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Abstract 

 
The thesis is devoted to image reconstruction in 3D whole-body PET imaging. 

OSEM (“Ordered Subsets Expectation maximization”) is a statistical algorithm that assumes 

Poisson data.  However, corrections for physical effects (attenuation, scattered and random 

coincidences) and detector efficiency remove the Poisson characteristics of these data.  The 

Fourier Rebinning (FORE), that combines 3D imaging with fast 2D reconstructions, requires 

corrected data. Thus, if it will be used or whenever data are corrected prior to OSEM, the need 

to restore the Poisson-like characteristics is present. 

Restoring Poisson-like data, i.e., making the variance equal to the mean, was achieved 

through the use of weighted OSEM algorithms.  One of them is the NECOSEM, relying on the 

NEC weighting transformation.  The distinctive feature of this algorithm is the NEC 

multiplicative factor, defined as the ratio between the mean and the variance.  With real clinical 

data this is critical, since there is only one value collected for each bin – the data value itself.  For 

simulated data, if we keep track of the values for these two statistical moments, the exact values 

for the NEC weights can be calculated. 

We have compared the performance of five different weighted algorithms 

(FORE+AWOSEM, FORE+NECOSEM, ANWOSEM3D, SPOSEM3D and NECOSEM3D) 

on the basis of tumor detectablity. 

The comparison was done for simulated and clinical data.  In the former case an 

analytical simulator was used.  This is the ideal situation, since all the weighting factors can be 

exactly determined.  For comparing the performance of the algorithms, we used the Non-

Prewhitening Matched Filter (NPWMF) numerical observer. 

With some knowledge obtained from the simulation study we proceeded to the 

reconstruction of clinical data.  In that case, it was necessary to devise a strategy for estimating 

the NEC weighting factors.  The comparison between reconstructed images was done by a 

physician largely familiar with whole-body PET imaging. 

 

KEYWORDS: Positron Emission Tomography (PET), statistical image reconstruction, NEC 

(“Noise Equivalent Count”) Transformation, weighted OSEM (“Ordered Subsets 

Expectation Maximization”), tumor detectability. 
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Resumo 

 
O trabalho de investigação subjacente à presente centra-se no estudo de alguns 

algoritmos de reconstrução de imagem, utilizados em Tomografia por Emissão de Positrões 

(PET)1. 

De entre as duas abordagens possíveis, são utilizados algoritmos algébricos2, por serem 

aqueles que permitem não só modelar o processo de emissão-detecção da radiação, como, 

também, incorporar na própria estrutura do algoritmo informação relativamente à natureza 

estatística dos dados3 a serem reconstruídos, o que no caso vertente é fundamental. 

De entre os algoritmos algébricos estatísticos4, adoptámos os OSEM (Ordered Subsets 

Expectation Maximization), uma vez que se encontra já amplamente difundido na prática clínica. 

Porém, uma das premissas intrínseca ao OSEM é assumir que os dados a reconstruir 

obedecem a uma estatística de Poisson.  Ora, em muitos casos, verifica-se que isto não é 

verdade, ou seja, que o OSEM procede à reconstrução de imagem a partir de dados que não 

satisfazem aquele requisito.  Esta é, então, a questão central da presente tese: proceder à 

reconstrução de imagem relativa a exames PET de corpo inteiro, baseada no algoritmo OSEM e 

preservando, na medida do possível, o modelo estatístico que lhe subjaz, isto é, dados 

distribuídos segundo uma estatística de Poisson. 

A principal razão para que os dados deixem de seguir uma estatística de Poisson prende-

se com as correcções a que são sujeitos, depois de serem organizados na forma de projecções ou 

sinogramas, mas antes de se proceder à sua reconstrução.  Estas pretendem compensar a 

existência de determinados efeitos físicos (como a atenuação, dispersão de Compton ou 

existência de coincidências fortuitas) e geométricos (como sejam os que decorrem das dimensões 

finitas do scanner ou da sua própria geometria, corrigidos naquilo a que se chama 

“normalização”), que fazem com que nem todos os fotões detectados em coincidência 

                                                 
1 Optamos por preservar o acrónimo em língua inglesa, por se aquele que, na prática corrente, se utiliza 
também em Portugal. 
2 A alternativa seria utilizar algoritmos analíticos de reconstrução, como por exemplo a Retroprojecção 
Filtrada (FBP). 
3 Quando nos referimos a “dados” a reconstruir, estamos a considerar os valores obtidos nas diferentes 
projecções (sinogramas), segundo linhas-de-resposta (LORs) com orientações várias, e que constituem a 
informação a partir da qual se procede à reconstrução tomográfica. 
4 O ART é um exemplo de um algoritmo algébrico não estatístico. 
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correspondam a fotões emitidos na mesma aniquilação electrão-positrão, e cujas trajectórias 

façam entre si um ângulo de, aproximadamente, 180º. 

Em princípio, o facto de os algoritmos algébricos permitirem modelar o processo de 

emissão e detecção de fotões, torna legítimo presumir que as correcções acima referidas podem 

ser incorporadas no processo de reconstrução, e feitas em simultâneo com este.  Levantam-se, 

porém, duas questões, uma das quais, de fundo. 

Em primeiro lugar, considerando que estamos a trabalhar com dados 3D, isto é, obtidos 

não apenas para LORs segundo planos transaxiais5, surge a necessidade de proceder a 

reconstruções rápidas destes dados.  Ora, mesmo com os computadores actuais, isto revela-se 

uma tarefa computacionalmente exigente e demorada, se se optar por fazer a reconstrução 

directamente em 3D.  A alternativa é efectuar uma operação de rebinning6 e proceder à 

reconstrução em 2D, com o correspondente ganho em termos de velocidade de reconstrução.  

Um dos algoritmos de rebinning que melhor desempenho apresenta, nomeadamente no 

compromisso entre resultado obtido e complexidade de implementação, é o denominado Fourier 

Rebinning (FORE).  Porém, para que possa ser utilizado com os dados 3D, estes têm de ser 

previamente corrigidos relativamente aos efeitos referidos atrás.  Ou seja: uma vez que é 

inevitável que os dados sejam previamente corrigidos e as correcções fazem com que aqueles 

deixem de apresentar uma estatística de Poisson, então a utilização do algoritmo FORE resulta, 

de forma incontornável, na obtenção de dados (2D) não Poisson e, portanto, não conformes 

com a premissa do OSEM. 

Em segundo lugar, mesmo quando se procede a reconstruções directamente em 3D 

(conhecidas por “fully 3D reconstructions”), na maioria dos casos (na prática clínica) os dados são 

também corrigidos para compensar os efeitos da atenuação, dispersão de Compton, 

coincidências fortuitas, bem como normalizados. 

Isto significa que, em ambos os casos (seja por obrigação decorrente do uso do FORE, 

seja pela prática habitual), é preciso arranjar uma estratégia para devolver aos dados as 

características de uma distribuição de Poisson.  Isto significa arranjar uma maneira de fazer com 

que os dados corrigidos voltem a ter valores médios iguais à variância (característica essencial da 

distribuição de Poisson). 

A utilização de versões do OSEM denominadas OSEM ponderado (“weighted OSEM”), 

designação que advém do facto de os dados corrigidos serem multiplicados e/ou adicionados 

por factores de ponderação, abrem a possibilidade de, após a referida ponderação, os dados a 
                                                 
5 Permitindo ter anéis não contíguos em coincidência. 
6 Operação que consiste em rearranjar os dados 3D de modo a transformá-los em dados 2D, tentando 
preservar ao máximo as vantagens da aquisição 3D (nomeadamente relativamente à sensibilidade). 
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reconstruir voltarem a ter valores médios iguais à variância (em cada bin).  No entanto, se a 

possibilidade existe, nem todas as versões do OSEM ponderado resultam do mesmo modo.  

Depende do factor de ponderação usado.  No caso de se recorrer à transformada NEC (“Noise 

Equivalent Count”) e se tomarem como factores de ponderação os coeficientes envolvidos nesta 

transformada, os dados assim ponderados apresentam, de facto, em cada bin, um valor médio 

igual à variância.  Ou seja, em primeira aproximação, voltam a exibir as características de uma 

distribuição de Poisson. Para tanto, o factor multiplicativo NEC, para um determinado bin, é 

definido do seguinte modo: 

NECi = 
)(2

i

i

y
y

σ
 

em que iy  e )(2
iyσ  são, respectivamente, o valor médio e a variância desse bin.  Ao OSEM 

ponderado que recorre aos coeficientes da transforma NEC chamamos NECOSEM.  Outros 

algoritmos existem que recorrem a ponderações que também transformam os dados com o 

mesmo resultado, como é o caso do SPOSEM3D.  

Apresentado que foi o contexto teórico em que assenta o trabalho de investigação a que 

a presente tese se reporta, importa agora descrever sucintamente o que foi feito e quais os 

objectivos que nos propusemos atingir. 

Na prática, se pudéssemos resumir a maior parte do trabalho que fizemos, poderíamos 

arriscar fazê-lo dizendo que comparámos exaustivamente o desempenho de várias versões 

ponderadas do algoritmo OSEM, ao reconstruir dados provenientes de aquisições 3D, com vista 

à obtenção de imagens de corpo inteiro. 

Em função do exposto nos parágrafos anteriores, e independentemente do processo de 

obtenção dos dados 3D, as comparações de desempenho efectuadas têm por base duas 

perspectivas diferentes.  A primeira separa reconstruções FORE seguidas de OSEM 2D (tendo 

sido usados os algoritmos FORE+AWOSEM e FORE+NECOSEM) de reconstruções directas 

em 3D (ANWSOSEM3D, SPOSEM3D e NECOSEM3D).  Na segunda perspectiva, a distinção 

é feita entre algoritmos cuja ponderação devolve aos dados as características de Poisson7 

(FORE+NECOSEM, SPOSEM3D e NECOSEM3D), e aqueles em que isso não ocorre, ou 

seja, em que pese embora os valores dos dois momentos fiquem mais próximos8, não são, de 

facto, iguais (FORE+AWOSEM e ANWOSEM3D). 

                                                 
7 Independentemente de serem reconstruções 2D ou 3D. 
8 Uma vez que a ponderação leva em consideração a atenuação, que é o factor que mais contribui para o 
desvio da estatística de Poisson. 
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Quanto à proveniência dos dados 3D, foram efectuados dois estudos complementares: 

um em que se usaram dados simuladas; e um outro, após aquele, em que se reconstruíram dados 

reais obtidos numa das câmaras PET HR+ do S.H.F.J.. 

Quanto ao primeiro, e mais exaustivo, recorreu-se ao simulador analítico ASIM e a um 

fantôma numérico para gerar os dados necessários9.  As potencialidades do simulador, as 

características do fantôma, bem como as dimensões dos tumores a ele adicionados e respectivas 

actividades, haviam sido previamente validadas em estudos envolvendo características muito 

semelhantes às do nosso próprio estudo [Lartizien, 03; Lartizien, 01]. 

Uma vez que este simulador permite guardar informação relativamente à média e à 

variância em cada bin, os coeficientes NEC podem ser calculados exactamente.  Analogamente, 

ao ser possível simular a atenuação, conhecemos também os valores exactos dos coeficientes de 

atenuação (ACFs) a partir dos quais se estabelecem os factores de ponderação quer no 

AWOSEM quer no ANWOSEM3D.  Isto é, do ponto de vista do OSEM ponderado, estamos 

nas condições ideais: é possível determinar exactamente os factores de ponderação dos dados. 

Como algoritmos de reconstrução foram usadas as seguintes versões do OSEM 

ponderado: FORE+AWOSEM e FORE+NECOSEM, no que diz respeito a reconstruções 2D; 

e ANWOSEM3D, SPOSEM3D e NECOSEM3D, quanto a reconstruções 3D (“fully 3D”). 

As imagens reconstruídas sofreram ainda uma filtragem adicional com um filtro 

gaussiano. 

Uma vez que a quantidade de informação gerada e utilizada neste estudo foi imensa, era 

impossível que a avaliação da qualidade de imagem fosse feita por observadores humanos.  A 

solução encontrada foi, portanto, recorrer a um observador numérico cujo desempenho, para a 

tarefa clínica e tipo de exames em causa, fosse comprovadamente semelhante ao dos 

observadores humanos.  A escolha recaiu no observador numérico “Non-Prewhitening Matched 

Filter” (NPWMF), cuja adequação para este tipo de estudos tinha sido previamente verificada 

[Lartizien, 04]. 

Relativamente a resultados, poderíamos resumi-los do seguinte modo: em primeiro lugar, 

usando o observador NPWMF , foi possível constatar a existência de um valor óptimo para a 

largura a meia altura do filtro gaussiano de pós-filtragem da imagem reconstruída.  Esse valor 

óptimo não é exactamente o mesmo para todos os órgãos estudados, mas 5.5 mm é o melhor 

compromisso.  Ao invés, este valor óptimo não se verifica quando se estuda a variação no índice 

de detectabilidade do NPWMF em função do número de iterações.  Logo, para estabelecer uma 

                                                 
9 O volume de dados que foi necessário gerar tornava impraticável a utilização de um simulador de Monte 
Carlo. 
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equivalência entre a qualidade das imagens reconstruídas pelos diferentes algoritmos usados, foi 

necessário recorrer a uma outra figura-de-mérito (FOM).  Essa foi a relação contraste-ruído.  

Assim, tendo-se tomado como referência a imagem reconstruída, após 4 iterações, pelo 

FORE+AWSOEM - algoritmo e número de iterações usados com frequência na prática clínica – 

foi verificar-se, para os outros algoritmos e usando a relação contraste ruído, para quantas 

iterações se obtinham valores idênticos desta FOM.  A conclusão a que se chegou é que 4 

iterações era o valor comum para todos, com excepção do SPOSEM3D que, por incluir na sua 

estrutura um factor aditivo, apresenta uma convergência mais lenta.  Neste caso as imagens 

equivalentes eram obtidas ao fim de 15 iterações. 

Com esta informação compararam-se, depois, os desempenhos dos diferentes 

algoritmos, e chegou-se às seguintes conclusões: o FORE+AWOSEM tem um desempenho 

global superior ao FORE+AWOSEM; o mesmo se pode constatar quando se comparou o 

ANWOSEM3D com o FORE+AWOSEM.  Quanto às vantagens do ANWOSEM3D sobre o 

FORE+NECOSEM, não são tão óbvias.  Os resultados da comparação do SPOSEM3D (15 

iterações) com as 4 iterações do FORE+AWOSEM e FORE+NECOSEM, são idênticos aos 

que se verificaram no caso do ANWOSEM3D. 

Quanto ao NECOSEM 3D, verificou-se ter um desempenho melhor que o 

FORE+AWOSEM, mas quando comparado com o FORE+NECOSEM as diferenças não se 

revelaram muito significativas.  Relativamente aos dois outros algoritmos 3D não há, no 

essencial, diferenças de desempenho.  Ora, isto significa, na prática, que a complexidade 

adicional inerente à utilização do NECOSEM3D não tem tradução prática num incremento na 

detectabilidade de tumores.  Ou seja, os benefícios não justificam os custos da sua utilização.  De 

facto, há problemas relacionados com a definição dos valores dos coeficientes NEC em bins 

relativos a LORs que atravessam a fronteira do objecto.  Neste casos é necessário usar uma 

estratégia que passa por recorrer à carta de atenuação para perceber onde estão as fronteiras do 

objecto e, em bins que estão nesta região, estabelecer um valore fixo para os coeficientes NEC.  

Este procedimento, porém, pressupõe um ajuste caso a caso que nem sempre resulta, 

sublinhando a complexidade intrínseca ao NECOSEM3D. 

Com o conjunto de informações obtidas a partir do estudo de simulação, passou-se, de 

seguida, à utilização deste algoritmos para reconstruir imagens a partir de dados reais, obtidos 

com pacientes que fizeram exames PET de corpo inteiro no scanner HR+ do S.H.F.J.. 

Do ponto de vista da utilização dos algoritmos OSEM ponderados, a principal diferença 

relativamente aos estudos de simulação é que deixamos de estar nas condições ideais, ou seja, 

deixamos de saber com exactidão os valores dos factores de ponderação a usar. 
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No caso da atenuação, o problema resume-se, simplesmente, a ter de lidar com valores 

afectados de ruído.  No entanto, no caso dos coeficientes NEC o problema é substancialmente 

mais complexo, uma vez que, para cada bin, não há senão informação relativamente à contagem 

nesse bin, ou seja, não há qualquer tipo de informação relativamente ao valor médio ou variância 

que lhe correspondem.  Por conseguinte, para usarmos o NECOSEM tivemos de arranjar um 

processo para obter os valores destes dois momentos, o que, basicamente, consistiu em fazer a 

convolução das projecções com um kernel gaussiano.  Foi também necessário identificar os 

bordos do objecto, para, nos bins relativos à fronteira, se atribuir um valor fixo ao coeficiente 

NEC.  Deste modo tentou contornar-se o problema das flutuações dos valores dos coeficientes 

NEC nesta região.  A delimitação dos contornos do objecto foi efectuada com recurso ao mapa 

da atenuação, estabelecendo-se que LORs para as quais a atenuação fosse superior a 5% são 

LORs inequivocamente no interior do objecto e, portanto, o coeficiente NEC pode ser calculado 

de acordo com a equação que se referiu anteriormente. Para os restantes bins, ao coeficiente 

NEC é atribuído o valor 1.  Este limiar de 5% usado para delimitar os contornos da atenuação 

foi, porém, estabelecido em função dos casos concretos em estudo, mas não podemos 

argumentar contra a utilização de outros valores, como 8% ou 10%.  É, por conseguinte, um 

parâmetro estabelecido ad-hoc. 

As imagens foram reconstruídas usando o FORE+AWOSEM, o FORE+NECOSEM e 

o ANWOSEM3D.  Para as analisar, solicitou-se a colaboração de uma médica com vasto treino 

na observação deste tipo de imagens.  O resultado da análise por ela efectuada pode resumir-se 

ao seguinte: não se vislumbram diferenças significativas entre as imagens reconstruídas pelos três 

processos.  Dado o facto de as imagens terem sido analisadas por um único médico, esta deve 

revestir-se apenas de carácter preliminar, sendo necessária uma análise mais vasta, envolvendo 

mais médicos, de modo a que se possam tirar ilações com carácter mais definitivo.  

Independentemente disto, consideramos que, em função das aproximações envolvidas na 

estimação dos coeficientes NEC, seria porventura mais surpreendente se a conclusão prévia 

apontasse no sentido oposto. 

Pensamos ainda ter dado um contributo para demonstrar que, pese embora os problemas 

práticos que envolve, é possível reconstruir imagens a partir de dados clínicos reais, usando o 

FORE+NECOSEM. 

 

PALAVRAS-CHAVE: Tomografia por Emissão de Positrões (PET), reconstrução estatística, 

transformada NEC (Noise Equivalent Count), OSEM (Ordered Subsets 

Expectation Maximization) ponderado, detecção de tumores. 
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Abbreviations 

 
3DRP 3D Reprojection Algorithm 

ACF Attenuation Correction Factor 

ART Algebraic Reconstruction Technique 

BGO Bismuth Germanate 

BMI Body Mass Index 

DFM Direct Fourier Methods 

DOI Depth-of-Interaction 

FBP Filtered Backprojection 

FDG 2-[18F]Fluoro-2-deoxy-D-Glucose 

FFT Fast Fourier Transform 

FORE Fourier Rebinning 

FOV Field-of-View 

FWHM Full-Width at Half Maximum 

HR+ ECAT EXACT HR+ (CTI/Siemens) 

LOR  Line of Response 

LSO Lutetium Oxyorthosilicate 

MAP Maximum a Posteriori 

ML-EM Maximum Likelihood – Expectation Maximization 

MRI Magnetic Resonance Imaging 

NEC Noise Equivalent Count 

NEMA National Electrical Manufacturers Association 

NPWMF Non-Prewhitening Matched Filter 

OSEM Ordered Subsets – Expectation Maximization 

PET Positron Emission Tomography 

PMT Photomultiplier Tube 

PSF Point Spread Function 

SIR Statistical Iterative Reconstruction 

SPECT Single Photon Emission Computed Tomography 

SNR Signal-to-Noise Ratio 

WLS Weighted Least-Squares 
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Introduction 

 
Positron Emission Tomography (PET) is a functional medical imaging technique that 

can be used to image biochemical or physiological processes within the body.  Since it relies on 

isotopes undergoing a positron decay, it belongs to the field of Nuclear Medicine. 

As many other imaging techniques, it is rapidly moving forward on many aspects: 

radiochemistry, instrumentation, image reconstruction, image processing and visualization, as 

well as also taking part in the ever more thrilling field of image fusion (nowadays through 

PET/CT). 

The research work on the basis of the present thesis was devoted to one of the 

developing fields referred above: image reconstruction.  In PET, this is equivalent to say image 

reconstruction from projections, which is, in fact, the reason for its classification as a 

tomographic technique. 

There are two approaches for image reconstruction from projections: analytical and 

algebraic. Statistical1 algebraic methods, such as OSEM (Ordered Subsets Expectation 

Maximization), have, among others, the advantage - over the analytical ones – of incorporating a 

model for the measurement uncertainty.  In other words, OSEM – the adopted reconstruction 

algorithm – intrinsically incorporates a statistical model for the data it will be handling during the 

reconstruction process.  This model is a Poisson model, i.e., OSEM assumes Poisson data. 

The justification for relying on OSEM for image reconstruction is the following: it is an 

algebraic method; it is rapid2 (when compared to other statistical algorithms such as the ML-

EM); it is relatively easy to implement; it doesn’t have additional dependencies on other 

parameters3 (like regularization terms) which are often not set in a straightforward manner; and, 

in consequence, it is widespread in clinical routine. 

However, whilst rapid, OSEM is not so rapid as one would like, in special when used for 

directly reconstructing 3D data (data containing information for LORs within planes that are not 

normal to the scanner axis).  In that case, the huge amount of data makes the image 

reconstruction much slower.  Hopefully, rebinning techniques were devised to sort 3D data into 

2D data.  Not all of them are equally accurate, but the Fourier Rebinning (FORE) represents a 
                                                 
1 ART is an example of a non-statistical algebraic reconstruction algorithm. 
2 Not as rapid as the analytical algorithms, but with the advantages of being algebraic. 
3 Such as most of the Bayesian reconstruction methods. 
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good compromise between accuracy and implementation feasibility for the rebinning of 3D into 

2D data. 

Assuming that we will be just dealing with 3D data4, the image reconstruction can 

proceed in two different ways: directly using a fully 3D version of OSEM without rebinning data 

– more time consuming and computationally demanding; or using FORE to convert 3D data 

into 2D data, and reconstruct through a 2D OSEM implementation – more rapid, but subjected 

to the constraints imposed by the use of FORE. 

The critical constraint associated with the use of FORE are not the approximations done 

during the rebinning process.  The unavoidable constraint imposed by FORE is the need to 

correct collected data, prior to the use this algorithm, for geometrical (normalization) and 

physical effects: attenuation, scattered and random photons.  The result is that corrected data are 

no longer Poisson data.  This aspect is the cornerstone of the present thesis: the use of OSEM 

for the reconstruction of corrected data, adopting a strategy to restore the Poisson-like 

characteristics of these data, as required by the theoretical foundations of OSEM. 

It should also be mentioned that whilst FORE requires data previously corrected for the 

effects referred above, in practice, 3D data are also often corrected for the same effects.  

Therefore, the problem of having non-Poisson data is not specific of a FORE+OSEM2D 

reconstruction, but should be taken into account in almost all of the 3D OSEM 

implementations. 

 

Having hitherto referred the motivation for the research work, it is now important to 

describe how we have proceeded and what are the objectives we would like to reach. 

