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Resumo

A imagiologia é um campo do conhecimento humano capaz de unir diversas áreas
cient́ıficas em torno de objectivos comuns: f́ısica, engenharia, matemática, bioqúımica,
ciências médicas. Ao longo do último século, a imagiologia dotou a humanidade de
uma plêiade de ferramentas que têm contribúıdo de forma decisiva para a compreensão
do funcionamento do corpo humano. Entre outras aplicações, essas ferramentas são
utilizadas como meios (praticamente) não invasivos de diagnóstico e estadiamento de
doenças, assim como de planeamento e avaliação de terapias. A imagiologia do cancro
da mama é um bom exemplo de como os vários métodos de imagem médica podem
contribuir de forma decisiva para a diminuição do impacto de uma doença de ele-
vadas incidência e mortalidade. A mamografia de raios-X é a técnica imagiológica
mais utilizada no rastreio e avaliao imagiológica no caso do cancro da mama. Out-
ros métodos, como a Ecografia mamária ou a Imagem de Ressonância Magnética da
mama, são importantes técnicas adjuvantes da mamografia por raios-X. No entanto, a
informação fornecida pelas técnicas acima mencionadas é essencialmente de natureza
anatómica. As alterações anatómicas e morfológicas são precedidas por alterações fun-
cionais. Assim, técnicas imagiológicas que forneçam informação complementar sobre
alterações funcionais e metabólicas dos tecidos, como a Tomografia por Emissão de
Positrões (TEP) ou a Cintimamografia podem também contribuir para a diminuição
da morbilidade e mortalidade associada a esta doença. Estas técnicas, no entanto,
são especialmente direccionadas para exames de corpo inteiro, pelo que possuem uma
sensibilidade limitada para a detecção de pequenos tumores na mama. De facto, es-
tudos cĺınicos indicam que a TEP possui uma baixa sensibilidade para a detectacção
de lesões mamárias com menos de 1 cm. Neste contexto assistiu-se, nos últimos anos,
a um esforço significativo no sentido de desenvolver sistemas de imagem comnpactos
e dedicados à detecção de cancro da mama baseadas nas técnicas de Cintigrafia ou de
TEP. Em especial, a técnica denominada Mamografia por Emissão de Positrões (MEP)
ambiciona obter imagens da mama com instrumentos dedicados utilizando traçadores
marcados com emissores de positrões.
Um dos intrumentos MEP em desenvolvimento é a câmara Clear-PEM. Este sistema,
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que na altura de finalização deste trabalho se encontra em fase de montagem, foi pro-
jectado com o objectivo de ser um equipamento de elevadas resolução e sensibilidade,
capaz de detectar pequenas lesões presented na glândula mamária. O sistema é con-
stitúıdo por duas placas de detecção com capacidade para realizar aquisições em várias
posições em torno da mama da paciente e, adicionalmente, realizar um exame axilar
complementar. O sistema possuirá a capacidade de medir a profundidade de interacção
da radiação nos cristais detetores, uma medida conhecida por DOI (acrónimo do termo
inglês Depth of Interaction) que é fundamental para a obtenção de uma resolução es-
pacial elevada e isotrópica. Resultados experimentais indicam que deverá ser posśıvel
obter uma resolução em DOI para a câmara Clear-PEM da ordem de 2 mm FWHM. De
entre os vários componentes que contribuem para o desempenho de um sistema de ima-
gem MEP encontram-se os métodos utilizados para realizar a reconstrução de imagem
a partir dos dados de projecção adquiridos pelo sistema. O objectivo do trabalho apre-
sentado nesta tese era o desenvolvimento e caracterização de software de reconstrução
tridimensional de imagem para a câmara Clear-PEM. Para esse efeito, foram abordadas
questões tais como a enorme quantidade de dados a ser processados, a complexidade
associada a métodos 3D de reconstrução de imagem, o facto da geometria de aquisição
ser bastante diferente da geometria das câmaras TEP convencionais e a necessidade de
incorporar no processo de reconstrução de imagem a informação DOI fornecida pelo
equipamento. A biblioteca open-source de reconstrução de imagem STIR, original-
mente desenvolvida para as câmaras TEP convencionais, de geometria ciĺındrica, foi
utilizada como base para os métodos 3D de reconstrução de imagem para a câmara
Clear-PEM. A estrutura modular da biblioteca, escrita em linguagem de programação
C++, permitiu a incorporação de novas classes e métodos adequados à geometria de
aquisição particular da câmara em estudo. O método tradicional de histogramização
dos dados em formato sinograma 3D foi adaptado para os dados adquiridos pela câmara
Clear-PEM. O teste e a validação inicial das novas ferramentas introduzidas na bib-
lioteca de reconstrução de imagem foram efectuados com recurso a dados simulados por
métodos de Monte Carlo e por métodos anaĺıticos, com fântomas geométricos simples.
As imagens foram reconstrúıdas com o algoritmo iterativo estat́ıstico OS-EM, após op-
timização do mesmo. Os resultados obtidos demonstraram a capacidade de reconstruir
imagens em acordo visual com os objectos simulados, com elevada resolução espacial e
caracteŕısticas de rúıdo em concordância com o simulado e com o algoritmo iterativo
estat́ıstico utilizado. As ferramentas de reconstrução de imagem desenvolvidas e opti-
mizadas foram utilizadas para estudar o impacto da resolução DOI e da aquisição em
duas posições angulares das placas por oposição à aquisição com as placas de detecção
numa única posição angular. Para esse efeito utilizaram-se dados simulados por Monte
Carlo de fontes pontuais colocadas em diferentes pontos do campo de visão da câmara



(FOV, acrónima da expressão inglesa Field of View). Como seria de esperar, os resulta-
dos obtidos indicam que a aquisição em posição única das placas resulta em artefactos
significativos nas imagens quando é considerada uma resolução em DOI baixa ou inexis-
tente. Esses artefactos são significativamente reduzidos nas regiões próximas do centro
da FOV quando se considera 2 mm FWHM DOI (o valor expectável para a câmara
Clear-PEM) ou um valor ideal correspondendo a informação DOI exacta. Quando se
considera a aquisição em dupla posição angular das placas de detecção e o valor de 2
mm FWHM DOI , não se verifica a existência de artefactos nas imagens. No entanto,
a evolução irregular da resolução espacial medida em fontes próximas da periferia da
FOV com o processo iterativo parece indicar que, nessas regiões da FOV, a qualidade
da imagem teria a ganhar com aquisição de dados em posições adicionais das placas de
detecção. Globalmente, os resultados obtidos indicam que, considerando a aquisição em
duas posições perpendiculares das placas e o valor de resolução em DOI que se espera
para a câmara Clear-PEM, a resolução espacial das imagens é 1.3×1.3×1.3 mm3 no
centro do campo de visão da câmara e 1.5×1.8×2.0 mm3 a 1 cm da periferia da FOV
da câmara. A capacidade de reconstruir imagens e de detectar lesões em condições
mais realistas e próximas do cenário de um exame real foram avaliadas recorrendo a
simulações de Monte Carlo. Nessas simulações foi utilizado um fântoma antropomórfico
da mama contendo lesões modeladas como estruturas esféricas de diâmetros variáveis
entre 3 mm e 10 mm. Os valores de fixação de radiofármaco considerados para os
tecidos mamários (que não lesões) foram obtidos da literatura e corresponderam aos
diferentes tipos de glândulas mamárias As imagens foram reconstrúıdas utilizando quer
o algoritmo OS-EM quer o algortimo iterativo estat́ıstico Bayeseano OS-MAP-OSL com
o Median Root Prior. Os resultados obtidos demostram que o algoritmo OS-EM per-
mite obter imagens de elevado contraste, embora com valores de razão sinal sobre rúıdo
relativamente baixos para lesões localizadas próximo da parede toráxica. A utilização
do algoritmo Bayseano permite controlar de forma mais eficaz o rúıdo produzido nas
imagens no decorrer do processo iterativo. Consequentemente, os valores da razão sinal
sobre rúıdo são mais elevados nestas imagens, por comparação com as obtidas com o
OS-EM, embora com valores mais baixos de contraste entre as lesões e os tecidos ad-
jacentes. Globalmente, os resultados da reconstrução indicam que deverá ser posśıvel
visualizar lesões de 3 mm em glândulas mamárias consitúıdas essencialmente por tecido
adiposo e de 5 mm em glândulas mamárias ricas em tecido fibroglandular denso. Em
conclusão, o software para reconstrução 3D de imagem apresentado nesta tese con-
tribuiu para a avaliação do desempenho esperado da câmara Clear-PEM, dedicada à
imagem da glandula mamária. Espera-se que possa também vir a contribuir para o



bom desempenho da câmara em ambiente cĺınico.

Palavras Chave: Cancro da mama; Tomografia por Emissão de Positrões; Geometria
Planar em Medicina Nuclear; Algoritmos 3D de Reconstrução de Imagem; Algoritmos
Iterativos Estat́ısticos.



Abstract

The Clear-PEM scanner is a compact, dedicated, dual plate positron emission tomo-
graph that is being developed for imaging the breast. This scanner has been designed
to be a high sensitivity, high resolution instrument, able to detect small breast can-
cerous lesions at an early stage of the disease. The scanner will acquire data using
two detector plates at two perpendicular angular positions around the breast. It will
be able to measure the Depth-of-Interaction (DOI) of the photons within the detector
crystal with a foreseen resolution of 2mm FWHM. The work presented in this thesis
deals with 3D image reconstruction for the Clear-PEM scanner.
A number of issues such as the unconventional nature of the acquisition geometry, the
incorporation of the DOI information in the reconstruction process, the large amount
of data to be processed and the complexity of 3D image reconstruction were addressed
in this thesis. The STIR library, an open-source image reconstruction library, originally
developed for conventional Positron Emission Tomography ring scanners was used as
the basis for 3D image reconstruction of the Clear-PEM scanner. The modular struc-
ture of the library allowed incorporating classes and methods adequate to the particular
geometry under study.
The validation and optimization of the enhanced library was performed with geomet-
rical phantom Monte Carlo(MC) and analytical simulated data and with the 3D OS-
EM algorithm available in STIR. The results obtained indicate that, with the tuned
3D image reconstruction algorithm the image spatial resolution is expected to be
1.3×1.3×1.3mm3 in the Field-of-View (FOV) center and 1.5×1.8×2.0mm3 at 1cm from
the FOV edge. The ability to reconstruct data acquired in a realistic, clinical scenario
was tested with MC simulated data of an anthropomorphic breast phantom. Images
were reconstructed both with the OS-EM algorithm and with a Bayesian algorithm.
The results obtained show that the OS-EM algorithm allows obtaining high contrast
images, albeit with low signal-to-noise ratio values in lesions located near the chest
wall. The use of a Bayesian algorithm allows improving the signal-to-noise ratio, albeit
resulting in lower contrast images. Globally, the results indicate the possibility of visu-
alizing 3mm diameter lesions in essentially fat tissue breasts and 5mm diameter lesion
in dense fibroglandular breasts.
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Janeiro, Paula Alexandra Santos, Lúıs Freire and Susana Silva.
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Chapter 1

Introduction

The medical imaging field has the power of bringing together many different areas
of scientific knowledge: physics, engineering, mathematics, biochemistry, medical sci-
ences. During the last century, the medical imaging field has provided humanity with
a variety of tools that have decisively contributed to the understanding of the function-
ing of the human body and of its constituents, either in health or in disease. Among
other applications, these tools have been invaluable as (almost) non invasive means to
diagnose and to evaluate disease, as well as to plan and to evaluate treatment. Breast
cancer imaging is a good example of how medical imaging modalities can diminish the
number of patients suffering from this highly prevalent (at least in the western world 1)
and deadly disease. X-ray mammography is the most used technique for breast cancer
imaging. This technique is used either as a complementary tool to clinical diagnosis or
as an irreplaceable screening tool for the early detection of the disease. Other imag-
ing methods such as breast Ecography and breast Magnetic Resonance Imaging play
important roles as adjunct techniques to X-ray mammography. The information pro-
vided by the aforementioned techniques is, however, mainly anatomical, thus leaving
space for imaging methods that are able to obtain information regarding functional
or metabolic changes in tissues. Among these, molecular imaging methods such as
Scintimammography and Positron Emission Mammography (PET) have been found to
provide useful complementary information to the anatomical methods. However, both
these techniques are tunned for whole body imaging, resulting in low sensitivity for the
detection of small lesions in the breast.
In this context, last years have witnessed the birth of a tremendous effort to develop
dedicated compact cameras for breast cancer imaging based in Scintimammography or
in PET technologies. In particular, the approach that aims to image the breast with
dedicated instruments that use tracers labeled with positron emitters has been named
Positron Emission Mammography (PEM).

1Data for other countries is usually difficult to obtain.



4 Introduction

One of the PEM instruments currently being developed is the Clear−PEM scanner.
This scanner, which, by the time this works is being finished, is at its assembling stage,
is designed to be a high resolution, high sensitivity instrument, able to detect small
cancerous lesions in the breast at an early stage of the disease. The scanner is based
in a dual detector plate with the capability of acquiring data around the breast of the
patient and additionally perform a complementary axillary exam. The scanner also has
Depth-of-Interaction capabilities, a fundamental measure to meet the requirements of
a high resolution system. Among the several components that contribute to the per-
formance of an imaging system, the methods used for the reconstruction of the images
from the projection data acquired by the system play a fundamental role. The present
thesis deals 3D image reconstruction software for the Clear−PEM scanner.
The aim of the work here presented was to develop and characterize the 3D image re-
construction software for the dual plate Clear-PEM scanner. A number of issues need to
be addressed for that purpose, such as the large amount of data to be processed and the
complexity implied in 3D image reconstruction methods, the non-standard acquisition
geometry of the scanner and the incorporation in the image reconstruction process of
the Depth-of-Interaction information measured by the system. The approaches followed
to address these issues, the tests performed to test and tune the image reconstruction
algorithms and the results obtained with Monte Carlo simulation data, which allow
to foreseen some of the aspects of the performance of the Clear-PEM scanner, will be
presented.
The Part I−Introduction is composed of the present Chapter 1−Introduction,
where the context, motivations and general organization of the work are provided.
The Part II−Background comprises three chapters which include a review of the
state of the art on the main knowledge fields that are related to the work developed
in the present thesis. Chapter 2−Breast Cancer Imaging presents a review of the
most important breast imaging modalities, focusing on the strengths and weaknesses
of each technique. In this chapter it will became clear why technical improvements
in some of these imaging methods, namely in Nuclear Medicine techniques, have the
potential to push further the limits of breast imaging. In the following chapter, Chap-
ter 3−Positron Emission Mammography we present an overview of some of the
instrumentation issues that impact on the performance of positron emission tomo-
graphy equipments. Emphasis is given on the most demanding aspects of dedicated
instruments, such as the ones used to image the breast, the PEM systems, with respect
to conventional whole body scanners. A literature review of the PEM scanners that
are or have been developed, including the strategies used to reconstruct the data from
these scanners is presented therein. The final chapter of the second part of this work,
Chapter 4−Image Reconstruction in PET presents an overview of the funda-
mental characteristics of a class of image reconstruction algorithms that are commonly
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used in Position Emission Tomography, the iterative statistical image reconstruction
algorithms.
The Part III−Methods is composed of two chapters that describe the Clear-PEM
scanner and the main utilities that were used in the development of this thesis. Chap-
ter 5−The Clear-PEM scanner and Monte Carlo simulations is devoted to
providing a general overview of the design of the Clear−PEM scanner. References are
included to some of the expected performance characteristics of the scanner. The de-
scription of the Monte Carlo simulation framework that was developed for the design
of the Clear−PEM scanner, and the results used to test and to tune the image recons-
truction methods are presented. The simulation settings, as well as the analytical and
anthropomorphic phantoms used are described in this chapter. The following chapter,
Chapter 6−The STIR library, describes the image reconstruction software library
that was used as the basis for the 3D image reconstruction software for the Clear−PEM
scanner.
The Part IV−Results begins with Chapter 7−Enhancements in the STIR

framework that describes the features that were introduced in the STIR library
in order to use it with data proceeding from a non standard acquisition geometry such
as the Clear−PEM scanner. This chapter also includes some initial tests that were
performed with analytical phantom data and the tuned image reconstruction software.
The following chapter, Chapter 8−3D OS-EM image reconstruction for the
Clear−PEM scanner presents the results of the studies that were performed with
3D image reconstruction software and the Clear−PEM scanner Monte Carlo simulation
data. The final chapter of Part IV is Chapter 9−Bayesian Image Reconstruction

for the Clear−PEM Scanner, which describes the results of the image reconstruc-
tion of the Clear−PEM scanner simulation data with a Bayesian image reconstruction
algorithm.
A summary of the work presented is this thesis is given in PartV−Main Conclusions

and Future Work, together with a discussion of the main findings and the perspec-
tives of future work. Finally, Appendix A lists the publications in which parts of the
work presented in this thesis was published.
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Chapter 2

Breast Cancer Imaging

2.1 Introduction

Breast cancer is the second major cause of cancer-related mortality among the occi-
dental female population [1]. Statistics indicate that one in ten women in the western
world will develop breast cancer during her lifetime
Given the high incidence of breast cancer, as well as the high mortality rate associated
with the disease, there have been great efforts to technically improve breast cancer
imaging methods. These mainly aim at improving the capacity to detect lesions at an
earlier stage, since early detection is the best means to reduce mortality, and to better
differentiate malignant from benign lesions.
The breast is constituted by fibrous, glandular and adipose tissue. The fibrous and
glandular tissues are structured into ducts and lobules, which are surrounded by the
adipose tissue. The earliest form of breast cancer is Ductal Carcinoma in Situ (DCIS).
In DCIS the cancer cells are confined to the breast ducts and have not invaded the sur-
rounding fat tissue. This form of cancer is usually associated with microcalcifications
that can be detected by mammography. Breast cancer can also appear confined to the
lobules, in which case it is named Lobular Carcinoma in Situ (LCIS). Both DCIS and
LCIS can degenerate into invasive carcinoma, if the carcinoma spreads to surrounding
breast tissues. When a carcinoma is found in the breast, there is a need to ascertain if
it has spread to other regions of the body. If so, the first sites to receive lymph from the
tumor are the axillary lymph nodes. A sentinel lymph node biopsy can be performed in
order to detect if and which lymph nodes are cancerous, and those will be removed. If
the tumor has spread beyond the lymph nodes, whole body imaging techniques such as
Computed Tomography (CT), Positron Emission Tomography (PET) or Single Emis-
sion Computed Tomography (SPECT) can be used to localize the metastasis.
X-ray mammography is the gold standard imaging technique for the detection and
screening of breast cancer. Despite its success, x-ray mammography is not a perfect
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technique, as we will see further in this chapter. Other imaging methods, such as
breast ecography, magnetic resonance imaging (MRI), and nuclear medicine techniques
(scintimammography (SM) and PET) have also an important role in the management
of this disease, providing additional or complementary information to x-ray mammo-
graphy. They are employed either to further characterize tissue lesions detected by
mammography, or when the physical characteristics of the women’s breast make mam-
mography inconclusive, or when a women has known risk factors for breast cancer.
High risk factors for breast cancer include inherited genetic mutations in the BRCA1
and BRCA2 genes (these account for 5%− 10% of all breast cancer cases), a personal
or familial history of breast cancer and high breast tissue mammographic density (that
is, a high amount of glandular tissue relative to fatty tissue in the breast).
In this chapter we will briefly review the most significant modalities which are em-
ployed on breast cancer imaging, namely mammography, ecography, MRI and nuclear
medicine techniques. We will overview the physical principles inherent to each of these
modalities, as well as the morphological or functional characteristics of the lesions to
which they are sensitive to. When possible, the sensitivity and specificity values availa-
ble in the literature for the imaging modalities discussed will be presented. Sensitivity
and specificity are two important parameters when evaluating the utility of a given
imaging technique on detecting disease. Sensitivity refers to the ability of detecting
lesions and is computed as the ratio of the true positive findings to the total number of
positive exams. Specificity is the ability to distinguish malignant from benign lesions.
It is computed as the ratio of the true negative findings to the total number of false
exams. We will focus on the main advantages and pitfalls of each of these techniques,
emphasizing how the most recent technical advances in each area are allowing to push
further the boundaries of breast imaging.
Examples of images of the breast obtained with each of the techniques that will be
presented in this chapter can be seen in Figure 2.1.

(a) (b) (c) (d) (e)

Figure 2.1: Breast cancer images obtained with (a)X-ray mammography [2], (b) Ecog-
raphy [3] , (c) breast MRI [3], (d) scintimammography [2] and (d) PET [4].

.
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2.2 X-ray Mammography

Conventional X-ray mammography has long been used for the detection of breast
pathologies. It is used either as a screening tool or as a diagnostic tool, allowing
further evaluation of suspected lesions found in clinical diagnosis (palpation). Screen-
ing mammography is the only screening test that has been proven in large clinical trials
to decrease mortality from breast cancer [3]. Up to 30% decrease in breast cancer mor-
tality in the screened population has been demontrated [5].
Mammography uses low energy X-rays that penetrate through the compressed breast
and then exposes a photographic film placed on the opposite side of the breast. The
image that is produced by mammography results from the variation in breast tissue
densities that the X-ray beam has encountered along its path to the detector. Struc-
tures that more strongly attenuate the X-ray beam appear as whiter areas in the image.
Mammographic features that are characteristic of breast cancer are masses, particularly
irregular ones, architectural distortions of breast structures and clusters of microcalcifi-
cations. Microcalcifications can be detected by mammography due to its high resolution
images. In fact, under optimal conditions, a resolution smaller than 150 µm can be
obtained [3].
Unfortunately, areas of dense glandular tissue attenuate the X-ray beam similarly to
masses and calcifications. As a consequence, cancers that present as small masses can
be obscured by overlapping dense glandular tissue. Hence, the sensitivity of mammo-
graphy for the detection of small breast cancers is reduced in women with dense breast
tissue. Unfortunately, dense breast tissue is also a risk factor for breast cancer. Sensiti-
vity is also diminished if there is a breast prosthesis or if the patient has scars resulting
from previous surgery, biopsy or radiation procedures. With the optimal technique and
patient conditions, mammography has a reported sensitivity between 69% and 90% [6].
Denser breasts are the main responsible for the lowest sensitivity values. Sensitivity is
also dependent on the tumour size. In fatty breast, the size of detected tumour with
mammography can be as small as 5 mm, but it is rarely less than 1-2 cm in dense
breast.
The specificity of mammography relies on the ability to distinguish cancerous from
noncancerous breast lesions based on their shapes and margins, that is, on morphology.
Unfortunately, as malignant and benign lesions may have similar appearances, X-ray
mammography has specificity between 10% and 40% [6], which means that there is
a large fraction of false-positive results. As a result of its low specificity, breast le-
sion evaluation based solely on X-ray mammography results frequently in unnecessary
biopsy procedures.
Other clinical areas in which mammography is of restricted use include the detection of
lobular cancer and of ductal carcinoma in situ. The detection of DCIS is usually based
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on the detection of the associated microcalcifications. However, it may happen that
DCIS does not present microcalcifications, and, in this case, it usually is undetected by
mammography.
Recently, digital mammography, which uses a digital receptor instead of the traditional
screen film, resulting in a computer-generated image, was introduced for the detection
of breast cancer. The use of imaging processing algorithms with the digital mam-
mograms allows manipulating fine differences in image contrast. As a result, subtle
differences, even in dense tissue, can be evaluated. Despite these promising charac-
teristics, early experience with digital mammography has shown that the difference in
cancer detection was not significant [5], although it reduces the number of unnecessary
breast biopsies.
Mammographic breast cancer screening reduces breast cancer mortality, but, due to its
low specificity and sensibility, breast mammography results in a considerable number
of missed cancers and a large number of unnecessary breast biopsies. This is specially
true if the breast is dense. Because of this limitations, other imaging modalities have
been proposed as additional diagnostic tools for improving breast cancer detection.

2.3 Breast Ecography

Breast ecography is a technique that, when used as an adjunct to mammography, has
been shown to improve the overall sensitivity of conventional breast imaging [7]. Fur-
thermore, breast ecography systems are currently used to perform guided biopsies.
Medical ecography imaging involves the use of very high frequency sound waves (7-12
MHz)[8] that are produced by a transducer. These waves interact with the patient
tissues, producing echoes whose amplitudes depend on the acoustic impedance of the
tissues. The depth of the structures that produce the echoes are determined by the
time difference between the emission and the return of the sound wave. The echoes
amplitudes are encoded in a gray scale image.
The images obtained with breast ecography represent a two-dimensional cross section
through the breast tissue. Therefore, unlike mammography, ecography imaging of the
breast is not hindered by overlying dense tissue. Hence, some cancers that are not
detected on mammography due to dense overlying tissue may be detected with breast
ecography. However, although uncommon, some cancers have acoustical impedance
similar to normal tissue and therefore may not be detected by breast ecography. Fur-
thermore, current ecography image resolution is not enough to detect the small cance-
rous microcalcifications seen on mammography.
The major advantage of breast ecography over mammography is its capacity for diffe-
rentiating solid from cystic breast lesions, which are fluid in nature and almost always
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benign. Since they are fluid, cysts respond differently from solid masses when pene-
trated by the sound waves. Breast ecography can also be used in a limited fashion
to characterize solid masses. It is not, however, recommended as a primary screening
method, because of a variable false-negative rate (ranging from 0.3% to 47%) [5] and
of the operator-dependent nature of efficacy.
Breast ecography can also be used as a vascular imaging tool with the use of the Doppler
technique. A vascular imaging tool can be useful in the detection of malignancies due
to tumor angiogenisis. Angiogenisis, which is considered a hallmark of cancer, is de-
fined as the emergence of new vessels to sustain the growth of the tumor. Therefore,
breast cancers are expected to demonstrate increased vascularity compared with be-
nign masses. The future role of vascular imaging in breast ecography remains yet to
be defined, since there are contradictory results regarding the reliability of Doppler
evaluation in differentiating benign from malignant breast masses [9, 10].
To take the evaluation of lesion vascularity with ecography a step further, contrast
agents can be used. The most common type of contrast agents in ecography are en-
capsulated bubbles and solid particles. These allow visualizations of blood flow in the
area of interest by increasing the backscatter echoes. Improved visualization of lesion
vascularity and characterization using contrast agents compared with Doppler alone
has been found [11]. However, it remains to be seen whether there will be acceptance
of these agents in routine breast ecography.

2.4 Magnetic Resonance Imaging

Magnetic Resonance Imaging has been used consistently in the detection of breast can-
cer since the late 90’s. Since them, MRI has shown to have a very high sensitivity for
detecting invasive breast carcinoma (at least 95%) [5], although with a very wide range
of specificity values (37% to 97%) [5]. Several studies have clearly established that
MRI can detect mammographically and clinically occult breast cancer [12], although
with low specificity. MRI can be used as a tool to detect breast cancer recurrences and
in the staging of the disease [13]. Since its sensitivity is not affected by the presence
of underlying dense breast tissue, MRI has also been found particularly valuable in
screening young women at high risk [14, 15]. Recently, it has been recommended by
the American Cancer Society that MRI should be used as an adjunct tool to mammo-
graphy for women at high risk for breast cancer [16].
Breast MRI is performed in a magnetic field (0.5T − 1.5T ) [12] created by a magnet
that surrounds the body of the patient and with a small breast surface coil that acts as
an antenna. This dedicated surface coil is needed to ensure adequate spatial resolution
at high signal to noise levels [17]. The static magnetic field acts on the hydrogen nu-
cleus of the media, aligning them. The coil emits a radio frequency pulse that induces
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a change in the alignment of the protons and is then turned off. The time taken by
the protons to return to their original alignment is then converted into an MRI image.
Since the main reservoir of hydrogen in the cell is in water molecules, MRI allows to
observe the water contents of the tissues, thus providing high contrast levels between
tissues with different water contents.
The differences in water content between normal and malignant tissues in the breast
are not enough to provide breast cancer detection with MRI. Therefore, it is necessary
the use of intravenous contrast agent. This agent is usually a small molecule containing
gadolinium. Due to their increased angiogenesis, cancer cells present increased vascu-
larity. The contrast agent will thus accumulate in the cancerous lesions, highlighting
them in the MRI image. Unfortunately, many benign lesions will also highlight. The
difference in the lesion morphology can then be used to distinguish the malignant from
the benign lesions [3]. These morphological differences may, however, not be enough to
provide a good discrimination between benign and malignant lesions. Improved speci-
ficity may be achieved through the analysis of lesion kinetics, that is, by evaluating
the time intervals of wash in and wash out of the contrast agent in the lesion. Since
the malignant lesions vasculature has higher capillary permeability than the normal
vasculature, malignant lesions tend to present quicker enhancement and clearance of
the contrast material [12].
A point where breast imaging with MRI falls short consists on the difficulty to detect
DCIS lesions. In fact, MRI sensitivity for DCIS can be as low as 40% [18]. On the
one side, MRI is uncapable of detecting the microcalcifications that typically appear
with DCIS, since MRI can only identify breast masses as small as 1-2 mm [19]. On
the other side, DCIS lesions do not present increased vascularity, since their nutrition
is performed by difusion. Therefore, these lesions are commonly missed by MRI.
One other handicap of MRI arises when suspicious lesions found on MRI cannot be
visualized with mammography or ecography. In these cases, ecography guided biopsy
systems are of no use. Therefore, MRI-based guidance systems are needed for needle
biopsy or placement of localization needles before surgery. MRI guided systems are not
yet well established, and still present many problems. However, systems exist that are
based on anatomical navigation using fiducial markers placed either on the coil or on
the breast [20]. In alternative, an interactive placement of needles can be performed
directly with MRI guidance if open-architecture MR coil is available [21]. Yet another
alternative is MRI guided vacuum assisted biopsy [22]. In either case, MRI compatible
needles must be used. There are, however, many unsolved problems associated with its
use, such as artifacts in some of the MRI sequences [12].
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2.5 Scintimammography

Scintimammography (SM) is a functional imaging technique that uses a radiation detec-
tor camera, named Anger Camea, and single-photon emitter radiotracers to image the
breast. The radiopharmaceuticals used are administrated intravenously in the patient
body, and since they are designed for such purpose, they accumulate in the cancerous
cells. The emitted gamma rays can be detected externally by an Anger Camera, thus
providing information of the location of the cancerous cells.
Currently, the most used radiopharmaceuticals used for SM are 99mTc-sestamibi (MIBI)
and 99mTc-tetrofosmin [23]. Of these two, the highly complex uptake mechanism of
99mTc-sestamibi is better understood, although they both share common biophysical,
chemical and pharmacokinetic properties [24]. The uptake of both radiopharmaceuti-
cals rely on the higher aerobic metabolism of tumor in comparison with normal breast
tissue cells, and are related to tumor cell apoptosis, blood supply and cell proliferation
[24].
Scintimammography is a highly sensitivity technique for the detection of breast cancer.
The reported sensitivity values range from 85% to 93% [22, 25]. Since SM is not affected
by the breast density [26], it is often able to visualize lesions in dense fibroglandular
tissue that can not be seen by mammography. Thus, it is of special value when the
mammography findings are equivocal or when there are palpable masses that are not
seen in mammography.
The specificity of scintimammography is also high, since SM images do not reflect mor-
phological changes in the breast tissue, but rather changes in the cells metabolism.
Thus, SM is better able to distinguish malignant from benign lesions than conventional
techniques. The reported specificity for SM is around 87% [22, 25, 27]. When used in
combination with mammography, SM can improve its overall sensitivity and specificity
[28].
It is important to emphasize that the sensitivity of SM depends utterly on the size
of the lesions, dropping drastically for lesions lower than 1 cm [23]. This is due to
the poor intrinsic spatial resolution of the Anger Camera, and to the sub optimal de-
tection geometry, since there is a big distance between the detector and the imaged
breast. Attempts to overcome these pitfalls have resulted in the development of small
dedicated gamma cameras that provide higher spatial resolution and higher detection
sensitivity. The firsts clinical trials using these dedicated cameras have shown a signif-
icant improvement in sensitivity for smaller lesions [29, 30, 31, 32] indicating that this
new technique might become useful in the clinical practice [33].
As any other nuclear medicine technique, the quality and type of information provided
by scintimammography relies tremendously on the radiopharmaceuticals used. Diffe-
rent radiotracers will provide information on different cellular processes. Thus, another
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approach to improve scintimammography’s accuracy is the development of radiophar-
maceuticals that are more specific of breast cancer. Examples of such developments
are radiopharmaceuticals that are used to target tumor associated antigens or receptors
that are expressed in most primary breast cancers such as somatostatin receptors [28].

2.6 Positron Emission Tomography

Just like scintimammography, Positron Emission Tomography is a form of diagnosis
imaging that uses radiolabeled tracers to track functional or metabolic changes in tis-
sues. However, unlike scintimammography, PET is a tomographic technique where the
radionuclides used decay by the emission of positrons.
The most used radiotracer for imaging cancer in PET is 18F-fluorodeoxyglucose, or
18FDG, a glucose analogue that is labeled with the positron emitter 18F. This ra-
diotracer is used to detect glucose consumption, which is known to be increased in
cancerous cells compared to normal cells. This is due to the higher metabolism of
cancerous cells. Just like in scintimammography, the advantage of being able to image
metabolism instead of anatomy is that, usually, the accelerated metabolic activity of
cancerous cells occurs before the changes in the anatomical structures.
The tracking mechanism of 18FDG inside the cancerous cells is as follows. FDG is
a glucose analog and, just like glucose, is transported into the cells by glucose trans-
porters named GLUT1. These transporters are known to be overexpressed in breast
cancerous cells, thus contributing to increased FDG uptake [34]. Once inside the cell,
FDG is phosphorylated into deoxyglucose-6-phosphate (FDG-6-PO4) by an enzyme
named hexokinase. Hexokinase is also thought to be overexpressed in cancerous cells.
Unlike glucose, FDG-6-PO4 does not enter further enzymatic reactions and, due to its
negative charge, remains trapped inside the cell [28]. This metabolic trapping of FDG
inside the cell constitutes the basis for imaging the in vivo distribution of the tracer
[35].
The sensitivity and specificity values found for PET in the detection of primary breast
cancer are moderate: 85% and 79%, respectively [3]. The fact that FDG can be taken
by non malignant processes such as infection or inflammation accounts for the not so
high specificity values. It has also been found a high variability in the metabolic rate
of tumors, and consequently in FDG uptake [36]. The low to moderate sensitivity
values are due to the fact that primary breast cancer detection by PET is lesion size
dependent. In fact, due to its limited spatial resolution, PET has litle capability of
detecting lesions of less than 1 cm. For instance, in a given clinical study, the sensiti-
vity for detecting tumors less than 1 cm was only 57%, compared with 91% for tumors
larger than 1 cm [37]. FDG uptake is also dependent on the breast composition, with
fibroglandular breasts exhibiting a significantly higher FDG uptake than breasts that
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are constituted mainly by fat. However, this does not seem to preclude PET from
being able to detect lesions in dense breasts [38]. Therefore, in primary breast cancer
PET may help on detecting tumors in high risk patients with dense breasts, to whom
conventional tecniques are of little use [3].
Due to its moderate sensitivity in detecting small cancers, PET is not considered a
first choice technique for the diagnosis of primary disease. The role of PET in breast
imaging has been mainly focused on other applications. PET has been found to be in-
valuable in the determination of unsuspected metastatic disease resulting from breast
cancer, mainly in the detection of distant metastasis, since it is a whole body imaging
technique. It has also been shown to be of great value in the evaluation of the response
to therapy and in the detection of recurrent breast cancer. This is because PET, unlike
anatomical techniques, is able to differentiate viable tumors from scars resulting from
previous therapies [28].
The detection of metastasis in the axilla is an important prognostic status, especially
for early stage breast cancer patients, as it was previously said. Initial evaluations of
PET as a predictor of axillary node status were very promising. However, it was soon
found that the ability of PET do detect metastatic disease in the axilla was hampered
by its limited spatial resolution [39]. In fact, PET seems to be unable to detect small
metastasis in the axilla (less than 5 mm). Published studies have shown a wide range
of sensitivity values for PET in the case of axillary staging, ranging from 79% to 100%.
Specificities have ranged from 66% to 100% [40].
PET-CT in one integrated unit that allows both functional and anatomic imaging in
a single study has also revealed to be a valuable technique for breast cancer imaging.
Besides providing anatomical information, the low-dose CT exams also allows for at-
tenuation correction of the emission scan. The use of PET-CT in breast cancer imaging
has shown to yield a clear improvement in diagnostic accuracy [35, 41]. Figure 2.2 is
an example of a FDG PET-CT exam.

