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apresentados (excepto quando referido em contrário), assim como a sua interpretação e 

discussão. 
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PREFACE 

Genomic medicine, a biomedical research area which uses the individual information to 

provide better health care, has been considerably developed since the Human Genome 

Project. One of its current challenges is the identification of the risk or susceptibility for 

multifactorial diseases and the study of their frequency in populations. The knowledge 

produced in this research area, will, most certainly, be responsible for new treatment 

strategies, such as pharmacogenomics, resulting in more effective and less toxic drugs. 

This PhD thesis had as major objective contribute to the characterisation of the genetic 

background and population structure of the Azorean population. The information 

retrieved from this work is essential in the comprehension of the Azorean diversity and 

ancestry, which, on the other hand, will be important for the development of genomic 

medicine, in particular, for the design of future mapping studies in this population. 

A detailed overview of the literature concerning human diversity markers, population 
structure and the advantages of isolated versus outbred populations are given in 
chapters I, II and III, respectively. Chapter I focuses briefly on the contribution of 
molecular and non-molecular markers, where an introduction of the importance of 
surnames and of human genome polymorphisms is shown. The use of linkage 
disequilibrium and its importance in the human genome architecture is demonstrated. 
Chapter II describes the evolutionary forces, such as genetic drift, selection, mutation 
and migration, which play a relevant role in the population’s structure. Moreover, 
genetic distance measures and inbreeding are also presented. Chapter III compares 
isolated and outbred populations in terms of advantages for genetic studies. Examples 
of five human isolated populations are exhibited. 

Chapter IV is devoted to the characterization of the study population, the Azores. Its 
geographic location, demography, discovery and settlement are introduced. A brief 
description of other genetic studies in this population and the objectives of this 
scientific research are given. 

Chapters V, VI and VII assemble the scientific work performed in this PhD thesis, 

which are object of publication in international journals. Chapter V concerns the 

structure of Azorean population through the analysis of surnames. Chapter VI 

approaches the Azorean ancestry, with studies of Y-chromosome lineages and Alu 
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insertion polymorphisms. Finally, chapter VII reports the Azorean diversity and 

structure based on genetic markers located both in autosomes and X-chromosome.  

The last chapter of this thesis, chapter VIII, provides a general integrative discussion of 

the results placing them in perspective with state-of-the-art data in population genetics 

field. Perspectives for future work are also highlighted. 
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Resumo 
 

RESUMO 

O estudo da diversidade genética humana possibilita um melhor conhecimento dos 

padrões de distribuição das doenças genéticas numa população, bem como contribui 

para a caracterização da evolução humana. O arquipélago dos Açores (Portugal), 

situado no norte do oceano Atlântico, é composto por nove ilhas vulcânicas distribuídas 

desigualmente por três grupos geográficos: o oriental com duas ilhas – São Miguel e 

Santa Maria –, o central que inclui cinco ilhas – Terceira, Pico, Faial, São Jorge e 

Graciosa –, e o ocidental com Flores e Corvo. A fim de compreender e determinar o 

fundo genético da população açoriana, a presente tese teve por base duas abordagens 

principais: os nomes de família (sobrenomes) e os marcadores genéticos localizados em 

diferentes cromossomas.  

A avaliação da origem genética da população dos Açores foi realizada através da análise 

de linhagens paternas (cromossoma Y) e marcadores Alu. O cromossoma Y apresenta 

algumas vantagens que possibilitam traçar linhagens, nomeadamente não sofre 

recombinação e é transmitido de pais para filhos. Contudo, quando um pai apenas tem 

filhas essa linhagem pode-se perder. Assim, o estudo das origens de uma população 

deve ser complementado com marcadores localizados nos cromossomas autossómicos, 

por exemplo, os polimorfismos de inserção Alu. Estes polimorfismos possibilitam a 

inferência directa do estado ancestral (ausência de inserção), e a sua aplicação aos 

estudos da evolução populacional é vantajosa. Além disso, as inserções Alu representam 

ambas as contribuições – paterna e materna –, uma vez que estão sujeitas a eventos de 

recombinação e outras forças evolutivas. Os resultados das linhagens paternas na 

população Açoriana revelaram nove haplogrupos (HG) diferentes, na sua maioria 

frequentes na Europa. Assim, os dados apontam para uma grande contribuição de 

indivíduos do continente português, bem como, embora em frequências mais baixas, de 

indivíduos do Médio-Oriente (HG J*) e do norte de África (HG E*(xE3)). Igualmente, 

os resultados baseados nos marcadores Alu indicam uma proximidade elevada entre 

populações portuguesas, marroquinas e espanholas, nomeadamente, Catalãos e 

Andaluzos. Esta proximidade reflecte-se na árvore filogenética, onde os Açores e 

Portugal continental ramificam com Catalunha, Andaluzia, Marrocos e Argélia, bem 

como corrobora com os resultados obtidos nas análises do cromossoma Y e dos 

marcadores autossómicos.  
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A determinação da diversidade genética com marcadores neutros permite conhecer se as 

forças evolutivas, designadamente, a deriva genética e a selecção, imprimem a sua 

influência na assinatura genética de uma população. Na presente tese, a diversidade da 

população Açoriana foi calculada com base em diferentes marcadores, a saber: 

sobrenomes, Short Tandem Repeats (STRs autossómicos, Y e X) e polimorfismos de 

inserção Alu. Os valores médios de diversidade obtidos nos diferentes estudos mostram 

que, no general, a população açoriana é muito diversa, apresentando valores mais 

elevados do que os encontrados no continente português. O estudo de abundância dos 

sobrenomes e de variabilidade dos microssatélites em cada ilha açoriana revelou que as 

ilhas mais diversas são Terceira e São Miguel. Ambos os estudos apontam para que as 

ilhas mais pequenas – Corvo, Graciosa e Santa Maria –, apresentem, como esperado, 

valores mais baixos de variabilidade. A análise de parentesco entre ilhas foi avaliada 

usando os sobrenomes e 15 STRs. Duas imagens diferentes emergem: os sobrenomes 

mostram uma proximidade maior entre os grupos central e ocidental, e os STRs 

posicionam o grupo central mais próximo do oriental. Esta dualidade pode ser explicada 

pelo facto dos sobrenomes exibirem uma imagem mais recente, que considera as 

características sócio-económicas das ilhas, enquanto os dados dos microssatélites 

revelam a evolução baseada nas características do povoamento do arquipélago, onde se 

evidenciam São Miguel e Terceira como agentes principais no povoamento das 

restantes ilhas. Ambas as abordagens são complementares. Em termos de desequilíbrio 

de ligação (LD), o grupo ocidental apresentou um valor de LD multialélico (D’) mais 

elevado (0,328), no entanto, este valor indica a ausência de LD neste grupo de ilhas. Os 

grupos central e oriental mostram valores semelhantes, ambos com ausência de LD. Em 

suma, os Açores, bem como Portugal continental, evidenciam LD apenas para 

distâncias físicas curtas. Estes dados sugerem que será necessário um número elevado 

de marcadores para realizar estudos de mapeamento fino de genes de susceptibilidade 

para doenças complexas. No entanto, outras características (por exemplo, o mesmo 

ambiente e a possibilidade de construir grandes pedigrees através de registos civis e da 

igreja) fazem desta população um recurso possível para futuros estudos genéticos. 

O coeficiente de consanguinidade populacional tem um papel determinante na 

identificação da subdivisão de populações humanas. As estimativas baseadas em STRs 

e sobrenomes evidenciam valores diferentes. O coeficiente de consanguinidade 

calculado a partir dos nomes de família para a ilha de São Miguel é cerca de sete vezes 
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menor do que o obtido com base nos 21 STRs. Ambas as determinações têm 

inconsistências e nenhum valor preciso é conseguido; no entanto, todas as análises 

demonstram que a população açoriana é uma população aberta. De acordo com Wright 

(1984), valores inferiores a 0.05, como os verificados nas populações de Portugal 

continental e Açores, indicam pouca diferenciação genética. A presença de estrutura 

genética numa população pode conduzir a dados falsos e, possivelmente, a erros de 

interpretação. Assim, apesar de estarem dispersos por três grupos geográficos e 

constituírem uma população admixed, os Açores não apresentam subdivisão genética, e 

podem, portanto, ser considerados como um todo homogéneo, uma vez que as 

diferenças genéticas entre ilhas não são estatisticamente significativas. 

Os padrões de dispersão dos indivíduos têm impacto significativo na admixture e na 

estrutura genética de uma população. As taxas de migração foram calculadas a partir de 

sobrenomes e microssatélites. O valor de migração para a ilha do Corvo baseado em 

STRs sugere que esta população está sedentária. Um valor controverso foi obtido a 

partir dos sobrenomes, onde esta ilha apresenta o valor mais elevado de migração 

indicando a saída de indivíduos desta para as outras ilhas. Ambos os estudos, 

sobrenomes e STRs, evidenciam o movimento dos indivíduos para as ilhas maiores, a 

saber, São Miguel e Terceira. Os resultados de dispersão espacial dos sobrenomes 

revelam que o movimento dos indivíduos ocorre essencialmente entre ilhas mais 

próximas (isolamento pela distância).  

Em conclusão, os dados apresentados ao longo desta tese melhoram o conhecimento do 

fundo genético da população açoriana: os açorianos são uma população aberta com 

diversidade genética elevada, fluxo genético relativo e sem extenso desequilíbrio de 

ligação. Além disso, os padrões da diversidade são uma consequência directa da história 

do povoamento do arquipélago. Os resultados aqui explanados complementam o 

passado, estabelecendo a ponte entre a genética e a história; melhoram o conhecimento 

do presente; e contribuem para compreender o futuro, uma vez que o fundo genético, 

bem como o ambiente, influenciam certamente o tipo e a distribuição das doenças na 

população açoriana. 

Palavras-chave: Fundo genético, diversidade genética, estrutura populacional, 

desequilíbrio de ligação, Açores. 
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  Summary 

SUMMARY 

The study of human genetic variation allows a better understanding of disease patterns 

of a population, as well as, contributes to the comprehension and description of human 

evolution. In the present thesis, we present a broader view of the genetic structure of the 

Azorean population. The Azores is composed of nine volcanic islands unevenly 

distributed by three geographic groups: Eastern, Central and Western. We address the 

diversity and genetic background of this population considering surnames, SNPs, Alu 

insertion polymorphisms and different STR markers, located in different chromosomes 

(autosomal, Y and X).  

The assessment of the genetic ancestry of the Azoreans, based on Alu insertion 

polymorphisms and Y-chromosome lineages, shows that the main contributors were the 

mainland Portuguese with an important participation of Middle eastern and north 

African populations. Additionally, the results of migration using surnames and STRs 

evidence relative gene flow among islanders. Considering molecular markers, the 

Azoreans generally present a higher genetic diversity when compared to mainland 

Portugal and other European populations. The surnames and molecular markers reveal 

no genetic structure, although the Azores are dispersed through three geographical 

groups and constitute an admixed population. In terms of linkage disequilibrium (LD), 

which was estimated in the HLA, Xq13.3 and NRY regions, the archipelago, similarly 

to mainland Portugal, shows LD only for short physical distances. All analyses suggest 

that the Azoreans are an outbred population, where the identification of IBD regions 

will require high density of genetic markers. Thus, the results demonstrate that both 

surnames and molecular markers are complementary and aid in the genetic 

characterization of a population. 

In general, this thesis improved the knowledge of the genetic signature of Azoreans, 

complement the past by connecting genetics and history and will contribute to predict 

the future in terms of disease distribution in this population. 

 

Keywords: Genetic signature, genetic diversity, population structure, linkage 

disequilibrium, Azores Islands. 
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CHAPTER I  Understanding Human Diversity 
 

I. Understanding human diversity: contribution of molecular and 

non-molecular markers 

In the animal kingdom, some species, such as, Asian lion, puma and cheetah, show very 

little genetic diversity (Driscoll et al. 2002); however, most organisms, inc1uding 

humans, have a considerable amount of genetic variation (Li and Sadler 1991). The 

proportion of genetic diversity that exists between human populations is relatively low. 

An early study, based on protein polymorphisms, estimated a 15% diversity between 

groups (Lewontin 1972). More recently, autosomal variation studies have shown that 

~83-88% is found within populations and ~9-13% between continental populations 

(Jorde et al. 2000; Romualdi et al. 2002).  

Around the world, genetic variation is geographically structured. Several scenarios for 

this strucutre are possible; for example, there are species in which it is observed sharp 

regional/ continental discontinuities, making variation different between groups, and 

those who are geographically undifferentiated, where variation is due to differences 

between individuals (Barbujani and Goldstein 2004). 

An understanding of how genetic diversity is structured in the human species is not only 

of anthropological and political importance, but also of medical relevance with 

important implications for human evolution, forensics and distribution of genetic 

diseases in populations (Cavalli-Sforza and Feldman 2003; The International HapMap 

Consortium 2005; Tishkoff and Kidd 2004; Foster and Sharp 2004; Jorde et al. 2000). 

For instance, if major differences in allele frequencies exist between populations, 

individuals from different origins may often be expected to respond differently to 

medical treatments (Wilson et al. 2001).  

Studies of genetic diversity from restricted geographical areas, where large numbers of 

individuals are sampled and a reasonable geographic coverage of the variation is 

achieved, generally reveal spatial gradients of allele frequencies (Barbujani et al. 1995; 

Rosser et al. 2000; Karafet et al. 2001) that are only occasionally disrupted by local 

discontinuities corresponding to linguistic or geographical barriers (Barbujani and Sokal 

1990). This suggests that isolation by distance (i.e. decreasing gene flow with increasing 

geographical distances) may be the most appropriate description of human genetic 
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diversity (Cavalli-Sforza et al. 1994). In contrast, worldwide studies of human diversity 

based on “populations” generally find that individuals cluster discretely depending on 

their continents of origin (Cavalli-Sforza et al. 1988; Bamshad et al. 2003; Rosenber et 

al. 2002; Lao et al. 2006), and this is sometimes taken to mean that human genetic 

diversity is structured according to etnia (Risch et al. 2002; Burchard et al. 2003). The 

discrepancy in results between regional and global surveys of human genetic diversity 

could suggest that gradients in allele frequencies are restricted to smaller geographic 

regions, whereas the continents are distinguished by discontinuities in genetic diversity. 

Alternatively, the discrepancies may result from differences in study design as 

suggested, for example, by Kittles and Weiss (2003). Serre and Paabo (2004) 

demonstrated that when individuals are sampled homogeneously from around the globe, 

the pattern seen is one of gradients of allele frequencies that extend over the entire 

world, rather than discrete clusters. Therefore, there is no reason to assume that major 

genetic discontinuities exist between different continents or “races”1. 

To understand the population genetic structure it is necessary the description of the 

differences in polymorphism content and diversity patterns between different groups, 

subpopulations or metapopulations. The most obvious way to attain this characterization 

is through the study of molecular markers. However, approaches using cultural, 

demographic and socioeconomic information may also play an important role in the 

understanding of diversity, inbreeding and migration. 

 

I.1. What can we learn from surnames 

Cultural traits are transmitted from ancestors to their descendants, in a process 

analogous to inheritance, and are subject to changes, similar to mutations, by interaction 

between individuals, such as, teaching and imitation. In fact, they enhance the 

relationships within human groups, defining social entities comparable to certain 

biological species and populations (Manrubia and Zanette 2002). 

Surnames are cultural traits (Cavalli-Sforza and Feldman 1981) whose transmission 

bears strong similarity with that of some biological features. In systems where surname  

                                                 
1 This is a strong support against those who still believe in the existence of “races” or even “superior races”. 

However, to group humans according to their common features, the most accepted term is etnia or ancestry. 
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attribution is through the paternal line, surnames simulate neutral alleles of a gene 

transmitted by the Y-chromosome. Thus, the expectations of the neutral theory of 

evolution, which is entirely described by random genetic drift, mutation, selection and 

migration, are satisfied (Zei et al. 1983). This property of surnames, together with their 

availability in large numbers, from present, as well as, from historical populations, 

makes them useful for the study of population structure (Pettener et al. 1998). 

In recent decades, surnames have been used as genetic markers to estimate inbreeding 

changes in a population (Crow and Mange 1965; Pinto Cisternas et al. 1985; Gueresi et 

al. 2001; Boattini et al. 2006; Colantonio et al. 2006), to measure the degree of 

population subdivision (Lasker and Kaplan 1985; Madrigal et al. 2001; Colantonio et 

al. 2002; Esparza et al. 2006), and to analyze changes in genetic relationships between 

populations (Lasker 1977; Weiss 1980; Chen and Cavalli-Sforza 1983; Relethford 

1988; Pettener et al. 1998; Calderon et al. 2006). 

Surnames began to be used for studying the genetic structure of populations after Crow 

and Mange (1965) published an article on the measurement of inbreeding from 

frequency of isonymous marriages. Twelve years later, Lasker (1977) described a 

method for estimating the genetic relationship between populations through isonymy 

(Ri). This method has been widely used (Lasker and Mascie-Taylor 1983; 

Pinto-Cisternas et al. 1990; Rodríguez-Larralde 1993) and new aspects of population 

genetics were approached (Rodriguez-Larralde et al. 2000). Others, for example, Chen 

and Cavalli-Sforza 1983; Relethford 1988; Morton and Yasuda 1980 and Zei et al. 

1983, have studied similarities between populations adapting Malécot's genetic kinship 

between populations to surnames (Malécot 1950). Furthermore, Pinto-Cisternas et al. 

(1990) and Barrai et al. (1990) have derived variances for parameters estimated from 

surnames (Rodriguez-Larralde 1993). 

The use of surnames models, similarly to other genetic models, is dependent of some 

assumptions. The method of Crow and Mange (1965) assumes, among other things, that 

surnames are monophyletic, that non-random mating is symmetrical with respect to sex, 

and that changes of spelling, illegitimacy, or adoption do not occur. However, in large 

heterogeneous societies these assumptions do not hold, therefore, “... less confidence 

can be placed in precise estimates of kinship…” Relethford (1988). Nevertheless, the 

relative value of these estimates is still informative, especially when large sample sizes 
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and the same source of information and methodology are used in an entire country. In 

reality, isolation by distance has been determined with the use of surnames as well as 

the existence of population clusters within countries, where surname distribution and, 

presumably, genetic composition are more homogeneous (Barrai et al. 1997; 

Rodriguez-Larralde et al. 2000). 

Nowadays, in many countries, millions of surnames of telephone users, often available 

on CD-Roms or online, can be efficiently analyzed in a short time. As examples, the 

surname structure of Switzerland (Barrai et al. 1996), Germany (Barrai et al. 1997), 

Italy (Barrai et al. 1999), Austria (Barrai et al. 2000), France (Mourrieras et al. 1995), 

and the Netherlands (Barrai et al. 2002) were studied, taking into account, in total, more 

than 20 million surnames. Investigated at different geographic scales, surname-inferred 

genetic structures were sometimes regarded with a certain suspicion because they are 

simulated markers for a single locus. A good example of the doubts about surname 

studies was expressed by Rogers (1991) “The method ... requires an assumption that 

has not been appreciated: it is necessary to assume that all males in some ancestral 

generation, the founding stock, had unique surnames. Because this assumption is 

seldom justified in real populations, the applicability of the isonymy method is 

extremely limited. Even worse, the estimates it provides refer to an unspecified founding 

stock, and this implies that these estimates are devoid of information”. Nonetheless, the 

isonymy method was applied to genealogical databases (Gagnon and Heyer 2001; 

Gagnon and Toupance 2002), and consanguinity was estimated both from surnames and 

genealogies. Results indicate that random isonymy, estimated from family names, is not 

devoid of information; on the contrary, it fits well with consanguinity estimates 

obtained from the genealogical records (Manni et al. 2005). 

Manrubia and Zanette (2002) have shown that results for the stationary distribution of 

surnames frequency are in good agreement with field data for modern human 

populations in different countries. Through an analysis of the transient time required for 

this distribution to reach its asymptotic shape, they demonstrated that some deviations 

observed in real data might actually reflect the composition of the founder population. 

This result has implications in the study of polyphyletism. Indeed, if the same surname 

can have multiple origins and, consequently, the individuals carrying it are not always 

phylogenetically related, the shape of the surname distribution will be affected. The 

 26



CHAPTER I  Understanding Human Diversity 
 

strong resemblance between the cultural inheritance of the surname and the biological 

process in which nonrecombining neutral alleles are passed to offspring has justified 

applying results from field data (Barrai et al. 1996). In the few cases, where data on 

genetic diversity was available, it was possible to retrieve information on past 

populations by comparing both sets of data (Sykes and Irven 2000). A specific example 

comes from the small island of Tristan da Cunha, where 300 inhabitants represent only 

seven surnames and five mitochondrial lineages reflects without doubt the small size of 

the founder population (Soodyall et al. 1997; Manrubia and Zanette 2002). 

 

I.1.1. Isonymy, inbreeding and relationship coefficients 

Isonymy is the possession of the same surname. The proportion of isonymy is the 

frequency in which this happens; interpopulation isonymy occurs between two samples 

and marital isonymy takes place between spouses considering both given surnames. 

Figure I.1 shows how intrapopulation and interpopulation isonymy are calculated. 

 

 

 

 

 

 

 

 

Figure I.1. Isonymy within and between population. Black squares represent isonymous pairs; 
crosses represent all other possible pairs (adapted from Lasker 1985). 

 

The term isonymy is sometimes limited to marital isonymy or used as an estimate of 

inbreeding from the proportion of isonymy, but such limitations and extensions may be 

confusing and the term should not be used in these ways without all explanation.  
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There are several methods to calculate isonymy. According to Relethford (1988), the 

random isonymy between populations i and j is  

Iij=Σpkipkj

where pki and pkj are the relative frequencies of surname k in the populations i and j, 

respectively. On the other hand, according to Rodriguez-Larralde et al. (1993) unbiased 

random isonymy within the population is calculated by the formula: 

Iii=Σk(pik)2–1/Ni  

where pik is the relative frequency of surname k in the ith population, and Ni is the 

sample size of the same population.  

Population structure constitutes deviations from panmixia, such as, those due to limited 

number of ancestors, to gender, to preference of certain types of consanguineous 

marriage, and to limited migration in social or geographic space (Rodriguez-Larralde et 

al. 2003). Several studies have shown that cultural, demographic and socioeconomic 

factors (religious beliefs, pattern of between-generation transfer of familial property, 

and increased number of relatives following a demographic expansion) influence the 

consanguinity level of populations (Manni et al. 2005; Rodriguez-Larralde et al. 2003). 

Inbreeding has been extensively analyzed by the use of surnames in populations with 

different degrees of isolation in Europe, Asia and north America (Colantonio et al. 

2003 and references therein). In 1965, Crow and Mange used the marital isonymy to 

estimate the frequency of consanguineous marriages as a measure of inbreeding. Based 

on Wright’s hierarchical model, they defined the total inbreeding by isonymy and its 

random and non-random components, in order to describe the effects of subdivision of 

a population in causing deviations from random mating. Currently, it is widely 

accepted that the calculation of the random component of inbreeding (FST) within the 

subpopulation is obtained from the formula, where I is the isonymy within 

subpopulation i: 

FST=Iii/4 

The calculation of FST for the whole population is based on the formula suggested by 

Relethford (1988): 

FST=Σwiϕii 

where ϕii is the random component of inbreeding (Iii/4) of the ith subpopulation, and wi 

is the weight due to sample size, Ni/Nt, being Nt the sample size of the whole 
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population. 

The random component of the inbreeding coefficient when calculated from surnames is 

merely a statement concerning the average commonality of surnames between males 

and females in the population multiplied by a constant. The constant used is one-

quarter, because this is the likelihood of a gene being shared by the homologous 

autosomal chromosomes of an offspring of first-degree relatives. The same fraction 

applies to other degrees of relationship following the logic adopted by Crow and 

Mange (1965). The likelihood of a gene being shared by first-degree relatives 

themselves is one in two. Therefore, their coefficient of relationship by isonymy, Ri, is 

the proportion of isonymy multiplied by one half. As applied to the males and females 

of a population this is,  

Ri=Σpiqi/2 

if one extends the logic and the assumption of the monophyly of surnames to two 

populations this can be expressed as  

Ri=Σ(Si1Si2)/2piqi/2ΣSi1 ΣSi2 

in which Si1 is the number of occurrences of the ith surname in a sample from 

population 1 and Si2 is the number of occurrences of the same surname in a sample 

from population 2. Unlike the inbreeding coefficient by isonymy, the coefficient of 

relationship by isonymy is not divided into random and non-random components, it is a 

measure of the random component. 

 

I.1.2. Surname diversity and migration 

Human migration has been studied from many points of view. When using a surname 

model to study its effects, it is only considered as the mechanism that redistributes 

genes geographically. Human migration draws pedigree lines on maps. The pattern of 

those lines depicts an aspect of human population structure with significance to 

population genetics – inbreeding. Moreover, such mapping of pedigree lines can be 

used to explain distributions of human genetic polymorphisms. Human genes cannot 

move except by the movements of people who carry them (at least before artificial 

insemination). Therefore, historically, human migration accounted for all the movement 

of genes (Lasker 1985).  
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Gene movement may be seen in the distances from birthplaces of parents to the 

birthplaces of their children. Tracing individual pedigrees has been done by geneticists 

and others, but such studies inevitably have a geographic aspect. Pedigrees, however, 

are not representative of the population as a whole. Male ancestors are usually easier to 

identify and trace than female, so the male line is usually more complete than female 

and mixed lines. As consequence the picture based on a collection of pedigrees is likely 

to be biased or to cover only the very few recent generations that can be completely 

ascertained (Lasker 1985). 

The identification of the various evolution agents of the genetic structure of human 

populations and the assessment of their relative weight are one of the main aims of 

population genetics. The high level of genetic polymorphism observed in human 

populations has led to a search for adaptative explanations of genetic variation. 

However, microevolutionary events often seem better explained by migration effects, 

particularly immigration. Immigration implies addition of genes, which may profoundly 

affect gene frequencies of the receiving population, thus, becoming a driving 

evolutionary force. The amount of immigration has relatively little significance 

compared to the structure of the phenomenon, since, for instance, genetic difference 

between immigrants and receiving populations is believed to increase with geographical 

distance. One of the immigration determining elements is the choice of mates. In order 

to predict the nature of genetic changes, selective mating can be studied by analysing 

the shape and the central tendency of the distribution of distances between the places of 

birth of spouses (Biondi et al. 1993). 

In 1983, Zei and collaborators proposed a method to estimate migration based on the 

observation that surnames generate, at equilibrium, a distribution that fits the model 

introduced by Karlin and McGregor (1967). This model presents the distribution of 

alleles expected according to the neutral theory of evolution. In a population of constant 

finite size, the equilibrium is reached when the number of surnames entering the 

population by mutation and migration equals that lost by drift. Surname mutation is 

relatively rare, so it can be assumed that new surnames enter into a population mainly 

by immigration. Moreover, in a very large population, the statistical properties of the 

surname distribution can be strongly correlated with genetic diversity (Barrai et al. 

1996; Manrubia and Zanette 2002). Zei et al. (1983) observed that Fisher’s logarithmic 
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distribution (Fisher 1943) derived to represent the variation in the abundance of 

surnames, that is, diversity. The use of that distribution to predict the number of 

surnames in a sample represents an excellent approximation of the Karlin-McGregor 

distribution. Fisher's distribution is theoretically more satisfactory for surnames than 

Pareto's, since it is easier to fit. Finally, Zei et al. (1983) were able to integrate the 

parameters introduced by Fisher (α) with the parameters of the Karlin-McGregor 

distribution (ν) combining ease of computation with meaningful theoretical 

interpretation through the following formulas: 

Fisher’s α and 

α=1/Iii 

Karlin-McGregor’s ν  

ν=α/(Ni+α) 

establishing the relationship between Fisher’s α, Karlin-McGregor’s ν and population 

size. 

Additionally, the study of the spatial distribution of genetic variation has been 

considered important in population studies (Rosenberg et al. 1999; Lefevre-Witier 

2006). Spatial autocorrelation (SA) is the dependence of the values of a variable at 

specified geographic locations on the values of the same variable at neighbouring 

locations. Spatially autocorrelated data violate the assumption of independence required 

for most standard statistical tests, calling for special tests designed to remove the 

dependence of the variable on geography. Although the analysis of SA is often 

associated with removing the internal dependence of variables on the underlying spatial 

structure during hypothesis testing, the SA analysis can lead to important discoveries 

about the scale where spatial patterns occur, which in turn may suggest underlying 

factors with similar patterns. Spatial autocorrelation analysis has been used to study a 

variety of phenomena, such as, the genetic structure of plant, animal and human 

populations (Sokal et al. 1986; Epperson 1992; Barbujani and Sokal 1991), mortality 

(Setzer 1985) and their morphological patterns (Epperson and Clegg 1986; Sokal and 

Uyherschaut 1987). 

Spatial autocorrelation summarizes the genetic similarity between populations in 

relation to their geographical proximity. In particular, spatial autocorrelation helps to 

focus on the similarity of values of a variable, i.e. the frequency of a surname, between 
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pairs of populations within arbitrary classes of distance (Caravello and Tasso 1999). 

This method allows estimation of the spatial distribution of surnames in the considered 

territory, in order to emphasize the specific processes of diffusion of individuals. It was 

developed by Moran (1950), perfected by Ripley (1981), as well as by Cliff and Ord 

(1973), whereas Sokal and Oden (1978a,b) were the first to apply it to biological 

problems. The following formula allows an estimate of this autocorrelation coefficient: 

      n n                                            n 
I=nΣΣwij(pi–p)(pj–p)/WΣ(pi–p)2

    i=1j=1                                       i=1 

where pi and pj are the relative frequency of surnames at the ith and jth localities, p is 

the mean across the n municipalities, wij is equal to 1 for all the pairs of municipalities 

falling in the studied distance class and equal to 0 for all the other pairs, and W is the 

sum of all wij values in that distance class. In large samples Moran’s I coefficient varies 

between -1 to +1, where positive significant values (I>0) indicate similar frequencies 

and negative significant values (I<0) indicate dissimilarity (Barbujani et al. 1992). 

 

 

Figure I.2. Scheme of typical correlograms and of their likely interpretation. X-axis represents 
geographic distance and the Y-axis autocorrelation values. Shaded circles are significant 
autocorrelation coefficients; open circles are insignificant coefficients (adapted from 
Barbujani 2000). 

a. Random

c. Depression

b. Cline

d. Isolation by Distance

a. Random

c. Depression

b. Cline

d. Isolation by Distance

 

Autocorrelation coefficients can be assembled in a plot named correlogram, which 

allows a better summary of the variation. The main classes of correlograms can be 

related with the likely evolutionary processes generating them. Clines affecting the 
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entire study area (Figure I.2b) or only a part of it (Figure I.2c) can be discriminated 

from the patterns expected under random genetic variation (Figure I.2a). In statistical 

terms, the null hypothesis is clearly random distribution of allele frequencies in space. 

In population genetics terms, however, geographic randomness would be surprising. As 

a rule, geographically close populations exchange more migrants than distant 

populations and the degree of relative isolation between localities is roughly 

proportional to their geographic distance (Barbujani and Sokal 1991; Barbujani 2000).  

 

I.2. The human genome polymorphisms 

The success of the Human Genome Project2 has given us an exceptional understanding 

of the structure and organization of our genome (Figure I.3). Variability is observed in 

the human genome through single nucleotide polymorphisms (SNPs), variable number 

of tandem repeats (VNTRs; e.g. mini and microsatellites), presence/ absence of 

transposable elements (e.g. Alu elements) and structural alterations (e.g. deletions, 

duplications and inversions; Freeman et al. 2006). 

 

I.2.1. Single nucleotide polymorphisms 

Variations in DNA (deoxyribonucleic acid) sequence can have a major impact on how 

humans respond to disease, to environment and to drugs or other therapies. This makes 

single nucleotide polymorphisms of great value for biomedical research, for medical 

diagnostics and for developing pharmaceutical products (Jobling et al. 2004). 

A SNP is a DNA sequence variation occurring when a single nucleotide – A, T, C or 

G – in the genome, or other shared sequence, differs between members of a species or 

between paired chromosomes in an individual (Figure I.4). 

 

 

                                                 
2  http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml. Begun formally in 1990, the Human Genome 

Project was a 13-year effort coordinated by the U.S. Department of Energy and the National Institutes of Health. 
The project originally was planned to last 15 years, but rapid technological advances accelerated the completion 
date to 2003. During the early years of the project, the Wellcome Trust (United Kingdom) became a major partner, 
but additional contributions came from Japan, France, Germany, China, and others. 
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A. 

B. 

Figure I.3. Characterization of the human genome. A. General composition, Genes and relat: genes 
and associated sequences; Int.R: intergenic regions; UN: unique intergenic sequences; 
Rep: repetitive intergenic sequences; IR: repetitive dispersed intergenic sequences; TR: 
tandem repeats (Adapted from Ameziane et al. 2006). B. Genes and pseudogenes content 
(Adapted from Human Genome Database, last update 27 August 2007, GDB, 
http://www.gdb.org/gdbreports/CountGeneByChromosome.html.) 
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Figure I.4.  Schematic representation of SNPs (adapted from International HapMap Consortium 
20033). 

SNPs are evolutionarily stable, this is, they change very little from generation to 

generation. This makes them easier to follow in population studies. Several studies have 

used SNPs to identify genes associated with complex diseases (e.g. Pearson et al. 2007; 

Abel et al. 2006). These associations are difficult to establish with conventional 

gene-hunting methods, because a single altered gene may make only a small 

contribution to the disease. SNPs in the coding regions of genes or in regulatory regions 

are more likely to cause functional differences than SNPs elsewhere. Although most 

SNPs do not affect gene function, a large number of them will be valuable as markers 

throughout the genome for finding SNPs that affect gene function or are in linkage 

disequilibrium (LD) with the gene causing disease (Patil et al. 2001). It has been 

estimated that, in the world’s human population, about 10 million sites (that is, one 

variant per 300 bases on average) constitute 90% of the variation in the population and 

differ in a way that both alleles are observed at a frequency of 1% (Crawford et al. 

2005). The remaining 10% of variation is due to a vast array of variants that are rare in 

the population.  

Overall, the average nucleotide diversity (π), representing the likelihood that a given 

nucleotide position differs across two randomly sampled sequences, is about 8x10-4 in 

both genome-wide and locus-specific studies (Przeworski et al. 2000; International SNP 

Map Working Group 2001; Venter et al. 2001). This means that, on average, it is expect  

 

                                                 
3   http://www.hapmap.org. The International HapMap Project is a partnership of scientists and funding agencies from 

Canada, China, Japan, Nigeria, the United Kingdom and the United States to develop a public resource that will 
help researchers find genes associated with human disease and response to pharmaceuticals. 
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to find one SNP about every 1250 bp. The value of π varies significantly between 

chromosomes, from 5.19x10-4 for chromosome 22 to 8.79x10-1 for chromosome 15. 

Additionally, there is some suggestion that SNP density varies along chromosomes 

(Venter et al. 2001), and explanations have been put forward based on variation in 

GC-content or in the efficiency of DNA mismatch repair.  

It has been estimated that >5 million common SNPs, each with a frequency varying 

from 10% to 50%, account for the bulk of human DNA sequence difference. Alleles 

making up blocks of such SNPs in close physical proximity are often correlated and 

define a limited number of SNP haplotypes, each of which reflect descendence from a 

single, ancient ancestral chromosome. New haplotypes are formed by additional 

mutations, or by recombination when the maternal and paternal chromosomes exchange 

corresponding segments of DNA, resulting in a chromosome that is a mosaic of the two 

parental haplotypes. The coinheritance of SNP alleles on these haplotypes leads to 

associations between these alleles in the population, known as linkage disequilibrium, 

LD (Patil et al. 2001).  

The strong associations between SNPs in a region have a practical value, this is, 

genotyping only few, carefully chosen in the region, will provide enough information to 

understand the remainder of the common SNPs in that region. As a result, only a few of 

these ‘tag’ SNPs are required to identify each of the common haplotypes in a region 

(International HapMap Consortium 2003, 2005). On the basis of empirical studies, it 

has been estimated that most of the information about genetic variation represented by 

the 10 million common SNPs in the population could be provided by genotyping 

200,000 to 1,000,000 tag SNPs across the genome (International HapMap Consortium 

2003, 2005). For common SNPs, which tend to be older than rare SNPs, the patterns of 

LD largely reflect historical recombination and demographic events. Some 

recombination events occur repeatedly at “hotspots”. The result of these processes is 

that current chromosomes are mosaics of ancestral chromosome regions. This explains 

the observations that haplotypes and patterns of LD are shared by apparently unrelated 

chromosomes within a population and generally among populations (International 

HapMap Consortium 2003, 2005; Gray et al. 2000). 
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I.2.2. Variable Number of Tandem Repeats 

Variable Number of Tandem Repeats (VNTRs) constitute a class highly heterogeneous 

of genetic markers, more dynamic and common in eukaryotic genomes. The variation of 

these markers involves changes in the numbers of repeated DNA sequences arranged in 

tandem arrays. While the high variability of these multiallelic markers is a useful 

property in many aspects, the underlying high mutation rates mean that, in contrast to 

SNPs, alleles with the same size and sequence may not reflect identity by descent, but 

identity by state, and, therefore, the ancestral state cannot be determined (Naslund et al. 

2005). 

VNTRs are classified according to the size of their repeat units, the typical number of 

units in arrays, and sometimes their level of variability. Because their nomenclature is 

not systematic, three major divisions emerge: (i) satellite, where a single repeat 

sequence family can constitute several percent of the total genome, and can occur in 

individual repeat arrays as large as 5 Mb (megabases); (ii) minisatellites, which may be 

present at hundreds to thousands of different loci per genome; and (iii) microsatellites, 

that are extremely abundant in short repeat sequences (Armour et al. 1999). Many 

VNTRs are considered as neutral markers. However, there are well known examples in 

every class of VNTRs that play functional roles, and in which variation in repeat copy 

number can have phenotypic effects. Various mini and microsatellites that lie within the 

coding regions of genes, or in regulatory regions, affect gene expression or the function 

of gene products. Some satellites located in centromeres and telomere repeat arrays are 

important functional components of chromosomes (Naslund et al. 2005). 

 

I.2.2.1. Satellites 

Satellites, sometimes named macrosatellites, are large tandem arrays spanning hundreds 

of kilobases to megabases, and composed of repeat units of a wide range of sizes that 

can display a higher-order structure. A good example is alpha satellite with a repeat 

monomer of 171 bp, which forms a component of centromeres. This higher-order 

structure can be repeated hundreds or thousands of times to form an array several Mb in 

size. Innitially, satellites were used to genotype individuals but, because of their large 

size and repetitive nature, its use declined (Jobling et al. 2004; Warburton et al. 1993).  
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The mutation processes at these loci cannot be studied directly, probably it involves 

unequal crossing over between homologous chromosomes misaligned. Historically, 

some satellite polymorphisms have been used in human evolutionary studies (e.g. 

Oakey and Tyler-Smith 1990), but nowadays they have been superseded by loci which 

are easier to type, analyze and understand.  

 

I.2.2.2. Minisatellites 

Minisatellites consist of repeat units from about 8 to 100 bp in length, with copy 

numbers from as low as 5 to well over 1000. Minisatellites are qualitatively different in 

their variability, mutation rates, mutation processes and chromosomal locations. They 

are among the most dynamic loci in the genome, some displaying hypervariability, with 

very large numbers of alleles of different lengths and structures, mutation rates as high 

as 14% per generation, and complex mutation processes involving both inter- and 

intra-allelic events (Denoeud et al. 2003). They provided the first highly polymorphic, 

multiallelic markers for linkage studies (Bell et al. 1982; Nakamura et al. 1987) and 

were used in the early stages of human genome mapping (NIH/ CEPH Collaborative 

Mapping Group 1992). Although the abundance of polymorphic minisatellites suggests 

that they are fast-evolving sequences, most of them are, in fact, quite stable. 

Chromosomal distribution of minisatellites in the human genome is highly skewed 

toward telomeres and ancestrally telomeric regions (Amarger et al. 1998). When allele 

length variation is considered, minisatellites show high levels of diversity, with typical 

heterozygosity values of well over 90%. Sequence analysis reveals an additional level 

of diversity – all minisatellites examined contain not homogeneous repeat units, but 

variant repeats differing by base substitutions and small indels (Denoeud et al. 2003).  

GC-rich minisatellites tend to be clustered towards the ends of chromosomes (Royle et 

al. 1988), suggesting that they might be associated with recombination hotspots either 

as cause or consequence (Jarman and Wells 1989).  
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I.2.2.3. Microsatellite or short tandem repeats 

Microsatellites are sequences of a single motif (1-6 bp) which is repeated many times in 

tandem. They are also called simple sequences and short tandem repeats (STRs; 

Edwards et al. 1991). Historically, the term microsatellite has been used to describe 

only repeats of the dinucleotide motif CA/GT (Litt and Luty 1989). If these repeats are 

long enough and uninterrupted, STRs are excellent genetic markers due to their high 

level of polymorphism. Microsatellites are generally assumed to be evenly distributed 

over genomes but rare within coding regions. There are, however, some human diseases 

caused by expansions of polymorphic trinucleotide repeats in genes, such as, fragile X4 

and myotonic dystrophy5 (e.g. Fu et al. 1991, Aslanidis et al. 1992, Rubinsztein 1999).  

STR markers were first used for genetic mapping (e.g. Weissenbach et al. 1992) and as 

diagnostic tools to detect human diseases (e.g. Mills et al. 1992). Nowadays, 

microsatellites are regularly used in population and ecological studies. Additionally, 

microsatellites are excellent markers for studying gene flow, effective population size 

(Ne), paternity and relatedness. They can also be used to study the level and effects of 

inbreeding. However, there are also some drawbacks. The reduction or complete loss of 

amplification of some alleles, due to base substitutions or indels within the priming site, 

constitutes a main problem. These so called missing alleles will not necessarily be 

recognized when there is a product from the other homologue allele. This can lead to an 

underestimation of heterozygosity, compared with that expected on the basis of 

Hardy-Weinberg equilibrium (HWE). 

Studies of evolutionary processes of microsatellites have shown that (i) the mutation of 

repeat units depends on the allele size and purity; (ii) the mutation process is upwardly 

biased; and (iii) there are some constraints on allele length (Ellegren 2000). To estimate 

population differentiation measures and genetic distances using STRs, theoretical  

 

                                                 
4  The fragile X syndrome is a dominant genetic disorder with reduced penetrance caused by mutation of the FMR1 

gene (Xq27.3). Mutation at that site is found in 1 in about 2000 males and 1 in about 259 females (for revision, 
please, see Abbeduto et al. 2007). 

5  Myotonic dystrophy (DM) is a autosomal dominant, chronic, slowly progressing, highly variable inherited 
multisystemic disease that can manifest at any age from birth to old age. There are currently two known types of 
adult onset DM: Myotonic dystrophy type 1 (DM1, 19q13-2), also known as Steinert's disease, and Myotonic 
dystrophy type 2 (DM2, 3q13.3-q24), commonly referred to as PROMM or proximal myotonic myopathy (for 
revision, please, see Heatwole and Moxley 2007). 
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mutation models for the evolutionary processes of microsatellites are needed. Two 

theoretical models have been considered (Deka et al. 1991): the infinite allele model 

(IAM, Kimura and Crow 1964) and the stepwise mutation model (SMM, Kimura and 

Ohta 1978). Both models will be described in section II.1.2.3. (Mutation and 

Recombination) of the present thesis. 

 

I.2.3. Transposable elements 

While it is widely recognized that the majority of the human genome is not directly 

involved in the production of proteins, our understanding of the noncoding regions 

spanning between genes remains far from complete. The role of mobile elements in the 

shaping of eukaryotic genomes is becoming more and more recognized. Mobile 

elements make up over 45% of the human genome. These elements continue to amplify 

and, as a result of negative effects of their transposition, they contribute to some human 

diseases, for example, neurofibromatosis6 (Wallace et al. 1991), haemophilia7 (Ganguly 

et al. 2003) and breast cancer8 (Teugels et al. 2005). All eukaryotic genomes contain 

mobile elements, although the proportion and activity of the classes of elements varies 

widely between genomes. Mobile elements are important in insertional mutagenesis and 

unequal homologous recombination events. They use extensive cellular resources in 

their replication, expression and amplification. There is considerable debate as to 

whether they are primarily an intracellular plague that attacks the host genome and 

exploits cellular resources, or whether they are tolerated because of their occasional 

positive influences in genome evolution. These repeat elements present copy numbers 

ranging from a few hundred to several hundred thousand including the 868,000 LINES 

(Long Interspersed Nuclear Elements) and 1,558,000 SINES (Short Interspersed 
                                                 
6  Neurofibromatosis is an autosomal dominant genetic disorder. It encompasses a set of distinct genetic disorders that 

cause tumors to grow along nervous tissues and, in addition, can affect the development of non-nervous tissues, 
such as, bones and skin. Neurofibromatosis type 1 gene (17q11.2) produces neurofibromin (a GTPase activating 
enzyme). Neurofibromatosis type 2 gene (22q12 ) produces merlin, a cytoskeletal protein (for revision, please, see 
Field et al. 2007). 

7  Haemophilia is a disorder of the blood-clotting system. There are different types of haemophilia. Hemophilia A 
and B are X-linked recessive disorders. Haemophilia A is a deficiency of clotting factor VIII (Xq28) and is also 
known as classical haemophilia and is the cause of about 80% of cases. Haemophilia B is a deficiency of clotting 
factor IX (Xq27.1-q27.2) and is the cause of about 20% of cases (for revision, please, see Dargaud and Negrier 
2007). 

8  Breast cancer is a malignant tumor that forms from the uncontrolled growth of abnormal breast cells. The cause of 
most breast cancers is unknown; however, 5-10% of breast cancers tend to cluster in families. These cancers can be 
caused by mutations in particular genes, such as, BRCA1 (17q21) or BRCA2 (13q12.3). These genes belong to a 
class of genes known as tumor suppressor genes (for revision, please, see Goldberg and Borgen 2006). 
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Nuclear Elements). The best studied examples are, respectively, the L1 and Alu 

retrotransposons (Batzer and Deininger 2002; Kazazian 2004; Hedges and Batzer 2005). 

 

I.2.3.1. LINE – L1 

L1 is an abundant family of non-long terminal repeat retrotransposons that comprises 

around 17% of human DNA (Smit 1996). The vast majority (99.8%) of L1s can no 

longer retrotranspose because they are 5’ truncated, internally rearranged, or mutated 

(Gilbert et al. 2002). However, the average human genome is estimated to contain 

approximately 60-100 retrotransposition-competent L1s (RC-L1s), and around 10% of 

these elements are classified as highly active or “hot” (Sassaman et al. 1997; Brouha et 

al. 2003). The majority of RC-L1s are members of the Ta (Transcribed active) 

subfamily (Skowronski et al. 1988), and many are polymorphic with respect to 

presence, indicating that they have retrotransposed since the origin of the human species 

(Boissinot et al. 2000; Myers et al. 2002).  

RC-L1 retrotransposition continues to impact the human genome, for instance, 

disease-producing de novo L1 retrotransposition events have been identified in humans, 

such as, choroideremia9 (van den Hurk et al. 2007) and pyruvate dehydrogenase 

complex (PDHc) deficiency10 (Mine et al. 2007; Ostertag and Kazazian 2001). RC-L1s 

can also mobilize sequences derived from both their 5’ and 3’ flanks in cis by a process 

termed “L1-mediated transduction” (Pickeral et al. 2000). Finally, the RC-L1 encoded 

proteins also may function in trans, resulting in the mobilization of Alu elements and 

the formation of processed pseudogenes, which together comprise ~10% of genomic 

DNA (Dewannieux et al. 2003; Ejima and Yang 2003). Thus, either directly or through 

the promiscuous mobilization of cellular RNAs, L1 retrotransposition continues to 

shape the genome.  