Restoring the Poisson-like characteristics of the data, i.e., making the variance equal to 

the mean, was achieved through the use of weighted OSEM algorithms.  The weights, when 

multiplied5 by the data, grant them this propriety.  At least, these weights transform data in order 

to approximate these two moments.  In fact, not under all the weighted OSEM versions used in 

our work (AWOSEM and NECOSEM, for 2D; ANWOSEM, SP-OSEM and NECOSEM3D, 

for 3D) data are given the Poisson-like characteristics.  In AWOSEM and ANWOSEM, 

weighted data do not have a mean equal to the variance.  These two moments are closer than 

they would be without weighting, but the objective is not completely fulfilled. 

The NEC transformation is the approach adopted for restoring the Poisson-like 

characteristics of data.  The weighted OSEM version relying on the NEC weighting 
                                                 
4 No septa in the scanner. 
5 Or added, or, even in a more general approach, multiplied and added.  In the latter case, two different 
terms exist: one multiplicative term, and one additive term. 
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transformation is known as NECOSEM.  The distinctive feature of such algorithm is the 

definition of the NEC multiplicative weight: for each data bin this factor is calculated as the ratio 

between the mean value and the variance.  With real clinical data this is the source of a 

fundamental problem: since there is only one value collected for each bin – the data value itself – 

there is no knowledge about the mean and the variance for that bin.  For simulated data, on the 

contrary, if we keep track of the values for these two moments, the exact values for the NEC 

weights can be calculated. 

The goal of the research work described in the present thesis is to incorporate an 

accurate statistical modeling in the OSEM reconstruction algorithm used for whole-body PET 

imaging.  As referred above, this is done through the use of weighted versions of the OSEM 

algorithm.  However, since not all of the weighted versions restore the Poisson-like 

characteristics of data required by OSEM, we have compared their performance.  In addition, 

the fact that our raw data are 3D data, lead us to use the two different pathways for image 

reconstruction: fully 3D reconstruction (using complete and non-complete weighting restoration 

of Poisson-like characteristics of data), and FORE + 2D OSEM (once again, using complete and 

non-complete restoring). 

The comparison of the performance was done using simulated data and clinical data.  In 

the former case, the use of an analytical simulator allowed us to have complete control over the 

data characteristics.  In other words, we know exactly the values needed to calculate all the 

weights involved in the reconstruction process.  We are, therefore, from the weighting point of 

view, under the best performing conditions of the algorithm.  Simulation studies are one of the 

two main blocks into which the developed research work can be grouped. 

From simulated data, and apart from the conclusions concerning the reconstruction 

algorithms’ performance, some information is obtained in respect to specific parameters, such as 

the FWHM of the post-smoothing filter applied to images and the number of iterations one can 

use to compare algorithms. 

With that knowledge, we proceeded to the application of some of the algorithms to 

clinical data: the second major section of the work.  The key point when using clinical data is 

that there is no exact information about the weighting values.  This is the case even for the 

attenuation, because the Attenuation Correction Factors (ACFs) are affected by noise.  

Nevertheless, for each LOR (data bin) there is a measured value for the attenuation and 

normalization procedure, so weighting factor based on this parameters can be directly computed.  

In order to use a NEC based reconstruction, on the contrary, it is necessary, first, to estimate the 

mean value and the variance for each data bin.  This was done, but the results, i.e., the NEC 
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weights estimated that way, contain a certain degree of uncertainty and we are, for sure, no more 

under the optimal conditions obtained with simulated data. 

For comparing the algorithms’ performances, two different strategies were devised: the 

huge amount of data resulting from simulation studies made human observer studies 

impracticable.  So, we used a numerical observer – the NPWMF observer - whose performance 

for similar studies and similar conditions mimics the performance of humans.  Lartizien 

[Lartizien, 04] has shown in a previous study, for similar imaging conditions, that the NPWMF 

detectability index allows good correlation with human observer detectability.  The NPWMF 

detectability index was the main tool to access the performance of the different algorithms 

working over simulated data.  For clinical data, the use of numerical observers is not possible, 

and the comparisons between images were done by a physician who is largely familiar with the 

images obtained for this sort of whole-body PET scans. 

 

The thesis is organized as follows: Chapter 1 is an overview of some introductory topics 

related to the PET imaging technique.  Chapter 2 is dedicated to the theory of the image 

reconstruction in PET.  Because this is a very large field of investigation involving different 

approaches and a mired of specific questions, we concentrate on those aspects having a more or 

less direct connection with our work, or that are relevant in order to put it into context. 

Chapter 3 is the link between the theoretical and the experimental part.  The weighted 

OSEM approaches are detailed, as well as the NEC transform and its application to the restoring 

of the Poisson-like characteristics of the data.  The main features of the specific OSEM 

implementation used in our work are also described. 

Chapter 4 is devoted to the simulation studies, using the ASIM analytical simulator and 

the NPWMF numerical observer.  It describes, as referred, the first block of the experimental 

work sustaining this thesis. 

The second block, i.e., the reconstruction of clinical data is the core of Chapter 5.  Some 

procedures adopted in that case are a consequence of part of the results obtained for simulated 

data. 

We finish with a global discussion where some conclusions are drawn and future 

developments suggested. 

The very last part of the thesis is an appendix containing additional material that 

complements the text in the other chapters. 



1 – An introduction to Positron Emission Tomography (PET) 
 

5

 

 

1 – An introduction to Positron Emission 

Tomography (PET) 

 
This chapter is conceived as an introduction to the medical imaging modality discussed 

in this thesis: the Positron Emission Tomography (PET).  This is one of the two major basic 

modalities that go under the designation of Nuclear Medicine imaging techniques (the other is 

SPET, which stands for Single Photon Emission Tomography). 

Before proceeding with a general description of the technique, one interesting way to 

introduce Positron Emission Tomography is to inspect the paragraph above.  Let us start by the 

name itself: Positron Emission Tomography.  Alone, it provides the following information: 

• it is an emission imaging technique.  This means that, independently from the type of 

radiation involved in the technique, the radiation is emitted from inside the object (the 

body of the patient).  This contrasts with conventional radiology or CT (Computed 

Tomography), since these are transmission techniques, i.e., rely on the transmission of a 

radiation beam throughout the patient; 

• positrons are the radiation type at the core of PET.  This is a fact, but it should be 

mentioned in advance that positrons are not the type of particle to be detected.  More: 

the emitted beam of radiation is not a beam of positrons (as to be seen later, emitted 

particles from the body are γ photons).  So, it is better to clearly separate Positron Emission 

into two separate meaningful words: Positron plus Emission. 

However, since positrons have the leading role in PET and these particles result 

from the energetic rearrangement of an unstable nucleus, it becomes clear why PET is 

one of the Nuclear Medicine imaging techniques: it has a nuclear decay process on its 

basis.  Once more, this physical evidence distinguishes PET, for example, from CT, 

because the latter uses electromagnetic radiation resulting from an atomic process; 

• it is a tomographic technique.  In fact, PET is the synthesis of a physical process (the 

emission and detection of radiation with origin in the nucleus1) – the tracer principle - 

                                                 
1 This is also the principle of scintigraphy, which is not a tomographic imaging technique. 
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and a mathematical procedure: the reconstruction of a 3D object (activity distribution) 

from its 2D projections (detected radiation) - the tomographic principle2.  Considering 

this point, PET and CT are under the same classification: both are tomographic 

modalities, which is neither the case of scintigraphy nor of conventional radiology. 

 

 

1.1 – A brief history of PET 

 

Positron emission from radioactive nuclei was discovered in 1933 by Joliot and Thibaud.  

In 1946, the importance, for medicine, of positron emitting radionuclides produced in a 

cyclotron was suggested [Jones, 03a].  

The roots of PET, however, are fixed in 1951.  In this year, two major events are 

reported where, even though very far from the tomographic technique used nowadays, the 

principles of this technique can be identified: Wren and his colleagues arranged two sodium 

iodine scintillation counters, in opposite positions, to detect a positron emitter, 64Cu, in brain 

tumors [McCready, 00; Nutt, 02].  The idea was to record differential uptake of 

radiopharmaceuticals by the brain; Sweet and colleagues, at the Massachusetts General Hospital, 

used two sodium iodine crystals, coupled together in coincidence mode and rectilinear scanning, 

to localize brain tumors [McCready, 00; Nutt, 02].  These two works represent the first attempts to 

record positron emission data for a medical application. 

The Anger camera, introduced in 1954, using NaI(Tl) or plastic scintillators, was soon 

applied for coincidence measurements of positron emitters [McCready, 00; Lundqvist, 98].  During 

the 60s, clinical studies were performed with this device, although it was not yet possible to 

obtain tomographic images. 

In 1973, Robertson, from the Brookhaven National Laboratory, built the first ring 

tomograph.  However, because of limited sampling, lack of attenuation correction and of a 

proper image reconstruction algorithm, it was unable to obtain true reconstructed cross sectional 

images.  In the same year, M. Phelps, at Washington University, built the first PET tomograph: 

PETT I (Positron Emission Transaxial Tomography).  This attempt was also unsuccessful in 

producing proper reconstructed images, because it employed lead collimators, a limited sampling 

and did not provide attenuation correction [Nutt, 02]. 

                                                 
2 Both principles have been awarded with the Nobel Prize: the tracer principle, in 1943 (de Hevesy); the 
tomographic principle, in 1979 (Hounsfield and Cormack) [Lundqvist, 98]. 
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Henceforth, PET enters its modern era.  By the beginning of 1974, PET II , a scanner 

conceived for phantom studies, was developed by Phelps and colleagues, and the principles of 

PET published based on studies performed with this scanner (as well as with PET II ½, an 

upgraded version) [Nutt, 02]. 

Still in 1974, Phelps, Hoffman and colleagues, at Washington University, constructed 

PET III for human studies.  It was composed of 48 NaI(Tl) detectors, organized as a hexagonal 

array, and the gantry had a rotation capacity of 60º.  The first images of blood flow, oxygen, and 

glucose metabolism of Fluorine 18 (F-18) bone scans from PET III represented the first 

published human PET images using the Filtered Backprojection (FBP) algorithm [Nutt, 02]. 

Following PET III, the first commercial PET scanner was designed by EG&G ORTEC 

in collaboration with Phelps and Hoffman.  It was named ECAT II (Emission Computed Axial 

Tomograph) and delivered in 1976.  ECAT II used a total of 96 NaI(Tl) crystals with a diameter of 

3.75 cm and had a PDP-11 computer with 32 Kbytes of memory [Nutt, 02]. 

After 1976, with the principle of positron emission tomography undoubtedly established, 

the commercial delivering of PET scanners begun.  Benchmarks in the history of this imaging 

technique moved, therefore, to the field of detectors, radiopharmaceuticals, reconstruction 

algorithms and camera design, as well as image fusion.  Some of these benchmarks are [Nutt, 02]: 

• the first evaluation of BGO for use in PET, performed by Cho, Farukhi and Derenzo.  

The first tomograph using BGO was designed in 1978 by Chris Thompson and his group 

at the Montreal Neurological Institute.  In the same year, EG&G Ortec produced 

NeuroEcat, the first commercial tomography to use BGO; 

• the synthesis of FDG by A. Wolf and J. Fowler’s group, and the first PET imaging with 

FDG, by Phelps and its group at UCLA, using the ECAT II scanner.  Latter, Hamacher 

and colleagues developed a new synthesis method for FDG, which is still in use today; 

• the discovered and grown of the first LSO crystals, in the period of 1989 – 1992, and its 

latter (1995) refinement and cost effectiveness; 

• the development of the PET/CT scanner, combining a ring PET scanner with a CT 

scanner in the same gantry, allowing morphological and functional data fusion. 
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1.2 – Positron Emission Tomography Overview 

 

From a medical/biological point of view, PET is an interesting technique because it can 

be used to obtain information in vivo about the way an organ is functioning (for example, its 

metabolism or perfusion) as well as to gain insight into some biochemical processes at the 

cellular level.  This is the main reason why PET (and SPET, also) is classified as a functional 

image technique3.  However, this classification is, probably, better understood if matched against 

anatomical imaging techniques – such as the conventional use of MRI or CT4 -, where just 

structural (thus anatomical) information is obtained.  New imaging techniques, such as the 

PET/CT5, SPET/CT, or, more recently, PET/MRI [Lucignani, 06], can superpose functional 

information over an anatomic image, thus being referred as fusion imaging techniques. 

In Figure 1.1 we show an example of a typical whole-body [18F]-FDG image obtained 

with the widespread ECAT EXACT HR+ scanner. 

 

 

Figure 1.1 

 

Typical whole-body FDG PET image, obtained from 

the HR+ scanner, for a patient with a body mass index 

equal to 23.7 and a dose of 338.5 MBq: a) coronal cross 

section; b) sagittal cross section. 

 

 

 

The principle of PET is based on the detection, in coincidence, of radiation emitted from 

the interior of the body of the patient.  So, from the previous sentence, some questions can be 

formulated: how is the radiation introduced into the body?; which radiation is involved in the 

process?; how is the radiation detected; and what does mean “detection in coincidence”? 

The answer to the first question is beyond the scope of this thesis.  However, in short, 

everything starts by the definition of the biological process under study and with the 

                                                 
3 Another widespread functional image modality is the fMRI – Functional Magnetic Resonance Imaging. 
4 Not considering fMRI or functional imaging in CT [Dawson, 06]. 
5 PET/CT is an imaging modality resulting from the fusion of a PET and CT systems, under the same 
scanner.  This leads to images where the missing information in CT (functional information) becomes 
available through the PET component.  The weakness of PET images – poor spatial resolution – is, on 
the other hand, overtaken by the CT anatomical image. 
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identification of some molecule that takes part in that process.  Then, one atom of the chosen 

molecule is replaced by a positron emitter radionuclide.  The final labeled molecule – the tracer – 

is, finally, introduced into the body, either injected, inhaled or by some other mean prescribed 

from biological and medical considerations.  The tracer is the source of information in PET. 

The question, of which radiation is involved in PET, can be misleading.  In fact, if the 

radionuclides introduced into the body are positron emitters, the detected radiation are γ 

photons.  This is, moreover, inherently related with the answer to the third question, since not 

only the type of radiation to be detected should be considered, but also the fact that these γ 

photons result from a positron/electron annihilation process. 

If, in PET,  γ photons result from a positron/electron annihilation, then6: these photons 

have an energy equal to 511 keV; are emitted in pairs; each pair corresponds to one annihilation; 

and, for a certain annihilation, the two photons are emitted back-to-back (in opposite directions) 

simultaneously.  So, in principle7, using the appropriate detectors, if two photons are detected in 

coincidence – within a very short timing window8 –, this means that the annihilation took place 

somewhere along the line connecting the two detectors struck by the photons.  This line is called 

a line-of-response (LOR) (Fig. 1.2).  Considering all the LORs, it is possible to reconstruct an 

image of the distribution of the points, inside the body, where annihilations took place.  Since we 

are assuming that annihilations occur at the exact position where positrons are emitted, the 

former image is, therefore, an image of the distribution of the tracer locations.  In short: the 

detection, in coincidence, of two 511 keV γ photons emitted, back-to-back, from the point of 

the positron annihilation is the main physical process beneath the possibility to reconstruct an 

image of the tracer inside the body.  From the perspective of the final user of this image 

technique, this is the raw data conveying information about the biological process under study. 

With the overall principle of PET described, it is possible to identify four main 

constraints by which this technique is affected.  The first one is the biological accuracy with 

which a chosen tracer molecule defines the specific biological pathway under study.  The second 

one is the physical accuracy, or the accuracy with which one can assume that the annihilation 

takes place at the exact location where the positron is emitted.  The third one is a technical 

constraint and is related with the ability to effectively register an annihilation via the detection, in 

                                                 
6 This is not strictly true, but useful for a first approach.  The noncolinearity and the three photons 
annihilation will be discussed latter on this chapter. 
7 Under ideal assumptions such as the absence of random or scattered events or considering that the 
annihilation takes place exactly at the same location where the positron is emitted.  This is, however, far 
from reality, but with the correct approach, the principle remains valid. 
8 Typically 6 to 12 ns wide [Zanzonico, 04]. 
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coincidence, of the two corresponding photons.  The last one can be established at a 

mathematical/processing level, and is associated with trustworthy image reconstruction. 

In addition to the in vivo functional information conveyed by PET images, this technique 

is also regarded as a quantitative imaging tool: individual voxel values in the reconstructed object 

represent the local radiotracer concentration in the body, in absolute units of radioactivity 

concentration, within reasonable accuracy and precision.  This accurate and precise mapping of 

the radiotracer concentration in the body is important for two main reasons: it provides a true 

reflection of the physiological process under study and enables the use of tracer kinetic 

methodology to model the time-varying distribution of the labeled component in the body, 

allowing the estimation of relevant physiological parameters [Meikle, 03].  However, in order to 

provide the meaningful quantitative information, acquired data should be corrected for some 

different effects, prior to reconstruction.  This is the main reason for data correction, described 

latter in this chapter. 

 

 
 

Figure 1.2 – Schematic representation of a LOR within a transaxial plane. 

 

 

1.2.1 – Physical constraints and the three-gamma annihilation 

 

1.2.1.1 – Positron range 

The positron-electron annihilation occurs at the end of the positron range, when the 

positron has dissipated almost all of its kinetic energy and both the positron and the electron are 
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at rest9.  However, for a given radionuclide, positrons are emitted over a spectrum of kinetic 

energies ranging from 0 to a characteristic maximum (endpoint) energy, Emax; the associated 

average positron energy, E , is approximately one-third of the endpoint energy: 

max31 EE = [Cherry, 03].  So, in order to lose this amount of energy, positrons must travel a 

finite distance from the decay nucleus, which is done along a very tortuous path (Figure 1.3), in 

consequence of multiple large-angle deflections.  The distance traveled by the positron in tissues 

depends on the electron density of the medium and, for a given medium, on the positron’s 

energy.  This distance ranges from 0 up to a maximum value called the extrapolated range, Re, 

corresponding to the highest energy positrons.  This extrapolated range is the maximum distance 

that the positron would travel if it was not significantly deflected and traveled in a straight line to 

the end of its range10.  In addition, it is often considered the effective positron range: the average 

distance from the emitting nucleus to the end of the positron range, measured perpendicular to a 

line defined by the direction of the annihilation photons [Cherry, 03]. 

 

 

 

 

 

 

 

 

Figure 1.3 – Physical aspects of positron-electron annihilation: positron range and non-

colinearity (Δθ). 

 

For positrons emitters used in PET, the maximum energies vary from 0.58 MeV to 3.7 

MeV, the maximum (or extrapolated) ranges, (Rmax), from 2 mm to 20 mm, and the root-mean-

square (rms) ranges (Rrms, and FWHMRange ≈ Rrms) from 0.2 mm to 3.3 mm [Zanzonico, 04].  This 

latter parameter is important since the positron range distributions are cusp-like shaped, with 

long tails, and, therefore, the FWHM is not the best indicator of positron range [Cherry, 03].  

                                                 
9 The total energy of the pair positron-electron is 1.022 MeV and the total moment is zero.  Thus, in 
accordance to the principles of energy and momentum conservation, the total energy of the two 
annihilation γ photons must be equal to 1.022 MeV and their total moment zero. 
10 This is equivalent to the positron path length. 
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Some relevant values associated with the physical properties of positron-emitting radionuclides 

used in PET can be found in Table 1.1. 

A Monte Carlo method for the calculation of the positron annihilation point distribution 

when traversing a dense medium can be found in [Levin, 99]; a model for predicting the 

annihilation density distribution arising from a point source positron emitter is proposed in 

[Palmer, 92]. 

 

β+ range in water (mm) Radionuclide Half-life 

(T1/2) 
Maximum β+ energy 

(MeV) Max. range (Rmax) Rms range (Rrms)
11C 20.4 min 0.96 3.9 0.4 
13N 9.96 min 1.2 5.1 0.6 
15O 2.05 min 1.7 8.0 0.9 
18F 1.83 h 0.64 2.3 0.2 

62Cu 9.74 min 2.9 15 1.6 
64Cu 12.7 h 0.58 2.0 0.2 
66Ga 9.49 h 3.8 20 3.3 
68Ga 1.14 h 1.9 9.0 1.2 
76Br 16.1 h 3.7 19 3.2 
84Rb 1.3 min 3.4 18 2.6 
86Y 14.7 h 1.4 6.0 0.7 
124I 4.18 d 1.5 7.0 0.8 

 

Table 1.1 – Some physical properties of positron-emitting nuclides used in PET (adapted from 

[Zanzonico, 04]). 

 

1.2.1.2 – Annihilation photons non-colinearity 

Since it is assumed when defining a LOR that the annihilation photons are emitted back-

to-back, it is important to consider the physical constraint of the non-collinearity of these two 

annihilation photons. 

The deviation from colinearity is due to the residual momentum and kinetic energy of 

the orbiting electron.  How large is the non-colinearity for annihilation γ photons traveling in 

water or in the living tissues is often not obvious.  For example: Zanzonico ([Zanzonico, 04]) 

refers to Berko [Berko, 56] to say that the deviation, i.e. Δθ in Fig. 1.3, can go up to 0.5º; 

however, in the latter paper, some studies are present for different metals, but none for water or 

any other relevant material in the scope of PET.  Thus, it is not clear where that value comes 

from.  In another paper by Ollinger and Fessler ([Ollinger, 97]), it is assumed that the magnitude 

of the deviation is on the order of one degree or less; Raylman [Raylman, 96] assumes 4 mrad 
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(≈0.23º), approximately, for the angular deviation of photons emitted in free annihilations.  For 

Humm [Humm, 03], if an approximated calculation of the deviation from the co-linearity is made 

just by considering the thermal motion of the particles and the conservation of the Fermi 

moment, this would give 180º ± 0.25º.  In addition, the same author mentions that the 

distribution of the angular deviation in water is assumed to be Gaussian with a FWHM 

approximately equal to 0.5º. 

In sum, the value of ± 0.25º for the non-colinearity spread of annihilation photons is 

usually assumed.  A study of the influence of such non-colinearity on PET image spatial 

resolution can be found in [Sánchez-Crespo, 06]. 

 

1.2.1.3 – Three photons positron annihilation 

The two-gamma decay is not the only process for positron annihilation.  In fact, an S-

state electron-positron pair can exist in the singlet state of zero-spin angular momentum or in 

one of three triplet states of unit spin angular momentum.  From the general symmetry 

properties, it was demonstrated that the single state annihilates with two photons, whereas the 

triple states have to annihilate via three photons11 [Berko, 56].  In the same paper, Berko shows 

an expression for the spin-averaged cross section for a 2γ annihilation, as well as a ratio for 2γ 

and 3γ spin average cross sections, in the case of a free positron: σ2γ / σ3γ = 372.  This result is 

drawn from a previous paper by Ore [Ore, 49], where the supporting calculations are detailed12. 

However, in matter, prior to annihilation, a positron can capture an electron to form an 

hydrogen-like system called positronium (Ps), which is a short-lived bound state of a positron 

and an electron.  Due to spin statistics, 25% of all positroniums are formed in the single state 

(S = 0) called para-positronium (p-Ps), while the remaining form the triplet sate (S = 1) called 

ortho-positronium (o-Ps) [Kacperski, 04].  Still discussing the behaviour in matter, interactions 

with the surrounding electrons prevail, leading to a direct annihilation of the positron with one 

of the electrons (pick-off process), the conversion of o-Ps into the p-Ps which then decays 

rapidly via 2γ, or to chemical reactions producing short-lived Ps compounds.  As a result, the 

effective yield of 3γ annihilation in matter depends on the rates of Ps formation and quenching.  

So, from a practical perspective, this means that in non-metallic materials, like water, the 3γ yield 

is usually of the order of 0.5% [Kacperski, 04]. 

                                                 
11 4γ and 5γ  gamma decays [Chiba, 98; Adachi, 94] have also been detected experimentally, but their 
probabilities are very low and, thereby, of little interest for PET [Kacperski, 04]. 
12 Other relevant papers regarding three-photon annihilation are, for example, the paper by DeBenedetti 
[DeBenedetti, 54] and the one by Ferrell [Ferrell, 56], where the theory of positron annihilation is revised. 
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For positron emission tomography, the principle behind the detection in coincidence of 

the three annihilation photons is ideal (perfect collimation): using energy and momentum 

conservation laws and a set of nonlinear equations to be solved numerically (rather than complex 

image reconstruction methods), it would be possible to determine the decay site, independently 

for each event.  Kacperski [Kacperski, 04] explores the triple coincidence detection for PET, in 

parallel with the conventional coincidence of two back-to-back annihilation photons. 

