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RESUMO 
 

 

Os linguados Solea solea (Linnaeus, 1758) e Solea senegalensis Kaup, 1858, estão 

entre os peixes com maior valor comercial, em Portugal. Os indivíduos adultos destas espécies 

habitam a plataforma continental, enquanto que os juvenis se concentram em áreas costeiras e 

em particular em estuários. Duas importantes áreas de viveiro para os juvenis destas espécies 

foram identificadas no estuário do Tejo: a área de Vila Franca de Xira e a de Alcochete. 

Enquanto que S. solea apenas coloniza a área de viveiro de Vila Franca de Xira, S. 

senegalensis coloniza ambas as áreas de viveiro. O presente trabalho tem como objectivo 

aprofundar o conhecimento no que se refere à ecologia de juvenis destas espécies nas áreas 

de viveiro do estuário do Tejo. 

O uso do habitat pelos juvenis destas espécies foi analisado em diferentes escalas 

espaciais, recorrendo a técnicas de análise espacial, análises isotópicas e a um programa de 

amostragem na zona intertidal que teve em conta os ciclos circum-diário e lunar. 

Foram desenvolvidos modelos espaciais de qualidade do habitat para ambas as 

espécies de forma investigar quais as variáveis que definem as áreas onde os juvenis se 

concentram e que, por isso, deverão ser levadas em conta na elaboração de planos de gestão 

que visem as populações de linguado ou as áreas estuarinas em questão. A importância da 

salinidade, temperatura, substrato, profundidade e presença de plataformas vasosas foi 

confirmada, no entanto, a inclusão da abundância de presas provou ser crucial para a definição 

das áreas de elevada qualidade ambiental onde as grandes concentrações destas espécies 

ocorrem de forma consistente.  

As análises isotópicas aos vários elos das cadeias alimentares de ambas as áreas de 

viveiro, revelaram que os juvenis de S. senegalensis com idade inferior a 1 ano exibem elevada 

fidelidade à zona de viveiro onde vivem, enquanto que uma fracção considerável de juvenis 

com mais de um ano de idade explora ambas as áreas de viveiro. Concluiu-se também, que as 

cadeias tróficas das duas áreas de viveiro têm uma dependência diferencial das fontes de 

água-doce.  

A investigação simultânea do efeito do ciclo circum-diário e lunar sobre uso da zona 

intertidal por parte dos juvenis de S. senegalensis, permitiu detectar um padrão no qual durante 

as marés vivas a abundância de juvenis atinge o pico no crepúsculo, enquanto que nas marés 

mortas o pico é diurno. O maior pico de abundância ocorre no crespúsculo durante a lua-cheia. 

A análise dos padrões de actividade dos seus principais predadores e informação prévia sobre 

os efeitos dos ciclos circum-diário e lunar sobre as suas presas indiciam que os padrões de 

actividade encontrados para S. senegalensis têm uma relação estreita com a dos seus 

predadores e presas.  

Foram conduzidas experiências em cativeiro de forma a determinar a influência da 

temperatura e salinidade sobre a evacuação gástrica de ambas as espécies, assim como para 

a detecção de alterações no comportamento alimentar devido a pressão predatória.  
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Observou-se que a evacuação gástrica aumenta com a temperatura, para ambas as 

espécies (com excepção da temperatura experimental de 26ºC, em S. solea). No caso da 

salinidade, verificou-se um efeito diferente, de acordo com a espécie. A baixas salinidades, S. 

solea manifestou um aumento da taxa de evacuação gástrica, enquanto que para S. 

senegalensis registou-se uma diminuição desta taxa. O efeito da temperatura experimental de 

26ºC em S. solea foi discutido, concluindo-se que este é possivelmente um indício de que esta 

espécie se encontra perto do seu limite superior térmico. Este efeito não foi observado em S. 

senegalensis, provavelmente porque, sendo esta uma espécie com afinidades subtropicais, 

possuirá um limite superior térmico mais elevado. A diferença detectada nas taxas de 

evacuação gástrica a 26ºC terá importantes implicações competitivas para S. solea durante os 

meses mais quentes, quando ambas as espécies de linguado se concentram em águas pouco 

profundas, ricas em presas, mas onde as temperaturas são consideravelmente mais elevadas 

do que o óptimo metabólico de S. solea. A experiência de observação comportamental revelou 

um decréscimo de 10% na actividade de S. senegalensis, quando na presença de um potencial 

predador.  

As taxas de evacuação gástrica, juntamente com ciclos de amostragem conduzidos na 

área de estudo, foram integradas num modelo, de forma a calcular o consumo alimentar de 

ambas as espécies. O consumo diário de S. senegalensis foi consideravelmente superior ao de 

S. solea. Os padrões alimentares observados evidenciaram dois picos distintos de actividade 

alimentar, ao anoitecer e ao amanhecer, estes foram, no entanto, muito mais pronunciados 

para S. senegalensis do que para S. solea. Uma vez que estudos a latitudes mais elevadas 

verificaram picos de actividade alimentar em S. solea mais pronunciados e da ordem de 

magnitude da encontrada no estuário do Tejo para S. senegalensis, concluiu-se ser este mais 

um indício de que o metabolismo de S. solea está próximo do seu limite térmico, estando, por 

isso, diminuído. O cálculo do consumo alimentar total, durante os meses de maior abundância 

destas espécies nas áreas de viveiro, e da disponibilidade alimentar do meio levou à conclusão 

de que a disponibilidade de alimento não é um factor limitante para os juvenis de linguado do 

estuário do Tejo. Considerou-se, no entanto, que será necessária mais informação sobre a 

variabilidade de abundância das comunidades de presas e sobre o consumo por parte de 

outros predadores para determinar com segurança a capacidade de suporte das áreas de 

viveiro do estuário do Tejo. A elevada variabilidade inter-anual da abundância de ambas as 

espécies de linguado deverá, também, ser levada em conta. 

O estudo do crescimento e condição dos juvenis de S. solea e S. senegalensis focou a 

variação das taxas de crescimento e da razão RNA-DNA nas sucessivas coortes que 

colonizam o estuário do Tejo. Focou também, a comparação da qualidade do habitat entre as 

duas áreas de viveiro e a comparação do crescimento e período de desova num contexto 

latitudinal.  

Foram observados padrões de variação do crescimento e da condição que reflectem o 

processo de colonização estuarina. O crescimento e a condição são mais elevados no início da 
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colonização, diminuindo com o tempo, e a primeira coorte apresenta valores mais elevados que 

as coortes subsequentes.  

A comparação das taxas de crescimento calculadas para as duas áreas de viveiro 

evidenciou valores mais elevados para a área de Alcochete do que para a área de Vila Franca 

de Xira. A condição geral dos indivíduos de ambas as espécies foi considerada boa, não tendo 

sido encontrada uma diferença significativa entre as duas áreas. Concluiu-se que, dada a 

elevada dinâmica característica das áreas de viveiro estuarinas, será necessária a 

determinação da qualidade ambiental destas áreas durante um período de tempo mais 

alargado, de forma a investigar a sua variação inter-anual. As taxas de crescimento de S. solea 

no estuário do Tejo foram superiores às estimadas para latitudes mais elevadas. O uso de 

ambas as metodologias para monitorização de qualidade ambiental das áreas de viveiro do 

estuário do Tejo, o cálculo de taxas de crescimento com base nos anéis diários dos otólitos e a 

determinação da razão RNA-DNA, foi discutido.  

A determinação da época de desova de S. solea através de contagem retrógrada dos 

anéis diários dos otólitos e a sua comparação com outras áreas de viveiro ao longo da costa 

ocidental Europeia, revelou existir uma variação latitudinal na qual a desova é iniciada mais 

cedo quanto menor a latitude.  

O impacto de factores climáticos e oceanográficos sobre a imigração larvar para as 

áreas de viveiro foi investigado. Da análise de uma série temporal descontínua de densidades 

de juvenis de ambas as espécies (1988-2006) e da sua relação com o índice de oscilação do 

Atlântico Norte, a prevalência de ventos do quadrante Norte e o caudal do rio Tejo, durante o 

período larvar, resultou que só para esta última variável foi encontrada uma correlação 

significativa. A extensão das plumas fluviais na zona costeira será, assim, muito importante, 

provavelmente devido ao seu papel no transporte de pistas químicas que são utilizadas pelas 

larvas para direccionar o seu movimento. Isto significa que em anos chuvosos estas pistas 

químicas atingirão uma área maior aumentando a probabilidade de detecção por parte das 

larvas. Concluiu-se que a diminuição e maior concentração temporal da precipitação, previstas 

devido a alterações climáticas, terão um efeito significativo sobre a imigração larvar de ambas 

as espécies, mas em particular sobre S. senegalensis, uma vez que o seu período de desova é 

mais alargado. Foi, desta forma, evidenciada a importância da monitorização dos caudais 

fluviais e do seu efeito sobre a imigração de linguados para áreas de viveiro estuarinas.  

A estimativa do impacto da pesca sobre estes juvenis, permitiu concluir que esta tem 

um impacto considerável sobre os efectivos populacionais de ambas as espécies, sendo este, 

no entanto, mais acentuado para S. solea. Verificou-se que a fracção da população de S. 

senegalensis afectada por mortalidade por pesca é menor, uma vez que, esta espécie coloniza 

também a área de Alcochete, onde o esforço de pesca é bastante menor do que em Vila 

Franca de Xira. Desta forma a área de viveiro de Alcochete funciona como uma zona mais 

protegida para esta espécie. Foi confirmada a necessidade de revisão da legislação que 

permite a pesca com arrasto de vara no estuário do Tejo. Foi dado enfâse à importância da 
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integração da informação obtida neste trabalho em planos de gestão dos mananciais de ambas 

as espécies de linguado, assim como, na gestão do estuário do Tejo.  

Foram sugeridos vários estudos futuros, nos quais que se incluem, projecções dos 

efeitos de alterações climáticas sobre as populações de linguado, a monitorização da qualidade 

dos habitats, a recolha de séries temporais contínuas de dados referentes às densidades de 

juvenis e adultos e a determinação das áreas de desova dos linguados na costa Portuguesa. 

 

 

 

PALAVRAS-CHAVE: SOLEA; ESTUÁRIOS; DISTRIBUIÇÃO; ALIMENTAÇÃO E CRESCIMENTO; 

RECRUTAMENTO. 
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SUMMARY 
 

 
The soles, Solea solea (Linnaeus, 1758) and Solea senegalensis Kaup, 1858, are among the 

most valuable commercial fish in Portugal. Two important nursery areas for the juveniles of 

these species have been identified in the upper area of the Tagus estuary. The present work 

aimed at investigating the ecology of these species in the Tagus estuary nursery areas. Habitat 

use was analysed at different spatial scales, using spatial modelling, isotopic analysis and a 

complex sampling program accounting for the diel and lunar cycles. Prey abundance proved 

crucial in the prediction of high densities of juveniles. The stable isotope approach revealed low 

connectivity between nursery areas and different levels of dependence upon the freshwater 

energy pathway. A diel and semi-lunar activity pattern was detected for S. senegalensis. 

Experimental work on gastric evacuation and feeding behaviour and its application to the wild 

populations allowed the estimation of food consumption by juvenile soles. Temperature, salinity 

and predation pressure were found to affect prey consumption. Otolith daily increments and 

RNA-DNA ratio analyses, showed that growth rates and condition variation reflects estuarine 

colonization patterns. The Tagus estuary soles were found to be in good overall condition and 

their growth rates were higher than at higher latitudes. The use of these methodologies for 

habitat quality monitoring was discussed. Estimation of spawning time through back-counting of 

otolith daily increments and comparison with other areas revealed a latitudinal variation in S. 

solea spawning in that it tends to occur earlier with decreasing latitude. Investigation on the 

effect of climate and hydrodynamics upon migrating sole larvae emphasized the importance of 

river drainage in this process. The magnitude of the mortality caused by fishing conducted 

within the nursery areas was considerable for S. solea and lower for S. senegalensis. Several 

management measures were suggested and discussed. Future studies were proposed.  

 

 

KEY-WORDS:  SOLEA; ESTUARIES; DISTRIBUTION; FEEDING AND GROWTH; RECRUITMENT. 
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CHAPTER 1 
 

- GENERAL INTRODUCTION - 
 

 

The common sole, Solea solea (Linnaeus 1758), and the Senegal sole, Solea 

senegalensis, Kaup 1858, are flatfishes with sympatric distribution from the Bay of Biscay to 

Senegal and the western Mediterranean (Quero et al., 1986). S. solea extends its distribution 

from Norway and the western Baltic, to Senegal, including the Mediterranean, while S. 

senegalensis is distributed from the Gulf of Biscay to South Africa, and is rare in the 

Mediterranean (Quéro et al., 1986). 

These two species are very similar morphologically, as well as, in ecological needs. 

While adults live in coastal waters up to 200m (Quéro et al., 1986), 0-group juveniles 

concentrate in shallow coastal and estuarine waters, where they live for about 2 years 

(Koutsikopoulos et al., 1989). 

These species distribution within nursery areas has been mainly associated with low 

salinities (Riley et al., 1981; Jager, 1993; Cabral and Costa, 1999) and fine substrates, such as 

sand and mud (Riley et al., 1981; Rogers, 1992; Cabral and Costa, 1999). Yet, various authors 

concluded that substrate preferences among flatfishes are mainly related to prey availability 

(Gibson and Robb, 1992, Amezcua and Nash, 2001, Vinagre et al., 2005). 

While small scale movements and activity patterns of juveniles have been thoroughly 

studied in other flatfish, such as plaice Pleuronectes platessa (Linnaeus, 1758) and flounder 

Platichthys flesus (Linnaeus, 1758) (e.g. Gibson, 1973; 2003; Wirjoatmodjo and Pitcher, 1980; 

van der Veer and Bergman, 1987; Raffaelli et al., 1990; Burrows, 1994;  Gibson et al., 1998), 

little work has been carried out on soles. Lagardère (1987) reported that S. solea juveniles’ 

activity is mainly nocturnal and presents two peaks of feeding activity, at dawn and dusk, which 

was later confirmed by Cabral (1998), not only for S. solea but also for S. senegalensis, in the 

Tagus estuary. Studies on S. solea and S. senegalensis, in the Tagus estuary (Cabral, 1998; 

2000), as well as, on other flatfish in other areas, suggest that some flatfish species perform 

tidal migrations driven by feeding and predator avoidance (e.g. Wirjoatmodjo and Pitcher, 1980; 

Gibson et al., 1998). Although some studies indicate that the semi-lunar cycle may also be an 

important factor determining the use of intertidal areas by flatfish (Rafaelli et al., 1990) the full 

effect of this cycle is still scarcely understood. 

Little is known about the connectivity among the habitats occupied by these species 

along the Portuguese coast. Cabral et al. (2003) concluded that genetic differentiation is of low 

magnitude, yet it is higher for S. solea than for S. senegalensis, probably due to the more 
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extended period of occurrence of larval stages of S. senegalensis in the plankton (Cabral et al., 

2003). 

The feeding ecology of S. solea has been thoroughly investigated in coastal areas of 

North-west Europe (deGroot, 1971; Braber and Degroot, 1973; Quiniou, 1978; Lagardère, 1987, 

Henderson et al., 1992) and Western Mediterranean (Ramos, 1981; Molinero and Flos, 1991; 

1992; Molinero et al., 1991). In the Portuguese coast, studies on the feeding ecology of S. solea 

have been carried out in the Sado estuary (Sobral, 1981), at Lagoa de Santo André (Bernardo, 

1990), in the Tagus estuary (Costa, 1982; 1988; Gonçalves, 1990; Cabral, 1998; Cabral, 2000) 

and in the Douro estuary (Vinagre et al., 2005). It has been concluded that polychaetes, 

molluscs and crustaceans are the most important groups in this species diet. Literature on the 

feeding ecology of S. senegalensis is scarce. Molinero et al. (1991) reported on this species’ 

diet in the Western Mediterranean, Bernardo (1990) at Lagoa de Santo André and Cabral 

(1998; 2000) in the Tagus estuary. Diets of the two sole species are very similar. Juvenile 

flatfish generally consume the most abundant food resources in a generalist and opportunistic 

manner (e.g. Lasiak and McLachlan, 1987; Beyst et al., 1999; Cabral, 2000). 

A large number of studies have been carried out on growth of S. solea, mostly in North-

west Europe (e.g. Amara et al., 1994; Rogers, 1994; Jager et al., 1995; Amara et al., 2001). 

Several studies have described growth of S. solea in the Portuguese coast. Dinis (1986), Costa 

(1990) and Cabral (2003) investigated growth in the Tagus estuary, Bernardo (1990) focused on 

the Lagoa de Santo André and Andrade (1990, 1992) on Ria Formosa. A considerable variation 

in growth rates and length at the end of the first year was observed, with generally higher 

growth rates being reported for the Portuguese coast in comparison with the northern European 

coast. Again, studies on S. senegalensis are scarcer. Garcia et al. (1991) investigated growth in 

S. senegalensis in the Mediterranean West coast, while in the Portuguese coast Bernardo 

(1990) focused on the Lagoa de Santo André, Andrade (1990, 1992) on Ria Formosa and 

Cabral (2003) in the Tagus estuary. 

Studies on the condition of these species are still scarce. Gilliers et al. (2004) applied 

various condition indexes (RNA-DNA ratio, Fulton’s K, marginal otolith increment width) to S. 

solea in the Northern French coast and found that all habitats provided equivalent conditions for 

juvenile sole. However, Gilliers et al. (2006), working on a broader spatial scale, found 

interesting relations with anthropogenic disturbance. Amara and Galois (2004) found that the 

fastest growing S. solea larvae in the Northern French coast presented higher levels of 

triacylglicerol and sterol. 

In the Portuguese coast, S. solea and S. senegalensis attain sexual maturity when they 

reach 3 to 4 years old (Cabral et al., 2007). While coastal spawning grounds of S. solea in 

Northern European waters are well known and are generally located at depths between 40m 

and 100m (Koutsikopoulos et al., 1991; Wegner et al. 2003), such information is not available 

for Southern European waters and for S. senegalensis over its entire distribution range. 

Spawning of S. solea takes place in spring at the highest latitudes and winter at lower latitudes 

(Wegner et al, 2003). Evidence from multi-cohorts of juveniles colonizing the nursery grounds 
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indicates that S. senegalensis spawns later, during a broader period and has one main 

spawning period in spring and a secondary period in summer-autumn (Cabral, 1998). Gonad 

maturation in the wild and emission of eggs in captivity corroborates these evidences (Dinis, 

1986; Andrade, 1990; Anguis and Cañavate, 2005; Garcia-Lopez et al., 2006). 

Since spawning grounds are distant from the nursery areas, transport of eggs and 

larvae is an important issue. Unfavourable climate and hydrodynamic circulation may lead to 

high mortality rates at this stage (e.g. Marchand, 1991; Van der Veer et al., 2000; Wegner et al., 

2003). In fact, it is generally agreed that recruitment variation in flatfish stocks is dominated by 

density independent factors operating on the eggs and larvae (Leggett and Frank, 1997; Van 

der Veer et al., 2000). Although an important body of literature has been gathered on the 

transport of S. solea eggs and larvae and several models have been constructed (Miller et al., 

1984; Boelhert and Mundy, 1988; Rijisdorp et al., 1985; Bergman et al., 1989; Marchand and 

Masson, 1989; Champalbert et al., 1989; Champalbert and Koutsikopoulos, 1995; Arino et 

al.,1996; Ramzi et al., 2001; deGraaf, 2004), no data exists for the Portuguese coast, nor for S. 

senegalensis over its entire distribution range. 

Both soles have high commercial value, S. senegalensis is a species of increasing 

interest in aquaculture and is currently cultured in the Portuguese and Spanish southern coasts 

(Dinis et al., 1999; Imsland et al., 2003).  

Fishing pressure upon soles has been increasing in the Portuguese coast, while a 

decrease in the captures per fishing effort has been recorded (Cabral et al., 2007). Several 

issues hinder the investigation on soles’ fisheries in the Portuguese coast. One of the most 

important ones is that an important portion of captures is sold directly to restaurants or to the 

final consumer, escaping any kind of control. Furthermore, the official data on fisheries does not 

distinguish Solea species (Cabral et al., 2007). Capture of undersized juveniles that are sold out 

of the official commercial circuits is also an important problem concerning sole fisheries. In the 

Tagus estuary, there is an important fishery that targets sole juveniles of both species (Cabral et 

al., 2002). Baeta et al. (2005) concluded that this fishery is not environmentally sustainable. 

The Tagus estuary is an important area for S. solea and S. senegalensis juveniles 

(Costa and Bruxelas, 1989; Cabral and Costa, 1999). With approximately 320 km2, it is the 

largest estuarine system in Portugal and one of the largest in Europe. Water residency time is of 

ca. 23 days in average flow conditions, yet ranges from 6 to 140 days in extreme flow conditions 

(Lemos, 1964; Rodrigues et al.,1988). Mean river flow is 400 m3s-1, though it is highly variable 

both seasonally and interannually, tidal range is ca. 4 m (Loureiro, 1979). According to Hayes 

(1979) this is a mesotidal estuary. Salinity varies from 0 ‰, 50 km upstream from the mouth, to 

ca. 35‰ at the mouth of the estuary, within the estuary it is very variable and depends on the 

tidal phase and flow regime (Cabrita and Moita, 1995). It is a partially mixed estuary with a 

mean depth lower than 10 m. Although its bottom is composed of a heterogeneous assortment 

of substrates, its prevalent sediment is muddy sand in the upper and middle estuary and sand in 

the low estuary and adjoining coastal area (Cabral and Costa, 1999). Around 40% of this 

estuarine area is intertidal (Bettencourt, 1979), composed by mudflats, fringed by saltmarshes. 
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Two main nurseries for sole have been identified in the upper estuarine areas of the 

Tagus estuary (near Vila Franca de Xira and Alcochete) by Costa and Bruxelas (1989) and 

Cabral and Costa (1999). Although most of the environmental factors present a wide and similar 

range in these two areas, some differences can be outlined. The area near Vila Franca de Xira 

is deeper (mean depth 4.4 m), presents lower and highly variable salinity and has a higher 

proportion of fine sand in the substrate. The nursery area near Alcochete is shallower (mean 

depth 1.9 m), and more saline, with lower variability in salinity, while substrate is mainly 

composed of mud (Cabral and Costa, 1999). While in the Vila Franca de Xira nursery the two 

sole species, S. solea and S. senegalensis can be found, in the Alcochete nursery only S. 

senegalensis is present (Cabral and Costa, 1999).  

Important work has been carried out concerning the ecology of S. solea and S. 

senegalensis in this estuarine area. There is now information on these species distribution and 

abundance (Costa, 1982; 1986; Costa and Bruxelas, 1989; Cabral and Costa, 1999), diets 

(Costa, 1988; Cabral, 2000) and growth (Costa, 1990; Cabral, 2003).  

Still, there are several open questions regarding these species dynamics in the Tagus 

estuary and life-cycles in the Portuguese coast, that need to be investigated so that future 

decision on these species management can be based on sound scientific knowledge. The 

present work aims at investigating relevant issues concerning the ecology of the juveniles of S. 

solea and S. senegalensis in the Tagus estuary, narrowing the existing information gaps. 

This thesis comprises of six chapters, while chapter 1 provides a general view on the 

main subjects, introduces the scientific themes that will be dealt and presents the structure of 

the present work, chapters 2 to 5, each, concern a major ecological theme or two closely related 

themes. The themes focused are: habitat use, food consumption, growth and condition, and 

recruitment and mortality. Chapter 6 presents the general conclusions and final remarks. 

Chapter 2 - Habitat use - investigated the following main questions: What variables 

should be taken into account to model these species habitat use? Is there connectivity between 

the two nurseries? What factors affect the use of mudflats by these species? 

 In order to investigate these questions, the use of the estuarine habitat by the two sole 

species was analysed at three spatial scales. The first work “Habitat suitability index models for 

the juvenile soles, Solea solea and Solea senegalensis: Defining variables for management” 

looked at broad patterns of habitat use at an estuarine scale, the second work “Nursery fidelity, 

food web interactions and primary sources of nutrition of the juveniles of Solea solea and Solea 

senegalensis in the Tagus estuary (Portugal): a stable isotope approach” investigated 

connectivity between the nurseries and energy source dependence and the third work “Diel and 

semi-lunar patterns in the use of an intertidal mudflat by juveniles of Senegal sole, Solea 

senegalensis” investigated activity patterns occurring within one of the most important 

components of the Tagus estuary nurseries, its extensive mudflats.  

Chapter 3 – Food consumption - focused on the questions: What affects prey 

consumption by these species? How much prey do soles consume? Is soles’ abundance limited 

by the amount of prey available at the nurseries? 
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To investigate these questions, the effect of temperature and salinity in the gastric 

evacuation rates of S. solea and S. senegalensis and the impact of predation pressure in 

foraging behaviour was investigated. The information obtained was used to produce a first 

estimation of food consumption by the two sole species in the Tagus estuary nursery grounds 

during the period of most intense use by juveniles and compare it to the total prey available in 

the sediment. 

Chapter 4 – Growth and condition - looked at the following main questions: Are there 

growth and condition patterns related to the estuarine colonization undertaken by these 

juveniles? Which of the nurseries offers better conditions to these juveniles? Can growth rates 

based on otolith daily increments and condition based on RNA-DNA ratio be used for habitat 

quality monitoring of soles’ nurseries? Does S. solea grow faster in the Tagus estuary than at 

higher latitudes? Are there latitudinal trends in the spawning period of S. solea? 

In order to answer these questions growth and condition in the successive cohorts of S. 

solea and S. senegalensis colonizing the Tagus estuarine nurseries were determined, habitat 

quality of the two nurseries was compared, and growth and spawning were analysed in a 

latitudinal perspective. Growth based on otolith daily increments and condition on the RNA-DNA 

ratio was estimated. 

Chapter 5 – Recruitment and mortality - investigated the following main questions: What 

is the impact of climate and hydrodynamics on the larval immigration of sole towards the Tagus 

estuary? What is the impact of fishing mortality upon soles’ juveniles of the Tagus estuary? 

To answer these questions the relation between river drainage, the North Atlantic 

Oscillation index (NAO index) and the North-South wind component intensity over the three 

months prior to the end of the estuarine colonization and the densities of S. solea and S. 

senegalensis in the nursery grounds were investigated for both species based on a 

discontinuous historical dataset (from 1988 to 2006) for the Tagus estuary, the catches of S. 

solea and S. senegalensis of the beam trawl fishery within the nursery areas of the Tagus 

estuary were estimated, the mortality of discards of sole juveniles was evaluated, and the 

impact of this fishery in year-class strength of both sole species was determined, taking into 

account the various cohorts colonizing the estuary over time. 

Chapter 6 - General conclusion and final remarks - presents the main conclusions of the 

present work, as well as, its contribution for future species and estuarine management. Future 

studies are also suggested. 
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Introduction 
 
 

 

 

The study of habitat use by fish has long been an important subject area within fish 

ecology. However, in the 1980’s ecologists’ attention focused mainly on the conservation of 

commercial fish stocks, in an attempt to recover target species subjected to over-fishing in the 

1970’s (Fluharty, 2000). In the 1990’s, as concerns over biodiversity and habitats increased, 

there was a greater need for the integration of large amounts of data.  

Research on habitat use by fish became, and still is, particularly intense in the United States 

of America, after the approval of the “Sustainable Fisheries Act” (SFA, 1996), which addresses 

the importance of sustaining adequate habitats for fish species. This legislation demands the 

determination of the “Essential Fish Habitat”, defined as “those waters and substrate necessary 

to fish for spawning, breeding, feeding, or growth to maturity” (SFA, 1996). The recent 

European Water Framework (Directive 2000/60/EC; EC, 2000) follows a similar philosophy, 

concentrating on the need for the identification and protection of specific water bodies as a 

whole for the conservation of biodiversity. 

In order to simultaneously have a broad and in-depth knowledge of the habitat use by fish, 

studies at different spatial scales are crucial. In the present chapter the use of the estuarine 

habitat by the soles, Solea solea (Linnaeus 1758) and Solea senegalensis Kaup, 1858, was 

analysed at three spatial scales. While the first work “Habitat suitability index models for the 

juvenile soles, Solea solea and Solea senegalensis: defining variables for management” looks 

at broad patterns of habitat use at an estuarine scale, the second work entitled “Nursery fidelity, 

food web interactions and primary sources of nutrition of the juveniles of Solea solea and Solea 

senegalensis in the Tagus estuary (Portugal): a stable isotope approach” investigates relations 

and processes occurring in the nurseries, while the third work “Diel and semi-lunar patterns in 

the use of an intertidal mudflat by juveniles of Senegal sole, Solea senegalensis” focuses on the 

activity patterns occurring within one of the most important components of the Tagus estuary 

nurseries: its extensive mudflats.  

The first work aims at producing simple and effective habitat models to predict the 

distribution of both sole species in the Tagus estuary, while investigating which key variables 

determine habitat quality for soles. 

Several studies have produced important information on sole distribution within 

estuaries throughout Europe, although the majority were conducted in areas where only S. 

solea exists. Most of these studies indicate that juvenile sole occur in higher densities in shallow 

areas, with fine sediment (e.g. Dorel et al., 1991; Koutsikopoulos et al., 1989; Rogers, 1992; 

Dorel and Desaunay, 1991) and low salinity (e.g. Marchand and Mason, 1989; Marchand, 

1991). Previous studies in the Tagus estuary, from 1978 to 2002, identified two nursery areas in 

the upper Tagus estuary, where juvenile sole concentrate in similar conditions to those reported 

for other estuaries (Costa, 1982; Costa, 1986; Costa, 1988; Costa and Bruxelas, 1989, Cabral 
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and Costa, 1999). All previous information had to be taken into account in the construction of 

the habitat suitability models for the Tagus estuary. In this context a Geographic Information 

System (GIS) was used to effectively collate, archive, display, analyse and model spatial and 

temporal data originated by the different scientific studies produced over time.  

The second work aims at assessing the site fidelity of soles inhabiting the two nursery 

areas, at investigating food web interactions and at determining the dominant nutrient pathways, 

using stable isotopes. There have been several attempts at assessing site fidelity of soles in the 

Tagus estuary through mark-recapture experiments, yet none was successful due to the low 

level of individuals recaptured (Cabral, personal communication). Stable isotopes are powerful 

tools that allow not only the determination of site fidelity (Fry et al., 1999; Talley, 2000; Fry et al., 

2003), but also the investigation of nutrient pathways, food-web interactions and energy sources 

(e.g. Simenstad and Wissmar, 1985; France, 1995; Paterson and Whitfield, 1997; Riera et al., 

1999; Darnaude et al., 2004). These issues are still unexplored in the Tagus estuary, yet in-

depth scientific knowledge on the functioning of the Tagus estuary food-webs will be needed to 

face current and prospective management challenges that present itself today and in the near 

future due to growing anthropogenic pressure and the many impacts that will arise from climate 

warming. 

The third work aims at evaluating the diel and semi-lunar patterns in the use of the 

intertidal mudflats of the Tagus estuary by S. senegalensis. The extensive mudflat areas that 

dominate the upper Tagus estuary are one of the most important components of these 

nurseries, since they play a very important role as feeding areas for birds and fish. Studies on 

other fish suggest that these movements may be strongly structured by tidal and day-night 

cycles (Naylor, 2001; Morrison et al., 2002; Krumme et al., 2004), yet the effect of the lunar 

cycle is still scarcely understood. Cabral (2000) reported that intertidal mudflats are very 

important feeding grounds for S. senegalensis juveniles, however spatial and temporal patterns 

of this species use of the intertidal zone are still unknown. 
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Habitat suitability index models for the juvenile soles,  

Solea solea and Solea senegalensis: 

defining variables for management 

 
Abstract: Habitat Suitability Index (HSI) models were used to map habitat quality for the 
sympatric soles Solea solea (Linnaeus, 1758) and S. senegalensis Kaup, 1858, in the Tagus 
estuary, Portugal. The selection of input variables to be used in these models is crucial since 
the recollection of such data involves important human and time resources. Various 
combinations of variables were developed and compared. Habitat maps were constructed for 
the months of peak abundance of S. solea and S. senegalensis consisting of grid maps for 
depth, temperature, salinity, substrate type, presence of intertidal mudflats, density of 
amphipods, density of polychaetes and density of bivalves. The HSI models were run in a 
Geographic Information System by reclassifying the habitat maps to a 0-1 suitability index 
scale. Following reclassification, the geometric mean of the suitability index values for each 
variable was calculated by grid cell, using different combinations of variables, and the results 
were mapped. Models performance was evaluated by comparing model outputs to data on 
species’ densities in the field surveys at the time. Further model testing was performed using 
independent data. Results show that there are two areas that provide the highest habitat 
quality. The model that combined density of amphipods and the abiotic variables had the 
highest correlation with the distribution of S. solea while the combination of density of 
polychaetes and the abiotic variables had the highest correlation with S. senegalensis 
distribution. These variables should be taken into account in future management plans, since 
they indicate the main nursery grounds for these species. 
 
 
Key-words: Habitat suitability; Flatfish; Solea solea; Solea senegalensis; Estuarine nurseries; 
Fisheries management. 
 

 

 
Introduction 

There is a growing need to adopt ecosystem concepts into management plans and it is 

generally agreed that habitat quality assessment should play a decisive role in the 

environmental decision process. Yet field studies often fail to completely cover the available 

habitat or do not provide comprehensive temporal coverage. This can lead to management 

decisions based on scarce and inadequately integrated information. In this context, Geographic 

Information Systems (GIS) can be used to effectively integrate and model spatial and temporal 

data.  

Habitat suitability index modelling (HSI) is a valuable tool in ecology. It can be used in 

combination with GIS technology providing maps and information upon which environmental 

managers can make informed decisions (Terrel, 1984; Bovee and Zuboy, 1988). These models 

are based on suitability indices that reflect habitat quality as a function of one or more 

environmental variables. The HSI modelling method used in this study was based on the U.S. 

Fish and Wildlife Service Habitat Evaluation Procedures Program (Terrel, 1984; Bovee and 
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Zuboy, 1988) which was primarily used in terrestrial and freshwater environments, but has also 

been applied to estuaries (e.g. Gibson, 1994; Reyes et al., 1994; Brown et al., 2000).  

One of the most important issues when developing species management models is that of 

selecting which variables should be taken into account. The ideal management model should be 

simple and rely on a few key variables. It is also fundamental to make the time spent on field 

and laboratory work, as well as on integrating the data, compatible with the requests of 

managers and decision-makers. However, it is well known that species dynamics are complex 

and dependent on the combined effect of several variables. 

In the present study habitat maps were constructed using different combinations of 

pertinent variables and compared with Solea solea (Linnaeus, 1758) and S. senegalensis Kaup, 

1858, densities.  

The soles, S. solea and S. senegalensis, were chosen for this study because of their 

importance in management terms, regarding both ecosystem and commercial perspectives. 

These species are top benthic predators that usually do not occur in high densities in the same 

nurseries. In fact previous studies indicate that the Tagus estuary (Portugal) may be unique in 

the simultaneous occurrence of both species in high abundance (e.g. Costa and Bruxelas, 

1989; Cabral and Costa, 1999).  

Baeta et al. (2005) concluded that sole fisheries in the Tagus estuary are not 

environmentally sustainable. Beam trawling is illegal in all Portuguese estuaries except the 

Tagus where it is quite common in the uppermost areas and has juvenile soles as its main 

target (Baeta et al., 2005). A defence period (when fishing is forbidden) between the 1st of May 

and the 31st of July is in place, as well as a minimum length at capture (24 cm), however these 

regulations are not fully respected and sole 0-group juveniles are captured during the defence 

period to be sold for aquaculture and local restaurants. Their high commercial value, the 

increasing market demand for adults and juveniles and the fishing pressure not restricted to the 

coast but also present in the estuary, make sole fisheries an interesting ecological and socio-

economical subject. 

The zoogeographic importance of the latitudinal area where the Tagus estuary is 

located has long been recognized, representing the transition between the North-eastern 

Atlantic warm-temperate and cold-temperate regions (Ekman, 1953; Briggs, 1974). This estuary 

plays an important role as an over-wintering area and feeding ground for birds and part of its 

upper portion is a nature reserve (The Tagus Estuary Nature Reserve). In addition, some areas 

have special protection status (Birds Directive 79/409/EEC).  Its importance as a nursery area 

for several fish species, including S. solea and S. senegalensis, has also been documented by 

several studies (e.g. Costa and Bruxelas, 1989; Cabral and Costa, 1999; Cabral 2000).  

The aim of this study is to produce a simple, yet effective, model to predict S. solea and 

S. senegalensis juveniles’ distribution in the Tagus estuary, in order to contribute to future 

management of fisheries in this estuarine system. Comparison of the different models produced 

in the present study will allow us to decide which variables should be taken into account while 

managing these species. 
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Material and methods 
Study area 

The Tagus estuary (Fig. 1), with an area of 320 km2, is a partially mixed estuary with a 

tidal range of 4 m. This estuarine system has a mean depth lower than 10 m and about 40% of 

its area is composed of intertidal mudflats (Cabral and Costa, 1999). 

Although its bottom is composed of a heterogeneous assortment of substrates, its 

prevalent sediment is muddy sand in the upper and middle estuary and sand in the low estuary 

and adjoining coastal area (Cabral and Costa, 1999). The mean river flow is 400 m3s-1, though it 

is highly variable both seasonally and interannually. Salinity varies from 0‰, 50 km upstream 

from the mouth, to 35‰ at the mouth of the estuary (Cabral et al., 2001). Water temperature 

ranges from 8ºC to 26ºC (Cabral et al., 2001).  

In the summer the average water temperature is 24ºC in the upper estuary and 17ºC in 

the adjacent coast. In winter mean water temperatures range from 16ºC in the upper estuary to 

15ºC in the adjacent coast (e.g. Cabrita and Moita, 1995). Wind induced upwelling occurs in 

coastal areas during summer (Fiúza et al., 1982). 
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Figure 1 - Map of the Tagus estuary and location of the sampling sites used in the models. 
 

Database 

Various sources of data that describe the temporal and spatial variation of depth, 

temperature, salinity, substrate, etc, are available for the Tagus estuary. Several surveys have 

been conducted in the Tagus estuary since 1978 (e.g. Bettencourt, 1979; Costa, 1982; Costa, 
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1988; Costa and Bruxelas, 1989; Cabral, 1998; Cabral and Costa, 1999; Costa and Cabral, 

1999; Cabral 2000; Cabral et al., 2001). These studies provide useful information on the 

environmental variables and on the species abundance, as well as its seasonal variation and 

spatial occurrence. Maps and depth charts were obtained from the latest maps and charts 

developed by the Portuguese Hydrographical Institute. All information was assembled in a 

Geographic Information System. 

 

Data Analysis 

Data from the database of the Instituto de Oceanografia that comprises most studies on 

the Tagus estuary referred above were explored. Data from different years were analysed, as 

well as from the selected surveys. A visual display of the datasets was performed in order to 

detect abnormal values. Histograms and summary statistics (measures of location, spread and 

shape) were calculated to better understand the statistical properties associated to the datasets. 

Data were interpolated using the inverse distance to a power method and digital 

environmental maps were developed in a grid format using the software Surfer 7.0®. The 

inverse distance to a power method was used since it is a local interpolation method (only a 

subset of observational points is used to estimate the values of each interpolated point). Local 

interpolation methods are appropriate for branched systems with complex hydrology such as 

the Tagus estuary, where global interpolation would not make sense (Isaaks and Srivastava, 

1989; Bailey and Gatrell, 1996). In this method observational points are weighted such as the 

influence of one point declines with distance from the point to be interpolated. Again, in a highly 

branched estuary, such as the Tagus, proximity should be weighted when interpolating new 

points (Isaaks and Srivastava, 1989; Bailey and Gatrell, 1996). The appropriate range radius of 

interpolation was determined through exploration of the dataset for each variable.  

For each species data from its month of 0-group juveniles peak abundance of the 2001 

surveys were selected, and information on environmental variables at 42 sampling stations 

throughout the Tagus estuary and adjoining coastal area was collated (Fig. 1).  The month of 

peak abundance was chosen since it is at this time that the estuary assumes nursery function. 

Maps of S. solea density in May 2001 and S. senegalensis density in November 2001 were 

developed based on survey data (Figs. 2, 3). The inverse distance to a power was used to 

create these maps, for the reasons already mentioned for the environmental variables and 

because 0-group juveniles of both species concentrate in small areas (Cabral and Costa, 1999). 

In May 2001 water temperature ranged from 14 to 17ºC, while salinity ranged from 0 to 30 ‰ 

(inside the estuary). In November 2001 water temperature ranged from 13 to 18ºC, while salinity 

ranged from 2 to 30 ‰ (inside the estuary). 
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Figure 2 – S. solea 0-group juveniles density (ind. 1000 m-2) in the 

Tagus estuary in May 2001. 
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Figure 3 - S. senegalensis 0-group juveniles density (ind. 1000 m-2) in 

the Tagus estuary in November 2001. 

 

For each model, Suitability Index (SI) values between 0 and 1 were assigned to ranges 

of each environmental variable, depending on how favourable the range is for survival, growth 

and reproduction (Table 1). An SI value of 1 was assigned to the most favourable conditions, an 

SI value of 0,5 was assigned to average suitability, an SI of 0,1 intended to represent the range 

of conditions where a species can occur but is rare and an SI of 0 was assigned to 

environmental conditions outside the survival range of the species. 
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Table 1 – Definitions of suitability index values (adapted from Brown et al., 2000). 

 

Suitability  

Index Value 
Description of habitat use 

1 

High density or relative abundance in field studies; high 

growth potential; active preference in behavioural 

studies. 

0.5 
Common occurrence or average density in field studies; 

average growth potential. 

0.1 

Rare occurrence or low density in field studies; 

tolerance documented in field or laboratory studies; little 

growth potential. 

0 

Little or no occurrence in field studies; mortality may 

occur in laboratory or field studies; active avoidance in 

behavioural studies. 