 

 

                                                 
9  Choroideremia is an X-linked recessive disease (Xq21.2) that leads to the degeneration of the choriocapillaris, the 

retinal pigment epithelium, and the photoreceptor of the eye (for revision, please, see MacDonald et al. 2004).  
10  PDHc deficiency is an X-linked disease and represents a common cause of congenital lactic acidosis. Most 

patients with PDH deficiency have a mutation in the α chain of the PDHE1 enzyme. The gene of the α chain is 
localised to Xp22.1 (for revision, please, see Maj et al. 2006). 
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I.2.3.2. SINE – Alu markers 

The name “Alu elements” was given to these repeated sequences because members of 

this family contain a recognition site for the restriction enzyme AluI (Houck et al. 

1979). Full-length Alu elements are ~300 bp long and are commonly found in introns, 3′ 

untranslated regions of genes and intergenic genomic regions. Initial estimates indicated 

that these mobile elements were present in the human genome at an extremely high 

copy number (~500,000 copies; Rubin et al. 1980). Recently, a detailed analysis of the 

draft sequence of the human genome has shown that, out of more than one million 

copies, Alu elements are the most abundant SINEs, which makes them the most 

abundant of all mobile elements in the human genome (International Human Genome 

Sequencing Consortium 2001). Because of their high copy number, the Alu gene family 

comprises more than 10% of the mass of the human genome (International Human 

Genome Sequencing Consortium 2001) and, as they accumulate preferentially in 

gene-rich regions, Alus are not uniformly distributed in the human genome (Korenberg 

and Rykoloski 1988). They lack all the machinery necessary to transpose, but studies 

demonstrated that Alu are able to commandeer the requisite mobilization machinery 

from L1 (Chen et al. 2002). Alu elements unique to the human genome were initially 

identified on the basis of a shared high number of diagnostic point mutations, and 

polymorphic nature respecting their presence or absence in diverse human genomes 

(Batzer et al. 1990; Matera et al. 1990). Almost all of the recently integrated human Alu 

elements belong to one of several small and closely related ‘young’Alu subfamilies, 

known as Y, Yc1, Yc2, Ya5, Ya5a2, Ya8, Yb8 and Yb9 (Batzer et al. 1990; Matera et 

al. 1990; Batzer et al. 1995; Carrol et al. 2001).  

The analysis of human Alu insertion polymorphisms has been used to address several 

questions about human origins and demography (Perna et al. 1992; Hammer et al. 1994; 

Batzer et al. 1996; Stoneking et al. 1997; Comas et al. 2000; Jorde et al. 2000; Nasidze 

et al. 2001). They have several characteristics that make them unique for the study of 

human population genetics. Individuals that share Alu insertion polymorphisms have 

inherited the Alu elements from a common ancestor, which makes the Alu insertion 

alleles identical by descent (IBD). In addition, there is no evidence for any type of 

process that specifically removes Alu elements from the genome; even when a rare 

deletion occurs, it leaves behind a molecular signature (Edwards 1992). The ancestral 
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state of Alu insertion polymorphisms is known to be the absence of the Alu element at a 

particular genomic location (Batzer and Deininger 1991; Perna et al. 1992). The 

ancestral state of a genomic polymorphism allows us to draw trees of population 

relationships without making too many assumptions (Perna et al. 1992; Batzer et al. 

1996; Stoneking et al. 1997). 

 

I.2.4. Copy number variation 

Genetic variation in the human genome ranges from large, microscopically visible 

chromosome anomalies to single nucleotide changes. Recently, multiple studies have 

discovered an abundance of submicroscopic copy number variation of DNA segments 

ranging from kilobases to megabases in size (Iafrate et al. 2004; Sebat et al. 2004; 

Sharp et al. 2005; Tuzun et al. 2005; McCarroll et al. 2006; Redon et al. 2006). 

Deletions, insertions, duplications and complex multisite variants (Fredman et al. 2004), 

collectively termed copy number variations (CNVs) or copy number polymorphisms 

(CNPs), are found in all humans (Feuk et al. 2006a) and other mammals (Freeman et al. 

2006). CNV is a DNA segment of 1 kb or larger, present at variable copy number in 

comparison with a reference genome (Feuk et al. 2006a). A CNV can be simple in 

structure, such as, tandem duplication, or may involve complex gains or losses of 

homologous sequences at multiple sites in the genome. CNVs do not include variants 

that arise from the insertion/ deletion of transposable elements. Therefore, CNV 

encompasses previously introduced terms, such as, large-scale copy number variants 

(LCVs; Iafrate et al. 2004), copy number polymorphisms (Sebat et al. 2004), and 

intermediate-sized variants (ISVs; Tuzun et al. 2005), but not retroposon insertions. 

Recently, Iafrate et al. (2004) and Sebat et al. (2004) reported the widespread presence 

of copy number variation in normal individuals, and these observations have since been 

replicated and expanded (e.g. de Vries et al. 2005; Sharp et al. 2005; Tuzun et al. 2005; 

McCarroll et al. 2006; Repping et al. 2006). 

CNVs influence gene expression, phenotypic variation and adaptation, by disrupting 

genes and altering gene dosage (McCarroll et al. 2006; Repping et al. 2006), and can 

cause disease, as in microdeletion or microduplication disorders (Inoue and Lupski 

2002; Shaw-Smith et al. 2004), or even confer risk to complex disease traits, such as, 
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HIV-1 infection and glomerulonephritis11 (Gonzalez et al. 2005; Aitman et al. 2006). 

Furthermore, CNVs can influence gene expression indirectly through position effects, 

predispose to deleterious genetic changes, or provide substrates for chromosomal 

change in evolution (Feuk et al. 2006a,b; Freeman et al. 2006). 

Large duplications and deletions have been known for some time to be present in the 

human genome, initially from cytogenetic observations (e.g. Coco and Penchaszadeh 

1982), but their frequency was presumed to be low and for the most part directly related 

either to tandemly repeated genes or to specific genetic disorders (e.g. Inoue and Lupski 

2002). In addition, they were often localized to repeat-rich regions, such as, telomeres, 

centromeres and heterochromatin (e.g. Giglio et al. 2001).  

In a recent study, Redon et al. (2006) found that 285 out of 1961 (14.5%) genes in the 

OMIM12 morbid map overlapped with CNVs. These authors observed numerous 

examples of possible relevance to both Mendelian and complex diseases. Additionally, 

CNVs were identified within the regions commonly deleted in contiguous gene 

syndromes13, such as, DiGeorge, Smith-Magenis, Williams-Beuren, Prader-Willi and 

Angelman syndromes, which may be relevant for discriminating uncharacterized or 

atypical cases. 

 

I.3. Linkage disequilibrium: Insight to the human genome architecture 

The knowledge of the human genome architecture significantly contributes to the 

understanding of disease susceptibility and development. This can be attained by the 

characterization of the fine-scale structure of LD. LD plays a fundamental role in gene 

mapping, both as a tool for fine mapping of complex disease genes and in proposed  

 
                                                 
11  Glomerulonephritis, also known as glomerular nephritis, is a primary or secondary immune-mediated renal disease 

characterized by inflammation of the glomeruli. Low copy number of FCGR3B gene was associated with 
glomerulonephritis in the autoimmune disease systemic lupus erythematosus (for revision, please, see Couser 
1998). 

12  OMIM - Online Mendelian Inheritance in Man, http://www.ncbi.nlm.nih.gov/sites/entrez?db=OMIM. This 
database is a catalog of human genes and genetic disorders authored and edited by Dr. Victor A. McKusick and 
his colleagues at Johns Hopkins University (http://www.jhu.edu) and elsewhere, and developed for the World 
Wide Web by NCBI, the National Centre for Biotechnology Information (http://www.ncbi.nlm.nih.gov). The 
OMIM database contains textual information and references. 

13  Contiguous gene syndromes are a group of disorders due to deletion of multiple gene loci adjacent to one another. 
They are characterized by multiple, apparently unrelated, clinical features.  
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genome-wide association studies. LD is also of interest for what it can reveal about 

evolution of populations. Moreover, studies of LD may enable us to learn more about 

the biology of recombination (Coop et al. 2007; Wang et al. 2006). In fact, the HapMap 

consortium (2005) estimated that around 80% of all recombination has taken place in 

about 15% of the sequence. 

LD is the non-random association of alleles in adjacent loci. When a particular allele at 

one locus is found together on the same chromosome with a specific allele at a second 

locus, more often than expected if the loci were segregating independently in a 

population, the loci are in disequilibrium. This concept of LD is formalized by one of 

the earliest measures of disequilibrium to be proposed, D (Lewontin and Kojima 1960). 

D, in common with most other measures of LD, quantifies disequilibrium as the 

difference between the observed frequency of a two loci haplotype and the frequency it 

would be expected to show if the alleles are segregating at random. Adopting the 

standard notation for two adjacent loci, A and B, the observed frequency of the 

haplotype that consists of alleles A and B is represented by PAB. Assuming the 

independent assortment of alleles at the two loci, the expected halotype frequency is 

calculated as the product of the allele frequency of each of the two alleles, or PA×PB, 

where PA is the frequency of allele A at the first locus and PB is the frequency of allele 

B at the second locus (Abecasis et al. 2005; Jobling et al. 2004; Tishkoff and Verrelli 

2003; Arcos-Burgos and Muenke 2002; Pritchard and Przeworski 2001). Consequently, 

one of the simplest measures of disequilibrium is 

D=PAB-PA×PB

LD is created when a new mutation occurs on a chromosome that carries a particular 

allele at a nearby locus, and is gradually eroded by recombination. Recurrent mutations 

can also lessen the association between alleles at adjacent loci. 

The extent of LD in populations is expected to decrease with both time (t) and 

recombinational distance (r, or the recombination fraction) between markers. 

Theoretically, LD decays with time and distance according to the following formula:  

Dt=(1-r)tD0
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where D0 is the extent of disequilibrium at some starting point and Dt, is the extent of 

disequilibrium t generations later. 

A wide variety of statistics, with different strengths depending on the context, have been 

proposed to measure the amount of LD. Although the measure D has the intuitive 

concepts of LD, its numerical value is of little use for measuring the strength and 

comparing levels of LD. This is due to the dependence of D on allele frequencies. The 

two most common measures are the absolute value of D’ and r2 (Pritchard and 

Przeworski 2001). 

The absolute value of D’ is determined by dividing D by its maximum possible value, 

given the allele frequencies at the two loci. The case of D’=1 is known as complete LD. 

Values of D’<1 indicate that the complete ancestral LD has been disrupted. The 

magnitude of values of D’<1 has no clear interpretation. Estimates of D’ are strongly 

inflated in small samples. Therefore, statistically significant values of D’ that are near 

one provide a useful indication of minimal historical recombination, but intermediate 

values should not be used for comparisons of the strength of LD between studies, or to 

measure the extent of LD (Latini 2004; Varilo 2000, 2003; Angius 2001, 2002). 

The measure r2 is in some ways complementary to D’. The measure r2 is equal to D2 

divided by the product of the allele frequencies at the two loci (Hill and Roberson 

1966). Expected levels of LD are a function of recombination. The more recombination 

between two sites, the more they are shuffled with respect to one another, decreasing 

LD. Also, LD is a function of N, emphasizing that LD is a property of populations. 

Another approach for quantifying LD is through the population recombination 

parameter 4Nec(ρ). This approach avoids reliance on pairwise measures of LD, which 

differ from marker to marker, and facilitates comparisons between regions.  

Mutation and recombination might have the most evident impact on linkage 

disequilibrium. There are additional contributors to the extent and distribution of 

disequilibrium. LD can be inflated by demographic factors, including inbreeding, 

population structure and bottlenecks. Recombination rates are known to vary by more 

than an order of magnitude across the genome (Jobling et al. 2004). Because breakdown 

of LD is primarily driven by recombination, the extent of LD is expected to vary in 

inverse relation to the local recombination rate. Some SNPs, such as, those at CpG 
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dinucleotides, might have high mutation rates and, therefore, show little or no LD with 

nearby markers, even in the absence of historical recombination. Rapid population 

growth decreases LD by reducing genetic drift. Population subdivision is likely to have 

been an important factor in establishing the patterns of LD in humans.  

There are two primary routs by which selection can affect the extent of disequilibrium. 

The first is a hitchhiking effect, in which an entire haplotype that flanks a favoured 

variant can be rapidly swept to high frequency or even fixation (Jobling et al. 2004). 

Although the effect is generally milder, selection against deleterious variants can also 

inflate LD, as the deleterious haplotypes are swept from the population. Genetic 

hitchhiking is expected to affect the frequency distribution of variants at segregating 

sites such that derived variants will be in higher frequency than expected under a neutral 

equilibrium model. Genetic hitchhiking is also expected to skew the frequency 

distribution of variants at segregating site toward rare alleles, resulting in a significantly 

negative value of Tajima’s D14 (Thornton 2005). It is unknown to what extent this mode 

of selection increases pairwise LD between high frequency alleles. However, selective 

sweeps affect sites over a genetic distance on the order of the selection coefficient; 

consequently, for a single sweep to affect >1 Mb, the advantage of the variant would 

have to be large (at least 0.01). The second way in which selection can affect LD is 

through epistatic selection for combinations of alleles at two or more loci on the same 

chromosome. This form of selection leads to the association of particular alleles at 

different loci (Gu et al. 2007; Abecasis et al. 2005). In a gene conversion event, a short 

stretch of one copy of a chromosome is transferred to the other copy during meiosis. 

The effect is equivalent to two very closely spaced recombination events, and can break 

down LD in a manner similar to recombination or recurrent mutation (Abecasis et al. 

2005; Pritchard and Przeworski 2001).  

LD has been extensively studied in several populations, for example and more recently, 

Croatia (Vitart et al. 2006) and Korea (Lee and Kim 2006). Abbott et al. 2006 studied 

Niue Islanders and report that they are genetically isolated and have a homogeneous 

southeast Asian ancestry. Moreover, they observe that the Niue population has reduced 

                                                 
14 The Tajima’s D is a widely used test of neutrality in population genetics. It illustrates the allele frequency 

distribution of nucleotide sequence data and is based on the difference between two estimators of θ (the 
population mutation rate, 4Neµ). Tajima’s estimator uses the average number of pairwise differences between 
sequences. 
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autosomal genetic diversity and high levels of linkage disequilibrium that are consistent 

with the influence of genetic drift mechanisms, such as, a founder effect or bottlenecks. 

Abbott and collaborators also conclude that high-powered linkage disequilibrium 

studies, designed to map ancestral polymorphisms that influence complex genetic 

disease susceptibility, may be feasible in this population. Another study by Vitart et al. 

(2005) analysed 955 unrelated individuals of local ancestry from nine Scottish rural 

regions and the urban center of Edinburgh, as well as, 96 unrelated individuals from the 

general UK population. They observed that, despite little overall differentiation on the 

basis of allele frequencies, there were clear differences among subpopulations in the 

extent of pairwise LD, measured between a subset of X-linked markers. Vitart and 

colleagues also reports that there are strategic advantages in studying rural 

subpopulations, in terms of increased power and reduced cost. They conclude that 

similar rural-urban contrasts are likely to exist in many other populations with stable 

rural subpopulations, which could influence the design of genetic association studies 

and national biobank data collections. 

 

I.3.1. Linkage disequilibrium and the international HapMap project 

The completion of the International HapMap Project marks the start of a new phase in 

human genetics. In order to gain further knowledge in the common patterns of DNA 

sequence variation, the International HapMap Project was launched in October 2002. 

This project created a public genome-wide database of common human sequence 

variation and will provide information to allow indirect association studies to any 

functional candidate gene, to any region suggested by family-based linkage analysis, or 

ultimately to whole genome scans of disease risk factors (International HapMap 

Consortium 2003, 2005). The project shares information rapidly and without restriction 

on its use. The most important goal of HapMap is to develop a research tool that helps 

investigators to discover genetic factors that contribute to susceptibility to disease, to 

protection against illness and to drug response. In its scope and potential consequences, 

this project has much in common with the Human Genome Project, which sequenced 

the human genome. Whereas the sequencing project covered the entire genome, 

including the 99.9% of the genome where humans are all the same, the HapMap 
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characterizes the common patterns within the 0.1% where humans differ from each 

other (International HapMap Consortium 2003, 2005).  

Phase I of the HapMap Project set as a goal genotyping at least one common SNP every 

5 kb across the genome in each of 270 DNA samples. These individuals are 30 

mother-father-offspring trios from the Yoruba people of Ibidan Peninsula in Nigeria 

(referred to as YRI), 30 such trios from the CEPH project in Utah (CEU), 45 unrelated 

individuals from the Han Chinese population of Beijing (CHB), and 45 unrelated 

individuals of Japanese ancestry from the Tokyo area (JPT, for many analyses the CHB 

and JPT samples are combined within a single “analysis panel”). For practicality, and 

motivated by the allele frequency distribution of variants in the human genome, a minor 

allele frequency (MAF) of 0.05 or greater was targeted for study (McVean et al. 2005). 

The project has a Phase II, which is attempting genotyping of an additional 4.6 million 

SNPs in each of the HapMap samples. 

Although not designed specifically to enable admixture mapping, the HapMap has 

helped lay the groundwork for this approach. Admixture mapping requires a map of 

SNPs that are highly differentiated in frequency across population groups. By typing 

many SNPs in samples from multiple geographical regions, the data have helped to 

identify such SNPs for the design of genome-wide admixture mapping panels and can 

be further used to identify candidate SNPs with large allele frequency differences for 

follow-up of positive admixture scan results. The advent of genome-wide variation 

resources, such as the HapMap, opens a new era in population genetics, offering an 

unprecedented opportunity to investigate the evolutionary forces that have shaped 

variation in natural populations (International HapMap Consortium 2003, 2005).  

The main application of the HapMap data is in the selection of tag single nucleotide 

polymorphisms (tSNPs) to use in association studies (Montpetit et al. 2006). The 

usefulness of this selection process needs to be verified in populations outside those 

used for the HapMap project. In addition, it is not known how well the data represent 

the general population, as only 90-120 chromosomes were used for each population and 

since the genotyped SNPs were selected so as to have high frequencies. In this study, 

Montpetit et al. (2006) analyzed more than 1000 individuals from Estonia. The 

population of this northern European country has been influenced by many different 

waves of migrations from Europe and Russia. These authors genotyped 1536 randomly 
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selected SNPs from two 500 kb ENCODE regions on chromosome 2. They observed 

that the tSNPs selected from the CEU HapMap samples captured most of the variation 

in the Estonia sample. Using the reverse approach, tags selected from the Estonia 

sample could almost equally well describe the CEU sample. Finally, Montpetit and 

collaborators observed that the sample size, the allelic frequency, and the SNP density 

in the dataset used to select the tags each have important effects on the tagging 

performance. Overall, this study supported the use of HapMap data in other Caucasian 

populations, but the SNP density and the bias towards high frequency SNPs have to be 

taken into account when designing association studies.  

Another study by Conrad et al. (2006) reports haplotype structure across 12 Mb of DNA 

sequence in 927 individuals representing 52 populations. The geographic distribution of 

haplotypes reflects human history, with a loss of haplotype diversity as distance 

increases from Africa. Although the extent of LD varies markedly across populations, 

considerable sharing of haplotype structure exists, and inferred recombination hotspot 

locations generally match across groups. To respond to the question: To what extent do 

the HapMap populations predict patterns of haplotype diversity found in a worldwide 

set of populations?, Conrad and colleagues (2006) compared their results with the four 

samples in the International HapMap Project. They observed that the HapMap samples 

contain the majority of common haplotypes found in most populations: averaging across 

populations, 83% of common 20 kb haplotypes in a population are also common in the 

most similar HapMap sample. The authors conclude that, although the portability of tag 

SNPs based on the HapMap is reduced in low LD Africans, the HapMap will be helpful 

for the design of genome-wide association mapping studies in nearly all human 

populations. 

Bansal et al. (2007) present a statistical method to identify large inversion 

polymorphisms using unusual LD patterns from high density SNP data. The method is 

designed to detect chromosomal segments that are inverted (in a majority of the 

chromosomes) in a population with respect to the reference human genome sequence. 

These authors demonstrate the power of this method to detect such inversion 

polymorphisms through simulations done using the HapMap data. Application of this 

method to the data from the first phase of the International HapMap project resulted in 

176 candidate inversions ranging from 200 kb to several megabases in length. Bansal 
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and collaborators predicted inversions include an 800 kb polymorphic inversion at 

7p22, a 1.1 Mb inversion at 16p12, and a novel 1.2 Mb inversion on chromosome 10 

that is supported by the presence of two discordant fosmids. Analysis of the genomic 

sequence around inversion breakpoints showed that 11 predicted inversions are flanked 

by pairs of highly homologous repeats in the inverted orientation. In addition, for three 

candidate inversions, the inverted orientation is represented in the Celera genome 

assembly. Although the power of the method to detect inversions is restricted because 

of inherently noisy LD patterns in population data, inversions predicted by our method 

represent strong candidates for experimental validation and analysis. 
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II. Population studies: knowing the past to predict the future 

Human molecular evolution is based on the concept that patterns of DNA sequence 

variation determine aspects of human heritage and are shaped by a group of 

evolutionary influences, such as, genetic drift, selection, mutation and migration. 

Therefore, genetic variability in the genome reflects both evolutionary adaptive 

locus-specific and population-level processes that affect all components of the genome 

equally. Genetic research often focuses on distinguishing inconsistencies in patterns of 

variation between genomic regions to help fill the gap between particular genes and 

traits (Underhill 2003). By studying the degree of genetic molecular variation, it is 

possible, in principle, to reconstruct past events, namely, expansions and settlements 

(Cavalli-Sforza et al. 1994). However, since the bulk of common variation in the 

genome occurs between individuals, the difference between populations is low, making 

it more challenging to investigate ambiguities concerning affinities and origins of 

populations. It is the component of inter population variance that best provides insights 

into the evolution of the extant populations (Cavalli-Sforza and Feldman 2003). 

In theory, the evolutionary forces can influence the Hardy-Weinberg equilibrium. Two 

scientists, Geoffrey Hardy and Wilhelm Weinberg (1908), working independently and 

based on Mendel's principles of inheritance, developed the concept that is known today 

as the Hardy-Weinberg Principle, which states: "In a large, randomly breeding (diploid) 

population, allelic frequencies will remain the same from generation to generation; 

assuming no unbalanced mutation, gene migration, selection or genetic drift." When a 

population meets all of the Hardy-Weinberg conditions it is said to be in 

Hardy-Weinberg equilibrium. If p is the frequency of one allele (A) and q is the 

frequency of the alternative allele (a) for a biallelic locus, then the HWE expected 

frequency will be p2 for the AA genotype, 2pq for the Aa genotype, and q2 for the aa 

genotype. The three genotypic proportions should sum to 1, as should the allele 

frequencies (Hardy 1908; Weinberg 1908). This equilibrium can be mathematically 

expressed based on a simple binomial or multinomial distribution of the gene 

frequencies as:  

p2+2pq+q2=1 
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The most common way to assess HWE is through a goodness-of-fit chi-square (χ2) test 

(Weir 1996). The null hypothesis is that alleles are chosen randomly, and the genotypic 

proportions follow HWE expected proportions (i.e. p2, 2pq and q2). Alternatively, the 

second allele is dependent on the first allele being selected. This results in the genotypic 

proportions deviating from the HWE expected proportions (Wittke-Tompson et al. 

2005; Weir 1996).  

HWE predicts how gene frequencies will be transmitted from generation to generation 

given the specific set of assumptions previously described. Populations in their natural 

environment can never meet all of the conditions required to achieve HWE, thus, their 

allele frequencies will change from one generation to the next and the population will 

evolve. Just how far the population deviates from HWE is an indication of the intensity 

of the external factors. On the other hand, deviation from Hardy-Weinberg equilibrium 

has also become an accepted test for genotyping errors (Hosking et al. 2004; Leal 

2005). However, it is generally considered that testing departures from HWE to detect 

genotyping error is not sensitive. Cox and Kraft (2006) examined various models of 

genotyping error, including error caused by neighbouring SNPs that degrade the 

performance of genotyping assays. They also calculated the power of chi-square 

goodness-of-fit tests for deviation from HWE to detect such error. They observed that, 

generally, genotyping error does not generate sufficient deviation from Hardy-Weinberg 

equilibrium to be detected and genotyping error due to neighbouring SNPs attenuates 

risk estimates, often drastically.  

 

II.1. Population history, demography and evolutionary forces 

The main way to gain insight into past population processes is to analyze and interpret 

current patterns of genetic variation (von Haeseler 1995). Data on ancient DNA can also 

help, but they are scarce and will not become abundant in the near future (Cooper and 

Poinar 2000). One difficulty with modern genes lies in the fact that any given pattern of 

variation may potentially be explained by several different evolutionary phenomena. A 

cline or gradient pattern, for example, may reflect adaptation to variable environments, 

or a population expansion at one moment in time, or continuous gene flow between 

groups that initially differed in allele frequencies. However, it is possible to discard at 

least some implausible models by jointly analyzing many loci (selection tends to affect 
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single genes, whereas demographic changes determine similar patterns across the 

genome), or by exploiting non-genetic information, such as, archaeological and 

paleobiological data (Barbujani and Bertorelle 2001).  

Demographic events can cause an uneven distribution of genetic disorders in different 

human populations, for example, the occurrence Tay-Sachs disease15 in Ashkenazi Jews 

(Risch et al. 2003; Weiss 1993), and non-insulin-dependent diabetes mellitus (NIDDM, 

or diabetes type 2) in Amerindians (Weiss 1993). The interaction between history, 

demography and genetics is, therefore, of basic importance for the understanding of 

genetic structure of human populations.  

Currently available genetic and archaeological evidence is generally interpreted as 

supportive of a recent single origin of modern humans in east Africa. However, this is 

where the near consensus on human settlement history ends, and considerable 

uncertainty clouds more detailed aspects of human colonization history. Liu et al. 

(2006) using genetic data of 783 autosomal microsatellites in 52 human populations 

estimated parameters of the expansion of modern humans. Their best estimates suggest 

an initial expansion of modern humans ~56,000 years ago from a small founding 

population of ~1000 effective individuals. Their model further points to high growth 

rates in newly colonized habitats.  

The genetic history of a group of populations is usually analyzed by reconstructing a 

tree of their origins. Reliability of the reconstruction depends on the validity of the 

hypothesis that genetic differentiation of the populations is mostly due to population 

fissions followed by independent evolution. Dating the fissions requires comparisons 

with paleoanthropological and paleontological dates, which are few and uncertain 

(Cavalli-Sforza 1997). A method of absolute genetic dating uses mutation rates as 

molecular clocks; it was applied to human evolution using microsatellites, which have a 

sufficiently high mutation rate. Results agree with a recent expansion of modern 

humans from Africa. An alternative method of analysis, useful when there is adequate 

geographic coverage of regions, is the geographic study of frequencies of alleles or 

 

                                                 
15  Tay-Sachs disease is an autosomal recessive disorder caused by mutations on the HEXA gene (15q23-q24). This 

gene codes for a subunit of an enzyme called beta-hexosaminidase A. The disease occurs when harmful quantities 
of a fatty acid derivative called ganglioside accumulate in the brain neurons (for revision, please, see Fernandes 
Filho and Shapiro 2004). 
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haplotypes. As in the case of trees, it is necessary to summarize data from many loci for 

conclusions to be acceptable. Results must be independent from the loci used. 

Multivariate analyses like principal components or multidimensional scaling reveal a 

number of hidden patterns and evaluate their relative importance (Cavalli-Sforza 1997). 

Most patterns found in the analysis of human living populations are likely to be 

consequences of demographic expansions, determined by technological developments 

affecting food availability, transportation or military power. During such expansions, 

both genes and languages are spread to potentially vast areas. In principle, this tends to 

create a correlation between the respective evolutionary trees. The correlation is usually 

positive and often remarkably high. It can be decreased or hidden by phenomena of 

language replacement and gene replacement, usually partial, due to gene flow 

(Cavalli-Sforza 1997). 

 

II.1.1. Human population background: paternal and maternal lineages 

Explorations into prehistory have been traditionally archaeological; however, additional 

perspectives have been provided by linguistic and genetic studies. The accumulation of 

sequence variation in nonrecombining sex-specific loci (mitochondrial DNA and 

Y-chromosome) provides a powerful way to recover genetic prehistory. Nevertheless, 

the records retained may diverge because of natural selection or differences between 

male and female behaviours (Underhill 2003). 

Since only one mitochondrial DNA (mtDNA) or Y-chromosome lineage can be 

transmitted by a couple to each of their offspring, compared with four autosomal alleles, 

the mtDNA and Y-chromosome have a much smaller effective population size –

one-quarter that of the autosomes. This makes them much more prone to founder effects 

during population constrictions. As a result, the mtDNA and Y-chromosome exhibit 

striking population-specific diversity, which greatly facilitates the identification of 

founders, aiding in the reconstruction of ancient migrations (Lell and Wallace 2000).  

Human mtDNA is a circular double-stranded molecule (Figure II.1), with 16,569 bp in 

length that codes for 13 subunits of the oxidative phosphorylation system, 2 ribosomal 

RNAs (rRNAs, ribonucleic acid), and 22 transfer RNAs (tRNAs; Anderson et al. 1981; 

for revison, please see Pakendorf and Stoneking 2005). It is present in hundreds to 
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thousands of copies in the cell's energy-generating organelles, the mitochondria. 

mtDNA consists predominantly of coding DNA, with the exception of a ~1100 bp long 

fragment that has mainly regulatory functions and is, therefore, named the control 

region. Since the first study of human mtDNA variation (Brown 1980), it has become 

widely used for studies of human evolution, migration and population history (e.g. 

Zsurka et al. 2007; Weiss and Smith 2007; Olivieri et al. 2006; Hebsgaard et al. 2007). 

This widespread use is due to unique features of mtDNA that make it particularly 

helpful, such as, high copy number, maternal inheritance, lack of recombination and 

high mutation rate. The high copy number along with its extranuclear cytoplasmic 

location makes it easier to obtain mtDNA for analysis. Regarding the maternal 

inheritance, only one case of paternal inheritance of mtDNA is recorded in humans, 

which was a failure in the normal recognition and elimination of the paternal mtDNA 

(Schwartz and Vissing 2002). However, this remains an extreemly rare phenomenon. 

 

 

Figure II.1. Human mitochondrial DNA. In D-Loop are located the hypervariable regions (HVRI and 
HVRII). 

 

Thousands of maternal-offspring comparisons have failed to yield any indication of 

paternal inheritance (Giles et al. 1980; Howell et al. 2003). Therefore, at present, 

maternal inheritance of mtDNA in humans is still regarded as the rule (Schwartz and 

Vissing 2002). A somatic cell has only two copies of any given nuclear DNA molecule, 

but hundreds to thousands of copies of mtDNA. Nevertheless, recombination of mtDNA 
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is a very rare phenomenon. In addition, in the absence of heteroplasmic DNA 

molecules, any recombination events would result in mtDNAs that do not differ from 

the original. In terms of mutation rate, the mtDNA presents several orders of magnitude 

higher than that of nuclear genes, with an estimated rate of 0.017x10-6 substitutions/ 

site/ year for the whole genome excluding the control region (Ingman et al. 2000). 

However, in the two hypervariable regions (HVRI and HVRII) of the noncoding control 

region, the rate is even higher. Phylogenetic comparisons, based on either inter or 

intraspecific comparisons, yielded estimates of 0.075-0.165x10-6 substitutions/ site/ year 

(Hasegawa et al. 2003).  

Studies of mtDNA variation in worldwide populations (Figure II.2) have repeatedly 

found evidence for the "Recent African Origin" hypothesis, with the most recent 

common ancestor of human mtDNA located in Africa about 100,000-200,000 years ago 

(Cann et al. 1987; Ingman et al. 2000). Moreover, direct analyses of mtDNA from 

fossils of Neanderthals and early modern humans from Europe indicate no contribution 

of Neanderthal mtDNA to modern humans. 

Another insight gained from studies of mtDNA is a better understanding of the 

migrations that shaped human populations, such as, the peopling of the New World 

(Kolman et al. 1996; Silva et al. 2002; Torroni et al. 1993) the colonization of the 

Pacific (Lum and Cann 2000; Murray-McIntosh et al. 1998), the initial migration to 

New Guinea and Australia (Ingman and Gyllensten 2003; Redd et al. 2002; van Holst 

Pellekaan et al. 1998), and the settlement of Europe (Richards et al. 1996; Simoni et al. 

2000; Torroni et al. 1998). mtDNA is only one locus and does not accurately reflect the 

history of a population because of drift effects or selection. It is, thus, clear that studies 

of mtDNA variation need to be complemented with data on the male-specific 

Y-chromosome, and ideally with autosomal data as well (Bamshad et al. 2003; Nasidze 

et al. 2004; Shen et al. 2004). 
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Figure II.2.  Worldwide distribution of mtDNA haplogroups. The data in this chart is supposed to 
represent the situation before the recent European expansion beginning about 1500 YBP 
(adapted from McDonald 2005). 

 

The haploid Y-chromosome is poor in genes compared to the other nuclear 

chromosomes. However, the fact that it is largely nonrecombining and presents low 

effective population size leads to the preservation of haplotypes over evolutionary time 

scales and to record numerous episodes of population divergence, even on 

micro-geographic scales (Figure II.3). These properties make it essential in the 

characterization of population affinity, substructure and history (Underhill 2003 and 

references therein). The Y-chromosome provides a comparative model for evaluating 

haplotypes from other regions of the genome. The identification of complex population 

origin scenarios can be best achieved with an integrative approach, since all evidence 

should be reflective of an overall history. On the other hand, when different genes yield 

different haplotype patterns, locus-specific forces should be considered. The recent and 

ongoing progress in deciphering the Y-chromosome structure in contemporary 

populations (e.g. Walsh et al. 2007; Domingues et al. 2007; Keyser-Tracqui et al. 2006) 

provides new opportunities to formulate specific testable hypotheses involving human 

evolutionary population genetics. Although the genetic legacy of Homo sapiens remains 

incomplete, the recent ability to unearth new levels of shared Y-chromosome haplotypic 

heritage and subsequent diversification provide not only an index of contemporary 
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population structure, but also a preamble to human prehistory and substantial 

foundation for comparisons with other genomic regions (Underhill 2003). 

 

 

 

 

 

 

 

 

 

Figure II.3. Human Y-chromosome. The NRY accounts around 95% of the Y-chromosome. 
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The particular distinctive clinal patterns of NRY (nonrecombining portion of the 

Y-chromosome) haplotypes (Figure II.4), together with patterns of associated genetic 

diversification with geography mark trajectories of gene flow and, by inference, the 

movement of populations (Nonakal et al. 2007; Karafet et al. 2001). Additionally, the 

lower effective population size of Y-chromosomes relative to other components of the 

human genome make this chromosome particularly sensitive to the influences of drift 

and founder effect. Whatever the causes of this property (e.g. localized natural selection, 

gender-based differential reproductive success, and/ or migratory behaviour), it is 

particularly useful since it explains the characteristic high stratification of NRY 

diversity with geography relative to other genes including mtDNA (Underhill 2003). 

Currently, over 400 binary polymorphisms (SNPs and Alus) describe the 

Y-chromosome tree. Several mutually reinforcing binary mutations divide the 

Y-chromosome haplotype phylogeny into two distinctive components, haplogroup A 

and the remainder of all other haplogroups, specifically B through R (Y-chromosome 
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Consortium16). The ancestral alleles associated with these ancient polymorphisms are 

localized exclusively to a minority of both extant north African and subSaharan 

populations, whereas the majority of other Africans and all non-Africans carry only the 

derived mutant alleles (Underhill 2003). This mode indicates that almost all modern 

Y-chromosomes trace their ancestry to a common primogenitor, as expected in a stable 

genealogy. These Y-chromosome data contradict the possibility that early hominids 

contributed significantly, if at all, to the gene pool of anatomically modern humans 

(Capelli et al. 2001; Ke et al. 2001). This is evidence that all modern human 

Y-chromosomes trace their ancestry to Africa and that the descendants of the derived 

lineage left Africa and eventually completely replaced previous archaic human 

Y-chromosome lineages. A second distinctive monophyletic haplogroup called B, 

defined by several binary polymorphisms, is also restricted to African populations. Both 

A and B lineages are diverse and suggest a deeper genealogical heritage than other 

haplotypes. Representatives of these lineages are distributed across Africa, but generally 

at low frequencies (Underhill 2003). The phylogenetic position of A and B lineages 

nearest the root of the Y-tree, their survivorship in isolated populations and accumulated 

variation are suggestive of an early diversification and dispersal of human populations 

within Africa, and an early widespread distribution of human populations in that 

continent. The discovery of Homo sapiens fossils in Ethiopia dating to 160,000 years 

ago is consistent with an African origin of our species (White et al. 2003; Underhill 

2003).  

 

                                                 
16 Y-Chromosome Consortium website: http://ycc.biosci.arizona.edu. This consortium has established a system of 

defining Y-DNA haplogroups by letters A through R, with further subdivisions. 
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Figure II.4. Worldwide distribution of Y-chromosome haplogroups. The data in this map is 
supposed to represent the situation before the recent European expansion beginning 
about 1500 YBP (adapted from McDonald 2005). 

 

Diversity analysis of mtDNA (Chen et al. 2000; Quintana-Murci et al. 1999) and 

Y-chromosome (Hammer et al. 2001; Semino et al. 2002) support a single east African 

source of migration out of Africa. However, it is possible that there was an earlier 

migration event from Africa, across southeastern Asia, and into Australo-Melanesia 

(Thangaraj et al. 2003; Kivisild et al. 2003). If such an early migration event occurred, 

it is not clear whether it originated from a population that was genetically 

differentiated from the population(s) giving rise to subsequent migrations across 

Eurasia. Both source populations may have originated in northeast Africa from a single 

common ancestral group. Furthermore, if this earlier migration event did occur, it is 

likely that the gene pool of modern populations in Australo-Melanesia, which overall 

are most genetically similar to other non African populations, would reflect admixture 

between early and later migrants into the region (Tishkoff and Varrelli 2003). 

It is generally accepted that the earliest human occupants of Europe arrived during the 

Paleolithic, on the order of 40,000-50,000 years before the present (YBP), and that 

agriculture arose in the Near-east during the Neolithic, 10,000 YBP. However, debate 

has arisen over the mechanism of dispersal of farming within Europe (Lell and Wallace 

2000). The demic-diffusion model, proposed by Ammerman and Cavalli-Sforza (1984), 
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postulates that extensive migrations of Near-eastern farmers during the Neolithic 

brought agricultural techniques to the European continent. Under this model, the 

migrant farming populations expanded with little admixture with the Mesolithic 

European inhabitants, so that a large proportion of the present-day European gene pool 

should be derived from the Neolithic migrants. Alternatively, others have proposed a 

cultural-diffusion model (Dennell 1983) in which the transfer of agricultural technology 

occurred without significant population movement. Under this model, the majority of 

the genetic diversity within Europe would have its roots in the Paleolithic 

(Cavalli-Sforza et al. 1994; Lell and Wallace 2000).  

In contrast to the gradients observed for classic gene frequencies and other nuclear 

DNA markers, including the Y-chromosome, initial studies of European variation in the 

maternally inherited mtDNA did not seem to support the demic-diffusion of Neolithic 

farmers (Lell and Wallace 2000). The mtDNA landscape of Europe appeared very 

homogeneous, with little geographic clustering of types (Richards et al. 1996; Comas et 

al. 1998). In particular, Richards et al. (1996) argued that the genetic contributions of 

Neolithic migrants had been greatly exaggerated and that the major extant lineages of 

Europe could be traced back to the Upper Paleolithic. This questioning of the 

demic-diffusion model for the peopling of Europe led to a debate over the 

interpretations of the genetic studies supporting the competing models (Cavalli-Sforza 

and Minch 1997; Barbujani et al. 1998). In addition to the early Paleolithic and 

Neolithic expansions into Europe, mtDNA studies in Europe have suggested a Late 

Upper Paleolithic population expansion from southeastern Europe, as evidenced by 

clines radiating from Iberia (Torroni et al. 1998). Nevertheless, a more recent study has 

questioned this conclusion (Simoni et al. 2000; Lell and Wallace 2000). Simoni et al. 

demonstrated that both a Paleolithic expansion and the Neolithic demic-diffusion of 

farmers could have determined a longitudinal cline of mtDNA diversity.  

 

II.1.2. Evolutionary forces 

The human population is not in equilibrium. Humans occupy such a broad range of 

environments and respond to environmental changes by evolving in a predominantly 

cultural rather than biological way. The current patterns of migration and population 
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growth are similar to those that have predominated over much of human prehistory. 

These observations raise questions such as: Have human allele frequencies been frozen 

in time? Are humans still undergoing natural selection? Can we expect any changes to 

the human phenotype and will humans speciate? (Jobling et al. 2004). Some of these 

questions address the microevolutionary pressures – mutation, genetic drift, migration 

and selection – operating on modern humans, while other queries focus on the 

macroevolutionary future – whether speciation is likely or inevitable.  

 

II.1.2.1. Genetic drift 

Genetic drift – along with natural selection, mutation and migration – is one of the basic 

mechanisms of evolution. It describes changes in allele frequency from one generation 

to the next due to sampling variance. The frequency of an allele in the offspring 

generation will vary according to the probability distribution of the frequency of the 

allele in the parent generation. Many aspects of genetic drift depend on the size of the 

population. This is especially important in small mating populations, where chance 

fluctuations from generation to generation can be large. Such fluctuations in allele 

frequency between successive generations may result in some alleles disappearing from 

the population. For example, two separate populations that begin with the same allele 

frequency might "drift" by random fluctuation into two divergent populations with 

different allele sets, for example, alleles that are present in one have been lost in the 

other (Pardo et al. 2005; Arcos-Burgos and Muenke 2002).  

In small populations subject to drift, the rate of evolutionary change can be speeded up 

dramatically, and allele and genotype frequencies can change unpredictably from one 

generation to the next: the smaller the population, the more extreme these fluctuations 

tend to be. Like selection, genetic drift is a process of differential reproductive success; 

nevertheless, the key element of this evolutionary force is that the individuals that 

survive and reproduce are random, i.e. unrelated to their phenotype and genotype (Willi 

et al. 2007; Rudan et al. 2006). Because it is a random process, the outcome in any 

generation is unpredictable; however, certain generalities can be made and reliably 

predict the cumulative effects of genetic drift. On average it is expected that (i) small 

populations will show large but random fluctuations in allele and genotype frequencies, 
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i.e. some alleles will be lost over time, reducing the amount of genetic variation in the 

population, eventually, only one allele will become fixed; and (ii) replicate populations 

will diverge genetically over time and because everything happening within a 

generation is random, the population will appear to be in Hardy-Weinberg equilibrium 

at any time. Genetic drift can be observed by the occurrence of two main processes: 

bottleneck and founder effect (Figure II.5).  

A population bottleneck is a significant reduction in the size of a population that causes 

the extinction of many genetic lineages within that population, thus, decreasing genetic 

diversity. Several studies have demonstrated the occurrence of bottlenecks in the human 

population (e.g. Rootsi et al. 2007; Battilana et al. 2006; Kasperaviciute et al. 2004). 

Schmegner et al. (2005) studying the NF117 gene demonstrated that the recent European 

population went through a bottleneck during the last 150,000 years of its history. 

Moreover, considering this timeframe, the bottleneck could either reflect a speciation 

event which led to the anatomically modern human (AMH), or a severe reduction of the 

population size during the emigration of AMHs out of Africa or the immigration into 

Europe. 

 

Figure II.5. Bottleneck and founder effects representation. Circles of different colours represent different 
alleles. Both effects result in loss of allelic diversity (adapted from Jobling et al. 2004). 

 

                                                 
17 For further knowledge on the NF1 gene, please, consult Chapter I of the present thesis. 
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Another study by Behar et al. (2004) tested the effects of a maternal bottleneck on the 

Ashkenazi Jewish population. They analysed mtDNA in 565 Ashkenazi Jews from 

different parts of Europe. Their results showed that while several Ashkenazi Jewish 

mtDNA haplogroup appear to derive from the Near-east, there is also evidence for a low 

level of introgression from host European non-Jewish populations. The diversity 

patterns obtained provide evidence for a prolonged period of low effective size in the 

history of the Ashkenazi population. Overall, the data best fit a model of an early 

bottleneck (~100 generations ago), perhaps corresponding to initial migrations of 

ancestral Ashkenazi in the Near-east or to Europe. Behar et al. (2004) conclude that a 

genetic bottleneck followed by the recent phenomenon of rapid population growth are 

likely to have produced the conditions that led to the high frequency of many genetic 

disease alleles in the Ashkenazi population. Another study by Kasperaviciute et al. 

(2004) analysed the genetic composition of the Lithuanian population through mtDNA 

and Y-chromosome markers. Significant differences between Lithuanian and Estonian 

Y-chromosome STR haplotypes indicated that these populations have had different 

demographic histories. Kasperaviciute et al. (2004) suggest that the observed pattern of 

Y-chromosome diversity in Lithuanians may be explained by a population bottleneck 

associated with Indo-European contact. Different Y-chromosome STR distributions in 

Lithuanians and Estonians might be explained by different origins or, alternatively, be 

the result of some period of isolation and genetic drift after the population split.  

More recently and to explore the evolutionary forces that might have morphed human 

genome architecture, Gherman et al. (2007) investigated the origin, composition, and 

functional potential of “numts” (nuclear mitochondrial pseudogenes), partial copies of 

the mitochondrial genome found abundantly in chromosomal DNA. Their data indicate 

that these elements are unlikely to be advantageous, since they possess no gross 

positional, transcriptional, or translational features that might indicate beneficial 

functionality subsequent to integration. Using sequence analysis and fossil dating. 

These authors also show a probable burst of integration of “numts” in the primate 

lineage that centers on the prosimian–anthropoid split, mimics closely the temporal 

distribution of Alu and processed pseudogene acquisition, and coincides with the major 

climatic change at the Paleocene–Eocene boundary. Gherman and collaborators propose 

a model according to which the gross architecture and repeat distribution of the human 

genome can be largely accounted for by a population bottleneck early in the anthropoid 
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lineage and subsequent effectively neutral fixation of repetitive DNA, rather than 

positive selection or unusual insertion pressures. 

The founder effect can be defined as what happens when a small group of individuals 

leaves a larger population and establishes a new one. Hence, chance plays a important 

role in determining which alleles are represented in the new population. The particular 

alleles may not be representative of the larger population. As the new population grows, 

the allele frequencies will usually continue to reflect the original small group (Zlotogora 

2007; Jobling et al. 2004). 

Founder populations have been the subject of complex disease studies because of their 

decreased genetic heterogeneity, increased linkage disequilibrium and more 

homogeneous environmental exposures. However, it is possible that disease alleles 

identified in founder populations may not contribute significantly to susceptibility in 

outbred populations (Zlotogora 2007; Laberge et al. 2005). Newman et al. (2004) 

examined the Hutterites, a founder population of European descent, for 103 

polymorphisms in 66 genes that are candidates for cardiovascular or inflammatory 

diseases. The data revealed that this founder population is informative and offers 

considerable advantages for genetic studies of common complex diseases. Hamet et al. 