 

 

1.2.2 – Basics of signal detection in PET 

The great majority of commercial PET scanners available nowadays, use, as signal 

transducers - i.e., for converting γ photons into an electrical signal - scintillation crystals optically 

coupled to photomultiplier tubes. 

As radiation crosses the scintillator, the crystal becomes excited, causing the emission of 

light.  This light is transmitted to the photomultiplier where it is converted into a weak current of 

photoelectrons.  Such electrical signal is then, usually, driven to a pre-amplifier and subsequent 

shaping circuitry and, finally, enters the digital processing stages. 

 

1.2.2.1 – Detectors 

As referred above, in commercial PET scanners, detector is almost synonymous of a 

scintillator material. 

The main physical process behind the behavior of these scintillators is called 

fluorescence: the prompt13 emission of visible radiation from a substance, following its 

excitation.  If the emission is delayed because of metastable excited states involved in the 

process, this is known as phosphorescence.  The delay time between absorption and reemission 

can be from a few microseconds up to hours, depending on the scintillation materials.  Another 

emission process is delayed fluorescence: it results in the same spectrum as prompt fluorescence, 

but is also characterized by a longer time delay between excitation and light emission [Knoll, 89; 

Leo, 94].  In any case, light emission is small: typically a few hundred to a few thousand photons 

for a single γ-ray interaction within the range of 70 keV to 511 keV [Cherry, 03]. 

The ideal scintillator should satisfy the following requirements [Knoll, 89; Leo, 94]: 

• high efficiency for conversion of exciting energy to fluorescent radiation.  For a high 

efficiency, scintillator materials should have both a high effective atomic number (Zeff) and 

                                                 
13 Within 10-8 s [Leo, 94]. 
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a high density.  Greater light yield (number of photons per MeV) can be translated into a 

more linear response, better energy resolution and a better spatial resolution; 

• linear conversion. i.e., the light yield should be proportional to absorbed energy; 

• to be transparent to the wavelength of its own emission.  There are usually absorptive 

losses in the crystal due to the partial overlap of its emission and absorption bands; 

• a decay time of the induced fluorescence as short as possible, for fast signal generation; 

• good optical quality and capable of being manufactured in sizes large enough to be of 

interest as a practical detector; 

• refraction index as near as possible to that of glass (≈ 1.5) to permit an efficient coupling 

to the PMT.  The emission wavelength of the scintillation light should match the light 

response characteristic of the PMT’s photocathode14. 

No material meets simultaneously all the criteria just stated. Consequently, the choice of 

a particular scintillator is the result of a trade-off between these factors.  Scintillation materials 

used in nuclear medicine can be of two general types: inorganic substances in the form of a solid 

crystal, or organic substances dissolved in a liquid solution [Cherry, 03].  Inorganic crystals tend to 

have the best light output and linearity, but have relatively slow response times; organic 

scintillators are generally faster but yield less light [Knoll, 89]. 

 

Material 
Density 
(g/cm3) Zeff 

Attenuation 
length for 511 
keV γ (mm) 

Prob. 
of PE 

Light 
output 

(ph/MeV)

Decay 
time 
(ns) 

Scintillation 
emission λ 

(nm) 

Refractive 
index 

BGO 7.1 75 10.4 40 9000 300 480 2.15
LSO 7.4 66 11.4 32 30000 40 420 1.82

NaI:Tl 3.67 51 29.1 17 41000 230 410 1.85
CsI:Tl 4.51 52 22.9 21 66000 900 550 1.80
GSO 6.7 59 14.1 25 8000 60 440 1.85

LGSO    23000 40 420 

LuAP 8.3 64.9 10.5 30 12000 18 365 1.94
YAP 5.5 33.5 21.3 4.2 17000 30 350 1.95

(BGO: Bi4Ge3O12;  LSO: Lu2SiO5:Ce;  GSO: Gd2SiO5:Ce;  LGSO: Lu1.8O2SiO3:Ce;  LuAP: 

LuAlO3:Ce;  YAP: YAlO3:Ce.  PE: Photoelectric effect.) 

 

Table 1.2 – Some properties of scintillator materials used for PET (adapted from [Humm, 03]). 

 

                                                 
14 The widespread bi-alkali PMTs have a maximum sensitivity in the range 390-410 nm.  So, useful 
scintillators should have their maximum intensity in the wavelength range between 380 and 440 nm. 
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Inorganic scintillators – by far the most used in PET - are crystalline solids whose 

scintillation properties are due to the characteristics of their crystal structure, and, thus, are 

scintillators only in crystalline form.  In addition, most of the inorganic scintillators are impurity 

activated15: their crystalline structure contains small amounts of atoms of other elements that 

disturb the normal electronic band structure and are responsible for the scintillation effect. 

The scintillation mechanism in inorganic materials depends on the energy states 

characteristics of their crystal lattice [Knoll, 89; Leo, 94].  

Table 1.2 shows the main properties of scintillator materials used for PET.  A detailed 

description of these properties and their implication in the scintillator performance can be 

found, for example, in [Humm, 03; Melcher, 00; Balcerzik, 00].  Since the performance of a PET 

system strongly depends on the crystal, the most used types deserve a short reference: 

• BGO: it is a pure inorganic scintillator that requires no activator.  BGO is relatively hard, 

rugged and non-hygroscopic.  Its high density (7.1 g/cm3) makes BGO the detector 

material with the greatest attenuation coefficient for 511 keV gamma rays.  The main 

disadvantages of this crystal are: its low light yield, in result of which it exhibits an inferior 

energy resolution; poor timing properties; and a fluorescence which is dependent on the 

temperature, requiring a more stringent environmental regulation for the operation of 

BGO scanners [Humm, 03]. 

• LSO: its main advantages are a good light yield (30000 ph/MeV); a short decay time (≈ 40 

ns); and good mechanical properties.  For 511 keV it has a sensibility 1.5 times lower than 

BGO, which is a disadvantage.  It is also referred a non-proportionality of the light output 

to the deposited energy, possible different decay times in samples obtained from large and 

different ingots, and the presence of the naturally long-lived isotope (176Lu) within the 

crystal, which leads to a measurable background count rate that may have impact for some 

applications [Humm, 03]. 

• GSO: one of its major advantages is a decay time of 60 ns.  It also has good mechanical 

properties for cleaving.  One important disadvantage is a low light yield, although very 

stable [Humm, 03]. 

Organic scintillators are aromatic hydrocarbon compounds containing linked or 

condensed benzene-ring structures [Leo, 94].  As mentioned before, they have a fast decay time 

and, in opposition to inorganic crystals, their fluorescence process is due to transitions in the 

                                                 
15 Self-activated scintillators, such as BGO, are those where the activator atoms are a major constituent of 
the crystal.  There are also inorganic scintillators, as the NaI, that, in some conditions – low temperature, 
for example – are scintillators in their pure state. 
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energy level structure of a single molecule.  Thus, such fluorescence can be observed from a 

given molecular species, independent of its physical state [Knoll, 89].  An example of a crystal 

organic scintillator is the anthracene.  Plastic scintillators are usually considered as another type 

of organic scintillators. 

 

1.2.2.2 – Photomultiplier Tubes (PMTs) 

A Photomultiplier Tube (PMT) is a device that produces a pulse of electrical current 

when stimulated by very weak light signals, such as those produced by a scintillation crystal. 

The front surface coupled to the scintillator is the entrance window, which, in the 

opposite side, is connected to the photocathode.  From this photocathode, when struck by 

photons of visible light, are ejected photoelectrons.  The conversion of light into electrons 

requires, nevertheless, a subsequent amplification stage, because the number of photoelectrons 

ejected from the photocathode is extremely small. 

The charge amplification is granted by the dynodes/resistors arrangement plus a very 

stable high voltage supply, and is performed in a very linear way.  Therefore, the output signal 

remains proportional to the number of original photoelectrons over a wide range of amplitude. 

Some critical aspects regarding the PMT are: 

• the photocathode’s material, that must be sensible to the light produced in the scintillator 

crystal.  For each material, sensibility is a function of the wavelength of incident light, 

and the curve describing this dependency is the spectral sensitivity characteristic.  Some 

examples can be found in [Flyckt, 02], [Leo, 94] or [Knoll, 89].  The most used 

photocathode materials are antimony-caesium (SbCs), silver-oxygen-caesium (AgOCs), 

and the bi- and tri-alkali compounds SbKCs, SbRbCs, and SbNa2KCs [Flyckt, 02] 

• the work function16 characteristic of the photocathode’s material.  Incident photons must 

have more than a minimum value of energy (imposed by the work function) to release 

photoelectrons from the photocathode.  Materials with low work functions should be 

chosen, but within an important trade-off: the work function should not be too small, in 

order to prevent the escape of electrons due to their thermal kinetic energy, i.e., to 

prevent the increase of thermionic noise. 

• The dynode’s material.  A good material for a dynode should have a high secondary 

emission factor, stability of secondary emission effect under high currents, and a low 

thermionic emission (low noise).  The latter effect is so much important as it is usually 

                                                 
16 The inherent potential barrier that exists in the interface between material and vacuum. 
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the most significant source of random noise from a PMT [Leo, 94].  Thermionic 

electrons are also the larger contributors for the dark current17. 

The electron multiplication should be linear for pulses within the range of interest.  A 

critical factor that strongly affects this required linearity is any deviation of dynode voltages from 

their equilibrium value, during the course of operation.  Therefore, the high-voltage supply must 

be very stable: typically, a 1% increase in high voltage applied to the tube increases the amount 

of current collected at the anode by about 10% [Cherry, 03]. 

PMTs are also often wrapped in a metal foil for magnetic shielding, since the focusing of 

the electron beam from one dynode to the next can be affected by external magnetic fields 

[Cherry, 03].  

A special type of PMTs are position-sensing photomultipliers, that provide some 

information about the location of the point of interaction between the incident photon and the 

photocathode [Knoll, 89; Humm, 03]. 

An alternative to PMTs is a special type of semiconductor photodiodes, know as 

avalanche photodiodes (APDs) [Knoll, 89; Gordon, 94].  An APD is a p-n junction in a silicon 

wafer that can be operated near breakdown voltage under reverse bias.  The distinctive feature of 

such device is the acceleration electrons generated by interactions with ionizing radiation are 

subject to, due to the high electric field.  These electrons gain enough velocity to generate free 

carriers by impact ionization, which are themselves sufficiently accelerated between collisions to 

create additional electron-hole pairs along the collection path.  This process results in internal 

gain, increasing the signal and, therefore, improving the SNR. 

 

1.2.2.3 – Block detector readout 

The basic unit of a PET scanner is the block detector.  A typical block detector is a piece 

of a scintillator crystal scored with a fine saw to create pseudo-individual crystals.  This effect of 

pseudo-individual crystals is achieved since the scores provide a barrier to the optical dispersion 

of light inside the whole crystal.  Moreover, scores are filled with a reflective material to reduce 

optical cross-talk between individual elements [Cherry, 03].  The number of individual elements 

per block is a characteristic of each PET scanner [Humm, 03]. 

The standard arrangement for coupling the PMTs assembly with the block detector is 

represented in Fig. 1.4 a: the light from each block is collected by 4 PMT, centered over each 

quadrant.  Under this arrangement, if the signal from the four PMTs are A, B, C and D, then, to 

                                                 
17 It can be defined as the anode current measured without photocathode illumination [Leo, 94]. 
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determine the detector element where the photon detection took place, the signals from the 

PMTs are combined as follows [Cherry, 03; Moisan, 97]: 

( ) ( )
DCBA
DCBAX

+++
+−+

=     and    ( ) ( )
DCBA
DBCAY

+++
+−+

=  

 

 
Figure 1.4 – A schematic representation of a block detector.  a) Standard PMT arrangement in a 

standard block detector; b) Quadrant-sharing detector.  

 

Another approach is denominated quadrant sharing and it is used for smaller detector 

blocks (Fig. 1.4 b): each block is also monitored by four PMTs, but each of these PMTs is 

centered in the corner of four different blocks. 

 

 

1.3 – Data acquisition 

 

In this section we discuss the process of collecting data and the two possibilities for 

doing that collection, known as 2D mode and 3D mode.  We will also refer the strategy of data 

store: sinograms and projections. 
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1.3.1 – 2D and 3D mode for data acquisition 

An important concept behind the distinction between the 2D and 3D acquisition modes 

is the transaxial plane (Fig. 1.2).  A transaxial plane is a plane perpendicular to the scanner axis.  

So, neglecting the finite thickness of a ring, a transaxial plane can also be identified as the plane 

within which lies a detector ring.  This means that along the direction of its axis, the scanner can 

be viewed as a stack of transaxial planes, each one corresponding to a detector ring. 

Using the concept introduced in the former paragraph, the difference between a 2D and 

a 3D acquisition can be stated as follows: in a 2D acquisition data are collected for LORs that 

are within the same transaxial plane, i.e., each ring can be treated separately.  In a 3D acquisition 

mode, in addition to transaxial planes, data are also acquired for LORs connecting detector 

elements in different rings: within oblique LORs, corresponding to polar angles different from 

zero. Thus, 3D mode contains all the information of a 2D acquisition, plus the information 

coming from the oblique LORs.  This extra, and redundant data18, are useful for reconstruction 

purposes19, but can be huge enough to become unaffordable in terms of storage space. 

The physical process for selecting just LORs within the same transaxial plane relies in the 

use of septa between adjacent rings, which is in practice equivalent to performing an axial 

collimation.  So, in 2D mode these septa are present, while in 3D mode there are no septa at all.  

The existence of these septa is not shared by all the PET scanners available.  There are scanners 

without septa that can only perform 3D acquisitions.  Other scanners have retractable septa, 

allowing the user to choose among a 2D (with septa) or a 3D acquisition (septa retracted). 

 
Figure 1.5 – 2D and 3D data acquisition schemes for PET. 

 

We must nevertheless point out that the distinction that has been made between 2D and 

3D acquisition modes is conceptual.  In fact, to increase the axial sampling, the length of the 

                                                 
18 The image can be reconstructed just taking the 2D information, i.e., LORs within transaxial planes. 
19 In particular, to improve the signal-to-noise ratio, as it will be discussed in the next chapter. 
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septum is adequately chosen in order to allow, even under a 2D acquisition mode, the acquisition 

of data along LORs connecting detector elements belonging to first neighbor rings (Fig. 1.5).  

These LORs lie within planes corresponding to polar angles slightly different from zero – the 

cross planes or inter-planes.  Two cross planes corresponding to two adjacent detector rings 

cross the scanner axis at a point exactly halfway between the points of intersection of the 

scanner axis and the transaxial planes associated with each of these two rings.  Thus, these cross 

planes can be added together to form a single virtual20 transaxial plane located halfway between 

the real adjacent transaxial planes.  This is the strategy for incrementing the axial sampling: if the 

scanner has n detector rings, the use of cross planes leads to a total of 2n – 1 transaxial planes. 

Using 3D mode raises a different question: if, theoretically, with a n ring  scanner, it is 

possible to define n2 data planes, in practice, however, due to the large amount of data this would 

produce, there are groups of planes that are mashed (added together) into a single plane.  This 

compression strategy corresponds to a loss of information, but it guarantees that the large 

amounts of data can be stored and processed within reasonable times. 

 

 

1.3.2 – Radial sampling 

For describing the radial sampling one should describe how data are acquired within a 

plane.  For the sake of simplicity, let us assume a given transaxial plane. 

Since information corresponds to data acquired along LORs with different spatial 

orientations, either the identification of the detectors at both extremities of each LOR or the 

orientation of the LOR, using a reference frame, is stored.  This latter approach is usually 

adopted, using a xOy reference framework defined within the plane.  As depicted in Fig. 1.6, 

using that framework it is possible to define an azimuthal angle, φ:  LORs with the same 

direction as the yy’ axis correspond to an azimuthal angle equal to 0º; other orientations are 

labeled with an azimuthal angle different from zero.  φ can vary between 0º and 180º. 

The width of the transaxial FOV is defined by the acceptance angle in the plane [Bailey, 

03a].  This is determined by the electronics and is related with the permission of a detector to be 

in coincidence with other detectors in the opposite side of the ring (Fig. 1.8).  The greater the 

acceptance angle, the larger the number of detectors which form the “fan”.  The size of the 

intersection between the fan and the xx’ axis determines the width of the FOV. 

 

                                                 
20 In the sense that data were not acquired for LORs lying within such a transaxial plane. 
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Figure 1.6 – The azimuthal angle and the radial sampling within a plane.  (d – width of the FOV) 

 

The use of a circular ring geometry leads to distortions in the sampling that should be 

considered before using data [Bailey, 03a], which are due to the fact that: 

- the distance between the opposing detectors decrease towards the edges of the FOV; 

- the lines of response are not evenly spaced in the projections; they get closer together 

for LORs farthest from the center of the scanner. 

In spite of this, the sampling frequency along the radial direction is increased in the 

following way: in addition to LORs connecting detectors which, for a certain azimuthal angle, 

are directly in opposing positions (solid line in Fig. 1.6 b), i.e., (Da : Db), (Da+1 : Db+1), (Da+2 : Db+2), 

etc., a double sampling is achieved by also considering LORs connecting a detector and the 

adjacent to the one which is in a directly opposing position (dashed lines in Fig. 1.6 b): (Da : Db), 

(Da+1 : Db), (Da+1 : Db+1), (Da+2 : Db+1), (Da+2 : Db+2), etc. 

 

 

1.3.3 – The Michelogram 

The Michelogram is a tool for representing the axial sampling of acquired data, devised 

by C. Michel.  It is a grid combined with two axes, each one with a number of unitary marks 

equal to the number or rings in the scanner.  The first ring in one of the extremities of the 

scanner is ring zero, and the other rings are sequentially numbered.  Each point in the grid of the 

Michelogram corresponds to a pair of rings.  Since LOR planes are defined within a ring or 

whenever two rings are put in coincidence, then each point in the grid is a conceptual 
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representation of a plane.  Fig. 1.7 shows three different Michelograms corresponding to three 

different types of acquisitions. 

 
Figure 1.7 – Three examples of Michelograms corresponding to three different acquisitions: a) 

2D acquisition; b) 3D acquisition without mashing; c) 3D acquisition with “mash”.  

Axial location is along the bottom left to top right diagonal direction. 

 

The Michelogram in Fig. 1.7 a) represents a 2D acquisition: coincidences are allowed just 

for LORs inside each transaxial plane (each ring is exclusively in coincidence with itself), so 

points are along the diagonal:.  Fig. 1.7 b) is for a 3D acquisition with no restrictions, i.e., any 

ring can be in coincidence with any other.  If the scanner has n rings, information will be 

available for n2 different planes and, thus, there are n2 points in the Michelogram.  The 

acquisition represented by the Michelogram in Fig. 1.7 c) corresponds to a 3D acquisition with 

“mash”: a group of planes with the same axial position and neighbor values of ring differences 

mashed upon one single plane.  Lines connecting points in the sinogram describe the mashing 

data were subjected to.  This strategy leads to bands, or segments, in the sinogram.  The 

intersection of the diagonal line at the center of the segment with each of the “mashing lines” 

indicates the axial position of the corresponding plane upon which data have been added.  If 

such a point of intersection is not over a grid point, the scanner axis crosses the plane not within 

a real ring, but in a point halfway between two adjacent rings. 

Whenever the mashing strategy is adopted, there is also another keyword: span.  The 

span is the ring difference between the diagonal lines at the center of two neighbor segments.  In 

the case of Fig. 1.7 c), the span is equal to 5. 
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1.3.4 – Sinograms and projections 

Sinograms and projections are alternative methods for storing and viewing raw PET 

data.  Fig. 1.8 schematically represents the process of data acquisition within a transaxial21 plane.  

For this single plane, there will be as many 1D projections as samplings for the azimuthal 

coordinate.  Each of these 1D projections is a row along the radial coordinate, x’, with the 

acquired data stored in bins (their number is determined by the radial sampling). 

 
Figure 1.8 – a) Data acquisition within a transaxial plane (θ = 0º; z = z0);  b) Sinogram structure 

for this plane;  c) The variation of the radial coordinates of three point sources as a 

function of the azimuthal angle. 

 

A sinogram is a way to display the projections, where projection data at one view 

(azimuthal angle) are put in one row of the sinogram and the vertical direction represents the 

view angle: Fig. 1.8 b).  The presence of a point source inside the FOV results in a sine wave in 

the sinogram (except if the source is positioned over the scanner axis, such as source A of Fig. 

1.8 a).  In Fig. 1.8 c) are represented three of such sine waves, each one describing the variation 

of the radial coordinate of a point source, as a function of the azimuthal angle.  A detailed 

mathematical description of a sinogram structure can be found in [Barrett, 04]. 

                                                 
21 A transaxial plane is used just for the sake of simplicity.  A similar procedure can be adopted for planes 
characterized by a polar angle different from 0º. 
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A 2D projection for a certain azimuthal angle (view), is the image that directly results 

from the data stored in LORs described by the same azimuthal angle and the same polar angle. 

According to the usual coordinate system (Fig. 1.9), an oblique sinogram can be 

parametrized as follows [Defrise, 02]: s(x’,φ,z,θ), where: 0 ≤ φ ≤ π; -θmax ≤ θ  ≤ -θmax; and 

( )θtan2/ RLz −< . 

 

Figure 1.9  

 

Coordinate system for 

sinogram 

parameterization.  R 

is the ring radius, and 

L the scanner length. 

 

 

 

The limits for the z coordinate of the sinogram are better understood when establishing 

the relationship between the axial projection coordinate (yr) and axial sinogram coordinate (z).  In 

Fig. 1.10 are represented two projection planes and the corresponding LOR orientation as a 

function of θ (the azimuthal angle can be assumed as 0º, for the shake of clarity). 

 
Figure 1.10 – Link between projection coordinates (yr) and sinogram coordinates (z). 

 

From Fig. 1.10 one can observe that: θtan.2/ max RzL =− .  This explains the range for 

the axial sinogram coordinate, z.  In addition, it is also clear the link between the axial 

coordinates within a projection and a sinogram: θcos.zy r = . 
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1.3.5 – Detected events in PET 

The detected events in PET can be grouped into five categories: trues, randoms, 

scattered, single and multiple events (Fig. 1.11).  Among them, the trues, randoms, and scattered 

events are known as prompts, i.e., coincidence events.  From an ideal PET perspective, just the 

trues are not spurious: the other result from undesirable physical processes.  Thus, for a correct 

image reconstruction from acquired data, it is necessary to identify the trues and adopt a strategy 

to handle the other events, either by performing some sort of correction or simply by discarding 

them.  In this section the origin of these events is described, while in the next section the 

strategies for handling them will be presented. 

The trues, on the base of which PET was conceived, correspond to photons detected 

within a coincidence time window, that have suffered no scatter and are the result of the same 

annihilation (Fig. 1.11 a).  Multiple events result from more than one annihilation and correspond 

to the detection, within the same coincidence window, of three or more γ photons (Fig. 1.11 b).  

Since there is an ambiguity in deciding which photons make a valid pair (result from the same 

annihilation), these events are usually discarded by the system [Bailey, 03a]. 

A single event corresponds to the detection of a single photon which is unpaired within 

its coincidence window.  This means that, for some reason (attenuation, FOV finite size, photon 

energy outside the energy window), one of the annihilation photons is lost.  According to 

Badawi [Badawi, 00a], the singles flux is strongly dependent on the detector ring diameter, but 

only weakly dependent on the axial FOV, when this is greater than ~25 cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11 
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A random coincidence is the result of two positron annihilations taking place within the 

same coincidence window.  However, while in a multiple event more than two photons are 

detected, in a random, from the four emitted photons, just two of them are detected (the other 

two are lost).  Whenever there are two photons detected in coincidence, this is assumed as a 

valid event contributing to the image.  The problem is that the LOR connecting the two 

detectors hit by these photons (Fig. 1.10 d) does not correspond to a real LOR, in the sense that 

no annihilation took place within this LOR.  In another way: a random event induces the 

formation of an artificial LOR which is uncorrelated with the distribution of the tracer. 