Figure 2.2: FDG PET-CT breast exam. The image on the left shows the reconstructed
PET image, while the image on the right shoes the PET-CT fused image. From [41].
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Such as in scintimammography, some of the aspects that prevent whole body PET
from being more useful in the diagnosis of primary breast cancer are related to tech-
nological aspects and not with fundamental limits of the technique. This has lead to
a tremendous surge of interest on the conception and development of small, dedicated
PET cameras for breast imaging [42, 43, 44, 45], as we will see in the next chapter.
The first preliminary clinical trials using this technology seem to be very promising
[46, 47, 48, 49], but technical improvements of these cameras are still taking place.
Another means to improve the usefulness of PET in breast cancer imaging is through
the development of new radioligands. Although FDG continues to play an important
role in the evaluation of breast cancer, there is a chance that other radiopharmaceu-
ticals will play a role in the management of breast cancer in the future [4]. Besides
energy metabolism, other tumor surrogates can be used for imaging breast cancer with
PET. For instance, genetic changes in breast cancerous cells comprise increased oes-
trogen receptors, increased protein synthesis and enhanced proliferation activity. The
evaluation of such processes with newly developed radiopharmaceuticals such as 18F-
fluroestradiol (FES), 11C-methionine and 18F-fluorothymidine (FLT), respectively, may
provide additional functional information to that obtained with FDG [4].

2.7 Conclusions

In this chapter an overview of the main technologies used for breast cancer imaging
was given. Mammography remains the gold standard for breast cancer screening and
diagnosis, together with biopsy. Adjunct techniques such breast ecography and mag-
netic resonance imaging provide information when the findings on mammograms are
equivocal, but this information is still mainly anatomical. Functional imaging such as
scintimammography and PET have been reported to offer advantages over anatomi-
cally based imaging modalities. However, both these imaging techniques suffer from
lack of ability to detect small lesions, mainly due to their limited spatial resolution
and whole body geometry. In this context, there has emerged a tremendous effort
in the development of dedicated instruments for breast cancer imaging, either based
in scintimammography or in PET technology. These efforts have been crowned with
very promising initial clinical results. In the next chapter we will overview the main
instrumentation issues regarding the development of breast imaging dedicated PET
scanners.



Chapter 3

Positron Emission

Mammography

3.1 Introduction

We have seen in the previous chapter that the use of labeled radiotracers has shown
promise for the detection, diagnosis and staging of breast cancer. However, the stan-
dard technology of whole body scanners, due to its limited spatial resolution and to the
disadvantageous geometry, which limits sensitivity, are in part precluding molecular
imaging using radiotracers from contributing with its full potential to the imaging of
the breast.
These limitations have prompted an active interest in the development of compact
positron emission tomography cameras dedicated for breast imaging, or Positron Emis-
sion Mammography (PEM) cameras. In the last ten years, a variety of detector designs
and geometries has been studied in order to optimize the technique. Several geome-
tries have been exploited to fulfill the requirements of imaging the breast, the most
commonly adapted being rectangular or planar detector geometries with or without ro-
tation. Regarding the design of the detectors, most of the instrumentation issues raised
by the development of PEM scanners are common to the ones of small animal positron
emission tomography (PET) scanners, since they also must meet high resolution, high
sensitivity requirements.
This chapter will begin with a brief description of the positron emission and detection
processes, that are common to PEM and PET. Then, we will review the performance
parameters and instrumentation issues more challenging in the design of dedicated
PEM scanners. We will finalize the chapter with a literature review of the state of the
art in Positron Emission Tomography scanners.
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3.2 Positron emission and detection

As it was seen in the previous chapter, Positron Emission Tomography, as well as
Positron Emission Mammography, uses radiopharmaceuticals that are labeled with a
positron emitting radionuclide. Besides 18F, which is used in FDG, other radionuclides,
such as 82Rb, 15O, 13N and 11C, among others, can be used to label the molecular probes
used in PET.
The emitted positron travels a given amount of space in matter, while dissipating its
kinetic energy through interactions with electrons and surrounding nuclei. At the end
of its path, the positron combines with an electron in its vicinity, in an annihilation
reaction whereby the total mass of the electron and the positron is converted into high
energy photons. The rest-mass energy of both positron and electron is 511 keV. If both
particles were at rest at the time of annihilation, the two resulting 511 keV photons
will be emitted in opposite directions.
The gamma rays thus emitted can interact with the tissues of the patient either by
photoelectric effect or by Compton scatter. Both photon attenuation and scatter result
in image degradation since, in the first case, emission counts are lost and, in the second,
the measured spatial information is inaccurate. Whereas attenuation correction is fairly
simple if a transmission scan is available, the scatter correction is not as straightforward.
If the photons are not absorbed by the matter in the patient body, they can be detected
externally in coincidence by using opposed pairs of scintillator crystals. Each luminous
signal produced in the crystals is transformed into an electrical signal. A coincidence
event happens when such two electrical signals are registered in a coincidence electronic
circuit within a time frame that is defined by a coincidence time window.
The imaginary line that unites the two activated crystals in a coincidence event is called
a line of response (LOR). The number of counts that are detected along the several
LORs during an exam is stored in an histogram and used for image reconstruction
purposes. Alternatively, list mode format can be used. In list mode format, the relevant
information regarding the event, such as the activated crystals, the deposited energy and
a time stamp, is stored sequentially on disk and used directly for image reconstruction.

3.3 The performance of a scanner

Of main importance for the performance of a PET scanner are its photon sensitivity
and its spatial, energy and temporal resolutions. The geometry, the detector crystals
and the electronics of the system all impact on the above mentioned parameters. In this
paragraph we will overview the main aspects that affect these parameters, highlighting
the most common differences between traditional clinical scanners and high resolution
scanners.
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3.3.1 Photon sensitivity

The photon sensitivity is defined as the fraction of 511 keV photon pairs emitted from
the imaging subject that are detected by the imaging system [50]. It is important that
a scanner has the higher photon sensitivity possible since a higher fraction of detected
photons will impact on better statistics of the acquired data and, consequently, on lower
noise level of the final reconstructed images. The photon sensitivity in a clinical PET
system is less than 1%. In dedicated or high resolution scanners, this value is usually
improved by increasing the scanner geometric efficiency, that is, the probability that
the emitted photon transverses the detected material, or by increasing the intrinsic
detector efficiency.
Usually, the scanner geometric efficiency is enhanced in dedicated scanners relatively
to traditional scanners mainly because the detector is brought closer to the imaging
subject. The geometric efficiency can also be increased by packing the detector elements
as tightly as possible and by covering the region to be imaged with as much detector
as possible.
The other aspect that influences the scanner photon sensitivity is the intrinsic detector
efficiency. This is defined as the likelihood that photons transversing the detector
material will be stopped [50]. It depends mainly on the scintillator crystals that are
used as detector elements. Scintillator crystals that have high density (ρ), with high
effective atomic number (Zeff ) have maximum ability to stop the 511 keV photons. In
fact, a high density crystal favors the photon interaction and a high effective atomic
number maximizes the probability of photoelectric interactions within the crystal, with
respect to Compton events. The quantity that maximizes the crystal stopping power
is ρZ2

eff . A scintillator that has a high stopping power will have a short attenuation
length.
Table 3.1 lists the values of Zeff , ρ, the attenuation length and some other properties of
the most common scintillator crystals used in PET scanners. The decay time determines
the time resolution of the scanner and the light output determines the detector energy
resolution and has effects also in the image resolution. Both these parameters will be
discussed later.
Sodium Iodine doped with Thallium (NaI(Tl)) was the detector initially used in PET
scanners. It has a very high light output (38 photons/keV), resulting in good energy
and spatial resolutions [51]. However, its slow decay time leads to increased detector
dead time and a high random coincidence rate (see below the discussion for system time
resolution). Its low density results in a low stopping power (high attenuation length)
when compared to the other crystals used in PET.
Sodium Iodine was first replaced by BGO (Bismuth Germanate) that, despite its high
decay time and poor light output, has an excellent stopping power.
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Effective Density Attenuation Relative light Decay
Z (g/cm3) length (mm) output (% NaI) time (ns)

Sodium Iodide 51 3.7 29.1 100 230
BGO 75 7.2 10.4 15 300
LSO 66 7.4 11.4 75 42
GSO 59 6.7 14.1 20 60
LYSO 65 7.1 1.2 107 40

Table 3.1: Properties of common scintillator crystals used in positron emission tomo-
graphy. Adapted from [50].

More recently, other crystals that combine better light output with high stopping power
have been introduced to PET. LSO (Lutetium Oxyorthosilicate) has a high stopping
power and a good light yield but, due to intrinsic properties of the crystal, its overall
resolution is not as good as NaI(Tl) [52]. GSO (Germanium Orthosilicate), despite its
lower stopping power and light output, has better energy resolution than LSO. Both
crystals are in use in PET scanners.

3.3.2 Spatial resolution

The spatial resolution describes the ability of the system to distinguish two closely
spaced point sources. In PET, the fundamental limit of spatial resolution is imposed
by the nature of positron annihilation. In fact, the emitted positron describes, before
annihilating, a given path of variable length and direction. Therefore, the detected
LOR contains the positron annihilation point, not the positron emission point, and
these two points can be several millimeters apart. This positron range effect degrades
the spatial resolution of the images. (Figure 3.1 (a)). The positron range depends upon
the energy of the emitted positron and upon the electronic density of the medium. It
has been estimated a value of 0.22 mm FWHM for the positron range emitted from
18F in water, the major component of human cells [53].
In addition to the positron range, the acollinearity effect also leads to resolution degra-
dation in PET systems. This effect is caused by the fact that the annihilation photons
are almost never anti-parallel, since usually the positron and the electron are not ex-
actly at rest when they annihilate. As a consequence, the detected line of response does
not contain the point of positron-electron annihilation (Figure 3.1 (b)). The degrada-
tion of the spatial resolution due to the accolinearity effect worsens as the detector
diameter increases.
Another significant factor that limits PET spatial resolution is the size of the detector
element. Spatial resolution may be improved significantly by reducing the detector
pixel size. This is specially important in small diameter or dedicated PET scanners,
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Figure 3.1: Schematic drawings of some of the effects that degrade spatial resolution in
PET: a) the positron range, b) the accolinearity effect and c) the Depth of Interaction
effect or parallax error.

where the pixel size dominates image resolution over the non-collinearity effect, which
is minor for small detector diameters. Typical clinical systems use 4−6 mm2 detector
pixels, whereas small animal use detector pixels of 1.5−2.0 mm2 and positron emission
mammography scanners use pixels of 1.8−3.0 mm2.
A final important factor that affects PET spatial resolution is the parallax error. This
error occurs when the crystal depth at which the photon interaction takes place, known
as Depth of Interaction (DOI), is not known. In this case, the LOR that unites the
two activated crystals does not necessarily contain the true LOR (Figure 3.1 (c)). For
photons entering the scintillators at oblique angles there will be a mismatch between
the true and the measured line of response. This degrading effect has greater impact
in scanners where the distance between opposed detectors is smaller, like dedicated
cameras. These are also the cameras to which a good spatial resolution is of crucial im-
portance. Furthermore, the scintillator crystals that compose these cameras are usually
long crystals, to improve photon sensitivity. Therefore, it does not surprise that the
ability to obtain information on the DOI has became an important factor in the design
of high resolution PET scanners [54, 55, 56], with different strategies being followed to
perform such measure.

3.3.3 Energy Resolution

The energy resolution indicates the precision with which the system can measure the
incoming photon energy. A good energy resolution is important because it allows the
use of a narrow energy window without significantly compromising photon sensitivity.
A narrow energy window helps to prevent contamination from photons that undergo
scatter before interacting with the scintillator crystal, since the scatter process implies
the loss of energy. It may also help to reduce the rate of random photon events,
since a part of these photons undergo scatter. Random, or accidental, coincidences,
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occur when photons proceeding from different annihilations are detected within a same
timing window and, although spatially uncorrelated, its detection is considered as a
valid coincidence.
Energy resolution may be improved by using crystals with hight scintillation light
output. A typical value for clinical PET scanners energy resolution is 25% FWHM at
511 keV [50].

3.3.4 Time resolution

The time resolution determines how well the system can decide whether two incoming
photons arrived simultaneously. Good time resolution allows the use of a narrow time
window, thus reducing the random events without compromising photon sensitivity.
The reducing of random events is also important as it helps to prevent the system
from saturating in high count statistics studies. The parameter that most strongly
determines the temporal coincidence timing window is the scintillator decay time: a
fast scintillator allows the selection of a narrow time window. A typical value for clinical
PET scanners time resolution is 3 ns FWHM at 511 keV [50].

3.3.5 Photodetectors

The scintillation light from the crystals is read from photodetectors that, in PET, are
most commonly either photomultiplier tubes (PMT) or semiconductor based photodio-
des.
Photomultiplier tubes are the oldest and most reliable technology to detect and measure
low levels of scintillation light. They have a high gain in the photoelectric conversion,
which leads to high signal-to-noise ratios.
Besides simple PMT’s, a class of PMTs has been developed that provides not only en-
ergy information but also spatial information about the detected light. These PMTs,
named Position-Sensitive PMTs (PS-PMT) have found to be useful in the design of
high resolution PET scanners [57, 58].
PMTs have two major drawbacks. They have low quantum efficiency, meaning that
the ratio between the incident photons and the primary produced electrons is low. In
addition, PMTs are big devices, often with a small field of view, and this may constitute
a drawback, specially when they are to be used in small dedicated scanners.
In recent years there has also been great progress in the development of semiconductor
photodetector arrays. These can be the PIN photodiode, the avalanche photodiode
(APD) and the silicon drift detector (SDD). Of these, the APDs are the most used in
PET cameras. Semiconductor photodetectors have many advantages over PMTs: they
are very compact, are insensitive to magnetic fields, which makes them good candi-
dates for PET-MRI devices, they are available with large active areas and they have
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a very high efficiency [59]. The main disadvantages of APDs are their sensitivity to
temperature and bias voltage.

3.4 Dedicated scanners for breast imaging

In this section we will present a review from the literature of the main equipments that
are or have been developed for Positron Emission Mammography, emphasizing the
different approaches followed in the design of these scanners. When such information
is available, we will also refer to the most significant results already obtained in clinical
trials.

3.4.1 The PEM-I system

A design of a dedicated positron emission imaging system for breast cancer was first
presented in 1994 by Thompson et al [60] from the Montreal Neurological Institute of
the McGill University, Canada, as a feasibility study for a positron emission mammo-
graphy unit.
The developed scanner was designed to fit a mammographic unit, so that conventional
mammograms could also be performed in the same gantry, thus allowing exact regis-
tration of the emission and of the conventional mammographic images [61]. For such
purposes, the system included a co-registration tool to facilitate registration between
radiographic and metabolic images [62]. A schematic diagram of the scanner is pre-
sented in Figure 3.2.
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Figure 3.2: Schematic drawing of the PEM-I detector plates (white areas) mounted on
a conventional mammographic unit (gray areas). From [62].
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The developed scanner consists on two planar 2×2 detector arrays of blocks of bismuth
germanate (BGO) crystals placed above and below the compressed breast. The detec-
tor blocks measure 36×36×20 mm3 and are segmented into 1.9×1.9 mm2 pixels [63].
The separation between the detector heads can be adjusted to match the thickness of
the breast. The system uses position sensitive photomultiplier tubes (PS-PMT) that
are optically coupled to the crystal blocks. Although the PS-PMTs cover a surface of
72×72 mm2, their useful field-of-view (FOV) is only of 65×55 mm2. The coordinates
of the coincidence on opposing PS-PMT faces are decoded by the system electronics
and corrected for spatial distortion and efficiency [64].
The images from this system are obtained by performing a limited-angle weighted-
backprojection algorithm. This consists on dividing the image into several equidistant
planes and backprojecting the lines or response (LOR) onto those planes. With this
technique, the image plane closest to the site of the tumor has the most focused image,
while all the other planes present more blurred images, as it can be seen in the schematic
diagram of Figure 3.3. This is known as the focal plane effect. The reconstruction
scheme is said to be ‘weighted backprojection’ because the values that are added to a
given plane in the image matrix are weighted accordingly to the probability of detection
of an annihilation in that plane, the crystals efficiencies and the photon attenuation
along the path to the crystal [61].

Figure 3.3: Weighted backprojection used in the PEM-I scanner. From [65].

The complete system has a spatial resolution of 2.8 mm FWHM, a time resolution of
12 ns and an efficiency of 3% at a detector separation of 55 mm [66]. It is estimated
that the system is not able to detect tumors with a tumor-to-background ratio lower
than 6:1 [67].
The preliminary clinical trials, performed with 16 subjects, reported a 80% sensitivity,
100% specificity and 86% accuracy [65]. For mammography exams performed on the
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same subjects, those values were, respectively, 90%, 50% and 81%. The smalest cance-
rous lesion detected with PEM-I was 1.1× 1.1× 0.9 cm3. The lower value of sensitivity
with PEM, with respect to mammography, was due, according to the authors, to the
small FOV of the PEM device and to the impossibility of imaging tumours localized
close to the chest wall (less than 2 cm). These limitations are related to the PMTs used,
whose useful field of view is significantly smaller than its area, preventing imaging near
their edges. Figure 3.4 shows a typical set of PEM images, each image corresponding
to a plane of the sample, with a visible site of FDG uptake in a region close to the
chest wall [66].

Figure 3.4: A typical set of images obtained with the PEM-I scanner. Each image
corresponds to a plane, with the leftmost image corresponding to the image plane
closer to the upper detector. A visible site of FDG uptake can be seen in a region close
to the chest wall. From [66].

3.4.2 The Naviscan PEM Flex system

The original idea of Thompson for a PEM system was further developed by Weinberg
and colleagues, for the Naviscan PET Systems (previously known as PEM Technologies
Inc.). The Naviscan PEM Flex consists of two 5,6 cm × 17,3 cm2 opposed detector
heads [68] that can be fit on a steriotactic mammography unit [69]. This way, emission
and transmission scans can be obtained. Data acquisition is performed by moving the
detectors along a linear path, in order to image as much breast as possible. The PEM
detectors translation allows to image an area equal to the entire X-ray field of view [70].
The system can also work separately from the mammography unit, allowing closer chest
wall access. Figure 3.5 shows the PEM Flex system mounted in a stereotactic x-ray
mammography unit.
Each detector head contains twelve 13 × 13 crystal blocks, each coupled to a compact
PS-PMT. The crystals are 2 mm×2 mm×10 mm of a mixed-lutetium silicate [68].
For each segment of the scan, list mode data are acquired, histogrammed and recons-
tructed by backprojection. This allows the operator to view partial images during
the scan acquisition. At the end of the entire scan, the complete list mode data are
reconstructed using a maximum-likelihood expectation-maximization (ML-EM) algo-
rithm. ML-EM is a statistical iterative reconstruction algorithm commonly used for
PET whose principles will be explained in the next chapter.
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Figure 3.5: The PEM Flex system mounted in a stereotactic x-ray mammography unit.
From [69].
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The intrinsic spatial resolution of the system is 1,5 mm FHWM [70]. The image re-
solution is 2.5 mm FWHM in the plane perpendicular to the displacement and 6 mm
between planes. Energy resolution was measured as 14% for 511 keV. The timing win-
dow used was 9 ns.
The clinical trials performed so far [46, 48, 49] were all performed on patients with
known breast cancer or suspected lesions. Hence, they provide little information on
the specificity of the technique. In one of these studies [48], PEM was able to visualize
39 out of 44 lesions. The non visualized lesions ranged in size from a 1 mm ductal
carcinoma in situ (DCIS) to a 1 cm infiltrating ductal carcinoma. Some lesions could
not be visualized due to limitations on how posterior the breast tissue is observable by
the device. Others, as interpreted by the authors of the study, due to the variability
in the metabolic activity of breast cancer cells, similarly to what happens with whole
body PET.
The most encouraging finding in this trial was the fact that PEM was able to visualize
DCIS not visualized by mammography, breast ecography or MRI. An example of such
a case can be seen in Figure 3.6. The smallest lesion detected by PEM in this study
was a 2 mm duct of DCIS. This preliminary clinical trial seem to indicate that the
technology is promising and worthy of further investigation.

(a) (b) (c)

Figure 3.6: Image of DCIS obtained with the PEM Flex scanner a), with MRI b) and
with mammography c). Neither MRI nor mammography could detect the DCIS lesion
seen in the PEM image. From[48].
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3.4.3 The West Virginia University - Jefferson Lab PEM system

Another PEM system was developed and tested at the West Virginia University and at
the Jefferson Laboratory by Raylman and colleagues [43]. This PEM system, which is
mounted on a stereotactic biopsy table, consists of two square 10 cm × 10cm detector
arrays of discrete 3×3×10 mm3 GSO crystals. The scintillation light is collected by
arrays of PS-PMTs. An image of the scanner mounted on the biopsy table, together
with a torso phantom can be seen in Figure 3.7.

Figure 3.7: Image of the West Virginia University - Jefferson Laboratory PEM system.
The PEM detector heads, mounted in a biopsy table, are highlighted by the black
arrows. A torso phantom can be seen in the table. From [71].

Since one of the goals of the system is to perform PEM guided biopsies, a trigonometric
algorithm was developed to determine the lesion stereotactic coordinates. This algo-
rithm uses two PEM images that are acquired at two symmetric angles (±15◦).
PEM images acquired in a single detector position were initially reconstructed using a
weighted backprojection algorithm similar to the used for the PEM-I system described
above [72], or by a limited angle tomography scheme [73]. Later, the use of acquired
data at two detector positions (±15◦) [74] to guide stereotactic biopsy motivated the
use of an adapted Maximum Likelihood - Expectation Maximization (ML-EM) algo-
rithm.
The described acquisition scenario was compared with multiple acquisitions between
the same limiting angles, at small uniform increments [75]. The results were somehow
mixed, with no clear evidence of significant advantage of one acquisition scenario over
the other, although less artifacts were observed with the multiple angle acquisition.
This lead to a study of the complete angular sampling around the breast [76] through
step and shoot acquisitions. Not surprisingly, this study showed that the complete an-
gular sampling provided better image quality with respect to a single acquisition with
stationary detectors. The study also revealed some of the weaknesses of the system,
such as the low rate acquisition capability and the lack of DOI information.
More recent work reports on a new design of the scanner, now named PEM-PET [77], as
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it means to be a tomographic system. This system will have four planar detector heads
that will rotate about the breast. The detector crystal used will now be LYSO, with
2×2×15 mm3 individual detector elements. Simulation studies indicate that the PEM-
PET system is expected to have 2 mm FHWM resolution, possessing, as its anterior
version, the ability to guide biopsy.

3.4.4 The Duke University - Jefferson Lab PEM system

Another system was developed at the Jefferson Laboratory and Duke University to
image the compressed breast [78]. This PEM system has two opposed planar 15×20 cm2

detectors that acquire data without rotational or translational movements. The de-
tector arrays are composed of 3×3×10 mm3 of lutetium gadolinium oxyorthosilicate,
LGSO. The scintillation light is collected by arrays of PS-PMTs. This system is used
mounted on an x-ray mammography unit, although the PEM detector heads must be
removed to acquire the x-ray image. The distance between the detector heads can be
adjusted to match the size of the breast. Image reconstruction is performed by means
of the backprojection scheme described in Paragraph 3.4.1. The image spatial resolu-
tion varied from 4.8 mm to 6 mm, depending on the acceptance angles of the lines of
response. An image of the system can be seen in Figure 3.8
A pilot clinical trial was performed using this system [47]. This trial included 23 pa-
tients with suspected breast malignancies. Therefore, it does not provide meaningful
information concerning the specificity of the technique. In this study, where the ma-
jority of the evaluated lesions had diameters smaller than 2.5 cm, PEM presented a
sensitivity of 86%. The size of the three malignant lesions that PEM was unable to
detect varied from 8 mm to 15 mm. The system was able to detect a 4 mm DCIS that
was not detected by mammography.

Figure 3.8: Image of the Duke University - Jefferson Laboratory PEM system positioned
in a mammography unit. The PEM detectors are highlighted by black arrows. From
[47].
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3.4.5 The maxPET system

A dedicated PET camera for mammary and ax illary region imaging, maxPET, was
designed and constructed at the Crump Institute for Biological Imaging [44]. This
group used an alternative scheme to couple the crystal arrays to the PMT’s, in order to
avoid the problems associated with the inactive area near the PMT edges. The maxPET
system consisted of two 15×15 cm2 planar scintillation detector plates, each composed
of several modular detectors. The detectors are composed of arrays of 3×3×20 mm3

LSO crystals, each crystal array being coupled to an optical fiber which in turn is
coupled to a PS-PMT. The use of the optical fiber allows the exact match between
the crystal area and the active PMT dimensions, thus avoiding gaps between detector
modules. It also provides better imaging close to the chest wall, since the plates are
active out to the edge of the field-of-view. The main disadvantage of the of fiber-optic
coupling is the loss of scintillation light.
The two detector plates can be mounted in a gantry allowing variable plates separation,
detector plates rotation and angular motion. Based on Monte Carlo simulation, the
expected intrinsic spatial resolution of the scanner was about 2.3 mm [79]. A prototype
of this system was assembled but, to our knowledge, no clinical test were ever performed.
Recently, it has been reported that a second prototype of this detector was build, with
modified geometry and electronics. On going work is exploring the integration of this
system with a dedicated CT system [80].

3.4.6 The LNBL PEM system

The PEM scanner developed at the Lawrence Berkeley National Laboratory (LBNL),
has two major differences from the PEM scanners here described: it has a rectangular
geometry, with four detector plates surrounding the breast (Figure 3.9), and it has
Depth of Interaction measurements capabilities [81].
In the context of the development of this scanner, a simulation study was done to com-
pare the presented rectangular detector configuration with a dual stationary detector
system, such as some of the systems presented above. For such purpose it was used the
Fisher information matrix, an analytical computation that allows to characterize how
easily a change of one parameter in the source distribution can be identified from the
measured data [83]. This study has shown that the rectangular system with Depth of
Interaction capability has a higher signal-to-noise ratio for detection tasks and a lower
bias at a given noise level for quantitation tasks [83]. It is worth stressing that this
study did not include the case of a rotating dual head scanner.
The LBNL PEM system consists of four detector plates that cover a rectangular
8.2×6.0×5.0 cm3 field of view. The detector modules contain arrays of 3×3×30 mm3

LSO crystals that are coupled to a single photomultiplier tube (PMT) in one end and to
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Figure 3.9: Representation of the geometry of the LBNL PEM scanner. From [82].

a photodiode array (PD) on the other end. The ratio between the signals of the PMT
and the PD allow the estimation of the Depth of Interaction of the photon [84]. The
achieved DOI resolution ranges from 6 mm FWHM at the PD end to 11 mm FWHM
at the PMT end [85].
The system uses a 6 ns time window and has 5% sensitivity at the center of the FOV
[81]. The measured spatial resolution of the scanner is almost uniform in the entire
field-of-view, ranging from 1.9 mm FWHM at the FOV centre to 2.1 mm at the FOV
corner [81]. Images of a mini-Derenzo phantom show that the smallest lesion resolved
by the system is 2.4 mm in diameter.
The image reconstruction task for this scanner has been subject of an intense work.
In an initial stage, image reconstruction was performed with a filtered backprojection
based reconstruction algorithm that took into account the existence of DOI information
and the irregular angular sampling of the scanner [86, 87]. Later, a list mode penalized
maximum likelihood algorithm using Gaussian priors was developed [88, 82, 89]. A
Monte Carlo based scatter correction algorithm was also developed [89].
To our knowledge, this scanner has never been tested with clinical data.

3.4.7 The YAP-PEM system

The YAP-PEM prototype is being developed within a collaboration of the Italian Uni-
versities of Pisa, Ferrara, Bologna and Roma [90]. The technology of this device derives
from a small animal scanner, YAP-(S)PET previously developed by the group. The
YAP-PEM scanner has been designed with the aim of detecting 5 mm breast lesions
in diameter in an activity ratio of 10:1 between the cancer and the breast tissue. The
device is composed of two stationary detector heads made of Yttrium Aluminum Pe-
rovskite scintillators doped with Cerium (YAP:Ce). This is a scintillator crystal that



3.5 Conclusions 33

produces a light output of about 20 photons/keV, has a decay constant of 30 ns and a
density of 5.4g/cm3 [91]. It has, however, a low Z number. Each detector head has a
detection area of 6×6 cm2 that comprises 30×30 detection elements with 2×2×30 mm3

each. The system uses PS-PMTs to collect the scintillation light. The distance between
the detectors can range from 5 to 10 cm, depending on the breast compression used.
For image reconstruction purposes, the ML-EM algorithm has been adapted to the
planar nature of the acquired data, in order to obtain a pseudo-tomographic imaging
method [92]. This method works on data that is converted into histograms that are in-
dicated for planar data. These are known as planograms [93]. Geometrical symmetries
are used to speed up the computations.
Monte Carlo simulation and image reconstruction studies performed for the YAP-PEM
scanner indicate that the scanner is expected to have capability of discriminating 5 mm
tumors in a target-to-background ratio of 10:1. However, due to the planar nature of
the data, if two sources lie on the same axial plane, the system can not discriminate
them, as it can be seen in Figure 3.10

Figure 3.10: Phantom images obtained with the YAP-PEM prototype. Due to the
planar nature of the scanner’s data, if two sources lie on a same axial plane, the system
cannot discriminate them. From [92].

3.5 Conclusions

In this chapter we have reviewed some of the instrumentation issues that impact on the
performance of equipments that use positron emission tomography to image disease.
We have emphasized on the most demanding aspects of dedicated instruments, with
respect to conventional whole body scanners.
We have also reviewed the literature for the scanners that are or have been developed
for imaging breast cancer with positron emitting radiotracers. In this review, we have
briefly mentioned one of the important aspects of an imaging system, the image recons-
truction strategies. We have seen that reconstruction methods used in PEM devices
vary from simple backprojection algorithms to more sophisticated ones that are adapted
from methods commonly used for PET image reconstruction. In the next chapter we
will look with detail to a class of image reconstruction methods that are commonly
used in PET, the statistical iterative image reconstruction algorithms.
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Chapter 4

Image Reconstruction in PET

4.1 Introduction

For many years, the problem of reconstructing an image from the projection data ac-
quired in Positron Emission Tomography was addressed with analytic approaches which
were inherited from x-ray computed tomography. Analytic algorithms such as filtered
backprojection (FBP) are based on the direct inversion of the Radon transform. They
are fast, linear, predictable, and their properties are very well known [94]. The inversion
of the Radon transform is derived for a continuous sampling and discretised afterward
for sampled data [95]. Analytic algorithms are based on an idealized mathematical
model for the data, the linear integral model, according to which the number of coin-
cidence photon pairs detected along a LOR is approximately linearly proportional to
the integral of the tracer density along a LOR. This model over-simplifies the physics
inherent to the emission and detection processes in PET, limiting the accuracy of the
images reconstructed with analytical algorithms.
In alternative to the analytic image reconstruction algorithms, model based algorithms,
which can include accurate physical and statistical models of the systems, can be used.
In opposition to analytical algorithms, these algorithms incorporate the discreteness of
the data from the beginning. Their use usually results in improved image accuracy. As
their formulation results frequently in large sets of nonlinear equations that must be
solved by iterative methods, this class of algorithms is usually referred to as iterative
image reconstruction algorithms. Further, if statistical functions are used to derive
them, they are said to be statistical iterative reconstruction algorithms.
The use of iterative methods based on probability models for image reconstruction was
already used in the field of astronomy in the early 1970’s (Lucy, 1974, Richardson,
1972). Later, in 1976, Rockmore and Macovsky [96] introduced the Maximum Likeli-
hood approach in the field of medical imaging. Nowadays, the most used algorithms
for image reconstruction in PET belong to the class of iterative statistical algorithms.
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In this chapter we will give an overview of the characteristics of the most important
statistical iterative reconstruction algorithms used in PET image reconstruction. Pre-
vious to that, in Section 4.2, we will explain how the measured data can organized in
order to be used with these algorithms.
In 3D PET, in order to reduce the computation time and to simplify the reconstruction
algorithms, a rebinning step that manipulates 3D projection data into 2D projection
data can be used prior to the image reconstruction. The most simple rebinning me-
thods, such as the Single Slice Rebinning (SSRB) [97], lead to significant resolution
degradation, whereas with Fourier based rebinning algorithms, such as FORE [98],
degradation is less significant. After rebinning, 2D image reconstruction methods can
be used. As we shall see, 2D reconstruction algorithms, which reconstruct stacks of 2D
images separately to obtain an image volume, can be regarded as a particular case of
3D reconstruction algorithms. The algorithms that will be presented in the following
sections can thus be implemented to be used with 3D projection data, as well as with
data that has been rebinned.

4.2 Organizing the data

A Line of Response (LOR) in a PET scanner may be specified in a set of four coordi-
nates (s, φ, z, θ), where s is the transaxial distance from the LOR to the scanner axis,
φ is the azimuthal angle of the LOR, θ measures the axial distance between the points
intersected by the scanner and z measures the axial distance relative to the scanner
mid-plane. Figure 4.1 shows a graphical interpretation of the LOR coordinates.
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Figure 4.1: Representation of the coordinates of the Lines of Response in a 3D Sino-
gram. (a): view of a LOR in a plane parallel to the scanner rotation axis. (b): view of
a LOR projected into the transaxial plane. Adapted from [99].

.
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The reconstruction algorithms that will be presented in this chapter assume that the
projection data space is partitioned into I bins, and that the individual counts are
accumulated in this set of bins, thus defining an histogran in the data space. For the
Lines of Response specified by the polar coordinates defined above, such an histogram
is named sinogram.
Let us first consider only the transaxial component of the LORs, (s, φ). Sinograms
group in a same row all the LORs that have the same transaxial angle, φ, that is,
all the LORs belonging to a projection of the object along φ. This is represented in
Figure 4.2.
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Figure 4.2: A parallel projection of the object (a) corresponds to a row in the sinogram
(b). Adapted from [95].

LORs that have the same radial position, s, are stored in a column of the sinogram. As
represented in Figure 4.3, the LORs that cross a point source not centered in the field
of view describe a sinusoidal curve on the sinogram, whereas a point source located
in the center of the field of view corresponds to a straight line in the sinogram. The
sinograms described above correspond either to LORs contained in a same detector
ring, in which case the sinogram is called a direct sinogram, or to LORs in two different
detector rings. In this later case, the sinogram is known as an oblique sinogram. For
a scanner of N detector rings, there are N direct sinograms and N (N − 1) oblique
sinograms, for a total of N2 sinograms. This is exemplified in Figure 4.4 for the case
of a four ring detector scanner.
Depending on the ring difference associated with a sinogram, the sinogram is said to be-
long to a given segment. The segment of a sinogram is indexed by the LOR coordinate
θ. A segment is a set of sinograms with a given average ring difference, ringB−ringA.
For instance, a direct sinogram belongs to segment 0, while LORs between ring 1 and
ring 4 belong to segment 3 and LORs between ring 4 and ring 1 belong to segment -3.
This is exemplified in Figure 4.4, where the LORs belonging to the direct sinograms



38 Image Reconstruction in PET

y

x

D

A

C

B

,,,,,,

,,,,,

(a)

φ

s0
A

B

C

D

(b)

Figure 4.3: A centered point source and an off-centered point source in the scanner (a)
describe, respectively, a straight line and a sinusoidal line in the sinogram (b). Adapted
from [95].

Figure 4.4: LORs belonging to direct segments (blue lines) and to oblique segments
(orange, green and yellow full and dot lines) in a four ring scanner.

are represented in blue, while the LORs belonging to the different segments are repre-
sented in full and dot orange lines (segments −1 and +1), in full and dot green lines
(segments −2 and +2) and in full and dot yellow lines (segments −3 and +3). The
sign of the segment usually depends on the convention used. Usually, the view angle
in a given segment runs only on half of the detector ring, that is, over 180◦. The other
half corresponds to the sinogram in the symmetric segment [100].
With respect to segments, we would like further to stress that a two-dimensional sino-
gram contains data belonging only to segment 0. Hence, a 2D reconstruction algorithm
can be seen as a special case of a 3D algorithm where only data from segment 0 is used
in the reconstruction process.
A complete 3D sinogram of a scanner with N detector rings contains 2N − 1 segments:
one direct segment plus N − 1 positive oblique segments plus N − 1 negative oblique
segments.
The axial position of the sinograms, indexed by z, is the last sinogram coordinate.
The number of axial positions of a given segment depends on the segment, since more
oblique segments, corresponding to a higher ring difference, exist only for the most



4.3 Statistical Iterative Reconstruction Algorithms 39

central rings. For instance, in the example depicted in Figure 4.4, the sinograms from
segment 0 have four possible axial positions, while segment 3 (or segment -3) contains
sinograms with a single axial position only. This is true if the segments have not been
compressed, an operation that is known as span.
A more general data format than sinograms is named the list mode format (LMF).
In the LMF, the activated detector coordinates, along with other kind of information
such as the deposited energy or a time stamp, are stored sequentially as the photons
are detected. The data can then be binned to the histogram mode and reconstructed
with the conventional algorithms that will be presented in the following sections. Al-
ternatively, iterative statistical algorithms that were developed for list mode data can
be used [101]. The description of those algorithms is, however, beyond the scope of this
work.

