 2003; Mesquita

et al. 2005; Osborne et al. 2006; Vyskocilová et al. 2007).

This indicates that the potential effect of using cross-spe-

cific loci is similar to that observed in other Leuciscinae

species.

Levels of mtDNA diversity were very heterogeneous

among populations and similar to those observed in the

Iberian endemic cyprinid S. aradensis (Mesquita et al.

2005). Apart from TJ2, mtDNA diversity was lower than

reported by Robalo et al. (2007) for C. lusitanicum and by

other authors for other freshwater fish species (e.g., Sal-

ducci et al. 2004; Moyer et al. 2005; Culling et al. 2006).

Together with the limited genetic diversity, our results

indicate a high level of genetic differentiation with most

pairwise FST values above 0.22 for the microsatellites and

above 0.40 for mtDNA. In agreement with these high FST

(and UST) values, the clustering methods tended to produce

congruent results for the range of K values examined. For

microsatellites, most approaches used allowed us to detect

a major difference between northern (SM1, TJ1, TJ2) and

southern (SD1, SD2, SN1) samples. At a finer scale, two or

three groups were identified among the three northern

samples whereas no substructure was observed in the

south. In the northern area, STRUCTURE and PARTI-

TION detected signals of recent migration or past

admixture events whereby TJ1 appeared as intermediate

between SM1 and TJ2 (Fig. 3b and 3c). From a biological

point of view, the possibility of recent migration events

between SM1 and TJ1 appears extremely unlikely since

they are located in different drainages, and there is no

evidence of human driven translocations. The possibility of

an admixture event involving parental populations from
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Fig. 5 Posterior distributions

for the past (N1) and present

(N0) effective population sizes,

and time since the population

collapse in years (T),

represented in log10 scale. The

solid lines correspond to the

posterior distribution obtained

by pooling independent MCMC

run. The different priors used

are shown for comparison for N0

and T, (dashed lines) and for N1

(dot-dash lines)
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different drainages (SM1 and TJ2) appears unlikely after

the geological separation of the drainage systems. There-

fore, we interpret these results as either indicating an old

admixture event (i.e., before the geological separation), or

indicating the ancestral polymorphism present in C. lusit-

anicum populations from the Tejo drainage. These results

stress the difficulty in interpreting the outputs from

STRUCTURE, and the other clustering methods without

some background biological information. While these

clustering methods can be quite powerful, particularly

when FST values are as high as those found here (Latch

et al. 2006), it is worth mentioning that they do not make

explicit assumptions about the demographic history, hence

making it difficult to interpret the results in terms of recent

or ancient past demographic events. This is of major

importance for conservation studies, as it would be crucial

to separate the effects of differentiation due to recent

anthropogenic effects from more natural causes such as

ancient differentiation due to drainage system formation.

For mtDNA, the picture was similar, but TJ2 tended to

cluster with southern rather than northern samples. This

result contrasts with the cytochrome b results found by

Robalo et al. (2007), who conclude that there is a clear

distinction between northern and southern C. lusitanicum

samples, and suggest that the southern populations from

Sado drainage could represent a different species. While

our microsatellite results show a high differentiation

between both groups, the results of mtDNA for TJ2 suggest

a more complex situation. It is difficult to say whether it

supports the specific level of differentiation suggested by

Robalo et al. (2007) because these authors did not have

access to samples from the left margin of the Tejo, repre-

sented here by TJ2 (Fig. 1). Our results suggest that efforts

should be put to get more samples from the left margin of

the Tejo to determine whether the separation is indeed

between northern and southern samples as suggested by

Robalo et al. (2007) and by the microsatellite data.

The fact that TJ2 has the higher nucleotide diversity

(Table 2) and that TJ2 haplotypes are present on both sides

of the long branch of the network and that, compared to the

other samples, occupy an intermediate position in the

network (Fig. 2) is worth considering. It could suggest that

this population is the result of an admixture event between

southern and northern populations, or that it corresponds to

the region from which the other areas were colonized.

Another possible explanation is that TJ2, being geograph-

ically intermediate, maintained a larger population and

hence a higher mtDNA diversity. It would then have had a

higher chance to maintain the ancestral polymorphism. We

currently favour this hypothesis as geological data suggest

that the Tejo and Sado basins were probably repeatedly

connected. We are not convinced that it would be easy to

determine the origin of the species. However, we believe

that it is difficult to separate these hypotheses at this stage

without developing a model-based approach that would be

outside the scope of the present study.

Demographic history

The microsatellite data suggest a decrease by more than

one order of magnitude in the effective population size of

SM1, TJ1, TJ2 and SN1. Although not completely precise,

the data also strongly suggest that this decline took place in

the last few centuries (Figs. 4 and 5). These signals are in

agreement with field observations reporting an 80% pop-

ulation decline in the last few decades, potentially due to

anthropogenic-driven habitat loss and fragmentation, and

introduction of exotic species (Cabral et al. 2005). While

the data strongly suggest that the genetic signal is due to

the recent population decline, we cannot reject the possi-

bility that the populations actually has been affected by an

older bottleneck that could have taken place in the last

1,000 years. We believe that the lack of strong and con-

sistent statistical support for a very recent decline

(\ 100 years) simply reflects the statistical uncertainty

carried by estimates based on a limited number of loci.

However, when we compare our results to those obtained

for the endangered cyprinid N. mekistocholas the level of

uncertainty is similar even though 22 loci were used by

Saillant et al. (2004). Also, in the present study the highest

probability densities clearly indicate a decrease that most

likely started less than 1,000 years ago (based on the

modes) which excludes major environmental or climatic

changes at the geological time scale as an explanation for

the observed patterns.

One of the possible caveats with the two Bayesian

approaches (implememented in MSVAR 0.4.2 and

MSVAR 1.3) is related with the assumption of a stepwise

mutation model (SMM). As Storz and Beaumont (2002)

pointed out, microsatellites evolving in a multi-step man-

ner can lead to gaps in the allele sizes distribution similar

to the ones generated by a population bottleneck. However,

multi-step changes appear infrequent relative to single-

step, and the hierarchical approach (MSVAR 1.3) seems to

be robust to small deviations from SMM model, since it

gives less weight to locus exhibiting atypical allele-size

distributions (Storz and Beaumont 2002).

Another potential caveat is the assumption of no sub-

structure within the samples. We found a significant linear

increase of the magnitude of population collapse signal

with increasing F values, suggesting that population sub-

structure could contribute to the apparent population

collapse signal found in C. lusitanicum populations.

However, when we take this factor into account there is

still a signal for a ten-fold collapse.
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The mtDNA data indicated a population expansion.

However, due to small sample sizes, this can be the related

with the lack of power to reject the null hypothesis of a

population expansion. The dating of these expansions,

while very imprecise suggests that they are approximately

1 to 2 orders of magnitude older than the time of population

collapse found with microsatellite data. The difference

between markers are not necessarily contradictory since the

two types of markers are likely to be influenced by

demographic events happening on different time scales,

hence stressing the need to use markers with different

mutation rates to address both conservation and biogeo-

graphical issues. As an example, Saillant et al. (2004) also

obtained evidence for a population expansion for mtDNA

and a population decrease with microsatellite data for the

endangered cyprinid N. mekistocholas.

Overall, our results suggest that the distribution of

genetic diversity in C. lusitanicum is both the result of old

geological processes and recent human activities. At a finer

scale, we found highly differentiated populations exhibit-

ing signals of population decrease in the north. In the

southern region we found populations exhibiting low levels

of genetic differentiation and less marked signals of pop-

ulation collapse.

The formation of the current drainage system can

explain, in part, these patterns. Nowadays, the distribution

area of C. lusitanicum is heterogeneous. The Samarra

region (SM1 sample), as well as the right margin of the

Tejo river (TJ1 sample), are characterized by a marked

orography, reaching altitudes of 679 m. In contrast, the

region comprising the left margin of the Tejo river (TJ2

sample) and the Sado drainage (SD1 and SD2 samples) is

very flat (alluvial flat) and the direction of flow is main-

tained by a minor slope (e.g., most of Sado drainage is

below 50 m). Recent studies using molecular data (Mesq-

uita 2005), indicate that the C. lusitanicum speciation

occurred in the Messinian (5.3–5.6 MYA). During the

Pliocene (5.0–1.6 MYA), geological data point to a gen-

eralized regression with both Tejo and Sado drainages

connected, comprising multiple channels connected with

each other (anastomosed rivers) (Kullberg et al. 2006). In

the Pleistocene (1.6–0.01 MYA), several regressions and

transgressions occurred due to glaciations. The last glacial

maximum was around 18,000 BP, coinciding with a sea

level drop of 120 m (Andrade et al. 2006). Hence, it is

possible that rivers in separated drainage systems were

connected in this emerged area. The distribution area of C.

lusitanicum could have been larger than today, and

potential gene flow could have occurred between previ-

ously separated areas, e.g., between Samarra (SM1) and

Tejo (TJ1 and TJ2), and between TJ2 and southern Sado

drainage (SD1, SD2) and SN1. Since 18,000 BP, there has

been an increase in temperature leading to a generalized

transgression. The sea invaded the fluvial systems causing

the isolation of C. lusitanicum populations and of drainage

systems (Andrade et al. 2006).

Our data also support that recent human impact in C.

lusitanicum populations, such as habitat degradation, (Ca-

bral et al. 2005), is contributing to the observed genetic

patterns. Microsatellite data suggest that populations have

experienced a recent population decrease from a very large

ancestral effective population size, around 10,000. This

supports the hypothesis that C. lusitanicum populations

were at high number in the past, and would probably be

very diverse. Thus, the genetic diversity patterns observed

today can represent the remaining of this ancestral poly-

morphism. It was not possible to precisely date the

beginning of the population decrease, but the genetic sig-

nature of a population collapse was clear and precise

enough to suggest that the events responsible for the pop-

ulation decrease are most probably recent, and related with

human impact.

Implications for conservation

Estimates of Ne obtained with MSVAR 1.3 range approx-

imately between 40 and 130 across samples, assuming a

model of population decrease. These estimates indicate that

local sampled populations have probably less than a few

hundred individuals, assuming that effective population

sizes in vertebrates are approximately three to ten times

smaller than census sizes (Frankham et al. 2002). Although

they are approximate, these figures are in agreement with

estimates of the census size of *10,000 individuals for the

entire C. lusitanicum distribution range (Cabral et al.

2005). Thus both genetic and census data suggest that local

C. lusitanicum populations are currently at a low level, and

that the effect of drift acting on these population can be

strong and led to erosion of genetic diversity. Hence, we

believe that local populations are probably undergoing a

process of population decrease, and hence there is a high

risk of becoming extinct in the next decades.

The high genetic differentiation found between popula-

tions could suggest that they were separated a long time

ago, and are evolving independently since then. According

to this interpretation, it would be tempting to define 4 ESUs

(‘‘Evolutionary Significant Units’’ (sensu Moritz 1994;

Waples 1991): SM1, TJ1, TJ2 and (SD1, SD2 and SN1).

However, the high level of genetic differenciation between

these tentative ESUs is to some extent at least the result of a

recent demographic collapse. Therefore, it is at this stage

difficult to define four ESUs as long as we cannot clearly

separate ancient from recent as was pointed out by several

authors (e.g., Chikhi and Bruford 2005). Still, the critically

endangered status of C. lusitanicum suggest that a practical
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point of view should be taken. This is why we believe that

defining 2 ESUs, comprising the northern (Tejo and Sa-

marra) and southern (Sado and Sines) populations, would

probably be a safe and reasonable action, and we would

strongly advise against translocations between these

regions. We also believe the results presented here favour

the idea that more ESUs could be uncovered in the near

future. In particular, care should be taken when considering

translocations between the Samarra river and Tejo drainage.
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Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for

inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

Beaumont MA (1999) Detecting population expansion and decline

using microsatellites. Genetics 158:2013–2029

Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2000)

GENETIX 4.01, logiciel sous WindowsTM pour la génétique

des populations. Laboratoire Génome, Populations, Interactions,
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pp 369–395

Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE (2006) Relative

performance of Bayesian clustering software for inferring

population substructure and individual assignment at low levels

of population differentiation. Cons Gen 7:295–302
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Supplementary Tables

Table S1 – Posterior distribution for K, the number of hidden partitions, obtained with
PARTITION. The presented values correspond to the average and standard deviation
of the posterior distribution across independent MCMC runs.

K Whole microsatellite
dataset

Within North Group
(SM1, TJ1 and TJ2)

Within South Group
(SN1, SD1 and SD2)

1 0.308 ± 0.012 0.385 ± 0.000 0.980 ± 0.000
2 0.470 ± 0.012 0.433 ± 0.000 0.020 ± 0.000
3 0.174 ± 0.012 0.172 ± 0.000 0.000 ± 0.000
4 0.044 ± 0.013 0.010 ± 0.000 0.000 ± 0.000
5 0.003 ± 0.001 0.000 ± 0.000 0.000 ± 0.000
6 0.000 ± 0.000 - -
7 0.000 ± 0.000 - -
8 0.000 ± 0.000 - -

Table S2 – Bottleneck analysis. P-values for the heterozigosity excess ‘Wilcoxon signed rank
test’  obtained under three mutation models (I.A.M. infinite allele model, T.P.M. two-phase
model, S.M.M. stepwise mutation model). P-values < 0.05 indicate population decrease
(bottleneck), and P-values > 0.95 indicate population expansion.

Samples I.A.M. T.P.M S.M.M.
SM1 0.109 0.688 0.969
TJ1 0.594 0.953 0.969
TJ2 0.922 0.969 0.969
SD1 0.156 0.844 0.844
SD2 0.438 0.844 0.938
SN1 0.156 0.563 0.844

Table S3 - Demographic expansion model parameters estimated with mismatch distributions for each
sampled population. The 95% CI are shown within brackets. The P – value is for the null hypothesis of a
population expansion. For P-value > 0.05 the null hypothesis of a population expansion is not rejected.

τ θ0 θ1

 ¢ ¡

£¥ ¤§ ¦© ¨

0 0

0 0

0 0

0 0

Estimated time since expansion
(assuming 1,05% mutation rate)

Estimated time since expansion
(assuming 1,31% mutation rate)

SM1e - - - - - -

TJ1 0.80
(0.00 – 1.81)

0.0 1.95 0.93 40312
(0 - 91431)

32311
(0 - 73284)

TJ2 3.90
(0.00 – 6.48)

0.0 6.16 0.16 196523
(55311 – 326356)

157518
(44333 – 261663)

SD1 1.00
(0.00 – 2.38)

0.0 2.80 0.79 50390
(0.00 - 120071)

40389
(0.00 – 96240)

SD2 0.80
(0.00 - 2.03)

0.0 99999.99 0.32 40312
(0.00 - 102355)

32311
(0.00 - 82040)

SN1 2.00
(0.00 - 3.16)

0.0 1.77 0.44 100781
(0 - 159045)

80778
(0 - 127478)

τ - scaled time since expansion
θ0 - scaled population size at beginning of expansion
θ1 - scaled population size at present-day
e - not possible to perform the analysis
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Figure S1 - Distr ibution of the ‘Estimated log Likelihood of K’ L(K) and ∆∆∆∆K as a function of K.
This figure was obtained considering the whole microsatellite dataset (a); or considering only the
north group (b). For L(K) each point corresponds to the mean L(K) ± SD across 20 independent
MCMC runs. Solid lines correspond to results obtained under the “no admixture”  model, and dashed
lines correspond to results obtained under the “admixture”  model.

Figure S2 – Compar ison of the population decrease magnitude with and without the
monomorphic locus E1G6. This comparison was performed for the populations where we detected
signals of a population decrease: SM1, TJ1, TJ2 and SN1. Black lines correspond to the analysis
including the monomorphic locus. Blue lines correspond to the analysis excluding the monomorphic
locus.
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Figure S3 – Linear regression of the population collapse magnitude as a function of F values.
The size of the population collapse is represented by the mode of the posterior distribution of
Log(N0/N1). Solid lines and open circles correspond to the ‘exponential’  population change size
model (P = 0.061). Dashed lines and solid circles correspond to the ‘ linear’  population size model
(P = 0.041).
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Abstract

The endangered minnow Iberochondrostoma almacai is an endemic Iberian
cyprinid with a restricted and fragmented distribution. Here, we describe the
genetic structure of the species and infer its demographic history from six nuclear-

encoded microsatellite loci and mitochondrial cytochrome b sequences. Genetic
diversity was low (microsatelliteHeo0.45; mtDNA po0.0015), and both markers
resolved two groups: one from the northern Mira drainage and one from the

Arade and Bensafrim drainages. The relatively low differentiation between these
groups (0.09oFSTo0.29; 0.31o FST o0.57) suggests past headwater captures
and/or that populations were large until recently. The genetic diversity and

differentiation estimates were compared with those for other three endangered
cyprinids inhabiting similar intermittent rivers. Microsatellite data indicate a
population decrease in the last 100–2400 years, probably as a result of anthropo-

genic disturbance. Human activities together with an intermittent flow of
these rivers apparently led to local extinctions with consequent fragmentation
and contraction in range. We recognize two management units corresponding to
the two genetic groups identified. To maintain/increase genetic diversity,

we recommend habitat restoration actions and measures to increase gene
flow within and/or between the two units, under controlled reproductive pro-
grammes. Ecological experiments should be performed to ensure the success of

supplementation among the two units. Moreover, the reintroductions in unoccu-
pied drainages are suggested if further data confirm the presence of I. almacai in
the recent past.

Introduction

Habitat loss is a major cause of population decline in many

endangered species (Aparicio et al., 2000; Duncan & Lock-
wood, 2001; Fagan et al., 2002). Several studies demonstrate
effects on population structure and effective size, increasing

population differentiation (Salgueiro et al., 2003; Laroche &
Durand, 2004; Salducci et al., 2004; Cook, Bunn & Hughes,
2007), and leading to genetic signatures of population

decline (Garrigan, Marsh & Dowling, 2002; Goossens
et al., 2006; Sousa et al., 2008). In some species, however,
there were no effects detected (e.g. Garrigan et al., 2002;

Whitehead et al., 2003; Wilson, Hutchings & Ferguson,
2004).

In freshwater fish, most genetic studies are focused on
phylogeography and the long-term historical events related

with drainage system formation and/or glaciations (e.g.
Durand, 2000; Culling et al., 2006; Gagnon & Angers,
2006), and few studies address the effects of recent fragmen-

tation (but see Garrigan et al., 2002; Costello et al., 2003;

Knaepkens et al., 2004; Laroche & Durand, 2004). Never-
theless, they are either focused on the characterization
of population structure or on the detection of bottlenecks.

In this study, we jointly characterize the population struc-
ture and quantify population size changes using genetic data
and recently developed methods (Storz & Beaumont, 2002;

Jost, 2008). We illustrate the potential and applicability of
this approach that may be relevant to species with fragmen-
ted distributions (e.g. Knaepkens et al., 2004; Laroche &

Durand, 2004; Sousa et al., 2008). We analysed data from
the recently described Iberian minnow Iberochondrostoma
almacai (Coelho, Mesquita & Collares-Pereira, 2005), in

order to evaluate the effects of habitat fragmentation and
formulate conservation management strategies. We also
compared our results with other freshwater species inhabit-
ing similar intermittent rivers in south-western Iberian

Peninsula.
The Iberian Peninsula is characterized by the Mediterra-

nean hydrological system, with flooding events in the wet

season followed by complete drought in the dry season
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(Gasith & Resh, 1999). Water availability is thus an im-
portant stress factor caused by natural and/or human

pressures in these ecosystems (Moyle, 1995). Historically,
this region has undergone high anthropogenic impact (Mit-
termeier et al., 2004). Geological data show sudden mod-

ifications in the sedimentation system of southern Iberian
rivers over the last �2000 years, probably as the result of
human activities such as agriculture, channelling and graz-

ing (Dabrio et al., 2000; Lobo et al., 2005; Terrinha et al.,
2006).

Most south-western Iberian cyprinids exhibit low levels
of within-population genetic diversity and high differentia-

tion among populations (Alves et al., 2001; Mesquita et al.,
2005; Robalo et al., 2007b). This is the case in Iberochon-
drostoma lusitanicum and Anaecypris hispanica, which are

species with reported population declines and fragmentation
in the last few decades (Salgueiro et al., 2003; Sousa et al.,
2008). Several authors have argued that the genetic patterns

reflect the paleogeography (e.g. geomorphic evolution of
current drainage systems) (Almaça, 1995; Doadrio & Car-
mona, 2004; Mesquita et al., 2007; Robalo et al., 2007a;

Filipe et al., 2009), and/or that they reflect the dynamic
hydrological system and the associated stochastic fluctua-
tions in population size (Alves et al., 2001; Mesquita et al.,
2001). However, the effects of recent anthropogenic impact

are not yet fully understood.
The Iberian minnow I. almacai (Coelho et al., 2005) is

considered critically endangered by the Portuguese Verte-

brate Red List (Cabral et al., 2005). It exhibits a restricted
and fragmented range comprising the Mira, Arade and
Bensafrim drainages, in Portugal (Fig. 1). Previously, it was

classified as I. lusitanicum, which is found in the Sado and
Tejo drainages (Fig. 1). Part of the range of I. almacai is
under high human impact, with two dams in the Mira
drainage, and two in the Arade drainage (a third is under

construction). In fact, I. almacai has never been observed in
large water bodies, as it inhabits shallow streams with
medium flow currents and vegetation on the banks (Santos

& Ferreira, 2008). During the dry season, some river

sections become a series of isolated pools and some, like the
small Bensafrim drainage (BF1), go completely dry. This

increases fish mortality due to factors such as anoxia, food
scarcity, increased predation and anthropogenic activities as
water extraction and pollution (Magalhães et al., 2002b).

High adult mortality was also reported during wet-season
floods (Magalhães, Schlosser & Collares-Pereira, 2003). In
the dry season, most adults are found in isolated pools,

whereas juveniles tend to be found in small runs. Thus, both
pools and runs seem essential to dispersion and recoloniza-
tion of dewatered regions (Magalhães et al., 2002b). Repro-
duction occurs in the wet season between January and April,

and individuals reach maturity at two and live up to 4 years
(Magalhães et al., 2003). Field observations indicate an
ongoing decline in all local populations that in the last

decade was o30%, that is the present size reflects 470%
of the past population size (Cabral et al., 2005).

In this paper, we use variation in mitochondrial and

nuclear DNA (microsatellite loci) to address the genetic
structure of I. almacai and to quantify and date population
expansions or bottlenecks. We compared our results with

those for a similar study of the sister species, I. lusitanicum,
and two other cyprinids endemic to the Iberian Peninsula,
Squalius aradensis and A. hispanica. Squalius aradensis is
sympatric with I. almacai in the Arade drainage, and A.

hispanica is restricted to some tributaries of the southern
Guadiana drainage (Fig. 1). The four species inhabit similar
ecosystems characterized by strong droughts and by high

levels of human impact. These comparisons allowed identi-
fying differences/similarities in the patterns of genetic differ-
entiation in the different species, and provided relative

measures of the impact of habitat fragmentation in I.
almacai populations. We discuss potential consequences of
anthropogenic habitat fragmentation on genetic differentia-
tion and effective population sizes and we postulate that the

fragmented distribution of I. almacai is the result of a
distribution area contraction. We also use the results to
identify management units and to recommend conservation

guidelines for I. almacai.

Figure 1 Distribution area of Iberochondrosto-

ma almacai and sampling localities. MR1, MR2

(Mira drainage); AR1, AR2, AR3 (Arade drai-

nage) and BF1 (Bensafrim drainage). The

distribution of the sister species Iberochon-

drostoma lusitanicum is shown in the left

panel.
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Materials and methods

Sampling, microsatellite genotyping and
cytochrome b sequencing

A total of 192 individuals were collected by electrofishing at

six locations that encompass the geographical range of
I. almacai (Fig. 1). In the Mira drainage, 64 individuals were
sampled at two sites: MR1 (n=47) andMR2 (n=17); in the
Arade drainage a total of 116 individuals were sampled at

three sites: AR1 (n=50), AR2 (n=32) and AR3 (n=34);
and in the Bensafrim drainage 12 individuals were sampled
(BF1). Sampling effort per individual was significantly high-

er in the latter drainage because most river sections were dry
even during the wet season. Pelvic fin clips were preserved in
100% ethanol at 4 1C, and the fish were then returned to the

streams. DNA was extracted following the adapted protei-
nase K/phenol–chloroform protocol described in Mesquita
et al. (2003).

All fish were genotyped for six microsatellite loci using
three primer sets from Luxilus cornutus (LCO3, LCO4
and LCO5; Turner et al., 2004), two from S. aradensis
(N7J4 and N7K4; Mesquita et al., 2003) and one from

Squalius alburnoides (E1G6; Pala & Coelho, 2005) followed
by PCR reactions of Mesquita et al. (2003). The amplified
products were analysed with an automated sequencer

(CEQ 2000XL; Beckman Coulter, Fullerton, CA, USA).
Allele lengths were determined using the CEQTM 8000
Genetic Analysis System (Beckman Coulter, Fullerton, CA,

USA). To detect amplification errors due to the presence of
null alleles, stuttering or large allele dropout, we used the
MICRO-CHECKER 2.2.3 program (Van Oosterhout et al., 2004).

Amplification and sequencing of 946 basepairs (bp) of the
mtDNA cytochrome b gene were performed for 74 indivi-
duals: 13 from MR1, nine from MR2, 15 from ARD1, 12
fromARD2, 14 fromARD3 and 11 from BF1. The gene was

amplified using the primers and conditions of Mesquita et al.
(2001). Double-stranded amplification products were puri-
fied with QIAquick PCR purification kit (Qiagen, Hilden,

Germany) and sequenced in both directions with the same
primers, by Macrogene Inc. (Seul, South Korea). Cyto-
chrome b sequences were aligned using SEQUENCHER version

4.1 (Gene Codes Corporation, Ann Arbor, MI, USA).

Microsatellite data analysis

Genetic diversity was measured as mean allelic richness

(AR), observed heterozygosity (Ho) and unbiased expected
heterozygosity (He) estimated according to Nei (1978). Each
sample site was treated as one population given the lack of
information regarding the population boundaries in this

species. Departures from Hardy–Weinberg were assessed
comparing the observed FIS (Weir & Cockerham, 1984)
with its distribution after 10 000 permutations of alleles

among individuals. Departures from linkage equilibrium,
estimated with the correlation coefficient of Weir (1979),
were assessed with 10 000 permutations. The genetic

differentiation was measured with pairwise FST (Weir &

Cockerham, 1984), and pairwise Jost’s D (Jost, 2008).
Significant deviations from the null hypothesis of no differ-

entiation were assessed with 10 000 permutations of indivi-
duals among populations. These analyses were performed
using the GENETIX 4.04 software (Belkhir et al., 2004), with

the exception of allelic richness, which was computed using
MSA software (Dieringer & Schlotterer, 2003), and Jost’s
D, which was computed with R version 2.8.0 (R Develop-

ment Core Team, 2008).
Two methods were used to investigate the demographic

history of each sample site. First, we used BOTTLENECK 1.2.02
(Cornuet & Luikart, 1996) to detect population size

changes. To test for significant deviations from mutation–
drift equilibrium (stationary population), 10 000 He values
were simulated conditional on the number of alleles and

compared with the observed He values using the Wilcoxon
sign rank test. Three mutational models were considered:
infinite allele model (IAM), stepwise mutation model

(SMM) and a two-phase model, in which the default value
of 30% of mutations were allowed to occur in a multi-step
manner. Second, we used the Storz & Beaumont (2002)

method implemented in the MSVAR1.3 to detect, quantify and
date changes in population effective size. This is a model-
based Bayesian full-likelihood method that extracts infor-
mation from the allelic distribution. The model assumes that

a population of size N1 started to decrease (or increase)
exponentially t generations ago to the current population
size, N0. Mutations are assumed to occur under the SMM

model at a rate y=2N0m, where m is the mutation rate per
locus per generation. The method estimates the posterior
probability distributions of (1) the present day population

size N0; (2) the ancestral population size N1; (3) the time
since the population size started to change t in generations;
(4) the mutation rate m. To express time in years T, we
considered that the generation time of I. almacaiwas 2 years,

based on the data from Magalhães et al. (2003). Wide
uninformative priors and multiple runs with different start-
ing points were used for these analyses. For each sampled

population, three runs with 5� 109 steps were performed.
The details of the prior distributions are given in supporting
information Table S1.

To separate anthropogenic from long-term evolutionary
factors, we further analysed the posterior distributions
obtained for the time. The aim was to assess whether genetic

data were consistent with population size changes begin-
ning: (1) in the last few decades (as reported in field
observations); (2) in the last two millennia (as suggested by
geological data indicating human impact); (3) in the last

15 000–20 000BP (since the last glacial optimum). We used
‘Bayes factors’ (BFs) to measure the weight of evidence of
alternative time intervals. The BFs were computed for time

periods of 50 years in a sliding window from 1 to
20 000 years ago, allowing identification of the most likely
time period. This was carried out by considering two

alternative hypotheses, namely that (H1) the population
started to decrease during the time interval toTot+50
(t=1, 50, 100, . . ., 20 000); against (H2) the hypothesis that

it started in any other time period. A BF of 1.0 indicates that
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the two hypotheses are equally probable, whereas a value
41.0 favours H1.

Population substructure within sites can falsely generate a

signature of a population collapse (Wakeley, 1999; Beau-
mont, 2003). In general, a population collapse leads to allelic
distributions with few or no rare alleles (Cornuet & Luikart,

1996). This is identical to what is expected in a structured
population with low migration rates, as the rare alleles are
lost in each sub-population due to drift. Thus, it is possible

to obtain estimates indicating population decrease even if
the population size remained constant. This effect has never
been quantified and there is no method that accounts
explicitly for it. It is expected that higher levels of popula-

tion substructure (FST) would lead to larger estimates of the
magnitude of the population decrease. As an informal test,
we analysed the relationship between the population sub-

structure and the magnitude of the population collapse
estimated with MSVAR to exclude this possibility. As a
measure of population substructure, we used the FST esti-

mator for each population given by the software ESTIM

(Vitalis & Couvet, 2001). These values were then regressed
against the posterior medians of log (N0/N1) obtained with
MSVAR.

mtDNA cytochrome b analysis

Genetic diversity was measured in each sample as the
number of haplotypes (k), haplotype diversity (h) and
nucleotide diversity (p) using ARLEQUIN v.3.01 (Excoffier,

Laval & Schneider, 2005). Pairwise FST statistics were
computed according to Excoffier, Smouse & Quattro
(1992), and significant departures from the null hypothesis

(no genetic differentiation) were tested after 10 000 permu-
tations using ARLEQUIN v.3.01 (Excoffier et al., 2005). The
geographic distribution of haplotypes was visually investi-

gated with a haplotype network constructed using the
median-joining algorithm of NETWORK 4.1.1.2 (Bandelt,
1999). Population size changes based on cytochrome b
sequences were investigated with Tajima’s (1989) D and

Fu’s (1997) FS, as implemented in ARLEQUIN 3.01 (Excoffier
et al., 2005). Significant deviations from mutation-drift
equilibrium were assessed using 10 000 coalescent simula-

tions, based on the observed number of segregating sites in
each sample. A significant deviation can be interpreted as
the result of demographic history (population decrease or

expansion), population structure and/or selection. Assum-

ing that the locus is neutral, we interpreted the values

obtained as the result of the demographic history.

Results

Genetic diversity

All microsatellite loci were polymorphic with two to 14 alleles
across all sampled populations. Allelic richness per sample

was low and ranged from 2.5 in AR3 to 3.3 in AR2 (Table 1).
Genetic diversity (average He across loci) was low ranging
from 0.22 in AR3 to 0.45 in AR2 (Table 1). No consistent
deviations from Hardy–Weinberg or linkage equilibrium

were found, and there was no evidence for the presence of
null alleles, errors due to stuttering or large allele dropout.