 

Each environmental variable was reclassified by grid-cell to the suitability index scale 

(e.g. temperature in degrees centigrade was converted to a 0-1 suitability scale), based on 

habitat affinities of both species derived from published information on the species biology as 

well as on our database from the surveys conducted in the Tagus since 1978 and expert review 

(Table 2). 

In order to adapt Brown et al., (2000) models to these flatfish species a variable called 

intertidal was added. Sampling stations were given an index of 0 or 1, depending on its location 

in subtidal environments or over intertidal mudflats, respectively. Intertidal mudflats cover 

around 40% of the Tagus estuary, and have been recognized as important feeding grounds for 

these benthic species (Cabral, 2000). Intertidal areas are also important settling areas for 

metamorphosing sole juveniles (van der Veer et al., 2001). 

Concerning the variables related to prey presence, namely density of amphipods, 

density of bivalves and density of polychaetes (Cabral, 2000), its 90th and 70th percentile were 

determined. Densities under the 70th percentile were given an index of 0.1, densities between 

this value and the 90th percentile value were given an index of 0.5 and densities above the 90th 

percentile value were given an index of 1. The geometric mean of the suitability index values 

was calculated by grid cell, overlaying the environmental maps. This resulted in a map of the 

composite habitat suitability index value (Figs. 4 and 5). The model was first run using 

temperature, depth, salinity and substrate type, as well as absence / presence of intertidal 

mudflats (with a value of 0 and 1, respectively). Secondly a sixth variable was added to the 

calculation: the major prey items (density of amphipods, polychaetes and bivalves) were 

considered as separate variables, in order to understand which one was the most important in 

defining the distribution of soles’ juveniles, if any. An additional model was calculated using all 

abiotic and biotic variables.  
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Table 2 - Definitions of suitability index values for abiotic variables and most relevant references 

 
Suitability Index Value 

 
S. solea S. senegalensis 

Most relevant references 

Sediment 

Mud or fine sand = 1 

Sand = 0,5 

Coarse sand and gravel = 0,1 

De Groot (1971), Rogers 

(1992), Gibson (1994), 

Cabral and Costa (1999), 

Amezcua and Nash (2001). 

   

Depth (m) 

≤ 10 m = 1 

> 10 and < 14 m = 0,5 

≥ 14 m = 0,1 

Riley et al. (1981), 

Rijinsdorp et al (1992), 

Rogers (1993), Symonds 

and Rogers (1995), Cabral 

and Costa (1999), LePape 

et al (2003), Eastwood et al 

(2003) 

    

Temperature (ºC) 

≥ 16 ºC and < 24 ºC = 1 

≥ 24 ºC and ≤ 26 ºC = 0,5 

≥ 11 ºC and < 16 ºC = 0,5 

≥ 26 ºC and ≤ 28ºC = 0,1 

< 11 ºC = 0,1 

> 13ºC and < 28 ºC = 1 

≤ 13 ºC = 0,5 

≥ 28 ºC = 0,1 

Irwin (1973), Fonds (1976), 

Fonds (1979), Cabral and 

Costa (1999),  LeFrançois 

and Claireaux (2003), 

Imsland et al. (2003). 

Salinity (‰) 

≥ 10 ‰ and < 33 ‰ = 1 

< 10 ‰ and > 7 ‰ = 0,5 

≥ 33 ‰ = 0,5 

≤ 7 ‰ and ≥ 1 ‰  = 0,1 

< 1 ‰ = 0 

≥ 4 ‰  = 1 

< 4 ‰ and ≥ 1 ‰  = 0,5 

< 1 ‰ = 0 

Riley et al. (1981), 

Marchand (1991), Cabral 

and Costa (1999). 

Intertidal presence 
Presence = 1 

Absence = 0 

Cabral and Costa (1999), 

Cabral (2000) 

Van der Veer et al (2001). 

 

The calculation of the habitat suitability indices was based on an unweighted geometric mean 

for each species, and the following five models were tested: 

 

HSIabiotic = (SIsalinity . SItemperature . SIsubstrate . SIdepth . SIintertidal) 1/5 

HSIamphipods = (SIsalinity . SItemperature . SIsubstrate . SIdepth . SIintertidal . SIamphipods) 1/6 

HSIpolychaetes = (SIsalinity . SItemperature . SIsubstrate . SIdepth . SIintertidal . SIpolychaets) 1/6 

HSIbivalves = (SIsalinity . SItemperature . SIsubstrate . SIdepth . SIintertidal . SIbivalves) 1/6 

HSIall = (SIsalinity . SItemperature . SIsubstrate . SIdepth . SIintertidal . SIbivalves . SIpolychaets . SIamphipods)1/8 

 

Because all terms in the models ranged from 0 to 1, models output also ranged from 0 

to 1. One of the most important advantages of using the geometric mean is that if any term 

equals zero so will the output since, it’s a multiplicative calculation. Therefore it takes only one 
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of the variables to be totally unsuitable for the output to be zero. As a result, habitat with any 

single environmental characteristic outside the range of the species will be identified as 

unsuitable, regardless of the values of the other environmental variables. 

The habitat suitability maps were compared to the data from the fish sampling surveys. 

Model performance was evaluated with the Spearman correlation test, which compared model 

outputs for both species to data on its densities in the field surveys at the same time. 

Histograms of the density of each species (from sampling) according to ranges of SI values 

calculated (for the same grid cells) were produced and Kruskal-Wallis tests between the range 

groups ([0-0,2[;[0,2-0,4[;[0,4-0,6[;[0,6-0,8[;[0,8-1,0[) performed, using SYSTAT 10.0. To prevent 

bias inherent to the use of the same data for both model estimation and validation the final 

model was tested with independent data from 2002. 

 

 

Results 
Model outputs show that the upper estuary has the highest habitat quality for juveniles 

of both species and exclude the coastal area and lower estuary, as well as most of the middle 

estuary (Figs. 4, 5). The abiotic variables model, HSIabiotic (temperature, salinity, substrate, type, 

depth, presence of intertidal areas) (Figs. 4a, 5a), indicates a broad area of high habitat quality 

for both soles, located in the upper estuary. The inclusion of prey density as a sixth variable 

greatly restricted that area to smaller areas within the upper estuary. The model that included 

density of amphipods, HSIamphipods, yielded very good results in predicting S. solea densities in 

its month of peak abundance (Figs. 4b, 6), while the model that included polychaetes, 

HSIpolychaetes, had the best results for S. senegalensis (Figs. 5c, 7). The Kruskal-Wallis test 

indicated that the distribution of density values of both species differed significantly across SI 

groups (p < 0,0005) (Figs. 6 and 7). 

HSIamphipods model (Fig. 4b) predicted areas of high habitat quality for S. solea in the 

northwest of the upper estuary in an area dominated by intertidal islands and canals. This is the 

estuarine area with the highest fresh water inflow. Salinity varies between 0‰ and 20‰ while 

temperature varies between 14ºC and 22ºC (all year range).  
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Figure 4 – Mapped habitat suitability for S. solea 0-group juveniles according to the different 

models tested ((a) HSIabiotic; (b) HSIamphipods; (c) HSIpolychaetes; (d) HSIbivalves; (e) HSIall). 

 

HSIpolychaetes model (Fig. 5c) predicted an area of high habitat quality for S. senegalensis 

in the east of the upper estuary. This is a low depth area dominated by intertidal mudflats. 

Salinity varies between 6‰, in the winter, and 25‰ and temperature between 10ºC and 26ºC.  
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Figure 5 - Mapped habitat suitability for S. senegalensis 0-group juveniles according to the different 

models tested ((a) HSIabiotic; (b) HSIamphipods; (c) HSIpolychaetes; (d) HSIbivalves; (e) HSIall). 

 

The models which included all abiotic variables as well as all prey types, HSIall (Figs. 4e, 

5e), predicted areas with the highest habitat quality located in the upper estuary. This model 

yielded SI values generally under 0.5 and excluded most of the nursery areas of both soles. 
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Figure 6 - S. Solea 0-group juveniles density prediction of the HSIamphipods 

model (SIsalinity SI temperature SI substrate SI depth SI intertidal SI amphipods)1/6 for the 

month of May 2001. Mean density and standard deviation. 
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Figure 7 - S. Senegalensis 0-group juveniles density prediction of the 

HSIamphipods model (SIsalinity SI temperature SI substrate SI depth SI intertidal SI 

polychaetes)1/6 for the month of November 2001. Mean density and standard 

deviation. 

 

The Spearman test revealed that the spatial distribution of S. solea in May 2001 and the 

distribution predicted by the HSIamphipods model, in which density of amphipods was used as a 

sixth variable, had the highest correlation (r = 0,43; p < 0,05). Concerning S. senegalensis, the 

Spearman test revealed that its spatial distribution in November 2001 and the HSIpolychetes model, 

which used polychaetes as the sixth variable, had the highest correlation value (r = 0,59; p < 

0,05).  
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The model which included all abiotic variables as well as all prey types yielded lower 

values of correlation for both species, r = 0,07 (p < 0,05) for S. solea and r = 0,19 (p < 0,05) for 

S. senegalensis. Further model testing with independent data from the 2002 survey produced 

similar results.  

 

 

Discussion 
The HSI modelling method used in the present study was generally successful for its 

intended use of mapping habitat quality for S. solea and S. senegalensis. The inclusion of prey 

abundance data proved to be very important in the definition of high suitability habitat for both 

sole species and in the prediction of high density areas. One of the main conclusions of this 

study is that although the majority of the Tagus estuary upper areas have an overall high habitat 

quality for soles; both species’ juveniles concentrate in rather small areas, probably due to 

foraging opportunities. This has important implications for fisheries management. These areas 

should be regarded has crucial for these species lifecycle and protected from disturbing 

activities, especially during the months when they are used has nursery areas by soles. 

Regulations on a defence period and minimum length at capture are already in place, 

yet they are not fully respected by fishermen. The demand by aquacultures and local 

restaurants for soles juveniles (both illegal demands) and the lack of regulation supervision and 

enforcement make this illegal activity a profitable occupation.  Also, although the defence period 

protects S. solea 0-group juveniles, to effectively protect S. senegalensis it would have to be 

extended to the month of December.  

The present study is fisheries focused, and since fisheries management is still not fully 

developed in Portugal the modelling technique should be simple enough to accommodate the 

goals and constraints related to the decision making process. Rather than wishing to obtain 

accurate maps of the maximum extent of suitable habitats, managers (usually with no scientific 

background) are more likely concerned with identifying the most important areas in the species 

life cycle (Langton and Auster, 1999). We acknowledge, however, that fisheries science should 

rely heavily in statistics and modelling and that knowledge on the full extent of species suitable 

habitats is an important goal for fisheries management. 

Other authors have approached the issue of flatfish habitat modelling in different ways. 

Using regression tree analysis, Norcross et al., (1997) modelled habitat suitability for flatfish in 

Alaska, while Swartzman et al., (1992) and Stoner et al., (2001) used generalized additive 

models for modelling flatfish distribution in the Bering Sea and winter flounder in New Jersey, 

respectively. Le Pape et al. (2003) characterised the distribution of S. solea using a general 

linear model. Eastwood et al. (2003) applied regression quantiles to estimate the limits to the 

spatial extent and suitability of S. solea nursery grounds, producing maps of the upper limits of 

suitability and this way minimizing its underestimation, which is important in a conservationist 

perspective but would hardly be applied to an highly urbanized estuary such as the Tagus 

where impacts are diverse and protection of the whole suitable area for any species is generally 
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not possible. Bearing this in mind this work intended to detect crucial estuarine areas for the life 

cycle of both soles and to determine which variables should be taken into account in future 

management actions. 

Presence of prey appears to be a major factor affecting soles’ distribution. It is generally 

recognized that prey availability is determinant in the distribution of flatfish (e.g. Miller et al., 

1991; Sogard, 1992; Gibson, 1994; 1997; Matilla and Bonsdorff, 1998) and it is also well known 

that macrobenthic species can use less than half of the suitable habitat due to limitations in 

settlement and/or juvenile survival (Armonies and Reise, 2003). As such, habitat classified has 

highly suitable, according to abiotic variables, can actually be empty habitat in terms of prey 

(e.g. Buttman, 1986; Eckman, 1990; Armonies and Reise, 2003). On the other hand, 

intermittent stagnant conditions that facilitate larval settlement, as well as higher than average 

survival rates can result in local accumulations of various macrobenthic organisms (Gross et al., 

1992; Snelgrove, 1994; Hsieh and Hsu, 1999).  

In order to take these phenomena into account, density of amphipods, polychaetes and 

bivalves were chosen as variables since they are the most important groups in both species diet 

(Lagardère, 1987; Costa, 1988; Molinero and Flos, 1991; Beyst et al., 1999; Cabral, 2000). This 

way, from the five distinct models created for each species, the one which included only abiotic 

variables indicated, as expected, a broad area of high suitability for both soles, while the other 

models, that also included prey density, greatly restricted the areas of high habitat quality. Prey 

abundance data proved to be of the utmost importance for the prediction areas of high juvenile 

soles density. The models which included all prey items had lower correlations with species 

distributions. This is due to the fact that being the model multiplicative if any term is equal to 

zero so will the output. Yet this does not make biological sense, because the lack of one or two 

of the prey items will not make an area necessarily unsuitable to a species if there is abundance 

of another prey group. This is possibly the biggest limitation of this method. 

Few attempts have been made to assess the influence of prey density in flatfish 

distribution because of the difficulty in quantifying the abundance of prey items. While Pihl and 

van der Veer (1992) found no correlation between plaice density and biomass of macrofauna, 

Stoner et al., (2001) reported that the abundance of prey contributed significantly to the 

generalized additive model for winter flounder with total length between 25 and 55mm. Yet, 

various studies, that did not quantify prey density, concluded that substrate preference is 

probably indirect and linked to prey availability (e.g. Gibson and Robb, 1992; Jager et al., 1993; 

Gibson, R.N., 1994)  

The model that included density of amphipods yielded very good results in predicting S. 

solea densities in its month of higher abundance estimates, while the model that included 

polychaetes had the best results for S. senegalensis. The models determined that the areas of 

highest habitat quality are located in the upper estuary which is dominated by large extensions 

of intertidal mudflats. 

Sole juveniles of the 0-1 group of both species feed primarily on amphipods, polychaetes and 

bivalves (e.g. Lagardère, 1987; Costa, 1988; Molinero and Flos, 1991; Beyst et al., 1999; 
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Cabral, 2000), all of which are found in close association with muddy and sandy substrates. 

Sole are also known to bury into fine grained sediments, probably to avoid predation (Dorel et 

al., 1991; Rogers 1992). The models produced here clearly confirm these assertions. It was 

also confirmed that some areas classified by the abiotic model (HSIabiotic) as highly suitable are 

in fact habitat empty of prey and have therefore low quality for fish juveniles, the models that 

take into account prey density classify this areas with a zero suitability index.   

Only marginal differences in the spatial distributions of both soles could be attributed to 

variations in temperature and salinity. This is probably a facet of the sampling regime, in that 

had samples been collected over a broader temperature and salinity range then a stronger 

relationship may have emerged. 

In other studies authors have concluded that the models developed may be constrained 

to defining habitat quality at a particular season and geographic location, due to the lack of 

model testing in other situations (e.g. Brown et al., 2000; Eastwood et al., 2003). In the case of 

the Tagus estuary previous studies report that soles have concentrated in the upper estuary in 

all surveys throughout the year, so we can conclude that although conditions in this area vary 

and the number of soles fluctuates, these are preferential areas all year long. Concerning 

geographic location, differences are expected since these species habitat preferences seem to 

differ between estuaries (Cabral and Costa, 1999; Cabral, 2000). Cabral (1998) compared the 

influence of several environmental factors in the distribution of these species and concluded 

that it is difficult to generalize to different estuarine systems, since many of the factors are 

correlated and/or have an indirect effect on distribution, as previously reported by Riley et al., 

(1981). Further testing of the present models would allow an assessment of the models 

applicability to a broader set of time periods and geographic locations. 

Because of the dynamic nature of habitat features nursery grounds can expand, 

contract and shift in location over time (Stoner et al., 2001). Distribution patterns can be altered 

due to natural and anthropogenic changes. The identification and protection of these critical 

habitats is essential for the long term conservation of commercial fish stocks. 
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Nursery fidelity, food web interactions and primary sources 

of nutrition of the juveniles of Solea solea and Solea 

senegalensis in the Tagus estuary (Portugal):  

a stable isotope approach 

 
Abstract: Stable carbon and nitrogen isotopes were used to assess site fidelity of Solea solea 
(Linnaeus, 1758) and Solea senegalensis Kaup, 1858, juveniles, to investigate food web 
interactions and to determine the dominant nutrient pathways in two nursery areas in the 
Tagus estuary, Portugal. Samples of water from the main sources and from the nursery areas 
and respective saltmarsh creeks were collected for isotope analysis, as well as sediment, 
benthic microalgae, saltmarsh halophytes, S. solea, S. senegalensis and its main prey, Nereis 
diversicolor, Scrobicularia plana and Corophium spp. While site fidelity was high in 0-group 
juveniles, it was lower for 1-group juveniles, possibly due to an increase in mobility and 
energy demands with increasing size. Analysis of the food web revealed a complex net of 
relations. Particulate organic matter from the freshwater sources, from each nursery’s waters 
and saltmarsh creeks presented similar isotopic composition. Sediment isotopic composition 
and saltmarsh halophytes also did not differentiate the two areas. All components of the food 
web from the benthic microalgae upwards were isotopically different between the nursery 
areas. These components were always more enriched in δ13C and δ15N at the lower nursery 
area than at the nursery located upstream, appearing as if there were two parallel trophic 
chains with little trophic interaction between each other. A mixture of carbon and nitrogen 
sources is probably being incorporated into the food web. The lower nursery area is more 
dependent upon an isotopically enriched energy pathway, composed of marine particulate 
organic matter, marine benthic microalgae and detritus of the C4 saltmarsh halophyte 
Spartina maritima. The two nursery areas present a different level of dependence upon the 
freshwater and marine energy pathways, due to hydrological features, which should be taken 
into account for S. solea and S. senegalensis fisheries and habitat management.  
 
 
Key-words: Connectivity; Stable isotopes; Estuarine fishes; Flatfish; Sole; Eastern Atlantic; 
Portugal; Tagus estuary.  
 

 

 
Introduction 

The soles, Solea solea (Linnaeus, 1758)vand Solea senegalensis Kaup, 1858, are 

among the most important commercial fishes in Portugal (Costa and Bruxelas, 1989). The 

Tagus estuary, one of the largest estuaries in Western Europe, has two main nursery areas for 

fish, where soles can be found (Figure 1) (Costa and Bruxelas, 1989; Cabral and Costa, 1999). 

A differential multi-cohort immigration process towards estuaries has been described for these 

species, associated with different spawning periods that induce several pulses of new recruits 

(Dinis, 1986; Andrade, 1992; Cabral, 2003). 

S. solea 0-group juveniles colonize nursery A in one or two pulses from April to June 

leaving the estuary towards the coast around October-November (Cabral and Costa, 1999; 

Cabral, 2003; Fonseca, 2006). S. senegalensis colonise the upper Tagus nurseries latter and in 
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several pulses (the first pulse colonises only nursery A, while the following pulses can colonise 

both areas) (Cabral and Costa, 1999, Fonseca et al., 2006) resulting from a prolonged 

spawning period with two major peaks (Spring and Summer) (Anguis and Cañavate, 2005). 

While one first cohort arrives at the estuary in Spring, another cohort arrives later in Summer 

and a third cohort has also been observed in some years in Autumn (personal observation). 

Individuals from the latter cohorts will stay in the estuary during the winter, only emigrating 

towards coastal waters in the following year (Cabral, 2003).  
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Figure 1 – Location of the nursery areas (A and B) within the 

Tagus estuary. Numbers indicate water sources sampled (1- 

Tagus river; 2- Sorraia river; 3- Ribeira das Enguias river and 

4- Samouco area). 

 

Soles are the main target of the beam-trawl fisheries inside the estuary, and the most 

important species in juvenile numbers and commercial value. Beam trawling is illegal in all 

Portuguese estuaries except the Tagus where it is quite common in the uppermost areas. Baeta 

et al. (2005) investigated sole fisheries in the Tagus estuary and concluded that they are not 

environmentally sustainable. 

S. solea and S. senegalensis are very similar in aspect. The features that distinguish 

both species are not obvious, even to fishermen and fisheries technicians. The two species 

have traditionally and up to today been treated has one item for management. Fisheries data 

from official sources treat these species as Solea sp. Yet, as mentioned above the two species 
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have very different life-cycles and habitat use patterns. This way the current management 

approach is inadequate, e.g. the no-fishing period put in place for the Tagus estuary only 

protects S. solea juveniles while much of the juvenile period of S. senegalensis is left 

unprotected and a thorough analysis of the fisheries data is impossible since the data is not 

species specific. If the two species continue to be managed as one item several misconceptions 

may arise. Nursery B may be regarded as secondary habitat or alternative habitat. Managers 

may consider that impacts in one of the nursery areas may be minimized by the existence of 

another nursery, yet S. solea is only present at one of the nurseries and the connectivity level 

between S. senegalensis populations using both nurseries is unknown.  

Attempts have been made at assessing the connectivity between the two nurseries 

through mark-recapture experiments, yet the low percentage of recaptured individuals have 

made it impossible to draw any conclusions (Cabral, personal communication). For the good 

management of soles in this estuarine system they must be analysed as two species with 

different life cycles and protection needs, yet several other issues need to be addressed, such 

as, site fidelity of S. senegalensis juveniles, food web interactions for both species and the 

energy sources from which their populations depend. 

In depth knowledge on these issues is particularly urgent given the important 

management challenges that will arise in this and other estuarine systems due to the fast 

increasing density of human populations and the effects of global climate change.  

Human pressure is one of the main threats to the Tagus estuary fish nurseries. While in 

nursery A there is a project for the urbanization of the islands with the construction of a large 

tourist resort, the area around nursery B turned into one of the fastest growing population 

agglomerates in the country after the building of a new bridge that connects it to Lisbon.  

Climate change will also alter the environmental conditions for these species.  Recent 

trends show that there has been a decrease in rainfall in these area, and that rain tends to be is 

more concentrated in time (Miranda et al., 2002), which can have important impacts in the 

complex hydrology of these nursery areas. Recent trends also show an increase in temperature 

and in the duration of heat waves (Miranda et al., 2002). This could have an important impact 

on S. solea, since its optimal metabolic temperature is estimated at 18,8 ºC (LeFrançois and 

Claireaux, 2003), and during heat waves water temperature in theses areas are today higher 

than 25ºC. S. senegalensis being a tropical species will potentially fare better than S. solea, a 

temperate species, under higher temperatures (there are no studies on its optimum metabolic 

temperature).  

Sea level rise may be one of the most important consequences of climate warming 

impacting soles in the future. An important portion of the food available to these species 

concentrates in the large intertidal mudflat platforms that encompass circa 40% of the estuarine 

area of the Tagus estuary (Cabral, 2000). Since the river banks are urbanized most of the 

intertidal area will be lost, with the consequence steep decrease in available food to soles. 

Already, there are studies that show alterations in these estuarine fish assemblage due 

to climate change and river flow fluctuations (Costa and Cabral, 1999; Cabral et al., 2001; Costa 
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et al., in press). Costa and Cabral (1999) and Cabral et al. (2001) reported that in the last thirty 

years typically cold water species such as Platichthys flesus, and Ciliata mustela presented a 

steep decrease in abundance while species with tropical affinities, such as Diplodus bellottii , 

Halobatrachus didactylus, Sparus aurata and Argyrosomus regius have increased their 

abundance. Freshwater input is highly variable in the Tagus estuary and has been shown to 

have an important effect on the estuarine fish community composition by Costa et al., (in press), 

yet soles were analyzed as Solea sp., making conclusions on a specific level impossible. 

This reinforces the need for a more accurate understanding of the estuarine food webs 

and energy sources on which the two species of sole depend. The aim of the present study was 

to (1) assess the site fidelity of the sole populations inhabiting the two nursery areas, to (2) 

investigate food web interactions and to (3) determine the dominant nutrient pathways in both 

nurseries.  

An isotope analysis approach was chosen because studies ranging for two decades 

have proved that stable isotopes are powerful tools for ecological studies. They were used for 

discriminating nutrient pathways and energy sources in complex systems such as estuaries 

(e.g. Simenstad and Wissmar, 1985; France, 1995; Paterson and Whitfield, 1997; Riera et al., 

1999; Darnaude et al., 2004), for elucidating food web interactions and changes in trophic 

position (e.g. Nichols et al., 1985; Hanson et al., 1997; Cabana and Rasmussen, 2002), as well 

as for the reconstruction of migration routes and life histories of fish (e.g. Kline et al., 1998; 

Cunjak et al., 2005; Herzka, 2005; Phillips and Eldridge, 2006). Several authors have 

successfully used stable isotopes to study the connectivity between habitats (Fry et al., 1999; 

Talley, 2000; Fry et al, 2003).  

The combined use of stable carbon and nitrogen isotopes provides an accurate picture 

of food web structure and nutrient pathways (Peterson et al., 1985; Owens, 1987). Since 

terrestrial primary producers generally have lower δ13C than marine producers (Haines and 

Montague, 1979; Riera and Richard, 1996; Bouillon et al., 2000), and the increase in δ13C from 

prey to predator is of only 0-1 ‰ (De Niro and Epstein, 1978; Fry and Sherr, 1984; Peterson 

and Fry, 1987), this isotope is particularly useful in estuarine systems, since it allows the 

identification of the primary source of organic carbon in the diet of fish and also the evaluation of 

its dependence on the freshwater and marine energy pathways (Simenstad and Wissmar, 1985; 

Paterson and Whitfield, 1997; Darnaude et al., 2004). The nitrogen isotope signature is 

generally used as a marker of trophic position, since δ15N increases by 2.5-4.5 ‰ from prey to 

predator (Owens, 1987; Peterson and Fry, 1987). Yet, this isotope can also be used as a tracer 

of organic material across ecotones, since marine organisms are enriched in 15N relative to 

freshwater organisms, and estuarine and anadromous fish present intermediate δ15N values 

depending on their time feeding in either fresh- or saltwater (e.g. France, 1995; Doucett et al., 

1999). 

For the movement of fish to be traced there must be a switch to prey with a different 

isotopic signature in the new habitat, if that is the case it will gradually be reflected by the fish 

tissues (Fry, 1983; Herzka et al., 2001), enabling the identification of migrant individuals if they 
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are caught before equilibrating to the isotopic composition of the food sources in the new habitat 

(Fry et al., 1999; 2003). 

 

 

Materials and methods 
Study area 

The Tagus estuary (Figure 1), with an area of 320 km2, is a partially mixed estuary with 

a tidal range of ca. 4 m. This estuarine system has a mean depth lower than 10 m and about 

40% of its area is composed of intertidal mudflats (Cabral and Costa, 1999) fringed by extensive 

areas of saltmarshes dominated by Spartina maritima, Halimione portulacoides and Sarcocornia 

fruticosa (Caçador et al., 1996). Although its bottom is composed of a heterogeneous 

assortment of substrates, its prevalent sediment is muddy sand in the upper and middle estuary 

and sand in the low estuary and adjoining coastal area (Cabral and Costa, 1999). The mean 

river flow is ca. 400 m3s-1, though it is highly variable both seasonally and inter-annually 

(Loureiro , 1979). Salinity varies from 0, 50 km upstream from the mouth, to ca. 35 at the mouth 

of the estuary (in practical salinity units) (Cabral et al., 2001). Water temperature ranges from 

8ºC to 26ºC (Cabral et al., 2001). Wind induced upwelling occurs in the adjoining coastal areas 

during summer (Fiúza et al., 1982). 

Two important nurseries for sole were identified in the Tagus estuary in previous studies 

(A, Vila Franca de Xira, and B, Alcochete; Figure 1) by Costa and Bruxelas (1989) and Cabral 

and Costa (1999). Although most of the environmental factors present a wide and similar range 

in these two areas, some differences can be outlined. The uppermost area, A, is deeper (mean 

depth 4.4 m), presents lower and highly variable salinity and has a higher proportion of fine 

sand in the substract. Nursery B is shallower (mean depth 1.9 m), and more saline, with lower 

variability in salinity, while substrate is mainly composed of mud (Cabral and Costa, 1999) 

(distance between the two nurseries is circa 10 km). While in nursery A the two sole species, S. 

solea and S. senegalensis can be found, in nursery B only S. senegalensis is present (Cabral 

and Costa, 1999). At immigration S. solea’s length varies between 11 mm and 20 mm (Russel, 

1976), such information is not yet available for S. senegalensis.  

 

Sampling      

Beam trawls were conducted in both nursery areas in May, July and September of 2001 

in order to capture S. solea and S. senegalensis. All soles were measured (total length with 1 

mm precision). Three samples of water, sediment, saltmarsh plants, benthic microalgae, and 

soles’ main prey species were collected in May, July and September of 2001 in both nursery 

areas. Water samples for POM analysis were collected at high tide at both nurseries in 

saltmarsh tidal creeks, in the water adjacent to the saltmarsh and in the subtidal area and at low 

tide in its’ main fresh water sources, the Tagus river for nursery A (source number 1; Figure 1) 

and the Sorraia river (source number 2; Figure 1) and Ribeira das Enguias (source number 3; 

Figure 1) for nursery B. The waters adjacent to Samouco were sampled at high tide in order to 
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analyze the estuarine water coming into the nurseries (source number 4; Figure 1). Three 

replicates were collected from each source.  Three replicates of surface sediment were 

collected in nursery A and B. Tissues of saltmarsh plants, S. maritima, H. portulacoides and S. 

fruticosa were cleaned of mud and when present, epiphytes were removed by scraping with a 

razor blade. Pools of 10 plants of the same species were used to produce 3 replicate samples 

for each saltmarsh. Three replicates of benthic microalgae samples were collected in nursery A 

and B, in the intertidal mudflats at low tide. Textile panels of 20 cm by 20 cm were laid in the 

sediment surface in order to collect the benthic microalgae that concentrate in the surface 

during low tide. The panels were rinsed with distilled water that was later decanted in order to 

separate the microalgae from the sediment that was also attached to the panels. 

The supernatant was then filtered onto precombusted filters. The main prey for both 

sole species in the Tagus estuary are the amphipod Corophium spp, the bivalve Scrobicularia 

plana and the polychaete Nereis diversicolor (Cabral, 2000). While for S. plana only the valves 

muscle was used for isotopic analysis, for Corophium spp. and N. diversicolor the whole 

animals were used after rinsed with distilled water. The dried tissues were ground to fine 

powder with a mortar and a pestle and added into pools for analysis.  

Zooplankton was not sampled since its numbers are very low in the upper Tagus 

estuary due to the high turbidity of the system. Previous studies have shown that much of the 

organic matter in the water column is composed of suspended benthic microalgae (Vale and 

Sundy, 1987).  

 

Stable isotope analysis 

Muscle tissue samples of S. solea and S. senegalensis for C and N stable isotope 

analysis were dissected and dried at 60 ºC. Dorsal white muscle samples were taken since this 

tissue tends to be less variable in terms of δ13C and δ15N (Pinnegar and Polunin, 1999). The 

dried tissues were ground to fine powder with a mortar and a pestle. Isotopic analysis was 

carried out on an individual basis. 

Water samples were filtered until clogged onto precombusted filters. Sediment samples 

were dried at 60ºC and ground to a fine powder. Subsamples of the ground samples of water 

POM and sediment were acidified with several drops of 10% HCl while being observed under a 

dissecting microscope. If bubbling occurred the subsample was acidified, rinsed with distilled 

water, redried at 60 ºC and stored in glass vials. A separate subsample was used for nitrogen 

isotope analysis. The acidification procedure was carried out to detect contamination by 

carbonates, as they present higher δ13C values than organic carbon (DeNiro and Epstein, 

1978), yet carbonates were not detected in none of the samples of the present work. Samples 

of saltmarsh plants, S. maritima, H. portulacoides and S. fruticosa were dried to constant weight 

at 60 ºC. The dried tissues were ground to a fine powder with a mortar and a pestle. Benthic 

microalgae samples were dried at 60ºC and ground to a fine powder. 

For prey species isotope analysis a subsample with a minimum of 5g was analyzed 

from a pooled sample of several individuals (the number of individuals needed to have the 
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minimum of 5g was very variable). The acidification procedure described above was used to 

detect carbonate contamination, yet none of the samples was contaminated. 
13C/12C and 15N/14N ratios in the samples were determined by continuous flow isotope 

mass spectrometry (CF-IRMS) (Preston and Owens, 1983). The standards used were Peedee 

Belemite for carbon and atmospheric N2 for nitrogen. Precision of the mass spectrometer, 

calculated using values from duplicate samples, was ≤ 0.2‰.  

Isotope ratios were expressed as parts per thousand (‰) differences from a standard 

reference material: 

 

δX = [(Rsample/Rstandard)-1] × 103 

 

where X is 13C or 15N, R is the ratio of 13C/12C or 15N/14N and δ is the measure of heavy to light 

isotopes in the sample. 

 

Data analysis 

T tests were performed in order to investigate differences of isotopic composition of S. 

senegalensis between nurseries A and B, according to sampling month. This procedure was 

carried out in order to investigate site fidelity from the different sized juveniles that were caught 

throughout the sampling period. The percentage of individuals from both nurseries with 

overlapping isotopic values was calculated for all months.  

Differences in δ13C and δ15N in the particulate organic matter from the water sources 

were tested with a one-way ANOVA. Whenever the null hypothesis was rejected Tukey post 

hoc tests were conducted. To test for differences in the isotopic composition of the surface 

sediment of the two nurseries a t-test was performed. In order to investigate food web 

interactions a one-way ANOVA was conducted for both species of sole and both nurseries (S. 

solea versus S. senegalensis from nursery A versus S. senegalensis from nursery B). For all 

other components of the food web separate t-tests were carried out in order to compare isotopic 

signatures from the two nurseries. All the statistical tests performed were carried out separately 

for each isotope.  

The relation between length and isotopic values for both species and in both nurseries 

was investigated since it could be a confounding factor in the interpretation of movement among 

nurseries, yet such a relationship was not found. 

 
 
Results 
S. solea and S. senegalensis nursery fidelity 

While S. solea was captured only at nursery A, S. senegalensis was present at both 

nurseries. For S. solea a steady increase in length occurred throughout the study period, as 

would be expected in a nursery area (Table 1).  
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Table 1 – Mean length (in mm) of S. solea and S. senegalensis collected in Nursery A and B for 

isotopic analysis (standard deviation values in brackets; sample size indicated below values). 

 

 May July September 

S. solea 

(Nursery A) 

81 (± 9) 

n=10 

125 (± 10) 

n=12 

153 (± 14) 

n=12 

S. senegalensis 

(Nursery A) 

169 (± 21) 

n=20 

69 (± 33) 

n=13 

107 (± 39) 

n=11 

S. senegalensis 

(Nursery B) 

143 (± 11) 

n=20 

83 (± 26) 

n=12 

114 (± 27) 

n=12 

 
The size of the S. senegalensis individuals captured in our samples in May in both nurseries 

indicates that they are from the last cohort of this species from the previous year (that stays in 

the estuary during the winter) (Table 1). Captures of S. senegalensis in July were dominated by 

the first cohort of the year of 0-group juveniles, with much smaller lengths, as were the samples 

from September, the later with a predictable increase in length (Table 1).  

The t test applied to the isotopic analysis of S. senegalensis 1-group juveniles captured 

in May revealed that fish from nursery B tend to have higher δ13C and δ15N than fish from 

nursery A. Although there is some overlap (Figure 2a) there is a significant difference in isotopic 

signature between the two nurseries (P < 0.05 for both isotopes). Individual data analysis 

showed that 35.5% of the individuals (15 in a total of 40) had an overlapping isotopic 

composition in the δ13C range between -16.8‰ and -16.2‰. 

0-group juveniles of S. senegalensis captured in July and September presented very 

distinct isotopic signatures for the two nursery areas (P < 0.05 for both isotopes) (Figures 2b, 

2c), while presenting the same trend as the larger juveniles from the May samples, with nursery 

B S. senegalensis assuming higher δ13C and δ15N. 

 

Stable isotope values of particulate organic matter (POM) and sediment  

Particulate organic matter (POM) from all freshwater sources (1, 2, 3; Figure 1) were 

depleted in δ13C (mean values between -24.8 and -24.6‰) (Figure 3). POM from the middle 

estuary (source 4; Figure 1) that is expected to flow into the nurseries at high tide was 

comparatively enriched in δ13C (mean value of -21.3). While no significant differences were 

detected for the isotopic composition among the POM from the freshwater sources (P > 0.05 for 

both isotopes) (sources 1, 2, 3; Figure 1) A significant difference in δ13C was found between the 

POM from the middle estuary (source 4; Figure 1) and the POM from all the freshwater sources. 
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Figure 2 – Distributions of stable isotope ratio values for rr in nursery A 

(black dots) and B (white dots) (in May (a), July (b) and September (c). 

Symbols represent individual fish. 

 

No significant difference in δ15N was found between the POM from all water sources (P 

> 0.05). Intermediate δ13C values were found for the POM in the water collected in the nurseries 

(mean value -23.2 for nursery A and -23.5‰ for nursery B), as well as in each respective 

saltmarsh creeks (mean value -23.2 for nursery A and -23.4‰ for nursery B). Isotopic values for 

POM from each nurseries’ waters and saltmarsh creeks were not significantly different (P > 0.05 

for both isotopes) (Figure 3). 
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Figure 3 – Mean (± SD) δ13C and δ15N of the dominant carbon and 

nitrogen sources (  as the Tagus estuary POM input;  as the Sorraia 

River POM input;  as the Ribeira das Enguias POM input and  as the 

Samouco POM input); POM from each nursery area (POM); POM 

saltmarsh creeks (POM marsh); sediment (Sed); benthic microalgae 

(Microalg); Sarcocornia fruticosa (Sarc); Halimione portulacoides (Hal); 

Spartina maritima (Spart); Corophium spp. (Corop); Nereis diversicolor 

(Ner); Scrobicularia plana (Scr); Solea solea (Ss) and S. senegalensis 

(Sn). Black dots stand for nursery A items, white dots stand for nursery B 

items. 

 

No significant difference was found between the isotopic signatures of the surface 

sediment from the two nurseries, both in δ13C and δ15N (P > 0.05). Surface sediments were 

more enriched in δ13C and δ15N than the suspended POM (Figure 3). 

 

Stable isotope values of producers 

The δ13C values of the saltmarsh halophytes differed greatly among species with S. 

maritima being enriched (between -13.6‰ and -13.3‰) and S. fruticosa and H. portulacoides 

(between -25.3 and -27.7‰) being depleted in δ13C (Figure 3). The δ15N values of the saltmarsh 

halophytes did not differ among species with S. maritima being more depleted in δ13C (between 
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7.63‰ and 11.82‰) than S. fruticosa and H. portulacoides (between 9.61 and 12.77‰) (Figure 

3).  

No significant difference was found in δ13C and δ15N between the halophytes from the 

two nursery areas (P > 0.05). It is at the benthic microalgae level that the two nurseries start to 

differentiate (mean values of -17.6 for nursery A and -15.7 for nursery B), with a significant 

difference in the isotopic composition (P < 0.05 for both isotopes). A tendency for more enriched 

δ13C levels in nursery B can be noticed from this food web level upwards in the trophic chain 

(Figure 3).  

 

Stable isotope values of soles from both nurseries and its’ prey 

Significant differences in isotopic signatures were found among soles. Differences in 

δ13C were found between S. solea, S. senegalensis from nursery A and S. senegalensis from 

nursery B (P < 0.05). For δ15N there was no difference for the two sole species living in nursery 

A, but there was a significant difference between soles from different nurseries, with S. solea 

and S. senegalensis from nursery A being different from S. senegalensis from nursery B (P < 

0.05). 

Soles’ main prey, N. diversicolor, S. plana and Corophium spp., presented significant 

differences in their isotopic signatures between nursery areas both in δ13C and δ15N (P < 0.05). 

δ13C and δ15N values were generally higher in nursery B than in nursery A, with the exception of 

δ15N in Corophium sp. (Figure 3). δ13C values from both nurseries presented intermediate levels 

between those of its freshwater sources and the more enriched seawater. An increase in δ15N 

with increasing trophic level can be observed (Figure 3).  

 
 
Discussion 
S. solea and S. senegalensis nursery fidelity 

Distinct isotopic signatures between nursery areas were found for 0-group soles. No 

individual presented intermediate isotopic values reflecting migration between nurseries (Fry et 

al., 1999; 2003; Herzka et al., 2002). Therefore it can be concluded that there is low connectivity 

between the two sites for 0-group soles due to the high site fidelity exhibited by these fish. 

Limited movement range had already been reported for marked juvenile S. solea (0-group and 

1-group) (Coggan and Dando, 1988), as well as for other 0-group flatfish, such as winter 

flounder, Pseudopleuronectes americanus (Walbaum, 1792) and plaice, Pleuronectes platessa 

(Linnaeus, 1758) (ca. 100 m of range for 90% of marked individuals for both species) 

(Saucerman and Deegan, 1991; Burrows et al., 2004).  

1-group sole also presented different isotopic signatures between nursery areas, yet 

they exhibited lower site fidelity, with 35.5% of migrant individuals identified and consequently a 

larger connectivity between the two nursery areas. This is probably due to an increase in 

locomotory capacity with increasing size, coupled with larger energy demands that lead 1-group 

sole to forage in wider areas and search for alternative feeding opportunities within the estuary.  
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Although a good distinction among isotopic signatures was found for soles from the two 

nurseries, it must be taken into account that isotopic turnover rates, the speed at which an 

individual will reach equilibrium following a shift to an isotopically distinct prey (Herzka, 2005), 

are not yet determined for these species, so the length of time an immigrant will be 

distinguishable from a long time resident is still unknown. However, it has been reported that 

young fishes with faster growth rates will equilibrate within days or weeks, while larger fish may 

take well over a year (Herzka, 2005). This means that 0-group sole presumably reach the 

equilibrium faster than 1-group individuals, making migrants hard to detect. We should conclude 

that our estimations on the high site fidelity of 0-group soles need the support of isotopic 

turnover experiments in order to gather information regarding their projection in time.   