In face of this, two important things must be considered: how does the random event 

rate vary and from what does it depend; and, assuming the inevitability of having among the 

prompts a certain number of random events, how should they be handled before proceeding 

with the image reconstruction, i.e., how to correct the prompts for the randoms.  The latter 

point will be discussed in the following section.   Considering the first point, the random event 

count rate is a function on the number of disintegrations per second, and this count rate 

between two detectors, a and b, Rab, is given by [Bailey, 03a; Hoffman, 81]: 

 

Rab = 2τ.SaSb      Eq. 1.1 

 

where Sa and Sb are the single event rates for detectors a and b, respectively, and 2τ is the width 

of the coincidence timing window.  Since Sa ≈ Sb = S, then the random event rate increases 

approximately proportionally to S 2.  When the dead time is small, this means that the random 

event rate is roughly proportional to the square of the activity concentration. 

It is also important to note that, unlike the trues, random coincidences can arise from 

activity outside the FOV [Spinks, 98].  Thus, the random coincidence count rate depends in a 

complicated way on both the source and detector geometry [Cherry, 03], and, according to 

Badawi [Badawi, 00a] is strongly dependent on both the axial FOV and the detector ring 

diameter.  From Eq. 1.1 it is possible to verify the following: 

- the greater the total amount of activity used in a study, the higher the ratio of random-

to-true coincidence rates, due to the quadratic dependence of the random coincidences;  

- the decreasing of randoms rate in proportion to the width of the coincidence window. 

In actual PET scanners, the random-to-true ratio ranges from about 0.1 – 0.2 for brain 

imaging, to more than 1 for applications where large amounts of activity exist outside the FOV 

[Cherry, 03]. 
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A scattered event occurs when one or both annihilation photons detected in coincidence 

have undergone Compton interaction.  Due to the relatively poor detectors’ energy resolution, 

there are scattered photons whose energy fits within the energy window operated by the scanner.  

Thus, when both photons (scattered and unscattered) are detected in coincidence, they will be 

treated as a prompt.  As is the case of randoms, the consequence of this is the definition of an 

artificial LOR (connecting the two detectors hit by the photons), which is not correlated with the 

real activity distribution: if the photons suffers Compton scattering, it will be deflected from its 

original trajectory and will be no longer back-to-back with the other photon produced in the 

same annihilation. 

Scattered photons are so more relevant as they can be scattered from outside into the 

FOV [Sossi, 95; Ferreira, 98] or even scattered by physical parts of the scanner, such as the gantry 

or others.  An external end-shield was suggested [Hasegawa, 00] for screening radiation from 

outside the FOV.  The use of septa between planes [Thompson, 88] is a strategy for reducing the 

likelihood of accepting photons scattered inside the FOV. 

In 3D mode the number of scattered photons is much higher than in 2D mode: the 

scatter fraction – the ratio of scattered events to the total recorded coincident events [Thompson, 

88] - is about 10% in the latter case and 30%-40% in 3D mode [Cherry, 03].  The scatter-to-true 

rate does not depend on the amount of activity administered, because both the scatter and the 

true coincidence rates increase linearly with this parameter.  It also does not depend on the width 

of the coincidence time window [Cherry, 03].  In clinical studies, the scatter-to-true coincidence 

ratio ranges from 0.2 to 0.5 for brain imaging and from 0.4 to 2 for abdominal imaging [Cherry, 

03].  The scatter fraction was found to be strongly dependent on the detector ring diameter, but 

only weakly dependent on the axial FOV [Badawi, 00a]. 

 

 

1.4 – Data corrections 

 

This section is devoted to the description of some corrections applied to the data before 

image reconstruction.  As stated before, these corrections are absolutely essential to grant PET 

imaging the accuracy and precision required for being considered a quantitative imaging tool. 

If these corrections are to be grouped, one possibility is to organize them into four 

groups.  One of them, includes the attenuation correction as a single member, since it arises due 

to the object itself, independent from all the rest.  In a second group, the corrections for scatter 
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and dead time.  These are corrections that, in principle, wouldn’t be needed with an ideal scanner 

(ideal energy resolution and electronic processing capacity).  In practice, this is not the case, so 

scattered events, whose rate is dependent from many factors such as the scanner configuration 

or the activity distribution, are detected and the respective correction required.  A third group of 

corrections is directed towards the randoms: this sort of events can be reduced by narrowing the 

coincidence window, but the width of this coincidence window is always limited by the finite 

time speed of γ photons, i.e., it should be large enough to allow the detection in coincidence of 

the two photons produced in one positron annihilation, reflecting time-of-flight effects.  This 

means that there is no possibility to completely avoid random events, whose rate is dependent, 

as seen, on the scanner geometry and activity distribution.  The last group is reserved for the 

normalization and arc effect corrections, intrinsically inevitable whatever the adopted geometry.  

Even if ideal parameters were conceivable, they would still be needed.  In practice, the arc effect 

correction is often included under the normalization. 

Among the corrections listed above, the most important effect data should be corrected 

for is attenuation, which can affect both the visual quality and the quantitative accuracy of PET 

data [Kinahan, 03]. 

Before proceeding with a short description of the main strategies for correcting data, it is 

important to expose a model for the way these corrections affect the prompts.  Mathematically, 

this model can be formulated as follows [Meikle, 03]: 

 

yi = (pi – si – ri).Ai.Di.Ni    Eq. 1.2 

where: 

- pi:  the prompts measured along LOR i; 

- si: the scattered events estimated for LOR i; 

- ri: the random events estimated LOR i; 

- Ai: the attenuation correction factor for LOR i; 

- Di: the dead time correction factor for LOR i; 

- Ni: the normalization  factor for LOR i; 

- yi: the number of events for LOR i, after all corrections have been applied to prompts; 

Sometimes, dead time correction is included under the normalization correction and, 

therefore, the corresponding factors are merged. 
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1.4.1 – Attenuation correction 

As it will also be seen in Chapter 2, the way photons attenuation can be treated in PET, 

is not only very convenient from the point of view of image reconstruction22, but leads to a 

correction approach which is easy to implement. 

When a photon beam passes through an absorber material, the number of photons 

transmitted throughout that absorber over a distance l, is given by (for homogeneous materials) 

[Knoll, 89]: I(l) = I0.exp(-μ.l), where I0.is the number of transmitted photons without the 

absorber, and μ is the linear attenuation coefficient, a quantity that is dependent on both the 

absorbing material and the photon energy.  In the context of diagnostic imaging, the attenuation 

coefficient reflects, essentially, the sum of the probabilities associated with the photon 

interaction by photoelectric absorption and Compton scattering: for photon energies in the 

range of 30 to 50 keV, the dominant effect is the photoelectric effect; for energies between 200 

and 1000 keV, it is the Compton scattering.  Since PET imaging occurs at 511 keV, photon 

attenuation is determined by Compton scattering [Kinahan, 03]. 

 

 

 

 

 

 

 

 

Considering a point source located inside the body (inside a PET scanner, Fig. 1.12) the 

probability that both annihilation photons will reach the detector (at two detector elements in 

opposing positions) is given by the product of the probabilities for their individual detection 

[Cherry, 03]: 
)(

det . xLx eeP −−−= μμ      ⇔     LeP μ−=det     Eq. 1.3 

 

where x is the trajectory’s length for one photon and L is the total length of the LOR.  

Therefore, the probability that both photons will reach the detector is independent of the source 

location along the LOR.  The problem of correction for attenuation in the body translates into 

determining the probability of attenuation for sources lying along different LORs. 
                                                 
22 It results in a multiplicative term, which can be easily handled by the reconstruction algorithm.  This is 
strong contrast with SPECT, where the attenuation requires much more complicated approaches. 

x 

L - x Point source 

Figure 1.12 – The attenuation path length of two 

annihilation photons emitted from a point 

source inside the object.  L is the total 

length of the LOR.
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The widespread approach to correct for attenuation is the use of transmission 

measurements [Bailey, 98].  This approach is the combination of two measurements, both of 

them using a rotating source of radiation.  The first is called the blank scan and is performed 

without the object inside the FOV.  The idea is to determine the number of counts measured for 

each LOR (source and detector located in the two opposing extremities), when there is no 

attenuation along the path (except that resulting from the air).  The second is the transmission scan, 

which is performed with the object placed inside the FOV, i.e., when photons suffer attenuation 

along the LORs.  The attenuation correction factor for a certain LOR (corresponding to a certain set 

of values for coordinates x’, φ, θ and z), i, when the transmission is done at 511 keV, is given by: 

i

i
i Trans

Blank
A =       Eq. 1.4 

where Blanki and Transi are the counts in the blank and transmission scans for LOR i. 

In order to obtain the transmission scans referred above there are three types of sources 

that can be used: positron sources, γ-ray sources and X-ray sources.  The usual positron source 

for transmission scans is the 68Ge/68Ga source.  One advantage of using this type of source is the 

possibility to reject random or scattered events, based on the knowledge of the source location 

(“triple-point” method or “sinogram windowing”) [Kinahan, 03; Meikle, 03].  In the group of γ-

ray sources, 137Cs is the most used [Kinahan, 03].  The third possible type of transmission sources 

are X-ray sources23.  Among the advantages of this last type is a low statistical noise and a fast 

acquisition; as disadvantage, there is the need24 to convert the measured attenuation coefficients 

into the appropriate values for 511 keV [Kinahan, 03]. 

In alternative to the transmission approach, there is also the possibility of using CT 

reconstructed images of the object and proceed with a conversion method (such as segmentation 

or scaling), to convert the Hounsfield units into attenuation correction factors [Kinahan, 03]. 

To conclude, it should also be addressed the relevance of this correction, in particular for 

whole-body PET.  In their paper [Bai, 03], Bai et al. summarize the main points raised by this 

discussion.  Some perceived advantages of reconstructing without attenuation correction are: 

avoiding noise amplification, reduction of patient scanning time, avoidance of potential artifacts 

due to patient motion between transmission and emission scans; and improved contrast/noise 

ratios for lesions.  However, the same authors argue, using methods for high-flux transmission 

imaging and a statistical transmission image reconstruction, the transmission scan does not 

significantly extend the total scan time, nor is emission image unduly amplified.  Moreover, there 

                                                 
23 This is the natural approach for PET/CT. 
24 Also true for the  137Cs. 



1 –An Introduction to Positron Emission Tomography 
 

32

are important disadvantages resulting from not performing attenuation correction, such as 

inaccuracies in the uptake, shape and location of lesions, since the attenuation effect in PET is 

nonlinear.  This is the case, for example, when scanning the thorax [Bai, 03].  So, whilst there are 

valid reason for reconstructing PET images without attenuation correction [Kinahan, 03]: 

checking for the presence of artifacts introduced by patient motion occurring between the 

emission and transmission scans and/or mechanical problems with the transmission scan; it is 

suggested [Bai, 03] that all studies should at least be reconstructed with attenuation correction to 

avoid missing regions of elevated tracer uptake. 

 

 

1.4.2 – Correction for random coincidences 

Random coincidences are due to the finite width of the coincidence timing window.  The 

most evident consequence of randoms on a reconstructed image is the introduction of a 

relatively uniform background, reducing contrast and distorting the relationship between image 

intensity and activity of the object.  Narrowing the coincidence timing window to avoid randoms 

can be part of the solution, but it must take into account the trade-off between minimizing the 

acceptance of randoms and the loss of sensitivity of true coincidences. 

The common approach for correcting random coincidences is the use of a “delayed 

window”.  This method estimates the random events rate, based on the fact that random events 

are not time correlated with each other.  The principle, independent from being performed on-

line (using the widespread delay line) or off-line (using a time tag associated with the photon 

arrival to the detector), is the following: whenever a photon strikes the detector, it triggers the 

opening of a coincidence timing window; if another photon strikes the detector ring within this 

window, this will be assumed as a prompt, since the detection is performed in coincidence.  

However, this second photon could be correlated with the first (resulting from the same 

annihilation - true event) or not (random event).  If the trigger results in the overture of a 

coincidence window with the same width but delayed by a period of time much greater than the 

window itself, any photon striking the detector within that delayed window does not result, for 

sure, from the same annihilation as the one that has triggered the process: they are uncorrelated 

photons.  Since the coincidence timing window has a fixed width, the estimated rate of 

uncorrelated events will be, on average, the same for that particular delayed window as for the 

former window without any delay, because the scanning conditions are assumed to be the same 

during the delay period.  Thus, the delayed window counts provide an estimation of the random 

events rate. 
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With the knowledge of this rate, random events can be subtracted on-line from the 

prompts, during acquisition.  This procedure, however, introduces noise in the measurement, 

because randoms are subtracted from the prompts, but the corresponding standard deviations 

for these measurements are summed. 

In alternative, to avoid the increase of noise due to random subtraction, two techniques 

have been proposed for reducing the variance of the estimated random coincidences [Brasse, 05]: 

one is referred as the “smoothed delays” estimation method, and relies on the acquisition of the 

delayed coincidences in a separate sinogram, rather than on-line subtraction.  The other method 

is the “singles-based” estimation of random coincidences [Casey, 86], under which the mean 

random coincidence rate <Rij> for each LOR (detectors i and j) is calculated using Eq. 1.1. 

An overview of variance reduction methods in 3D PET, is given by Badawi [Badawi, 99a]. 

 

 

1.4.3 – Dead time correction 

The dead time is an intrinsic characteristic of every radiation counting system.  It is 

related with the time required to process individual detected events, as the consequent individual 

pulse produced by the radiation detector has finite time duration.  This duration is primary 

determined by the integration time, i.e., by the period of time the front-end electronics is 

integrating charge produced by the PMT. 

There are many sources of dead time.  One of them is the pulse pile up: radioactive decay 

is a random process and there is always a finite probability that successive events occur within 

the integration time corresponding to the electronic existence of the pulse triggered by the first 

event.  In that case, because the second pulse occurs before the first has disappeared, the two 

pulses will overlap and form a single, distorted, one.  This is critical under high count rates.  So, 

to avoid the incorrect energy information carried by this distorted pulse, it should be rejected25 

and the two valid events discarded.  This is an example of a dead time loss.  Another source of 

dead time is the “reset” time, during which part of the system is unable to accept further events 

[Meikle, 03].  Multiple coincidences do also contribute to dead time, because the impossibility to 

ascertain which is the correct coincidence pair forces the rejection of all the events. 

Due to dead time losses, the measured count rate is less than the true count rate.  The 

possibility to measure the dead-time behavior as a function of count rate for a PET scanner, is 

                                                 
25 This rejection is done using an upper energy level discriminator.  Nevertheless, it is possible that the 
superposition of two individual events (scattered events, for example) results in a pulse whose energy lies 
within the energy window.  In that case, the pile-up distorted pulse will be accepted and misinterpreted.  
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referred by Meikle [Meikle, 03]: the performance of a “decaying source” experiment using a 

uniform source containing a known quantity of a short-lived positron emitter such as 18F or 11C. 

With respect to dead time, counting systems can be classified as “paralyzable” or 

“nonparalyzable”.  Under a nonparalyzable system, if an event occurs during the dead time, τ, of a 

preceding event, the second event is ignored, without any effect on subsequently occurring 

events.  If the same situation takes place in a paralyzable system, that second event is not 

counted as well, but introduces its own dead time during which subsequent events can not be 

recorded (there is an extension of dead time) [Cherry, 03]. 

The relationship between the measured count rate, Rm, and the true count rate, Rt, 

depends on the type of dead time.  For a nonparalyzable system, the relation is given by 

( )npt

t
m R

RR
τ+

=
1

, where τnp is the nonparalyzable dead time constant.  For a paralyzable system: 

( )pttm RRR τ.exp −= , where τnp is the paralyzable dead time constant [Cherry, 03; Knoll, 89; 

Tai,98].  A graphical comparison of the evolution of the measured and true rates, for the two 

dead time models, can be found, for example, in [Cherry, 03].  It is important to note the different 

behavior, at very high count rates, between two systems ruled by these models: while a 

nonparalyzable system increases asymptotically towards a maximum value, 
np

mR τ
1max = , a the 

measured count rate for a paralyzable system, at very high count rates, approaches zero, a 

phenomenon that is known as “counter paralysis” [Cherry, 03]. 

In practice, a system is made by different components.  If one of them is dominant, it 

will determine the dead time model for the whole system.  If, on the contrary, there is no 

dominant component, the dead time behavior will be a hybrid of the two models [Cherry, 03]. 

A possible approach to correct for dead time is to use the decay source measurements, to 

build a look-up table of dead time factors.  This approach, however, does not account for spatial 

variations in source distribution that may account for different measured-to-true count rate 

ratios in different subsystems.  Therefore, one solution is either to measure the dead time or to 

estimate analytically the model that better describes this parameter for each subsystem and, then, 

to establish a model incorporating the performance of each one of these subsystem [Meikle, 03]. 

 

 

1.4.4 – Normalization 

The need for normalization arises is response to the question: when exposed to the same 

radiation source, will all detector pairs in coincidence record the same number of counts?  In 



1 – An introduction to Positron Emission Tomography (PET) 
 

35

other words, will the number of counts be the same for all the LORs?  The answer to this 

question is no: some LORs will record more counts than other – different sensitivities -, for 

many different reasons, some of them discussed below.  The normalization is, therefore, a 

correction applied to data in order to remove this undesirable effect. 

 

1.4.4.1 – Effects contributing to differences in the sensitivity 

An immediate source of differences in sensitivity is the efficiency of a detector element: 

while being part of the same detector block, detector elements can have different efficiencies due 

to their position within the block, physical variations among these crystal and light guides, as well 

as variations in the gains of the photomultipliers coupled to the block [Meikle, 03]. 

Other effects that contribute to differences in sensitivity are [Meikle, 03]: 

• the accuracy with which detectors are aligned in the gantry; 

• asynchronicity between detector pairs; 

• the sum of adjacent data elements, either to simplify the reconstruction or reduce the 

size of data sets; 

Another important effect that is usually included under the normalization procedure is 

the correction for the arc effect.  This effect is a consequence of the ring configuration of the 

PET scanner: lines of response close to the edge of the FOV are narrower and more closely 

spaced than those at the center (Fig. 

1.13: d1 < d2) [Defrise, 98; Meikle, 03]. 

 

 

Figure 1.13 

 

Illustration of the arc effect in a 

transaxial plane of a ring tomohraph.  

LOR separation, d, is smaller at the 

edge of the FOV (d1 < d2). 

 

 

The narrowing of the space between LORs results in a tighter acceptance angle and, 

thus, in a reduced sensitivity.  However, for a transaxial plane, this effect is partially compensated 

by the fact that the separation between opposing detectors is less towards the edge of the FOV, 

contributing to an increase in the acceptance angle [Strul, 03].  Another effect of narrowing the 

space between LORs is the transaxial unequal sampling: the sampling distance is smaller at the 

x

d1 

d2 
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end of the FOV than at the center.  Mathematically, this oversampling at the edges is described 

by equation Eq. 1.5 [Defrise, 98]: 

2

1 ⎟
⎠
⎞

⎜
⎝
⎛−Δ=

R
x

rd i
i      Eq. 1.5 

where R is the scanner radius, Δr is the center-to-center spacing of the detector elements in the 

transverse direction: Δr = 2πR/ND (ND is the number of detector elements in the transverse 

direction), di is the LOR spacing, and xi is the transverse distance from the centre. 

 

1.4.4.2 – Normalization procedures 

The simplest and more obvious approach to perform normalization is to expose all 

detectors to an appropriate source, whose activity is well known.  This is often done by using a 

planar or rotating source of 68Ge [Meikle, 03], but other alternatives do exist [Bailey, 98b; Ferreira, 

01].  With these sources it is possible to directly measure the efficiency of each detector.  For a 

certain LOR, the normalization coefficient is assumed to be proportional to the inverse of the 

counts in each detector the LOR is connecting.  This process is known as “direct 

normalization”.  However, if it is theoretically obvious, it has some constraints and drawbacks 

[Meikle, 03]: in order to obtain statistically relevant data, very long scans (typically several hours) 

are required; the source – typically a rotating rod source or a rotating planar source -  must have 

a very uniform activity concentration to grant a uniform exposure of all LORs.  Otherwise, the 

resultant normalization coefficients will be biased: since the amount of scatter ant its distribution 

in the normalization scan may be very different from that associated with a regular emission 

scan, this can result in bias and artifacts. 

A different approach is to split the normalization into different components and treat 

each one of them separately: the component-based model for normalization [Casey, 95; Badawi, 

99b].  The central idea is to express the normalization coefficients as a product of factors 

associated with the effects normalization should account for.  One possible normalization model 

based on this principle is the following [Badawi, 99b]: 

Nuivj  = εuiεvjbubvcuimodDcvjmodDduvrkfuvguvrhuivj 

where Nuivj  are the normalization coefficients, i and j are detector indices, u and v are ring indices, 

D is the number of crystals along one side of a block detector, r is the radial position of a given 

LOR, k describes the relative position of the LOR within the block detector, and: 

• εui: are the intrinsic crystal efficiencies, relating the average sensitivity of each crystal to the 

sensitivities of other crystals; 
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• bu: are the axial block profile factors, describing the systematic variation in efficiency with 

the relative axial position of the crystal within each block; 

• cuimodD: are the transaxial block profile factors; 

• duvrk: are the crystal interference factors, describing the modulation of the radial geometric 

factors by the relative position of the crystal in the block; 

• fuv: are the axial geometric factors, describing the relative mean efficiency of the LORs in 

each sinogram compared with others after block profiles have been taken into account; 

• guvr: are the radial geometric factors, describing the systematic variation in LOR efficiency 

with radial position in a particular projection; 

• huivj: are the time-window alignment factors 

This is one example of a possible decomposition of the normalization coefficients.  The 

way each factor in the model above is measured is beyond the scope of this thesis.  Detailed 

studies on this subject are, for example: [Ollinger, 95], [Badawi, 99b], [Ferreira, 01] or [Badawi, 00b].  

 

 

1.4.5 – Scatter correction 

Scattered events are detected in consequence of the poor energy resolution of PET 

scanners, which doesn’t allow the discrimination of scattered from unscattered photons, based 

on their energies.  An interesting discussion about the effectiveness of the energy resolution on 

the scatter reduction is provided in [Thompson, 93]: the author argues that is unlikely that 

improving the energy resolution, alone, reduces the detected scattered radiation up to the point 

where it can be neglected or provides the scatter reduction achieved by using inter-slice septa. 

The use of scatter correction is especially important since the fraction of scattered events 

in PET is usually very high, especially in 3D mode: for a scan of the abdomen, it can be 60% to 

70% [Cherry, 03]. 

In order to correct data for scattered events, there are some facts to be taken into 

account [Meikle, 03]: the scatter distribution is relatively featureless, containing mainly low spatial 

frequencies; the energy spectrum bellow the photopeak has a large contribution (whilst not 

exclusively) from scattered events; scattered coincidences that fall within the photopeak window 

are mainly due to photons that have scattered only once; LORs that don’t cross the object 

(assuming the randoms have been previously subtracted) are due to scattered events, since an 

LOR from a true event represents an annihilation which took place inside the object. 
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From the knowledge of the former facts, many different approaches have been suggested 

for scatter correction.  These approaches can be divided into four categories [Meikle, 03], shortly 

described in the following paragraphs: empirical scatter corrections, multiple energy window 

techniques, convolution and deconvolution approaches, and simulation-based scatter correction. 

Empirical scatter corrections rely especially in the following facts: coincidences recorded 

outside the object are entirely due to scatter (assuming previously random subtraction); the 

scatter distribution is characterized by low spatial frequencies.  Therefore, fitting an analytical 

function to the scatter tail outside the object, in projection space, it is possible to estimate the 

underlying distribution of scattered events.  This approach is effective for neurological studies 

and among its advantages are its simple implementation and computational efficiency [Meikle, 

03].  The main drawback is the fact that the scatter distribution is not always approximated by a 

smooth analytical function, particularly in the thorax, which can result in over or under 

subtraction (when using the approach described by Eq. 1.2). 