Alignment of the 74 cytochrome b sequences was straight-

forward. Eight haplotypes were found, and the number per
sample varied between two and four (Table 2). Haplotype
diversity was relatively homogeneous among populations,

ranging from 0.55 to 0.74. Nucleotide diversity was low,
with AR3 and BF1 exhibiting the lowest values (�0.0005),
and the remaining samples ranging from 0.0010 in AR1 to
0.0015 in MR1.

Table 1 Genetic diversity measures for microsatellites (mean across loci)

MR1 MR2 AR1 AR2 AR3 BF1

n=47 n=17 n=50 n=32 n=34 n=12

He 0.271 0.368 0.421 0.451 0.223 0.378

Ho 0.252 0.359 0.406 0.487 0.219 0.383

FIS 0.07NS 0.02NS 0.04NS �0.08NS 0.02NS �0.01NS

AR 2.97 3.16 3.27 3.31 2.47 2.67

NS, non-significant (P40.05).

n, sample size; He, expected heterozygosity; Ho, observed heterozygosity; AR, allelic richness; MR1, MR2, samples from Mira drainage; AR1,

AR2, AR3, samples from Arade drainage; BF1, sample from Bensafrim drainage.

Table 2 Cytochrome b (mtDNA) haplotype frequency and genetic

diversity measures for each sampled location

MR1 MR2 AR1 AR2 AR3 BF1

n=13 n=9 n=15 N=12 n=14 n=11

H1 4 3

H2 7 4

H3 1 2

H4 1

H5 2 1 10 6

H6 7 5 4 5

H7 2 4

H8 4 2

nh 4 3 4 4 2 2

S 5 3 3 3 1 1

H 0.654 0.722 0.724 0.742 0.592 0.545

p 0.00152 0.00147 0.00097 0.00101 0.00047 0.00058

NS, non-significant (P40.05).

n, sample size; nh, number of haplotypes; S, number of segregating

sites; h, haplotype diversity; p, nucleotide diversity; MR1, MR2,

samples from Mira drainage; AR1, AR2, AR3, samples from Arade

drainage; BF1, sample from Bensafrim drainage.
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Population structure

For microsatellite data, we found a considerable level of

genetic differentiation over all samples (average FST=0.120;
Po0.001). The pairwise FST values ranged from a low 0.009
(NS) to a high and significant 0.290 (Po0.001). The highest
pairwise FST values (40.1) involved AR3 (Table 3). The

pairwise Jost’s D values (Jost, 2008) were similar to the FST

values, ranging from 0.003 to 0.197. All comparisons were
significant except AR1–AR2, suggesting that most samples

are genetically differentiated. For mtDNA cytochrome b
data, pairwise FST values ranged from �0.07 (NS) to 0.56
(Po0.001), and the pairwise FST ranged from �0.07 (NS) to

0.46 (Table 4). No significant differentiation was found
between the three pairs of samples: (MR1, MR2), (AR1,
AR2) and (AR3, BF1). For the other pairwise comparisons,

FST values were higher than 0.2. Table 4 and the haplo-
type network (Fig. 2) show that the two Mira river popula-
tions (MR1 andMR2) are similar to each other and share no
haplotypes with other populations. Therefore, both markers

point to a higher differentiation between the two Mira river
samples (MR1 and MR2) and the remaining ones.

Demographic history

For microsatellites, the BOTTLENECK results showed no
strong or consistent departure from the mutation-drift
equilibrium under the different mutation models, except for

sample AR2 under the IAM. However, the Storz & Beau-
mont (2002) method suggested a strong population decrease
in all sampled populations. As shown in Fig. 3, the data
support a scenario in which the ancestral effective size (N1)

was larger than today (N0). Among samples, the estimated
modes of logN0 ranged from 1.4 to 2.2 (N0 of 25 and 160),
whereas the modes of logN1 ranged from 3.9 to 4.3

(N148000). The posterior distributions for time since the
beginning of the decline (logT) showed modes around 2.5
and 3.1 (400–1300 years). The BFs are 44.0 for time

intervals between 100 and 2400 years ago (Fig. 4), support-
ing a recent population decrease that started most likely in
the last 2400 years, but not in the last century. We found no
significant linear relationship between the level of

Table 3 Microsatellite genetic differentiation

MR1 MR2 AR1 AR2 AR3 BF1

MR1 0.071 0.146 0.139 0.290 0.132

MR2 0.056 0.090 0.091 0.230 0.089

AR1 0.150 0.132 0.009NS 0.102 0.045

AR2 0.126 0.116 0.003NS 0.124 0.030

AR3 0.197 0.183 0.091 0.104 0.144

BF1 0.103 0.098 0.064 0.045 0.093

Pairwise FST values above diagonal and pairwise Jost’s D values

below diagonal.

NS, non-significant (P40.05).

MR1, MR2, samples from Mira drainage; AR1, AR2, AR3, samples

from Arade drainage; BF1, sample from Bensafrim drainage.

Table 4 Cytochrome b (mtDNA) genetic differentiation

MR1 MR2 AR1 AR2 AR3 BF1

MR1 �0.072NS 0.310 0.303 0.456 0.398

MR2 �0.074NS 0.277 0.267 0.437 0.371

AR1 0.308 0.361 �0.039NS 0.244 0.108NS

AR2 0.310 0.360 �0.019NS 0.287 0.157

AR3 0.504 0.565 0.356 0.418 �0.023NS

BF1 0.405 0.468 0.207 0.274 �0.023NS

Pairwise FST values above diagonal and pairwise FST values below

diagonal.

NS, non-significant (P40.05).

MR1,MR2, samples from Mira drainage; AR1, AR2, AR3, samples

from Arade drainage; BF1, sample from Bensafrim drainage.

Figure 2 Median-joining network of cytochrome b (mtDNA) se-

quences. The area of the circles corresponds to the frequency

of the different haplotypes. GenBank accession numbers

GU111431–GU111504.

(a) (b)

Figure 3 Present and past population sizes, and time since the

population size change. (a) posterior distribution for the present (N0)

and past (N1) effective size. (b) posterior distribution for the time (T)

since population collapse. Posterior distributions shown as solid lines:

grey (MR1, MR2), black (AR1, AR2 and AR3) and dashed black (BF1).

The dot and dot-dashed lines represent the prior distributions.
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substructure FST of each population and the corresponding
population collapse magnitude log (N0/N1) (R2=0.21;

P=0.20), suggesting that population substructure is not
the only cause for the signal of a population decrease. For
mtDNA data, the Tajima’s D and Fu’s FS had positive

values, which assuming neutrality suggest a population
bottleneck, but none were significant.

Discussion

Our microsatellite and mtDNA data demonstrate low ge-

netic diversity in I. almacai. Diversity is similar to that of the
sister species I. lusitanicum and lower than in other endan-
gered cyprinids, such as S. aradensis and A. hispanica (Table

5). Also, it is slightly lower than the average estimates of
microsatellite diversity in other freshwater fish (He=0.54;
DeWoody & Avise, 2000). However, because of possible

ascertainment bias, such comparisons should be treated as
provisionary. Recent studies point to the fact that the
selection of microsatellite loci, which is usually based on
the most polymorphic loci of a limited set of individuals,

may lead to an over- or under-estimation of genetic diversity
(e.g. Ellegren et al., 1997; Chikhi, 2008). Also, Turner et al.
(2004) showed no direct association of allelic variability

across related cyprinid species using the same set of
loci. Regarding cytochrome b nucleotide diversity, this was

also lower in I. almacai than in the other Iberian species
examined.

The genetic structure of I. almacai appears drainage
related, with moderate differentiation between the northern
samples from the Mira drainage and the southern samples

from the Bensafrim and Arade drainages (pairwise
FST40.09, and pairwise FST40.3). Two other Iberian
species, I. lusitanicum and S. aradensis, show much higher

levels of divergence among populations in different drai-
nages (Table 5). Moreover for Squalius, there are two
different species in allopatry: Squalius torgalensis in the
Mira, and S. aradensis in the Arade and neighbouring

drainages (Mesquita et al., 2005). Within-drainage popula-
tion divergence in I. almacai was also low in comparison
with I. lusitanicum and A. hispanica, in which the levels of

divergence were attributed to the anthropogenic habitat
fragmentation (Table 5). Within drainages, the AR3 sample
was an exception exhibiting pairwise FST, and Jost’s D and

FST values comparable with those between the Mira and
Arade samples (Tables 3 and 4). Mesquita et al. (2005) also
found a relatively high level of divergence for a sample of S.

aradensis from the same Arade tributary (Table 5), appar-
ently as a result of isolation by a brackish water barrier
because of a marine incursion. The generally lower levels of
both among- and within-drainage divergence in I. almacai

compared with the other Iberian species inhabiting similar
habitats might reflect larger effective population sizes and/
or higher gene flow both within and among drainages (e.g.

via fluvial captures).
Bensafrim is a small drainage affected by complete drying

during summer. The mechanisms allowing survival and

recolonization by I. almacai after the dry season are not
clear, but underground water reservoirs may play a role. The
species occurs in Bensafrim but not in the neighbouring
drainages (Fig. 1). The Bensafrim population is weakly

divergent from populations in the Arade drainage. Exclud-
ing the unlikely possibility of recent ongoing migration
(including human translocations), this pattern might reflect

a past distribution that included the drainages between
Bensafrim and Arade, followed by loss of intervening
populations. Several observations support this hypothesis.

First, suitable habitat for I. almacai is found in most
unoccupied drainages in the south-western region (Magal-
hães, Batalha & Collares-Pereira, 2002a). Second, other

cyprinids (S. aradensis and Barbus sclateri) that live in
sympatry with I. almacai are found in the drainages between
Bensafrim and Arade (Fig. 1; Mesquita, Coelho & Magal-
hães, 2006). Third, our results suggest a genetic signature of

a recent population decrease, as discussed below.
The microsatellite data indicate small effective popula-

tion sizes resulting from a decline that began sometime in the

last few centuries (Fig. 3), in contrast to field studies, which
describe a decrease in the last few decades (Cabral et al.,
2005). Our results coincide with geological evidence of

increased human impact over the last�2000 years (Terrinha
et al., 2006). Ecological studies in this region showed that
fish assemblage is mainly affected by the distribution of dry-

season refugia (Magalhães et al., 2002a; Mesquita et al.,
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Figure 4 Most likely time period for the start of the population

decrease. The Bayes factors (BF) measure the weight of evidence

provided by the data for the hypothesis that the population started to

decrease in a given time interval (H1) versus any other time period

(H2). We used a fixed 50 years time period and computed the BF for

all intervals between 10 and 20 000 years ago. Each solid line corre-

sponds to one population: grey (MR1, MR2), black (AR1, AR2 and

AR3) and dashed black (BF1). BF=1 is shown as a horizontal dotted

line and indicates that H1 and H2 are equally likely. BF values greater

than one support H1. BF=4 is shown as a horizontal dotted line. We

considered BF values 44 as strong evidence for H1.
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2006). One likely explanation for the population decline
indicated by our results is that it began as a consequence of

reduced availability, connectivity and distribution of refu-
gia, due to anthropogenic impact. The estimated population
decrease corresponds to a continuous decrease in the effec-

tive size, which could be a consequence of an ongoing
decrease in the mean fluctuating population size. Note that
the stochastic demographic fluctuations that I. almacai and
other species naturally exhibit are not expected to generate a

genetic signature similar to the one obtained here. When, on
average, bottlenecks are followed by population expansions
towards values close to previous sizes, the fluctuations

corresponds to a genetic signature of a stable population
(Allendorf & Luikart, 2007).

Finally, we offer the following caveats regarding our

inferences of demographic change based on present day
genetic structure. First, our interpretations are tempered by
the possibility that factors such as population substructure

can lead the methods used here to detect a population
collapse even if none had taken place (Beaumont, 2003).
The regression analysis to test if the magnitude of the
population decrease [log (N0/N1)] was related with the po-

pulation substructure was not significant; suggesting that
population substructure alone is unlikely to explain our
results. A second caveat is that the lack of consistent

deviations from the mutation–drift equilibrium probably
reflect low statistical power. Although the Wilcoxon sign
rank test can be used with as few as four loci, a higher power

is achieved with 10–15 loci (Cornuet & Luikart, 1996).
Finally, regarding using MSVAR to quantify and data changes
in effective population size, there has been no assessment of
performance with respect to the number of loci and sample

sizes, but it has been applied to datasets similar to ours (e.g.
Storz & Beaumont, 2002; Olivieri et al., 2008).

Implications for conservation

Our results support a recent population decline of I. almacai
populations. Point estimates of the present-day effective
population size (N0) varied between 25 and 163 (mode of

N0 posterior densities). These indicate that local I. almacai
populations are undergoing a strong genetic drift, probably
as a result of the stochastic hydrological regime and human
activities affecting water quality and availability. Given that

the Mira is an independent drainage, and based on diver-
gence between the Mira and southern Arade and Bensafrim
samples, we recommend two management units (MUs)

corresponding to these areas. It is not yet completely clear
if these two units correspond to ‘Evolutionary Significant
Units’. To maintain/increase the genetic diversity levels, we

recommend habitat restoration and species recovery pro-
grammes focusing on these two management units. Some
sites within the region are ‘Special Areas of Conservation’ in

the Natura 2000 (1992) network but despite this legal
protection, these sites still lack management strategies for
freshwater species (Cabral et al., 2005). We recommend
measures to increase gene flow among populations, such as

supplementation within and/or between the management
units. These actions should be performed under controlled
reproductive programmes. To ensure the success of restora-

tion actions among management units, ecological experi-
ments should be performed to determine if populations are
adapted to both environments, that is if populations are

exchangeable (sensu Templeton, 1989). As shown by Rader

Table 5 Range of estimates of genetic diversity and differentiation in populations from four Iberian endemic cyprinids

Iberochondrostoma

almacai

Iberochondrostoma

lusitanicuma

Squalius

aradensisb

Anaecypris

hispanicac

Microsatellites

Average He 0.27–0.45 0.28–0.43 0.24–0.64 0.59–0.78

FST within

drainages

0.00–0.10 0.13 (AR3) 0.00–0.23 0.01–0.10 0.24 (AR3) 0.02–0.34

FST among

drainages

0.09–0.29 0.23–0.54 0.11–0.46 –

Loci LCO3d, LCO4d, LCO5d,

N7J4d, E1G6d, N7K4d

LCO3d, LCO4d, LCO5d,

N7J4d, E1G6d, N7K4d

LCO4d, N7K4, N2F11a,

N7G5, N7F8, N5C12b

LCO1d, LCO3d, LCO4d,

XII02d, XV28d

Cytochrome b mtDNA

Nucleotide

diversity

0.0005–0.0015 0.0000–0.0086 0.0000–0.0033 0.0007–0.0065

Haplotype

diversity

0.55–0.74 0.00–0.88 0.00–0.76 0.67–1.00

FST within

drainages

0.00–0.01 0.42 (AR3) 0.00–0.78 0.00–0.01 0.44 (AR3) 0.00–0.91

FST among

drainages

0.00–0.57 0.20–0.99 0.35–1.00 –

aSousa et al. (2008).
bMesquita et al. (2005).
cmtDNA data from Alves et al. (2001) and microsatellite data from Salgueiro et al. (2003).
dLoci not isolated in the studied species.

Animal Conservation ]] (2009) 1–10 c� 2009 The Authors. Journal compilation c� 2009 The Zoological Society of London 7

Conservation genetics of Iberochondrostoma almacaiV. Sousa et al.

60 2. DEMOGRAPHIC HISTORY OF ENDANGERED SPECIES



et al. (2005), it can be misleading to use only genetic
divergence among populations to draw conclusions on

exchangeability.
Other endangered Iberian cyprinid species have success-

fully been maintained in artificial refuges (e.g. Crespo-López

et al., 2006), suggesting that ex situ conservation actions
may be successful for I. almacai.

Reintroduction of I. almacai in the streams between

Bensafrim and Arade drainage might be considered based
on our suggestion that I. almacai suffered recent population
losses and extirpation in this region. However, the effects of
such actions on other species are not easily predicted. Fish

assemblages seem affected by the presence or absence of
I. almacai in this region (Magalhães et al., 2002a), and
historical data confirming the presence of I. almacai in these

rivers would be valuable. More ecological and genetic data
are needed to confirm this hypothesis and understand the
effects of such reintroductions on the fish assemblage.
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Supplementary Table 1 – Hyperpriors for the Storz & Beaumont (2002) analysis for 

changes in effective population size 

Parameters 
Mean and Standard deviation for 

the mean (Lognormal distribution) 

Mean and Standard deviation for 

the variance among loci  

(Normal distribution) 

N0 5 2 0 0.5 

N1 3 4 0 0.5 

T 5 3 0 0.5 

μ -3.5 0.25 0 2.0 

N0, current population size; N1, ancestral population size; μ, mutation rate per locus 

per generation; T, time since population decline. Three different Markov chain Monte 

Carlo runs with different starting points and with 5x109 steps were performed for each 

sample. Note that a priori the expected N0 values were larger than for N1. Also, the 

prior for the time supported older events. Also note that a higher variation among loci 

was allowed for the mutation rate. 

2 

3 
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ABSTRACT

In recent years approximate Bayesian computation (ABC) methods have become popular in population
genetics as an alternative to full-likelihood methods to make inferences under complex demographic
models. Most ABC methods rely on the choice of a set of summary statistics to extract information from the
data. In this article we tested the use of the full allelic distribution directly in an ABC framework. Although
the ABC techniques are becoming more widely used, there is still uncertainty over how they perform in
comparison with full-likelihood methods. We thus conducted a simulation study and provide a detailed
examination of ABC in comparison with full likelihood in the case of a model of admixture. This model
assumes that two parental populations mixed at a certain time in the past, creating a hybrid population, and
that the three populations then evolve under pure drift. Several aspects of ABC methodology were
investigated, such as the effect of the distance metric chosen to measure the similarity between simulated and
observed data sets. Results show that in general ABC provides good approximations to the posterior
distributions obtained with the full-likelihood method. This suggests that it is possible to apply ABC using
allele frequencies to make inferences in cases where it is difficult to select a set of suitable summary statistics
and when the complexity of the model or the size of the data set makes it computationally prohibitive to use
full-likelihood methods.

THE genetic patterns observed today in most species
are the result of complex histories, which include

demographic events such as population admixture,
expansions, and/or collapses. The detection and quan-
tification of such events relies on the fact that different
scenarios leave a specific genetic signature in present-day
populations, as well as on knowledge from other sources
(e.g. ecology, biogeography, archeology) to define plau-
sible models to explain such patterns. Recent population
genetic modeling has seen the development of a number
of statistical approaches that aim at extracting as much
information as possible from the full allelic distributions
(Griffiths and Tavaré 1994; Wilson and Balding

1998; Beaumont 1999; Beerli and Felsenstein 2001;
Chikhi et al. 2001; Storz et al. 2002). These approaches
aim at computing the likelihood L(u), i.e., the probability
PM(D j u) of generating the observed data D under some
demographic model M, defined by a set of parameters
u¼ (u1, . . . , uk). In Bayesian statistics, the posterior den-
sity is used to make inferences as it reflects the probability
of the parameters given the data, and it is obtained

through the relationship P(u jD) } L(u)P(u), where P(u)
summarizes prior knowledge (or lack thereof) regarding
u before the data are observed (Beaumont and Rannala

2004). For most demographic models there are no ex-
plicit likelihoodfunctionsor the likelihoodcannotbede-
rived analytically. Therefore, full-likelihood approaches
rely on methods that explore the parameter space ef-
ficiently, such as importance sampling (IS) (Stephens

and Donnelly 2000) and Markov chain Monte Carlo
(MCMC) (Beerli and Felsenstein 2001; Nielsen and
Wakeley 2001; Beaumont 2003). However, these meth-
ods are highly computer intensive, their implementation
into complex and realistic models is difficult, and, at the
moment, their applicability to analyze large data sets is
reduced (Hey and Machado 2003; Hey and Nielsen

2004). This has led to the development of methods
that try to approximate the likelihood, such as approx-
imate Bayesian computation (ABC) (Beaumont et al.
2002; Marjoram et al. 2003), composite likelihood
(Hudson 2001; Nielsen et al. 2005), and product of
approximate conditionals (PAC) (Li and Stephens 2003;
Cornuet and Beaumont 2007; Roychoudhury and
Stephens 2007).

The principle of ABC methods is to use simulations
across a wide range of parameter values within a model
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to find the parameter values that generate data sets
that match the observed data most closely (Beaumont

et al. 2002). In most studies, the allele frequency data are
summarized by means of summary statistics (Fu and
Li 1997; Tavaré et al. 1997; Weiss and von Haeseler

1998; Pritchard et al. 1999; Tallmon et al. 2004;
Thornton and Andolfatto 2006). ABC algorithms
do not require an explicit likelihood function and are
based on a rejection scheme to obtain an approximate
sample from the joint posterior distribution. Briefly, this
involves four steps: (i) simulation of data sets with
different parameter values drawn from the prior distri-
butions; (ii) computation of a set of summary statistics
for each data set; (iii) comparison of the observed and
simulated summary statistics using a distance metric, e.g.,
Euclidean distance; and (iv) rejection of the parameters
that generated distant data sets. The posterior distribu-
tion reflects PM(u j d(Ss, So) , d), where d(Ss, So) stands
for the distance between the observed and the simulated
summary statistics, and d is an arbitrary threshold. The
choice of d (and of the number of simulations) reflects to
some extent a balance between computability and
accuracy (Beaumont et al. 2002; Marjoram et al. 2003).
In most ABC implementations the value of d is set as a
quantile (the tolerance level Pd) from the empirical
distance distribution found for a given observed data
set, and typical values range from 10�5 to 10�2 (e.g.,
Estoup et al. 2004; Becquet and Przeworski 2007;
Fagundes et al. 2007; Pascual et al. 2007; Bonhomme

et al. 2008; Cox et al. 2008). The quality of the ABC
inference is expected to depend on the summary
statistics, the distance metric, and the tolerance level Pd

used. As noted by some authors, one potential problem is
that it may be difficult or even impossible to define a suit-
able set of sufficient summary statistics (Marjoram et al.
2003).

Here, we show that it is possible to use the full allelic
frequency distribution directly. The posterior distribu-
tion is thus approximated by PM(u j d(Do, Ds) , d), where
Do and Ds stand for the observed and simulated allele
frequency data, respectively. The advantage of this
approach over the use of summary statistics is clear
when d decreases toward zero and the number of sim-
ulations increases to infinity, as the accepted points tend
to the correct joint posterior distribution (Marjoram

et al. 2003). As suggested by Marjoram et al. (2003),
a rejection scheme might be inefficient when the data
are high dimensional, and it has so far been used by
Plagnol and Tavare (2004) to infer the times of lineage
split based on fossil records. In this study we show that an
ABC algorithm using the allele frequencies can approx-
imate the results of a full-likelihood method in a
reasonably complex model involving three populations
and admixture. Note that the allele frequencies can be
viewed as summary statistics of the individual genotypes.
From this perspective they are sufficient since they
contain all the information of the genotypes from each

locus. We do not refer to this approach as based on
summary statistics to avoid confusion with most ABC
approaches, which usually use functions of the allele
frequency distribution as summaries of the data.

We implemented this ABC approach for an admixture
model identical to that of Chikhi et al. (2001) (Figure 1).
These authors developed a MCMC approach based on
the IS sampling scheme of Griffiths and Tavaré

(1994), which is implemented in the LEA software
(Langella et al. 2001). Currently, LEA is the only
Bayesian full-likelihood method based on allele frequen-
cies available to estimate admixture proportions, and for
ease of comparison we used the same model in the ABC
framework. Note that there is another full-likelihood
method to estimate admixture (Wang 2003), but it is
based on the maximization of the likelihood and hence
comparisons are not straightforward (but see Excoffier

et al. 2005). For comparison purposes, we also developed
an ABC algorithm using typical summary statistics
(ABC_SUMSTAT). Our main interest was to explore
the performance of the ABC using the full allele fre-
quency distribution to determine whether it can provide
reasonable estimates compared to the full-likelihood
(LEA) and summary statistics-based approaches. Tosum-
marize, in this study we (i) propose and validate with
simulated data a new ABC inference method using allele
frequency data, (ii) compare these results with those ob-
tained with a full-likelihood method (LEA) and a tradi-
tional ABC method, and finally (iii) explore some general
issues regarding the ABC approach, namely the choice of
the distance metrics, the tolerance level, the number of
simulations, and the use of a regression step.

MATERIALS AND METHODS

The admixture model: The model is represented in Figure
1. It assumes that two independent parental populations, P1

and P2, of size N1 and N2, mixed some time T in the past with
respective proportions p1 and p2 (¼ 1 � p1), creating a hybrid
population H of size Nh. At the time of admixture, the gene
frequency distributions of P1 and P2 are represented by the
two vectors x1 and x2, respectively, and that of the hybrid

Figure 1.—The admixture model described in the text. We
assume a single admixture event, T generations ago. The three
populations are allowed to have different sizes N1, N2, and Nh.
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population by p1x1 1 p2x2. After admixture, P1, P2, and H
evolve independently (with no migration) by pure drift (no
mutations) until the present time. The time since admixture T
(in generations) is scaled by the effective size of each
population, and the corresponding drift times are called
t1 ¼ T/N1, t2 ¼ T/N2, and th ¼ T/Nh. This model is the same
as in Thompson (1973). Flat priors were used for p1, t1, t2,
and th. The priors for x1 and x2 were independent uniform
Dirichlet distributions with k parameters D(1, . . . , 1), where k is
the number of alleles per locus observed across all present-day
populations. These priors reflect independent parental pop-
ulations with allele frequencies generated according to a K-
allele mutation model with K ¼ k (Ewens 2004). Note that
Wang (2003) and Choisy et al. (2004) criticized this admix-
ture model because it ignores the correlation of the allele
frequencies in the parental populations due to common
ancestry. These authors propose alternative priors, but since
they are not implemented in LEA, we kept the uniform
Dirichlet in the ABC.

ABC without summary statistics (ABC_ALL_FREQ): The
ABC using the allele frequencies is referred to as ABC_ALL_

FREQ. The rejection algorithm was divided into two parts as
follows: (i) given a particular tolerance level Pd and a particular
data set Do, the corresponding tolerance d* is obtained from
the distance distribution of a first set of simulations (typically
104 or 105); and (ii) a large number of simulations (.106) are
then performed, keeping all parameter values for which d(Do,
Ds) , d*. The division of the algorithm into two parts can
reduce the computation time because there is no need to
simulate the samples for all the loci and populations at each
step of the second part. Whenever the distance after simulat-
ing the j*th population from the l*th locus is higher than
the tolerance (

Pl*
l¼1

Pj*
j¼1 dlj . d*), the parameter set is

rejected. In the first part, the tolerance was computed as the
0.1 or 0.001 quantiles of the distance distributions, obtained
after 104 or 105 simulations for the single-locus and multilocus
case, respectively. In the second part, 106 simulations were
performed for the single-locus and 108 for the multilocus case.
The influence of the number of simulation steps was in-
vestigated by repeating the analysis with 106, 107, and 108

simulations, for the multilocus case with 10 loci. The choice
of the tolerance level was also investigated, looking at the
results for Pd-values between 10�5 and 10�3.

Distance metrics (Euclidean and GST): Most studies to date use
a Euclidean distance. Here, two distance metrics were used to
compute distances between simulated and observed data. For
simplicity we focus on single-locus data from one population,
which is represented by a vector Do ¼ (o1, . . . , ok), where oi is
the absolute frequency of allele i, i ¼ (1, . . . , k), and k is the
total number of alleles observed across the three populations
(i.e., some oi can be zero in some populations, but not all). The
two distance measures used here were (i) a standardized
Euclidean distance, deuc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ððoi � siÞ=oiÞ2

q
, where oi and si are

the absolute allele frequencies of the observed and simulated
data sets, respectively, and (ii) the ‘‘genetic distance’’ GST,
dGST
¼ 1� �H=HT , where HT is the expected heterozygosity

(He) when the two vectors Do and Ds are pooled, and �H is the
average He computed for Do and Ds (Nei 1986). The rationale
behind the use of the GST distance comes from the fact that we
were using allele frequencies, not summary statistics. We refer
to the first as Euclidean and the second as GST. The distance is
computed for each population and locus independently, and
the total distance was defined as the sum over loci and over
populations, dT ¼

P
l

P
j dlj , where j ¼ 1, 2, h refers to the

populations and l ¼ 1, . . . , m to the loci.
As pointed out by Marjoram et al. (2003), using high-

dimensional data may reduce the acceptance rate and
compromise the efficiency of the rejection algorithm. How-

ever, since all the loci share the same demographic history and
mutation process (K-allele model), i.e., the loci and alleles are
exchangeable under this admixture model, the full allelic
distribution can be viewed as a highly dimensional unordered
data set [as in label-switching problems (Stephens 2000)]. In
these cases, due to exchangeability, the likelihood does not
depend on the order of the elements. Therefore, it is possible
to increase the acceptance rate using permutations of the
allele and loci labels to minimize the total distance between
observed and simulated data sets. These approaches are
described below.

Sort the allele frequencies: Let us assume a single-population
model in which we observe a single-locus data set with three
alleles whose absolute frequencies are given by the vector Do¼
(15, 5, 30) (hence a sample size of 25 diploids or 50 genes). Let
us further assume that the following simulated data set is
obtained: Ds¼ (5, 30, 15). Given that the alleles are exchange-
able, it is possible to permutate the allele labels and find an
exact match between Ds and Do. In practice, the minimal
distance was found by sorting the absolute allele frequencies.
Since our model has three populations P1, P2, and H and since
the labels of alleles in the three populations are not in-
dependent, the SORT algorithm sorts the alleles according
to the allele frequencies of the three populations pooled
together. We defined two algorithms referred to as SORTwhen
alleles were sorted and as SIMPLE when the data sets are
compared directly. We compared the SORT and SIMPLE
algorithms in the single-locus case, using the Euclidean
distance.

Reorder the loci: Consider a vector where each element con-
tains the data of one locus, say Do ¼ (o1, . . . , ol) with l ex-
changeable loci, i.e., the order of the labels is irrelevant. When
comparing this vector with a simulated one, say Ds¼ (s1, . . . , sl),
there is a one-to-one correspondence but it is arbitrary to
compare oi with si. Therefore, the labels of the loci were per-
muted to minimize the distance between the observed and the
simulated data sets. The best solution requires the evaluation
of all l! possible combinations, which may become impractical
for the number of simulations performed here. Instead, we
used a heuristic to approximate the minimal distance (but see
Stephens 2000 for a discussion on efficient algorithms applied
to similar label-switching problems in mixture models). In the
first iteration, simulated locus s1 is compared with all observed
loci oi, and the one with minimal distance is selected, say o3. In
the second iteration, locus s2 is compared with all loci except o3.
This procedure was repeated until all loci were reordered.
Note that different loci may have different numbers of alleles
and sample sizes. From a practical perspective though, it is con-
venient to compare observed and simulated data sets with the
same number of alleles and sample sizes. This ensures a one-to-
one relation between the observed and the simulated allele
frequencies for each locus in the regression step (see below).
This means that we constrain the permutations of locus labels
to ensure that only those with the same number of alleles and
sample sizes were compared. In real data sets the sample size
can differ across loci due to missing data and/or use of data
from different studies. This implies that for some data sets (e.g.,
when all loci have different samples sizes), there is only one
permutation of the labels satisfying the constraints. In these
cases it is possible to minimize the distance between simulated
and observed data sets by grouping the loci according to their
number of alleles and then resampling the allele frequencies
to have the same sample size across all loci within each group.
The reference sample size is set for each population as the
smallest among loci within each group. For each locus, the
alleles of each population are resampled without replacement
from the original data set. Note that different resampled data
sets may be obtained from the same original data set. The effect

ABC Without Summary Statistics 1509
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of this procedure in the estimates is dependent on the amount
of missing data, and thus the analysis should be repeated with
different resampled data sets to assess this effect. For the
multilocus case we focused on unlinked biallelic markers. This
choice was in part because of an increasing amount of data
from genomic biallelic markers such as SNPs, e.g., HapMap
(Frazer et al. 2007), RAPD, and RFLP (e.g., Parra et al. 1998),
and because in this case all loci have the same number of
alleles. The performance of reordering the loci was compared
with a procedure where the loci were compared randomly
without minimizing the distance, by analyzing the data sets of
10 biallelic loci with ti ¼ 0.001 with the two approaches. Note
that a similar labeling problem was met by Rosenblum et al.
(2007), who used summary statistics and sorted the loci
according to the values of one of the latter.