(2005) studied 120 extended families with at least one sib-pair affected with early-onset 

hypertension and/ or dyslipidemia in the Saguenay-Lac-Saint-Jean (Quebec). They 

observed founder effect over several generations and classes of living individuals. Other 

studies (Rootsi et al. 2007; Kalaydjieva et al. 2005) demonstrated evidences of the 

influence of founder effects in the genetic signature of the populations. For example, 

Nebel et al. (2005) studying the Y-chromosome of Ashkenazi Jews demonstrated that of 

the 495 Y-chromosomes, 57 (11.5%) were found to belong to R-M1718. The haplotype 

structure, diversity and geographic distribution suggested a founder effect for this 

haplogroup, introduced at an early stage into the evolving Ashkenazi community in 

Europe. R-M17 chromosomes in Ashkenazi may represent vestiges of the mysterious 

Khazars. In summary, the study of founder effects allows that traits transmitted through 

generational lineage may be determined quantitatively within population subsets, thus, 

accelerating the uncovering of causal haplotypes in complex diseases (Hamet et al. 

2005). 

                                                 
18  According to the Y-Chromosome Consortium (http://ycc.biosci.arizona.edu) nomenclature the mutation R-M17 

corresponds to R1a1* lineage. 
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II.1.2.2. Selection 

Natural selection, as defined by Darwin and elaborated by Fisher, is the differential 

reproduction of genotypes in succeeding generations. Genotypic variation produces 

individuals with varying capacities to survive and reproduce in different environments. 

Selection can occur at any stage from the formation of a genotype at fertilization to the 

individual generating viable progeny. Overall, it may include the (i) survival in 

reproductive age, that is, viability and mortality; (ii) success in attracting a mate, i.e. 

sexual selection; (iii) ability to fertilize, this is, fertility and gamete selection; and, 

finally, (iv) number of progeny, i.e. fecundity (Nielsen 2005; Jobling et al. 2004). The 

overall sum of these is the ability of an individual genotype to survive and reproduce, its 

fitness, which is partly dependent on the environment. Relative fitness of a genotype 

compared to other genotypes competing for the same resources is an important factor 

when measuring selection. A selection coefficient of 0.1 represents a 10% decrease in 

fitness of the genotype compared to the fittest one (Gilad et al. 2006; Jobling et al. 

2004). 

Simply, mutations that increase fitness undergo positive selection whereas mutations 

that reduce the fitness are subject to negative selection, also known as purifying 

selection. Positive selection has undoubtedly played a critical role in the evolution of 

Homo sapiens. Of the many phenotypic traits that define our species, for example, the 

enlarged brain, the advanced cognitive abilities, the complex vocal organs, bipedalism 

and opposable thumbs, most are likely the product of strong positive selection. 

Comparative genetics and genomics studies in recent years have uncovered a growing 

list of genes that might have experienced positive selection during the evolution of 

human and/ or primates (Wang et al. 2006; Voight et al. 2006; Sabeti et al. 2006). 

These genes offer valuable insights into understanding the biological processes specific 

to humans, and the evolutionary forces that gave rise to them.  

However, to understand the dynamics of selection at diploid loci it should be considered 

the impact of mutants on the fitness of the genotypes, and not on the individual alleles. 

The two alleles within a diploid genotype can interact to determine the phenotypic 

fitness of an organism in different ways. This in turn affects the efficiency of natural 

selection in fixing or eliminating novel alleles (Nielsen 2005). For example, in 

codominant selection, a novel deleterious allele will be eliminated more rapidly from 
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the population if it reduces the fitness of the heterozygote, as well as, the homozygote. 

Alternatively, in overdominant selection, a new allele may increase the fitness of an 

heterozygote relative to that of both homozygotes. The two homozygous genotypes may 

exhibit different reductions in fitness creating a balanced polymorphism. On contrary, 

underdominant selection operates where new alleles reduce the fitness of the 

heterozygote alone. Other processes, besides overdominant selection, can create a 

balancing selection, for example, frequency-dependent selection, where the frequency 

of a genotype determines its fitness. If a genotype has higher fitness at low frequencies 

but lower fitness at higher frequencies, an intermediate equilibrium value will be 

reached over time (Charlesworth 2006; Krawczak and Zschocke 2003). The major 

histocompatibility complex (MHC) locus has been suggested to be under both 

frequency-dependent and overdorninant selection (Muller-Hilke and Mitchison 2006). 

Other classic examples of balanced polymorphisms in humans are those that protect 

against malaria19 when heterozygous, but have a reduced fitness compared to wild-type 

when homozygous. A number of these types of balanced polymorphisms have arisen in 

different areas of malarial endemicity (Polley et al. 2007; Verra et al. 2006). 

Changes in genetic regulation contribute to adaptations in natural populations and 

influence susceptibility to human diseases. Despite their potential phenotypic 

importance, the selective pressures acting on regulatory processes and gene expression 

are largely unknown. Studies in model organisms suggest that the expression levels of 

most genes evolve under stabilizing selection, although a few are consistent with 

adaptive evolution (Gilad et al. 2006). Nonetheless, it has been proposed that gene 

expression levels in primates evolve largely in the absence of selective constraints. 

Gilad et al. (2006) demonstrated that stabilizing selection is likely to be the dominant 

mode of gene expression evolution. An important implication is that mutations affecting 

gene expression will often be deleterious and might underlie many human diseases. 

Tishkoff et al. (2007) conducted a genotype-phenotype association study in 470 

Tanzanians, Kenyans and Sudanese and identified three SNPs (G/C-14010, T/G-13915 

                                                 
19 Malaria is a potentially deadly tropical disease characterized by cyclical bouts of fever with muscle stiffness, 

shaking and sweating. It is caused by a parasite of the Plasmodium genus that is transmitted by the female 
mosquito of Anopheles genus (for review, please, see Conway 2007). 
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and C/G-13907) that are associated with lactase persistence20. These SNPs also show 

derived alleles that significantly enhance transcription from the lactase (LCT) promoter 

in vitro. Genotyping across a 3 Mb region demonstrated haplotype homozygosity 

extending >2.0 Mb on chromosomes carrying C-14010, consistent with a selective 

sweep over the past, approximately 7,000 years. Overall, they conclude that these data 

provide a marked example of convergent evolution due to strong selective pressure 

resulting from shared cultural traits, animal domestication and adult milk consumption. 

The identification of signals of very recent positive selection provides information about 

the adaptation of modern humans to local conditions (Voight et al. 2006). Voight and 

colleagues (2006) report a genome-wide scan for signals of very recent positive 

selection in favor of variants that have not yet reached fixation. They observed in three 

continental groups widespread signals of recent positive selection. Most signals are 

region-specific, though a significant excess are shared across groups. Contrary to some 

earlier studies that suggested a paucity of recent selection in subSaharan Africans, they 

found that the strongest signals of selection were from the Yoruba population. Finally, 

these authors conclude that since the signals suggest the existence of genetic variants 

that have substantially different fitnesses, it must indicate loci that are the source of 

significant phenotypic variation. Though the relevant phenotypes are generally not 

known, such loci should be of particular interest in mapping studies of complex traits.  

 

II.1.2.3. Mutation and recombination 

Mutation is the process generating new alleles. It provides the raw material on which 

selection and the other forces of evolution can act. There are a broad variety of 

mutational changes, and these occur at varying rates. Each mutation is a single change 

occurring in a single cell. Evolutionary consequences only follow from those changes 

that occur in the germline, and not those in somatic tissues, as somatic mutations are not  

 

                                                 
20 The enzyme lactase, located in the villus enterocytes of the small intestine, is responsible for digestion of lactose in 

milk. Lactase activity is high and vital during infancy, but in most mammals, including most humans, lactase 
activity declines after the weaning phase. In other healthy humans, lactase activity persists at a high level 
throughout adult life, enabling them to digest lactose as adults. This dominantly inherited genetic trait is known as 
lactase persistence. The distribution of these different lactase phenotypes in human populations is highly variable 
and is controlled by a polymorphic element cis-acting of the lactase gene (2q21, for revision, please, see Sibley 
2004). 
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heritable. The dynamics of many types of mutations vary between the soma and the 

germline. Because of the fidelity of DNA polymerases and the operation of DNA repair 

mechanisms, germline mutations occur at low rates for individual nucleotides, although 

they are inevitable in every replication cycle. It has been estimated that every human 

carries, on average, 128 new mutations (Giannelli et al. 1999). 

In the absence of other processes, an allele will decrease in frequency as it accumulates 

mutations, a phenomenon known as mutation pressure. By knowing the mutation rate 

for the whole gene (µ), the initial allele (P0) frequency, assuming no back mutation and 

ignoring stochastic processes, the allele's frequency (pt) t generations later is calculated 

by: 

pt=p0e-µt

At low mutation rates, mutation pressure is a weak force that can only have appreciable 

impact over long time scales. After 1000 generations, the wild-type allele of a gene 1 

kb in size with a per generation nucleotide mutation rate of 2x10-9 will only decrease in 

frequency from 1.0 to 0.998 (Jobling et al. 2004). However, the possibility of back 

mutations and recurrent mutations was not analysed. If we consider a gene 1 kb in 

length then the number of possible alleles is enormous, 41000. The probability of back 

mutations and recurrent mutations is correspondingly small. This model is known as 

the infinite alleles model (IAM; Crow and Kimura 1970). On the other hand, 

considering the evolution of a polymorphic microsatellite, oscillating in size by number 

of repeats, the opportunity for back mutation and recurrent mutation is much higher 

than for SNPs. Thus, the IAM does not always appear to be a close approximation of 

biological reality. Therefore, it is necessary different models for different types of 

mutation. The stepwise mutation model (Ohta and Kimura 1973) provides a better fit to 

microsatellite evolution. According to this model, mutation increase and decrease allele 

length by one unit with equal probability (Hartl and Clark 1997; Jobling et al. 2004). 

Initially, the SMM considered single-step changes only, but there is good empirical 

evidence for a lower rate for multiple step mutations which the model can account for 

(Di Rienzo et al. 1994). There are, however, other known aspects of microsatellite 

evolution not incorporated within the SMM model, for example, the (i) positive 

correlation between allele length and mutability; (ii) lower length threshold under which 

mutation rate becomes undetectable; (iii) possible small bias towards expansions of 
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short alleles, resulting in an increase in size of the microsatellite; (iv) possible 

preference for deletions rather than expansions in longer alleles, producing an 

equilibrium in allele length; and (v) massive expansions in triplet repeat diseases and 

consequent negative selection. Other types of mutations, such as, rearrangements and 

GC-rich minisatellites, do not fit any of the above models. Considering other aspects of 

sequence evolution it is necessary to suppose that several changes might have occurred 

at the same site, then more complex models of mutation must be developed. For 

example, it could be necessary to consider the probability that an A will mutate to a C 

and then subsequently back from a C to an A again. These models come into play when 

considering sequence evolution over long time scales, where back mutations result in 

the observed sequence divergence being an underestimate of the real number of 

mutational changes. In the simplest model all nucleotide substitutions occur at the same 

rate, while the most complex model allows a different rate for each nucleotide change. 

These models can be represented as a substitution scheme and as a probability matrix. 

The simplest example is known as the Jukes-Cantor model (JC, Jukes and Cantor 1969), 

and one of the more complex models is the general reversible model (REV). There are a 

number of intermediate models that contain some, but not all, of the complexity of the 

REV model (Jobling et al. 2004; Hartl and Clark 1997). The frequency of each 

nucleotide clearly influences the probability of nucleotide changes averaged over an 

entire sequence. For example, an A to G transition may have the same rate as a C to T 

transition, but if there are twice as many Cs in a sequence then the probability of an A to 

G occurring within the sequence is not the same as that of a C to T. The JC model does 

not take potential bias in base composition into account, but the REV model does 

(Jobling et al. 2004; Hartl and Clark 1997). 

Another process generating diversity is meiotic recombination which is a consequence 

of sexual reproduction, and enhances the ability of populations to adapt to their 

environment through the combining of advantageous alleles at different loci. 

Recombination generates new combinations of alleles on the same DNA molecule, 

known as haplotypes and in this way increases haplotype diversity. Consequently, 

recombination is capable of breaking up advantageous allelic combinations. 

Theoretically, by increasing the likelihood of disrupting a beneficial haplotype, 

outbreeding can result in a drop in fitness known as outbreeding depression. While 

alleles at loci on different chromosomes are randomly segregated during meiosis, 
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alleles at loci closely linked on the same chromosome are not, as recombination 

between them occurs infrequently (Jobling et al. 2004; Hartl and Clark 1997).  

In comparison to mutation models, recombination models have traditionally been 

relatively simple. The simplest model is that the rate of recombination is uniform. In 

other words, the probability of a crossover occurring between a pair of markers is 

determined only by the physical distance that separates them. The products of this type 

of recombination event are two new haplotypes containing contiguous stretches of 

alleles from each ancestral haplotype. Empirical studies of recombination in humans 

and model organisms have revealed two biological properties of recombination that 

conflict with the simplest model of recombination, this is, not every recombination 

event results in a crossover (Jobling et al. 2004; Hartl and Clark 1997; Hellenthal and 

Stephens 2006; Spencer et al. 2006).  

Recombination rates are not uniform along a segment of DNA. Crossovers appear to be 

concentrated in hotspots between which are regions recombinationally inert. At larger 

scales, recombination rates vary along the chromosome in ways that are only now being 

elucidated, but are often low near centromeres and high near telomeres (Jobling et al. 

2004; Hartl and Clark 1997; Hellenthal and Stephens 2006). In humans, the rate of 

recombination, as measured on the megabase scale, is positively associated with the 

level of genetic variation, as measured at the gene scale. Despite considerable debate, it 

is not clear whether these factors are causally linked or, if they are, whether this is 

driven by the repeated action of adaptive evolution or molecular processes, such as, 

double-strand break formation and mismatch repair (Spencer et al. 2006). Spencer and 

colleagues (2006) introduced three innovations to the analysis of recombination and 

diversity: (i) fine-scale genetic maps estimated from genotype experiments that identify 

recombination hotspots at the kilobase scale, (ii) analysis of an entire human 

chromosome, and (iii) the use of wavelet techniques to identify correlations acting at 

different scales. They show that recombination influences genetic diversity only at the 

level of recombination hotspots. Hotspots are also associated with local increases in 

GC-content and the relative frequency of GC increasing mutations but have no effect on 

substitution rates. Broad-scale association between recombination and diversity is 

explained through covariance of both factors with base composition. These results 
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evidence a direct and local influence of recombination hotspots on genetic variation and 

the fate of individual mutations (Lindsay et al. 2007).  

 

II.1.2.4. Migration or gene flow 

Migration, often used as a synonym for gene flow, is probably the most powerful 

microevolutionary factor leading to the uniformity of populations characteristics. 

Theory predicts that whenever the relative weight of gene flow exceeds that of drift, as 

is to be expected in modern human populations (Morton 1982), the frequencies of a 

neutral allele at equilibrium will be distributed unimodally (Wright 1921). However, the 

equilibrium distribution is established slowly and, as a consequence, sharper genetic 

change may be expected in the regions in which past gene flow has been inefficient to 

eliminate pre-existing genetic differences (Sokal et al. 1989; Barbujani et al. 1989).  

Gene flow has, therefore, relied upon indirect methods that relate measures of 

population subdivision to gene flow via a model for the population structure. Unlike 

genetic drift, mutation and selection, migration cannot change species allele 

frequencies, but it is capable of changing allele frequencies within a subpopulation. In 

general, gene flow is the outcome when a migrant contributes to the next generation in 

their new location, and migration is the movement from one occupied area to another. 

Thus, to observe gene flow directly it is necessary to monitor the movement of migrants 

and their reproductive success.  

The simplest model of gene flow is the island model devised by Sewall Wright. A 

metapopulation is split into “islands” of equal size N, which exchange genes at the same 

rate, m, per generation. The assumptions of the island model include: (i) no 

geographical substructure apart from the division into islands – all islands are 

equivalent, (ii) each population persists indefinitely, (iii) no mutation, (iv) no selection, 

(v) each population has reached equilibrium between mutation and genetic drift, and (vi) 

the migrants are a random sample from the source “island”. 

The stepping-stone model (Kimura and Weiss 1964) removes from the “island” one the 

lack of geographic substructure. The stepping-stone introduces the idea of geographical 

distance by only allowing the exchange of genes between adjacent discrete 
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subpopulations. This model also assumes equal rates of migration between 

subpopulations. Both models have been used to show that even very low rates of 

migration between subpopulations are capable of retarding their genetic differentiation 

(Jobling et al. 2004; Hartl and Clark 1997). 

Migration can be modelled as occurring within a continuous population, rather than 

discrete subpopulations, by considering that mating choices are limited by distance, and 

that these distances are typically less than the overall range of the population. This is the 

basis for isolation by distance model (IBDM, Wright 1943; Malécot 1950). Within such 

model, genetic similarity develops in neighbourhoods as a function of dispersal 

distances, for example, parent birthplaces. Neighbouring populations frequently 

exchange individuals by an ongoing process of bi-directional migration. However, a 

third, hybrid population does not usually result from this kind of exchange. The term 

admixture is often reserved for the formation of a hybrid population from the mixing of 

ancestral populations that have previously been in relative isolation from one another. 

The range expansion of one population into a region inhabited by a previously isolated 

population is one of such scenario. Therefore, admixture can be thought as being 

initiated at a specific point in time, when the populations first came into contact. When 

we examine modern populations, we detect not simply the proportions of admixture 

established when the populations first met, but the summation of cumulative gene flow 

from when they first met to the present-day (Price et al. 2007; Mao et al. 2007). Thus, 

the consequences of admixture and gene flow may be difficult to distinguish. Naturally, 

the imprint of past admixture in modern populations has also been modified by drift, 

selection and mutation processes.  

The isolation and expansion that result in subsequent admixture can be driven by 

environmental changes. During the recent ice ages, the environment at more northerly 

latitudes became uninhabitable. Humans and other plant and animal species found 

refuge in more hospitable climate, known as “glacial refugia”. These refugia were often 

isolated from one another. For example, it is known three major European glacial 

refugia: the Iberian Peninsula, Italy and the Balkans. After the end of the last ice age, 

many species started the long process of re-colonizing the more northerly latitudes from 

these refugia. During this period, many previously isolated populations were in contact 
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with each other, therefore, the genetic consequences can be analyzed through admixture 

(Rootsi et al. 2004; Iriondo et al. 2003; Torroni et al. 2001; Jobling et al. 2004). 

Admixture shapes genetic diversity in a number of different ways. Our ability to detect 

admixture depends in part on how differentiated the source populations were from one 

another, the more different the ancestral populations were, the easier it is to detect 

admixture. There are some problems with the assessment of admixture in a single 

genome, some alleles may have their ancestry in one parental population while other 

alleles have their ancestry in another. This is a consequence of sexual reproduction and 

diploidy. In fact, it is highly unlikely that any individual in an admixed population will 

be able to trace all their genes to a single source population; different genomes within 

an admixed population are likely to exhibit differing amounts of admixture. Thus, an 

estimate of population admixture can only be an average of the admixture among the 

individual genomes within it (Jobling et al. 2004; Price et al. 2007; Mao et al. 2007).  

All generic admixtures will lead to a variety of phenotypic effects. Any quantitative trait 

that is generically encoded and well differentiated between populations will be altered 

in admixed populations. In societies where surnames follow clear lines of inheritance, 

they have often been used for population genetic analyses as mentioned in Chapter I of 

the present thesis. Admixture studies are no exception. Patterns of surname 

introgression have been clearly shown to be correlated with levels of admixture in a 

number of different populations (Chakraborty 1986; McEvoy et al. 2006). These 

conclusions have subsequently been reinforced by genetic typing. Nevertheless, 

surname analysis is useful when admixture has occurred within the timeframe of 

surname usage, which varies greatly from population to population, and may be very 

recent. However, if records are detailed enough, surname analysis can reveal how 

admixture processes may have changed over time (Jobling et al. 2004). 

Disease prevalences are often clearly different between ancestral populations. An 

obvious medical consequence of admixture is that the hybrid population is expected to 

have disease prevalence’s for Mendelian disorders that are intermediate between those 

of the ancestral populations. When the most frequent diseases differ between the 

populations, this can lead to an overall lowering of the disease burden through a 

reduction in the probability of having two parents carrying the same deleterious 

recessive allele (Jobling et al. 2004; Alegre et al. 2007).  
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II.2. Genetic distance and population structure 

II.2.1. Genetic distance measures 

Measures of genetic distance are statistics that allow us to compare the relatedness of 

populations or molecules (Jobling et al. 2004). The greater the evolutionary distance 

between them, the greater the value of the statistic. If a measure is greater between 

population A and B than between C and D, we can say that C and D are more closely 

related than are A and B. Such measures allow the exploration of population structure 

and molecular diversity in greater detail, by pairwise comparisons, rather than by 

averaging over all populations or molecules. Additionally, it is possible to convert 

distance measures to an evolutionary time scale (Jobling et al. 2004), and observations, 

such as, C and D share a more recent common ancestor than A and B are probable. 

Conversely, genetic distance measures also allow the construction of phylogenies of 

populations or molecules (e.g. Kumar et al. 2007; Khan et al. 2007). 

There are a number of commonly used measures of genetic distances between 

populations. Despite the abundance of measures, which arose in response to different 

data types and different expectations about evolutionary processes. For example, 

diversity data from markers with a high mutation rate may be analyzed with a genetic 

distance measure that emphasizes the contribution of mutational processes to population 

divergence (Jobling et al. 2004). If we consider two populations X and Y with the 

frequency of the ith allele being xi and yi, respectively, the simplest measure of genetic 

distance between them sums the difference between the allele frequencies, Σ(xi-yi). This 

needs to be squared to avoid differences in sign, Σ(xi-yi)2. However, sufficient weight to 

alleles with frequencies close to 0% or 100% is not given. Two commonly used 

classical measures of genetic distance are FST and Nei's standard genetic distance, D 

(Nei 1973). Both of these vary between 0 (for identical populations), and 1 (for 

populations that share no alleles). For use as a genetic distance, FST is specifically 

formulated for two populations and can be defined as: 

FST=Vp/p(1-p) 

where p and Vp are the mean and variance of gene frequencies between the two 

populations, respectively. This is just a weighted form of the simple measure considered 

above, that increases the influence given to alleles that are almost fixed (p~100%) or 
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barely polymorphic (p~0%). Nevertheless, there are a variety of different methods for 

estimating FST. Nei's standard genetic distance, D, relates the probability of drawing two 

identical alleles from the two different populations (which is Σxiyi) to the probability of 

drawing identical alleles from the same population Σ(xi
2 and yi

2) by the following 

equation: 

D=-ln(Σxiyi/Σxi
2(yi

2)1/2) 

By making assumptions about the processes that are driving the divergence of 

populations, we can relate distance measures to absolute time. This relationship can 

then be used to generate a corrected version of the statistic that can be shown, under 

certain assumptions, to be linear with respect to evolutionary time (Khaitovich et al. 

2005; Ayub et al. 2003). However, bottlenecks and migration can disrupt the linear 

relationship between a given genetic distance measure and time. Linearity of the genetic 

distance measure is a useful property especially when constructing phylogenies. The 

other major property that affects the usefulness of a measure is its variance: the lower 

the variance of the statistic, the higher the confidence (Jobling et al. 2004). Whatever 

measure of genetic distance between populations is used, its significance must be tested, 

i.e. determine if the distance is significantly different from zero. This is especially 

important for human populations, which are often closely related (Jobling et al. 2004).  

 

II.2.2. Population structure and inbreeding 

Genetic subdivision or structure affects both the evolution and the persistence of 

populations. For instance, subdivision has been shown to have an important effect on 

the probability of fixation of beneficial and deleterious alleles, the evolution of mating 

systems or the probability of population extinction. One of the reasons of this influence 

is that subdivision changes the way in which the different evolutionary processes 

(selection, genetic drift, mutation and migration) act on allele frequency, compared to a 

continuous population. As a result, the population's genetic load (i.e. the decline in 

fitness due to accumulation of deleterious alleles) can be strongly determined by 

population structure (Glémin et al. 2003).  

Subdivision can vary in several ways, including the size and the number of the 

subpopulations and the rate of migration between subpopulations. Changes in these 

parameters can significantly modify the balance between drift and selection within 
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subpopulations and, thus, genetic load: (i) for slightly deleterious and partially 

recessive alleles, subpopulation size determines both the response to selection and the 

strength of genetic drift; larger subpopulations should be associated with lower 

frequencies of deleterious alleles; (ii) migration between subpopulations restores 

genetic variability within subpopulations, enhancing selection; and (iii) the number of 

subpopulations influences population genetic variance. Increasing the number of 

subpopulations should result in a higher genetic differentiation between them and, thus, 

a higher potential for fitness to be restored by migration. It is also interesting to note 

that subdivision can have variable effects according to the characteristics of deleterious 

mutations. For instance, genetic variance within subpopulations could decrease for 

nearly additive alleles but it can increase for highly recessive alleles. 

Population subdivision results in the loss of genetic variation within subpopulations due 

to evolutionary forces. This means that population subdivision would result in 

decreased heterozygosity relative to the expected heterozygosity under random mating 

as if the whole population was a single breeding unit. Wright developed three fixation 

indexes to evaluate population subdivision: FIS (Individual within the Subpopulation), 

FST (Subpopulation within the Total population) and FIT (Individual within the Total 

population). FIS is a measure of the deviation of genotypic frequencies from panmictic 

frequencies in terms of heterozygous deficiency or excess. It is what is known as the 

inbreeding coefficient, which is conventionally defined as the probability that two 

alleles in an individual are identical by descent. The technical description is the 

correlation of uniting gametes relative to gametes drawn at random from within a 

subpopulation averaged over subpopulations. It is calculated in a single population as: 

FIS=HEXP-HOBS/HEXP

where HOBS is the observed heterozygosity and HEXP is the expected heterozygosity 

calculated on the assumption of random mating (Hartl and Clark 1997). It shows the 

degree to which heterozygosity is reduced below the expectation. Compared with HWE 

expectations, the value of FIS ranges between -1 and +1. Negative FIS values indicate 

heterozygote excess (outbreeding), and positive values indicate heterozygote deficiency 

(inbreeding). Additionally, FST measures the reduction in heterozygosity in a 

subpopulation. FST is the most inclusive measure of population substructure and the 

most useful for examining the overall genetic divergence among subpopulations. Also 
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called coancestry coefficient (Weir and Cockerham 1984) or “fixation index”, it is 

defined as correlation of gametes within subpopulations relative to gametes drawn at 

random from the entire population. Its calculation is performed by using the 

subpopulation average heterozygosity and total population expected heterozygosity. FST 

is always positive; it ranges between 0 (panmixia: no subdivision, random mating and 

no genetic divergence within the population) and 1 (complete isolation: extreme 

subdivision). FST values up to 0.05 indicate negligible genetic differentiation, whereas 

>0.25 means very great genetic differentiation within the population analyzed (Hartl 

and Clark 1997). FST is usually calculated for different genes, and then averaged across 

all loci and all populations. Using the FST values, less differentiation is seen between 

human populations within continents than between continents, which is consistent with 

simple isolation by distance. This highly versatile parameter is also used as a genetic 

distance measure between two populations instead of a fixation index among many 

populations (Weir 1996). FIT is rarely used. It is the overall inbreeding coefficient of an 

individual relative to the total population. 

One process that contributes to population subdivision is inbreeding. Inbreeding and 

assortative mating are deviations from the Hardy-Weinberg assumption of random 

mating. It results from mating between relatives, and is probably the most common 

deviation from the Hardy-Weinberg model (Jobling et al. 2004; Hartl and Clark 1997). 

Assortative mating, like inbreeding, leads to non-random patterns of mating; however, 

the basis for assortative mating is not relatedness but phenotypic similarity or 

dissimilarity. Both processes sort existing variation, altering genotypic frequencies 

within populations. Except in extreme cases, inbreeding and assortative mating do not 

dramatically alter allele frequencies. Nevertheless, their consequences for the evolution 

of populations can be highly significant. True inbreeding is the deviation from random 

mating within an individual population. Because inbreeding involves disproportionate 

mating between relatives, its effect is to increase homozygosity across all loci. One 

observable consequence of inbreeding is that the proportion of heterozygotes is 

significantly lower than expected under the HWE model across multiple loci (Jobling et 

al. 2004; Hartl and Clark 1997). Population size can also greatly impact the extent and 

rate of loss of heterozygosity. In large populations, most individuals are effectively 

unrelated, so the effect of inbreeding decreases rapidly as average relatedness among 

individuals decreases (Jobling et al. 2004; Hartl and Clark 1997). 
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Inbreeding can be calculated most directly through pedigree analysis, though this is 

often not possible in natural populations. Alternatively, we can estimate it indirectly 

from the observed alleles and genotypic frequencies, as the frequency of heterozygotes 

observed relative to that expected under HWE (2pq). In this way, then, inbreeding is a 

measure of the fractional reduction in heterozygosity relative to a panmictic population 

with the same allele frequencies.  
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III. Genetic isolates versus outbred populations 

The question “Are genetic isolated populations more useful for the mapping of genes 

than outbred populations?” is still a subject of large discussion in the scientific 

community21. Some researchers have argued that small isolated populations are valuable 

for linkage and LD mapping, whereas others have argued that populations are only ideal 

when they have maintained constant size throughout much of their history and others 

find no advantage in isolated populations. It is clear that the appearance of 

biotechnologies that allow the genome-wide genotyping of large quantities of markers, 

at a relatively low cost per sample, played an evident role in the decrease in the 

importance of human genetic isolates. 

Generally, genetic isolates are subpopulations resulting from the founder effect of a 

small number of individuals as a consequence of bottleneck. These populations exist in 

geographical, cultural or geographical and cultural context over many generations 

without genetic interchange from other subpopulations. In recent years, there has been 

success in mapping genes causing several diseases, mainly those exhibiting rare 

classical Mendelian recessive models of inheritance, essencially through linkage 

analysis. The initial successes, which came by studying isolated populations, such as, 

the Finnish and the Old Order Amish, have exponentially increased the interest in these 

kinds of populations (Arcos-Burgos and Muenke 2002 and references therein). Some of 

these successfully mapped diseases include, for example, gyrate atrophy of choroids and 

retina22 (HOGA; Mitchell et al. 1988), retinoschisis23 (Alitalo et al. 1987) and Uscher 

syndrome type III24 (Sankila et al. 1995) in the Finnish population and bipolar disorder 

                                                 
21   Since 2003, with a two year interval, an international meeting entitled “Genetic of complex diseases and isolated 

populations” occurs to discuss the use of isolated populations in human genetics. In 2007, it was held, in the city of 
Turim, Italy, the 3rd meeting. For further information, please, consult the website: 
http://www.fobiotech.org/geneticisolates2007/home.html. 

22  Gyrate atrophy of the choroid and retina is an autosomal recessive chorioretinal dystrophy that begins in childhood 
and leads to blindness in the fourth to seventh decade of life. The primary defect is deficiency of ornithine-delta-
amino-transferase (10q26), which results in accumulation of ornithine (for revision, please, see Hasanoğlu et al. 
1996). 

23  Retinoschisis is an recessive X-linked genetic disease characterized by intraretinal splitting due to degeneration. 
The abnormality may not be clinically manifest until middle life. The retinoschisis gene (RS1; Xp22.2) encodes 
for a protein called retinoschisin (for revision, please, see Sikkink et al. 2007). 

24  Usher syndrome type III is autosomal recessive disorder characterized by postlingual, progressive hearing loss, 
variable vestibular dysfunction, and onset of retinitis pigmentosa symptoms. Mutations in at least two genes are 
responsible for Usher syndrome type III; however, CLRN1 (3q25) is the only gene that has been identified. This 
gene codes for clarin 1 protein (for revision, please, see Roux 2005).  
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in the Old Order Amish (Ginn et al. 1996). In Table III.1 there are some examples of 

studies performed in isolated populations. 

Scientists who agree on the use of genetic isolates argue that these populations offer 

many advantages for genome-wide mapping (Table III.2). Firstly, most of them arise as 

the result of a founder effect that in conjunction with the high degree of inbreeding 

produces high incidence of recessive disorders.  

 
Table III.1. Examples of genome scans in isolated populations (adapted from Varilo and Peltonen 2004). 

Population Age pop. 
(years) 

Reported genome 
scans 

Study sample Loci showing linkage 

Amish ~250 Bipolar disease 1 extended pedigree with 207 
individuals 

Chr 6,13,15 

Hutteries ~100 Allergic asthma 653 individuals Suggestive: Chr 1, 3p, 
5q, 13q 

Mennonite ~200 Hirschsprung disease 1 family for linkage, 28 
families  

Chr 13q22 

Pima Indians >10,000 Type II diabetes (DM), 
body mass index (BMI) 

264 nuclear famílies, 966 
siblings 

BMI and DM, Chr 11, 
DM Chr 1 

Bedouins 200 Nonsyndromic deafness 1 extended pedigree, 55 
individuals 

Chr 13q12 

Finland, late 
settlement 

330 Schizophrenia,  
Asthma 

21 families, 233 individuals,  
253 families, 443 individuals 

Chr 1q  

Finland, early 
settlement 

2000 Multiple sclerosis 21 familias, 191 individuals Chr 6p, 17q22 

Finland - Familial combined 
hyperlipidemia 

35 families, 168 individuals  Chr 6p  

lceland ~1000 Schizophrenia 5 families, 91 individuals Chr 1q21 
North Sweeden 350 Familial prostate cancer 28 families, 366 individuals Chr 1q21 
 

Another main features associated with the genetic isolates power is the existence of 

multigenerational and extended pedigrees, where most of individuals are descendents of 

a small number of founders in a short number of generations (Peltonen et al. 2000). In 

addition, homogeneous and carefully delineated phenotypes are key components in 

making these communities useful for genetic analysis. A further advantage is that 

isolates with a small effective number of unrelated founders frequently show a smaller 

number of disease susceptibility variants within the current population compared with 

outbred populations. On the other hand, outbred populations offer the benefit of large 

cohorts of affected individuals. Nevertheless, the genetic background of outbred 
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populations is generally less uniform and, therefore, higher variance in disease 

genotypes is observed (Sheffield et al. 1998; Shifman and Darvasi 2001). 

 
Table III.2. Benefits of isolated and outbred populations (adapted from Peltonen et al. 2000). 

Benefits of population isolates Benefits of outbred populations 

Higher prevalence of some diseases More affected people 

More inbreeding - opportunity to map recessive genes More opportunity for replication 

More uniform genetic background Markers more polymorphic 

Good genealogical records Genes mapped pertinent to more of humanity 

Easier to standardize phenotype definitions  

Wider intervals of linkage disequilibrium  

Closer to Hardy-Weinberg equilibrium  

Less migration and more intact families  

More uniform environment  

 

Population isolates can have different demographic histories. Some lack reliable 

information on their initial genetic makeup, their total number of founders, and the 

extent and duration of their isolation (Varilo and Peltonen 2004). However, isolates, 

such as, Iceland, northern Sweden or Finland, have easily accessible genealogical 

records. Nevertheless, because isolates vary in their demography, genetic background 

and environment, different populations request different study designs – especially for 

complex traits. In consequence, replication of results in other outbred populations are 

more difficult. Alternatively, mapping in large outbred populations has been also 

unsatisfactory. Many loci for common diseases have been mapped, but few have been 

narrowed to smaller chromosomal intervals (Table III.1). Several of the mapped loci are 

statistical “ghosts” that appear in some studies and disappear in others. Possible reasons 

for these inconsistencies include (i) genetic heterogeneity, both at the allelic and locus 

levels; (ii) insufficient sample size; (iii) imperfect statistical analysis; (vi) diagnostic and 

genotyping errors; and (v) pooling of diverse phenotypes into the same diagnostic 

classes (Peltonen et al. 2000 and references therin). Population isolates are especially 

valuable for isolation of rare high-impact genes because the founder effect and/ or 

bottlenecks have dramatically restricted the number of alleles, making the genetic 

background closely resemble that of any monogenic disease (Varilo and Peltonen 2004 

and references therin). 
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Small constant size populations can be expected to exhibit LD over large genomic 

regions and greatly reduced allelic and haplotype diversity, both due to genetic drift. 

Consequently, such populations may be especially powerful for the initial phase of 

mapping common trait loci, when adequate study samples are available (Peltonen et al. 

2000; Kere 2001). In fine mapping studies a substantial advantage is gained by 

accessing multiple populations with divergent demographic histories, despite practical 

limitations. The long-range LD needed for coarse, genome-wide mapping of complex 

traits can be found in carefully selected subpopulations, within an otherwise expanded 

population (Shifman and Darvasi 2001). 

Although there is some discordance in the scientific community, one fact that cannot be 

neglected is that in some culturally and genetically isolated populations, it is possible to 

monitor their similar environment, social customs and eating habits and, by reducing the 

environmental “noise”, facilitate the detection of causative genetic and/ or 

environmental factors. Moreover, the better the characteristics of the populations and 

their history, the better are the opportunities to design the optimal strategy for disease 

gene identification. 

In the present chapter only a relatively brief description of human isolated populations 

that are well characterized and constitute case-studies in human genetic isolates, 

including the Finnish, the Sardinian, the Old Order Amish, the Hutterites and, finally, 

the Saguenay-Lac-Saint-Jean population. It is not the intention to exemplify all isolated 

populations reported in the literature and around the world. 

 

III.1. The Finnish population 

The demographic history of Finland is similar to many isolates, that is, a small number 

of original founders followed by subsequent isolation, rapid expansion and major 

bottlenecks have allowed genetic drift to shape its gene pool. Both Y-chromosomal 

haplotypes and mitochondrial sequences show low genetic diversity among Finns 

compared with other European populations and confirm the long-standing isolation of 

Finland. The vast majority of Finns descend from two immigration waves occurring 

about 4,000 and 2,000 years ago. The earlier wave involved eastern Uralic speakers and 

the later Indo-European speakers from the south. The size of the founding population(s) 
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is unknown, but as late as the twelfth century, the population of Finland was only about 

50,000. It reached 400,000 by the mid-seventeenth century, only to experience the great 

famine of 1696-1698, where one-third of the population perished. Since then, the 

Finnish population has grown relatively rapidly (de la Chapelle et al. 1998; Kere 2001).  

 

 

 

Figure III.1. Map of Finland demonstrating the settlement waves. 

 

In Finland, internal migrations created regional subisolates (Figure III.1). The 

population spread from the early settlement region on the southern and western 

coastline towards the east and north. The subisolates in the late settlement region were 

established for the majority groups of farmers originating from a small area of south 

Savo in southeastern Finland. They moved to the central, then western, and finally 

northern parts of the country. Within a century, the inhabited land area of Finland 

doubled. Until the Second World War, many of these northeastern settlements grew 

rapidly without further immigration to supplement the descendants of their 40-60 

founding families (Peltonen et al. 1999; Norio 2003a).  
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Figure III.2.  The timescale of the year of first Finnish publication of some diseases. 

 

Finland's demographic history has led to a unique catalogue of genetic diseases. Around 

30, mostly recessive diseases, are highly enriched in Finland (Figure III.2). Other 

diseases, such as, phenylketonuria25 and cystic fibrosis26, are almost nonexistent. 

Molecular studies have exposed one major mutation (78-98% alleles) in most Finnish 

Mendelian diseases and have revealed long genetic intervals of linkage disequilibrium 

(LD) flanking the disease gene, with the length of the LD interval reflecting the age of 

the mutation (Norio 2003b). 

The population history of Finland has led to an uneven regional distribution of the 

disease alleles. Internal movement in the last few decades has somewhat reduced this  

 
                                                 
25  Phenylketonuria (PKU) is an autosomal recessive disorder caused by a deficiency of hepatic phenylalanine 

hydroxylase (PAH; 12q23.2). Left untreated, this condition can cause problems with brain development, leading to 
progressive mental retardation and seizures. However, PKU is one of the few genetic diseases that can be 
controlled by diet (for revision, please, see Zschocke 2003). There is a PKU mutation database 
(http://www.pahdb.mcgill.ca/), where it is reported all mutations found in this gene. 

26  Cystic fibrosis is an autosomal recessive disorder that mainly affects the lungs and digestive system, causing 
progressive disability and early death. It is caused by a mutation in a gene called the cystic fibrosis transmembrane 
conductance regulator (CFTR; 7q31.2; for revision, please, see Jaffé and Bush 2001). There is a Cystic fibrosis 
mutation database (http://www.genet.sickkids.on.ca/cftr/app), where it is reported all mutations found in this gene. 
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effect, but birthplaces of the patients’ grandparents represent a typical regional 

clustering (Norio 2003c). Several studies have been performed to characterize the 

Finnish genetic heritage. One of the most recent works studies the genetic association 

between insulin degrading enzyme and the development of Alzheimer's disease 

(Vepsäläinen et al. 2007). Insulin degrading enzyme (IDE) on chromosome 10q24 has 

been previously proposed as candidate gene for late-onset Alzheimer’s disease (AD), 

based on its amyloid beta-protein degrading activity. These authors genotyped SNPs in 

the IDE gene among Finnish AD patients (n=370) and control subjects (n=454). Their 

results revealed SNPs rs4646953 and rs4646955 to be associated with AD conferring an 

approximately two-fold increased risk. Single locus findings were corroborated by the 

results obtained from haplotype analyses. This suggests that genetic alterations in or 

near the IDE gene may increase the risk for developing AD. 

 

III.2. The Sardinian population 

Sardinia is the second largest island of the Mediterranean sea (Figure III.3). Located just 

south of Corsica, it is one of the autonomous regions with special statute under the 

Italian Constitution. This population has a very rich history, with influences of several 

peoples, such as, Phoenicians, Spanish, Egyptians, among others, who can have 

contributed to their genetic background. Recent studies indicate that, whereas the 

Sardinian population as a whole is comparable to outbred populations for LD mapping 

of common variants (Eaves et al. 2000; Taillon-Miller et al. 2000), LD in Sardinian 

subisolates is more extended, making these populations particularly suitable for this 

approach. To evaluate the extent of LD, Angius et al. (2002) compared different 

subpopulations within Sardinia selected on the basis of their geographical position and 

isolation: two small isolated villages (Talana, Urzulei), two larger but remote areas 

(Ogliastra, Nuoro province), and a cohort of samples representing the wider Sardinian 

population. LD analysis was carried out by using six microsatellite markers located on 

Xq13.3, that have been extensively studied in different populations. The results indicate 

different extents and patterns of LD in the subpopulation samples depending on their 

degree of isolation and demographic history. All LD measurements and haplotype 

analyses indicate that there is a decreasing trend from Talana (the most inbred  
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Figure III.3. Map of Sardinia. 

 

population, LD up to 9.5-11.5 Mb) to the more outbred Sardinian population (LD only 

for intervals <2 Mb). In one village (Talana), five haplotype classes accounting for 80% 

of the entire sample perfectly matched five Ogliastra clusters, supporting the origin of 

the village from the Ogliastra genetic pool. In contrast, the other isolated village 

(Urzulei) showed a different pattern of haplotypes with a closer relationship to the 

Nuoro region subpopulation. LD analyses therefore show that even neighbouring isolate 

villages may differ in their genetic background. These authors highlight the importance 

of selecting appropriate populations and/ or subpopulations for the analysis of complex 

traits. Isolated subpopulations showing different extents of LD can provide a powerful 

method for mapping complex traits by LD scanning at relatively low marker density.  

More recently, studies on the thiopurine S-methyltransferase (TPMT), which is an 

enzyme involved in the normal metabolic inactivation of thiopurine drugs, demonstrated 

that the Sardinians come out as outliers when compared with other European 

populations, an observation consistent with previous genetic inferences that Sardinia has 
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features of a genetic isolate (Rossino et al. 2006). Patients with intermediate or no 

TPMT activity are at risk of toxicity after receiving standard doses of thiopurine drugs 

and it was shown that inter-individual differences in response to these drugs is largely 

determined by genetic variation at the TPMT locus. This study was designed to 

investigate in the Sardinian population the frequency distribution of four of the most 

common variants accounting for TPMT deficiency and to conduct comparative analyses 

with other populations, in order to obtain insights into the main factors that have shaped 

diversity at the TPMT locus in Sardinia. The results obtained from 259 Sardinians 

genotyped show that 6.95% were found to be heterozygous for one of four TPMT 

variants screened; for each variant the frequency estimate was 1.74%, 0.58%, 0.39% 

and 0.77% for TPMT*2, TPMT*3A, TPMT*3B and TPMT*3C, respectively. The 

authors conclude that although Sardinia does not show reduced diversity at the TPMT 

locus, the spectrum of TPMT allele frequencies affords evidence of remarkable 

influence of genetic drift and founder effects throughout its population history.  

 

III.3. The Old Order Amish population 

The Old Order Amish (OOA) of Lancaster County, Pennsylvania (Figure III.4), 

represent a genetically closed homogeneous Caucasian population of Central European  

 

Figure III.4. Map of Lancaster county. 
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ancestry ideal for recruitment of large multiplex pedigrees and sib-pairs for genetic 

studies. Religious persecution prompted the earliest Amish migration to the USA. In the 

mid 1700s the original group was composed of about 200 individuals. Today OOA are 

composed of over 30,000. They have excellent family records which include dates of 

birth and death of all Amish dating back to the early 1700s. This population has a fairly 

uniform standard of living and lifestyle, which reduces non-genetic variability and 

boosts the power to discern determinants of genetically inherited traits. Additionally, 

they have low migration rates, and do not practice birth control. Families are large, 

averaging seven siblings and extended families live either in the same household or 

nearby. Two-thirds of the family members can be traced to a single founder. All of these 

factors facilitate the collection of multigenerational extended pedigrees with several 

long-lived members. Furthermore, the large sib-ship sizes provide the unparalleled 

opportunity to reconstruct genotypes of deceased long-lived pedigree members by 

genotyping their living offspring (Sorkin et al. 2005). 

Recently, van der Walt and collaborators (2005) described the maternal lineages and 

Alzheimer disease risk in the Old Order Amish. The consequences of genetic isolation 

and inbreeding within this group are evident by increased frequencies of many 

monogenic diseases and several complex disorders. Conversely, the prevalence of 

Alzheimer disease is lower in the Amish than in the general American population. Since 

mitochondrial dysfunction has been proposed as an underlying cause of AD and a 

specific haplogroup was found to affect AD susceptibility in Caucasians, they 

investigated whether inherited mitochondrial haplogroups affect risk of developing AD 

dementia in Ohio and Indiana Amish communities. Ninety-five independent matrilines 

were observed across six large pedigrees and three small pedigrees then classified into 

seven major European haplogroups. Haplogroup T is the most frequent haplogroup 

represented overall in these maternal lines (35.4%), while observed in only 10.6% in 

outbred American and European populations. Furthermore, haplogroups J and K are less 

frequent (1.0%) than in the outbred data set (9.4-11.2%). Affected case matrilines and 

unaffected control lines were chosen from pedigrees to test whether specific 

haplogroups and their defining SNPs confer risk of AD. Van der Walt and colleagues 

did not observe frequency differences between AD cases compared to controls overall 

or when stratified by sex. Therefore, they suggest that the genetic effect responsible for 
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AD dementia in the affected Amish pedigrees is unlikely to be of mitochondrial origin 

and may be caused by nuclear genetic factors. 

 

III.4. The Hutterites population 

The Hutterites are a religious sect that originated in the Tyrolean Alps in the 1500's. 

Between the mid 1700's and mid 1800's, during their occupancy in Russia, the 

population grew in size from approximately 120 to over 1000 members (Hostetler 

1974). In the 1870's, approximately 900 of these members migrated to south Dakota and 

roughly half settled on three communal farms (Figure III.5). Due to a high natural 

fertility rate and the proscription of contraception among communal Hutterites (Sheps 

1965), the population expanded dramatically since migrating to the United States. 