 

Food web interactions 

The analysis of the food web through its isotopic composition reveals a complex net of 

relations between its components. As it is common in ecotones, such as estuaries, energy 

paths are complex and there are various sources contributing to the energy flow throughout the 

food web (Riera et al., 1999; Wainright et al, 2000; Weinsten et al., 2000; Alfaro et al., 2006), 

with fluctuating inputs due to diel and semilunar cycles associated with the tides. 

While POM from freshwater sources presented similar isotopic signatures, the more 

saline incoming water presented a different signature, more enriched in 13C and 15N. The input 

of these enriched marine waters will be especially important every high tide (twice a day in this 

region) and especially during spring tides, carrying enriched POM, as well as suspended 

benthic microalgae from down stream that will be incorporated into the local food web. The 

relative importance of these inputs will also depend on the river inflow, which in the Tagus is 

regulated by dams and strongly depends on the frequency and intensity of the seasonal rains 

which are quite variable in this region.    

Water POM at the nursery areas and respective saltmarsh creeks was depleted in 13C 

and 15N and did not show any isotopic differences from the freshwater sources. This is probably 

due to the fact that 2001 was a very rainy year with strong river inflow into the estuary (Costa et 

al., in press). However, sediment was isotopically more enriched which complied with the 

presence of a marine influence. Sediment isotopic composition did not differentiate the 

nurseries. It is only from the benthic microalgae level upwards that the nurseries start to 

differentiate, with the consumers from nursery B being always more enriched in δ13C, than the 

ones from nursery A. 

The δ13C values of the saltmarsh halophytes differed greatly with S. maritima being 

enriched and S. fruticosa and H. portulacoides being depleted in δ13C. The range of δ13C for S. 

maritima (-13.6‰ and -13.3‰) fell well within the range reported by other authors for other C4 

species and Spartina species (Haines, 1976; Currin et al., 1995; Paterson and Whitfield, 1997). 

The δ13C values for S. fruticosa and H. portulacoides (between -25.3 and -27.7‰) are 

comparable to other C3 saltmarsh plants (Paterson and Whitfield, 1997) and within the range of -

23 to -30‰ reported by Smith and Epstein (1971) for terrestrial C3 plants.  
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As stated above, consumers’ isotopic signatures differed between nurseries. This is 

indicative of a low level of connectivity between the two nursery areas. It appears as if there are 

two parallel trophic chains with little trophic interaction between each other. This has also been 

reported by other authors in other estuaries (Paterson and Whitfield, 1997). It is possibly due to 

the low mobility of 0-group sole and its’ prey, as well as hydrological features of this area that do 

not facilitate the connectivity between sites.  

Concerning the soles, there were different isotopic signatures in δ13C for all groups 

considered, S. solea, S. senegalensis from nursery A and S. senegalensis from nursery B. Yet, 

there was no difference in δ15N in soles from the same nursery (nursery A). δ13C and δ15N were 

different between nursery areas, with S. senegalensis from nursery B exhibiting more enriched 

values. The results for δ13C and δ15N reflect the feeding ecology of soles in these nursery 

grounds and the fact that there are no other nursery habitats within this system. Differences in 

the isotopic composition on the base of the food-web among habitats are patent in the benthic 

microalgae that are taken up by the main prey of soles. 

Cabral (2000) reported that the diets of S. solea and S. senegalensis in nursery A were 

quite similar and correlated with prey availability, indicating opportunistic utilization of food 

resources and low selectivity (Miller et al., 1985). Similar diets, of closely related species 

foraging in the same site, presumably lead to very similar isotopic signatures, as could be 

observed in the present study. Cabral (2000) also concluded that the feeding pattern of S. 

senegalensis was different at nursery B, with a positive selection of intertidal areas as feeding 

grounds, and S. plana as its main prey, while in nursery A Corophium spp. were the main prey. 

Feeding ecology is possibly an additional factor leading to the differentiation of isotopic 

signatures of sole from the two nursery areas, observed in the present study. The two species 

of sole inhabiting nursery A are probably feeding on a combination of the prey items analysed, 

hence δ13C values fall between the more depleted values found for Corophium spp. and the 

more enriched values found for both S. plana and N. diversicolor. S. senegalensis from nursery 

B should also be feeding on a combination of prey since its δ13C values are within the 

distributions of δ13C of its’ three main prey. 

 

Primary sources of nutrition 

The isotopic signatures observed in the consumers suggest that they are dependent on 

more than one energy path. They are dependant on depleted sources of carbon but other 

enriched sources cause values of consumers to be greater than what would be expected due to 

normal trophic shift. Among the possible enriched sources that may be contributing to the food 

web there is the saltmarsh C4 halophyte, S. maritima that incorporates the trophic web through 

a detritus pathway (Teal, 1962; Odum, 1980), the marine POM and also the suspended benthic 

microalgae that are washed in with the rising tides. Spartina species have been shown to 

produce detritus more depleted in δ13C than its’ living tissues (Benner et al., 1987; Currin et al., 

1995), so these should be closer in δ13C values to the consumers isotopic signatures. 



                                                                                                                           Chapter 2 

 - 50 -

The role of saltmarshes as carbon sources in estuarine food webs has been thoroughly 

discussed, especially the link between macrophytes and marine transients (e.g. Teal, 1962; 

Odum, 1968; Odum, 1980; Haines and Montague, 1979; Nixon, 1980; Litvin and Weinstein, 

2003). Teal’s (1962) hypotheses that saltmarsh may drive much of the secondary production in 

estuaries, has been gradually altered to accommodate new findings such as, that finfish, 

phytoplankton, benthic microalgae, and organic matter exports are also important contributors 

to nutrient flux in estuarine waters (Haines and Montague 1979; Nixon, 1980; Sullivan and 

Montcrieff, 1990; Eldridge and Cifuentes, 2000). These contributions were first quantified by 

Deegan (1993) for Gulf menhaden Brevoortia patronus, but also apply to other marine 

transients (Weinstein et al., 2000; Litvin and Weinstein, 2003). Further research has shown that 

saltmarshes vary in their ability to export organic matter (Roman and Daiber, 1989; Dame et al., 

1991). In fact, Riera et al. (1999) reported that despite the wide availability of saltmarsh plants 

they may not be significant contributors of carbon and nitrogen to the local food web 

A mixture of sources is probably being incorporated into the food web. Previous studies 

have shown that benthic microalgae may contribute significantly to saltmarsh primary 

production (Sullivan and Montcrieff, 1988; Pickney and Zingmark, 1993), as well as being 

important components in saltmarsh food webs (Sullivan and Montcrieff, 1990; Currin et al., 

1995). Since isotopic values of benthic microalgae tend to be spatially variable, a wider 

sampling strategy encompassing large areas in both nurseries may bring new insights into their 

importance in these areas. 

Isotopic signatures of the consumers reveal that there is a different dependence on 

each energy pathway according to nursery area, with nursery B being relatively more 

dependent on the δ13C enriched energy pathway. This is probably related to the complex 

hydrology of this estuary. Nursery B presents higher salinity values and has therefore a greater 

marine influence than nursery A (Cabral and Costa, 1999). Nursery A receives the direct 

influence of the Tagus river inflow, by far the largest freshwater input to this estuary. Nursery B 

is located in a more sheltered area, where the Tagus flow has lost much of its current and other 

freshwater inputs came from much smaller rivers. The extension of saltmarshes is also larger in 

nursery B, which, as stated above, can be an important source of δ13C enriched material to the 

local food web. 

It can thus be concluded that two important fish species for commercial fisheries in 

Portugal, S. solea and S. senegalensis, have important nursery areas in the Tagus estuary, 

whose energy pathways are dependent on complex hydrological features. These nurseries 

present low connectivity and different levels of dependence upon freshwater and marine energy 

pathways. The two nurseries should be managed as independent habitats, one which provides 

habitat for the juveniles of two sole species and another that provides habitat for only one of the 

species juveniles, yet it is where cohorts develop over its’ first year of life independent of the 

population that colonizes the other nursery. 
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Both species populations are dependent upon fluctuations in freshwater and marine 

water inflow, both natural and man controlled. Further research into the contribution of each 

nursery to the adult stocks should produce useful information for fish stock management.  
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Diel and semi-lunar patterns in the use of an intertidal 

mudflat by juveniles of Senegal sole, Solea senegalensis 

 
Abstract: Intertidal mudflats are a dominant feature in many estuarine systems and may 
comprise a significant component of the feeding grounds available to fish. The Senegal sole, 
Solea senegalensis Kaup, 1858, is one of the most important flatfishes in the Tagus estuary 
(Portugal) and its juveniles feed in the large intertidal flats. Many aspects of this species 
ecology and lifecycle are still unknown, namely its behaviour adaptations to predictable 
environmental variations like day-night and semi-lunar cycles. Such activity patterns may 
strongly influence its’ use of mudflat habitats. Two encircling nets were deployed in an 
intertidal flat, one in the lower and the other in the upper mudflat. Nets were placed during 
high tide and organisms collected when the ebbing tide left the flats dry. Sampling took place 
in June-July 2004, covering all possible combinations of the diel and semi-lunar cycles with 
six replicates. Monthly beam trawls were carried out to determine density and average length 
of S. senegalensis predators in the intertidal and subtidal areas. Sediment samples were also 
taken, to determine prey density in the lower intertidal, upper intertidal and subtidal areas. S. 
senegalensis captured were mostly 0-group juveniles. Crangon crangon (Linnaeus, 1758) 
(one of the main predators) density and average length was higher in the subtidal than in the 
intertidal. Prey density decreased from the upper intertidal to the subtidal area. The highest 
average density of S. senegalensis occurred during full moon at dawn/dusk. A semi-lunar 
activity pattern was detected. At spring tides abundance peaked at dusk/dawn, while at neap 
tides abundance peaked during the day. Predators’ densities over these periods were 
analysed and predator avoidance discussed. While during quarter and full-moon nights S. 
senegalensis extended its distribution over the lower and upper mudflat, during new-moon 
colonisation was restricted to the lower mudflat. It was concluded that, while diel patterns of 
activity are well studied and are likely associated with feeding rhythms, the influence of the 
moon cycle despite its importance is a more complex phenomena that needs further 
investigation. 
 
 
Key-words: Intertidal environment; Lunar cycles; Day-night cycle; Sole; Feeding behaviour; 
Activity rhythms; Eastern Atlantic; Portugal; Tagus estuary.  
 

 

 
Introduction 

Estuarine intertidal mudflats are very important in the functioning of estuarine systems 

and it is generally recognized that they have a disproportionately high productivity when 

compared to subtidal areas (Elliot and Taylor, 1989, Elliott and Dewailly, 1995). Moreover, these 

sheltered shallow waters provide important feeding grounds for juvenile fishes (e.g. Haedrich, 

1983; Able et al., 1990; Costa and Elliott, 1991). However, intertidal mudflats are only available 

to fish during tidal inundation which means that the use of this habitat implies tidal migrations. 

It is assumed that fish exhibit movements during their life cycles at various spatial 

scales, ranging from daily habitat shifts to larger movements between systems (Morisson et al., 

2002). Morisson et al. (2002) remarked that while long migrations have been reported during 

the life cycles of many fish; comparatively little work as been done on smaller scale movements 

over short temporal and spatial scales for estuarine fishes. However, such small scale 

movements have been thoroughly studied in flatfish that use coastal and estuarine intertidal 
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areas such as plaice Pleuronectes platessa and flounder Platichthys flesus and conclusions 

point at feeding and predator avoidance as the main driving forces behind tidal migrations (e.g. 

Gibson, 1973; 1980; 1982; 1999; 2003; Burrows, 1994; Ellis and Gibson, 1995; Wirjoatmodjo 

and Pitcher, 1980; Summers, 1980; van der Veer and Bergman, 1986; Raffaelli et al., 1990; 

Gibson et al., 1998). Studies on other fish species suggest that these movements may be 

strongly structured by tidal and day-night cycles (Naylor, 2001; Morrison et al., 2002; Krumme et 

al., 2004), although Quinn et al. (1981) found no differences in fish assemblages between 

nights of full and new moon. Rafaelli et al. (1990) observed marked differences in the number 

and length of P. flesus using the intertidal in successive day and night tides, yet the full effect of 

the semi-lunar cycle is still scarcely understood in flatfish.  Estuarine organisms are adapted to 

predictable environmental cycles and show rhythmic activity synchronized with tidal cycles 

(Neumann, 1981, Palmer, 1995). While some of these patterns are controlled endogenously, 

others seem to be controlled by direct response to environmental variations associated with the 

tidal cycle (Naylor, 1982; Naylor and Williams, 1984; Saigusa and Kawagoye, 1997).  

The Senegal sole, Solea senegalensis, Kaup 1858, is a benthonic fish distributed from 

the Bay of Biscay to Senegal and western Mediterranean (Quero et al., 1986). It is a species of 

increasing interest in aquaculture and is commonly cultured in the Portuguese and Spanish 

southern coasts (Dinis et al., 1999). This species is one of the most important flatfishes in the 

Tagus estuary (Cabral and Costa, 1999). Exactly where settlement of this species’ larvae 

occurs is still unknown, yet it is possible that it takes place in the intertidal as it happens for the 

very similar species Solea solea (Linnaeus, 1758) (van der Veer et al., 2001).  

The main predators of other 0-group juveniles flatfishes are the crab Carcinus maenas 

(Linnaeus, 1758) and the shrimp Crangon crangon (Linnaeus, 1758) (Pihl and Van der Veer, 

1992; Modin and Pihl, 1996). These are also thought to be the main predators of S. 

senegalensis because of similarity in size and form and based on our own aquarium 

observations (unpublished data).  

S. senegalensis is an important predator of amphipods, polychaetes and bivalves 

(Cabral, 2000) and is therefore of great importance for the dynamics and composition of the 

biological communities in many of the estuarine and coastal systems where it occurs. Cabral 

(2000) reported that intertidal mudflats are very important feeding grounds for S. senegalensis 

juveniles, yet many features of this species’ use of the intertidal are still unknown. Observation 

of this species distribution over the mudflats in all combinations of diel and semi-lunar cycles will 

advance our understanding of its ecology as well as of estuarine fish dynamics. The present 

study aims to evaluate the diel and semi-lunar patterns in the use of the intertidal mudflats by S. 

senegalensis. 
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Materials and Methods 
Study area 

The Tagus estuary (Fig. 1), with an area of 320 km2, is a partially mixed estuary with a 

tidal range of about 4 m. This estuarine system has a mean depth <10 m and about 40% of its 

area is composed of intertidal areas, which are predominantly mudflats. Although its bottom is 

composed of a heterogeneous assortment of substrates, its prevalent sediment is muddy sand 

in the upper and middle estuary and sand in the lower estuary. The mean river flow is 400 m3s-1, 

though it is highly variable both seasonally and annually.  
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Figure 1 – Location of the study area in the Tagus estuary, Portugal. Insert shows the 

study area in detail, the encircling nets are represented by dots ( ), while trawls are 

represented by rectangles ( ). The dotted line (---) represents the limit of the 

saltmarsh. 
 

The mudflat where this study took place is located in the upper estuary in a sheltered 

south bank branch (Fig. 1). The tidal regime is semidiurnal, daily the intertidal mudflat is 

inundated during two periods of approximately 3.5 hours at its upper part, and 5 hours at its 
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lower part. The subtidal area (channel) is always submerged. Salinity in this area varies from 4, 

in winter, to nearly 30 in summer, while water temperature ranges from 8ºC to 26ºC (Cabral et 

al., 2001). Maximum depth in the mudflats during high tide is 2.5 m.  

 

Sampling 

In order to study the distribution of Senegal sole across the tidal flats during high tide, 

two encircling nets were placed in the mudflats, one in the lower mudflat (closer to the channel), 

the other in the upper mudflat (closer to the salt marsh) and distanced approximately 150 m 

(always at the same intertidal level). Preliminary work in this area had shown that captures were 

considerably higher using this technique comparing to bottom trawl.  

Nets had a perimeter of 100 m and a mesh size of 5 mm. They were supported by 

wooden sticks and deployed (simultaneously) by boat at high tide peak. The operation took the 

shape of a closed circle trapping the nekton inside. Metal weights were attached to the bottom 

of the nets so that they would be naturally buried in the mud when deployed. Twenty wooden 

sticks supported each net. In order to avoid the scaring of the fish the boat was operated with 

sticks, motor was turned off and silence was kept. At low tide the mudflat drains completely 

leaving the organisms trapped in the nets. Organisms were hand collected, frozen at -20ºC and 

later identified and measured. Net perimeter was used to calculate the area of the sampled 

circle in order to estimate densities of the organisms captured. 

All possible combinations of diel and semi-lunar cycles were covered in June-July 2004. 

Six replicates of each combination of these cycles were carried out (three in each month, 

whenever they existed); samples were taken on three consecutive days in each lunar phase 

(table 1). Since the tidal regime is semidiurnal two surveys per day could be conducted. 

 

Table 1 - Sampling days when encircling nets were deployed in the lower and upper mudflat, 

with information on tide height, tide phase and diel cycle component. 
 

 Tidal height Day Night Dawn/Dusk 

Full moon 3.59-3.99 

4th June 2004 
5th June 2004 
3rd July 2004 
4th July 2004 
5th July 2004 
31th July 2004 

31th July 2004 
3rd June 2004 
3rd July 2004 
 

4th June 2004 
5th June 2004 
4th July 2004 
5th July 2004 

New moon 3.30-3.54 

16th June 2004 
17th June 2004 
18th June 2004 
16th July 2004 
17th July 2004 
18th July 2004 

16th June 2004 
16th July 2004 
17th July 2004 

17th June 2004 
18th June 2004 
18th July 2004 

Quarter moon 2.95-3.28 

9th June 2004 
10th June 2004 
9th July 2004 
10th July 2004 
23rd June 2004 
24th June 2004 

9th June 2004 
10th June 2004 
9th  July 2004 
10th July 2004 
11th July 2004 
25th June 2004 

23rd June 2004 
24th June 2004 
23rd June 2004 
24th June 2004 
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Three beam trawl replicates (Fig. 1) of ten minutes’ and covering a length of 

approximately 600 m (3 m of opening and 3 mm mesh size) were carried out by boat in the 

intertidal and in the channel (on the same day, just minutes appart), each month, in order to 

determine density and average length of S. senegalensis predators (because encircling nets 

were impossible to use in the channel, trawls were necessary in order to obtain comparable 

densities). At the beginning and at the end of each trawl coordinates were registered with a 

GPS (Global Positioning System) in order to calculate the distance traveled. Trawl opening and 

the distance traveled allowed us to determine the area trawled for densities calculation. In the 

starting point of each trawl, sediment samples were collected using a Van Veen grab to 

determine prey density. A preliminary experiment was carried out in order to determine the 

adequate number of replicates. Ten replicates were carried out in the upper and lower mudflat, 

as well as in the subtidal channel. Benthic organisms were preserved in 4% buffered formalin 

and identified to the species level.  

 

Data analysis 

S. senegalensis were aged according to Cabral (2003). Differences in density were 

tested using a factorial ANOVA according to the semi-lunar and diel cycles, as well its location 

over the mudflat (upper versus lower mudflat). Tukey post-hoc tests were performed whenever 

the null hypotheses were rejected. A significance level of 0.05 was considered in all test 

procedures.  

Densities and average length of C. maenas and C. crangon caught in the beam trawls 

were calculated in order to assess predation pressure in the intertidal and subtidal habitats. 

Similar ANOVA tests with Tukey post-hoc were applied to C. maenas and C. crangon densities 

(caught in the encircling nets), the major predators of S. senegalensis in the study area. 

Organisms were classified as prey items according to Cabral (2000). Prey density was 

calculated in the subtidal, lower intertidal and upper intertidal for the months of June and July 

2004. Major prey groups were used in the prey density comparison. 

 

 

Results 
Species composition in the trawls 

Ten species were caught in the trawls. The most abundant species was C. crangon 

both in the intertidal (overall mean density: 0.18 ind.m-2) and in the subtidal (overall mean 

density: 2.02 ind.m-2). Other species caught in considerably lower numbers were: 

Pomatochistus microps, Palaemon longirostris, Palaemon serratus, C. maenas, Pomatochistus 

minutus, Dicentrarchus labrax, Engraulis encrasicolus, Liza ramada, Sardina pilchardus, 

Diplodus bellottii and Palaemon elegans. D. bellottii and P. elegans were absent from the 

intertidal, while E. encrasicolus and S. pilchardus were absent from the subtidal. 
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Species compositon in the  encircling nets 

Sixteen species were caught in the surrounding nets. The most abundant species was 

C. crangon, both in the lower (overall mean density 1.17 ind.m-2) and in the upper encircling 

nets (overall mean density 0.72 ind.m-2). Other species caught in lower numbers in the 

encircling nets were, in the lower encircling nets: P. longirostris, P. serratus, P. microps, C. 

maenas, S. pilchardus, L. ramada, D. labrax, S. senegalensis, P. minutus, Syngnathus sp., 

Atherina presbiter, E. encrasicolus, while in the upper encircling nets, all of the above species 

were caught except Syngnathus sp. Four species were only present in the upper encircling 

nets: D. bellottii, Chelon labrosus and Argyrosomus regius. 

 

Solea senegalensis distribution 

S. senegalensis caught in the encircling nets belonged to two age groups, however 

mostly 0-group juveniles (size range: 18 to 72 mm; mean: 34.4 mm; standard deviation: 12.05 

mm). Only 7.3% of S. senegalensis were aged 1 year or older (mean size was 171.3 mm and 

standard deviation 30.60 mm). S. senegalensis occurred both in the lower and upper mudflats. 

However, this species was more abundant in the lower mudflat than in the upper mudflat. A 

significant difference in the densities of S. senegalensis over the mudflats was found (F=25.7; 

P<0.05).  

 

 
Figure 2 - Mean density and standard deviation values of S. senegalensis (ind.1000 m-

2) caught in the encircling nets over all combinations of the diel and semilunar cycles, 

as well as its distribution over the lower and upper mudflat. 
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Although no significant differences in S. senegalensis density throughout the diel cycle 

were found (F=2.6; P>0.05), a combined effect of the diel and the semi-lunar cycle was 

detected (F=8.0; P<0.05). The post-hoc Tukey test revealed that the full moon, dusk/dawn, 

lower mudflat combination was significantly different from all other combinations, except for new 

moon, dusk/dawn, lower mudflat and quarter moon, day, lower mudflat. These three 

combinations of variables correspond to the three major density peaks of S. senegalensis (Fig. 

2). 

Density of S. senegalensis was significantly different according to the semi-lunar cycle 

(F=2.9; P<0.05). Mean abundance was highest in the mudflats during full-moon and quarter-

moon. Mean abundance of this species during new-moon was considerably lower (Fig. 2). A 

significant combined effect was also detected between the semi-lunar cycle and the distribution 

of S. senegalensis over the mudflats. 

A semi-lunar pattern was observed. During full and new moon (spring tides) abundance 

peaked at dawn/dusk; this did not happen during quarter moon (neap tides), when abundance 

peaked at daytime. During quarter and full-moon nights S. senegalensis extended its 

distribution over the lower and upper mudflat, while during new-moon colonisation by this 

species was restricted to the lower mudflat. In fact, an important decrease in the use of the 

upper mudflat in new-moon was observed during all periods of the diel cycle.  

 

Predators’ distribution 

No other potential predators other than C. maenas and C. crangon was observed in the 

trawls and encircling nets. Mean density of C. maenas caught in the intertidal trawls was 0.01 

ind.m-2, while in the subtidal it was 0.01 ind.m-2. C. maenas mean carapace length in the 

intertidal area was 38.0 mm (standard deviation: 8.39 mm) while in the subtidal area it was 40.2 

mm (standard deviation: 11.41 mm). Mean density of C. crangon collected in the intertidal trawls 

was 0.18 ind.m-2, while in the subtidal it was 2.02 ind.m-2. C. crangon mean length in the 

intertidal was 34.9 mm (standard deviation: 20.43 mm) while in the subtidal it was 36.0 mm 

(standard deviation: 27.38 mm).  

Data from the encircling nets experiment revealed a significant difference in the 

distribution of C. maenas over the mudflats (F=5.9; P<0.05), while no significant difference in 

the distribution of C. crangon was found. 

Although no significant differences in C. maenas density throughout the diel cycle were 

found (F=2.3; P>0.05), a combined effect of the diel and semi-lunar cycle was detected (F=6.3; 

P<0.05). Regarding C. crangon, significant differences in density were detected throughout the 

diel cycle (F=9.8; P<0.05) and a combined effect of the diel and the semi-lunar cycle was also 

detected (F=11.7; P<0.05). 
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Figure 3 – Mean density and standard deviation values of C. maenas (ind.m-2) caught in 

the encircling nets over all combinations of the diel and semilunar cycles, as well as its 

distribution over the lower and upper mudflat. 

 

 
Figure 4 – Mean density and standard deviation values of C. crangon (ind.m-2) caught in 

the encircling nets over all combinations of the diel and semilunar cycles, as well as its 

distribution over the lower and upper mudflat. 
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Density of C. maenas was significantly different according to the semi-lunar cycle 

(F=13.0; P<0.05), while that of C. crangon was not (F=2.9; P<0.05), but as already referred a 

combined effect of the diel and semilunar cycles was detected.  

C. maenas major activity peaks were observed during new-moon, mainly at night but 

also during the day (Fig. 3). C. crangon major activity peaks occurred during full-moon, at 

dusk/dawn. Important peaks were also registered during quarter moon nights (Fig. 4). 

 

Prey distribution 

Several species of S. senegalensis’ prey were found in the sediment samples, mainly 

Polychaeta and Bivalvia. Amphipoda were also present but at very low densities. The analysis 

of these two prey groups mean densities in the subtidal (392 ind.m-2 and 96 ind.m-2, for 

Polychaeta and Bivalvia, respectively), lower intertidal (3008 ind.m-2 and 552 ind.m-2, for 

Polychaeta and Bivalvia, respectively) and upper intertidal (4856 ind.m-2 and 1964 ind.m-2, for 

Polychaeta and Bivalvia, respectively) clearly shows a decrease in prey densities from the 

upper intertidal to the subtidal area (Fig. 5). 

 

 
Figure 5 - S. Senegalensis prey in the sediment (upper 

intertidal in black; lower intertidal in grey; subtidal in white; 

mean density and standard deviation values). 

 

 

Discussion 
As the mudflats totally drain during the ebb, fish can only migrate when the rising tide 

floods the intertidal flats. This study concluded that S. senegalensis migrate with the rising tide 

towards both lower and upper mudflats. This behavior is most likely driven by the search for 

food in the rich flats as reported for other flatfish species such as the European flounder, 

Platichthys flesus (Linnaeus, 1758) (Wirjatmodjo and Pitcher, 1980; Ansell and Gibson, 1990) 

and the plaice Pleuronectes platessa (Linnaeus, 1758) (Kuipers, 1973; Ansell and Gibson, 

1990; Burrows, 1994). Studies on the nursery function of intertidal mudflats for Solea solea 
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(Linnaeus, 1758), a very similar species, have shown that 0-group juveniles use the intertidal 

during the first months of settlement (Van der Veer et al., 2001), after that period the population 

stops migrating to the intertidal (Wolff et al., 1981). However, Van der Veer et al. (2001) 

reported that a small portion of the 0-group population may adopt a tidal migration strategy 

similar to that of plaice. 

Avoidance of subtidal predators may also be an important function of intertidal 

incursions. Various authors have observed that predators of intertidal migrant species are 

larger, more numerous and more varied subtidally (e.g. Hunter and Naylor, 1993; Ellis and 

Gibson, 1995). In the present work, only C. crangon was larger and presented higher densities 

in the subtidal channel. C. maenas was larger in the subtidal area but its densities were not 

higher in the intertidal area. It should also be pointed out that the proportion of predators in 

relation to sole is very high in the study area. 

S. senegalensis seems to stay mainly in the lower part of the mudflat. Many factors may 

be involved in this kind of distribution over the mudflats. The benefits of migrating further 

upshore may be counteracted by the energetic costs of swimming a longer distance, the danger 

of stranding by the ebbing tide and the increased risk of predation by terrestrial predators, such 

as fish eating birds. Fish eating birds are abundant in this area, which is one of the most 

important wetlands for birds in Europe (Moreira, 1997). 

Separate analysis on the effect of environmental cycles fails to show the full picture of a 

species rhythmic migratory behavior; therefore it is crucial to analyse the abundance over the 

combination of all cycles, as performed in the present study. The distribution of S. senegalensis 

over all possible combinations of the environmental cycles shows three major abundance 

peaks, all taking place in the lower mudflat.  

The diel activity pattern of this species was confirmed when combined with the 

semilunar cycle, with peak activity over the mudflats concentrated in the dawn/dusk and night 

periods. Preliminary laboratory studies on S. senegalensis behaviour have shown that this 

species is more active at dawn/dusk and night than during the day (personal observation), 

similarly to what Lagardère (1987) observed in S. solea in the field. 

Yet, an important abundance peak was registered during the day, in the lower mudflat, 

on quarter moon. This peak could be related to rhythmic patterns of predator abundance. Many 

animals sacrifice foraging opportunities to avoid predation risk (Krebs and Kacelnik, 1991; 

Burrows et al., 1994). S. senegalensis may avoid foraging in dusk/dawns and nights of higher 

predation pressure and, on the other hand, take advantage of periods of lower predation 

pressure to forage, regardless of its endogenous diel rhythm. Our data shows that during the 

quarter moon period C. crangon presented higher densities over the flats during the night and 

dusk/dawn, while its densities were much lower during the day. This could be the main reason 

why during quarter moon S. senegalensis prefers to forage during the day.  

The biggest density peak of S. senegalensis during new-moon (the third peak overall) 

also matches periods of lower abundance of the two main predators. In this period, both 

predators’ densities were higher during the night and day, than during dusk/dawn. S. 
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senegalensis again seems to cease the opportunity to forage when predation pressure is 

lowest. This opportunist behaviour is not always clear when looking at the other combinations of 

cycles, possibly since other factors such as prey abundance also play an important role in the 

cost-benefict relation underlying foraging behaviour. When looking at the full-moon period S. 

senegalenensis prefers concentrating its foraging activity exactly when predation pressure is at 

its highest, during dusk/dawn. Yet it must be pointed out that full moon dusk/dawn and nights 

are probably when prey availability is at its highest too. As remarked by Ansell and Gibson 

(1990), prey availability is more important than prey absolute abundance since the later may not 

be an accurate reflection of prey encounter rate. While its likely that prey availability is higher at 

higher tide levels, some polychaetes and amphipods are also known to synchronize their 

reproductive cycles with the semilunar cycle and many come out of the benthos during full 

moon (e.g. Lawrie and Raffaelli, 1998; Naylor, 1988) further exposing themselves to predation 

by S. senegalensis. The dusk/dawn, full moon peak was the major abundance peak registered 

for S. senegalensis.  

A general semi-lunar pattern can be recognized for S. senegalensis in the lower 

mudflat. During spring tides abundance peaked at dusk/dawn, while in neap tides it peaked 

during the day. As previously discussed, S. senegalensis seems to alter its diel rhythm during 

quarter-moon, possibly to avoid high abundance of predators such as C. crangon during neap 

tide dusk/dawn. 

Lunar and semi-lunar rhythms have been recognized in various species (Munro Fox, 

1923; Palmer, 1995; Naylor, 2001; Bentley et al., 2001; Hampel et al., 2003). However, whether 

such rhythms are directly controlled by environmental variables or have an endogenous 

component is usually a matter of discussion (Morgan, 2001; Naylor, 2001). The effects of the 

Moon on earth are various, and while some are evident like moonlight and ocean tides, others 

like barometric pressure and electromagnetic radiation are more subtle (Morgan, 2001). The 

advantages of peak foraging coinciding with the most beneficial stage of the environmental 

cycle may have been favoured by natural selection leading to the development of endogenous 

“clocks” of semi-lunar periodicity. While tidal level is likely to influence the level to which the fish 

move up shore, the direct effect of moonlight may also play and important role in fish behaviour. 

It was observed that while during full-moon S. senegalensis extended its distribution 

over the lower and upper mudflat, during new-moon colonisation by this species was restricted 

to the lower mudflat. This is probably related to the amount of light provided by the full-moon, 

which enables S. senegalensis to better escape its predators, as well as chase its own prey. In 

the absence of moonlight, predation risk increases and it is harder to catch prey. While it is true 

that in the absence of moonlight flatfish can not be seen by predators it will still be harder to 

escape especially in an area where predator density is so high. It is generally assumed that 

migration gives a selective advantage to the individual that migrates (Gibson, 2003). The benefit 

of venturing over the upper mudflat may be too small when compared to the risk of predation 

and increased energy cost of preying in total darkness. During the dusk/dawn period S. 
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senegalensis was absent from the upper mudflats, with the exception of the full-moon period. 

Again, this could be related to the light intensity, which is greater in dawn/dusk during full-moon. 

It is interesting to note that an important decrease in the use of the upper mudflat in 

new-moon was observed during all periods of the day. This observation suggests that the 

absence of moonlight is not the only factor restraining this species activity over the mudflats 

during new-moon.  

This study provides the first insight into the effect of the day-night and semi-lunar cycles 

in the activity of S. senegalensis. The highest densities of this species over the mudflat take 

place at full-moon during the dusk/dawn period. A semi-lunar activity pattern was detected. At 

spring tides abundance peaked at dusk/dawn, while at neap tides abundance peaked during the 

day. Activity patterns of this species seem to have a close relation with the activity patterns of its 

prey and predators. 

Future studies on S. senegalensis rhythmic behavior are needed in order to fully 

understand the factors determining such patterns. Further application of cost-benefit analysis to 

migrating fish species, the development of energetic models and the investigation of 

“endogenous clocks” will certainly provide new insights into the functions of intertidal migrations. 
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Conclusions 
 
 

 

 

The present analysis of habitat use by S. solea and S. senegalensis at different spatial 

scales revealed highly complex processes and patterns. 

The Habitat Suitability models developed were successful in their intended goal of 

mapping habitat quality for S. solea and S. senegalensis in a simple, yet effective way. The 

importance of salinity, temperature, substrate, depth and presence of intertidal mudflats in the 

distribution of both species was confirmed, nonetheless the inclusion of prey abundance data 

proved crucial in the definition of high suitability areas and in the prediction of high densities of 

juveniles.  

The stable isotope approach revealed that 0-group S. senegalensis present high site 

fidelity and do not move between nurseries, while a considerable amount 1-group individuals 

explore the two feeding grounds. It was also concluded that the food-webs from each of the 

nursery areas have low connectivity and show different levels of dependence upon freshwater 

and marine energy pathways, with nursery A more dependent on the freshwater energy 

pathway and nursery B having a greater contribution from the marine energy pathway. 

The first insight into the effect of the day-night and semi-lunar cycles in the activity of S. 

senegalensis was presented in this work. It was concluded that the highest densities of this 

species over the mudflats take place at full-moon during the dusk/dawn period. A semi-lunar 

activity pattern was also detected. While at spring tides abundance peaks at dusk/dawn, at 

neap tides abundance peaks during the day. The analysis of the effect of day-night and semi-

lunar cycles upon its predators along with literature information on that effect upon its prey 

strongly suggests that S. senegalensis activity pattern is closely related to that of its predators 

and prey. 

Future management of these nursery areas should take into account their importance 

as two independent nurseries for soles. Although the majority of the Tagus estuary upper areas 

have an overall high habitat quality for soles; both species’ juveniles concentrate in rather small 

areas, probably due to foraging opportunities, with important implications for fisheries 

management. These areas should be regarded has crucial for these species lifecycle and 

protected from disturbing activities, especially during the months when they are used as nursery 

areas by soles. The low connectivity and different levels of dependence upon freshwater and 

marine energy pathways of the two nurseries indicate that they should be managed as 

independent habitats, one which provides habitat for the juveniles of two sole species and 

another that provides habitat for only one of the species juveniles, yet does so independently of 

the cohorts that colonize the other nursery area. Nursery B does not represent a complement or 

an alternative area for soles from nursery A, and vice-versa. Dependency of these nurseries 

upon freshwater and marine water inflow as energy pathways should also be carefully looked 

at. Previsions on rainfall alteration due to climate change indicate that freshwater input into the 
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estuarine food-webs will be scarcer and more concentrated in time. Special attention should 

also be placed on the upper estuary mudflats. These areas are vital to the ecology of soles’ 

nursery grounds, yet they are subjected to increasing human pressure from rapid urbanization 

of its surrounding areas, as well as, to the threat of sea level rise due to climate change. Future 

studies on soles rhythmic behavior are needed in order to fully understand the patterns of 

intertidal use reported here. Application of cost-benefit analysis to fish migrations, development 

of energetic models and investigation of “endogenous clocks” will certainly provide new insights 

into the driving forces behind intertidal migrations. 
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Introduction 
 
 

 

 

Fish must have an energy source to meet metabolic demands. Essential amino-acids, 

fatty acids, minerals and vitamins are also essential to maintain health and promote growth 

(Moyle and Cech, 1996). This assumes particular importance during the juvenile period, when 

fast growth implies increased energy demands (Moyle and Cech, 1996). Juvenile fish 

concentrate in areas where prey availability is high. In fact, various studies have shown that 

juvenile flatfish distribution within nursery areas is predominantly determined by food availability, 

rather than by other environmental variables (Gibson, 1994, 1997; Matilla and Bonsdorff, 1998; 

Cabral and Costa, 1999; Amezcua and Nash, 2001; Vinagre et al., 2005, 2006).  

The high benthic productivity of estuaries is one of the main reasons why several flatfish 

species spend their juvenile phase in estuarine nursery grounds (e.g. McLusky, 1989). 

Flatfishes are a major energy pathway for the conversion of benthic production into a form 

suitable for consumption by higher predators, such as humans (Link et al., 2005). The need to 

monitor and manage commercial fish stocks, as well as, sensitive areas, such as estuaries, has 

driven the investigation of food consumption in wild fish. Various models have been developed 

combining information on gastric evacuation rates, determined experimentally, with that of 

stomach contents of wild fish (e.g. Thorpe, 1977; Elliott and Persson, 1978; Eggers, 1979; 

Jobling, 1981; Bromley, 1987).  Food consumption models generally assume that the rate at 

which food is evacuated from the stomach is equal to the rate at which food is ingested 

(Bromley, 1994). 

Soon, investigators realized that gastric evacuation rates were affected by several 

factors, temperature was among the most relevant ones. It was concluded that there was 

generally an exponential relationship between temperature and gastric evacuation rate (e.g. 

Elliot and Person, 1978; Elliott, 1992; Bromley, 1994).  

Salinity should also be an important factor affecting gastric evacuation rates, albeit 

scarcely studied. Drinking rate (Smith, 1930; Evans, 1993), food intake (e.g. Buckley et al., 

1995; Peterson-Curtis, 1997; Imsland et al., 2001), food conversion efficiency (Lambert et al., 

1994; Likongwe et al., 1996; Alava et al., 1998; Imsland et al., 2001), hormone balance 

(McCormick, 1996; Bjornsson et al., 1998) and metabolic rate of fish (Woo and Kelly, 1995; 

Swanson, 1996; Dutil et al., 1997), are affected by salinity, all of which will likely affect gastric 

evacuation.  

Another factor that affects the feeding behaviour of fish is predation pressure (Jones 

and Paszkowski, 1997; Turner et al., 1999). In the presence of a potential predator many flatfish 

decrease their activity in order to avoid detection, thus decreasing their time allocated to the 

search for prey (Burrows et al., 1994; Burrows and Gibson, 1995). 

Previous studies on the feeding ecology of juvenile sole in the Tagus estuary focused 

on diet composition (Costa, 1982; 1988; Gonçalves, 1990; Cabral, 2000).  
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The present chapter investigated the effect of temperature and salinity in the gastric 

evacuation rates of Solea solea (Linnaeus, 1758) and Solea senegalensis Kaup, 1858, and the 

impact of predation pressure in foraging behaviour, such information was used to produce a first 

estimation of food consumption by the two sole species in the Tagus estuary nursery grounds 

during the period of most intense use by juveniles. 

The first work, “Effect of temperature and salinity on the gastric evacuation of the 

juvenile soles Solea solea and Solea senegalensis”, aims to investigate the effects of 

temperature and salinity in the gastric evacuation of S. solea and S. senegalensis juveniles fed 

discrete meals of Nereis diversicolor (Müller, 1776), to relate it to the estuarine environment 

where they spend their early life and to compare estuarine and coastal nurseries’ habitat use 

constrains for juvenile soles. The estimation of gastric evacuation rates through experimental 

work in captivity has been carried out for many commercial fish species, but not for S. solea or 

S. senegalensis. The gastric evacuation values incorporated into food consumption models that 

encompass species where this information is not available will generally use values estimated 

for other species, leading to rough estimations that potentially yield large errors. It is thus very 

important to add gastric evacuation rates for these species into the available scientific literature. 

It is also important to understand how differences in gastric evacuation rates may influence 

species distribution and habitat use, since this will possible be an explaining factor driving 

habitat preferences. 

The second work, “Foraging behaviour of Solea senegalensis in the presence of a 

potential predator, C. maenas”, aims to investigate the interaction of the juvenile S. 

senegalensis, with its natural predator C. maenas and assess its impact on sole’s foraging 

behaviour. The incorporation of species interactions into food consumption models is very 

important, and although some work has been carried out into predator-prey relations, impacts 

on feeding behaviour have been scarcely studied in flatfish. 

The third work, “Prey consumption by the juvenile soles, Solea solea (L., 1758) and 

Solea senegalensis Kaup, 1858, in the Tagus estuary, Portugal”, aims to estimate food 

consumption of S. solea and S. senegalensis juveniles in the two nursery areas of the Tagus 

estuary, taking into account water temperature and diel patterns of feeding activity, and 

determine the total food consumed by soles over the summer versus estimated total prey 

present in the sediment. Data on gastric evacuation rates produced by the first study of this 

chapter, along with 24h sampling cycles in the wild were incorporated into the Elliott and 

Persson (1978) model, one of the most widely used of all the food consumption models. This is 

the first time a model incorporating both experimentally determined gastric evacuation rates and 

field data is applied to the estimation of food consumption by both these species. 