Regression step: Beaumont et al. (2002) showed that perform-
ing a weighted local linear regression on the parameters
obtained during the rejection step improves the estimation
results. The regression assumes that, at least locally, there is a
linear relation between the mean value of the accepted
parameters and the accepted summary statistics. In this case,
the predictor variables were the allele frequencies (or sum-
mary statistics for the ABC_SUMSTAT), and the response
variables were the parameters of interest (p1, t1, t2, th).
However, as can happen with some summary statistics, the
relation between the allele frequencies and the parameters of
interest is not necessarily linear. For p1 the linear assumption
appears to be valid, as the allele frequencies among popula-
tions are linearly correlated with p1, at least immediately after
the admixture event. However, for t1, t2, and th the mean value
of the parameters does not change according to a linear
relation with the allele frequencies. In a stable population
there is a positive relation between the variance of the allelic
frequency and drift. We thus performed two different regres-
sions, (i) independent regression, applied for p1, and (ii)
multiresponse quadratic regression, applied to t1, t2, th. In the
first, due to the fact that within each locus in a population the
allele frequencies are correlated (i.e., the sum is one), the
regression was performed discarding the most frequent allele
across populations from each locus. In the second, the allele
frequencies were squared and the t1, t2, th were considered
altogether in a single linear model, using dummy variables to
code each parameter (Neter et al. 1985). The linear model
becomes Y ¼ b0 1

Pn
j¼1 bjX

2
j 1 bd1

D1 1 bd2
D2 1 e, where n ¼

na 3 l (na alleles and l loci), and e is the error. Y is a vector
with the m accepted parameters pooled together, Y ¼
(t1*

1, . . . , t1*
m , t2*

1, . . . , t2*
m , th*

1, . . . , th*
m). Each Xj is a vector

with the corresponding m accepted squared allele frequencies
Xj ¼ (xj*

1, . . . , xj*
m , xj*

1, . . . , xj*
m , xj*

1, . . . , xj*
m), where xj*

i is the
allele frequency of the jth allele in the ith accepted simulation.
The D dummy variables are coded with values 0 or 1 to identify
each parameter. To estimate t1 the two dummy variables are
equal to 0 and the model becomes E ½t1� ¼ b0 1

Pn
j¼1

bj X
2
j 1 e. To estimate t2, D1 ¼ 1 and D2 ¼ 0, and the model

becomes E ½t2� ¼ b0 1
Pn

j¼1 bj X
2
j 1 bd1

1 e. Finally, to estimate
t3 the two dummy variables are equal to 1, and the model
becomes E ½t3� ¼ b0 1

Pn
j¼1 bj X

2
j 1 bd1

1 bd2
1 e. The estimated

bd1
and bd2

reflect the difference in the intercept of the three ti
parameters. In both regressions, the accepted parameters
were weighted according to the corresponding distances using
the Epanechnikov kernel, as in Beaumont et al. (2002). The
parameters were transformed to avoid posterior values outside
the prior distribution limits, following the transformation of
Hamilton et al. (2005).

ABC with summary statistics (ABC_SUMSTAT): To de-
termine whether our ABC approach was comparable to a
summary statistics-based approach we also developed an ABC
algorithm with 14 summary statistics, which is referred to as

ABC_SUMSTAT. The summary statistics were chosen on the
basis that they should contain information about the param-
eters of interest in the admixture model. Namely, we used (i)
the expected heterozygosity (He) for each population and
over all populations, (ii) the number of alleles na of each
population, (iii) the number of private alleles np of each
population, and (iv) the three pairwise FST and the overall FST.
As in Beaumont et al. (2002), the distance metric considered
was a Euclidean distance between the standardized observed
and simulated summary statistics, d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ððSoi � SsiÞÞ2

q
, i¼ 1, . . . , s

where s is the number of summary statistics. For the multilocus
case, we used the mean of each summary statistic across loci.
The summary statistics were standardized by subtracting the
mean and dividing by the standard deviation of the simu-
lations performed in the first part of the rejection algorithm,
104 for the single locus and 105 for the multilocus. The
rejection step was done with the same number of simulation
steps and the same tolerance values as for ABC_ALL_FREQ. A
local weighted regression between the standardized summary
statistics and the accepted parameters was performed as in
Beaumont et al. (2002), transforming the parameters as in
Hamilton et al. (2005).

Data simulation: The data sets used to test the performance
of the different methods were simulated for each locus
according to the demographic model depicted in Figure 1,
using the coalescent. More specifically, the simulation algo-
rithm was as follows:

i. Sample parameters p1*, t1*, t2*, and th* from the prior
distributions.

ii. Sample the ancestral allele frequencies x1* and x2* from a
uniform Dirichlet D(1, . . . , 1). The allele frequency of pop-
ulation H at the time of admixture is set to xh*¼ p1* 3 x1* 1

(1 � p1*) 3 x2*.
iii. Sample the coalescent times, for each population in-

dependently, from an exponential distribution until the
admixture event at time ti*, where i ¼ 1, 2, h. At each
coalescent event the number of lineages decreases by
one. The lineages that remain at time ti* are designated as
founder lineages.

iv. Sample the allelic state of the founders from the ancestral
allele frequencies x1*, x2*, xh*.

v. Starting from the founder lineages to the present-day
samples, lineages are randomly picked and duplicated for
every coalescent event, until the present-day sample size is
reached (Beaumont 2003).

This algorithm was used in the two ABC approaches and to
generate all the data sets analyzed. Samples from 108 simu-
lations with 10 independent biallelic loci were saved in a
database, and this was used to perform the rejection step, in
the multilocus case, for all the ABC approaches.

Comparison of approximate (ABC) and full-likelihood
(LEA) methods: The relative performance of the different
approaches (see Table 1), including the full-likelihood
method, was evaluated with samples generated with the
following set of parameter values. Two different levels of
drift, namely ti ¼ 0.001 and ti ¼ 0.01, (i ¼ 1, 2, h), were used,
assuming that the three populations evolved under the same
conditions (i.e., t1 ¼ t2 ¼ t3). For each level of drift, we
simulated 50 gene copies (25 diploid individuals) typed at 1,
5, and 10 unlinked loci, with an admixture proportion p1 ¼
0.7. For the single-locus data sets, we simulated loci with 2, 5,
and 10 alleles. For multilocus loci, only biallelic markers were
simulated. For each combination of parameters we simulated
50 independent data sets. These simulated data sets were
then given as input to LEA, ABC_SUMSTAT, and ABC_

ALL_FREQ.
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For LEA we ran one MCMC chain for each generated
sample with 105 steps and a thinning interval of 5 as suggested
in Chikhi et al. (2001). At each step, the likelihood was
estimated with 500 iterations of the importance sampler. The
density estimation of the posterior distribution was performed
discarding the first 10% of the chain (burn-in). For the 10-
locus case, we conducted convergence analysis by comparing
the results obtained with longer runs (106 steps) and found no
difference. Thus, 105 steps were used in all the analyses, as LEA
was clearly the slowest of the methods tested. The only
difference between the full-likelihood and the approximate
methods is in the priors for the ti’s. LEA assumes uniform but
improper priors (with no upper bound). In the ABC, the
priors are also uniform but we defined an upper bound at 0.2,
since the data sets were all generated with much smaller ti
values. Of course, for the analysis of real data sets, for which
the ti’s are unknown, higher bounds can be allowed. Neverthe-
less, to avoid any bias in the comparison, we conditioned the
sample from the posterior obtained with LEA such that ti #

0.2, and the posterior of interest is thus PM(p1, t1, t2, th j D, ti #

0.2). The different methods were compared by looking at
properties of the full posterior distributions and at point
estimates. We measured (i) the mean integrated square error
(MISE) of each data set, which reflects the posterior density
around the real parameter value (ð1=nÞ

Pn
i¼1ðui � uÞ2=u2),

where n is the number of accepted points used to obtain the
posterior, and (ii) the relative root mean square error
(RRMSE) of the median, which is the square root of the mean
square error divided by the true value ðð1=uÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðui � uÞ2=n

q
Þ, where

n is the total number of data sets analyzed. The confidence
intervals for the RRMSE of each parameter were obtained with
a nonparametric bootstrap, using 1000 iterations. Note that
the RRMSE was computed as the mean of 50 independent data
set analyses, and thus it should be considered indicative and
not an absolute estimate of the error. In total, we simulated 500
different data sets that were analyzed by all the different
methods, for a total of 2100 analyses (excluding the regression
step results). The programs are available upon request. The
rejection step for the three ABC programs was written in C.
The regression analysis was performed in R using the lm
function (R Development Core Team 2008). The locfit
function implemented in R was used to estimate the density
of the marginal posteriors (Loader 2007).

Analysis of a human data set: We applied the ABC methods
to a data set published by Parra et al. (1998) and previously
analyzed with LEA by Chikhi et al. (2001). The original data
set consists of nine nuclear loci (restriction site and Alu
polymorphisms) typed in populations from Europe, Africa,
the United States (African-Americans from different cities),

and Jamaica. The aim was to estimate the admixture pro-
portions in African-Americans and in Jamaica, using the
European and African data as parentals. Most loci were
biallelic with the exception of one locus that was triallelic.
We focused on the Jamaican sample (average n¼ 185.8) as the
hybrid (H) and considered that the samples from parental
populations P1 and P2 correspond to all the samples pooled
together from Europe (average n¼ 292.4) and Africa (average
n¼ 387.6), respectively. The allele frequencies are the same as
in Table 3 of Chikhi et al. (2001). Two approaches of the
ABC_ALL_FREQ were used since the data set had loci with
different numbers of alleles and different sample sizes. In the
first, the original data set was used and no permutations were
performed to minimize the distance between the observed
and the simulated data sets. In the second, we created a
resampled data set by sampling the allele frequencies until all
loci had the same sample size at each population. This allowed
us to use permutations to find the minimal distance between
the simulated and the observed data set. The original data set
and the resampled data set were analyzed with all the methods.
For p1, a flat prior between zero and one was assumed. For the
ti’s, three different flat priors were tested, varying the upper
limit as 0.2, 0.5, or 1. For the three ABC approaches we per-
formed 107 simulations in the rejection step with a tolerance
level of 0.1% (Pd¼ 0.001), and the regression step was applied
as in the simulation study. The effect of resampling was
assessed repeating the analysis with 10 different resampled
data sets using ABC_ALL_FREQ with GST distance. For LEA,
three independent MCMC runs were performed with 106 steps
each.

RESULTS

Simulation study: The posterior distributions ob-
tained for the single-locus case with the ABC and full-
likelihood methods are compared in Figure 2, for three
representative runs with different numbers of alleles
and a tolerance level Pd ¼ 0.001 (1000 simulation data
sets accepted out of 106 simulations). Figure 2, together
with the associated Table 2, shows that full-likelihood
and ABC methods produce similar results. As expected,
increasing the number of alleles leads to narrower poste-
riors around the true parameter values. For all methods,
the p1 RRMSE decreases when drift decreased and when
the number of alleles increased from two to five (Table 2).
Thus, better p1 estimates were obtained when drift was

TABLE 1

Summary of different methods compared

Approximate (ABC)

ABC_ALL_FREQ
Full likelihood

(LEA) GST Euclidean ABC_SUMSTAT

Data in
P(u j D)

All. freq. All. freq. All. freq. Summary statistics

Distance
metric

— GST (Nei 1986) Standardized
Euclidean

Euclidean

All. freq., allelic frequencies.
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limited and when the locus had a higher number of
alleles, as described previously (Chikhi et al. 2001; Wang

2003; Excoffier et al. 2005). The RRMSE ratio of each
ABC method over LEA ranged from 0.99 to 1.36, showing
that some ABC methods have near-identical RRMSE
values to LEA. Among the ABC methods, smaller errors
were obtained with ABC_ALL_FREQ using the GST

distance. The MISE results showed a slightly different
pattern, with LEA exhibiting increasingly better results as
the number of alleles increased (supplemental Table 1).
The ti’s RRMSE also decreased with increasing numbers
of alleles. In most repetitions the posteriors of the ti’s had
a mode close to zero, as seen in the examples in Figure 2,
but a median close to 0.1, which is also the median of the
prior, confirming that the ti’s are difficult to estimate
(Chikhi et al. 2001; Wang 2003). In general, th exhibited
the smallest RRMSE whereas t2 exhibited the largest error
values. This is probably due to the fact that P2 contributed
less to the hybrid population and hence provided less
genetic information (Wang 2003). An apparently sur-
prising result was that in most cases the RRMSE was
slightly larger for LEA than for the ABC methods
(ABC_ALL_FREQ GST and ABC_SUMSTAT). However,
the RRMSE confidence intervals overlapped consider-
ably, suggesting no significant differences among meth-
ods. Regarding the relative performance of sorting the
alleles, i.e., SIMPLE vs. SORT, the latter exhibited lower
RRMSE and MISE values and no bias, with both the
rejection and the regression steps (Table 2). Thus, for the
multilocus case we considered only the SORT approach.

Multilocus data: The posterior distributions obtained
with the approximate and full-likelihood methods for
the multilocus data are represented in Figure 3, for the

p1 parameter. As with single-locus data, the different
methods produced similar distributions. Increasing the
number of loci produced more accurate and precise
distributions, reducing the RRMSE and MISE (Tables 3
and 4). For p1, the ABC point estimates were close to the
ones obtained with LEA, producing nearly identical
RRMSE values (Table 3). Note that in some cases the
RRMSE was slightly smaller with the rejection step of
ABC methods. For instance, the RRMSE ratio for p1

varied between 0.99 and 1.02 for the rejection step of
ABC_ALL_FREQ with the GST distance and between
0.98 and 1.06 for ABC_SUMSTAT. However, the ABC
posteriors tended to be wider than the full likelihood, as
reflected by the higher MISE for the ABC methods
(Table 4). LEA provided the posterior distributions with
the smallest MISE, but ABC_SUMSTAT and ABC_ALL_

FREQ with GST approximated reasonably well those
values with the regression step. Note that the difference
between the full likelihood and the ABC was typically
higher with 10 loci, suggesting that LEA is better at using
additional information brought by new loci. For the ti’s,
the smallest average MISE was obtained with LEA and
ABC_SUMSTAT. Focusing on the ABC_ALL_FREQ, the
GST distance metric tends to provide estimates with a
smaller error than the Euclidean. Also, reordering the
loci minimizing the distance of each simulation led to
posteriors with higher density close to the true param-
eter values and closer to the ones obtained with the full
likelihood.

Effect of tolerance, regression, and number of simulation
steps: The three ABC methods had the same behavior
when the tolerance level varied, with lower RRMSE and
MISE values when the tolerance level decreased (Figure

Figure 2.—Example of posterior distributions
of three runs. Results obtained for th and p1 in
three single-locus analyses, varying the number
of alleles, are shown. The different lines corre-
spond to the posteriors obtained with the differ-
ent methods compared (key is shown in the top
left plot). For the ABC methods the densities
were obtained with the regression step. The prior
distributions are shown as horizontal dotted lines
and the true parameter value as dotted vertical
lines.
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4). Although the ABC rejection step reached RRMSE
values similar to LEA for p1, the MISE did not approach
the values of the full-likelihood method. The perfor-
mance of the ABC methods approached LEA’s only
when the regression step was performed, and in this
case the error decreased significantly over the rejection
step even for the highest tolerance levels considered
here. For the drift parameters, the situation was slightly
different for the ABC_ALL_FREQ methods, since the
regression did not lead to major improvements over
the rejection. Note that the effect of the regression on
the RRMSE was not clear for p1, as the RRMSE increased
above that of the rejection step for the lower tolerance
level. This was also observed by Beaumont et al. (2002),
who suggested that it was potentially caused by the
limited number of points used to perform the regres-
sion (,500). However, this explanation may not apply
here, since at least 1000 points were used and the MISE
did not increase for the lower tolerance values. In-
creasing the total number of simulations from 106 to 108

does not lead to major differences, given the same
tolerance level (Pd). As long as 1000 points were
accepted with Pd¼ 10�3, the parameters were reasonably

well estimated after the regression step (not shown),
suggesting that 1 million simulations were enough to
get approximate results.

Human data set (admixture in Jamaica): As shown in
Figure 5, the posteriors for p1 obtained with LEA had a
high density around 0.07 (0.025–0.124), suggesting a
limited contribution of Europeans to the Jamaican gene
pool. The 0.05 and 0.95 quantiles of the posteriors are
shown inside parentheses. For t1 the posteriors had
higher density around 0.2 (0.07–0.61). However, the
posteriors were similar to the priors, suggesting limited
information about t1. For t2 and th the posteriors were
clearly different from the priors and supported drift
values close to zero (0.0016–0.0734 for t2 and 0.0004–
0.0412 for th). As discussed by Chikhi et al. (2001), this is
suggestive of a recent admixture event.

The ABC methods returned point estimates for p1

similar to LEA, although the posteriors were less precise
(0.013–0.320 for GST, 0.015–0.235 for Euclidean, and
0.009–0.260 for ABC_SUMSTAT). ABC_ALL_FREQ
produced the posterior closest to the full-likelihood
results. For the ti’s, the ABC posteriors were very wide
and approached LEA’s results only qualitatively; i.e., they

TABLE 2

Relative root mean square error (RRMSE) for single-locus analysis

ABC_ALL_FREQ

Euclidean distance

GST distance SORT SIMPLE ABC_SUMSTAT

na Drift Prior LEA Reg. Rej. Reg. Rej. Reg. Rej. Reg. Rej.

t1 2 0.001 99.0 89.6 88.2 90.0 88.3 90.1 90.4 90.9 88.1 90.3
0.01 9.0 7.7 8.3 8.4 8.3 8.4 8.5 8.5 8.4 8.3

5 0.001 99.0 54.2 49.3 73.2 66.9 66.2 69.8 70.4 55.3 59.9
0.01 9.0 5.2 4.1 6.5 6.3 6.2 6.4 6.2 5.2 5.8

10 0.001 99.0 32.8 20.4 55.2 57.2 56.3 61.0 56.0 32.6 40.5
0.01 9.0 3.0 1.8 5.2 5.7 5.3 5.9 5.0 3.2 4.1

t2 2 0.001 99.0 99.5 93.0 94.8 93.0 95.0 94.1 94.7 94.9 94.6
0.01 9.0 7.7 8.6 8.6 8.6 8.6 8.7 8.6 8.4 8.7

5 0.001 99.0 65.5 53.4 79.0 73.1 72.7 72.7 73.1 68.9 69.8
0.01 9.0 6.6 4.7 7.3 6.9 6.9 7.1 7.0 6.4 6.7

10 0.001 99.0 29.5 20.6 55.4 49.9 48.4 59.9 54.9 28.5 37.0
0.01 9.0 3.5 1.6 5.0 5.3 4.8 5.5 4.8 3.4 4.0

th 2 0.001 99.0 90.5 84.4 86.0 84.2 86.0 85.0 85.7 83.8 86.1
0.01 9.0 7.7 8.0 8.1 8.1 8.1 8.1 8.0 8.0 8.1

5 0.001 99.0 44.7 39.8 60.9 56.7 56.7 61.4 61.9 43.3 53.0
0.01 9.0 4.2 3.6 5.7 5.6 5.5 6.0 5.8 4.1 4.7

10 0.001 99.0 19.5 14.1 39.8 42.3 40.1 48.8 44.5 18.7 29.6
0.01 9.0 1.9 1.1 3.7 4.2 3.7 4.9 4.1 1.9 2.9

p1 2 0.001 0.29 0.23 0.20 0.20 0.20 0.20 0.20 0.21 0.21 0.20
0.01 0.29 0.20 0.20 0.20 0.20 0.20 0.20 0.21 0.19 0.20

5 0.001 0.29 0.14 0.15 0.17 0.15 0.18 0.17 0.22 0.14 0.17
0.01 0.29 0.18 0.17 0.18 0.19 0.19 0.18 0.22 0.18 0.18

10 0.001 0.29 0.16 0.16 0.18 0.17 0.20 0.17 0.24 0.17 0.21
0.01 0.29 0.17 0.16 0.18 0.19 0.20 0.18 0.22 0.19 0.21

ABC results obtained with 106 simulations are shown, accepting the closest 1000 (Pd ¼ 10�3). na, number of alleles; Reg., re-
gression step; Rej., rejection step.
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pointed to higher drift in Europe, limited drift in Africa,
and even less drift in Jamaica. For the ti’s, ABC_SUM
STAT returned estimates closer to LEA than ABC_ALL_

FREQ. The analysis of the resampled data set lead to
identical results with LEA’s, and almost no differences
were found with the ABC methods after the regression
step. As expected, for ABC_ALL_FREQ, the rejection
step performed better with the resampled data set. The
analysis of different resampled data sets returned
similar posteriors, suggesting that the effect of resam-
pling was limited in this case (supplemental Figure 1).
On the contrary, reanalyzing the data sets varying the
upper limit for the ti priors affected significantly the p1

posteriors. Better estimates were obtained with lower
upper limits (Figure 6). The reason is that the true ti
values are more likely close to zero, and hence reducing
the upper limit of the ti prior led the ABC methods to
explore more often the most likely parameter space.

DISCUSSION

Altogether our simulations and the real data set
analysis show that the ABC using the full allelic distri-
bution (ABC_ALL_FREQ) can be used to estimate

parameters under a relatively complex demographic
model. The results obtained here were similar to those
obtained using summary statistics (ABC_SUMSTAT)
and were comparable to those obtained with a full-
likelihood method also based on allele frequency data.
The ABC methods produced broader posterior distri-
butions but did not appear to be biased (Tables 3 and 4).
In principle, by increasing the number of simulations to
infinity (or a very large number) the ABC based on allele
frequency should produce results identical to LEA,
while this would not necessarily be the case with the
summary statistics due to the inevitable loss of informa-
tion when summarizing the data (Marjoram et al. 2003).
In practice, and given the number of simulations
performed (between 106 and 108), LEA tended to
produce better results than the ABC algorithms, al-
though it was at least 10 times slower as the number of
loci increased.

Focusing on the rejection step, the two ABC ap-
proaches (ABC_ALL_FREQ and ABC_SUMSTAT) gen-
erated posterior distributions with point estimates close
to the true value and similar to LEA. However, with 10
loci, even when the number of simulations increased up
to 108 and the tolerance level Pd was lowered to 10�5, the

Figure 3.—Comparison of the posterior distributions obtained for p1 with the different methods for the multiple biallelic loci
case, with drift ti¼ 0.01. The results obtained with 5 and 10 loci are shown in the top and bottom rows, respectively. Each solid line
corresponds to the posterior obtained for 1 of the 50 repetitions. For the ABC methods, the densities were obtained with the
regression step. The prior distributions are shown as dotted horizontal lines and the true parameter values as dashed vertical
lines. ABC results obtained with 108 simulations and Pd ¼ 10�5.
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posteriors were still wider than with LEA (Table 4).
These results confirm the relatively poor efficiency of
the rejection scheme when dealing with large data sets.
This is potentially more problematic for the ABC_ALL_

FREQ scheme, as the dimensionality increases quickly
with the size of the data sets. Several approaches were
tested here to minimize this problem by (i) sorting the

allele frequencies, (ii) reordering the loci, and (iii)
using different distance metrics, and all three improved
the estimates.

A major improvement was observed for p1 when the
local weighted regression was applied leading to poste-
riors close to LEA, even with 106 simulations (Pd ¼
0.001). For the ti’s, the regression step improved the

TABLE 4

Mean integrated square error (MISE) for multilocus analysis

ABC_ALL_FREQ

No. of
loci

GST distance Euclidean distance ABC_SUMSTAT

Parameters Drift Prior LEA Regression Rejection Regression Rejection Regression Rejection

t1 5 0.001 13139 8530 9428 9232 8797 9199 8253 8815
0.01 114 81 84 84 80 86 79 84

10 0.001 13139 4486 7244 6965 5621 7164 4336 6534
0.01 114 57 79 69 66 73 54 68

t2 5 0.001 13139 10625 11228 11041 10389 10818 10472 10747
0.01 114 97 101 101 92 98 97 99

10 0.001 13139 8262 10052 9695 7737 9635 8594 9196
0.01 114 74 98 87 78 86 72 78

th 5 0.001 13139 6069 7122 6972 7080 7484 5982 6992
0.01 114 64 68 69 67 73 62 68

10 0.001 13139 2115 4229 3965 3767 5196 2060 4063
0.01 114 31 50 42 45 53 27 43

p1 5 0.001 0.252 0.076 0.082 0.093 0.084 0.099 0.078 0.083
0.01 0.252 0.091 0.098 0.106 0.100 0.116 0.095 0.097

10 0.001 0.252 0.027 0.037 0.048 0.042 0.056 0.035 0.039
0.01 0.252 0.042 0.048 0.061 0.055 0.074 0.048 0.051

ABC results obtained with 108 simulations are shown, accepting the closest 1000 (Pd ¼ 10�5).

TABLE 3

Relative root mean square error (RRMSE) for the multilocus analysis

ABC_ALL_FREQ

No. of
loci

GST distance Euclidean distance ABC_SUMSTAT

Parameters Drift Prior LEA Regression Rejection Regression Rejection Regression Rejection

t1 5 0.001 99.00 66.46 73.40 70.39 67.89 70.80 64.24 68.65
0.01 9.00 6.60 6.72 6.67 6.45 6.97 6.33 6.75

10 0.001 99.00 42.43 61.58 54.69 49.43 59.36 40.44 56.44
0.01 9.00 5.16 6.83 5.57 5.90 6.25 4.72 5.89

t2 5 0.001 99.00 81.13 86.15 84.05 79.00 82.59 80.22 82.92
0.01 9.00 7.78 8.14 8.06 7.36 7.89 7.83 7.88

10 0.001 99.00 66.91 80.66 74.86 60.39 75.79 68.31 72.80
0.01 9.00 6.27 8.13 6.97 6.52 7.07 5.97 6.41

th 5 0.001 99.00 46.59 55.74 52.23 54.69 55.95 46.33 53.20
0.01 9.00 5.21 5.49 5.30 5.28 5.77 4.96 5.35

10 0.001 99.00 22.45 39.50 33.12 33.60 42.62 21.88 36.23
0.01 9.00 3.05 4.55 3.28 4.11 4.36 2.59 3.87

p1 5 0.001 0.286 0.119 0.118 0.122 0.116 0.129 0.112 0.118
0.01 0.286 0.157 0.158 0.155 0.162 0.171 0.159 0.155

10 0.001 0.286 0.067 0.078 0.067 0.081 0.079 0.072 0.071
0.01 0.286 0.109 0.114 0.111 0.119 0.124 0.113 0.107

ABC results obtained with 108 simulations are shown, accepting the closest 1000 (Pd ¼ 10�5).
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posteriors of ABC_SUMSTAT but not of ABC_ALL_

FREQ. This is most likely because the allele frequency
data do not fit properly the assumptions of the linear
regression. Namely, it is not clear that the relation
between allele frequency and drift is linear. In fact,
better estimates were obtained assuming a linear re-
lation between the time since admixture and the square
of the allele frequencies, probably because it is the
variance of allele frequencies that increases with drift.
Drift affected significantly the estimation of p1, and even
with 10 biallelic loci the posteriors for p1 were rather
wide with ti ¼ 0.01 (10 generations of drift for Ne ¼
1000). This is in agreement with Choisy et al. (2004),
Excoffier et al. (2005), and Wang (2006) and confirms
that methods that do not account for drift to estimate
demographic parameters will tend to provide mislead-
ingly precise values.

Overall, the simulation study results show that ABC_

SUMSTAT provides good approximations to the full
likelihood and is probably easier to use than ABC_

ALL_FREQ, despite the potential problem of choosing
the summary statistics (but see Joyce and Marjoram

2008). However, in the analysis of the human data set,
ABC_ALL_FREQ produced p1 posteriors closest to LEA.
This suggests that there may be situations where using
the allele frequencies may be suitable and provide better
estimates. For the real data set LEA produced much
more precise posterior distributions, which contrasts
with the results obtained in the simulation study, where

the ABC schemes approached reasonably well the full-
likelihood method. Potential explanations for these
differences are the influence of factors not taken into
account in the simulation study, such as the sample size
(larger in the real data set), the contribution of parental
populations (set to be p1 ¼ 0.7 in the simulation study),
and the effective size of populations (set to be equal in
the simulation study). Also, it can be related with the
priors and the parameter space exploration. As seen in
the simulation study, the drift since admixture affects
the estimates of p1, and thus it is expected that the prior
uncertainty on the ti’s influences the posteriors. The ABC
rejection scheme explores the parameter space ran-
domly, whereas the full-likelihood MCMC method will
tend to remain in the region of most likely parameter
values after the burn-in period. In the human data set,
the results point to limited drift in P2 and PH (t2 and th
close to zero), and thus changing the ti prior upper limit
could affect the ABC efficiency. This was indeed what was
observed when the human data set analysis was repeated
with different ti upper limits, and the precision of the p1

posterior distributions tended to increase, approximat-
ing LEA, as the uncertainty about the ti decreased. This
points to the importance of the exploration of the
parameter space during the rejection scheme and the
importance of choosing informative priors for drift
when trying to estimate the contribution of parental
populations. It is noteworthy that the ABC framework
may provide a simple way to assess if a data set fits the

Figure 4.—Effect of tolerance level
Pd and regression step in the RRMSE
and MISE of p1 and th. Error values were
estimated using 10 biallelic loci, with
drift ti ¼ 0.001 and p1 ¼ 0.7. For the
ABC methods 108 simulations were per-
formed. Solid lines correspond to the
error of the regression step and dashed
lines to the error of the rejection step.
LEA results are shown as a solid dia-
mond at Pd ¼ 0. Error bars of MISE cor-
respond to the standard deviation
across repetitions, and error bars for
the relative RRMSE correspond to the
95%C.I., obtained with 1000 nonpara-
metric bootstrap iterations.
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model. The idea is to compare the distance distributions
of the real data set with the distance distributions of data
sets generated under the admixture model, allowing us
to assess if the real data produced on average larger
distances than expected under the model. We found
that the human data set distances were well within the
ones obtained under the model (supplemental Figure
2). As a counterexample, we also simulated data sets
under two alternative models, namely (i) one panmictic
population and (ii) three independent populations.
The data sets from the latter tended to return larger
distances than expected under the admixture model,
whereas the samples from the former returned only
slightly larger distances. This suggests a simple way to
determine if a model is acceptable for a particular data
set. Note that similar principles are used for model
choice using ABC (e.g., Estoup et al. 2004; Fagundes

et al. 2007).
This study confirms that a simple rejection scheme can

become inefficient when dealing with high-dimensional

data, such as full allelic distributions, when there are
many alleles and loci. However, we found that the
ABC_ALL_FREQ was able to deal with a large number
of biallelic loci such as SNPs, by using heuristic
approaches to match the observed and simulated data.
Our results suggest that the efficiency of the rejection
step depends on the distance metric chosen (e.g., GST

and Euclidean), on the minimization of the distance
between the simulated and the observed data sets (e.g.,
SORT and SIMPLE), and on the exploration of the
parameter space (e.g., effect of ti uncertainty on p1

estimates). Regarding the choice of distance metrics
little has been done to assess objectively how to select
them. In the simulation study the error was lower when
using the GST distance, but in the real data set the
Euclidean distance provided the posteriors closer to the
full-likelihood method. Thus, despite the better perfor-
mance of GST this seems to be data dependent. One
way to predict which distance metric should be pre-
ferred might be to look at the correlation between the
parameter values sampled from the priors during the
rejection scheme and the corresponding distances. In
our simulations, we found higher correlations for the p1

parameter with the GST distance (supplemental Figure
3). This suggests that GST may be more efficient at
capturing small variations of p1 and that these correla-
tions might be used to select the most suitable distance
metric. While the ABC rejection step was much quicker
than LEA, our results clearly show that to produce
identical results the number of simulations required
would be computationally prohibitive. Also, our simu-
lations confirm that the regression step is crucial to
obtain posteriors close to the full likelihood at a
relatively low computational cost. Therefore, further
improvements to the ABC approach using allele fre-

Figure 5.—Posterior distributions obtained with the differ-
ent methods for the analysis of the human data set to estimate
admixture in Jamaica. European and African samples were as-
sumed to come from the parental populations P1 and P2, re-
spectively. The ABC posteriors were based on the closest 1000
points from 10 million simulations (Pd ¼ 10�4). The corre-
sponding tolerance distances were 1.73, 1.05, and 75.00 for
ABC_SUMSTAT, ABC_ALL_FREQ with GST, and Euclidean,
respectively. The upper limit for the drift priors was equal
to one (upper limit ti ¼ 1.0).