Today there are >35,000 Hutterites living on >350 communal farms (called colonies) in 

the northern United States and western Canada. Genealogical records trace all extant 

Hutterites to fewer than 90 ancestors who lived in the early 1700's to the early 1800's 

(Martin 1970). The relationships between these ancestors are unknown, but some of 

them may have been related. The three original south Dakota colonies have given rise to 

the three major subdivisions of Hutterite population structure, called the Schmiedeleut 

(S-leut), Dariusleut (D-leut) and Leherleut (L-leut); the members of each “leut” have 

remained reproductively isolated from each other since 1910 (Bleibtreu 1964). 

 

 

Figure III.5. The Huterites geographical location. 
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In 2004, Newman and collaborators questioned if common disease susceptibility alleles 

are the same in outbred and founder populations. Founder populations have been the 

subjects of complex disease studies because of their decreased genetic heterogeneity, 

increased linkage disequilibrium and more homogeneous environmental exposures. 

However, it is possible that disease alleles identified in founder populations may not 

contribute significantly to susceptibility in outbred populations. In this study these 

authors examine the Hutterites for 103 polymorphisms in 66 genes that are candidates 

for cardiovascular or inflammatory diseases. Newman et al. (2004) compare the 

frequencies of alleles at these loci in the Hutterites to their frequencies in outbred 

European-American populations and test for associations with cardiovascular 

disease-associated phenotypes in the Hutterites. Their results show that alleles at these 

loci are found at similar frequencies in the Hutterites and in outbred populations. In 

addition, they report associations between 39 alleles or haplotypes and cardiovascular 

disease phenotypes (p<0.05), with five loci remaining significant after adjusting for 

multiple comparisons. These data indicate that this founder population offers 

considerable advantages for genetic studies of common complex diseases. 

 

III.5. The Saguenay-Lac-Saint-Jean population 

Saguenay-Lac-Saint-Jean (SLSJ) is a geographically isolated region located 125 miles 

northeast of Quebec City (Figure III.6). It is usually divided into three subregions, Bas 

Saguenay, Haut Saguenay and Lac-St-Jean. From 1838 to 1911, almost 75% of the 

28,656 immigrants came from Charlevoix, a region situated east of Quebec City, 

whereas the remaining 25% came mostly from other eastern regions of the province. 

The immigration has considerably diversified since 1911. Although the migration 

balance has been negative since 1870, the population, 98% of whom are French 

speaking, has risen from 5,000 inhabitants in 1852 to 50,000 in 1911 to ~300,000 today. 

Several dominant and recessive autosomal disorders (e.g. myotonic dystrophy and 

cystic fibrosis) have a higher prevalence, while others (e.g. spastic ataxia 

Charlevoix-Saguenay type and polyneuropathy with or without agenesis of the corpus 
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callosum27), frequently found in the SLSJ region and Charlevoix, are almost nonexistent 

elsewhere (De Braekeleer 1988).  

 

Figure III.6. Map of Sanguenay-Lac-Saint-Jean. 
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Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a clinically 

homogeneous form of early-onset familial spastic ataxia with prominent myelinated 

retinal nerve fibers. More than 300 patients have been identified, and most of their 

families originated in the Charlevoix-Saguenay region of northeastern Quebec, where 

the carrier prevalence has been estimated to be 1/22. Consistent with the hypothesis of a 

founder effect, Richter et al. (1999) observed excess shared homozygosity at 13q11, 

among patients in a genome-wide scan of 12 families. Analysis of 19 pedigrees 

demonstrated very tight linkage between the ARSACS locus and an intragenic 

polymorphism of the gamma-sarcoglycan (SGCG) gene, but genomic DNA sequence 

analysis of all eight exons of SGCG revealed no disease-causing mutation. On the basis 

of haplotypes composed of seven marker loci that spanned 11.1 cM, the most likely 

position of the ARSACS locus was 0.42 cM distal to the SGCG polymorphism. Two 

groups of ARSACS-associated haplotypes were identified: a large group that carries a 

common SGCG allele and a small group that carries a rare SGCG allele. The haplotype 

groups do not appear to be closely related. Therefore, although chromosomes within 

each haplotype group may harbor a single ARSACS mutation identical by descent, the 

two mutations could have independent origins. 

                                                 
27 Peripheral neuropathy with or without agenesis of the corpus callosum is an autosomal recessive disease 

characterised by progressive sensorimotor neuropathy, mental retardation, dysmorphic features and complete or 
partial agenesis of the corpus callosum. It is caused by mutations in the SLC12A6 gene (sodium/ chloride 
transporter; 15q13-q14; for revision, please, see Dupre et al. 2003). 
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Dominantly transmitted myotonic dystrophy (DM1) is highly prevalent in SLSJ where 

its carrier rate reaches 1/550, compared with 1/5,000 to 1/50,000 elsewhere. To shed 

light on the origin of DM1 in Saguenay-Lac-Saint-Jean, Yotoya et al. (2005) screened 

50 nuclear DM1 families and studied the genetic variation in a 2.05 Mb (2.9 cM) 

segment spanning the site of the expansion mutation. The markers analyzed included 22 

biallelic SNPs and two microsatellites. Among 50 independent DM1 chromosomes, 

these authors distinguished ten DM1-associated haplotypes and grouped them into three 

haplotype families – A, B and C –, based on the relevant extent of allele sharing 

between them. To test whether the data were consistent with a single entry of the 

mutation into SLSJ, Yotoya and collaborators evaluated the age of the founder effect 

from the proportion of recombinant haplotypes. Taking the prevalent haplotype A1_21 

(58%) as ancestral to all the disease-associated haplotypes in this study, the estimated 

age of the founder effect was 19 generations, long predating the colonization of 

Nouvelle-France. In contrast, considering A1_21 as ancestral to the haplotype family A 

only, yielded the estimated founder age of nine generations, consistent with the 

settlement of Charlevoix at the turn of 17th century and subsequent colonization of 

SLSJ. These authors conclude that it was the carrier of haplotype A (present-day carrier 

rate of 1/730) that was a "driver" of the founder effect, while minor haplotypes B and C, 

with corresponding carrier rates of 1/3,000 and 1/10,000, respectively, contribute DM1 

to the prevalence level known in other populations.  
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“There were, however, Portuguese, Spanish, Italians, English, Flemish, 
French, Scottish, Germans, Jews, and Moors then living who would 

voyage to the islands, willingly or unwillingly, to become the root stock of 
an island people eventually proud to be known as Azoreans…” 

Guill 1993 
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IV. The Azores  

IV.1. Geographic location and demographic characterization 

The Azores, the largest Portuguese archipelago, is located in the north Atlantic Ocean 

between parallels 36º 55’N and 39º 45’N and meridians 24º 45’W and 31º 17’W. It is 

composed of nine volcanic islands unevenly distributed by three geographic groups: the 

Eastern group with two islands – São Miguel and Santa Maria –, the Central which 

includes five islands – Terceira, Pico, Faial, São Jorge and Graciosa –, and the Western 

group with Flores and Corvo (Figure IV.1). 

 

 

Figure IV.1.  Map of Azores Islands. 
 

The Azores archipelago has a total area of 2332.74 km2, unevenly distributed by the 

nine islands, varying from São Miguel, the largest, with a total area of 746.82 km2 to 

Corvo with 17.13 km2 (Table IV.1). The present-day population is composed of 

241,763 inhabitants (National Institute of Statistics – Portugal, 2001 Census), derived 

from about 27 generations. The majority of the population lives on São Miguel (54.4%). 

The remainder is unevenly dispersed throughout the other eight islands; for example, 

Corvo, the smallest island, has only 425 individuals (Figure IV.2). From the total 

Azorean population, 41.4% are living in the Central group; however, Terceira represents 

55.7% of the Central islands population. 
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Table IV.1. Demography data of the Azores Islands. 

Islands Area 
(km2) 

Population size Population density 
(Inh./km2) 

São Miguel 746.82 131,609 176.23 
Santa Maria 97.1 5578 57.46 
Terceira 402.2 55,833 139.65 
Pico 447 14,806 32.85 
Faial 172.43 15,063 88.64 
São Jorge 237.59 9674 39.39 
Graciosa 62 4780 78.44 
Flores 142 3995 28.19 
Corvo 17.13 425 24.82 

 

Figure IV.2. Demographic evolution of the Azores Islands population. 
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Until late 1800s, the Azorean population increased to a considerable rate, being the 

islands of São Miguel and Terceira those who displayed the greater population increase 

(Figure IV.2). The fluctuations observed are not derived from massive death related to 

diseases or famine. They are mainly due to migratory movements. People searched 

better living conditions in other places. The first news of exit of Azoreans occurs in the 

first half of the 17th century (Mendonça 1996). Along the 18th century, the emigration 
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towards Brazil becomes more regular, but it is during the 19th century that the migratory 

phenomenon reaches unknown proportions, a total of 22,397 individuals migrated 

between 1881-1885. In the 1960s, the population decreases considerably, once again by 

migration, mainly towards the United States (US), Canada and Bermuda. In a ten year 

period (1960-1970), 148,005 Azoreans emigrated to the United States, Canada and 

Bermuda (Direcção Regional das Comunidades; Mendonça 1996), because the US 

government changed its emigration policies, allowing the entrance of Azoreans in the 

country. 

 

IV.2. Discovery and settlement 

The discovery of the Azorean archipelago is a controversial historical subject. Much 

has been written, sometimes with nationalistic passion. One uncontroversial fact is 

that the Azores was uninhabited when discovered. A Portuguese royal letter “Carta 

Regia” dated 2 July 1439 is the first document that recognizes the existence of the 

Azores Islands. This letter enumerates seven islands, and reveals that sheep had 

already been loosed on the islands at the direction of Prince Henry of Portugal. The 

Carta Regia further gives royal license to Henry to populate the islands, which lay, 

according to subsequent documents, 260 leagues (832 nautical miles) into the Ocean. 

A second reference to the existence of the Azores, a Majorcan map drawn by Gabriel 

de Valseca in 1439, showing the Atlantic coast of Africa until south of the Canary 

Islands appeared. It illustrates the position of the Canaries, Madeira, Porto Santo, and 

seven islands in the proximate location of the Azores (Guill 1993, Marques 1991).  

Two versions of the Azores discovery emerge more constantly in the literature (Arruda 

1932), there are those who support the hypothesis that the geographical appearance of 

the archipelago was in the 14th in the reign of Afonso V, and those who defend that the 

discovery occurred in the first half of the 15th century (Mendonça 1996; Matos 1989; 

Pires 1983). The first hypothesis is based on the presence of nine islands displayed in 

the orientation north-south near the Iberian peninsula. However, the fact that there is a 

poor representation of the geographic location of the islands and that there is no 

evolution in term of map representation, similar to what happened with the Canary and 

Madeira Islands, historians are more leaned to the second hypothesis, being the 

 100



CHAPTER IV  The Azores 

discovery of the Azores Islands in the first half of the 15th century (Marques 1991). 

According to Marques (1991) the discovery occurred in 1427 by Diogo de Silves, pilot 

of Henry. On August 15 of 1432, Gonçalo Cabral arrived to Santa Maria, the 

easternmost island of the Azorean archipelago. It was the feast day of the Assumption 

of Our Blessed Mother, or Santa Maria and, consequently, the island was named after 

her. The island had forests, water fluxes and birdlife. Apparently, there were many birds 

in flight, thought to be goshawks, and, hence, the islands got the Portuguese name 

"Açor" or hawk (Guill 1993).  

The discovery of the last two islands – Flores and Corvo – is also controversial. 

However, it is known that it occurred after all other islands, probably in 1452 by Diogo 

de Teive and his son, João de Teive (Mendonça 1996; Matos 1989; Marques 1991). 

After the discovery of the Azores, Henry received in 1439 the king’s authorization to 

populate the islands. To fulfil this task Gonçalo Velho initiates the peopling by the 

Eastern group, Santa Maria and São Miguel (Matos 1989). Peopling was a slow and 

difficult process. Someone wrote “…The Azorean settlement was done with people 

from the interior of mainland Portugal, those who could not swim nor build boats, 

making impossible the abandonment of the islands…” Historical data report that the 

Portuguese crown was compelled to give out land and privileges in order to attract 

people to the islands (Guill 1993). Gonçalo Velho gathered settlers from the mainland 

and Madeira. To increase his labour force, he requested Henry to release to his guard 

small time criminals, known as “degredados” (persons convicted of lesser crimes and 

were serving time in prison or in designated periods of servitude). These “degredados” 

were identified from other settlers by a ring piercing the left ear lobe. Velho added to 

his work force some Moorish prisoners, captured in the Moroccan wars and not yet 

ransomed by Moslem families or authorities. Velho called on the vicar of Tomar to send 

priests and specialists in the construction of religious structures. Sugar production on 

Madeira had been established with high profits. Therefore, Henry contracted António 

Corvelo and his two sons, Francisco and Genero, to establish sugar cane plantations and 

to build sugar-processing facilities (Guill 1993; Marques 1991).  

The island of Santa Maria was the first of the archipelago being populated. In 1439, 

Gonçalo Velho, its first captain-donatary, accompanied by two nephews and a group of 

settlers, in their majority from Algarve, settled in the coast of this island (Matos 1989). 
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Later, João Soares de Albergaria, nephew of Gonçalo Velho, gives a new impulse on 

peopling of Santa Maria (Matos 1989). The beginning of settlement of the São Miguel 

Island in 1444 is essentially contemporary to Santa Maria. According to Matos (1989), 

the group of initial settlers that came to the São Miguel Island was composed of 

Portuguese, black slaves and moors. Some authors, based on toponimic data, refer the 

influence of native individuals of the French Bretagne in the island of São Miguel 

(Matos 1989). The frequent marine relations between the region of Algarve and Azores, 

especially with São Miguel, aside from allowing commercial interchanges, fomented a 

change of residence and a narrowing of relations between the populations of mainland 

and islands. With the death of Gonçalo Velho, the captainship of São Miguel is sold to a 

member of the donatary family of Madeira Island, having begun (in 1474) the flow of 

Madeiran families to Azores (Matos 1989). 

The good political relations between Portugal and Flanders (reinforced by marriage 

unions between the Portuguese royal family and the ducat of Burgandy) led to the 

Flemish participation in the Azorean settlement. Van der Hagen (with the Portuguese 

name Guilherme Silveira) was the first to transport Flemish to the Azores to 

supplement the activities of Gonçalo Velho. Van der Hagen was born in Bruges, 

grandson of John the Fearless. He took his first Flemish settlers to the third island 

Terceira, since Velho concentrated his attention on Santa Maria and São Miguel. He 

landed his settlers on the north coast of Terceira, in the area now known as Quatro 

Ribeiras. In 1450, when Henry elected another Flemish nobleman, Jácome de Bruges, 

who had also been in his service for some time, as captain-donatary of Terceira, van 

der Hagen returned to Flanders and brought new settlers. He moved to the island of 

Faial, near a location now called Praia do Norte. In addition to the Flemish, the first 

settlers of the Terceira Island were native from mainland Portugal and Madeira. Some 

of them were “noble” families from both places. However, these settlers, in a low 

number, also participated in the peopling of other islands, mainly Flores and Corvo 

(Matos 1989). 

The first settlers of the Pico Island, that initially was used to shepherd the cattle, came 

from Faial, the nearest and most flemish island (Matos 1989). In the middle of 15th 

century, the Graciosa Island already had settlers, namely Vasco Gil Sodré, natural of 

Montemor-o-Velho (center of mainland Portugal), accompanied by its family and 
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servants. They were the pioneers in the settlement of the island. The influence of the 

Terceira Island seems to have been decisive in the settlement and development of the 

Graciosa Island (Ferreira 1987). The first attempt of peopling of the Flores Island, by 

Guilherme Silveira, was not successful. The definitive settlement took place at the end 

of the first decade of the 16th century, promoted by Antão Vaz, who arrived with a 

group of native settlers of Terceira and Madeira (Matos 1989). Later arrived people 

from the rest of the islands, essentially São Miguel and mainland Portugal (Matos 

1989). The Corvo Island just starts being peopled in 1548. The presence of slaves in the 

island is explained by the fact that Gonçalo de Sousa sent slaves of their confidence to 

the island, with the mission to cultivate the earth and to take care of cattle (Matos 1989). 

Meanwhile, the geographic proximity between the two islands foments exchanges of 

individuals from one island towards the other (Matos 1989). There are also reports of 

the presence of Jews in all islands. Since people were needed to settle the islands, the 

persecutions were left aside, and Jews, often called New Christians, were allowed to 

live in the islands (Marques 1991). In the following centuries, the Azores, with a 

strategic position, became very important in the commercial trades (India, Africa and 

America), as well as, in the production of goods that were sent to mainland Portugal. 

This emerging economy attracted people of different nationalities, such as, French, 

English and Spanish, among others, contributing to the genetic pool of the Azorean 

people.  

 

IV.3. Genetic studies on the Azorean population 

Along the years the Azores population has progressively been studied. Nevertheless, 

when this PhD thesis started, there was lack of knowledge in the population genetic 

structure of the Azoreans. However, during the time between the beginning and the end 

of this thesis, further works, namely Service et al. 2006; Santos et al. 2005; Fernando et 

al. 2005; Spinola et al. 2005; Santos et al. 2005; Montiel et al. 2005; Santos et al. 2004; 

Santos et al. 2003, were published. Therefore, these and other papers will be thoroughly 

discussed in the present manuscript.  

Some of the research subjects in Azores population vary from heart (Bettencourt et al. 

2006; Cymbron et al. 2006; Shneider et al. 1995; de Sa et al. 1994), psychiatric (Pato et 
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al. 2005; Coutinho et al. 2004; Sklar et al. 2004) and ataxia (Gonzalez et al. 2004; Lima 

et al. 2001; St George-Hyslop et al. 1994; Friedman 1988; Romanul et al. 1977) 

diseases, to forensic genetics (Corte-Real et al. 1999; Velosa et al. 2002) and genetic 

population structure (Bruges-Armas et al. 1999; Smith et al. 1992). In the next 

paragraphs, a brief description of some important studies in the Azorean population are 

presented (for other publications on this population, please, see Appendix IX.5)  

Congenital malformations of the heart and great vessels are among the most frequent of 

all clinically significant birth defects, having a major contribution on paediatric 

morbidity, mortality, and healthcare costs. Population based epidemiologic studies 

indicate a prevalence of congenital heart disease (CHD) ranging from 3.23 to 12.23 per 

1000 live births (Macmahon et al. 1953; Robida et al. 1997). This wide variation in the 

reported values is mainly due to the difference in the methodologies used, but a number 

of other factors, such as, consanguinity (Becker et al. 2001, Nabulsi et al. 2003), ethnic 

background (Botto et al. 2001), environmental pollutants (Cedergren et al. 2002, Grech 

1999) and access to health care also contribute to this variation (for revision, please see 

Weismann and Gelb 2007). Cymbron et al. (2006) carried out the first study performed 

in the Azorean population to characterize the prevalence of CHD in children born alive 

in São Miguel island from January 1992 to December 2001. Based on the Azorean 

Registry of CHD, which includes complete clinical and personal information, 189 

patients were diagnosed. The results obtained by Cymbron et al. show that during this 

10-year period, the average prevalence of CHD is 9.16 per 1000 live births (range 

4.77-12.75). The most frequent cardiac malformations found were: ventricular septal 

defect (38.1%), atrial septal defect (12.2%) and patent ductus arteriosus (11.6%). This 

study detected four familial clusters, representing a total of 13 patients. Until now, 

Cabral et al. (2007) identified 44 familial clusters corresponding to 109 patients. This 

study reveals evidence for familial aggregation, which is of great interest for 

understanding the genes involved in these complex pathologies. 

Schizophrenia is a common psychiatric disorder characterized by psychosis, cognitive 

dysfunction and negative symptoms, whose etiology involves interactions between both 

genetic and environmental factors (Austin 2005). Its incidence shows prominent 

worldwide variation (up to fivefold) and is about 40% greater in men than in women. 

Schizophrenia is a common complex disorder. Furthermore, epidemiological studies 
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have shown that the incidence is higher among those who grow up in urban areas and 

among migrants. To understand the genetic basis of this disease in Azores Islands 

populations, Sklar et al. (2004) performed a genome-wide scan of 29 families with 

schizophrenia, which identified a single region on 5q31-5q35 with strong linkage 

(non-parametric linkage, NPL=3.09, p=0.0012 at D5S820). Empirical simulations set a 

genome-wide threshold of NPL=3.10 for significant linkage. Additional support for this 

locus in schizophrenia comes from higher-density mapping and mapping of 11 

additional families. The combined set of 40 families had a peak NPL=3.28 (p=0.00066) 

at markers D5S2112-D5S820. These data and previous linkage findings from other 

investigators provide strong and consistent evidence for this genomic region as a 

susceptibility locus for schizophrenia. Exploratory analyses of a novel phenotype, 

psychosis, in families with schizophrenia and bipolar disorder, detected evidence for 

linkage to the same markers as found in schizophrenia (peak NPL=3.03, p=0.0012 at 

D5S820), suggesting that this locus may be responsible for the psychotic symptoms 

observed in both diseases. 

Autism Spectrum Disorder (ASD) is a syndrome with a wide clinical phenotype, 

characterized by impairments in social interaction and reciprocal communication and by 

patterns of stereotyped behaviours. The ASD term is used here to define a broad 

concept of autism, manifested as a spectrum of behavioural, cognitive and linguistic 

problems that include autistic disorder, Asperger syndrome and a pervasive 

developmental disorder not otherwise specified. ASD is a chronic and severe 

neurodevelopmental disorder, with a significant social impact. Oliveira et al. (2007) 

estimated the prevalence of ASD in a pediatric population from Portugal, its clinical 

characterization and the identification of associated medical conditions. For this 

purpose, they performed a survey in elementary schools, targeting 332,808 school age 

children in the mainland and 10,910 the Azores, asking teachers to identify children in 

their classes with an autistic profile. Clinical history was collected and a broad 

laboratory investigation for the identification of associated medical conditions was 

applied. In parallel, a systematic search of autistic children in educational, social and 

health registries was carried out in a restricted geographic region, targeting 56,325 

children. The global prevalence of ASD was 9.2 per 10,000 in mainland Portugal, with 

intriguing regional differences, and 15.6 per 10,000 in the Azores. A high diversity of 

associated medical conditions was documented in 20,0% of the children, with an 
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unexpectedly high rate of mitochondrial respiratory chain disorder cases opening new 

perspectives for the investigation of ASD etiology. 

Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative disorder 

characterized by a wide range of clinical features, among which gait ataxia and 

limitation of eye movements are generally present (Lima et al. 2001). The name, 

Machado-Joseph, comes from two families of Portuguese/ Azorean descent who were 

among the first families described with the unique symptoms of the disease in the 

1970s. Recently, researchers have identified MJD in several family groups not of 

obvious Portuguese descent, including an African-American family from north 

Carolina, an Italian-American family, and several Japanese families. On a worldwide 

basis, MJD is the most prevalent autosomal dominant inherited form of ataxia (for 

review, please, see Paulson 2007). Disease manifestations usually arise during adult 

life28. The mean age at onset is 40.2 years, although extremes of 6 years and 70 years 

have been reported (Sequeiros and Coutinho 1993). The MJD locus was assigned to the 

long arm of chromosome 14 (Takiyama et al.1993) and is associated with the expansion 

of a CAG trinucleotide repeat in a gene on 14q32.1 (Kawaguchi et al. 1994). In the 

Azores Islands (Portugal), MJD reaches the highest prevalence reported worldwide. It 

has been postulated that it is highly represented in the Azorean population as a result of 

a founder effect. To test this hypothesis, Lima et al. (1998) reconstructed the ascending 

genealogies of 32 Azorean families presently identified as harboring the disease (103 

patients), using parish records as the main source of data. These patients were originally 

from the islands of São Miguel, Terceira, Graciosa and Flores. The genealogies of the 

two main Azorean-American families (Machado and Joseph) were also reconstructed. 

To identify the links between the MJD families, these authors calculated the kinship 

coefficient between the proponents of these genealogies. The family from Terceira was 

linked to three different MJD families from Flores through common ancestors. No 

kinship was observed between the MJD families from São Miguel and families from 

any other island. Links between the two Azorean-American families and Azorean MJD 

families were found. The founders present in more than one ascendance were identified. 

                                                 
28  The types of MJD are distinguished by the age of onset and range of symptoms. Type I is characterized by onset 

between 10 and 30 years of age, fast progression, and severe dystonia and rigidity. Type II generally begins 
between the ages of 20 and 50 years, has an intermediate progression, and causes symptoms that include spasticity, 
spastic gait, and exaggerated reflex responses. Type III patients have an onset between 40 and 70 years of age, a 
relatively slow progression, and some muscle twitching, muscle atrophy, and unpleasant sensations such as, 
numbness, tingling, cramps, and pain in the hands, feet, and limbs. 
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Their chronological and geographic distribution indicates that more than one MJD 

haplotype was introduced in the Azores, probably by settlers coming from the 

Portuguese mainland. Two distinct haplotypes have been identifyed, one on the island 

of São Miguel and the other on Flores (Gaspar et al. 2001).  
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IV.4. Objectives of the scientific research 

The global knowledge of the neutral variation of a population is an essential part in the 

understanding of the disease related variation, since it has also been subject to 

evolutionary forces, such as, genetic drift, mutation, selection and migration. Moreover, 

the comprehension of our “roots” and genetic signature has several implications in 

society’s own knowledge, in the design of future genetic studies, as well as, in the 

health care system. 

The location of the Azorean population in the middle of the Atlantic, its geography, 

namely, nine islands dispersed through three groups, its socio-cultural characteristics 

and, finally, the same environmental conditions, make a priori this population a good 

model to perform genetic studies of complex diseases, which will probably have a good 

reproductivity in other expanded populations.  

The present PhD thesis had as main objective the overall characterization of the neutral 

variation of the Azorean population, through information retrieved from surnames, 

autosomal markers, as well as, Y-chromosome lineages. More generally, it was our 

purpose to: 

- complement the settlement data and, consequently, validate the genetic origin of 

this population; 

- understand the genetic diversity patterns of each Azorean island population and 

of the whole population; 

- identify gene flow patterns between each island, as well as, with other European 

and African populations; 

- compare the genetic background of the Azoreans with mainland Portugal and 

other well described populations; 

- assess the population subdivision and, therefore, its genetic structure; 

- estimate how inbreeding may play a role in the genetic makeup of this 

population; 

- determine the extent of linkage disequilibrium and its implications in genetic 

mapping of complex diseases in the Azorean population. 
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 “…I donʹt want to argue that the isonymy method is one of great accuracy or 
wide applicability. It has two advantages: One is that it is cheap and easy to 
use, requiring data that are often readily available in public records. The 

second is that it supplies a way of estimating the effects of inbreeding during 
the early periods before there are pedigree records. A rough and ready answer 

may be quite useful for many purposes, and the isonymy method can 
sometimes supply it with minimum effort…”.  

J.F. Crow  
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V.1. Population Structure of São Miguel Island, Azores: A surname Study 

V.1.1. Summary 

The knowledge of population structure may constitute a powerful tool for mapping 

genes underlying susceptibility to Mendelian and complex diseases. To obtain a better 

understanding of the population structure of São Miguel Island (Azorean archipelago, 

Portugal), we carried out a surname survey using the surnames listed in the most recent 

telephone book (2001). We identified 1315 different surnames in a total of 27,621 

subscribers. The frequency of the different surnames was used to calculate the following 

parameters: isonymy (I), random component of inbreeding (FST), genetic diversity 

according to Fisher (α), migration rate according to Karlin-McGregor (ν), and Nei’s 

genetic distance. Eleven localities were selected, due to population size and geographic 

distribution, for analysis using the parameters above. Our results show that 51% of 

Salga’s population and 52% of Sete Cidades’s population are represented by 6 and 8 

surnames, respectively. This demonstrates the effective isolation of these two small 

places, which are located in opposite extremes of São Miguel Island. Salga, Achada and 

Sete Cidades present the lowest values of Fisher’s α, indicating less genetic diversity. In 

contrast, the capital Ponta Delgada presents the highest value of α (78.13), indicating 

more genetic diversity. Our data indicate that the clustering of the localities corresponds 

to the geographic features of the island, where localities close together tend to share 

similar surnames.  

 

V.1.2. Introduction 

Surnames are useful, simple and cost effective when used as a tool for examining the 

genetic structure of human populations. They are not evenly distributed among ethnic 

groups or geographic areas, and, thus, the study of surname frequencies allows the 

inference of how gene frequency helped to shape population structure (Lasker 1985). 

Here, we describe a study of the population structure of São Miguel Island, using 

isonymy parameters based on the surnames present in the 2001 telephone book. São 
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Miguel presents a particular orography where the distribution of genes may have been 

influenced by geographic barriers. It was our main objective to understand the 

distribution of surnames, the effect of the geographical isolation within the island, and 

the relations established between the different localities of São Miguel Island. 

 

V.1.3. Material and Methods 

V.1.3.1. Localities  

In the present study, we chose a group of eleven localities scattered throughout the 

island of São Miguel (Figure V.1). The selected group was constituted by one urban 

locality – the capital Ponta Delgada – and ten rural localities: Achada, Bretanha, Furnas, 

Ginetes, Maia, Nordeste, Rabo-de-Peixe, Povoação, Salga and Sete Cidades. The choice 

of these localities was based on population size, demographic characteristics and 

geographic isolation. Salga and Sete Cidades were chosen because of their relative 

geographical isolation, small population size and opposite location in relation to the 

east-west axis (Figure V.1). Bretanha, Rabo-de-Peixe and Maia were selected because 

of their location in the northern part of the island, whereas Ginetes, Ponta Delgada and 

Povoação by their location in the south. The inclusion of Nordeste and Achada was 

based on their difference in population size and their distance from the capital, Ponta 

Delgada. Furnas was included in this study because of its attraction as a touristic site. 

 

V.1.3.2. Surnames 

In Azores, as in mainland Portugal, each individual inherits two surnames, one from the 

mother (mid surname) and one from the father (last surname). The mid surname is the 

last surname of the mother’s father. Generally, the last surname of a name (father’s) is 

passed to the next generation. Although, we do not exclude the possibility that some 

surnames may have been created in the Azores, the majority of surnames arrived with 

the Portuguese settlers.  
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Figure V.1. Map of São Miguel Island (Azores). Displayed are the eleven localities, including the 
capital Ponta Delgada, selected in this study. For Salga, Sete Cidades, Achada, Nordeste, 
Ginetes, Maia, Furnas, Bretanha, Povoação, Rabo-de-Peixe and Ponta Delgada, the number 
of inhabitants is 548; 853; 587; 1381; 1266; 1091; 1544; 1325; 2424; 7041 and 20,091, 
respectively. White spots in the map denote existing lakes. 
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We used the 2001 telephone book, which is alphabetically ordered using the last 

surname, to calculate the frequency distribution of surnames for all localities. We only 

considered the last surname, because it was not possible to get the mid surnames for all 

individuals. All different surnames were considered as new entries regardless of 

similarity of spelling. Surnames with the same phonetics, such as, Batista and Baptista, 

may have simultaneous temporal origin, but they may not always derive from the same 

individual. In such cases we considered them as two entries. No differentiation of sex 

was made and the commercial surnames were excluded from the list. 

 

V.1.3.3. Mathematical methods 

The distribution of surnames for the whole island of São Miguel was studied fitting a 

regression line to log2-log2 transformation of the number of surnames, S, which are 

represented k times (Barrai et al. 1987). Unbiased random isonymy within the locality 

was calculated according to Rodriguez-Larralde et al. (1993) by the formula: 

Iii=Σk(pik)2–1/Ni  
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where pik is the relative frequency of surname k in the ith locality, and Ni is the sample 

size (number of private telephone users) of the same locality. The random isonymy 

between localities i and j was estimated as  

Iij=Σpkipkj

where pki and pkj are the relative frequencies of surname k in the localities i and j, 

respectively (Relethford 1988). The random component of inbreeding (FST) within the 

locality was obtained from the formula: 

FST=Iii/4 

The calculation of FST for the whole island was based on the formula suggested by 

Relethford (1988) 

FST=Σwiϕii 

where ϕii is the random component of inbreeding (Iii/4) of the ith locality, and wi is the 

weight due to sample size, Ni/Nt, being Nt the sample size of the whole island. For each 

locality we calculated Fisher’s α based on Barrai et al. (1992) 

α=1/Iii 

The determination of the Karlin-McGregor’s ν was based on the formula proposed by 

Zei et al. (1983) 

ν=α/(Ni+α) 

establishing the relationship between Fisher’s α, Karlin-McGregor’s ν and population 

size. To obtain Nei’s distance, we estimated the standardized isonymy (Rij) proposed by 

Chen and Cavalli-Sforza (1983) 

Rij=Iij/(IiIj)1/2

in which Iij is the isonymy between localities, and Ii and Ij are the isonymies within the 

localities. Nei’s distance (Nei 1973) was computed by 

Dij=-lnRij 

A dendogram was constructed from the matrix of Nei’s distance using the unweighted 

pair group method with arithmetic mean (UPGMA) for a graphical representation of the 

surname relationship between the different localities. The calculation of the geographic 

distance between all localities was performed using the UTM (Universal Transverse 

Mercator) coordinates 

D=[(mi–mj)2+(pi–pj)2]1/2
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where mi and pi are the UTM coordinates for the ith locality, and mj and pj are the UTM 

coordinates for the jth locality. 

 

V.1.4. Results  

V.1.4. 1. Surname distribution 

The population structure of São Miguel Island was analysed by computing the frequency 

distribution of surnames obtained from the 2001 telephone book. The total number of 

subscribers found in that list was 27,621. This represented approximately 21% of the 

total population of the island which is 131,609 inhabitants (National Institute of Statistics 

– Portugal, 2001 Census). These 27,621 subscribers bear 1315 different surnames. 

In order to obtain a graphical overview of the shape of the surnames distribution, we 

calculated how many surnames display the same absolute frequency. This allowed the 

logarithmic computation relating the number of different surnames and the number of 

times that they appear in the list (Figure V.2). The data show that there is an excess of 

surnames that appear only once. In fact, 598 of the 1315 different surnames have an 

absolute frequency of one. Moreover, as expected, the most abundant surnames in the 

population are fewer in the distribution. For instance, only one surname has the absolute 

frequency of 1415.  

Table V.1 summarizes the frequency and distribution obtained for the selected localities 

of São Miguel Island. We first observed that the ratio of the number of subscribers over 

the size of the population for each locality remains fairly constant (around 1/3, Table 

V.1). Salga is the smallest locality with a sample size of 123 subscribers and only 37 

different surnames. In contrast, Ponta Delgada contains 5677 phone subscribers and 610 

different surnames. The biggest rural locality is Rabo-de-Peixe with 936 phone 

subscribers and 181 different surnames. The surname distribution obtained in terms of 

relative frequency revealed that the most frequent surname in São Miguel Island is 

Medeiros with a frequency of 5.1% of total subscribers. Sousa is the second most 

common surname with 3.5%, followed by Silva (3.2%) and Melo (2.7%). When 
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comparing the distribution of surnames within each of the rural localities, we observed 

that approximately half of the subscribers are represented by a small number of 

surnames. About 50% of the subscribers of Salga, Sete Cidades and Achada are 

represented by 6, 8 and 7 surnames, respectively. Moreover, the most frequent surnames 

in each of these localities (Melo, Medeiros and Sousa) differ from each other, but are 

also very frequent in the island, as shown above. 

 

Figure V.2.
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V.1.4. 2. Isonymy analysis 

The results obtained for the isonymy parameters are described in Table V.2. The 

calculation of isonymy was based on surname frequency. The highest value of isonymy 

(I=0.0576) is found in Salga followed by Achada (I=0.0456). In contrast, Ponta Delgada 

shows the lowest value, I=0.0128. Among the ten rural localities, Furnas is the one with 

the lowest value of isonymy (I=0.0176).  
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Table V.2.  Results obtained in the calculation of isonymy (I), inbreeding coefficient (FST), 
Fisher’s α (α) and Karlin-McGregor ν (ν) for each locality in São Miguel Island. 

Localities I FST α ν 
Salga 0.0576 0.0144 17.36 0.123 
Sete Cidades 0.0450 0.0112 22.22 0.130 
Achada 0.0456 0.0114 21.93 0.119 
Nordeste 0.0294 0.0073 34.01 0.099 
Ginetes 0.0275 0.0069 36.36 0.095 
Maia 0.0249 0.0062 40.16 0.097 
Furnas 0.0176 0.0044 56.49 0.124 
Bretanha 0.0232 0.0058 43.10 0.077 
Povoação 0.0240 0.0060 41.67 0.049 
Rabo-de-Peixe 0.0185 0.0046 54.05 0.054 
Ponta Delgada (capital) 0.0128 0.0032 78.12 0.013 
São Miguel Island 0.0133 0.0016 75.19  0.0027 

 

In order to determine possible population subdivisions and, consequently, differentiation, 

we estimated the random component of inbreeding (FST). Salga is the locality with the 

highest value of FST and Ponta Delgada has the lowest (Table V.2). The magnitude 

difference between both is 4.5 fold. Excluding the capital (Ponta Delgada) and the three 

smallest localities (Salga, Sete Cidades and Achada), we observe no major differences 

between the values of FST. 

To evaluate and quantify the diversity of surnames within each locality we calculated 

Fisher’s α. The smallest locality, Salga, and the largest one, Ponta Delgada, have the 

extreme values of α, 17.36 and 78.12, respectively. Furnas possesses one of the highest 

values (α=56.49), indicating that although it is a small place it contains a high degree of 

surname diversity. In close relation with the Fisher’s α is the degree of migration based 

on Karlin-McGregor’s ν parameter. Once more, the smallest localities – Salga and Sete 

Cidades – possess higher values of ν (0.123 and 0.130, respectively) when compared to 

the city of Ponta Delgada (ν=0.013). Surprisingly, Furnas shows a high value of ν 
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(0.124) when compared with other localities with approximately the same number of 

subscribers. 

In order to investigate the degree of similarity between the different localities, a 

dendogram was constructed using Nei’s distance matrix, which is based on isonymy data 

(Figure V.3). Overall, geographic distance determines the similarity between localities. 

For instance, Sete Cidades, Bretanha and Ginetes all located in the western tip of the 

island branch together, whereas Salga and Achada form a second group. 

 
Figure V.3. Dendogram obtained from the matrix of Nei’s distance between the eleven localities 

of São Miguel Island. 

 

V.1.5. Discussion 

The log-log model system, proposed by Barrai et al. (1987), is useful as a quick method 

of exploring the distribution of surnames and may allow, depending on the goodness of 

the fit, the estimation of genetic parameters from surname distributions. Here we used 
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this method to demonstrate that the population structure of São Miguel Island can be 

studied using isonymy data. 

The settlement of the Azorean archipelago began in the early 15th century, mainly by 

Portuguese people from north and central mainland Portugal. Indeed, the historical 

registers suggest that the surnames with the highest frequency in São Miguel population 

today – Medeiros, Sousa and Silva – came originally from northern Portugal (Sousa 

2001). According to Rodriguez-Larralde et al. (1994) frequent surnames correspond to 

the portion of the population which settled in the locality earlier, and, thus, has had the 

opportunity to spread surnames through its descendants. A branch of the Medeiros 

family settled in São Miguel Island during the early 15th century, suggesting that a large 

fraction of the Medeiros today may have a common genetic origin. In contrast, around 

45% of the surnames present in the telephone list appear only once, suggesting recent 

entries in São Miguel. Indeed, 25% of those are of foreign origin, mainly from northern 

Europe.  

To gain a further understanding of the population structure of São Miguel, we studied 

eleven localities using the following indicators: isonymy (I), Fisher’s α (α) and 

Karlin-McGregor’s ν (ν). The data show that the smallest localities of Salga, Achada 

and Sete Cidades have the highest values of isonymy and a high concentration of very 

few surnames, suggesting sedentarism (Table V.2). On the other hand, the high values 

of Karlin-McGregor’s ν may indicate migration of people to other localities, leading to 

a diminution of the diversity of surnames. The estimation of Fisher’s α permits the 

assessment of the richness of surnames present in each locality – low values of α imply 

less genetic variation. Again, Salga, Sete Cidades and Achada, with lower values of α, 

display less genetic diversity. As expected, Ponta Delgada has the highest value of 

Fisher’s α and the lowest value of migration rate (ν). Some authors (Rodriguez-Larralde 

et al. 1994; Barrai et al. 1996) consider that the localities with higher values of 

migration rate are genetically more diverse. If that is the case, Ponta Delgada would 

have low genetic diversity, which is not confirmed by the values of α obtained in this 

study. Possibly, the discrepancy of these values is due to the large variation of the 
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number of subscribers observed in the small localities, Salga, Achada and Sete Cidades, 

compared to the city, Ponta Delgada (Table V.1). 

In order to describe the effect of population structure on the degree of inbreeding at a 

given population subdivision, Wright (1921) created the fixation index. From this model 

evolved the concept of FST, defined as an indicator of genetic differentiation and random 

inbreeding. Our results show that Salga, Sete Cidades and Achada are highly inbred, 

thus, confirming the bigger differentiation and effective isolation of these localities 

when compared to the others. According to the classification proposed by Wright 

(1984), the value of FST for the whole island reveals little genetic differentiation 

(FST<0.05). However, small values of FST may still be significant when analysing very 

young populations (10-20 generations), such as, the Azorean population (~27 

generations). 

High correlations between genetic and geographic distances reflect a significant effect 

of the latter on the genetic variation between populations (Relethford 1982). In addition, 

there is a tendency to observe low correlation between geographic and surname distance 

in recently founded populations, while high correlations are detected in well established 

groups. This reflects the accumulation of the effect of isolation by distance over time 

(Jorde 1989). Although the population of São Miguel is young, the multivariate cluster 

analysis may indicate moderate correlation between geographic and genetic distances 

(Pearson’s r=0.37, p<0.01), where the closer the distance of localities, the higher is the 

chance of clustering. Furnas represents an exception, since it clusters with Ponta 

Delgada (Figure V.3). This is explained by the fact that Furnas is a touristic location and 

many people, mainly from Ponta Delgada, have summer houses there. In addition, Salga 

and Achada, which belong to the political subdivision of Nordeste, form a single cluster, 

apart from Nordeste. This may be due to geographic barriers, which hinder 

communication between Nordeste and Salga/ Achada, as opposed to Nordeste and 

Povoação (Figure V.1). The cluster formed by Ginetes, Bretanha and Sete Cidades 

branch off from the rest of the tree, implying a greater isolation. Natural barriers, such 

as, mountains, have kept certain areas isolated. We point out that no phylogenetic 

relationship between localities is implied from the data. 
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V. 2. Surnames in Azores: Analysis of the isonymy structure  

V.2.1. Summary 

Geographic isolation is a significant factor to consider when characterizing human 

populations. The knowledge of the genetic structure of isolated populations has been of 

great importance to disease locus positioning and gene identification. In order to 

investigate the genetic structure of the Azorean population, we conducted a survey 

based on the frequencies of surnames listed in the 2001 telephone book. We calculated 

the following parameters: Isonymy (I), random component of inbreeding (FST), genetic 

diversity according to Fisher (α), Karlin-McGregor’s migration rate (ν) and Nei’s 

distance. In a total of 1271 subscribers and 163 different surnames, Graciosa Island 

presents the lowest value of abundance of surnames (α=15.75), suggesting great genetic 

isolation when compared to the other eight islands. Migration, based on the diversity of 

surnames within islands, ranges from 0.2747 (Corvo Island) to 0.0026 (São Miguel 

Island), indicating that people migrate preferentially towards the economically more 

developed islands. The value of the random component of inbreeding obtained for the 

whole population (FST=0.0039) indicates little genetic differentiation (Wright’s 

FST<0.05). Moreover, isonymy similarity revealed by UPGMA method shows three 

subclusters corresponding to the geographic distribution of the islands. 

 

V.2.2. Introduction 

In societies where surnames run through paternal line, surnames may simulate neutral 

alleles transmitted only by the Y-chromosome. This aspect of surnames, in addition to 

their easy access and manipulation, makes them useful to study population structure 

(Pettener et al. 1998). Recently, we used surnames to characterize the population 

structure of the biggest island of the Azores, São Miguel (Branco and Mota-Vieira 

2003). The value of random component of inbreeding (FST=0.0016) obtained for São 

Miguel´s population indicated little genetic differentiation. Here we extended our 

analysis of surnames to include the whole archipelago, using data obtained on the 2001 
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telephone book. We focus our analysis on surname distribution among the islands, 

taking into account the geographic feature of the archipelago. 

 

V.2.3. Material and Methods 

Azores is composed of nine islands divided into three groups designated according to 

their geographical location: (i) Western group, Corvo and Flores; (ii) Central group, 

Terceira, Graciosa, Pico, Faial and São Jorge; and (iii) Eastern group, São Miguel and 

Santa Maria (see map on Figure V.5). We based our study on surnames listed in the 

2001 Azorean telephone book, which is alphabetically ordered by subscriber’s last 

surname. This corresponds to the father’s last surname, which is the only surname 

considered in this study. We first determined the total number of subscribers to produce 

a list of unique surnames for each island. We also computed a list of different surnames 

for the whole archipelago. We considered surnames with the same phonetics (e.g. 

Ataíde and Athayde) as different, because they may have simultaneous temporal origin, 

but may not derivate from the same individual. In addition, we did not consider 

commercial surnames.  

Surname distribution was studied fitting a regression line to log2-log2 transformation of 

the number of surnames, S, which are represented k times (Barrai et al. 1987). The 

frequency of surnames was used to calculate the following parameters: Isonymy (I), 

random component of inbreeding (FST), Fisher’s α (α), Karlin-McGregor’s ν (ν) and 

Nei’s genetic distance, according to methods described in Branco and Mota-Vieira 

(2003). 

 

V.2.4. Results and Discussion  

V.2.4.1. Surname distribution in Azorean population 

The population studied here contains 57,387 subscribers, representing 23.7% of the 

population and about 80% of the total number of Azorean families. Overall, we 
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computed 2451 different surnames. The discrepancy between the numbers of subscribers 

among the islands reflects the difference in population size (Table V.4). In addition, the 

islands with the highest level of economic development, São Miguel, Terceira and Faial, 

have the highest number of different surnames, 1315, 1198 and 480, respectively (Table 

V.4). The most common surnames overall are Silva (5.1% of the total subscribers), 

Sousa (3.3%) and Medeiros (2.9%), names that come originally from northern Portugal, 

(Sousa 2001). Interestingly, the most frequent surnames in Flores and Corvo are not in 

the group of 20th most frequent surnames in Azores, although they are common in the 

archipelago.  

Figure V.4 shows the graph relating the number of times that a surname appears, k, with 

the number of surnames that have an equal absolute frequency, S. According to Barrai 

et al. (1987) surnames distribution that are almost exactly linearized by a log-log 

transformation, fit the Karlin-McGregor model and allow the estimation of genetic 

parameters. Our distribution meets the above condition, therefore, we carried on our 

surname analysis using several isonymy parameters. 

 

V.2.4.2. Isonymy parameters 

The genetic structure of the Azorean population was studied using the following 

isonymy parameters: Isonymy (I), Fisher’s α (α) and Karlin-McGregor’s ν (ν). Table 

V.4 summarizes the data obtained. The values of isonymy are similar in all islands, with 

the exception of Graciosa, which shows the highest value of isonymy (0.0635). This 

result, in addition to a low value of migration rate (0.0122), suggests that people in 

Graciosa have become sedentary. 

A high isonymy in Graciosa reflects diminished genetic diversity, indicated by a very 

low value of α (15.75). In contrast, Terceira has the highest value of Fisher’s α, 90.91, a 

result of an increase in foreign surnames due to the American air base stationed on that 
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Figure V.4. Logarithmic distribution of surnames in Azores. S represents the number of surnames 
and k the number of times they appear. 

 

island. Comparing the values of α between Azores (41.19) and the two major islands – 

São Miguel (74.63) and Terceira (90.91) – we conclude that the Azorean population 

presents a very low value of diversity29. 