The investigation of gastric evacuation rates, food consumption and its relations with 

environmental variables is crucial for the inclusion of these species into broader multi-species 

food-web models that will ultimately need to be constructed for an in-depth understanding of 

trophic relations in estuarine systems.  
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Effect of temperature and salinity on the gastric evacuation 

of the juvenile soles Solea solea and Solea senegalensis 

 
Abstract: Gastric evacuation experiments were performed on juveniles of Senegal sole, 
Solea senegalensis, Kaup1858, and Common sole, Solea solea (Linnaeus 1758). Three 
temperatures were tested, 26ºC, 20ºC and 14ºC at a salinity of 35 ‰. A low salinity 
experiment was also carried out at 15 ‰, at 26ºC. Experimental conditions intended to reflect 
conditions in estuarine and coastal nurseries where juveniles of these species spend their first 
years of life. The relation between stomach contents and time was best described by 
exponential regression models for both species. An analysis of covariance (ANCOVA) was 
performed in order to test differences in evacuation rate due to temperature and salinity (slope 
of evacuation time against stomach contents) for each species. While temperature increased 
evacuation rates in both species (although not at 26ºC in S. solea), the effect of low salinity 
differed among species, leading to a decrease in gastric evacuation rate in that of S. 
senegalensis and an increase in S. solea. Differences in gastric evacuation rate between 
species were related to its metabolic optimums and to its distribution in the nursery area 
where fish were captured. Implications for the use of estuarine and coastal nurseries are 
discussed.  
 
 
Key-words: Flatfish; Solea solea; Solea senegalensis; Nursery areas; Gastric evacuation; 
Temperature; Salinity. 
 

 

 
Introduction 

The evaluation of feeding interactions between species and quantification of predation 

requires food consumption estimates. A common approach to estimating food consumption in 

the wild is the combination of field data on stomach contents and information on gastric 

evacuation rates (e.g. Bajkov, 1935; Bromley, 1994). Food consumption models generally 

assume that over long time periods the rate at which food is evacuated from the stomach is 

equal to the rate at which food is ingested. 

The determination of gastric evacuation rates in commercial fish species is also 

important for aquaculture purposes. Much of the fish cultured in Portugal and Spain comes from 

semi-extensive multi-species fish-farms, where estimation of food consumption by each species 

is crucial for management purposes. 

This study focuses on 0-group juveniles of Senegal Sole Solea senegalensis, 

Kaup1858, and Common sole, Solea solea, (Linnaeus 1758). These are benthic flatfishes with 

sympatric distribution from the Bay of Biscay to Senegal and western Mediterranean (Quero et 

al. 1986). They are very similar morphologically as well as in ecological needs. Both species are 

important predators and therefore can be of great importance to the dynamics and composition 

of the biological communities in the estuarine and coastal systems where they occur. Both soles 

have high commercial value and S. senegalensis is a species of increasing interest in 

aquaculture and is commonly cultured in the Portuguese and Spanish southern coasts (Dinis et 

al. 1999; Imsland et al., 2003).  
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The first year of life is a key stage in fish development, particularly for species, like the 

soles, that concentrate in large densities in estuarine and coastal nurseries where space and 

food partitioning become an issue (e.g. Schoener, 1974; Ross, 1986). In these nurseries, fish 

juveniles benefit from the reduced number of predators and conditions favourable to rapid 

growth, such as high temperatures and prey abundance. However, they must withstand 

temperature and salinity amplitudes much wider than those found in the sea (Haedrich, 1983). 

Therefore, the estimation of food consumption in estuarine and coastal waters must take into 

account the influence of temperature and salinity in the gastric evacuation of fish.  

Temperature is probably the most studied variable influencing digestion and gastric 

evacuation (Bromley, 1994). Although there are some exceptions, most studies found an 

exponential relationship between temperature and gastric evacuation rate (e.g. Elliot and 

Person, 1978; Elliott, 1992; Bromley, 1994). 

Salinity is not usually addressed in gastric evacuation studies, yet there is evidence that 

this factor should be taken into account when dealing with euryhaline fish. It is well known that 

teleost fish hypo-osmoregulate in marine environments, and are therefore faced with osmotic 

water loss and passive gain of many ions (Smith, 1930; Evans, 1993). To avoid dehydration 

they constantly drink ambient water, absorbing the majority of the imbibed volume within the 

intestine. Euryhaline fish when faced with low salinities will lower their drinking rate and 

eventually stop drinking (Smith, 1930; Evans, 1993). Drinking rate has an important influence on 

gastric evacuation, because every time fish drink part of the stomach content will be flushed to 

the intestine. Osmoregulation is also known to affect food intake (e.g. Buckley et al., 1995; 

Peterson-Curtis, 1997; Imsland et al., 2001), food conversion efficiency (Lambert et al., 1994; 

Likongwe et al., 1996; Alava et al., 1998; Imsland et al., 2001), hormone balance (McCormick, 

1996; Bjornsson et al., 1998) and metabolic rate (Woo and Kelly, 1995; Dutil et al., 1997; 

Swanson, 1996). 
The present study aims to 1) investigate the effects of temperature and salinity in the 

gastric evacuation of S. solea and S. senegalensis juveniles fed discrete meals of Nereis 

diversicolor (Müller, 1776), to 2) relate it to the estuarine environment where they spend their 

early life and to 3) compare estuarine and coastal nurseries’ habitat use constrains for juvenile 

soles. 
 

 

Materials and methods 
Study area 

The Tagus estuary (Fig.1), where the fish used in the experiments were captured, is 

one of the largest estuaries in Western Europe (320 km2). It is a partially mixed estuary with a 

tidal range of ca. 4 m. Approximately 40% of the estuarine area is intertidal. Two important sole 

nurseries were identified in the Tagus estuary in previous studies (A, Vila Franca de Xira, and 

B, Alcochete; Fig. 1) by Costa and Bruxelas (1989) and Cabral and Costa (1999). The 

uppermost area, A, is deeper (mean depth 4.4 m), presents lower and highly variable salinity 
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and has a higher proportion of fine sand in the substract (approximately 40%). Nursery B is 

shallower (mean depth 1.9 m), and more saline, with lower variability in salinity, while substrate 

is mainly composed of mud (mean value 60.4%) (Cabral, 1998; Cabral and Costa, 1999). In the 

uppermost nursery (A) both species are present yet S. solea’s highest densities occur at the 

lowest salinity area, closest to the freshwater input, while S. senegalensis presents high 

densities over a wider salinity range within the nursery (Cabral and Costa, 1999). At nursery B 

only S.senegalensis is present (Cabral and Costa, 1999). 

 

Lisbon

Atlantic
Ocean

 

9º05’ 9º9º10’9º15’9º20’ 8º55’

38º55’

 
38º50’

 38º45’

 38º40’

N

3Km

A

B

 
Figure 1 - Location of the nursery areas where juvenile sole 

were captured. 

 

Gastric evacuation experiments 

S. senegalensis and S. solea were captured in the Tagus estuary and selected 

according to their size. Prior to experiments fish were held in circular tanks with capacities of 

350 l for a minimum of 4 weeks. Fish were then transferred to 160 l aquariums equipped with 

mechanical and biological filter units. Temperature was regulated with a precision of ± 0.1 ºC. 

Salinity was regulated with a precision of 0.1 ‰. Temperature and salinity were monitored daily. 

Fish were exposed to a day length of 12 hours. 

For the gastric evacuation experiments fish were transferred into compartments to allow 

controlled feeding of each individual. Compartments measured 25 × 30 × 40 cm (length, width, 

depth). Experimental fish weighted between 3.00 g and 5.00 g and measured between 70 and 

85 mm (total length). Fish were kept for 3 weeks at these compartments prior to the gastric 
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evacuation experiments. During this period they were fed with the same prey given during the 

experiment. 

A preliminary experiment was carried out in order to determine period of complete 

stomach and digestive tube emptying and assess the appropriate interval between 

observations. In the preliminary experiment observations were made 30 min after feeding and 

every hour for 48 hours. 

Prior to the evacuation experiments fish were not fed for 24 hours to allow a complete 

emptying of the stomachs. The experimental meal was offered to the fish for 15 min, as in the 3 

week feeding period. After feeding, fish were anaesthetized in 1:3000 solution of tricaine 

methanesulphonate (MS 222 Sandoz) and sacrificed with a cut on the anterior spine.  

Observations were made at 0h, 2h, 3h, 4h, 8h, 14h, 16h and 20h after feeding. Fish were 

measured (total length with 1 mm precision) and weighted (wet weight with 0.01 g precision). 

Stomach contents were weighted (wet weight with a 0.001 precision). 

Ragworm, N. diversicolor, a natural prey of S. senegalensis and S. solea (Cabral, 

2000a), was reared in aquariums at the laboratory. Immediately before the experiment, worms 

were weighted (wet weight with a 0.001g precision) and the ones that weighted 0.300 g were 

selected, according to experimental needs. Prey weight was determined from previous 

experience of stomach contents analysis of specimens captured in the Tagus estuary. 

This experiment intended to mimic the temperatures that these species finds in nursery 

areas where both soles are sympatric, during its first year of life. Three temperatures were 

tested; 26ºC a water temperature commonly found in estuarine nursery areas during Summer; 

20ºC, common in Spring and Autumn; and 14ºC, common during winter (Cabral, 2000a).  Since 

the period of most intense growth of these species occurs during Summer (Cabral, 2003), 26ºC 

was the temperature chosen for the salinity experiment. The salinity experiment intended to 

compare gastric evacuation in coastal and estuarine nurseries and was therefore conducted at 

35 ‰, typical salinity in coastal waters and 15 ‰ a common salinity in the Tagus estuary 

nursery areas, as well as other estuarine nurseries where these species occur. 

 

Data analysis  

Mean and standard deviation values were calculated for each set of replicates in order 

to determine time of total stomach emptying. A regression procedure was conducted in each of 

the datasets and it was concluded that the relation between stomach content and time was 

exponential. Since the exact time in which stomachs became empty cannot be determined, 

experiments in which empty stomach occurred were excluded from the regression analysis to 

avoid bias (Bromley, 1994; Temming and Andersen, 1994). Stomachs were considered empty 

when their contents weight was less than 1% of the initial meal weight. 

An analysis of covariance (ANCOVA) was conducted in the software STATISTICA to 

test differences in evacuation rate due to temperature and salinity (slope of evacuation time 

against stomach contents) for each species. In order to fulfil the requirements of this analysis 

the data on stomach contents was log transformed. A significance level of 0.05 was considered. 



                                                                                                                           Chapter 3 

 - 84 -

Results 
Total stomach emptying time decreased with temperature in S. senegalensis, as a 

result of the observed increase in gastric evacuation rate with temperature (P < 0.05). The lower 

evacuation rate observed at a lower salinity (15 ‰) (P < 0.05), when compared to seawater 

salinities (35 ‰), resulted in an increase of total stomach emptying time. 

The period for total stomach emptying for S. senegalensis was 14 hours for fish held at 

26ºC and 16 hours for fish held at 20ºC and 14ºC (Fig. 2). The period for total stomach 

emptying for individuals held at 15 ‰ (at 26ºC) was 16 hours (Fig. 3). The relation between 

stomach contents and time was best described by an exponential regression. 
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Figure 2 – Percentage of meal (mean and standard deviation values) in the stomachs of S. 

senegalensis (a) and S. solea (b) according to experiment time at 26ºC ( ), 20ºC ( ) and 14ºC ( ).  

 

 

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

t(h)

%
m

ea
l

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

t(h)

%
m

ea
l

ba

 
Figure 3 – Percentage of meal (mean and standard deviation values) in the stomachs of S. 

senegalensis (a) and S. solea (b) according to experiment time at a salinity of 35 ‰ ( ) and 15 ‰ 

( ).  
 

Gastric evacuation rate at 26ºC was 0.325 gh-1, at 20ºC was 0.259 gh-1 and at 14ºC 

was 0.152 gh-1 (Fig. 4). Gastric evacuation rate at 15‰ was 0.118 gh-1 (Fig. 5); considerably 

lower than at 35 ‰ (Fig. 5). 

Total stomach emptying time decreased with temperature in S. solea. Gastric 

evacuation rate increased with temperature from 14ºC to 20ºC, yet at 26ºC a decline was 

observed (P < 0.05). Contrary to the observed in S. senegalensis, the evacuation rate in  
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Figure 4 – Exponential regressions of gastric evacuation for S. senegalensis at 26ºC (a), 20ºC 

(b) and 14ºC (c) and for S. solea at 26ºC (d), 20ºC (e) and 14ºC (f) (grey dots  indicate 

replicates). 
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Figure 5– Exponential regressions of gastric evacuation for S. senegalensis at 

salinity 35 ‰ (a) and 15 ‰ (b) and for S. solea at 35 ‰ (c) and 15 ‰ (d) (grey 

dots  indicate replicates).  

 

S. solea was higher at the lower salinity (15 ‰) (P < 0.05), when compared to the seawater 

salinity (35 ‰), yet the time for total stomach emptying was the same. 
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The period for total stomach emptying for S. solea was 14 hours for fish held at 26ºC, 16 hours 

at 20ºC and 20h at 14ºC (Fig. 2). The period for total stomach emptying for individuals 

held at 15 ‰ (at 26ºC) was 14 hours (Fig. 3). The relationship between stomach contents and 

time was also best described as an exponential regression. Gastric evacuation rate at 26ºC was 

0.104 gh-1, at 20ºC was 0.124 gh-1 and at 14ºC was 0.113 gh-1 (Fig. 4). Gastric evacuation rate 

at 15 ‰ (26ºC) was 0.174 gh-1, considerably higher than at 35 ‰ (Fig. 5). 

 

Discussion 
Both temperature and salinity have an important effect on gastric evacuation in S. solea 

and S. senegalensis and should be addressed when estimating food consumption in natural 

and semi-natural systems. While temperature increased evacuation rates in both species 

(although not at 26ºC in S. solea), the effect of low salinity differed among species, leading to an 

increase in gastric evacuation rate in S. solea and a decrease in S. senegalensis.  

Several studies have focused on the effect of temperature over gastric evacuation in 

several fish species (e.g. Elliot and Person, 1978; Elliott, 1992; Bromley, 1994) including flatfish 

(e.g Jobling et al., 1977; Flowerdew and Grove, 1979; Jobling, 1980; Hurst, 2004). The works of 

Kruuk (1963) and De Groot (1971) showed that evacuation rates of S. solea increase with 

increasing temperature.  The effect of temperature on gastric evacuation is a well known 

phenomenon that enables fish to have higher daily food consumption rates at higher 

temperatures.  

Factors that affect gastric evacuation may also affect appetite and food intake. A 

correlation between gastric emptiness and food intake was found for salmonids (Brett, 1971; 

Elliot 1975a, 1975b), Gasterosteus aculeatus (Linnaeus 1758) (Tugendhat, 1960; Beukema, 

1968) and Euthynnus pelamis (Linnaeus 1758) (Magnunson, 1969). It is thought that appetite is 

mediated by stretch receptors in the stomach wall similar to those of higher animals (Stevenson, 

1969). It is also well known that when food is unlimited ingestion increases with increasing 

temperature reaching a peak at the optimum temperature before declining steeply as the 

temperature approaches the species thermal limit (Jobling, 1993; Yamashita et al., 2001). The 

same should happen for gastric evacuation since these processes are strongly related. 

Because S. senegalensis is a subtropical species the highest temperature tested, 26ºC, 

is probably well below its thermal upper limit and that is reflected by the steadily increasing 

evacuation rates with temperature. S. solea, however, is a temperate species with a metabolic 

optimum temperature of approximately 19ºC (LeFrançois and Claireaux, 2003). Thus, the 

observed decline in S. solea evacuation rate at 26ºC is quite probably due to thermal stress, 

meaning that in estuarine nurseries where these soles are sympatric, such as the Tagus 

estuary, S. solea is at a disadvantage during the summer months when juveniles of both sole 

species concentrate in shallow waters, rich in prey but where temperature warms up well above 

its metabolic optimum. 

Salinity is usually not addressed in gastric evacuation studies, since most of the work 

on gastric evacuation has aimed at incorporating food consumption of adult fish stocks in multi-
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species models for fisheries management, such as the North Sea multi-species model (Gislason 

and Helgason, 1935; Pope, 1991). Yet, in order to study food consumption of juvenile marine 

fish that spend their first two years in estuarine nurseries, salinity must be taken into account, 

since it is the single most important factor determining teleost fish drinking rates (Smith, 1930; 

Evans, 1993). Antibiotic evacuation studies reported stomach content leakage in marine fish 

held at 35‰ due to permanent drinking (Guichard, 2000). This doesn’t happen in freshwater fish 

since they don’t drink (Smith, 1930; Evans, 1993). Euryhaline fish such as soles, when held at 

low salinities will lower their drinking rate and therefore present higher retention of stomach 

contents and lower evacuation rates.  

Furthermore, several studies show that although feeding rates increase with salinity, 

food conversion efficiency decreases with increasing salinity (Saillant et al., 2003; Wuenschel et 

al., 2004), possibly due to higher metabolic costs at seawater salinity. This means that fish at 

lower salinities operate at higher efficiency being able to maintain high growth rates at lower 

ration levels. This has important implications when assessing habitat use constrains, in that 

estuarine nurseries will provide conditions that allow higher food conversion than coastal 

nurseries.  

Interestingly, low salinity had a different effect according to the sole species studied. S. 

solea seems to be better adapted to low salinities, which is reflected in its higher evacuation 

rates at 15 ‰ than at seawater. The opposite was observed in S. senegalensis. S. solea and S. 

senegalensis are very similar and are considered sister species, yet when in sympatry S. solea 

seems to prefer lower salinity habitats than S. senegalensis, as has been observed in the Tagus 

estuary (Cabral and Costa, 1999) as well as in other estuaries (Dorel et al. 1991; Marchand, 

1993; Cabral, 2000b; Cabral et al., 2007). A different level of adaptation to low salinity, has 

evacuation rates seem to indicate, is probably the most important factor determining these 

species partition of space within the nursery area. 

Other authors have observed species specific use of nursery habitats concerning 

salinity, for other flatfish species such as southern flounder and summer flounder in North 

America (Powell and Schwartz, 1977; Burke et al., 1991), among the flatfish community in North 

Carolina (North America) (Walsh et al., 1999), for Japanese flounder in Japan (Yamashita et al., 

2001), among the flatfish community of the Sado estuary (Portugal) (Cabral, 2000b) and in the 

flatfish community of the Ems estuary (Netherlands) (Jager et al., 1993). 

Although many factors other than temperature and salinity are important for the 

evaluation of habitat quality, our results indicate that for S. solea estuarine nurseries provide 

salinity conditions more favourable than coastal nurseries, since this species has higher 

evacuation rates at low salinities, yet in many estuarine systems it will endure summer 

temperatures that lead to thermal stress, which would not happen in the coast. For S. 

senegalensis estuarine nurseries provide favourable temperatures during the nursery period. 

The decrease in gastric evacuation rate at low salinities is probably compensated by higher 

food conversion, as observed in other euryhaline species (Saillant et al., 2003; Wuenschel et 

al., 2004).  
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One important factor that may influence food uptake in fish nurseries is predator 

pressure. Predation is now recognized as one of the main factors influencing prey behaviour 

(review in Lima 1990) and predator avoidance is known to lead to changes in habitat use, 

feeding, morphology and growth of prey (Turner et al., 1999; Jones and Paszkowski, 1997). 

Maia et al. (submitted) reported that predator presence lead to a decrease of 10% in the 

foraging activity of S. senegalensis, meaning that nurseries that provide appropriate 

temperature and salinity levels may have its habitat quality potential hampered by high densities 

of juvenile fish predators. 

The present work provides important information upon which food consumption models 

can be estimated for S. senegalensis and S. solea. Further experimental research using a 

broader range of temperature and salinity will bring new insights into the effect of these 

important factors over these species dynamics. Studies on the effect of other factors such as 

fish size and prey type will allow for a more comprehensive outlook on the gastric evacuation 

process in soles.  
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Foraging behaviour of Solea senegalensis in the presence 

of a potential predator, Carcinus maenas  

 
Abstract: Habitat modelling requires incorporation of both biotic and abiotic data. For juvenile 
flatfish the factors that most influence growth are water temperature, food abundance and 
predatory pressure. This study focuses on the impact of a predator, shore crab, Carcinus 
maenas (Linnaeus, 1758) in the foraging activity of sole, Solea senegalensis Kaup, 1858, 
while feeding on the ragworm, Nereis diversicolor Müller (1776). The results show that in the 
presence of both prey and predator, the foraging activity of sole is strongly impacted with a 
10% decrease in overall activity, when compared to the sole in the presence of only food. 
Crawling and tapping were the behaviours most correlated with foraging and these activities 
were also strongly impacted by the presence of both food and predator. The rapid escape 
response occurred when the predator was present independently of the presence of food. 
This study also provides further support to visual recognition of predators and olfactory prey 
recognition in the Senegalese sole.  
 
 
Key-words: Carcinus maenas; Foraging behaviour; Potential predator; Solea senegalensis. 
 

 

 
Introduction 

In order to model habitat usage of a species, in addition to abiotic factors, other 

conditions such as food availability and predatory pressure must be evaluated. Suitable habitats 

in estuarine systems that are high in prey abundance and lack predators do not abound, so the 

predator impact in the feeding rate of a prey must be taken into account in habitat modelling. 

For flatfish the key factors affecting growth and survival of juveniles are water 

temperature, food abundance and predation pressure (Gibson, 1994). 

Several studies have focused on the behaviour of flatfish in their natural conditions (e.g. 

van der Veer and Bergman, 1986; Cabral and Costa, 1999; Cabral, 2000; Amezcua and Nash, 

2001) and some even did so in experimental conditions (Ansell and Gibson, 1993; Aarnio et al., 

1996; Gibson and Robb, 2000; Burrows and Gibson, 1995). Predator-prey interactions have 

also been extensively studied in flatfish through experimental design (Gibson et al., 1995; 

Fairchild and Howell, 2000; Kellison et al., 2000; Hossain et al., 2002; Taylor, 2004; Breves and 

Specker, 2005; Taylor, 2005; Lemke and Ryer, 2006). However, none was able to quantify the 

impact of the presence of a predator in the feeding rate.  

Predation is now recognized as one of the main factors influencing prey behaviour 

(review in Lima, 1990) and predator avoidance is known to lead to changes in habitat use, 

feeding, morphology and growth of prey (Turner et al., 1999; Jones and Paszkowski, 1997). 

Also, despite the obvious fitness benefits of prey ingestion, antipredator behaviours can be 

costly, strongly impacting activities like feeding and breeding (Wong et al., 2005). For plaice, 

Pleuronectes platessa (Linnaeus, 1758), predation by the crustaceans C. crangon and Carcinus 

maenas  (Linnaeus, 1758) have been identified as key factors in regulation of density within the 
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nursery areas (Van der Veer, 1986; Van der Veer and Bergman, 1987; Van der Veer et al., 

1990). C. maenas preys heavily on juvenile Solea senegalensis Kaup, 1858, in Portuguese 

estuaries where they cohabit (Cabral, unpublish data). 

The Senegalese sole, S. senegalensis, is a benthic fish distributed from the Bay of 

Biscay to Senegal and western Mediterranean (Quero et al., 1986). It is a species of increasing 

interest in aquaculture and is commonly cultured in the Portuguese and Spanish southern 

coasts (Dinis et al., 1999). The ragworm, Nereis diversicolor Müller (1776), is a natural prey of 

S. senegalensis (Cabral, 2000) 

The first year of life is a key stage in fish development, particularly for species, like the 

soles, that concentrate in large densities in estuarine and coastal nurseries where space and 

food partitioning become an issue (e.g. Schoener, 1974; Ross, 1986).  

The portunid shore crab C. maenas has a wide distribution in coastal and estuarine 

shallow waters of temperate areas (Udekem d’Acoz, 1993). 

This study focuses on 0-group juveniles of S. senegalensis, since this is when the 

individuals are most susceptible to C. maenas predation and it is also when natural mortality is 

most common in natural and semi-natural systems (Houde, 1987). It aims to investigate the 

interaction of the juvenile Senegalese sole, S. senegalensis, with its natural predator C. maenas 

and assess its impact on the sole’s foraging behaviour. 

 

 

Materials and methods 
Prior to experiments fish were held in circular tanks with capacities of 350 l for a minimum 

of 4 weeks (maximum stocking density was 120 fish per 350 l). Fish were then transferred to 

160 l aquariums equipped with mechanical and biological filter units. Temperature was 

regulated with a precision of ± 0.1 ºC. Salinity was regulated with a precision of 0.1 ‰. 

Temperature and salinity were monitored daily. Fish were exposed to a day length of 12 hours. 

Eight months old juvenile soles, S. senegalensis, were used in this experiment, kept in a 

natural light cycle. All treatments were carried out in aquaria 50x25x30 cm (l x w x h), with 

salinity 35 (PSU) and temperature 25ºC. Ragworms, N. diversicolor, were reared in aquariums 

at the laboratory. 

For the behaviour experiments, fish were transferred into experimental compartments 

where they were kept for 3 weeks prior to experiments (Figure 1). Prior to the experiment there 

were 45 hours of ad libitum observations to determine the most common behaviours. 

 All soles were conditioned, two days earlier, with 48h fasting, freely moving C. maenas. 

They were therefore non-naïve to this predator. For prey simulation, living N. diversicolor was 

used, since this is one of their favourite prey items (Cabral, 2000) and soles were kept in 

aquaria for the previous 6 months feeding on living N. diversicolor. Soles ranged in size from 65 

to 132mm TL, averaging 94.9mm. 
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Figure 1 – Schematic representation of experimental setup, the negative stimulus, C. 

maenas was kept in compartment A, while S. senegalensis and N. diversicolor 

(positive stimulus) were in compartment B. 

 

C. maenas used in the treatments were subjected to 48h fasting and soles to 24h fasting. 

Crabs ranged in size from 46 to 70mm carapace width, with an average size of 55.2mm. 

There were four different treatments (see figure 1): a) C. maenas in A; S. senegalensis in B 

(visual and chemical predatory stimulus only) – negative treatment; b) C. maenas in A; S. 

senegalensis in B and one N. diversicolor near the net on B side (visual and chemical predatory 

stimulus only, complete prey stimulus) – interaction treatment; c) S. senegalensis in B and one 

N. diversicolor near the net on B side (no predatory stimulus, complete prey stimulus) – positive 

treatment; d) S. senegalensis in B – control treatment. Each treatment had at least 12 

replicates. To make sure the net was not a source of variability, treatment a) was repeated 6 

times with the crab and the sole on the same side of the net and no differences were found. 

Observations were carried out for 10 minutes without stimulus and 30 minutes with 

stimulus, starting at dusk and under red light. These conditions were chosen based on other 

experiments conducted in S. senegalensis (Pais et al., 2004) that show the species to be more 

active and forage mostly at this time of the day. Every individual was used only once to avoid 

learned behaviours. 

Decrease or increase in percent activity after stimuli was analysed using Mann-Whitney U 

Test, to accommodate for potential individual variability. Mean percentage of time spent for 

every of the seven most common behaviours was computed along with mean frequency (times 

per minute) for the four treatments. Non-parametric ANOVA was used to test for differences in 
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the treatments using both time and frequency of the most common behaviours. In all test 

procedures a significance level of 0.05 was considered. 

 

 

Results 
The Senegalese sole behaviour was dominated by resting. Only 6.5% of activity was 

observed in the control group (Figure 2). Active behaviours included crawling on the substrate, 

swimming, “head-up” movement, eating, rapid escape, tapping and burrowing. Crawling is 

characterized by the individual moving over the substrate keeping the body in contact with it; 

while in swimming, the individual moves undulating the body, without touching the substrate. In 

the “head-up” movement the individual lifts its head while static on the substrate. Burrowing is 

characterized by rapid undulation of the body in an attempt to burry itself. Rapid escape occurs 

when the individual dashes away from a threat. In tapping, the individual taps several times its 

head on the substrate. And finally, eating is when the individual bites and chews food items. 

 

 
 

Figure 2 – Percent time spent resting by S. senegalensis in the 

different treatments (control, positive stimulus, interaction and negative 

stimulus), bars represent standard error. 

 

It was observed a decrease in the overall activity of soles in the presence of C. maenas and 

Nereis diversicolor by an order of magnitude of 10% (Figure 2, H (3, N=80), p=0.0096), similar 

to the activity in the presence of only the C. maenas . Also significant, was the number of rapid 

escapes in the presence of C. maenas, especially in the absence of N. diversicolor (H (2, 
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N=60), p=0.0032). On the contrary, tapping only occurred in the presence of prey (Figure 3, H 

(2, N=60), p=0.014). 

 
 

Figure 3 – Time (in percentage of total observed time) that S. 

senegalensis spent in each active behaviour (C – crawling, HU – 

head up, S – swimming, B – burrow, T – tapping, EM – eating 

movements, RE – rapid escape), associated with the four different 

treatments. Sn – S. senegalensis, Cm – C. maenas, Nd – N. 

diversicolor. 

 

When food was present and predator absent, time spent in crawling and burrowing was 

greater (Figure 3, H (3, N=80), p=0.0042). In terms of variation in activity prior and after 

stimulus, it can be observed that the negative stimulus is correlated with an overall decrease in 

activity; while the positive stimulus with an increase in activity by 8% on average (H (2, N=17), 

p=0.003).  

 

Discussion 
Soles are known to have a strong relationship with benthos (De Groot, 1971), thus it is 

not surprising the low activity of this species. Their behaviours are also simple, especially when 

social interaction is not being analysed. Crawling, burrowing and tapping were most frequent in 
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the presence of food and as such appear to be related to foraging habits. Crawling was also 

related to the negative stimulus (presence of predator) and together with rapid escape and 

swimming can represent the typical predator like threat evasion behaviour. Other option of the 

sole, though observed less often was the attempt to burry itself to evade the detection from the 

predator. 

It was not possible to exactly ascertain if predator recognition was visual, chemical or 

both. However, all naïve soles were successful in avoiding crab touching or grabbing them and 

the “crab over fence” setup elicited a predator like threat escape behaviour, thus dismissing 

tactile recognition. In a study directed to investigate the feeding stimuli, De Groot (1971) found 

that the presence of an 8 cm ball elicited a flight response by the common sole, Solea solea 

(Linnaeus, 1758), suggesting visual predator recognition. It was also noted that an attack is not 

necessary to elicit rapid escape behaviour by the common sole. That, along with the findings of 

Appelbaum and Schemmel (1983) which concluded that chemoreception in S. solea is not has 

important as previously thought, indicates that predator recognition must be mainly visual.  

This study also allowed some insight into what is the main foraging pattern of the 

Senegal sole. Prey recognition is typically olfactory, similarly to what has previously been 

described for S. solea (De Groot, 1971; Appelbaum and Schemmel, 1983; Harvey, 1996), since 

the individual will increase its activity in the presence of food, moving randomly to the prey, 

searching in the substrate, as seen by the increase in tapping behaviour in the presence of just 

food. The tapping movement in relation to foraging has also been previously described for S. 

solea (De Groot, 1971). This behaviour might enhance the water circulation around the 

individual allowing for better prey detection. Also, being S. senegalensis morphologically very 

similar to S. solea, the presence of taste buds in the oral cavity, pharynx, gill rakers and lips 

(Appelbaum and Schemmel, 1983) the tapping behaviour would strongly enable the chemical 

food detection. 

There is a quantifiable impact on the Senegal sole foraging by the presence of a 

predator. The 10% decrease in activity puts the interaction sole-crab-worm close to the sole-

crab situation. It is well documented that C. maenas impacts the population of other juvenile 

flatfishes, especially S. solea and P. platessa (e.g. Modin and Pihl, 1994; Fairchild and Howell, 

2000). However, apart from the direct risk of predation it has to be taken into account the trade-

off between escape from a predator and foraging. Suitable nursery grounds for sole in terms of 

water temperature, salinity and food supply in Portuguese estuaries are also the areas where 

the green crab is more abundant (Cabral, unpublished data). It is also important to refer that 

since C. maenas is a generalist feeder it also competes with soles for food resources such has 

polichaetes and amphipods (Cohen et al., 1995).  

The next step will be to adjust the existing habitat models to incorporate this interaction 

of predator-sole-prey. This information is of the uttermost importance for delimiting marine 

reserves, since C. maenas is a species with very high reproductive potential (Cohen et al., 

1995), and their numbers would likely increase to pose a threat to soles. Further studies should 

focus on the comparison of sites with different crab densities and cross that information with 
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soles’ stomach contents. Also knowledge of predator-prey behaviour is important in releasing of 

hatchery reared fish for stock enhancement purposes (Fairchild and Howell, 2000). 
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Prey consumption of the juvenile soles Solea solea and 

Solea senegalensis in the Tagus estuary, Portugal 

 
Abstract: The soles Solea solea (Linnaeus, 1758) and Solea senegalensis Kaup 1858, are 
marine flatfish that use coastal and estuarine nursery grounds, which usually present high 
food availability, refuge from predators and favourable conditions for rapid growth. Two 
important nursery grounds for these species juveniles have been identified in the Tagus 
estuary, one in the upper part of the estuary (nursery A) and another in the south bank 
(nursery B). While S. solea is only present at the uppermost nursery area, S. senegalensis is 
present at both nurseries. Although they are among the most important predators in these 
nursery grounds, there are no estimates on their food consumption or on the carrying capacity 
of the system for soles. The Elliott and Persson (1978) model was used to estimate food 
consumption of both species juveniles in both nursery areas, taking into account gastric 
evacuation rates previously determined and 24 h sampling surveys, based on beam-trawl 
catches carried out every 3 hours, in the summer of 1995. Monthly beam trawls were 
performed to determine sole densities over the summer. Density estimates and daily food 
consumption values were used to calculate total consumption over the summer period.  
Sediment samples were taken for the estimation of prey densities and total biomass in the 
nursery areas. Daily food consumption was lower for S. solea (0.030 g wet weight d-1) than for 
S. senegalensis (0.075 g wet weight d-1). It was concluded that thermal stress may be an 
important factor hindering S. solea’s food consumption in the warmer months. Total 
consumption of S. solea over the summer (90 days) was estimated to be 97 kg. S. 
senegalensis total consumption in nursery A was estimated to be 103 kg, while in nursery B it 
was 528 kg. Total prey biomass estimated for nursery A was 300 tonnes, while for nursery B it 
was 58 tonnes. This suggests that food is not a limiting factor for sole in the Tagus estuary. 
However it was concluded that more in depth studies into the food consumption of other 
species and prey availability are needed in order to determine the carrying capacity of this 
system for sole juveniles. 
 
 
Key-words: Prey consumption; Prey availability, Carrying capacity, Estuarine nurseries, 
Flatfish, Sole, Feeding ecology. 
 

 

 
Introduction 

Estuaries have long been recognized has important nursery areas for many fish species 

(Haedrich, 1983; Miller et al., 1985; Beck et al., 2001). One of the main reasons why the 

estuarine environment is favourable for the growth of juvenile fish lies in its high food 

availability. 

While some authors refer that predatory pressure by fish does not impact prey 

communities and that food availability is never a limiting factor for juvenile fish populations living 

in estuaries (Gee et al., 1985; Rafaelli, 1989), other authors suggest that impact is not only high 

but that fish are in fact the main biotic regulators of estuarine endofauna communities (Phil, 

1985; Jaquet and Rafaelli, 1989). 

Several approaches to the estimation of the feeding rates of fish populations in the wild 

have been put forward, driven by the need to construct food webs to be used in the 
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management of fish stocks (Bromley, 1994). In this context, the quantification of predation and 

feeding interactions among species is a key issue. 

Since the observation of feeding in wild populations is generally impracticable, several 

indirect methods have been developed. A considerable number of experimental studies have 

investigated the feeding rates required to produce growth rates similar to those measured in 

wild fish (Gerking, 1962; Elliott, 1975a; b; Jones and Hislop 1978; Jobling, 1982), and the 

energetics of growth (Mann, 1965; Solomon and Brafield, 1972; Jobling, 1988; Hewett, 1989). 

Others have looked at nitrogen requirements for growth (Smith and Thorpe, 1976; Bowen, 

1987) and a more limited number investigated both energy and nitrogen requirements (Cowey 

and Sargent, 1972; Bromley, 1974; 1980). 

These methods require in-depth knowledge of each species feeding and growth and 

depend on the assumption that feeding, digestion, food conversion and metabolic expenditure 

of captive fish is similar to that of wild fish. 

Various models have been developed following a different approach that combines 

information on gastric evacuation rates, determined experimentally, with that of stomach 

contents of wild fish (e.g. Thorpe, 1977; Elliott and Persson, 1978; Eggers, 1979; Jobling, 1981; 

Bromley, 1987). The only assumption being that food passes through the stomach at the same 

rate in experimental fish as in wild fish, so that the amount of food evacuated mirrors the 

amount of food consumed (Tyler, 1970; Bromley, 1987). 

The soles, Solea solea (Linnaeus, 1758) and Solea senegalensis Kaup 1858, are 

marine flatfish that use coastal and estuarine nursery grounds, which usually present high food 

availability, refuge from predators and favourable conditions for rapid growth (e.g. Haedrich, 

1983). Two important nursery grounds for these very similar species have been identified in the 

Tagus estuary, one of the largest estuaries in west Europe (Costa and Bruxelas, 1989; Cabral 

and Costa, 1999). Several studies have investigated these juveniles habitat use (Costa and 

Bruxelas, 1989; Cabral and Costa, 1999; Vinagre et al, 2006a), diet (Cabral, 2000), feeding 

rhythms (Cabral, 1998; 2000; Vinagre et al., 2006b), impact of predatory pressure on feeding 

(Maia et al, unpublished) and gastric evacuation at different temperatures and salinities 

(Vinagre et al., 2007). There is now enough information to be incorporated into a food 

consumption model and apply it to the Tagus estuary nursery areas. This is will be the first time 

a model incorporating both experimentally determined gastric evacuation rates and field data is 

applied to both sole species. 

Assessment of the daily rations of soles allows the estimation of total food consumed 

over the summer period, when densities of these species juveniles are highest and thus have 

more potential impact upon their prey densities. There are no studies on the carrying capacity of 

these nursery grounds for juvenile sole. Estimation of the total food consumed and of the total 

prey in the nursery areas should give us a first insight into this matter. 

The aim of the present study is to (1) estimate food consumption of S. solea and S. 

senegalensis juveniles in the two nursery areas of the Tagus estuary, taking into account water 
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temperature and diel patterns of feeding activity, and (2) determine the total food consumed by 

soles over the summer versus the total prey present in the sediment. 

 

 

Material and Methods 
Study area 

The Tagus estuary, with an area of 320 km2, is a partially mixed estuary with a tidal 

range of ca. 4 m. About 40% of the estuarine area is intertidal. The upper part of the estuary is 

shallow and fringed by saltmarshes. The two main nursery areas for fish (A – Vila Franca de 

Xira and B – Alcochete) identified by Costa and Bruxelas (1989) and Cabral and Costa (1999) 

are located in the upper estuary (Figure 1).  
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Figure 1 – The Tagus estuary and its main nursery areas. 

 

Although most of the environmental factors vary widely within the estuary, their ranges 

are similar in these two areas. However, the uppermost area (A) is deeper (mean value 4.4 m), 

has lower salinity (mean value 5‰) and a higher proportion of fine sand in the sediment, while 

in the other area (B) the mean values of depth and salinity are 1.9 m and 20.7‰, respectively, 

and the sediment is mainly composed of mud (Cabral and Costa 1999). The area of each 

nursery determined from nautical maps is 46.46 km2 for area A and 24.75 km2 for area B. 

Intertidal mudflats encompass 23% of area A and , and 87% of area B. While in nursery A both 

sole species are present, in nursery B only S. senegalensis exists Cabral and Costa (1999) 
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Food consumption estimation 

The model applied in the present study was the one developed by Elliott and Persson (1978): 

 

Ft = [ ( St – S0e-Rt ) Rt ] / ( 1 – e-Rt ) 

 

where Ft is food consumption after t hours, St is stomach content after t hours, S0 is the 

stomach content at the start of the observation period and R is the gastric evacuation rate 

constant determined experimentally. 

This is one of the most widely used of all the food consumption models. This model 

allows the estimation of food consumption to be carried out in separate time periods (generally 

of 3 hours). Feeding is assumed to be constant over each period of observation. 

The evacuation rate (R) used in the model was calculated by Vinagre et al. (2007). Field 

data used is from monthly sampling conducted in the summer of 1996 (June, July and August), 

as well as on a 24 h sampling cycle, carried out in July 1996. The sampling method used was 

based on beam trawls (10 in area A and 5 hauls in area B, every month in the monthly sampling 

program and one every 3 hours in the 24 h cycle).  A 4 m beam trawl with 1 tickler chain, 10 mm 

mesh size and 5 mm stretched mesh at the codend, was used. Hauls had 15 min duration and 

the distance travelled was registered using a GPS. Estimation of the area swept was carried out 

using the beam length and the distance travelled. 

Individuals caught in the beam trawls were identified, counted weighted (wet weight with 

0.01 g precision) and their total length measured to the nearest mm. Soles stomachs were 

excised, contents were removed and preserved in 4% buffered formalin. Stomach contents 

were analysed. Each prey item was identified to the lowest taxonomic level possible, counted, 

and weighed (wet weight with 0.001 g precision). The amount of food ingested in relation to total 

body weight was estimated for each individual. 

 

Carrying capacity of the nursery areas 

Sediment samples were randomly collected at each site, 20 samples in area A and 10 

samples in area B, half on the subtidal and half on the intertidal, using a van Veen grab (0.05 

m2). Sediments were transported to the laboratory and then sieved through a 0.5 mm nylon 

mesh to collect macrofauna specimens. Organisms were preserved in 4% buffered formalin and 

later identified and weighted (wet weight with 0.001 g precision). 

The wet weight of soles’ prey (polychaetes, Scrobicularia plana and amphipods) 

identified in the intertidal and subtidal sediment was averaged for each nursery area. For S. 

plana only the siphon was weighted, because only the siphons are consumed by soles. The 

total amount of prey in the sediment was estimated taking into account the area of each 

nursery, as well as the proportion of intertidal versus subtidal area.  