Figure 6.—Effect of drift prior in human data set results.
Posterior distributions obtained for p1 with the different
ABC methods and LEA, varying the upper limit for ti, are
shown. The ABC posteriors were based on the closest 1000
points from 10 million simulations (Pd ¼ 10�4).
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quencies are possible either by increasing the efficiency
of the rejection scheme or by investigating different
regression models. Our results suggest that it is mainly at
the level of the rejection step that further improvements
can be achieved. For instance, recent approaches that
explore the parameter space efficiently by spending
most of the time in the most likely regions can be used,
such as sequential approaches (Sisson et al. 2007;
Beaumont et al. 2008) and MCMC without likelihoods
(Marjoram et al. 2003). Another procedure that can be
promising to reduce the dimensionality of the data sets
is the principal component analysis (PCA) of the allele
frequencies. This has proved useful at extracting in-
formation from the data (Novembre et al. 2008) and
could be used in a rejection–regression scheme. Also,
other generalized linear regression models and/or
nonlinear approaches can be investigated, and as de-
scribed by Blum and Francois (2008) they can improve
substantially the efficiency of the ABC algorithms.

In summary, our results confirm that ABC methods
are very flexible and easy to implement, provided that it
is possible to simulate data sets under the desired
demographic models. Although the full-likelihood
methods provide more accurate and precise results
and should thus be preferred over the ABC approaches,
when dealing with large data sets or with complex
models, ABC methods can provide reasonably good
estimates in a reasonable computational time. For
problems in which the choice of summary statistics is
not obvious, it is suggested that the full allelic distribu-
tion could potentially be used to obtain approximate
posterior density estimates.
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Griffiths, R. C., and S. Tavaré, 1994 Sampling theory for neutral
alleles in a varying environment. Philos. Trans. R. Soc. Lond. B
Biol. Sci. 344: 403–410.

Hamilton, G., M. Stoneking and L. Excoffier, 2005 Molecular
analysis reveals tighter social regulation of immigration in patri-
local populations than in matrilocal populations. Proc. Natl.
Acad. Sci. USA 102: 7476–7480.

Hey, J., and C. A. Machado, 2003 The study of structured popula-
tions–new hope for a difficult and divided science. Nat. Rev.
Genet. 4: 535–543.

Hey, J., and R. Nielsen, 2004 Multilocus methods for estimating
population sizes, migration rates and divergence time, with appli-
cations to the divergence of Drosophila pseudoobscura and D. persi-
milis. Genetics 167: 747–760.

Hudson, R. R., 2001 Two-locus sampling distributions and their ap-
plication. Genetics 159: 1805–1817.

Joyce, P., and P. Marjoram, 2008 Approximately sufficient statistics
and Bayesian computation. Stat. Appl. Genet. Mol. Biol. 7: 26.

Langella, O., L. Chikhi and M. Beaumont, 2001 LEA (likelihood-
based estimation of admixture): a program to simultaneously es-
timate admixture and the time since admixture. Mol. Ecol. Notes
1: 357–358.

Li, N., and M. Stephens, 2003 Modeling linkage disequilibrium and
identifying recombination hotspots using single-nucleotide poly-
morphism data. Genetics 165: 2213–2233.

1518 V. C. Sousa et al.
3.1. SOUSA et al. 2009 - ABC WITHOUT SUMMARY STATISTICS 77



Loader, C., 1999 Local Regression and Likelihood. Springer-Verlag,
New York.

Marjoram, P., J. Molitor, V. Plagnol and S. Tavare, 2003 Markov
chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci.
USA 100: 15324–15328.

Nei, M., 1986 Definition and estimation of fixation indices. Evol.
Int. J. Org. Evol. 40: 643–645.

Neter, J., M. Kutner, C. Nachtsheim and W. Wasserman,
1990 Applied Linear Statistical Models. Irwin, Homewood, IL.

Neuenschwander, S., C. R. Largiadèr, N. Ray, M. Currat, P.
Vonlanthen et al., 2008 Colonization history of the Swiss
Rhine Basin by the bullhead (Cottus gobio): inference under a
Bayesian spatially explicit framework. Mol. Ecol. 17: 757–772.

Nielsen, R., S. Williamson, Y. Kim, M. J. Hubisz, A. G. Clark et al.,
2005 Genomic scans for selective sweeps using SNP data. Ge-
nome Res. 15: 1566–1575.

Novembre, J., T. Johnson, K. Bryc, A. Boyko, A. Auton et al.,
2008 Genes mirror geography within Europe. Nature 456: 98–101.

Parra, E. J., A. Marcini, J. Akey, J. Martinson, M. A. Batzer et al.,
1998 Estimating African American admixture proportions by
use of population-specific alleles. Am. J. Hum. Genet. 63: 1839–
1851.

Pascual, M., M. P. Chapuis, F. Mestres, J. Balanyà, R. B. Huey et al.,
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SUPPLEMENTAL TABLE  1 
Mean Integrated Square Error (MISE) for single locus analysis

ABC results were obtained with 106 simulations, accepting the closest 1000 (Pδ=10-3)

Parameters Number
alleles Drift Prior LEA ABC_ALL_FREQ ABC_SUMSTAT

GST distance EUCLIDEAN distance

SORT SIMPLE

Regression Rejection Regression Rejection Regression Rejection Regression Rejection

t1 2 0.001 13139.4 12479.0 11904.4 12083.7 11887.3 12088.1 12233.0 12245.5 11947.4 12102.8
0.01 114.2 114.4 108.4 109.0 108.3 108.6 110.4 109.6 109.4 108.4

5 0.001 13139.4 7254.2 7115.5 10144.6 9367.4 9075.8 9934.8 9763.8 7458.8 8146.9
0.01 114.2 69.3 60.0 88.1 87.0 83.7 86.2 83.3 69.9 77.1

10 0.001 13139.4 3276.2 2758.6 7533.6 7959.3 7531.4 8494.6 7754.4 3411.0 4696.7
0.01 114.2 31.5 28.6 70.6 76.2 68.8 80.2 69.1 34.1 47.3

t2 2 0.001 13139.4 14338.0 12522.3 12706.0 12483.0 12691.1 12704.7 12715.6 12811.9 12660.4
0.01 114.2 113.2 112.6 113.1 112.8 113.1 112.6 111.8 111.2 113.0

5 0.001 13139.4 8950.2 7579.0 10754.6 10161.5 9872.7 10238.3 10096.7 9350.8 9559.7
0.01 114.2 86.6 66.8 96.1 94.1 90.3 95.5 92.6 84.3 88.8

10 0.001 13139.4 2884.2 2801.0 7560.6 6857.7 6376.6 8379.0 7623.4 2897.7 4039.1
0.01 114.2 37.9 26.7 67.4 70.6 63.4 77.1 66.3 36.9 46.2

th 2 0.001 13139.4 13213.6 11501.5 11676.7 11490.8 11688.1 11612.4 11619.2 11450.4 11671.2
0.01 114.2 116.2 105.9 106.4 106.3 106.6 106.5 105.7 106.2 106.6

5 0.001 13139.4 6055.8 5652.3 8409.5 7818.1 7603.9 8571.4 8468.4 5973.0 7211.7
0.01 114.2 56.9 52.4 78.2 76.6 73.3 80.2 77.6 56.4 64.3

10 0.001 13139.4 1463.6 1705.0 5407.3 5390.4 5112.2 6535.3 5958.6 1475.8 2885.5
0.01 114.2 18.5 18.7 52.1 55.3 50.1 66.4 56.9 18.1 30.5

p1 2 0.001 0.25 0.18 0.19 0.19 0.19 0.19 0.20 0.20 0.20 0.19
0.01 0.25 0.18 0.19 0.19 0.19 0.19 0.20 0.20 0.19 0.19

5 0.001 0.25 0.14 0.16 0.17 0.16 0.18 0.18 0.21 0.15 0.17
0.01 0.25 0.16 0.16 0.18 0.17 0.19 0.18 0.21 0.16 0.17

10 0.001 0.25 0.12 0.15 0.18 0.16 0.19 0.18 0.22 0.14 0.18
0.01 0.25 0.13 0.16 0.18 0.17 0.19 0.18 0.21 0.15 0.18
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Supplementary Figure 1.–Posterior distributions obtained with ten different resampled
datasets from the original human dataset, using abc all freq with GST distance. The
posterior corresponding to the resampled human dataset analysed with the full-likelihood and all
ABC methods is shown as a solid black line. Ten million simulations performed, accepting the
closest 1000.
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Supplementary Figure 2.–Distribution of distances between “observed” and 104 datasets
simulated under the admixture model. We considered as “observed” the human dataset and
datasets simulated according to three different demographic models. One hundred datasets were
simulated for each model. All simulated datasets had the same number of loci and sample sizes
as the human dataset. From the top to the bottom the models are: (i) admixture model; (ii)
panmitic population; and (iii) three isolated populations that split from a common ancestral
population. In the left panel, the distance distributions obtained with the 100 datasets are
shown in gray. The distance distribution of the human dataset is shown in the three plots as a
solid black line. In the right panel, the mean of the human distance distribuition (vertical line)
is compared with the mean of the distance distributions of the 100 datasets. For the admixture
model, the “observed” datasets were simulated with the algorithm described in the text. For the
second and third models the “observed” datasets were generated with the following ms
commands (Hudson 2002, Bioinformatics 18: 337-338): (ii) ms nl 1000 -t 0.4; and (iii) ms nl

1000 -t 0.004 -I 3 nP1l
nP2l

nPHl
-ej 10 2 1 -ej 10 3 1, where nl is the sample size of the lth locus,

and nPil is the sample size of population i at the lth locus. For the panmixia model, the effective
size was set at Ne = 104 and the mutation rate per generation per locus at µ = 10−5. For the
population split model the Ne was assumed equal in the three populations (Ne = 105), with a
mutation rate of µ = 10−7, and the three populations split from an ancestral population 4× 105

generations ago with no migration since then. These parameters were selected to maximize the
probability to obtain loci with the same number of alleles as the human data. Since the number
of alleles was not fixed, we simulated 1000 datasets for each locus and selected 100 with the
same number of alleles as the human dataset. For the panmixia model, the three samples (P1,
P2 and H) were created by randomly sampling genes from the panmitic population.
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Supplementary Figure 3.–Correlation between p1 and the corresponding GST and
Euclidean distances. For a given “observed” dataset, we computed the euclidean and GST

distances to 104 datasets simulated according to parameter values sampled from the priors (p∗1).
Since we were interested in determining whether departures from the true parameter value were
correlated to the distance used (see text) we standardized this departure by computing the
Pearson correlation between ‖p∗1 − 0.7‖) and either of the two distances (i.e. GST and
Euclidean). We repeated this process for 100 data sets simulated under the admixture model
(in practice we simply used the data sets from the simulation study in which there were 10
biallelic loci). In the left panel we plotted the 100 correlation values for each distance measure,
and find that the correlation is clearly greater with GST than with the Euclidean. This may
explain why p1 estimates are usually better with the GST distance. In the right panel, the
correlation values of GST and Euclidean were plotted against the corresponding MISE of p1.
This figure suggests that the smallest MISE values are usually associated with the largest
correlation values. This again suggests that the correlations is a measure of the quality of
parameter inference.
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que, Université Paul Sabatier, 118 Route de Narbonne, Bât. 4R3 b2, 31062 Toulouse cédex 09, France

Abstract

Several approaches have been developed to calculate the relative contributions of parental

populations in single admixture event scenarios, including Bayesian methods. In many

breeds and populations, it may be more realistic to consider multiple admixture events.

However, no approach has been developed to date to estimate admixture in such cases. This

report describes a program application, 2BAD (for 2-event Bayesian ADmixture), which

allows the consideration of up to two independent admixture events involving two or three

parental populations and a single admixed population, depending on the number of popula-

tions sampled. For each of these models, it is possible to estimate several parameters (admix-

ture, effective sizes, etc.) using an approximate Bayesian computation approach. In addition,

the program allows comparing pairs of admixture models, determining which is the most

likely given data. The application was tested through simulations and was found to provide

good estimates for the contribution of the populations at the two admixture events. We were

also able to determine whether an admixture model was more likely than a simple split model.

Keywords: approximate Bayesian computation, multiple admixture
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Genetic data from present-day populations are increas-

ingly being used to reconstruct the demographic history

of populations. This history can be complex, involving

population expansions, bottlenecks and admixture

events. Genetic data have proven useful to infer parame-

ters values for simple (Beaumont et al. 2002) or more

complex (Fagundes et al. 2007) demographic models,

including admixture models (Chikhi et al. 2001; Choisy

et al. 2004; Excoffier et al. 2005; Sousa et al. 2009). Admix-

ture occurs when two or more differentiated populations

are brought into contact for a brief episode creating

hybrid or admixed populations. For instance, admixture

events can occur during the colonization of already occu-

pied areas and during and after the domestication of ani-

mals and plants (e.g. the formation of new breeds

through crossing; Blott et al. 1998). Several methods have

been proposed to estimate admixture proportions based

on genetic data, but only some of them try to explicitly

model the demographic history of the populations sam-

pled (e.g. Chikhi et al. 2001; Wang 2003). In general, these

models assume that admixture took place during one

unique event and that gene flow was negligible after that

event, an assumption which is particularly unrealistic for

breed dynamics in some domestic species.

Here, we analyse several models, in which up to two

independent admixture events may take place at differ-

ent times, and we develop a method that estimates demo-

graphic parameters (the time since the admixture event,

the relative contributions of the parental populations,

etc.) taking into account the sampling procedure, genetic

drift and mutations for microsatellite loci data. Fig. 1

shows the demographic models considered. It is assumed

that an ancestral population of size NA splits tsplit genera-

tions ago into two or three parental populations (P1, P2,

P3), with effective sizes N1, N2, N3. The first admixture

event occurred tadm1 generations ago and the second

admixture event occurred tadm2 generations ago. In the

first model (Fig. 1a), admixture first occurs between P1

Correspondence: L. Chikhi, Fax: +351 21 440 40 79;

E-mail: chikhi@igc.gulbenkian.pt
1These authors contributed equally to this work.

� 2009 Blackwell Publishing Ltd
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and P2 giving rise to the hybrid population (H), with

effective size NH. Then the second admixture event takes

place, involving only P2. In the second model (Fig. 1b),

the only difference is that the second admixture event

involves a third population, P3. The last two models

(Fig. 1c and d) assume a single admixture event. They

can thus be seen as special cases of the previous models

by fixing tadm1 = tadm2. The model assumes that all loci

have the same mutation rate and that the markers evolve

according to the stepwise-mutation model (SMM).

The flexibility of the 2BAD program (for 2-event

Bayesian ADmixture) should allow its application for

many biological situations, where two or three popula-

tions are thought to have potentially contributed to the

genetic pool of potential admixed populations, and

where the dating of these events is not clearly identified.

Admixture events involving more than two parental pop-

ulations are common in humans (e.g. Latin American

Mestizos, Wang et al. 2008) and breeds (Bray et al. 2009).

They are less documented in natural populations, but the

situation could be common in freshwater fish species,

when restocking is carried out from more than one

source population (Kelly et al. 2006), and in plants that

were put into contact from more than two refugia. Also,

the fact that 2BAD allows testing alternative models

should prove important to identify such cases where

there is uncertainty on the number of admixture events

and on their timing.

Recently, approximate Bayesian computation (ABC)

methods (Beaumont et al. 2002) have become popular as

an alternative to full-likelihood methods because of their

flexibility and ability to be applied to complex demo-

graphic models at a relative low computational cost

(e.g. Excoffier et al. 2005; Fagundes et al. 2007). ABC

algorithms are based on a rejection scheme to obtain an

approximate sample from the joint posterior distribution.

Briefly, this involves five steps: (i) definition of a demo-

graphic model, including the prior distributions of the

parameters of the model; (ii) simulation of datasets with

different parameter values drawn from the prior distri-

butions; (iii) computation of a set of summary statistics

(e.g. number of alleles, expected heterozygosity, etc.) for

each dataset; (iv) comparison of the observed and simu-

lated summary statistics using a distance metric (e.g.

Euclidean distance, but see Sousa et al. 2009 for the use of

different distances); and (v) rejection of the parameters

that generate datasets that are distant from the observed

data.

In this study, we show that it is possible to apply an

ABC approach to the admixture models described above

and estimate the different parameters using reasonably

large microsatellite data sets, similar to those commonly

used for livestock breeds and increasingly available in

endangered species. The user provides an input file with

the allele frequencies for each locus for one admixed and

two or three parental populations. The user can then

either estimate the parameters within one of the appropri-

ate models, or compare two demographic models (e.g.

one admixture vs. a split model, or one admixture event

vs. two admixture models) using Beaumont (2008)

approach. In both cases, the user selects and defines the

prior distribution for each parameter (mutation rate,

effective sizes, time of admixture and contribution of

parental populations). Depending on the parameter, the

(a) (b)

(c) (d)

Fig. 1 The four admixture models con-

sidered.
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user can select uniform, gamma, lognormal or beta prior

distributions. For each parameter set, genetic data are

simulated using the coalescent with the ms program of

Hudson (2002). In practice, the 2BAD program uses MAT-

LAB and C code to build the interface, run ms and per-

form the ABC inference step. For each locus, a set of

predefined summary statistics are computed, namely: (i)

expected heterozygosity for each population and over all

populations; (ii) number of alleles in each population and

over all populations: (iii) number of private alleles in each

population; (iv) number of gaps in the allelic distribution

in each population; (v) pairwise FST and overall FST. For

each of these statistics, we considered the mean across loci

and standardized them according to the mean and stan-

dard deviation computed using a set of 10 000 simula-

tions. The distance between the standardized summary

statistics for the simulated data and the observed data is

computed with a Euclidean distance. The parameter sets

that generated the simulated data with the smallest dis-

tances are then accepted. The user specifies the tolerance

level defined as the proportion of simulations to be kept.

The program outputs the point estimates of the different

parameters and a histogram to represent the posterior dis-

tribution. Several text files are produced saving the point

estimates and 95% credible intervals for each parameter,

the accepted parameter values, the accepted summary

statistics and the corresponding distances.

The performance of the ABC methodology was

assessed using a simulation study. Datasets simulated

with known parameter values were analysed as pseudo-

observed datasets, and the estimates obtained using

2BAD were then compared with the known parameter

values. We simulated data under an admixture model

with three parental populations and two admixture

events (Fig. 1b). To assess the effect of genetic drift on the

quality of the estimates, we simulated data assuming a

scenario with limited drift and another one with strong

drift. The limited and strong drift scenarios correspond

to effective sizes sampled from U[1000, 15000] and U[100,

1000] respectively and to tsplit values sampled from

U[1000, 15000] and U[100, 1000] respectively. For the

other parameters, we used the same priors: tadm1 and

tadm2 were sampled from U[0, 100] in generations, the

mutation rates (per locus per generation) from U[10)5,

10)3] and p1 and p3 from U[0,1]. For each of these two sce-

narios, five hundred independent datasets of twenty

independent microsatellite loci each were simulated and

analysed with 2BAD. The tolerance value was set as 0.1%

(1000 accepted simulations out of 106). The effect of the

number of simulations was assessed by repeating the

analysis with 106 and 107 simulations.

The results show that 2BAD returned point estimates

close to the true parameter values for all parameters

(Fig. 2). As expected, the estimates obtained under the

strong drift have higher error (Fig. 2 and Supplementary

Table S1). It is noteworthy that the method was able to

accurately estimate p1 and p3, showing, for the first time

that ABC methods are able to quantify the contribution
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of parental populations under two admixture events.

No major differences were found between the estimates

obtained with 106 and 107 simulations, suggesting that

one million simulations should be sufficient to obtain

good estimates. While this is in agreement with our

results on a simpler admixture model (Sousa et al. 2009),

larger simulations may provide better estimates. Over-

all, our results show that good estimates are obtained.

We also found that the method is robust to some extent

to bottlenecks taking place after the admixture event, as

may have been the case in some rare breeds (e.g. Bray

et al. 2009, Sousa V, Beaumont MA, Coelho MM, Chikhi

L, in preparation).

To conclude, we have developed an easy-to-use pro-

gram, which implements a method allowing population

genetics inference for an admixture model involving up

to two independent admixture events and an easy-

to-use procedure for model choice. It is important to

add as a final note that the models implemented in

2BAD do not take into account events such as bottle-

necks, expansions and migration, which might all affect

estimates provided by 2BAD. Testing the robustness of

2BAD to all these factors would be beyond the scope of

this study. However, we are currently performing a

simulation study to assess the effect of bottlenecks and

the performance of the model choice procedure (Sousa

V, Beaumont MA, Coelho MM, Chikhi L, in prepara-

tion). Our preliminary results suggest that recent bottle-

necks do not lead to biased estimates. They also show

that it is possible to separate a pure population split

model from an admixture model. Finally, we found

that it is also possible to determine whether a single

admixture event is more likely than a model with two

admixture events.

Acknowledgements

We thank the Rare Breeds Survival Trust, Dexter Cattle Soci-

ety, the Instituto Gulbenkian de Ciência, the Université Paul
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Supplementary Table
Relative Root Mean Square Error (RRMSE) for the different parameters 

estimated for the three parental, two admixture events model.

RRMSE

Parameters Low drift 106 

simulations
Low drift 107 

simulations
High drift 106 

simulations
µ 0.258 0.244 0.229
N1 0.239 0.227 0.261
N2 0.250 0.232 0.290
N3 0.251 0.235 0.270
NH 0.445 0.428 0.352
tadm2 0.796 0.731 0.871
p3 0.255 0.249 0.440
tadm1 0.311 0.293 0.482
p1 0.418 0.386 0.509
tsplit 0.283 0.258 0.280
NA 0.465 0.449 0.398
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Abstract

Genetic data have been widely used to reconstruct the demographic history of popula-
tions, including the estimation of migration rates, divergence times and relative admixture
contribution from different populations. Recently, increasing interest has been given to
the ability of genetic data to separate among alternative models. Here, we applied an
Approximate Bayesian Computation approach to select the model that best fits the data
among alternative splitting and admixture models. We performed a simulation study and
showed that with reasonably large data sets it is possible to determine with high prob-
ability the model that most likely produced the data. This suggests that it is possible
to distinguish genetic patterns due to past admixture events from those due to shared
polymorphism. We then apply this approach to microsatellite data from an endangered
and endemic Iberian freshwater fish species, in which a clustering analysis suggested that
a population could be admixed.

1 Introduction

The use of genetic data to reconstruct the demographic history of populations is now well
established (Excoffier 2002; Goldstein and Chikhi 2002; Hey and Machado 2003).
Many inference methods have been developed in the last 20 years that allow biologists to
detect, date or quantify population size changes (Tajima 1989; Cornuet and Luikart 1996;
Beaumont 1999), to estimate the time at which different populations separated or the relative
contribution of parental populations in admixture models (e.g. Chikhi et al. 2001, 2002; Hey
and Nielsen 2004). In most studies published to date, a particular demographic model is
assumed and the aim is to determine the parameters of the model, say the splitting time, that
can be estimated using present-day genetic data. This is usually done with simulated data
first since the parameter values are known and the method can be statistically evaluated, but
the aim is to estimate the parameters for real data sets. One important assumption of this
approach is that the model chosen is a reasonable approximation of the main demographic
events that have affected the populations under study (Chikhi et al. 2001; Hey and Nielsen
2007). We find this general approach very reasonable and useful (Chikhi and Beaumont
2005; Beaumont 2008; Nielsen and Beaumont 2009), but recent advances in population
genetics have now made it easier to compare alternative models (Estoup et al. 2004; Johnson
and Omland 2004; Fagundes et al. 2007; Guillemaud et al. 2009). Approximate Bayesian
computation (ABC) methods (Beaumont et al. 2002; Marjoram et al. 2003) have seen
major recent developments allowing the inference of demographic parameters under complex
demographic models involving several populations and in the case of admixture models of up
to two independent admixture events (Excoffier et al. 2005; Cornuet et al. 2008; Sousa
et al. 2009; Bray et al. 2009a). Here we used the ability of ABC methods to assess the relative
probability of alternative demographic models to explain the observed data as done in recent
studies (Estoup et al. 2004; Miller et al. 2005; Fagundes et al. 2007; Pascual et al. 2007;
Beaumont 2008; Cornuet et al. 2008; Guillemaud et al. 2009). For instance, Estoup
et al. (2004) inferred the most likely model among five alternative scenarios for the range
expansion of an invasive toad with ten microsatellite loci. Fagundes et al. (2007) used 50
unlinked nuclear loci genotyped across different human geographic localities to infer the most
likely model for human demographic history from a set of three alternative models. Miller
et al. (2005) and Guillemaud et al. (2009) used ABC to study invasive species and assess the
relative probability of different models of species introduction. Beaumont (2008) examined
the ability to separate among alternative split topologies under multiple-population isolation
with migration models. He performed a limited simulation study and re-analysed microsatellite
data from Channel Island foxes (19 loci) and three human populations (329 loci). There are also
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recent examples, such as the one found in Cornuet et al. (2008) illustrating that it is possible
to estimate the relative probability of alternative complex models. These authors analysed a
single simulated dataset under a model involving six populations resulting from three splits and
two admixture events. However, the performance of these methods has not been well studied in
simulation studies across a wide range of parameter values. The study of Guillemaud et al.
(2009) is one of the first to perform an extensive simulation study to assess the performance of
ABC as model choice methods using genetic data. In the present study we apply Approximate
Bayesian Computation approaches to select the model that best fits the data among several
splitting and admixture models. We show that with reasonably large data sets it is possible to
determine with high probability the model that most likely produced the data. We then apply
this approach to an endangered fish species, in which a clustering analysis suggested that a
population could be admixed. Our approach suggests that the apparent admixture is actually
the result of shared polymorphism between differentiated populations.

2 Material and Methods

2.1 Demographic models

We considered two population split models and four admixture models (Figure 1). This Figure
shows models with either three or four populations. In all models it is assumed that an ancestral
population of sizeNA split at tsplit generations ago into two, three or four populations, depending
on the model, with sizes Ni, where i = (1, 2, 3, 4). Under the population split models, the
populations remain isolated from each other after the split event and evolve independently
(with no gene flow). The admixture models can involve one or two admixture events, and
either two or three parental populations. Under the admixture models with one admixture
event there is a unique admixture event creating a hybrid population tadm1 generations ago. If
there are two parental populations, called P1 and P2, they will contribute genes to the hybrid
population in proportions p1 and p2 such that p1+p2 = 1. If there is a third parental population
P3, contributing p3, then we will have p1 +p2 +p3 = 1. In the models with two admixture events
the first admixture event will take place tadm1 generations ago and will only involve two parental
populations, P1, and P2, such that p1 + p2 = 1. The second admixture event is then assumed
to occur tadm2 generations ago. In the model with two parental populations, P2 is assumed
to contribute again to the gene pool of the hybrid a proportion p3 such that 0 <= p3 <= 1.
In the model with three parental populations, it is the third population P3 that is assumed
to contribute p3. In the admixture models, the admixed (or hybrid) population is assumed to
have an effective size Nh. We note that in all models the loci are assumed to have the same
per locus mutation rate µ and to evolve according to the stepwise mutation model (SMM), as
is usually assumed for microsatellites (e.g. Calabrese and Sainudiin 2005).

2.2 Approximate Bayesian Computation principles

The principle of approximate Bayesian computation (ABC) is to obtain the joint posterior
distributions of parameters using simulations under a demographic model of interest (Beau-
mont et al. 2002; Marjoram et al. 2003). ABC methods are very flexible as they can be
applied to demographic models for which there are no explicit likelihood functions (Marjo-
ram and Tavaré 2006). Datasets are simulated with parameter values drawn from prior
distributions. The corresponding parameters are then accepted if the simulated data are simi-
lar to the observed data, and rejected otherwise. The parameters θ that generated the closest
datasets to the observed data are then taken as an approximation of the posterior distribution
P (θ|d(Dsim, Dobs) < δ) where d(.) is some distance measure and δ is referred to as the tolerance.

3
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In most ABC methods instead of using the observed data D directly (allele or genotype frequen-
cies) the data are summarized by a set of summary statistics S, such as expected heterozygosity
(He), number of alleles or FST . Therefore, most ABC methods provide an approximate estimate
of the posterior P (θ|d(Sobs, Ssim) < δ).

2.3 Model choice and ABC

As first suggested by Pritchard et al. (1999) it is possible to assess the posterior probability of
a given demographic model among a set of alternative models using ABC, by specifying a prior
probability for each model. Performing the ABC rejection algorithm, the posterior probability
of a model is given by simply counting the proportion of corresponding simulated statistics that
lie within the tolerance region (defined by d(Sobs, Ssim) < δ). Beaumont (2008) suggested an
improvement on this simple approach by using a weighted multinomial logit regression. The
principle of the multinomial regression is to obtain the relation between categorical variables
Y = 1, 2, . . . indicating different demographic models k and the corresponding accepted sum-
mary statistics Ssim. By using a logit function, the regression describes the dependence of
the posterior probability of a given model pk as a function of the accepted summary statistics
(Beaumont 2008; Cornuet et al. 2008). Therefore, after performing the regression with the
accepted data in the rejection step it is possible to assess the posterior probability of model
k given the observed summary statistics P (Y = k|S = Sobs). Note that for simplicity all our
model comparisons were performed by comparing two models at a time (e.g. no admixture
versus one admixture event, see below).

2.4 Summary statistics

The different models for which the ABC approach was performed were compared using the
following summary statistics: (i) expected heterozygosity (He) estimated following Nei (1978)
for each population and over all populations; (ii) number of private alleles in each population;
(iii) number of alleles of each population and over all populations; (iv) microsatellite allele
range of each population and over all populations and (v) pairwise FST and overall population
with the FST value computed as (Htotal − Hlocal)/Htotal, where Hlocal is the mean He of the
populations considered and Htotal is computed by pooling together the different population
samples. Altogether, models with three and four parental populations were summarized by 18
and 25 summary statistics, respectively.