Human migration may affect the genetic diversity because new alleles may be lost or 

introduced into the population. To estimate the degree of migration we computed 

Karlin-McGregor ν (Table V.4). Rodriguez-Larralde et al. (1994) and Barrai et al. 

(1996) suggested that the higher the migration rate (ν), the higher is the genetic 

diversity (α). However, this is not observed in our population, where São Miguel and 

Terceira, with the lowest value of migration, have the highest level of diversity (Table 

V.4). In addition, Corvo and Flores show the highest values of ν, 0.2747 and 0.0578, 

respectively, indicating that people emigrate toward the more developed islands. 

Inbreeding, which is based on isonymy values, allows inferences about the degree of 

genetic differentiation (Rodriguez-Larralde et al. 1993). Among Azores islands, the  

 

                                                 
29 Although surname analysis results reveal that the Azorean population presents very little genetic diversity, 

microsatellite data demonstrated a high genetic diversity for this population. These results will be thoroughly 
discussed in Chapter VIII, General Discussion, of the present thesis. 
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values of FST are comparable, indicating a certain degree of population homogeneity. 

Interestingly, Graciosa, with the lowest value of surname diversity (α), now displays the 

highest value of inbreeding, suggesting higher genetic differentiation and isolation from 

other islands. We compared our data with that of two other very young and isolated 

populations, Kings County in New York (Christensen 2000), and Bedford County in 

Pennsylvania (Christensen 1999), and we observed that Azores presents a higher value 

of FST, thus, a higher inbreeding. This supports the results obtained by Pacheco et al. 

(2003), showing relatively higher rates of consanguineous marriages in Azores 

compared to Madeira archipelago and mainland Portugal. On the other hand, according 

to the classification proposed by Wright (1984), the value of FST for the Azores 

archipelago (FST=0.0039) reveals little genetic differentiation. This value is in 

agreement with previous observation for the island of São Miguel (Branco and 

Mota-Vieira 2003), where low value of differentiation is also observed.  

To estimate the degree of similarity between the islands we constructed a dendogram 

based on a matrix of Nei’s genetic distance (Figure V.5). The data shows two major 

clusters separating the Eastern group, São Miguel and Santa Maria, from the other 7 

islands. São Miguel and Santa Maria were the first islands to be settled, and lately the 

initial population dispersed, contributing to the settlement of the other islands. The 

dendogram also shows a second division separating the Central group from Flores and 

Corvo (Figure V.5). This is compatible with the geographic feature of the archipelago, 

and the ease with which the population migrates within groups of islands. As expected, 

Pico and Faial display close surname similarity, because there are regular boat 

connections between both islands, facilitating interaction between individuals. In 

addition, our data show that geographic distances are correlated with genetic distances 

(r=0.726, p<0.0001), and that the closer the distance between the islands, the higher is 

the chance of clustering. 

 

V.2.5. Conclusions  

Genetically isolated populations offer many advantages for mapping inherited traits. 

Indeed, in cases of environmental and population homogeneity the dissection of such 
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traits is considerably facilitated (Arcos-Burgos and Muenke 2002). Our analysis is 

based on a population sample of 57,387 individuals, which represents 80% of the 

overall Azorean families. We used surnames as the means to assess the genetic structure 

of the Azorean population. The data shows that there is a strong correlation between 

geographic distances and genetic distances. For instance, Pico and Faial connected by 

year-round daily boat trips, display high similarity of surnames (dendogram on Figure 

V.5). The dendogram also shows that Santa Maria and São Miguel, the first two islands 

to be settled in the east part of the archipelago, share a similar pattern of surnames. As 

expected, genetic diversity is higher in more developed islands (e.g. São Miguel and 

Terceira), a phenomenon that is further increased by a recent immigration of foreigners. 

 

 

Figure V.5. Cluster analysis based on the matrix of Nei’s distance for the Azorean population. 
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In contrast, Graciosa is the most inbred, probably a result of a long fixation of early 

settlers. Finally, inbreeding analysis reveals that the population displays little genetic 

differentiation (Table V.4, FST=0.0039). In conclusion, our data reveals the influence of 

the geography of the archipelago over the distribution of surnames among the islands, 

and demonstrates that isonymy analysis is a powerful method to characterize genetic 

structure in small populations. 

 127



CHAPTER V  Surnames Analysis: Geography Surnames in Azores 
 

V.3. Geography of surnames in Azores: Specificity and spatial distribution 

analysis 

V.3.1. Summary 

In order to obtain a better understanding of the genetic structure of the Azorean 

population, a specificity and spatial distribution analysis was performed based on 2454 

different surnames present in the Azorean telephone directory (2002). We considered as 

specific surnames those with an absolute frequency ratio equal or higher than 50%. The 

results revealed 51 specific surnames in the whole archipelago. The smallest island 

presents the only surname with 100% of specificity (Pedras). In addition, São Miguel 

Island, which contains 54.4% of the Azorean population, has the highest number of 

specific surnames (25 specific surnames). The spatial distribution analysis was used to 

detect genetic similarity between municipalities through the calculation of spatial 

autocorrelation (Moran’s I coefficient). Of the 240 surnames included in the analysis, 

113 showed statistically significant patterns. Five different patterns were obtained, of 

which the most relevant is isolation by distance and depression (41.6%). However, 

43.4% had no defined pattern. The overall correlogram shows a majority of positive 

values for distances lower than 49 km and between 269-309 km, indicating high 

similarity between closer municipalities and between distant municipalities whose 

populations show historic and socio-cultural affinities. In conclusion, our data are in 

agreement with the historical background of the Azorean population. 

 

V.3.2. Introduction 

Azores (Portugal) constitutes an interesting model for studying internal processes of 

differentiation; it has a particular orography, which confers a relative geographic and 

cultural isolation (Branco and Mota-Vieira 2003, 2005). In the present work we carried 

out further investigation into the genetics of the Azores, through analysis of specificity 

and spatial distribution of surnames. Our main goal is to understand the geography of 

surnames in the archipelago: mobility between the municipalities and between the 

islands; and know the patterns of dispersion of individuals and genes. 
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V.3.3. Material and Methods 

V.3.3.1. Dataset 

Dataset includes all surnames transcribed from the 2002 telephone directory. The only 

surname considered was the father’s last surname, since it is passed to the next 

generation. Surnames with similar spelling or writing, such as, Cimbron and Cymbron, 

were considered different. They may have simultaneous temporal origin, but may not 

always derive from the same individual. Double subscriber registration, identified by 

online service of PT communications30, was eliminated. This dataset excludes headings 

of firms, organizations, hotels, etc. In addition, users were not distinguished by sex. 

 

V.3.3.2. Specificity Analysis 

Azores is composed of nine islands divided into three groups designated according to 

their geographical location: (i) Western group, Corvo (Cor) and Flores (Flo); (ii) Central 

group, Terceira (Ter), Graciosa (Gra), Pico (Pic), Faial (Fai) and São Jorge (Jor); and 

(iii) Eastern group, São Miguel (Mig) and Santa Maria (Mar; Figure V.6). The 

specificity analysis was performed using the 30 most frequent surnames present in each 

island, because these surnames probably arrived with the first settlers. Surnames with 

higher frequency in an island have, possibly, smaller frequency on the others, so they 

will be specific of that island. We used their correspondent absolute frequency in the 

island and in the archipelago. We then calculated the ratio island/ Azores for each 

surname and ordered them accordingly. We only considered as specific surnames those 

with a ratio equal or higher than 50%. 

 

V.3.3.3. Spatial Autocorrelation Analysis 

In the present study, we chose the total number (19) of municipalities (administrative 

divisions) existing in the Azores archipelago (Figure V.6), because the autocorrelation 

                                                 
30 Online service of Portugal telecommunications - www.118.pt. 
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analysis needs a minimal number of populations − 15 to 25 (or more). Santa Maria, 

Graciosa, Faial and Corvo islands have only one municipality each; Flores, Terceira and 

São Jorge have two municipalities each; Pico has three municipalities; and São Miguel 

has six.  

Spatial autocorrelation summarizes the genetic similarity between populations in 

relation to their geographical proximity. In particular, spatial autocorrelation helps to 

focus on the similarity of values of a variable, i.e. the frequency of a surname, between 

pairs of populations within arbitrary classes of distance (Caravello and Tasso 1999). 

This method allows estimation of the spatial distribution of surnames in the considered 

territory, in order to emphasize the specific processes of diffusion of the individuals. To 

evaluate spatial autocorrelation we used Moran’s I coefficient (Moran 1950) applied to 

a database of 240 surnames obtained from the total number of surnames present in the 

archipelago. These surnames were chosen according to their absolute frequency in the 

archipelago. Therefore, to obtain the maximum dispersion patterns, surnames with a 

frequency higher than 23 were selected. The remaining 2214 different surnames show 

low relative frequency in the archipelago; thus, not justifying their analysis. 

The following formula permits an estimate of this autocorrelation coefficient: 

      n n                                            n 
I=nΣΣwij(pi–p)(pj–p)/WΣ(pi–p)2

    i=1j=1                                       i=1 

where pi and pj are the relative frequency of surnames at the ith and jth locality, p is the 

mean across the n municipalities, wij is equal to 1 for all the pairs of municipalities 

falling in the studied distance class and equal to 0 for all the other pairs, and W is the 

sum of all wij values in that distance class. 
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Figure V.6. Map of the Azores archipelago denoting the 19 municipalities (38ºN, 27ºW). The 
continuous line indicates the administrative divisions, marked with numbers: 1-Lagoa, 
2-Nordeste, 3-Ponta Delgada, 4-Povoação, 5-Ribeira Grande, 6-Vila Franca do Campo, 
7-Vila do Porto, 8-Angra do Heroísmo, 9-Praia da Vitória,10-Horta, 11-Lajes, 
12-Madalena, 13-São Roque, 14-Santa Cruz, 15-Calheta, 16-Velas, 17-Lajes, 18-Santa 
Cruz and 19-Corvo. 

 

Geographic distance between municipalities is important to assess the limits of the 

different distance classes. For each surname, Moran’s I coefficient was computed in five 

arbitrary distance classes, with the following upper limits: 49 km, 195 km, 269 km, 309 

km and 605 km. The boundaries of these distance classes were chosen to yield intervals 

with equal number of point pairs, i.e. locality pairs in each class. The calculation of the 

distance was performed using the UTM (Universal Transverse Mercator) coordinates 

(Branco and Mota-Vieira 2003). 

In large samples Moran’s I coefficient varies between -1 to +1, where positive 

significant values (I>0) indicate similar surname frequencies and negative significant 

values (I<0) indicate dissimilarity (Barbujani et al. 1992). The overall significance of 

the 240 correlograms was assessed by Bonferroni test31 (Oden 1984; Sokal and 

Thomson 1998). Only significant (p≤0.05) correlograms, 113 out of the 240, were  

 

                                                 
31 A very simple method due to Bonferroni (1936) is to divide the test-wise significance level by the number of tests: 
αβ=α/k (for example, with k=10 and α=0.05, therefore, αβ=0.005). So the significance level will be 0.005 to each 
of the ten tests. This leads to only a 5% chance that any of the tests will be declared significant under the null 
hypothesis. 
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accepted for analysis. The patterns of autocorrelation coefficients were schematically 

classified according to the spatial distributions, into: Isolation by distance and 

depression (IBD+D), isolation by distance and double depression (IBD+DDP), 

depression (D), intrusion (I) and long-distance differentiation (LDD; Barbujani 2000; 

Barbujani and Sokal 1991). 

In almost all cases, autocorrelation tends to be significant and positive at short 

distances. This is likely the consequence of isolation by distance, when neighbouring 

localities share a common gene pool (Barbujani 1987). The isolation by distance 

patterns are usually associated with a depression, i.e. a decrease in surname similarity, 

generally in long distance classes. However, simple depressions may also characterize 

the mobility of a given surname. Long-distance differentiation patterns are described by 

a positive autocorrelation in the first two distance classes. This will define regions of 

homogenous gene frequencies. Moreover, autocorrelation is negative at large distances; 

but the absolute values of Moran’s I are all small. Finally, the intrusion pattern reveals a 

maximum similarity at one peak, indicating an entrance of a surname on that distance, 

and negative autocorrelation is observed at both shorter and larger distances. 

 

V.3.4. Results 

V.3.4.1. Surname distribution 

In this study, the population structure of Azores Islands was analyzed through the 

computation of the frequency distribution of surnames from the telephone directory. In 

Azores the use of the telephone is so widespread that directories include nearly all 

resident families. Our dataset includes 55,528 subscribers, representing approximately 

23% of the total population (Table V.5). We first calculated the surnames absolute 

frequency for all municipalities. Out of the 2454 different surnames, 2038 (83%) have 

absolute frequency lower than 10, but these correspond to only 3894 subscribers. The 

remaining 51,634 subscribers correspond to 416 surnames that have an absolute 

frequency greater than 10. This result demonstrates that a large fraction of the Azorean 

population share few surnames. 
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In Table V.5 we summarize the distribution of the total surnames over the municipalities. 

In this table we present some data relevant in the present study, as the number of families 

and the number of subscribers with the 240 surnames studied by autocorrelation analysis 

for the 19 municipalities. Note that the ratio of the number of subscribers over the 

number of families shows the representation of our dataset (77%). Vila Nova do Corvo is 

the smallest municipality with a sample size of 105 subscribers distributed by 51 

different surnames. In contrast, Ponta Delgada contains 14,436 subscribers and 948 

different surnames. The most frequent surname in the archipelago is Silva with a 

frequency of 5.1%, Sousa is the second most common surname with 3.3%, followed by 

Medeiros (3.0%), Melo (2.3%) and Costa (2.3%).  

The absolute frequency of the surnames differs from one municipality to another, and 

contiguous municipalities tend to have similar frequencies, a result of a possible past 

diffusion effect. For example, in Pico Island, Silva is evenly distributed over the three 

municipalities (131 subscribers in Madalena, 123 in Lajes and 81 in São Roque).  

 

V.3.4.2. Specificity analysis 

The influence of geographic discontinuity on surname diversity was studied through a 

surname specificity analysis. Specific surnames may correspond to the portion of the 

population that first settled in or may represent recent entries (Barrai et al. 1996). The 

São Miguel Island shows the highest number of specific or autochthonous surnames, 

being the most relevants: Cabral (with a ratio equal to 80%), Pacheco (81%), Medeiros 

(83%), Cordeiro (87%), Rego (87%), Arruda (88%), Botelho (89%), Ponte (90%), 

Raposo (90%) and Carreiro (91%; Table V.6). Islands Pico and São Jorge only have one 

specific surname: Jorge and Brasil, respectively, both with a ratio equal to 54%. The 

island of Santa Maria showed five specific surnames: Moura (52%), Figueiredo (59%), 

Chaves (59%), Bairos (80%) and Leandres (93%). Corvo Island is the only one that has a 

surname with 100% of specificity (Pedras), but this includes only two subscribers. On 

average there are six specific surnames per island (Table V.6). 
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Table V.5.  Azores: Geographic, demographic and telephone subscribers data. 

Subscribers with 
the 240 studied 

surnamesc
Name of geographic 

group, Azorean island and 
administrative division 

Population 
density 

(Inh./ Km2)a
Population 

sizea
No. of 

familiesa
No. of 

subscribersb
No. of 

surnamesb  No. % 
Eastern group     

São Miguel 176.23 131,609 36,600 26,613 1308 23,398 87.92 
Lagoa 310.05 14,126 3862 2426 386 2049 84.46 
Nordeste 52.12 5291 1754 1265 150 1188 93.91 
Ponta Delgada 283.95 65,854 18,595 14,436 948 12,814 88.76 
Povoação 60.98 6726 1979 1527 234 1348 88.28 
Ribeira Grande 158.56 28,462 7533 4957 450 4364 88.04 
Vila Franca do 
C

142.95 11,150 2877 2002 281 1635 81.67 

Santa Maria 57.46 5578 1814 1701 244 1543 90.71 
Vila do Porto 57.46 5578 1814 1701 244 1543 90.71 

Central group       
Terceira 139.65 55,833 17,271 14,038 1223 12,015 85.59 

Angra do Heroísmo 149.80 35,581 10,957 8509 675 7449 87.54 
Praia da Vitória 124.79 20,252 6314 5529 855 4566 82.58 

Faial 88.64 15,063 4788 4021 484 3534 87.89 
Horta 88.64 15,063 4788 4021 484 3534 87.89 

Pico 32.85 14,806 4829 4222 376 3887 92.07 
Lajes 32.04 5041 1582 1489 211 1358 91.20 
Madalena 41.16 6136 2057 1667 214 1553 93.16 
São Roque 25.15 3629 1190 1066 196 976 91.56 

Graciosa 78.44 4780 1760 1242 161 1148 92.43 
Santa Cruz 78.44 4780 1760 1242 161 1148 92.43 

São Jorge 39.39 9674 3237 2556 298 2337 91.43 
Calheta 32.16 4069 1352 1151 178 1067 92.70 
Velas 47.07 5605 1885 1405 224 1270 90.39 

Western group       
Flores 28.19 3995 1392 1030 222 868 84.27 

Lajes 21.58 1502 556 392 125 331 84.44 
Santa Cruz 34.57 2493 836 638 168 537 84.17 

Corvo 24.82 425 155 105 51 78 74.29 
Vila Nova do Corvo 24.82 425 155 105 51 78 74.29 

Azores 103.77 241,763 71,846 55,528 2454 48,808 87.90 
a Data from 2001 census. 
b Data from 2002 telephone directory. 
c Surnames studied in the autocorrelation analysis. 
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V.3.4.3. Spatial autocorrelation analysis (Moran’s I coefficient) 

Spatial autocorrelation refers to the genetic similarity between populations in relation to 

their geographical proximity. In our dataset, this analysis reveals that 113 surnames 

have a statistically significant pattern, of which 41.6% show IBD+D pattern, 9.7% have 

an intrusion pattern, 2.7% contain a LDD pattern, 1.8% corresponds to a depression 

pattern, 0.9% encloses an IBD+DDP pattern, and 43.4% have no defined pattern (Table 

V.7). Out of the 565 data points, which correspond to the individual autocorrelation 

coefficients, 249 (44%) are significant (Table V.7). The majority of individual 

coefficients were smaller than 0.20, revealing low similarity of surnames between the 

five different distance classes. The highest Moran’s I coefficient at class 1 (0-49 km) is 

0.71 for Pacheco, followed by Alvernaz with 0.63.  

The 113 Bonferroni significant correlograms were superimposed according to distinct 

classes and plotted (Figure V.7). Positive autocorrelation is higher at distances up to 49 

km, but maintains relatively positive until distances up to 142 km, changing to negative 

autocorrelation at greater distances. It increases again to positive values in distance class 

4 (269-309 km), switching back to negative in the last distance class. The patterns of 

autocorrelation indicate that after 50 km surname similarity is sharply reduced (Figure 

V.7). Similar correlograms were averaged to provide summary information of each of 

the 5 main patterns (Figure V.8). 
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Table V.6.  Specific surnames for each Azorean Island (see Figure V.6 for island location). The ordering is based 

on the surname specificity. 

Absolute frequency 
of surname  

Absolute frequency 
of surname Surname per 

island Island Azores 
Surname 

Specificitya  
Surname per 

island Island Azores 
Surname 

Specificitya

São Miguel     Santa Maria    
Costa 638 1263 0.5051  Leandres 13 14 0.9286 
Sousa 933 1813 0.5146  Terceira    
Pereira 622 1205 0.5162  Coelho 137 235 0.5830 
Rodrigues 326 611 0.5336  Leal 132 212 0.6226 
Oliveira 522 955 0.5466  Lourenço 136 196 0.6939 
Melo 725 1267 0.5722  Rocha 342 485 0.7052 
Ferreira 495 808 0.6126  Mendes 217 273 0.7949 
Pimentel 280 431 0.6497  Fagundes 123 144 0.8542 
Correia  367 535 0.6860  Meneses 209 243 0.8601 
Furtado 320 445 0.7191  Barcelos 131 144 0.9097 
Almeida 338 467 0.7238  Toste 224 229 0.9782 
Tavares 346 458 0.7555  Faial    
Carvalho 260 344 0.7558  Vargas 58 90 0.6444 
Amaral 410 542 0.7565  Escobar 50 57 0.8772 
Moniz 395 498 0.7932  Pico    
Cabral 700 876 0.7991  Jorge  55 101 0.5446 
Pacheco  607 745 0.8148  Graciosa    
Medeiros 1376 1654 0.8319  Veiga 17 31 0.5484 
Cordeiro 330 379 0.8707  Picanço 70 94 0.7447 
Rego 304 349 0.8711  Ortins 9 12 0.7500 
Arruda 330 376 0.8777  São Jorge    
Botelho 386 434 0.8894  Brasil 111 207 0.5362 
Ponte 307 340 0.9029  Flores    
Raposo 475 526 0.9030  Armas 9 15 0.6000 
Carreiro 304 333 0.9129  Noia 15 23 0.6522 

Santa Maria     Estácio 9 12 0.7500 
Moura  61 117 0.5214  Corvob    
Figueiredo 65 110 0.5909  Emílio 2 3 0.6667 
Chaves 79 133 0.5940  Pedras 2 2 1.0000 
Bairos 49 61 0.8033      

a Surname specificity is estimated by the proportion of the surname in island/ Azores. 
b Only 22 surnames were studied. 
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Table V.7 Autocorrelation coefficients (Moran’s I) for the considered surnames in the Azorean population. 
Only significant patterns are reported. 

Distance Class  
Surnames 1  2  3  4  5  

Overall 
Significance Classification 

Alexandre 0.12  -0.01  -0.31 ** 0.08  -0.15  0.047 DF 
Almeida 0.10 * 0.01  -0.35 ** 0.11 * -0.14  0.003 DF 
Alvernaz 0.63 ** -0.17  -0.30 * -0.46 ** 0.02  0.000 IBD + D 
Amaral 0.51 ** -0.12  -0.53 ** 0.13  -0.27 * 0.000 DF 
Andrade 0.13  0.16 * -0.53 ** 0.46 ** -0.47 ** 0.001 DF 
Andre -0.06  -0.10  -0.28  0.28 ** -0.11  0.040 I 
Araujo 0.43 ** -0.01  -0.46 ** -0.01  -0.23  0.000 IBD + D 
Areias 0.21 ** -0.47 ** -0.04  0.08 * -0.06  0.000 DF 
Arruda 0.19 ** -0.04  -0.33 ** 0.05  -0.14  0.001 IBD + D 
Avila 0.44 ** -0.10  -0.38 ** -0.16  -0.08  0.001 IBD + D 
Azevedo 0.33 ** 0.13  -0.48 ** -0.30 * 0.04  0.010 IBD + D 
Baptista -0.02  0.08  -0.24  0.35 ** -0.44 ** 0.004 DF 
Barbosa 0.40 ** 0.01  -0.48 ** 0.04  -0.24  0.001 IBD + D 
Barcelos 0.27 ** -0.50 ** -0.05  0.06  -0.07  0.000 IBD + D 
Barros 0.10  -0.25  -0.13  0.29 ** -0.28 * 0.034 DF 
Benevides 0.11 * -0.04  -0.29 ** 0.03  -0.09  0.004 IBD + D 
Bento 0.27 ** -0.09  -0.28 * -0.02  -0.15  0.009 IBD + D 
Bettencourt 0.33 ** 0.31 **  -0.38 * -0.58 **  0.04  0.001 IBD + D 
Borba 0.26 ** -0.32 * -0.19  0.01  -0.04  0.044 IBD + D 
Borges 0.27 ** -0.19  -0.27  0.18 * -0.26 * 0.042 DF 
Botelho 0.09 * -0.04  -0.28 ** 0.06  -0.10  0.006 D 
Braga 0.11 * 0.21 ** -0.11  -0.02  -0.46 ** 0.000 DF 
Branco 0.31 ** 0.05  -0.49 ** 0.12  -0.27 * 0.001 DF 
Brilhante -0.03  -0.02  -0.22 ** 0.06 * -0.07  0.023 I 
Brito 0.26 ** -0.40 ** -0.13  0.14 * -0.14  0.005 DF 
Bulhoes 0.24 ** -0.07  -0.31 ** -0.02  -0.12  0.011 IBD + D 
Cabral 0.17 ** 0.05  -0.30 ** 0.02  -0.20  0.007 IBD + D 
Camara 0.12 * -0.02  -0.32 ** 0.02  -0.08  0.004 IBD + D 
Carneiro 0.23 ** -0.07  -0.37 ** 0.01  -0.08  0.001 IBD + D 
Carreiro 0.31 ** -0.04  -0.37 ** -0.00  -0.17  0.000 IBD + D 
Carvalho 0.01  0.02  -0.27 ** 0.09 * -0.12  0.002 DF 
Chaves 0.04  0.01  -0.03  0.00  -0.29 ** 0.039 LDD 
Coelho 0.33 ** -0.49 ** -0.08  0.21 * -0.23  0.000 DF 
Conceiçao -0.06  0.00  -0.32 * 0.32 ** -0.21  0.007 I 
Cordeiro 0.04  -0.05  -0.21 ** 0.04  -0.09  0.034 D 
Correia 0.33 ** -0.03  -0.51 ** 0.22 * -0.29 * 0.000 DF 
Couto 0.43 ** 0.04  -0.44 ** -0.00  -0.30 * 0.001 IBD + D 
Dinis 0.29 ** -0.45 ** -0.12  0.11  -0.10  0.001 DF 
         (Continued)
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Table V.7.  Continuation. 

Distance Class  
Surnames 1  2  3  4  5  

Overall 
Significance Classification 

Duarte -0.10  -0.03  -0.34 * 0.34 ** -0.14  0.003 I 
Dutra 0.29 ** 0.03  -0.30 * -0.21  -0.08  0.021 IBD + D 
Enes 0.31 ** -0.46 ** -0.12  0.06  -0.06  0.001 IBD + D 
Estrela 0.15 * -0.01  -0.37 ** 0.10  -0.15  0.018 DF 
Fagundes 0.34 ** -0.57 ** -0.08  0.07  -0.05  0.000 DF 
Faria -0.07  0.01  -0.46 ** 0.46 ** -0.21  0.001 I 
Farias -0.03  -0.05  -0.19 ** 0.04  -0.06  0.024 I 
Ferraz 0.29 ** -0.31 * -0.18  0.08  -0.16  0.022 DF 
Figueiredo 0.05  -0.09  0.04  0.06  -0.33 ** 0.014 LDD 
Franco 0.34 ** -0.03  -0.34 ** -0.04  -0.20  0.000 IBD + D 
Frias 0.30 ** -0.07  -0.51 ** 0.23 * -0.22  0.002 DF 
Furtado 0.32 ** -0.08  -0.48 ** 0.21 * -0.24  0.001 DF 
Gil 0.18 * -0.33 ** -0.07  0.03  -0.09  0.034 IBD + D 
Godinho 0.36 ** -0.59 ** -0.05  0.09  -0.08  0.000 DF 
Goulart 0.36 ** -0.09  -0.25  -0.30 * -0.01  0.002 IBD + D 
Gouveia 0.28 ** 0.05  -0.46 ** 0.05  -0.19  0.005 IBD + D 
Homem 0.29 ** -0.40 ** -0.15  0.09  -0.11  0.006 DF 
Jorge 0.26 ** -0.17  -0.03  -0.32 * -0.02  0.032 IBD + DDP 
Junior 0.10  0.09  -0.16  0.09  -0.38 ** 0.022 DF 
Leal 0.33 ** -0.32 * -0.18  0.01  -0.11  0.005 IBD + D 
Leite 0.40 ** -0.11  -0.36 * 0.01  -0.21  0.002 IBD + D 
Leonardo 0.23 ** -0.56 ** 0.04  0.14 * -0.13  0.000 DF 
Linhares 0.23 * -0.60 ** 0.22 * 0.05  -0.18  0.000 DF 
Lourenço 0.17 ** -0.38 ** -0.08  0.04  -0.03  0.005 IBD + D 
Luz 0.43 ** 0.01  -0.18  -0.09  -0.43 ** 0.001 IBD + D 
Maciel 0.29 ** 0.05  -0.20  -0.43 ** 0.00  0.012 IBD + D 
Maia 0.06  -0.03  -0.29 ** 0.12 * -0.14  0.036 DF 
Medeiros 0.26 ** -0.07  -0.39 ** 0.09  -0.16  0.000 DF 
Mendes 0.30 ** -0.48 ** -0.10  0.08  -0.08  0.000 DF 
Meneses 0.26 ** -0.45 ** -0.09  0.10  -0.08  0.001 DF 
Miguel -0.02  -0.03  -0.31 ** 0.20 ** -0.11  0.042 I 
Moniz 0.34 ** -0.06  -0.43 ** 0.09  -0.22  0.004 DF 
Monteiro 0.17 * -0.33 ** 0.12  0.23 * -0.45 ** 0.002 DF 
Morgado -0.05  0.04  -0.21 ** 0.05  -0.10  0.022 DF 
Mota 0.60 ** -0.14  -0.59 ** 0.10  -0.24  0.000 DF 
Moura 0.03  0.08  -0.08  0.08  -0.37 ** 0.006 LDD 
Nogueira 0.33 ** -0.50 ** -0.09  0.11  -0.12  0.000 DF 
Oliveira -0.05  0.04  -0.28 * 0.19 ** -0.18  0.031 DF 
         (Continued)
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Table V.7.  Continuation. 

Distance Class  
Surnames 1  2  3  4  5  

Overall 
Significance Classification 

Ornelas 0.30 ** -0.46 ** -0.10  0.09  -0.10  0.001 DF 
Ourique 0.32 ** -0.53 ** -0.06  0.07  -0.08  0.000 DF 
Pacheco 0.71 ** -0.03  -0.56 ** -0.06  -0.34 ** 0.000 IBD + D 
Paim 0.22 ** -0.35 ** -0.09  0.00  -0.06  0.024 IBD + D 
Paiva 0.48 ** 0.05  -0.43 ** -0.06  -0.30 * 0.000 IBD + D 
Pamplona 0.33 ** -0.44 ** -0.10  0.02  -0.09  0.002 IBD + D 
Parreira 0.15 ** -0.40 ** -0.02  0.04  -0.05  0.001 IBD + D 
Pereira -0.05  0.04  -0.30 * 0.24 ** -0.20  0.019 I 
Pimentel 0.35 ** -0.03  -0.43 ** 0.02  -0.19  0.002 IBD + D 
Pinheiro -0.06  0.02  -0.33 * 0.33 ** -0.22  0.004 I 
Pinto -0.05  0.03  -0.35 * 0.31 ** -0.21  0.024 I 
Pires 0.25 ** -0.32 * -0.16  0.09  -0.14  0.019 DF 
Ponte 0.48 ** -0.08  -0.48 ** -0.00  -0.20  0.000 IBD + D 
Quadros 0.30 ** 0.28 ** -0.47 ** -0.42 ** 0.03  0.005 IBD + D 
Raposo 0.20 ** -0.04  -0.33 ** 0.03  -0.14  0.001 IBD + D 
Rebelo 0.36 ** -0.01  -0.46 ** 0.07  -0.23  0.001 DF 
Rego 0.17 ** 0.01  -0.34 ** 0.03  -0.15  0.002 IBD + D 
Resendes 0.20 * 0.32 ** -0.32 * -0.02  -0.45 ** 0.002 DF 
Ricardo 0.02  0.21 ** -0.08  -0.03  -0.39 ** 0.006 DF 
Rocha 0.27 ** -0.41 ** -0.11  0.10  -0.13  0.004 DF 
Rodrigues 0.04  0.04  -0.41 ** 0.28 ** -0.22  0.011 DF 
Rosa 0.28 ** -0.05  -0.20  -0.24  -0.07  0.009 IBD + D 
Sampaio 0.17 * 0.03  -0.33 ** 0.03  -0.17  0.046 IBD + D 
Saraiva 0.10  0.10  -0.45 ** 0.29 ** -0.31 * 0.002 DF 
Sardinha 0.10 * -0.06  -0.26 ** 0.02  -0.09  0.022 IBD + D 
Silveira 0.40 ** 0.18 * -0.41 ** -0.40 ** -0.05  0.003 IBD + D 
Sousa 0.05  0.12  -0.29 * 0.18 * -0.33 ** 0.031 DF 
Tavares 0.28 ** 0.00  -0.44 ** 0.12  -0.23  0.001 DF 
Terra 0.40 ** -0.10  -0.24  -0.36 * 0.02  0.003 IBD + D 
Teves 0.14 * 0.03  -0.27 ** -0.03  -0.15  0.027 IBD + D 
Torres 0.56 ** -0.03  -0.53 ** -0.03  -0.24  0.000 IBD + D 
Toste 0.32 ** -0.56 ** -0.04  0.07  -0.07  0.000 DF 
Valadao 0.18 ** -0.46 ** -0.06  0.06 * -0.00  0.000 IBD + D 
Valerio 0.28 ** -0.11  -0.33 ** 0.02  -0.14  0.012 IBD + D 
Vaz 0.31 ** -0.53 ** -0.07  0.10  -0.08  0.000 DF 
Ventura 0.18 * 0.04  -0.43 ** 0.09  -0.16  0.017 DF 
Viveiros -0.03  -0.04  -0.19 ** 0.04  -0.06  0.021 I 

Distance Class (Km): 1 (0 – 49), 2 (49 – 195), 3 (195 – 269), 4 (269 – 309), 5 (309 – 605). 
*=0.01< p ≤ 0.05; **=0.001< p ≤ 0.01 
Classification: D (Depression); DF (Different); I (Intrusion); IBD+D (Isolation by Distance and Depression); 
IBD+DDP (Isolation by Distance and Double Depression); LDD (Long-Distance Differentiation). 
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Figure V.7. Spatial correlogram of the 113 Bonferroni-significant correlograms of surname frequencies 
in Azores. The general trend of the Moran’s I correlograms is shown by the dashed line 
connecting the mean autocorrelation coefficients for each distance class. Distance class 
(Km): 1 (0-49), 2 (49-195), 3 (195-269), 4 (269-309) and 5 (309-605). Note that individual 
variables within classes are not distinguishable. 

 

 

Figure V.8. Average correlograms representing the five patterns of Bonferroni significant I correlograms. 
The patterns are: 1-IBD+DDP, 2-D, 3-IBD+D, 4-I and 5-LDD. 
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V.3.5. Discussion  

The spatial distribution model, proposed by Moran (1950), is a functional and easy 

method to understand the distribution of surnames. Here, we show that surname 

distribution can also be used to provide information on the population structure in the 

Azorean islands, where most of the existing surnames arrived with the first settlers. In 

Azores, the first 14 most frequent surnames correspond to 7% of the total population, 

and in Italy they correspond to 2% (Caravello et al. 2002). In Denmark, however, the 

first 14 most frequent surnames correspond to more than 50% of the total population 

(Caffarelli 1997). 

The frequency of surnames of the 9 islands shows that São Miguel has the highest 

number of specific surnames. This data is compatible with the fact that São Miguel 

Island contains 54.4% of the Azores population. In contrast, Santa Maria, with a smaller 

population size than Pico and São Jorge, for example, presents 5 specific surnames. 

Moreover, as described in Branco and Mota-Vieira (2005), Santa Maria shows a high 

emigration rate. These data suggest that population size is not the major factor to be 

considered; instead, the dispersion patterns of individuals are important knowledge 

when studying the specificity of a given surname. This conclusion is corroborated by 

the spatial autocorrelation analysis. The major pattern obtained in the spatial analysis is 

IBD, which demonstrates dispersion by local movements of people over short distances 

(0-49 km) between close municipalities and close islands. Families with surnames 

Pacheco and Alvernaz correspond to the ones that moved, mainly, at short distances, 

because these two surnames have the highest value for Moran’s I at distances inferior to 

50 km. In addition, the spatial analysis also reflects the movement of people over great 

distances (269-309 km), suggesting migration to other islands (Figure V.7). 

Migration flow and differential fertility may explain why some surnames have become 

more common and have spread over vast territories, whilst others are specific, or else, 

became extinct. Some examples of specific surnames in our dataset have a Spanish 

origin, like Escobar, Meneses, Rego and Vargas (Table V.6). This reinforces the 

contribution in the Azorean peopling of individuals of Spanish origin, which was 
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recently demonstrated by the presence of male Spanish lineages in the Azorean 

population (Pacheco et al. 2005). 

Several spatial correlograms are similar and partitioned into patterns. Patterns 

characterized by a decline of autocorrelation in the first distance classes followed by 

insignificant values should be generated by the migration of people over short distances 

(Barbujani 1987; Sokal et al. 1992). This also may lead to the presence of specific 

surnames in the islands, as it is seen in our data. Numerous nearby inhabited centers in 

different municipalities (similarity in short distances – class 1) may account for the 

migration. The settlement proximity of the Central group with the Western group could 

have favored the movement of people carrying autochthonous surnames between these 

two groups (similarity at long distances – class 4). According to historical data (Guill 

1993), Flores and Corvo were the last two islands discovered, and the first settlers 

arrived there were from mainland Portugal, and from the other islands of the 

archipelago, mainly Terceira. Moreover, the geographic and, consequently, 

socio-cultural features of the archipelago make easier the interaction between 

individuals from the Western with the Central group than with the Eastern. 

A conflicting result is provided by Santos et al. (2003), who describe higher similarity 

between the Central and the Eastern groups based on mtDNA data. Recently, Montiel et 

al. (2005) reanalyzed these data in light of the Y-chromosome, and reveal that there are 

no differences between the three groups of islands when considered the mtDNA. 

However, when analyze the data concerning the Y-chromosome the author detected 

important differences, particularly on the Western group, which is the most 

differentiated in the PC analysis. These results corroborate with the results here 

obtained. 

The results of the correlograms were interpreted considering how the actual population 

pairs within each distance class. The presence of the short distance positive 

autocorrelation may be explained by mating and migration patterns that are observed in 

all islands of the archipelago. In general, migration at marriage occurs between 

neighbouring village or country, and it is sufficiently strong to maintain family ties 

(Connel 1968; Pacheco et al. 2003). This type of migration explains the positive 
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autocorrelation within the first distance class observed in our dataset. Moreover, the 

observation that IBD is the most frequent pattern reinforces historical data, i.e. the 

peopling of Azores was a continuous process where people from the other islands 

contributed to the peopling of the last two islands (Flores and Corvo). On the other 

hand, the autocorrelation is positive in first distance class, validating the presence of 

specific surnames in each island. For example, São Miguel Island has the highest 

number of specific surnames and also has small distances between municipalities. 

As surnames constitute quite a robust indicator of demographic changes, their analysis 

could greatly contribute to improve our knowledge of population genetic structure. 

Finally, the data described above show that migration and settlement history has been 

determinant for the spatial distribution of the present-day Azorean population. 
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VI.1. The Y-chromosomal heritage of the Azores Islands population 

VI.1.1. Summary 

The Azores, a Portuguese archipelago located in the north Atlantic Ocean, had no native 

population when the Portuguese first arrived in the 15th century. The islands were 

populated mainly by Portuguese, but Jews, Moorish prisoners, African slaves, Flemish, 

French and Spaniards also contributed to the initial settlement. To understand the 

paternal origins and diversity of extant Azorean population, we typed genomic DNA 

samples from 172 individuals, using a combination of 10 Y-biallelic markers (YAP, 

SRY-1532, SRY-2627, 92R7, M9, sY81, Tat, SRY-8299, 12f2 and LLY22g) and the 

following Y-chromosomal STR systems: DYS389I, DYS389II, DYS390, DYS391, 

DYS392, DYS393 and DYS385. We identified nine different haplogroups, most of 

which are frequent in Europe. Haplogroup J* is the second most frequent in Azores 

(13.4%), but it is modestly represented in mainland Portugal (6.8%). The other 

non-European haplogroups, N3 and E3a, which are prevalent in Asia and subSahara, 

respectively, have been found in Azores (0.6% and 1.2%, respectively) but not in 

mainland Portugal. Microsatellite data indicate that mean gene diversity (D) value for 

all the loci analysed in our sample set is 0.590, while haplotype diversity is 0.9994. 

Taken together, our analysis suggests that the current paternal pool of the Azorean 

population is, to a great extent, of Portuguese descent with significant contribution from 

people with other genetic backgrounds. 

 

VI.1.2. Introduction 

The Y-chromosome is a powerful tool to study human evolutionary pathways and to 

infer about major and local male migration movements or patterns (Jobling and 

Tyler-Smith 1995). The nonrecombining portion of the Y (NRY) retains a record of the 

mutational events that occurred along male lineages throughout evolution. Binary 

polymorphisms are particularly useful to identify stable paternal lineages, traced back in 

time over thousands of years, because of their low rate of parallel and back mutation 
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(Y-Chromosome Consortium 2002). The diversity within these lineages – haplogroups 

– can be examinated by polymorphisms that mutate more rapidly, such as, 

microsatellites, allowing the construction of very detailed Y-phylogenies that reveals 

male-specific aspects of genetic history (Qamar et al. 2002). 

Here we report on the diversity of the Y-chromosome of Azorean individuals, using a 

combination of slowly evolving biallelic loci and rapidly evolving microsatellite loci. 

This allowed for an assessment of the relative diversity and phylogenetic context of the 

Azores Islands Y-chromosome pool. We aim to address the following questions: (i) how 

does the Y-chromosomal distribution in Azores fits in the context of other European 

populations, and (ii) how did geographical isolation affect Y-chromosomal distribution 

in Azores compared to mainland Portugal. 

 

VI.1.3. Material and Methods 

VI.1.3.1. Terminology and nomenclature 

The terminology and nomenclature used here are those proposed by the Y-Chromosome 

Consortium (YCC NRY tree 2002). The terms “haplogroup” and “haplotype” are used 

according to de Knijff (2000). 

 

VI.1.3.2. Population samples 

The sample set comprised 172 unrelated healthy blood donors, from the anonymous 

DNA bank of São Miguel population, with signed informed consent (Mota-Vieira et al. 

2005). The origin of the individual’s father was used to sort the samples into: São 

Miguel (N=149), Faial (N=2), Flores (N=4), Pico (N=6), Santa Maria (N=3), São 

Jorge (N=2), Terceira (N=5) and Corvo (N=1), Figure VI.1. Due to disproportionate 

number of samples, we combined them all into a single group: Azores. Blood samples 

(7.5 ml) were collected by venipuncture into EDTA tubes. DNA was extracted using the 

PUREGENE® kit (Gentra Systems Inc.). 
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Figure VI.1. Geographic location of the Azores archipelago (n=number of individuals sampled). 
Map is not drawn to scale. The islands spread out in the area of the parallel that passes 
through Lisbon (39º,43’/39º,55’, north latitude). 

 

VI.1.3.3. PCR amplification of Y-SNPs and endonuclease digestion 

A total of 10 Y-biallelic markers were selected based on the probability of their 

occurrence in the European populations (Rosser et al. 2000, and references therein). The 

base substitutions were as follows: 92R7 C→T; M9 C→G; SRY-2627 C→T; 

SRY-1532 A→G →A; sY81 A→G; SRY-8299 G→A; LLY22g C→A and Tat T→C. 

The LLY22g was typed using conditions kindly supplied by C. Tyler-Smith (personal 

communication). The 12f2 deletion was typed according to Rosser et al. (2000). 

Polymerase Chain Reaction (PCR) amplifications were carried out in a singleplex 20 µl 

reaction mixture including 1X PCR buffer, 2.5 mM MgCl2, 0.1 mM dNTP mix, 1 µM of 

forward and reverse amplification primers, 1 U of Taq DNA polymerase (PROMEGA) 

and 40 ng of genomic DNA. PCR was carried out according to the following conditions: 

an initial denaturation step at 95ºC for 2 min, 30 cycles of 94ºC for 30 sec, 60ºC for 30 
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sec, 72ºC for 1 min, and a final extension step at 72ºC for 5 min For restriction fragment 

length polymorphism analysis, 1 U of the appropriate restriction enzyme in 2.5 µl of 1X 

digestion buffer was added directly to 25 µl of PCR reaction and incubated at the 

appropriate temperature for 2 hours. Digests were analysed by electrophoresis on 

polyacrilamide gels (12%) and visualized by ethidium bromide. Analysis of the 

Y-chromosomal Alu repeat insertion (YAP) was carried out by PCR and analysed by 

agarose gel electrophoresis, as described elsewhere (Hammer and Horai 1995). 

 

VI.1.3.4. PCR amplification of Y-STRs 

Seven microsatellite loci were typed using fluorescently labelled primers from five 

tetranucleotide markers (DYS389I, DYS389II, DYS390, DYS391 and DYS393), one 

trinucleotide repeat locus (DYS392), and one duplicated tetranucleotide repeat marker 

(DYS385). Primer sequences were obtained in the Y-STR haplotype database 

(www.ystr.org). The PCR protocol used is as follows: an initial denaturation at 95ºC for 

15 min to activate HotStarTaq™DNA polymerase (QIAGEN); 30 cycles of 94ºC for 1 

min, 51ºC for 1 min, 72ºC for 1 min, and a final 10 min extension step at 72ºC. Each 25 

µl reaction contained 2 U of Taq DNA polymerase, 1X PCR buffer, 50 mM KCl, 4 mM 

MgCl2, 0.25X Q Solution, 0.2 mM each of the four deoxyribonucleotide triphosphates, 

0.4 µM of forward and reverse amplification primers and 50 ng of genomic DNA. An 

aliquot of 1 µl of each PCR product was combined with 0.5 µl CEQ™DNA size 

standard kit 400, 29 µl formamide deionized (Qbiogene), and run on a CEQ™8000 

Genetic Analysis System (Beckman Coulter). 

 

VI.1.3.5. Statistical analysis  

Alleles are designated by the number of repeats. Since the DYS389II product contains 

the DYS389I, we subtracted the corresponding DYS389I repeat length from that of 

DYS389II, to avoid double-counting the variation at the DYS389I (Roewer et al. 1996). 

For DYS385, which is a duplicated Y-STR locus, the allele locus assignment was 
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performed so that for each individual, the shorter allele was assigned to one locus 

(DYS385a) and the longer to another (DYS385b). 

Population differentiation between the Azores and other populations was assessed using 

haplogroup frequencies included in Arlequin software package (Schneider et al. 2000). 

Genetic distances, as pairwise FST, were represented in two-dimensional space using 

Multi Dimensional Scaling (MDS) analysis included in the SPSS software package 

(version 10.0). 

 

VI.1.4. Results 

VI.1.4.1. Y-chromosome biallelic polymorphisms 

The biallelic loci used in this study divided Azorean Y-chromosomes into twelve 

clades, which are usually referred to as haplogroups (HGs). A Y-chromosomal HG tree 

with 10 biallelic markers and HG frequencies is shown in Figure VI.2. We identified 9 

different HGs out of 12 possible, which indicates the degree of information of the 

markers selected. HG P*(xR1b8, R1a, Q3) is the most frequent, comprising 59.3% of 

the total sample. Interestingly, our data shows high frequency of lineage J*, the second 

most frequent HG in our population, comprising 13.4% of the Y-chromosomes. 

Lineages BR*(xB2b, CE, F1, H, JK), 11.6%, and E*(xE3), 10.5%, are both frequent in 

Azores. Lineage R1a has a frequency of 1.2%, four times higher than that described for 

the northern and southern Portuguese populations (0.3%; Rosser et al. 2000). In Azores, 

R1b8 accounts for 0.6% of the Y-chromosomes. Albeit at low frequency (1.2%), we 

have also detected the subSaharan HG E3a (Figure VI.2). In addition, lineage N3, which 

is primarily found in Asians, is present in Azores at a frequency of 0.6%. 

In order to test the hypothesis of a random distribution of HGs among population 

groups, we computed FST values using HG frequencies as implemented by the Arlequin. 