The daily prey consumption calculated for each sole species was used to calculate total 

consumption over the summer (90 days, corresponding to the 3 months considered), taking into 

account the average density of both species in both nursery areas in the three months 
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considered. The summer months chosen for the estimation correspond to the period when 

densities of both soles are higher in the nursery areas. 

 

Results 
Two daily peaks in feeding activity were identified for both species (Figure 2). While, S. 

solea presents a narrow feeding peak at 9h and a broader peak between 21h and 0h, S. 

senegalensis presents two broad peaks, one between 6h and 9h and another between 21h and 

0h.  
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Figure 2 – Mean stomach contents (and standard deviations) of S. solea (n = 

110 individuals) (a) and S. senegalensis (n = 100 individuals) (b) over a 24 h 

sampling period. 

 

While in S. solea the feeding peak registered in the morning is more pronounced than 

the night peak, in S. senegalensis both peaks seem to have the same importance. Peaks were 

followed by periods when stomach contents were very low. Weight of stomach contents was 

generally higher in S. senegalensis than in S. solea. While in S. solea the peaks in mean weight 

a 

b 
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of stomach contents were 0.062 g at 9h and 0.028 at 21h, in S. senegalensis they were 0.145 g 

at 9h and 0.145 at 21h. 

Total length of S. solea considered in this cycle varied between 81 mm and 150 mm, 

while S. senegalensis total length varied between 95 mm and 150 mm. Mean length of S. solea 

was 119 mm, while that of S. senegalensis was 138 mm. Stomach contents were mainly 

composed of various polychaetes (mainly Nereis diversicolor), S. plana siphons and amphipods 

(mainly Corophium spp.). Stomach contents amounted to 0.28% of mean total weight for S. 

solea and 0.40% of mean total weight for S. senegalensis during the peak consumption periods. 

The daily food consumption values estimated using Elliott and Persson (1978) model 

were 0.030 gd-1 (wet weight) for S. solea and 0.075 gd-1 for S. senegalensis (wet weight). 

 

 

Table 1 – Mean 0-group sole densities (ind.1000 m-2) in June, July and August 1996. 

 June July August 

S. solea 

(nursery A) 
0.18 0.40 1.70 

S. senegalensis 

(nursery A) 
0.19 0.31 0.51 

S. senegalensis 

(nursery B) 
6.72 0.40 2.41 

 

Mean S. solea densities over the summer months varied between 0.18 ind.1000 m-2 

and 1.70 ind.1000 m-2, while that of S. senegalensis varied between 0.19 ind.1000 m-2 and 0.51 

at nursery A and between 0.40 ind.1000 m-2 and 6.72 ind.1000 m-2 at nursery B (Table 1). Total 

consumption of S. solea over the three months considered was estimated to be 97 kg. S. 

senegalensis total consumption in area A was estimated to be 103 kg, while in area B it was 

528 kg. 

 

 

Table 2 – Mean prey biomass (g.m-2) in the Tagus estuary nursery areas. 

 Subtidal Intertidal 

 Polychaeta S. plana Amphipoda Polychaeta S. plana Amphipoda 

Nursery A 4.388 0.010 3.480 1.080 0.424 0.192 

Nursery B 4.093 0.005 0.011 1.404 0.720 0.040 
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Mean prey biomass ranged from 0.040 gm-2 and 1.404 gm-2 in the intertidal, and from 

0.005 gm-2 and 4.388 gm-2 in the subtidal (Table 2). Total prey biomass estimated for area A 

was 300 tonnes, while for area B it was 58 tonnes. 

 

 

Discussion 
The feeding activity patterns observed in the present study that encompass two distinct 

peaks of activity, confirm the findings of Lagardère (1987) for 0-group S. solea. The peaks 

reported by Lagardère (1987) were, however, more pronounced, more similar to the ones found 

for S. senegalensis in the present study. This seems to indicate that consumption of S. solea in 

the summer months in the Tagus estuary does not present has intense episodes as at higher 

latitudes. 

Daily food consumption estimated in the present study was considerably higher for S. 

senegalensis than for S. solea. Vinagre et al. (2007) reported steadily increasing gastric 

evacuation rates with temperature for S. senegalensis and S. solea, yet for the late a decline 

was observed for the highest temperature tested (26ºC). It was concluded that S. solea, being a 

temperate species with a metabolic optimum temperature of approximately 19ºC (LeFrançois 

and Claireaux, 2003), possibly suffered thermal stress at this temperature. It is well known that 

ingestion increases with increasing temperature, reaching a peak at the optimum temperature 

and declining as temperature approaches the species thermal limit (Jobling, 1993; Yamashita et 

al., 2001). The low consumption observed in the field in the present study reinforces the idea 

that S. solea may be under thermal stress during the warmer months at subtropical latitudes. 

There are no other studies on S. senegalensis food consumption in the wild because 

this species ecology has not yet been has thoroughly studied as S. solea’s. Other studies exist 

for S. solea and although they followed different experimental approaches, some comparisons 

can be made. Fonds and Saksena (1977) produced a food consumption model based on 

excess feeding of captive sole at various temperatures. According to this model daily 

consumption for 80 mm sole at 26ºC is 1.2 g (wet weight of mussel meat). Based on a similar 

experimental design Fonds et al. (1992) produced food consumption models for plaice, 

Pleuronectes platessa (Linnaeus, 1758), and flounder, Platichthys flesus (Linnaeus, 1758). 

Based on these models 5 g plaice daily consumption at 22ºC (the highest experimental 

temperature) would be 3.5 g (wet weight of mussel meat), while that of 5 g flounder would be 

0.64 g (wet weight of mussel meat).  

The values estimated by Fonds and Saksena (1977) and Fonds et al. (1992), albeit for 

different species are still of the same magnitude, as expected since a similar experimental 

approach was followed in both studies and because these species are flatfish and have 

therefore important morphological and physiological similarities.  

The daily consumption values provided by the above mentioned studies are 

considerably higher than those found in the present study. One important issue is that in both 

studies fish were given excess food. It has been reported that during intense feeding periods S. 
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solea (Lagardère, 1987) and Pleuronectes platessa (Kuipers, 1975; Basimi and Grove, 1985) 

may use the anterior portion of the intestine as an additional food reservoir, where newly-

ingested food is transferred, enabling high rates of food intake. This effect was not tested by 

Vinagre et al. (2007) for soles, since the gastric evacuation experiment carried out was based 

on single meals. Another important issue is that these approaches did not have a field 

component. Several factors may hinder food consumption in the wild, thus lowering the 

estimates given by studies with a field component. One of such factors is predator pressure. It 

has been shown that the presence of a predator may lower up to 10% the feeding activity in S. 

senegalensis (Maia et al. unpublished). 

The daily consumption value estimated by Lagardère (1987) (0.041 mg dry weight) for 

0-group S. solea following the Elliott and Persson model using a R of 0.366 and a field 

component similar to the present study was not very different to the values presented here. A 

direct comparison is not possible since the values from Lagardère (1987) are given in dry 

weight and the ones from the present study in wet weight, yet even if we account for a water 

content higher than 90 %, the values are still of the same magnitude.  

The R value used by Lagardère (1987) was estimated experimentally by Durbin et al. 

(1983) for Merluccius bilinearis, Mitchill, 1814, and Gadus morhua (Linnaeus, 1758). The 

incorporation into the model of an R estimated for other species, with marked morphological 

and physiological differences from the species being analysed, as probably lead to some 

overestimation of food consumption. Another issue that may account for differences is fish size, 

there’s only information on the age group but not on its average size, which could be 

considerably different. 

Prey densities in the sediment of both nurseries were within the ranges reported by 

other studies, concerning the Tagus estuary (Rodrigues et al., 2006; Silva et al., 2006). Our 

results seem to indicate that food is not a limiting factor for soles, in the Tagus estuary. Other 

authors had reached the some conclusion concerning other fish communities (Gee et al., 1985; 

Rafaelli, 1989). Yet, a more in depth investigation is necessary in order to account for other 

species food consumption and prey densities fluctuations. Fluctuations in soles densities should 

also be taken into account. In the present study, important variability was reported for soles 

densities, ranging from 0.18 ind.1000 m-2 to 1.70 ind.1000 m-2 for S. solea and from 0.40 

ind.1000 m-2 to 6.72 ind.1000 m-2 for S. senegalensis. This confirms previous investigations that 

concluded that these species populations present important abundance fluctuations, Cabral and 

Costa (1999) reported maximum mean densities of 26.0 ind.1000 m-2 for S. solea and 61.6 

ind.1000 m-2 for S. senegalensis over a three year period.  Prey availability is also an important 

issue, since some prey may be present in the substrate but not available for all its predators. 

For instance, it is well known that amphipds, such as Corophium spp. have semilunar activity 

rhythms that affect their probability of being captured by fish (Lawrie and Raffaelli, 1998). 

Recent studies indicate that sole feeding rhythms are also influenced by the semilunar 

cycle (Vinagre et al., 2006b), it would therefore be interesting to conduct 24h sampling in the 



                                                                                                                           Chapter 3 

 - 110 -

different phases of this cycle in order to assess food consumption variation and incorporate it in 

total food consumption estimates over the broad periods when nurseries are used by juveniles.  

These and other contributions to the study of sole juveniles’ ecology will certainly 

provide the necessary information for the fine estimation of food consumption to be incorporated 

into multi-species food-web models for stock and estuarine management. 
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Conclusions 
 
 

 

 

The experimental work on gastric evacuation and feeding behaviour included in this 

chapter, and its application to wild populations allowed for the first estimation of food 

consumption of the juvenile sole using the Tagus estuary nursery grounds.  

It was also concluded that both temperature and salinity have an important effect on 

gastric evacuation in S. solea and S. senegalensis. While temperature increased evacuation 

rates in both species (although not at 26ºC in S. solea), the effect of low salinity differed among 

species, leading to a decrease in gastric evacuation rate in that of S. senegalensis and an 

increase in S. solea.  

The effect of the 26ºC experimental temperature on S. solea’s gastric evacuation was 

discussed and it was concluded that it was possibly evidence of thermal stress, since the 

metabolic optimum temperature for this species is much lower (approximately 19ºC). This effect 

was not observed in S. senegalensis, probably because this is a tropical species with different 

thermal limits. Thus, S. solea may be at a disadvantage during the summer months when 

juveniles of both sole species concentrate in shallow waters, rich in prey but where temperature 

warms up well above its metabolic optimum. 

The results concerning the effect of salinity were quite interesting given that, when in 

sympatry, S. solea seems to prefer lower salinity habitats than S. senegalensis. A different level 

of adaptation to low salinity is probably the most important factor determining these species 

partition of space within the nursery area. 

Results indicate that estuarine nurseries provide better conditions than coastal 

nurseries for S. solea in terms of salinity, yet in southern European estuarine systems it will 

endure summer temperatures that lead to thermal stress, since estuarine waters are warmer 

than coastal waters in that period. For S. senegalensis estuarine nurseries provide favourable 

temperatures during the nursery period, yet low salinity decreases its’ gastric evacuation rate. 

Habitat choice by both species will depend on the cost-benefit relation of the available habitats. 

The sum of all advantages provided by estuarine nurseries will certainly play an important role 

in this process.  

The behaviour experiment revealed that the presence of a predator strongly impacts the 

foraging activity of sole in the presence of prey with a 10% decrease in overall activity, when 

compared to sole’s activity in the presence of only food. Crawling and tapping were the activities 

most correlated with foraging. Rapid escape response occurred when the predator was present 

independently of the presence of food. There was also evidence that in S. senegalensis the 

recognition of predators is visual, while that of prey is mainly olfactory.  

The estimated daily food consumption was considerably higher for S. senegalensis than 

for S. solea. The feeding activity patterns observed encompassed two distinct peaks of activity, 

they were, however, more pronounced for S. senegalensis than for S. solea. Studies with S. 
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solea at higher latitudes found pronounced peaks of feeding activity, which seems to indicate 

that consumption of S. solea in the summer months in the Tagus estuary is hindered, possibly 

by thermal stress, like observed in the gastric evacuation experiments. Prey abundance 

estimations indicate that food is not a limiting factor for soles, in the Tagus estuary, similarly to 

what had been observed in other estuarine systems. Yet, more studies concerning prey density 

variation, as well as, consumption by other benthic predators are needed in order to accurately 

determine food availability and partitioning in the Tagus estuary. The high inter-annual variation 

in soles’ densities should also be taken into account. 

The information on sole juveniles’ feeding ecology provided in this chapter can be 

incorporated into future multi-species food-web models for stock and estuarine management. 
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Introduction 
 
 

 

 

Growth has been one of the most intensely studied aspects of fish biology. Growth is 

continuous in most fish species and is regarded as a good indicator of fish health (Lagler et al., 

1977; Moyle and Cech, 1996). Because growth is influenced by many factors it is considered to 

be an integrative indicator of the overall health of the individuals or populations and a reflection 

of the environmental conditions of the habitat where fish live. Fish growth is thus also a good 

indicator of habitat quality (Gibson, 1994; Phelan et al., 2000).  

Positive growth (an increase in length or weight over time) indicates a positive energy 

balance in metabolism, meaning that the rate of anabolism exceeds that of catabolism (Moyle 

and Cech, 1996). Anabolic processes are regulated by hormones; however growth rates of fish 

are greatly dependent on various interacting environmental factors, such as temperature, 

dissolved oxygen, salinity, ammonia, photoperiod, among others. These environmental factors 

will, in turn, interact with other factors such as competition, quantity and quality of food, toxicity 

of dissolved chemicals, as well as, the age and state of maturity of the fish (Moyle and Cech, 

1996). 

In the marine environment, predation is mainly related to the size of the individuals 

(Cuching, 1975). Fast growth of juvenile fish potentially increases individuals’ survival chances 

because less time is spent at the more vulnerable sizes (Sogard, 1992, 1997; Able et al., 1999). 

It is in this context that estuaries play an important role in the life cycle of many fish species, 

because of their high food availability, low number of predators and in particular high water 

temperature, during the most important period for juvenile fish (e.g. McLusky, 1989). 

Growth of juvenile sole in the Tagus estuary nursery grounds was previously 

investigated by Dinis (1986), Costa (1990) and Cabral (2003), the later reported higher growth 

rates than found at higher latitudes (Rogers, 1994, Amara et al., 2001, Amara, 2004), certainly 

because of the higher temperatures of the Tagus estuary waters. Previous studies in the Tagus 

also referred the existence of various cohorts colonizing the estuary over time, which generally 

does not happen in northern European areas. 

The present chapter focused on the study of growth and condition in the successive 

cohorts of Solea solea (Linnaeus, 1758) and Solea senegalensis Kaup, 1858, colonizing the 

Tagus estuarine nurseries, in the comparison of habitat quality of the two nurseries and in the 

analysis of growth and spawning in a latitudinal perspective. 

The first work “Growth variability of juvenile soles Solea solea and Solea senegalensis, 

and comparison with RNA-DNA ratios in the Tagus estuary, Portugal” aims to determine the 

growth variability of juvenile soles S. solea and S. senegalensis based on absolute growth 

rates, estimated by modal progression analyses, and compare it to RNA-DNA ratios. Little is 

known about multi-cohort colonization of estuarine nurseries, mainly because in the northern 

European areas, where most of the investigation on flatfish has been carried out, there is only a 
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narrow peak of spawning that results in just one cohort. Yet, the different cohorts immigrating 

towards the Tagus nurseries will face quite different environmental conditions in the nurseries 

depending on the time of arrival.  

The second work “Habitat specific growth rates and condition indices for the sympatric 

soles Solea solea (Linnaeus, 1758) and Solea senegalensis Kaup 1858, in the Tagus estuary, 

Portugal, based on otolith daily increments and RNA-DNA ratio” assessed habitat quality 

through the comparison of growth rates and condition in the two estuarine nurseries and 

discussed the use of both methodologies as tools for habitat quality monitoring. Ecological 

monitoring will be crucial in the achievement of informed estuarine management in the future. 

Examination of otolith daily increments for the estimation of growth rates was applied to the 

juveniles of both species. This method had been previously validated for S. senegalensis by Ré 

et al. (1988) and for S. solea by Lagardère and Troadec (1997), it had also been already 

applied to other sole populations (e.g. Amara et al., 1994; Amara, 1995). It allows a more 

precise estimation of growth rate when compared to modal progression analyses of length, 

since the later presents some problems, such as, difficulties in clearly identifying modal 

components and the misclassification of slow growers. 

The third work “Latitudinal comparison of spawning period and growth of 0-group sole, 

Solea solea (L.)” aims at assessing latitudinal differences in timing of spawning, and growth 

rates of S. solea juveniles following settlement in the nursery grounds. The general assumption 

that the main factors contributing to higher growth rates and earlier spawning are higher 

temperatures and photoperiod make it pertinent to investigate if there is a latitudinal trend. 

Studies using the exact same methodology for the determination of growth rates and back-

calculation of spawning dates were carried out in the Tagus estuary (38ºN), in the Douro 

estuary (41ºN), in the Vilaine estuary (47ºN) and in the eastern English Channel (49ºN). Data 

from these studies was further compared with data from a revision of published studies, in order 

to investigate the existence of a latitudinal trend in growth rates and spawning time.  
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Growth variability of juvenile soles Solea solea and 

Solea senegalensis, and comparison with RNA-DNA 

ratios in the Tagus estuary, Portugal 

 
Abstract: Growth variability and condition of juvenile soles Solea solea (Linnaeus, 1758) and 
Solea senegalensis Kaup, 1858, were assessed through RNA:DNA estimates and compared 
to absolute growth rates. Higher mean cohort RNA:DNA ratios were observed for cohort I at 
the beginning of estuarine occurrence for both species (4.42 and 4.87, for S. solea and S. 
senegalensis respectively). Despite different estuarine colonization habits, no significant 
differences were observed between RNA:DNA monthly variation for both sole species within 
the same year (P > 0.05 for 2003 and 2004). Juvenile S. senegalensis showed significant 
differences between RNA-DNA ratios obtained for the two nursery areas (P < 0.001). The 
decrease of seasonal growth rates with fish age was similar to seasonal variation of mean 
RNA:DNA values. Thus the RNA:DNA pattern of juvenile S. solea and S. senegalensis 
reflected growth and estuarine colonization patterns. 
 
 
Key-words: Growth variability; Nutritional condition; RNA-DNA ratio; Solea senegalensis; 
Solea solea. 
 

 

 
Introduction 

Early life stages of marine fishes are generally characterized by high and variable 

mortality rates, which will affect recruitment to the adult population. Small fluctuations in growth 

and survival rates during this period can be magnified when considering year-class strength 

(Houde, 1987; Van der Veer et al., 1990; Myers and Cardigan, 1993). Therefore suitable biotic 

and abiotic conditions for young fishes to settle and grow are essential to ensure that a 

significant number of individuals enter the reproductive population. Habitats such as estuaries 

that provide such suitable growth conditions, namely high food abundance, refuge from 

predators and high water temperature, serve as important nursery grounds for many marine fish 

species of commercial interest (Haedrich, 1983; Beck et al., 2001).  

Faster growth of juvenile fishes potentially increases individuals’ survival probability, 

because less time is spent at more vulnerable sizes and therefore, they are more likely to 

overcome the hardship of the following less favourable season (Sogard, 1992, 1997; Able et al., 

1999). How environmental variability influences individual fishes has been linked to several 

individual changes at a molecular level (e.g. cortisol levels, nucleic acid content and enzymatic 

activity) (Weber et al., 2003). Hence, it is of great importance to directly determine the 

individual-environmental linkage on short time scales, especially for estuarine dependent 

species, because of the dynamic nature of these environments (e.g. river flow and tidal cycle) 

(Haedrich, 1983). Nucleic acid quantification and subsequent RNA-DNA ratios have been used 
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in numerous studies as condition indices, in order to assess nutritional condition and growth of 

larvae and juvenile fishes (Buckley, 1984; Richard et al., 1991; Gwak and Tanaka, 2001). 

This biochemical index reflects variations in protein synthesis rates (thus recent growth) 

as RNA concentration fluctuates both with food accessibility and protein requirement, while 

DNA somatic content remains relatively constant for each species, thus providing a recent 

picture of overall fish condition (Bulow, 1970; Buckley and Bulow, 1987). Mainly for larval 

stages, RNA:DNA values have been positively correlated with recent growth (Westerman and 

Holt, 1994), food availability (Clemmesen, 1994) and water temperature (Rooker and Holt, 

1996), and through estimated growth rate, were used to assess the suitability of different 

estuarine habitats (Yamashita et al., 2003).  

Two species of sole, Solea solea (Linnaeus, 1758) and Solea senegalensis Kaup, 1858, 

use the Tagus estuary as a nursery ground and represent c. 60% of juvenile fish abundance in 

this area. Both species are commercially important, being highly exploited by local and coastal 

fisheries (Costa and Bruxelas, 1989). A multicohort population structure for both sole species 

has been described in several studies (Dinis, 1986; Andrade, 1992; Cabral, 2003) and is usually 

associated with different nursery colonization processes (such as river flow and wind regime) 

and with prolonged spawning periods that induce several pulses of new recruits over 1 year 

(Marchand, 1991).  

S. solea 0-group juveniles enter the estuary in early spring, grow fast until late summer 

when they migrate to coastal areas, while 0-group S. senegalensis colonize the estuary from 

June to August and only leave the nursery grounds generally in the following spring or summer 

(Cabral, 2003). Although niche overlap occurs, it is limited to a short period and a small area, 

and the differential pattern of habitat usage minimizes interspecific competition between 

juveniles (Cabral and Costa, 1999; Cabral, 2000, 2003). 

Previous studies reported higher growth rates of juvenile soles in the Tagus estuary 

when compared to other important European estuaries (Cabral, 2003). Cabral (2003) also 

outlined differences in growth rates between cohorts and period of estuarine use. Juveniles of 

both species had higher growth rates for cohort I and for the beginning of the estuarine 

colonization period. The aim of the present study was to determine the growth variability of 

juvenile soles S. solea and S. senegalensis based on absolute growth rates, estimated by 

modal progression analyses, and compare it to RNA-DNA ratios. 

 

 

Materials and methods 
Study area and sampling procedures 

The Tagus estuary is a partially mixed estuary, located in the north-eastern Atlantic 

temperate region. With a total area of 320 km2 and a tidal range of 4 m, this system serves as a 

nursery ground for numerous marine fish species of commercial interest (Cabral and Costa, 

1999). Two main nursery areas (A and B) have been identified for juvenile soles, located in the 
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upper shallower section of the estuary (<10 m deep) and bordered by salt marshes (Fig. 1) 

(Costa and Bruxelas, 1989; Cabral and Costa, 1999).  

Juvenile soles were captured monthly from May 2003 to July 2004. The two nursery 

grounds were sampled using a 4 m beam trawl, with a 10 mm mesh-size and a bottom tickler 

chain to increase capture efficiency. Trawls were conducted at daylight and at low water at a 

speed of 1.85 km h-1 (1 knot) for 15 min. A minimum of five trawls were conducted per month at 

each nursery area. All S. solea and S. Senegalensis individuals captured were measured (total 

length, LT, to the nearest mm) and weighed (wet mass to 0.01 g).  

A section of the posterior white muscle was removed (except for very small sized fishes, 

where all the muscle was extracted) and immediately frozen in liquid nitrogen. The muscle 

samples were later freeze dried and kept sealed in a freezer at -20ºC. Based on the monthly-

length distribution, 30 individuals were selected for nucleic acid quantification (except for 

months when juvenile soles were not captured and for monthly captures of <30 individuals, in 

which case all individuals collected were analysed). 
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Figure 1 - Location of the nursery areas where juvenile sole 

were captured. 

 

Nucleic acid determination 

Nucleic acid quantification was carried out with the fluorometric method described by 

Caldarone et al. (2001). Prior to the routine use of this procedure, several assays were 

performed to calibrate and standardize the method to the species being studied and to the 
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equipment used. Thus, detection limits, standard calibration curves for RNA and DNA and spike 

recovery of homogenate samples (n = 3), were first determined with a series of dilutions of pure 

calf thymus DNA (Calbiochem) and 18S- and 28S-rRNA (Sigma). Tissue sample 

autofluorescence and residual fluorescence were also analysed, the latter by adding 1 U ml-1 

DNase (n = 3) (Sigma). Concentration of stock standard RNA and DNA solutions were first 

checked with an UV-spectrophotometer. To ensure sample reproducibility, two 20 mg (dry 

mass) replicates of each juvenile sole were analysed. Reagents and sample volumes were 

adjusted to the cuvette spectrofluorometre used. The white muscle was homogenized through 

short-term ice-sonication with 200 ml of 1% sarcosine solution (N-lauroylsarcosine), and then 

diluted with 1.8 ml Tris-EDTA buffer (Trizma, pH 7.5) (sarcosine final concentration of 0.1%). 

Total nucleic acid fluorescence (RNA and DNA) was measured by adding 300 ml 

sample homogenate, 1.8 ml Tris-EDTA and 150 ml ethidium bromide (EB, 1 mg ml-1) to the first 

vial. DNA fluorescence was determined by digesting RNA content with 150 ml RNase (A from 

bovine pancreas, 20 U ml-1 incubated at 37ºC for 30 min, Sigma) in the second vial containing 

300 ml sample homogenate, 1.65 ml Tris-EDTA and 150 ml EB. Excitation and emission 

wavelengths used were 360 and 600 nm, respectively. RNA fluorescence was determined by 

subtracting the DNA fluorescence reading (second reading) from the total fluorescence value 

(first reading). RNA and DNA content in tissue samples was calculated through calibration 

curves constructed previously plus the dilution factors used. 

 

Statistical analysis 

Monthly LT-frequency distributions were determined for both species. Growth was 

estimated through modal progression analysis of LT distributions, based on the Bhattacharya 

method (Bhattacharya, 1967). The software used in this analysis was FISAT II, version 1.1.2, 

(FAO, 2002). Absolute growth rate (GA) of young soles was determined as follows: GA = (LT2 - 

LT1) (t2 - t1) where LT1 and LT2 correspond to total length at times t1 and t2. 

Mean monthly condition indices of cohorts were determined based on individual 

RNA:DNA values of the juveniles included in each cohort. Mean ± S.D. cohort LT was the length 

range considered for each cohort, without overlap between different cohorts. Tukey-type 

multiple comparisons tests were used to compare RNA-DNA ratios, according to procedures 

described by Zar (1996). Comparisons were made for intra-cohort variation (RNA-DNA ratios 

from juvenile sole belonging to one species and to the same cohort for the time interval 

considered), for inter-cohort variation (within different cohorts of juvenile sole from one species), 

and finally between the two species for the 2 years. The null hypothesis was the equality of 

RNA-DNA ratios, for a significance level of 0.05. 

 

 

Results 
Several cohorts were identified for both species, although modal components were not the 

same for the 2 years considered (Figs 2 and 3). Juvenile S. solea entered the Tagus estuary in 



                                                                                                                           Chapter 4 

 - 126 -

April to May and returned to the sea in late September. In the first year, only in August were two 

cohorts identified, while in the second year three cohorts were observed (Fig. 2). For S. 

senegalensis, two age-groups (0-group and 1-group) were present in both years (September 

2003 and April 2004). Juvenile estuarine usage occurred during a wider period, from April to 

September, with higher juvenile abundance towards the end of summer (September and 

October). Once again a polymodal composition was observed for LT frequency distributions, with 

three 0-group cohorts identified in 2004. 

Difficulties with following the monthly progression of some cohorts in both species were 

caused by low sample sizes and also by close mean LT of modal components, which restricted 

the absolute growth rate estimates. S. solea absolute growth rates ranged from 0.53 to 1.19 mm 

day-1, whereas for S. senegalensis they varied from 0.40 to 1.38 mm day-1 (Fig. 4a). 

Higher growth estimates were observed for 0-group cohort I in both species, namely 

from April to May for S. solea and September to October for S. senegalensis. During the second 

year, G values for the other two S. solea cohorts were lower for the second cohort in 

comparison to cohort III, despite initial similar LT (Fig. 2).  

For S. senegalensis there was a considerable difference between cohorts I with similar 

mean LT in the two consecutive years, although they correspond to different months. RNA-DNA 

ratios varied with cohort, month and year for both sole species. The higher mean cohort RNA-

DNA ratios were observed for cohort I in the first month of juvenile colonization for both species 

(4.42 and 4.87 in April 2004, for S. solea and S. senegalensis, respectively (Fig. 4b, c)).  

In subsequent months RNA-DNA ratios decreased for the first cohort, as new cohorts 

that entered the estuary had higher values by comparison with cohort I. Hence, on a monthly 

basis, whenever more than one cohort was present, younger juveniles belonging to newly 

arrived cohorts, had higher RNA-DNA ratios than earlier cohorts (August 2003 and May, and 

June and July 2004).  

This trend always occurred except in November 2003 for juvenile S. senegalensis, 

when cohort II had a lower RNA:DNA mean value than cohort I, probably due to the small 

sample size of cohort II. Juvenile (1-group) S. senegalensis showed quite low RNA-DNA mean 

ratios that ranged from 1.79 to 0.05. S. solea RNA:DNA intra-cohort variation was assessed for 

cohort I for both years, and the first month considered (May 2003 and April 2004, Fig. 4b) was 

always significantly different from the following months (Tukey HSD homogeneous tests, d.f. = 

36 and 22, P < 0.001 and P < 0.05).  

Intra-cohort RNA-DNA ratio for cohorts II and III in 2004 also showed significant 

differences between the 2 months when these cohorts were present (Tukey tests, d.f. = 33 and 

25, P < 0.001 and <0.05). Significant differences between the three S. solea cohorts in 2004 

were observed only for cohort I (Tukey test, d.f. = 84, P < 0.001), but not between cohorts II and 

III.  

When comparing mean RNA:DNA values for S. solea and for the 2 years, they also 

differed significantly (Tukey test, d.f. = 208, P < 0.001). For S. senegalensis RNA-DNA ratios 
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Figure 2 - Cohort mean total length (mm) and standard deviation per month of 0-

group Solea solea juveniles: cohort I, cohort II and cohort III.  
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Figure 3 – Cohort mean total length (mm) and standard deviation per month, of 

juvenile Solea senegalensis: 0-group/cohort I, 0-group/cohort II,  0-

group/cohort III,  1-group/cohort I and 1-group/cohort II. 
 

also revealed intra-cohort variation for cohorts I and II in 2003 and 2004 respectively (Tukey 

HSD test, d.f. = 40 and 14, P < 0.05 and P < 0.01). As for S. solea the first month of estuarine 

occurrence had different mean RNA-DNA ratios (higher values, Fig. 4c) compared with 

subsequent months. As noticed for S. solea, variation of RNA-DNA ratios in S. senegalensis 

between years was significantly different (Tukey tests, d.f. = 124, P < 0.001).  
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Figure 4 – Absolute growth rates (mm day-1) and RNA-DNA mean ratios (± s.d.) 

for the different cohorts identified for both soles species in 2003 and 2004: 4.a 

AGR values (mm day-1) for S. solea cohort I, S. senegalensis 

cohort I, S. solea cohort II and S. solea cohort III; 4.b RNA-DNA 
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The periods compared for both years however were not the same. For both species 

equality of RNA-DNA ratios was tested for each year, and since no significant differences were 

observed, RNA:DNA-based condition indices revealed a similar trend over a 1 year period 

(Tukey tests, d.f. = 184 and 148 for 2003 and 2004 respectively, P > 0.05).  

The mean RNA:DNA monthly variation over the 2 years considered (Fig. 5), reveals a 

similar pattern of mean RNA:DNA variation with estuarine occurrence, for both S. solea and S. 

senegalensis. The observed trend reflects the decrease in RNA-DNA ratios with time spent in 

estuarine areas, therefore with fish age and LT. 

The mean RNA-DNA of S. senegalensis is also compared between the two different 

nursery habitats used by these juveniles. Although it refers only to two months in different years 

(September 2003 and July 2004), in both periods juvenile sole from Vila Franca de Xira had a 

higher RNA-DNA mean ratio, which was significantly different from juveniles present in 

Alcochete (Tukey tests, d.f. = 35 and 16, P < 0.05). 
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Figure 5 – Mean RNA-DNA monthly variation and standard deviation of juvenile soles over 

the two years considered.   represents young S. solea, while for S. senegalensis the 

two nursery areas in the Tagus estuary are distinguished,  Alcochete and  

Vila Franca de Xira, in September 2003 and July 2004.   

 

 

Discussion 
The polymodal structure of the LT-frequency distributions of S. solea and S. 

senegalensis reflected the occurrence of several cohorts according to species and year in the 

Tagus estuary, and is in agreement with previous studies (Andrade, 1992; Cabral, 2003). The 

number of cohorts entering the nursery areas is determined by spawning period and spawning 

behaviour (i.e. longer spawning periods and several oocyte emission events favour a larger 
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number of cohorts), which along with environmental conditions influence the pattern of habitat 

usage of both species (Cabral, 2003).  

These differences in habitat use, that consist of earlier and shorter estuarine occurrence 

for S. solea (April to August), as well as a more restricted distribution in the nursery grounds 

when compared to S. senegalensis (June to the following summer) (Cabral and Costa, 1999; 

Cabral, 2000), were also observed in the present study. Cabral (2003) concluded that 

differences in growth patterns of S. solea and S. senegalensis reflected their differences in 

habitat use in the Tagus estuary.  

Absolute growth rate estimations were limited by the discontinuous data; nonetheless, 

G calculated were within the range of previous studies for this area and for northern European 

areas (Cabral, 2003). The first cohorts of 0-group juveniles for both species and at the 

beginning of the estuarine colonization period had the highest growth values, and also the 

highest mean RNA-DNA ratios. Intra-cohort RNA:DNA variation was significantly different for 

the estuarine settlement period for both sole species. 

Successive cohorts did not reach the maximum RNA-DNA ratios reported for the first 

cohort, suggesting that the first individuals to arrive, at least for S. solea, had lower competitor 

pressure (lower fish densities). Better food quality and quantity in certain periods could also 

justify higher RNA-DNA ratios for young soles, however, during the main period of their 

occurrence (from May to September), prey abundance and quality do not vary significantly in 

the Tagus estuary (Cabral, 2000).  

Also, whenever more than one cohort occurred, simultaneous newly arrived juveniles 

had higher RNA-DNA ratios and growth rates than earlier settled juvenile soles. RNA-DNA 

ratios for juvenile soles were within range (-1.1 to 8.2) of other studies of juvenile flatfish species 

(Mathers et al., 1992; Gwak and Tanaka, 2001; Yamashita et al., 2003), including a recent 

study on S. solea collected in 1 month in several sites of the northern French coast and where 

RNA:DNA varied from 1.4 to 4.3 (Gilliers et al., 2004). Although growth estimates were obtained 

for a time gap of nearly 1 month (between captures) and the RNA:DNA condition indices are a 

recent growth indicator, similar patterns were observed on both time scales.  

The decrease of seasonal growth rates with fish age was concurrent with mean 

RNA:DNA values seasonal variation. Previous studies with food deprivation of larval and 

juvenile fishes, including S. solea larvae (Richard et al., 1991), indicated that starving larvae 

had RNA-DNA ratios of 1 while fed larvae had values of c. 3 to 4 (Clemmesen, 1996). Despite 

high individual variation within replicate experiments observed in some of these studies, and 

also reported by Bergeron and Boulhic (1994) and Bergeron (1997) for early larval S. solea, 

temperature was found to directly influence total RNA-DNA ratios (Buckley, 1984).  

In the present study, nutritional condition indices of wild soles assessed by RNA-DNA 

ratios indicated that juvenile soles were in a fairly good condition status in the first 2 months of 

estuarine colonization, with mean ratio values >3. Hence higher protein synthesis during this 

period reflected the higher growth rates estimated for both species. As the nursery period 

advanced, mean RNA:DNA values diminished indicating a decrease in growth rate.  
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Variability among monthly cohorts and RNA : DNA estimates was expected and can be 

explained by individual variability, either on a performance level or by their being subject to 

unsuitable conditions. All fishes were collected from nursery areas, where there are suitable 

growth conditions as suggested in the present work, since S. senegalensis had high RNA-DNA 

ratios from August to September (near 3.5) when S. solea showed fairly lower indices (c. 1.0). 

Therefore, a pattern in RNA-DNA ratios for species and cohorts was observed. When 

young juvenile soles enter the estuary they have faster growth rates that decrease with fish age 

and LT as RNA-DNA ratios decrease, due to lower nucleic acid concentration in somatic tissue 

of older fishes (Buckley and Bulow, 1987; Buckley et al., 1999). Lower RNA-DNA ratios were 

observed for the end of colonization periods, when juveniles migrate to marine coastal areas, or 

as in the case of some juvenile S. senegalensis, remain in the nursery areas until the following 

year (with low condition indices).  

This suggests that the different habitat usage pattern described earlier for both sole 

species is reflected by the RNA:DNA based condition indices as well as growth rates. The mean 

RNA:DNA values of S. senegalensis for the two different nursery habitats used by juveniles of 

this species were different in 2 months for both years. Individuals collected in the upper northern 

area had higher RNA-DNA mean ratios, which could suggest that this area may have better 

growth conditions than the other area. Data available, however, are insufficient and further 

analysis is necessary to verify this possibility.  

Further studies on quantitative determination of growth of wild juvenile soles based on 

RNA-DNA ratios and other environmental variables would be a valuable tool for rapid growth 

assessment and prediction (Malloy et al., 1996; Gwak and Tanaka, 2001; Yamashita et al., 

2003). Recently, Weber et al. (2003) reported the advantages of multiple biochemical indices, 

namely total lipid, RNA-DNA ratio and triglyceride content, in juvenile fish growth estimates. The 

present study verified that the pattern of RNA:DNA variation of juvenile S. solea and S. 

senegalensis during the estuarine colonization period reflects growth patterns and estuarine 

movements of young sole. 

 

 
Acknowledgements 

The present study had the financial support of the Fundação para a Ciência e a Tecnologia (FCT) which 

financed several of the research projects related to this work. The authors would also like to thank the 

referees for their important contribution to improving earlier versions of the manuscript 

 

 

References 
Able, K.W., Manderson, J.P., Studholme, A., 1999. Habitat quality for shallow water fishes in an 

urban estuary: the effects of man-made structures on growth. Marine Ecology Progress 

Series 187, 227–235. 

Andrade, J.P., 1992. Age, growth and population structure of Solea senegalensis Kaup 1858 

(Pisces, Soleidae) in the Ria Formosa (Algarve, Portugal). Scientia Marina 56, 35–41. 



                                                                                                                           Chapter 4 

 - 132 -

Beck, M., Heck, K., Able, K., Childers, D., Egglestone, D., Gillanders, B., Halpern, B., Hays, C., 

Hoshino, K., Minello, T., Orth, R., Sheridan, P., Weinstein, M., 2001. The identification, 

conservation and management of estuarine and marine nurseries for fish and 

invertebrates. Bioscience 51, 633–641. 

Bergeron, J.-P., 1997. Nucleic acids in ichthyoplankton ecology: a review, with emphasis on 

recent advances for new perspectives. Journal of Fish Biology 51, 284–302. 

Bergeron, J.-P., Boulhic, M., 1994. Rapport ARN/ADN et évaluation de l’etat nutritionnel et de la 

croissance des larves de poissons marins: un essai de mise au point experimentale chez 

la sole (Solea solea L.). ICES Journal of Marine Science 51, 181–190. 

Bhattacharya, C.G., 1967. A simple method of resolution of a distribution into Gaussian 

components. Biometrics 23, 115–135. 

Buckley, L.J., 1984. RNA-DNA ratio: an index of larval fish growth in the sea. Marine Biology 80, 

291–298. 

Buckley, L.J., Bulow, F.J., 1987. Techniques for estimation of RNA, DNA, and protein in fish. In 

Age and Growth of Fish (Summerfelt, R. C., Hall, G. E., eds), pp. 345–354. Ames, IA: 

Iowa State University Press. 

Buckley, L.J., Caldarone, E., Ong, T.L., 1999. RNA-DNA ratio and other nucleic acid-based 

indicators for growth and condition of marine fishes. Hydrobiology 401, 265–277. 

Bulow, F. J., 1970. RNA-DNA ratios as indicators of recent growth rates of a fish. Journal of the 

Fisheries Research Board of Canada 27, 2343–2349. 

Cabral, H.N., 2000. Comparative feeding ecology of sympatric Solea solea and Solea 

senegalensis within the nursery areas of the Tagus estuary, Portugal. Journal of Fish 

Biology 57, 1550–1562. doi: 10.1006/jfbi.2000.1408 

Cabral, H.N., 2003. Differences in growth rates of juvenile Solea solea and Solea senegalensis 

in the Tagus estuary, Portugal. Journal of the Marine Biological Association of the United 

Kingdom 83, 861–868. 

Cabral, H.N., Costa, M.J., 1999. Differential use of nursery areas within the Tagus estuary by 

sympatric soles, Solea solea and Solea senegalensis. Environmental Biology of Fishes 

56, 389–397. 

Caldarone, E.M., Wagner, M., St Onge-Burns, J., Buckley, L.J., 2001. Protocol and guide for 

estimating nucleic acids in larval fish using a fluorescence microplate reader. Northeast 

Fisheries Science Center (Reference Document) 01–11, 1–22. 

Clemmesen, C., 1996. Importance and limits of RNA/DNA ratios as a measure of nutritional 

condition in fish larvae. In Survival Strategies in Early Life Stages of Marine Resources 

(Watanabe, Y., Yamashita, Y. and Oozeki, Y., eds), pp. 67–82. Rotterdam: A. A. 

Balkema. 

Costa, M.J., Bruxelas, A., 1989. The structure of fish communities in the Tagus estuary, 

Portugal, and its role as a nursery for commercial fish species. Scientia Marina 53, 561–

566. 



                                                                                                                           Chapter 4 

 - 133 -

Dinis, M.T., 1986. Quatre soleidae de l’estuaire du Tage. Reproduction et croissance. Essai 

d’elevage de Solea senegalensis Kaup. PhD Thesis, Universite´ de Bretagne 

Occidentale, Brest, France. 