Another empirical scatter correction is to make two measurements of the same object: 

one with the septa extended and the other with the septa retracted.  If feasible (the required 

additional scan can be impractical), measures obtained with the septa extended, after scaling to 

account for differences in sensibility, can yield a measurement of the scatter in direct planes for a 

3D acquisition.  Assuming that the scatter distribution doesn’t depend markedly on the polar 

angle (which is not always the case, especially for large axial FOV scanners), scatter contribution 

to oblique planes can be estimated by interpolation.  At the end, a scatter distribution will be 

available for all the 3D planes and can be used for scatter correction [Meikle, 03]. 

Multiple energy window techniques rely on the energy resolution (whilst poor) of the 

detection system and in two important observations: most Compton scattered events are 

recorded in a region of the energy spectrum below the photopeak; and there exists a critical 

energy above which only unscattered events are recorded [Meikle, 03].  Dual Energy Window 

methods, as the name suggests, use, in addition to the photopeak window, an auxiliary energy 

window: bellow the photopeak, to directly estimate the scattered coincidences, an approach that 

is known as Dual Energy Window (DEW) method [Grootoonk, 96]; or above the photopeak, in 

order to collect just unscattered events – Estimation of Trues Method (ETM) [Ferreira, 02].  In both 

cases, the measurements in the auxiliary energy window are used to estimate the scatter 

contribution to the photopeak.  The main advantage of these methods is that they consider 

scatter arising from activity outside the axial FOV.  The main drawback are: scatter estimates 

based on Poisson measurements, which are noisy; the dependence of the spatial distribution of 
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the scatters from the energy of the scattered γ, i.e., the scattered distribution is not the same for 

the different windows [Meikle, 03]. 

The triple energy window method (TEW) is the natural extension of the DEW, that, in 

the implementation of Shao [Shao, 94], has two lower energy windows.  This method has the 

main advantages and disadvantages of the DEW, but it improves the latter by reducing the 

sensitivity of the scatter correction to variations in source distribution and source size. 

The third category for scatter correction are the convolution approaches.  The analytical 

relation between scattered and unscattered data in 2D projections –the simplest but also the 

more intuitive - is the following, assuming that a spatial relationship exists between the scatter 

and the photopeak distributions [Bailey, 94; Meikle, 03]: 

( ) ( ) ( )∫
+∞

∞−

−= dtttshtPsP unscsc ,  

where Psc is the scatter distribution in a given slice, Punsc(s) is the one-dimensional projection of 

the true activity, and h(s,x) is the scatter contribution to radial position s due to a source 

positioned in x.  So, the core of these methods relies on the determination of function h(s,x) and 

on the assumption that the substitution of Punsc by Pobs – the measured projection data – is under a 

reasonable degree of accuracy26. 

The 3D extension of this method takes into account cross-plane scattering, which is 

achieved through the definition of a two-dimensional scatter response function and a two-

dimensional convolution with the projections [Bailey, 94; Meikle, 03] 

Deconvolution approaches, instead of a convolution, are aimed to estimate the 

distribution of unscattered data from measured projection, using a deconvolution operation. 

Simulation-based correction methods use the knowledge about the photon interaction 

with matter to estimate the scatter contribution to projection.  This can be done either via an 

analytical or Monte Carlo simulation.  Extensive revisions of both methods as well as the other 

types referred in this section can be found, for example, in [Ferreira, 01] or [Meikle, 03]. 

 

All these corrections that have been described affect the performance of the PET 

scanner.  The characterization of that performance, through the use of some figures-of-merit, is 

discussed in the following section. 

 

 

                                                 
26 This model is for 2D data, where the scatter fraction is not so high as in 3D PET. 
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1.5 – PET camera performance 

 

Aiming to standardize performance measurements of PET scanners, the National 

Electrical Manufacturers Association (NEMA) produced document of performance standards 

for PET scanners, 1994: the NU 2-1994: Performance Measurements of Positron Tomographs.  In 

parallel, the European Union also developed measurements for PET scanners, leading, in 1998, 

to the International Electrotechnical Commission EC Standard 61675-1: Radionuclide Imaging 

Devices – Characteristics and Test Conditions. Part 1. Positron Emission Tomographs.  It should be noted, 

however, that in spite of some overlap between the NEMA and IEC standars, many of the 

specific details of the measurements are different (for example, regarding phantoms, acquisition 

procedures, or data processing methods). 

More recently, the NEMA standard has been updated, resulting in the standard that, 

while superseding the former NU 2-1994, it does not resolve the differences between the 

NEMA and ICE standards [Daube-Witherspoon, 02].  This is the NEMA Standard Publication NU 2-

2001: Performance Measurements of Positron Emission Tomographs; 2001. 

In practice, both the standards remain in use.  However, it is easier to find in the 

literature studies describing scanners’ performance comparisons using the NEMA 2-2001 

standard.  This is true even for studies carried on in Europe27. 

 

 

1.5.1 – Spatial Resolution 

The spatial resolution of a system represents its ability to distinguish between two point 

sources in an image, i.e., it corresponds to the shortest distance these point sources can be placed 

so they will be identified in the image as two separated sources.  This important parameter is 

usually characterized by imaging a point source or a line source and measuring the corresponding 

FWHM of the point spread function or line spread function, respectively. 

In PET, the spatial resolution is usually measured within a transaxial plane as well as 

along the axial direction.  For a transaxial plane, the resolution can also be divided into radial 

FWHM and tangential FWHM, for point (line) sources with an offset from the camera’s axis.  

Among the factors that influence the spatial resolution in PET, are [Bailey, 03a; Stickel, 05]: 

- non-zero positron range; 

- non-collinearity of the annihilation photons; 

                                                 
27 For example, [Bergmann, 05] 
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- distance between detectors; 

- width of the detectors; 

- stopping power of the scintillation detector; 

- incident angle of the photon onto the detector; 

- depth of interaction of the photon in the detector; 

- optical decoding (the accuracy of the crystal identification by the four PMTs) 

- number of angular samples; 

- reconstruction parameters. 

Due to the limited sampling in the axial direction – one sample per plane – it is 

inappropriate to measure axial resolution on such systems from profiles of reconstructed data as 

there are insufficient sampling points for granting an accurate estimation [Bailey, 03a]. 

The non-zero positron range is particularly relevant since there is no mean to avoid this 

physical effect.  Since there are no effective methods to remove positron range blurring, this 

physical effect imposes, in fact, a limit on spatial resolution28. 

Positron annihilation distributions, in water and other living tissues, exhibit a cusp-like 

shape [Sánchez-Crespo, 04] (very sharp peak with long-range, long-intensity tails).  The sharp peak 

preserves high spatial frequencies, but the tails are responsible for the blurring effects seen on 

PET images [Palmer, 05; Levin, 99].  A seminal paper concerning the contribution of the positron 

range to the spatial resolution of PET systems was published in 1986, by Derenzo [Derenzo, 86].  

However, as Levin [Levin, 99] notes, the results referred by Derenzo should be taken carefully, as 

they were obtained for polyurethane foam, using a bin size ≥ 5 mm.  Some recent works, 

referring values for quantifying the blurring due to positron range are:  

• [Levin, 99]: in terms of the FWHM, for a 18F point source, the contribution to the 

degradation of spatial resolution is about 0.1 mm; for 11C, this contribution increases 

to 0.19 mm. 

• [Palmer, 05]: considering an hypothetical imaging system with an intrinsic spatial resolution 

of 1.5 mm FWHM, for a line source of 18F the FWHM was blurred to 1.67 mm; in 

the case of line sources of 11C, 15O and 13N, the FWHM was blurred to 1.88 mm, 

2.50 mm and 2.06 mm, respectively. 

• [Sánchez-Crespo, 04]: the most distinctive feature of this study relies on the fact that the 

authors have investigated the positron range contribution to spatial resolution losses, 

not only for different radionuclides but also for various human tissues.  It were 

                                                 
28 The importance of the positron range depends from the radionuclide being used as well as from the 
tissue inside which the positron is moving [Sánchez-Crespo, 04]. 
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found large differences, in image blur due to positron range, between human 

compact bone, soft tissue and lung tissue.  The authors refer, for example, that in a 

PET camera with 3 mm system resolution, the loss of spatial resolution due to the 

positron distance of flight accounts for 1.3% in bone and 3.5% in soft tissue but up 

to 22.5% in lung tissue for 18F.  The corresponding values were, respectively, 2.9%, 

9.3% and 45.0% for 11C and 37.9%, 68.9% and 167% for 82Rb.  One of the major 

conclusions of this study is that positron range becomes a limiting factor in lung 

tissue, regardless of the choice of radionuclide, for high-resolution PET cameras 

with a spatial resolution in the order of 1 – 2 mm. 

The use of very large magnetic fields (> 5 Tesla) to reduce the positron range effect in 

the PSF is explored in [Christensen, 95].  In that paper it is concluded that the spatial resolution of 

PET improves when positron annihilation takes place in a strong magnetic field. 

The non-collinearity of the annihilation photons is the other unavoidable physical 

contribution to the degradation of spatial resolution.  The effect on spatial resolution, FWHM180, 

is linear dependent on the separation of the detector elements, D, and mathematically expressed 

by the following equation [Cherry, 03]: FWHM180 = 0.0022 × D 

The non-colinearity related blurring for a 80 cm (D) diameter whole-body PET scanner 

is about 2 mm, but for a 12 cm diameter small-animal PET scanner reduces to 0.3 mm 

([Zanzonico, 04]. 

Considering, for example, the individual contribution to the degradation of spatial 

resolution due to the positron range (FWHMrange), non-colinearity (FWHMncol) and to the 

detector system (FWHMdet, which is itself the result of a combination of different factors), the 

combined blurring (FWHMsyst) results from the geometrical mean of the aforementioned factors. 

 

 

 

Figure 1.14 

 

Parallax effect: the apparent width of the 

detector element (LOR) increases with the 

increasing of the radial offset. 
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Another important factor that should be taken into account is the depth at which each 

photon interacts with the crystal (DOI or parallax error - Fig. 1.14).  This effect is due to the 

finite distance a photon travels within a crystal before depositing all of its energy. 

For a source located at the centre of the scanner and a discrete detector, the intrinsic 

spatial resolution is essentially determined by the width of the detector element, d: FWHMdet = 

d/2 [Cherry, 03].  However, due to factors such as the depth of interaction of the γ rays within 

the crystal, for most of the PET detector systems there is no information about the depth at 

which the interaction took place within the crystal.  In consequence, for a source in a location 

with an offset from the centre of the FOV, the apparent width of the detector, d’, increases.  The 

result is a decrease of the spatial resolution along the radial direction, as one moves away from 

the centre to the borders of the FOV.  For a whole-body PET scanner with 4 mm wide 

detectors and a diameter of 80 cm, the DOI effect contributes to a 40% degradation of the 

resolution at a distance of 10 cm from the center of the FOV [Cherry, 03].  A thin crystal with a 

high stopping power will contribute for the reduction of the distance traveled by the photon 

inside the detector and, therefore, to the reduction of the parallax effect.  It should also be noted 

that the DOI effect depends on the scanner geometry, being different for a ring, hexagonal or 

octagonal system. 

One possible strategy to deal with the DOI effect is to use the phoswich detector 

method that involves stacking thin layers of different detector materials with different decay 

times.  The signal decay time will be used to identify the layer in which the interaction took place 

[Bailey, 03b]. 

 

 

1.5.2 – Energy resolution 

In the context of nuclear medicine, the energy resolution can be defined as the precision 

with which a system can measure the energy of incident photons.  Good energy resolution is 

necessary to achieve good image contrast and to reduce the background counts in the image.  

Primary causes for the degradation of the energy resolution are random statistical variations, 

including [Cherry, 03]: 

- statistical variations in the number of scintillation light photons produced per keV of 

radiation energy deposited in the crystal; 

- statistical variations in the number of photoelectrons emitted from the photocathode; 

- statistical variations in the electron multiplication stage (dynodes) of the PMT. 



1 –An Introduction to Positron Emission Tomography 
 

44

In PET, in addition to the former definition – which is the single event energy resolution 

– it is also possible to define the coincidence energy resolution [Bailey, 03a].  One useful way to 

measure this coincidence energy resolution is to set one energy window for accepting a wide 

range of energies (for example, between 100 and 850 keV), while another is made narrow and 

stepped in small increments over the energy range.  Using this method, it was demonstrated that 

the energy resolution for a line source of 68Ge/68Ga, in air, is approximately 20% at 511 keV for 

a BGO scanner [Bailey, 03a]. 

The intrinsic energy resolution of some oxyorthosilicates scintillators (YSO, LSO, GSO 

and LGSO) can be found in [Balcerzik, 00].  A model to predict the energy resolution of 

multicrystal encoding detectors for PET is proposed in [Vozza, 97]. 

 

 

1.5.3 – Sensitivity 

The sensitivity of a PET scanner quantifies the ability of a scanner to detect the 

coincident photons emitted from inside the FOV.  It is determined by four main factors: the 

scanner geometry, the detector efficiency, the acquisition energy window, and the dead time. 

The scanner geometry establishes the total solid angle covered by the scanner over its 

FOV.  For a ring scanner with diameter D and detectors whose thickness is h, if the small 

interdetectors area is ignored, the geometric efficiency decreases linearly from approximately 

d/D, at the centre of the scanner, to 0, at its borders, resulting in an average geometry efficiency 

given by d/2D [Cherry, 03].  So, small diameter scanners with a large extension in the axial 

direction usually have higher sensitivities. 

The detector efficiency is related with the probability that a photon whose trajectory 

intersects the detector will interact with it, i.e., will be detected.  This is dependent from the 

detector material and its thickness (typically ranging from 20% to 70% [Stickel, 05]): for a single 

detector, the detector efficiency is given by ( )xlμε −−= exp1  [Cherry, 03], where μl is the linear 

attenuation coefficient for the detector material and x is the detector thickness.  In the case of a 

coincidence system, ε should be replaced by ε2.  An higher detector efficiency contributes to a 

higher scanner sensitivity. 

The third factor affecting the sensitivity is the acquisition energy window, because events 

falling outside this window will be rejected29. 

                                                 
29 However, as referred, increasing the energy window will increase the scatter fraction 
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Finally, the dead time: it is another source of count losses, because some of the events 

are rejected by the processing chain.  If sensitivity is measured at low activity, dead-time can be 

neglected.  However, at realistic activity levels, this is not the case, and the sensitivity is lower due 

to the dead-time. 

A high-sensitivity scanner collects more coincidence events in a fixed amount of time for 

a fixed activity within the scanner FOV.  This is relevant, in practice, since it usually translates 

into an improved SNR for the reconstructed image, due to a reduction in the effect of statistical 

fluctuations [Bailey, 03b]. 

For a point source located at the centre of the FOV, PET systems sensitivities range 

from 0.2% to 0.5% (0.002 to 0.005 cps/Bq) in 2D mode, to 2% - 10% (0.02 – 0.10 cps/Bq) in 

fully 3D mode [Cherry, 03].  In face of these values it is noteworthy that while higher in 

comparison to other techniques (such as SPET), they are low in absolute terms: most of the 

potential signal available from the radiotracer is lost [Bailey, 03a]. 

Bailey et al. [Bailey, 97] introduced the effective sensitivity, defined as the product of the 

absolute sensitivity, CAbs  (cps.MBq-1) and the ratio of the measured NEC (Noise Equivalent 

Count, as will be discussed in section 1.5.4) to the ideal true count rate with no scatter, random 

or dead time, Tideal (Cps): Abs
ideal

eff C
aT
aNECaC .
)(
)(

)( = .  Therefore, the effective sensitivity is a 

function of the count rate, includes scatter, system sensitivity, dead time and random 

coincidences, and permits comparisons between different tomographs as well as the same 

tomography under different conditions. 

 

 

1.5.4 – Noise Equivalent Count (NEC) 

The Noise Equivalent Count Rate (NECR) [Strother, 90] is a mean for comparing the 

count rate performance of different scanners or the same scanner operating at different 

conditions.  By definition, the NEC of a variable x is equal to the mean of the Poisson 

distribution with the same SNR as x [Nuyts, 01].  In another way, it is the count rate which would 

have result in the same SNR in the data in the absence of scatter and random events [Bailey, 03a] 

- therefore, lower than the observed count rate.  The widespread mathematical expression is the 

following [Strother, 90; Badawi, 96; Daube-Witherspoon, 02]: 

RkST
TNECR

.

2

++
=      Eq. 1.6 

where: 
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• T: is the true event rate; 

• R: is the randoms rate; 

• S is the scatter rate;. 

• k: is a factor dependent on the way randoms are estimated: k = 2 if the scanner does on-

line subtraction of randoms (i.e., the estimate is noisy); k = 1 otherwise (noise-free 

estimate). 

So, for properly comparing different imaging systems, the parameters included in Eq. 

1.6 should be established coherently.  In particular, the k factor in the denominator must take 

into account the procedure adopted for the estimation of randoms.  The randoms and scatter 

rates are given by [Daube-Witherspoon, 02]: 

• 
SF

TRR T −
−=

1
 

• T
SF

SFS
−

=
1

 

where SF is the intrinsic scatter fraction [Daube-Witherspoon, 02] – the ratio of scattered 

events to the total events, which are measured at a low count rate such that random 

coincidences, dead-time effects, and pileup are negligible -  and RT is the total count rate. 

For 3D scanners, since the trues and scatter count rates are proportional to the activity, 

while the randoms count rate is proportional to the square of the activity, there exists an 

optimum activity for each scanner that corresponds to the maximum of the NEC [Zanzonico, 04].  

A list of the peak noise equivalent counts for different scanners is show in [Humm, 03]30. 

                                                 
30 A plot of the NEC curve for the HR+ scanner as a function of the activity concentration can be found 
in [Bailey, 03a]. 
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2 – Image reconstruction algorithms in PET 

 
In this chapter give an overview of some image reconstruction algorithms used in 

Positron Emission Tomography.  A detailed description of all of these algorithms is beyond the 

scope this particular thesis.  The ML-EM and OS-EM, the last one extensively used in our work, 

will observe special attention.  Different algorithms may be preferred depending on factors such 

as the signal-to-noise-ratio, processing time constraints and, most importantly, the specific task 

for which the image is being reconstructed [Defrise, 03].  With this fundamental premise 

established, it is possible, from a theoretical point of view, to enumerate advantages of an 

algorithm over another, and vice-versa.  Moreover, for a specific task, some algorithms have a 

better performance than others. 

Also interesting are the four trends that, according to Jones [Jones, 03b], contribute to the 

increase of the computational demands in emission tomography: the incorporation of 

increasingly detailed physical models of the image formation; the increasing number of detectors 

in a single system – the authors state that the number of LORs in clinical tomographs doubles 

roughly every then months! -; the trend toward fully 3D image reconstruction; and the trend to 

combine multiple imaging modalities in single studies, such as in the case of PET/CT. 

There is an extensive bibliography devoted to reconstruction algorithms, going back, at 

least, to the nineteen seventies.  From those days now, some of the algorithms have been 

abandoned in practice, others were recuperated (i.e., iterative algebraic algorithms), a broad class 

of them is still in use (analytical algorithms) and many more were introduced and are still being 

investigated.  The optimal reconstruction algorithm, however, still doesn’t exist. 

Guides to tomographic reconstruction algorithms are very useful.  Examples are: 

[Ollinger, 97], [Defrise, 01], [Zeng, 01], [Lewitt, 03], or, more recently, [Qi, 06]. 
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2.1 – The Radon transform in PET 

 

As we mentioned before, positron emission tomography is based on the detection in 

coincidence of two 511 keV photons, approximately emitted back-to-back, resulting from the 

annihilation of the positron with some free electron in the object.  Once detected, under the 

former co-linearity approximation, it is possible to assume that the annihilation took place 

somewhere in the LOR connecting the two detectors stricken by this pair of photons. 

 

 

Figure 2.1 

 

A single point source in the field-of-view of 

a PET scanner.  1S is the attenuation path of one 

annihilation photon; 2S  is the attenuation path of 

the other photon. 

 

 

Let us now, for the sake of simplicity, consider a transaxial plane and admit the existence 

of a single point source with activity A(x0,y0), located at (x0,y0) (Fig. 2.1).  Since we are assuming a 

single point source within the whole field-of-view placed somewhere along the line 21 SS , 

during a timing interval Te the corresponding element in the matrix (sinogram or projection), 

ε(x’,φ), will record a number of events equal to: 

 

2100 ),(),'( PPTyxAx e∝φε  

 

where P1 and P2 are the detector striking probabilities for each photon.  Considering that the 

object is itself an attenuation medium and the attenuation coefficients are, in each point, given 

by μ(x,y), the former probabilities are given by: 
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with s = s1 + s2.  Generalizing, if all the point sources along the line are to be considered (instead 

of a single source), the equation above leads to [Toft, 96]: 
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The most important fact in Eq. 2.1 is that the exponential depends only from the whole 

path traveled by both photons, s, and not from the particular point where the emission took 

place.  This path is equal to the length of the straight line connecting the two opposite detectors 

and is equal for all the emissions occurring along this line.  As a consequence, the attenuation 

factor behaves just as a multiplicative factor, so we can write: 
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The second member of equation 2.2 is the Radon transform (cf. Appendix A.2) of the 

function describing the activity of each point, for x’ and φ. 

We have, therefore, introduced the Radon transform in the context of PET and stated its 

relation with the measured data, for the 2D case.  The tomographic reconstruction is achieved 

using a mathematical method to reconstruct the activity distribution (a 3D function) from 

projections (2D), i.e., a method to solve the following equation, which is a generalization for the 

3D case of the problem we have been discussing [Defrise, 02]: 

 

∫ ++−= ')tan',cos'sin',sin'cos'(),,,'( dyyzyxyxfzxs θφφφφθφ  Eq. 2.3 



2 –Image reconstruction algorithms in PET 
 

50

2.2 – A primary distinction between reconstruction 

algorithms 

 

There are many different approaches for image reconstruction from projections.  

However, according to their characteristics, and in particular to their underlying strategy for 

solving equation 2.3, it is possible to classify them.  One of the most fundamental distinctions, 

even from a practical point of view, is between analytical and algebraic reconstruction methods.  

We can define analytical methods as those aiming at finding an inversion formula for the Radon 

transform (2D) or X-ray transform (3D), i.e., a direct solution to invert equation 2.3.  Any 

discretization appearing on their implementation is not intrinsic to the nature of these methods, 

resulting from both the characteristics of the data they will be handling as well as from 

computational requirements.  Nowadays, the most important analytical reconstruction 

algorithms are the Filtered-Backprojection and the 3DRP1. 

Algebraic methods, on the contrary, are conceived assuming discrete data, and instead of 

searching for a direct solution of equation 2.3, have an iterative process in their core, which 

converges to a solution for that equation.  Discretization is not, as in the case of analytical 

methods, a contingence.  Among algebraic reconstruction techniques it is also possible to devise 

another important distinction between statistical (such as ML-EM and OS-SEM) and non-

statistical algorithms (as ART).  Going further and taking the differences between the objective 

function (one of the requirements behind a statistical algebraic reconstruction) in each case, we 

can also distinguish Bayesian algorithms from non-Bayesian algorithms.  Latter on this chapter 

we will go back to the objective function and to the algebraic reconstruction techniques. 

Another very important difference is between 2D and 3D reconstruction algorithms.  In 

fact, this is more than a distinction between algorithms, since for the same algorithm it is 

possible to have both 2D and 3D implementations.  A 2D algorithm, or a 2D implementation of 

an algorithm, is one that assumes 2D data, independent from the fact that these data had been 

rebinned previously or acquired directly on 2D.  A 2D reconstruction assumes data 

corresponding only to direct plans.  3D data impose no restriction to the data, and this sort of 

algorithms is able to reconstruct from sinograms (projections) comprising information either for 

direct plains as well as for oblique planes. 