2.5 Simulation study

The performance of our ABC-based model choice approach was assessed with simulated datasets
under known models. The data sets simulated under a particular model were used as pseudo-
observed datasets and two different models were chosen (the true model and another one)
to determine whether the ABC method was able to identify the true model. We tested our
ABC approach under the following cases: (i) single admixture vs. no admixture; (ii) two
admixture events vs. no admixture and (iii) single admixture vs. two admixture events. This
was done with three and four parental populations, making a total of six pairwise comparisons.
For each pair of models, we analysed 10000 independent simulated pseudo-observed datasets
generated for each of the two alternative models, corresponding to twelve model comparisons
and 120000 data sets in total. Each dataset consisted of 25 diploid individuals sampled from
each population and typed at 20 independent microsatellite loci. For the models with two
parental populations the effect of varying the number of loci was investigated by repeating
the analyses with five loci, hence making a total of 180000 analyzed datasets. For each set
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of model pairs the ABC rejection step was performed simulating 106 simulations, accepting
the closest 25000 simulations (tolerance level=0.00125). The regression step of Beaumont
(2008) was performed on these accepted simulations, and a point estimate for the probability
of a given model was thus obtained for each pseudo-observed dataset. We thus obtained 10000
such estimates for each model, for each set of model pair comparison. These 10000 values were
used to produce posteriors that quantified whether a particular model was correctly identified
(Figure 2). All the simulations performed here were done using the code developed for the
program 2BAD (Bray et al. 2009a). We used 2BAD at the latest stages of this study to test
the consistency between the two codes and identify bugs. The results between the two versions
were identical and were used for the real freshwater fish data.

2.6 Prior distributions

The prior probabilities of the two alternative models were set as 0.5, meaning that a priori
both models were equally likely to explain the data. For all models, the effective sizes Ni, i =
(1, 2, 3, 4) of all populations were taken from a uniform U [103, 104], the mutation rates (per locus
per generation) were sampled from U [10−5, 10−3] , and tsplit (in generations) from U [103, 104].
For the models with admixture, the times of admixture events (in generations) were drawn
from U [102, 103] for tadm1 and U [1, 102] for tadm2. In the case of models with a single admixture
event tadm1 was assumed to be sampled from a uniform U [1, 103].

2.7 Iberochondrostoma lusitanicum data

The data consisted of 129 individuals sampled in three rivers (one from the Samarra drainage
and two from the Tejo drainage) and genotyped at five microsatellite loci (see details in Sousa
et al. 2008). I. lusitanicum (Cyprinidae) is a critically endangered freshwater fish species only
found in lower Tejo, Sado and other small drainages in Portugal. In a recent study we found
that most populations were highly differentiated from each other with medium to large pairwise
FST between the three samples analysed here. The Weir and Cockerham (1984) estimates
ranged from 0.22 to 0.41 and Nei (1977) pairwise GST ranged from 0.09 and 0.21. Moreover, by
performing a genetic clustering analysis using the STRUCTURE program (Pritchard et al.
2000) we found that one population of the Tejo drainage (TJ1) could potentially be the result
of admixture between a populations from the Tejo (TJ2) and the Samarra (SM1) drainages.
The estimates obtained indicated an admixture contribution of 0.31 from SM1 and 0.69 from
TJ2. The STRUCTURE analysis suggested that the three samples could also correspond to
three independent clusters but this appeared less likely than the admixture model with only
two clusters. Given that STRUCTURE makes no explicit assumptions regarding demographic
history of the species analysed, it was unclear whether the genetic patterns found were due
to an ancient admixture event or simply due to the differentiation of populations without
admixture, i.e. shared ancestral polymorphism. The same dataset were thus re-analysed using
the ABC approach described here to assess the most likely scenario: single admixture event
vs. population split without admixture. We performed 106 simulations under each model with
uniform prior distributions. The priors were specified according to previous estimates obtained
with the MSVAR programs (Beaumont 1999; Storz and Beaumont 2002). The results of
this analysis suggested a recent population decrease from an ancestral effective size larger than
104 to current sizes around 10−100. We also allowed for both recent and ancient admixture and
population split events. The effect of the priors used was tested repeating the analysis with two
sets of priors. In the first, the priors were U [10, 104] for N1, N2, Nh and NA, U [5×10−5, 5×10−4]
for the mutation rate µ, U [1, 5 × 104] for tsplit, U [10, 104] for tadm and U [0, 1] for p1. In the
second analyses, smaller effective sizes for current populations and mutation rates were allowed,
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with the priors U [1, 103] for N1, N2 and Nh, U [1, 104] for NA, U [10−6, 10−4] for the mutation
rate µ, U [1, 105] for tsplit, U [1, 103] for tadm1 and U [0, 1] for p1. In both cases, the same priors
were used for the population split model without admixture.

3 Results

As shown in Figure 2, the method is able to identify the correct model with high posterior
probabilities in the case of single or two admixture events versus population split without
admixture (Figure 2a and 2b). This can be seen by the fact that the values used to construct
the posterior probabilities are close to one (when the no-admixture model is true) or close to
zero (when the admixture model is true). In other words, we were able to determine with
extremely high confidence whether the data came from a pure split model or from a model
with at least an admixture event. It also appears to be easier to identify a two admixture event
against a split model as compared to a single admixture event (Figure 2a versus 2b). Another
result shown in this figure is that it is usually easier to separate splitting from admixture models
when there are three rather than four populations involved (dashed versus solid lines). Also,
we found that the separation of admixture from no admixture is not symmetrical (black versus
gray lines). Indeed, it is easier to identity a sample generated by a population split model (black
lines), than a sample generated under an admixture model (blue lines). This figure also shows
that the regression method of Beaumont (2008) greatly improved our ability to identify the
models (Figure 2d and 2e compared to 2a and 2b). After the use of the regression step, there is
still an asymmetry between admixture and no admixture models but it is much more limited.
When we compare the admixture models (Figure 2c and 2f) we find that the posteriors are
shifted towards the center, suggesting that in most simulations the data sets could not be clearly
attributed to one admixture model or the other. Thus, it shows that it is difficult to separate
the models involving single from two admixture events. This effect was more pronounced in
the model involving four populations (solid versus dashed lines).

3.1 Tolerance, logit regression and the number of loci

Figure 3 shows the effect of the tolerance (i.e. accepting data sets that are increasingly closer
to the pseudo-observed data), of the number of loci, and of the regression step on the ability
to identify the correct model. This is represented by the average posterior probability (i.e. the
mean of the posterior distributions similar to those shown in Figure 2). Figure 3a, compares
the population split model with no admixture with a single-admixture model. This figure
shows that using the rejection method (dashed lines) the average accuracy of the method
increases when the tolerance decreases, as the posterior probabilities tend to one (when the no-
admixture is true) and zero (when there was admixture). When the logit regression is applied
the dependence on the tolerance is much weaker and good results can be obtained with larger
tolerance levels, and hence with fewer simulations. However, we note that even with small
tolerance levels, the regression step improves the results (solid versus dashed lines). We also
see that with five loci the average accuracy decreases in comparison with the results obtained
with 20 loci (open versus filled symbols), but they still provide accurate estimates that are
usually good enough to identify the most likely model. Figure 3b show similar results for the
comparisons between the splitting and two-admixture events. The main difference with Figure
3a is that the identification of the correct model is even better than in the single-admixture
model, and provides very good results even with only five loci (average posterior probability
greater than 0.80). In Figure 3c, we also find the same trend for the comparison between the
two admixture models. However, the results are not as good, with average probabilities lower
than 0.80 even with 20 loci, and using the logistic regression and low tolerance levels.
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3.2 Application to the critically endangered Iberian minnow Ibero-
chondrostoma lusitanicum

As Figure 4 shows, our analysis indicates that, after the regression step, the probability of the
admixture model ranged from 0.2 to 0.35, depending on the tolerance level as prior set. Thus,
it suggests that data favors the population split model without admixture over a model with
admixture, independently of the priors used. However, we note that the results obtained have
wide confidence intervals and the upper limit goes beyond 0.50 in some cases, and hence these
results are not completely conclusive.

4 Discussion

In this study we examined the ability of ABC methods to infer the relative probability of
alternative models involving admixture events and population splits. We performed a simu-
lation study showing that it is possible to identify the model that generated the data from a
pair of alternative divergence or admixture models (Figure 1). In particular, the accuracy of
our approach to separate scenarios with admixture events from scenarios with population split
without admixture was very high in the simulation study. We believe that it is a significant
result, as it suggests that populations that are thought to be the result of admixture events
can be identified as the result of splitting events without admixture with high probabilities,
and vice-versa. This suggests that it is possible to distinguish genetic patterns due to past
admixture events from those due to shared polymorphism.

At the same time our results showed that it is much more difficult to provide conclusive
posterior distributions when comparing pairs of alternative models comprising single and two
admixture events (Figure 2). This is not very surprising as our comparisons were made across
a wide range of parameter combinations. In particular we used priors for tadm1 and tadm2 such
that the two times could be close from each other. Also, the amount of differentiation between
the parental populations at the time of admixture is likely to be an important factor (and hence
tsplit–tadm2).

Indeed, we found that there is generally an increase in the probability of model identification
when the time of split was older (not shown). Similarly, when the last admixture contribution
(p3) increased, we also obtained better results to determine that there had been a second
admixture event. Indeed, when p3 is low, it is expected that it will be difficult to separate a
two-event from a single-event admixture. We also found that our ability to identify the correct
model was dependent on the time since the last admixture event (tadm2), and the time between
the two admixture events (tadm1− tadm2). Finally, increasing the number of loci was also shown
to be crucial to separate single and two-event admixture.

For all the pairs of models compared we found that the use of the logistic regression provided
better results than the rejection method, significantly increasing the posterior probability of
the correct model (Figure 2). We also found that applying the regression step decreased the
dependence on the tolerance level δ (Figure 3). This limited dependency on δ was also found by
several authors (Beaumont et al. 2002; Excoffier et al. 2005; Sousa et al. 2009; Wegmann
et al. 2009), but in these studies, the authors were not comparing several models, but using
ABC algorithms to estimate parameters within a single model. The fact that the regression
step decreases the dependence on the acceptance rate means that the number of simulations
needed to separate models can be significantly reduced without losing much power (Figure 3).

While our results were much better with 20 loci compared to 5 loci, the method was able
to distinguish admixture from splitting models even with five loci (Figure 3a and 3b). This
result was relatively surprising as previous ABC methods developed to estimate admixture
proportions required relatively large numbers of loci to provide precise estimates (Excoffier
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et al. 2005; Sousa et al. 2009). This indicates that a limited number of loci may be enough to
assess the relative probability of alternative models, but that more loci are needed to estimate
with precision the parameters of the models, once the latter have been identified. This should
clearly be better investigated as this depends on the models that are compared. For instance,
the separation of the two admixture models was not very good, even with 20 loci. Also, when
full-likelihood methods were used to estimate admixture parameters for admixture models it
was found that good results could be obtained with between 5 and 10 loci (Chikhi et al. 2001;
Choisy et al. 2004). At this stage, more simulation work is needed to determine the conditions
under which small data sets can be useful for model comparisons, and also when they are likely
to be misleading.

Another parameter that seemed to be important is the effective size of the hybrid or admixed
population. When its effective size is small, genetic drift will be very important and it will
become difficult to estimate the original contributions of the parental populations and hence to
determine whether the data were generated with or without admixture. This is in agreement
with the results found in several studies (Chikhi et al. 2001; Wang 2003; Choisy et al. 2004)
reporting that increasing drift since the admixture event increases the uncertainty around the
admixture estimates (see also Bray et al. (2009b) for an application to breeds). Therefore,
it is expected that population bottlenecks and expansions that affect the effective size of the
hybrid population will strongly influence the ability of this ABC method to separate admixture
from population split models.

4.1 Application to Iberochondrostoma lusitanicum

When we applied our model choice approach to the I. lusitanicum data we found that the
most likely model was a population split model. This is particularly interesting as in our
original study (Sousa et al. 2008), the results obtained with the STRUCTURE program were
suggesting the existence of individuals with admixed genotypes in one of the Tagus population
(TJ1 Sousa et al. 2008). The STRUCTURE result was very surprising based on the fact
that the potential parental populations are located in two different river drainages that do
not communicate and the fact that I. lusitanicum has very limited dispersal ability. The
conclusion of the Sousa et al. (2008) study was that this admixture was either due to an
ancient admixture event when the rivers were connected, to ongoing migration between the
populations (perhaps through undocumented translocations) or to shared polymorphism. The
current results suggest that the latter is the most likely explanation. However, we note there are
some model assumptions that may not hold for this specific data set. In particular, demographic
events such as bottlenecks are not included in any of the alternative models. Given that field
observations (Alves and Coelho 1994; Cabral et al. 2005) and genetic data (Sousa et al.
2008) indicated that I. lusitanicum populations suffered recent declines, it is possible that none
of the two alternative models is a good enough approximation of the demographic history of
this species (see below).

4.2 Limitations

Although the model choice approach used in this paper provides a way to separate the effects
of admixture from those of pure divergence of populations, the interpretation of the results
may be influenced by the following caveats. First, in all our comparisons, the data were always
generated under at least one of the two models compared. However, with real data our method
will always identify one of the models as the best. This can be a problem when the data is not
well explained by any of the models, as the method will point to one of the alternative models
as most likely, even if it does not fit the data. This could be the case with the I. lusitanicum
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data analysed here. One useful approach to assess the fit of the data to the model is to simulate
data sets under the best model and compute for each of these simulated data sets the distance
distribution, as was done for the real data set. Then one can determine whether the distances
obtained with these simulated datasets are different from the distance distribution obtained
with the real dataset (e.g. Sousa et al. 2009). The principle is to compare the expected
distances obtained with datasets that fit the model (simulated datasets) with the real data. If
the distances observed with the real data set are much greater than those observed with the
simulated data sets, this suggests that the best model might not be appropriate, and other
models should be investigated. We applied this approach to the I. lusitanicum data and found
that the observed data is within the set of distributions obtained with simulated data sets
(Figure 5a). We repeated this procedure with the second set of priors used and, as Figure 5b
shows, the distribution of observed distances is very different from the distances obtained with
the models with or without admixture using these new priors. While this cannot be considered
as a proof that the true model has been found, this is a strong suggestion that the population
split without admixture model may of Figure 5a capture important aspects of the I. lusitanicum
demographic history. A second caveat is that the current implementation of the method is based
on a varied but still limited set of demographic models and simplifying assumptions (Bray et al.
2009a). For instance, the models assume that all loci evolve according to the SMM model and
have the same mutation rate, which may be unrealistic for certain real datasets. Also, the
models do not take into account other demographic events such as bottlenecks and expansions
which are likely to have occurred in many species and which may influence our ability to
separate scenarios. Another aspect that may affect the results is that the models do not take
into account the fact that the hybrid, the parental and/or the ancestral populations could be
structured, and exchanging genes with other non sampled populations. While this is an issue
shared with all inference methods published to date (e.g. Hey and Nielsen 2004; Excoffier
et al. 2005; Sousa et al. 2009), this is still a potential problem that should be kept in mind when
interpreting results from real data. The advantage of an ABC approach is that it is possible
to test its robustness to such departures. Also, an ABC method could be implemented and
tested to perform inference under such complex models. The third caveat is related with the
specification of the prior distributions, which is a general problem in Bayesian statistics. This
is a critical point as has been recently shown by Beaumont (2008) and Guillemaud et al.
(2009). For instance, Guillemaud et al. (2009) showed that it is possible that a dataset fits
a population split model with a very recent split, but if we specify prior distributions favoring
old split times the method can fail to identify the population split as the most likely model,
identifying another, incorrect model as the most likely. This is an important point because
different models may appear as more or less likely depending on the range of the parameter
values and the weight given to different parameter values, as defined by the priors. One possible
solution is to use wide non-informative prior distributions. It is expected that by increasing the
number of loci the dependence on prior distributions will decrease (Beaumont and Rannala
2004), and that repeating the analysis with different sets priors its effects can be quantified.
Actually, the analysis of the data from I. lusitanicum has been done with two different prior
sets to test for this effect. Although both cases favored the population split without admixture
model (Figure 4), the distance analysis (Figure 5) showed that one of the prior sets could not
fit the observed data. Again, more work is required on this general issue.

4.3 Conclusion

In conclusion, we assessed the performance of ABC methods to select among alternative ad-
mixture and population split models. We believe that this study contributes to a better un-
derstanding of the power of ABC methods as model-choice procedures, which is crucial as
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ABC are starting to be widely used in population genetics and other areas (Ratmann et al.
2009). We focused on models with single or two admixture events and with up to four dif-
ferent populations. Our results suggest that it is possible to separate the effect of admixture
from that of shared polymorphism. This is particularly important as admixture events are
likely to have occurred in many species after the last glaciations during the colonization of
new regions from several refugia or when populations encountered habitats that were already
occupied (e.g. Chikhi et al. 2002; Alvarado Bremer et al. 2005; Gum et al. 2005; Fraser
and Bernatchez 2005). Admixture is also likely to have happened during the domestication
of plants and animals and is still an ongoing process between breeds (e.g. Bray et al. 2009b).
Identifying admixture events is important as admixture has been invoked in a number of genetic
studies based on clustering methods. These methods (Pritchard et al. 2000; Falush et al.
2003; Corander et al. 2004) are very useful and have been very popular in the last decade
to group individuals according to their genotypes under relatively simple population genetic
models. However, the admixture parameter provided by these methods is of difficult biological
interpretation and cannot separate shared polymorphism from proper admixture, as we saw for
the I. lusitanicum data. The main reason is that the demographic and evolutionary history of
the populations is not explicitly modeled. For instance, the fact that the populations may have
different effective sizes is not taken into account. More work is required to find the situations
where clustering and ABC methods are best applied. The former appears to be more suited for
cases of ongoing gene-flow, and the latter when ancient admixture and population split events
have been important. Regarding ABC methods for admixture models, some improvements are
likely to come from the information about linkage disequilibrium (LD), as admixture is known
to generate LD (Nordborg and Tavaré 2002; Chikhi and Bruford 2005). The use of sum-
mary statistics based on the statistical association of alleles at different loci may thus prove
very useful to separate scenarios with different numbers of admixture events, and perhaps to
separate admixture from gene flow models. We clearly look forward to see these improvements
in the next few years.
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Three pops

d) Pop split without admixture
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Figure 1: Admixture and population split models described in the text. a) Population split
model with three populations and without admixture. b) Admixture model with two parental
populations and one admixture event. c) Admixture model with two parental populations and
two admixture events. d) Population split model with four populations and without admixture.
e) Admixture model with three parental populations and one admixture event. f) Admixture
model with three parental populations and two admixture events. In all models, the populations
are allowed to have different effective sizes Ni, (i = 1, 2, 3, H). The admixture and split events
occurred at tadm1, tadm2 and tsplit generations ago.
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Figure 2: Distribution of the posterior probabilities for the NO admixture model obtained
with the simulated datasets. Each curve was obtained with the analysis of 10 000 simulated
datasets. Gray lines correspond to datasets generated under the admixture models, whereas black
lines correspond to datasets generated under the population split without admixture. Solid lines
correspond to the four population model and dashed lines to the three population model.
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Figure 3: Effect of tolerance and regression in the mean posterior distributions. Average posterior
distribution for the NO admixture model (population split without admixture) as a function of
the tolerance. Each point represents the average of 10000 posterior probabilities.
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Figure 4: Posterior probability for the ADMIXTURE model obtained for Iberochondrostoma
lusitanicum. Posterior probabilities for the ADMIXTURE model shown as function of the toler-
ance level, for: A) results obtained with the first prior set; B) results obtained with the second
prior set. Solid line correspond to the results obtained with the regression step and the dashed
lines correspond to the 95% confidence interval. Horizontal dotted line corresponds to the prior
probability, meaning that both models are equaly likely.
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Figure 5: Comparison of the distance distributions of the I. lusitanicum dataset with the distance
distributions obtained for datasets simulated under the most likely model (NO ADMIXTURE).
The simulated and observed datasets were compared to 10000 simulations under the NO ADMIX-
TURE model, which was selected as the most likely given the I. lusitanicum data. A) Analysis
with the first prior set tested; B) Analysis with the second prior set tested (see text for details).
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Abstract

The idea that molecular data should contain information on the recent evolutionary
history of populations is rather old. However, much of the work carried out today owes to
the seminal work of the statisticians and theoreticians who demonstrated that it was possi-
ble to detect departures from equilibrium conditions (e.g. panmictic population/mutation-
drift equilibrium) and interpret them in terms of deviations from neutrality or stationarity.
During the last 20 years the detection of population size changes has usually been car-
ried out under the assumption that samples were obtained from populations that can
be approximated by a Wright-Fisher model (i.e. assuming panmixia, demographic sta-
tionarity, etc.). However, natural populations are usually part of spatial networks and
are interconnected through gene flow. Here we simulated genetic data at mutation and
migration-drift equilibrium under an n-island and a stepping-stone model. The simu-
lated populations were thus stationary and not subject to any population size change.
We varied the level of gene flow between populations and the scaled mutation rate. We
also used several sampling schemes. We then analysed the simulated samples using the
Bayesian method implemented in the MSVAR program to detect and quantify putative
population size changes. Our results show that all three factors (genetic differentiation,
genetic diversity and the sampling scheme) play a role in generating false bottleneck sig-
nals. We also suggest an ad hoc method to counter this effect. The confounding effect of
population structure and of the sampling scheme has practical implications for many con-
servation studies. Indeed, if population structure is creating ‘spurious’ bottleneck signals,
the interpretation of bottleneck signals from genetic data might be less straightforward
than it would seem, and several studies may have overestimated or incorrectly detected
bottlenecks in endangered species.

1 Introduction

The idea that molecular data should contain information on the recent evolutionary history of
populations is not new and traces back to the beginning of the 20th century (e.g. Hirschfeld
and Hirschfeld 1919). However, much of the work carried out today owes to the seminal work
of the statisticians and theoreticians who demonstrated that it was possible to detect departures
from equilibrium conditions (e.g. panmictic population/mutation-drift equilibrium) and inter-
pret them in terms of deviations from neutrality (Watterson 1975; Tajima 1989b) or station-
arity (Nei et al. 1975; Tajima 1989a). Following this period most studies have primarily been
concerned with the statistical properties of relatively simple models such as the Wright-Fisher
(WF) or Moran models (Ewens 2004). During the last 20 years the detection of population size
changes (e.g. Tajima 1989b; Slatkin and Hudson 1991; Rogers and Harpending 1992;
Cornuet and Luikart 1996; Beaumont 1999; Garza and Williamson 2001; Storz and
Beaumont 2002) has usually been carried out under the assumption that samples were ob-
tained from populations that can be approximated by a Wright-Fisher model. However, natural
populations are usually part of spatial networks and are interconnected through gene flow. They
are hence rarely isolated as in the Wright-Fisher model. To be clear, structured models with
several populations or demes such as the n-island (Wright 1931) or the stepping-stone models
(Kimura and Weiss 1964) have been proposed decades ago in population genetics. However,
there is no inference method yet developed for these models and even less for models account-
ing for both population structure and population size changes. Chikhi et al. (2001), Hey and
Nielsen (2004), Beerli and Felsenstein (2001), Beerli (2006) and others (Excoffier
et al. 2005; Becquet and Przeworski 2007; Bray et al. 2009) developed methods to infer
parameters under structured models but they were limited to a low number of populations in-
terconnected by gene flow or admixture. While it would be important to develop an approach
allowing the detection and quantification of population size changes in structured populations
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it is also important to quantify the robustness of such methods to population structure. In
particular it would be important to determine the extent to which methods that are widely
used but ignore structure can correctly detect or quantify bottlenecks or expansions. This has
both practical and theoretical reasons.

In a seminal work, Wakeley (1999) showed that when populations are structured according
to an n-island model, a false signal of population bottleneck can be observed within single
demes. The reason behind this confounding effect can be understood in terms of coalescent
trees. The genealogy of a sample taken from one deme in an n-island model will have short
branches for the lineages that coalesce within the sampled deme. However, for lineages that
arrived in the sampled deme through gene flow, we expect to observe much longer branches,
since coalescent events will then be dependent on the effective size of the whole set of demes
(Wakeley 1999). Thus, a typical gene tree is expected to have a combination of sets of short
branches connected to each other by long branches. This kind of genealogy is exactly what is
expected in a bottlenecked population (Hudson 1990; Beaumont 2003; Hein et al. 2005).
How strong this effect will be should depend on the relative rate of gene flow (m) and within
population coalescence events (1/N , where N is the effective size of a deme). When gene flow
is high over wide geographical areas, the whole set of populations sampled may behave as a
single large population and it may be reasonable to keep assuming a WF model. Similarly,
when gene flow is very limited, as might be the case for some isolated populations, most alleles
will likely coalesce within the sampled population and the WF model may apply again. Thus,
in these extreme cases, it seems reasonable to apply the methods developed to detect and
quantify population size changes (Cornuet and Luikart 1996; Beaumont 1999; Garza
and Williamson 2001; Storz and Beaumont 2002). Intermediate situations are likely to
be present in real-life cases but this confounding effect has been little studied.

Another issue that has not been explored is that of the sampling scheme. In most studies,
whether they are based on simulated or real data, it is usually assumed that samples are taken
from single demes. However, with real species the delimitation between populations is rarely
clear. Samples obtained in nature may thus come from more than one population. This is
particularly crucial in endangered species, where small samples taken from different demes
(for instance forest fragments) may need to be pooled for some analyses. This may also be
problematic in species where social groups may create another level of substructure that would
also violate the random sampling assumptions (Quéméré et al. in prep). To understand
the potential effect of sampling on the detection of bottlenecks, we can take the extreme and
hypothetical case where each sampled individual comes from a different deme. It is expected
that coalescence times will follow a standard coalescent with an effective population size equal to
that of the metapopulation (Wakeley 1999). While this extreme case is unlikely to happen by
chance, it suggests that the sampling scheme might counter, to some extent, the bottleneck effect
due to population structure. This may seem counter-intuitive but has recently been confirmed
by Städler et al. (2009) who found that when one population is sampled in a stepping-stone
or n-island model, positive Tajima D values (corresponding to bottlenecks in a WF model)
are typically observed, and that the Tajima D values tend towards zero (stationary population
in a WF model) when they pool together samples from different demes. The confounding
effect of population structure and of the sampling scheme has practical implications for many
conservation studies. Indeed, in recent years there has been an increasing use of genetic data
to reconstruct the demographic history of endangered species, often to detect, quantify and/or
date bottlenecks (Garza and Williamson 2001; Goossens et al. 2006a; Leblois et al.
2006; Olivieri et al. 2008; Okello et al. 2008; Craul et al. 2009). Endangered species
are often thought or known to have undergone bottlenecks due to hunting, the introduction of
alien species or habitat loss (Goossens et al. 2006a; Olivieri et al. 2008; Craul et al. 2009;
Quéméré et al. 2009; Sousa et al. 2009b; Quéméré et al. in prep). However, if population
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structure is creating ‘spurious’ bottleneck signals, the interpretation of bottleneck signals from
genetic data might be less straightforward than it would seem, and several studies may have
overestimated or incorrectly detected bottlenecks.

In this study we analyse the effect of the sampling scheme, the amount of population struc-
ture and genetic diversity on the generation of signals of population size change using the
method of Beaumont (1999). We used this method because it is a full-likelihood Bayesian
method that is expected to use the genetic data efficiently, hence detecting bottlenecks when
summary-based methods are potentially unable to detect significant departures (e.g. Olivieri
et al. 2008; Sousa et al. 2008). To do this, we simulated genetic data at mutation and
migration-drift equilibrium under an n-island and a stepping-stone model. The simulated popu-
lations were thus stationary and not subject to any population size change. We varied the level
of gene flow between populations and the scaled mutation rate. We also used several sampling
schemes. We then analysed the simulated samples using the Bayesian method implemented
in the MSVAR program (Beaumont 1999) to detect and quantify putative population size
changes. Our results show that all three factors (genetic differentiation, genetic diversity and
the sampling scheme) play a role in generating false bottleneck signals. We also suggest an ad
hoc method to counter this effect.

2 Material and Methods

2.1 Simulated data sets

2.1.1 n-island model

Data were simulated using the coalescent algorithm of Beaumont and Nichols (1996) for
an n-island equilibrium model with n = 100 islands. All islands are assumed to be of size N
individuals and to exchange migrants at a constant rate m. The model is fully characterized by
the scaled mutation rate (θ = 4Nµ) where µ is the per locus mutation rate and by the scaled
migration rate (M = 4Nm). Since we were interested in microsatellite rather than sequence
data, mutations were assumed to occur under the stepwise mutation model (SMM), at the
same rate for all loci. The SMM was also used as it is the mutation model assumed by the
method of Beaumont (1999). We investigated the effect of varying θ and M on the detection
of false bottlenecks by simulating datasets with θ = (1, 10), and M = (99, 19, 9, 3). The values
of M were chosen so as to correspond to the FST values expected at equilibrium for an infinite
island model, namely FST = (0.01, 0.05, 0.1, 0.25), respectively, according to the expression
FST = 1/(1 +M). These values typically encompass the values observed in most real data sets
published in conservation genetics, e.g. FST = 0.02 − 0.06 in orang-utans (Goossens et al.
2006), FST = 0.00 − 0.20 in mouse lemurs (Olivieri et al. 2008), and FST = 0.01 − 0.54 in
the Iberian minnow (Sousa et al. 2008). Note that these expected FST values are theoretically
valid only under the infinite allele model. Due to homoplasy, lower FST values should be
expected under the SMM. As a simple test we thus performed 1,000 simulations under the
SMM to determine the extent to which the FST distributions obtained in the simulated data
would be different from the theoretical values above. Our results (Supplementary Figure 1)
suggest that the observed and expected values are very close to each other. As a consequence,
and for simplicity, we will keep referring to the equilibrium FST values given above throughout
the manuscript.

We also investigated the effect of the sampling scheme by considering three different sam-
pling strategies. In all cases we considered that 50 diploid individuals were sampled in total
(100 gene copies). In the first scheme, the genetic data were sampled from one deme (this is
the usual assumption). In the second case we pooled the samples obtained in two different
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demes (25 individuals in each). In the third case we obtained samples from 50 demes, i.e. one
individual per deme. Altogether there were 24 different combinations of sampling scheme and
parameter values for θ and M . For each of them ten independent datasets were simulated with
five loci. To determine whether the number of loci had a major effect on our results, we also
repeated some of these analyses with 10 loci as many published microsatellite data typically
have between 8 and 12 loci. The samples were taken from one deme and the parameter values
used for these simulations were θ = (1, 10) and FST = (0.01, 0.05, 0.10). Thus altogether 300
independent data sets were analysed using MSVAR under the n-island model with five or ten
loci (240 and 60 data sets respectively). This is to our knowledge one of the largest tests per-
formed on a full-likelihood method and the first to test the robustness with a reasonably large
number of simulations.

2.1.2 Stepping-stone model

In order to determine whether our results were robust to the population structure model we
repeated some of the simulations assuming a stepping-stone model. Here the simulations were
performed assuming five loci, θ = (1, 10) and two values of FST = (0.05, 0.25). All parameter
combinations were repeated ten times, hence corresponding to 40 additional data sets.