HG frequency data for northern and southern Portuguese, Spanish, Basque, east 

Anglian, Belgian, French, Dutch, Bavarian, German, Sardinian, Italian, Turkish, Greek, 

Algerian, Canarians, Caboverdean and northern African were retrieved from Rosser et 
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al. (2000), Flores et al. (2003) and Gonçalves et al. (2003). Population differentiation 

between the Azores and those listed above was calculated. No significant difference was 

observed between the Azoreans and the northern and southern Portuguese, Belgian, 

French or Italian samples (p=0.05), suggesting no population differentiation. In 

contrast, comparison with the remaining populations reveals a significant difference 

(p<0.05). These data corroborates with the analysis of pairwise genetic distances in the 

two-dimensional space analysis (Figure VI.3). Noteworthy, MDS revealed that genetic 

relationship among populations corresponds tightly to their relative geographical 

distances. 

 

VI.1.4.2. Y-chromosome STR polymorphisms 

A Y-chromosomal haplotype was constructed for each individual, using seven loci (see 

Material and Methods). Overall, 118 different haplotypes were observed in the 172 

sample set (68.6% discriminatory capacity). Haplotype diversity is high (0.9994), due to 

high variability of Y-STRs. Allele frequencies and gene diversity values are listed in 

Table VI.1. The mean gene diversity (D) value for the loci is 0.590 (values range from 

0.4592 to 0.8212, Table VI.1). 
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Figure VI.2. Phylogenetic tree of the Y-chromosome haplogroups and their percent frequencies in the 
Azorean sample. Bold lines indicates HG present in the Azorean population. 
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Figure VI.3. Multidimensional scaling of genetic relationships between populations based on Y-STRs. 
Note the position of the African samples that reflects the major division between the 
populations. 

 151



CHAPTER VI  Azorean Ancestry: Y-chromosome lineages 
 
 

 

Table VI.1. Allele frequencies and gene diversity value at 7 Y-chromosome STR loci in Azorean 
population (h=Gene diversity, D=mean gene diversity). 

Allele DYS389I DYS389II DYS390 DYS391 DYS392 DYS393 Haplotype DYS385 
 9    0.0640    9-14 0.0058 
10    0.4419  0.0116  9-15 0.0058 
11    0.4535 0.3605  10-14 0.0116 
12 0.1395   0.0407 0.0058 0.1744 11-11 0.0116 
13 0.6395    0.5581 0.7093 11-12 0.0058 
14 0.2093 0.0058   0.0756 0.0988 11-13 0.0407 
15 0.0116 0.0523    0.0058 11-14 0.4012 
16  0.6453     11-15 0.0872 
17  0.2326     12-12 0.0233 
18  0.0523     12-13 0.0116 
19  0.0116     12-14 0.0291 
20       12-15 0.0349 
21   0.0291    12-16 0.0058 
22   0.0756    12-17 0.0058 
23   0.3081    12-19 0.0058 
24   0.5058    13-13 0.0291 
25   0.0640    13-14 0.0349 
26   0.0116    13-15 0.0174 
27   0.0058    13-16 0.0465 
       13-17 0.0291 
       13-18 0.0058 
       14-14 0.0349 
       14-15 0.0174 
       15-15 0.0058 
       16-16 0.0523 
       16-17 0.0058 
       16-19 0.0058 
       17-17 0.0116 
       17-18 0.0174 
h 0.5307 0.5269 0.6421 0.5968 0.5560 0.4592  0.8212 
D=0.590 

 

To investigate the separation of recently diverged populations, we performed a locus by 

locus analysis between the Azorean population and those we assumed to be the closest, 

e.g. the Madeirans (Fernandes et al. 2001), central Portuguese (Carvalho et al. 2000) 
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and northern mainland Portuguese (Gonzalez-Neira et al. 2000), using microsatellite 

analysis. Pairwise FST showed no statistical differences (p<0.05) to DYS389II, DYS391 

and DYS393 loci. However, excepting DYS389II locus, the other loci show statistical 

difference (p<0.05) between the Azoreans and the central mainland Portuguese. The 

comparison of Azoreans and northern Portuguese show that the difference is found only 

at the DYS390 locus. Taken together, the data suggests no genetic differentiation 

between northern Portuguese, Madeirans and Azoreans. 

 

VI.1.4.3. Y-chromosome STR polymorphism within haplogroups 

When combining the SNPs with the STRs the number of haplotypes increased from 118 

(STRs alone) to 123 (SNPs and STRs) and the discriminatory capacity raised from 

68.6% to 71.5% (Table VI.2). The most common haplotypes were found on a 

P*(xR1b8, R1a, Q3) background. Haplotype H7 (13-16-24-10-13-13-11/14) occurred 

10 times (5.8%), H6 (13-16-24-11-13-13-11/14) accounted for 9 individuals (5.2%) and 

the third most frequent haplotype, H15 (13-16-23-11-13-13-11/14), was found 6 times 

(3.5%). Of the 172 males there were 98 unique haplotypes (56.9%). 

The two most common haplotypes in Azores, H7 (5.8%) and H6 (5.2%), are represented 

in the YHRD – Y-Chromosome Haplotype Reference Database at 1.49% and 3.42%, 

respectively. As of July 2004, this database contains 15,545 haplotypes from 114 

different European regions. Haplotype 13-16-24-11-13-13-11/14 is recorded at 3.42% in 

the European database, but at only 0.58% (H79) in Azores. In addition, our data show 

low frequency (17.4%) of population-specific haplotypes. Of the remaining 82.6% 

nonunique haplotypes, the majority are shared with the mainland Portuguese and 

Madeirans (51.2%), Germans (64.5%), Spanish (56.3%) and Italians (50%). High 

numbers of nonunique haplotypes and consequent haplotype sharing indicate a close 

relationship between populations (Kayser et al. 2001). Two haplotypes were shared by 

two different HG backgrounds (Table VI.2), one between P*(xR1b8, R1a, Q3) and J*, 

and another between BR*(xB2b, CE, F1, H, JK) and E*(xE3). The presence of identical 
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Y-chromosome STR haplotypes found on different SNP HGs is evidence of recurrent 

mutations, likely to occur at STR loci. 

 

VI.1.5. Discussion 

VI.1.5.1. Prevalent Y-chromosome lineages in Azores Islands 

The non-random distribution of distinctive stable HGs provides patterns of genetic 

affinity and clues concerning past human movements. Here we investigated the genetic 

background of the male Azorean population, and discussed the results under the light of 

existing historical records. 

HG J*, defined by the 12f2 deletion, is largely confined to Caucasoid populations, with 

its highest frequencies being found in Middle eastern populations. It is thought to have 

originated in the Middle east where its frequency exceeds one-third of the 

Y-chromosomes of Jewish, Turkish and Arab populations (Bosh et al. 2001; Nebel et 

al. 2001). Our data shows that in Azores this haplogroup is the second most common, 

with a frequency of 13.4%, twice as high as in mainland Portugal (6.8%; Rosser et al. 

2000). Using a sampling strategy based on the three geographical groups of the Azores 

Islands, Montiel and colleagues (2005) found lineage J at a lower frequency (8.6%) for 

the whole archipelago, although their study revealed similar frequency (14.5%) for the 

islands of the Central group. The high frequency of lineage J raises the question of 

whether Jewish early settlers left a significant imprint in the genetic pool of the Azorean 

male population. The overall northwest (NW) African contribution to the Iberian 

Y-chromosome pool has been calculated as 7%, with the highest level of contribution 

(14%) being found in Andalusians, southern Iberia (Bosch et al. 2001), a result that is 

consistent with the population movement associated with Islamic rule in Iberia (Pereira 

et al. 2000). The frequency of the NW African lineage E*(xE3) in mainland Portugal 

and Azores (11.7% and 10.5%, respectively) is similar. 
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Table VI.2. Frequencies of Y-chromosome haplotypes by haplogroup in the Azorean population. 

Haplogroup H DYS389I DYS389II DYS390 DYS391 DYS392 DYS393 DYS385 Frequency 
1 12 16 24 10 13 13 11-15 1 
2 12 16 24 11 13 13 12-14 1 
3 13 16 23 11 13 13 12-13 1 
4 13 16 23 10 13 13 12-14 2 
5 13 16 24 11 13 14 11-13 2 
6 13 16 24 11 13 13 11-14 9 

13 16 24 11 13 13 12-15 1 
10 13 16 24 10 14 12 11-14 1 
11 13 17 23 11 13 13 12-14 1 
12 14 16 25 11 13 13 11-15 1 
13 13 16 23 11 13 12 13-16 1 
14 13 16 23 12 13 13 11-14 1 
15 13 16 23 11 13 13 11-14 6 
16 13 16 24 11 13 13 9-14 1 
17 13 17 23 11 13 13 11-13 1 
18 13 17 23 10 13 13 11-14 1 
19 13 16 24 11 13 13 9-15 1 
20 13 16 22 11 13 13 11-14 1 
21 14 16 23 11 13 13 11-14 3 
22 13 16 24 11 13 12 11-15 1 
23 12 14 24 12 14 13 11-14 1 
24 13 16 24 11 13 12 11-14 2 
25 14 16 24 11 14 13 11-15 2 
26 12 17 24 11 14 13 11-14 1 
27 13 17 24 11 13 14 11-15 1 
28 13 17 24 10 13 14 11-15 1 
29 13 16 24 11 13 13 11-15 2 
30 14 15 24 10 13 12 11-11 1 
31 13 16 25 10 13 13 13-13 1 
32 13 17 24 11 13 14 11-14 1 
33 13 18 23 11 13 13 11-14 1 
34 13 15 24 11 13 13 11-14 1 
35 13 16 23 11 14 13 11-14 2 
36 14 16 24 11 13 12 11-14 1 
37 14 15 24 10 13 13 11-14 3 
38 12 17 24 12 13 13 11-14 1 
39 13 17 24 11 13 13 11-15 1 
40 13 16 24 11 13 14 11-14 3 
41 13 16 23 10 14 13 11-15 1 
42 13 17 24 11 13 13 11-12 1 
43 13 17 23 11 13 14 11-15 1 
44 14 16 24 11 14 13 11-14 1 
45 12 16 24 11 13 13 11-14 2 
46 12 17 24 10 13 13 11-13 1 
47 13 16 24 10 13 13 11-11 1 
48 13 16 24 10 13 14 11-14 1 
49 14 16 25 11 13 13 11-14 1 
50 13 16 23 11 13 13 12-14 1 
51 14 16 24 11 13 13 11-14 3 
52 14 17 23 11 13 13 11-14 1 
53 14 16 24 11 13 13 10-14 2 
54 14 16 24 11 13 13 11-15 1 
55 13 17 24 12 13 13 11-15 1 
56 13 16 25 11 13 13 11-14 1 
57 14 15 24 11 14 12 13-14 1 
58 14 15 25 10 13 13 11-14 1 
59 15 16 25 10 13 13 11-15 1 
60 13 17 25 11 11 13 11-14 1 
61 13 16 23 12 13 12 12-15 1 
62 13 16 23 11 13 12 11-14 1 
63 13 16 24 12 13 13 11-14 1 
64 13 17 24 10 13 13 11-14 1 

7 13 16 24 10 13 13 11-14 10 
8 13 16 24 10 14 13 11-14 1 
9 

P*(xR1b8,R1a,Q3) 
N=102 

GD=0.9986 
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Table VI.2. Continuation. 

Haplogroup H DYS389I DYS389II DYS390 DYS391 DYS392 DYS393 DYS385 Frequency 
65 13 16 26 10 11 12 13-13 2 
66 13 17 23 10 11 12 13-18 1 
67 13 15 23 10 11 13 12-12 1 
68 13 16 22 10 11 13 12-19 1 
69 12 16 24 10 11 12 12-17 1 
70 13 16 27 10 11 12 13-13 1 
71 13 16 25 9 11 12 13-17 1 
72 13 16 22 9 11 12 13-17 1 
73 13 16 23 10 11 12 13-16 2 
74 13 18 25 10 11 12 14-14 1 
75 13 16 24 10 13 14 11-14 1 
76 13 18 23 11 11 12 13-16 1 
77 14 16 23 10 11 12 14-14 1 
78 13 16 23 9 11 12 13-16 2 
79 13 16 24 11 13 13 11-14 1 
80 14 17 23 10 11 12 13-15 1 
81 13 16 25 11 11 13 12-16 1 
82 13 16 23 9 11 12 14-15 1 
83 13 17 23 10 11 12 13-17 1 

J* 
N=23 

GD=0.9872 

84 13 17 24 10 11 12 13-17 1 
85 12 17 22 10 11 14 14-15 1 
86 12 16 23 10 11 13 12-13 1 
87 15 15 23 10 11 13 12-12 1 
88 12 16 22 10 11 13 13-15 1 
89 12 16 22 10 11 13 13-14 2 
90 12 16 22 10 11 12 13-14 1 
91 13 16 23 10 13 14 14-15 1 
92 12 16 22 10 11 13 12-15 2 
93 14 18 22 10 11 14 13-13 1 
94 12 16 21 11 11 14 11-13 1 
95 12 16 23 10 11 13 13-15 1 
96 12 17 23 10 11 13 14-14 1 
97 12 17 21 10 11 15 13-17 1 
98 12 18 24 10 11 13 16-16 1 
99 14 16 23 10 11 13 12-12 2 

100 12 17 22 12 11 13 13-14 1 

BR*(xB2b,CE,F1,H,JK) 
N=20 

GD=0.9842 

101 13 16 23 11 12 14 15-15 1 
102 14 17 21 9 11 13 12-15 1 
103 13 17 22 9 11 13 12-15 1 
104 13 17 24 10 11 13 17-18 3 
105 13 17 23 10 11 13 16-16 1 
106 13 19 24 10 11 13 16-16 2 
107 14 16 24 9 11 13 13-14 1 
108 13 16 23 9 11 13 14-14 1 
109 14 16 24 9 11 13 14-14 2 
110 13 18 24 10 11 13 16-17 1 
111 13 18 23 10 11 14 17-17 1 
112 14 17 24 11 11 13 16-16 1 
113 14 17 21 10 11 13 16-16 1 
114 13 17 23 11 11 13 16-19 1 

E*(xE3) 
N=18 

GD=0.9815 

115 12 18 24 10 11 13 16-16 1 
116 13 17 23 10 13 10 12-16 2 K*(xK1,LN,O2b,O3c,P) 

N=3 
GD=0.7278 

117 14 18 23 10 14 12 17-17 1 

118 13 17 24 11 11 13 11-14 1 R1a 
N=2 

GD=0.5000 
119 13 17 25 11 11 13 11-14 1 

120 14 17 21 11 11 13 16-16 1 E3a 
N=2 

GD=0.5000 
121 13 17 24 10 11 13 16-16 1 

N3 122 14 16 23 11 14 13 11-13 1 
R1b8 123 13 17 24 10 13 13 11-14 1 

 GD=genotype diversity, 
 H=Haplotype 
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Montiel and colleagues (2005) also found comparable values (13.0%) for the 

archipelago. The results obtained by us and the other group suggest several hypotheses 

for the presence of this lineage in the present-day population of Azores: a direct input of 

Moorish prisoners, the influence of early Portuguese settlers, or a contribution of both 

Moorish prisoners and Portuguese. 

Lineage E3a, defined by mutation sY81, shows a subSaharan distribution pattern. This 

HG is the most frequent in west African populations, and their presence can be 

interpreted as resulting from subSaharan gene flow. The occurrence of lineage E3a in 

Azores is the result of African influence, since it has been detected neither in Europe, 

nor in Iberian samples (Semino et al. 2000; Bosh et al. 2001; Rosser et al. 2000). The 

presence of subSaharan African slaves in the archipelago since the beginning of the 

settlement is well documented (Matos 1989). Therefore, we conclude that the 1.2% 

Y-chromosomes with the E3a background represents the male descendants of black 

slaves from Guinea, Cape Verde and São Tomé. 

Lineage N3, defined by Tat biallelic polymorphism, is specific to Asians and northern 

Europeans and has not been found in Iberian Peninsula or in other European countries 

(Rosser et al. 2000; Helgason et al. 2000). This mutation probably arose in the 

Mongolia/ China area, and the present distribution stretches from Japan to Norway 

(Zerjal et al. 1997). The presence of this lineage in Azores (0.6%) is intriguing. 

Historical records of the presence of Asians or Mongolians in the archipelago are not 

known, but Bruges-Armas and colleagues (1999) have recently described the presence 

of Mongolian HLA genes at a high frequency in Terceira Island population (Azores). 

Thus, it is possible that the presence of Lineage N3 may have been introduced at the 

expansion of the trade navigation between Europe, America and Asia, during the 16th 

and 17th centuries, when the Azores had a strategic role due to its geographic position 

(Russel-Wood 1998). 

Lineage R1b8, defined by a C→T base substitution at the SRY-2627, arose recently in 

Iberia. This lineage has its highest frequency in Basques (11%) and Catalans (22%), 

whereas in other regions these chromosomes are rare or absent (Hurles et al. 1999). In 

Azores, its frequency is marginal (0.6%), probably reflecting the descendants of the 
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Spaniards, who came to the islands during the reign of Spain over Portugal, from 1580 

to 1640 (Matos 1989). 

Lineage R1a is most frequent in central eastern Europe, comprising approximately half 

of the chromosomes in the Russian, Polish and Slovakian samples. In contrast, 

frequencies in the southeast and southwest Europe are low. In our sample set, R1a is 

four times higher then in mainland Portugal (Rosser et al. 2000), which may be 

explained by the following reasons: (i) this chromosome arrived with Portuguese 

settlers only, and subsequently increased in frequency, (ii) some chromosomes came in 

with Portuguese settlers, while others came in directly from central eastern Europeans, 

and (iii) they are an exclusive contribution from central eastern Europe. Historical 

records and papers exploring historical settlement show that some Europeans (e.g. 

Flemish) contributed to the peopling of the Azores, so we believe that all the hypotheses 

above are possible. 

 

VI.1.5.2. Variability of Y-chromosome STRs in Azores Islands 

Comparisons of allelic frequencies between our sample set and those obtained in central 

mainland Portugal (Carvalho et al. 2000) show differences. Indeed, historical records 

demonstrate that the first Portuguese settlers were mainly from the north and south 

Portugal. The mean gene diversity value across loci in the Azorean sample (D=0.590) is 

higher than the value reported for northern Portugal (D=0.517), from which Azoreans 

are believed to be partially derived (Guill 1993). It is also higher than that observed for 

the Europeans (D=0.503). Likewise, haplotype diversity value in Azores (0.9994) is 

higher than in northern Portugal (0.980) and Europe (0.985). Unexpectedly, the 

Azoreans share more haplotypes with the Germans than with the Portuguese, but due to 

a relative high mutation frequency of Y-STRs, Y-haplotypes can be shared identical by 

state that are not identical by descent (de Knijff 2000). However, we conclude that the 

diversity found in Azorean Y-chromosome is derived from the admixture of Portuguese 

with other populations. 
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One advantage of Y-chromosome markers, compared with mtDNA, is that 

Y-chromosome polymorphisms seem to show higher degree of population specificity 

(Seielstad et al. 1998), making them more informative for tracing population 

relationships. The comparison between the paternal Y-chromosome (present study and 

Montiel et al. 2005) and the maternal mtDNA (Santos et al. 2003) shows some 

evidences of differential sex-specific influences. Here, the paternal Middle east 

influence was estimated at 13.4%, which is higher than the 7.5% obtained by Santos and 

colleagues (2003). Another difference was the smaller contribution from Africans. We 

estimated a clear African Y-chromosome contribution of 1.2%, whereas they identify an 

11.3% contribution of African mtDNA. The Y-chromosome and mtDNA results are, in 

general, concordant; they both indicate the same history for the peopling of the Azores 

and suggest that there was some gender differentiation in the population pathways. 

 

VI.1.6. Concluding remarks 

The presence of HGs of widespread distribution in Europe, in combination with others 

of clear subSaharan, Asian and Middle east origin reflects the diverse patterns defining 

the extant Azorean Y-chromosome pool. We conclude that the current paternal 

Y-chromosome pool in the Azores is of Portuguese descent, with a considerable 

contribution of individuals from multiple origins. 
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VI.2. Assessment of the Azorean ancestry by Alu insertion polymorphisms  

VI.2.1. Summary 

The knowledge of the population ancestry from genetic markers is essential, for 

example, to understand the history of human migration and to carry out admixture and 

association studies. Here we assess the genome ancestry of the Azorean population 

through the analysis of six Alu polymorphic sites (TPA-25, ACE, APO, B65, PV92 and 

D1) in 65 Azoreans and 30 mainland Portuguese unrelated blood donors and compare 

the data with those obtained by Y-chomosome and mtDNA. Allele frequencies were 

calculated by direct counting. Statistical analysis was performed using Arlequin 2.0. 

Nei’s genetic distance was calculated with DISPAN software, and trees were 

constructed by Neighbor-Joining (NJ) using PHYLIP 3.63. The results show that all Alu 

insertions were polymorphic. APO is the closest to fixation. The less frequent insertions 

are PV92 and D1 in Azores and mainland Portugal, respectively. ACE and TPA-25 

show the highest values of heterozygosity in both populations. Allele frequencies are 

very similar to those obtained in European populations. These results are validated by 

the Y-chromosome and mtDNA data, where the European represent the majority of the 

maternal and paternal lineages. Overall, these data are reflected in the phylogenetic tree, 

in which Azores and Portugal branch with Catalans, Andalusians, Morrocans and 

Algerians. We conclude that the Azores shows no significant genetic differences from 

mainland Portugal and is an outbred population. Moreover, the data validate the use of 

Alu insertion polymorphisms to assess the origin and history of human populations. 

 

VI.2.2. Introduction 

Y-chromosome and mtDNA have been extensively used to characterize populations in 

terms of diversity and origin. However, the full picture of the histories of populations 

requires studies of markers in the recombining parts of the nuclear DNA, namely the 

autosomes (Kidd et al. 2000). Polymorphic Alu insertions represent an important source 

of nuclear genetic variability and their use is advantageous, once, they are: identical by 
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descent, widely dispersed throughout the human genome, subject to very limited 

amounts of gene conversion, rapidly and easily genotyped, and selectively neutral when 

located in noncoding regions (Batzer et al. 1996; Comas et al. 2000).  

Recently, studies on Y-chromosome lineages (Pacheco et al. 2005; Montiel et al. 2005) 

and mtDNA (Santos et al. 2003) in the Azores population demonstrated that the current 

paternal pool of the Azoreans is of Portuguese descent with significant contribution 

from people with other genetic background. Our main purpose is to compare the results 

from Y-chromosome and mtDNA with those obtained here through the study of the 

genetic diversity and ancestry of the Azores population using six Alu insertions. 

Moreover, we intend to assess the genetic differentiation between Azores and mainland 

Portugal.  

 

VI.2.3. Material and Methods 

VI.2.3.1. Population samples  

The sample set, comprising 65 Azoreans and 30 mainland Portuguese unrelated blood 

donors, were obtained from a biobank constructed according to International ethical 

guidelines (Mota-Vieira et al. 2005).  

 

VI.2.3.2. Alu genotyping 

Six human-specific Alu insertion polymorphisms (B65, ACE, D1, APO, PV92 and 

TPA25) were studied, using sets of oligonucleotide primer-pairs described previously 

(Batzer et al. 1996). Polymerase Chain Reaction (PCR) amplifications were carried out 

in a singleplex 15 µl reaction mixture including 1X PCR buffer, 2.5 mM MgCl2, 0.8 

mM dNTP mix (0.2 mM each), 10 µM of forward and reverse primers, 2U of 

HotStarTaq DNA polymerase (QIAGEN) and 50 ng of genomic DNA. PCR conditions 

for B65, D1, PV92 and APO were as follows: (1X) 95ºC/ 15 min; (30X) 94ºC/ 1 min, 

optimal annealing temperature for 2 min, 72ºC/ 1 min; with a final extension step at 

 161



CHAPTER VI  Azorean Ancestry: Alu insertions 
 
 

72ºC/ 10 min. Annealing time for TPA-25 and ACE markers was only 1 min. PCR 

products were visualized by electrophoresis in 4% agarose gel stained with Syber Green 

(Molecular Probes). 

 

VI.2.3.3. Statistical analysis 

We selected previously published data (Romualdi et al. 2002; Comas et al. 2000) on 17 

populations, namely: African American, Armenian, Bantu Speakers, Bretons, 

Darginian, European-American, French, German, Greek, Hungarian, Swiss, Syrians, 

Turks, Catalans, Andalusians, Moroccans and Algerians to perform population 

comparisons. The selection was based on the historical data for the Azorean peopling 

and the geographical location of the populations.  

Allele frequencies were calculated by direct counting and Hardy-Weinberg equilibrium 

was assessed by an exact test provided by the Arlequin program 2.0 (Schneider et al. 

1996). The inbreeding coefficient, FIS, was calculated by Genetic Data Analysis (GDA) 

software package (Lewis and Zaykin 2000). Statistical significance of genic and genetic 

differentiation between loci and populations was estimated by the GENEPOP32 web 

version program (Raymond and Rousset 1995).  

FST genetic distances were computed between pairs of populations by means of the 

DISPAN software (Ota 1993) and the distance matrix was used to construct a 

Neighbor-Joining (NJ) tree with PHYLIP 3.63 (Felsenstein 1993). The NJ tree was 

rooted by setting the frequency of each insertion to zero (ancestral), as previously 

described (Batzer et al. 1996). We used TreeView 1.6.6 (Page 1996) to display tree 

phylogenies obtained by Neighbor-Joining.  

 

 

 

                                                 
32 GENEPOP web version, http://genepop.curtin.edu.au. 
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VI.2.4. Results and Discussion  

The frequency distribution of six Alu polymorphisms was determined in a sample set 

comprising 95 individuals from Azores and mainland Portugal (Table VI.3). All Alu 

insertions were polymorphic in both populations, being APO the closest to fixation. The 

less frequent insertion is PV92 and D1 in Azores and Portugal, respectively. ACE and 

TPA-25 show the highest values of heterozygosity in both populations33. The data also 

show that all markers were in Hardy-Weinberg equilibrium.  

We observe a wide range of Alu insertion frequencies, from 0.208 (PV92) to 0.946 

(APO; Table VI.3). Nevertheless, when we focus on genetic differentiation between 

populations, which gives us the differences in the genotypic distribution locus by locus, 

the estimation using GENEPOP program shows no significant differences between the 

Azores and mainland Portugal.  

The inbreeding coefficient, FIS, represents a measure of reduction in the genetic 

variability of a population. We observe that Azores shows a higher value when 

compared to Portugal. However, the difference is not statistically significant (p=0.069).  

 
Table VI.3. Alu insertion frequencies, heterozygosity and gene diversity for Azores and mainland 

Portugal. 

Alu insertion polymorphism 
Population N TPA-25 ACE APO PV92 D1 B65 
Azores 65       
 Frequency  0.592 0.385 0.946 0.208 0.254 0.585 
 Heterozygosity  0.424 0.485 0.106 0.257 0.348 0.409 
 HW (p value)  0.323 1.000 1.000 0.033 0.524 0.211 
 Locus diversity   0.493 0.481 0.117 0.343 0.392 0.493 
 Av. gene diversity  0.383 +/- 0.233 
 FIS  0.117 
        
Portugal 30       
 Frequency  0.600 0.367 0.917 0.283 0.233 0.500 
 Heterozygosity  0.517 0.483 0.034 0.345 0.275 0.483 
 HW (p value)  0.665 1.000 0.073 1.000 0.453 1.000 
 Locus diversity  0.496 0.480 0.128 0.404 0.370 0.517 
 Av. gene diversity  0.392 +/- 0.240 
 FIS  0.094 

 

                                                 
33 To have a greater dispersion of these results, the Alu frequencies were registered in the ALFRED database 

(Rajeevan et al. 2003, http://alfred.med.yale.edu/alfred/index.asp). 
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Moreover, there are no significant differences in gene diversity and heterozygosity 

between Azores and Portugal. This indicates that both populations are outbred and no 

deviation from equilibrium is present. 

In order to assess the relationship between the two populations analysed in the present 

study, and compare them with other worldwide populations previously reported 

(Romualdi et al. 2002; Comas et al. 2000), FST genetic distances were calculated and 

depicted in a NJ tree (Figure VI.4). The tree topology clearly sets Azores and Portugal 

far from the hypothetical ancestral population, which is closer to African-Americans 

and Bantu speakers. In addition, we observe the proximity of the Azores and Portugal to 

other European and north African populations. These results are confirmed by 

Y-chromosome and mtDNA studies (Pacheco et al. 2005; Santos et al. 2003), where a 

mixed composition of European and African haplogroups is evidenciated. For example, 

we identified 59.3% of European and 10.5% of northwest African paternal lineages in 

the genetic pool of Azores. However, since a NJ tree imposes a bifurcating model onto a 

distance matrix, which may be inadequate for closely related populations, such as, 

Azores and Portugal, we also performed a PC analysis based on the Alu frequencies 

(Figure VI.4). The first and second PC accounts for 88.8% and 5.9% of the genetic 

variance observed, respectively, and their plot shows a similar pattern to that shown in 

the NJ tree. As all populations display close proximity in the PC analysis, we performed 

an AMOVA analysis. As expected, only 0.04% accounts for variation among groups.  

Overall, the genetic relationships by means of NJ tree and PC analysis reveal that 

Azores is closely related to mainland Portugal. Both maternal (Santos et al. 2003) and 

paternal (Pacheco et al. 2005) studies demonstrate that mainland Portuguese were the 

main contributors to the peopling of Azores. The data presented here support this 

conclusion. However, the comparisons between Azorean Y-chromosome and mtDNA 

show some evidence of differential sex-specific influences (Montiel et al. 2005), which 

was not detected by our data based on autosomal Alu polymorphisms. 
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Figure VI.4. Population relationships based on six Alu markers. A. Neighbor-Joining tree using FST 
genetic distances. The following populations, AfAmerica, EuAmerica and Darginia 
represent African Americans, European Americans and Darginians, respectively. B. 
Principal component analysis based on allele frequencies. AZ, Azores; PO, Portugal; 
AA, African American; AR, Armenian; BA, Bantu Speakers; BR, Bretons; DA, 
Darginian; EA, European American; FR, French; GE, German; GR, Greek Cypriot; 
HU, Hungarian; SW, Swiss; SY, Syrians; TU, Turk Cypriot; CA, Catalans; AN, 
Andalusians; MO, Moroccans; AL, Algerians. 
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VI.2.5. Concluding remarks 

Alu insertions are widely distributed throughout the human genome, constituting 

convenient markers to assess genetic diversity between human populations. Here we 

show that Alu frequencies in Azores and mainland Portugal are very similar to other 

European regions. Despite being geographically isolated, the Azores show no genetic 

differentiation when compared to mainland Portugal, which may only be explained by 

its recent historic settlement (~500 years). Moreover, the results here presented reveal 

that Azores is an outbred population with high genetic diversity. In summary, our data 

also support the use of Alu insertion polymorphisms to assess the origin and history of 

populations. 
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VII.1. Genetic signature of the São Miguel Island population (Azores) 

assessed by 21 microsatellite loci 

VII.1.1. Summary 

To study the genetic diversity of São Miguel’s population we compared 21 

microsatellite loci in 204 individuals from São Miguel Island and 103 individuals from 

mainland Portugal. The results show that São Miguel and mainland Portugal 

populations have an average gene diversity of 0.767 and 0.765, respectively. Allele 

frequencies of all markers are comparable to other European populations. This result is 

corroborated by the genetic relationships analysis based on the NJ tree and principal 

component, where São Miguel, and probably, Azores is closely related to mainland 

Portugal. Overall, the data suggests that São Miguel population does not show 

population structure and is behaving as an outbred population with high genetic 

diversity.  

 

VII.1.2. Introduction 

The genetic variation of modern human populations, including disease-causing 

variation, results of many evolutionary processes, most of which are still unknown 

(Tishkoff and Varrelli 2003). Understanding these processes will shed light on how past 

demography shaped variation in the human genome. In this study, we characterize the 

overall diversity of São Miguel’s population, based on the analysis of 21 autosomal 

STRs. Our main purpose is to estimate the genetic heterogeneity of the island 

population and infer its genetic structure in order to understand its past history and 

genetic evolution.  

 

VII.1.3. Material and Methods 

VII.1.3.1. Population samples 

The sample population, composed of 204 healthy unrelated individuals, was obtained 

from the anonymous Azorean DNA bank located at the main Hospital in São Miguel 
 168



CHAPTER VII  Azorean Structure: São Miguel Island 
 
 
Island (Mota-Vieira et al. 2005). In addition, 103 mainland Portuguese individuals were 

analysed. The collection the samples followed the international ethical guidelines for 

sample collection, processing and storage. 

 

VII.1.3.2. STR typing 

Twenty-one microsatellite loci (TPOX, D3S1358, FGA, CSF1PO, D5S818, D6S265, 

TNFα, D7S820, D8S1179, D10S525, TH01, vWA, D13S317, D14S306, FES/FPS, 

D16S539, D17S976, D18S51, D19S433, D20S161 and D22S417) were typed using 

fluorescently labelled primers described previously in Human Databases (STRBase34 

and Human Genome Database35). PCR amplifications were carried out and run on a 

CEQ™8000 Genetic Analysis System (Beckman Coulter).  

 

VII.1.3.3. Statistical analysis  

Allele frequencies were calculated by direct counting; Hardy-Weinberg equilibrium, 

gene diversity and inbreeding coefficient were assessed by the GENEPOP web version 

software. FST related genetic distances were computed between pairs of populations by 

means of DISPAN and the distance matrix was used to construct a Neighbor-Joining 

(NJ) tree using PHYLIP 3.63. We used TreeView 1.6.6 to display tree phylogenies 

obtained from NJ. The FST values were calculated using data of allele frequencies, 

deposited in the ALFRED database, for 11 STRs (TPOX, D3S1358, FGA, CSF1PO, 

D5S818, D7S820, D8S1179, TH01, vWA, D13S317 and D18S51), since the 

information for the remaining microsatellites was not available. The following 

populations were selected from the same database: north and center Portugal, north 

Spain, Madeira, Cape Verde, Andalusia, Belgium, Italy, Morocco, Fang, Arabs, Indian 

and Turks.  

 

 

                                                 
34 STRBase, http://www.cstl.nist.gov/biotec/strbase.  
35 Human Genome Database - GDB, http://www.gdb.org.  
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VII.1.4. Results 

The genetic diversity was determined in 204 São Miguel individuals and 103 mainland 

Portuguese and based on the allele distribution for the 21 loci. Allele frequencies are 

supplied in Appendix IX.1. In Table VII.1 we describe the Hardy-Weinberg 

equilibrium, the gene diversity and the inbreeding coefficient for both populations. All 

markers are in Hardy-Weinberg equilibrium, considering p<0.01 (99% confidence). 

Microssatellite data reveals that in São Miguel, the gene diversity values range from 

0.623 for TPOX to 0.904 for D17S976. The same markers show similar values in the 

mainland Portuguese sample. Overall, the average gene diversity is 0.767 for São 

Miguel Island, which is a similar value to that found in mainland Portugal (0.765, Table 

VII.1).  

 
Table VII.1. Hardy-Weinberg equilibrium (HWE), gene diversity (GD) and inbreeding coefficient 

(FIS) for São Miguel and mainland Portugal based on 21 STRs. 

São Miguel  mainland Portugal 
Microsatellite 

locus  
Chromosome 

location HWE GD FIS  HWE GD FIS

TPOX 2p23 0.2793 0.623 -0.0307  0.9459 0.630 -0.0776 
D3S1358 3p21 0.1456 0.793 0.0121  0.0189 0.803 0.0215 
FGA 4q28 0.3806 0.857 0.0333  0.1315 0.870 0.0295 
CSF1PO 5q33.3 0.1716 0.719 -0.0634  0.4771 0.711 -0.0368 
D5S818 5q21 0.7140 0.694 0.0532  0.0582 0.705 -0.0874 
D6S265 6p21 0.0158 0.754 0.0181  0.0278 0.771 0.1061 
TNFα 6p21 0.2539 0.868 0.0177  0.0226 0.874 0.1004 
D7S820 7q 0.0239 0.810 0.0799  0.0101 0.812 0.0075 
D8S1179 8q24.1 0.1571 0.818 0.0113  0.6259 0.803 0.0335 
D10S525 10p11 0.0153 0.666 -0.0086  0.0639 0.712 0.0593 
TH01 11p15 0.6432 0.801 -0.0463  0.6272 0.779 0.1152 
vWA 12p12 0.1335 0.795 -0.0116  0.5869 0.826 -0.0463 
D13S317 13q22 0.1293 0.796 0.0453  0.0182 0.824 0.1049 
D14S306 14q 0.2617 0.784 0.0316  0.6014 0.817 0.0619 
FES-FPS 15q25 0.4007 0.697 0.0579  0.3233 0.703 0.1028 
D16S539 16q22 0.3124 0.767 0.0347  0.6174 0.794 -0.0143 
D17S976 17p11 0.2288 0.904 -0.0251  0.6041 0.925 0.0132 
D18S51 18q21.3 0.0850 0.884 -0.0038  0.3238 0.885 0.0242 
D19S433 19q12 0.0304 0.788 0.0360  0.0289 0.818 0.1223 
D20S161 20p 0.6970 0.638 -0.0212  0.6131 0.691 0.0169 
D22S417 22q13 0.4706 0.851 -0.0026  0.8077 0.838 -0.0431 
Av. gene diversity 0.7670  0.7650 
Total FIS  0.0111  0.0326 
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The assessment of the inbreeding coefficient was performed by the calculation of FIS. 

The level of inbreeding for each marker, for the São Miguel sample, ranges from – 

0.0634 to 0.0799 for CSF1PO and D7S820, respectively. In general, the total value of 

FIS is 0.0111 for São Miguel and 0.0326 for mainland Portugal (Table VII.1). 

To investigate the relationships between São Miguel, mainland Portuguese and other 

European and African populations, we used FST genetic distances depicted in a NJ tree 

(Figure VII.1). The data shows a close proximity between all European populations, 

where São Miguel clusters. Noteworthy, Fang and Arabia are the most divergent and 

show genetic proximity with the Morocco and Cape Verde populations. However, since 

a NJ tree imposes a bifurcating model onto a distance matrix, which may be inadequate 

for closely related populations, such as, São Miguel and Portugal, we also performed a 

PC analysis (Figure VII.1). The first and second PC accounts for 73.9% and 11.9% of 

the genetic variance observed, respectively, and their plot shows a similar pattern to that 

shown in the NJ tree. Overall, the genetic relationships reveal that São Miguel is closely 

related to mainland Portugal. 

 

VII.1.5. Discussion 

In order to assess the patterns of genetic diversity in São Miguel and in mainland 

Portugal, we genotyped 21 microsatellite loci in 204 islanders and 103 mainland 

Portuguese subjects. In general, the data suggest high gene diversity for both 

populations, with no significant difference between them. The comparison of FIS values 

for the mainland (0.0326) and the São Miguel (0.0111) samples suggests higher 

inbreeding in the mainland. Although there is a significant difference (χ2, p<0.001) in 

FIS values, the observed trend is not in agreement with results obtained in a comparative 

study of consanguineous marriages (first cousins, uncle-niece and aunt-nephew) 

registered by the National Institute of Statistics for Azores, Madeira and mainland 

Portugal from 1931 to 2000 (Pacheco et al. 2003). The small values for this parameter 

in both populations suggest that mainland and São Miguel do not show genetic structure 

and are behaving as expanded populations with high genetic diversity.  
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Figure VII.1. Population relationships based on 11 STRs A. Neighbor-joining tree using Nei’s genetic 
distances. The numbers in the NJ tree represent the bootstrap values (%) obtained with 
10,000 iteractions. B. Principal component analysis based on allele frequencies. The 
populations are represented as follows: SM, São Miguel; PN, north Portugal; PC, center 
Portugal; MA, Madeira; MP, mainland Portugal; NS, north Spain; AN, Andalusia; BE, 
Belgium; IT, Italy; MO, Morocco and CV, Cape Verde. 

 

Differences in STR allele frequencies among populations can correctly reveal their 

genetic relationships. This study shows that São Miguel population exhibits an average 

gene diversity value (0.767) similar to other European populations (0.773; Tishkoff and 

Varrelli 2003), a higher value when compared to south American populations (0.697, 

Mesa et al. 2000) and a lower value than the African populations (0.792; Tishkoff and 
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Varrelli 2003). Furthermore, allele frequencies of all markers are comparable to other 

European populations. The NJ tree shows São Miguel clustering with the mainland 

Portuguese sample. This last sample does not cluster with north and center Portugal, 

probably because it is composed mainly by individuals from the south region. This 

observation agrees with other genetic studies (Pacheco et al. 2005, Montiel et al. 2005, 

Gonçalves et al. 2005), where the mainland south region is genetically different when 

compared with the other two regions, north and center. In addition, we observe a 

clustering of these populations with north Spain, Italy, Belgium, Madeira and 

Andalusia. In general, the results agree with a previous genetic study of the Azorean and 

the mainland Portugal populations, based on Alu insertion polymorphisms (Branco et al. 

2006). 

The genetic reconstruction of human origins and history requires evidence from 

different parts of the genome. Previous studies have reported a high genetic variability 

and heterogeneity of the Azorean population based on the maternal (Santos et al. 2003) 

and paternal (Pacheco et al. 2005) lineages. The results, based on microsatellites, 

support these observations and corroborate historical evidence of the settlement of São 

Miguel Island and, consequently, of Azores archipelago. Thus, the data suggests that 

São Miguel and probably the Azorean genetic signature results from the major 

contribution of Portuguese. Understanding the background of neutral human genetic 

variation provides insights about the allelic structure of health-related genetic variation 

(Bamshad et al. 2004). Therefore, the knowledge here obtained will be crucial to predict 

and explain the genotypes implicated in genetic diseases in the Azorean population. 
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VII.2. Azores islands: genetic origin, gene flow and diversity pattern 

VII.2.1. Summary 

The Azores are an archipelago located in the north Atlantic Ocean (parallel 38) 

composed of nine islands, dispersed over three geographical groups: The Eastern Group 

(São Miguel and Santa Maria), the Central (Terceira, Graciosa, Pico, São Jorge and 

Faial) and the Western (Flores and Corvo). Taking into consideration the geographical 

and settlement history differences of the archipelago, we assessed the genetic diversity 

pattern and the internal migration of the Azorean population, based on the analysis of 15 

STR loci in 592 unrelated individuals. The results of this evaluation reveal that Terceira 

displays the highest value of gene diversity (0.7979) and Corvo the lowest (0.7717). 

Gene flow analysis indicates that Corvo has the lowest values of migration, 23.35, 

whereas São Miguel and Terceira present the highest values of emigration, 108.14 and 

87.66, respectively. Taken together, the data demonstrate that, despite settlement 

diversity, no genetic difference between the islands population is observable today. This 

may be explained by the internal migration. Overall, the Azorean population can be 

analysed as a homogeneous genetic group presenting, possibly, the same drug-reaction 

profile. In terms of genomic medicine, these results will have a significant impact in the 

design of future genetic and pharmacogenomic studies in the Azorean population. 

 

VII.2.2. Introduction 

Population-specific genetic variation has been reported to be crucial for the genetic 

understanding of human demography and history. Moreover, several studies have 

emphasised its use in many fields of biomedical research, such as, the variation of 

disease prevalence in different regions and in pharmacogenetics (Cavalli-Sforza and 

Feldman 2003; The International HapMap Consortium 2005; Tishkoff and Kidd 2004; 

Foster and Sharp 2004; Suarez-Kurtz and Pena 2006). Therefore, a clear knowledge of 

the genetic variation of a population is of great interest. Our main objective is to answer 

questions such as: What is the genetic relationship between the different islands? Given 

the recent origin of the Azorean population, is the historic differential settlement 

revealed by the autosomal markers? What are the patterns of gene flow between the 
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islands’ populations? In addition, we intend to assess the overall genetic heterogeneity 

of the Azorean population and compare it with other well described populations. 

 

VII.2.3. Material and Methods 

VII.2.3.1. Population samples 

The study of the genetic diversity was based on a sample composed of 592 healthy 

Azoreans, obtained from the anonymous DNA bank located at the Hospital of Divino 

Espirito Santo (Ponta Delgada, São Miguel Island), the central hospital of the Azores. 

This bank was built according to the international ethical guidelines for sample 

collection, processing and storage (Mota-Vieira et al. 2005). The sample distribution 

per geographic group and island was the following: Eastern group, 166 (São Miguel, 

114; Santa Maria, 52); Central group, 320 (Terceira, 103; Pico, 66; São Jorge, 51; Faial, 

53; Graciosa, 47) and the Western group, 106 (Flores 76; Corvo, 30). 

 

VII.2.3.2. STR genotyping 

The PCR co-amplification of the fifteen STR loci (Penta-E, D18S51, D21S11, TH01, 

D3S1358, FGA, TPOX, D8S1179, vWA, Penta-D, CSF1PO, D16S539, D7S820, 

D13S317 and D5S818) and Amelogenin was performed using the multiplex STR 

system PowerPlex® 16 (Promega), according to the manufacturer’s instructions. 

Amplification was carried out on a DNA thermocycler GeneAmp® PCR System 2700 

(Applied Biosystems) in a 10 µl PCR reaction with 2.5 ng of template DNA. PCR 

products were mixed with deionised formamide and internal lane standard ILS-600 

(Applied Biosystems), and separated on an ABI 3130 Genetic Analyser. The sizing and 

genotyping were analyzed using GeneMapper® ID 3.2 software, and allele designations 

were made by comparison with the allelic ladders provided in the kit. 
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VII.2.3.3. Statistical analysis  

Allele frequencies were calculated by direct counting; the Hardy-Weinberg equilibrium 

and gene diversity were assessed by the Arlequin software (Schneider et al. 2000). 

Slatkins FST genetic distance matrix was computed between pairs of populations by 

Arlequin and used to perform Principal components analysis. The FST values were 

calculated using data of allele frequencies, deposited in the ALFRED database 

(Rajeevan et al. 2003), for 13 STRs (D18S51, D21S11, TH01, D3S1358, FGA, TPOX, 

D8S1179, vWA, CSF1PO, D16S539, D7S820, D13S317 and D5S818). The following 

populations were chosen from the same database taking into consideration their possible 

relation to the Azorean Islands: Fang, Guinea, Mozambique, African American, 

Andalusia, Belgium, Italy, Spain, Basque, Ashkenazi Jew, Portugal, Brazil, Morocco, 

Han and Arab. Penta-E and Penta-D markers were not considered, since they were not 

described for all of these populations. 

In order to estimate rates of migration among the islands’ populations, we used the 

method implemented in the Migrate 2.1.2 software (Beerli and Felsenstein 1999). This 

method uses a maximum likelihood framework based on coalescence theory and 

support the one-step mutation model for microsatellites. Moreover, Migrate software 

provides by default estimates of M=4Nem, where Ne is the effective population size and 

m the actual migration rate. In order to avoid influence of the differences of Ne between 

all islands we selected randomly from each sample 30 individuals, which corresponds to 

the smaller sample size (Corvo Island). 

 

VII.2.4. Results 

The assessment of genetic diversity of all the Azorean Islands’ populations was based 

on the allele distribution of 15 STR markers. Table VII.2 shows the Hardy-Weinberg 

equilibrium (HWE) p values and the gene diversity (GD) for each marker. All markers 

are in HWE, considering a 99% confidence (p<0.01), and are relatively polymorphic. 

The average number of alleles per locus is 11, ranging from 6 (TH01) to 20 (FGA). 