4.3 Statistical Iterative Reconstruction Algorithms

In general, the formulation of statistical iterative reconstruction algorithms requires
the definition of the following five components [102, 103, 51]: a model for the image,
a model for the data, a model for the physics of the measurement process, a cost
function and an algorithm to optimize the cost function. Although the choices made
for each of these components are usually made implicitly rather than explicitly, they
can substantially influence the results obtained [104]. In the next paragraphs we will
present the above mentioned five components, briefly discussing the main options that
can be used for their choice.

4.3.1 A model for the image

For computing and display purposes, the true radiotracer distribution, which is a con-
tinuous function, is represented by a discrete domain function. This function, λ (r),
where r is a vector denoting spatial coordinates in the image domain, is represented as
a finite set of basis functions, {bj (r)}, according to :

λ (r) ≈
J∑

j=1

λjbj (r) (4.1)

The set of coefficients {λj}, j=1,...,J, which is intended to represent the expected num-
ber of emissions from the basis functions, has to be determined by the reconstruction
algorithm from the photon pairs coincidence measurements {yi}, i=1,...,I.
The most simple and common basis elements used in PET are non-overlapping small
cubic volume elements - voxels - with unitary value inside and zero value elsewhere,
arranged in a rectangular grid. Representing an image with voxels has the advantage
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that they perfectly match the digital displays.
However, alternative classes of basis functions have been proposed and are under inves-
tigation, namely the blobs [105], the wavelets [106] and the natural pixels [107]. Blobs,
in particular, have attracted great interest. Significant improvements in image quality
have been demonstrated when using these basis functions, namely an increased accu-
racy and a reduction of the noise in the reconstructed images [108, 109]. Blobs are a
generalization of window functions named Kaiser-Bessel. They are spherically symme-
tric bell shaped functions, with smooth transitions from one to zero. The represented
image is also a smooth function, since it is composed of the superimposition of blobs.
However, their generalized used has been hindered by the fact that, depending on their
spacing and size, the associated processing time can be extremely high.
In the remainder of this work, we will consider that the basis functions in use are voxels.

4.3.2 A model for the physics of the measurement process

The system matrix A, also known as the system model or the forward projection matrix,
relates the unknown image λ to the expectation of each detector measurement, E[y]
according to,

E[y] = Aλ (4.2)

The element aij of the system matrix contains the probability that an annihilation in
the j th basis function is detected by detector pair i. The mean of the ith detector pair,
ȳi is, then,

ȳi =
j∑

j=1

aijλj (4.3)

for a tracer distribution defined by 4.1. The operation given by Equation 4.3 is also
known as forward projection, since it is a model for the measurement.
The set of linear equations given by Equation 4.3 can be solved by direct inversion if
aij and yi are given. Although this approach has been investigated [110], such proce-
dure is difficult due to the large dimensions of the projection matrix. Moreover, the
solution of Equation 4.3 is unstable for small perturbations of the data. This is known
as the ill-conditioned nature of the reconstruction problem. For those reasons, iterative
methods are preferred to solve Equation 4.3.
There are several approaches to compute the system matrix A. The simplest one is
to compute the elements aij when they are needed, that is, during the reconstruction
process. This approach, also known as on-the-fly computation, is best suited for models
including, besides the geometric mapping between the source and the data, corrections
for the effect of photon attenuation and for the different detection efficiency of the
detector pairs .
An alternative approach consists on pre-calculating the system matrix, to store it on
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disk and to load it when it is necessary. This allows to develop more complex models
that include the corrections mentioned above, but also degrading effects such as those
due to the positron range before annihilation or the detector blurring.
These more sophisticated models may lead to matrices with a very low degree of sparse-
ness, and thus difficult to store and to manipulate. The system matrix can be factorised
into a product of several matrices, each corresponding to a specific component of the
physical model [111, 112].
The improvement of the system matrix can lead to a significant improvement in image
characteristics such as spatial resolution, contrast, quantitative accuracy, lesion detec-
tability, etc. However, it also must be considered the existence of a trade-off between
system model accuracy and the associated computation time.
The geometric part of the system model can be computed either by methods based on
the solid angle model, by methods based on the bilinear interpolation or by methods
based on ray driven approaches [113]. Among the last, the contribution of one basis
function to a projection element can be computed as a line length of intersection of
the ray with the voxels [114] or, more accurately, as a volume of intersection of the
tube of response with the voxel. Figure 4.5 illustrates both these approaches for a
two-dimensional pixel array. A more detailed description of these algorithms will be
given in Chapter 6.

i th ray

j

1 2

aij: length of intersection

(a)

j

1 2

i th tube

aij: tube of intersection

(b)

Figure 4.5: Computation of the aij element of the system matrix as the Length of
Intersection of the line of response with the voxel (a) and as the Tube of Intersection
between the tube of response and the voxel (b).

4.3.3 A model for the data

The output of the PET acquisition process reflects the statistical variation of a process
that is essentially random, the radioactive decay. The emission of a positron is a rare
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event, but, for a large number of radioactive nuclei, the emission of positrons follows
a Poisson distribution [115]. Under the assumption that the detection of each photon
pair by the system is independent of every other detection, then the data collected in
a PET experiment is a collection of Poisson random variables. For a given unknown
image λ, the measured data vector y has mean ȳ given by Equation 4.3 and distribution
given by

p(y|λ) =
I∏

i=1

e−ȳi
ȳi

yi

yi!
(4.4)

In PET, the assumption that each measurement is independent of every other measure-
ment is valid only when the system dead-time can be considered negligible. Moreover,
Poisson statistics is a good data model only if no corrections for the effect of detec-
ting random coincidences have been applied to the data. In fact, when one considers
the mean given by Equation 4.3, one is ignoring the existence of random data. Some
authors refer to this approach as the ordinary Poisson model [94]. A more accurate
approach would consider that the expected value of the measured data vector is given
by

E[y] = Aλ + R (4.5)

where R stands for the vector of random coincidences. With this model, the handling
of the random data is incorporated in the reconstruction algorithm. Alternatively,
if a correction is performed on the raw data by means of the subtraction of random
estimated data, the outcome is no longer Poisson distributed. In such cases, a more
correct approach would be to consider other models for the data [116]. For the sake
of simplicity, in the present work we will consider the ordinary Poisson model given
above.

4.3.4 An objective function

The objective function, also known as the cost function, is one of the key components
of the iterative reconstruction methods. It is the criterion that is used to determine
which image, among all the possible images, is the one to be considered as the best
estimate of the true image. In the case of statistical algorithms, the cost function is a
statistical function. Other important class of iterative algorithms used in PET that do
not use statistical objective functions are known as algebraic reconstruction techniques
[117]. These algorithms use algebraic distances as objective functions.
Among the statistical estimation criteria used in PET, one can distinguish the classical
methods from the Bayesian methods. The classical methods, such as the Maximum-
Likelihood (ML), the Least-Squares (LS) or the Weighted Least Squares (WLS) all try
to find a solution that maximizes solely the consistency between the observed data and
the reconstructed image. The term classical refers to the fact that these criteria are
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based on the assumption that the object to be estimated, the image, is an unknown
entity [103]. In contrast, Bayesian criteria such as the Maximum a posteriori (MAP),
assume that the unknow image is itself random and can be described by a probability
density function (pdf) that is known in advance of data collection [118].
In the next paragraphs we will present the aforementioned most prominent statistical
objective functions used in PET.

4.3.4.1 Maximum-Likelihood

The maximum-likelihood is a standard statistical estimation cost function proposed by
Fisher in 1921 [119]. The ML estimation is a way of estimating the parameter of an
unknown distribution based upon observed data. It assumes that the observed data is
drawn according to the underlying distribution [120].
Let λ be the parameter vector one wishes to estimate, and y the measured data vector,
with pdf p (y|λ). The key idea in ML estimation is to determine the parameter vector,
λ, for which the probability of observing the measured data vector, y, is as high as
possible [120]. In the case of image reconstruction, λ is the image that one wishes to
reconstruct and y is the vector of the measured projections. The objective function to
be maximized, φ (y|λ)ML, is the likelihood function, given by

φ (y|λ)ML = p (y|λ) = l (y|λ) (4.6)

Symbolically, the ML criterion to find an estimate on the parameter λ̂ can be written
as

λ̂ = arg max
λ

l (y|λ) (4.7)

Usually, in order to simplify the maximization, the objective function used is the loga-
rithm of the likelihood function, also known as the log-likelihood, L (y|λ):

φ (y|λ)ML = L (y|λ) = ln l (y|λ) (4.8)

Since the logarithm is a monotonically increasing function, maximizing the log-likelihood
yields similar results to maximizing the likelihood.
There are two main reasons that justify the preference of ML estimators over other
estimators and those are related to the concept of bias and variance.
ML estimators are asymptotically unbiased because, as the number of observations be-
comes large, the estimates become unbiased, that is, E

[
λ̂

]
→ λ.

ML estimators are asymptotically efficient because, for a large number of observations,
they yield minimum variance. In fact, among all the unbiased estimators, ML estima-
tors are the least susceptible to noise [118]. Even so, image reconstruction methods
based on the ML estimation criterion tend to yield noisy images. This happens because
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it is in the nature of the method to produce images that are consistent with the data.
Unfortunately, in the case of emission tomography, the data itself are noisy. Hence a
good ML image estimate will be a noisy image.
A common approach in medical imaging is to allow a certain degree of bias in the
reconstructed image in exchange for reduced variance [118]. Perhaps the most common
way to accomplished this is to prematurely stop an iterative ML algorithm before it
actually reaches the ML solution. The use of stopping rules for the iterative process has
been investigated [121], but the definition of such rules is problematic, since different
structures in the image converge at different rates. Other forms of explicitly introducing
spatial smoothing in the images is by applying low-pass filtering or by using Bayesian
methods, as it will be discussed later.

4.3.4.2 Least-Squares and Weighted-Least-Squares

The Least Squares principle is another statistical estimation criterion that, when used
in the context of image reconstruction, also aims at maximizing the consistency between
the observed data and the reconstructed image. The measurement of this consistency
is an Euclidiean distance that should be minimized - the least squares. In other words,
the estimated image λ̂ is the one that, if observed through the system matrix A, would
yield projections Aλ that are the most similar to the observed projections y [118]. The
fitting criterion is, in this case, the least squares.
Symbolically, the LS criterion can be expressed as

λ̂ = arg min
λ
‖y−Aλ‖2

= arg min
λ

I∑
i=1

⎛
⎝yi −

J∑
j=1

aijλj

⎞
⎠

2

(4.9)

When there is available knowledge about the variance of the data, the weighted-least-
squares method can be used [102]. With this approach, a different weight is given to
data with different variance in the summation of Equation 4.9:

λ̂ = arg min
λ

(y−Aλ)T H (y−Aλ)

= arg min
λ

J∑
j=1

hj (yi − aijλj)
2 (4.10)

where H is a diagonal matrix with elements hb on the diagonal. The weights hb are
usually chosen to be var [yb]

−1. Under the assumption of Poisson distributed data, the
variance equals the mean so hb = ȳ−1

b

The LS and the WLS methods suffer from the same problem of yielding highly noisy
images as the ML method, since they both try to find a solution that is as consistent
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as possible with the data. A different approach is used with Bayesian methods, as we
shall see in the next paragraph.

4.3.4.3 Maximum a posteriori

The Bayesian approach to image reconstruction assumes that there exists some a priori

knowledge about the nature of the image to be reconstructed. Therefore, the image is
required to be consistent not only with the data, as it happened with the two objective
functions previously described, but also with some additional criteria that are known
independently of the data. The probability distribution of the tracer is treated as a
Bayes prior distribution.
In the context of Bayesian estimation, the quantity to be determined is not a determi-
nistic constant but a random variable. The a piori information about the nature of the
image is given by the pdf p (λ). The objective function to be maximized, φ (λ|y)MAP

is the a posteriori probability density function, also known as maximum a posteriori

(MAP). The MAP objective function can be written in the following form:

φ (λ|y)MAP = p (λ|y)

=
p (y|λ) p (λ)

p (y)
(4.11)

where the Bayes’ law was used:

p (λ|y) =
p (y|λ) p (λ)

p (y)
(4.12)

According to the MAP criterion, the estimate λ̂ of the true image is found by maximi-
zing the objective function given by Equation 4.11. Similarly to what was done with
ML estimation, it is the likelihood of the MAP function that will be maximized. Since
it is the argument that is important in the estimation, and not the value of the maxi-
mum, the term that does not depend on λ will be omitted. With these considerations,
the MAP objective function can be written as

φ (λ|y)MAP = [ln p (y|λ) + ln p (λ)]

= L (y|λ) + P (λ) (4.13)

where P (λ) is known as the prior. The MAP criterion can then be written as

λ̂ = arg max
λ

[L (y|λ) + P (λ)] (4.14)

This shows that the MAP criterion is a composition of two terms. The data fitting
term, given by the log-likelihood, L (λ|y), enforces the image to be consistent with the
data. The image property term, given by the prior P (λ), sets a penalty if the estimated
image violates whatever assumptions were made about the nature of the image. The
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maximization in Equation 4.14 attempts to obtain a balance between these two terms.
For instance, if a prior assumption was made about the smoothness of the image, the
MAP criterion would penalize a noisy image, even if this image was very consistent
with the data. Further on this chapter we will discuss the prior terms that can be used
in PET image reconstruction.

4.3.5 A numerical algorithm

The numerical algorithm is needed to optimize the objective function, producing the
values of the coefficients of the basis functions chosen, given the measured data and
the choices made for modeling the physics of the measurement process [103]. Such an
algorithm is designed to produce a sequence of estimates of the coefficients of the basis
functions that converge to a solution that optimizes the objective function.
A general scheme for most of the iterative algorithms used to optimize the objective
functions presented in Section 4.3.4 is shown in Figure 4.6.
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Figure 4.6: Schematic representation of a generic iterative reconstruction algorithm.

The reconstruction process begins with an initial image estimate λ̂
0
, usually uniform,

of the basis function coefficients. A forward projection operation (Equation 4.3) is
applied to the current image estimate, λ̂n, yielding a set of estimated measured data,
ŷn. These are the data that would have been observed if the true image was λ̂

n
, given

the system matrix A. The estimated data are compared with the actual measured data,
y, and a set of projection-space error values are generated. These are backprojected
into the image space, originating the image-space error vectors that are used to update
the image estimate. This, in turn, becomes the new estimate, ŷn+1. This process is
repeated until it is stopped, either automatically or by the user.
The details of the projection, backprojection, comparison and update steps presented
on the previous scheme make each algorithm unique. There are, however, some common
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features that depend on the choice of objective function and on the procedure used to
optimize it. In the following paragraphs we will review some of the most used algorithms
in PET image reconstruction, namely those currently used to maximize the ML and
the MAP objective functions.

4.4 Expectation-Maximization Algorithms

The Expectation-Maximization procedure for producing Maximum Likelihood esti-
mates was formally presented as a prescription for developing algorithms for incomplete
data problems in statistics by Dempster in 1977. It was with Shepp and Vardi [122]
in 1982, who proposed using the Poisson model explicitly in PET, and Lange and Car-
son [123] in 1984, who extended it to the transmission case, that this approach gained
high popularity in the field of medical imaging. Later, in 1994, Hudson and Larkin
[124] developed a faster variation of the ML-EM algorithm, the OS-EM algorithm. In
1996, the OS-EM was first applied to 3D PET data [125]. Since its introduction in the
1990’s, OS-EM has become the most popular iterative reconstruction method used in
PET [126].
In the following paragraphs, we will present the Expectation Maximization solution for
the Maximum Likelihood cost function. This will be followed by the presentation of
the same solution using ordered subsets.

4.4.1 ML-EM

The Maximum Likelihood cost function can be easily optimized when the data are
complete [127]. In emission tomography, however, the measured data are not complete,
and a special algorithm − the Expectation Maximization − must be used to optimize
the ML cost function. The Expectation Maximization algorithm is an iterative op-
timization method to estimate some unknown parameters λ, given the measurement
data, y, when the complete data is not available. The concept of complete data is
used in the sense that, if it was available, it would greatly simplify the estimation of
the parameters. For example, in PET, the available information is the total number
of photons recorded along each detector tube i. If additionally we new which photons
detected at i were originated from voxel j, for every tube i and every voxel j, then
the complete data would be available and the reconstruction problem would be fairly
simple.
The EM algorithm to find a ML estimative of the parameters is composed of two main
steps, an expectation step (E-step) that is followed by a maximization step (M-step).
The algorithm starts with an initial estimate, usually an uniform distribution of the
parameters. The expectation is then computed based on the current estimate of the
parameters, with respect to the unknow underlying variables, and conditioned to the
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observed data. The maximization step then provides a new estimate, by maximizing
the expectation with respect to the parameters. The algorithm iterates between these
two steps until convergence is achieved or it is stopped by the user.
In what follows, we will refer to the (unobserved) complete data vector as x. Each
element xij refers to the number of emissions in basis function j that are detected by
detector tube i. Each variable xij is Poisson distributed with mean λij given by [120]:

λij = λjaij (4.15)

The complete data vector is not observed directly, but only by means of the observed
data vector, y. The probability density function of the complete data is p (x|λ).
The basic idea behind the ML-EM algorithm is that we would like to find the parameter
vector λ to maximize log p (x|λ), but, as we do not have access to the complete data
x, instead we maximize the expectation of log p (x|λ) given the data y and our current
estimate of λ [120, 123]. Symbolically, the E-step can be written as :

Q
(
λ|λ̂n

)
= E

[
log p (x|λ) |y, λ̂

n
]

= E
[
L (x|λ) |y, λ̂

n
]

(4.16)

The first argument in the expectation function given by Equation 4.16 is the conditioner
of the complete data log-likelihood. The second argument is the conditioner argument
to the expectation and is regarded as fixed and known at every E-step.
In the M-step of the algorithm, a maximization of the Q function is made with respect
to its first argument :

λ̂
n+1

= arg max
λ

Q
(
λ|λ̂n

)
(4.17)

To write the E-step, we first note that, under the Poisson statistics, the likelihood
function of the complete data is

l (x|λ) =
∏

i=1,...,I
j=1,...,J

e−λij
λ

xij

ij

xij !
(4.18)

The log-likelihood function, combined with Equation 4.15, can be written as

L (x|λ) =
∑

i=1,...,I
j=1,...,J

{−λij + xij log λij − log xij!}

=
∑

i=1,...,I
j=1,...,J

{−λjaij + xij log λj}+ C (4.19)

where C contains the terms independent of λj . We then note that the expectation of
a Poisson random variable (xij) conditioned to its sum (yi) can be written as

E [xij|yi, λ
n] = yi

λn
j aij∑

j′ λ
n
j′aij′

= xij (4.20)
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Combining Equation 4.19 and Equation 4.20 the E-step can be written as

Q (λ|λn) =
∑

i=1,...,I
j=1,...,J

{−λjaij + xij log λj}+ C (4.21)

In the M-step, we maximize the conditional log-likelihood function 4.21 with respect
to λj :

∂Q (λ, λn)
∂λj

= 0⇐⇒

∂

∂λj

⎧⎨
⎩

∑
i,j

−λjaij + xij log λj

⎫⎬
⎭ + C = 0⇐⇒

−
∑

i

aij +
∑

i

xij

log λj
= 0 (4.22)

The ML estimate for λj is, then,

λ̂j =
∑

i xij∑
i aij

(4.23)

Combining Equation 4.20 and Equation 4.23 the general formula for the ML-EM algo-
rithm is obtained:

λ̂n+1
j =

λ̂n
j∑

i aij

∑
i

yiaij∑
j′ aij′λ̂

n
j′

= λ̂n
j

cLk
j∑
i aij

(4.24)

It is interesting to note that, as we have previously stated in paragraph 4.3.5 with
respect to general iterative algorithms, the ML-EM algorithm can be viewed as an
iterative forward and backprojection technique. In fact, the computation of the esti-
mated data by

∑
j λjaij corresponds to a forward projection operation, while the use

of
∑

i yiaij is a backprojection operation.
The algorithm computes the value of a new voxel by iteratively multiplying the current
voxel by the likelihood coefficient cLk

j . Since the update is multiplicative, it is ensured
the non-negativity of the estimated images, provided that the initial estimate is also
nonnegative [122]. Other particular characteristic is that the algorithm preserves the
total number of counts for every iteration,

∑
j λj =

∑
i yj [122]. Further, it can also be

proved [120] that the ML-EM algorithm increases the likelihood at each iteration, until
a point where it does not increase anymore, but where it does not decrease, neither
[128].
This algorithm has two main pitfalls. First, the sequence of estimated images converge
at a very slow rate. Second, its has a tendency to develop noisy images. As it was
discussed in paragraph 4.3.4.1, this property is in agreement with the objective function
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used.
One strategy to overcome the first of these shortcomings is to partition the entire data
set in several subsets, increasing the number of update steps while using only one subset
in each update. Among the several methods that use this strategy, the most successful
and widespread in PET is the Ordered Subsets - Expectation Maximization algorithm
that will be presented in the next paragraph. To overcome the second of the above
mentioned shortcomings, low pass filtering or Bayesian image reconstructions methods
such as those that will presented in Section 4.5 can be used.

4.4.2 OS-EM

The OS-EM algorithm was proposed in 1994 by Hudson and Larkin [124] as an acceler-
ated version of the ML-EM method and has since gained wide acceptance as a standard
reconstruction method in PET [126].
The reasoning behind OS-EM is quite simple: the complete projection data set is
divided into non-overlapping subsets and the standard ML-EM algorithm is applied
sequentially to every subset. The image is updated at every sub-iteration, that is, at
each pass to a single subset. An OS-EM iteration is complete when all the subsets
have been processed. This is equivalent to an ML-EM iteration. However, at the end
of an ML-EM iteration, the image would have been updated only once, whereas after
a complete OS-EM iteration the image will have been updated m times, with m being
the number of subsets. Provided that the subsets are mutually exclusive, each OS-EM
iteration will have similar computation time as a single ML-EM iteration. This means
that with OS-EM the convergence speed is accelerated by a factor proportional to the
number of subsets used.
The general formula for the OS-EM algorithm [124] is:

λ̂n+1
j =

λ̂n
j∑

i∈Sk
aij

∑
i∈Sk

aij
yi∑

j′ aij′λ̂
n
j′

(4.25)

where S0, S1, ..., Sm−1 denotes a partition of the projection space into m subsets,
n = 0, 1, 2, is the sub-iteration number and k is the subset number, k = n mod m.
Obviously, when m = 1 the iterative formula reduces to the classical ML-EM algorithm.
The number and the constitution of the subsets must be chosen with care. In fact, the
number of subsets defines the degree of acceleration, but it also influences the level of
noise in the reconstructed images. If the number of subsets if chosen too high in order
to obtain high acceleration, each subset will contain a small number of projections, and
the resulting estimated images will be very noisy.
Regarding the choice of subsets, to avoid artifacts, the projections are usually chosen
to have maximum separation in angle in each subset, as is shown in Figure 4.7
Further, it is also recommended [124] that the subsets are chosen so that an emission
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Figure 4.7: Schematic drawing of the use subsets. Adapted from [118].

from each voxel has equal probability of being detected in each of the subsets. This
condition, also known as balanced subsets, may be difficult to achieve, but is usually
verified in high count statistics situations.
It must be noted that the OS-EM solution is not truly a ML estimator, and, as a
consequence, there is no global proof of its convergence [104]. However, even when the
convergence to a ML-EM estimate is not guaranteed, the sequence of OS-EM estimates
converges to an image that is often clinically useful.
As with the original EM algorithm, OS-EM produces high noise in the reconstructed
images, so the same techniques used with ML-EM to control noise can be used with
OS-EM.

4.5 Bayesian iterative algorithms

As we have previously seen in paragraph 4.3.4.3, image reconstruction using the Bayesian
approach assumes that a priori information about the nature of the image can be used
in the reconstruction process. A fundamental step in this approach is the definition
of the prior term, which we will discuss in the next paragraph. This will be followed
by the derivation of one possible algorithm that can be used to maximize the MAP
objective function.

4.5.1 Defining a prior

The mathematical formulation of very specific and efficient priors can be very difficult.
For that reason, in PET image reconstruction the priors used simply assume that
the spatial distribution being imaged consists of different uniform regions with sharp
transitions between them [103]. The designing of such term can be very challenging,
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since it involves not only encouraging local smoothness within uniform regions but also
avoiding blurring of their boundaries.
A smooth image can be described as one in which the intensity values of neighboring
voxels are highly correlated, while distant voxels are not [118]. A simple mathematical
model having this property can be described by the Gibbs probability distribution [129].
The Gibbs distribution has the general form

p (λ) =
1
Z

exp [−βU (λ)]

=
1
Z

exp

⎡
⎣−β

∑
j

U (λ, j)

⎤
⎦ (4.26)

where Z is a normalization constant called the partition function; β is a scalar weight
that controls the degree of smoothing introduced by the prior and U (λ) is the energy
function. The notation U (λ, j) is used to indicate that the value of the energy function
is evaluated on λ at voxel j.
The energy function is a weighted sum of potential functions, each of which are functions
of small sets of neighborhood voxels, named cliques [130]. The cliques for a particular
neighborhood system must satisfy the condition that each pair of sites in each clique
ck are mutual neighbors [129].
A common choice for the U (λ, j) is an energy function that is computed using a
potential function of the differences between pixels in clique Nj :

U (λ, j) =
∑
s∈Nj

wsjφ (λs − λj) (4.27)

where wsj are factors that give more weight to voxels in Nj nearer to voxel j compared
to those further away [103]. The value of the potential function φ (λs − λj) increases
with the increase in the difference of values in a pair of voxels. A quadratic function is
an usual choice for the potential function [131], but it results in over-smoothed images,
with the undesired suppression of sharp contrasts in the reconstructed images. Modified
quadratic functions can be used that allow better edge preserving [132]. Many other
potential functions have been studied that aim at maximizing the degree of smoothness
of the reconstructed image, while maintaining abrupt transitions when true boundaries
exist [104, 130]. An interesting approach is the use anatomical information obtained
from anatomical modalities such as MRI or CT [133, 134]. This approach is justified
by the fact that, since different anatomical structures have different physiological func-
tions, there is a strong correlation between the anatomical image and the corresponding
emission image [104]. However, the risk exists that the resulting emission image exces-
sively reflects the anatomical information given by the prior, with the loss of important
functional information in the data.
In this work we are specially interested in the use of an alternative prior named the
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Median Root Prior (MRP) [135]. Before introducing such a prior, we will first present
an algorithm that can be used to maximize the MAP objective function, given a Gibbs
distribution function.

4.5.2 The One Step Late algorithm

Substituting the log of the Gibbs prior given in Equation 4.26 into the MAP objective
function given in Equation 4.13, the objective function becomes

φ (λ|y) = L (y|λ)− P (λ)

φ (λ|y) = L (y|λ)− βU (λ) (4.28)

This equation shows very clearly that the weighting parameter β, also known as hy-
perparameter, determines how much smoothing is present in the MAP solution. If β

is zero, the MAP solution is equivalent to the ML solution. As β increases, the prior
term becomes more important in the maximization.
The MAP-EM algorithm can be derived in a similar fashion as the ML-EM algorithm
was derived. Considering the objective function given above, the E-step becomes

Lp (λ|λn) = E
[
log p (x|λ) |y, λ̂

n
]

+ log p (λ) = Q
(
λ|λ̂n

)
− βU (λ) (4.29)

In maximizing Equation 4.29, we use Equation 4.21. The MAP M-step is then written
as:

∂Lp (λ, λn)
∂λj

= 0⇐⇒

∂Q (λ, λn)
∂λj

− β
∂

∂λj
U (λj) = 0⇐⇒

−
∑

i

aij +
∑

i

xij

λj
− β

∂

∂λj
U (λj) = 0 (4.30)

The MAP-EM estimate for λ is, then,

λ̂j =
∑

i xij∑
i aij + β ∂

∂λj
U (λj)

(4.31)

The partial derivate of U (λ) in Equation 4.31 should be evaluated from the next es-
timate, which is not yet available. The MAP-EM algorithms differ essentially in the
strategies used to determine that term [118]. Although there are several proposed al-
gorithms to address that problem, the most common are the generalized EM (GEM)
[136] and the One Step Late algorithm (OSL) [137].
The One Step Late approximation proposed by Green [137] and modified by Lange [138]
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evaluates the partial derivate of U (λ) at the current parameters estimation, λn. Taking
this approximation into account and substituting xij in Equation 4.31 by the definition
given in Equation 4.20, the iterative formula for the Maximum a posteriori−One Step
Late (MAP-OSL) algorithm becomes

λ̂n+1
j =

λ̂n
j∑

i aij + β ∂
∂λj

U (λ, j) |λj=λn
j

∑
i

aij
yi∑

j′ aij′λ̂
n
j′

(4.32)

4.5.3 The Median Root Prior

The median root prior (MRP) [135, 139] was developed based on the general assump-
tion that an ideal PET image consists of constant neighborhoods with monotonous
transitions between them. This is also the structure of the root signal of a median
filter. By definition, a root signal is a signal that remains unaltered when the filter is
applied. Since the median filter presents good results both in terms of noise reduction
and edge preservation, one should expect to obtain high quality images through the
application of a prior based on the median filter.
For the MRP, the prior distribution is Gaussian [139],

p (λj) =
1√

2πMβ
exp−1

2
(λj −M)2

M/β
(4.33)

where M = Med (λn, j) stands for the median of voxels in a neighborhood centered at
voxel j.
The OSL algorithm with the MRP, that we will refer to as the MRP algorithm, becomes
defined as

λ̂n+1
j =

λ̂n
j∑

i aij + β
λj−M

M |λj=λn
j

∑
i

aij
yi∑

j′ aij′λ̂
n
j′

(4.34)

One should stress that using the median filter is quite different from using an average,
since repetitive averaging of the image would result in a blurred image, whereas the
repetite application of the median filter produces an unaltered root image. Thus, with
MRP, both smooth and abrupt spatial changes between areas of different activity are
accepted [139].
The MRP algorithm was originally used with ML-OSL algorithm for 2D reconstruction
[140], but was later used with the ordered subsets scheme for 3D image reconstruction
[141]. One of the advantages of using the Median Root Prior is that, in contrast to
other priors, the only parameter that needs to be adjusted is the β parameter, with no
need to define or to optimize any extra parameter [135, 109].
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4.6 Conclusions

In the present chapter we have focused on the general properties of the main statistical
algorithms used actually in Positron Emission Tomography. Traditionally, these algo-
rithms are used with data that proceeds from cylindrical scanners. Reconstructing the
data that proceeds from scanners with alternative geometries, such as those presented
in Chapter 3, poses additional demands on the image reconstruction algorithms. In
the remainder of this work we will present the strategies that were followed to perform
3D image reconstruction from data proceeding from a dual plate PET scanner, the
Clear-PEM scanner. A general overview of the Clear−PEM scanner is provided in the
next chapter.
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Materials and Methods





Chapter 5

The Clear-PEM scanner and

Monte Carlo simulations

5.1 Introduction

In recent years there has been a significant progress in the development of small and
compact dedicated scanners for Positron Emission Mammography, as we have seen on
Chapter 3. The Clear-PEM scanner is one of such scanners. It is being developed by
the Portuguese consortium PET-Mammography within the framework of the Crystal
Clear Collaboration, at CERN [142]. In the present chapter we will overview the main
technical characteristics and the design of the Clear-PEM scanner. This will be followed
by a short description of the Monte Carlo simulation framework dedicated to Clear-
PEM. Then, we will give an overview of the system geometry, phantoms and acquisition
conditions that were simulated for the purpose of image reconstruction and software
testing and refinement.

5.2 The Clear-PEM scanner

The Clear-PEM system is composed of a dual-plate detector head that is housed in a
robotic mechanical gantry, as represented in Figure 5.1. The system has been designed
to allow the examination of the breast and the axilla regions. For the breast exami-
nation, the patient will lay in the prone position with the breast hanging through an
aperture in an imaging table. The two detector heads will be positioned in each side
of the breast, as represented in Figure 5.1, and will have the ability to acquire data
at several angular positions. The detector heads can also be positioned at different
separation distances, which allows for the accommodation of different breast sizes.
Each detector plate, whose surface is, approximately, 16.2 cm× 14.1 cm, is constituted
of a total of 3072 LYSO:Ce crystals, each crystal having 2×2×20 mm3. A scheme of
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Robotic 

System

Detector 

Head

Figure 5.1: Representation of the Clear-PEM system. From [143].

a detector head is shown in Figure 5.2. The distribution of the crystals within the de-
tector plates is as follows. Each detector plate is constituted of a set of four structures
named supermodules, each one with 14×4 cm2, placed side by side. Each supermodule
is composed of 12×2 modules that, in turn, are composed of an array of 4×8 LYSO:Ce
crystals. Therefore, each detector plate is constituted of 48×64 LYSO:Ce crystals.

Figure 5.2: Representation of a Clear-PEM detector head, with an highlighted detector
supermodule. From [144].

The readout of each module is performed by two 32-pixel avalanche photodiodes that
are optically coupled to each side of the module, as shown in Figure 5.3. This double
readout scheme allows for the measurement of the point of interaction of the incom-
ing photon along the crystal length, a measure that is known as Depth Of Interaction
(DOI). The DOI coordinate within the crystal is estimated from the asymmetry of the
collected light at the top and bottom APD pixels. Experimental results have shown
that, with this scheme, it is possible to obtain a 2 mm FWHM DOI resolution [145].
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This measurement is important since, as we have seen in Chapter 3, it increases the
uniformity of measure all over the field-of-view of the scanner. This feature is not com-
mon in the universe of the positron emission mammography dedicated scanners and
therefore is perhaps one of the most important characteristics of the scanner (Chap-
ter 3).
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Figure 5.3: Representations of a Clear-PEM detector module with the double readout
scheme. From [144].

The processing of the detector analogical signals, including the readout, the low noise
amplification, the sampling and the storage are implemented in dedicated ASICs (Ap-
plication Specific Integrated Circuits) that are integrated in the detection plates. The
output analogue sampled pulses are digitized by Analogue Digital Converters (ADC)
and transmitted to the data acquisitions system (DAQ). This system, based on FPGA
(Field Programmable Gate Arrays), is responsible for the data reduction and storage.
Data is send from here to a trigger system that selects two-photon events in coincidence
within a programmable timing window and, at each trigger, the relevant data frames
are send to the acquisition PC where energy and time information are analyzed [143].
For events with more than one active crystal in a detector head, due to Compton scat-
tering, an event reconstruction position algorithms is used to assign the coordinates of
the interaction. Those events that are within the selected energy window are validated,
their final coordinates being used to define the LORs that are stored in a list-mode file
[145].
The design and the development of the Clear-PEM system has been made with the
help of the Monte Carlo simulation toolkit that will be described in the next section.

5.3 Monte Carlo Simulations

Monte Carlo (MC) simulation methods can be described as statistical methods that
use random numbers to perform a simulation of a specified situation [146]. They can
be used in almost all disciplines where particle interactions in matter play a role. In
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particular, the evaluation and development of an imaging system can be greatly aided
by the use of Monte Carlo simulations. Some of the MC simulation toolkits that are of
public domain were developed for high energy physics experiments and hence contain
detailed descriptions of processes involved in particle and radiation detection. One
example of such a toolkit is GEANT4 [147], developed in the framework of an interna-
tional collaboration at CERN.
GEANT4 has been the basis for the dedicated simulation framework that was developed
to be used in the design and development of the Clear-PEM scanner. In particular,
it allowed obtaining data for testing, evaluating and refining the image reconstruction
software. This simulation framework was developed at LIP, one of the partners of the
PET-Mammography consortium, by A. Trindade and P. Rodrigues [148, 149]. It con-
tains several aspects of the simulation process, such as the definition of phantoms and
phantom data, a detailed description of the geometry of the system and the digitization
of the signals. In the following paragraphs we will provide a brief overview of the sim-
ulation toolkit that was developed for the Clear-PEM scanner. This will be followed
by the description of the scanner geometry, phantoms and acquisition conditions that
were considered in the Monte Carlo simulations.