2.2 Analysis with MSVAR

MSVAR implements a full-likelihood Bayesian inferential method developed by Beaumont
(1999). The model assumes that a single stable population of size N1 started to decrease (or
increase) ta generations ago to the current population size, N0. The change in population size
can be either linear or exponential, and mutations are assumed to occur under a SMM model,
with rate θ = 4N0µ, where µ is the locus mutation rate. Using a coalescent-based MCMC
approach, the method estimates the posterior probability distributions of (i) the magnitude
of population size change r = N0/N1, (ii) the time since the population started changing size
scaled by N0, tf = ta/N0, and (iii) the scaled mutation rate θ = 4N0µ. The method uses
the full allelic distribution taking into account the relative size of microsatellite alleles. It is
thus expected to be more efficient at detecting population size changes than methods based
on summary-statistics. The simulated datasets were given as input to MSVAR, assuming an
exponential model for the population size change. Wide uniform prior distributions were chosen,
between -5 and 5 on a log10 scale for log(r), log(θ), and log(tf ), as in Goossens et al. (2006a)
or Olivieri et al. (2008). For each dataset one long run of 5× 109 steps was performed, with
a thinning of 50,000 steps. Preliminary tests showed that these runs were long enough to reach
equilibrium. This was also confirmed by our experience with real data sets. The first 10% of
the chain were discarded (as burn-in) and the remaining was assumed to be a sample from the
joint posterior distribution. We used the R language to analyse the outputs of MSVAR, using
the locfit, coda, mcmc and MCMCpack packages. The convergence of the chains was tested
with the Geweke et al. (1992) statistic. Note however that we were not interested in inferring
precisely the change in population size. This is why convergence was not as serious an issue
for us as it would be with real data sets for which several independent runs would need to be
performed. Even when convergence had not been reached based on Geweke’s statistic visual
inspection of the chains suggested that the chain was close to equilibrium and the signal for
either population increase or decrease was clear.

Since we were interested in the detection of population size changes we focused on the
marginal posterior distribution of log(r) = log(N0/N1). Negative values correspond to a popu-
lation decrease (N0 < N1), whereas positive values point to a population expansion (N0 > N1).
Values close to zero suggest a stable population (N0 = N1). Flat posterior distributions suggest
either a lack of information or no strong signal for a change in population size. For each dataset
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we also recorded the mean and variance of the posterior distribution, and plotted the latter
against the former.

2.3 Data from two Iberian minnow species

In order to determine whether we could identify true from ‘spurious’ bottlenecks signatures
in real data sets, we compared the results obtained from two Iberian minnows using MSVAR
(Sousa et al. 2008, 2009b) with the simulation results. The datasets consisted of six microsatel-
lite loci typed at 212 and 192 individuals from Iberochondrostoma lusitanicum and I. almacai,
respectively. For each species, six populations were sampled with sample sizes ranging from 21
to 43 in I. lusitanicum and from 12 to 50 in I. almacai, although most of the populations had
around 40 individuals. Note that one of the locus was monomorphic in I. lusitanicum. Thus,
these real datasets samples were similar to the simulations, with 50 diploid individuals typed
at 5 loci. The magnitude of the population size changes (mean log10(N1/N0) estimated with
MSVAR (Beaumont 1999) under the same prior as the simulations), ranged from -3.14 to
0.18 in I. lusitanicum and from -3.34 to -1.92 in I. almacai. These species were characterized
by F estimates, which are analogous to average FST , obtained with the method of Vitalis and
Couvet (2001b) implemented in the program ESTIM (Vitalis and Couvet 2001a). The
F estimates ranged from -0.03 to 0.42 in I. lusitanicum and from -0.14 to 0.44 in I. almacai.
The results of the two species were compared with the simulations by dividing the datasets
into two groups to test for the effect of the population differentiation: (i) FST < 0.1 and (ii)
FST >= 0.1. The low expected heterozigosity He found in these species (He < 0.45), and the
MSVAR estimates for θ = 4N0µ suggested that the markers are characterized by low θ. Thus,
the results were compared with the simulations with θ = 1.

3 Results

3.1 MCMC convergence

The Geweke et al. (1992) test suggested that most of the MCMC chains reached equilibrium
(337 out of 340, Supplementary Figure S2). Most exceptions corresponded to data sets with
10 loci and θ = 10, where some runs show Geweke statistics values that rejected convergence.
We note that in the vast majority of the runs the posteriors were either similar to the prior
or suggested a population decrease. It is thus unlikely that convergence affected our main
conclusion that population structure mimics population bottlenecks (see below).

3.2 Genetic differentiation and diversity

Figure 1 shows the posterior distributions obtained for log(r) with five loci. The main results are
that (i) the posterior distributions are shifted towards the left (negative values corresponding to
a bottleneck), (ii) the intensity of this confounding effect is dependent on the amount of genetic
differentiation between populations, (iii) the effect of population structure on the posteriors is
itself significantly increased when θ = 10 compared to θ = 1. When genetic differentiation is
limited (FST = 0.01 and to a lesser extent FST = 0.05) most posterior distributions do not
lead to a significant signal, as they are relatively flat and exhibit large variances that are very
similar to those of the prior (Figure 2, Table 1). This is particularly true when θ = 1. The
bottleneck effect is however extremely clear for large FST values when θ = 10. Indeed, real data
exhibiting similar posteriors would be interpreted as a strong evidence for a population decrease
around two orders of magnitude (Figures 1B, 2C and 2D). However, we note that even for FST

values as high as 0.25, there are cases where the posteriors had a mean close to zero and a large
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variance (Figure 2D). This is more frequent for θ = 1 but even with θ = 10 we found one case
out of ten, with a very wide and flat posterior distribution. Thus it appears that population
structure does create a bottleneck effect that increases with genetic differentiation and with
genetic diversity. The FST values at which this bottleneck effect is detected are typically found
in the literature of both endangered and non endangered species (e.g. Quéméré et al. 2009).

3.3 The sampling scheme

The effect of the sampling scheme appears in Figure 3 where, for FST = 0.25, we plotted for
40 posteriors the variance against the mean in cases where two and 50 demes were sampled.
They show that the means and variances of the posterior distributions tend towards the values
of the prior when the number of sampled demes increases (Figure 3). Interestingly, when two
demes are sampled for the most extreme case of genetic differentiation (FST = 0.25), we can
see a pattern similar to that observed for FST = 0.1 when only one deme is sampled (Figure
2C). When 50 demes are sampled (one diploid individual from each deme) the situation is even
more extreme with most posteriors exhibiting little bottleneck signal as for the data obtained for
FST = 0.01 when only one deme is sampled. These results suggest that the chances of obtaining
estimates suggesting a ‘spurious’ population decrease are higher when analyzing samples taken
from a single deme, than samples mixing more than one deme.

3.4 The number of loci and and the model of population structure

As Figure 4 shows there were differences when ten loci were used instead of five. In general the
means of the posteriors were more shifted towards negative values, but this effect was stronger
for θ = 10 than for θ = 1. In general, the analyses with ten loci tended to return more precise
posterior distributions (smaller variance), thus increasing the support for “false” population
declines. However, for θ = 1 and low FST values (FST = 0.01, 0.05) we note that the use of ten
loci did not have a very strong effect. As can be seen in Figure 5 there are no major differences
between the results obtained under the stepping-stone model and the island model. For higher
scaled mutation rates and FST values (lower right panel) the means under the stepping-stone
model tend to be slightly lower than under the island model, suggesting a slightly stronger
‘spurious’ bottleneck effect.

3.5 Comparison of the simulations with data from two Iberian min-
now species

In Figure 6 the results of the real datasets are compared with the distribution of the mean
and variance of the magnitude of the population size (log(r) = log10(N1/N0)) obtained in
the simulations. As can be seen, the results of the two species fall outside the values of the
simulations, which can be seen as the expected distribution for the log(r) values if population
structure was the only factor. In comparison with the simulations, the real data had a lower
variance and in four samples the mean was more negative than the lower value obtained with
the simulations. Also, contrary to the distribution found with the simulations, the results of
the fish species is apparently independent of the FST estimates, with most of the points in the
region of means between -3 and -2 and variances between 0 and 2 in both the right and left
plots.
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4 Discussion and conclusion

4.1 The importance of population structure

The simulations presented here show that when samples are obtained from populations that
are actually stationary and at mutation-drift equilibrium but are interconnected by gene flow
to other populations, MSVAR detects bottlenecks that are apparently not distinguishable from
real ones in WF populations. While this effect has been known from a theoretical point of view
(Wakeley 1999) it had never been quantified. We found that the effect was limited when
genetic differentiation was low but that it could be observed for values of FST that are typically
reported in the literature. We found that the effect was particularly strong with high values of θ,
which either correspond to highly variable markers or to species with large effective population
sizes. This is particularly interesting as it means that structured populations with large effective
sizes Ne are the ones that are most likely to exhibit this ‘spurious’ bottleneck effects. It is also
worrying because, a large population that has recently been affected by environmental change
may exhibit a bottleneck signal not because of the recent habitat contraction but because it
used to be large and structured. This is likely to be the kind of species that attracts interest
of conservation biologists. That is, our results suggest that we might have found a bottleneck
signal if we had sampled this species before it started decreasing. Given that several vertebrate
species currently endangered used to be widely distributed and were probably structured, this
result may apply to some of them. Also, the fact that for most of these species we do not
have access to non disturbed populations, due to major habitat losses that have taken place
in the last centuries, we may not be able to obtain samples from undisturbed populations for
which the ‘spurious’ bottleneck effect could be quantified. This result does not mean that
a bottleneck detected today is unrelated to recent demographic changes due to habitat loss
and fragmentation in endangered species, but it does suggest that it is currently difficult to
separate the two effects. For instance, one could imagine a hypothetical situation where MSVAR
identifies population size decrease by three orders of magnitude, but that population structure
contributed to a hundred-fold decrease whereas the actual demographic decrease was “only”
ten-fold. One could probably imagine any combination of these two effects. At this stage it
is difficult to say how population structure and population size change may interact. It is
important to stress that there is no known inference method that explicitly models population
size change and structure, except for simple models with few populations (Chikhi et al. 2001;
Hey and Nielsen 2004; Hey 2005; Bray et al. 2009). Also, we stress that this confounding
effect is general. It affects all methods or statistics currently used to detect, quantify or date
population size changes. It is not specific of MSVAR, as the null distributions of these statistics
are computed assuming a simple WF model without population structure.

Our results are in agreement with the results of Wakeley (1999) who showed that struc-
tured populations can exhibit a signal of population bottlenecks even if they are actually growing
and increasingly exchanging migrants. His study was marked by the observation that many
genetic studies on humans were finding signals of population bottlenecks when human present-
day population sizes are most likely greater than that of prehistoric humans. Our results are
also surprisingly similar to those of Städler et al. (2009) who studied the effect of population
structure on two summary statistics used to detect selection or population size changes in se-
quence data. They also simulated data under n-island and stepping-stone models of population
structure and found that genetic differentiation was biasing Tajima’s D (Tajima 1989b) and
Fu’s and Li’ D (Fu and Li 1993) towards positive values, that are typically observed in declining
populations. We note though that Städler et al. (2009) were mostly interested in detecting
potential spatial expansions and in quantifying the extent to which population structure and
the sampling scheme could hinder this detection. Here, we are interested in bottlenecks, and
determining the conditions under which false bottlenecks are ‘spuriously’ detected. They stud-
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ied scenarios where an ancestral population suddenly became structured, while either staying
demographically stationary or increasing significantly in size. Their results showed that the two
summary statistics were strongly influenced by population structure and the sampling scheme.
Moreover, they were interested in sequence data whereas we were interested in microsatellite
data and in methods using the full allele frequency information. The latter point is particularly
important as full-likelihood methods are supposed to use genetic information more efficiently.
We show here that instead of providing better and more precise results, full-likelihood methods
provide stronger support for incorrect answers, at least under some conditions. This is due to
the fact that robustness to some of the model assumptions had not been checked. This point
is discussed below.

In another recent study Leblois et al. (2006) tried to address a different but related issue.
These authors used an isolation-by-distance model, where each node corresponds to an individ-
ual rather than a deme. They then analysed genetic samples after a fragmentation event, by
sampling individuals from the only remaining habitat fragment. They applied the summary-
based methods of Cornuet and Luikart (1996) and Garza and Williamson (2001) to
determine whether the fragmentation event led to signals of bottleneck. Their analyses sug-
gested that a rather complex set of results could be observed. They found, as expected, that
bottlenecks could be detected, but, very surprisingly, they also found a significant proportion
of expansion signals. This is particularly interesting since expansion signals have also been
observed in real data sets from endangered species known to have rapidly decreased in the last
decades due to habitat fragmentation (e.g. Sousa et al. 2008; Olivieri et al. 2008; Cook et al.
2007; Johnson et al. 2009). We have also found this in our simulations (unpublished data).
Altogether, the studies mentioned above (Wakeley 1999; Leblois et al. 2006; Städler et al.
2009) and ours, suggest that structured populations can generate genetic signatures and pat-
terns that are cannot be properly studied by using simple WF models. It is important to note
that this is true for non spatial (n-island) or spatially structured (stepping-stone) models. We
should also conclude this first section by the fact that the interest for spatially explicit models
has increased in the last few years, notably for non-equilibrium situations. For instance, a re-
cent set of studies have shown that spatial expansions can generate genetic signatures that can
be very different from those expected under a simple Wright-Fisher model (Ray et al. 2003;
Klopfstein et al. 2006; Currat et al. 2006, 2008). For instance Currat et al. (2006) showed
that a spatial expansion can favour the surfing behavior of neutral alleles that are rare in the
source populations. This can lead to near-fixation in some of the expanding populations. Such
large allele frequency differences can then be mistaken for the signature of selection. Clearly,
all these and other studies (e.g. Cavalli-Sforza and Feldman 1990; Hey and Machado
2003; Nielsen and Beaumont 2009; Ray and Excoffier 2009) strongly suggest that there
is thus still much to be learned about the properties of genetic samples taken from structured
populations.

4.2 The need for increased testing of inference methods

While this was not the focus of our manuscript it is worth mentioning that, to our knowledge,
this is one of the first studies to perform a robustness test on a full-likelihood coalescent-
based method. The development of full-likelihood and MCMC based methods for population
genetics inference has been one of the major developments in population genetics in the 1990s
with influential papers by Felsenstein (1992), Griffiths and Tavaré (1994) and others
(Wilson and Balding 1998; Beaumont 1999; Beerli and Felsenstein 2001; Nielsen and
Wakeley 2001; Hey and Nielsen 2004). The arrival of these methods demonstrated that it
was possible to use the full allelic distribution much more efficiently than before (Felsenstein
1992). Unfortunately the computational cost of these methods is such that they often cannot
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be easily applied to increasingly large real-life data sets. Moreover, some of these methods
have not been thoroughly tested. To be clear, we are strong advocates of these methods and
have contributed to the development and testing of some of them (Beaumont 1999; Chikhi
et al. 2001; Storz and Beaumont 2002) including methods developed within the approximate
Bayesian computation framework (Cornuet et al. 2008; Bray et al. 2009; Sousa et al. 2009a).
As some of us have recently argued, these methods were much more thoroughly tested than
network-based methods such as nested-clade analysis (Templeton 1998) or median-network
based methods (Bandelt 1999) who were also developed in the 1990s (Goldstein and Chikhi
2002; Chikhi and Beaumont 2005). Also, full-likelihood methods have been shown to work
either very well or at least reasonably well under the model assumptions. This is not the
case of the network-based mentioned above (Knowles and Maddison 2002; Panchal and
Beaumont 2007; Beaumont et al. 2010). The data sets used to test full-likelihood methods
in simulation studies are usually generated under the model of interest. Our study differs from
previous tests in that we simulated data under a model different from that assumed by the
method. We thus tested the robustness of the method to a specific model misspecification. Our
results suggest that robustness should be better investigated in the future.

4.3 On using genetic data for conservation genetics

Genetic data are increasingly used in conservation biology and it is expected that management
decisions may increasingly depend on the results of genetic studies. For instance an endangered
species may lack genetic diversity for several reasons. It could be because it has been subjected
to a significant population decrease or because it has had a small population size for long
periods of time (Olivieri et al. 2008; Sousa et al. 2008). The statistical methods used to
detect population size changes usually ignore population subdivision and our results suggest
that this may generate incorrect results under conditions that are likely to be common in nature.
This suggests that it may be necessary to re-evaluate a number of older studies that detected
past population size changes. At the same time, we found that when the samples are taken
from several demes, MSVAR did not detect bottlenecks. This suggests an ad hoc approach to
determine whether the meta-population was subject to a population size change. This ad hoc
approach would require to analyse random samples from the species under study, or samples
obtained by maximizing the number of subpopulations. Indeed, for many endangered species
currently living in a fragmented environment one could take one individual per fragment, and if
the number of fragments sampled is limited, by taking individuals from different social groups
within each fragment. Another solution was also proposed by Beaumont (2003) who found
that the results of MSVAR were improved by using temporal samples. Another ad hoc way
to assess if population structure is the main factor responsible for the genetic patterns is to
compare the real data with the simulations results. The comparison of the MSVAR estimates
of the two Iberian minnow species I. lusitanicum and I. almacai (Sousa et al. 2008, 2009b)
with the simulations show that the real data fall outside the expected distribution, suggesting
that population structure alone cannot explain the results of these two species. Despite the fact
that the real datasets consisted of individuals genotypes at six loci (five in the simulations) and
the fact that populations had different sample sizes, these results indicate that the populations
in the two species are probably undergoing a population decrease. This is in agreement with
ecological data supporting a recent population decline in both species (Alves and Coelho
1994; Cabral et al. 2005).
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4.4 Conclusion

Altogether our results and those of several previous studies (Leblois et al. 2006; Städler
et al. 2009) suggest that conservation geneticists should be very careful in interpreting genetic
data. As inferential methods have become increasingly powerful, they may also have become
more sensitive to departures from model assumptions. Methods that account for both popu-
lation subdivision and population size change may be difficult to implement as the number of
parameters to estimate may grow very quickly. An alternative solution may come from the use
of model-choice approaches. The recent development of methods based on the Approximate
Bayesian Computation framework suggests that it is becoming possible to choose among several
models (e.g. Fagundes et al. 2007; Cornuet et al. 2008; Bray et al. 2009; Sousa et al. in
prep).
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Quéméré, E., E. Louis, A. Ribéron, L. Chikhi, and B. Crouau-Roy, 2009 Non-invasive
conservation genetics of the critically endangered golden-crowned sifaka (Propithecus tatter-
salli): high diversity and significant genetic differentiation over a small range. Conservation
Genetics pp. 1–13.
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Figure 1: Influence of genetic differentiation and diversity in the detection of bot-
tlenecks. Posterior distributions were obtained for log(r), the ratio of present over ancient
population size change. Negative values of log(r) correspond to population bottlenecks. 1A –This
panel represents the posteriors for θ = 1. Many posterior distributions are relatively flat and not
very different from the priors, hence neither favouring a population increase or decrease. Most of
the posteriors indicating a potential bottleneck were obtained for the highest FST values, but can
also be observed for FST values between 0.05 and 0.10. For all analyses the prior for log(r) was
a uniform between -5 and 5, and is represented by the horizontal dashed line. The results were
obtained with 5 loci and 50 diploid individuals sampled from a single deme assuming a 100-island
model (see text for details). 1B – Same as 1A but for for θ = 10.
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Figure 2: Effect of genetic differentiation and diversity in the detection of bottlenecks.
2A. This figure represents the means and variances for the posterior distributions represented in
Figure 1 for log(r) = N0/N1. The mean and variance of the prior is represented by the vertical
and horizontal dotted lines, respectively. Negative means correspond to population bottlenecks
whereas positive means correspond to population expansions. The open circles correspond to
posteriors obtained for θ = 1 whereas the triangles were obtained with θ = 10. The results were
obtained with 5 loci and 50 diploid individuals sampled from a single deme assuming FST = 0.01
in a 100-island model (see text for details).
2B. Same as 2A but for FST = 0.05.
2C. Same as 2A for FST = 0.10.
2C. Same as 2A for for FST = 0.25.
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Figure 3: Effect of sampling scheme. Mean and variance of the posterior distributions
are shown for two sampling schemes, and with two scaled mutation rates (θ = 1 and 10) for
FST = 0.25. The open circles correspond to posteriors obtained for θ = 1 whereas the triangles
were obtained with θ = 10. These results were obtained by sampling 50 diploid individuals from:
3A) 1 deme (i.e. 50 individuals); 2 demes (i.e. 25 individuals from each); 3B) 50 demes– (i.e
one individual from each). The results were obtained with 5 loci assuming a 100-island model;
3C) 50 demes– (i.e one individual from each). The results were obtained with 5 loci assuming a
100-island model.
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Figure 4: Effect of the number of loci in population size change estimates. Mean and
variance of the posterior distributions for log(r) the ratio of present over ancient population size
change are shown for samples with five and ten loci, for different levels of gene flow and for the
two scaled mutation rates (θ = 1. Panels A, B, C; θ = 10 panels D, E, F). The results were
obtained by sampling 50 diploid individuals from a single deme in a 100-island model.

18

4.1. CHIKHI et al. 2010 - POPULATION STRUCTURE AND POPULATION SIZE CHANGES 125



●
●

●

●

●

●

●

●

●
●

−4 −2 0 2 4

0
2

4
6

8

Fst=0.05, Theta=1

Mean log(N0/N1)

V
ar

 lo
g(

N
0/

N
1)

● n−island

stteping−stone

●

●

●
●

●

●

●

●

●

●

−4 −2 0 2 4

0
2

4
6

8

Fst=0.25, Theta=1

Mean log(N0/N1)

V
ar

 lo
g(

N
0/

N
1)

● n−island

stteping−stone

●

●

●
●

●

●

●

●

●

●

−4 −2 0 2 4

0
2

4
6

8

Fst=0.25, Theta=10

Mean log(N0/N1)

V
ar

 lo
g(

N
0/

N
1)

● n−island

stteping−stone
●

● ●

●

●

●
●

●

● ●

−4 −2 0 2 4

0
2

4
6

8

Fst=0.25, Theta=10

Mean log(N0/N1)

V
ar

 lo
g(

N
0/

N
1)

● n−island

stteping−stone

Figure 5: Comparison of the stepping-stone and n-island models. Mean and variance
of the posterior distributions obtained for different levels of gene flow FST = (0.05, 0.25), and
scaled mutation rates θ = (1, 10), under the n-island model and a two dimensional stepping-stone
model. In both cases, 50 diploid individuals sampled from a single deme and typed at 5 loci were
analysed.

19

126 4. POPULATION STRUCTURE AND POPULATION SIZE CHANGES



−5 −4 −3 −2 −1 0 1 2

0
2

4
6

8

FST < 0.1

mean(log10(N0 N1))

va
r(l

og
10

(N
0

N
1))

●
●

●

SIM n−island

SIM stepping−stone

I. lusitanicum

I. almacai

−5 −4 −3 −2 −1 0 1 2

0
2

4
6

8

FST ≥ 0.1

mean(log10(N0 N1))

va
r(l

og
10

( N
0

N
1))

●

●●

●

●

●

SIM n−island

SIM stepping−stone

I. lusitanicum

I. almacai

Figure 6: Comparison of the Iberian minnow data with the simulations. Mean and
variance of the posterior distributions obtained for the simulated data generated under different
levels of gene flow FST = (0.01, 0.05) (left panel) and FST = (0.10, 0.25) (right panel) with scaled
mutation rates θ = 1, under the n-island model and a two dimensional stepping-stone model. In
both cases, 50 diploid individuals sampled from a single deme and typed at 5 loci were analysed.
The results obtained for Iberochondrostoma lusitanicum and I. almacai in Sousa et al. (2008)
and Sousa et al. (2009b) are shown for comparison.
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Supplementary Figure 1: Distribution of FST in the n-island and stepping-stone model
under the SMM mutation model. The results shown in the left panel were obtained with
θ = 1 and in the right panel with θ = 10. A) The top panel shows the distribution of the mean FST

in a 100-island model (100 gene copies sampled, one in each deme). B) The mid panel shows the
distribution of the mean FST in a two dimensional stepping-stone model (50 gene copies sampled,
one in each deme). C) The mid panel shows the distribution of the mean FST in a two dimensional
stepping-stone model of samples taken at neighbour demes (100 gene copies sampled, 50 in each
deme). Vertical dashed lines correspond to the mean of the distribution, and the vertical solid
lines correspond to the expected value for the infinite-island model under the IAM mutation model
(FST = 1/(1 + 4Nm)). The distributions were obtained after 1000 simulations.
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Supplementary Figure 2: Convergence analysis. Geweke statistics obtained for each sim-
ulation. The horizontal dashed lines correspond to the 5% significance level (2.5% and 97.5%
quantiles of the null distribution [Normal(0,1)]), and the solid lines correspond to the significance
level corrected for multiple tests with the Bonferroni procedure.
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FST θ Demes 
sampled

Prop. negative
Mean 

log(N0/N1)

Prop. negative 
Quantile 75% 

log(N0/N1)

Prop. negative 
Quantile 95% 

log(N0/N1)
0.01 1 1 0.8 0.0 0.0

2 0.7 0.0 0.0
50 0.8 0.1 0.0

10 1 1.0 0.1 0.1
2 1.0 0.0 0.0
50 1.0 0.1 0.0

0.05 1 1 0.7 0.3 0.1
2 0.8 0.1 0.0
50 0.9 0.1 0.0

10 1 1.0 0.5 0.2
2 0.8 0.1 0.1
50 0.9 0.0 0.0

0.10 1 1 0.8 0.2 0.0
2 0.7 0.2 0.0
50 0.7 0.1 0.0

10 1 1.0 0.7 0.2
2 0.9 0.4 0.3
50 1.0 0.1 0.0

0.25 1 1 1.0 0.5 0.1
2 0.8 0.1 0.0
50 0.9 0.1 0.0

10 1 1.0 1.0 0.9
2 1.0 0.8 0.5
50 0.9 0.2 0.0

Table 1 – Summary of the posterior distributions obtained with data simulated under the n-island 
model with five loci.  The table shows the the effect of FST, θ and number of demes in the 
proportion of simulations with negative means, 75% quantile and 95% quantile of log(N0/N1). 
Each row correspond to ten simulations. 

Table 1: .
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CHAPTER 5

General Discussion

The aim of this chapter is to provide an overview and discussion of the main results of this thesis with

specific reference to the the six manuscripts that compose Chapters 2 to 4. This chapter is structured into

four sections. First, the work done on approximate Bayesian computation (Chapter 3 - sections 3.1 and 3.2)

is discussed in the context of the recent developments on this field. Second, the results of section 3.3. of

Chapter 3 are discussed together with the recent developments in model-choice approaches in population

genetics. Third, the work of Chapter 4 is discussed in the broad context of the general problem of the

effects of population structure in estimation of other demographic events. Finally, the main results of the

analysis of the data from the two case study species Iberochondrostoma lusitanicum and I. almacai (Chapter

2) are discussed taking into account the results obtained with the re-analysis of the data using the methods

developed and investigated in Chapters 3 and 4.

5.1. Approximate Bayesian computation as efficient model-based inference

methods

In recent years, ABC methods have become popular in population genetics as an alternative to full-likelihood

methods to deal with demographic models for which there is no explicit likelihood function (Marjoram and

Tavaré 2006). At the same time, ABC started to be applied to other areas, such as epidemiology (Sisson

et al. 2007) and systems biology (Ratmann et al. 2009). In comparison to when this thesis started, ABC

methods are now widely used in population genetics and have been applied to estimate parameters for

several demographic scenarios (e.g. Becquet and Przeworski 2007; Fagundes et al. 2007; Rosenblum et al.

2007; Pascual et al. 2007; Beaumont 2008; Carnaval et al. 2009; Guillemaud et al. 2009; Ingvarsson 2009;

Hurt et al. 2009; Lopes et al. 2009; Ross-Ibarra et al. 2009; Wilson et al. 2009; Hickerson et al. 2009;

Wegmann et al. 2009). Most of these recent studies describe the application of ABC methods to the analysis

of a specific real data set (e.g. Chan et al. 2006; Pascual et al. 2007; Bonhomme et al. 2008; Neuenschwander

et al. 2008; Cox et al. 2008; Aspi et al. 2009; Verdu et al. 2009). In addition to these applied studies, there
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has been ongoing research on the theory behind approximate Bayesian computation and on the statistical and

computational aspects of these methods. These studies can be divided in three areas: theory and algorithms,

performance tests and software development.

Regarding the theory and algorithms, several studies have focused on ABC as general likelihood free model-

based inference approaches, and new ABC algorithms have been proposed, such as the use of ABC within

MCMC (Marjoram et al. 2003; Becquet and Przeworski 2007; Wegmann et al. 2009), sequential algorithms

(Sisson et al. 2007; Beaumont et al. 2009) and new regression approaches (Blum and Francois 2008; Blum

2009). In particular, one aspect that received special attention in population genetics was the choice of sum-

mary statistics (Beaumont et al. 2002; Marjoram et al. 2003; Thornton 2005; Hickerson et al. 2006), which

resulted in recent theoretical studies focusing on methods allowing the selection of informative summary

statistics (Beaumont 2008; Joyce and Marjoram 2008; Wegmann et al. 2009).

Also relevant is the evaluation of the performance of ABC methods, and the number of studies focusing

on the quality of ABC estimates has also increased in the last few years. In some cases, real datasets

have been analysed both with ABC and other methods, allowing to compare the estimates obtained (e.g.

Beaumont et al. 2002; Tallmon et al. 2004; Excoffier et al. 2005a; Rosenblum et al. 2007). However, these

comparisons do not allow to make an objective evaluation of the ABC performance because the actual

parameter values are unknown in the analysis of real data sets. Thus, the fact that similar estimates are

obtained with ABC and other methods is not conclusive, as both methods can give similar but incorrect

estimates. A more efficient way to assess the performance is through the analysis of simulated datasets for

which the parameter values are known. This is starting to be a common practice to evaluate the quality of

ABC estimates on real data set analyses, and there are examples where simulations were carried out to assess

the performance of the ABC methods under the specific models assumed (Haddrill et al. 2005; Thornton

and Andolfatto 2006; Fagundes et al. 2007; Rosenblum et al. 2007; Patin et al. 2009). Nevertheless, the

most reliable way to assess the performance of inference methods is through extensive simulation studies

under general demographic models (Stephens 2001; Choisy et al. 2004; Chikhi and Beaumont 2005). Until

now, ABC performance have been tested with simulation studies under different demographic models, such

as single stable population (Beaumont et al. 2002; Tallmon et al. 2004), admixture events (Excoffier et al.

2005a), and population split (Hickerson et al. 2006), including isolation with migration models (Beaumont

2008; Becquet and Przeworski 2007; Wegmann et al. 2009). Also, ABC has been tested under models with

recombination (Haddrill et al. 2005; Becquet and Przeworski 2007; Lopes et al. 2009). It is noteworthy that

some of these studies also compared the performance of ABC with other methods, including full-likelihood

(e.g Beaumont et al. 2002; Tallmon et al. 2004; Excoffier et al. 2005a; Becquet and Przeworski 2007). In
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general, the results point to a reasonably good accuracy and precision of the estimates obtained with ABC

methods, with less computational cost than the alternative full-likelihood methods.

Regarding ABC software, this area went through major developments as seen by the increasing number of

user-friendly programs that become available during the period of this thesis, such as SerialSIMCOAL (An-

derson et al. 2005), msBAYES (Hickerson et al. 2007), MIMAR (Becquet and Przeworski 2007), DIYABC

(Cornuet et al. 2008), oneSAMP (Tallmon et al. 2008) and popABC (Lopes et al. 2009). For instance,

msBAYES estimates parameters and test for simultaneous divergence or colonization across multiple co-

distributed pairs of taxa (populations and/or species), using hierarchical approximate Bayesian computation.

Another flexible software is the program popABC (Lopes et al. 2009) that allows estimation of parameters

and hypothesis test for models involving population split and migration (isolation with migration). PopABC

is able to analyse microsatellite and sequence data (with recombination) and it offers several options to de-

fine the prior distributions and select the summary statistics. However, the most flexible software up to date

is the DIYABC (Cornuet et al. 2008). This is a user friendly program with a graphical interface in which the

user defines a specific demographic model of interest (it implements population splits and admixture events

but no migration and no recombination). This program estimates parameters and test alternative models

based on unlinked microsatellite data. In addition, the program performs simulations to assess the quality

of the estimates obtained under the model specified by the user.

In all these recent ABC studies, there is a clear trend towards more realistic and complex models and

increasingly larger datasets (e.g. multiple SNP and microsatellite loci). One specific objective of this thesis

was to further investigate and improve the efficiency of ABC methods dealing with complex models and such

large datasets, and at the same time examine statistical and computational characteristics of these methods.