Comparing the allele composition between our sample and published data (ALFRED  
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CHAPTER VII  Azorean Structure: Origin, diversity and gene flow 
 
 
Database; Rajeevan et al. 2003), we observe rare alleles in the Azores, namely 

D18S51*24 and FGA*25.2. The most interesting is FGA*25.2, which was found in São 

Miguel and Faial Islands, and is particularly frequent in India. In general, Penta-E and 

D18S51 show the highest values of gene diversity (around 0.87). The marker with the 

lowest gene diversity is TPOX with values varying from 0.575 to 0.679 for Pico and 

Graciosa, respectively. The gene diversity values reveal that Terceira shows the highest 

value (0.7979) and Corvo presents the lowest (0.7717). However, all values are similar 

between islands and do not show a statistically significant difference (χ2, p=0.999). The 

average gene diversity for the whole Azorean population is 0.788. 

To understand the gene flow patterns between islands, we calculated the migration 

(emigration and immigration) rates through the Migrate software (Table VII.3). The 

data suggest that Corvo is the island with the lowest values of migration. São Miguel 

and Terceira islands present the highest values of emigration, 108.14 and 87.66, 

respectively. On the other hand, Santa Maria shows the highest value (79.11) of 

immigration followed by Graciosa with 69.04. The Azorean population has an average 

migration value of 51.57. 

The relationship between all islands was assessed by FST genetic distances and 

displayed by Principal Component (PC). The PC results (Figure VII.2) demonstrates 

that Corvo is the most genetically different island when compared with the other 

islands. Moreover, the data show a closer proximity between the Azorean Central 

(Terceira, Pico, Faial, São Jorge and Graciosa) and Eastern (São Miguel and Santa 

Maria) groups. These results are supported by the AMOVA analysis, where the Western 

group is the most different when compared with the other two groups. Nevertheless, 

these differences are not significant, only 1% of variance is observed between all groups 

of islands. The first and second PC accounts for 82.6% and 9.6% of the genetic 

variance, respectively. Moreover, to assess if genetic distances were correlated with 

geographic distances, we performed a Mantel test. The results show a relative 

correlation (r=0.457) between both distances with about 21% of the genetic variance 

explained by the geographic distance. 
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To compare the Azorean with other European and African populations, we used data 

deposited in the ALFRED database (Rajeevan et al. 2003). In order to enhance the 

differences in allele distribution, we realized a joint analysis dividing the total Azorean 

population in the three corresponding geographical groups, namely Eastern, Central and 

Western. The results of the FST genetic distances are depicted in a PC plot (Figure 

VII.3). The data show a close proximity between all European populations, where the 

three Azorean groups cluster. The data also demonstrate a close proximity between all 

African populations. However, the Morocco population is more related to the European 

populations, as expected. Brazil and Arabs are located in an intermediate position 

between the Europeans and Africans. Overall, the genetic relationships by means of PC 

analysis reveal that the Azorean population is closely related to that from mainland 

Portugal. 

 

Figure VII.2. Principal component analysis based on allele frequencies in Azores. 
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VII.2.5. Discussion 

Population genetic variation studies have demonstrated that there is an overall low level 

of differentiation in human populations (Excoffier 2003); however, local factors, such 

as, geography and differential settlement, can greatly enhance genetic discontinuity. To 

assess these factors in the current Azorean population, we describe the genetic diversity 

patterns through the genotyping of 15 microsatellite loci in a total of 592 individuals. In 

general, the data demonstrate no significant difference in gene diversity between all 

islands. The results demonstrate that Corvo presents the lowest value of gene diversity 

(0.7717) when compared with the other islands. Similar data were obtained in a 

previous surname study (Branco and Mota-Vieira 2005). Overall, the results from this 

work show that the Azorean population exhibits an average gene diversity value 

(0.788), which is similar to other European populations (0.773; Tishkoff and Varrelli 

 

Figure VII.3. Principal component analysis based on Slatkins FST genetic distance using 13 STRs. 
The populations are represented as follows: WES, Azorean Western group; CEN, 
Azorean Central group, EAS, Azorean Eastern group; POR, Portugal; AND, Andalusia; 
SPA, Spain; BEL, Belgium; ITA, Italy; MOR, Morocco; ASK, Ashkenazi Jews; BAS, 
Basques, BRA, Brasil; FAN, Fang; GUI, Guinea, MOZ, Mozambique, AFA, African 
American, HAN, Chinese Han and ARA, Arabs.
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2003), higher than the South American populations (0.697; Mesa et al. 2003), and lower 

than the African populations (0.792; Tishkoff and Varrelli 2003). Altogether, the data 

suggest that the Azorean people present high genetic diversity as a result of the 

archipelago’s settlement history. On the other hand, it may be argued that, STRs are 

highly variable, because they have high mutation rates and, therefore, after a population 

bottleneck, these markers would recover their diversity faster than other markers. 

Nevertheless, autosomal markers, such as, Alu insertion polymorphisms, studied in the 

Azorean population (Branco et al. 2006), show the same pattern of genetic diversity. 

Interestingly, we identified in two Azorean islands the presence of a rare allele – 

FGA*25.2 – not found in mainland Portugal, but prevalent in Indian populations. 

During the 16th century, the commercial trade between Portugal and India (at the time 

under Portuguese rule) was very important (Correia 1948). The Azores, because of its 

geographic location in the north Atlantic Ocean, played a strategic role during that 

period. Thus, these data may suggest the presence of individuals of Indian origin in the 

archipelago. Alternatively, it may indicate the possibility of mutation in the FGA allele. 

Migration is one of the main forces shaping genetic diversity of human populations. It 

can affect genomic variation within a population, for example, by the redistribution of 

genes geographically. Thus, understanding the causes, patterns and effects of migrations 

is fundamental for interpreting the evolutionary history of a population (Cavalli-Sforza 

and Feldman 2003). The data presented here show that Corvo stands out with the lowest 

values of migration, suggesting that people have become sedentary. Nevertheless, 

Corvo has the lowest population size (Ne). This last parameter affects the population’s 

genetic diversity apportionment, as observed in the present study, where Corvo shows 

the lowest values of diversity. Therefore, the low values of migration obtained in this 

island can be a direct influence of Ne. São Miguel and Terceira, with the highest values 

of emigration, have also the highest levels of gene diversity indicating that people of 

these islands were the main contributors in the settlement of the other islands. 

Nevertheless, the majority of the islands’ populations show low migrant proportions, 

but we observe a high genetic similarity between them. Overall, the results indicate that 

the islands’ populations did not evolve independently, but rather maintained 

connections through the exchange of migrants. Other archipelagos, such as, Cape 

Verde, still maintain genetic differences between groups of islands, namely Cape Verde 
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North and Cape Verde South, as a result of their settlement history (Fernandes et al. 

2003). Nevertheless, probably the same result would be obtained if (i) the islands had 

been peopled from the same population without a strong bottleneck, and (ii) the original 

populations had been different but the differences between islands had been smoothed 

out by migration. On the other hand, migration among islands can elucidate why 

geography explains only 21% of the genetic variance, indicating that it contributed to a 

mixture of the Azorean population as a whole. 

In general, scientists agree that the characterization of regional diversity patterns has 

several implications in biomedical research, with a strong input in the local health care. 

The PC analysis (Figure VII.2) demonstrate a strong genetic similarity between all the 

islands’ populations. These data are corroborated by the genetic diversity values, where 

no significant differences (χ2, p=0.999) between islands were obtained. Nonetheless, 

geography should be considered, since it is possible to observe a higher proximity 

among islands of the same Azorean group. This observation is supported by the Mantel 

test were ther is a correlation of 0.457 between genetic and geographic distances. The 

comparison of the Azorean groups with other European and African populations 

demonstrates a strong input of Europeans, the majority of which from mainland 

Portugal in the origin of the archipelago’s population. Allelic frequencies change in 

populations owing to two factors – natural selection and genetic drift –, both can 

ultimately lead to the elimination or fixation of a particular gene (Cavalli-Sforza and 

Feldman 2003). Considering the geography of the Azores archipelago, which could 

potentiate the action of several genetic processes, like genetic drift, the overall results 

do not suggest the influence of genetic drift nor natural selection. 

Nuclear genetic variation allows the characterization of the overall genetic similarities 

of populations that are the result of all historical phenomena (Kidd et al. 2000). Our 

results based on microsatellite data demonstrate that, despite reports of differential 

settlement for each island, there is no genetic difference between the islands’ population 

today. Genetically structured populations may be composed of two or more 

subpopulations with distinct drug-reaction profiles and thus in some contexts it would 

be better to consider them separately (Wilson et al. 2001; Schaak et al. 2007; 

Suarez-Kurtz and Pena 2006). The data described here show that the Azorean 

population is an outbred population with no genetic structure. This suggests that, despite 
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living in different islands, the Azorean population can be treated as a homogeneous 

genetic group, which consequently, would present, possibly, the same drug-response 

pattern. Sistonen et al. (2007) studying CYP2D6 worldwide genetic variation observed 

that patterns of variation, within and among populations, are similar to those observed 

for other autosomal markers (e.g. microsatellites and protein polymorphisms), 

suggesting that the diversity observed at the CYP2D6 locus reflects the same factors 

affecting variation at random genome markers. In terms of genomic medicine, the 

results obtained in the present work play an important role in the design of future 

genetic and pharmacogenomic studies in the Azorean population. 
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VII.3. Evaluation of linkage disequilibrium on the Xq13.3 region: 

comparison between the Azores Islands and mainland Portugal  

VII.3.1. Summary 

The design of genetic studies of complex diseases is dependent on the extent and 

distribution of linkage disequilibrium (LD) across the genome in different populations. 

Here, we characterize the extent of LD in the Azores (Western, Central and Eastern 

islands groups) and mainland Portugal populations. LD was evaluated in the Xq13.3 

region by genotyping eight STR markers spanning 20.9 Mb. Standardized multiallelic 

disequilibrium coefficient (D’) analysis indicates that the Western group presents higher 

values when compared with the Central and Eastern groups. However, all islands 

groups show values of D’ lower than 0.5 and 0.33, suggesting no extensive LD in these 

populations. Taken together, the data show that the Azorean population presents a lower 

D’ (0.142) than mainland Portugal (0.226). Although, both populations do not show 

extensive LD, the easy reconstruction of large pedigrees in the Azorean population is a 

valuable resource for the fine mapping of disease genes. 

 

VII.3.2. Introduction 

Linkage disequilibrium (LD) is defined as a non-random association of alleles at 

different loci on the same chromosome. Studying the extent of LD and population 

structure is a good starting point for the investigation of complex traits (Angius et al. 

2002). The Azores is a Portuguese archipelago composed of nine islands, located in 

north Atlantic Ocean. Its settlement began in 1439 with Portuguese individuals, but a 

significant contribution from people with other genetic backgrounds, including Flemish, 

Spanish, French, Italian, German, Scotish, Jewish, and also from Moorish prisoners and 

black slaves from Guinea, Cape Verde and São Tomé also occurred. Nowadays, the 

Azorean population is composed of 241,763 inhabitants (National Institute of Statistics 

– Portugal, 2001 Census). Recently, the genetic background of the Azorean population 

has been thoroughly analysed using autosomal (Branco et al. 2006, 2007; Spinola et al. 

2005), mitochondrial (Santos et al. 2003) and Y-chromosome (Pacheco et al. 2005a; 

Montiel et al. 2005) markers. These studies report a high genetic variability and 
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heterogeneity of the Azorean population, which can be explained by the settling history 

of the islands. Here, we characterize LD at Xq13.3 in the Azorean and mainland 

Portugal populations. It was also our purpose to assess the pattern of LD in the different 

groups of islands of the archipelago, and compare them with the mainland population 

and other well described populations.  

 

VII.3.3. Material and Methods 

VII.3.3.1. Population samples 

The study of the X-chromosome LD extent was based on a sample composed of 432 

healthy Azoreans (408 males and 24 females) and 97 individuals from mainland 

Portugal, obtained from the anonymous Azorean DNA bank (Mota-Vieira et al. 2005). 

The sample distribution per group and island was the following: Eastern group, 207 

(São Miguel, 185; Santa Maria, 22); Central group, 150 (Terceira, 54; Pico, 29; São 

Jorge, 23; Faial, 25; Graciosa, 19) and the Western group, 75 (Flores 59; Corvo, 16). 

The origin of all females was from Flores Island. 

 

VII.3.3.2. STRs typing  

Linkage disequilibrium was evaluated in Xq13.3 This region was analyzed by 

genotyping eight microsatellite markers – DXS983, DXS1066, DXS986, DXS8092, 

DXS8082, DXS1225, DXS8037 and DXS995 – spanning approximately 6.9 

centiMorgans (cM) or 20.9 megabases (Mb). The exact location, in base pairs (bp), on 

the Human Genome Map of these microsatellites was reported by Kaessmann et al. 

(2002). The markers were genotyped using fluorescently labelled primers described 

previously in the Human Genome Database (GDB, www.gdb.org).  

Polymerase Chain Reaction (PCR) amplification was carried out in a singleplex 15 µl 

reaction mixture. An aliquot of 1 µl of each PCR product was combined with 0.5 µl 

CEQ™DNA size standard kit 400, 29 µl formamide deionized (Qbiogene), and run on a 

CEQ™8000 Genetic Analysis System (Beckman Coulter).  
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VII.3.3.3. Statistical analysis  

Allele frequencies were calculated by direct counting. Average gene diversity 

estimation, based on X-markers, was performed using the Arlequin software. Estimation 

of the X-haplotypes was obtained through the expectation maximum (EM) algorithm, 

an iterative procedure from multilocus genotype data with unknown gamete phase 

implemented in Arlequin. To increase the power in LD calculations we included 24 

females in the Flores Island sample. Therefore, the number of haplotypes in the Western 

group population increased from 75 to 93. Estimation of standardized multiallelic 

disequilibrium coefficient, D’, was performed using the Haploxt application from the 

GOLD software. This program calculates disequilibrium statistics from haplotype data. 

Disequilibrium across each locus was plotted using the same software. 

 

VII.3.4. Results 

Understanding the background genetic variation of a population is essential in the 

characterization of LD. Table VII.4 describes the number of haplotypes, gene diversity 

and standardized multiallelic disequilibrium coefficient (D’) based on X-linked markers 

for all populations. The Azorean Western group shows a higher genetic diversity 

(0.718) when compared with the other two groups. Overall, the Azorean population, as 

 

Table VII.4. Haplotype number (HN), gene diversity (GD) and standardized multiallelic 
disequilibrium coefficient (D’) for Azorean and mainland Portugal populations. 

 

Populations HN GD D' 
Azores    
 Western group 93 0.718 0.328 

 Central group 150 0.690 0.189 

 Eastern group 207 0.686 0.176 

 Total 450 0.695 0.142 

mainland Portugal 97 0.683 0.226 
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a whole, shows higher genetic diversity (0.695) when compared to mainland Portugal 

(0.683). On the other hand, there is no statistically significant difference of gene 

diversity values for all populations (χ2, p=0.236). 

We observe that the Azorean Western group presents higher values of average D’ when 

compared with the Central and Eastern groups (Table VII.4). However, we selected 

randomly 75 individuals from the Azorean Central and Eastern samples and calculated 

average D’. The values obtained were not statistically different from those for Western 

group (data not shown). This result confirms that the difference in D’ values in 

populations is not statistically significant. 

To compare the extent of LD over physical distance, we plotted the average 

standardized multiallelic disequilibrium coefficient (D’) with stratified physical 

distances (Figure VII.4). All groups show values of D’ lower than 0.5 with higher 

values for shorter distances. Mainland Portugal presents a higher value of average D’ 

when compared with the whole Azorean sample.  

 

 

Figure VII.4. Comparison of the LD extent in Azores and mainland Portugal, evaluated as average 
multiallelic D’ values versus physical distances.  

 

VII.3.5. Discussion 

The knowledge of genetic diversity in a population is crucial for a better understanding 

of the genomic patterns relevant for mapping disease genes, such as the distribution and 
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extent of LD. Our results demonstrate that the Azorean population presents a high 

genetic diversity comparable to the mainland Portuguese population.  

There is some controversy related to the amount of useful LD for mapping studies. 

According to Abecasis et al. (2001), the value of D’=0.33, which corresponds to a 

10-fold increase in the required sample size, is commonly taken as the minimum usable 

amount of LD. On the other hand, Reich et al. (2001) considers that D’>0.5 is useful. 

None of the samples analysed in the present study show values higher than 0.5 or 0.33, 

suggesting no LD for all populations. In general, the pattern of LD observed is different 

when compared to the populations of Niolo, Corte and Bozio in Corsica (Latini et al. 

2004), indicating a smaller extent of LD in the Azorean and mainland Portugal 

populations. Although, there are limitations concerning the sample size and marker 

density of the present study, the results are corroborated by those obtained by Service et 

al. (2006), where the Azoreans presented the lowest values of LD when compared with 

populations considered genetic isolates.  

The existence of high LD over large chromosomal regions is characteristic of 

populations with reduced haplotype and allelic diversity (Varilo et al. 2000). Our results 

show that both Azores and mainland Portugal present characteristics of expanded 

populations. The extent of LD is influenced, among other factors, by genetic drift, 

admixture and inbreeding. The LD distribution here described is a consequence of a 

high genetic diversity determined by the Azorean settlement history and demography. 

Therefore, the data show that admixture is the contributing factor to the present LD 

pattern in the Azorean population. The fact that the majority of Azoreans lives in small 

rural localities with large families (more than 3 children per generation) and the easy 

access to church and city hall records, facilitates the reconstruction of extended family 

pedigrees. In addition, according to a comparative study of consanguineous marriages 

(first cousins, uncle-niece and aunt-nephew) registered by the National Institute of 

Statistics for Azores, Madeira and mainland Portugal from 1931 to 2000, the Azores 

present the highest values of consanguinity (Pacheco et al. 2003). These features 

associated with the geographical, the demographic and the environmental characteristics 

suggest that the Azorean population may be a valuable resource for fine mapping of 

disease genes.  
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VII.4. Linkage disequilibrium on Xq13.3, NRY and HLA regions in São 

Miguel Island (Azores) population  

VII.4.1. Summary 

The design of genetic studies of complex diseases is dependent on the extent and 

distribution of linkage disequilibrium (LD) across the genome in different populations. 

Here, we characterize the extent of LD in the São Miguel Island population. Genetic 

diversity and LD were evaluated in Xq13.3, nonrecombining portion of the 

Y-chromosome (NRY) and HLA (6q21) regions in healthy blood donors of São Miguel 

Island population.  

Haplotype analysis revealed 100% discriminatory power for the X- and Y-STRs, and 

94.3% for the HLA loci, demonstrating that the São Miguel population is very 

genetically diverse. Standardized multiallelic LD, D’, in the three genomic regions 

show values lower than 0.33, suggesting no extensive LD in this population. As 

expected, the highest D’ values are found for shorter distances. The D’ results also 

indicate that there is a higher LD for the NRY region when compared to HLA and 

Xq13.3. Taken together, the data demonstrate that the São Miguel Island population 

presents a low D’ (0.241). The results suggest that the identification of identical by 

descent (IBD) regions surrounding disease susceptibility gene or other complex trait 

loci in this population, as well as in the Azoreans, would require a very high density of 

markers. 

 

VII.4.2. Introduction 

It is well known that LD varies across genomic regions; therefore, for association 

studies to be feasible, with an optimal distribution of markers, the level of LD should be 

estimated for each region. Here, we examine the extent of LD in three genomic regions 

– Xq13.3, nonrecombining portion of the Y-chromosome (NRY) and HLA (6q21) – in 

the São Miguel Island population, in order to evaluate the use of LD for future studies 

of mapping disease susceptibility genes.  
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VII.4.3. Material and Methods 

VII.4.3.1. Population samples and genotyping 

Linkage disequilibrium was evaluated in Xq13.3, NRY and HLA (6q21). The sample 

set was composed of healthy blood donors living in São Miguel Island obtained from 

the anonymous DNA bank located at the Hospital of Divino Espirito Santo of Ponta 

Delgada, EPE (Mota Vieira et al. 2005). LD for X- and Y-chromosomes was assessed 

only in males (189 and 149, respectively), whereas the analysis of the HLA region 

consisted of 106 individuals of both sexes (8 females and 98 males).  

The Xq13.3 region was analyzed by genotyping eight microsatellite markers – DXS983, 

DXS1066, DXS986, DXS8092, DXS8082, DXS1225, DXS8037 and DXS995 – 

spanning approximately 6.9 centiMorgans (cM) or 20.9 megabases (Mb). The exact 

location, in base pairs (bp), on the Human Genome Map of these microsatellites was 

reported by Kaessmann et al. (2002). The markers were genotyped using fluorescently 

labelled primers described previously in the Human Genome Database (GDB, 

www.gdb.org). PCR conditions were described in Branco et al. (2007b). 

Genotyping of Y STRs and HLA class I (A, B and Cw) and class II (DRB1, DQB1, 

DPA1 and DPB1) are described in Pacheco et al. (2005a,b). We also typed two 

dinucleotide STRs located in the HLA region, D6S265 and TNFα  (Branco et al. 2007a).  

 

VII.4.3.2. Statistical analysis 

Allele frequencies were calculated by direct counting. Average gene diversity 

estimation was performed using the Arlequin software. Estimation of the HLA 

haplotypes was obtained through the expectation maximum (EM) algorithm, an iterative 

procedure from multilocus genotype data with unknown gamete phase implemented in 

Arlequin. A total of 200 haplotypes were obtained. Estimation of standardized 

multiallelic disequilibrium coefficient, D’, was performed using the Haploxt application 

from the GOLD software. This program calculates disequilibrium statistics from 

haplotype data.  
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VII.4.4. Results and Discussion  

Understanding the background genetic variation of a population is essential in the 

characterization of LD. We investigated the gene diversity in Xq13.3, NRY and HLA 

regions in the São Miguel Island population. The results demonstrate that this 

population is very diverse (Table VII.5). Haplotype analysis reveals 100% 

discriminatory power for the X- and Y-markers, because each individual presents a 

different haplotype, and 94.3% for the HLA markers. In general, the data agree on 

previous works (Branco et al. 2007a, Pacheco et al. 2005a), where Azoreans and São 

Miguel islanders show higher values of genetic diversity than mainland Portugal and 

other European populations. This may be a direct consequence of the Azorean 

settlement, where a major contribution of mainland Portuguese males and, to a lesser 

extent, Flemish, Spanish, French, Italians, Germans, Scottish, Jews, Moorish and blacks 

from Guinea, Cabo Verde and São Tomé is observed.  

 
Table VII.5. Haplotype number (HN), gene diversity (GD) and standardized multiallelic 

disequilibrium coefficient (D’) for the three genomic regions in the São Miguel Island 
population. 

 

Genomic Region HN GD D' 

Xq13.3 189 0.691 0.172 

NRY 149 0.574 0.282 

HLA 200 0.843 0.275 

Average 179 0.703 0.243 

 

Considering only the HLA markers, the haplotype analysis reveals interesting features. 

For instance, while the A*01 B*08 DRB1*03 haplotype, known to be of Indo European 

Celtic origin, is present in centre and north Portugal at relatively low frequencies of 3% 

and 2.2%, respectively (Arnaiz Villena et al. 1997), it is the most frequent in São 

Miguel (8%, data not shown). According to Spínola et al. (2005), the presence of this 

haplotype results from a colonizing event from people originating from the centre of 

Portugal. However, we can also hypothesise a direct influence of Celts or Barbarian in 

the Azorean population, since the frequency of this haplotype in São Miguel is more 

than twice the frequency in mainland Portugal. Another hypothesis is the occurrence of 
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genetic drift, however, other studies of genetic diversity do not corroborate this theory 

(Branco et al. 2006, 2007a,b; Pacheco et al. 2005a,b). 

Since LD varies among genomic regions within the same population, we investigated in 

the São Miguel population the extent of this parameter in Xq13.3, NRY and HLA 

regions. Figure VII.5 shows the plot of average D’ over the physical distance. We 

observe a decrease of LD values for shorter distances (<5 Mb) for all regions. As 

expected, the highest value (>0.5) obtained in the X-chromosome corresponds to the 

association of DXS1225 DXS8082, which is the smallest physical distance between all 

markers.  

 

 

 

 

 

 

 

 

Figure VII.5. Comparison of the LD extent in Xq13.3, NRY and HLA regions, evaluated as average 
multiallelic D’ values versus physical distances for the São Miguel Island population. 

 

Because LD is generated by evolutionary processes, which are not regular in statistical 

terms, it is important to assess the patterns of LD both in sex and autosomal 

chromosomes. The comparison of D’ on Xq13.3, NRY and HLA regions shows a 

smaller LD on the Xq13.3 (Table VII.5). The data indicate a higher LD for the NRY, 

followed by the HLA region. The HLA results are in agreement with those of Meyer et 

al. (2006), where a significant LD between all HLA loci is reported in the studied 

populations. The distribution of LD between Y-linked alleles is expected to be 
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substantially larger than for the X-linked markers, because Y-alleles have only one forth 

the effective population size. The data here obtained confirm this expectation. 

Nevertheless, the highest peak observed in Figure VII.5 corresponds to the association 

between DYS392-DYS385. This was not expected, since this region does not present 

recombination; however, it may reflect the influence of stochastic processes, such as 

random sampling.  

There is some controversy related to the amount of useful LD for mapping studies. 

According to Abecasis et al. (2001), the value of D’=0.33, which corresponds to a 10 

fold increase in the required sample size, is commonly taken as the minimum usable 

amount of LD. On the other hand, Reich et al. (2001) considers that D’>0.5 is useful. 

None of the samples analysed in the present study show values higher than 0.5 or 0.33, 

indicating no LD for all São Miguel population. These results are corroborated by those 

obtained by Service et al. (2006) and Branco et al. (2007b), where the Azoreans 

presented the lowest values of LD when compared with isolated and outbred 

populations. Taken together, the data suggest that the identification of identical by 

descent (IBD) regions surrounding disease susceptibility gene or other complex trait 

loci in the São Miguel population, as well as in the Azoreans, would require a very high 

density of markers. 
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“The important thing is not to stop questioning. Curiosity has its own reason 
for existing. One cannot help but be in awe when he contemplates the 

mysteries of eternity, of life, of the marvelous structure of reality. It is enough 
if one tries merely to comprehend a little of this mystery every day.”  

Albert Einstein 
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VIII. General Discussion36

The study of genetic variation and heritance leads to the comprehension of genetics 

in general, with a practical value for human welfare. The knowledge of the 

contribution that genes make to the development of diseases – for example, cancer, 

heart disease and diabetes –, played an important role in the perception that such 

studies can potentially improve human health. Moreover, the characterization of 

genetic diversity provides a powerful tool for understanding and describing human 

evolution. Here, we show a broader view of the genetic structure of the Azorean 

population. 

The Azores, the biggest Portuguese archipelago, is located in the north Atlantic 

Ocean. It is composed of nine volcanic islands unevenly distributed by three 

geographic groups: the Eastern group with two islands – São Miguel and Santa Maria 

–, the Central which includes five islands – Terceira, Pico, Faial, São Jorge and 

Graciosa –, and the Western group with Flores and Corvo. Although, Azoreans 

constitute a young population (<27 generations), there has been reports of increased 

frequencies of diseases, among others, congenital heart diseases (Cymbron et al. 

2006), schizophrenia and psychosis (Pato et al. 2005; Sklar et al. 2004), autism 

(Oliveira et al. 2007), as well as Machado-Joseph disease (Lima et al. 2001). To 

understand this genetic panorama in the Azorean population, it revealed necessary 

and imperative to study its genetic background. The present thesis aims to contribute 

to this objective and two main approaches were followed: the surnames and the 

molecular markers analysis. Both approaches have advantages and criticisms. 

Surnames constitute a good tool when studying recent movements of individuals 

between subpopulations. However, surnames do not take in consideration the 

possibility that they may be polyphyletic, this is the same surname presents different 

origin and, consequently, different ancestors. Situations such as (i) a surname 

acquired because it was beneficial, for instance, in commercial trades; (ii) slaves 

from rich and important families usually acquired the surname of his owner and; (iii) 

cases of non-paternity, constitute good examples of polyphyletism. The overall 

results in this thesis, in addition to the inherent evolution of surnames, corroborate 

                                                 
36 In this section some unpublished data are included, since they contribute to improve the discussion. They also 

increase and validate the analysis performed during the present thesis.  
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the polyphyiletic nature of surnames. Considering molecular markers, they also 

present discrepancies; for example, molecular markers are subject to evolutionary 

forces, which are not accounted in most of the simple methodologies to study 

populations, and their diversity is influenced by random fluctutions in sampling.  

 

VIII.1. Genetic origin of the Azorean population 

In the present PhD thesis, the understanding of the genetic origins of the Azorean 

population was a main concern. To achieve this goal two main studies were 

performed, the Y-chromosome lineages (Pacheco et al. 2005) and the Alu insertion 

(Branco et al. 2006). The nonrecombining portion of the Y-chromosome retains a 

record of the mutational events that occurred along male lineages throughout 

evolution (Y-Chromosome Consortium 2002). Overall, the results obtained revealed 

nine different haplogroups, most of which are frequent in Europe. Haplogroup J* is 

the second most frequent in Azores (13.4%), but it is modestly represented in 

mainland Portugal (6.8%). The other non-European haplogroups – N3 and E3a –, 

which are prevalent in Asia and subSahara, respectively, have been found in Azores 

(0.6% and 1.2%, respectively) but not in mainland Portugal. Two other studies, 

Gonçalves et al. (2005) and Montiel et al. (2005), also studied the Y-chromosome 

lineages of the Azorean population. In general, all studies evidence the four major 

haplogroups: P*(xR1b8,R1a,Q3), J*, BR*(xB2b,CE,F1,H,JK) and E*(xE3) that 

account for the majority of the male lineages in the Azores. Nevertheless, slight 

differences in frequency of these haplogroups are observed. All studies report that 

the main contributors to the genetic origin of the Azores are, as expected, the 

mainland Portuguese. Moreover, all studies agree that an important contribution of 

Middle eastern (HG J*) and north African (HG E*(xE3)) populations is observed. 

Without any doubt, Y-chromosome and mtDNA studies are crucial to address the 

origin of the population; however, a population loses mtDNA when a woman has 

only sons and Y-chromosome DNA when a man has only daughters. Consequently, 

these genetic markers may give less correct information on broad ancestry of most 

genes in a population. A full picture of the histories of populations requires studies of 

markers in the recombining parts of the nuclear DNA, namely the autosomes. 

Albeith several types of markers can be used to achieve this, Alu insertion 
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polymorphisms present some interesting advantages. These markers arose within the 

human population as a unique event in human evolutionary history, making Alu 

repeats identical by descent from a common ancestor (Batzer and Deininger 2002). 

Moreover, the ancestral state, which is absence of the Alu insertion, is always known. 

The allele frequencies for each Alu polymorphism in Azoreans are very similar to 

those obtained in European populations. Although, Comas et al. (2000) revealed a 

clear differentiation between north African and Iberian populations, our results show 

a strong proximity between mainland Portuguese and Moroccans. Historical data 

may support this proximity. Historians mention that the conquest of Ceuta in 1415 by 

the Portuguese was the first step in the “Portuguese expansion”. Ceuta was 

considered a strategic market and a start point for the exploration of the African 

littoral (Serrão 1978). On the other hand, we also see a close relation with Spanish 

populations, namely, Catalans and Andalusians. This is reflected in the phylogenetic 

tree where Azores and mainland Portugal branch with Catalans, Andalusians, 

Moroccans and Algerians (Figure VI.4). Overall, the data are in concordance with 

the ones obtained by Y-chromosome studies (Pacheco et al. 2005; Montiel et al. 

2005; Gonçalves et al. 2005) and the historical facts, reinforcing the contribution of 

Spanish individuals in the Azorean peopling. Furthermore, the Alu analysis also 

suggests the existence of a different demographic history and patterns of population 

evolution between European and African populations; for example, the African 

groups, with the exception of Algerians and Moroccans, are closer to the ancestral 

population in contrast to European populations (Figure VI.4). mtDNA studies in the 

Azorean population also corroborate the major presence of mainland female 

Portuguese settlers (Santos et al. 2003). However, these authors also report around 

35% of unique female lineages. In general, the Alu markers and Y-chromnosome 

studies do not corroborate this observation.  

Spinola et al. (2005) questions the identification of the lineage N3, specific to Asians 

and northern Europeans (Rosser et al. 2000; Helgason et al. 2000), since they did not 

found any results supporting this observation based on HLA loci. Historical records 

of the presence of Asians or Mongolians in the archipelago are not known. On the 

other hand, the HLA data showed the presence of haplotype A*02-B*44-DRB1*04 

at a frequency of 1.42%. This haplotype, possibly oriental in its origin, has 

previously been described in the Azores (Bruges-Armas et al. 1999). The 
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introduction of this genetic contribution occurred probably during the expansion of 

the trade navigation between Europe, America and Asia, in the 16th and 17th 

centuries, when the Azores had a strategic role due to its geographic position 

(Russel-Wood 1998). 

Genetic distance methods describe allele frequency similarities between populations 

or groups, indicating the degree of proximity between them. The works based on 21 

STRs in São Miguel’s population (Branco et al. 2007, in press) and on 15 STRs in all 

Azorean islands (Branco et al. 2007, submitted) indicate a very close proximity with 

mainland Portugal and other European and African populations. These results are 

also corroborated by studies performed on HLA loci (Spinola et al. 2005; Pacheco et 

al. personal communication). In conclusion, all studies point to the main importance 

of mainland Portuguese in the genetic origin of the Azorean population. Moreover, 

the presence of African and other European populations is not negligible. All data 

confirm and complement the gaps in the settlement history of the Azores 

archipelago. 

 

VIII.2. Genetic diversity, relationship and linkage disequilibrium in the 

Azorean islanders 

The evolution of populations is dependent on several mechanisms such as, migration, 

genetic drift, selection and mutation, all affecting the patterns of diversity of neutral 

and disease variants. Consequently, the measure of diversity of neutral markers 

allows the inference of how these processes are shaping the overall signature of a 

population and has further implications in the general diseases apportionment. In the 

present thesis, the diversity of the Azorean population was addressed considering 

different STR markers, located in different chromosomes (autosomal, Y and X), Alu 

insertion polymorphisms and surnames. The average diversity obtained in the 

different studies show that, in general, the Azorean population is very diverse, 

presenting values higher than those found in mainland Portugal. Only the Alu 

insertion polymorphisms are the exception, with mainland presenting a higher 

diversity. Nonetheless, all differences between values are not statistically significant. 

Considering the results obtained for the Y- and X-chromosomes and Alu insertions in 
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the Azorean population, we observe that the diversity value is higher in the 

X-chromosome (0.695), followed by the Y- (0.590), and last the Alu insertions 

(0.383). These results are explained by the fact that both the X- and Y-chromosomes 

have lower effective sizes (3/4 and 1/4, respectively), when compared with 

autosomal chromosomes, and also present lower rates of recombination (Schaffner 

2004). The Alu insertions are biallelic markers and, consequently, show a smaller 

level of diversity regarding microsatellite data (Venter et al. 2001). Variability based 

on the STR markers in the autosomal chromosomes indicate as well, that the Azores 

is a very diverse population. Similar values of diversity are obtained when comparing 

the Azores (0.788) with mainland Portugal (0.782; Bosch et al. 2000; Perez-Lezaun 

et al. 2000), Madeira (0.773; Fernandes et al. 2001) and Cape Verde (0.791; 

Fernandes et al. 2003). The results from the genetic characterization of São Miguel 

Island’s population reveal a smaller value of diversity (0.767) considering 21 STRs 

(Branco et al. 2007, in press) compared to the higher value (0.792) analysing 15 

STRs (Branco et al. 2007, submitted). The same trend occurs in the mainland 

Portugal population where a value of (0.765) is observed. Therefore, the accurate 

value of global variability is dependent on the number of markers used. 

Interestingly, the study of abundance of surnames and microsatellite in Azores 

revealed that the most diverse islands are Terceira and São Miguel. However, a slight 

discrepancy is present. In the surname study, the islands with less diversity are 

Graciosa and Santa Maria, in contrast to the STR data (Branco et al. 2007, 

submitted) where Corvo is the less diverse island followed by Graciosa. 

Nevertheless, both studies agree that the smallest islands – Corvo, Graciosa and 

Santa Maria –, present, as expected, the lowest values of variability. Curiously, in 

both STRs and surnames analysis, Faial and São Jorge show no difference of 

diversity and abundance of surnames, this is, both islands are very similar 

genetically. These results validate the use of surnames as a tool to understand genetic 

diversity patterns of a population. 

Studies of HLA markers in mainland Portugal (Spinola et al. 2005a), based on 3 loci 

(A, B and DRB1), and in Azores (Spinola et al. 2005b), based in 6 loci (A, B, Cw, 

DRB1, DQA1 and DQB1), demonstrate values of average diversity of 0.92. The 

results obtained in the present thesis, based in 7 loci (A, B, Cw, DRB1, DQA1, 
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DQB1 and DPA1) presented a smaller value (0.83). Nevertheless, this may be 

explained by the difference in number of analysed loci and by the fact that Spinola et 

al. (2005) used a high-resolution methodology37 to genotype HLA.  

The analysis of relationship between islands was assessed using surnames (Branco 

and Mota-Vieira 2005) and 15 STR markers (Branco et al. 2007, submitted). Two 

different images appear: surnames show a closer proximity between the Central and 

Western groups, and the molecular markers give the Central closer to the Eastern 

group. One hypothesis to explain this discrepancy is that surnames are, probably, 

revealing more recent movement of individuals. Actually, it is common knowledge 

that people in the Western group travel more easily to the Central islands than to the 

Eastern group. On the other hand, the microsatellite data is probably demonstrating a 

deeper relationship that dates from the time of the settlement. This is corroborated by 

the software Migrate, which has a methodology based on the coalescent theory. 

Corvo and Flores were the last islands to be settled. Another observation supporting 

this information is the fact that in the surname analysis, Faial and Pico, the closest 

islands, cluster together. Nowadays, there are daily boat connections between these 

islands. However, this clustering does not happen in the microsatellite data, where 

São Jorge and Faial are genetically more similar. Historical records mention the 

presence of Flemish individuals more intensively in these islands. Therefore, we 

conclude that surnames are evidencing a more recent image showing the 

socio-economic features of the islands, while the microsatellite data is revealing the 

evolution based on the settlement characteristics of the archipelago. Both approaches 

complement each other. 

The patterns of genetic diversity of a population have a direct influence in the 

linkage disequilibrium extent. With the development of technology, analysis of LD 

has been found to improve the knowledge of human evolution and origin. Moreover, 

it has also been used to identify genes causing disease. The overall results 

demonstrate that both the Azoreans and mainland Portugal do not show extensive 

LD. This may be a direct consequence of the large genetic diversity of these 

populations. Several studies have demonstrated the use of isolated populations in the 

characterization of complex diseases (Angius et al. 2001; Varillo et al. 2000). The 

                                                 
37 This methodology, which enables an HLA genotyping with a resolution of ≤6 digits (ex. HLA-B510101) is 

mostly used in transplant medicine. 

 201



CHAPTER VIII  General Discussion 
 

geography of the archipelago jointly with the cultural background of the Azoreans 

and the surname analysis seemed to indicate, à priori, that the Azoreans were an 

isolated population. The misleading conclusion from surnames can be explained by 

the fact that surnames represent only one locus. It is common knowledge that for a 

full characterization of a population it is necessary several loci. Moreover, the 

surnames comparisons were based on countries, some of which with millions of 

telephone users (Barrai et al. 2000, 1999; Mourrieras et al. 1995). The overall values 

obtained from surname data were smaller in the Azores and this induced the 

conclusion of low diversity and isolation of this population (Branco and Mota-Vieira 

2005). Nevertheless, the analysis of surnames in mainland Portugal would be 

considerably informative in terms of comparison. Despite, the Azores are not an 

isolated population and show LD only for short physical distances, there are some 

characteristic that make it a possible resource for future genetic studies, namely, the 

same environmental conditions and the possibility to construct large pedigrees 

through church and other civil records. The same environment allows a better control 

on external factors that may be influencing the development of a complex disease. 

The large pedigrees permit to develop reliable linkage studies with statistical 

significance. In summary, the overall data suggest that the identification of identical 

by descent (IBD) regions surrounding disease susceptibility genes or other complex 

trait loci in the São Miguel, as well as in the Azoreans, will require a very high 

density of markers. On the other hand, in a near future, the HapMap project will 

produce data that will considerably increase the power of IBD mapping. 

 

VIII.3. Inbreeding and population structure 

The assessment of inbreeding in human populations plays a fundamental role in the 

identification of population subdivision, which has significant consequences in the 

design of association mapping and pharmacogenomic studies. Moreover, it is well 

known that genetic variation is higher within individuals in a population (Tishkoff 

and Varrelli 2003); therefore, the spectrum of genetic diseases may be influenced by 

the level of molecular similarity of individuals.  
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The inbreeding coefficient calculated using surnames for the São Miguel Island 

(0.0016) is almost seven times smaller than those obtained through 21 STR markers 

(Branco et al. 2007, in press). The STR values of inbreeding could be inflated by the 

fact that its calculation is based on allele identity, this is, microsatellites that are 

identical by state may not be from the same ancestor (Rousset 2002). In surname 

analysis each surname is considered separately and, therefore, this problem is not 

apparent. Nevertheless, both analysis show that the São Miguel population is 

outbred. Another study using surnames by Santos et al. (2005) shows a value of FST 

of 0.00709 for the Flores Island. This value is higher than that obtained in this thesis 

(0.0038). However, in both studies, the total surnames found are similar, 291 for 

electoral records (Santos et al. 2005) and 223 for telephone users (Branco et al. 

2005). Probably these differences are explained by the different methods to calculate 

the same parameter. Both samples do not show microdifferentiation. 

The values of inbreeding (FIS) obtained in the Alu study report a much higher value 

for the whole Azorean population (0.117). Alu polymorphisms have only two alleles 

(presence or absence of the insertion); consequently, this reduces the power to detect 

efficiently the inbreeding. The estimated value for the Azorean sample, based in the 

analysis of 15 STR markers (Branco et al. 2007, submitted), show a similar value 

(0.0196) to that found in the São Miguel population using 21 STRs (Branco et al. 

2007, in press), and an higher value when compared with surname analysis (0.0039). 

Regarding the results of the 15 STRs and surnames for each island, there are some 

inconsistencies in both approaches (Table VIII.1). The STR markers show that 

Graciosa is the less inbred followed by Pico. Conversely, Corvo is the more inbred 

population followed by Flores. The surname analysis shows Graciosa and Santa 

Maria as being the most inbred islands and São Miguel and Terceira the less inbred. 

These differences are explained by the nature of the two systems. Once more, 

surnames simulte one locus with several alleles. As mentioned above, the inbreeding 

estimated through STRs is based on allele identity, and identity by state does not 

necessarily imply the same ancestor. Therefore, both estimates have problems and no 

accurate value is retrieved; nonetheless, all analyses demonstrate that the Azorean 

population is an open population. Additionally, and according to Wright (1984), 

values smaller than 0.05, such those obtained for both the Azorean and mainland 

Portugal populations, represent little genetic differentiation. On the other hand, to 
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assess if there where differences in the allelic composition between islands, which 

could reveal the presence of population stratification as result of the geography of the 

archipelago, we performed the analysis of genetic differentiation. The various 

analyses demonstrate no genetic differentiation between islands, as well as, between 

the whole Azorean and mainland populations (Table VIII.2). 

Furthermore, to detect population structure we used the STRUCTURE software. The 

analysis was performed varying K, which corresponds to the different source 

populations, from 2 to 7. The assignment of individuals to K distinct source 

populations was based on the 21 autosomal STRs (Branco et al. 2007, in press; 

Chapter VII). The results indicate the absence of structure in both São Miguel and 

mainland Portugal populations (Figure VIII.1). Moreover, we were unable to see a 

clear clustering of individuals by location, suggesting a high genetic similarity of 

both populations. These observations are in agreement with other studies  

 
Table VIII.1.  Inbreeding coefficient based on surnames and allele frequencies of 15 STR loci in all 

Azorean islands.  
 

FISIslands 
Surnames* STRs 

São Miguel 0.0033 0.0066 
Santa Maria 0.0064 0.0098 
Terceira 0.0027 0.0111 
Faial 0.0056 0.0200 
Pico 0.0048 0.0062 
São Jorge 0.0056 0.0328 
Graciosa 0.0158 -0.0099 
Flores 0.0038 0.0383 
Corvo 0.0062 0.0613 
Azores (whole) 0.0039 0.0196 
* Surnames results are described in Section V.2 of the present thesis. 

 

(Rosenberg et al. 2002; Perez-Lezaun et al. 1997), where a high similarity between 

European populations is reported. The analysis using the STRUCTURE software 

may not perform well considering a small number of markers, such as, this study (21 

STRs); nevertheless, as all data indicate that the Azorean population does not show 

structure.  
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Table VIII.2.  Genetic differentiation between populations considering 11 autosomal STR 
markers38 and Azores as a whole.  

Population group GST Min. Max. 
  Azores Islands  
     São Miguel 
     Santa Maria 
     Terceira 
     Graciosa 
     Faial 
     Pico 
     São Jorge 
     Flores 
     Corvo 

0.0128 0.0066 
(D7S820) 

0.0203 
(TPOX) 

  Portuguese  
     Azores 
     North Portuguese  
     Center Portuguese  
     Madeirans 
     Portuguese (this study) 

0.0079 0.0011 
(CSF1PO) 

0.0154 
(D3S1358) 

  Europeans (with Azores) 
     Azores 
     North Spanish 
     Andalusians 
     Belgian 
     Italians 

0.0055 0.0014 
(TPOX) 

0.0137 
(D3S1358) 

  Europeans (without Azores) 
     Portuguese (this study) 
     North Spanish 
     Andalusians 
     Belgian 
     Italians 

0.0066 0.0020 
(TPOX) 

0.0136 
(D13S317) 

  Africans (with Azores) 
     Azores 
     Moroccans 
     Cape Verdeans 

0.0131 0.0026 
(vWA) 

0.0195 
(D3S1358) 

  Africans (without Azores) 
     Portuguese (this study) 
     Moroccans 
     Cape Verdeans 

0.0140 0.0064  
(FGA) 

0.0249 
(D13S317) 

Overall39 0.0102 0.0062 
(D7S820) 

0.0157 
(TH01) 

 

                                                 
38 Genetic differentiation calculation was based only on 11 STRs (TPOX, D3S1358, FGA, CSF1PO, D5S818, 

D7S820, D8S1179, TH01, vWA, D13S317 and D18S51), since the information for the remaining 
microsatellites was not available in ALFRED and other databases as well as in the literature. 

39 The overall group includes the following populations: São Miguel, Santa Maria, Terceira, Graciosa, Faial, 
Pico, São Jorge, Flores, Corvo, Portuguese, north Portuguese, center Portuguese, Madeirans, Portuguese (this 
study), north Spanish, Andalusians, Belgian, Italians, Africans, Moroccans and Cape Verdeans. 
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VIII.4. Gene flow patterns 

Migration or gene flow constitutes one important phenomenon that influences the 

diversity patterns and, consequently, the evolution of populations. The understanding 

of how individuals disperse within small groups of the same population has 

significant impact in the establishment of a reference population and, therefore, in 

medical healthcare, as well as, in the design of genetic studies. Migration rates were 

estimated initially by surnames and then by microsatellite data. These estimates in 

both studies evidence the movement of people towards the biggest islands, namely 

São Miguel and Terceira. However, while surnames point Corvo as the island with 

the largest migration rate, the microsatellite data show that people in that island have 

become sedentary. As stressed before, surnames correspond to one locus. On the 

other hand, migration is largely dependent on the abundance of surnames. This 

parameter is also directly obtained from the isonymy values; therefore, populations 

with smaller number of diversity of surnames would present higher migration rates. 