5.3.1 Clear-PEM Monte Carlo simulation framework

The Geant4-based framework developed for Clear-PEM simulation studies is organized
in three modules, as shown in Figure 5.4[148]. The PhantomFactory module is respon-
sible for the simulation of the radioactive decay and photon tracking in user-defined
phantoms. The PEMsim module performs the simulation of the detector response. In
this module the several parameters that define the detector are defined. This includes,
for instance, the number and the dimensions of the crystals, the dead spaces between
them, the distance between the two detector plates and the possibility of rotations.
The DIGITsim module simulates the front-end electronics and the data acquisition
and trigger system. The output data of each simulation module can be stored in dif-

ROOT I/OGEANT 4

PhantomFactory PEMsim DIGITSIM

Store DataStore DataStore Data

Figure 5.4: Schematic representation of the Monte Carlo framework developed for
Clear-PEM simulation studies. Adapter from [148].
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ferent output data formats (ROOT trees [150]). In particular, the output data from
the PETSim module was used as an input to the image reconstruction algorithms. For
purposes of 3D image reconstruction, the output files are read and the selected infor-
mation on photon coincidences is binned into 3D sinograms, as it will be explained in
Chapter 8.
As it was said before, this dedicated simulation framework was used to generate data
that allowed testing the image reconstruction software. In the next paragraphs we
will describe the simulated scanner geometries, the implemented phantoms and the
simulated acquisition parameters used for such purpose.

5.3.2 The simulated scanner geometries

The testing of the image reconstruction methods developed for the ClearPEM scanner
relied on the simulated data of a standard geometry of acquisition. Such a standard
acquisition consisted on the detector heads placed 10.0 cm apart, acquiring data in
two perpendicular positions around the breast (0◦ and 90◦). A representation of the
positions of the detector heads, as well as of the coordinate system of the detector is
shown in Figure 5.5.
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(b) Detector Plates at 90◦.

Figure 5.5: Scheme of a ClearPEM standard acquisition.

The first approach for testing the image reconstruction software for the Clear-PEM
scanner used a simplified description of the scanner geometry that was implemented
in the PEMsim module. The simulated data of simple geometrical phantoms in the
simplified scanner geometry allowed to isolate pure image reconstruction issues from
other detector related artifacts. A second approach aimed at testing and refining the
reconstruction algorithms in acquisition scenarios resembling a real examination. For
that purpose, a more realistic scanner geometry was used, and the image reconstruction
algorithms were tested both with simple geometrical phantom data and with more
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complex, anthropomorphic phantom data.
The simplified scanner geometry consisted on two 9.6 cm × 12.8 cm detector plates
placed 10.0 cm apart, acquiring data in two orthogonal projections. Each detector
plate was pixelized into a set of 48×64 individual detector elements, each one with
2×2×20 cm3. Therefore, no inter-crystals dead spaces were considered. The exact
distance between the faces of the crystals in the two opposing detector heads was
exactly 10.0 cm, since neither the front-end electronics nor the housing box of the
detector heads were simulated.
The realistic scanner geometry described the Clear-PEM detector plates in a more
realistic way. The detector heads were described as a set of several supermodules, each
one composed of several modules that in turn are composed of several crystals, as it
was explained in Section 5.2 above. This means that the inter crystal dead spaces are
now considered, with different distances separating crystals inside a module, crystals in
the edge of two contiguous modules or between crystals in the edge of two contiguous
supermodules. The detector plates dimensions were 14.2 cm × 16.1 cm and they were
placed 10.0 cm apart. However, due to the housing box and the front end electronics,
whose physical presence was also simulated, the distance between the faces of the
crystals in the two opposing detector heads was 13.4 cm. Simulated acquisitions were
performed in two orthogonal projections.

5.3.3 The Phantoms used

Two kinds of phantoms were used for the Monte Carlo simulations performed: geomet-
rical phantoms and anthropomorphic phantoms. The geometrical phantoms allowed
for the evaluation of image intrinsic characteristics such as spatial resolution or image
uniformity. The simulated data from the anthropomorphic phantom allowed to test
the reconstruction algorithms in acquisition scenarios close to a real examination. In
the following paragraphs we will provide a description of these phantoms.

5.3.3.1 The Geometrical Phantoms

Two geometrical phantoms were used in the simulations with the simplified scanner
geometry, allowing the measurement of both the reconstructed images spatial resolution
and of the image uniformity. How these figures of merit are computed will be in
subsequent chapters:

The Cross Phantom consisted on seven point sources located in different regions of
the field of view: a centered point source surrounded by the other six, each one
25 mm away from the center in three orthogonal directions. A representation of
this phantom can be seen in Figure 5.6(a).
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The Sphere Phantom consisted on a 16 mm diameter sphere with homogeneous
activity located at the center of the FOV. A representation of this phantom is
shown in Figure 5.6(b).
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Figure 5.6: Geometrical phantoms used in the simplified geometry studies: The Cross
Phantom (a) and the Sphere Phantom (b).

Simulation of these phantom data included exact depth of interaction information, de-
tector Compton scattering, no positron range and no background activity. The energy
window considered ranged from 350 keV to 700 keV, and an energy resolution of 16%
for 511 keV was considered. The simulations performed with these phantoms were
stopped when a total of 106 coincidence events were detected.
To access the spatial resolution in the reconstructed images in the realistic scanner
geometry studies, a different geometrical phantom was used:

The Chain Phantom consisted on a sequence of nine point sources placed along the
three main detector axes, at 10 mm intervals, as represented in Figure 5.7.
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Figure 5.7: The Chain Phantom that was used in the realistic scanner geometry studies.

With respect to the Cross Phantom described above, this phantom allowed the evalu-
ation of the spatial resolution over a wider region in the field of view. The simulations
using this phantom included exact DOI information, detector Compton scattering, no
positron range and no background activity. A total of 106 events for each point source
was simulated, in the 350− 700 keV energy window.
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5.3.3.2 The Anthropomorphic Phantom

The studies involving the realistic scanner geometry described above aimed at evalu-
ating the image quality foreseen to be obtained with the Clear-PEM system and the
considered reconstruction algorithms, in acquisition conditions that were as realistic as
possible. Besides the realistic scanner geometry, an anthropomorphic breast phantom
and realistic acquisition conditions needed to be considered. The anthropomorphic
phantom used was the NURBS Cardiac Torso (NCAT) phantom of the breast [151]
that was used decoupled from the torso. Therefore, the effect of scattered or random
events from annihilations proceeding from organs inside the torso were not included in
the simulations. The volume chosen for the breast phantom (747cc) corresponds to a
medium sized breast. For simulating attenuation a density of 0.85 g/cc, corresponding
to adipose tissue, was attributed to the breast tissue.
The NCAT breast phantom was used together with pairs of spherical simulated lesions,
with diameters 3 mm, 5 mm, 7 mm and 10 mm, located in a central and in a periphery
plane within the breast. An overview of the breast phantom with the centered and the
off-centered lesions and the detector heads is presented in Figure 5.8.

Detector Plate
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Figure 5.8: The NCAT Brest Phantom with two simulated lesions. Adapted from [152].

As we have seen in Chapter 2, the FDG uptake in the breast normal tissue is related
to the radiographic density of the breast [38]. Therefore, in this study, four different
types of breast tissue were considered: predominantly fat, fat with some fibroglandu-
lar tissue, heterogeneously dense and extremely dense. These correspond to the four
different groups of breast densities, as defined by the Breast Imaging Reporting Data
system (BI-RADS) of the American College of Radiology [153]. The FDG concentra-
tion values in the normal tissue for each of the breast tissue type were computed from
data available in the literature [154]. The computed values were: 1.59 kBq/ml for pre-
dominantly fat breast tissue; 2.04 kBq/ml for fat breast tissue with some fibroglandular
breast tissue; 3.81 kBq/ml for dense breast tissue and 4.81 kBq/ml for extremely dense
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breast tissue. The simulated FDG concentration in the lesions was 20.35 kBq/ml, a
value that corresponds to the average uptake in malignant breast lesions [155]. The use
of these concentrations lead to the lesion-to-background ratios that are summarized in
Table 5.1.

FDG Uptake (kBq/ml) Lesion to Background
Background Lesion ratio

1.59 20.35 13:1
2.04 20.35 10:1
3.81 20.35 5:1
4.81 20.35 4:1

Table 5.1: FDG concentration in normal breast tissue and in simulated lesions used
with the NCAT breast phantom and the corresponding lesion-to-background ratios.

The simulated NCAT breast phantom data included exact DOI information, detector
scattering and the positron range before annihilation.

5.4 Planes of the breast

In this section we will define the terminology that will be used for the breast image
planes throughout the rest of this work. In whole body imaging the sections of the body
are referred to in terms of axial, coronal and sagittal planes as shown in Figure 5.9(a).
The axial plane divides the body into upper and lower parts. In Nuclear Medicine
techniques, the axial plane corresponds to the plane that is perpendicular to the axis of
rotation of the scanner. By analogy, in the present work we will refer to the plane that
is perpendicular to the axis of rotation of the Clear-PEM scanner as the axial plane,
as depicted in Figure 5.9(b). This plane divides the breast into the parts closer and
farther from the torso.
In whole body techniques, the sagittal plane refers to the plane that divides the body
or its parts into right and left sides. In the images of the Clear-PEM scanner, the
sagittal plane is the plane of the breast that is parallel to the whole body sagittal plane.
This plane divides the breast into its medial and lateral sides, in the mammographic
nomenclature.
In whole body techniques the coronal plane is the plane that is perpendicular both to
the sagittal and the axial planes. In the breast planes nomenclature the sagittal plane
is also normal both to the sagittal and the axial planes. This plane divides the breast
into its upper and lower parts.
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Figure 5.9: Terminology for (a) the body planes (adapted from [156]) and for (b) the
breast planes (adapted from [152]).

5.5 Conclusion

In this chapter we have described the main technical features of the Clear-PEM scanner
and the simulation software that was used in its development. The simulated acquisition
data that was obtained with the phantoms and scanner geometries described will be
used to test the 3D image reconstruction software that was implemented for the Clear-
PEM scanner. Such implementation will be presented in Chapter 7. The performed
tests and results will be presented in Chapter 8 and in Chapter 9. Prior to this, we
will describe, in the next chapter, the image reconstruction library that has been used
as the basis of the Clear-PEM 3D image reconstruction.



Chapter 6

The STIR library

6.1 Introduction

STIR, the acronym of ‘Software for Tomographic Image Reconstruction’, is an open
source, object oriented library for 3D PET image reconstruction that has been the
basis for 3D image reconstruction in the Clear−PEM scanner. STIR, which was orig-
inally developed for the PARAPET project [157], was designed to be used with data
proceeding from cylindrical PET scanners. and, eventually, dual-head rotating gamma
cameras. It is an image reconstruction platform that combines several high-speed fea-
tures, such as fast projection and backprojection operators and the use of geometrical
symmetries, allowing for the implementation of 3D reconstruction algorithms that per-
form at reasonable speeds.
STIR is composed of several building blocks that correspond to the components neces-
sary to define an image reconstruction algorithm. Since this library is written using
the C++ programming language, these building blocks are implemented as classes, or
hierarchy of classes. STIR is structured in four main hierarchies of classes: classes for
describing images, classes for the projection data, classes for the projection operators
and classes for the reconstruction algorithms.
In this chapter, the general structure of the library will be explained, with focus on the
description of its main building blocks and on the special features of the implemented
projection operators and reconstruction algorithms.
The work presented in this thesis was developed from the Version 1.2 of STIR, released
in June 2004. Therefore, in this chapter we shall limit our description to the features
implemented at that time, despite the fact that later releases (actual STIR version is
Version 1.4) have presented more features.
The documentation in which this chapter is based is the STIR’s documentation [158,
159], source code comments and the code itself.
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6.2 Images

As it was discussed in Chapter 4 (in paragraph 4.3.1), for computer display and for
image reconstruction purposes, the images are described as a set of basis functions. In
STIR, the corresponding discretisation of the images is implemented in the class Discri-
tisedDensity. The image hierarchy implemented in STIR is represented in Figure 6.1.

Array

DiscritisedDensity

DiscritisedDensityOnCartesianGrid

VoxelsOnCartesianGrid PixelsOnCartesianGrid

Figure 6.1: Hierarchy of classes for describing images. Adapted from [159].

As it is shown in this figure, the class DiscritisedDensity inherits the properties of the
class Array. This base class provides the methods for memory allocation of multi-
dimensional numeric arrays. The class DiscretisedDensityOnCartesianGrid, which fol-
lows DiscritisedDensity in the hierarchy, implements the case where the image grid is
formed by an orthogonal class of vectors (in opposition, for instance, to a cylindrical
grid). The last level in the hierarchy is the specification of the basis function themselves.
In STIR’s Version 1.2 only voxels and pixels are implemented, in classes VoxelsOnCar-
tesianGrid and PixelsOnCartesianGrid, respectively. Other basis function, such as
blobs can be implemented as well.

6.2.1 Image Coordinates and Conventions

The coordinate system for Cartesian Grids are chosen as represented in Figure 6.2.
The scanner axis, z, is pointing from the gantry toward the bed and its origin is in the
middle of the first ring of detectors in the scanner. The horizontal and vertical axis, x

and y, respectively, have their origin on the central slice of the scanner. The horizontal
axis is pointing right when looking from the bed into the gantry and the vertical axis
is pointing downwards. In STIR, the X and Y dimensions of the images must be odd,
so that the center of the scanner coincides with the center of a pixel.
The voxel space is a partitioning of the field of view into voxels whose transaxial
edge lengths, ds, equal the size of a projection bin and whose axial length equal half
the distance between two adjacent detector rings. The reason for choosing the axial
sampling distance of the image as half the distance between detector ring is shown in
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Figure 6.2: Coordinate system for the projection data and for the images used in STIR.
Transaxial coordinate system in 6.2(a) and axial coordinate system in 6.2(b). Adapted
from [100].

Figure 6.3. In fact, if forward projection is performed with an axial sampling distance
equal to the detector width, small details, such as the shaded voxels in Figure 6.3(a),
remain unseen. On the contrary, for the sampling chosen, a better axial image resolution
is achieved [113, 160].

(a) (b)

Figure 6.3: Axial section through the image volume and the detector rings. If the axial
sampling distance chosen for the image is equal to the detector width, small details
remain unseen (b). When forward projecting, the sampling distance of the projection
must match that of the image (b). From [113].

6.3 Projection Data

The relevant classes for dealing and describing the projection data are included in the
ProjData hierarchy and in the the ProjDataInfo hierarchy.
The class ProjData, whose inheritance diagram is shown in Figure 6.4, is the gen-
eral class to access the projection data. It has two derived classes: the class Proj-
DataGEAdvance, used to read projection data from a specific General Electric (GE)
scanner and the class ProjDataFromStream. The latter is a more general class that
allows to read/write projection data from/to a binary stream. This stream can be
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ProjData

ProjDataFromStream ProjDataGEAdvance

ProjDataInMemory ProjDataInterfile

Figure 6.4: File Formats for Projection Data [159].

stored either temporarily in memory (ProjDataInMemory) or in a file in Interfile for-
mat (ProjDataInterfile).
An interesting feature of class ProjData is that it allows to deal with subsets of the
projection data. This is specially useful since 3D projection data can be huge. Thus,
being able to handle only a small part of the data leads to a simplification of many
procedures. As was explained in Chapter 4, the projection data from a 3D PET study
are stored as a four dimensional structure with coordinates (s, φ, z, θ). STIR provides
several means for storing data on disk. Projection data organized on segments can
be stored either as a SegmentByView object or as a SegmentBySinogram object. The
hierarchy of classes for storing segments is shown in Figure 6.5.

Segment

SegmentByViewSegmentBySinogram

Figure 6.5: Hierarchy of classes for storing segments.

In SegmentByView objects the segment number is fixed and the data is ordered by
view angle, axial position and tangential position. This is also known as the View
Mode. In SegmentBySinogram objects the segment number is also fixed but the data
are ordered by axial position, then view angle, and finally the tangential position. This
is also known as the Volume Mode. A representation of these objects can be seen on
Figure 6.6.
One can also work with 2D subsets of segments, organized either as 2D sinograms or
as viewgrams:

- In 2D sinograms the segment number and the axial position indices are fixed, and
the resulting histogram is organized as tangential position against view angle, as
we have seen in Chapter 4. A representation of a 2D sinogram is shown as the
shaded area in Figure 6.6(a).

- In viewgram the segment number and the view number indices are fixed, and
the resulting histogram is organized as the tangential position against the axial
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Figure 6.6: View Mode (a) and Volume Mode (b) storage for 3D PET data sets.
Adapted from [100].

position. A representation of a viewgram is shown as shaded area in Figure 6.6(b).

The projectors implemented in STIR, which will be described in the next paragraph, use
input data that is organized in View Mode, which means that the tangential position
s and the axial position z coordinates are processed in the inner loops of the computa-
tions. This organization was found to be the fastest one for backprojection operations
[161]. Besides, the projector operators can also work with viewgrams that are related
by geometrical symmetries, since this further speeds the computations. Related view-
grams are implemented in class RelatedViewgrams. The geometrical symmetries used
will be discussed later.
Another important feature of class ProjData is a member function that allows access to
ProjDataInfo objects. These are objects that completely describe the data, including
its dimensions, the scanner type, its geometry, etc. The hierarchy for class ProjDataInfo

is represented in Figure 6.7.

ProjDataInfo

ProjDataInfoPolar ProjDataInfoCylindrical

ProjDataInfoCylindricalArcCorrProjDataInfoCylindricalNonArcCorr

Figure 6.7: Hierarchy of classes for geometric information of the projection data.

The derived class ProjDataInfoCylindrical implements the information on projection
data proceeding from a cylindrical scanner. This data can be either arc corrected (Pro-

jDataInfoCylindricalArcCorr) or not (ProjDataInfoCylindricalNoArcCorr). The arc
correction is usually applied on the data prior to reconstruction. It corrects for the
fact that, due to the curved nature of the cylindrical scanners, the LORs passing near
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the center of the ring are spaced farther apart than the LORs on the periphery of the
scanner. The reconstruction algorithm will need to have the information on whether
this correction was applied (in which case the LORs will all be equally spaced) or not.

6.3.1 Projection Data Coordinates and Conventions

In STIR, the 3D projection data is organized in 3D sinograms. The coordinate system
used is shown in Figure 6.2. The number of measured projection elements along the s

axis is odd, so that s = 0 is positioned at the center of the central projection element.
The value of the smaller ring index of the sinogram fixes the axial position.

6.4 Projection operators

As we have seen on Chapter 4, paragraphs 4.3.5 and 4.4.1, most iterative algorithms
can be written in terms of forward projection and backprojection steps. In STIR,
the forward projection operations are based on Siddon’s algorithm [114], while the
backprojection operations use bilinear interpolation between the projection elements
and the four nearest voxels. Both these algorithms will be explained in the following
paragraphs, as well as the use of geometrical symmetries to enhance the algorithm’s
performance.
The need to use different algorithms for forward projection and backprojection arises
from the fact thatif Siddon’s algorithm is used for backprojection, it causes artifacts at
certain angles between the direction of projection and the cubic image grid. The same
happens if the bilinear interpolation algorithm is used in forward projection [113].
In STIR, corresponding to the forward projection and to the backrojection operation
there exists the hierarchy ForwardProjectionByBin and the hierarchy BackProjection-

ByBin, respectively. In the following paragraphs we will look with more detail into
both these hierarchies, describing the projection algorithms that they implement. The
basic objects handled by these projector classes are RelatedViewgrams and Discre-

tisedDensity. Besides these two hierarchies, STIR also provides an hierarchy to use the
projectors in a single projection matrix. This hierarchy is named ProjMatrixByBin.

6.4.1 Projection Matrix By Bin Hierarchy

The ProjMatrixByBin is a base class for creating projection matrices objects to be used
instead of separate projection/backprojection pairs. It provides methods to access to
the rows of the projection matrix. Its simple hierarchy is shown in Figure 6.8.
The derived class ProjMatrixByBinUsingRayTracing implements a function that calcu-
lates the projection matrix elements using the algorithm explained in paragraph 6.4.2.1.
As it is shown in Figure 6.8, it would be possible to add to this hierarchy another derived
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ProjMatrixByBin

ProjMatrixByBinUsingRayTracing ProjMatrixByBinFromFile

Figure 6.8: Hierarchy of classes for Projection Matrix. [159].

class, ProjMatrixByBinFromFile to be used to deal with a pre-calculated projection
matrix.

6.4.2 Forward Projection Hierarchy

The ForwardProjectionByBin class is a base class for all the forward projector opera-
tors. Its hierarchy diagram is shown in Figure 6.9.

ForwardProjectorByBin

ForwardProjectorByBinUsingProjMatrixByBinForwardProjectorByBinUsingRayTracing

Figure 6.9: Hierarchy of classes for Forward Projection operators. [159].

The base class has members to store all the needed geometrical information, to inform
on what symmetries the projector handles and to project the volume either into the
entire projection data or into a subset (a viewgram, more specifically). The functions
belonging to this class are virtual functions, which, in object oriented programming,
means that their functionality is determined by its derived classes. Therefore, it is up to
the derived classes to implement the functions that actually perform the computations.
The derived class ForwardProjectionByBinUsingProjMatrixByBin implements an in-
terface of ForwardProjectorByBin given any ProjMatrix object. This is done by storing
the ProjMatrix object, and, when necessary, extracting the relevant information of the
projection matrix.
The other forward projector operator available in STIR is implemented in class For-

wardProjectorByBinUsingRayTracing. It implements the forward projection using Sid-
don’s algorithm for ray tracing. In STIR, Siddon’s algorithm is enhanced by the use
of geometrical symmetries and by the possibility of using an approximation to a Tube
of Response. How this is done will be explained in the next paragraph. Two special
characteristics of this class is that the image to be forward projected must be of type
VoxelsOnCartesianGrid and that the projection data must be of type ProjDataInfo-

Cylindrical.
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6.4.2.1 Siddon’s algorithm in STIR

Ray tracing approaches for computing the forward projection use the length of intersec-
tion between a given LOR and a voxel to determine the weight that voxel contributes to
the projection element corresponding to the LOR. Siddon’s algorithm [114] reduces the
complexity of the computations by considering that, rather than being independent
elements, the voxels consist on the intersection of orthogonal sets of equally spaced
parallel planes. Consequently, one must find the line of intersection of the LOR with
a set of parallel planes, a more efficient task than to compute the intersection of the
LORs with the individual voxels. Figure 6.10 illustrates the central idea beyond Sid-
don’s algorithm in the two-dimensional case. The points of intersection of the LOR
with the grid (black circles on the left scheme of Figure 6.10) consist in two sets of
points: the points of intersection of the LOR with the vertical lines (white circles on
the right scheme of Figure 6.10) and with the horizontal lines (black circles on the
right scheme of Figure 6.10). In the three dimensional case, there is also a third set
of points of intersection of the LOR with the set of parallel lines corresponding to the
third dimension.

1

2

1

2

Figure 6.10: Central idea beyond Siddon’s algorithm: the length of intersection of a
LOR with the pixels of an image can be computed independently for every pixel (left)
or, more efficiently, as the intersection of the LORs with two orthogonal sets of equally
spaced, parallel lines. Adapted from [114].

As the lines in each plane are equally spaced, it is only necessary to find the first inter-
section and then generate all the others by recursion. The algorithm first computes the
three independent sets {αx}, {αy}, {αz} of parametric intersections of the LOR with
each orthogonal set of parallel planes. Then, the sets are merged in order to obtain
one sorted set of parametric intersections of the LOR with the three-dimensional grid.
The length of the LOR contained by a particular voxel is simply the difference between
two adjacent parametric values in the merged set. The corresponding voxels indices
are also calculated. Starting from the first voxel transversed by the LOR and moving
toward the last, the voxel values are weighted by the corresponding intersection length
and summed to yield the contribution to the projection of the image along that LOR.
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6.4.2.2 The use of geometrical symmetries

There are LORs in a sinogram that are linked by simple geometrical symmetries. These
symmetries are exploited to substantially reduce the amount of computation of the
forward projection operations, since the length of intersection that is computed for one
LOR can be reused for other LORs [113]. The symmetries acting on each of the the
coordinates of a LOR are summarized in [113] as follows:

Translational symmetry along the z axis: since the axial imaging sampling is the
double of the axial data sampling, parallel LORs shifted by one detector ring
will traverse the image in geometrically equivalent positions than those shifted
by double the voxel size along the z-axis;

s symmetry , or symmetry about the center of the image volume: voxel A0 (X,Y,Z)
on LOR (s, φ, θ, z) has its counterpart on voxel As (−X,−Y,Q), with Q = 4r0 +
2 + 2δ − Z on LOR (−s, φ, θ, z). Here, r0 is the lowest ring in the LOR and δ is
the ring difference between the two rings that define the LOR.

φ symmetry , which is a four fold symmetry. A voxel A0 (X,Y,Z) lying on a LOR
(s, φ, θ, z) between detector rings (r0; r0 + 1) shares its geometrical properties
with voxel A1 (Y,X,Q), (Q defined as previously) on LOR (s, π/2− φ, θ, z); with
voxel A2 (−Y,X,Z) on LOR (s, π/2 + φ, θ, z); and with voxel A3 (−X,Y,Q) on
LOR (s, π − φ, θ, z).

θ symmetry : a voxel A0 (X,Y,Z) on LOR (s, φ, θ, z) possesses equivalent positions
of voxel Aθ (X,Y,Q) on LOR (s, φ,−θ, z)

6.4.3 Backprojection Hierarchy

The abstract base class for all backprojectors is the class BackProjectorByBin. Simi-
larly to base class for forward projection, it has members to store all the geometrical
information and to inform on which symmetries the projector handles. It also has mem-
bers to project the whole projection data into the volume and to project only a part
of the projection data (viewgrams or a specified range of viewgrams) into the volume.
The hierarchy diagram for this class is shown in Figure 6.11.

BackProjectorByBin

BackProjectorByBinUsingProjMatrixByBinBackProjectorByBinUsingInterpolation

Figure 6.11: Hierarchy of classes for Backprojection operators [159].
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The BackProjectorByBinUsingProjMatrixByBin class implements a BackProjectorBy-
Bin given any ProjMatrix object. The derived class BackProjectorByBinUsingInter-

polation implements the backprojection by interpolating the LOR through the center
of the voxel. The algorithm that this class implements, and that will be described in
the next paragraph, is a 3D incremental backprojection method which combines with
the use of the symmetries of the image volume to speed up the computations [160].
In the axial direction, this algorithm has been modified to include a piecewise linear
interpolation scheme, which approximates a Tube of Intersection for data that has not
been compressed in the axial direction [162].

6.4.3.1 Incremental Bilinear Interpolation

The principles underlying the backprojection algorithm by bilinear interpolation is il-
lustrated in Figure 6.12.

Figure 6.12: Basic principle of backprojecting by bilinear interpolation. The center of
voxel A is projected onto the projection plane, and a bilinear interpolation between
the four nearest projection elements allows the determination of the contribution of the
defined projection elements to the intensity of voxel A. From [113].

The center of every voxel (in Figure 6.12, only voxel A is projected) is projected onto
the projection plane, and a bilinear interpolation between the four nearest projection
elements, (V1, V2, V3, V4) allows the determination of the contribution of the defined
projection elements to the intensity of voxel A.
The algorithm uses the concept of beam, where a beam is defined by the center of four
adjacent projections elements, as shown in Figure 6.13.
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Figure 6.13: A beam, defined by four adjacent projection elements. Adapted from
[113].

For a voxel A contained in the beam, the bilinear interpolation between the four pro-
jection elements that define the beam is given by

VA = (1− dsa) (1− dza) V1 + dsa (1− dza) V2 + (1− dsa) dzaV3 + dsadzaV4 (6.1)

where ds and dz are as defined in Figure 6.12. The voxel value is obtained by summing
the update values VA over the projections at all available angles. To increase the
computation speed, the backprojection of a particular beam can be performed by an
incremental method , as described next. Fist, Equation 6.1 is re-written as

VA = V1 + dsAK1 + dzAK2 + dsAdzAK3

= VA,incr + dsAdzAK3 (6.2)

where

K1 = V1 − V1

K2 = V3 − V1 (6.3)

K3 = V4 − V2 − V3 + V1

and

VA,incr = V1 + dsAK1 + dzAK2 (6.4)

A similar relations holds for a voxel B contained in the beam and that is adjacent to
A:

VB = VB,incr + dsBdzBK3 (6.5)

with

VB,incr = V1 + dsBK1 + dzBK2 (6.6)

Combining Equation 6.6 and Equation 6.4, one obtains

VB,incr = VA,incr + (dsB − dsA)K1 + (dzB − dzA)K2 (6.7)
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The quantities K1,K2,K3 are beam invariants and can be calculated only once for
all voxels inside a given beam. The quantities dsB − dsA and dzB − dzA, which are
also beam invariants, are functions of φ and θ. Due to symmetry considerations, only
0 < φ < π

4 and θ > 0 need to be considered. Therefore, the values of dsB − dsA

and dzB − dzA for a particular beam can only take four values each, depending on the
position of voxel B with respect to voxel A. Those values are as follows:

- δsx = dsB − dsA and dzx = dzB − dzA if B is reached from A by a displacement
of −1 along the x-axis;

- δsy = dsB − dsA and dzy = dzB − dzA if B is reached after a displacement of +1
along the y-axis;

- δsd = dsB − dsA and dzd = dzB − dzA if B is reached diagonally in the transaxial
plane by a 1 displacement along x and a +1 displacement along y;

- δsz = dsB − dsA and dzz = dzB − dzA if B is reached by a displacement of +1
along the z axis.

The backprojection of a particular beam can then performed according to the following
scheme:

1. Finding the first voxel in the beam, A, and calculating its update values by
Equation 6.1;

2. Determining the beam invariants K1,K2,K3;

3. Determining the beam invariants δsx,y,d,z and δzx,y,d,z for φ and θ;

4. Determining the next voxel in the beam, B, by a searching flow algorithm;

5. Determining dsB = δs + dsA and dzB = δz + dzA

6. Determining the update value of voxel B by Equations 6.5 and 6.7;

7. Repeating steps 4 to 6 until the update values of the last voxel in the beam is
calculated.

This algorithm is known as partial incremental backprojection, since a significant part
of the calculations consist on sums. Since the beam invariants δsx,y,d,z and δzx,y,d,z

depend on φ and θ for each beam, the computations are performed for a fixed φ and
θ. This is why the backptojection operators implemented in the library take as input
the data organized as viewgrams.
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6.4.3.2 Piecewise linear interpolation

As was explained in paragraph 6.2.1, for efficiency reasons, in STIR the z voxel space
is equal to half the spacing between the rings. In this case, the update value for the
voxel cannot be calculated from Equation 6.1, but instead, by

V
′
A = (1− dsa) (3/2 − dza)V1 + dsa (3/2 − dza)V2 + (1− dsa) (dza − 1/2) V3

+dsa (dza − 1/2) V4 if 1/2 < dza < 3/2 (6.8)

V
′
A = (1− dsa) V1 + dsaV2 if za ≤ 1/2 (6.9)

V
′
A = (1− dsa) V3 + dsaV4 if dza ≥ 3/2 (6.10)

Equation 6.8 can be further written in terms of the beam constant defined in 6.3:

V
′
A = V1 −K2/2 + dsa (K1 −K3/2) + dzaK2 + dsadzaK3 (6.11)

For a voxel B adjacent to A and whose center lies inside the same beam, VB is given
by :

VB = VB,incr + dzBdsBK3, (6.12)

with

VB,incr = VA,incr + (dsB − dsA) (K1 −K3/2) + (dzB − dzA)K2 (6.13)

This is known as the piece-wise linear interpolation model, and it can be seen as an
approximation of the volume of intersection of the tube of response with the voxel [162].

6.4.3.3 Searching flow algorithm

The searching flow algorithm is used to find the next voxel in the beam. Since a
displacement along the axial direction does not affect the transaxial components of the
voxel, the searching flow algorithm can be separated into a search in the (x, y) plane
and a search along the z axis.
Given the system coordinates defined above, the s coordinate of a voxel A (X,Y,Z) is
given by

s = XAcosφ + YAsinφ (6.14)

Under the condition pixel size=bin size the direction of the displacement toward the
next voxel in the (x, y) plane are determined by the value of ds, according to

if ds ≥ cos φ the direction of displacement is -1 along the x-axis

if ds inf 1− sin φ the direction of displacement is -1 along the x-axis

if 1− sinφ ≤ ds sup cos φ the direction of displacement is -1 along x and +1 along
y
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A necessary condition for the voxel to belong to the beam is that dz must be comprised
between 0 and 1/2. For θ ≥ 0, the direction of displacement along the z-axis is given
by

if dz < 0, the displacement is of one voxel along z

else, there is no displacement along z

The values of ds and dz are updated at every new position, and searching is continued
until the last voxel in the beam is reached.

6.4.3.4 The use of geometrical symmetries

The computations presented in the above paragraph are only valid for s > 0, 0 <

φ < π/4 and θ > 0. Similarly to what was described in paragraph 6.4.2.2, symmetry
considerations allow the determination of the quantities ds and dz for the voxels of
other beams without the need to explicitly calculating them. The list of voxels directly
related to one explicit calculation of ds and dz by symmetries in s, φ, θ and z can be
found in [160]. It has been found that the more efficient results are obtained using the
s, φ and θ symmetries only.

6.5 Geometrical Symmetries

As we have seen, the projector operators use geometrical symmetries to reduce the
number of elements that need to be computed. Therefore, STIR has an hierarchy of
classes for encoding and finding the symmetries between the projection data and the
image grid. The base class used for such purposes is DataSymmetriesForViewSegment-

Numbers. Its inheritance diagram is represented in Figure 6.14.

DataSymmetriesForViewSegmentNumbers

DataSymmetriesForBins TrivialDataSymmetriesForViewSegmentNumbers

DataSymmetriesForBins_PET_CartesianGrid TrivialDataSymmetriesForBins

Figure 6.14: Hierarchy of classes for Data Symmetries.

The derived class TrivialDataSymmetriesForViewSegmentNumbers is used to encode
and to find symmetries when this is needed but there is no need to use a projec-
tor operator. This class only works with pairs of view and segment numbers. For
this purpose, objects from the ViewSegmentNumbers class, a very simple class that
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is used to store view and segment numbers, are used. The class TrivialDataSymme-
triesForViewSegmentNumbers has members to find if a given ViewSegmentNumber is
‘basic’, in the sense that all the related ViewSegmentNumbers objects can be obtained
by using symmetry operations on the ‘basic’ ones. It has also members that, given a
particular ViewSegmentNumber, find the corresponding ‘basic’ ViewSegmentNumber.
The derived class DataSymmetriesForBins encodes and finds the symmetries that are
common to the geometry of the projection data and the discretised density. This class
is mainly useful for classes derived from ProjMatrixByBin. It is used together with
class SymmetryOperation. Is has member functions to find if a given bin is a ‘basic’
bin, to find the corresponding ‘basic’ bin of a given bin and the respective symmetry
operation. The derived class DataSymmetriesForBins PET CartesianGrid encodes the
appropriate symmetries for a cylindrical PET scanner and a cartesian grid. The class
TrivialDataSymmetriesForBins implements the trivial case where there are no symme-
tries at all.
The hierarchy diagram for the class SymmetryOperation is shown in Figure 6.15. The
SymmetryOperation implements the symmetry operations between the projection data
and the Cartesian grid. The class TrivialSymmetryOperation encodes the trivial case
when there are no symmetries.

SymmetryOperation

TrivialSymmetryOperation

Figure 6.15: Hierarchy of classes for Symmetry Operations.