FAO, 2002. FISAT-II, Software Version 1.1.2 FAO-ICLARM Stock Assessment Tools. Rome: 

FAO  

Gilliers, C., Amara, R., Bergeron, J. P., Le Pape, O., 2004. Comparison of growth and condition 

indices of juvenile flatfish in different coastal nursery grounds. Environmental Biology of 

Fishes 71, 189–198. 

Gwak, W.S., Tanaka, M., 2001. Developmental changes in RNA:DNA ratios of fed and starved 

laboratory-reared Japanese flounder larvae and juveniles, and its application to 

assessment of nutritional condition for wild fish. Journal of Fish Biology 59, 902–915. doi: 

10.1006/jfbi.2001.1703 

Haedrich, R.L., 1983. Estuarine Fishes. In Ecosystems of the World: Estuarine and Enclosed 

Seas (Ketchum, B., ed.), pp. 183–207. Amsterdam: Elsevier. 

Houde, E.D., 1987. Fish early life dynamics and recruitment variability. American Fisheries 

Society Symposium 2, 17–29. 

Malloy, K.D., Yamashita, Y., Yamada, H., Targett, T.E., 1996. Spatial and temporal patterns of 

juvenile stone flounder Kareius bicoloratus growth rates during and alter settlement. 

Marine Ecology Progress Series 131, 49–59. 

Marchand, J., 1991. The influence of environmental conditions on settlement, distribution and 

growth of 0-group sole (Solea solea (L.)) in a microtidal estuary (Vilaine, France). 

Netherlands Journal of Sea Research 27, 307–316. 

Mathers, E.M., Houlihan, D.F., Cunningham, M.J., 1992. Nucleic acid concentrations and 

enzyme activities as correlates of growth rate of the saithe Pollachius virens: growth-rate 

estimates of open-sea fish. Marine Biology 112, 363–369. 

Myers, R.A., Cardigan, N.G., 1993. Density-dependent juvenile mortality in marine demersal 

fish. Canadian Journal of Fisheries and Aquatic Sciences 50, 1576–1590. 

Richard, P., Bergeron, J.P., Boulhic, M., Galois, R., Ruyet, J., 1991. Effect of starvation on RNA: 

DNA and protein content of laboratory-reared larvae and juveniles of Solea solea. Marine 

Ecology Progress Series 72, 69–77. 

Rooker, J.R., Holt, G.J., 1996. Application of RNA:DNA ratios to evaluate the condition and 

growth of larval and juvenile red drum (Sciaenops ocellatus). Marine and Freshwater 

Research 47, 283–290. 

Sogard, S.M., 1992. Variability in growth rates of juvenile fishes in different estuarine habitats. 

Marine Ecology Progress Series 85, 35–53. 

Sogard, S.M., 1997. Size-selective mortality in the juvenile stage of teleost fishes: a review. 

Bulletin of Marine Science 60, 1129–1157. 

Van der Veer, H.W., Phil, L., Bergman, M.J.N., 1990. Recruitment mechanisms in North Sea 

Plaice Pleuronectes platessa. Marine Ecology Progress Series 64, 1–12. 



                                                                                                                           Chapter 4 

 - 134 -

Weber, L.P., Higgins, P.S., Carlson, R.I., Janz, D., 2003. Development and validation of 

methods for measuring multiple biochemical indices of condition in juvenile fishes. Journal 

of Fish Biology 63, 637–658. doi: 10.1046/j.1095-8649.2003.00178.x 

Westerman, M., Holt, G., 1994. RNA : DNA during the critical period and early larval growth of 

the red drum Sciaenops ocellatus. Marine Biology 121, 1–9. 

Yamashita Y., Tominaga O., Takani, H., Yamada, H., 2003. Comparison of growth, feeding and 

cortisol level in Platichthys bicoloratus juveniles between estuarine and nearshore nursery 

grounds. Journal of Fish Biology 63, 617–630. doi: 10.1046/ j.1095-8649.2003.00175.x 

Zar, J.H., 1996. Biostatistical Analysis, 3rd edn. New Jersey: Prentice Hall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                           Chapter 4 

 - 135 -

Habitat specific growth rates and condition indices for the 

sympatric soles Solea solea (Linnaeus, 1758) and Solea 

senegalensis Kaup 1858, in the Tagus estuary, Portugal, 

based on otolith daily increments and RNA-DNA ratio. 

 
Abstract: Habitat specific growth rates and condition indices were estimated for Solea solea 
(Linnaeus, 1758) and Solea senegalensis Kaup, 1858, in two nursery areas within the Tagus 
estuary. While in the uppermost nursery area the two species of sole live in sympatry, in the 
lower nursery only S. senegalensis is present. Daily increments of left lapillar otoliths were 
used to estimate age and determine growth rates. Condition indices were assessed through 
RNA-DNA ratio in muscle samples. Growth rates were higher for S. senegalensis than for S. 
solea. Growth rates of S. senegalensis from the uppermost nursery area were lower when 
compared to those obtained for the other nursery. The RNA/DNA condition index followed the 
general trend given by the growth rate estimates, i.e. values were higher for S. senegalensis 
than for S. solea. However, no significant differences were detected between the condition of 
S. senegalensis from the two nurseries. Larger variations in salinity and highest pollution 
loads may be important factors lowering the habitat quality of the uppermost nursery in 
comparison to the lower nursery. The use of growth rate estimates based on otolith readings 
and the RNA/DNA index as tools for habitat quality assessment was discussed. 
 
 
Key-words: Growth variability; Nutritional condition; RNA-DNA ratio; Solea senegalensis; 
Solea solea. 
 

 

 
Introduction 

Growth and survival in early life stages strongly influence successful recruitment to the 

adult populations (Houde, 1987, van der Veer et al., 1990). Rapid growth means that less time 

is spent in the most vulnerable size ranges and that larger individuals will prevail by the end of 

the nursery period, along with the competitive advantages related to it (van der Veer and 

Bergman, 1987; Ellis and Gibson, 1995; Sogard, 1992; 1997). 

Fish nurseries are generally located in areas, such as estuaries and shallow coastal 

waters, which provide suitable conditions for survival and enhancement of growth, namely high 

food abundance, refuge from predators and higher water temperature (Haedrich, 1983; Miller et 

al., 1985; Beck et al., 2001). Such areas can be considered of higher habitat quality for juvenile 

fish than surrounding waters.  

Assessing habitat quality of nursery areas has been a long pursued goal for estuarine 

and marine biologists due to its importance for the identification of essential fish habitats in 

species life cycles (e.g. Sustainable Fisheries Act, 1996; Brown et al., 2000; Eastwood et al., 

2003; LePape et al., 2003). The recent European Water Framework (Directive 2000/60/EC; EC, 
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2000) follows a similar philosophy, concentrating on the need for identification and protection of 

specific water bodies (e.g. estuaries).  

Habitat quality cannot be measured directly and should always be assessed on a 

comparative basis (Gibson, 1994; Adams, 2002). Also, the comparison of several indices is 

advised for this purpose (Ferron and Legget, 1994). 

The estimation of habitat specific growth rates is a key step for the determination of 

habitat quality (Able et al., 1999). Growth rates based on otolith daily rings provide an accurate 

measure of growth that integrates the whole life of the fish. 

Because of the dynamic nature of estuarine environments it is also of great importance 

to assess the individual-environmental linkage on short time scales. Nucleic acid quantification 

and subsequent RNA-DNA ratios has been used in numerous studies as indices for nutritional 

condition and growth assessment in larvae and juvenile fish (e.g. Buckley, 1984; Richard et al., 

1991; Gwak and Tanaka, 2001). This biochemical index reflects variations in growth related 

protein synthesis, since RNA concentration fluctuates both with food intake and protein 

requirement, while DNA somatic content remains constant, providing a recent picture of overall 

fish condition and growth (Bullow, 1970; Buckley and Bulow, 1987).   

Few studies have assessed habitat quality and compared different sites. Habitat quality 

differences have been found along pollution gradients (Burke et al., 1993), in areas impacted by 

man-made structures (Able et al., 1999), in protected marine reserves (Lloret and Planes, 2003) 

and between estuarine and nearshore flatfish nurseries (Yamashita et al., 2003; Gilliers et al., 

2004). 

The Tagus estuary is used has a nursery area by two commercially important species of 

sole, the common sole Solea solea (Linnaeus, 1758) and the Senegal sole, Solea senegalensis 

Kaup 1858 (Costa and Bruxelas, 1989; Cabral and Costa, 1999). Two nursery areas have been 

identified within the estuary, one in the uppermost section that is used by both species 

juveniles, and another in the upper eastern section (also in the upper estuary but at a lower 

location), used only by S. senegalensis (Costa and Bruxelas, 1989; Cabral and Costa, 1999). 

Niche overlap has been reported, albeit for a short period (Cabral, 2000). Cabral (2003) 

and Fonseca et al. (2006) reported higher growth rates for soles in the Tagus estuary than in 

other important North-European nurseries, using modal progression analysis. Fonseca et al. 

(2006) concluded that RNA/DNA variation patterns over the nursery period reflected growth and 

estuarine colonization patterns. Yet, both authors pointed at the limitations of length frequency 

progression methods and called out for the application of a more accurate growth rate 

determination method.  

While S. solea is a temperate species with a distribution that ranges from the Baltic Sea 

to Senegal, S. senegalensis is a tropical species that ranges from South Africa to the Bay of 

Biscay (Quéro et al., 1986). The Tagus estuary is one of the few nurseries where both sole 

species are present in high abundance (Cabral and Costa, 1999).  

Studies on S. senegalensis ecology are scarce (Dinis, 1986; Andrade, 1992; Cabral and 

Costa, 1999; Cabral 2000; 2003; Anguis and Cañavate, 2005) and do not allow for conclusive 
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remarks about recruitment variability, while for S. solea an important body of literature has 

already been developed. It is generally agreed that recruitment of S. solea is determined before 

the end of the first year of life, and that water temperature plays an important role (e.g. 

Rijnsdorp et al., 1992; Wegner et al., 2003; Henderson and Seaby, 2005).  

However, most studies were conducted in temperate waters. In fact, Van der Veer et al. 

(1994) concluded that the restricted latitude range where most knowledge on flatfish was 

gathered may have biased the conclusions. The understanding of the factors controlling 

recruitment in flatfish, and soles in particular, is hampered by the lack of studies in subtropical 

and tropical areas (van der Veer et al., 1994; Pauly, 1994), where longer photoperiod, higher 

temperatures, and a wider period of high primary productivity allow longer spawning and 

settlement periods, along with higher growth rates.  

Understanding the role of habitat quality in the early life of fish over its full range of 

distribution is very important for essential fish habitat determination, particularly for species such 

as the soles that are the main target of fisheries over a wide geographical area.  

The present paper aims at: (1) estimating habitat specific growth rates and condition 

indices in S. solea and S. senegalensis, in two nursery areas of the Tagus estuary (Portugal) 

based on otolith daily rings and RNA-DNA ratio, respectively; and at (2) discussing the use of 

both methodologies as tools for habitat quality monitoring. 

 

 

Material and Methods 
Study areas 

The Tagus estuary (Fig.1), one of the largest estuaries in Western Europe (320 km2), is 

a partially mixed estuary with a tidal range of ca. 4 m. Approximately 40% of the estuarine area 

is intertidal. Much of its upper area is composed by extensive intertidal mudflats fringed by 

saltmarshes (Caçador and Vale, 2001). Two important sole nurseries were identified in the 

Tagus estuary in previous studies (A, Vila Franca de Xira, and B, Alcochete; Fig. 1) by Costa 

and Bruxelas (1989) and Cabral and Costa (1999).  

Although most of the environmental factors present a wide and similar range in these 

two areas, some differences can be outlined. The uppermost area, A, is deeper (mean depth 

4.4 m), presents lower and highly variable salinity and has a higher proportion of fine sand in 

the substract (approximately 40%). Nursery B is shallower (mean depth 1.9 m), and more 

saline, with lower variability in salinity, while substrate is mainly composed of mud (mean value 

60.4%) (Cabral, 1998; Cabral and Costa, 1999). Nursery A is located in an industrialised area 

that receives important quantities of industrial and urban sewage, while nursery B is located in 

an area with much lower human pressure and no important industries (Vale, 1986). Previous 

studies on heavy metals presence in subtidal sediments have also revealed that nursery A 

presents a higher concentration of heavy metals than nursery B (França et al., 2005). 

Climate in this area is Mediterranean with mild winters and warm and dry summers 

(Aschmann, 1973).  
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Figure 1 – Location of the nursery areas in the Tagus estuary 

 

Environmental data 

In each trawl environmental data, such as water temperature and salinity, were 

registered with a multiparameter probe. Environmental data were statistically explored with 

SYSTAT 10.0. Mean values and standard deviations were estimated for water temperature and 

salinity in both nursery areas during the June-July period. 

 
Juvenile collections 

Both nurseries were surveyed monthly from March to October 2005 in order to 

determine the beginning and the end of estuarine colonization by soles’ 0-group juveniles. From 

late June (when the first 0-group juveniles were detected in the nursery areas) and during July 

(when colonization ended) surveys were intensified, taking place at approximately two weeks 

intervals, in order to better determine the end of the estuarine immigration process of the first 

cohort of each species. 

S. solea is a temperate species and thus has a temporally restricted spawning period 

leading to a concentrated in time estuarine colonization. S. senegalensis, however, has a very 

wide spawning period (Anguis and Cañavate, 2005) which is characteristic of tropical species 

and leads to several successive cohorts. Cabral (2003) and Fonseca et al. (2006) observed that 

growth and condition is higher for the first cohort of both species entering the estuary, indicating 

that direct comparisons should take into account the estuarine colonisation process. In 2005, 

the first cohort of both species occurred at approximately the same time, presenting the highest 
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densities when compared to subsequent cohorts. In order to work with comparable samples 

containing enough number of individuals for growth and condition assessment, we chose to 

study the first cohort of each species. 

Length frequency of the first cohorts of 0-group juveniles was analysed at the end of the 

colonization period for each nursery area and for each species (Fig. 2). Age and condition were 

determined in 0-group S. solea and S. senegalensis collected at 8 stations in nursery A and in 

0-group S. senegalensis collected at 6 stations in nursery B (at the end of the estuarine 

colonization). Trawls were conducted with a 2.5 m beam trawl with 5 mm stretched mesh at the 

codend. 

All samples were frozen immediately after collection. In the laboratory individuals were 

identified, counted and their total length measured to the nearest mm. 

 

Growth rate estimation 

Otoliths of a subsample of juveniles chosen randomly from each length category (5 mm 

length categories) were examined. The daily nature of the otoliths increments were validated by 

Lagardère and Troadec (1997) for S. solea and by Ré et al. (1988) for S. senegalensis. The left 

lapillus, which has the longest axis due to the bilateral asymmetry between the right and left 

lapillus, was used for all age estimates. Lapillar otoliths were used because they are relatively 

thin and have well-defined increments that are spatially more uniform than in sagittae otoliths 

which have accessory primordia (Amara et al., 1994). Otoliths were removed and mounted with 

glue on microscope slides. They were polished in the sagital plane to the central primordial with 

an aluminium oxide polishing bar. 

Otoliths were analysed under transmitted light at x400 or x1000 magnification, using a 

video system fitted to a compound microscope. Otolith counts were made along the posterior 

axis. Otolith increments were counted three times, and the age was regarded as the mean of 

the three counts. Precision was estimated by computing the coefficient of variation. Otoliths 

were eliminated whenever the reading variation was above 5%. 

Age was estimated for 151 S. solea and 59 S. senegalensis from nursery A, and for 52 

S. senegalensis from nursery B.  

Growth was described by a linear model. An analysis of covariance (ANCOVA) was 

conducted to test differences in growth between nursery areas and species (slope of age 

against length). 

 

RNA-DNA ratio determination 

Nucleic acid determination was carried out following the fluorometric method described 

by Caldarone et al. (2001) and adapted to a cuvette spectrofluorometer, as described in 

Fonseca et al. (2006). Detection limits, standard calibration curves for RNA, DNA and spike 

recovery of homogenate samples (n = 3) were first determined with a series of dilutions of pure 

calf-thymus DNA (Calbiochem) and 18S- and 28S-rRNA (Sigma). Tissue sample 

autofluorescence and residual fluorescence were analysed, the later by adding 1 U µl-1 DNase 
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(n = 3) (Sigma). Concentrations of stock standard RNA and DNA solutions were first checked 

with and UV-spectrophotometer. 

To ensure reproducibility, two 20 mg (dry weight) replicates of each juvenile sole were 

analysed. White muscle was homogenised through short term ice-sonication with 200 µl of 1% 

sarcosine solution (N-lauroylsarcosine), and then diluted with 1.8 ml Tris-EDTA buffer (Trizma, 

pH 7.5) (sarcosine final concentration of 0.1 %). Total nucleic acid fluorescence (RNA and DNA) 

was measured by adding 300 µl sample homogenate, 1.8 ml Tris-EDTA and 150 µl Ethidium 

Bromide (EB, 1 mg ml-1) to the first vial. DNA fluorescence was determined by digesting RNA 

content with 150 µl RNase (A from bovine pancreas, 20 U ml-1 incubated at 37ºC for 30 min, 

Sigma) in the second vial containing 300 µl sample homogenate, 1.65 ml Tris-EDTA and 150 µl 

EB. Excitation and emission wavelengths used were 360 nm and 600 nm, respectively. RNA 

fluorescence value was determined by subtracting the DNA fluorescence reading (second 

reading) from the total fluorescence value (first reading). RNA and DNA content in tissue 

samples was calculated through calibration curves constructed previously plus the dilution 

factors used. 

T tests were performed in order to compare the condition between the two nursery 

areas, and between both species. Interspecific comparison is generally not carried out since 

RNA-DNA ratio is species specific (Bullow, 1987). Yet, S. solea and S. senegalensis are 

genetically very closely related and are thus regarded as sister-species (Ben-Tuvia, 1990; Tinti 

and Picinetti, 2000), for that reason we found that between species comparison of this condition 

index was both interesting and justified. Since the RNA-DNA ratio is dependent on the 

individuals age tests were performed only between overlapping length ranges. Comparisons 

were made between both species at nursery A and between S. senegalensis from nursery A 

and B. The software used for the test procedures was STATISTICA. 

 

 

Results 
In the June-July period, mean salinity in nursery A was 12.9 ‰ (standard deviation = 

3.0; minimum = 6.9 ‰; maximum = 16.9 ‰), while in nursery B it was 32.5 ‰ (standard 

deviation = 0.1; minimum = 32.4 ‰; maximum = 32.6 ‰). Mean water temperature in nursery A 

was 24.4ºC (standard deviation = 0.9; minimum = 23.5ºC; maximum = 25.7ºC), while in nursery 

B it was 25.0ºC (standard deviation = 0.5; minimum = 24.3ºC; maximum = 25.9ºC).  

The first cohorts of both soles colonized the estuary in June-July, establishing spatial 

and temporal sympatry in the upper nursery area, but not in the lower nursery where only S. 

senegalensis was present, as previously observed (Cabral and Costa, 1999; Cabral, 2003). As 

expected the first cohort of S. senegalensis was followed by new cohorts entering the estuary in 

the following months. S. solea presented only one cohort. 

Length frequency distribution of 0-group juveniles at the end of the colonization period 

showed approximately normal distributions for both species and nurseries studied (Fig. 2).  
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Growth during the first months following settlement was best described by a linear 

model (Fig. 3). S. solea 0-group juveniles growth rate was estimated to be 0.767 mm/d (range 

of total length of individuals analysed, TL : 57-109 mm; n = 215) in nursery A. S. senegalensis 

0-group juveniles growth rate was estimated as 0.970 mm/d (range of total length  
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Figure 2 – Length-frequency distribution of 0-group soles caught in the Tagus estuary: a) S. 

solea caught at nursery A; b) S. senegalensis caught at nursery A; c) S. senegalensis caught at 

nursery B. 
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Figure 3 - Regression of soles total length (mm) against estimated age (days) by daily otolith 

increments: a) S. solea caught at nursery A; b) S. senegalensis caught at nursery A; c) S. 

senegalensis caught at nursery B. 
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of individuals analysed, TL : 36-99 mm; n = 59) in nursery A,  while in nursery B growth rate was 

estimated as 1.180 mm/d (range of total length of individuals analysed, TL : 19-52 mm; n = 52). 

Thus, S. solea presented a slower growth rate than S. senegalensis from both nurseries 

(p < 0.05), while S. senegalensis from nursery B presented the fastest growth rate (p < 0.05). 

Mean RNA-DNA ratio was 2.90 for S. solea (nursery A), while for S. senegalensis it was 3.50 in 

nursery A and 4.01 in nursery B. Condition was significantly different between the two species 

in nursery A (t test = -3.81, p < 0.05), while no significant differences were detected between S. 

senegalensis from nursery A and B (t = 0.25, p > 0.05). 
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Figure 4 - RNA-DNA mean ratios (and standard deviations) for 0-group S. 

solea from nursery A ; for S. senegalensis from nursery A  and 

for S. senegalensis from nursery B . 

 

Condition peaked in the second length class in both species from nursery A, while in 

nursery B peak condition was observed in the third length class (Fig.4). After reaching a peak 

RNA-DNA ratio declined with fish length in both species. The smaller category lengths 

presented low values, especially in S. senegalensis from nursery B.  

 

 

Discussion 
Habitat specific growth rates estimated through otolith readings revealed differences 

between nurseries and sole species, while habitat specific condition based on RNA-DNA ratio 

revealed differences between species but not between nurseries. 

Higher growth rates were found in S. senegalensis from nursery B than from nursery A. 

RNA-DNA ratios didn’t reveal differences between nursery areas, but were higher for S. 
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senegalensis than for S. solea, both inhabiting nursery A. Interspecific comparison of growth 

rates within nursery A also revealed a higher value for S. senegalensis.  These results seem to 

indicate that nursery B has a higher habitat quality than nursery A. This is in accordance with 

Fonseca et al. (2006) that also observed higher RNA-DNA ratios for the first cohort of S. 

senegalensis in nursery B than in nursery A, for two consecutive years (2003-2004). Previous 

studies on soles growth in the Tagus estuary (Costa, 1990; Cabral, 2003; Fonseca et al. 2006) 

did not aim to compare the different nursery areas and made no distinction between them, using 

the population has a whole. 

Differences between nursery areas depend on multiple factors not always clearly 

identifiable due to the highly complex and variable nature of estuarine systems. Yet, differences 

between the sole nurseries in the Tagus estuary are possibly related to salinity and pollution 

levels. Nursery B has more stable salinity levels than nursery A, implying that an important 

amount of energy, that would be used for constant adjustment to salinity variation, can be 

diverted to growth (Evans, 1993; Moyle and Cech, 1996). Another important aspect that 

differentiates nursery A from B is the pollution load and human pressure (França et al., 2005). 

The lower levels of pollution stress that fish are exposed to in nursery B should be important for 

the general health and growth of individuals. 

Growth rates for S. solea were higher in the Tagus than in Northern European nursery 

areas (e.g. Rogers, 1994; Amara et al., 2001; Amara, 2004). This was also reported by Cabral 

(2003) and Fonseca et al. (2006) using modal progression analysis of length-frequency data. 

Higher growth rates are to be expected in southern Europe due to higher water temperature 

(Yamashita et al., 2001; Henderson and Seaby, 2005) as well as longer photoperiod throughout 

the year (Devauchelle et al., 1987; Boeuf, H. and Le Bail, 1999). 

S. senegalensis growth rates were higher than reported by Andrade (1992) in the Ria Formosa 

and Cabral (2003) in the Tagus estuary but similar to those reported by Fonseca et al. (2006) 

for the first cohort of this species in the Tagus estuary.  

RNA-DNA ratios for juvenile soles were within the range of other studies on juvenile 

flatfishes (-1.1 to 8.2) (e.g. Mathers et al., 1992; Gwak and Tanaka, 2001; Yamashita et al., 

2003; Fonseca et al., 2006). For S. solea, Gilliers et al. (2004) estimated RNA-DNA ratios 

between 1.40 and 4.30 in the Northern French coast. Starvation experiments with reared S. 

solea concluded that RNA-DNA ratio of fed fish was around 2, while that of starved fish usually 

dropped below this value (Richard et al., 1991). Richard et al. (1991) pointed out that indices 

from reared and wild fish must be compared cautiously, since food offered to captive fish may 

be of lower nutritional value than wild prey. Keeping this important issue in mind it can be 

concluded that soles from the Tagus estuary were in a fairly good nutritional status, since mean 

RNA-DNA ratios were always above 2 and varied between 2.21 and 4.22. 

As reported by other authors, the RNA-DNA ratio was found to be dependent on age 

(Buckley and Bulow, 1987; Buckley et al., 1999). A distinctive pattern of decreasing RNA-DNA 

ratio with fish length was observed for both species in nursery A, but not in nursery B. Lower 

condition values were noticeable in the first length classes for both species and nursery areas, 
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and were especially evident in nursery B. Since the RNA-DNA ratio reflects recent growth, this 

could be due to temporarily unfavourable conditions that affected the smaller individuals of both 

nurseries and species. 

The higher growth rates and condition of S. senegalensis when compared to S. solea 

can have important implications in a warming climate scenario. S. senegalensis appears to be 

better adapted than S. solea to the present environmental conditions of the Tagus estuary. 

Temperature is one of the most important factors determining growth and this estuary has 

higher temperatures than the northern European estuaries where S. solea thrives but S. 

senegalensis is not present. Water temperature in the upper Tagus estuary is usually above 

23ºC during the Summer months, well above the S. solea metabolic optimum temperature, 

which is approximately 19ºC (LeFrançois and Claireaux, 2003). S. senegalensis metabolic 

optimum temperature has not yet been determined, but being this a subtropical species it will 

probably be higher than that of S. solea. Also, spawning, egg incubation and rearing 

temperatures for S. senegalensis are considerably higher than for S. solea (Imsland et al., 

2003). This way, in a warming climate scenario lower densities of temperate species such as S. 

solea and higher densities of subtropical species such as S. senegalensis are to be expected, 

like pointed out by Cabral et al. (2001). 

Both methods used in the present study provided valuable information concerning 

habitat quality. While growth rates estimated from daily otolith rings provide long term 

information on growth throughout the whole life of the fish, RNA-DNA ratios only inform about 

recent growth. Thus growth rates based on otolith readings are influenced not just by the habitat 

quality of past months in the nursery, but also by the marine environment prior to immigration to 

the nursery areas. This may be a limitation when the objective is to estimate habitat quality 

solely in an estuarine nursery area. Nonetheless, the integration of information over the months 

spent in the nursery is very important for quality assessment.  

Recent growth assessed through RNA-DNA ratios is quite valuable since it is based 

solely on the conditions provided by the nursery area, yet it can be influenced by unusual 

events that do not reflect the average habitat quality of the area. Intensive sampling for RNA-

DNA ratios determination starting at the beginning of the estuarine colonization could yield very 

interesting results yet since this index only reflects the nutritional condition of the fish over a 

period of about 3 days the assessment of habitat quality over a period of ca. two months would 

be quite costly and time consuming.  

Therefore, the combination of both indices used in this study integrating habitat quality 

over a long period with recent condition is quite interesting for habitat quality determination in 

highly variable environments such as estuarine nurseries, since the information given by both 

methods complements each other.  

Other methods such as recent growth estimation based on marginal otolith increment 

width (e.g. Amara and Galois, 2004; Gilliers et al., 2004), condition based on protein 

concentration (e.g. Peragón et al., 2001; Weber et al., 2003), condition based on lipid content 

(e.g. Galois et al., 1990; Lloret and Planes, 2003; Weber et al., 2003; Amara and Galois, 2004)  
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and the use of molecular biomarkers in areas subjected to pollution (e.g. Nunes et al., 2005; 

Rendón-von Osten et al., 2005) are also very promising. Further research will certainly 

determine the most appropriate combinations of indices for each species and habitat type.  
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Latitudinal variation in spawning period and growth of 0-

group sole, Solea solea (L.). 

 
Abstract: 0-group sole, Solea solea (Linnaeus, 1758) were sampled in four nursery grounds: 
two in the Northern French coast and two in the Portuguese coast. Juvenile sole were 
collected at the Vilaine estuary (Northern Bay of Biscay) in 1992, in the Authie estuary 
(Eastern English Channel) in 1997, and in the Douro and Tagus estuary (Northern and central 
Portugal, respectively) in 2005. Left lapilli otoliths were used to estimate age and investigate 
variability in growth rates and hatch dates. In the French study areas nursery colonisation 
ended in early June in the Vilaine estuary and in late June in the Authie estuary. In the 
Portuguese estuaries nursery colonisation ended in May in the Douro estuary and in late June 
in the Tagus estuary. Growth rates were higher in the Portuguese estuaries, 0.767 mm.d-1 in 
the Tagus estuary and 0.903 mm.d-1 in the Douro estuary. In the French nurseries, growth 
rates were estimated to be 0.473 mm.d-1 in the Villaine estuary and 0.460 mm.d-1 in the 
Authie estuary. Data on growth rates from other studies shows that growth rates are higher at 
lower latitudes, probably due to higher water temperature. Spawning took place between early 
January and early April in the Villaine estuary’s coastal area in 1992. In 1997, in the Authie 
estuary spawning started in late January and ended in early April. In the Douro estuary’s 
adjacent coast spawning started in mid-January and ended in late-March, in 2005, while in the 
Tagus estuary’s adjacent coast spawning started in mid-February and ended in mid-April, in 
the same year. Literature analysis of the spawning period of sole along a latitudinal gradient 
ranging from 38ºN to 55ºN in Northeast Atlantic indicated that there is a latitudinal trend, in 
that spawning starts sooner at lower latitudes. Results support that local conditions, 
particularly hydrodynamics, may overrule general latitudinal trends. 
 
 
Key-words: Latitudinal variation; Growth; Spawning; Solea solea; Juvenile nursery grounds; 
Northeast Atlantic 
 

 

 
Introduction 

Determination of spawning period and 0-group juveniles’ growth in fish is very important 

for the study of fish recruitment. Temporal changes in spawning can contribute to variations in 

year-class strength by influencing the spatial and temporal coexistence of larvae, prey 

availability, predator abundance, and favourable environmental conditions. Growth during the 

first months of life is also crucial for fish survival, since faster growth implies improved predator 

avoidance and a wider choice in prey (Van der Veer and Bergman, 1987; Ellis and Gibson, 

1995; Sogard, 1992; 1997). However, the study of spawning in fish is generally difficult and time 

consuming, since it requires previous knowledge of the main spawning areas and several 

successive egg sampling surveys throughout the spawning period which generally extends over 

several months.  

The discovery of daily increments in the otoliths of marine fish (Pannella, 1971) 

provided a powerful tool to study the early life history of fish. Counts of such increments have 

been used to examine temporal and spatial variability in spawning and growth rates (Methot, 

1983 ; Yoklavich and Bailey, 1990). Hatch-dates of the young juveniles collected in coastal 
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nursery grounds at the end of the settlement period, can thus be back-calculated, overcoming 

the difficulties of traditional successive egg sampling. 

The study of fish recruitment requires not only the determination of spawning periods 

and 0-group juveniles’ growth but also the identification of the factors which govern their 

dynamics. Several studies suggest that the factors controlling recruitment of a species vary over 

its geographic range, e.g. along a latitudinal gradient (Houde, 1989; Miller et al., 1991; Pauly, 

1994).  

Miller et al. (1991) developed the latter called “species range hypotheses” (Leggett and 

Frank, 1997) which assumes that species differ in their susceptibility to different controls on 

recruitment due to different life history traits, and that species life history traits vary over their 

distribution range. Controlling factors will, this way, differ over latitudinal and inshore-offshore 

gradients. Looking at the latitudinal and inshore-offshore variation in food, predation and abiotic 

factors these assumptions lead to the following implications: (1) abiotic factors are most 

important at the edges of the species range; (2) predation plus abiotic factors control 

recruitment at the polar edge of the range; (3) food plus abiotic factors control recruitment at the 

equatorial edge. Miller et al. (1991) also predicted that recruitment would be more variable at 

the polar edge of the species range, least near the centre of the range, and be intermediate 

near the equatorial edge. However, they pointed out that inshore-offshore environmental 

gradients may swamp latitudinal effects. 

Since then, several studies observed variation patterns that do not correspond to the 

“species range hypotheses” expectation (Walsh, 1994; Leggett and Frank, 1997; Phillipart et al. 

1998). Van der Veer et al. (2000) concluded that the likely trends in food, predation and abiotic 

factors, on which Miller et al. (1991) based their hypotheses, will probably act only in the 

juvenile stage, while year-class strength appears to be established already in the pelagic phase 

(Leggett and Frank, 1997; Van der Veer et al. 2000). The dominance of density independent 

factors operating at a local scale on the eggs and larvae stresses the importance of 

hydrodynamic circulation as a key factor in determining recruitment in flatfish (Leggett and 

Frank, 1997). 

In a global perspective on flatfish distribution, Pauly (1994) analysed major latitudinal 

trends in recruitment concluding that their ultimate cause was a temperature mediated 

difference in metabolic rate (Pauly, 1978, 1979). This author also noted that while in temperate 

waters there is one narrow peak of flatfish spawning and recruitment (Cushing, 1975) 

consequence of the single annual peak of primary production, in tropical waters there is not one 

spawning peak but two extended spawning periods of unequal importance that reflect primary 

production dynamics in warm waters (Pauly and Navaluna, 1983). The difference in the 

importance of these two spawning and recruitment periods increases gradually towards higher 

latitudes until it is reduced to the narrow peak observed in temperate waters (Pauly, 1994).  

The common sole, Solea solea (Linnaeus, 1758), is a flatfish of high commercial 

importance in Northwest Europe. This species is found in coastal waters of the eastern North 

Atlantic, from western Scotland and the western Baltic Sea to Southern Western Europe, 
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including the Mediterranean and extending southwards along the African coast as far as 

Senegal (Whitehead et al., 1986). Sole spawns over winter and spring generally at depths 

between 40m and 100m (Koutsikopoulos et al., 1991; Wegner et al. 2003Several studies have 

assessed the factors affecting recruitment in sole and, although some conclusions may seem 

contradictory (e.g. Henderson and Holmes, 1991; Henderson and Seaby, 1994 and Rijnsdorp et 

al. 1992), it is generally agreed that recruitment of sole is determined before the end of the first 

year of life and that water temperature plays an important role (e.g. Rijnsdorp et al., 1992; Van 

der Veer et al. 2000; Wegner et al., 2003; Henderson and Seaby, 2005). However, all of these 

studies were carried out in temperate waters; in fact Van der Veer et al. (1994) concluded that 

most studies on flatfish recruitment were conducted in temperate systems which may have 

biased the conclusions. They also referred that recruitment variability increases towards lower 

latitudes. Due to more prolonged spawning and settlement periods, variability in juvenile size 

increases and therefore size-selective mortality becomes an important factor. The 

understanding of the factors controlling recruitment in flatfish, and sole in particular, is 

hampered by the lack of studies in (sub)tropical areas (Van der Veer et al., 1994; Pauly, 1994).  

The understanding of the recruitment process over the whole distribution area of sole will bring 

new insights into the population dynamics of this species. 

The main objectives of the present work were to assess geographical differences in 1) 

timing of spawning, and 2) growth rates of S. solea juveniles during their first months following 

settlement, in the Northeast Atlantic. 

 

 

Materials and Methods 
Study areas 

Nursery grounds studied in France are located on the Northern French coast (Fig.1). 

The Villaine and the Authie estuary were chosen for this study because they are located at 

latitudes where climate is temperate and sole population dynamics is well documented (e.g. 

Lagardère, 1987; Koutsikoupolos et al., 1989; Marchand, 1991; Koutsikoupolos and Lacroix, 

1992; Amara et al.,1993; 1994; Amara, 2004; Le Pape et al., 2003). Climate in this area is 

temperate.  

Nursery areas studied in Portugal are located in the Portuguese West coast (Fig.1). The 

Douro and Tagus estuaries were chosen for this study because they are two of the most 

important nursery areas for this species at its subtropical range (Cabral et al., 2007) and also 

because they are located at different latitudes and at a considerable distance (ca. 300 km) 

(Fig.1). Climate in this area is Mediterranean with mild winters and warm, dry summers 

(Aschmann, 1973).  
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Figure 1 – Map of Western Europe (arrows point at 

the study areas). 

 

Water temperatures in the adjacent coast of the study areas, during a broad period that 

encompasses the spawning period (in the area between the 50 m and the 100 m bathymetric), 

were accessed at the World Data Center for Remote Sensing of the Atmosphere (WDC-RSAT) 

and consist on Sea Surface Temperature derived from NOAA-AVHRR data. The range of SST 

values in this database is scaled between 0.125°C and 31.75°C (maximum temperature). The 

radiometric resolution is 0.125°C. Data from all six of the passes that the satellite makes over 

Europe in each 24 hour period are used. The SST maps are composed according the maximum 

temperature value given at every pixel's position to minimize cloud coverage. Weekly values 

were derived from the daily maximum images using the average at every pixel's position (Fig.2 

and 3).  
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Figure 2 – Surface sea water water temperatures in the 

study areas of France (Authie estuary data (1996-97) 

presented in black, Vilaine coastal area data (1991-92) 

presented in grey). 
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Figure 3 – Surface sea water water temperatures in the 

study areas of Portugal (Douro estuary’s adjacent coastal 

area data presented in black, Tagus estuary’s adjacent 

coastal area data presented in grey). 

 
Juvenile collections 

0-group sole were collected at the end of the settlement period on four important and 

geographically distant nursery grounds of the French and Portuguese coasts. Samples were 

collected throughout the immigration period and length frequency distributions were analysed in 
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order to determine the end of estuarine colonization. French estuaries were surveyed year 

around, every two weeks. 

Both Portuguese estuaries were surveyed monthly from March to September 2005. 

Surveys were intensified from early May in the Douro and from early June in the Tagus (when 

the first 0-group juveniles were detected in the nursery areas) until July, taking place at 

approximately two weeks intervals, in order to better determine the end of the estuarine 

immigration process of the first cohort. Length frequency of 0-group juveniles at the end of the 

colonization period was analysed for each study area.  

In the Vilaine estuary, estuarine colonization ended in June in 1992. 0-group sole were 

collected from 13 stations on the 2nd of June 1992, with a small sledge (1 m wide by 0.3 m high, 

4.1 m length) without tickler chains, fitted with a 5 mm mesh mouth and a 1.5 mm codend 

(Marchand and Masson, 1988). The average depth in this area is 6 m at mean tide. In the 

Authie estuary, estuarine colonization ended in June, in 1997. Samples were carried out at 8 

stations parallel to the coast (the average depth is 5 m at mean tide) on 24 June 1997. 

Juveniles were collected with a 3 m beam trawl with one tickler chain and fitted with 14 mm 

mesh mouth and 6 mm codend. In the Douro estuary, estuarine colonization ended in May, in 

2005. 0-group sole were collected at 10 stations on 7th May 2005. Trawls were conducted with 

a 12 m otter-trawl with 10 mm mesh size (stretched mesh) and a 5 mm codend (beam-trawling 

is not possible in the Douro estuary due to its bottom morphology). To ensure that the trawl 

would not lose contact with the bottom, and thereby maintaining a high catching efficiency for 

flatfish, the ground rope of the trawl was equipped with a heavy metal chain. In the Tagus 

estuary colonization ended in late June in 2005. 0-group sole were collected at 10 stations on 

the 27th June 2005. Trawls were conducted with a 2.5 m beam trawl with 10 mm mesh size 

(stretched mesh) and a 5 mm codend. Differences in fishing methods are not important, since 

the aim of the present study was to analyse the populations structure in terms of age and length 

and not to directly compare densities. 

All samples were preserved in 95% ethanol (in France) or immediately frozen (in 

Portugal). In the laboratory all soles were counted and total length (TL) measured to the nearest 

1 mm. 

 

Age and growth determination 

Otoliths of a subsample of juveniles chosen randomly from each length category (5 mm) 

were examined. The left lapillus, which has the longest axis due to the bilateral asymmetry 

between the right and left lapillus, was used for all age estimates. Lapilli otoliths were used 

because they are relatively thin and have well-defined increments spatially more uniform than in 

sagittae otoliths which have accessory primordia (Amara et al., 1994). 

Otoliths were analysed under transmitted light at X400 or X1000 magnification, using a 

video system fitted to a compound microscope. Otolith counts and measurements were made 

along the posterior axis. Otolith increments were counted three times, and the age was 

regarded as the mean of the three counts. 
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Growth was described by a linear model. An analysis of covariance (ANCOVA) was 

done to test among geographic area differences in growth (slope of age against length) over the 

first months of the juvenile life. 

 

Back-calculation of spawning date distributions 

Hatch-dates were estimated from age and date of capture. Duration of the embrionary 

period was calculated based on Fonds (1979), according to the water temperature. Length-

frequency distributions were converted to age using separate age-length keys developed from 

sub-samples of fish within each year and for each of the four areas. Spawning periods along a 

latitudinal gradient in the Northeast Atlantic were compared based on the present work and 

published literature. 

 

 

Results 
Length frequency distribution of 0-group sole at the end of the colonization period 

showed a normal distribution fit in all nurseries studied (Fig. 4). Growth during the first months 

following settlement was best described by a linear model (Fig. 5). In the Vilaine estuary, growth 

rates of 0-group juveniles were estimated to be 0.473 mm.d-1 (range of total length of individuals 

analysed, TL : 20-66 mm; n = 198) in 1992, while in  the Eastern Channel growth rate was 

estimated to be 0.460 mm.d-1 (LT : 19-65 mm; n = 226) in 1997. In the Douro estuary, 0-group 

juveniles growth rate was estimated to be 0.903 mm.d-1 (range of total length of individuals 

analysed, TL : 31-91 mm; n = 60) in 2005, while in the Tagus estuary 0-group juveniles growth 

rate was estimated to be 0.767 mm.d-1 (range of total length of individuals analysed, TL : 57-109 

mm; n = 215) in 2005. Significant differences were found in the growth rates between all sites 

analysed (P < 0.05). 