New approximate Bayesian computation methods were developed, tested and implemented to study past

admixture events. The work carried out in this thesis included developments in the three areas discussed

above: theory and algorithms, performance test and software development. The main achievements are

summarized in the three points discussed below.

First, a new ABC methodology using the full-allele distribution was developed and tested (section 3.1 Sousa

et al. 2009a). The main idea was to perform inference using the same source of information (allelic distri-

bution) as in full-likelihood methods. This avoids the need to select a set of summary statistics (e.g. He,

FST ), which continues to be one of the main criticisms of ABC methods, not only because there is inevitable

loss of information when summarizing the data, but also because there is still no objective way to select the

most informative statistics (Marjoram et al. 2003). The ABC with allele frequencies overcomes the problem

of selecting the summary statistics because the full allelic distribution is used directly, as in full-likelihood
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methods. The fact that the likelihood function of most full-likelihood methods is based on the allele (or

haplotype) frequencies, and not in summary statistics of the allele frequency distribution, means that the

allele frequencies extract all information about the parameters of interest (i.e. the allele frequencies can be

seen as sufficient summary statistics). Thus, since ABC with allele frequencies uses the same information,

it is expected that the posterior approximations obtained will tend to the true posterior distribution in the

limit that the tolerance tends to zero. In mathematical notation, P (θ|d(Dobs, Dsim) < δ) = P (θ|Dobs)

when δ → 0, where θ is the parameter of the model, Dobs and Dsim are the observed and simulated allele

frequencies, respectively, d(.) is a distance metric, δ is an arbitrary tolerance threshold and P (θ|Dobs) cor-

responds to the true posterior distribution. Note that the same is not true when using summary statistics,

as there is still no way to assess and select the sufficient summary statistics (Beaumont et al. 2002; Marjo-

ram et al. 2003; Beaumont 2008; Joyce and Marjoram 2008; Beaumont et al. 2009; Wegmann et al. 2009),

and the ABC approximation will only tend to the correct distribution when the summary statistics are suffi-

cient Ssufficient, i.e. P (θ|d(Sobs, Ssim < δ)) = P (θ|Dobs) only if S = Ssufficient, where S refers to the

summary statistics. Therefore, the ABC with allele frequencies may contribute to the generalization of ABC

methods as an inference framework in population genetics. The performance of the ABC and full-likelihood

methods was evaluated in a simulation study and several aspects of the ABC methodology were examined.

This included the study of the choice of the distance metric, number of simulations, tolerance level and use

of multiresponse regressions. As discussed in detail in section 3.1 of Chapter 3 (Sousa et al. 2009a), the

results of the simulation study showed that the the ABC with allele frequencies provided good estimates,

approximating the full-likelihood results. Nevertheless, in most cases, similar results were obtained using a

set of summary statistics (He, number of alleles, private alleles and FST ), suggesting that the advantage of

using allele frequencies may be case dependent. Another important result was that the regression step was

crucial to obtain precise posterior distributions, as found by Beaumont et al. (2002) and more recently by

Wegmann et al. (2009). The reason for the fact that similar results were obtained with the allele frequencies

and the summary statistics seems to be related with two main aspects. First, the high dimensionality of

allele frequency data decreases the probability of finding a match between the observed and simulated data

(‘curse of dimensionality’). Thus, it seems that the information gained by using the full allelic frequency

is opposed by the problems associated with the increase in dimensionality. This is mainly a computational

problem that reflects the trade-off between the complexity of the data space and the efficiency of the re-

jection step, since the acceptance rate decreases when the number of dimensions increases, as discussed

previously by Beaumont et al. (2002) and Blum (2009). This is further supported by the results obtained

with algorithms to minimize the distance between observed and simulated data (e.g. sorting the allele fre-

quencies and re-ordering the loci), suggesting that these algorithms improved the accuracy and precision

of estimates. Second, the regression step depends on linear relations between the data and the parameters

which appears not to hold for some parameters with the allele frequencies. Indeed, the estimates for the
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scaled time since admixture (ti = T/Ni, i = 1, 2, h) improved using a multiresponse quadratic regression,

suggesting that the regression step can be improved to deal with the non-linear relations between the param-

eters and the allele frequency data (section 3.1 Sousa et al. 2009a). Recently, Blum and Francois (2008) and

Blum (2009) described a general non-linear regression scheme that is able to deal these situations, suggest-

ing that the efficiency of the regression step can be improved. Despite these potential limitations, the ABC

with allele frequencies provide reasonable estimates for the admixture contribution for highly dimensional

datasets with 100 independent SNP loci sampled from three populations (see Appendix A).

Second, a detailed and extensive simulation study comparing ABC with full-likelihood methods was per-

formed. ABC methods with summary statistics and ABC using allele frequencies were compared with a

full-likelihood method implement in the program LEA (Langella et al. 2001) to estimate admixture contri-

bution under a model involving two parental and one admixed population. To our knowledge this is one of

the few studies comparing ABC methods with Bayesian full-likelihood under exactly the same model as-

sumptions (but see Tallmon et al. 2004; Excoffier et al. 2005a; Becquet and Przeworski 2007). As expected,

the full-likelihood methods lead to more accurate posterior distributions, but ABC methods approximated

them reasonably well in most cases examined. Thus, the results confirmed that ABC provide good approx-

imations, in agreement with previous studies (Beaumont et al. 2002; Tallmon et al. 2004; Excoffier et al.

2005a). The results showed that increasing the number of loci increases the precision of the posterior distri-

butions, as reported previously by Chikhi et al. (2001), Wang (2003), Choisy et al. (2004) and Excoffier et al.

(2005a). Also, it was possible to obtain accurate estimates for the admixture contribution from the parental

populations, but it remained difficult to estimate the time since admixture. It is noteworthy that the results

show that the accuracy of the estimates depends on the strength of drift that occurred since the admixture

event. The higher the drift, the higher the uncertainty about the admixture contribution estimates. In section

3.2 (Bray et al. 2009) the ABC methods using summary statistics were implemented into more complex

admixture models, and their performance was investigated in a simulation study. The results (presented in

detail in Appendix B) showed that it is possible to estimate the admixture contribution of admixture models

with up to three parental populations, involving two admixture events. As seen in section 3.1. (Sousa et al.

2009a), the results indicated that the larger the drift since the admixture events, the lower the precision of the

estimates for the contribution of the different parental populations. Also, the results suggest that it is harder

to estimate with precision the time of admixture and splitting events. Note that this simulation study was

done with 20 microsatellite loci and sample sizes of 25 individuals in each population, a size greater than

in most conservation studies but that will soon become available. Overall, these results confirm that ABC

methods perform well under complex demographic models, as shown in other recent studies (Hamilton et al.

2005; Becquet and Przeworski 2007; Lopes et al. 2009). In addition, it indicates that multi-locus genetic
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data provides information about complex demographic events, and suggests that increasing the number of

loci leads to better estimates (Appendix A).

Third, this thesis contributed with a new user-friendly program with a graphical interface (2BAD - 2

Bayesian ADmixture) that was developed to estimate admixture under complex demographic models, up

to four populations and two admixture events (section 3.2. Bray et al. 2009). The aim was to have a program

that was flexible enough to analyse data under several models involving admixture. The program imple-

ments an ABC approach using summary statistics to analyse microsatellite data. The model assumes that

two or three parental populations contributed to formation of an admixed (hybrid) population in one or two

past admixture events. The method was validated with a simulation study, supporting that estimates of most

parameters are reasonably good (see Appendix B for details). In addition, during this thesis other programs

were developed and made available, namely the program to estimate admixture contribution with ABC using

allele frequencies (Sousa et al. 2009a), and a user-friendly program with a graphical interface to simulate

genetic data - SPAms (Parreira et al. 2009). Note that besides the estimation of parameters, the program

2BAD allows to perform model-choice analysis among alternative admixture and split models. The ability

to identify the correct model was also investigated by simulations.

5.2. From parameter estimation to model choice using ABC

Inference based on genetic data has seen major achievements in the last decades (Stephens and Donnelly

2000; Stephens 2001; Goldstein and Chikhi 2002; Hey and Machado 2003; Luikart et al. 2003; Beaumont

and Rannala 2004; Marjoram and Tavaré 2006). The challenge has been and continues to be on how to

make sense out of genetic data taking into account the different stochastic processes that may affect ge-

netic patterns. Focusing on inference of the demographic history, the developments over the last years can

be seen as a trend towards increasing complexity of the models, from accounting for sampling errors to

evolutionary stochasticity (coalescent) and to model uncertainty. The random effects due to a limited num-

ber of individuals (gene copies) sampled from a population was the first source of uncertainty considered

in early population genetic studies. For instance, still today, most of the statistical tests for pairwise FST

only considers the sampling error (e.g. Belkhir et al. 2004; Excoffier et al. 2005b). With the coalescent

theory it became possible to include the stochastic nature of the evolutionary processes, which are known

to be the major source of uncertainty (Long 1991; Stephens 2001; Rosenberg and Nordborg 2002). This

led to development of inference methods taking into account the sampling and the evolutionary stochastic

processes as drift, mutations and recombination. Today, it is possible to estimate parameters of complex

demographic models based on multilocus genetic datasets (Marjoram and Tavaré 2006; Nielsen and Beau-

mont 2009). One example that clearly illustrates this trend can be found in the methods to infer admixture.
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The first models assumed that the sampled allele frequencies were equal to the population allele frequencies

(reviewed in Chakraborty 1986). Later, the effects of sampling and drift started to be included in the models

as sources of uncertainty (Thompson 1973; Long 1991), and more recently, it became possible to infer pa-

rameters of complex admixture models using the coalescent (Bray et al. 2009). However, when estimating

the parameters of a given demographic model one must assume that the model considered is the model that

best explains the observed data. Thus, there is increasing awareness that the uncertainty on the model itself

should be taken into account (Goldstein and Chikhi 2002; Chikhi and Beaumont 2005). This is leading to

further statistical developments in population genetics, including model-choice procedures (Pritchard et al.

1999; Estoup et al. 2004; Fagundes et al. 2007; Beaumont 2008) and methods to assess the fit of several

models to the data (Akey et al. 2004). The possibility to use ABC to assess the relative posterior probability

of alternative models was recognized very early, but was not applied in many studies (Pritchard et al. 1999;

Estoup et al. 2004). Recently, ABC started to be applied to select the most likely model among a set of

alternatives (Fagundes et al. 2007). However, there are few simulation studies where the performance of

ABC methods in model-choice procedures has been assessed, although this has been done for population

split models with isolation with migration (Beaumont 2008), and no migration (Guillemaud et al. 2009).

In this thesis, this aspect was also investigated and a new model-choice ABC method was developed to sep-

arate among alternative admixture models. This is implemented in the 2BAD program described in Chapter

3 (section 3.2 Bray et al. 2009). The performance of the ABC model-choice procedure was investigated

in a simulation study presented in section 3.3 (Sousa et al. in prep). The results indicate that the ABC

methodology allows to distinguish among alternative models. In more detail, the aim was to separate ad-

mixture from population split models without admixture. The results show that with 20 microsatellite loci

it is possible to separate with high probability the two alternative scenarios, and that the method is able to

identify the correct model as the most likely. This can be helpful to elucidate if the observed data is the

result of admixture events or shared ancestral polymorphism. In addition, this study suggests that in the

future ABC may become a flexible tool to assess the model that best fits the data from a set of alternative

methods, in agreement with the findings of Fagundes et al. (2007), Beaumont (2008), Cornuet et al. (2008)

and Guillemaud et al. (2009).

5.3. Population size change estimates and population structure

One general problem of model-based inference is that the estimates depend on and may be affected by vio-

lations of the model assumptions. A model is always a simplification of reality which is mathematically or

computationally treatable and that should allow meaningful biological interpretations of the observed data.

Thus, model-based inference methods are usually based on simplifying assumptions. In population genetics,
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although the assumptions are in most cases unrealistic, the models seem to capture the main processes affect-

ing the data. For instance, the Kingman coalescent (Kingman 1982) has been shown to describe accurately

the genealogy of a sample from a stable population and to be robust to many violations of the assumptions

(e.g. Möhle 2000; Fu 2006; Wakeley 2009). However, there are still situations in which the robustness of

the methods to deviations of the demographic models assumed have not been examined in detail. This is

the case of most inference methods used to quantify population size changes. These methods are based on

models assuming that the observed data came from a single and isolated panmitic population (Cornuet and

Luikart 1996; Beaumont 1999; Garza and Williamson 2001; Storz and Beaumont 2002). However, most

populations are subdivided into several populations that may be isolated or exchanging migrants, and it has

been demonstrated that the genetic patterns expected under a population decline are similar to the ones ex-

pected under population structure (Beaumont 1999; Wang and Caballero 1999; Wakeley 1999; Beaumont

2003b; Hein et al. 2005; Nielsen and Beaumont 2009). Therefore, it is expected that the population structure

and migration patterns among populations may affect the estimates of population size changes.

The work described in Chapter 4 is a first attempt to quantify the effect of population structure on the detec-

tion of population size changes. The confounding effects that population structure may have on the detection

of population size changes was already investigated by Wakeley (1999), but there were no simulation stud-

ies to quantify under which gene-flow levels the effect could be negligible. Here, this was examined in a

simulation study to assess the robustness of the full-likelihood Bayesian method implemented in MSVAR

(Beaumont 1999) to deviations from the assumption that data came from a single population. Datasets

were simulated under different population structure models and analysed with MSVAR. The results showed

that there is a clear effect of migration patterns in the estimates obtained with MSVAR, leading to spurious

population decrease signatures. Also, it showed that this effect depends on the gene-flow patterns and the

sampling scheme. The spurious population decrease estimates were more pronounced when gene-flow was

limited (FST > 0.10) and the scaled mutation rate was large (4Neµ = 10). Thus, it confirmed that popu-

lation structure affects the estimates of population size changes (Beaumont 2003b; Nielsen and Beaumont

2009). Similar results have been found by Leblois et al. (2006) and Städler et al. (2009). These authors

studied different models and methods, but both found that the population structure affects the ability to

detect population size changes. As discussed in detail in Chapter 4, this has several implications into the

study of endangered species, since most endangered species are fragmented or structured into several sub-

populations, due to geography, recent habitat fragmentation and/or social structure. Therefore, estimates

obtained for the population size changes in these species may be related with real population declines, but

also it can be related with the present-day population structure due to habitat fragmentation, and/or the pop-

ulation structure before fragmentation due to spatial and/or social groups structure. The results of this study

show that it is difficult to separate among these alternative explanations. Thus, it points to the importance
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of modelling explicitly the population structure of populations, as it may have a strong effect on the genetic

patterns of present-day populations. As discussed in the next chapter (Chapter 6), further work is needed to

disentangle the effects of population structure from population size changes.

5.4. Toward a better understanding of I. lusitanicum and I. almacai demo-

graphic history

This thesis contributed to a better understanding of the population structure and demographic history of I.

lusitanicum and I. almacai. The genetic data and the analyses performed suggest that both species have

limited genetic diversity, and show a high genetic differentiation among most drainage systems (Sousa et al.

2008, 2009b). This is in agreement with an ancient separation of populations as the result of the formation

of the different drainages. There were some exceptions, with samples from the same drainage exhibiting

differentiation levels similar to the ones found among drainage systems. For instance, in I. almacai the

sample AR3 from Arade drainage exhibited pairwise FST with AR1 and AR2, similar to the ones observed

among drainages FST > 0.10 (section 2.2. Sousa et al. 2009b). In addition, despite that the differentiation

within drainages was lower than among drainages in most cases, significant differentiation was found in

some samples. As discussed in Chapter 2 this suggests that habitat fragmentation may be involved in these

differentiation patterns. In agreement with these results, data supported a recent population decrease in both

species, probably as the result of habitat loss due to anthropogenic impact (e.g. channeling, agriculture,

water extraction). The estimates for the size changes were similar in both species, suggesting a two-order

magnitude collapse, from populations with effective sizes on the order of thousands (103 − 104) to present

day sizes on the order of hundreds (10 − 102). The most likely date for the beggining of the population

decrease was tested by analysing the posterior distribution for the time using the Bayes Factor of alternative

time periods (Sousa et al. 2008, 2009b). Bayes factor analysis were already used to weight the evidence

of alternative hypothesis (population decrease vs. population growth) in Beaumont (1999) and Storz and

Beaumont (2002). In the studies presented in Chapter 2 the same principle was applied to assess the weight

of evidence of alternative periods for the beggining of the population decrease, an approach also applied in

Olivieri et al. (2008) and Craul et al. (2009). These results suggested that the populations started to decrease

approximately in the last 100-2000 years ago. However, as discussed above, the results of Chapter 4 imply

that the population decrease estimated for these two species can be due, at least in part, to the population

structure. In order to exclude this possibility, the results of the simulations were compared with the ones

obtained for I. almacai and I. lusitanicum. The fact that the real data results fall outside the distribution

expected if population structure was the only factor, suggests that the estimates for the population decrease

found in I. lusitanicum and I. almacai are not due to population structure alone. This is a result that further
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indicates that there is genetic evidence for a recent population decline in these two species, beyond the fact

these species are known to have been under strong population declines in the last few decades (Alves and

Coelho 1994; Cabral et al. 2005). Taken together, all these results indicate that populations are under strong

effects of drift and ecological data suggest that they are at high risk of local extinctions.

It is noteworthy that the differentiation was much higher in the northern populations of I. lusitanicum

(Samarra (SM1) and Tejo (TJ1, TJ2) drainages) than in the southern populations of Sado (SD1 and SD2)

and Sines (SN1) of I. lusitanicum and in the populations of I. almacai. This can be explained by different

effective sizes in the two species, or different demographic histories. Indeed, these results could be related

with the differential magnitude of the population decrease in the two species, higher migration and disper-

sion abilities of I. almacai, higher long-term population sizes in I. almacai, and/or older population split

in I. lusitanicum. More data would be needed to further elucidate what is the most likely hypothesis. In

addition, the potential admixture events in I. lusitanicum in the northern region were investigated with the

methods developed in the section 3.3. The results suggest that the evidence for admixture obtained with ex-

isting clustering methods, STRUCTURE (Pritchard et al. 2000; Falush et al. 2003), BAPS (Corander et al.

2004) and PARTITION (Dawson and Belkhir 2001)), are most likely the result of population divergence

and remaining shared ancestral polymorphism. Even though the admixture model was not considered the

most likely model, the estimates obtained with the 2BAD suggest a large effective size for the ancestral

population and low effective sizes in present-day populations, in agreement with the population decrease

signature found with MSVAR. Similar estimates were obtained under the population split model without

admixture (Appendix C).



CHAPTER 6

Concluding Remarks and Perspectives

We are currently experiencing an exciting period in population genetics as genetic (and genomic) data are

becoming increasingly available for many species. However, despite the theoretical and statistical inference

developments in population genetics, the interpretation of the present-day genetic patterns continues to be

a major challenge. The general aim of this thesis was the reconstruction of the demographic history of

populations with genetic data using model-based methods, with emphasis on inference of admixture and

population size changes in structured populations. The results obtained in this thesis confirmed that model-

based inference methods are useful at extracting information from genetic data about the past demography

of populations, allowing to estimate parameters and disentangle alternative demographic scenarios (Chapter

3). However, as seen in Chapter 4, the results also suggest that model-based methods can be sensitive to

confounding effects not taken explicitly into account, potentially leading to the misinterpretations of the

data, and to the inference of events that may not have happened. In this final chapter, the main questions that

arose during this thesis are discussed, together with future research work that may prove fruitful to address

these questions.

6.1. Is there a future for approximate Bayesian computation methods?

The studies in Chapter 3 showed that the ABC framework allows the development of methods that are flexi-

ble and produce reasonable estimates under complex demographic models. Moreover, the results confirmed

that full-likelihood methods extract more information from the data and lead to more precise estimates. This

is in agreement with the results obtained in the few studies where both approaches were compared (Beau-

mont et al. 2002; Tallmon et al. 2004; Becquet and Przeworski 2007). While the ABC tend to be less precise

they have a computational cost that can be orders of magnitude lower than that of full-likelihood methods

using MCMC. Therefore, the simulation study support the idea that ABC are an alternative methodology

to full-likelihood methods when the likelihood function is unknown, making ABC methods very appealing

to deal with complex demographic models. Compared to when this thesis started, ABC methods are now

widely used in population genetics (e.g. Becquet and Przeworski 2007; Fagundes et al. 2007; Rosenblum

141
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et al. 2007; Bonhomme et al. 2008; Neuenschwander et al. 2008; Aspi et al. 2009; Carnaval et al. 2009;

Guillemaud et al. 2009; Ingvarsson 2009; Hurt et al. 2009; Ross-Ibarra et al. 2009; Wilson et al. 2009;

Hickerson et al. 2009). However, most of the general questions remained open and are still under active

research, e.g. What is the best approach to select the summary statistics or the distance metric? How can

the dimensionality of the data be reduced? How to increase the efficiency of the rejection and regression

algorithms? Despite the fact that there has been ongoing research to tackle these questions, there are still

unclear aspects that may compromise the efficiency of ABC methods in population genetics.

What is the best approach to select the summary statistics?

Since the first studies that it was recognized that the choice of the summary statistics affects the estimates

(e.g. Beaumont et al. 2002; Thornton 2005), but few studies have addressed this question in detail (Joyce

and Marjoram 2008; Wegmann et al. 2009). The work performed in Chapter 3 tackled this question by

using the allele frequencies directly, instead of summary statistics such as the number of alleles, expected

heterozygosity He, pairwise FST (Sousa et al. 2009a). Other recent studies have suggested alternative

solutions (Joyce and Marjoram 2008; Wegmann et al. 2009). In contrast to the ABC with allele frequencies

proposed here, these approaches are based on the selection of a subset of summary statistics from a larger

set. The principle of these two approaches is to select the summary statistics that have more information

about the parameters of interest. Joyce and Marjoram (2008) proposed a sequential approach based on the

improvement of the estimates by including or excluding different summary statistics. Wegmann et al. (2009)

proposed a Partial Least Squares (PLS) approach (similar to Principal Component Analysis) to select the

most informative summary statistics and discard correlated ones. These two approaches aim at improving

the ABC algorithm efficiency by reducing the dimensionality of the data space, i.e. reducing the number of

summary statistics. This is an interesting line of research since one potential problem stemming from the use

of allele frequencies in an ABC framework is that the data space may become increasingly large (“the curse

of dimensionality”), as discussed in Chapter 3 and 5. Therefore, the approach of Wegmann et al. (2009) or

other similar multidimensional analysis (Principal Component Analysis) may be promising approaches to

decrease dimensionality and improve the performance of the ABC with allele frequencies. It is noteworthy

that it is possible that the choice of summary statistics may also be problematic in the analysis of large

multilocus datasets. Currently, most studies focus on the mean of the distribution of summary statistics

across loci (e.g. Excoffier et al. 2005a; Bray et al. 2009). Thus, there is inevitable loss of information.

This may be overcome by looking at other statistical moments (e.g. variance, kurtosis, etc.) to have a

better characterization of the distribution of a given summary statistic among loci. However, this may

increase the number of summary statistics leading to the dimensionality problems found with the ABC

using allele frequencies. Note that Hickerson et al. (2006) proposed an interesting alternative suggesting

to look at the entire distribution of the values of a given summary statistic among loci. This approach
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increases dramatically the dimensionality of the data space (number of summary statistics). Thus, in order

to minimize the distance among the observed data and the simulations they used a sorting algorithm similar

to the one in Chapter 3 (section 3.1. Sousa et al. 2009a). The limited set of simulations performed here show

that the ABC using the mean of summary statistics of 100 independent SNP loci are similar to the ones

obtained with the ABC with allele frequencies (Appendix A). The choice of summary statistics to perform

ABC analysis using multilocus datasets is definitely a question that deserves further research.

What is the importance of the distance metric?

Regarding the selection of the distance metrics, most studies up to date use either a Euclidean distance

between standardized summary statistics (Beaumont et al. 2002) or absolute differences (Pritchard et al.

1999; Marjoram et al. 2003). The results of the simulation study in section 3.1. show that the distance metric

had a clear impact in the performance of the ABC rejection algorithm, suggesting that further improvements

may be obtained by selecting appropriate distances (Sousa et al. 2009a). The performance of the ABC using

allele frequencies was tested with two distance metrics: Euclidean and FST -like, and the results showed that

FST -like distance metrics improved the quality of the estimates. This also suggests that genetic distances

as FST may be applied to measure the distance between the simulations and the observed data in the ABC

rejection step. A potential problem when measuring the distance between observations and the simulations

is that the different summary statistics may be correlated. In these situations, Leuenberger and Wegmann

(2010) suggested to use the Mahalanobis distance (Rencher 2002) as it takes into account highly correlated

variables. Although these authors did not perform a simulation study to assess and compare it with other

distance metrics, it may be worth testing the use of this distance metric under the ABC with allele frequency

settings. One noteworthy and interesting result of Chapter 3 (section 3.1) is that the distance metric leading

to the best estimates had a higher correlation with the parameters of interest (Sousa et al. 2009a). This

suggests a way to select the best metric among alternative distances that could be explored in future.

How to improve parameter space exploration?

The efficiency of the rejection algorithms affects the precision of ABC estimates, and is mainly influenced

by the size of the datasets (genomic data), the number of parameters in the model and/or the width of the

prior distributions. In the above mentioned cases, typical rejection schemes become very inefficient as they

would require an infinitely large number of simulations. The performance of ABC algorithms under these

situations need to be further investigated, as the analysis of genomic data will certainly be a major issue in

the near future. The results of Appendix A show that the ABC methods with allele frequencies and ABC

with typical summary statistics developed in Chapter 3 (section 3.1) are computationally feasible up to at

least 100 loci. Several promising approaches have been introduced recently to explore the parameter space

efficiently, that can be easily implemented into the ABC methods developed here. They include sequential



144 6. CONCLUDING REMARKS AND PERSPECTIVES

algorithms (Sisson et al. 2007; Beaumont et al. 2009) and the MCMC without likelihood (Marjoram et al.

2003; Becquet and Przeworski 2007; Wegmann et al. 2009). For instance, Beaumont et al. (2009) showed

with toy examples that the sequential approach leads to exact approximations, and requires significantly

less simulations than the typical rejection step. Also, Wegmann et al. (2009) used an MCMC within ABC,

showing that the MCMC is more efficient than a simple rejection algorithm. It is noteworthy that in both

cases the results improved significantly by applying the regression step of Beaumont et al. (2002), as also

found in Chapter 3 (sections 3.1 and 3.2). Therefore, the regression step seems crucial to obtain good

approximations for the posterior distributions. This indicates that further work on regression methods as

conditional density estimates may be fruitful. As shown recently, further improvements may be achieved

using generalized linear regression models (Blum and Francois 2008) and/or non-linear approaches (Blum

2009). This can be especially important when using ABC with allele frequency data, as the relation between

the data and the parameters is complex.

ABC and model-choice

In recent years, ABC methods have started to be successfully applied to model choice problems in population

genetics (Estoup et al. 2004; Fagundes et al. 2007; Beaumont 2008; Cornuet et al. 2008). As discussed in

section 3.3., the quantification of the model uncertainty in population genetics inference is likely to become

an important area of research in the near future (Chikhi and Beaumont 2005). The results show that using

ABC with summary statistics it is possible to identify correctly the model that generated the data from a

set of alternative demographic models involving population split and admixture events. Future research

should be done to determine the number of models and the complexity of the models that can compared

simultaneously. For instance, it may be interesting to separate admixture models from models with ongoing

gene-flow. Also, one major problem in these model-choice analyses is that it is possible that none of the

models explain the data. Therefore, and given that it is not possible to assess the relative probability of an

infinite number of alternative models, there is the need for methods to assess the fit of the models to the

observed data. The results of Chapter 3 indicate that comparing the distance distributions of observed data

with distance distributions of simulated data may be an ad hoc approach to assess model fit. For instance,

the analyses of the freshwater fish data in Chapter 3 (section 3.3) show that the microsatellite data do not

fit properly any of the models considered. However, under one of the sets of prior distributions tested,

the observed data appeared to have distance distributions similar to the ones obtained with the simulations,

suggesting that the population split model without admixture capture relevant aspects of the freshwater fish

data. The absence of a perfect match of the model to the data can be related with the fact that any of the

alternative models includes factors that are likely to be true in the fish data. For instance, any of the models

included population size changes, and/or variation in the mutation rates among loci. Future developments

may include the implementation of such models with population size changes and variation among loci in
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the mutation rate in the program 2BAD. Another important result of the analyses of the fish data with the

model choice ABC procedure was that the prior distributions have an effect on the posterior distribution of

the alternative models. Moreover, although the analyses with the two prior sets indicated that the population

split without admixture was the most likely model (section 3.3), the analysis of the distance distributions

showed that one of the prior set could not explain the data well. The prior definition and its effects is a

general problem in Bayesian statistics. It has been shown in the population genetics context that it can

lead to the detection of the incorrect demographic model (Beaumont 2008; Guillemaud et al. 2009). For

instance, Guillemaud et al. (2009) showed that if a dataset fits a population split model with a very recent

split, but if the prior distributions favor old split times the method can fail to identify the population split as

the most likely model. This is an important point because different demographic models may appear more

or less likely depending on the range of the parameter values and the weight given to different parameter

values, as defined by the priors. One possible solution is to use wide non-informative prior distributions.

Another approach to assess the effect of the prior selection is to repeat the analysis with different sets priors.

It is expected that by increasing the number of loci the dependence on prior distributions will decrease

(Beaumont and Rannala 2004). Again, more work is required on this general issue. In the model choice

settings, it is noteworthy that the work of Leuenberger and Wegmann (2010) attempts to generalize ABC

as a method to assess the relative probability of alternative models by computing Bayes Factors. This is

based on General Linear Models arguments and on the assumption that the likelihood follows a multivariate

normal distribution. Also, there is a recent work applied to protein networks showing that ABC can be

efficient to separate alternative models using an alternative model-criticism approach (Ratmann et al. 2009).

It seems that these approaches can be straightforward to implement into the admixture models investigated

here, which may improve the efficiency of the ABC methods developed in this thesis.

Other model-based approaches

It is noteworthy that there are other promising model-based inference methods that may overcome some of

the caveats of ABC. As briefly described in the General Introduction (Chapter 1), these include compos-

ite likelihood, importance sampling and product of approximate conditionals (e.g. Li and Stephens 2003;

De Iorio et al. 2005; Cornuet and Beaumont 2007). At the same time, there are interesting developments

in the context of the full-likelihood methods. For instance, it has been proposed that the efficiency of these

methods can be improved using genealogies sampled from the posterior of the gene trees given the data

(Hey and Nielsen 2007; Meligkotsidou and Fearnhead 2007). It is possible to obtain such genealogies with

either Importance sampling or MCMC algorithms. The idea is to infer the demographic parameters by ex-

ploring the parameter space using these genealogies to obtain the likelihood. Different approaches have

been proposed, either using importance sampling schemes (Meligkotsidou and Fearnhead 2007), or MCMC

algorithms (Hey and Nielsen 2007). It remains unclear if these developments will allow the application of
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full-likelihood methods to complex demographic models and analysis of genomic datasets, replacing the

need for ABC methods.

6.2. How to apply ABC with allele frequencies to more complex models?

The application of ABC with allele frequencies to other demographic models is straightforward if certain

conditions are met. The admixture model analysed here assumed the K-allele model which has the advantage

of ensuring that alleles are exchangeable and that the samples are taken from populations with a fixed number

of alleles. This increases the chance of obtaining a match between the observations and the simulations.