6.6 Image Reconstruction Algorithms

The hierarchy of classes for image reconstruction in STIR’s version 1.2 is as represented
in Figure 6.16

Reconstruction

IterativeReconstruction

LogLikelihoodBasedReconstruction

OSMAPOSLReconstruction

Figure 6.16: Hierarchy of classes for Image Reconstruction.
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The base class Reconstruction is a very general class that provides the means for creat-
ing a target object (an image), calls a virtual function that performs the reconstruction
and writes the result to the image. The derived class IterativeReconstruction defines
the common methods to an iterative reconstruction scheme, namely the handling of
an update image, the definition of the subsets number, the number of subsets, the end
of an iteration, etc. The function that actually performs the reconstruction remains a
virtual function in this class.
The next class in the hierarchy is the LogLikelihoodBasedReconstruction class, that
provides the means for implementing algorithms that are based upon the Maximum
Likelihood estimation criteria. For instance, it has functions to compute the likelihood
of a given image. The last class in the hierarchy, OSMAPOSLReconstruction imple-
ments the OSMAPOSL algorithm, that is the ordered subsets version of the Maximum a
Posteriori - One Step Late algorithm that was presented in Chapter 4, paragraph 4.5.2.
In the next paragraph we will look with more detail into the implementation of this
algorithm.

6.6.1 The OSMAPOSL algorithm

As it was mentioned in Chapter 4, it is possible to perform the decomposition of the
system matrix into its several components. STIR uses this approach, with the following
system components considered:

- ni, the efficiency of detector pair corresponding to bin i;

- ρj , the 3D attenuation coefficient for bin; i

- ag
ij , the probability that an emission from voxel j is detected in bin i due to

geometrical considerations only.

The system matrix aij can then be written as

aij = niρia
g
ij (6.15)

The quantity
∑

j aij is referred to as the sensitivity image, aj and is given by [99]:∑
i

aij =
∑
i∈S

niρia
g
ij = aj (6.16)

If these two equations are substituted into the OS-EM expression [163] given in Equa-
tion 4.25, the update equation of OS-EM can be written as

λ̂n+1
j =

λ̂n
j

aj

∑
i∈Sk

yiniρia
g
ij∑

j′ niρia
g
ij′λ̂

n
j′

=
λ̂n

j

aj

∑
i∈Sk

yia
g
ij∑

j′ a
g
ij′λ̂

n
j′

(6.17)
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As a result of the cancellations of the terms ni and ρi in the previous equation, the
non-geometrical’ physics of the detection process (here, only attenuation and detector
efficiency) are completely accounted for in the sensitivity image. Thus, once this image
is obtained, the subsequent steps of the algorithm are only related to scanner geometry
[99].
In a similar fashion, the update equation of the ordered subsets version of the Maximum
a posteriori algorithm can be written as

λ̂n+1
j =

λ̂n
j

aj + β ∂
∂λj

U (λ, j) |λj=λn
j

∑
i∈Sk

yia
g
ij∑

j′ a
g
ij′λ̂

n
j′

(6.18)

This equation represents the OSMAPOSL algorithm that is implemented in STIR. The
OSMAPOSL program works as follows:

1. Pre-compute the sensitivity image, aj , as explained below;

2. Initialize n = 0, λn = λ0, with λ0 being an uniform image full of 1 or an image
stored in a file;

3. Set the subset number as k = n mod m;

4. Use the selected forward projector operator to obtain the estimated bin counts,

yi = FWDPROJSk
= (λn, i)

∑
j′

ag
ij′λ

n
j , ∀i ∈ Sk

5. Use the selected backprojector operator to obtain the estimated image errors,

BACKPROJSk
(y/y, j) =

∑
i∈Sk

yi

yi

ag
ij ∀j ∈ J

6. Evaluate the derivate of the energy function in the previous image,

D (λn, j) =
∂

∂λj
U (λ, j) |λj=λn

j

7. Set

λn+1
j =

λn
j

aj + D (λn, j)
BACKPROJSk

(y/y, j) ∀j ∈ J

8. Set n← n + 1 and return to step (3).

Obviously, the OSMAPOSL algorithm can be reduced to the plain OS-EM algorithm,
if no prior term is considered, and also to the ML-EM algorithm (or to the ML version
of MAP-OSL), if the number of subsets is set to one.
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6.6.2 The sensitivity image

The implementation of the OSMAPOSL algorithm described above requires the pre-
computation of an image representing the sensitivity of the scanner, which incorporates
the attenuation and the normalization corrections. Therefore, in order to compute the
sensitivity image, the detector efficiencies, ni and the attenuation factors of the object
being imaged must be obtained. How the detection efficiencies can be obtained will
be discussed in Chapter 8 of this thesis. The attenuation factors are usually obtained
from the ration between a transmission scan without the patient in place (a blank scan)
and a transmission scan of the patient. STIR also accepts the attenuation map of the
subject, from which it computes the attenuation factors, as will be seen next.
In STIR, the program that computes the sensitivity image is named sensitivity. It
operates as follows [99]:

- Given the attenuation map of the subject, the Siddon’s algorithm is used to de-
termine the 3D attenuation coefficients ρi for all the bins i. The attenuation
coefficients are stored in a sinogram of proper dimensions. When no attenuation
map is available, the program assumes zero attenuation. If the attenuation factors
are available, the sinogram containing them can be multiplied by the sinogram
containing the normalization coefficients, and, since they are both multiplica-
tive corrections, the resulting sinogram can be used as normalization factors, as
described below.

- Given the normalization coefficients, also stored in a proper sinogram, a norma-
lized sinogram, q, is obtained by multiplication of the sinograms containing the
attenuation and the normalization coefficients:

qi = niρi (6.19)

When no normalization coefficients are available, the normalized sinogram q con-
tains the attenuation coefficients only.

- The backprojector operator chosen among the ones available at STIR is used to
backproject the sinogram q into a volume in order to obtain the sensitivity image.

6.6.3 The MAP model and priors

The hierarchy of classes for describing image priors is shown in Figure 6.17. The hier-
archy consists of a base class to describe generalised priors, and a derived class. The
derived class FilterRootPrior implements the Median Root Prior that was described in
Chapter 4.
Regarding the application of the prior, the MAP model can be either additive or mul-
tiplicative [164]. The additive choice, that is the default in STIR, applies the prior on
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GeneralisedPrior

FilterRootPrior

Figure 6.17: Hierarchy of classes for describing image priors

the image, accordingly to Equation 6.18.
The multiplicative model considers the following rescaled system :

ar
ij =

aij

aj

λr
ij =

λj

aj
(6.20)

where
∑

i a
r
ij = 1. The multiplicative form of the OSMAPOSL algorithm applies the

prior multiplied by the sensitivity image, as given in Equation 6.21
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∂λj
U (λ, j) |λj=λn

j

) ∑
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g
ij′λ̂

n
j′

(6.21)

The additive choice implements a stronger penalization on regions of lower sensitivity.
Of course, the choice of β must be different in each case. For the multiplicative model,
β is independent of the sensitivity whereas for the additive model, that parameter must
be based in the values of the sensitivity. In fact, in order to avoid instability of the
algorithm caused by very high values of the prior weight, in the former case β must be
chosen to be smaller than the maximum value in the sensitivity image [164].
The additive or multiplicative forms of applying the prior are embodied in functions
belonging to the OSMAPOSL implementation.

6.7 Conclusions

In this chapter we have described the structure and main functionalities of the STIR
library. As it was stated at the beginning of the chapter, it is a library that was designed
to be used mainly with cylindrical PET scanners. In the following chapters we will
describe the new features that were introduced to allow its use with the Clear−PEM
scanner data.
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Results





Chapter 7

Enhancements in the STIR

framework

7.1 Introduction

In this chapter we will present the reasoning behind the adaptation of the STIR frame-
work for the geometry of the Clear -PEM scanner. The several classes and the routines
that were developed to accommodate and reconstruct the Clear-PEM data within the
STIR framework will be described, as well as the used organization of the data. Then,
we will present a series of tests that were performed to assure the good functioning
of the software and to define some of the optimum choice for the projector operators
or for the image reconstruction algorithm. The implemented classes and routines were
optimized for the standard Clear-PEM acquisition that was described in Chapter 5.
However, some preliminary tests were also performed to access the software capability
to deal to different specifications of the acquisition geometry, such as different number
of angular plates positions.

7.2 The information on the projection data

An important step in the process of image reconstruction from either Monte Carlo si-
mulated or from real acquisition projection data is the organization of such data. In
STIR, as we have seen on Chapter 6, the projection data are organized as 3D sino-
grams, and this scheme was maintained for the 3D image reconstruction of Clear-PEM
data. In fact there are other data formats that can be used to histogram the data
issued from planar detector based scanners, namely linograms [165]. The use of this
format was also explored for image reconstruction of Clear-PEM data by N. Matela
[166]. However, that format imposes the constraint that data should be acquired only
at two perpendicular positions of the detector plates. Although such a possibility is not
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explored in this work, the Clear-PEM scanner has the capability of acquiring data in
several angular positions around the breast, as it was described in Chapter 5. Therefore,
using sinogram-based image reconstruction software does not disregard the possibility
of using it in scenarios where the data are acquired in more than two perpendicular
angular plates positions.
One of the input data formats accepted by STIR is the Interfile format. The class Pro-

jDataInterfile is the class responsible for the definition of the Interfile format for the
projection data. In this section we will explain the changes that had to be implemented
in this class in order to accommodate the specificities of the Clear-PEM data. Next, we
will present a new class that was added to the buildblocks of the library, ProjDataIn-

foPlanar, that is responsible for the description of the geometry of the scanner and of
the geometry the acquisition of the Clear-PEM data. We will then explain the main
steps in the building of the 3D sinograms, namely the filling of the sinogram header, the
computation of the indexes corresponding to the variables in the sinogram and, finally,
how the Depth of Interaction (DOI) information is accounted for in the sinograms.

7.2.1 The class ProjDataInterfile

The class ProjDataInterfile, responsible for the access of Interfile data, has been changed
in order to accommodate specific information about the planar scanner acquisitions,
such as the number of detector heads or the number of angular positions of the plates.

7.2.2 The class ProjDataInfoPlanar

A new class, ProjDataInfoPlanar, that is responsible for the complete description and
organization of the Clear-PEM projection data, has been added to the ProjDatInfo

hierarchy, according to the inheritance diagram shown in Figure 7.1.

ProjDataInfo

ProjDataInfoPlanar ProjDataInfoCylindrical

Figure 7.1: The ProjDataInfoPlanar class in the ProjDataInfo hierarchy.

The reasoning behind the formulation of this class is as follows. The sinogram format
is an original format for cylindrical scanners acquired data. When using two planar
detectors, there will be empty bins in the sinogram due exclusively to the geometry of
the scanner and of the acquisition. The projection operators will need to rely on the
information about the expected empty positions of the sinogram, given the geometry
of the scanner and of the acquisition. Such information is implemented in the class
ProjDataInfoPlanar.
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A scheme of the expected empty positions of the sinograms, according to the relation
between the length of the detector plates, L, and the distance between them, D, assum-
ing two perpendicular angular acquisition positions of the plates, is shown in Figure 7.2.

L

D

L > D L

D

L

D

L = D L

D

L

D

L < D

φ

s s

φ

s

φ

Figure 7.2: Different relations between the opposing detector heads distance and the
length of the detector heads leads to different fillings of the sinogram. When L ≥
D (right and center) all the azimuthal angles, φ are sampled, but some transaxial
distances, s, are not. When L < D there are both azimuthal angles and transaxial
distances that are not sampled.

When the distance between the two detector plates is higher than the length of the
detector plates there are two sets of azimuthal angles for which there are no bins filled
in the sinograms. These gaps, that are delimited by the limit angles φlim1, φlim2 and
φlim3, φlim4, as indicated in Figure 7.3 correspond to the angles that are not sampled at
all due to the nature of the acquisition geometry. They also correspond to the limiting
sampled angles with each angular position of the detectors: φ1 and φ2 correspond to
the limit angles when the plates are at 90◦; φ3 and φ4 correspond to the limit angles
when the plates are at 0◦.
In a similar fashion, to each azimuthal angle corresponds a set of tangential positions
that are sampled, whereas others are not.
The constructor of class ProjDataInfoPlanar must have access to the following infor-
mation regarding the geometry of the scanner and the acquisition geometry:
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smax

φlim1

-smax

φlim2

φlim3

φlim4

φmax

Figure 7.3: Some bins in the sinogram are expected to be empty, due to the nature of
the acquisition geometry

- The number and the angular positions at which the plates acquire data. This
can either be one angular position of the plates, at 0◦ (scheme presented in Fig-
ure 5.5(a)) or two angular position of the plates, both at 0◦ and 90◦ (the scheme
of the acquisition at 90◦ is presented in Figure 5.5(b)).

- The number of detector rows in a detector plate, N. This is the number of detector
elements along the direction parallel to the axis of rotation of the detector plates,
which is also the longer axis of the detector plates.

- The number of detector elements in a detector row, n.

- The width of each detector element, ds.

- The row spacing, dz. This is the distance between two contiguous detector rows
in a detector plate.

- The number of transaxial bins and the size of each transaxial bin. This is used
as the transaxial sampling in the sinogram and in the images.

- The distance between the faces of the crystals in the two opposing detector plates,
D.

Based on this information, the following quantities are computed:

- The detector plates length, L. This is computed as the product of the number of
detectors per plate row multiplied by the size of each detector element.

- The azimuthal angle sampling. In order to define the azimuthal angle sampling,
the azimuthal aperture of the scanner, Ψ, is first determined. When L ≥ D the
azimuthal aperture, Ψ is given by

Ψ = 2arctan
L/2
D/2

(7.1)
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The azimuthal angle sampling, dφ, is then computed as the azimuthal aperture
divided by the number of detector elements per plate row,

dφ =
Ψ
n

(7.2)

- The azimuthal shift. The azimuthal shift, γ consists on the angular shift between
the last azimuthal angle that is sampled with one angular position of the plates
and the first azimuthal angle that is sampled with the perpendicular position
of the plates, due to the gap that exist between two angular positions of the
detectors when L < D (Figure 7.4).

L
D

γ
a

b

Figure 7.4: Definition of the azimuthal shift

The azimuthal shift is given by

γ = 2 sin
a

b
(7.3)

where a and b, which are defined in Figure 7.4, are given by

a =
L−D

2
√

2

b =
√

(L/2)2 + (D/2)2 (7.4)

The azimuthal shift is used to determine the azimuthal angle corresponding to a
given azimuthal angle index in the sinogram, as explained next.

- The limit view numbers. The limit views that are represented in Figure 7.3 are
determined by

φlim1 = arctan
L

D
φlim2 = π − φlim1

φlim3 = arctan
D

L
φlim4 = π − φlim2 (7.5)
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- The azimuthal angle φ. When the azimuthal angle index, φindex, is given, the
azimuthal angle is determined as

φ = φindexdφ if φindex ≤ φlim1

φ = φindexdφ + γ if φindex > φlim1

φ = φindexdφ + 2γ if φindex ≥ φlim2 (7.6)

- The tangential limits. These define, for each azimuthal angle, the set of tangential
positions which are expected to contain information, as it was explained above.
The previous steps to computing the tangential limits for each azimuthal angle
consists on determining the azimuthal shift (Equation 7.3) and the limit views
(Equation 7.5). The module of the tangential limit for each view, slim, is then
computed as

slim = L
2 cos φ− D

2 sinφ if φ ≤ φlim1

slim = L
2 sin φ− D

2 cos φ if φlim3 ≤ φ ≤ φmax/2

slim = L
2 sin φ + D

2 cos φ if φmax/2 < φ ≤ φlim4

slim = −L
2 cos φ− D

2 sin φ if φlim2 ≤ φ ≤ φmax (7.7)

- The tangent of the co-polar angle, tan θ, given the corresponding sinogram index,
θindex. This is determined as

tan θ = θindex.dz/T (7.8)

where T is the projection of the LOR in the transaxial plane,

T = D/ cos φ if φlim1 ≤ φ ≤ φlim2

T = D/ sin φ if φlim3 ≤ φ ≤ φlim4 (7.9)

Other important operations implemented in this class are the computation of angles and
transaxial positions of a bin in the sinogram, given the bin indexes. These operations
often rely on the location of the bin with respect to the angular limits defined above.
Of particular importance are the computation of the azimuthal angle φ, given a bin,
and the computation of the tangent of the co-polar angle, tan θ, given a bin.

7.2.3 Building the sinogram header

The program for organizing the acquisition data into 3D sinograms, named PlanarPEM-

Rebinner takes as input the necessary information about the geometry of the scanner,
the geometry of the acquisition and other information needed to define an object of
class ProjDataInfoPlanar and to build a sinogram Interfile header.
The values for the needed parameters are as follows:.
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- The number of detector rows in a detector plate (N). Each Clear-PEM detector
plate contains 64 detector elements in that direction, as it was described in Sec-
tion 5.2 of Chapter 5. The maximum number of segments in the complete 3D
sinograms is 2N −1, as it was explained in Chapter 4, Section 4.2. Therefore, the
complete 3D sinograms of the Clear-PEM scanner have 127 segments, ranging
from −63 to +63.

- The number of detectors in a row of detectors. The Clear-PEM detector plates
have 48 detector elements in each detector row (Chapter 5, Section 5.2).

- The row spacing. In the Clear-PEM scanner, this distance is not constant, varying
with the position of the detector elements along the short axis of the supermodule.
This is because there are gaps of different dimensions between the several elements
that compose the detector supermodules, mainly due to the associated electronics.
For that reason, when using the realistic scanner geometry, the considered row
spacing is a mean value that is computed as the quotient between the total length
of a detector row and the number of detector rows.

- The width of each detector element. Each individual crystal has a square face
with 2 mm side. However, when using the realistic scanner geometry, the distance
between the center of two contiguous crystals in a row is higher then that value
and is not constant, depending on the position of the crystals along the longer
axis of the supermodule. Hence, similarly to what was done in the previous point,
the width of each detector element was assigned with a value that is the shorter
length of the detector plates divided by the number of detectors in a row.

The parameters about the geometry of the acquisition are the distance between the faces
of the crystals in two opposing detector plates (D), and the number of angular positions
of the plates to acquire data. By the time this work was written, the implemented
options for the number of angular plates positions were 1 or 2, as it was previously
explained.
The remainder information needed to build the sinograms are the maximum number of
tangential bins that the sinogram will have, as well as their size. This is used to define
the number and the size of the transaxial bins in the image. This means that these
parameters define the transaxial Field of View of the image to be reconstructed. With
the above settings and the dimensions of the Clear-PEM scanner, the 3D sinograms
defined for the scanner have 99 radial bins, 96 polar angle bins, 127 segments with axial
positions ranging from 1 to 64.
The information described above is used to create a ProjDataFromStream object that,
in turn, is used to fill a header of an Interfile-like sinogram.
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7.2.4 Computing the sinogram indexes

The data that PlanarPEMRebinner takes as input is a list of the impact coordinates of
the annihilation photons with the detector plates, {(X1, Y1, Z1) , (X2, Y2, Z2)}, that have
previously been processed to accommodate the DOI information, as it will be explained
in paragraph 7.2.5. When working with simulated data, another previous step must
be performed. Such step consists on reading the ROOT files where simulated data is
stored (Chapter 5), selecting the events of interest, computing the coordinates of the
impact of the photons with the crystals and writing them into a list in a binary file.
To compute the sinogram indexes, the first step consists on performing a change in
the coordinates, since the coordinate system of the Clear-PEM scanner (Chapter 5) is
different from the coordinate system in STIR (Chapter 6). In particular, the origins of
the coordinates systems are different. In fact, the Clear-PEM coordinate system has
its origin at the geometrical center of the crystals of the two detector heads, while the
coordinate system of STIR has its origin at the middle of the first detector ring. The
relationship between the two coordinate systems is given by

XSTIR = ZClearPEM

YSTIR = −YClearPEM

ZSTIR = XClearPEM + ∆X (7.10)

where ∆X = (N − 1) /2 with N being the number of detector rows, as explained above.
The transaxial and the axial indexes of each line of response are then computed. The
transaxial coordinates, s and φ are given by

φ = arctan
Y2 − Y1

X2 −X1

s = X1 cos φ + Y1 sin φ (7.11)

where φ ∈ [0, π[. To find the corresponding indexes, the computed value of s is divided
by the tangential sampling, given by the bin size, and the computed value of φ is divided
by the azimuthal angle sampling, respectively. How the azimuthal angle sampling is
defined will be explained later.
The axial coordinates of the LOR, θ and z, are both function of the rows of detectors
that comprise the LOR. The first step consists on calculating the rows corresponding
to the Z values of the impact coordinates:

row1 = Zmin/dz

row2 = Zmax/dz (7.12)

where dz is the row spacing, Zmin = min{Z1, Z2} and Zmax = max{Z1, Z2} The index
of the axial position , zindex is given by

zindex = (row1 + row2− δz [θindex]) /2; (7.13)
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where δz [θindex] is an axial offset that depends on the segment to which the LOR
belongs, θindex. With this definition, the first axial position in any segment is always
zero.
The index of the co-polar angle, θindex, which also defines the segment number, is
computed as

θindex = (Zmin − Zmax) /dz; (7.14)

After having determined the four LOR indexes, the corresponding bin in the sinogram
is incremented by one value. The procedure is repeated for the next event in the input
file, until all the events have been processed and stored.

7.2.5 Dealing with the DOI information

As it was explained in Chapter 5, the Clear-PEM scanner has the ability of determining
the depth impact coordinate within the crystal with a foreseen resolution of 2.0 FWHM.
In scanners that do not have DOI capabilities, the impact coordinate of the incoming
photons with the detector crystal is assigned with a fixed value such as the coordinate
of the front face of the crystal. In scanners that have the capability of measuring the
DOI the amount of possible LORs increases drastically. If all the possible LORs would
be stored in a separate bin in the sinogram, this entity would become excessively large.
This would result in high computational burden with impact on the computation time
of the image reconstruction process. To avoid this problem, we have chosen a different
approach to deal with the DOI information. Such approach, whose schematic explana-
tion that can be seen in Figure 7.5, has allowed to maintain the resolution given by the
DOI information without excessively increasing the processing time.

LOR

(X1,Y1,Z1)

(X2,Y2,Z2)

(X’1,Y’1,Z’1)

(X’2,Y’2,Z’2)

Figure 7.5: Schematic drawing of how the DOI information is taken into account in the
image reconstruction process.

The coordinates of impact of the incoming photon within the detector crystals, (X1, Y1, Z1)
and (X2, Y2, Z2), are used to determine coordinates that define the segment of the LOR
that is limited by the opposing crystal faces. According to Figure 7.5 this is the segment
of the line defined by the two points with coordinates

(
X

′
1, Y

′
1 , Z

′
1

)
and

(
X

′
2, Y

′
2 , Z

′
2

)
.
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Accordingly, one of the coordinates, X or Y , depending on the angular position of
the detector plates, ζ, will equal half the distance between the detector plates, D/2.
Therefore, the coordinates that will feed the program PlanarPEMRebinner are

(
X

′
1, Y

′
1 , Z

′
1

)
= (X1[D/2], L/2, Z1[L/2]) , (X2[L/2],−L/2, Z2[L/2]) if ζ = 0◦(

X
′
2, Y

′
2 , Z

′
2

)
= (L/2, Y1[L/2], Z1[L/2]) , (−L/2, Y2[L/2], Z2[L/2]) if ζ = 90◦

assuming that the data has been ordered so that (X1, Y1, Z1) are the impact coordinates
in plate 1 and (X2, Y2, Z2) are the impact coordinates in plate 2.

7.3 The projection operators for Clear-PEM

A new class, ProjMatrixByBinForPEM, that is responsible for the computation of the
system matrix elements for the Clear-PEM scanner was added to the ProjMatrixByBin

hierarchy, according to the inheritance diagram shown in Figure 7.6.

ProjMatrixByBin

ProjMatrixByBinUsingRayTracing ProjMatrixByBinForPEM

Figure 7.6: The ProjMatrixByBinForPEM class that has been added to the ProjMa-
trixByBin hierarchy.

This class computes the projection matrix elements for the PEM scanner, by using
the Siddon’s algorithm described in Chapter 6. Although the Length of Intersection
(LOI) model is used, several rays (up to three rays) to trace each sinogram bin in the
tangential direction are used, thus approximating a Tube of Response (TOR) model.
This follows the general implementation of the TOR model used in STIR. In the axial
direction, when the voxel size is exactly twice the sampling in axial direction, multi-
ple LORs are use to avoid missing voxels, as it was explained in Chapter 6. In the
transaxial direction, a number of rays to trace each bin up to 3 can be used in the
computations.
This class has methods for setting up pointers both to the image, to the ProjDataInfo

object and to the geometrical symmetries. The image has to be of type VoxelsOnCarte-

sianGrid and the ProjDataInfo has to be of type ProjDataInfoPlanar. The geometrical
symmetries will be discussed in Section 7.4. The default constructor of the class sets up
the defaults typical of a ProjMatrixByBin object and also the defaults regarding the
geometrical symmetries that are to be considered and the number of transaxial LORs
that are to be used in the tracing of each bin.
The actual computation of the system matrix elements is made within a method that
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is named calculate proj matrix elems for one bin. This method works with objects
of class ProjMatrixElemsForOneBin. This is a class that implements a LOR, storing
the non-zero projection matrix elements for every voxel that contributes to a given
bin. In other words, it is a class that stores and allows access to a given row in
the system matrix. The computations themselves are implemented in the method
named ray trace one lor for pem. Figure 7.7 shows the flux diagram for the method
calculate proj matrix elems for one bin.

Use pointer to ProjDataInfoPlanar object to calculate quantities related to the input 

lor (s, φ, tangent θ, z sampling, etc) and to the acquisition geometry (φlim1, φlim2) 

Use pointer to ProjDataInfoPlanar object to calculate quantities related to the input 
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else

Ray_trace_one_lor_for_pemRay_trace_one_lor_for_pem Define ProjMatrixElemsForOneBin object, ray_traced_lor
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Ray_trace_one_lor_for_pem (acts on ray_traced_lor)

Merge ray_traced_lor with lor

Add other lors in axial directionAdd other lors in axial direction

If num_tangential_rays= 1

Figure 7.7: Flux diagram for the method calculate proj matrix elems for one bin in
the ProjMatrixByBinForPEM class.

7.4 The geometrical symmetries

The use of geometrical symmetries between the projection data and the image grid
can be used to speed up the computations, for some of the quantities (ds,dz,dφ, see
Chapter 6) used in the computations of the image matrix for a given voxel can be re-used
for other voxels. The geometrical symmetries computed for the Clear-PEM scanner
follow the reasoning and methods presented in [160], which are also implemented in the
general STIR library. Those geometrical symmetries are as follows:

- z-symmetry: translational symmetry around the axis of rotation of the scanner.
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Since the ring spacing is a the double of the voxel size, the ds and dz quantities
can be reused for voxels with different Z coordinate.

- s-symmetry: symmetry about the center of the image voxel. Different voxels
share the quantity ds, although with different dz;

- θ-symmetry: the quantities ds and dz computed for backprojecting a given beam
with positive θ can be reused for a beam with negative θ;

A more detailed explanation of the geometrical symmetries in s, z and θ can be found
in [160].

7.5 The test utilities

The test utilities were created to test the forward projection and backprojection oper-
ations.
The PlanarFwdTest utility performs a simple backprojection of an input sinogram.
The ProjDataInfoPlanar and the ProjMatrixByBin objects are build from this input
sinogram. The user may specify some parameters such as the number of segments to
be backprojected.
The PlanarBackTest utility allows to create a set of projection data given an image.
The ProjDataInfoPlanar object needed for the ProjMatrixByBin object is build from
a template Interfile sinogram. The sinograms resulting from the usage of this program
will have an header similar to the template. Some examples of sinograms resulting from
the use of this utility will be shown in Section 7.6.

7.6 Preliminary Evaluation

A preliminary evaluation of the Clear-PEM scanner dedicated classes and utilities in-
troduced in STIR was made with the help of analytical phantoms. An image of a Sphere
Phantom and an image of a Cross Phantom similar to those described in Chapter 6
were created. The Sphere Phantom created had 10 counts/pixel and each point source
in the Cross Phantom was defined in half a pixel with 65 counts. The 3D sinograms
of such images were created with the use of the planar forward projector test utility
described above. The geometry used consisted on the Simplified Scanner Geometry
that was described in Chapter 6, which includes an acquisition in two perpendicular
angular plates position. The central slice of each of these analytical phantoms, as well
as the central slices of their respective sinograms (segment 0) are shown in Figure 7.8
Since the forward projector operator does not account for the random nature of the
acquisition process, Poisson noise had to be added to the sinograms of the phantom
data. For this purpose, an utility to add Poisson noise to images or sinograms was
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Figure 7.8: Images of the central slices of the Analytical Sphere Phantom and of the
Analytical Cross Phantom (on the left) and central slices of the corresponding segment
0 sinograms (on the right).

written in IDL (Interactive Data Language). The created utility uses an IDL function
that returns a random deviate for every pixel of the input image drawn from a Poisson
distribution with the same mean of the input value.
To verify the appropriate functioning of the Poisson noise program, it was applied on
images with an uniform central circular region with 10, 100, 1000 and 10000 counts per
pixel. The resulting noisy images are shown in Figure 7.9.

(a) (b) (c) (d)

Figure 7.9: Central slice of the the images with an uniform circular area after adding
Poisson noise. The images shown correspond to original with a) 10 counts per pixel,
b) 100 counts per pixel c) 1000 counts per pixel and d) 10000 counts per pixel. In a)
the Region of Interest that was used to analyze the images is shown.

The mean number of counts and the variance obtained in a large Region of Interest
(ROI) drawn over the images after adding the Poisson noise were recorded and are
presented in Table 7.1. The ROI used is shown in Figure 7.6.
The presented values confirm that the developed program produces results that are in
agreement with the fundamental characteristic of the Poisson distribution, that is, the
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Number of Counts Mean Number of Variance
in Uniform Image Counts After Noise After Noise

10 10.0975 10.4994
100 99.9203 104.069
1000 999.028 978.762
10000 10002.4 10007.1

Table 7.1: Values of mean a variance in large ROIs drawn in uniform images after the
addition of Poisson noise

equality between the mean and the variance.
Once confirmed its good functioning, the utility was used to apply Poisson noise to
the sinograms of the analytical phantoms. Images of such sinograms are shown in Fig-
ure 7.10. These images were then reconstructed with OS-EM and 4 subsets, using all
the geometrical symmetries available and the TOR model.

Figure 7.10: Images of the central slice of segment 0 sinograms of the Analytical Sphere
Phantom (on the left) and of the Analytical Cross Phantom (on the right) after the
addition of Poisson noise.

Figure 7.11 shows the central slice of the reconstructed images of the Sphere and of
the Cross Phantom, as well as the profiles taken along a central line of the original and
of the reconstructed images. This results shown that there is a good visual agreement
between the created and the reconstructed images.
To further study the behavior of the image reconstruction software, in order to optimize
it, several tests were performed. These tests aimed at obtaining an initial evaluation
of the performance of the image reconstruction software under different options for the
parameters of the projector operators. The effect of varying some parameter of the
reconstruction algorithm was also studied. The parameters that were varied were the
number of subsets to be used in the OS-EM algorithm, the number of rays that are used
in the projectors to trace each bin in the transaxial direction and the several geometri-
cal symmetries to be used. The ability to reconstruct data obtained in an acquisition
geometry other than the standard one (as defined in Chapter 5) was also briefly eval-
uated by analytically simulating an acquisition with only one angular position of the
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Figure 7.11: Central slice of the reconstructed images of the Analytical Sphere Phantom
(on the left, above) and of the Analytical Cross Phantom (on the right, above) and the
corresponding profiles taken along a central line on the central slice of the original and
of the reconstructed images.

plates.
For the above mentioned purposes, the data of the Analytical Sphere Phantom and of
the Analytical Cross Phantom, after the addition of Poisson noise, was reconstructed
under the different conditions. The results were evaluated in terms of Figures of Merit
(FOM) such as image spatial resolution and image uniformity and also the computation
time associated with each image reconstruction procedure.

7.6.1 Number of Subsets

The OS-EM algorithm is the most used statistical iterative algorithm used for PET
image reconstruction. Therefore, the 3D version of the OS-EM reconstruction algo-
rithm available in STIR was naturally chosen to test the image reconstruction software
for the Clear-PEM scanner. One of the image reconstruction parameters to be evalu-
ated and optimized is the number of subsets to use in the OS-EM algorithm. In this
paragraph we will present the tests performed for that purpose and the results obtained.
It was already mentioned that when using one subset, the OS-EM algorithm is equiv-
alent to the ML-EM algorithm, that has proved convergence to a ML solution. Higher
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subset numbers accelerate the image reconstruction task, but, if the number of sub-
sets is sufficiently high, the subsets become unbalanced and image artifacts may arise.
Additionally, it can only be considered a number of subsets that are divisible by the
number of views in the sinograms, which, in the case of the Clear-PEM scanner, is 96.
Too guarantee the symmetric balancing among subsets, the number of subsets must
be divisible evenly by the numberofsubsets/4. Therefore, initial test were performed
by reconstructing the images of the Analytical Sphere Phantom and of the Analytical
Cross Phantom data with ML-EM and with OS-EM with 2, 4, 12 and 24 subsets.

7.6.1.1 Analytical Cross Phantom

The Analytical Cross Phantom reconstructed images allowed to evaluate the image
spatial resolution. This Figure of Merit was parameterized by the full-width at half-
maximum (FWHM) of Gaussian fits of the profiles taken over the reconstructed point
sources in all three directions, radial, transverse and axial.

B

A

Line for the Radial 

Profile of Point Source B

Line for the Transverse 

Profile of Point Source A

Line for the Radial 

Profile of Point Source A

Line for the Transverse 

Profile of Point Source B

A*

B*

Figure 7.12: Examples of the nomenclature of the profiles of the point sources in the
Cross Phantom used to analyze the spatial resolution of the images in the transaxial
plane.

For the sake of clarity, we will first clarify the nomenclature used for the radial, trans-
verse and axial directions. The axial profile refers to the profile taken along the axis
parallel to the axis of rotation of the scanner. The transverse and radial profiles are
both contained in the axial plane of the scanner that was defined in Figure 5.9(b). For
each point source of the Cross Phantom, the radial profile corresponds to the profile
taken along the line that intersects the central point source. This may be a vertical or
an horizontal line, depending on the position of the studied point source in the Field
of View. For instance, the radial profile of Point Source A corresponds to the profile
taken along an horizontal line, as shown in Figure 7.12, whereas for Point Source B the
radial profile corresponds to the profile taken along a vertical line. With respect to the
special cases of the the point sources placed along the rotational axis of the scanner,
we will nominate radial the profile that is taken along a vertical line and transverse the
profile that is taken along an horizontal line.
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Due to the geometry of the phantom and of the simulated acquisition, the profiles of
Point Sources A and A∗ are expected to be similar, as well as the profiles of Point
Sources B and B∗. The radial profiles of Point Sources A and A∗ are expected to be
similar to the transaxial profiles of Point Sources B and B∗. In fact, in the idealized
case studied in this paragraph, the radial and transaxial profiles of each source are
similar, the profiles of point sources A, A∗, B and B∗ are similar, and the profiles of
the Central Point Sources are similar to the profiles located in the non central plane
(see scheme of the Phantom in Figure 5.6(a), Chapter 5).
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Figure 7.13: Values of FWHM against full iteration number measured along the radial
and along the axial profiles of the reconstructed images of the Analytical Cross Phantom
with each of the number of subsets studied.

Figure 7.13 presents the plots of the FWHM values taken along the radial and the axial
profiles against the full iteration number. By full iteration we refer to a complete pass
over all the subsets used. The plots shown correspond to the Central Point Source and
to the Point Source A. The plots corresponding to the FWHM values measured in the
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transverse profile, not shown, are equal to the corresponding plots for the radial pro-
files. The plots corresponding to Point Sources A∗, B and B∗, not shown, are similar
to the presented plots for Point Source A, the same happening for the plots of Point
Sources D and D∗ with respect to the plots of the central point source.
The presented plots clearly show that, with respect to the number of subsets used in
the iterative image reconstruction algorithm, all of the FWHM curves converge to a
common value. However, and as expected, the higher the number of subsets used, the
lower is the iteration of convergence. As a criterion of convergence, a variation of the
FWHM less than 1% in the subsequent iterations in the FWHM component of the point
source that took longer to converge was considered. In this case, the axial component
of the Central Point Source was slower to converge.
Table 7.2 presents the number of full iterations needed to achieve convergence and the
corresponding computation time for the several number of subsets considered. In a
x86 64-bits processor with 4 Gb RAM a full iteration takes approximately 12 minutes
for every number of subsets used. The time for convergence is thus determined as the
product of 12 by the number of full iterations needed to achieve convergence.