The spawning period of the Vilaine estuary juveniles took place from early January to 

early April in 1992 (Fig.6). For the Eastern Channel juvenile sole population spawning period 

was estimated to be from late January to mid April, in 1997 (Fig.6). Spawning of Portuguese 

sole juveniles took place from the 23rd of January to the 30th of March and from the 12th of 

February to the 21th April, for the Douro and Tagus estuaries, respectively (Fig.6). The analysis 

of S. solea spawning period at different latitudes based on the present study and published 

literature shows a latitudinal trend in spawning dates, with spawning starting earlier at lower 

latitudes (Fig. 6). Both French estuaries followed this trend. In the Vilaine estuary hatch dates 

indicated earlier spawning, from December to early April, than in the Authie estuary, from late 

January to mid April. In the Douro estuary spawning started in mid-January and ended in late-

March, in 2005, while in the Tagus estuary spawning started in mid-February and ended in mid-

April, in the same year. The Portuguese estuaries agree with the latitudinal trend when 

compared to the higher latitudes but not when compared to the French estuaries. 
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Figure 4 – Length frequency of 0-group juvenile S. solea in each study area (a- Vilaine estuary 

1992; c- Authie estuary 1997; d- Douro estuary 2005; e- Tagus estuary 2005). 

 

 

 
 

Figure 5 – Linear regression describing growth in each study area (a- Vilaine estuary 1992; b- 

Vilaine estuary 1993; c- Authie estuary 1997; d- Douro estuary 2005; e- Tagus estuary 2005). 
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Discussion 
Comparison of spawning periods 

Results from the present study and literature analysis on the S. solea spawning period 

at different latitudes indicates that there is a latitudinal trend, in that spawning starts sooner at 

lower latitudes (Fig 6).  

 

 

 
 

Figure 6 - S. solea spawning period at different latitudes based on the present study (1 – 

Tagus estuary, 2 – Douro estuary, 4 – Vilaine estuary and 7 – Authie estuary) and published 

literature (LeBec, 1983 (3), Deniel, 1981 (5), ICES, 1992 (6, 8, 11, 12, 13, 14, 15, 16, 17), 

Horwood, 1993 (9), Woerling and Lehoerff, 1993 (10)). 

 

Warmer water temperatures during the winter at lower latitudes are expected to have a 

strong influence on the onset of spawning in fish, leading to earlier colonisation of nursery 

grounds (Amara et al., 1993; 1994). Along with temperature, photoperiod can also be an 

important spawning triggering factor, as suggested by Devauchelle et al. (1987). 

The Portuguese estuaries agree with this trend when compared to the higher latitudes 

but not so much when compared to the French estuaries. More information about the population 

dynamics of S. solea at these latitudes would be needed in order to fully understand the 

observed results, yet some considerations may be done. In the case of the Portuguese coast 

special attention should be paid to the local hydrodynamics, due to the occurrence of coastal 

upwelling of cold water. 

Northerly trade winds created by a latitudinal displacement of the Azores anticyclone 

favour offshore Ekman transport of surface water (Wooster et al, 1976; Peliz et al., 2002). 

Although upwelling is more frequent between March and September, it is generally considered 
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that winds that favour this phenomena are a recurrent feature of the Portuguese coast 

(Huthnance et al., 2002). Offshore Ekman transport of surface water will likely direct the eggs 

and larvae of flatfish away from the coastal nurseries, resulting in high mortality rates that will 

confound analysis based on otolith readings from the survivors.  

Results from the Portuguese nurseries support that local conditions, particularly 

hidrodynamics, may overrule general latitudinal trends, as suggested by Leggett and Frank 

(1997) and Van der Veer et al. (2000). 

 

Comparison of growth rates 

Significant growth variations were observed between the two French nursery grounds 

studied due probably to the different temperature exposure histories (Fig.2). In the Vilaine and 

in the Authie estuary growth rate estimates were in the range of those recorded for other 

northern European juvenile sole populations (e.g. Rogers, 1994; Amara, 1994; Amara et al., 

2001).  

S. solea growth rates where significantly higher in both Portuguese estuaries studied. 

This was expected since temperature is generally considered the most important factor affecting 

growth and ocean water temperatures are higher at this latitude, throughout the year (despite 

cold water upwelling) and temperatures inside the estuarine nurseries are considerably higher 

than in the coast during the nursery period. The longer photoperiod may also contribute to this 

result. The Tagus estuary did not fully comply with the latitudinal trend. Although growth rate in 

this estuary was considerably higher than in France, it was also lower than that found in the 

Douro, a more northerly estuary. As already mentioned more information on the population 

dynamics of S. solea at this latitude would be needed in order to fully understand the observed 

results, yet some considerations may be put forward.  

S. solea may be facing thermal stress in the Tagus estuary, since water temperature in 

the nursery grounds largely exceeds its metabolic optimum temperature, which is estimated to 

be 18.8ºC (LeFrançois and Claireaux, 2003). Energy spent on facing adverse conditions will be 

diverted from growth, thus hindering growth rates. Another important aspect that may affect fish 

growth is pollution. Heavy metal contamination is much higher in the Tagus than in the Douro, 

due to higher concentration of polluting industries and human pressure (Vinagre et al. 2004; 

França et al. 2005). Since the S. solea nursery in the Tagus is located in one of the most 

polluted areas of the estuary (Vale, 1986), pollution may be hindering sole juveniles growth. 

S. solea growth has already been estimated for the Tagus estuaries by Cabral (2003) in 

1995 and 1996 and by Fonseca et al. (2006) in 2003 and 2004, both using length progression 

analysis. In 1995 estimated growth rate at the first month of nursery residency was 0,70 mmd-1, 

in 1996 it was 1,51 mmd-1, in 2003 it was 0,80 mmd-1 and in 2004 it was 1,19 mmd-1 (Cabral, 

2003; Fonseca et al., 2006). The growth rate determined for 2005 in the present study (0,767 

mmd-1) is within the range of estimations obtained in previous years and thus it may be 

concluded that growth rates are quite variable in this estuarine system. 
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This study shows that although major gradients affect spawning and growth of sole, 

local conditions may overrule the latitudinal trend. The development of longer data time-series 

in the southern distribution range of sole is needed in order to fully understand recruitment 

dynamics of this species.  

Further investigation on the role of hydrodynamics in the pelagic stage of flatfish and on 

the metabolic scope and genetic variation within the S. solea distribution range will certainly 

provide new insights into the factors controlling recruitment in sole. 
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Conclusion 
 
 

 

 

The introduction of new tools to the investigation of growth and condition of S. solea 

and S. senegalensis in the Tagus estuary, revealed previously unknown patterns related to 

estuarine colonization, allowed the differentiation of the two nursery areas and the analysis of 

growth and spawning in a wide geographical perspective. 

The assessment of growth and condition variability in these two species showed that 

growth rate and condition depend heavily on the estuarine colonization process. When young 

juvenile soles enter the estuary they present fast growth rates and high RNA-DNA ratios that 

decrease over time. The decrease of growth rate with age has already been reported for other 

species, it seems to be predetermined and, to a certain degree, providing that basic needs are 

met, independent of environmental factors. This was observed in all cohorts and in both 

species. The first cohort to colonize the estuary presents higher growth and condition than 

subsequent cohorts, possibly due to higher availability of food and less competition. Higher 

growth rates were found for S. senegalensis when compared to S. solea. Higher growth rates 

were found for the Tagus soles than reported for northern European areas, it was also 

concluded that soles from the Tagus estuary are in good overall condition. 

Differences in habitat specific growth rates were found among the two nursery areas of 

the Tagus estuary. Results indicated that in 2005 nursery B provided higher habitat quality for 

S. senegalensis than nursery A. This may have important implications in a warming climate 

scenario, since water temperatures will likely be more appropriate for subtropical species, such 

as S. senegalensis, than for temperate species such as S. solea that will probably suffer 

thermal stress. It was concluded that the simultaneous use of habitat specific growth rates, that 

integrate the whole life of the fish, and RNA-DNA ratios that only inform about recent conditions, 

would be interesting for environmental monitoring purposes since the information provided by 

the two methods is complementary. 

A latitudinal variation was found, in that growth rates are higher and spawning takes 

place earlier at lower latitudes. This is mainly due to latitudinal trends in water temperature and 

photoperiod. The Tagus estuary was slightly off trend in a local context, although growth was 

higher than in the French estuaries studied, it was lower than in the Douro estuary. 

Temperature is possibly a key factor hindering S. solea growth rates in the Tagus estuary, since 

water temperatures in the Tagus over the juvenile period of this species are higher than its 

optimum metabolic temperature (approximately 19ºC), meaning that S. solea may be in thermal 

stress. Temperature also plays an important role in the toxicity of dissolved chemicals which in 

turn may affect growth. Spawning was in accordance to the latitudinal trend, in that it took place 

earlier in the Tagus and Douro estuaries than in northern European estuaries, yet it took place 

even earlier in the French estuaries. This supports recent theories that state that local 

conditions, particularly the oceanographic conditions, may overrule general latitudinal trends. 
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The Portuguese coast is located in a very complex upwelling system in comparison with other 

major eastern continental boundaries such as the North American West Coast, the Peru-Chile 

upwelling system or the Benguela upwelling system. It was concluded that upwelling may be an 

important factor interfering with larval immigration towards nursery areas and thus confounding 

the back-calculation of spawning based on the survivors that reach the nursery grounds. 

More studies are needed in order to clearly establish some of the results putted forward 

for the first time, in this chapter. A longer and continuous data series on growth and condition 

patterns in the Tagus estuary, as well as in other estuaries, would allow a more general outlook 

on growth and condition patterns related to estuarine colonization. 

Due to the variability associated with estuarine nurseries more studies are needed to 

assess habitat quality and find out if one of the nurseries is consistently better than the other, for 

S. senegalensis. Future studies should focus on determining the contribution of each nursery 

towards the adult stock. Analysis of otoliths’ microchemistry has shown promising results in the 

identification of the original nursery grounds of the individuals composing the adult stocks in 

other coastal areas and should be applied to the Portuguese sole stocks.   

In what concerns habitat quality monitoring, several methods are currently being 

investigated with interesting results, such as, recent growth estimation based on marginal otolith 

increment width, condition based on protein concentration, condition based on lipid content and 

the use of molecular biomarkers in areas subjected to pollution. Future research will certainly 

determine which are the most appropriate for each species and habitat. 

Further investigation on latitudinal trends is urgent in a time when global warming 

effects are already being reported in several bio-geographical regions of the world, since it will 

allow for some changes to be predictable and management actions to be taken ahead of time 

(e.g. to predict earlier spawning and take measures to protect the spawning stock).   

Studies on the complex hydrology of the Portuguese coast will certainly provide new 

insights into its effect upon larval migration, estuarine colonization timing, number of cohorts 

reaching the nurseries and condition of the newly arrived immigrants. It would also be very 

important to conduct sampling surveys to collect eggs and larvae in order to determine the 

location of the spawning areas for sole off the Portuguese coast. This would enable the 

protection of these areas, and also provide important information for the construction of 

mathematical models of the movements of eggs and larvae. 
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Introduction 
 
 

 

 

Mortality and recruitment are key issues in population and fisheries management. 

These concepts are intertwined since recruitment to a particular stage or area depends on the 

mortality in the previous stages or areas of the species life cycle (Cushing, 1974; Rothschild, 

1986; Zijlstra et al., 1982). 

The decline, and in some cases collapse, of some of the world’s most important 

fisheries (e.g. North Sea fisheries, Georges Bank) (Grainger and Garcia, 1996) has captured 

the attention of biologists all around the world.  Investigation has focused on the extent of 

mortality caused by fishing activities and on the phenomena ruling natural mortality, in an effort 

to understand the changes taking place. The main aim of such studies has been the 

management of fish stocks in a sustainable way (e.g. Kawasaki, 1983, Garcia and Staples, 

2000). 

It has been concluded that overexploitation of target species results in major changes in 

the ecosystem, since repercussions reach all trophic levels. Substitution of target species by 

other species that are able to explore the same ecological niches have been widely reported 

because of its visibility, yet this is surely accompanied by unrecorded and poorly known effects 

on other levels, such as the benthos and plankton (Moyle and Cech, 1996). Reversibility of 

these effects is still scarcely understood (Ludwig et al., 1993). 

Research on mortality and recruitment become even more complex when scientists in 

various parts of the world realized that changes had to be analysed against a background of 

climate change (McFarlane et al., 2000). The geographical location of Portugal, in transition 

waters between subtropical and temperate regions, makes it particularly vulnerable to climatic 

changes. An increase in the occurrence of species with tropical affinities and a decrease in the 

occurrence of species with temperate affinities has been reported (Cabral et al., 2001). Climate 

and hydrodynamics have been recognised has the main controllers of recruitment variation in 

flatfish stocks, through their effect upon the eggs and larvae stages (e.g. Marchand, 1991; Van 

der Veer et al., 2000; Wegner et al., 2003).  

In the present chapter, the effect of climate and hydrodynamics on sole larval 

immigration towards the Tagus estuary was investigated, as well as, the magnitude of the 

mortality caused by fishing upon the juveniles that reach these nursery grounds. 

In order to understand the potential impacts of climate change on the various stages of 

soles’ life cycles it is crucial to look back on existing data to investigate what have been the 

most important climatic features influencing juvenile soles populations. This investigation 

focused on the process of larval immigration towards nursery areas, since it is assumed that 

mortality rate during this process is high, driven by density-independent factors, and that small 

variations in mortality rate at this point may result in large differences in the number of survivors 

(Rijnsdorp et al., 1995). The climatic and hydrodynamic features investigated were: river 
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drainage, because larvae are known to follow chemical cues to direct their migrations; the North 

Atlantic Oscillation (NAO) index, since it is a good indicator of the prevalent climate conditions in 

the Portuguese coast; and wind direction, because it is an important factor in larval transport. 

The assessment of fishing mortality affecting soles in the Tagus estuary is particularly 

important because this is the only Portuguese estuary where beam trawling is legal. The Tagus 

estuary has an exception regime due to its traditional brown shrimp fishery. Yet, since brown 

shrimp market value suffered a drastic decrease, fishing effort has been re-directed towards 

soles and other fish species that are caught as juveniles. Beam-trawl is conducted in the 

nursery areas because 0-group sole are part of the local gastronomy and are also sold to 

aquacultures. The importance of discards from this fishery was studied by Cabral et al. (2002) 

that concluded that they constituted an important input of organic matter to the estuarine 

ecosystem. Soles are not discarded in high quantities, because they are in fact the main target 

species. The investigation of soles’ mortality is very complex in this estuary since there are 

various cohorts colonizing the nursery grounds throughout time, a situation that does not 

happen in northern European areas, where most studies have deemed secondary cohorts has 

not significant, leaving them out of mortality estimations (Zijlstra et al., 1982; Desaunay et al., 

1987; Jager et al., 1995). The present study is the first to take into account the impact of 

mortality in the different cohorts colonizing nursery grounds. 
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Impact of climate and hydrodynamics on soles’ larval 

immigration towards the Tagus estuary, Portugal  

 
Abstract: Spawning grounds of the soles, Solea solea (Linnaeus, 1758) and Solea 
senegalensis Kaup, 1858, are distant from the estuarine nurseries where juveniles 
concentrate. Recruitment of these species is highly dependent on the success of the larval 
migration towards the inshore nursery grounds. Yet, unfavourable climate and hydrodynamic 
circulation may lead to high mortality rates at this stage. The relation between river drainage, 
NAO index and the North-South wind component intensity over the three months prior to the 
end of the estuarine colonization and the densities of S. solea and S. senegalensis in the 
nursery grounds were investigated for both species based on a discontinuous historical 
dataset (from 1988 to 2006) for the Tagus estuary. Multiple linear regression models were 
developed for sole density and environmental data (separately for each species). Results 
showed that river drainage is positively correlated with juveniles densities of both species, 
possibly due to the existence of chemical cues used by larvae for movement orientation. NAO 
index and the North-South wind component intensity relations with soles densities were not 
significant. It was concluded that the high complexity of the Portuguese upwelling system 
makes it hard to detect causal relations of the environmental variables tested. The importance 
of river flow for coastal ecosystems was stressed. Since climate change scenarios predict a 
strong decrease in rain fall over the Portuguese river basins, as well as a concentrated period 
of heavy rain in winter, it was hypothesised that future river drainage decrease over much of 
the year may lead to lower recruitment success for soles, especially for S. senegalensis. 
 
 
Key-words: Climate; Recruitment; River drainage; Larvae; Sole; Flatfish, Nursery. 
 

 

 
Introduction 

Although juvenile nurseries of Solea solea (Linnaeus, 1758) and Solea senegalensis 

Kaup, 1858) are located inshore, spawning takes place offshore (Russel, 1976; Whittames et 

al., 1995). Thus, larvae must migrate from the spawning grounds along the continental shelf 

towards shallow coastal areas, and particularly estuaries (Russel, 1976; Norcross and Shaw, 

1984). It is generally agreed that recruitment variation in flatfish stocks is dominated by density 

independent factors operating at a local scale on the eggs and larvae (Leggett and Frank, 1997; 

Van der Veer et al., 2000), meaning that climate and hydrodynamic circulation are key factors in 

these species distribution and abundance (e.g. Marchand, 1991; Van der Veer et al., 2000; 

Wegner et al., 2003).  

The soles, S. solea and S. senegalensis, are among the most important commercial 

fishes using the Tagus estuary as a nursery area (Costa and Bruxelas, 1989; Cabral and Costa, 

1999).Data on juvenile sole abundance dating back from 1978 reveals years of high densities 

contrasting with years where juvenile soles were very scarce in the main Portuguese estuaries 

(review in Cabral, et al., 2007). Previous studies in the Tagus estuary have reported trends in 

the fish assemblage related to climatic change. While cold water fish species have been 

disappearing from the estuary, fish species with tropical affinities have been increasing in 

abundance (Cabral et al., 2001). Costa et al. (in press) has reported an important effect of river 
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flow on the fish assemblage of the Tagus estuary, yet analysed these two species as one item, 

Solea sp. 

Several authors have pointed out that larvae of various organisms follow chemical cues 

from estuaries in order to direct their movement towards nursery areas (Creutzberg et al., 1978; 

Tanaka, 1985; Tamburri et al., 1996; Forward et al., 2003). Drought and the consequent 

decrease in river drainage will lower the concentration of estuarine chemical cues reaching 

coastal waters making it less detectable by larvae. Variation in river drainage also has important 

consequences within the estuary, leading to changes in organic matter input, salinity, water 

currents and in the concentration of pollutants. 

Several authors have shown that the North Atlantic Oscillation (NAO) index is correlated 

with precipitation in the west of the Iberian Peninsula since it interferes with the trajectory of 

depressions in the North Atlantic (Zhang et al., 1997; Trigo et al., 2002), it may therefore be a 

good indicator of the prevalent climate conditions in the Portuguese coast that will affect soles 

larvae migration, as it has been shown for sardine larvae transport (Guisande et al., 2001; 

Borges et al., 2003). 

In the case of the Portuguese coast special attention should be paid to the occurrence 

of coastal upwelling. Offshore Ekman transport of surface water will likely direct the eggs and 

larvae away from the coastal nurseries, resulting in high mortality rates at these stages. This 

effect has been observed in sardine off the Portuguese coast (Santos et al., 2001; Borges et al., 

2003). Although upwelling is more frequent between March and September, it is generally 

considered that winds that favour this phenomenon are a recurrent feature of the Portuguese 

coast and can occur in winter as well (Huthnance et al., 2002). While S. solea spawning period 

takes place from late January to mid-April in the Portuguese coast (Vinagre, unpublished data), 

the spawning period of S. senegalensis is very variable and consists of two periods, from 

January to June and in Autumn around October-November (Anguis and Cañavate, 2005; 

García-Lopes et al., 2006). Thus, there is an overlap between the spawning periods of both 

species and the upwelling season. 

Evidence of climate change makes the understanding of the effect of these climatic 

features on fish larvae migration an urgent issue. Global mean temperature has increased since 

the beginning of the twentieth century, yet this increase has not been homogeneous throughout 

the globe, temperatures have risen more in some areas. One of such areas is the Iberian 

Peninsula (IPPC, 2001). Precipitation patterns also changed around the world, with increasing 

intensity in some parts of the high and medium latitudes of the Northern hemisphere and 

decreasing intensity and frequency in parts of Europe (including Portugal), Africa and Asia 

(IPPC, 2001). 

Trends in several climatic indices, such as an increase in the Su index (summer days 

per year), in the HWD index (heat wave duration), and in the PSD index (drought duration) have 

been reported for Portugal (Miranda et al., 2002; Pires, 2004). Several responses to climate 

change in the fisheries of bluefin tuna, sardines and octopus off the Portuguese coast have 

been identified dating back from the twentieth century (Reis et al., 2006). 
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The understanding of the conditions that affect sole 0-group abundance will bring new 

insights into the dynamics of these species recruitment in the recent past, thus allowing an 

improved understanding of natural variation and fisheries impact against a background of 

climate change. The aim of the present work is to investigate the impact of hydrodynamic and 

climatic features such as river drainage, the NAO index and wind direction in 0-group S. solea 

and S. senegalensis densities within the Tagus estuary, through the analysis of historical data. 

 

 

Materials and methods 
Study area 

The Tagus estuary (Figure 1), one of the largest estuaries in Western Europe (320 

km2), is a partially mixed estuary with a tidal range of ca. 4 m. Approximately 40% of the 

estuarine area is intertidal. The upper area of the estuary has been identified a nursery ground 

for S. solea and S. senegalensis by Costa and Bruxelas (1989) and Cabral and Costa (1999). 
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Figure 1 – The Portuguese coast and the Tagus 

estuary. 

 

The adjacent coast is meridionally oriented and lies in the west of a continental margin. 

During spring and summer the predominant, north-easterly trade winds cause persistent 

upwelling of cooler water from about 100-300 m depth, along the entire western Iberian coastal 
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margin (Fiúza, 1983; Haynes et al., 1993; Smyth et al., 2001). Upwelling events usually begin, 

and remain particularly intense, off Cabo da Roca (Figure 1), the nearest area to the Tagus 

estuary of intense upwelling. Upwelling filaments often form at this cape, extending more than 

100 km offshore (Haynes et al., 1993) and reaching velocities of 0.28 m s-1 (Smyth et al., 2001). 

In winter the winds relax, with intermittent periods of both upwelling- and downwelling-

favourable winds (e.g. Santos et al., 2004; Mason et al., 2005a). 

Below the surface, a poleward flowing undercurrent is consistently present over the 

slope, the Iberian Poleward Current (Huthnance et al., 2002). This is a relatively narrow and 

weak flow that often extends to the surface during winter (e.g. Haynes and Barton, 1990; Frouin 

et al., 1990; Mazé et al., 1997). 

 

Data analysis 

Fish data analysed are a part of the “Instituto de Oceanografia” database (Faculty of 

Sciences of the University of Lisbon). Due to the fragmentation of the time-series and the 

unreliability of fisheries data (species misidentification and unreported catches) the fish density 

data presented in the present work is not continuous. Beam trawls were conducted monthly or 

bimonthly in both nurseries areas of the Tagus estuary in all years considered (1988, 1994, 

1995, 1996, 2000, 2001, 2002, 2005 and 2006). A four meter beam trawl with one tickler chain 

and 5 mm stretched mesh at the codend was used. All samples were frozen immediately after 

collection. In the laboratory individuals were identified, counted and their total length measured 

to the nearest mm. The distance travelled in each tow was determined based on a global 

positioning system device (GPS) and the headline length was used as a measure of width in the 

swept area calculations. Fish abundance was expressed as density (number of individuals per 

1000 m2). Data on 0-group soles was selected for analysis. Monthly 0-group density averages 

were calculated in order to determine the month of peak abundance of each species for each of 

the years studied. For the purpose of investigating larval immigration into the estuary, 

environmental variables that could have affected this process were analysed in the 3 months 

prior to the peak abundance month. The peak abundance month reflects the end of estuarine 

immigration of the most successful cohort. We have decided to analyse only the most 

successful cohort since all years present a pattern of one first very successful cohort that 

presents much higher densities than all others and is responsible for the most part of juvenile 

soles living in the nurseries that year (Cabral and Costa, 1999). At the time of peak density fish 

are approximately 3 months old, since the peak is reached at the end of estuarine colonization 

after which densities gradually decrease due to mortality within the system.  

We have, thus, explored inter-annual differences in soles densities and their relation to 

several environmental variables that acted upon larvae in the three months prior to the end of 

estuarine colonization. Since S. solea and S. senegalensis have considerably different life-

cycles separate analysis were carried out for the two species.  

It was considered that the data series was not long or continuous enough to enable the 

analysis of sole density trends during the period considered.  



                                                                                                                           Chapter 5 

 - 176 -

Factors related to spawning, such as spawning biomass and eggs abundance were not 

used since there is no available data. The spawning areas of these species have not yet been 

determined for the Portuguese coast. It was assumed that they should be located at depths 

from 40 to 100 m like in other coastal areas (Koutsikopoulos et al., 1991; Wegner et al. 2003). 

Monthly mean river drainage for the three months before each density peak was 

averaged. Data were provided by the National Water Institute (INAG) and were taken at the 

Almourol data station (Fig. 1). Data on pollution loads that may affect the coast areas during 

high river discharges as well as the nursery’s quality was not taken into account, since only 

punctual studies exist for this area. 

Monthly data on the North Atlantic Oscillation (NAO) index (defined as the pressure 

difference between Lisbon and Reykjavik) were taken from the United States of America NOAA 

National Weather Service database, available at http://www.cpc.noaa.gov. The average value of 

this index for the three months prior to each density peak was calculated. 

Daily wind data were provided by the Portuguese Meteorological Institute (Instituto de 

Meteorologia). The station chosen was the Cabo Carvoeiro station (Fig. 1) since this is 

considered to be the station that better reflects wind in Portugal’s west coast. The North-South 

wind component intensity was calculated (to infer upwelling favourable winds that cause 

offshore transport of eggs and larvae), as well as it average in the three months prior to each 

density peak. 

Data were explored on Brodgar software (Highland Statistics Lda). Due to the existence 

of extreme values, fish density data was square root transformed. Data were pair plotted in 

order to investigate multi-colinearity between the independent variables.  

 A multiple linear regression was carried out using the 0-group sole density data 

(separate analysis for each species) as the dependent variable and the environmental variables 

as the independent variables. Residuals were tested for trends. Multi-colinearity was once more 

checked with the variance inflation factor (VIF) diagnostic. 

 

 

Results 
S. solea density over the month of peak abundance in the study period presented a 

distinct peak in 1988 and very low levels from 2000 onwards (Fig. 2a). An important abundance 

peak in 1988 was also detected for S. senegalensis along with very low levels from 2000 to 

2002 and 2005 (Fig. 2b).  

S. solea densities varied between 0.001 ind.1000 m-2 and 143 ind.1000 m-2, while S. 

senegalensis varied between 0.001 ind.1000 m-2 and 46 ind.1000 m-2.  
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Figure 2 – Soles 0-group density in the month of peak abundance in the study period (a- S. 

solea; b – S. senegalensis). 

 

Mean monthly river drainage from 1988 to 2006 was highly variable both seasonally 

and yearly, with several high peaks and drought periods (Fig. 3). Mean drainage over the three 

months prior to 0-group sole peak abundance in the estuary presented high values in 1988, 

1996 and 2001 for S. solea and in 1988, 1994, 1996 and 2006 for S. senegalensis (Fig. 4a, 4b). 

Low values were detected in 2000 and 2005 for S. solea and in 1995 and 2005 for S. 

senegalensis (Fig. 4a, 4b). Mean drainage over the periods studied varied between 194 x 106 

m3 and 1378 x 106 m3 for S. solea and 117 x 106 m3 and 827 x 106 m3 for S. senegalensis. 
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Figure 3 – Mean monthly drainage of the Tagus river from 1988 to 2006. 

 
 

 

 
Figure 4 – Mean drainage over the three months 

prior to 0-group sole peak abundance in the estuary 

(a- S. solea; b – S. senegalensis). 

0

200

400

600

800

1000

1200

1988 1994 1995 1996 2000 2001 2002 2005 2006

D
ra

in
ag

e 
(1

06  m
3 )

b 

0

500

1000

1500

2000

2500

3000

1988 1994 1995 1996 2000 2001 2002 2005 2006

D
ra

in
ag

e 
(1

06  m
3 )

a 



                                                                                                                           Chapter 5 

 - 179 -

NAO index over the three months prior to 0-group sole peak abundance in the estuary 

was positive over most of the years considered, except for 1988 and 2005 for S. solea (Fig. 5a). 

For S. senegalensis there were positive NAO index values for 1994, 1995, 1996 and 2002 and 

negative values for 1988, 2000, 2001, 2005 and 2006 (Fig. 5b). For both species there was a 

reduction of wind favourable for upwelling in the months considered after 2000-2001. NAO 

index over the periods studied varied between -1.13 and 0.99 for S. solea, and -0.82 and 0.95 

for S. senegalensis. 
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Figure 5 - Mean North Atlantic Oscillation (NAO) index over the 

three months prior to 0-group sole peak abundance in the estuary 

(a- S. solea; b – S. senegalensis). 

 

Mean North-South wind component intensity (negative for northerly winds) over the 

three months prior to 0-group sole peak abundance was negative in most of the years studied 

for S. solea, with the exception of 2002 and 2005 (Fig. 6a). For S. senegalensis the mean 

a 
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North-South wind component was also negative for most of the years with the exception of 

2001, 2002 and 2005 (Fig. 6b). This means that northerly winds prevailed over the larval stage 

period of both soles in most of the years investigated. 

Mean winds over the periods considered varied between -3.03 ms-1 and 1.20 ms-1 for S. 

solea and -3.74 ms-1 and 0.20 ms-1 for S. senegalensis. 
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Figure 6 - Mean North-South wind component intensity over the three months prior 

to 0-group sole peak abundance in the estuary (a- S. solea; b – S. senegalensis). 

 

Muli-collinearity was not detected for the independent variables for both species, 

through the pair plots analysis.  

Only river drainage presented a significant relation with density of both sole species 

(P<0.05) (Table 1, Table 2) in the multiple regression analyses. The mean NAO index and 

mean North-South wind component intensity for the three months before the estuarine peak of 

soles densities did not present a significant relation with the peak density data for both sole 

species (P>0.05 for both variables in the two multiple regressions) (Table 1, Table 2) (Fig. 3, 

Fig. 4). No variable had a VIF >2 (values > 10 indicate serious problems with multi-colinearity) in 

both multiple regressions. 
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There is a tendency for higher sole density values in years with higher river drainage 

over the larval stage of both species (Fig. 7a, 7b).  
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Figure 7 – 0-group sole densities (square root transformed) in relation to river 

drainage over the three months prior to peak abundance in the estuary (a- S. 

solea; b – S. senegalensis). 
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Discussion 
The present investigation reveals the high importance of river drainage in the estuarine 

colonization process undertaken by the soles, S. solea and S. senegalensis.  

One of the ways that river flow drainage may positively affect the estuarine immigration 

of these species is through the extension of river plumes throughout the adjacent coastal areas.  

It is generally agreed that river plumes may have a crucial role as indicators of the proximity of 

nursery areas for fish larvae. This means that in years of high river drainage these plumes 

extent to a wider area, increasing the probability of being detected by fish larvae spawned in the 

coast that will then direct their movement towards the nursery grounds. Miller (1988) described 

the cues to water masses that might be used by immature fish for orientation. He suggested 

that odour, temperature, salinity, turbidity and pH could be such cues, yet concluded that odour 

and salinity were the most likely ones. Creutzberg et al. (1978) had already observed that 

captive plaice and sole larvae did not respond to changes in salinity, temperature and odour 

(estuarine water), yet the smell of food elicited a strong swimming response from unfed larvae, 

concluding that wild larvae direct their movement as a response to food odour cues from the 

rich intertidal flats. Tanaka (1985) reported that a gradient of food availability seem to lead the 

early juveniles of red sea bream towards their nursery grounds. A chemical which is known to 

attract juveniles of S. solea is glycine-betaine, a compound present in its main prey, 

polychaetes, molluscs and crustaceans (Konosu and Hayashi, 1975), and thus probably 

involved in the cueing effect of the river plume. 

River drainage is also important as an input of organic matter to the estuary and 

adjacent coastal areas, meaning more food availability for larvae and juveniles, as well as for 

the adults living in the coast (Cushing, 1995; Lloret et al., 2001; Salen-Picard et al., 2002; 

Darnaude et al., 2004).  

Weather is probably also important in the regulation of larval survival and movement, 

yet none of the weather features tested had a significant effect on density of soles during their 

abundance peak. The complexity inherent to weather factors makes it harder to clearly identify 

causal effects. 

Studies on flatfish larval migration in nurseries located in non-upwelling systems have 

found that inshore winds are important forces directing larval movement towards nursery areas 

(e.g. Koutsikopoulos et al., 1991; Marchand, 1991; Bailey and Picquelle, 2002; Wegner et al., 

2003). The opposite phenomenon, offshore advection of fish larvae has also been reported, in 

areas subjected to upwelling (e.g. Guisande et al., 2001; Landaeta and Castro, 2002). Yet, the 

eastern North Atlantic boundary is highly complex in comparison with other major eastern 

boundaries such as the North American West Coast, the Peru-Chile upwelling system or the 

Benguela upwelling system (Mason et al., 2005b). The primary difference between this region 

and the other major upwelling systems is its highly irregular topography and coastline (Mason et 

al., 2005b).  

Some phenomena that occur in the Portuguese coast may, in fact, favour larval 

immigration towards the shore during upwelling events. Their occurrence will add to the 
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complexity of the forces acting upon the larvae and confound statistical analysis. The probable 

existence of an upwelling shadow zone in the lee of Cabo da Roca (Figure 1) has been reported 

by Moita et al., 2003 and may be an important factor favouring larval immigration during 

upwelling events. Upwelling shadow zones are characteristic small scale features of upwelling 

regions, which may play a disproportionately significant role in biological productivity since their 

circulation and stratification promote retention of propagules (eggs and larvae) that otherwise 

may be advected offshore (e.g. Wing et al., 1998; Mason et al., 2005b).  

Water mass variability along the coast may also play an important role in larval 

movement. Huthnance (1995) suggested that the circulation off the western Iberia shelf edge 

may consist of a number of distinct horizontal cells, with poleward flow (the Iberian Poleward 

Current), but with limited continuity between them. Thus, individual water parcels containing 

eggs and larvae may be trapped in eddies that will hamper their movement. Mesoscale eddies 

are common in this area due to the interaction of the Iberian Poleward Current with topography 

(e.g. Peliz et al., 2002; Serra and Ambar, 2002; Peliz et al., 2003; Míguez et al., 2005). 

The combination of various phenomena may also occur, Santos et al. (2004) 

demonstrated that the interaction of a strong winter upwelling event, the Iberian Poleward 

Current and the buoyant river plume (resulting from river discharge) off western Iberia in 

February 2000 lead to the retention of sardine larvae. Evidence of high pollution input into the 

Portuguese coastal area during river floods resulting in the death of fish may also play an 

important role in some years (Vale, personal communication), although that was not detected in 

the present study. 

Early investigations on flatfish, and particularly S. solea larvae, often explained its 

movement towards inshore areas as passive transport by drift (Cushing, 1975; Miller et al., 

1984; Boelhert and Mundy, 1988). Arino et al. (1996) proposed a one dimensional mathematical 

model for S. solea larvae inshore immigration that took eggs and larvae as passive elements. 

Yet, several studies had reported that this species larvae are active swimmers that perform 

circadian and tidal migrations in the water column (Champalbert et al., 1989; Marchand and 

Masson., 1989; Champalbert and Koutsikopoulos, 1995). Several studies on S. solea and other 

flatfishes concluded that estuarine immigration depends on the active tidal behaviour of larvae, 

which stay near the bottom during ebbing currents and migrate into the water column at flood 

tides, thus using the most favourable tides to penetrate the estuary (Rijisdorp et al., 1985; 

Bergman et al., 1989; Marchand and Masson, 1989). Ramzi et al. (2001) constructed a two 

dimensional model for S. solea larvae inshore immigration that did not encompass larvae active 

behaviour, yet concluded that a three dimensional model was necessary to account for the 

vertical migrations performed by this species. Miller (1988) had already emphasised the need 

for such a model since small differences in vertical distribution of larvae can result in large 

differences in horizontal transport.  

Vertical migrations may also play a role in the avoidance of the upper layer of water that 

suffers offshore advection during upwelling events. Such movements have been observed in 
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larval stages of several invertebrate species in upwelling areas, including the Portuguese coast 

(Alexander and Roughgarden, 1996; Marta-Almeida et al., 2006; dos Santos et al., 2007).  

De Graaf (2004) constructed a three dimensional model for flatfish larval immigration 

and concluded that tidally cued vertical migration was the main factor directing transport 

towards the nearest coast in the North Sea. 

Three dimensional models will be particularly important in order to predict the effect of 

climate change in the larvae immigration process and consequent recruitment. Changes in river 

drainage magnitude and seasonal pattern are expected due to the alteration of precipitation 

over the Iberian river basins. Miranda et al. (2006) precipitation model for 2100, using the IS92a 

scenario (Leggett et al., 1992), based upon the assumption that greenhouse gases emissions 

will double by the end of the XXI century (in comparison to 1990), predicts a decrease in annual 

precipitation for Portugal. This model also predicts that precipitation will be more concentrated 

in time, with an increase of 30-40 % of rain fall in the Tagus basin during winter and a decrease 

in the rest of the year, particularly in the summer when this decrease will be between 70 and 85 

% for most of the country. While an increase in river drainage in the winter may be beneficial for 

S. solea larvae that are spawned partly in this period, S. senegalensis larvae will be faced with 

much lower river plumes reaching the coastal area, during the most part of its spawning, 

particularly the second period, this could have an important effect in their immigration to the 

Portuguese estuaries in the future. Rain fall decrease over spring, summer and autumn will lead 

to a decrease in nutrient input of terrestrial origin into the estuarine system and adjacent coastal 

areas, leading to a decrease in productivity over the period when both soles use the estuary as 

a nursery ground. This will potentially affect food availability leading to lower fitness of the 

juveniles. 

This decrease in rain fall will lead to water shortage (for irrigation and human 

consumption) with the consequent water retention in the upriver dams, many of them in Spanish 

territory. Although minimum ecological river drainage has already been agreed in international 

treaties between Portugal and Spain, close monitoring will be crucial in order to keep the impact 

of summer draughts in coastal ecosystems to a minimum.       

The present work indicates that river drainage has an important effect upon S. solea 

and S. senegalensis larval immigration towards the Tagus estuary. There is clearly a need for a 

broader and continuous dataset on these species densities within estuaries. Studies on these 

species larval ecology in the Portuguese coast are also lacking. A continuous density dataset 

along with improved knowledge on larval ecology and on the complex hydrodynamics of the 

Portuguese coast will quite possibly reveal the effects of other variables influencing this process 
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Fishing mortality of the juvenile soles, Solea solea and 

Solea senegalensis, in the the Tagus estuary, Portugal 

 
Abstract: In the Tagus estuary, the brown-shrimp beam trawl fishery is mainly carried out 
within the nursery grounds for the soles Solea solea (Linnaeus, 1758) and Solea 
senegalensis Kaup, 1858. In 1995 and 1996, monthly sampling surveys were performed in 
the two major fishing areas within the Tagus estuary, to estimate fishing effort, catches and 
discards relative to sole juveniles, as well as, the impact on year class strength. Proportion of 
discards was assessed according to species and fish size. A survival of discards experiment 
was carried out on board, for periods of 30 minutes, taking into account species and fish size. 
A decomposition of composite distributions of length frequencies was carried out in order to 
identify the various cohorts colonizing the nursery areas. Proportion of sole discarded varied 
according to month, which was mainly related to fish size. Mortality of juveniles discarded 
decreased with increasing fish size. Mean estimates of the number of sole juveniles within the 
nursery areas of the Tagus estuary were higher for S. senegalensis than for S. solea, 13.26 x 
106 and 7.50 x 106, respectively. Yet, estimates of the total amount of sole catches were 
higher for S. solea, approximately 30 tonnes.year-1, relative to S. senegalensis, with 
approximately 21 tonnes.year-1. Fishing mortality was considerably higher for S. solea, 28% to 
39%, than for S. senegalensis, 4% to 10%. It was concluded, that this is probably due to 
faster growth by S. senegalensis, that decreases the time spent at the most vulnerable size 
range, and to the use of both nurseries by this species, since nursery B presents much lower 
fishing pressure.  
 
Key-words: Fisheries; Beam trawl; Discards; Fishing mortality; Multi-cohorts; Flatfish; Sole. 

 

 
Introduction 

The use of beam-trawl is forbidden in all Portuguese estuaries, due to its high impact 

upon the many species that use estuarine areas as nursery grounds, yet the Tagus estuary has 

an exception regime due to its traditional brown shrimp, Crangon crangon (Linnaeus, 1758), 

fishery. The commercial value of brown shrimp has however dropped drastically leading 

fishermen to direct their activities to more profitable target species, like the soles, Solea solea 

(Linnaeus, 1758) and Solea senegalensis Kaup, 1858. 

The beam trawl fishery is conducted intensively in the most important nursery areas for 

S. solea and S. senegalensis within the estuary (Cabral and Costa, 1999). This way, most of the 

soles caught are 0-group juveniles, well below the minimum length at capture (24 cm). While in 

other sole fisheries such small individuals have no commercial value, in the areas around the 

Tagus estuary they are valued by local restaurants, because 0-group sole juveniles are part of 

the traditional gastronomy. Juvenile soles are also sold to fish-farms. These commercial 

demands, both illegal, and the lack of regulation supervision and enforcement result in high 

fishing pressure at a period when vulnerability is high, possibly affecting year-class strength. 

Two important sole nurseries were identified in the Tagus estuary in previous studies 

(A, Vila Franca de Xira, and B, Alcochete; Figure 1) by Costa and Bruxelas (1989) and Cabral 

and Costa (1999). While in nursery A the two sole species, S. solea and S. senegalensis can be 
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found, in nursery B only S. senegalensis is present (Costa and Bruxelas, 1989; Cabral and 

Costa, 1999).  
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Figure 1 – Location of the study area in the Tagus estuary 

(nursery A- Vila Franca de Xira, nursery B – Alcochete). 