                                                 
1 3DRP stands for 3D Reprojection.  However, as it will be referred in section 2.3.3, the whole 3DRP 
reconstruction algorithm, as it is usually known, does not restrict to a 3D reprojection operation. 
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In Figure 2.2 we show a general representation of the possibilities for the reconstruction 

of 2D and 3D data. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2 – A general representation of the reconstruction strategies for 2D and 3D data. 

 

Lewitt and Matej [Lewitt, 03] adopt an apparently different, but very interesting, strategy 

to classify reconstruction algorithms in emission tomography.  These authors take the fact that 

the obtained discrete measurements correspond to some integral transformation of a function of 

continuous spatial variables (the distribution of activity), f(x, y, z).  Thus, the process of data 

collection is represented by a discrete-continuous model (D-C model) relating the discrete data 

with that function.  In addition, they also assume a linear, spatially variant relationship (LSV) 

between the basic physical component of the data and the function f(x, y, z). 

Once established a D-C model for the process of data collection, these authors suggest 

the existence of three different directions to proceed with the reconstruction: 

i) obtaining a discrete-discrete (D-D) model from the D-C model, representing the 

unknown function, f(x, y, z), by a finite number of basis functions, each of them 

multiplied by a coefficient that is initially unknown and determined from the data by a 

specified computer algorithm; 

ii) obtain a continuous-continuous (C-C) model from the D-C model by interpreting the 

discrete data as samples of a function of continuous variables in the measurement space; 

iii) proceed with the D-C model and using a set of basis functions in the image space. 

In fact, this is an elegant and alternative way to separate algebraic from analytical 

reconstructions: it is not difficult to identify the basis functions of the D-D model as being the 
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image voxels and, consequently, this approach with an algebraic reconstruction; analytical 

reconstruction fit in the C-C model.  The direct solution of the fundamental D-C problem 

without introducing further discretization (D-C model) is reserved for a third category of 

algorithms not widely used in nuclear medicine.  The latter sort of algorithms use basis functions 

such as “natural pixels” [Buonocore, 81; Hsieh, 96] or “ridge functions” [Kazantsev, 00]. 

For the shake of clarity, before proceeding with the description of some of the 

algorithms, it is important to stress the option we took is this chapter to distinguish between 

analytical and algebraic methods, as the framework for the organization of reconstruction 

techniques.  We believe this is not only a more intrinsic distinction, but also more exclusive in 

the sense that no algorithm is simultaneously analytical and algebraic, whilst ML-EM and OS-

EM, for example, have a 2D and a 3D implementation. 

In appendix A.6 we show a diagram with one possible organization for the 

reconstruction techniques.  The following pages are structured based on this diagram. 

 

 

2.3 – Analytical reconstruction 

 

The distinctive feature of an analytical reconstruction algorithm is the search for a direct 

solution to invert the Radon (2D) or X-ray (3D) transform (Eq. 2.3) or, in a more practical 

perspective, the search for an analytical solution to the problem of reconstructing from 

projections. 

A rigorous mathematical analysis of the inversion of the Radon transform poses a bunch 

of problems whose complexity would better fit in a more mathematical leaning thesis.  We are 

referring, for example, to the question of how to deal with a discrete set of projections rather 

than an infinite set, as would be required if a rigorously inversion is to be sought; or to the ill 

posed inverse problem translated in Eq. 2.3 and the related precision of measurements.  A more 

detailed description of these questions could be found in [Deans, 83], as well as many 

bibliographic references where the subject is exhaustively discussed. 

To proceed with this particular text, it is important to note that some algorithms proved 

to be useful methods for approximating the inversion of the Radon transform [Deans, 83].  These 

are what we consider under the designation of analytical reconstruction algorithms, and were 

devised to solve the problem of reconstruction from projections where the projection data 

constitute a sampling of the Radon transform.  This fact, i.e., data as a set of samples of the 
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Radon transform, is very important since it is on the basis of different methodologies for the 

inversion of the Radon transform, and, consequently, leads to a further division of analytical 

techniques into two other categories: direct Fourier methods and frequency space filtering (signal 

space convolution are also part of this group). 

 

 

2.3.1 – Direct Fourier Methods 

As the name suggests, on direct Fourier methods (DFM) the core of image 

reconstruction is performed in Fourier space.  Because projections are mathematically given by 

the Radon transform of the image, the central section theorem (cf. appendix A.4) emerges as the 

key tool for image reconstruction from projections.  However, due both to the process of data 

acquisition and the computational implementation of reconstruction, a discretization of the 

Radon transform must be used.  So, the central idea of performing a 1D Fourier transform of 

the projections and relating them to the 2D Fourier transform of the image translates, in 

practice, on the need to take discrete Fourier transforms (direct and inverse) via FFT (Fast 

Fourier Transform).  This is the main problem associated with the DFM, because some sort of 

interpolation must be used. 

The problem could be formulated starting by establishing the equations on a continuous 

base.  As mentioned previously for the 2D case2, projections are acquired for different azimuthal 

angles, φ, and for each angle data (which is the Radon transform of the activity distribution) is 

stored for different radial positions corresponding to different element of detection (bins).  So, a 

polar coordinate system is the natural one to describe acquired data.  Moreover, the central 

section theorem (App. A.4) - relating the 1D Fourier transform of a projection at an angle φ with 

the value along a line through the origin (at the same angle) of the 2D Fourier transform of the 

activity distribution – underlines the importance of polar coordinates on the link between image 

and projection.  The 1D Fourier transform of a projection in the radial direction is: 

')'2exp(),'(),( '' dxxixpP xx νπφφν −= ∫
+∞

∞−

    Eq. 2.4 

The 2D inverse Fourier transform of f(x,y) in Cartesian coordinates is: 

[ ]∫ ∫
+∞

∞−

+∞

∞−

+= yxyxyx ddyxiFyxf ννννπνν )(2exp),(),(    Eq. 2.5 

                                                 
2 The 2D case is used because the underlying problem is easier to describe and discuss. 
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If the continuous formulation was to be kept, we would be changing from Cartesian to 

polar variables in Eq. 2.5 and using the central section theorem to combine this equation with 

Eq. 2.4, in order to obtain f(x,y) (as will be shown latter on this chapter) via a two-dimensional 

inverse Fourier transfom. 

Nevertheless, on a discrete basis, things are not straightforward because we are 

constrained to use a discrete Fourier transform and, from a computational point of view, this is 

almost equivalent to use the FFT.  Since this algorithm is conceived for a Cartesian grid, Eq. 2.5 

is discretized directly for these coordinates.  On the contrary, the Fourier transform of data (line 

integrals) is given on a grid corresponding to polar coordinates (Fig. 2.3).  Thus, in order to use 

the central section theorem, some sort of interpolation is needed to map the polar grid 

associated with the discretization of Eq. 2.4 onto the Cartesian grid assumed by the FFT.  

Different interpolation processes result on different algorithms and it was found that the 

interpolation accuracy is crucial to the quality of images reconstructed using direct Fourier 

methods [Stark, 81; Matej, 90; Gottlieb, 00; Stearns, 90; Choi, 98]. 

 

 

 

Figure 2.3 – Sampling in the frequency domain. 

 

 

 

Based on the previous paragraphs, an algorithm to 

reconstruct f(x,y) from its projections via DFM can be 

derived from the following steps [Cherry, 03]: 

i) take projection profiles at N projection angles φi, i = 1, 2, …, N; 

ii) compute de 1D FFT of each profile; 

iii) insert the values of these FTs at the appropriate coordinate locations in the Fourier 

space.  Values are inserted in polar coordinates along radial lines through the origin (νx’); 

iv) using the values inserted in polar coordinates, map these values onto a Cartesian grid in 

Fourier space; 

v) use the interpolated values in Fourier space and the inverse FFT to compute the image 

of the object, f(x,y). 

Several types of interpolation (corresponding to step iv in the former sequence) were or 

have been studied.  Among the results described in literature, we retain that the nearest 
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neighbour and 2-D linear interpolation yield very poor results (serious artifacts) [Natterer, 01; 

Matej, 90].  Gridding methods [Natterer, 01; O’Sullivan, 85; Jackson, 91] were introduced to obtain 

optimal inversion schemes of Fourier data and are presently considered the most accurate 

Fourier reconstruction method [Natterer, 01; Choi, 98]. 

 

 

2.3.2 – Filtered Backprojection 

The filtered backprojection (FBP) algorithm is one of the most important reconstruction 

algorithms.  According to Ollinger and Fessler [Ollinger, 97], the first application of FBP in the 

context of medical imaging can be attributed to Shepp and Logan [Shepp, 74].  Nowadays, is still 

used in many situations as a gold standard for comparing the quality of reconstructed images.  

The popularity of FBP is historically due to its relative light computational requirements 

comparing to other methods such as DFM or iterative algorithms3, when scanty computational 

power was an almost inevitable limitation.  Independent from this very practical aspect, analytical 

algorithms, and FBP in particular, are linear and, thereby, allow an easier control of most of their 

well known properties (spatial resolution and noise correlations, for example), something crucial 

for quantitative data analysis [Defrise, 03]. 

The filtered backprojection is equivalent to the direct Fourier reconstruction in the limit 

of continuous sampling [Defrise, 03].  Differences between these two approaches arise when the 

continuous formulation is replaced by the necessary computational discrete implementation. 

According to the order by which filtering and backprojection are used (both are linear 

and shift-invariant so their order can be interchanged), there are two variations of this method 

[Brooks, 76; Defrise, 98]: the backprojection-filtering, where data are first backprojected and then 

filtered; and the filtered backprojection itself, where filtering is applied prior to backprojection.  

In the following paragraphs we will be discussing the latter approach.  Among recent works 

regarding FBP, we found very useful for the comprehension of FBP, as well as for their 

relevance in the whole context of image reconstruction, the following: [Defrise, 98; Defrise, 03; 

Barrett, 04].  [Brooks, 76] and [Kak, 88] are cited very often and can be assumed as classical texts. 

To establish the filtered backprojection algorithm we take again Eq. 2.5, i.e., the equation 

for the 2D inverse Fourier transform of function f(x,y): 

                                                 
3 Iterative algorithms were devised before the introduction of FBP.  However, by the time, their 
computational demands made them not very interesting. 
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[ ]∫ ∫
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Changing from Cartesian to polar coordinates (νx= ν.cosφ and νy= ν.sinφ), we have: 

[ ]∫ ∫
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)sincos(2exp)sin,cos(.),( ddyxiFyxf  

and using the fact that F(ν,φ) = F(-ν,φ+π), then: 
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'2exp)sin,cos(||),( ddxiFyxf    Eq. 2.6 

where x’ = xcosφ + ysinφ.  Now, the central section theorem is used (cf. Appendix A4) to 

introduce in the integrand a known function (projection data).  Combining this theorem with 

Eq. 2.4, we have: 

( ) [ ]∫ ∫
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∞−

=
π

φννπφνν
0

'.2exp,||),( ddxiPyxf    Eq. 2.7 

In the equation above, νx’ is identified with ν.  Up to this point, and once we kept the 

continuous formulation, the former equations also describe the direct Fourier methods.  As we 

said before, since DFM methods proceed in the Fourier space, the use of the 2D FFT algorithm 

in a discrete implementation forces an interpolation from polar to Cartesian coordinates.  On the 

contrary, the filtered backprojection splits Eq. 2.7 into two distinct stages: filtering in the Fourier 

domain, first; backprojection, after. 

1st) Filtering:      ∫ ∫
+∞

∞−

+∞
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⎟
⎟
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⎜
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⎝

⎛
−= ννπνπφνφ dxjdxxixpxp )'.2.exp(')'.2exp(),'(||),'(           Eq. 2.8 

 [ ]{ }),'(|| '' φν νν xpFTIFT xx →→=  

In the filtering stage, for each azimuthal angle is calculated the 1D Fourier transform of 

the projections (Radon transform of function f(x,y)) for that angle.  Then, in the Fourier domain, 

the signal is multiplied by a high-pass ramp filter, |ν|.  Finally, a 1D inverse Fourier transform is 

used for going back to the Radon domain. 

2nd) Backprojection:                   ∫ +=
π

φφφφ
0

),sincos(),( dyxpyxf                                Eq. 2.9 

Eq. 2.9 is the mathematical expression of the backprojection operator.  This stage is 

equivalent to the integration along a sinusoid in the Radon domain. 
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According to this, the implementation of the FBP algorithm can be based on the 

following steps [Defrise, 98]: 

i) Fourier transform the projection for a given angle φ:  P(νx’,φ) = F{p(x,φ)}; 

ii) Filter the projection in the frequency space:  ( )φννφν ,),( '' xx PP = ; 

iii) inverse Fourier transform the filtered projection:  ( ){ }φνφ ,),'( '
1

xPFxp −= ; 

iv) backproject the filtered projection:  B{ }),'( φxp ; 

v) repeat steps 1 - 4 for each φ: 0 ≤ φ < π. 

Observing the equations above, a first remark should be made: in eq.2.8, the Fourier 

transform of the projection is multiplied by the ramp filter.  However, this would have as 

consequence the amplification of high frequencies.  Since the power spectrum of a typical image 

usually decreases with increasing frequencies, and noise [Riederer, 78], on the contrary, has likely 

more significant components in this region of the spectrum [Farquhar, 98], this sort of filtering 

would translate, in practice, in the amplification of noise.  This is usually referred as an evidence 

of the ill-posed problem in the context of the inversion of the Radon transform: a small 

perturbation in the signal, due to noise in the measurement, can cause an arbitrarily large error in 

the reconstructed image [Defrise, 03].  The solution for the reconstruction using FBP is, then, not 

to use the ramp filter, but to stabilize the process by introducing a low-pass apodizing window.  

So, Eq. 2.8 is replaced by Eq. 2.10: 

( )∫ ∫
+∞

∞−

+∞

∞−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= ννπνπφννφ dxjdxxixpHxp )'.2.exp(')'.2exp(),'(||),'(  Eq. 2.10 

The mathematical definition of some of the most common apodizing windows can be 

found, for example, in [Herman, 79] 

In respect to the discrete implementation of FBP [Defrise, 03] we note that available data 

are made of Nφ projections (corresponding to j azimuthal angles), each one sampled along the 

radial direction at intervals equal to Δs.  This radial sampling constraints the choice of the cut-off 

frequency of the filters to be used in the filtering step (Eq. 2.9): for a radial sampling distance Δs, 

the Shannon’s theorem states that the maximum frequency that can be recovered without 

aliasing is 1/2Δs.  In addition, the choice of νc is also determined by the photon statistics, a 

factor has a major role in the noise characteristics of data.  So, when setting the cut-off 

frequency there is always a trade-off to be considered: a filter with a cut-off frequency that is too 

high, favors resolution and contrast but allows noise to degrade image resolution; a filter with a 
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too low cut-off frequency reduces image noise, but may overly smooth the image, decreases 

contrast and eventually introduces ring artifacts [Farquhar, 98]. 

To conclude this section dedicated to FBP, we shortly refer [Wilson, 93] that FBP 

reconstruction spreads noise from image regions containing high count densities into regions of 

low count densities, so the noise magnitude (variance) remains relatively constant throughout the 

image.  At low FBP filter cut-off frequencies the noise is correlated at relatively long distances. 

 

 

2.3.3 – The 3DRP algorithm 

The importance of the 3DRP, an analytical algorithm for fully 3D image reconstruction 

from projections, derives from the specific characteristics of 3D data usually available.  Due to 

the finite axial extension of whole-body PET scanners, some LORs corresponding to oblique 

planes are missing, i.e., these lines cross the object but just one of their extremities intersects a 

detector bin.  The other extremity would correspond to a point of intersection whose axial 

coordinate is outside the field of view.  So, from a reconstruction perspective, this is equivalent 

to have truncated projections (for the axial coordinate) and, in consequence, the conditions for 

the applicability of the 3D central section theorem are not fulfilled. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.4 – Orlov Spheres for different acquisition modes (2D and 3D) in a conventional 

cylindrical whole-body PET scanner. 
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Another important difference between 2D and 3D PET is data redundancy for the latter 

case.  In 3D PET there are additional data corresponding to the oblique planes, that can be used 

in the reconstruction to improve the SNR by reducing statistical noise [Defrise, 98; Kinahan, 89]. 

Conversely, we can also ask how many parallel projections provide enough information 

to reconstruct the 3D image in a stable way.  The answer is contained in Orlov’s condition 

[Defrise, 95a]: it is possible to recover f(x,y,z) in a stable way if the set of measured projections, Ω, 

is intersected by any equatorial circle on the unit Orlov’s sphere.  This illustrated in Fig. 2.4, 

where the orientation of a single 2D projection plane can be described by the location of the end 

point of the unit vector z’(φ,θ) (parallel to the LORs corresponding to that projection), on the 

sphere.  For each mode of acquisition (2D and 3D) the resulting set of projections is shown. 

Assuming we have complete data, i.e. satisfying Orlov’s condition, remains the problem 

of truncated data for the axial coordinate.  3D truncated PET data results on the direct 

inapplicability of the 3D central section theorem, and, in consequence, a 3D version of the 

filtered backprojection (3D FBP) is not directly usable.  On the other hand, shift variant 

characteristics of these data make standard Fourier deconvolution techniques rather 

inappropriate to solve the problem of reconstruction.  In this context, the 3DRP, as a whole, is 

the reconstruction algorithm that bridges the gap between truncated and shift variant data and 

the applicability of the central section theorem, via an intermediary reprojection (RP) step. 

If data were complete and non-truncated, it would be theoretically possible to 

reconstruct using the 3D FBP.  The 3D FBP [Defrise, 98; Defrise, 02] could be understood as the 

3D counterpart of the 2D FBP.  An algorithmic implementation of the 3D FBP can be resumed 

as follows: 

i) calculate the 2D Fourier transform of p(x,y,φ,θ), P(νx’,νy’,φ,θ); 

ii) multiply by a 2D filter, HC, and a 2D window, W: 

( ) ( ) ( ) ( )'''''''' ,,,,,,,, yxyxCyxyx WHPP ννννθφννθφνν =  

iii) take the inverse 2D Fourier transform to obtain the filtered projection: 

( ) ( ) ( )[ ]∫ ∫
+∞

∞−

+∞

∞−

+= '''2exp,,,',,',' '''' dyyxiPdxyxp yxyx ννπθφννθφ  

iv) 3D backproject the filtered projections; 

v) repeat steps i-ii for each φ: 0 ≤ φ < π; 

vi) repeat steps i-iii for each θ: -Θ ≤ θ < Θ. 

For the 2D filtering operation in step ii), a factorisable filter is usually adopted [Defrise, 

02].  The most often used is the Colsher’s filter [Defrise, 98; Colsher, 80]. 
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Let us consider Fig.2.5, where the existence of truncated projections is illustrated.  The 

higher the value of the polar angle, the higher the number of truncated projections.  This is 

synonymous of a drop in the scanner sensitivity when moving from the center of the axial FOV 

towards the edges.  In consequence, applying 3D FBP to truncated projections results in severe 

artifacts that cannot be corrected by simply dividing each point of the FBP reconstruction by the 

sensitivity in that point [Defrise, 98]. 

The 3DRP [Kinahan, 89] is the widespread analytical algorithm for the reconstruction of 

truncated 3D data.  The first step in 3DRP is to complete 2D projections by estimating the 

truncated projections.  This is done by calculating the set of line integrals these projections are 

made of, taking a preliminary reconstructed imaged of the object, f(x,y,z)2D,.obtained from a 2D 

reconstruction from data in direct planes.  This is possible since in normal conditions no direct 

projections are missing, and a 2D FBP can, hence, be used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 – The 3DRP algorithm.  The starting point is a 2D set of projections extracted from 

the acquired data. 

 

After estimating the missing projections, they are stacked with the former acquired 

projections in order to obtain a set of complete projections.  These complete projections are 

finally used to reconstruct the image via a 3D FBP. 

The 3DRP algorithm can be depicted as in Figure 2.5, and the corresponding algorithm 

stated as follows: 
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i) extract the 2D data (direct planes) from the full data set; 

ii) using the former 2D data, reconstruct a first image, f(x,y,z)2D,.by applying the 2D FBP 

algorithm to each slice; 

iii) for each projection (φ,θ), with 0 ≤ φ < π and |θ| ≤ Θ: 

- estimate the truncated projections; 

- merge the estimated and measured data, so a complete set of projections is obtained; 

iv) use the 3D FBP algorithm to reconstruct the image. 

 

 

2.4 – Algebraic reconstruction 

 

Algebraic techniques are the alternative to analytic approaches, in the context of image 

reconstruction from projections.  As referred at the beginning of the chapter, in spite of being 

classified as algebraic techniques, this sort of algorithms4 are very different from each other.  

However, a fundamental characteristic is transversal to all of them: they are not conceived for a 

direct inversion of Eq. 2.3 but, instead, they progressively refine the estimation of the activity 

distribution, f(x,y,z).  In addition, data are assumed to be intrinsically discrete, which is in sharp 

contrast with the analytic reconstruction techniques.  This is so much important as we saw that 

discretization is on the basis of the main problem related to the algorithms that would be 

otherwise the natural analytic approach, Direct Fourier Methods, and their replacement in 

practice by FBP. 

 

 

Figure 2.6 

 

A schematic representation of the 

algebraic D-D model. 

 

 

The D-D (discrete-discrete) 

model describing the algebraic 

approach can be depicted as in Figure 2.6.  Object discretization is obtained by considering it 

                                                 
4 As an introductory reading see, for example, [Vandenberghe, 01; Leahy, 00b]. 
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divided into small volume elements: voxels.  Let yj be the total number of counts in LORj, m the 

total number of voxels contributing to this LOR, and λi the activity of voxel i.  Then: 

∑
=

=
m

i
iijj ay

1

λ  

where aij is the probability of a photon emitted from voxel i being detected in LORj, i.e., it is a 

model for the mapping from source to detector.  If one has n LORs, the former equation 

becomes a matricial equation with n incognitas, which is, in principle, invertible.  Since the subset 

of voxels, λi, contributing to a bin (LOR) is not necessarily the same for all bins (it gradually 

changes as one moves from a bin to its neighbor), when establishing the whole set of equations 

for all the n bins, all the voxels, m, will also be involved in these equations.  In the matricial 

approach, the total number of values aij are stored in one matrix usually known as system matrix, 

a, whose number of rows (m) and columns (n) equals the number of voxels and bins, 

respectively.  Due to the way the elements of A are defined, this matrix represents what is usually 

called the forward projector. 

Moreover, moving from the field of analytical to algebraic techniques is equivalent to 

step forward from the integral in Eq. 2.3 to a discrete sum: the general goal of an algebraic 

reconstruction technique is the estimation of the activity of each discrete voxel, from the 

available discrete acquired data.  Mathematically, this could be described by the following 

equation (the discrete counterpart of Eq. 2.3): 
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1 )(λ      Eq. 2.11 

 

where n is the number of LORs to which voxel i contributes, and a-1 is the back-projection 

operator. 

Shared by all the algebraic techniques is their iterative nature.  In fact, the algorithmic 

translation of “progressively refining” is an iterative process of estimation-comparison-update 

(Fig. 2.7), which means that Eq. 2.11 will not be directly solved, but one will be iteratively 

searching for the best solution within some previously established criteria. 
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Figure 2.7 – Flow chart of an iterative image reconstruction technique 

 

In general, all techniques developed for 2D PET can, in principle, be applied to 3D data.  

Nevertheless, their performance with 3D data is expected to be very different from the 

performance with 2D data: the amount of data in 3D will inevitably slacken the iterative process. 

After establishing the fundamental distinction between algebraic and analytical 

reconstruction as well as stating the general equation that drives the iterative process in the core 

of algebraic techniques, it is now important to identify the main requirements behind this sort of 

techniques.  They are in the number of five [Fessler, 94; Fessler, 02]: 

1. a finite parameterization of the object (image), usually represented as a discrete set of 

voxels; 

2. a model of the measurement, i.e., a system model, a, that relates the unknown image to 

the expectation of each detector measurement; 

3. a model of the measurement uncertainty, i.e., a model of the probability distribution of 

each measurement around its expectation value; 

4. an objective function.  This function gives a measure of how well an image fits the data 

and how well this image matches the desired image properties (a priori constraints); 

5. an algorithm, typically iterative, for maximizing the objective function, including 

specification of the initial estimate and stopping criterion. 