Number of Number of Computation Time
Subsets Full Iterations (minutes)

1 35 420
2 20 240
4 10 120
8 6 72
12 4 48
24 2 24

Table 7.2: Values of the number of full iterations of the Analytical Cross Phantom
reconstructed images needed to achieve convergence and the corresponding computation
times.

7.6.1.2 Analytical Sphere Phantom

The Analytical Sphere Phantom reconstructed images allowed to evaluate the image
uniformity. To compute this Figure of Merit, an analysis was performed by drawing a
large ROI over an area of the uniform sphere in the reconstructed images. The mean
number of counts and the variance of pixel values measured in that ROI were recorded
for the several iterates of the several number of subsets used in the image reconstruction
algorithm. Image uniformity was computed as the fraction between the mean number
of counts inside the ROI and the standard deviation inside the ROI. The value of the
mean number of counts inside the ROI was also used to determine the convergence
of the iterative process. As a criterion of convergence, a variation of less than 1% in
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the subsequent iteration in the mean counts inside the ROI was considered. The plot
of the mean counts inside the ROI against the full iteration number for the several
number of subsets used in the reconstruction process is shown in Figure 7.14(a), and
the corresponding standard deviation values against the iteration number are shown in
Figure 7.14(b).
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Figure 7.14: Plots of the mean number of counts and of the standard deviation measured
in a large Region of Interest placed over the reconstructed images of the Analytical
Sphere Phantom against the full iteration number for each of the number of subsets
used in the reconstructions.

The plot of Figure 7.14(a) shows that the mean number of counts inside the ROI ob-
tained for the images with ML-EM and OS-EM with 2, 4 and 8 subsets are similar to
the number of counts in the original image, which was 10 before adding the Poisson
noise. On the contrary, images reconstructed with OS-EM with 12 and 24 subsets con-
verge to values of mean counts inside the ROI that are lower than the original image.
In table 7.3 the values of the Mean Counts in ROI after convergence are presented, as
well as the corresponding number of full iterations and the corresponding computation
time.
The plot in Figure 7.14(b) shows that the values of the standard deviation inside the
ROI in the case of 2 and 4 subsets converge to a value that is close to the value reached
with the ML-EM. On the contrary, the standard deviation values obtained with 8, 12
and 24 subsets significantly deviate from the value to which the ML-EM algorithm
converge. The 24 subsets reconstructed images present as the worse case, that is, the
case where the measured standard deviation is the highest. This raise in the noise of
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Number of Mean Counts Number of Computation Time
Subsets in ROI Full Iterations (minutes)

1 10.3 6 72
2 10.2 4 48
4 10.3 2 24
8 9.6 3 36
12 9.2 2 24
24 7.8 2 24

Table 7.3: Values of the mean number of counts in a ROI drawn over the reconstruc-
ted images of the Analytical Sphere Phantom after convergence is achieved, with the
corresponding number of full iterations, for all the number of subsets studied.

the images with the raise in the number of subsets used is in agreement with the known
behavior of the OS-EM algorithm.
As a consequence, the plot of the image uniformity index against iteration number,
presented in Figure 7.15, shows differentiated behavior depending on the number of
subsets used. The curves corresponding to OS-EM with 2 and 4 subsets converge to
values close to the values of ML-EM. However, the maximum on those curves is reached
at an earlier iteration when 4 subsets are used. The image reconstruction using higher
number of subsets results in images with much lower values for the uniformity index.
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Figure 7.15: Plot of the Mean over Standard Deviation against the number of full
iterations, for the images of the Analytical Sphere Phantom reconstructed with the
several number of subsets of the OS-EM algorithm.

Figure 7.16 shows the central slice of the reconstructed images of the Analytical Sphere
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Phantom at the iteration of convergence. These images clearly confirm what was de-
vised in the previous plots: image reconstruction with ML-EM or with OS-EM and
2 and 4 subsets give similar results; a faint artifact begins to appear in the 8 subsets
image, becoming clearly noticeable at the 12 subsets image and completely visible at
the 24 subsets image. This artifact is probably related to the small number of views
that are contained in each of the subsets (12, 8 and 4 views respectively for the 8 sub-
sets, 12 subsets and 24 subsets case).
The poor quality of these images can be further confirmed in Figure 7.17. It shows the
plot of the profiles taken along a central line in the central section of the reconstructed
images of the Analytical Sphere Phantom with the several subsets studied. It can be
observed that the profiles taken from the images corresponding to 8, 12 and 24 subsets
do not match the profiles of the ML-EM case.
Given the results presented in this paragraph, the OS-EM reconstruction algorithm
using 4 subsets was considered as the case where the trade-off between image quality
and computation time was best. Therefore, in the remainder of this work the number
of subsets used in the iterative reconstructions process will be 4.

7.6.2 Number of rays to trace each bin

As it was explained in Section 7.3, the modeling of the forward projection and of the
backprojection operations can use more than one ray to trace each bin in transaxial
direction. In theory, for an high number of rays, the result is approximate to a strip
integral in the tangential direction. In the present STIR implementation, a number
from 1 to 3 rays used to trace each bin in the transaxial direction can be used. In
this paragraph the Analytical Cross Phantom and Analytical Sphere Phantom data
are used to analyze the behavior of the image reconstruction algorithm using different
values of this projector parameter. The data were reconstructed with OS-EM with 4
subsets and a number of rays to trace each bin in the tangential direction that ranged
from 1 to 3. Images were analyzed as in the previous paragraph.

7.6.2.1 Analytical Cross Phantom

Figure 7.18 shows the plots of the FWHM values of the central Point Source and of the
Point Source A measured in the axial, radial and transverse profiles for the different
number of rays used in the tangential direction. Once again, the plots for these point
sources are representative of the remainder.
These plots confirm what was expected: the spatial resolution measured in the axial
plane (that is, along the transverse and radial profiles) significantly improves with the
number of rays that are used to trace for each bin in the transaxial direction. Only
when using three rays to trace each bin, the transverse and radial image resolution
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(a) (b) (c)

(d) (e) (f)

Figure 7.16: Central slice images of the Analytical Sphere Phantom reconstructed
images with (a) ML-EM and OS-EM with (b) 2 subsets, (c) 4 subsets, (d) 8 subsets,
(e) 12 subsets and (f) 24 subsets at the corresponding iteration of convergence.
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Figure 7.17: Profiles of the Analytical Sphere Phantom reconstructed images with the
different number of subsets studied. The profiles were taken along a central horizontal
line in the central section of the reconstructed images.
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Figure 7.18: Values of FWHM against iteration number along the radial, transverse and
axial profiles of the Central Point Source and of the Point Source A of the reconstructed
images of the Cross Phantom with 1,2 or 3 rays to trace for each bin in tangential
direction. The spatial image resolution of the original image is drawn in a black line.
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values converge to the resolution values of the original image. The axial component
of the image resolution is unaffected by the variation in this parameter, since it only
affects the modeling of the projection operations in the transaxial component.
Figure 7.19 shows the central slice of the subtraction of original Cross Phantom image
with the reconstructed images with 1 and 2 rays. The subtraction image for 3 rays is
not shown because its an empty image.

20

0

(a)

3

0

(b)

Figure 7.19: Central slice images of the subtraction of original Cross Phantom image
and the images reconstructed with a) 1 ray and b) 2 rays to trace each bin in the
transaxial direction.

7.6.2.2 Analytical Sphere Phantom

The evolution of the mean number of counts and the standard deviation inside the
ROI placed over the reconstructed images of the Analytical Sphere Phantom with the
iteration number is presented in Figure 7.20 for the three used number of rays in the
transaxial direction. While the plot of the mean number of counts against iteration
number presents no difference for the three cases studied, the same does not happen
for the standard deviation values inside the ROI. In fact, the plot presented in Fig-
ure 7.20(b) shows that the use of 3 rays to trace each bin in the transaxial direction
leads to images with much lower values of standard deviation than the other two cases.
Consequently, the uniformity index is also more favorable when 3 rays are used, as it
can be seen in Figure 7.21.
Figure 7.22 shows the central slice images of the Analytical Sphere Phantom recons-
tructed with 1, 2 and 3 rays to trace each bin in the transaxial direction. The visual
inspection of these images confirms the higher quality of the image reconstructed with
3 rays to trace each bin in the transaxial direction.

7.6.2.3 Computation Times

Table 7.4 presents the computation time per iteration of the image reconstruction of
the Analytical Cross Phantom and of the Analytical Sphere Phantom with 1, 2 and
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Figure 7.20: Plots of the mean and standard deviation inside the ROI in the Analytical
Sphere images against iteration number for the 1, 2 and 3 rays to trace each bin in the
transaxial direction.
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Figure 7.21: Plot of the image uniformity index against iteration number for the Ana-
lytical Sphere reconstructed images with 1, 2 or 3 rays to trace each bin in the transaxial
direction.

(a) (b) (c)

Figure 7.22: Central slice images of the Analytical Sphere Phantom reconstructed with
a) 1 ray b) 2 rays and c) 3 rays used to trace each bin in the transaxial direction.
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3 rays used to trace each bin in the transaxial direction. There is a slight increase
in the computation time per iteration with the increase in the number of rays used.
This increase is, however, largely compensated by the increase in the quality of the
reconstructed images that was observed in the previous paragraphs. Hence, in the
remainder of this work the projector operators will use 3 rays to trace each bin in the
transaxial direction.

Number of Rays Cross Phantom Sphere Phantom
1 10 minutes 7 minutes
2 11 minutes 10 minutes
3 12 minutes 11 minutes

Table 7.4: Computation time per iteration for the image reconstruction of the Analyt-
ical Cross Phantom and of the Analytical Sphere Phantom images with 1, 2 and 3 rays
used to trace each bin in the transaxial direction.

7.6.3 Geometrical Symmetries

The use of the geometrical symmetries described in Section 7.4 in the image reconstruc-
tion process was tested with the Analytical Cross Phantom and the Analytical Sphere
Phantom data. Both phantom data were reconstructed with OS-EM with 4 subsets
and 3 rays to trace each bin in the transaxial direction. Four different combinations of
the geometrical symmetries in the reconstruction were used: no use of symmetries, use
of the s-symmetry only, use of the θ-symmetry only, use of the z-symmetry only and use
of all the geometrical symmetries simultaneously. Images were analyzed as described
in the previous paragraphs. The set of reconstructed images with the different sym-
metries allowed to investigate whether the use of geometrical symmetries introduces
any error in the image reconstruction process, with respect to the images reconstructed
without using the geometrical symmetries. It also allowed to investigate the gain in
reconstruction time achieved with the use of the geometrical symmetries.

7.6.3.1 Analytical Cross Phantom

Figure 7.23 shows the plots of the values of the image spatial resolution against the
iteration number for the Central Point Source and for Point Source A of the Analyti-
cal Cross Phantom, for the used combinations of geometrical symmetries. The spatial
resolution values shown were measured along the radial and the axial profiles and are
representative of the remainder. These plots show that the use of geometrical symme-
tries, either in separate or simultaneously, lead to an evolution of the spatial resolution
with the iteration number that is similar to the observed for the images reconstructed
without symmetries.
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Figure 7.23: Plots of the image spatial resolution against the iteration number for
the central point source and for point source A of the Analytical Cross Phantom,
with different geometrical symmetries in the image reconstruction process: use of no
symmetries, use of s-symmetry only, use of θ-symmetry only, use of z-symmetry only
and use of all these symmetries simultaneously.
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Figure 7.24 shows the central slice of the images of the Cross Phantom reconstructed
without symmetries subtracted by the images reconstructed with each of the geometri-
cal symmetries considered individually and all the symmetries together. Note that the
maximum in the data range of these subtraction images (indicated in the images color
scales) are at least 105 lower than the values of the original images (64 counts before
the addition of the Poisson noise). This shows that, when using the geometrical sym-
metries in the image reconstruction process, the obtained images are consistent with
the images that are obtained when no geometrical symmetries are considered. Thus,
no significant error seems to be introduced by the use of the geometrical symmetries.

7.6.3.2 Analytical Sphere Phantom

Figure 7.25(a) shows the plot of the mean number of counts inside the ROI against the
iteration number for the symmetries used in the reconstruction of the Sphere Phantom.
Figure 7.25(b) shows the plot of the corresponding standard deviation values against
iteration number. These plots show that the both the mean number of counts and
the standard deviation inside the ROI are equal. Consequently, the evolution of the
uniformity index with the iteration number is exactly the same for the different uses of
the geometrical symmetries, as can be confirmed in Figure 7.26.
The images shown in Figure 7.27 are the central slices of the images that result from
the subtraction of the Sphere Phantom reconstructed image without the geometrical
symmetries and the images reconstructed with the geometrical symmetries conside-
red individually and simultaneously. These images confirm that the inclusion of the
geometrical symmetries in the reconstruction process does not result in image errors.
Note that the data range of these subtraction images (indicated in the images color
scales) are at least 103 lower than the values of the original images (10 counts before
the addition of the Poisson noise).

7.6.3.3 Computation Times

The main goal of introducing the geometrical symmetries in the reconstruction process
is the possibility of significantly reducing the computation times. Table 7.5 presents
the computation times per iteration of the reconstruction of the Analytical Cross and
Sphere Phantoms according to the symmetries used.
The s- and θ- symmetry allow each one a reduction of the computation time to half
the time needed for an iteration when no symmetries are used. The z-symmetry allows
a corresponding reduction of the computation time per iteration of approximately 6
times. When used in simultaneous, the three symmetries account for a reduction of 12
times on the computation time per iteration.
As it was shown in the previous paragraphs, the use of the geometrical symmetries in
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Figure 7.24: Central slice of the images resulting from the subtraction of the Cross
Phantom image reconstructed without symmetries and the images reconstructed with:
(a) s-symmetry only, (b) θ-symmetry only, (c) z-symmetry only and (d) all these sym-
metries simultaneously. The values in the color scales indicate the minimum and max-
imum intensity values in each image.
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Figure 7.25: Plots of the mean counts and standard deviation inside the ROI against the
iteration number for the images reconstructed with the studied uses of the geometrical
symmetries.
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Figure 7.26: Plots of the uniformity index against the iteration number for the images
reconstructed with the studied uses of the geometrical symmetries.
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Figure 7.27: Central slice of the images resulting from the subtraction of the Sphere
Phantom image reconstructed without geometrical symmetries and the images recons-
tructed with (a) s-symmetry only, (b) θ-symmetry only, (c) z-symmetry only and (d) all
these symmetries simultaneously. The values in the color scales indicate the minimum
and maximum intensity values in each image.
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Symmetry Cross Phantom Sphere Phantom
None 2h22m 2h26m

s symmetry 1h21m 1h23m
θ symmetry 1h18m 1h21m
z symmetry 0h28m 0h24m

All 0h12m 0h12m

Table 7.5: Approximate computation time per iteration of the image reconstruction of
the Analytical Cross Phantom and of the Analytical Sphere Phantom images for the
studied combinations of the geometrical symmetries.

the reconstruction process does not introduce errors in the reconstructed images. As
the combined use of the s-symmetry, the φ-symmetry and the θ-symmetry lead to a
significant reduction in the image reconstruction computation times, in the remainder
of this work the image reconstruction will be performed with the use of the three
symmetries in simultaneous.

7.6.4 One angular detector plates position

As it was previously said, the enhancements performed in the STIR framework were
optimized for the acquisition conditions that were described in Chapter 5. However,
other acquisition conditions were also considered, namely the use of a different number
of angular detector plates position.
An effort was made to prepare the STIR library to deal with data acquired with the
detector plates at only one angular position. This aimed mainly at comparing the ad-
vantages and pitfalls of both acquisition scenarios.
In this section we present examples of the data and images that are expected to be
obtained for data acquired only in one detector plates positions. The original images
of the Analytical Cross Phantom and of the Analytical Sphere Phantom were forward
projected into sinograms, assuming an acquisition with the detector plates at 0◦. Such
sinograms were then used to feed the OS-EM reconstruction software. The projector
operators used in the reconstruction were also in agreement with the considered acqui-
sition scenario.
Images of the obtained sinograms are presented in Figure 7.28(a) (Cross Phantom)
and in Figure 7.28(b) (Sphere Phantom), showing that only the bins corresponding
to views ranging from φlim2 and φlim3, as defined in Paragraph 7.2.2, are filled. The
central slices of the corresponding reconstructed images are presented in Figure 7.28(c)
(Cross Phantom) and in Figure 7.28(d) (Sphere Phantom). Both these images present
a blurring artifact in the direction normal to the direction of the acquisition. It is thus
consistent with the lack of data acquired in that direction.
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(a) (b)

(c) (d)

Figure 7.28: Central slices of the segment 0 sinogram corresponding to a simulated
acquisition with only one angular position of the detector plates for the Analytical
Cross Phantom (a) and for the Analytical Sphere Phantom (b). Central slice of the
corresponding reconstructed images: c) Cross Phantom, d) Sphere Phantom.

Further analysis of the consequences of acquiring and reconstructing data proceeding
from only one angular position of the detector plates will be carried on in the next
Chapter with the use of Monte Carlo simulated data.

7.7 Conclusions

In this Chapter we have described the main classes and routines that were developed
within the STIR library with the purpose to make it able to deal with data from the
Clear-PEM scanner. Tests were performed with analytical phantoms and the developed
projector operators, aiming at an initial evaluation of the behavior of the enhanced
library. The results of such tests indicate a good agreement between the simulated
and the reconstructed images. A more extended evaluation of the capabilities of the
enhanced STIR library, with Monte Carlo simulated data, will be presented in the next
chapter.



Chapter 8

3D OS-EM image reconstruction

for the Clear−PEM scanner

8.1 Introduction

In the final section of Chapter 7 we presented a preliminary evaluation of the perfor-
mance of the 3D image reconstruction software for the Clear-PEM scanner using the
enhanced STIR framework. This preliminary evaluation used simple analytical simu-
lated geometrical phantom data. In the present chapter we will present the studies
that were conducted with the 3D image reconstruction software using the Monte Carlo
simulated data of the Clear−PEM scanner.
As it was presented in Chapter 5, Monte Carlo simulation was performed both for a
simplified version of the Clear−PEM scanner and for a more realistic, fully simulated
version of the scanner. In the first section of this chapter, the studies that were per-
formed with the simplified scanner geometry described in Chapter 5 will be presented.
In the following sections, Monte Carlo simulation data obtained for the realistic scan-
ner geometry will be used to study several aspects of the combined performance of
the Clear−PEM scanner and the 3D image reconstruction algorithms used. This will
include an evaluation of the effects of detector head rotation and Depth of Interaction
(DOI) information on the quality of the reconstructed images, that will be presented
in the second section of this chapter. In the final chapter section the NCAT breast
phantom simulated data that was described in Chapter 5 will be used to study the
ability of the scanner to detect simulated lesions at given clinical scenarios.

8.2 Simplified Scanner Geometry Studies

In this section we will present the 3D image reconstruction results obtained for the
Sphere Phantom and for the Cross Phantom simulated data that were obtained with



124 3D OS-EM image reconstruction for the Clear−PEM scanner

the simplified geometry of the Clear−PEM scanner that was described in Chapter 5.
The simplification in the Monte Carlo simulation included the geometrical aspects
of the scanner and ignored degrading effects such as the parallax effect (exact DOI
capabilities were considered), the positron range and the scatter. This simplification
allowed isolating pure reconstruction issues from other physical or detector related
artifacts.

8.2.1 Methods

The phantom data was reconstructed with the OS-EM algorithm available in STIR.
According to the results obtained in the preliminary evaluation presented in the pre-
vious chapter, the OS-EM algorithm was used with four subsets and the projector
and backprojector operators where used with the geometrical symmetries available and
with three rays to trace each bin in the transaxial direction. The dimensions of the
reconstructed images were 99×99×127 voxels, each with 1 mm3 voxel resolution .
The quality of the reconstructed images was analyzed using the same figures of merit
that were used in the preliminary evaluation presented in the previous chapter. The
image spatial resolution was parameterized by the full-width at half-maximum (FWHM)
of Gaussian fits of the profiles taken over the point sources in the reconstructed image
of the Cross Phantom. Image uniformity was computed as the fraction between the
mean number of counts inside a region of interest (ROI) drawn over the reconstructed
image of the Sphere Phantom and the standard deviation measured for the same ROI.

8.2.2 Results

8.2.2.1 Cross Phantom

Figure 8.1(a) and Figure 8.1(b) show the central slice of the 0 segment of the sinogram
of Monte Carlo simulation data of the Cross Phantom and the central slice of the
reconstructed image, respectively. Figure 8.1(c) shows the profile taken over a central
horizontal line in the central slice of the reconstructed image of the Cross Phantom.
This line crosses the central point source (C) and the point sources A and A’ of the
phantom, as defined in the scheme of Figure 5.6(a) in Chapter 5.
Figure 8.2 shows the plots of the FWHM values against the iteration number for some
of the point sources in the Cross Phantom. The plots shown refer to the FWHM values
measured along the radial, transverse and axial profiles of the central point source and
point sources A and B and D.
These plots show that, after a short number of iterations, the FWHM values in all
the three directions converge to a given value and do not change afterward. The axial
component of the FWHM of the point sources placed along the axis of rotation of the
scanner (central point source and point source D, Figure 8.2 (a) and (b)) is the one
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Figure 8.1: (a) Central slice of the segment 0 sinogram of Monte Carlo simulation
data of the Cross Phantom in the simplified geometry of the Clear−PEM scanner. (b)
Central axial slice of the respective reconstructed image and (c) profile taken across
the central line of the central slice of the reconstructed image.

that takes longer to converge, but it converges to the same value of the FWMH in the
transaxial profiles for those point sources. This does not happen for the point sources
placed away from the axis of rotation of the scanner. In fact, for those point sources
(A, A’, B and B’) the FWHM values measured along the axial profile always converge
to a higher value than the FWHM values measured along the transaxial profiles. For
all the point sources, the FWHM values measured along the transaxial profiles (radial
and transverse) converge to a common value. The FWHM values measured for point
source D have a similar behavior to those presented for the central point source. The
same happens for point source D’ (plot not shown). As expected due to geometrical
symmetry reasons, the behavior of point source A and B are very similar. They are
also similar to the behavior for point sources A’ and B’ (plots not shown).
Table 8.1 presents the FWHM values measured for the transverse, radial and axial
profiles of all the point sources of the Cross Phantom at the iteration of convergence. We
used here the same convergence criterion that was defined in the preliminary evaluation
studies: the iteration for which there is a percentage variation of less than 1% in the
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FWHM values in the subsequent iterations.

Point Source FWHM (mm3)
Central 0.95×0.95×0.98

D 0.94×0.94×0.98
D’ 0.94×0.94×0.99
A 0.99×0.98×1.20
A’ 0.99×0.98×1.21
B 0.98×0.99×1.19
B’ 0.98×0.99×1.20

Table 8.1: Spatial resolution values parameterized as the FWHM of Gaussian fits to
the profiles taken along the transverse, radial and axial profiles of all the point sources
of the Cross Phantom at the iteration of convergence, in the simplified version of the
simulated Clear−PEM scanner.

8.2.2.2 Sphere Phantom

Figure 8.3(a) and Figure 8.3(b) show the central slice of the segment 0 sinogram of the
Sphere Phantom data and the central transaxial slice of the corresponding reconstructed
image, respectively. Figure 8.3(c) shows the profile taken across a central line of the
central transaxial slice of the reconstructed image of the Sphere Phantom.
Figure 8.4(a) shows the plot of the mean number of counts measured inside the ROI
that was drawn over the reconstructed image of the sphere against the iteration number.
The mean number of counts inside the ROI tends to converge to a stable value after the
second iteration. Figure 8.4(b) presents the values of the standard deviation measured
inside the considered ROI against the iteration number. As expected due to the nature
of the image reconstruction algorithm used, this measure of noise tends to increase after
a minimum value at the second iteration.
Figure 8.5 represents the evolution of the uniformity index as a function of the iteration
number. This plot shows that the uniformity index reaches a maximum value at the
second iteration and then continually drops. This is in agreement with the almost
constant value of the mean number of counts against iteration number and the minimum
value reached by the standard deviation at the second iteration, as presented in the
plots of Figure 8.4

8.2.3 Discussion

In this section, the STIR library enhanced with the utilities to deal with planar scanner
data was used to reconstruct Monte Carlo simulated data from the Clear−PEM scanner.
The model for the scanner was a simplified one, and the phantoms used were simple
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Figure 8.2: FWHM values against iteration number for the Cross Phantom reconstruc-
ted images in the simplified Clear−PEM scanner geometry. FWHM values measured
along the radial, transverse and axial profiles of the (a) central point source, (b) point
source D, (c) point source A and (d) point source B.
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Figure 8.3: a) Central slice of the segment 0 sinogram of Monte Carlo simulation data of
the Sphere Phantom in the simplified geometry of the Clear−PEM scanner. b) Central
transaxial slice of the respective reconstructed image and c) profile taken across the
central line of the shown image slice.
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Figure 8.4: (a) Mean number of counts inside the ROI against iteration number and
(b) standard deviation in ROI against iteration number for the reconstructed images
of the Sphere Phantom in the simplified geometry of the Clear−PEM scanner.
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Figure 8.5: Uniformity index of the reconstructed images of the Sphere Phantom in the
simplified version of the Clear−PEM scanner as a function of iteration number. The
Uniformity Index is computed as the fraction of the mean number of counts inside a
ROI over the standard deviation measured in the same ROI.

geometrical phantoms. The results presented show the ability to obtain images that
are in visual agreement with the simulated ones. The computed Figures of Merit show
an evolution with the iteration number that is as expected and in accordance with the
preliminary evaluation performed in the previous chapter.
In the remainder of the chapter we will use these two tools, Monte Carlo simulation
and 3D image reconstruction, to further study other aspects of the performance of the
Clear−PEM scanner.

8.3 Effect of DOI information and rotation

As it was seen in Chapter 3, the Clear−PEM scanner has two unique characteristics
with respect to most of the remainder PEM scanners that were described in that chap-
ter. These characteristics are its ability of measuring the Depth of Interaction (DOI)
coordinate of the photons within the detector crystals and the possibility of performing
the rotation of the detector heads. In the work that is described hereafter, it is studied
how different acquisition conditions regarding these two parameters, rotation and DOI
information, impact on the quality of the reconstructed images. Due to constraints in
the time needed to perform the Monte Carlo simulations, the sole image quality criteria
that is used in this study is the image spatial resolution in several regions of the Field
of View (FOV).
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8.3.1 Methods

Simulated acquisitions of the 3D Chain Phantom that was described in Chapter 5 to-
gether with the realistic model for the Clear−PEM scanner were used in this work.
Simulations were performed both considering the standard acquisition geometry that
was previously described (two sequential acquisitions with the detector heads at two
perpendicular angular positions) and a static acquisition, with the detector heads at
0◦. In this section, we will refer to the standard acquisition geometry as the dual angle
acquisition mode and to the static acquisition as the static mode. Both acquisitions
were simulated for a same time interval, to ensure that both datasets had equivalent
statistics.
For both acquisition scenarios, different resolution values for the DOI information were
considered: exact DOI information, corresponding to an ideal DOI resolution, 2 mm
FWHM uncertainty in DOI, corresponding to the Clear−PEM scanner foreseen DOI
resolution, 5 mm FWHM DOI uncertainty, corresponding to a worse DOI resolution
scenario and finally, the worst case scenario, no available DOI information.
Images were reconstructed with the 3D OS-EM available in STIR, with four subsets,
with the dedicated planar projectors defined either for static or for dual angle acqui-
sition, as was previously described. No correction for attenuation, random events or
scatter were used. The dimensions of the reconstructed images were 99×99×127 voxels,
each with voxel with resolution 1.0×1.0×1.3 mm3.The planes used for the analysis of
the spatial resolution were the central axial plane and the central coronal plane. The
image spatial resolution was parameterized, as usual, by the FWHM of Gaussian fits to
the profiles that were taken over the three orthogonal axis of the reconstructed point
sources. Due to the blurring presented in some of the images, some of the Gaussian fits
were more reliable than others. For such reason, an error was attributed to the com-
puted FWHM values, based on the accuracy of the fitting. This error will be presented
as an error bar in the plots.

8.3.2 Static Simulated Acquisition

Figure 8.6 shows the reconstructed images of the Chain Phantom corresponding to the
static simulated acquisition with the several DOI information values considered. The
visual inspection of theses images clearly shows that the most of the point sources are
easily resolved in the reconstructed images. Exception goes to the point sources that
are placed along an horizontal line in the central axial slice when no DOI information is
available (Figure 8.6, first row, second and third column). These are the point sources
that are placed in a plane normal to the detector heads surfaces, in a row parallel to
the direction where there are no detectors acquiring data. However, such an effect is
highly DOI dependent. In fact, it can be observed that those point sources can also be
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Figure 8.6: Static acquisition reconstructed images of the Chain Phantom.
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resolved when better DOI resolution is available. Moreover, the improvement in the
DOI resolution has a great impact in the component of the spatial resolution that, in
a given plane, is normal to the direction along which there are no detectors acquiring
data. For instance, this effect is clear for the point sources placed along the axis of
rotation of the scanner (point sources in the vertical line of the images in the middle
row of Figure 8.6).
Figure 8.7 shows profiles of some of the point sources in the reconstructed images cor-
responding to the cases of no DOI, 5 mm FWHM DOI, 2 mm FWHM DOI and exact
DOI resolutions. Figure 8.7(a) shows the radial profiles of the point sources located in
an horizontal line in the central axial slice of the reconstructed images (point sources
0 to 4, according to the scheme of Figure 5.7, Chapter 5). These profiles show strong
blurring, in agreement with the images presented in Figure 8.6. Figure 8.7(b) shows
the radial profiles of the point sources located in a vertical line in the central axial
slice of the reconstructed images (point source 0 and point sources 5 to 8, according to
the scheme of Figure 5.7, Chapter 5). These profiles show much less blurring than the
previous ones.
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Figure 8.7: Profiles of some of the point sources of the Chain Phantom reconstructed
images, corresponding to simulated acquisitions in static mode. (a) Radial profiles of
point sources placed along an horizontal line in the central axial slice of the reconstruc-
ted image (point sources from 0 to 4). (b) Radial profiles of point sources placed along
a vertical line in the central axial slice (point source 0 and point sources 5 to 8).

In both set of profiles, the profile corresponding to the exact DOI case is closely followed
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by the profile corresponding to the 2 mm FWHM DOI resolution. The opposite hap-
pens with the profile corresponding to the case where no DOI information is available.
Specially in the case of the profiles of the point sources located in an horizontal line in
the central axial slice (point sources 0 to 4), the blurring is so strong that the Gaus-
sian fit to the data becomes very difficult. When the fitting is possible, the associated
errors are so significant that the fitting has little meaning. Therefore, analysis of the
resolution values that will be performed next will not include the case of no available
DOI information.
Figure 8.8 shows the plots of the radial, transverse and axial components of the FWHM
values as a function of the iteration number, for point sources placed 3 cm away from
the FOV center in the central axial slice, either along an horizontal line (point source
3) and along a vertical line (point source 7). Plots are shown for the case of 5 mm
FWHM DOI resolution, 2 mm FWHM DOI resolution and exact DOI resolution. In
accordance with the previous presented reconstructed images and profiles, the higher
FWHM values are measured along the directions normal to the direction where there
are no detectors acquiring data. This corresponds to the FWHM along the radial pro-
file for point source 3 and transverse profile of point source 7. The scheme presented
in Figure 8.9 tries to give some insight on the reason why these are the profiles that
show more blurring. The scheme shows, as shaded areas, the areas defined by the
possible LORs that correspond to annihilations in point source 3 (Figure 8.9(a)) and
in point source 7 (Figure 8.9(b)) and that are accepted by the system. The positron
range is not being considered in this scheme. During the backprojection operation of
the image reconstruction process, the number of counts will be distributed along lines
that have a strong horizontal component. Thus, the profiles along the horizontal lines
(radial profile for point source 3 and transverse profile for point source 7) will show
much more blurring than the vertical profiles. Since the number of counts are not
distributed along vertical (or close to vertical) lines, the vertical profiles will be much
more confined. Furthermore, point source 3 presents much more blurring along the
radial profile than point source 7 due to the additive effect of the radial blurring of the
remainder point sources that are placed along the horizontal line.
The values of FWHM along the horizontal profiles significantly improve with the im-
provement of the DOI information, whereas the same does not happen for the FWHM
values along the remainder profiles (transverse and axial for point source 3, radial and
axial for point source 7), which improve much more weakly with the improvement in
the DOI information.
A more systematic study of the evolution of the FWHM values with the iteration num-
ber for all the point sources in the phantom was performed with the help of the volu-
metric FWHM. This parameter is computed as the product of the three components of
the reconstructed image resolution, axial, radial and transverse, for each reconstructed
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Figure 8.8: Plots of the radial, transverse and axial FWHM values against iteration
number for the simulated static acquisitions, for a point source placed 3 cm away from
the FOV center along an horizontal line in the central axial slice (point source 3) and
for a point source placed 3 cm away from the FOV center along a vertical line in the
central axial slice (point source 7). From top to bottom, the plots correspond to 5 mm
FWHM DOI, 2 mm FWHM DOI and exact DOI.
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Figure 8.9: Acceptance angle for point source 3 (a) and for point source 7 (b) of the
Chain Phantom in the simulated static mode acquisition. The fact that the number of
detected counts are not reprojected in the vertical direction results in the profiles along
that direction being much more confined than in the horizontal direction.

point source. Although the volumetric FWHM does not give any insight into differences
between the radial and the transverse components of the spatial image resolution, it
provides an easier means of analyzing the evolution of image spatial resolution across
the FOV. Figure 8.10 shows the plots of the values of the volumetric FWHM against
iteration number for point sources in the Chain Phantom, for the values of DOI reso-
lution considered in this study. The plots presented refer to the point sources placed
along an horizontal line in the central axial slice (point sources 0 to 4, right row of
Figure 8.10) and to the point sources placed along the axis of rotation of the scanner
(point sources 0 and 9 to 13, left row of Figure 8.10).
Let us first focus on the plots corresponding to the point sources 0 to 4. These plots
show that the volumetric FWHM values of the point sources closer to the center of
the FOV (point sources 0, 1 and 2) tend to improve in the first few iterations and
then remain about constant. This behavior is observed independently of the value of
the DOI resolution. On the contrary, the evolution of the volumetric FWHM values
as a function of the iteration number for the two point sources further from the FOV
center (point sources 3 and 4) are highly dependent on the DOI resolution. In fact, for
the 5 mm FWHM DOI resolution, the volumetric FWHM values do not converge to
a stable value. On the contrary, they tend to increase after a minimum value at the
second iteration. When the DOI resolution is improved, the volumetric FWHM values
for point source 3 tend to improve with iteration number and to remain stable after
some iterations, but the same does not happen for the point source 4. The volumetric
FWHM values measured for this point source tend to increase with the iteration num-
ber, even when an ideal case (exact DOI resolution) is considered, although less in that
case. Therefore, the resolution of point sources near the edges of the FOV is critical
when a static acquisition is performed, independently of the DOI resolution available.
Let us return to Figure 8.10 and focus on to the evolution of the volumetric FWHM
values with iteration number and DOI for the point sources placed along the axis of
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Figure 8.10: Plots of the volumetric FWHM against iteration number for the simulated
static acquisitions. Plots on the left correspond to the ones placed along an horizontal
line in the central axial slice (point sources 0 to 4).Plots on the right correspond the
ones placed along a central line in the central coronal slice (point source 0 and point
sources from 9 to 13). From top to bottom, plots correspond to simulated acquisitions
with no DOI, 5 mm FWHM DOI, 2 mm FWHM DOI and exact DOI.
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rotation of the scanner (point sources 0 and 9 to 13). Independently of the image
plane where the sources are located and of the DOI resolution considered, the volumet-
ric FWHM values for these point sources, all placed in the center of their respective
planes, improve with the iteration number and tend to remain constant after a few
iterations. The number of iteration for convergence is higher for the 5 mm FWHM
DOI resolution case. As the DOI resolution improves, the lines describing the evolu-
tion of the volumetric FWHM with iteration number for the several point sources tend
to come closer. For the ideal case DOI resolution, the volumetric FWHM values for all
these point sources converge approximately to a common value. This means that, no
DOI effects taken into consideration, the image spatial resolution does not depend on
the position of the sources along the axis of rotation of the scanner.
Figure 8.11 shows the plots of the volumetric FWHM after convergence as a function
of the distance to the center of the field of view. As a criterion of convergence, a maxi-
mum percent variation in the volumetric FWHM values of all the point sources of less
than 3% in the subsequent iterations was used. For those cases where convergence was
not achieved for a given point source, the value of the volumetric FWHM presented
corresponds to the value at the considered iteration of convergence for the remainder
point sources.
These plots highlight that there is a significant improvement in the image spatial reso-
lution when the DOI resolution improves from 5 mm FWHM to 2 mm FWHM. This is
true either in the center and near the edge of the FOV. The difference in the volumetric
FWHM corresponding to the ideal case DOI resolution (exact resolution) and the 2 mm
FWHM DOI resolution is not as pronounced.
It is also clear from the analysis of these plots, for the point sources located in the cen-
tral axial slice, at different distances from the center (Figure 8.3.2 and Figure 8.3.2),
that the volumetric FWHM is higher for the point sources that are placed further from
the FOV center. This is in agreement with what is expected due to the nature of the
acquisition geometry. As a matter of fact, the number of possible accepted LORs that
result from emissions near the center of the FOV is much higher than the number of
possible LORs originated by emissions near the edges of the FOV.
However, the degradation in the spatial resolution is not observed for the point sources
that are placed in the center of different image planes. In fact, for a given DOI re-
solution, these point sources present an almost homogeneous volumetric FWHM (Fig-
ure 8.3.2), as it was already pointed out.
Tables 8.2, 8.3 and 8.4 list the spatial resolution values measured at convergence for all
the point sources of the Chain Phantom, for the simulated static acquisition and for the
several DOI information scenarios considered. These values range from 1.0 mm (FOV
center, exact DOI resolution) to 4.2 mm (FOV edge, 5 mm FWHM DOI resolution).
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Figure 8.11: Plots of volumetric FWHM against distance to FOV center, for the simu-
lated static acquisitions.