Nevertheless, in general, there is relative gene flow among islanders and this has 

contributed to the overall genetic background of the Azorean population.  

Another study to characterize the patterns of gene flow was the spatial analysis based 

on surnames. Five different patterns were obtained, of which the most relevant is 

isolation by distance and depression (41.6%). However, 43.4% of surnames had no 

defined pattern. This analysis reports a majority of positive values of Moran’s I for 

distances lower than 49 km and between 269 and 309 km, indicating high similarity 

between closer municipalities and between distant municipalities whose populations 

show historic and socio-cultural affinities, which agrees with the historical 

demography of the Azorean population (Cabral et al. 2005). 

To test for the effects of gene flow and genetic drift on population relationships, we 

performed a centroid analysis, as described by Harpending and Ward (1982), based 

on Alu insertion polymorphisms. Briefly, this model assumes a simple linear 

relationship between the heterozygosity of a population and the genetic distance of 

the population from the centroid (ri). The centroid is defined as the mean allelic 

frequency of the populations. Surprisingly, Moroccans, Catalans, Andalusians, 

French, Azoreans and mainland Portuguese are located above the theoretical 

prediction, indicating that these populations have experienced more gene flow than 
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the average (Figure VIII.2). Low gene flow is indicative of a certain degree of 

genetic isolation (de Pancorbo et al. 2001). According to Batzer et al. (1996), 

European populations are located below the theoretical prediction. In contrast, 

Azores and mainland Portugal, despite being European populations, are experiencing 

high gene flow, making them open populations. Moreover, this result also 

demonstrates that Azores does not show characteristics of an isolated population, 

albeit it is a mid-Atlantic archipelago. The data also confirm the high variability 

observed in these two populations. Nonetheless, populations that fall below the 

theoretical regression line experience significantly more drift. Contrary to what have 

been suggested by Santos et al. (2003), gene flow results show that the Azoreans 

may not be experiencing genetic drift. 

 

 

 

 

 

 

 

 

Figure VIII.2. Centroid analysis based on Alu frequencies. AZ, Azores; PO, Portugal. AA, African 
American; AR, Armenian; BA, Bantu Speakers; BR, Bretons; DA, Darginian; EA, 
European American; FR, French; GE, German; GR, Greek Cypriot; HU, Hungarian; 
SW, Swiss; SY, Syrians; TU, Turk Cypriot; CA, Catalans; AN, Andalusians; MO, 
Moroccans; AL, Algerians. 

 

Considering that migration and admixture are intimaly related concepts, we tried to 

calculate the admixture proportions in the Azorean population. However, the type of 

markers used to analyse this population are not the best choice considering the 

available softwares. STRs are highly polymorphic and can not be assigned to specific 

populations. Because the Azoreans are of European descent, it is very difficult to 
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define the admixed proportions. Probably, the data produced by the HapMap project 

will help to make this characterization, once a map of SNPs characteristic to each 

population will be produced. 

 

VIII.5. Concluding remarks and future perspectives 

The main objective of the present thesis was to characterize the genetic background 

of the Azorean population, through the study of molecular and non-molecular 

markers. Both markers have advantages and criticisms, but their analysis are 

complementary. In general, the results obtained along this thesis improved the 

knowledge of the genetic signature of the Azorean population: the Azoreans are a 

young outbred population with high genetic diversity, relative gene flow among its 

individuals, and without extensive LD. Moreover, the overall patterns of diversity are 

a direct consequence of the archipelago settlement history. In conclusion, the results 

here reported complement the past, by connecting genetics and history; improve the 

knowledge of the present, since the genetic background is responsible for the current 

disease carriage; and will contribute to predict the future in terms of disease 

distribution and frequency. 

The advance in knowledge and technology lead to pose new scientific thoughts and 

questions and, therefore, the present thesis cannot be considered as the final line in 

the understanding of the genetic features of the Azorean population. It constitutes a 

starting point. Knowing that different peoples contributed to the genetic background 

of this population, questions such as, what are the admixture proportions of each 

contributor? in which way these proportions are contributing to the neutral genetic 

variation, as well as, to the disease carriage? what implications these admixture 

proportions play in farmacogenetic drug-response?, can be addressed. In addition, in 

a near future, the HapMap project intends to produce a haplotype map showing 

which haplotypes are characteristic of each population. This will allow the 

development of admixture mapping marker panels that, applied to the Azorean 

population, could help to clarify the above questions. Recently, Tang et al. (2007), 

by examining the genome-wide distribution of ancestry in Puerto Ricans, report a 

strong statistical evidence of recent selection in three chromosomal regions (6p, 8q 
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and 11q). These authors suggest that admixed populations may constitute powerfull 

tools in the study of natural selection. This evolutionary force can be responsible by 

geographical differences in diversity and disease carriage. Moreover, according to 

Guthery et al. (2007), even if the bulk of alleles underlying complex health-related 

traits are common SNPs, geographic ancestry might be an important predictor of 

whether a person carries a risk allele. Therefore, a correct assignment of admixture in 

the Azoreans may help in the understanding of the patterns of selection and in 

mapping disease causing genes in this population.  

Genetic association studies offer a powerful approach to identify the multiple 

variants of small effect that modulate susceptibility to complex diseases. However, 

the lack of data replication indicates that there are many factors influencing gene 

mapping, namely, natural selection, population admixture, recombination and 

consanguinity. Pacheco et al. (2003) based on marriage records for the period 1931 

to 2000 (National Institute of Statistics) demonstrated that Azores presents higher 

consanguinity than mainland Portugal and Madeira Islands. Because consanguinity 

increases homozygosity, the assessment of the extent of homozygosity tracts in 

proximate regions of highly informative markers, such as STRs, could contribute to 

understand the role of consanguinity in this population. For example, it may be 

involved in the increase of complex disease frequencies, such as congenital heart 

diseases (Cabral et al. 2007) and autism (Oliveira et al. 2007). Therefore, a full 

characterization of the forces acting in the genetic background of Azoreans will 

probably play a relevant role in the understanding of the genomic basis of diseases in 

this population. 
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  Appendix IX.1 
 

Appendix IX.1 Allele frequencies for 21 STR loci in São Miguel and mainland Portugal populations. 

Frequency  Frequency 
Locus Allele São Miguel m. Portugal  Locus Allele São Miguel m. Portugal 
TPOX     D7S820    

 7 0.0030 -   7 0.0303 0.0310 
 8 0.4880 0.4450   8 0.1250 0.1300 
 9 0.1110 0.1030   9 0.1250 0.1530 
 10 0.0660 0.0710   10 0.2600 0.2820 
 11 0.2840 0.3260   11 0.2330 0.1980 
 12 0.0480 0.0550   12 0.1910 0.1600 

D3S1358      13 0.0330 0.0380 
 13 0.0080 -   14 0.0027 0.0080 
 14 0.1150 0.1020  D8S1179    
 15 0.2490 0.2520   8 0.0109 0.0080 
 16 0.2290 0.2520   9 0.0272 0.0230 
 17 0.2380 0.2280   10 0.0842 0.0920 
 18 0.1420 0.1340   11 0.1060 0.0840 
 19 0.0190 0.0320   12 0.1277 0.0990 

D19S433      13 0.2636 0.2970 
 11 0.0028 -   14 0.2174 0.2210 
 12 0.0028 -   15 0.1549 0.1070 
 12.2 0.0028 -   16 0.0054 0.0460 
 13 0.0223 0.0080   17 0.0027 0.0230 
 13.2 0.1260 -  D17S976    
 14 0.2150 0.1310   19.3 0.1873 0.1430 
 15 0.0084 0.2460   20 - 0.0070 
 15.2 0.3240 0.0230   21 0.0379 0.0430 
 16 0.0140 0.3380   21.3 0.0076 - 
 16.2 0.1731 0.0150   22 0.1114 0.0570 
 17 0.0220 0.1310   23 0.1089 0.1210 
 17.2 0.0614 0.0540   24 0.0810 0.0930 
 18 0.0170 0.0460   25 0.0456 0.0570 
 19 0.0084 0.0080   26 0.0304 0.0640 

D18S51      27 0.0456 0.0790 
 11 0.0103 0.0350   27.3 0.0709 0.0710 
 12 0.0026 -   28.3 0.0557 0.0930 
 13 0.1211 0.1280   29.3 0.0911 0.0500 
 14 0.1366 0.1210   30 - 0.0220 
 15 0.1366 0.1420   30.3 0.0532 0.0140 
 16 0.1366 0.0920   31.3 0.0405 0.0430 
 17 0.1134 0.1350   32.3 0.0152 0.0220 
 18 0.1392 0.1700   34 0.0101 0.0140 
 19 0.1082 0.0710   35 0.0076 0.0070 
 20 0.0412 0.0430      
 21 0.0412 0.0280      
 22 0.0052 0.0140      
 23 0.0052 0.0140      
 24 0.0026 0.0070      
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Frequency  Frequency 
Locus Allele São Miguel m. Portugal  Locus Allele São Miguel m. Portugal 

CSF1PO     D13S317    
 7 0.0055 0.0080   8 0.1142 - 
 8 0.0055 0.0080   9 0.0668 0.0980 
 9 0.0222 0.0160   10 0.0529 0.0900 
 10 0.2740 0.2890   11 0.2896 0.0680 
 11 0.3380 0.3280   12 0.2396 0.2410 
 12 0.2990 0.3280   13 0.1616 0.2930 
 13 0.0503 0.0230   14 0.0641 0.1800 
 14 0.0055 -   15 0.0056 0.0300 

D5S818      16 0.0056 - 
 8 0.0100 -  D14S306    
 9 0.0440 0.0300   1 0.0028 0.0150 
 10 0.1320 0.0680   2 0.0055 0.0380 
 11 0.4730 0.3080   3 0.0305 0.1150 
 12 0.3070 0.3160   4 0.1470 0.2670 
 13 0.0340 0.2630   5 0.2880 0.1220 
 14 - 0.0150   6 0.1523 0.2750 

FGA      7 0.2576 0.1450 
 17 0.0027 -   8 0.1025 0.0150 
 18 0.0054 -   9 0.0083 0.0080 
 19 0.0458 0.0900   10 0.0055 - 
 20 0.1833 0.1430  vWA    
 20.2 0.0108 -   14 0.1084 0.0070 
 21 0.1430 0.1430   15 0.1599 0.1590 
 21.2 0.0054 0.0150   16 0.2358 0.1300 
 22 0.1560 0.1500   17 0.2791 0.2320 
 22.2 0.008 0.0220   18 0.1626 0.1740 
 23 0.1810 0.1810   19 0.0434 0.1960 
 23.2 0.0027 -   20 0.0108 0.1020 
 24 0.1510 0.1650  TNFα    
 25 0.0752 0.0530   1 0.0260 0.0220 
 25.2 0.0027 -   2 0.2120 0.1870 
 26 0.0135 0.0220   3 0.0110 0.0310 
 27 0.0108 0.0080   4 0.1130 0.0750 
 28 0.0027 0.0080   5 0.0590 0.1120 

D22S417      6 0.1160 0.1640 
 3 - 0.0220   7 0.1140 0.0890 
 4 0.2059 0.2520   8 0.0130 0.0070 
 5 0.1711 0.2300   9 0.0230 0.0370 
 6 0.0989 0.0890   10 0.1710 0.1420 
 7 0.2086 0.1330   11 0.1110 0.0820 
 8 0.1096 0.0520   12 - 0.0070 
 9 0.0348 0.0520   13 0.0230 0.0450 
 10 0.0856 0.1410   14 0.0080 - 
 11 0.0561 0.0220      
 12 0.0187 -      
 13 0.0107 0.0070      
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Frequency  Frequency 
Locus Allele São Miguel m. Portugal  Locus Allele São Miguel m. Portugal 

D6S265     D20S161    
 2 0.1460 0.1340   14 0.0063 0.0080 
 3 0.0110 -   17 0.2453 0.2600 
 4 0.3230 0.3230   18 0.4591 0.3950 
 5 0.2220 0.1340   19 0.2358 0.2440 
 6 0.2470 0.1570   20 0.0283 0.0760 
 7 0.0080 0.1260   21 0.0252 0.0170 
 10 - -   11 0.1110 0.0820 
 11 0.0060 -   12 - 0.0070 
 12 0.0370 0.1260   13 0.0230 0.0450 
      14 0.0080 - 

FES/FPS     D10S525    
 8 0.0094 0.0080   3 0.2240 0.1490 
 9 0.0032 0.0240   4 0.3170 0.3640 
 10 0.3070 0.3310   5 0.4210 0.4210 
 11 0.3861 0.3390   6 0.0380 0.0580 
 12 0.2342 0.2660   7 - 0.0080 
 13 0.0569 0.0240  D16S539    
 14 0.0032 0.0080   8 0.0310 0.0220 

TH01      9 0.1140 0.0880 
 6 0.2270 0.1780   10 0.0510 0.0880 
 7 0.1970 0.0890   11 0.3160 0.2430 
 8 0.1330 0.1850   12 0.2650 0.2870 
 9 0.2240 0.2340   13 0.2010 0.2210 
 9.3 0.2080 0.3060   14 0.0190 0.0510 
      15 0.0030 - 
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Appendix IX.2. Allele frequencies for 15 STR loci in all Azorean islands. 

Markers Islands 
 São Miguel Santa Maria Terceira Faial Pico São Jorge Graciosa Flores Corvo
D3S1358 N=207 N=93 N=187 N=99 N=123 N=85 N=85 N=130 N=54 

13 0.0048  -   -  0.0101  -   -   -   -   -  
14 0.1256 0.1630 0.1016 0.0909 0.0984 0.1294 0.1548 0.1000 0.0556
15 0.2319 0.3043 0.3155 0.2222 0.2049 0.2589 0.2500 0.2692 0.2222
16 0.2173 0.2501 0.1818 0.3233 0.1803 0.2353 0.3095 0.2154 0.3889
17 0.2319 0.1630 0.2460 0.2121 0.2787 0.2235 0.2024 0.2385 0.2037
18 0.1546 0.1087 0.1444 0.1414 0.2049 0.1294 0.0833 0.1615 0.1296
19 0.0242 0.0109 0.0107  -  0.0328 0.0235  -  0.0077  -  
20 0.0097  -   -   -   -   -   -  0.0077  -  
          

TPOX N=192 N=81 N=169 N=89 N=102 N=85 N=83 N=127 N=44 

6 0.0052 0.0123 0.0059  -   -   -   -  0.0236  -  
7  -   -  0.0059  -   -   -   -   -   -  
8 0.4896 0.5062 0.4438 0.4831 0.5098 0.5059 0.3976 0.5039 0.5000
9 0.0781 0.1728 0.1479 0.1685 0.0392 0.1412 0.0964 0.0394 0.1591
10 0.0521 0.0247 0.0533 0.0787 0.0882 0.0353 0.0964 0.0945 0.2500
11 0.3281 0.2717 0.2840 0.2472 0.3334 0.2705 0.3614 0.2835 0.0909
12 0.0417 0.0123 0.0592 0.0225 0.0294 0.0353 0.0482 0.0551  -  
13 0.0052  -   -   -   -  0.0118  -   -   -  
          

D21S11 N=205 N=98 N=183 N=94 N=126 N=95 N=89 N=135 N=51 

24.2 0.0049  -   -   -   -  0.0105  -  0.0296  -  
27 0.0341 0.0102  -  0.0532 0.0238 0.0421  -  0.0074  -  
28 0.1561 0.2041 0.1366 0.2021 0.1508 0.1579 0.0899 0.2074 0.2353
29 0.2341 0.1327 0.1913 0.2766 0.2461 0.3263 0.2921 0.2742 0.2942
30 0.2341 0.2857 0.2624 0.1703 0.2064 0.1368 0.2022 0.1407 0.1569
30.2 0.0488 0.0204 0.0546 0.0319 0.0079 0.0316 0.0112 0.0889 0.0784
31 0.0634 0.0612 0.0874 0.0319 0.0476 0.0737 0.1461 0.0222  -  
31.2 0.0976 0.1531 0.1257 0.1596 0.1270 0.0737 0.1124 0.1333 0.0392
32 0.0098 0.0204 0.0109  -  0.0079 0.0211  -  0.0074  -  
32.2 0.0878 0.0714 0.1038 0.0638 0.1429 0.0947 0.1124 0.0593 0.1176
33.2 0.0293 0.0408 0.0273 0.0106 0.0317 0.0105 0.0337 0.0296 0.0784
34.2  -   -   -   -  0.0079 0.0211  -   -   -  
          

TH01 N=206 N=97 N=186 N=95 N=115 N=92 N=90 N=135 N=50 

6 0.2039 0.1443 0.1882 0.2105 0.2609 0.2609 0.2778 0.1926 0.1000
7 0.2039 0.2371 0.2043 0.1368 0.1652 0.1087 0.1778 0.1407 0.2200
8 0.1019 0.0722 0.1505 0.1263 0.1478 0.1413 0.0889 0.1704 0.2200
9 0.2087 0.2165 0.1828 0.1895 0.1565 0.2065 0.2333 0.2370 0.0400
9.3 0.2816 0.3196 0.2634 0.3369 0.2696 0.2717 0.2222 0.2593 0.4200
10  -  0.0103 0.0108  -   -  0.0109  -   -   -  
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Markers Islands 
 São Miguel Santa Maria Terceira Faial Pico São Jorge Graciosa Flores Corvo
D5S818 N=196 N=84 N=182 N=91 N=118 N=87 N=74 N=133 N=50 

7 0.0204  -  0.0055 0.0110 0.0169  -   -   -   -  
8 0.0102  -  0.0110  -   -  0.0115  -  0.0075  -  
9 0.0255 0.0357 0.0604 0.0110 0.0339 0.0230 0.0270 0.0526 0.0200
10 0.1020 0.0476 0.0659 0.0330 0.0339 0.0690 0.0270 0.0677 0.2000
11 0.3215 0.2976 0.4012 0.3516 0.3644 0.2414 0.2703 0.3534 0.3600
12 0.3520 0.4286 0.2967 0.3846 0.3644 0.4482 0.4595 0.2932 0.2600
13 0.1480 0.1786 0.1538 0.1978 0.1780 0.1379 0.2027 0.2030 0.1600
14 0.0153 0.0119 0.0055 0.0110 0.0085 0.0690 0.0135 0.0226  -  
15 0.0051  -   -   -   -   -   -   -   -  
          

D13S317 N=202 N=98 N=180 N=92 N=118 N=87 N=83 N=132 N=49 

8 0.0990 0.1327 0.1333 0.1522 0.0847 0.1149 0.1325 0.1061 0.0816
9 0.0495 0.1020 0.0444 0.0761 0.1017 0.0575 0.0843 0.0758 0.0816
10 0.0396 0.0510 0.0389 0.0870 0.0678 0.0920 0.0120 0.0682 0.2245
11 0.3316 0.2449 0.3500 0.2935 0.2458 0.2184 0.3013 0.2802 0.1633
12 0.2624 0.2858 0.2779 0.2608 0.3136 0.3103 0.3013 0.3560 0.3878
13 0.1485 0.0918 0.1111 0.0978 0.1525 0.0575 0.1325 0.0758 0.0408
14 0.0644 0.0918 0.0444 0.0326 0.0339 0.1034 0.0241 0.0379 0.0204
15 0.0050  -   -   -   -  0.0460 0.0120  -   -  
          

D16S539 N=196 N=94 N=183 N=88 N=113 N=89 N=83 N=128 N=54 

8 0.0255 0.0426 0.0164 0.0341 0.0531 0.0674 0.0120 0.0313  -  
9 0.1276 0.1383 0.1530 0.0795 0.0885 0.0899 0.1687 0.1094 0.1296
10 0.0357 0.0426 0.1148 0.0455 0.0531 0.1124 0.0723 0.0781 0.0185
11 0.3214 0.2765 0.2732 0.3750 0.2212 0.3708 0.1446 0.2812 0.2407
12 0.2602 0.2872 0.2459 0.2727 0.3894 0.2247 0.3735 0.2187 0.2778
13 0.1990 0.1809 0.1475 0.1818 0.1593 0.0899 0.1928 0.2422 0.2778
14 0.0306 0.0213 0.0492 0.0114 0.0354 0.0449 0.0361 0.0391 0.0556
15  -  0.0106  -   -   -   -   -   -   -  
          

D8S1179 N=208 N=89 N=192 N=95 N=124 N=93 N=91 N=140 N=52 

8 0.0242 0.0112 0.0052 0.0211  -   -   -   -  0.0192
9 0.0097  -  0.0052 0.0105  -  0.0108 0.0330 0.0143 0.0192
10 0.0773 0.0674 0.1094 0.0947 0.1290 0.1290 0.0659 0.1286 0.1154
11 0.1256 0.1573 0.1458 0.0632 0.1048 0.1075 0.0440 0.0357 0.0577
12 0.0966 0.1124 0.1406 0.1368 0.1532 0.1183 0.2198 0.1571 0.1346
13 0.2464 0.2922 0.2552 0.2947 0.2662 0.2796 0.2636 0.2929 0.3463
14 0.2222 0.1685 0.1615 0.2000 0.1935 0.1720 0.2198 0.2429 0.1538
15 0.1787 0.1910 0.1458 0.1579 0.1452 0.1613 0.1209 0.1214 0.1538
16 0.0145  -  0.0313 0.0211 0.0081 0.0215 0.0330 0.0071  -  
17 0.0048  -   -   -   -   -   -   -   -  
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Markers Islands 
 São Miguel Santa Maria Terceira Faial Pico São Jorge Graciosa Flores Corvo
D18S51 N=208 N=93 N=195 N=100 N=122 N=95 N=86 N=145 N=56 

9  -   -   -   -   -   -   -  0.0069 0.0179
10 0.0144 0.0430 0.0102 0.0100 0.0164  -  0.0465 0.0138  -  
11  -  0.0108 0.0154  -   -  0.0105  -   -   -  
12 0.1154 0.1183 0.1487 0.2000 0.1639 0.1579 0.1744 0.1655 0.1428
13 0.1442 0.1398 0.1590 0.1300 0.1311 0.1579 0.1744 0.1586 0.0357
14 0.1442 0.1934 0.1795 0.1300 0.1639 0.1158 0.0349 0.1862 0.0893
15 0.1298 0.0968 0.1026 0.1600 0.1721 0.1158 0.1628 0.1034 0.1071
16 0.1394 0.1290 0.1333 0.1300 0.1066 0.1684 0.1512 0.1655 0.0893
17 0.1250 0.1505 0.1026 0.1000 0.1066 0.1158 0.1396 0.0414 0.3036
18 0.1058 0.0538 0.0821 0.0500 0.0574 0.1053 0.0581 0.0414  -  
19 0.0385 0.0323 0.0462 0.0800 0.0492 0.0421 0.0349 0.0690 0.1964
20 0.0385 0.0215 0.0102  -  0.0164  -  0.0116 0.0345 0.0179
21 0.0048 0.0108 0.0102  -   -  0.0105 0.0116 0.0069  -  
22  -   -   -  0.0100 0.0082  -   -  0.0069  -  
24  -   -   -   -  0.0082  -   -   -   -  
          

CSF1PO N=195 N=85 N=169 N=84 N=106 N=83 N=75 N=121 N=46 

7 0.0103 0.0118 0.0118  -   -   -  0.0267  -   -  
8 0.0051  -  0.0178  -  0.0094 0.0120 0.0133  -   -  
9 0.0205 0.0353 0.0178 0.0595  -  0.0241 0.0133 0.0083  -  
10 0.2717 0.2000 0.2663 0.2976 0.3208 0.3013 0.2933 0.3058 0.3261
11 0.3385 0.2470 0.3077 0.3452 0.3208 0.3012 0.3734 0.3718 0.2826
12 0.2821 0.4117 0.2958 0.2144 0.2641 0.3013 0.2667 0.2149 0.1739
13 0.0718 0.0471 0.0414 0.0595 0.0377 0.0361 0.0133 0.0579 0.1739
14  -  0.0353 0.0296 0.0238 0.0472 0.0120  -  0.0413 0.0435
15  -  0.0118 0.0118  -   -  0.0120  -   -   -  
          

D7S820 N=210 N=98 N=186 N=97 N=116 N=92 N=83 N=136 N=53 

7 0.0238 0.0408 0.0108 0.0103 0.0345  -  0.0120 0.0074 0.0566
8 0.1619 0.1531 0.1398 0.0928 0.1638 0.1087 0.1808 0.2206 0.1321
9 0.1095 0.0918 0.1022 0.0928 0.1034 0.1413 0.1325 0.1029 0.1509
10 0.2715 0.2245 0.2687 0.2990 0.2759 0.2934 0.2530 0.2794 0.3019
11 0.2095 0.2143 0.2742 0.2887 0.1983 0.2283 0.2048 0.1985 0.2453
12 0.1857 0.2551 0.1559 0.1649 0.1810 0.1848 0.1808 0.1544 0.0943
13 0.0333 0.0204 0.0484 0.0515 0.0431 0.0326 0.0241 0.0368  -  
14 0.0048  -   -   -   -  0.0109 0.0120  -  0.0189
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Markers Islands 
 São Miguel Santa Maria Terceira Faial Pico São Jorge Graciosa Flores Corvo
VWA N=206 N=92 N=187 N=99 N=126 N=92 N=84 N=135 N=52 

12 0.0049  -   -   -   -   -   -   -   -  
13 0.0049  -   -   -   -   -   -   -   -  
14 0.1068 0.1087 0.1123 0.1515 0.1349 0.1196 0.1190 0.1407 0.0385
15 0.1408 0.1304 0.1337 0.1111 0.1190 0.1196 0.1429 0.1630 0.1346
16 0.2572 0.3152 0.2353 0.2021 0.2143 0.1413 0.1667 0.2148 0.2692
17 0.2330 0.1848 0.2620 0.2525 0.2540 0.2608 0.2380 0.2296 0.3078
18 0.1795 0.1848 0.1551 0.1919 0.1667 0.2935 0.1905 0.1556 0.1538
19 0.0534 0.0435 0.0856 0.0808 0.0952 0.0543 0.1429 0.0815 0.0769
20 0.0146 0.0326 0.0160 0.0101 0.0159 0.0109  -  0.0148 0.0192
21 0.0049  -   -   -   -   -   -   -   -  
          

FGA N=213 N=93 N=191 N=98 N=124 N=95 N=90 N=137 N=57 

16 0.0047  -   -   -   -   -   -   -   -  
17  -   -  0.0052  -  0.0080 0.0105  -   -   -  
18 0.0094  -  0.0105 0.0102 0.0080 0.0211  -   -   -  
19 0.0423 0.0430 0.0524 0.0714 0.0565 0.0105 0.1667 0.0219 0.0877
19.2  -   -   -   -  0.0081  -   -   -   -  
20 0.1690 0.1290 0.1780 0.1735 0.1855 0.1895 0.2000 0.1825 0.2105
21 0.1548 0.1936 0.1624 0.1327 0.1532 0.1158 0.1333 0.1897 0.1930
21.2  -  0.0108 0.0052  -  0.0161  -   -   -   -  
22 0.1690 0.1720 0.1518 0.1837 0.1694 0.2631 0.1333 0.2044 0.1404
22.2 0.0141  -  0.0157  -   -   -   -  0.0073  -  
23 0.2113 0.2043 0.1204 0.1735 0.1371 0.1053 0.1333 0.0730 0.1053
23.2  -  0.0215  -  0.0102 0.0081 0.0105 0.0111 0.0438 0.0175
24 0.1174 0.0860 0.1675 0.1020 0.1532 0.1158 0.1223 0.1533 0.0877
24.2  -  0.0108  -  0.0204  -   -   -  0.0146  -  
25 0.0798 0.1075 0.0838 0.0714 0.0565 0.1053 0.0556 0.0876 0.1228
25.2 0.0047  -   -  0.0204  -   -   -   -   -  
26 0.0141 0.0215 0.0419 0.0306 0.0242 0.0421 0.0444 0.0146 0.0351
27 0.0094  -  0.0052  -  0.0161  -   -   -   -  
28  -   -   -   -   -  0.0105  -   -   -  
30  -   -   -   -   -   -   -  0.0073  -  
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Markers Islands 
 São Miguel Santa Maria Terceira Faial Pico São Jorge Graciosa Flores Corvo
Penta-E N=208 N=98 N=192 N=100 N=120 N=89 N=87 N=137 N=54 

5 0.0433 0.0714 0.1198 0.0900 0.0917 0.1011 0.0805 0.0730 0.0185
6  -   -  0.0104 0.0100  -   -  0.0115 0.0146  -  
7 0.1731 0.0918 0.1406 0.1700 0.1417 0.2135 0.1954 0.0876 0.0370
8 0.0240 0.0408 0.0104 0.0100 0.0083 0.0112  -  0.0073  -  
9 0.0192  -  0.0156 0.0200 0.0417 0.0112 0.0115 0.0438  -  
10 0.1010 0.0816 0.0885 0.1000 0.0500 0.1124 0.0805 0.0730 0.1297
11 0.1490 0.1225 0.1303 0.1500 0.1417 0.0787 0.1608 0.1387 0.0741
12 0.1732 0.1838 0.1979 0.1900 0.2000 0.2472 0.1954 0.2335 0.3519
13 0.1394 0.0816 0.0573 0.1100 0.1750 0.0899 0.1724 0.0949 0.1112
14 0.0288 0.1123 0.0625 0.0300 0.0333 0.0225  -  0.0803 0.1296
15 0.0529 0.0816 0.0313 0.0100 0.0083 0.0337  -  0.0365 0.0370
16 0.0240 0.0306 0.0365 0.0300 0.0583 0.0562 0.0230 0.0511 0.0370
17 0.0337 0.0408 0.0625 0.0200 0.0417 0.0112 0.0345 0.0657 0.0370
18 0.0096 0.0204 0.0052 0.0200  -   -   -   -  0.0185
19 0.0192 0.0306 0.0260 0.0400 0.0083  -  0.0345  -  0.0185
20  -  0.0102  -   -   -  0.0112  -   -   -  
21 0.0048  -  0.0052  -   -   -   -   -   -  
22 0.0048  -   -   -   -   -   -   -   -  
          

Penta-D N=207 N=97 N=182 N=88 N=114 N=90 N=84 N=134 N=56 

2.2  0.0097  -  0.0055  -   -   -  0.0119  -  0.0357
5 0.0097  -  0.0055  -   -   -   -   -   -  
7  -   -   -   -   -   -   -   -  0.0357
8 0.0145 0.0206 0.0220 0.0682 0.0175 0.0111 0.0119 0.0224 0.0357
9 0.2222 0.2062 0.1648 0.1819 0.2455 0.1444 0.2738 0.1493 0.1964
10 0.1014 0.1031 0.1319 0.1136 0.1667 0.1222 0.0595 0.1940 0.0714
11 0.1159 0.1031 0.1538 0.2045 0.1404 0.1222 0.1310 0.1716 0.1964
12 0.2029 0.2990 0.1978 0.1591 0.1316 0.2000 0.2500 0.1791 0.2322
13 0.2464 0.1649 0.2033 0.2386 0.2281 0.2667 0.1905 0.1791 0.1607
14 0.0676 0.0825 0.0989 0.0227 0.0614 0.0667 0.0714 0.0746 0.0179
15 0.0097 0.0103 0.0055 0.0114 0.0088 0.0667  -  0.0299 0.0179
16  -  0.0103 0.0110  -   -   -   -   -   -  
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Appendix IX.3 Allele frequencies for 8 STR loci located on the X-chromosome in all Azorean islands and mainland 
Portugal. 

Markers Populations 

 
São Miguel 

N=185 
Santa Maria 

N=22 
Terceira

N=54 
Faial 
N=25 

Pico 
N=29 

São Jorge
N=23 

Graciosa 
N=19 

Flores 
N=35 

Corvo
N=16 

m.Portugal
N=97 

DXS986           
1  -   -   -   -   -  0.0526  -   -   -   -  
3  -   -   -   -   -  0.0526  -   -   -  0.0103 
4  -   -  0.0435 0.0400 0.0345  -   -   -   -   -  
5 0.0703 0.0703 0.1304 0.0800 0.0690  -  0.1429  -  0.0909 0.0722 
6 0.0541 0.0541  -  0.0400  -  0.1053 0.1714  -  0.0909 0.0619 
7 0.4216 0.4216 0.4782 0.4000 0.5171 0.3158 0.3429 0.1875 0.7273 0.4948 
8 0.2108 0.2108 0.2174 0.2400 0.2414 0.4211 0.1714 0.3125 0.0909 0.2474 
9 0.0595 0.0595  -  0.0400 0.0345  -  0.0286 0.1250  -   -  
10 0.0162 0.0162  -   -   -   -   -   -   -   -  
11 0.0378 0.0378 0.0435 0.0400  -   -   -  0.0625  -   -  
12 0.0865 0.0865 0.0435  -  0.0690  -  0.0571 0.0625  -  0.0619 
13 0.0270 0.0270 0.0435 0.0400 0.0345  -  0.0857 0.2500  -  0.0103 
14 0.0054 0.0054  -  0.0800  -   -   -   -   -  0.0309 
15 0.0108 0.0108  -   -   -  0.0526  -   -   -  0.0103 
           

DXS1225           
1 0.0162  -   -   -  0.0345  -   -  0.0625  -  0.0103 
2 0.2109 0.2407 0.1304 0.1600 0.1379 0.1579 0.1713 0.0625 0.0909 0.2372 
3 0.0054  -   -   -   -   -   -   -   -   -  
4 0.0162  -   -   -   -   -   -   -  0.0455  -  
5 0.1839 0.1852 0.1304 0.2000 0.0690 0.1579 0.1429 0.0625 0.1817 0.1340 
6 0.0054 0.0185  -   -  0.0345  -   -   -   -  0.0103 
7 0.0270 0.0741 0.1304 0.0800 0.0690 0.1053 0.1429  -   -  0.0515 
8 0.0162  -   -  0.0400  -   -   -  0.2500  -  0.0103 
9 0.0054 0.0185  -  0.1200  -   -  0.0571 0.0625  -  0.0206 
10 0.0216 0.0185 0.0870 0.0400 0.0345 0.1053 0.0286  -  0.0455 0.0103 
11 0.4054 0.3890 0.3913 0.2800 0.4482 0.4210 0.4000 0.3750 0.5000 0.4640 
12 0.0162 0.0185 0.0435 0.0800 0.0345 0.0526  -   -  0.0455 0.0103 
13 0.0108 0.0185  -   -  0.0345  -  0.0286 0.1250 0.0909 0.0103 
14 0.0486 0.0185 0.0870  -  0.1034  -  0.0286  -   -  0.0309 
15 0.0108  -   -   -   -   -   -   -   -   -  
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Appendix IX.3 cont. 

Markers Populations 

 
São Miguel 

N=185 
Santa Maria 

N=22 
Terceira

N=54 
Faial 
N=25 

Pico 
N=29 

São Jorge
N=23 

Graciosa 
N=19 

Flores 
N=35 

Corvo
N=16 

m.Portugal
N=97 

DXS8082           
1 0.0054  -   -   -   -   -   -  0.0625  -   -  
2  -   -   -   -   -   -   -   -   -  0.0103 
3 0.0486 0.0926 0.0870 0.0800 0.0690 0.1053 0.1714 0.2500  -  0.0515 
4  -   -   -   -   -   -   -   -   -  0.0103 
5 0.0108 0.0185 0.0870  -  0.0345  -   -   -   -  0.0103 
6 0.0054  -   -  0.1200 0.0345  -   -  0.0625  -  0.0103 
7 0.4162 0.4260 0.4346 0.4000 0.5171 0.4736 0.5144 0.5625 0.6363 0.4641 
8 0.1892 0.1111 0.1739 0.0400 0.1379 0.1053 0.0571  -  0.0909 0.1237 
9 0.0216  -   -  0.0400 0.0345  -   -   -   -  0.0309 
10 0.0270  -   -  0.0400  -   -  0.0286  -  0.1364 0.0103 
11 0.0595 0.1481 0.0870 0.1200 0.0690 0.1579 0.0857 0.0625  -  0.0309 
12 0.1514 0.1296 0.0870 0.1200 0.0690 0.1053 0.0857  -  0.0455 0.1959 
13 0.0649 0.0556 0.0435 0.0400 0.0345 0.0526 0.0571  -  0.0909 0.0309 
14  -  0.0185  -   -   -   -   -   -   -  0.0206 
           

DXS8092           
1 0.0054  -   -   -   -   -   -   -   -  0.0103 
2  -   -   -   -   -   -   -   -   -  0.0103 
3 0.0324 0.0185  -   -  0.0345 0.0526  -   -  0.0909 0.0515 
4 0.0541 0.1111 0.2609 0.0400 0.0345 0.0526 0.1143  -  0.1818 0.0928 
5 0.0973 0.0926 0.1303 0.0400 0.1379 0.1579 0.0286 0.1875 0.0455 0.1031 
6 0.1838 0.2037 0.2174 0.2800 0.1724 0.4212 0.1714 0.1250  -  0.1031 
7 0.2109 0.2964  -  0.2800 0.2414 0.0526 0.1429 0.3125 0.0455 0.2062 
8 0.1081 0.1296  -  0.1200 0.1379 0.0526 0.2285 0.1875 0.0455 0.1753 
9 0.1135 0.0370 0.2174 0.0800 0.1379 0.1053 0.1714 0.0625 0.3180 0.1134 
10 0.1189 0.0185 0.0870  -   -  0.0526 0.0857  -  0.0909 0.0722 
11 0.0432  -  0.0870 0.1600 0.0690 0.0526 0.0286 0.1250 0.1364 0.0412 
12 0.0216 0.0556  -   -  0.0345  -  0.0286  -  0.0455 0.0206 
13 0.0054 0.0370  -   -   -   -   -   -   -   -  
14 0.0054  -   -   -   -   -   -   -   -   -  
           

DXS995           
2  -   -  0.0435 0.0800  -   -   -   -   -  0.0103 
3 0.6054 0.5741 0.6522 0.5600 0.5517 0.5790 0.6857 0.5000 0.5909 0.6083 
4 0.0486 0.0556  -  0.0800  -   -  0.0286  -  0.0455  -  
5 0.2649 0.2593 0.3043 0.2000 0.4138 0.2105 0.2286 0.1250 0.3636 0.3505 
6 0.0703 0.1110  -  0.0800 0.0345 0.2105 0.0571 0.3750  -  0.0309 
7 0.0108  -   -   -   -   -   -   -   -   -  
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Markers Populations 

 
São Miguel 

N=185 
Santa Maria 

N=22 
Terceira

N=54 
Faial 
N=25 

Pico 
N=29 

São Jorge
N=23 

Graciosa 
N=19 

Flores 
N=35 

Corvo
N=16 

m.Portugal
N=97 

DXS8037           
4  -  0.0185  -   -  0.0345  -   -   -   -   -  
6 0.0649 0.0741  -  0.0400  -  0.0526 0.2286 0.2500 0.0909 0.0412 
8 0.0162 0.0370  -  0.0400  -   -  0.0286  -   -  0.0103 
9 0.0108  -  0.0435  -   -   -   -   -   -  0.0103 
10 0.1243 0.0926 0.2174 0.1600 0.1724 0.0526 0.2286 0.0625 0.1364 0.1443 
11 0.4324 0.4815 0.3913 0.4800 0.4482 0.5264 0.2856 0.1875 0.5454 0.4743 
12 0.2757 0.1667 0.3478 0.2400 0.2759 0.3684 0.2286 0.3750 0.2273 0.2371 
13 0.0649 0.0370  -  0.0400 0.0690  -   -  0.1250  -  0.0619 
14 0.0108 0.0926  -   -   -   -   -   -   -  0.0206 
           

DXS1066           
1 0.0108 0.0370  -  0.0400  -  0.0526  -  0.0625  -  0.0206 
2 0.0162 0.0185  -  0.0400  -   -   -   -   -  0.0103 
3 0.7405 0.8704 0.8261 0.7200 0.7931 0.5263 0.7143 0.5625 0.7727 0.7114 
4 0.1514 0.0556 0.1739 0.1200 0.1379 0.2632 0.2000 0.3125 0.1818 0.1649 
5 0.0811  -   -  0.0800 0.0690 0.1579 0.0857 0.0625 0.0455 0.0722 
6  -  0.0185  -   -   -   -   -   -   -  0.0206 
           

DXS983           
1  -  0.0185  -  0.0400 0.0345  -   -   -  0.0455 0.0103 
2 0.1622 0.1852 0.1304 0.2400 0.1379 0.1053 0.1143 0.1250 0.1818 0.1134 
3 0.0054  -   -   -   -   -   -   -   -  0.0206 
4  -   -   -   -   -   -   -   -   -  0.0309 
5 0.1243 0.0741 0.3043 0.1600 0.2069 0.1579 0.0571 0.1875 0.0455 0.2165 
6 0.4865 0.4815 0.3479 0.2400 0.3793 0.4210 0.5429 0.4375 0.2727 0.3506 
7 0.2108 0.2407 0.1739 0.2800 0.2414 0.3158 0.2286 0.1875 0.4545 0.2165 
8 0.0108  -  0.0435 0.0400  -   -  0.0571 0.0625  -  0.0309 
9  -   -   -   -   -   -   -   -   -  0.0103 
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Appendix IX.4. HLA class I and II allele frequencies in São Miguel population (the highest 
values are in bold). 

 

Alleles Allele frequencies %  Alleles Allele frequencies % 
HLA-A (2n=212)  HLA-B (2n=212) 
A*01 0.151  B*07 0.066 
A*02 0.250  B*08 0.137 
A*03 0.094  B*13 0.005 
A*11 0.042  B*14 0.071 
A*23 0.019  B*15 0.052 
A*24 0.137  B*18 0.052 
A*25 0.005  B*27 0.042 
A*26 0.009  B*35 0.061 
A*29 0.066  B*37 0.014 
A*30 0.033  B*38 0.014 
A*31 0.024  B*39 0.009 
A*32 0.061  B*40 0.028 
A*33 0.028  B*41 0.024 
A*66 0.005  B*44 0.156 
A*68 0.071  B*45 0.009 
A*80 0.005  B*47 0.005 
HLA-Cw (2n=212)  B*49 0.052 
Cw*01 0.024  B*50 0.033 
Cw*02 0.066  B*51 0.066 
Cw*03 0.075  B*53 0.024 
Cw*04 0.104  B*55 0.019 
Cw*05 0.071  B*57 0.042 
Cw*06 0.090  B*58 0.014 
Cw*07 0.311  B*78 0.005 
Cw*08 0.052  HLA-DPA1 (2n=212) 
Cw*12 0.047  DPA1*01 0.462 
Cw*14 0.019  DPA1*0103 0.255 
Cw*15 0.047  DPA1*0105 0.005 
Cw*16 0.071  DPA1*0201 0.226 
Cw*17 0.024  DPA1*0202 0.042 
   DPA1*0301 0.009 
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Appendix IX.4 cont. 

 

 

 

 

 

 

Alleles Allele frequencies % Alleles Allele frequencies % 
HLA-DPB1 (2n=212) HLA- DRB1 (2n=212) 
DPB1*0101 0.057 DRB1*01 0.085 
DPB1*0201 0.212 DRB1*03 0.165 
DPB1*0202 0.014 DRB1*04 0.123 
DPB1*0301 0.080 DRB1*07 0.170 
DPB1*0401 0.316 DRB1*08 0.028 
DPB1*0402 0.094 DRB1*09 0.019 
DPB1*0501 0.014 DRB1*10 0.019 
DPB1*0601 0.005 DRB1*11 0.118 
DPB1*0901 0.005 DRB1*12 0.009 
DPB1*1001 0.028 DRB1*13 0.146 
DPB1*1101 0.024 DRB1*14 0.019 
DPB1*1301 0.052 DRB1*15 0.075 
DPB1*1401 0.014 DRB1*16 0.024 
DPB1*1501 0.005 HLA- DQB1 (2n=212) 
DPB1*1601 0.005 DQB1*02 0.302 
DPB1*1701 0.038 DQB1*03 0.321 
DPB1*1901 0.014 DQB1*04 0.028 
DPB1*2501 0.005 DQB1*05 0.151 
DPB1*3901 0.005 DQB1*06 0.198 
DPB1*5101 0.005   
DPB1*6601 0.005   
DPB1*7801 0.005   
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Appendix IX.5. Publications on the Azorean population (adapted from PubMed, August 27, 2007). 

Authors Title  Journal 
POPULATION GENETICS   
Neto D, Montiel R, 
Bettencourt C, et al.  The African contribution to the present-day population of the Azores 

Islands (Portugal): Analysis of the Y-chromosome haplogroup E.  Am J Hum Biol. 2007.  
DOI: 10.1002/ajhb.20651 

Service S, DeYoung J, 
Karayiorgou M, et al.  Magnitude and distribution of linkage disequilibrium in population 

isolates and implications for genome-wide association studies.   Nat Genet. 2006 
38: 556 560. 

Branco CC, Palla R, Lino S, et 
al.  Assessment of Azorean ancestry by Alu insertion polymorphisms.  Am J Hum Biol. 2006  

18 (2): 223-6.  

Santos C, Abade A, Cantons 
J, et al.  Genetic structure of Flores island (Azores, Portugal) in the 19th 

century and in the present day: evidence from surname analysis.  Hum Biol. 2005  
77 (3): 317-41.  

Fernando O, Mota P, Lima M, 
et al.  Peopling of the Azores Islands (Portugal): data from the Y-

chromosome.  Hum Biol. 2005  
77 (2): 189-99.  

Cabral R, Branco CC, Costa 
S, et al.  Geography of surnames in the Azores: specificity and spatial 

distribution analysis.  Am J Hum Biol. 2005 
17 (5): 634-45.  

Branco CC, Mota-Vieira L.   Surnames in the Azores: analysis of the isonymy structure.  Hum Biol. 2005  
77 (1): 37-44.  

Spinola H, Brehm A, 
Bettencourt B, et al.  HLA class I and II polymorphisms in Azores show different 

settlements in Oriental and Central islands.  Tissue Antigens. 2005  
66 (3): 217-30.  

Santos C, Montiel R, Sierra B, 
Bettencourt C, et al.  

Understanding differences between phylogenetic and pedigree-
derived mtDNA mutation rate: a model using families from the 
Azores Islands (Portugal). 

 Mol Biol Evol. 2005  
22 (6): 1490-505. 

Pacheco PR, Branco CC, 
Cabral R, et al.  The Y-chromosomal heritage of the Azores Islands population.  Ann Hum Genet. 2005  

69 (Pt 2): 145-56.  

Montiel R, Bettencourt C, 
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mtDNA variability reveals different demographic histories between 
islands in the Azores Archipelago (Portugal). 

 Ann Hum Genet. 2005  
69 (Pt 2): 135-44.  

Santos C, Montiel R, Angles 
N, et al.  Determination of human caucasian mitochondrial DNA haplogroups 
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76 (3): 431-53.  

Goncalves R, Freitas A, 
Branco M, et al.  Y-chromosome lineages from Portugal, Madeira and Acores record 
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69 (Pt 4): 443-54. 

Branco CC, Mota-Vieira L.   Population structure of Sao Miguel Island, Azores: a surname study.  Hum Biol. 2003  
75 (6): 929-39.  

Santos C, Lima M, Montiel R, 
et al.  Genetic structure and origin of peopling in the Azores islands 
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FORENSIC GENETICS    
Carvalho M, Anjos MJ, 
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134 (1): 29-35.  
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135 (3): 239-42. 

Fernandes AT, Brehm A.  Population data of five STRs in three regions from Portugal.   Forensic Sci Int. 2002  
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Brehm A.  Genetic profile of the Acores Archipelago population using the new 

PowerPlex 16 system kit.   Forensic Sci Int. 2002  
129 (1): 68-71. 
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