For each requirement, different choices have been adopted.  The result is a great number 

of reconstruction techniques, differing, at least, in one of the former components.  Thus, a 
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classification of the algebraic techniques would be, in principle, based on the choices made in 

relation to these requirements.  Unfortunately, this is not always the case, and it is not difficult to 

get lost in front of the extensive list of exquisite names for all the algebraic techniques.  Due to 

its importance, we devote next section to a more detailed study of this subject. 

 

 

2.4.1 – Five components of an algebraic reconstruction method 

 

2.4.1.1 – A finite parameterization of the image 

This is the distinctive feature of the algebraic methods and the very core of the D-D 

model.  Mathematically, discretization is equivalent to a finite parameterization of the object, 

( )rf
r , achieved using a set of basis functions, ( )rb j

r : 

( ) ( ) ( )∑
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Basis functions can be classified into a few categories, such as localized or global and 

linear or nonlinear.  An extensive list of these functions is available in [Fessler, 02].  Fourier series 

are an example of a linear, global set of basis functions.  However, we are especially concerned 

with linear and localized basis functions, the group accounting for both voxels and blobs (or 

Keiser-Bessel window functions). 

When introducing the discretization inherent to the algebraic techniques, we have 

anticipated the importance of voxels, associating that discretization with a division of the object 

into small volume elements called voxels.  In fact, voxels are the de facto standard for 

parameterizing images, having the very important property of minimal support i.e., the existence 

of no overlap: the voxel basis function has a value equal to the unity inside a small cube and zero 

outside [Fessler, 94]. 

In contrast with the FBP method, which is, in principle, able to reconstruct images with 

arbitrarily fine pixel grids, for statistical iterative reconstruction methods the size of the voxels is 

a matter of consequence: if these methods are unregularized, voxel sizes that are too small can 

lead do over-parameterization and numerical instability; conversely, too large voxels can produce 

mismatch and loss of image features [Fessler, 94]. 

Blobs [Lewitt, 92; Matej, 96] are alternative smoothed basis functions, linear and localized.  

They are a two-parameter family of functions, with spherical symmetry and bell-shaped radial 

profiles. 
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2.4.1.2 – System matrix 

As said before, the element aij of the system matrix, a, denotes the probability that an 

annihilation in the jth voxel is detected by the ith detector pair.  To efficiently represent the 

system matrix, and in particular to reduce the storage size, this matrix is usually factorized into 

the following components [Qi, 98a; Qi, 98b; Leahy, 00a]: 

 

a = adet.sen.adet.blur.aattn.ageom.apositron    Eq. 2.12 

 

where: 

• apositron: includes the effect of the distance traveled by the positron, before annihilation with an 

electron.  This distance is dependent from the specific isotope and the density of the 

surround tissue. 

• adet.sen: is a diagonal matrix containing the detection efficiency of each detector pair.  For this 

factor contribute the intrinsic sensitivities of individual crystals, the relative position 

of the crystal within a detector block, and geometric factors related to the distance of 

the detector pair from the centre of the FOV.  All of these factors are measured 

through calibration.  System dead-time can also be included in this matrix.  One 

possible expression for the determination of this matrix components can be found in 

[Qi, 98b]. 

• adet.blur: this factor acts as a local blurring function applied to the sinogram.  Blurring occurs 

for three primary reasons: the not exact co-linearity of photons; the scattering of 

photons from one crystal to another, resulting is a mis-positioning of the detected 

photons; and the fact that the crystal surface is not always orthogonal to the direction 

of arrival, so that a photon may penetrate through one or more crystals before being 

stopped.  Monte Carlo techniques are often used to establish the contribution of each 

of the former effects to this matrix. 

• aattn: it accounts for the effect of attenuation.  Since the probability of attenuation is 

approximately constant for all photon pairs emitted along a certain LOR, attenuation 

factors can be represented by a diagonal matrix. 

• ageom: contains the geometrical mapping between the source and data, i.e., between voxels and 

bins.  There are various methods [Zhuang, 94] for establishing the values of each of the 

elements, aij, of this matrix.  One of them is known as the Siddon’s algorithm [Siddon, 

85] and was devised for X-ray CT.  According to this algorithm, the value for aij is 

proportional to the length of intersection between LOR j and voxel i.  This method has 
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two main drawbacks [Fessler, 02]: in general, it does not preserve counts and leads to 

artifacts.  Since this method is centered on the ray (LOR), in the sense that intersected 

voxels are determined based on ray direction, it is usually known as a ray-driven 

method.  From this point of view, in opposition to ray-driven are voxel-driven methods 

[Peters, 81].  In that case, a voxel, k, is taken, and for a direction defined by the 

azimuthal angle φ, an imaginary line crossing the center of this voxel is drawn.  Once it 

is likely that this line is not coincident with any of the LORs along which data were 

acquired, for the calculation of aik there will be considered N LORs parallel and close to 

this imaginary line.  The distance between each one of these N LORs and the initial 

imaginary line crossing the centre of voxel k could be used to establish aik, i = 1, …N. 

An alternative approach to Siddon’s algorithm adopts the volume of intersection 

between LOR j and voxel i.  It demands a greater computational effort, but it is more 

accurate than the previous one since it can exactly preserve the total number of counts 

(all the areas can be considered) [Fessler, 02].  A third alternative is to use the solid angle 

spanned from the voxel k to the faces of the detector pair i, for establishing matrix 

element akj [Chen, 91; Qi, 98a].  Recently, De Man and Basu [DeMan, 04] introduced the 

distance-driven approach. 

Involved in the forward and backprojection, ageom will be part of a huge number 

of multiplication operations.  Hence, the way this matrix is represented will be critical 

to the efficiency of the reconstruction algorithm.  Given the number of LORs and 

voxels taking part in a 3D acquisition, a raw storage of ageom would require an 

enormous and prohibitive storage space.  However, a close inspection of this matrix 

reveals two important features: this matrix is very sparse and exhibits a high degree of 

symmetry.  The use of symmetries is a way to avoid redundancies and makes storage 

affordable.  It is possible to identify the following symmetries [Qi, 98a; Johnson, 95; Chen, 

91]: in-plane rotation symmetries, resulting from rotating the projection rays by φ = 

90º, 180º and 270º and a 45º reflection symmetry, result in a reduction factor of eight; 

axial reflection symmetry (reflection of a chord with respect to plane z = 0) provides an 

additional factor of two for ring differences other than zero; parallel axial chord 

symmetries are justified under the assumption that the axial point spread function is 

invariant to axial position.  In that case, an additional reduction factor of (NR - s) is 

gained, where NR is the number of detector rings and s is the ring separation of rays in 

the sinogram.  To render concrete the reduction achievable using the former 
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symmetries, let us consider a scanner with 18 rings and a maximum ring separation 

allowed of 11 rings.  The reduction factor, Rf, is equal to 188: 

( )( ) 188
12

81821716151413121110987
=

×+×++++++++++
=fR  

 

The accuracy on establishing the elements of each one of the former matrices will 

provide us with a realistic system matrix as a whole, modeling, as good as possible, the 

acquisition and detection process.  This, on his side, determines the accuracy of the 

reconstruction.  Nevertheless, the better achievable model for the system matrix could be 

unaffordable form a computational point of view, thus giving room for approximate models 

whose trade-off between accuracy and computation demands is more favorable. 

Another possibility for determining the elements of the system matrix is to use a Monte 

Carlo simulation.  This is discussed, for example, by Veklerov [Veklerov, 88] and Rafecas [Rafecas, 

04].  The main idea is to directly incorporate all physical effects into the elements of the system 

matrix. 

 

2.4.1.3 – A model of the measurement uncertainty 

The choice of a model for the measurement of uncertainty, or, in other words, for the 

noise, is on the basis of one of the most clear distinction between algebraic techniques.  Even 

the absence of such a model is, by itself, a distinctive feature.  In fact, as shown in Appendix A6, 

if no model is assumed for the noise, an algebraic reconstruction technique can be classified as 

non-statistical, in opposition to statistical iterative reconstruction techniques (SIR), a group including all 

the algebraic techniques incorporating any statistical model for the data.  ART (Algebraic 

Reconstruction Technique) is an example of a non-statistical algorithm.  Among SIR methods, 

differences rely on the statistical model adopted. 

Before proceeding with the discussion, let us link this model for the noise with the two 

previous components of the algebraic techniques: the finite parameterization of the object and 

the system matrix.  Using voxels and the system matrix, as well as the main assumption that 

acquired data are discrete, one can establish a deterministic model [Fessler, 02]: 

 

yi ≈ gi([aλ]i)      Eq. 2.13 

 

where gi is a function accounting for the noise.  If ri is the mean number of random counts for 

the ith bin (detector unit), a formulation of gi can be, for example: gi(l) = l + ri.  We stress that 
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Eq. 2.13 expresses an approximation but not an equality, which is justified by the existence of 

noise.  If noise was absent, then ri would be equal to zero and the use of an accurate model for 

the measurement would render possible the equality.  As this is not the case, and noise is 

inevitable, the approximation is kept and its degree of usefulness derived from the statistical 

model for the measurement.  So, quoting J. Fessler [Fessler, 02], we can assume that this statistical 

model is concerned with the approximation in the equation above.  Moreover, it also becomes 

clear why we refer sometimes to a statistical model for the measurement and others to a 

statistical model for the noise: this model deals with the noise affecting the measurement.  Going 

further, a third expression is usually referred: a statistical model for the data.  Strictly regarding 

Eq. 2.13, one is tempted to use indistinctly either this expression or one of the previous two.  

However, as seen before, there are differences between measured data and data used on the 

reconstruction.  Due to the importance of these differences and their direct implication on the 

distinction between SIR methods, from now on we adopt for the component being studied the 

designation “statistical model for the data”. 

Once established a first division among algebraic techniques (statistical versus non-

statistical methods), let us concentrate on the group of SIR methods, i.e. those including a 

statistical model for the data.  The Poisson distribution is the model usually assumed for the 

number of photons reaching a detector bin within a specific interval of time.  So, some 

algorithms were devised assuming a Poisson distribution as the statistical model for the data  

This is the case of the ML-EM (Maximum Likelihood – Expectation Maximization) and OSEM 

(Ordered Subsets – Expectation Maximization), two very important algorithms in the context of 

the present thesis that will be detailed latter. 

However, if corrections are to be applied to the data prior to reconstruction, the Poisson 

model assumption becomes less adequate for described corrected data.  To be more precise, 

corrected data are no more Poisson data, but Poisson based algorithms can still be used along 

with these data resulting in reconstructed images whose quality and truthfulness make them 

useful for clinical purposes5.  This is the sense for the expression “less adequate”: it works, but it 

is not accurate. 

From the paragraph above, two main questions remain opened: why corrected data are 

no more Poisson data, and, in face of this, which model should be used or, alternatively, how, if 

possible, could data be given Poisson characteristics and what does this mean.  For corrected 

data, in the present context, we understand data resulting from corrections for physical effects 

                                                 
5 Otherwise, once acquired data is corrected for physical effects in almost all the cases, conventional ML-
EM reconstructions would be rejected. 
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applied upon the prompts (assumed as the acquired data) from a 3D acquisition.  If we use a 

notation similar to those introduced in section 1.4 (except for the dead time correction which 

can be included under the normalization), correcting the trues, D
ip 3 , for randoms, scattered and 

attenuation, after normalization the result can be mathematically expressed as in equation 2.14: 

 

( )ii
D

iii
D

i srpANy −−= 33 .     Eq. 2.14 

 

The expression for the mean value expected on bin par i is: 
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while the variance for the same bin pair is given by: 
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since both the prompts and the randoms are modeled by a Poisson distribution and the variance 

for the scattered photons is assumed to be equal to zero.  Comparing equations 2.15 and 2.16 we 

verify that the mean value and the variance for the variable yi are not equal.  So, this variable is 

not a Poisson variable, justifying the claim made earlier that corrected data are not Poisson data. 

The second question to be addressed is how to handle non-Poisson data.  To overcome 

this problem, two main approaches have been used: re-shape data in order to give them 

characteristics close to those required by the Poisson model; or, alternatively, adopt another 

statistical model, for example, the Gaussian model.  The first approach will generally involve the 

use of a weight, so that weighted data show a variance equal to the mean value, the most 

important characteristics of the Poisson model.  This doesn’t mean, in fact, that weighted data 

becomes Poisson data, because nothing is done in respect to high-level moments of the 

distribution.  However, the matching of the first two moments could be understand as a first 

order approximation to the Poisson model, allowing us to keep using this model for the data.  

Reconstruction methods based on this approach are usually known as weighted reconstructions. 

In alternative to the use of Poisson model, Fessler [Fessler, 94] suggests the Gaussian 

model as being appropriate for describing data, and purposes the use of a weighted least-squares 

similarity measure.  This is another important cleavage between SIR methods: those assuming a 
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Poisson model for the data could be gathered into a group; those adopting the Gaussian model 

in another group.  The later usually have the expression “least-squares” in their designation. 

 

2.4.1.4 – Objective function 

The expression of the objective function can account for two different terms: one that 

gives a measure of how well the image fits the data, and another to control how this image 

matches some desired properties.  In fact, the former term is always present in the objective 

function of all SIR methods.  To be more precise, to verify how the image fits the data is 

equivalent to take one previous estimation of the image (assumed voxelized), and use both the 

system matrix and the statistical model for the data to obtain an estimation of the expected 

values in each detector bin, under these assumptions.  These are the values to be compared with 

the acquired data and the result of this comparison reflects the fitting between image and data, 

the extension of which is measured by the likelihood function.  The likelihood (cf. Appendix 

A.5), in the present context, is the joint probability of obtaining a data vector identical to the 

measured vector (acquired data), if the measurement process (system matrix and statistical model 

for the data) is applied to a given image.  Denoting the object by λ and the vector with the 

measured data by Y, the likelihood term of the objective function can be described by ( )λY,L . 

Assuming a Poisson model for the data, each element of vector Y, yi, is a Poisson 

distributed random variable whose expected value is ∑
=

m

j
jija

1
λ , where λj is the mean activity of 

voxel j, aij is the element of the system matrix linking voxel j and bin i, and m is the number of 

voxels contributing to bin i.  Thus: 
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Under this model, the probability of detecting yi photons on bin i is given by (cf. 

Appendix A.6): 
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and the joint probability of observing all the values of vector Y, i.e., the likelihood function (the 

joint probability of observing the actual detector count data over all possible densities, λ) is: 
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The corresponding log-likelihood function (for g, a vector of Poisson distributed 

variables) is given by [Lange, 84; DePierro, 93; Rockmore, 76]: 
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Some authors [Fessler, 94] argue that objective functions based solely on the measurement 

statistics (Poisson or Gaussian) perform poorly due to the ill-conditioned nature of tomographic 

reconstruction.  In particular, this sort of unregularized methods, i.e., methods whose objective 

function comprises just the likelihood term, produce increasingly noisy images as the number of 

iteration also increases.  So, the same authors point the need for regularization methods 

containing a term to impose a smoothness constraint on the reconstructed image.  This is the 

justification for the additional term on the objective function, the one that controls how well the 

image matches some desired properties.  Explicit regularization procedures include the 

introduction of a prior distribution through a Bayesian approach.  Among priors that are 

mentioned in the literature one finds Gibbs distributions, Gauss-Markov priors, Hube priors, 

non-convex functions, Markov Random Fields and other.  If we designate this regularization 

term by ( )λR , then the general expression for the whole objective function could be as follows: 

 

( ) ( ) ( )λλYλY RL .,, β−=Φ     Eq. 2.19 

 

where β is a parameter that controls the balance between the data fitting criterion and the image 

property criterion, that are usually conflicting goals [Fessler, 94].  From a practical perspective, 

this translates on tradeoff between spatial resolution and noise on the reconstructed image 

[Lewitt, 03; Qi, 99]. 

As shown in Appendix A.6, the existence of both terms or just the likelihood term, in the 

objective function, is on the basis of another dichotomy this time inside SIR methods.  If just 

the likelihood term is present, these methods are referred as non-Bayesian reconstruction 

methods.  On the contrary, when the objective function includes in addition to the likelihood the 
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regularized term, the reconstruction is said to be Bayesian.  So, whenever a reconstruction 

method is said to be regularized, or penalized, it can also be classified as Bayesian. 

 

2.4.1.5 – Numerical algorithm 

The numerical algorithm is the most visible face of the reconstruction method.  It is 

often abusively identified with the whole reconstruction procedure, while, as we have been 

stating, it is in fact just one of its parameters.  This is, likely, a result from the practice: the 

computational implementation of a statistical reconstruction is almost always synonymous of 

coding or adapting a numerical algorithm while the choices for the other parameters had been 

implicitly assumed. 

A numerical algorithm is designed to find the image vector for which the objective 

function is maximized (or minimized).  In most of the cases, this algorithm is an iterative one 

that produces successive estimates of the set of coefficients of the basis functions or, in another 

way, assuming a voxelized image, successive estimates of each voxel’s value.  The algorithm is 

conceived so that the sequence of estimates converge to the aforementioned solution 

maximizing (or minimizing) the objective function. 

Inside the algorithm is comprised an estimator: the tool behind the capacity of maximize 

or minimize the objective function. This is better explained using the example of the ML-EM – 

an acronym for Maximum Likelihood-Expectation Maximization.  As the name suggest, the 

objective function to be maximize is the Likelihood, while the tool used for its maximization - 

the estimator - is the Expectation.  In [Vardi, 98] there is a discussion relating the maximum 

likelihood estimate and the minimum for the Kullback-Leibler information divergence function 

(assumed as a distance function), which is relevant because the idea of associate the maximum of 

the objective function with the minimum of a distance is very appealing and intuitive. 

The Expectation Maximization is itself an algorithm [Dempster, 77].  It lies in the core of 

the iterative computation of the maximum-likelihood estimate when the observation can be 

viewed as incomplete data, and its name results from the fact of being possible to identify  two 

main steps inside this algorithm: an expectation step (E-step) and a maximization step (M-step). 

For the application of the EM algorithm to the emission tomography, let us consider a 

vector, Y, with the observed (acquired) data.  Since it is assumed that detected photons are 

emitted from a discretized (voxelized) object and one are intending to reconstruct is the activity 

distribution of this discretized object, then vector Y is a vector on incomplete data: there is a 

superposition of the Poisson stream of photons [Green, 90] and it is not possible to observe the 
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number of photons recorded at bin i and emitted from voxel j.  What is missing (thus the 

incompletion) is a label stating the source of each photon in the object.  

The EM postulates a vector of complete data [Dempster, 77; Lange, 84; Hebert, 89], X, such 

that Y is a function, h(X), of X.  In the present context, the elements of X are xij - the number of 

emissions from voxel j that are detected at bin i – and ∑=
j

iji xy .  The complete data are well 

modeled as independent Poisson random variables with means equal to aij.λj,, where aij is the 

element of the system matrix for the probability that a photon emitted from voxel j will be 

detected at bin j; and λj, is the mean total number of photons emitted from the same voxel.  It is 

also important to note that the relation between the complete and incomplete data must be a 

many-to-one mapping from X to Y, the two sample spaces, i.e., given a realization x̂ , only one 

particular realization ŷ has a nonzero probability of having occurred; given a realization ŷ , there 

is a set of x̂  with a nonzero probability of having occurred.  So, the art in using the EM 

algorithm [Lange, 84] relies in the option to choose an appropriate complete data specification, 

X.  However, although many possible ways of embedding Y in a large sample space are possible, 

often physical considerations suggest a natural definition of X, as is clearly the case in stated 

complete/incomplete data formulation for the case of emission tomography. 

The two steps of the EM algorithm can be resumed as follows [Dempster, 77; Lange, 84]: 

 

• E-step: estimate the complete-data sufficient statistics, X, by means of the conditional 

expectation: x̂ (p) = E[X|Y, λ(p)]; 

• M-step: the former conditional expectation is maximized with respect to λ, so λ(p+1) is 

determined as the solution of the equation: E[X|λ] = x̂ (p) 

 

where λ(p) is a vector with the parameter’s values after p iterations and x̂ (p) is one realization of 

X. 

If the objective function is not the Likelihood but, instead, a quadratic distance to be 

minimized, then the standard numerical algorithm will be the conjugate gradient or another 

closely related with this one.  Nevertheless, Kaufman [Kaufman, 93] proposes the use of the 

Expectation Maximization with a least squares approach – resulting in the EM-LS algorithm.  

The perspective behind this work points for the possibility to use the same estimator, with the 

necessary adaptations, independent from the objective function that has been assumed. 
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Ideally, the objective function would determine the statistical properties of the estimator.  

In practice, however, the convergence characteristics of the algorithm that maximize the 

objective may also influence those properties (if the algorithm only finds local extrema of the 

objective function, for example, then the estimator is inefficient) [Fessler, 94].  The same 

convergence characteristics may result, and in practice do often result, in the need to stop the 

iterative process before the sequence of estimates has converged.  This is the case, for example, 

when the convergence is too slow. 

As a final remark, we note that as the objective function becomes more complex it 

becomes more difficult to derive a special-purpose algorithm. 

 

 

2.4.2 – Algebraic Reconstruction Technique (ART) 

Algebraic Reconstruction Technique (ART) [Herman, 80; Gordon, 74; Herman, 73] is an 

example of a non-statistical reconstruction method.  It can be resumed as follows: a projection, 

corresponding to a set of LORs with a certain orientation, is selected.  As seen, each LOR 

intersects a certain number of voxels, whose contribution to that LOR was previously 

established and is stored in the system matrix (aij).  Based on these contributions, a forward 

projection is done and the value for the bin corresponding to the integration along the LOR is 

estimated.  Then, the estimated and the acquired values for that particular bin are compared by 

the means of a subtraction, and a correction term is obtained.  Finally, the latter term is 

backprojected and used for updating the values of the voxels intersecting the current LOR.  The 

process continues in a similar way using in each cycle a different projection, i.e. a different set of 

LORs with an angular orientation different from all the ones used previously.  When all the 

projections had been used once, a single iteration is said to be complete. 

Since ART is an iterative process, the steps described above are repeated in subsequent 

iterations, with the constraint that all the projections must be used once, and only once, per 

iteration.  When some error or convergence-rate threshold is reached, the process is stopped.  In 

a mathematical formulation, the equation that drives the ART is the following [Herman, 93]: 
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where )(k
jλ and )1( −k

jλ  are the values estimated for voxel j on iteration k and k+1, respectively; yi is 

the measured value for bin i; ail is the element of the system matrix storing the probability that 
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and annihilation in the lth voxel is detected by the ith detector pair; and b is a relaxation 

parameter [Herman, 80].  Inspecting Eq. 2.20 we observe that the numerator of the fraction 

translates the comparison, in the form of a subtraction, between acquired data, yi, and estimated 

data, ∑
=

−
m

l

k
lila

1

)1(.λ .  For the estimation of the value expected in detector bin i, all the m voxels 

contributing to the corresponding LOR are considered, and the system matrix is used as the 

“look-up table” where each contribution is quantified.  Voxels’ values obtained in the previous 

iteration are taken as the starting point for that estimation.  The denominator in Eq. 2.20 is a 

normalization factor; the fraction, it self, is backprojected and the result used to update the 

values in each voxel. 

An alternative approach known as Simultaneous ART (SART) [Mueler, 97] updates a pixel 

by the weighted contribution of all the LORs, yi, that are part of the current projection set. 

Two very important aspects related the ART are the ordering in which the data are 

accessed, i.e. the order in which the projections are selected, and the relaxation parameter. 