Distance to Point 5 mm 2 mm exact
FOV center Source FWHM DOI FWHM DOI DOI

0 cm 0 3.4×1.1×1.5 1.6×1.0×1.4 1.2×1.0×1.5
1 cm 1 3.3×1.3×1.8 1.6×1.1×1.7 1.3×1.0×1.6
2 cm 2 3.9×1.3×1.8 2.0×1.1×1.7 1.6×1.1×1.6
3 cm 3 3.9×1.6×2.0 2.3×1.3×1.8 2.0×1.2×1.7
4 cm 4 4.1×1.9×1.8 2.6×1.6×1.6 2.4×1.6×1.6

Table 8.2: Spatial resolution values (FWHM) listed for the point sources of the Chain
Phantom placed along an horizontal line in the central axial slice (point sources 0
to 4), for the simulated static acquisitions and the several DOI resolution scenarios
considered. The FWHM values listed are in mm.
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Distance to Point 5 mm 2 mm exact
FOV center Source FWHM DOI FWHM DOI DOI

0 cm 0 3.4×1.1×1.5 1.6×1.0×1.4 1.2×1.0×1.5
1 cm 5 3.4×1.3×1.6 1.6×1.1×1.6 1.3×1.1×1.7
2 cm 6 3.6×1.4×1.6 1.9×1.2×1.5 1.6×1.0×1.5
3 cm 7 3.7×1.1×1.8 2.4×1.0×1.6 2.1×1.0×1.6
4 cm 8 4.2×1.2×2.1 3.1×1.1×1.8 2.9×1.0×1.7

Table 8.3: Spatial resolution values (FWHM) listed for the point sources of the Chain
Phantom placed along a vertical line in the central axial slice (point sources 0 and 5
to 8), for the simulated static acquisitions and the several DOI resolution scenarios
considered. The FWHM values listed are in mm.

Distance to Point 5 mm 2 mm exact
FOV center Source FWHM DOI FWHM DOI DOI

0 cm 0 3.4×1.1×1.5 1.6×1.0×1.4 1.2×1.0×1.5
1 cm 9 3.2×1.2×1.5 1.5×1.1×1.4 1.2×1.0×1.5
2 cm 10 3.2×1.2×1.5 1.5×1.1×1.4 1.2×1.0×1.4
3 cm 11 3.1×1.2×1.4 1.4×1.1×1.3 1.2×1.0×1.4
4 cm 12 3.1×1.3×1.5 1.4×1.1×1.3 1.2×1.0×1.5
5 cm 13 2.8×1.3×1.4 1.4×1.1×1.3 1.1×1.0×1.4

Table 8.4: Spatial resolution values (FWHM) listed for the point sources of the Chain
Phantom placed along the axis of rotation of the scanner (point sources 0 and 9 to 13),
for the simulated static acquisitions and the several DOI resolution scenarios considered.
The FWHM values listed are in mm.
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8.3.3 Dual Angle Simulated Acquisition

Figure 8.12 shows the reconstructed images corresponding to the simulated dual angle
acquisition with the several DOI information values considered. These images show
that all the point sources in the Chain Phantom can be easily resolved with the dual
angle acquisition, even in the worst considered scenario for the DOI resolution.
Figure 8.14 shows profiles of some of the point sources in the reconstructed images
corresponding to the DOI resolution scenarios of no DOI, 5 mm FWHM DOI, 2 mm
FWHM DOI and exact DOI. Figure 8.14(a) shows the radial profiles of the point sources
located in an horizontal line in the central axial slice of the reconstructed images (point
sources 0 to 4). Figure 8.14(b) shows the radial profiles of the point sources located
in a vertical line in the central axial slice of the reconstructed images (point source
0 and point sources 5 to 8). In contrast to what happened with the simulated static
acquisition, all the profiles are clearly defined and the radial profiles of point sources
0 to 4 are quite similar to the radial profiles of point sources 0 and 5 to 8. This is in
agreement with the geometry of the dual angle acquisition. In fact, the area defined by
the number of accepted LORs originating from annihilations in point source 3 is sym-
metric to the area defined by the LORs originating from annihilations in point source
7 that are accepted by the scanner, as depicted in Figure 8.13. This also explains why
there is no strong blurring neither along the horizontal nor the vertical directions, as
verified in the static mode results.
The peak-to-valley ratios of the profiles decrease either with the distance from the FOV
center and with the decrease in DOI resolution. As we will see, this is in agreement
with the measured spatial resolution.
In the previous analysis of the FWHM values for the static acquisition, the worst sce-
nario for the DOI resolution (no DOI information) was not considered. This was due to
the difficulty on performing Gaussian fits to some of the profiles of the Chain Phantom
point sources. Although such a problem does not happen in the dual angle acquisition
case, the quantitative analysis for the no DOI resolution scenario will also not be per-
formed in the dual angle acquisition case.
Figure 8.15 shows the plots of the radial, transverse and axial components of the FWHM
values as a function of the iteration number, for point sources placed 3 cm away from
the FOV center in the central axial slice, either along an horizontal line (point source
3) and along a vertical line (point source 7). Plots are shown for the case of 5 mm
FWHM DOI resolution, 2 mm FWHM DOI resolution and exact DOI resolution. As
expected due to the nature of the acquisition geometry for the dual angle acquisition,
the evolution of the FWHM components with the iteration number for the two point
sources are very similar. The plots also show that the impact of the DOI informa-
tion is weaker in the axial component of the FWHM than in the radial and transverse
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Figure 8.12: Reconstructed images of the Chain Phantom simulated data with dual
angle acquisition.
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Figure 8.13: Acceptance angle for point source 3 (a) and for point source 7 (b) of the
Chain Phantom in the simulated dual angle acquisition.

components. These plots show, however, that the FWHM values measured along the
radial profile converge to slightly higher values than the FWHM values measured along
the transverse profile. This is true when the point sources are not in the FOV center.
This can be explained by considering the image presented in Figure 8.16. For a point
source placed near the edge of the FOV and midway between the two detector heads,
(Figure 8.16(a)), the area defined by the accepted LORs that originate from emissions
from the point source is quite narrow. Therefore, since there is an enormous amount
of LORs that are missing, this data will contribute to a poor resolution, in this case in
its transverse component. On the contrary, when the detectors rotate, the area defined
by the accepted LORs is broader (Figure 8.16(b)), hence the contribution to the reso-
lution, in this case the radial component, will be better. As a consequence, for point
sources placed far from the FOV center, the radial component of the spatial resolution
is better than its transverse component.
Figure 8.17 shows the plots of the values of the volumetric FWHM against iteration
number for the point sources in the Chain Phantom, for the values of DOI resolution
considered in this study. In line with the plots that were presented for the static ac-
quisition analysis, the plots here presented refer to the point sources placed along an
horizontal line in the central axial slice (point sources 0 to 4, right row of Figure 8.10)
and to the point sources placed along the axis of rotation of the scanner (point sources
0 and 9 to 13, left row of Figure 8.10). The plots show that there is a clear improvement
in the image spatial resolution with the improvement in the DOI resolution. The point
source 4, which is placed 4 cm away from the FOV center in the central axial slice,
shows a behavior similar to that presented in the static acquisition mode. The FWHM
values measured for that location do not converge to a stable value, independently of
the DOI resolution considered. On the contrary, they tend to increase after reaching a
minimum value at the first few iterations. This means that this problem is not solved
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Figure 8.14: Profiles of some of the point sources of the Chain Phantom reconstructed
images, corresponding to dual angle simulated acquisitions. (a) Radial profiles of point
sources from 0 to 4. (b) Radial profiles of point source 0 and point sources 5 to 8.

neither by the use of DOI information nor by the presented dual angle acquisition.
Figure 8.18 shows the plots of the volumetric FWHM after convergence as a function
of the distance to the center of the field of view. The convergence criterion used was
the same that was used for the simulated static acquisition. The plots show, once
again, that the improvement in the image spatial resolution is very significant when
the DOI resolution improves from 5 mm to 2 mm FWHM and, as expected, it also
improves when an ideal case exact DOI resolution is considered. For the point sources
in the central axial slice (point sources 0 to 8), the volumetric FWHM values remain
approximately constant until 3 cm from the FOV center, with slightly lower values at
4 cm from the FOV center. The values presented for the point sources placed along
an horizontal line in the central axial slice are similar to the values found to the point
sources placed along a vertical line in that same slice. This is as expected, due to the
symmetries resulting from the dual angle acquisition mode. With regard to the point
sources along the axis of rotation of the scanner, except for the point source 13 in the 5
mm FWHM DOI case, the presented FWHM values remain about constant throughout
the planes studied.
Table 8.5 lists the spatial resolution values measured for all the point sources of the
Chain Phantom, for the simulated dual angle acquisition and for the several DOI infor-
mation scenarios considered. The presented values show that the FWHM values for
the dual angle acquisition range from 2.3 mm (point source 8, axial FWHM component,
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Figure 8.15: Plots of the radial, transverse and axial FWHM values against iteration
number for the simulated dual angle acquisitions, for a point source placed 3 cm away
from the FOV center along an horizontal line in the central axial slice (point source 3)
and for a point source placed 3 cm away from the FOV center along a vertical line in
the central axial slice (point source 6). From top to bottom, the plots correspond to 5
mm FWHM DOI, 2 mm FWHM DOI and exact DOI.
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Distance to Point 5 mm 2 mm exact
FOV center Source FWHM DOI FWHM DOI DOI

0 cm 0 1.8×1.8×1.6 1.3×1.3×1.4 1.2×1.1×1.3
1 cm 1 1.7×1.7×1.8 1.3×1.3×1.6 1.2×1.2×1.5
2 cm 2 1.7×1.7×1.8 1.4×1.3×1.6 1.2×1.2×1.6
3 cm 3 1.5×2.0×2.0 1.2×1.5×1.8 1.2×1.4×1.7
4 cm 4 1.7×2.2×2.3 1.5×1.8×2.0 1.5×1.7×2.0

Table 8.5: Spatial resolution values (FWHM) listed for the point sources of the Chain
Phantom placed along an horizontal line in the central axial slice (point sources 0 to
4), for the simulated dual angle acquisitions and the several DOI resolution scenarios
considered. The FWHM values listed are in mm.

Distance to Point 5 mm 2 mm exact
FOV center Source FWHM DOI FWHM DOI DOI

0 cm 0 1.8×1.8×1.7 1.3×1.3×1.4 1.2×1.1×1.4
1 cm 5 1.7×1.7×1.8 1.3×1.3×1.6 1.1×1.2×1.5
2 cm 6 1.6×1.7×1.8 1.3×1.4×1.6 1.1×1.3×1.6
3 cm 7 1.9×1.5×2.0 1.5×1.3×1.7 1.4×1.2×1.7
4 cm 8 2.1×1.6×2.3 1.7×1.4×2.1 1.6×1.4×2.0

Table 8.6: Spatial resolution values (FWHM) listed for the point sources of the Chain
Phantom placed along a vertical line in the central axial slice (point sources 0 and 5 to
8), for the simulated dual angle acquisitions and the several DOI resolution scenarios
considered. The FWHM values listed are in mm.

Distance to Point 5 mm 2 mm exact
FOV center Source FWHM DOI FWHM DOI DOI

0 cm 0 1.8×1.8×1.7 1.3×1.3×1.4 1.2×1.1×1.4
1 cm 9 1.8×1.9×1.6 1.3×1.3×1.4 1.1×1.1×1.3
2 cm 10 1.8×1.8×1.7 1.3×1.3×1.4 1.2×1.2×1.3
3 cm 11 1.8×1.8×1.6 1.3×1.3×1.4 1.1×1.1×1.3
4 cm 12 1.8×1.8×1.6 1.3×1.3×1.4 1.1×1.1×1.2
5 cm 13 1.6×1.7×1.4 1.3×1.3×1.4 1.1×1.1×1.2

Table 8.7: Spatial resolution values (FWHM) listed for the point sources of the Chain
Phantom placed along the axis of rotation of the scanner (point sources 0 and 9 to
13), for the simulated dual angle acquisitions and the several DOI resolution scenarios
considered. The FWHM values listed are in mm.
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(a) (b)

Figure 8.16: A point source near the edge of the FOV contributes differently to the
radial and to the transverse components of the spatial resolution. In (a), the point
source is midway between the two detector heads and contributes to a poor transverse
resolution. In (b), the point source is closer to one of the detector heads and contributes
to a better radial resolution.

5 mm FWHM DOI resolution) to 1.1 mm (several sources, exact DOI resolution). They
also show that with detector head rotation and a DOI resolution of 2 mm FWHM is
possible to achieve image spatial resolution values lower or equal to 2 mm across the
entire FOV. The presented study indicates that this would not be possible neither
without rotation nor with the worse DOI resolution studied (5 mm FWHM DOI).

8.3.4 Discussion

Figure 8.19 presents the plots of the volumetric FWHM values as a function of the
distance to the FOV center, for all the point sources studied, for the DOI resolution
scenarios studied, and both for dual angle and static acquisitions.
Regarding the point sources that are placed at several distances from the FOV center
at the central axial plane, the most significant improvement in the spatial resolution
values is obtained when a bad DOI resolution (in the case studied, 5 mm FWHM DOI) is
improved to 2 mm FWHM DOI resolution. This improvement in the spatial resolution
is more drastic than the improvement that is obtained when a static acquisition with
a bad DOI resolution is substituted by a dual angle acquisition with the same DOI
resolution. In order words, the presented results seem to indicate that, from the spatial
resolution point of view, it is more important to have a better DOI resolution than to
perform a dual angle acquisition (such as the one studied in this work) with a bad DOI
resolution. This is also true when analyzing the values obtained for the point sources
placed along the axis of rotation of the scanner. Of course, if a good DOI resolution
is available, is always better to perform the rotation, since that provides better spatial
resolution, especially near the FOV edge. For instance, it is interesting to note that, for
the point sources placed further from the FOV center, the volumetric FWHM values
for the 2 mm FWHM DOI resolution with rotation are equal or lower than the values
obtained for the exact DOI resolution but without rotation.
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Figure 8.17: Plots of the volumetric FWHM against iteration number for simulated
dual angle acquisitions. Plots on the left correspond to the point sources placed along
an horizontal line in the central axial slice (point sources 0 to 4); plots on the right
side correspond to the point sources that are placed along a central in the central
coronal slice (point source 0 and point sources from 9 to 13). From top to bottom,
plots correspond to simulated acquisitions with no DOI information, 5 mm FWHM
DOI resolution, 2 mm FWHM DOI resolution and exact DOI resolution.
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Figure 8.18: Plots of volumetric FWHM against distance to FOV center, for the simu-
lated dual angle acquisitions.
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Figure 8.19: Comparison of the values of volumetric FWHM as a function of the dis-
tance to the center of the FOV, with static and dual angle simulated acquisitions and
with different values for the DOI resolution (5 mm FWHM DOI resolution, 2 mm
FWHM DOI resolution and exact DOI resolution).
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In fact, regardless of the DOI resolution considered, the effect of the rotation in the
spatial resolution is always more important for the point sources placed further away
from the axis of rotation of the scanner. For this reason, the effect of rotation is weaker
for the point sources that are placed along the axis of rotation of the scanner (point
sources 0 and 9 to 13). The results for these point sources placed at off-center image
planes indicate that, for a fixed DOI resolution, it does not seem to be advantageous to
have a dual angle acquisition. However, this analysis is hindered by the fact that only
point sources in the center of each plane are studied. Those conclusion would certainly
be different if, for the studied planes, points placed in the edge of each plane were also
considered.

8.4 Studies with the NCAT phantom

In this section the results of the studies that were performed with the anthropomorphic
breast phantom simulated data will be presented. The goal of this work is to study
the ability of the scanner to detect simulated lesions at different clinical scenarios. As
described in Chapter 5, these studies were performed with the realistic geometry of
the Clear−PEM scanner and used different clinical settings. Namely, these studies
were performed with four different lesion diameters (3 mm, 5 mm , 7 mm and 10 mm)
and with four different lesion-to-background ratios (13:1, 10:1, 5:1 and 4:1), for a five
minute acquisition. The different lesion-to-background ratios considered correspond to
different compositions of the breast, as explained in Chapter 5.

8.4.1 The sensitivity image

As it was explained in Chapter 6, the OS-EM algorithm used in STIR uses an image that
represents the sensitivity of the scanner, the sensitivity image. This image is computed
taking into account correcting factors for the degrading effects of tissue attenuation
and of the differences in the detection efficiency of the several detection components of
the scanner. When such information does not exist, the sensitivity image is build from
an unitary sinogram.
The detector model used in the simplified scanner geometry assumed pixelized uniform
detector heads. Therefore, normalization issues could be left aside. However, when
the full simulation of the scanner was used, with the realistic scanner geometry, the
non-uniformity in the detection efficiency of the scanner must be taken into account
in the image reconstruction process. In fact, as it was explained in Chapter 5, the se-
paration of the several detector elements of the Clear−PEM scanner, due to the space
required by the electronics of the system, results in several gaps between contiguous
detection elements. These gaps result in areas of low detection efficiency. If no cor-
rection is applied for this effect, the reconstructed images will reflect the existence of
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such low detection efficiency areas. That effect is very clear when dealing with images
with large areas of activity, such as the images of the NCAT Breast phantom, as can be
seen in the uncorrected image of the NCAT breast phantom presented in Figure 8.20.
The Monte Carlo simulation assumes that the uptake of FDG in the breast tissue is
uniform. Therefore, the background tissue in the reconstructed image should appear as
an uniform distribution of the number of counts. Instead, artifacts in the form of long
stripes appear in the regions of the image that correspond to regions of lower sensitivity
of the scanner, as can be observed in the uncorrected image. This degrading effect (as,

Figure 8.20: Uncorrected reconstructed image of the NCAT Breast phantom. The
background region, that originally has constant activity, appears modulated due to the
existence of regions of lower detection sensitivity in the scanner.

in fact, other effects that contribute to the non-uniformity in the detection efficiency)
can be accounted for in the image reconstruction process in the form of normalization
factors used to compute the sensitivity image.
The normalization correction methods are usually based on the definition of multiplica-
tive factors that are applied to the number of counts in each separate detector crystal
in the system [167, 168]. These factors, named normalization coefficients, can be fac-
torized into separate components relative to different aspects that affect the scanner
sensitivity. This approach to normalization correction is named component-based nor-
malization. The computation of such components is performed with measures from an
activity source that uniformly illuminates the entire FOV of the scanner.
A component-based normalization correction for the Clear−PEM scanner is being de-
veloped by one of the investigation teams in the consortium (IBILI - Coimbra) [169].
The normalization components will be computed from data acquired with a planar
source placed at mid distance between the detector plates, in order to illuminate uni-
formly every detector element in the detector plates. A scheme of such a planar source
positioned between the detector heads of the Clear-EM system can be seen in Fig-
ure 8.21.
However, such a measurement is not possible while the scanner is not assembled. There-
fore, another means of correcting degrading effects due to the existing gaps between
the detection elements must be used meanwhile. For the studies that were performed
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Figure 8.21: Planar source for the experimental determination of the normalization
components. Adapted from [170].

with the NCAT Breast phantom simulation data the correction for the effect of the
detector gaps in the reconstructed images was performed using a sensitivity image that
was computed by Monte Carlo simulation. The surface plots of such an image can be
seen in Figure 8.22. The effect of the gaps between the detector elements is patent in
the irregular nature of these surface plots.
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Figure 8.22: Surface maps of the sensitivity image calculated with Monte Carlo simula-
tion techniques. The image on the right corresponds to the sum of all the axial planes.
The image on the left corresponds to the sum of all the coronal planes

8.4.2 Methods

The images of the NCAT Breast phantom with the simulated lesions of four different
diameters and with the four lesion-to-background ratios considered were reconstructed.
The OS-EM algorithm available in STIR was used, with four subsets and no smoothing.
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The dimensions of the reconstructed images were 99×99×127 voxels, each voxel with
resolution 1.0×1.0×1.3 mm3.
After a brief visual inspection of the images, several regions of interest (ROIs) were
drawn either above the reconstructed lesions and over large background regions close
to the lesions. The total and the mean number of counts inside the ROIs, as well as
the standard deviation inside the background ROI were recorded for every iteration of
every set of reconstructed images. An example of the ROIs that were used to perform
the analysis is shown in Figure 8.23. The set of four ROIs that were drawn over the
background regions were treated as a single ROI.

(a) (b)

Figure 8.23: Regions of interest used to perform the analysis of the NCAT breast
phantom reconstructed images. The image on the left shows the ROIs that were used
to study the centered lesion. The image on the right shows the ROIs that were used
to study the off-centered lesion. The blue ROIs correspond to ROIs used to study the
background. The red ROIs were used to study the lesion, in the presented case the 5
mm lesion.

The data recorded from the ROIs were used to compute three different figures of merit.
The contrast (C) between the simulated lesions and the surrounding tissues in the
reconstructed images was computed using the expression C = (T −B)/B, where T was
the mean activity in the simulated spherical lesion ROI and B was the mean activity in
the background region ROIs. The signal-to-noise (SNR) ratio was computed using the
expression SNR = (T − B)/σB , where σB was the standard deviation of voxel values
in the background ROI. The noise was computed as a coefficient of variation (CV) that
was defined as CV = σB/B.

8.4.3 Results

The images presented in Figure 8.24 show the central coronal slice of the reconstructed
images of the NCAT Breast phantom with the four considered lesion-to-background
scenarios that correspond to different breast tissue types (L1=13:1, corresponding to a
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predominantly fat breast tissue; L2=10:1, corresponding to fat breast tissue with some
fibroglandular tissue; L3=5:1, corresponding to heterogeneous dense breast tissue; and
L4=4:1, corresponding to extremely dense breast tissue, as explained in Chapter 5) and
the 3 mm diameter lesion.

(a) (b)

(c) (d)

Figure 8.24: Central coronal slice of the reconstructed images of the NCAT Breast
phantom with the 3 mm diameter lesions for the lesion-to-background (L:B) ratios (a)
L1=13:1, (b) L2=10:1, (c) L3=5:1 and (d) L4=4:1.

Both centered and off-centered lesions can be faintly seen in the images that corre-
spond to L1 and L2 (Figures 8.24 (a) and (b)). However, they can not be distinguished
from the background regions in the case of L3 and L4. These images seem to indicate
that the 3 mm lesions are not clearly recovered in all the simulated clinical settings.
It remains to be seen, however, if an acquisition longer than 5 minutes improves the
detectability of such small lesions. Due to the constraints imposed by the Monte Carlo
simulation time, such an hypothesis was not tested. No further analysis was performed
with the 3 mm diameter lesions.
The images presented in the following pages show the central coronal slice of the re-
constructed images of the NCAT breast phantom with the 5 mm, 7 mm and 10 mm
simulated lesions for the four considered breast uptake scenarios: L1=13:1 in Fig-
ure 8.25, L2=10:1 in Figure 8.26, L3=5:1 in Figure 8.27 and L4=4:1 in Figure 8.28.
The plots of the profiles taken over a line that crosses the center of the lesions in the
central slice of the image are shown below each reconstructed image slice.
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Figure 8.25: Central coronal slice of the reconstructed images of the NCAT Breast
phantom with lesions for the lesion-to-background ratio L1=13:1 with the 5 mm (left),
7 mm (middle), and 10 mm (right) diameter lesion. Below each image are the profiles
taken over a line that crosses the center of the lesions in the presented image slice.
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Figure 8.26: Central coronal slice of the reconstructed images of the NCAT Breast
phantom with lesions for the lesion-to-background ratio L2=10:1 with the 5 mm (left),
7 mm (middle), and 10 mm (right) diameter lesion. Below each image are the profiles
taken over a line that crosses the center of the lesions in the presented image slice.
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Figure 8.27: Central coronal slice of the reconstructed images of the NCAT Breast
phantom with lesions for the lesion-to-background ratio L3=5:1 with the 5 mm (left),
7 mm (middle), and 10 mm diameter lesion (right). Below each image are the profiles
taken over a line that crosses the center of the lesions in the presented image slice.
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Figure 8.28: Central coronal slice of the reconstructed images of the NCAT Breast
phantom with lesions for the lesion-to-background ratio L4=1:1 with the 5 mm (left), 7
mm (middle), and 10 mm diameter lesion (right). Below each image the profiles taken
over a line that crosses the center of the lesions in the presented image slice are shown.
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The visual inspection of these images shows that most of the lesions can be clearly
distinguished from the background uniform region. The lesions with smaller diameter
in the lower target-to-background ratio (5 mm lesion, L4, Figure 8.25) is the one that
is less clearly distinguished.
The plots presented from Figure 8.29 to Figure 8.32 show the plots of the contrast
between the simulated lesions and the normal tissue against the coefficient of varia-
tion measured both for the centered and the off-centered lesions in all the lesion-to-
background ratios considered. Each point in these plots corresponds to an iteration in
the image reconstruction process. The line representing the simulated contrast in each
situation is also drawn.
The plots show that, for all the situations presented, the contrast tends to achieve a
given value, usually not far from the simulated one, and does not change afterward.
As a convergence criteria, a variation of less that 1% in the values of the contrast in
the remainder iterations was considered. The contrast values achieved for each target-
to-bakground ratio tend to increase with increasing lesion diameter. This means that
the contrast achieved between the lesions and the surrounding tissues is closer to the
simulated value for the 10 mm lesion than for the 5 mm lesion. This is true either for
the centered and for the off-centered lesions. However, for a same lesion diameter and
for a same L:B, the contrast values achieved by the off-centered lesions are consistently
lower than the contrast values achieved by centered lesions. Also, for a same iteration,
the noise measured for the centered lesion is always lower than the noise measured for
the off-centered lesion. We can verify this by noting that the horizontal scale in the
plots presented (coefficient of variation) is always equal or less than 1.0 for the centered
lesion whereas is between 1.6 and 2.0 for the off-centered lesions. This is consistent with
the fact that the region closer to the chest wall presents as more granulated in the re-
constructed images, as can be observed in Figures from 8.25 to 8.28. This is most
problably due to the low statistics presented by the sensitivity image in that region, as
can be observed in the Figure 8.22. In fact, such a granulated region does not appear
in the uncorrected images, such as the one shown in Figure 8.20.
Figure 8.33 to Figure 8.36 shows the plots of the signal-to-noise ratio against contrast
for every lesion diameter studied and for every lesion-to-background ratio considered.
The line of the simulated contrast is also shown in the plots as a vertical blue line. The
line of SNR=5, which is also drawn in the plots, is the conventional line of detectability
used in analog radiology, and that as also been used in Positron Emission Mammogra-
phy images [92, 76]. Lesions for which T −B > 5σB can be considered 100% visible.
The shape of the presented plots indicates that, usually, the initial iteration produces
a low contrast, low SNR image. Afterward, contrast tends to increase as the signal-
to-noise ratio increases, until the curves reach an inflexion point. After this point,
the signal-to-noise ratio begins to decrease, as the noise in the images keep increasing,
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Figure 8.29: Plots of the contrast against noise measured as a Coefficient of Variation
for the reconstructed images of the NCAT Breast Phantom with the 5 mm, 7 mm and
10 mm centered and off-centered simulated lesions for the lesion-to-background ratio
L1=13:1. The blue line represents the simulated contrast.
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Figure 8.30: Plots of the Contrast against noise measured as a Coefficient of Variation
for the reconstructed images of the NCAT Breast Phantom with the 5 mm, 7 mm and
10 mm centered and off-centered simulated lesions for the lesion-to-background ratio
L2=10:1. The blue line represents the simulated contrast.
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Figure 8.31: Plots of the Contrast against noise measured as a Coefficient of Variation
for the reconstructed images of the NCAT Breast Phantom with the 5 mm, 7 mm and
10 mm centered and off-centered simulated lesions for the lesion-to-background ratio
L3=5:1. The blue line represents the simulated contrast.
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Figure 8.32: Plots of the Contrast against noise measured as a Coefficient of Variation
for the reconstructed images of the NCAT Breast Phantom with the 5 mm, 7 mm and
10 mm centered and off-centered simulated lesions for the lesion-to-background ratio
L4=4:1. The blue line represents the simulated contrast.
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Figure 8.33: Plots of the values of the signal-to-noise ratio against Contrast for the
reconstructed images of the NCAT Breast Phantom with the 5 mm, 7 mm and 10 mm
centered and off-centered simulated lesions for the lesion-to-background ratio L1=13:1.
The detectability limit appears in the plots as an horizontal gray line and the simulated
contrast appears as a vertical blue line.
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Figure 8.34: Plots of the values of the signal-to-noise ratio against Contrast for the
reconstructed images of the NCAT Breast Phantom with the 5 mm, 7 mm and 10 mm
centered and off-centered simulated lesions for the lesion-to-background ratio L2=10:1.
The detectability limit appears in the plots as an horizontal gray line and the simulated
contrast appears as a vertical blue line.
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Figure 8.35: Plots of the values of the signal-to-noise ratio against Contrast for the
reconstructed images of the NCAT Breast Phantom with the 5 mm, 7 mm and 10 mm
centered and off-centered simulated lesions for the lesion-to-background ratio L3=5:1.
The detectability limit appears in the plots as an horizontal gray line and the simulated
contrast appears as a vertical blue line.
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Figure 8.36: Plots of the values of the signal-to-noise ratio against Contrast for the
reconstructed images of the NCAT Breast Phantom with the 5 mm, 7 mm and 10 mm
centered and off-centered simulated lesions for the lesion-to-background ratio L4=4:1.
The detectability limit appears in the plots as an horizontal gray line and the simulated
contrast appears as a vertical blue line.
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according to the characteristics of the image reconstruction algorithm used. In fact, as
it was already stressed, and as it was verified in the plots of the contrast vs coefficient
of variation previously presented, the increase in image noise as the iterative process
proceeds is a well known characteristic of the ML based iterative image reconstruction
algorithms. Meanwhile, as the SNR values drop, the contrast values tend to reach a
constant value, which results in a line close to the vertical in the SNR vs Contrast
plots. These points in the plots correspond to the iterations for which convergence,
as defined before, was already reached. Visually, the iteration of convergence in the
one corresponding to the point in the plot where this vertical trend of the curve starts.
Comparing in a same plot the several curves that correspond to the different lesion di-
ameters, it can be seen that the convergence is usually reached first for the images with
the biggest simulated lesion, and last by the images with the smallest simulated lesion.
Also, the point of convergence tends to be reached later as the target-to-background
ratio considered decreases.
The plots presented show that, for two highest values of L:B (L1, L2), for both centered
and off-centered lesions, most of the lesions converge to values of contrast that, when
reached, correspond to values of SNR which are above the line of 100% visibility. This
is not verified, however, for the case of the 5 mm off-centered lesion, which, for both
cases, converges to contrast values that correspond to SNR values below that limit.
In the case of the lower values of L:B (L3, L4), only the 7 mm and 10 mm centered lesion
tend to converge to values of contrast that correspond to SNR values above the 100%
detectability line. The 5 mm off-centered lesion converges to values that are slightly
below that value. As for the off-centered lesions, for these L:B, they tend to converge to
contrast values that correspond to SNR values significantly below the 100% detectabi-
lity line. However, according to the images that are presented at the beginning of this
section, the lesions with the considered diameters in the lesion-to-background rations
studied are all observable by visual inspection. This seems to indicate that the SNR=5
criterion, originating from conventional radiology, might not be a good detectability
criterion for emission tomography images. Keeping this reservation in mind, we still
will use this criterion as a reference for the quality of the images with respect to its
signal-to-noise ratio.

8.4.4 Discussion

The plots presented in Figure 8.37 and in Figure 8.38 summarize the results obtained
with the NCAT Breast phantom studies.
The plots in Figure 8.37 represent the trends of the contrasts recovery against lesion
diameter, both for the centered and for the off-centered lesions, and for all the lesion-to-
background ratios considered. The contrast recovery was computed as the percentage
of simulated contrast reached at convergence, with the convergence criterion defined
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above. As it can be seen in these plots, the contrast recovery values obtained in these
studies are always high, even for the smallest diameter off-centered lesion. These plots
highlight the fact that the contrast recovery depends more strongly on the lesion di-
ameter and on its position than it depends on the L:B considered. In fact, for a given
diameter and position, the contrast recovery is approximately the same for all the L:B.
The plots also highlight that the contrast recovery increases with increasing lesion di-
ameter and that, for a same lesion diameter, contrast recovery is higher for the centered
lesion.
The plots in Figure 8.38 represent the trends of the signal-to-noise ratio after conver-
gence against lesion diameter, for both the centered and the off-centered lesion, and for
all the lesion-to-background ratios considered. These plots summarize what was pre-
viously devised: SNR values for the centered lesion are almost always higher than the
100% detectability limit. The exception is the smaller lesion diameter, whose SNR after
convergence is slightly below that line. For the off-centered lesion, the SNR depends
strongly on both the lesion diameter and on the L:B, that is, on the type of breast
tissue. Lesions of 7 mm and 10 mm diameter have SRN values that indicate good visi-
bility for high L:B. For lower L:B (L3=5:1, L4=4:1, which corresponds to dense or very
dense fibroglandular tissues) the presented results indicate that the visibility of the 7
mm and the 10 mm diameter lesion, here modeled as the SNR, might be compromised,
since its values are low or very low (3.0 and 1.8 for the 7 mm lesion, respectively, and
3.5 and 2.4 for the 10 mm lesion, respectively). Regarding the off-centered 5 mm lesion,
independently of the L:B considered, the presented results indicate that its visibility
might always be low or very low (between 1.1 and 4.2).