As seen in the simulation study in Chapter 3 (section 3.1), it is possible to improve the match between

observed and simulated data using algorithms to re-order the data in order to minimize the distance between

the observed and simulated datasets. This is justified by the fact that independent loci (and alleles) are

exchangeable. However, the application of the ABC using allele frequencies to mutation models where

the alleles are not exchangeable may become inefficient. The problem is that this is typically the case

when the molecular information is used to characterize the different alleles, for instance allele lengths in

microsatellites and haplotype structure in DNA sequences. In those situations it can be difficult to match

the observed and simulated allele frequency distribution. Nevertheless, this can be overcome by considering

distance metrics that take these molecular informations into account, such as RST (Slatkin 1995) in the

case of microsatellite data and φST (Excoffier et al. 1992) for sequence data. In addition, when the number

of alleles is not fixed, the acceptance rate may became prohibitively low, as many simulations can have a

different number of alleles. However, for biallelic loci such as SNP this is not a problem as the number of

alleles is two by definition. Taken together, it seems that there can be room for successful improvements in

the performance of ABC with allele frequencies to analyse SNP data. It would be worth to further investigate

the ability of ABC to deal with genomic SNP data, which may be possible as fast simulation tools for whole

genome are becoming available (e.g. Marjoram and Wall 2006).

6.3. Can population structure be ignored?

The findings presented in Chapter 4 demonstrate that population structure affects our ability to estimate

population size changes, and may lead to biased estimates. One interesting result is that this depends on the

sampling scheme, which was also found by Städler et al. (2009) in a study of spatial range expansions. Thus,

it would be helpful to clarify under which sampling schemes the effect of population structure is negligible.

The theory predicts that the genealogies in a metapopulation approaches the Kingman coalescent when the

number of demes tends to infinity, and/or migration rate tends to one and/or few gene copies are sampled
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in each deme (Wakeley 1999), and/or in distance locations (Wilkins 2004). Actually, the results of the

study presented in Chapter 4 are in agreement with the theory expectations, and suggest that performing the

MSVAR analysis by pooling together a few individuals from different populations (demes) decreases the

probability of getting a false bottleneck signature. Thus, the analysis of the same dataset under different

sampling schemes may provide an ad hoc approach to separate ‘true’ population size changes from ‘false’

bottleneck signatures due to population structure. However, further studies would be needed to understand

how this sampling schemes affect the estimates of the population size changes when there was an actual

population decrease. One of the constraints that may compromise these studies is that simulation studies are

highly time consuming, especially with full-likelihood methods as MSVAR. Another solution to the problem

of disentangling the effects of population structure from population size changes is to model explicitly the

population structure and size changes in the same model. Actually, the main reason for the false population

decrease signatures is that the existing methods assume that each sample came from a single panmictic

population. Thus, further developments may be possible by including more than a single populations in

the model. For instance, a tentative model could be a n-island model in which each deme may undergo

population size changes. The problem is that the overall effective metapopulation size may decrease due

to a reduction in the number of demes, increase in the migration rates, and/or actual changes in the size

of each deme (Wakeley 1999). Thus, there are many scenarios and parameter combinations that should

be considered. These type of complex models can be in principle implemented into an ABC methods.

However, more theoretical and/or simulation work would be needed to understand the genetic signatures of

population size changes in structured models, including spatially explicit models. For instance, there may

be summary statistics which are differently affected by the population structure and the bottlenecks. In this

context, summary statistics affected by patterns of linkage disequilibrium (LD) can provide information,

as LD patterns are known to be affected by population structure and population size changes (Nordborg

and Tavaré 2002; Chikhi and Bruford 2005). These theoretical results may lead to the development of full-

likelihood methods, or more efficient ABC methods by allowing to understand which summary statistics

are more informative. Model-choice approaches are another possibility that could allow to disentangle the

effects of population size changes from population structure. The principle would be to estimate the relative

posterior probability of alternative demographic models, e.g. n-island model vs. single population with

effective size change. As seen in section 3.3 ABC methods can be applied to separate among alternative

models and it would be relatively straightforward to apply ABC to perform model-choice inference under

these scenarios.

The findings in Chapter 4 suggest that the effects of population structure on genetic patterns may be impor-

tant and affect our ability to detect and quantify other demographic events. This is likely to be a general

problem since most populations appear to exhibit some kind of spatial structure. Therefore, further work
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is needed to elucidate under which conditions the effects of population structure are relevant, and how to

incorporate them in models to perform inference. This is also true for the admixture models analysed in

this thesis. It remains unclear what is the effect of having parental and/or admixed populations which are

themselves structured on the admixture estimates. Also, the robustness of the admixture models to devia-

tions from the main assumptions should be investigated, including the existence of unsampled parental or

admixed populations, the effects of migration and population size changes. The study presented in Chapter

4 also suggests that there is a need for a better evaluation of the robustness of model-based approaches to

deviations of the main assumptions of the demographic models considered.

6.4. Further challenges for the conservation of I. lusitanicum and I. almacai

The differences found in the genetic diversity and genetic differentiation levels among populations in both

species suggest a complex interplay between past and contemporary evolutionary factors. The two species

analysed appear be a good system to study the role of historical and contemporary events in shaping present-

day genetic patterns by comparing patterns among and within drainages. The studies presented and dis-

cussed here are part of a first attempt to have a genetic characterization of the populations throughout the

entire distribution area of I. lusitanicum and I. almacai. The results allowed to conclude that populations are

highly structured and that they probably suffered recent population decreases that left traces in their genetic

patterns. However, more data would be needed to have a better understanding of the evolutionary history of

these populations and to clarify the effects of these recent population decreases and their relation to habitat

fragmentation. As seen in the simulation studies, increasing the number of loci produces better estimates

of demographic parameters. Therefore, more information may be achieved by increasing the number of

loci. Also, it is important to have a better description of the genetic diversity distribution within drainages.

The current results suggest that populations from different tributaries may be genetically differentiated as

the result of habitat fragmentation. One aspect that was not analysed in detail in these studies due to lim-

ited sampling points within each drainage was the effects of isolation by distance and dispersal patterns.

In addition, given that I. lusitanicum and I. almacai are highly endangered and they are almost extirpated

in some areas, it is urgent to increase our knowledge about the ecology of these species and to implement

recovery programs. Ecological studies coupled with genetic studies could be helpful to identify the ecolog-

ical and environmental factors responsible for the genetic patterns observed, and understand under which

conditions dispersion and population sizes are maximized. There are some examples in other species where

these approaches were successful to identify landscape, environment and behavior aspects correlated with

the genetic differentiation (Foll and Gaggiotti 2006; Dionne et al. 2008; Leclerc et al. 2008; Gaggiotti et al.

2009). The Mira and Arade drainages for which there is some ecological information about habitat use and

time series of fish species abundances may be a good system to perform such studies in I. almacai. Also, it
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would be interesting quantify the historical human impact on these rivers and compare areas under strong

impact with areas with lower impact.

In sum, the results obtained in this thesis and in other recent studies suggest that ABC methods are extremely

flexible and provide reasonable estimates. However, as discussed above, the efficiency and accuracy of

the estimates obtained with ABC may become compromised under certain conditions. Although ABC

will certainly continue to provide satisfactory estimates for parameters of different demographic models, I

believe that one area where ABC will see important developments in the near future is on model-choice

problems. The future work suggested here may contribute to a better general understanding of the potential

and limitations of inference methods in population genetics. In particular, regarding the freshwater fish

species, it could elucidate some of the unclear aspects of demographic history of I. lusitanicum and I.

almacai. These results could have implications for the conservation of these species, and it may be relevant

for other Iberian cyprinids and fish inhabiting similar Mediterranean-type environment.



References

Akey, J. M., M. A. Eberle, M. J. Rieder, C. S. Carlson, M. D. Shriver, D. A. Nickerson, and L. Kruglyak,

2004. Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS

Biol 2:e286.

Allendorf, F. and G. Luikart, 2007. Conservation and the genetics of populations. Wiley-Blackwell, Oxford,

UK.

Allendorf, F. W., P. R. England, G. Luikart, P. A. Ritchie, and N. Ryman, 2008. Genetic effects of harvest

on wild animal populations. Trends Ecol Evol 23:327–337.

Almaça, C., 1976. La spéciation chez les cyprinidae de la Péninsule Ibérique. Rev. Trav. Inst. Pêches marit

40:399–411.

Almaça, C., 1995. Freshwater fish and their conservation in Portugal. Biol Conserv 72:125–127.

Alves, M. J. and M. M. Coelho, 1994. Genetic variation and population subdivision of the endangered

Iberian cyprinid Chondrostoma lusitanicum. J Fish Biol 44:627–636.

Amaral, A., A. Silva, A. Grosso, L. Chikhi, C. Bastossilveira, and D. Dias, 2007. Detection of hybridization

and species identification in domesticated and wild quails using genetic markers. Folia Zool 56:285–300.

Anderson, C., U. Ramakrishnan, Y. Chan, and E. Hadly, 2005. Serial SIMCOAL: a population genetics

model for data from multiple populations and points in time. Bioinformatics 21:1733-1734.

Aparicio, E., M. J. Vargas, J. M. Olmo, and A. de Sostoa, 2000. Decline of native freshwater fishes in a

mediterranean watershed on the Iberian peninsula: a quantitative assessment. Environmental Biology of

Fishes 59:11–19.

Archie, E. A., G. Luikart, and V. O. Ezenwa, 2009. Infecting epidemiology with genetics: a new frontier in

disease ecology. Trends Ecol Evol 24:21–30.

Aspi, J., E. Roininen, J. Kiiskila, M. Ruokonen, I. Kojola, L. Bljudnik, P. Danilov, S. Heikkinen, and

E. Pulliainen, 2009. Genetic structure of the northwestern russian wolf populations and gene flow between

Russia and Finland. Conservation Genetics 10:815–826.

Avise, J., 2000. Phylogeography: the history and formation of species. Harvard Univ Press, Cambridge,

Massachusetts, USA.

Bamshad, M. and S. Wooding, 2003. Signatures of natural selection in the human genome. Nature Reviews

Genetics 4:99–111.

150



REFERENCES 151

Banarescu, P., 1960. Einige fragen zur herkunft und verbreitung der süsswasserfischfauna der europaisch-

mediterranen unterregion. Archiv für Hydrobiologie 57:16–134.

Banarescu, P., 1973. Origin and affinities of the freshwater fish fauna of Europe. Ichthyologia 5:1–8.
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APPENDIX A – Application of ABC for analysis of multilocus SNP data

This appendix describes the result of the simulation study to assess the performance of ABC methods 

developed in Chapter 3 (section 3.1 - Sousa et al. 2009) when applied to multilocus datasets. 

Ten datasets were generated with parameters ti=0.01 (i=1, 2, h) and p1=0.7 under the admixture model 

with two parental and one admixed populations (Figure 1 in Sousa et al. 2009), with 50 gene copies 

sampled in each population and typed at 100 independent biallelic loci (e.g. SNPs). The datasets were 

analysed with the ABC_SUMSTAT and ABC_ALL_FREQ (GST distance) - see Table 1 in Sousa et al. 2009 for a 

comparison of the two algorithms. For the analysis of each dataset 107 simulations were performed and 

the tolerance level was set at 0.0001 (accepting the closest 1000 simulations). Figure 1 and 2 show the 

posterior distributions with ABC_SUMSTAT and ABC_ALL_FREQ for p1 and th, respectively. As can be seen, the 

methods provide posteriors with a high density around the true parameter value, and the regression 

method increases the precision and accuracy of the posteriors for both parameters p1 and th. Figure 3 

shows the relation between the average mean integrated square error (MISE) and the number of loci for 

the ABC and full-likelihood method (LEA). The results show that with increasing the number of loci 

the error decreases significantly. Also, it is interesting that the error decreases linearly (in log scale) 

when increasing the number of loci from one to ten (left panel), but not when increasing the number of 

loci up to 100 (right panel). This suggests that despite the fact that increasing the number of loci 

increases the amount of information available, the information gain of adding extra locus decreases. 
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Figure 1 – Posterior distributions for p1. Each curve represents one of the ten datasets analysed. The 

vertical line shows the true parameter value. The top panel shows the results with the rejection step, and 

the bottom shows the results after the regression step.
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Figure 2 – Posterior distributions for th. Each curve represents one of the ten datasets analysed. The 

vertical line shows the true parameter value. The top panel shows the results with the rejection step, and 

the bottom shows the results after the regression step.
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Figure 3 – Mean Integrated Square Root (MISE) of p1 with increasing the number of loci. The left panel shows 

the results with up to ten loci (zoom of right panel), and the right panel shows the results with up to 100 loci. Note 

that the LEA results were only obtained up to ten loci.
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APPENDIX B – Simulation study performed with the program 2BAD

The aim of this section is to describe in detail the results obtained in the simulation study with the 

program 2BAD described briefly in Chapter 3 (section 3.2 - Bray et al. 2009). The first part of this 

appendix describes the results and the second part of this appendix presents the ms (Hudson, 2002) 

commands used to simulated the datasets. The simulation study was performed to evaluate the 

performance of the estimates obtained with the program 2BAD under the admixture models 

implemented. This was done by simulating datasets under the different demographic models 

implemented with known parameter values, and then analyzing them with 2BAD. For each case 500 

datasets were simulated, and the results were obtained with 106 or 107 simulations, with a tolerance 

level of 10-3. Each dataset consists of 25 diploid individuals per population typed at 20 

microsatellite loci evolving under the single-stepwise mutation model (SMM). Two scenarios were 

investigated under the admixture model with three parental population with two admixture events: 

(i) strong drift since admixture, and (ii) limited drift. In the first case smaller effective sizes were 

considered. The parameters used to generate the “pseudo-observed” and perform the ABC analysis 

were sampled from the following priors:

(i) Strong drift since admixture

- Effective sizes Ni ~ Unif(100, 1000), i=1,2,3,h 
- Time of Split   tsplit ~ Unif(100, 1000) 

(ii) Limited drift since admixture
- Effective sizes Ni ~ Unif(1000, 15000), i=1,2,3,h 
- Time of split   tsplit ~ Unif(1000, 15000)

For the remaining parameters the same priors were used for the two cases:
- Mutation rate  µ ~ Unif(10-5,10-3)
- Time of admixture  tadm ~ Unif(10,100)
- Parental contribution p1 ~ Unif(0,1)

The Table 1 summarizes the results in terms of Root Mean Square Error, and Figures 1, 2 and 3 

show the comparison of the estimates and the real parameter values. Overall, the results show that 

the contributions of the parental populations are well estimated. The times of events are more 

difficult to estimate than the remaining parameters. For the two parental populations case (Figure 

1), good estimates were obtained for the admixture contribution (p1) for the single admixture event, 

and reasonable estimates were obtained for the remaining parameters. When two admixture events 

occur involving the same parental population, it is possible to see that the error increases for the 

admixture contribution of the first admixture event (p1) in relation to the single admixture case 

(Table 1). Nevertheless, despite the higher relative error, there is still information about the second 

admixture event (p3). For the three parental population case, it is possible to see that the error for the 
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parental contribution in the first admixture event (p3) is lower than the contribution in the second 

admixture event (p1). Also, the error values are comparable to those obtained with the two parental 

population  (Table 1). Comparing the results obtained with limited and strong drift, it is possible to 

see that increasing the drift since the admixture event increases the error of the estimates of the 

parental contributions ( p1 and p3). Also, this can be seen in the tests performed in which the hybrid 

population experienced a sudden ten-fold population decrease (Table 1). We also tested the effect of 

the number of simulations and found that increasing the number of simulations from 106 to 107 does 

not lead to major improvements on the point estimates error. Figure 2 and Figure 3 show the 

comparison of the real parameter values and the point estimates obtained under the three admixture 

model with two admixture events. Figure 2 refers to the limited drift scenario and Figure 3 to the 

strong drift since the admixture event. As can be seen, the precision of the estimates of all 

parameters tend to be higher with limited drift. As seen in Table 1, the time of the admixture events 

and the effective size of the hybrid populations were the only parameters where the point estimates 

tended to be different from the true values, showing that it is harder to estimate these parameters. 
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Table 1 – Root Mean Square Error (RMSE) for the different parameters of the admixture models 

obtained under limited and strong drift scenarios.  
Limited Drift (1000<Ne<15000)

Parameters
Two Parental 

One Admixture
Two Parental 

Two admixture
Three Parental 
Two Admixture

µ 8.03E-05 9.27E-05 7.54E-05
N1 973.9 1100.4 1347.4
N2 1025.6 1232.6 1332.1
N3 -- -- 1385.5
NA 1510.7 1523.3 2055.6
NH 1355.1 1800.6 2880.8
p1 0.0635 0.1302 0.0828
p3 -- 0.1788 0.0386

tadm1 119.72 166.09 15.91
tadm2 -- 16.9198 21.8261
tsplit 1271.8 1315.5 1582.3

Strong Drift (Small Ne vs Bottleneck)  
Three Parental Two Admixture

Low Drift
(1000<Ne<15000 )

Strong drift 
(100<Ne<1000 )

Bottleneck 10 fold 
(1-50 generations ago)

µ 7.54E-05 6.99E-05 9.06E-05
N1 1347.4 100.15 130.78
N2 1332.1 101.62 104.80
N3 1385.5 95.77 119.67
NA 2055.6 143.99 164.48
NH 2880.8 140.43 187.48
p1 0.0828 0.1372 0.1507
p3 0.0386 0.0820 0.0960

tadm1 15.91 15.31 22.19
tadm2 21.8261 18.0379 23.9870
tsplit 1582.3 97.7 131.9
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Figure 1. Comparison of the true parameter values and the estimates obtained with the program 2BAD 

under the admixture model with two parental populations and a single admixture event. Each point 

corresponds to one dataset simulated under the model, in a total of 500 datasets. Each dataset consisted of 

samples of 25 diploid individuals from each population typed at 20 independent microsatellite loci. Results 

obtained after 106 simulations (tolerance level = 0.001) using the median of the posterior distribution as a 

point estimate. 
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Figure 2. Comparison of the true parameter values and the estimates obtained with the program 2BAD with 

limited drift. The datasets analysed were generated according to the admixture model with three parental 

populations and two admixture events, under the limited drift since admixture. Each point corresponds to one 

dataset simulated under the model, in a total of 500 datasets. Each dataset consisted of samples of 25 

diploid individuals from each population typed at 20 independent microsatellite loci. Results obtained after 

106 simulations (tolerance level = 0.001) using the median of the posterior distribution as a point estimate. 
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Figure 3. Comparison of the true parameter values and the estimates obtained with the program 2BAD with 

strong drift. The datasets analysed were generated according to the admixture model with three parental 

populations and two admixture events, under the strong drift since admixture. Each point corresponds to one 

dataset simulated under the model, in a total of 500 datasets. Each dataset consisted of samples of 25 

diploid individuals from each population typed at 20 independent microsatellite loci. Results obtained after 

106 simulations (tolerance level = 0.001) using the median of the posterior distribution as a point estimate. 
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2. SIMULATED DATA – commands of the ms program (Hudson, 2002) 

The program 2BAD uses ms to simulated the data, according to the following ms commands. The 

ms program is widely used to generate datasets under several demographic models. The admixture 

models are shown in Figure 1 of section 3.2 (Bray et al. 2009). In the case of two parental 

populations, the hybrid is considered as Pop3, whereas in the case of three parental populations, the 

hybrid is Pop4. When the sample size of each population varies among loci, the ms command 

simulates the maximum sample size across loci. Then, for each locus, the data is sampled from the 

total number of individuals. For instance, if in one population there are two loci with sample size 10 

and 20 gene copies, respectively, the program 2BAD calls ms to simulate two samples of size 20, 

and for the first it samples 10 at random from the 20, and from the second it samples the 20. For the 

single admixture events tadm1=tadm2.  Note that with 2 parental populations, to simulate a single 

admixture event the parameter P1 in the command is fixed as 1 and tadm1=tadm2. Thus, the parameters 

of the model are p1=1-P3 and p2=P3 (see Figure 1 in section 3.2 – Bray et al. 2009).

Admixture model with 2 parental populations:
ms nsam nbloci -t theta -I 3 ss1 ss2 ss3 
-n 1 relN1 -n 2 relN2 -n 3 relN3 
-es Tadm2 3 1-p3 -ej Tadm2 4 2  
-es Tadm1 3 p1 -ej Tadm1 5 2 -ej Tadm1 3 1 
-ej Tsplit 2 1 -en Tsplit 1 relNA

Admixture model with 3 parental populations:
ms nsam nbloci -t theta -I 4 ss1 ss2 ss3 ss4 
-n 1 relN1 -n 2 relN2 -n 3 relN3 -n 4 relN4 
-es Tadm2 4 1-p3 -ej Tadm2 5 3  
-es Tadm1 4 p1 -ej Tadm1 6 2 -ej Tadm1 4 1
-ej Tsplit 3 2 -ej Tsplit 2 1 -en Tsplit 1 relNA

Population split model 3 populations
ms nsam nbloci -t theta -I 3 ss1 ss2 ss3 -n 1 relN1 -n 2 relN2 -n 3 relN3 -ej 
Tsplit 3 1 -ej Tsplit 2 1 -en Tsplit 1 relNA

Population split model 4 populations
ms nsam nbloci -t theta -I 4 ss1 ss2 ss3 ss4 -n 1 relN1 -n 2 relN2 -n 3 relN3 -n 
4 relN4 -ej Tsplit 4 1 -ej Tsplit 3 1 -ej Tsplit 2 1 -en Tsplit 1 relNA
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Where:
nsam total sample size (sum of the maximum sample size of each population across loci)
nbloci number of loci
theta 4*Nref*mutrate, where the mutrate is the mutation rate per locus per generation
Nref maximum of (N1, N2, N3, NH, NA)

ssi maximum sample size across loci for Pop1, Pop2, Pop3 and PopH, respectively (i=1,2,3,4)
relNi relative effective size of Pop1 (N1/Nref), Pop2 (N2/Nref), Pop3 (N3/Nref), Pop4 (N4/Nref) and 

ancestral pop respectively
Tadm2 scaled time of most recent admixture event Tadm2=tadm2/4*Nref (tadm2 – time in generations)
Tadm1 scaled time of ancient admixture event Tadm1=tadm1/4*Nref (tadm1 – time in generations)
Tsplit scaled time of ancient admixture event Tadm1=tadm1/4*Nref (tadm1 – time in generations)
P1 contribution of parental population 1
P3 contribution of parental population 2 in the recent admixture event (2 parental case)

contribution of parental population 3 in the recent admixture event (3 parental case)
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APPENDIX C - Admixture analysis of Iberochondrostoma lusitanicum data 

The aim of this section was to investigate the potential admixture events in I. lusitanicum involving 

samples from Samarra and Tejo drainage. The data was the same analysed in Chapter 2 (section 2.1 

– Sousa et al. 2008), and consisted of 129 individuals typed at five independent microsattelite loci 

from three samples from Samarra drainage (SM1), and two samples from Tejo drainage: Rio Maior 

(TJ1) and Sorraia (TJ2) – see Figure 1 of Sousa et al. 2008 for details. Although the model-choice 

analyses performed in section 3.3 of Chapter 3 suggested that a population split model without 

admixture was the most likely scenario, in this section the results obtained with the admixture 

methods developed and applied to analyse this dataset are presented and discussed. The results of 

the model choice analysis suggest that the genetic patterns observed in these three populations 

probably reflect the maintenance of shared ancestral polymorphisms rather than signatures of a past 

admixture event.

1. Comparison of estimates for the contribution of parental population 

The STRUCTURE analysis (Pritchard et al. 2000; Falush et al. 2003) suggested that TJ1 could be 

an hybrid population with contributions from SM1 and TJ2 (Figure 3 in Sousa et al. 2008). The 

same dataset was analysed with the programs LEA (Chikhi et al. 2001), ABC_ALL_FREQ with GST 

and Euclidean distances, and ABC_SUMSTAT (Sousa et al. 2009 - see Table 1 in section 3.1 for a 

description of the different methods), and 2BAD (Bray et al. 2009). The Table 1 shows a summary 

of the estimates obtained with the different methods applied, as well as a brief description of the 

assumptions of the different demographic models.  The STRUCTURE and the methods assuming 

the K-allele model (LEA, ABC_ALL_FREQ and ABC_SUMSTAT) suggested a limited 

contribution from SM1 to TJ1, with p1 values ranging from 0.23 to 0.31. In contrast, the 2BAD 

program, which assumes that mutations may occur since the admixture event, points to a higher 

contribution of SM1. However, as can be seen in Figure 2 and 3, the posterior distributions obtained 

were very broad, which correspond to wide credible intervals and suggests a high uncertainty about 

the p1 contribution.

184 C. ADMIXTURE ANALYSIS OF Iberochondrostoma lusitanicum DATA



Table 1 – Comparison of the admixture estimates obtained with the different methods.
The median of the posterior distributions were used as point estimates for LEA; ABC_SUMSTAT, 

ABC_ALL_FREQ and 2BAD.

Program Contribution p1 

from SM1
Demographic model  

assumptions
Mutation model 

assumptions
Information 

used

STRUCTURE
(Pritchard et al. 2000; 
Falush et al. 2003)

0.31 Stable populations under 
Hardy-Weinberg 

and Linkage equilibrium

K-allele model Genotype frequencies 
(mutation states ignored)

LEA
(Chikhi et al. 2001)

0.25 Independent parental populations. 
Populations evolving under pure drift with 

no migration since admixture event T 
generations ago.

K-allele model 
(no mutations since 

admixture event)

Allele frequencies 
(mutation states ignored)

ABC_ALL_FREQ:
(Sousa et al. 2009)

a) Euclidean distance 0.29 Same as LEA Allele frequencies 
(mutation states ignored)

b) GST distance 0.26 Same as LEA Allele frequencies 
(mutation states ignored)

ABC_SUMSTAT
(Sousa et al. 2009)

0.23 Same as LEA Summary statistics: 
He, pa, na, FST

(mutation states ignored)

2BAD
(Bray et al. 2009)

0.45 Parental populations diverged from 
common ancestral population tsplit 

generations ago. Admixture occurred tadm 

generations ago. Populations remain 
independent withou migration.

SMM mutation model Summary statistics: 
He, na, FST, pa, ar
(mutation states 

considered)

He – expected heterozygosity, na – number of alleles, pa – number of private alleles, ar – allelic range

2. Comparison of the posterior distributions of the full-likelihood (LEA) and the ABC methods

The datasets were analysed with a full-likelihood method (LEA) and the ABC approach. The 

admixture model assumes that two independent parental populations of sizes N1 and N2 joined 

together T generations ago creating an admixed population with effective size NH. Since the 

admixture event populations are assumed to evolve under pure drift with no mutations and no 

migration. Mutations occur according to the K-allele model in the parental populations previous to 

the admixture event. For LEA, a uniform prior between 0.0 – 1.0 was assumed for p1, and improper 

priors for the scaled time since admixture ti=T/Ni , i=(1,2,H) were used. Three independent MCMC 

chains were run for 105 steps, and an importance sampling scheme with 500 updates at each 

iteration was performed to estimate the likelihood. For the ABC, the same prior for p1 was used, but 

for ti an upper limit of 0.5 was assumed. The ABC methods were based on 106 simulations, 

accepting the closest 1000 (tolerance level=0.001). Figure 1 compares the posterior distributions 

obtained for the four parameters of the admixture model assumed by the full-likelihood method 

LEA, the ABC_SUMSTAT and the ABC_ALL_FREQ. The estimates of the ti suggest strong drift 
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since the admixture event, i.e. moderately large ti values around 0.10 - 0.20. This could be 

interpreted as the result of an ancient admixture event and/or reduced effective sizes. The results 

also showed that ABC SUMSTAT and LEA provide similar posterior distributions for the ti 

parameters, whereas ABC ALL_FREQ posteriors were similar to the priors. As discussed in Sousa 

et al. (2009),  ABC ALL_FREQ performance is likely to be affected when the loci have multiple 

alleles and there are different numbers of alleles among loci. Actually, the I. lusitanicum dataset 

consisted of five microsattelite loci with between 3 and 14 alleles. Thus, this may explain the poor 

estimates obtained for the ti's parameters with the ABC_ALL_FREQ. For the admixture 

contribution p1, the posterior distributions are similar among methods, pointing to a limited 

contribution of population P1 (SM1). Indeed, sample SM1 was from a drainage that is currently 

independent of Tagus drainage, from where TJ1 and TJ2 individuals were sampled. Also, it is 

noteworthy that the drift results point to an old admixture, suggesting that mutations may have 

occurred since the admixture event. Therefore, the same dataset was analysed with the model 

implemented in the program 2BAD, which models mutations since the admixture event.

Figure 1 – Comparison of the posteriors obtained with LEA and the different ABC algorithms for the analysis 

of the I. lusitanicum data. The SM1 and TJ2 samples corresponded to the parental populations P1 and P2, 

respectively and TJ1 to the hybrid (or admixed) population.

3. Parameter estimates obtained with 2BAD for the admixture model

 

The admixture model in 2BAD (Figure 1 in section 3.2 – Bray et al. 2009) assumes that an ancestral 

population divided into two populations that later joined together to create an hybrid population. In 

contrast to the previous models, in this case mutations can occur after the admixture event and 

follow the single-step mutation model (SMM). This seemed appropriate to model older admixture 

event scenarios (e.g. Excoffier et al. 2005). Also, the SMM is considered a reasonably good 
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mutation model for microsattelite. Taken together, this model appeared to be better to explain the 

data of I. lusitanicum than the models considered previously in the LEA, ABC_ALL_FREQ and 

ABC_SUMSTAT analyses. The posterior for the contribution p1 pointed to a lower contribution of 

P1 (SM1) to the hybrid (TJ1) than TJ2. However, the distribution had a large variance indicating 

that there was a high uncertainty. The posterior distributions for the effective sizes suggest that the 

current population sizes are similar in the three populations and much smaller than the ancestral 

population size. This suggests that the ancestral populations were much larger than the present-day 

populations, which is in agreement with the results obtained with the MSVAR program proposed by 

Beaumont (1999) and Storz and Beaumont (2002). These results pointed to a strong and recent 

population decline in most I. lusitanicum populations (Sousa et al. 2008). Regarding the time of 

events, the posteriors support a recent admixture and split event.  It is noteworthy that the fact that 

these populations have probably suffered recent and strong population declines may be affecting the 

estimates for the time of population split and admixture. For instance, focusing on the genetic 

differentiation, the recent admixture and split time estimates reflect the moderate genetic 

differentiation found among the populations. This moderate differentiation could only be explained 

by an ancient split if the populations would have maintained a large effective size after the ancestral 

population split. However, given that in the fish datasets there was most likely a recent population 

decline, the method is estimating small effective sizes for the current populations, and hence the 

moderate genetic differentiation could not be explained by an ancient split with reduced effective 

sizes. In those cases, the amount of drift would be such that much higher differentiation would be 

expected. Nevertheless, as seen in the simulation study to test the performance of the 2BAD 

program (Bray et al. 2009 and Appendix 2), determining the timing of the events was difficult even 

with 20 microsatellite loci, as these tended to be the most difficult parameters to estimate. Thus, and 

given that the I. lusitanicum consisted of five loci, these estimates should be interpreted with 

caution. 

The model-choice procedure suggested that a population split model without admixture was 

explaining better the genetic patterns observed than the admixture model. Figure 3 shows the 

posterior estimates for the population split model. Again, the results point to a reduced size of the 

present day populations and large ancestral population sizes. The results also suggest a recent 

population split, but as discussed above, these time estimates should be interpreted with caution.
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Figure 2 – Estimates for I. lusitanicum admixture. 
The posteriors refer to the demographic parameters of the admixture model with a single admixture event 

and two parental populations implemented in the program 2BAD.

Figure 3 – Estimates for I. lusitanicum population split without admixture. 
The posteriors refer to the demographic parameters of the population split without admixture model that was 

considered more likely than the admixture model in the model-choice procedure implemented in the program 

2BAD – see section 3.3 for details.
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