 

S. solea 0-group juveniles are known to colonize nursery A around April-May, in one or 

more cohorts, leaving the estuary towards the coast around October-November (Cabral and 

Costa, 1999). S. senegalensis colonise the upper Tagus nurseries latter and in several pulses 

(Cabral and Costa, 1999, Fonseca et al., 2006) resulting from a prolonged and variable 

spawning period with two major peaks (Spring and Summer) (Anguis and Cañavate, 2005). 

While one first cohort arrives at the estuary in late spring, another cohort arrives in late summer 

and a third cohort has also been observed in some years in Autumn (Cabral, 2003). Individuals 

from the latter cohorts will stay in the estuary during the winter, only emigrating towards coastal 

waters in the following year (Cabral and Costa, 1999). The temporal pattern of nursery habitat 

use by soles adds to the complexity of estimating population parameters, such as fishing 

mortality, in the Tagus estuary. In fact, while studies on northern European flatfish nurseries 

consider only one major 0-group cohort in the estimation of mortality (Zijlstra et al., 1982; 

Desaunay et al., 1987; Jager et al., 1995), this is clearly not appropriate in subtropical and 

tropical flatfish nurseries, since secondary cohorts encompass an important part of the 

population. 

Another important issue besides mortality due to fishing, is mortality of discards. Beam 

trawl fisheries are characterised by a considerable bycatch of fish and invertebrates, which is 
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discarded immediately after sorting on board (van Beek et al., 1990; Ross and Hokenson, 1997; 

Cabral et al., 2002). In the Tagus estuary, the estimate of the annual catch of the beam trawl 

fishery is ca. 1750 tonnes, of which approximately 90% is discarded (Cabral et al., 2002). The 

main fish and crustacean species discarded after capture are C. crangon (50%), Liza ramada 

(Risso, 1826) (19%), Carcinus maenas (Linnaeus, 1758) (13%) and Pomatoschistus minutus 

(Pallas, 1770) (8%) (Cabral et al., 2002). Although in lower numbers compared to these 

species, juveniles of S. solea and S. senegalensis are also among the discards of this fishery 

(Cabral et al., 2002). 

Mortality of discards differs according to species and is influenced by several 

conditions, either environmental or inherent to the catching and sorting methods, namely type of 

gear, haul duration, total volume of the catch and the sorting process used (e.g. Van Beek et al., 

1990; Richards et al., 1995; Ross and Hokenson, 1997; Gamito and Cabral, 2003). 

Although it is generally accepted that the beam trawl fishery, as other trawl fisheries, 

produces considerable disturbance on benthic environments (e.g. Bergman and Hup, 1992; 

Jennings et al., 2001), the question whether this fishery presents a large impact on fish 

populations is controversial. In fact, some authors, based on studies conducted in the beam 

trawl fishery in the North Sea, suggested that the effects on fish stocks are negligible (Kennelly, 

1995; Berghahn and Purps, 1998). Other studies emphasize the role of discards as organic 

matter inputs into the estuarine food web that can result in the enhancement of consumer 

populations (Ramsay et al., 1997, Groenewold and Fonds, 2000). Flatfishes are among the 

consumers that have been reported has having a strong response to fisheries discards 

(Groenewold and Fonds, 2000). 

The present study aims (1) to estimate the catches of S. solea and S. senegalensis of 

the beam trawl fishery within the nursery areas of the Tagus estuary, (2) to evaluate the 

mortality of discards of sole juveniles, and (3) to evaluate the impact of this fishery in year-class 

strength of both soles species. 

 

 

Material and Methods 
Study area 

The Tagus estuary, with an area of 320 km2, is a partially mixed estuary with a tidal 

range of ca. 4 m. About 40% of the estuarine area is intertidal. The upper part of the estuary is 

shallow and fringed by saltmarshes. The two main nursery areas for fish (A – Vila Franca de 

Xira, B – Alcochete) identified by Costa and Bruxelas (1989) and Cabral and Costa (1999) are 

located in the upper estuary (Figure 1). Although most of the environmental factors vary widely 

within the estuary, their ranges are similar in these two areas. However, the uppermost area (A) 

is deeper (mean value 4.4 m), has lower salinity (mean value 5‰) and a higher proportion of 

fine sand in the sediment. In the other area (B) the mean values of depth and salinity are 1.9 m 

and 20.7‰, respectively, and the sediment is mainly composed of mud (Cabral and Costa 

1999). 
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Sampling procedures and data analysis 

Fishing effort (in h.day-1) had been previously determined by Cabral et al. (2002) from 

interviews to local fishermen. According to these authors, the fishing effort is approximatelly 

constant all over the year, being the estimates different according to fishing area: 25 vessels, 

4.01 h.day-1 for area A and 15 vessels, 1.48 h.day-1 for area B (see Figure 1). Juvenile 

abundance and catches estimates were based on monthly sampling surveys aboard of 

commercial fishing vessels, performed in 1995 and 1996. During these surveys, 5 to 10 hauls 

were performed per month in each area using a 4 m beam trawl with 1 tickler chain and 10 mm 

mesh size. Hauls had 15 min duration and the distance travelled was registered using a GPS. 

Estimation of the area swept was carried out using the beam length and the distance travelled. 

Catches of each haul were sorted by fishermen and the number and weight of S. solea and S. 

senegalensis caught and discarded were determined. Proportion of discards was further 

analysed according to three length classes, <101 mm, 101 mm to 150 mm and >150 mm total 

length. 

Experiments to estimate the survival of beam trawl discards were also carried out 

aboard commercial fishing vessels operating under normal conditions in 10 different dates 

during June and July 2000. After capture S. solea and S. senegalensis juveniles were placed in 

different plastic tanks (60x40x50 cm) filled with water, according to size of fish. Three length 

classes were considered: <101 mm, 101 mm to 150 mm and >150 mm total length. The tanks 

were checked every 5 min and the dead specimens were recorded and removed. The 

experiments were terminated after 30 min, when the remaining dead and live specimens were 

removed. For each species, the values obtained for each length class (in the proportion of 

discards according to length and in the survival experiment) were compared using the Kruskal-

Walllis test at a significance level of 0.05 (Zar, 1996). Whenever the null hypothesis was 

rejected, a posteriori multiple comparisons were performed. The Mann-Whitney test was used to 

evaluate the differences in the mortality rates determined for S. solea and S. senegalensis. 

Based on the monthly sampling surveys and on the experiments of discards mortality 

several estimates were calculated, for each species and year, as follows: 

 

(1) Total number of juveniles (N):  

 

N = PD . A / FGE, 

 

where PD is the peak density registered at the beginning of the recruitment to nursery areas, A 

is the area of the fishing zone and FGE is the fishing gear efficiency. PD was obtained from the 

sampling surveys, A was determined from nautical maps (area of zone A= 46.46 km2; area of 

zone B=24.75 km2) and a FGE of 0.3 was considered based on Kuipers (1975) and Creutzberg 

et al. (1987); 

 



                                                                                                                           Chapter 5 

 - 194 -

(2) Catch (C): 

C =  ∑ MCi . FEi 

 

where MCi is the mean value of the number (CN, in number) or biomass (CB, in weight) of 

juveniles in the catches of month i and FEi is the fishing effort for month i;  

 

(3) Discards (D): 

D =  ∑ Ci . PDi 

 

where Ci is the estimate in number (DN, in number) or in biomass (DB, in weight) of the catches 

of month i and PDi is the proportion of soles in the discards for month i, determined in the 

present study; 

 

(4) Fish discarded dead (Dd): 

Dd =  ∑ Di . MRi 

 

where Di is the estimate of the number (DdN, in number) or biomass (DdB, in weight) of 

juveniles in the discards of month i and MRi is the mortality rate. Since the mortality rates were 

determined according to fish length, the mean length of fish per month was used to assign a 

mortality rate to each month. 

 

(5) Mortality due to fishing (MF, in percentage): 

 

( )
100  

N
Dd DC

  MF iii ⋅
−−

= ∑ ∑ ∑
 

 

where Ci, Di, Ddi and N are determined as described above. 

These estimates were calculated based on a sub-set of the original database including 

the period between the month of peak density and the last month before emigration (after which 

a steep decrease in density is detected, along with a break-up of the normal distribution of fish 

length). Calculations were based only on this period to meet the assumption of a negligible flux 

of individuals migrating into and out of the nurseries. 

Due to the possibility of several 0-group cohorts, data was analysed in order to identify 

the various cohorts. A preliminary analysis of length frequency distribution revealed that multi-

cohorts only occurred in S. senegalensis in both years studied. For this purpose, a 

decomposition of composite distributions of S. senegalensis length was carried out on FISAT II 

(FAO, 2002), using the Bhattacharya’s method. This allowed the isolation of each cohort and its 

follow up through the study period, until emigration was detected (rapid decrease in the number 
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of individuals with break-up of the normal distribution). Densities of each cohort were estimated 

throughout the study period. The estimation of the parameters N, C, D, Dd and MF, described 

above, was carried out separately for each cohort.   

 

 

Results 
While for S. solea only one cohort was identified in each year, S. senegalensis data 

clearly reflected a multi-cohort pattern in both years (Figure 2). In June 1995, the first cohort of 

S. senegalensis was detected in nursery A, composed of individuals with a mean length of 58 

mm. The first cohort progression was identified in July and August, with increasing mean length, 

in September 1995 this cohort was no longer identifiable, probably because most individuals 

had attained emigration length and were already out of the system. Analysis of this cohort’s 

densities throughout time shows that July was the peak abundance month (Figure 3). 

Calculations done for this cohort refer to the period between July and August. A second 

cohort was detected in July 1995 in nursery A, with a mean length of 57 mm, this cohort 

numbers density peaked in September (Figure 3) and continued within the nursery until 

January, when a rapid decrease and break-up of the normal distribution indicated emigration 

out of the nursery. Calculations done for this cohort refer to the period between September and 

December. A third cohort was identified in September in nursery B, with a mean length of 85 

mm; this cohort’s density peaked in November 1995 (Figure 3) and was also detected in 

December 1995, yet in January 1996 its numbers decreased drastically (although the normality 

of the distribution was kept, January was not included in the calculations due to its’ very low 

densities. Calculations done for this cohort referred to the period between November and 

December. 

Numbers of S. senegalensis were very low during January and absent in February 

1996. In March 1996 two cohorts were detected, one with a mean length of 120 mm in nursery 

B, possibly one of the cohorts that entered the system in late 1995 (which was called cohort I), 

and another with a mean length of 85 mm (which we called cohort II) in nursery A (Figure 2). 

Cohort I increased its numbers until reaching a density peak in May 1996 (Figure 3), indicating 

that the cohorts that immigrate into the nursery area late in the year and emigrate during winter, 

gradually come back into the nursery during spring. This cohort was detected within the nursery 

until July, after which it emigrated out of the system. Calculations done for this cohort refer to 

the period between May and July. Cohort II, which was first detected in March (Figure 2), 

peaked in May (Figure 3) and was present until August, in September its numbers decreased 

steeply and there are a break-up in the normal distribution indicating emigration. Calculations 

done for this cohort referred to the period between May and August. Two new cohorts were 

identified in October and a few individuals in November, yet its numbers were deemed to low for 

calculations. 
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Figure 2 – Frequency of length distributions of S. senegalensis 

and decomposition into cohorts for 1995 and 1996. 
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Figure 2 – Frequency of length distributions of S. 

senegalensis and decomposition into cohorts for 1995 and 

1996 (continuation). 
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Figure 2 – Frequency of length distributions of S. senegalensis 

and decomposition into cohorts for 1995 and 1996 (continuation). 
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Figure 3 – Densities of S. senegalensis cohorts throughout the study period in 1995 and 1996. 

Graphic “a” presents the 1995 densities: black circles for the first cohort (nursery A); grey 

triangles for the second cohort (nursery A); white circles for the thrid cohort (nursery B). Graphic 

“b” presents the 1996 densities: white circles for the first cohort (nursery B); grey triangles for 

the second cohort (nursery A). 

 

The mean estimates of the number of S. solea and S. senegalensis juveniles within the 

nursery areas of the Tagus estuary varied considerably according to the year (Table 1 and 2). 

For the same two years, the estimates obtained for S. senegalensis were higher compared to 

those obtained for S. solea (mean value of 6.30 x 106 and 12.30 x 106, for 1995, respectively, 

and mean value of 2.39 x 106 and 14.17 x 106, for 1996, respectively).  
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Table 1 - Estimates of number, catches, discards and mortality due to beam trawl 

fishing of 0-group S. solea within nursery A of the Tagus estuary. 
 

 1995 1996 Mean values 

 

Number (x106) 6.30 2.39 7.50 

Catch (in number x106) 3.34 0.81 2.08 

Catch (in tonnes) 37.37 22.64 30.01 

Discarded (in number x106) 0.95 0.14 0.55 

Discarded (in tonnes) 8.77 2.83 5.80 

% Discarded (number) 29 17 23 

% Discarded (weight) 23 13 18 

Discarded dead (in number x106) 0.05 0.01 0.03 

Discarded dead (in tonnes) 0.32 0.07 0.20 

Fish mortality due to fishing (%)  39 28 34 

 

 

Table 2 - Estimates of number, catches, discards and mortality due to beam trawl fishing of the 

S. senegalensis cohorts within the nursery areas of the Tagus estuary. 

 1995 1996 Total 

 
cohort I 

 

nursery A 

cohort II 
 

nursery A 

cohort III 
 

nursery B 

cohort I 
 

nursery B 

cohort II 
 

nursery A 

1995 1996 

Mean 

values 

 
Number (x106) 
 

1.04 5.83 5.49 8.75 5.42 12.36 14.17 13.26 

Catch  
(number x106) 
 

0.14 
 

1.23 
 

0.13 
 

0.19 
 

0.81 
 

1.50 
 

1.00 
 

1.25 

Catch  
(in tonnes) 
 

2.27 
 

19.85 
 

1.68 
 

4.95 
 

13.69 
 

23.80 
 

18.64 
 

21.22 

Discarded 
(number x106) 
 

0.07 
 

0.20 
 

< 0.01 
 

0.10 
 

0.40 
 

0.26 
 

0.50 
 

0.38 

Discarded  
(in tonnes) 
 

1.05 
 

3.20 
 

< 0.01 
 

2.48 
 

6.74 
 

4.25 
 

9.22 
 

6.74 

% Discarded 
(number) 
 

47 
 

16 
 

0.04 
 

50 
 

49 
 

18 49 34 

% Discarded 
(weight) 
 

46 
 

16 
 

0.05 
 

51 51 
 

18 51 35 

Discarded dead 
(number x106) 

 

< 0.01 
 

< 0.01 
 

< 0.01 
 

< 0.01 
 

< 0.01 
 

< 0.01 
 

< 0.01 
 

< 0.01 
 

Discarded dead 
(in tonnes) 
 

0.05 
 

0.03 
 

< 0.01 
 

0.05 
 

0.07 
 

0.08 
 

0.11 
 

0.09 

Fish mortality 
due to fishing (%) 

7 18 2 1 8 10 4 7 
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The mean values of the catch estimates, expressed in terms of number of individuals, 

were higher for S. solea (2.08 x 106 for S. solea and 1.25 x 106 for S. senegalensis). The same 

occurred in terms of biomass (mean value of 30.01 tonnes for S. solea and 21.22 tonnes for S. 

senegalensis) (Table 1 and 2). 

The proportion of soles juveniles discarded in the beam trawl fishery varied 

considerably according to the month studied (Figure 4, Figure 5).  
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Figure 4 - Monthly mean values of the proportion of 0-group S. 

solea (in number) discarded in relation to catches, from April to 

October, based on the 1995 and 1996 surveys. 
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Figure 5 – Monthly mean values of the proportion of 0-group S. 

senegalensis (in number) discarded in relation to catches, from 

May to December, based on the 1995 and 1996 surveys. 
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For S. solea, the proportion of fish discarded was relatively high between April and June 

(mean values higher than 30%), with a rapid decrease from June on (Figure 4). From August to 

October less than 5% of the juveniles catched were discarded. For S. senegalensis, a constant 

decrease in the proportion of fish discarded was obtained for 0-group juveniles between May 

and December (Figure 5), yet the values were always higher than 20%. 

High levels of discarding were registered for sole smaller than 100 mm, with 40% of fish 

discarded, while for 101 mm to 150 mm discards amounted to 25% and for sole larger than 150 

mm the amount discarded was lower than 2%. Variation of discards according to month is 

clearly related to the size composition of the catches. 

The overall estimates of discards determined for S. solea (mean value of 5.80 tonnes) 

were lower than those relative to S. senegalensis (mean value of 6.74 tonnes) (Table 1 and 2). 

These values represented 18% and 35% of the sole catches (in weight), respectively for S. 

solea and S. senegalensis. 

The mortality rates of the discarded S. solea and S. senegalensis juveniles were 

significantly different according to length of fish (H=9.93, p<0.05; and H=10.78, p<0.05; 

respectively for S. solea and S. senegalensis). For both species, the values determined for fish 

smaller than 100 mm total length were considerable higher than those obtained for fish larger 

than 101 mm (Figure 6). Post-hoc comparisons revealed no significant differences between the 

mortality rates determined for both species of all length classes considered.  
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Figure 6 – Mortality estimates (in percentage of the 

number of individuals) determined for S. solea (in black) 

and S. senegalensis (dot pattern) juveniles according to 

fish length. 

 

Although the estimates of fishes discarded dead were extremely low when compared to 

the discards estimates, the values determined for S. solea in weight were almost 50% higher 

compared to those obtained for S. senegalensis (Table 1 and 2). 
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The overall estimates of juvenile mortality due to the beam trawl fishery in the Tagus 

estuary varied between 39% and 28% of the number of individuals, for S. solea in 1995 and 

1996, respectively, while the overall estimates of fishing mortality for S. senegalensis were 

much lower, 10% and 4%, in 1995 and 1996, respectively. 

  

Discussion 
The present study allowed for a first estimation of the impact of mortality due to fishing 

upon a multi-cohort population of juvenile sole. The decomposition of composite length 

distributions performed, allowed for an effective identification of the various cohorts colonizing 

the nursery grounds resulting in a fine estimation of the total number of individuals and 

ultimately in more accurate mortality estimates. 

A higher number of S. senegalensis relative to S. solea within the Tagus estuary 

nursery areas, was estimated in the present study. Higher densities of S. senegalensis in 

comparison to S. solea had been previously reported by Cabral and Costa (1999). Also, S. 

senegalensis uses a wider area of habitat that includes the two nurseries, while S. solea only 

colonizes one of the nurseries. 

The catch estimates reported in the literature (e.g. Fonds, 1994; Garthe and Damm, 

1997; Berghahn and Purps, 1998) are considerably higher than the ca. 51 tonnes.year-1 (S. 

solea and S. senegalensis) estimated for the Tagus estuary. This was expectable since most 

studies refer to the North Sea, one of the most heavily fished areas in the world and one of the 

most important feeding grounds for adult S. solea (Catchpole et al., 2005), with a larger area 

and a better equipped fleet that can operate at higher velocities than the Tagus estuary fleet, 

which works in a confined area and is composed mainly by artisanal boats (Garth and Damm, 

1997; Berghahn and Purps, 1998; Lopes, 2004). 

Catch numbers relative to the estimated total numbers of S. senegalensis were lower 

than for S. solea, this is due to the fact that some cohorts of S. senegalensis immigrate into 

nursery B, where the fishing effort is much lower than in nursery A. 

The estimates of the biomass of S. solea and S. senegalensis in the discards obtained 

in the present work were lower than those previously pointed out by Cabral et al. (2002). This 

was certainly due to the fact that in the present study the estimates incorporated the proportion 

of sole discarded determined on a monthly basis, while in Cabral et al. (2002) these values 

were averaged per season. 

The proportion of discards varied considerably according to month for both species. 

This variation should be mainly related to fish size, which is the most important selection criteria 

when fishermen sort fish catches, with fishes smaller than 100 mm being discarded in very high 

quantities, since there is no market for such small soles. 

The particular commercial demands that act upon sole fisheries in the Tagus estuary 

determine a very different composition of discards compared to the North Sea fisheries, where 

only adults have commercial value and most juveniles are discarded, meaning that the 

proportion of flatfish in discards is extremely high when compared to the Tagus estuary fishery. 
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Garthe (1993) estimated a proportion of 93% of flatfish and 7% of roundfish in the discards of 

the beam trawl fishery in the North Sea. Considering the discards estimates obtained by Cabral 

et al. (2002) for the Tagus estuary, flatfish discards represent less than 5% of all fish discards. 

The survival of discards experiment revealed that survival increased with increasing fish 

length. That is to be expected due to an increase of resilience with age. Differences in mortality 

among the two species were not detected in the present study, which indicates that the ca. 50% 

lower dead discards estimated for S. senegalensis relative to S. solea, are not related to higher 

survival ability in adverse conditions. The higher survival of this species is possibly due to 

higher growth rates, previously reported by Cabral (2003), which result in less time spent in the 

more vulnerable length range, leading to higher survival in discards. 

The experiments for evaluating the mortality of the discards conducted in the present 

study were performed in similar conditions. However, discards mortality is influenced by several 

factors, namely temperature, sorting process and haul duration (van Beek et al., 1990; Richards 

et al., 1995; Ross and Hokenson, 1997; Gamito and Cabral, 2003) and thus the estimates 

obtained in these experiments should present a higher variability if a more diverse set of 

conditions was considered.  

The duration of these experiments is also a key factor that has a considerable impact 

on the mortality estimates. Keeping fishes in a controlled environment such as a tank for a long 

time period may overestimate discards mortality. On the opposite, if the time frame is too short, 

mortality estimates may be also biased and, in this case, lower than the real values. In 

literature, the time scales used in these kind of experiments varied from 30 min to 6 days (van 

Beek et al., 1990; Ross and Hokenson, 1997; Kaiser and Spencer, 1995; Gamito and Cabral, 

2003). In the present work, fish were kept in experimental tanks for 30 min, in order to avoid 

overestimating the mortality of soles juveniles in the discards. The experimental design used 

was based on the previous work performed by Gamito and Cabral (2003). 

The mortality rates determined in the present work were quite low, both for S. solea and 

S. senegalenesis. Similar studies conducted in the North Sea obtained a wider variation of the 

mortality rate estimates. Walter and Becker (1997), outlined that mortality of fish discards, such 

as Pleuronectes platessa Linnaeus, 1758, Platichthys flesus (Linnaeus, 1758), S. solea and 

Limanda limanda (Linnaeus, 1758) varies between 17% and 100%. According to these authors, 

the values determined for these species were extremely lower than those obtained for roundfish 

species, for which the mortality rates were approximately 100%. Other authors, such as van 

Beek et al. (1990), reported that the mortality of sole discards in the shrimp fishery in the North 

Sea employing a light beam trawl without tickler chains but with rollers attached to the ground 

rope, was estimated at about 40% to 50%. These differences between the estimates obtained in 

the North Sea and in the Tagus estuary could be due in large extent to a different fishing 

practice, namely in what concerns haul duration and the sorting process that have a 

considerable impact on discards mortality (Kelle, 1976; van Beek et al., 1990; Richards et al., 

1995; Ross and Hokenson, 1997; Gamito and Cabral, 2003). In the North Sea beam trawl 

fishery hauls are generally longer (ca. 120 min) compared to those performed in this fishery in 
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the Tagus estuary (ca. 30 min). Also, several sorting devices are commonly used in the North 

Sea fisheries, namely shaking sieves, which drastically increase discards mortality (Kelle, 1976, 

van Beek et al., 1990). 

The results obtained in the present study suggest that the beam trawl fishery in the 

Tagus estuary has a considerable impact on S. solea and a lower impact on S. senegalensis 

stocks, affecting the year class strength from 28% to 39% and from 4% to 10%, respectively. 

The main factors that lower S. senegalensis fishing mortality are lower catches and death of 

discards. Analysis of the various cohorts of this species clearly shows low fishing mortality for 

the cohorts that colonize nursery B (Table 2), where they are subjected to much lower fishing 

pressure. It can thus be concluded that nursery B acts as an area where S. senegalensis can 

grow with less human interference. 

These findings clearly contrast with studies conducted in the North Sea shrimp 

fisheries, which have shrimp as its main target and therefore reject most of the sole catches. 

According to Bergham and Purps (1998), even if the German shrimp fisheries were to stop 

completely, it would probably not have any detectable beneficial effect on flatfish stocks. Only if 

all fleets, German, Danish and Dutch, were to stop completely would a significant effect be 

produced. 

The unique legislative status of the Tagus estuary, concerning the use of beam trawl, 

should be reviewed and further studies on the monitoring and modelling of the beam trawl 

fishing activity should be promoted. 
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Conclusions 
 
 

 

 

The investigation on the effect of climate and hydrodynamics upon migrating sole larvae 

and the estimation of the magnitude of the mortality caused by fishing has put forward important 

new findings on the factors affecting sole survival during their juvenile period and that will 

ultimately affect recruitment to the adult stocks. 

Analysis of existing data, dating back from 1988, and its relation to climatic and 

hydrodynamic factors, revealed that there were no significant correlations between peak 

densities of S. solea and S. senegalensis and the North Atlantic Oscillation (NAO) index or the 

prevailing wind direction, over the period when larval sole were assumed to be immigrating 

towards the estuarine nurseries, in fact only river drainage yielded significant correlations for 

both species.  

The extension of river plumes throughout the coastal areas adjacent to the estuary 

probably plays a crucial role in the immigration process since it carries chemical clues that 

larvae use to direct their movement. This means that in rainy years a wider area will be under 

the influence of such chemicals, thus increasing the probability of detection by fish larvae 

spawned in the coast. 

Climate change will probably have an important effect over larval soles’ estuarine 

colonization. Changes in river drainage magnitude and seasonal pattern are expected due to 

the alteration of precipitation over the Iberian river basins. A decrease in river drainage 

occurring during the period of larval migration is expected to have a noticeable impact over both 

sole species. A more concentrated rainy period will probably affect more S. senegalensis 

because this species spawning extends over a wider period of time than S. solea. 

The analysis of the impact of fishing upon the juvenile soles of the Tagus estuary 

allowed for a first estimation of fishing mortality in a multi-cohort population of 0-group juveniles. 

Fishing mortality estimations suggest that the beam trawl fishery in the Tagus estuary has a 

considerable impact on S. solea and a lower impact on S. senegalensis stocks, affecting the 

year class strength from 28% to 39% and from 4% to 10%, respectively. The main factors that 

lower S. senegalensis fishing mortality are lower catches. The lower catches relative to total 

numbers are due to the fact that this species colonizes not only nursery A but also nursery B, 

where fishing effort is much lower. It was thus concluded that nursery B acts as an area where 

S. senegalensis can grow with less human interference.  

This chapter revealed the need for close monitoring of river drainage levels and its 

effects upon densities of sole juveniles within nursery areas, it also highlighted the need for a 

revision of the unique legislative status of the Tagus estuary, concerning the use of beam trawl 

in its nursery areas. 
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CHAPTER 6 
 

- GENERAL CONCLUSIONS AND FINAL REMARKS - 
 

 

The present work contributed for the narrowing of the knowledge gaps on the ecology of 

the juveniles of Solea solea (Linnaeus, 1758) and Solea senegalensis Kaup, 1858, in the Tagus 

estuary. Analysis of habitat use at different spatial scales revealed highly complex processes 

and patterns. Experimental work on gastric evacuation and feeding behaviour and its 

application to wild populations allowed the first estimation of food consumption by these species 

in the Tagus estuary. The tools applied to the investigation of growth and condition, revealed 

unknown patterns related to estuarine colonization, allowed the comparison of habitat quality 

among the two nurseries, and the comparison of growth and spawning in a latitudinal 

perspective. Investigation on the effect of climate and hydrodynamics upon migrating sole 

larvae and the estimation of the magnitude of the mortality caused by fishing has put forward 

important new findings on the factors affecting sole survival during their juvenile period, bringing 

new insights into the problematic of stock recruitment variability. 

The Habitat Suitability models presented were successful in mapping habitat quality for 

S. solea and S. senegalensis. The question posed in the introduction, “What variables should 

be taken into account to model these species habitat use?” was answered. Salinity, 

temperature, substrate, depth and presence of intertidal mudflats in the distribution of both 

species were important variables in the definition of broad areas of suitable habitat for these 

species, yet the inclusion of prey abundance data proved crucial in the definition of high 

suitability areas and in the prediction of high densities of juveniles.  

The stable isotope approach revealed that 0-group S. senegalensis present high site 

fidelity and do not move between nurseries, thus answering the question “Is there connectivity 

between the two nurseries?”. This study also showed that the food-webs from each of the 

nursery areas have low connectivity and present different levels of dependence upon freshwater 

and marine energy pathways. While the Vila Franca de Xira nursery is more dependent on the 

freshwater energy pathway, the Alcochete nursery has a greater contribution from the marine 

energy pathway. 

The investigation of the effect of the diel and lunar cycles in the activity of S. 

senegalensis intended to answer the question “What factors affect the use of mudflats by these 

species?”. It was concluded this species use of the intertidal is affected by both the diel and the 

lunar cycles. The highest densities over the mudflats take place at full-moon during the 

dusk/dawn period. A semi-lunar activity pattern was detected. While at spring tides abundance 
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peaks at dusk/dawn, at neap tides abundance peaks during the day. The analysis of the effect 

of diel and lunar cycles upon its predators along with literature information on that effect upon its 

prey strongly suggests that S. senegalensis activity pattern is closely related to that of its 

predators and prey. 

The experimental studies carried out to determine food consumption, lead to the 

conclusion that both temperature and salinity have an important effect on gastric evacuation in 

S. solea and S. senegalensis. While temperature increased evacuation rates in both species 

(although not at 26ºC, in S. solea), the effect of low salinity differed among species, leading to a 

decrease in gastric evacuation rate of S. senegalensis and an increase in S. solea.  

It was concluded that the observed effect of the 26ºC experimental temperature upon S. 

solea was probably due to thermal stress and that this species may be at a disadvantage during 

the summer months when juveniles of both sole species concentrate in shallow waters, rich in 

prey but where temperature warms up well above its metabolic optimum. It was also concluded 

that a different level of adaptation to low salinity is probably the most important factor 

determining these species partition of space within the nursery area. 

The behaviour experiment revealed that the presence of a predator strongly impacts the 

foraging activity of sole in the presence of prey with a 10% decrease in overall activity. 

Temperature, salinity and predation pressure are thus important factors affecting prey 

consumption by juvenile soles, answering the question posed in the introduction “What affects 

prey consumption by these species?”. The questions “How much prey do soles consume?” and 

“Is soles’ abundance limited by the amount of prey available at the nurseries?” were also 

answered, yet it was concluded that variability in the abundance of soles and prey may result in 

different scenarios depending on the temporal period studied. 

The estimated daily food consumption was considerably higher for S. senegalensis than 

for S. solea. Two distinct peaks of feeding activity were observed, albeit more pronounced for S. 

senegalensis than for S. solea. Since studies on S. solea food consumption at higher latitudes 

found pronounced peaks of feeding activity, it was concluded that consumption of S. solea in 

the summer months in the Tagus estuary may be hindered, possibly by thermal stress, like 

observed in the gastric evacuation experiments.  

Food was found not to be a limiting factor for soles, however, more studies concerning 

variability in predators and prey densities are needed in order to accurately determine food 

availability and partitioning in the Tagus estuary. 

The assessment of growth and condition variability revealed patterns related to the 

estuarine colonization process, thus answering the question “Are there growth and condition 

patterns related to the estuarine colonization undertaken by these juveniles?”. When young 

juvenile soles enter the estuary they present fast growth rates and high RNA-DNA ratios that 

decrease over time. The first cohort to colonize the estuary presents higher growth and 

condition than subsequent cohorts, possibly due to higher availability of food and less 

competition.  
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Differences in habitat specific growth rates were found among the two nursery areas of 

the Tagus estuary. Results indicate that in 2005 the Alcochete nursery provided higher habitat 

quality for S. sengalensis than the Vila Franca de Xira nursery. No significant differences were 

found using RNA-DNA ratios, yet it was concluded that soles from the Tagus estuary are in 

good overall condition. In order to answer the question “Which of the nurseries offers better 

conditions to these juveniles?” habitat quality assessment will have to be carried out in a 

broader period of time, since nurseries are very dynamic areas. It was concluded that the 

simultaneous use of habitat specific growth rates, that integrate the whole life of the fish, and 

RNA-DNA ratios that only reflect recent conditions, would be interesting for environmental 

monitoring purposes since the information provided by the two methods is complementary, thus 

answering the question “Can growth rates based on otolith daily increments and condition 

based on RNA-DNA ratio be used for habitat quality monitoring of soles’ nurseries?”. 

The analysis of growth in a wide geographical perspective revealed a latitudinal 

variation affecting S. solea, in that growth rates are higher and spawning takes place earlier at 

lower latitudes. The Tagus estuary was slightly off trend in a local context, although growth was 

higher than in the French estuaries studied, it was lower than in the Douro estuary. 

Temperature is possibly a key factor hindering S. solea growth rates in the Tagus estuary, since 

water temperatures in the Tagus over the juvenile period of this species are higher than its 

optimum metabolic temperature. This answered the question “Does S. solea grow faster in the 

Tagus estuary than at higher latitudes?”. 

Spawning followed the latitudinal trend, taking place earlier in the Tagus and Douro 

coastal areas than in northern Europe, meaning that the answer to the question “Are there 

latitudinal trends in the spawning time of S. solea?” is positive.  Yet, spawning took place earlier 

in the French estuaries than in the Portuguese estuaries, supporting recent theories that state 

that local conditions, oceanographic conditions in particularly, may overrule general latitudinal 

trends. The Portuguese coast is located in a very complex upwelling system which may interfere 

with larval immigration towards nursery areas and thus confound the back-calculation of 

spawning based on the survivors that reach the nursery grounds. 

Analysis of existing data on soles densities, dating back from 1988, and its relation to 

climatic and hydrodynamic factors, revealed that only river drainage yielded significant 

correlations for both species, answering the question “What is the impact of climate and 

hydrodynamics on the larval immigration of sole towards the Tagus estuary?”. It was concluded 

that chemical cues carried by river plumes probably play a crucial role in the larval immigration 

process. 

The expected decrease in river drainage due to climate change should have a 

noticeable impact over both sole species. A more concentrated rainy period will probably affect 

S. senegalensis to a higher degree because this species spawning extends over a wider period 

of time than S. solea. 

Fishing mortality in a multi-cohort population of 0-group juveniles was determined for 

the first time in the present work. It was concluded that the beam trawl fishery in the Tagus 
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estuary has a considerable impact on S. solea and a lower impact on S. senegalensis stocks, 

affecting the year class strength from 28% to 39% and from 4% to 10%, respectively, this way 

answering the question “What is the impact of fishing mortality upon soles’ juveniles of the 

Tagus estuary?”. 

Fishing mortality of S. senegalensis is lower because it colonizes not only the Vila 

Franca de Xira nursery but also the Alcochete nursery, where fishing effort is much lower. It was 

thus concluded that the Alcochete nursery acts as protected area where S. senegalensis can 

grow with less fishing pressure.  

Alterations concerning the estuarine environment will most probably have an effect on 

species stocks, meaning that estuarine management and stock management are naturally 

intertwined. The present study provides new information that should be incorporated into future 

stock and estuarine management. 

Knowledge on the most important variables defining highly suitable areas for sole 

juveniles, on the high site fidelity displayed by juveniles, on the low connectivity of the food 

webs of the two nurseries and on their differential dependence on the freshwater energy 

pathways will be important when considering activities or new infrastructures that may disturb 

these areas.  

Information on sole juveniles’ feeding ecology provided here can be incorporated into 

future multi-species food-web models for stock and estuarine management. It is important to 

assess the carrying capacity of the system in order to predict the effect of any activities that may 

potentially change it. 

Monitoring of habitat quality using integrative indexes such as fish growth will be very 

important for the early detection of any threats to the populations’ health and ultimately to the 

commercial stock status. 

Management of fish stocks under a background of climate change is one of the biggest 

challenges of current and future times. The identification of the effects of climate upon fish 

populations gives us the opportunity to predict and plan ahead, which will be crucial for the 

adaptation of fisheries all around the world. In the case of the Tagus estuary soles, close 

monitoring of the effect of river flow will be important in the future. The optimal range of flow for 

larval immigration should be determined, and the hypothesis of reaching that range through the 

synchronization of dam discharges with spawning periods should be considered, providing that 

more knowledge and monitoring of spawning stocks are also achieved.   

Water management will be one of the most important issues at a national level. 

Optimization of ecological river flows, maintained through management of dam discharges in 

each river basin, should take into account freshwater and coastal communities and their 

different needs over the year.  

Knowledge on the magnitude of the mortality caused by fishing upon the two sole 

species will lead to a better understanding of its effect upon recruitment to the adult stocks. The 

high level of mortality caused by the beam trawl fisheries should be taken into account and the 

unique legislative status of the Tagus estuary revised. The reason for the exception regime, the 
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traditional brown shrimp fishery no longer exists, since the drop in commercial value of this 

species rendered its capture non-profitable, instead this exception regime is being used to 

target juvenile sole well below the 24 cm minimum length at capture, as well as other fish 

juveniles, that are unreported and bypass any health control. 

The current species management approach is inadequate. Its major flaw is considering 

that both species are only one item to be managed. Scientific work has consistently showed that 

these species have important differences in life-cycle and habitat use patterns and need 

different protective measures.  

Management of these two species as one item may lead to several misconceptions. 

The Alcochete nursery may be regarded as secondary habitat or alternative habitat for sole. It 

may be considered that impacts in one of the nursery areas are minimized by the existence of 

another nursery, yet S. solea is only present at one of the nurseries and the connectivity level 

between S. senegalensis populations using both nurseries is very low, if not non-existent for 0-

group individuals. Legislation concerning the defence period protects mainly S. solea juveniles. 

In a national context, the non-identification of soles to the species level by the official entities 

makes a thorough scientific analysis impossible. 

An important issue concerning the management of estuarine areas in Portugal will be 

the need for close articulation between the existing coastal areas management plans (Planos 

de Ordenamento da Orla costeira - POOCs) and the plans that will be put into practice in the 

near future for the management of estuaries (Planos de Ordenamento de Estuários - POEs) 

and protected areas (Planos de Ordenamento de Áreas Protegidas - POAPs). Since these 

plans clearly overlap in the Tagus nursery areas, they will have to be coherent and clearly state 

which entities will be responsible for the implementation of management measures. 
The future will certainly bring new challenges to the management of sole stocks, as well 

as, to the Tagus estuary nursery areas. As new information is gathered, and the environmental 

context changes, new scientific questions arise.  

Several studies should be carried out in the near future: The effect of several possible 

climate change scenarios and the consequences of different levels of local climate warming, 

disruption of rainfall patterns and changes in coastal hydrodynamics, upon sole populations 

should be investigated. Possible changes in the estuarine hydrology and on the freshwater input 

upon the nursery areas should be assessed, as well as, its impact on the estuarine food-webs. 

For this purpose it would be useful to construct carbon and nitrogen balance models, which 

could be manipulated in order to simulate different scenarios. 

Another important consequence of climate warming is the predicted sea-level rise. The 

impact of intertidal area loss on the carrying capacity of the Tagus estuary should be an 

important target of future studies, since it will possibly impact soles recruitment, as well as that 

of other estuarine fishes. 

Assessment of soles metabolism at temperatures higher than those found currently in 

European habitats, will bring important information on the magnitude of the impact that should 

be expected due to an increase in water temperature.  



                                                                                                                           Chapter 6 

 - 214 -

The ability to predict change will enable the implementation of measures that may 

compensate negative effects acting upon these species populations. Among such measures 

would certainly be a higher level of protection of nursery and spawning habitats in order to 

enhance survival at early stages and a rigorous control of overexploitation of the commercial 

stocks. 

However, effective measures rely on sound scientific knowledge that has not yet been 

achieved for the whole life-cycles of either sole species in the Portuguese coast. Monitoring 

programs focusing on the various life stages of these species are urgently needed. The 

absence of continuous datasets concerning juvenile and adult abundance hinders the early 

detection of trends in these species populations, as well as, the investigation of the factors 

affecting recruitment. The implementation of a continuous sampling program in the Tagus 

estuary and the rigorous identification of sole landings by the official entities would enable the 

initiation of valuable datasets for future use.  

Another important issue is the effective contribution of each nursery area to the coastal 

stock, as well as, the relative importance of the Tagus estuary nurseries in a national 

perspective. Interesting results have been achieved in other coastal areas through the analysis 

of otolith microchemistry, which functions as a natural tag acquired by the fish throughout its 

lifetime. Trace element uptake by the otolith is influenced by environmental and physiological 

factors that might be different among habitats. If so, the environmental history of a fish can be 

determined by analyzing the chemical composition of the portions of the otolith corresponding to 

specific time periods. In species that show habitat segregation for juveniles and adults, such as 

the soles, juvenile otoliths record the environmental conditions experienced in the nursery area, 

which will correspond to the otoliths’ core in adults, thus enabling the estimation of the 

quantitative contribution of each nursery. Such studies are underway in the Portuguese coast, 

nonetheless, the assessment of the consistency of the estimations needs to be carried on for a 

considerable period of time, in order to account for inter-annual variation. 

The determination of soles’ spawning areas along the Portuguese coast will be an 

important step for the understanding of the main factors controlling recruitment, since it is at the 

eggs and larval stages that mortality is higher. It would therefore be important to conduct 

ichthyoplankton intensive sampling surveys along the Portuguese coast targeting these species 

eggs and larvae. 

Knowledge on the early stages of soles life is very important for the development of 

three-dimensional models of eggs and larvae movement which coupled with hydrodynamic 

circulation and temperature models will be an important tool for the analysis of migration 

towards nursery areas and the factors that may disrupt it. 

Finally, the development of multi-species food-web models and coastal transport 

models for eggs and larvae will certainly provide new insights into the importance of the Tagus 

estuary nursery grounds for soles and into the most appropriate management strategies. 

 

 