8.5 Conclusions

In this chapter we have presented the studies that were performed for the Clear−PEM
scanner with the 3D OS-EM image reconstruction algorithm and with simulated data
both using geometrical and anthropomorphic phantoms.
The results presented show that, with the foreseen DOI resolution of 2 mm FWHM,
with the standard acquisition geometry described previously and with the 3D OS-EM
image reconstruction algorithm, the Clear−PEM scanner is expected to provide images
which have an approximately uniform resolution of about 2 mm along the entire FOV.
The studies performed with the NCAT breast phantom and the simulated lesions al-
lowed to estimate the expected capability of the Clear−PEM scanner to detect lesions
with different diameters and at two different locations, in different clinical scenarios.
We have seen that, under the simulated acquisition conditions, lesions with diameters
as low as 5 mm can be clearly detected in breasts that are mostly or entirely fat, with
very high contrast between the lesion and the background tissue. For breasts that are
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Figure 8.37: Trends of the contrast recovery against lesion diameter measured for the
centered and for the off-centered simulated lesions in the NCAT breast phantom, for
the four lesion-to-background ratios considered.
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Figure 8.38: Trends of the signal-to-noise ratio against lesion diameter measured for
the centered and for the off-centered simulated lesions in the NCAT breast phantom,
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more rich in dense fibroglandular tissues, the capacity of detecting the lesions which are
not centered becomes somewhat compromised. These results are, however, hindered
by the low statistics of the sensitivity image in the region close to the chest wall, as
it was already stressed. Moreover, it remains to be studied the impact of longer, yet
clinically feasible, acquisition times on the Figures of Merit studied.
Another means of trying to improve some of the Figures of Merit studied consists on
using alternative image reconstruction algorithms, such as the Bayesian algorithms that
were described in Chapter 4. In the next chapter we will present the studies that were
performed with a Bayesian image reconstruction algorithm on the Clear−PEM scanner
simulation data.
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Chapter 9

Bayesian Image Reconstruction

for the Clear−PEM Scanner

9.1 Introduction

In the last section of the previous chapter we have presented the studies that were
performed with the 3D OS-EM image reconstruction algorithm and the NCAT Breast
phantom simulated data. Those studies showed, among other things, that the image
noise developed in the regions closer to the chest wall prevented a good visibility of the
simulated lesions in that region.
As it was stressed in Chapter 4, the production of noisy images is a characteristic of
the image reconstruction algorithms based on the Maximum Likelihood estimation,
such as the OS-EM algorithm. We have also seen that the use of Bayesian image
reconstruction algorithms allows to effectively control the noise in the reconstructed
images. The Median Root Prior (MRP) is one prior that allows obtaining high quality
images both in what concerns noise and edge preserving.
In this chapter we will present the studies and the results that were obtained using the
Maximum a Posteriori-One Step Late algorithm (MAP-OSL) with the Median Root
Prior to reconstruct Monte Carlo simulated data for the Clear−PEM scanner.

9.2 Methods

The simulated data that was used to test the image reconstruction with the Bayesian
algorithm was obtained for the Chain Phantom and for the NCAT Breast Phantom,
under the same acquisition scenario that was described in the previous chapters. As
previously, the NCAT Breast phantom was used together with the simulated spheri-
cal lesions of 5 mm, 7 mm and 10 mm in diameter, placed at the two different axial
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locations, and for different simulated contrast levels between the lesions and the back-
ground tissues.
The analysis of reconstructed images from the Chain Phantom data allowed evaluating
image spatial resolution for the different prior weights considered. As before, spatial
resolution was computed as the FWHM of Gaussian fits to profiles taken over the re-
constructed point sources in the phantoms.
Analysis of the NCAT Breast Phantom reconstructed images allowed to evaluate the
trade-off between contrast, noise and signal-to-noise ratio (SNR) in images reconstruc-
ted with different prior weights. Contrast, SNR and noise were all computed using
Regions of Interest (ROI) analysis. The definitions of contrast, SNR and noise, which
was modeled as a coefficient of variation, were the same as the ones used in the previous
chapter.
All simulated data were organized in 3D sinograms. Data were reconstructed with the
Ordered-Subsets Maximum a Posterior - One Step Late algorithm available in STIR
(OS-MAP-OSL) using the Median Root Prior. The prior weights (β) used were 0 (cor-
responding to OS-EM reconstruction), 0.1, 0.2 and 0.3. The spatial size of the median
mask used was 3x3x3 pixels, the smallest possible. All the reconstructions were per-
formed using 4 subsets. The sensitivity correction was performed using a Monte Carlo
based sensitivity image that accounted for the presence of gaps between the detection
elements, as explained in Chapter 8.

9.3 Results

9.3.1 Chain Phantom

Figure 9.1 shows the central coronal and the central axial slices of the Chain Phantom
reconstructed images with OS-EM and with the Bayesian algorithm with the prior
weights used, β = 0.1, β = 0.2 and β = 0.3.
The values of FWHM along the three main axis obtained after convergence for the β

parameters used are presented in Table 9.1. Values are presented for the point sources
of the Chain Phantom numbered as 0, 3, 7 and 11, as indicated in Chapter 5. Point
source 0 is at the center of the Field of View (FOV). Point sources 3, 7 and 11 are
placed at 3 cm from the center of the FOV in the central axial plane (point sources 3
and 7) and in the central coronal plane (point source 11).
The values presented show that, as expected, the higher the value used for the β

parameter, the higher is the degradation of the spatial resolution in the reconstructed
images. This degradation is specially pronounced in the axial component of the spatial
resolution. For the transaxial component of the resolution, if the prior weight is not
too high, resolution values are still below 2.5 mm close to the FOV periphery.
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..........β=0 β=0.1 β=0.2 β=0.3

Figure 9.1: Central sagittal slices (above) and central axial slices (below) of the recons-
tructed images of the Chain Phantom with prior weights β = 0 (OS-EM), β = 0.1,
β = 0.2 and β = 0.3.

Table 9.1: FWHM (mm3) for the Chain Phantom images reconstructed with different
prior weights (β).

β Point Source 0 Point Source 3 Point Source 7 Point Source 11

0 1.3x1.3x1.4 1.2x1.5x1.8 1.5x1.3x1.7 1.3x1.3x1.4

0.1 1.8x1.8x2.7 1.9x2.2x2.8 2.3x1.9x2.9 1.8x1.8x2.5

0.2 2.0x1.9x2.8 2.1x2.5x3.1 2.5x2.1x3.0 2.0x2.0x2.7

0.3 2.1x2.1x2.9 2.2x2.7x3.2 2.6x2.2x3.1 2.1x2.1x2.8

9.3.2 NCAT Breast Phantom

Figures from Figure 9.2 to Figure 9.5 present the central coronal slice of the recons-
tructed images of the NCAT Breast Phantom with the simulated lesions reconstructed
with the considered weights of the prior and the OS-MAP-OSL algorithm. Below each
image is presented the profile taken along a line that passes through the center of both
centered and off-centered lesions. Images in Figure 9.2 correspond to the lesion-to-
background ratio L1=13:1, in Figure 9.3 to the lesion-to-background ratio L2=10:1, in
Figure 9.4 to the lesion-to-background ratio L3=5:1 and in Figure 9.5 to the lesion-to-
background ratio L4=4:1.
The images and plots show that the increase in the prior weight results in an increased
smoothness of the image but also in a decrease in the peak-to-valley ratio of the lesion
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profiles. It is also observed in the images that a slight distortion that can be observed
in the lesion closer to the chest wall in the images reconstructed with OS-EM (β=0,
images in the first column, last row in figures from Figure 9.2 to Figure 9.5) can not
be observed in the images reconstructed with the Bayesian algorithm.
The plots presented in Figure 9.6 to Figure 9.9 show the trends in the contrast be-
tween the lesion and the background tissues against noise, for the 5 mm, 7 mm and
10 mm centered and off-centered lesions in the NCAT Breast Phantom, for all the prior
weights considered. Figure 9.6 presents the plots for the case of lesion-to-background
ratio L1=13:1, Figure 9.7 for the case of L2=10:1, Figure 9.8 for the case of L3=5:1
and Figure 9.9 for the case of L4:4:1. The line representing the simulated contrast is
also shown in those plots.
These plots show that, independently of the contrast levels simulated or of the lesion
size considered, image reconstruction with OS-EM develops significantly higher noise
levels than image reconstruction with the Bayesian method. In fact, the coefficient of
variation for the images reconstructed with the Bayesian algorithm is never above 0.3,
while the coefficient of variation for the images reconstructed with OS-EM can easily
reach values above 1.0, especially in the region closer to the chest wall. However, the
values of contrast measured in the images reconstructed with the Bayesian algorithm
are always lower than the contrast values measured in the images reconstructed with
OS-EM.
Figures from Figure 9.10 to Figure 9.11 present the plots of the signal-to-noise ratio
against contrast for the centered and off-centered simulated lesions with 5 mm, 7 mm
and 10 mm diameter, for all the prior weights considered. Figure 9.10 presents the
plots for the lesion-to-background ratio L1=13:1, Figure 9.11 presents the plots for
L2=10:1, Figure 9.12 presents the plots for L3=5:1 and Figure 9.13 presents the plots
for L4=4:1.
Usually, during the first iterations, the SNR increases as the contrast increases, but
such evolution is much more pronounced for the Bayesian reconstructed images than
for the images reconstructed with OS-EM. In fact, for the OS-EM reconstructed le-
sions, it is common that, during the first iterations, the contrast increases but the
SNR remains about constant. For higher iteration numbers, and for OS-EM, the SNR
tends to decrease sharply, while the contrast remains about constant. Regarding the
Bayesian reconstructed images, this behavior is also observable, but not always. For
instance, for the 5 mm diameter lesion, and for the lesion-to-background ratios L2, L3
and L4 (top rows of Figures 9.11, 9.12 and 9.13) by the time the iterative process is
stopped, the SNR values of the images reconstructed with the Bayesian algorithm is
still increasing, whatever the prior weight considered. The same happens for the con-
trast, although not in such a pronounced way. In other cases this behavior is observable
only for the higher prior weights used. This happens, for instance, for the 7 mm and



9.3 Results 171

..........β=0 β=0.1 β=0.2 β=0.3

5
 m

m
5
 m

m

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

Pixel Number

N
u
m

b
e
r 

o
f 
C

o
u
n
ts

 

0

20

40

60

80

100

120

0 20 40 60 80 100 120
Pixel Number

N
u
m

b
e
r 

o
f 
C

o
u
n
ts

 
0

20

40

60

80

100

0 20 40 60 80 100 120
Pixel Number

N
u
m

b
e
r 

o
f 
C

o
u
n
ts

 

0

20

40

60

80

100

0 20 40 60 80 100 120
Pixel Number

N
u
m

b
e
r 

o
f 
C

o
u
n
ts

 

7
 m

m
5
 m

m

0

50

100

150

200

250

300

0 20 40 60 80 100 120

Pixel Number

N
u
m

b
e
r 

o
f 
C

o
u
n
ts

 

0

50

100

150

200

250

0 20 40 60 80 100 120
Pixel Number

N
u
m

b
e
r 

o
f 
C

o
u
n
ts

 

0

50

100

150

200

0 20 40 60 80 100 120
Pixel Number

N
u
m

b
e
r 

o
f 
C

o
u
n
ts

 

0

50

100

150

200

0 20 40 60 80 100 120
Pixel Number

N
u
m

b
e
r 

o
f 
C

o
u
n
ts

 

1
0
 m

m
5
 m

m

0

50

100

150

200

250

300

0 20 40 60 80 100 120

Pixel Number

N
u
m

b
e
r 

o
f 
C

o
u
n
ts

 

0

50

100

150

200

250

0 20 40 60 80 100 120
Pixel Number

N
u
m

b
e
r 

o
f 
C

o
u
n
ts

 

0

50

100

150

200

0 20 40 60 80 100 120
Pixel Number

N
u
m

b
e
r 

o
f 
C

o
u
n
ts

 

0

50

100

150

200

0 20 40 60 80 100 120
Pixel Number

N
u
m

b
e
r 

o
f 
C

o
u
n
ts

 

Figure 9.2: Central coronal slices of the reconstructed images of the NCAT Breast
phantom with the 5 mm, 7 mm and 10 mm diameter simulated lesions and lesion-to-
background ratio L1=13:1. Below each image is presented the profile taken over a line
that crosses the two lesions.
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Figure 9.3: Central coronal slices of the reconstructed images of the NCAT Breast
phantom with the 5 mm, 7 mm and 10 mm diameter simulated lesions and lesion-to-
background ratio L2=10:1. Below each image is presented the profile taken over a line
that crosses the two lesions.
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Figure 9.4: Central coronal slices of the reconstructed images of the NCAT Breast
phantom with the 5 mm, 7 mm and 10 mm diameter simulated lesions and lesion-to-
background ratio L3=5:1. Below each image is presented the profile taken over a line
that crosses the two lesions.
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Figure 9.5: Central coronal slices of the reconstructed images of the NCAT Breast
phantom with the 5 mm, 7 mm and 10 mm diameter simulated lesions and lesion-to-
background ratio L4=4:1. Below each image is presented the profile taken over a line
that crosses the two lesions.
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Figure 9.6: Contrast between the lesions and the background tissues against noise,
presented as the coefficient of variation, measured for the NCAT Breast phantom and
the simulated centered and off-centered 5 mm, 7 mm and 10 mm lesions for the lesion-
to-background ratio L1=13:1. The simulated contrast appears as an horizontal green
line in the plots.
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Figure 9.7: Contrast between the lesions and the background tissues against noise,
presented as the coefficient of variation, measured for the NCAT Breast phantom and
the simulated centered and off-centered 5 mm, 7 mm and 10 mm lesions for the lesion-
to-background ratio L2=10:1. The simulated contrast appears as an horizontal green
line in the plots.
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Figure 9.8: Contrast between the lesions and the background tissues against noise,
presented as the coefficient of variation, measured for the NCAT Breast phantom and
the simulated centered and off-centered 5 mm, 7 mm and 10 mm lesions for the lesion-
to-background ratio L3=5:1. The simulated contrast appears as an horizontal green
line in the plots.
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Figure 9.9: Contrast between the lesions and the background tissues against noise,
presented as the coefficient of variation, measured for the NCAT Breast phantom and
the simulated centered and off-centered 5 mm, 7 mm and 10 mm lesions for the lesion-
to-background ratio L4=4:1. The simulated contrast appears as an horizontal green
line in the plots.
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10 mm diameter lesions in the lesion-to-background ratio L3 (Figures 9.12 (a) and (b)).

In any of the cases studied, and regardless of the lesion-to-background ratio, lesion
diameter, lesion axial position or priori weight considered, the final SNR values at-
tained with the OS-EM algorithm are always much lower than those attained by the
Bayesian algorithm. However, it is also frequent, as it was previously seen, that the
contrast values attained by the Bayesian algorithm are significantly lower than those
attained by OS-EM. This is especially true for the most critical cases, that is, for the
off-centered, smaller diameter lesion in highest lesion-to-background ratio.
Figure 9.14 and Figure 9.15 present the values of the contrast as a function of the diam-
eter of the simulated lesions after convergence, for the prior weights considered, for the
lesion-to-background ratios considered, and for the centered and off-centered lesions.
As previously, the convergence criterion used considered convergence was achieved in
the iterative image reconstruction process when a percentage variation in the contrast
values of less than 1% in the subsequent iterations was found. The line of the simulated
contrast in each case is also represented in the plots.
A common characteristic in these plots is that, regardless of the lesion-to-background
ratio considered, lesion diameter or location studied, the contrast values obtained with
the OS-EM algorithm are always higher than or equal to the ones obtained with the
Bayesian algorithm. Among the contrast values measured with the Bayesian algorithm,
the higher the prior weight used, the lower the contrast value after convergence. For
the two lowest lesion-to-background ratios considered (L1, L2), and for the centered
lesions, the values of contrast measured with the Bayesian algorithm with prior weight
β=0.1 are equal or very close to the measured values with OS-EM, for any of the lesion
diameters considered (plots in Figure 9.14 (a) and (b)). For the off-centered lesions, the
same is true only for the 10 mm diameter lesion. For the remainder cases, the values
of contrast obtained with the Bayesian algorithm, even with the lowest prior weight
studied, are always significantly lower than the values obtained with OS-EM. Such a
difference is even more significant when one looks at the plots corresponding to the
off-centered lesion (Figure 9.15).
Figure 9.16 and Figure 9.17 present the values of the signal-to-noise ratio as a function
of the diameter of the simulated lesions after the considered convergence point, for
the prior weights considered, for the lesion-to-background ratios considered, and for
the centered and off-centered lesions. The line of the conventional detectability limit
(SNR=5) is also drawn in the plots.
A common feature shown in these plots is the fact that, regardless of the lesion-to-
background ratio, lesion diameter or lesion location studied, the SNR values measured
with the OS-EM algorithm after convergence are always significantly lower than the
ones obtained with the Bayesian algorithm. In fact, taking the traditional detectability
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Figure 9.10: Plots of the signal-to-noise ratio against Contrast between the lesions
and the background tissues for the 5 mm, 7 mm and 10 mm centered and off-centered
simulated lesions, for all the prior weights considered, and for the lesion-to-background
ratio L1=13:1. The simulated contrast appears in the plots as a vertical green line and
the detectability limit appears as an horizontal gray line.
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Figure 9.11: Plots of the signal-to-noise ratio against Contrast between the lesions
and the background tissues for the 5 mm, 6 mm and 10 mm centered and off-centered
simulated lesions, for all the prior weights considered, and for the lesion-to-background
ratio L2=10:1. The simulated contrast appears in the plots as a vertical green line and
the detectability limit appears as an horizontal gray line.
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Figure 9.12: Plots of the signal-to-noise ratio against Contrast between the lesions
and the background tissues for the 5 mm, 7 mm and 10 mm centered and off-centered
simulated lesions, for all the prior weights considered, and for the lesion-to-background
ratio L3=5:1. The simulated contrast appears in the plots as a vertical green line and
the detectability limit appears as an horizontal gray line.
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Figure 9.13: Plots of the signal-to-noise ratio against contrast for the 5 mm, 7 mm and
10 mm centered and off-centered simulated lesion, for all the prior weights considered,
and for the lesion-to-background ratio L4=4:1. The simulated contrast appears in the
plots as a green vertical line, and the conventional detectability limit appears as a gray
horizontal line.
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Figure 9.14: Variation of the measured contrast between lesions and background tissues
with the simulated centered lesion diameter, for all the prior weights considered and
for all the lesion-to-background values considered. The simulated contrast appears as
an horizontal gray line in the plots.
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Figure 9.15: Variation of the measured contrast between lesions and background tissues
with the simulated off-centered lesion diameter, for all the prior weights considered and
for all the lesion-to-background values considered. The simulated contrast appears as
an horizontal gray line in the plots.
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line as a reference, it is notorious that the SNR values obtained with the Bayesian
algorithm, is almost ever above that line. The two exceptions consist on the values
measured for the off-centered 5 mm lesion in the two highest lesion-to-background ra-
tios considered, L3 and L4 (Figure 9.17 (a) and (b)). Even for those cases, the SNR
values measured with the Bayesian algorithm are much closer to the detectability line
than the values measured with OS-EM.
Considering the SNR values measured with the Bayesian algorithm, the presented plots
show that the values are higher for higher lesion diameter, lower lesion-to-background
ratio and for the centered position of the lesion. For each scenario considered, usually
the highest SNR value is measured for the highest prior weight considered. However,
this does not happen for the smaller lesion diameter considered, since the SNR values
obtained with any of the prior weights considered are approximately equal. The same
happens for the 7 mm diameter off-centered lesion.
The results summarized in plots from Figures 9.14 to Figure 9.17 indicate that using
the Bayesian algorithm with the Median Root Prior results in images that have lower
contrast values between the lesions and the background tissues, with respect to the
contrast values obtained with OS-EM. However, such images also present much lower
noise values. As a consequence, the SNR values are significantly higher for the images
reconstructed with the Bayesian algorithm. In other words, there is a trade-off be-
tween contrast and SNR when using the Bayesian algorithm. Among the prior weights
studied, the best relation between contrast and SNR seems to be achieved when using
the lowest value studies, β=0. In fact, using higher prior weights might sometimes
(not always) result in higher SNR values, but frequently results in significantly lower
contrast values.

9.4 Conclusions

In this chapter we have presented the tests that were performed with Clear−PEM
simulated data and the OS-MAP-OSL algorithm with the Median Root Prior. An
analysis was presented considering the trade-off between image spatial resolution, con-
trast, noise and signal-to-noise ratio in the reconstructed images with plain OS-EM and
the Bayesian algorithm with different prior weights.
The results obtained show that, as expected, a rise in the prior weight used results in
a higher degradation both on the image spatial resolution and on the contrast between
the lesions and the background tissues in the reconstructed images. The analysis of
the trade-off between contrast and noise shows that the Bayesian method is much more
stable regarding noise than the OS-EM algorithm, but also that it results in signifi-
cantly lower contrast images. However, the signal-to-noise ratio values obtained with
the Bayesian method are significantly higher than those obtained with plain OS-EM.
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Figure 9.16: Variation of the signal-to-noise ratio with the simulated centered lesion
diameter, for all the prior weights considered and for all the lesion-to-background values
considered. The simulated contrast appears as an horizontal gray line in the plots.
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Figure 9.17: Variation of the signal-to-noise ratio with the simulated off-centered lesion
diameter, for all the prior weights considered and for all the lesion-to-background values
considered. The simulated contrast appears as an horizontal gray line in the plots.
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Among the values studied for the prior weigh, the choice of β=0.1 seems to provide the
better trade-off between image spatial resolution and contrast, on the one hand, and
signal-to-noise ration, on the other hand. Higher values for the prior weight lead to low
contrast, low resolution images and not necessarily higher signal-to-noise values.
In summary, the OS-MAP-OSL algorithm with the Median Root Prior has shown to
be a feasible reconstruction method for the dual planar scanner data, yielding high
contrast and spatial resolution images and efficiently controlling image noise.
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In this final chapter the work developed and presented in the several parts of this thesis
regarding the 3D image reconstruction methods for the Clear−PEM scanner will be
summarized. The several results found in the chapters contained in Part IV of the
thesis will be reviewed and discussed and the suggestions and perspectives for future
work will be presented.

The outline and general motivation for the work here presented were provided in an
introductory chapter in Part I of this thesis.
Part II of this dissertation provided a review of the state of the art in the main knowl-
edge fields related to the work developed. The fundamental importance of the imaging
methods in the detection and management of breast cancer is presented in Chapter 2.
The great potential of small dedicated cameras based on radionuclide imaging is high-
lighted in the context of its role in the early detection of breast cancer. In Chapter 3,
the several technical aspects implied in the design and development of Positron Emis-
sion Tomography scanners are presented. A review of the state of the art of the existing
or under development PEM scanners is provided, as well as the most meaningful clini-
cal findings using those scanners. The final chapter of Part II introduces the relevant
concepts and approaches used for PET image reconstruction with statistical iterative
methods.
Part III of this thesis deals with the description of the Clear−PEM scanner and of the
utilities that were used to develop and test the 3D image reconstruction software. The
main characteristics of the Clear-PEM scanner in development are presented in Chap-
ter 5, as well as the Monte Carlo simulation framework that was created for its design.
The geometrical and anthropomorphic phantoms used in the simulations, as well as
the particular settings in which they were used are described. Particular emphasis is



194 Main Conclusions and Future Work

given on the description of the simulations that aimed at reproducing as thoroughly
as possible breast exams with the Clear-PEM scanner in a clinical scenario. In Chap-
ter 6 the image reconstruction library STIR, that was used as a basis for 3D image
reconstruction for the Clear-PEM scanner, was presented. An overview was provided
of the modular structure of the library, as well as of the main approaches used on the
computations associated with the projection and the backprojection operators. In this
chapter, the reasoning behind the implementation of the iterative statistical image re-
construction algorithm available in STIR, OS-MAP-OSL was also presented.
Part IV of this thesis contains the chapters that present the methodologies that were
used to implement the 3D image reconstruction software for the Clear-PEM scanner
and the results obtained with the several tests performed. The summary and the dis-
cussion of the work presented in each of the chapters, as well as the perspectives for
future work, will be presented hereafter. For the sake of clarity, the discussion will be
divided into sections corresponding to each of the chapters contained in Part IV of the
thesis.

Enhancements in the STIR framework and initial evaluation

In Chapter 7 the reasoning that was followed to enable the STIR library to deal with
data proceeding from a dual planar geometry scanner such as the Clear−PEM was
presented. It was described how the data proceeding from a Clear-PEM acquisition
was accommodated in the standard 3D sinogram format. It was also described how
the DOI information was accounted for in the sinograms. The adopted scheme allowed
avoiding an increase in the image reconstruction computation time with regard to the
non-existence of DOI information, while maintaining the information provided by the
DOI measure. The methods used to implement the forward and the backprojector op-
erators were presented, as well as the geometrical symmetries that are used to speed up
the computations. Next, an initial evaluation of the new features in the STIR library
was performed using geometrical phantoms analytical simulated data. This involved
a number of tests carried out with the aim of optimizing the parameters used in the
image reconstruction algorithm and in the projector/backprojector settings. The image
reconstruction operators and algorithm settings studied were the number of subsets to
be used in the OS-EM algorithm, the number of rays to trace each bin in the trans-
axial direction in the projection operation, and the geometrical symmetries used. The
ability to reconstruct data acquired with the detector plates at a single angular posi-
tion was also studied. The quality of the reconstructed images was evaluated both in
terms of image uniformity and image spatial resolution. Image reconstruction time was
also considered. Regarding the number of subsets used with the OS-EM algorithm, it
was found that 4 was the number of subsets that optimized the relation between the
image quality and the time needed to achieve convergence. A higher number of subsets
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resulted in a limited number of projection views in each subset, with consequent insta-
bility in the reconstruction process and degradation of the quality of the reconstructed
images. Regarding the number of rays used to trace each bin in the transaxial direction
in the projection and backprojection operations, as expected, a higher number of rays
lead to improved image quality, since more accurate computations of the contributions
of the voxels for a given bin are used. It was found that the increase in computa-
tion time needed to perform the computations with 3 rays to trace each bin in the
transaxial direction was largely compensated by the improvement in the quality of the
reconstructed images, both in terms of image uniformity and image spatial resolution.
Regarding the use of geometrical symmetries, it was found that the use of the s, θ and
z symmetry in the computations did not introduce any error in the reconstructed im-
ages. The simultaneous use of the symmetries lead to a reduction of about 12 times in
the computation time with respect to the computation time required when none of the
geometrical symmetries were used. Another aspect that was tested was the ability of
the library to deal with data proceeding from a single angular position of the detector
plates. It was found that, although the simulated structures were all correctly located
in the reconstructed images, a blurring artifact was present which is consistent to the
non existence of information along the direction normal to the direction defined by the
detector plates. This topic was further explored in another chapter of the thesis and
will be discussed later.
A number of issues regarding the work presented in this chapter deserves additional
remarks. First, we address the question of the choice of the sinogram format for ac-
commodating the 3D projection data of the Clear-PEM scanner. Other data formats
exist that more intuitively fit the planar nature of the planar scanner acquisition data,
such as planograms, or its 2D counterparts, linograms. However, the use of this quan-
tities is constrained to two angular acquisitions at two perpendicular position of the
detector plates. Although the Clear-PEM rotational capabilities around the breast of
the patient are not further explored in this thesis, the use of sinogram-based image
reconstruction software does not disregard the possibility of re-using it for acquisi-
tion scenarios involving several angular positions of the detector plates. Furthermore,
those who defend the use of planograms or linograms argue that the projection and
backprojection operations using linograms are faster than when using sinograms [171].
Although this is a theoretical valid argument, in practice many other factors affect
the computation time associated with the image reconstruction process. For instance,
some results obtained with the simulated acquisition of the Clear−PEM scanner and
ML-based algorithms [172], not presented in this thesis, have shown that 2D image
reconstruction using 2D sinograms can perform better, in terms of computation time,
than 2D image reconstruction using linograms, with equivalent results concerning the
quality of the reconstructed images.
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Other aspects that deserve further investigation and development are the extension of
the capability of the image reconstruction library to deal with more number of angular
position of the detector plates, and the testing of the image reconstruction results with
different distances of the detector plates. The first of these topics will be discussed
below. The second issue is important because it is to be expected, in the clinical prac-
tice, a wide variety of breast volumes to be examined. The standard distance used in
this work (10 cm distance between the front surface of the detector heads) was chosen
because it was considered to be an adequate plates separation for a mean breast size.
Shorter plates distances might cause discomfort to the patient, and longer plates dis-
tances imply a diminishing in the sensitivity of the scanner. However, it is important
that the detector plates separation can be adequate for each individual breast size.
A wider distance between the detector plates results in a wider number of projection
views that are not sampled. Therefore, it is expected that some blurring artifacts might
appear, especially in the regions located near the FOV edges. The existence of blur-
ring artifacts in those regions will be discussed later. A shorter distance between the
detector plates results in projection views that are sampled more than once, and this
may lead to non-uniformities in the reconstructed images. However, this issue should
be accounted for with the correct normalization factors incorporated in the sensitivity
image used in the image reconstruction process.
An important issue that arises when 3D image reconstruction is being discussed is the
question of the associated computation time. The choice of the STIR library as the
basis for 3D image reconstruction for the Clear-PEM scanner had already in mind that
this library had fast speed features, such as the fast projector and backprojector op-
erators and data structures adequate to the use of geometrical symmetries. With the
chosen axial sampling for the Clear-PEM data, the number of segments to be processed
for a dataset is enormous (127 segments). Therefore, even if the processing time asso-
ciated with a single segment is quite low, the processing time for the whole sinogram
rests quite high. Therefore, an obvious and simple means to reduce the 3D image re-
construction computation time is to use axially compressed data, and to reconstruct
the images accordingly. Another approach to improve the computation times for 3D
image reconstruction is to use parallel computing. Although less simple to execute
than the previous one, this approach certainly deserves to be explored, especially be-
cause the STIR library is a successor of a parallel computing platform for 3D image
reconstruction, the ParaPET project.

3D OS-EM image reconstruction for the Clear-PEM scanner

Chapter 8 of this thesis presents several studies that were performed with Monte Carlo
simulation data for the Clear-PEM scanner and the 3D OS-EM algorithm. In the first
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section of the chapter Monte Carlo data simulated for a simplified version of the geom-
etry of the scanner was used as input for the 3D OS-EM algorithm with the optimized
settings that were defined in Chapter 7. The images obtained confirmed a good agree-
ment with the simulated data. The evolution of the image spatial resolution and image
uniformity with the iteration number were in agreement with what is expected for a
ML-EM based image reconstruction algorithm.
In the second section of the chapter the effect of the rotation of the detector heads
and of the DOI information in the spatial resolution of the reconstructed images was
studied. We addressed the question of how an acquisition with the detector heads at a
single angular position performs, in terms of the spatial resolution of the reconstructed
images, with respect to an acquisition with the detector plates at two perpendicular
angular positions. Regarding DOI information, four different scenarios were studied:
non-existence of DOI information, a poor DOI resolution, the DOI resolution that is
foreseen to be provided by the Clear-PEM scanner and an ideal case, exact DOI in-
formation. Regarding the reconstructed images corresponding to the data acquired in
a single angular position of the detector plates, it was found that, when no DOI is
available, a strong blurring occurs in a direction normal to the plane of the detector
plates surface. This effect is, however, very much DOI dependent, since it is strongly
attenuated with the increase of the DOI resolution. It was also found that the evolution
of the values of the image spatial resolution measured in structures near the FOV edges
did not tend to stabilize with the iterative process. The FWHM values rather tended
to increase. This fact indicates that, even when exact DOI information is considered,
the image spatial resolution near the FOV edges is a critical issue when a single angular
position of the detector plates is considered. Regarding the dual angular positions of
the detector plates, it was found that, as expected, there is a clear improvement in
the image spatial resolution with a high DOI resolution is considered. However, as
before, the spatial resolution values measured in regions close to the FOV edges do not
tend to stabilize with the number of iterations, as it happens in other regions of the
FOV. This happens even when the ideal scenario for the DOI resolution is considered.
Furthermore, these studies have shown that, regardless of the DOI resolution consi-
dered, the impact of the detectors heads rotation on the spatial resolution is always
more pronounced in the off-centered than in the centered regions of the FOV. Thus, the
spatial resolution of the reconstructed images near the FOV edges might benefit from
acquisitions in additional angular positions of the detector heads. It was also found
that, regardless of the geometry of the acquisition, the most significant improvement in
the image spatial resolution occurs when a poor DOI resolution improves to the DOI
resolution value that will be provided by the Clear-PEM scanner. This improvement
is even more significant than the improvement obtained with a dual angle acquisition
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(while maintaining the poor DOI resolution). Overall, the dual angle simulation ac-
quisition with the foreseen DOI resolution that will be provided by the Clear PEM
scanner and the 3D image reconstruction algorithm yields an image spatial resolution
that ranges from 1.3×1.3×1.4 mm3 in the FOV center to 1.5×1.8×2.0 mm3 at 4 cm
from the FOV center.
The third part of the chapter presents the results obtained in the studies involving
the NCAT breast phantom bearing simulated lesions. The simulations used in these
studies aimed at reproducing as thoroughly as possible breast exams with the Clear-
PEM scanner in a clinical scenario. This included 5 minute simulated acquisition of the
anthropomorphic phantom considering different uptakes in the normal tissues and dif-
ferent diameters for simulated spherical lesions. This way, the ability of the Clear-PEM
scanner to detect lesions of different dimensions in different types of radiological dense
breasts (from essentially fatty breast tissue to dense breast tissue) could be evaluated.
The results obtained with the OS-EM algorithm indicate that, in the clinical simula-
ted settings, it seems to be possible to detect, with high contrast and signal-to-noise
ratio, lesions located in the center of the FOV, with diameters ranging from 5 mm to
10 mm, in all of the considered breast types. The results also indicate that it seems
to be possible to visualize 3 mm lesion, but only in the highest lesion-to-background
ratios considered, that is, only in breasts constituted mainly by fat tissue and breasts
constituted by fat and some fibroglandular tissues. It is worth mentioning, however,
that the performed studies do not allow to conclude whether the 3 mm lesion could be
better visualized if longer acquisition times are considered. Regarding the visualization
of lesions closer to the chest wall, the studies indicate that the lesions present a good
visibility when breasts fat tissue and fat with fibroglandular tissue breasts are conside-
red. When dense or extremely dense breast tissue types are considered, the visibility
or the lesions close to the chest wall remains somehow compromised.
A number of issues arise from the results obtained in this chapter. One of them is the
interest in exploring the capabilities of rotation of the detector heads of the Clear-PEM.
Hopefully, data acquisition at additional angular positions of the detector heads should
improve the quality of the reconstructed images, especially in the regions near the FOV
edges. However, issues such as the number and the positions of the detector heads that
best suit the trade-off between image quality and acquisition time remain to be studied.
It also remains to be studied whether longer acquisition times will allow a better visu-
alization of 3 mm lesions and of the 5 mm lesions in the regions close to the chest wall.
Another field that will certainly deserve attention once the Clear-PEM scanner is as-
sembled and ready to acquire data is the sensitivity image. Desirably, this image will
be computed from a sinogram containing the normalization coefficients that will be
computed from data acquired from a planar uniform source. It will be interesting to
evaluate the results obtained with such approach in a clinical setting and how they
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compare with the approach used in this work.

Bayesian image reconstruction for the Clear-PEM scanner

In Chapter 9 the results of the Bayesian image reconstruction using the Median Root
Prior (MRP) with the simulated data of the Clear-PEM scanner are presented. The
impact of using different values for the weight of the prior was evaluated in the spatial
resolution, contrast and signal-to-noise ratio of the reconstructed images. Regarding
the impact in the spatial resolution of the images, it was found that the higher the prior
weight studied, the lower was the spatial image resolution obtained for the reconstructed
images. However, when using a low value for the prior weight (β=0.5) the values of
the spatial resolution remained similar to the ones obtained with the plain OS-EM
algorithm. The results obtained with the anthropomorphic phantom showed that, with
respect to the OS-EM results, the Bayesian algorithm allowed improving the signal-to-
noise ratio of the images, albeit resulting in lower contrast images. The improvement
in the signal-to-noise ratio was especially significant in the regions closer to the chest
wall, thus indicating that using the Bayesian algorithm with the Median Root Prior
might allow a better visualization of lesions in that region in the breast.

Perspectives for Future Work

In this work we presented the approach followed for performing 3D image reconstruc-
tion for a scanner with a planar detector geometry. The use of the STIR library as a
basis platform for such purpose has shown to lead to promising results obtained with
Monte Carlo simulation data for the Clear-PEM scanner. This fact encourages the
possibility of using this same approach with other scanners based on planar detector
heads, namely scanners used to study other organs of the human body.
In this work we also approached the question of how Bayesian image reconstruction
methods compare with the plain OS-EM algorithm for planar scanner data. Although
we have used a specific prior, the Median Root Prior, many other prior types, each
with its own strengths and pitfalls, can be explored. Currently, efforts are taking place
toward the development of multi-modality imaging scanners that combine anatomi-
cal with functional imaging techniques. These efforts certainly encourage the use of
Bayesian algorithms with anatomical priors, allowing the incorporation of anatomical
information in the image reconstruction process of emission data. The use of such
priors with planar scanner data is certainly a topic worthy of future work.
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Concluding Remarks

The 3D image reconstruction software presented in this thesis has contributed to the
evaluation of the expected performance of the Clear-PEM scanner, as well as its ability
to detect small cancerous lesions in the breast. How the 3D image reconstruction
software will perform in a real clinical scenario will hopefully be evaluated once the
Clear-PEM scanner is ready.
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