In terms of projections’ order, it is desirable that they are accessed in such a way that 

subsequently projections are the most uncorrelated as possible, which means that consecutively 

applied projections must have significantly different angular orientations.  In fact, if subsequently 

projections were chosen at similar angular orientations, there would be a tendency to bias the 

reconstruction with respect to that particular angle, without introducing much new information 

each time Eq. 2.20 were to be used.  As a consequence, converge rate would be reduced and the 

solution could be biased [Mueler, 97].  In order to minimize correlation in projection access, the 

same authors postulate that projections should be arranged according to the following: 

- a series of subsequently applied projections should be evenly distributed across a wide 

angular range; 

- at no time should any angular range be covered more densely than others. 

Many different alternatives had been appointed for ordering the projections in such a 

way to maximize, in terms of this parameter, the quality of reconstructed images.  In [Mueler, 97] 

some of these alternatives are referred and the results compared. 

Concerning the relaxation parameter, it is advocated in [Herman, 93] that there is no 

single choice for the best value of this parameter, which depends on the medical purpose of the 

reconstruction, the method used for data collection and the number of iterations to be used.  So, 

it is concluded, the relaxation parameter should be selected by means of experimentation.  In 

[Andersen, 89] it is stated that its values should be in the range between 0.0 and 2.0. 
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2.4.3 – Maximum Likelihood – Expectation Maximization (ML-EM) 

The Maximum Likelihood – Expectation Maximization (ML-EM) was introduced by 

Carson and Lange [Lange, 84] and Shepp and Vardi [Shepp, 82].  It is, probably, the most 

important statistical reconstruction algorithm.  This assertion can be justified for two main 

reasons: first, in consequence of the extensive number of studies devoted to it, some of the 

properties of this algorithm, namely, its convergence and noise characteristics, have been 

established and used either to justify its use (or the subsequent OS-EM) as it was originally 

conceived or to suggest more or less closely related algorithms base on the strategies behind ML-

EM, such as, for example, generalized EM algorithms or other Bayesian.  That is, many 

reconstruction schemes were derived having the ML-EM as a reference; second, it is a fact that 

ML-EM was, and OS-EM is nowadays, a widespread algorithm in clinical routine. 

The ML-EM is an algorithm conceived for maximizing the likelihood – the objective 

function – using the algorithm of the expectation maximization.  Since the likelihood is the 

single term present in the objective function, it is a non-Bayesian reconstruction. 

Let us start by retake the expression for the log-likelihood: 
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where, we recall, yi is a random Poisson distributed variable describing the number of photons 

detected at bin i; λj is the mean number of photons emitted from voxel j, and aij is the probability 

that a photon emitted from voxel j will be detected at bin i.  In face of this, the aim of the 

ML-EM is to determine an estimate λ̂  of λ which maximizes the log-likelihood. 

The first thing to be analyzed is the possibility of obtaining a maximum for the log-

likelihood.  The first partial derivative of the log-likelihood is: 
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while the second partial derivative is given by: 
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and from these equations it was shown that ( )gfL ,~log  is concave and that the Khun-Tucker 

conditions given by: 
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determine a maximizer for ( )λY,log L  such that λ ≥ 0 [Kaufman, 87; Vardi, 85; Shepp, 82]. 

Once established the convergence of the ML-EM, for describing the two steps of this 

algorithm we need to consider the aforementioned complete data (cf. section 2.4.1.5). 

The first stage - E-step – involves taking the conditional expectation of the complete 

data, X, with respect to Y and the current vector of parameter estimates, λ(n).  For the complete 

data, the log-likelihood function is expressed as (the two subscripts associated with variable x 

underline the completeness of data): 
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and, so [Lange, 84]: 

( )[ ] ( )∑ ∑
= =

+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−=

n

i
jijij

m

j
jij

n RaNaLE
1 1

)( ln,|,log λλλYλX  

where ( )
∑
=

== m

k

n
kik

i
n
jijn

iijij

a

ya
yxEN

1

)(

)(
)(,|

λ

λ
λ  and R does not depend on the new λ. 

For the M-step, the partial derivatives of the former expression are taken, and the result 

set equal to zero.  In consequence, it is obtained the mathematical expression that drives the 

iterative ML-EM algorithm6 [Kaufman, 87; Vardi, 85; Shepp, 82; Lange, 84]: 

 

∑
∑∑ =

==

+ =
n

i
m

k

n
kik

iij
n

i
ij

n
jn

j

a

ya

a 1

1

)(

1

)(
)1(

λ

λ
λ     Eq. 2.22 

 

                                                 
6 In [Hsiao, 04] it is stated that there are five different ways to derive the EM-ML.  However, if that is the 
case (the confirmation of this is beyond the scope of this thesis), the derivation we shortly describe is 
probably the most often found in literature.  
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where )1( +n
jλ  is the jth component of the vector with the new parameters.  Under this equation, 

the non-negativity constraints, 0)( ≥n
jλ , are always satisfied. 

Due to its importance, Eq. 2.22 deserves a close inspection: the factor 

∑
=

m

k

n
kik

i

a

y

1

)(λ
 is the 

ratio between measured counts (acquired data) and the estimate for the mean number of counts 

detected at bin i.  Thus, the main sum, ∑
∑=

=

n

i
m

k

n
kik

iij

a

ya

1

1

)(λ
, is the backprojection of the former ratio 

for voxel j.  In a less mathematical way, the whole iterative equation can be interpreted as follows 

[Bruyant, 02]: 

 

Img(k+1) = Img(k) × Normalized Backproj(Measured Proj / EstimatedProj (k)) 

 

or, in other words, using a system model and the current estimate of the object (image) available 

for each iteration, it is possible to estimate a new set of projections.  This new estimated 

projections are then compared with the measured projections (acquired data) and the ratio 

between estimated and acquired projections is used to update the estimate of the object, which 

will be used in the subsequent iteration as the starting point.  The whole process corresponds to 

one iteration, and is repeated a number of times equal to the desired number of iterations. 

The proof that the EM iterations converge to the appropriate maximum likelihood 

estimate regardless of their initial value is given in [Lange, 84; Vardi, 85].  This is the 

monotonicity property of the algorithm.  However, it was observed that reconstructed images 

become noisier as the algorithm converges towards the maximum-likelihood estimate [Wilson, 94; 

Snyder, 85].  As it is argued in [Snyder, 85], this is not a result of using the EM algorithm to 

maximize the likelihood, but something that would occur with any algorithm to produce the 

maximum-likelihood estimate.  In face of this fact, two types of solutions had been proposed: 

the use of sieves to stabilize the estimation procedure [Snyder, 85; Llacer, 93]; and the termination 

of the iteration process before the onset of deterioration, based on some stopping criteria 

[Hebert, 90a; Liow, 91; Llacer, 89; Veklerov, 87]. 

The existence of distortions, near the edges, that become larger as the number of 

iterations increases is reported by Snyder et al. [Snyder, 87].  In the same paper the authors also 
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argue for the intrinsic character of this effect which, as for the increase of noise, is fundamental 

to reconstructions based on the maximum-likelihood. 

Another important remark that should be clarified is the following: in [Shepp, 82], the 

factor ∑
=

m

k
ika

1
, corresponding to the normalization of the backprojection, doesn’t appear outside 

the main sum, which means that its value is equal to one.  Such assumption is equivalent to 

consider that all the photons emitted from voxel j are detected at some bin i. 

Using a notation based on matrices and vectors, Barrett [Barrett, 94] re-writes Eq. 2.22 as: 
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where: )1(ˆ +nλ  is a vector containing the estimates for the parameters after n+1 iterations; s is a 

vector with dimensions (N×1) and component ∑=
m

mnn As ; A and Y are for the usual system 

matrix and vector with the measured data, respectively.  In the same paper an equation is derived 

for describing the behavior of the ML-EM algorithm with noise-free data.  It is also predicted 

that the variance at any point in the image is given by: 
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where [ ] ( ))()( ln| kkE aλz = , ( ))()( ˆln kk λz =  and )(k
∈K  is a term related with the covariance for 

the noise.  The interpretation of the equation above is the following: the variance at any point 

contains a factor that is proportional to the square on the ensemble mean image at that point, 

which results in bright regions with a large variance and regions with fewer counts with a smaller 

variance.  However, it is not correct to infer that the variance is proportional to the square of the 

mean, since the factor )(k
∈K  depends on the object in a complicated way [Barrett, 94].  

At this point, some confusion can arise since previous studies based on ML-EM 

reconstructed images, such as for example [Llacer, 93; Holte, 90; Liow, 91], also suggested that 

noise in regions of low counts is lower than in regions of high counts, but pointed to a 

monotonically increasing dependence of the noise variance on the mean (or noise-free) image 

pixel value.  Under this framework, Wilson et al [Wilson, 94] used Monte Carlo simulations to 

verify the relation between the variance in one point of the image and the mean image value at 

the same point.  The results confirm that to bright points correspond larger variances, but the 

function describing the relation is not obvious (due to the presence of noise covariance factor): 
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deviations from linearity were found by the authors.  Nevertheless, it is predicted that the 

variance image would resemble the mean image, something that is confirmed by Nuyts [Nuyts, 

02].  So, the theoretical quadratic dependency present in Eq 2.23 is masked by the covariance 

factor, leading to a whole function that, as shown, is neither quadratic nor linear. 

Once established this characteristic of the noise, it is also stated [Llacer, 93; Holte, 90] that 

ML-EM images provide better quantitation than FBP in regions of low intensity in the presence 

of regions of high intensity in the same image [Llacer, 93].  Noise in ML-EM is much more local 

than in FBP where the variance tends to be uniform over the reconstructed image. 

Nuyts [Nuyts, 02] use numerical experiments to study the variance of post-smoothed ML-

EM images.  It was found that smoothing is more effective in reducing the variance in high 

count regions than in low count regions, and, as a result, the Fisher information matrix can be 

used to produce a measure of the variance in post-smoothed in ML-EM images. 

In terms of spatial resolution, a disadvantage of ML-EM is the non-uniform recovery of 

the spatial resolution, which is not uniform over the image plane and depends on the source 

distribution when the iteration process is stopped to avoid image deterioration due to noise 

increasing [Tanaka, 92; Liow, 93].  This is because low-frequency components of the image tend 

to be recovered earlier in the iteration than high-frequencies [Liow, 93; Pan, 91].  However, it is 

interesting to note that Pan [Pan, 91] as well as Ranganath [Ranganath, 88] use this putative 

disadvantage as the basis for a multigrid reconstruction method whose purpose is to accelerate 

the convergence rate of the ML-EM.  The idea is to use first a coarse-grid iteration to 

reconstruct low-frequency components and provide the result to subsequent fine-grid iteration 

for an efficient reconstruction of high-frequency components. 

In [Liow, 93] the resolution behaviour in images reconstructed by ML-EM is compared to 

those resulting from a FBP reconstruction. 

Hwang [Hwang, 06] describes an accelerated version of the ML-EM, using the whole data 

set for each update, that – the authors claim – produces almost the same images, noise 

properties and log-likelihood values as regular ML-EM, but is three times faster.  The 

acceleration is achieved by increasing the step size of the ML-EM, a multiplicative term whose 

identity becomes clear when the conventional ML-EM is written in its additive form [Hwang, 06]: 
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The step size is the ∑
=

n

i
ij

n
j a

1

)(λ factor in the equation above (which reveals the ML-EM as a 

process in which the solution is updated by adding the weighted sum of error terms).  The 

increase in the step size is obtained by raising the update factor in the multiplicative 

(conventional) form of ML-EM to a power h.  

 

 

2.4.4 – Ordered Subsets – Expectation Maximization (OSEM) 

One of the greatest disadvantages of the standard ML-EM is the rate of convergence, 

which is rather low in face of the practical constraints associated with the clinical routine.  Put it 

in another way, in order to obtain images with an acceptable liability for diagnosis purposes, it is 

necessary to iterate many times.  Thus, the need for a strategy to accelerate the ML-EM 

algorithm has soon become an evidence: some authors re-wrote the ML-EM equation [Lewitt, 86; 

Kaufman, 87; Rajeevan, 92]; others [Chen, 91; CruzRivera, 95; Jones, 99] adopted the parallelization as 

the strategy for speed up the ML-EM algorithm.  In the following paragraphs we will be 

discussing the Ordered Subsets – Expectation Maximization (OSEM), an algorithm resulting 

from a modification of the ML-EM and, in practice, considered as an accelerated version of this 

algorithm.  It was devised by Hudson in 1994 [Hudson, 94]. 

It should be noted, however, that Holte [Holte, 90] had already suggested that a major 

improvement of ML-EM could be obtained by the used of projection subsets for each iteration.  

In this study, the authors compare (even if using a very simple FOM such as the percent error) 

this strategy and the regular ML-EM, founding similar results.  In the conclusion of Holte’s 

paper, it is referred that a “major speed improvement is achieved through the use of projection subsets”. 

The main idea of OS-EM is to group projections into subsets and to use them in an 

ordered sequence (Fig. 2.8).  In contrast to ML-EM, where an iteration implies handling all the 

acquired projections data as a whole and their use to update the estimate of activity just one 

time, one OSEM iteration is defined as a single pass through all the subsets of projections, with 

the additional and distinctive feature that each subset uses the current estimate to initialize the 

algorithm with that data subset.  That way, the convergence is accelerated by a factor 

proportional to the number of subsets [Hudson, 94].  Further iterations can be performed by 

passing through the same ordered subsets, using as starting point the reconstruction provided by 

the previous iteration. 
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Figure 2.8 – An example of a subset arrangement used by OSEM.  Among all collected 

projections around the scanner (not represented), inside the same iteration for 

each new update is used just one subset (A, B or C).  The order by which subsets 

are used is relevant and not necessarily A-B-C. 

 

Since the algorithm used for each data subset is the standard ML-EM, from a practical 

point of view7 it is usually assumed that OS-EM is an accelerated version of ML-EM.  In [Meikle, 

94] a simulation study is described where OSEM is compared to ML-EM (for whole-body PET 

and using the mean squared error8) under this perspective. 

Let S1, S2, …, St be the chosen projections subsets in the selected order. For better 

describing the OSEM algorithm we will adopt a notation similar to those used in Eq. 2.22, but, 

due to the existence of subsets, an additional index will be included to indicate the subject that is 

being handled at each step of the algorithm.  So, inside a single iteration, λ(n,l) will be the image 

of the activity distribution for iteration n and subset l.  Since the latter index just makes sense 

inside the subsets loop, outside this loop it is omitted. 

Considering λ(0) as the starting image, OSEM can be resumed as follows (adapted from 

[Hudson, 94]): 

 

i) n = 0: λ(0) is initialized positive; 

ii) repeat until λ(n) fits an established criteria → Iterative process 

--- (considering the existence of subsets) --- 

a) λ(n,1) = λ(n) 

                                                 
7 We emphasize the “practical point of view”, because from a theoretical perspective things are not so 
simple and such a statement can hardly be sustained.  There is the problem of convergence, for example. 
8 As defined, the mean squared error indicates the point at which the pointwise accuracy of the 
reconstruction is greatest. 

Subset A Subset B Subset C 
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b) for subsets l = 1, …, t 
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c) λ(n+1) = λ(n,l+1), i.e., whenever all subsets have been used, terminate current iteration. 

 

It is important to note that if a single subset includes all projections, then OSEM 

becomes the standard ML-EM. 

Hudson [Hudson, 94] states that the order of projections is arbitrary, though it may be 

advantageous for the quality of reconstruction to choose a special order.  For that purpose, they 

suggest the introduction of new information as quickly as possible by choosing first the 

projection corresponding to the direction of greatest variability in the image.  For providing a 

maximum of new information each time the algorithm uses a different subset, projections 

should be ordered so as to be maximally separated [Hutton, 97]. 

Another import point is the way projections are grouped into subsets: these should be 

selected so that each voxel activity contributes equally to any subset, or, putting it in a different 

way, the sum of counts for all projections forming a subset should be equal for all subsets 

[Hudson, 94].  When this condition is verified, subsets are said to be balanced. 

In [Hudson, 94], at the end of the paper, is presented a “proof of convergence of OSEM 

with subset balance and exact projections”.  However, it is also stated that not only this proof of 

convergence is not valid for noisy data as well as except with noise-free data, OSEM converges 

to a non-ML solution.  According to Byrne [Byrne, 98], when subset balance is missing, OSEM is 

observed to have a limit cycle consisting of as many distinct images as there are subsets, even 

when there is no noise.  How distinct these images are depends on the balance of the subsets. 

The subject of how to group projection into subsets, i.e., how to reduce OSEM’s 

dependence on subset selection is the main goal of Huang, in [Huang, 99].  The investigation is 

centered on the oscillation between sub-iterations when inconsistent subsets, due to noise, are 

used for image updating: the adjustment of pixel values for one subset could be in conflict with 

the adjustment on a previous or subsequent subset, because of noise.  In consequence, each 

image pixel can go through ups and downs in the iteration process, affecting its convergence to a 
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stable value.  Huang proposes two methods to reduce image oscillation: pre-processing the 

sinogram to make it satisfy a sinogram consistency condition; and take the average of the ups 

and downs of the pixels adjustments among subsets, using the average as the correct value.  In 

its conclusion, apart from referring that a combined application of these two methods can give 

better results that the use of just of them alone, its is noted that the image quality achieved by 

the “converged reconstruction” (Huang’s terminology) is not necessarily better than that 

obtained with regularized EM or OSEM algorithms [Huang, 99]. 

In spite of the unproved formal convergence of OSEM, some results are mentioned in 

the literature, using different figures-of-merit for describing the algorithm’s performance.  

Hutton et al note that the degree of acceleration may provide a solution (which appears noisy) 

after a single iteration, since the algorithm has already reached a point equivalent to many EM 

iterations [Hutton, 97].  In the same paper, two interesting figures are shown, where the chi-

squared error and the mean square difference between reconstructed image and original object 

are plotted against the number of iterations. From the observation of these figures, the authors 

state that as the number of iterations increase, the likelihood continues to increase, which is 

supported by the increasing close fit between estimated and true projections.  However, the 

mean square error between reconstructed and true activity improves in early iterations, but then 

increases due to increasing noise [Hutton, 97].  In relation to this, the authors go one step further 

suggesting that the visual optimal image typically occurs at an iteration number slightly higher 

than that corresponding to the minimum mean square error9. 

An interesting study, and probably one of the first analyzing the performance of OSEM, 

is described in [Meikle, 94].  There, one can find a discussion about the behaviour of this 

algorithm with the number of iterations, the choice of the number of subsets, as well as a 

comparison with both ML-EM and FBP10. 

The problem of OS-EM convergence is addressed in the work described by Hsiao et al, 

where a convergent11 OSEM-type algorithm (E-COSEM-ML – Enhanced Complete Data 

OSEM-ML) is purposed, aiming to be fast and allowing the avoidance of the user-specified 

                                                 
9 This statement should be taken carefully, since the visual optimal image depends on the type of study 
and task under consideration.  However, we believe it deserves mention because raises the point that the 
optimum for a visual task-oriented inspection is not necessarily coincident with those resulting from a 
formal perspective where a well established and “physicist-friendly” FOM (such as the mean squared 
error) is used. 
10 The final paragraph of this paper’s Discussion contains the following important observation: “It should 
be noted that SNR (…) is a mathematical entity and, while tumour detectability can be inferred from this 
figure of merit, it does not take into account the transfer of information from the image to the observer.” 
11 An outline of the proof of convergence of this algorithm is provided as an appendix of the paper by 
Hsiao et al. 
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relaxation schedules associates with convergent ML based methods [Hsiao, 04].  The core of the 

derivation of this algorithm is a different complete data objective function, the use of which 

results in the convergent algorithm designated just by COSEM.  Since the authors found that 

this is a slower algorithm than regular OSEM, they devised E-COSEM as a linear combination 

of OSEM and COSEM.  So, E-COSEM translates into a trade-off between faster OSEM and 

slower but convergent COSEM, with a relaxation parameter, α (ranging between 0 and 1), 

expressing the degree of the trade-off.  Mathematically, under E-COSEM the update of the 

activity distribution can be expressed as follows [Hsiao, 04]: 
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 is the OSEM update and ),(~ lk
jλ  is the COSEM update.  The relaxation parameter is 

an iteration dependent parameter automatically chosen (not user-specified) to guarantee 

convergence while keeping the speed-up characteristic of OSEM. 

For accelerating the OSEM algorithm itself, some efforts have been made in order to 

develop parallel processing techniques.  Jones [Jones, 03b] describes two parallel algorithms for 

fully 3D OSEM implemented on a cluster consisting of 9 nodes and 18 processors.  Another 

parallelizing approach is suggested by Vollmar [Vollmar, 02], for both 2D and 3D OSEM 

reconstructions. 

 

2.4.4.1 – Block-iterative methods 

If a Poisson model for the noise is assumed, block-iterative methods are closely related 

with OSEM and are often included under the same classification.  However, since OSEM is well 

established in clinical routine and unequivocally rooted in the paper by Hudson and Larkin 

[Hudson, 94], we prefer to separate this algorithm from its relatives.  In practice, if a distinction is 

to be made between block-iterative methods and OSEM, it will rely into two main things: the 

statistical model (either non-Poisson or inexistent) and/or the claimed convergence of the block-

iterative method (assumed as an advantage over OSEM). 

As Byrne [Byrne, 98] formulates the framework, block-iterative (or ordered subset) 

methods, in which a single block or subset is processed at each step, are between simultaneous 

methods, which use all the data at each step (such as ML-EM), and sequential or row-action 

methods, that use a single data value at each step. 

Byrne [Byrne, 96; Byrne, 98] indicates an equation for driving an iterative process 

designated as Block-Iterative EMML (BI-EMML) that uses subsets and is claimed to converge 
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for all choices of subsets provided that, for each subset Sl, 1≤∑
∈ lSi

ija .  The equation, letting the 

update index, k+1, to designate just the k-th update resulting from a certain subset and 

independent from the fact that a new iteration is beginning or not,  is the following: 
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which reduces to the ML-EM equation when there is just one subset.  However, even when 

subset balance holds, the former equation does not reduce to OSEM [Byrne, 98].  In 

consequence, to get this equivalence, Byrne introduced the Rescaled BI-EMML (RBI-EMML) 

given by [Byrne, 98]: 
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where 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ∑
∈ lSi

ijjn am max .  A proof of convergence of this method in presented as an 

appendix to the same paper.  A detailed study of the noise properties of block-iterative methods 

(in particular RBI-EMML) can be found in [Soares, 00; Soares, 05]. 

 

2.4.4.2 – Row-Action methods 

The Row-Action Maximum Likelihood Algorithm (RAMLA) [Browne, 96; Daube-

Witherspoon, 01] is another alternative to the ML-EM for maximizing the Poisson likelihood, 

aiming to speed up the rate of convergence.  It differs from OS-EM because the reconstructed 

image is updated for each projection view (row of the system matrix), in a controlled way using a 

relaxation parameter.  It is claimed that RAMLA is faster than MLEM and converges to the 

maximum likelihood solution [Daube-Witherspoon, 01].  In this same paper, the authors refer that 

the use of an appropriate relaxation parameter grants RAMLA with a stable performance and an 

independence of the starting point.  The use of a controlled relaxation parameter for 

reconstructing the image in such a way that noise propagation from projections is substantially 

independent of the access order of subsets in each cycle is described in [Tanaka, 03].  This 

variation of RAMLA is called DRAMA. 

The relation between RAMLA and OS-EM is explored in [Browne, 96]. 
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2.4.5 – Bayesian Reconstructions 

The keyword behind Bayesian reconstruction is regularization.  This is the general 

approach for dealing with the instability associated with image processing, in general, and 

statistical image reconstruction, in particular.  Regularization of an ill-posed problem and its 

Bayesian interpretation is discussed in [Demoment, 89]. 

Bayesian reconstructions do also assume a statistical model for the data, but the objective 

function includes two terms: one for the likelihood (as in the case of ML-EM and OS-EM) and 

the other for a prior.  Green [Green, 90] formulates the paradigm of a Bayesian reconstruction as 

involving two probability models: 

• the first describes the manner in which the detected counts are generated by the 

tomographic transformation and other physical circumstances.  In particular, this model 

accounts for the Poisson nature of data; 

• the second, is a probability distribution on the space of true patterns of isotope 

concentration and provides a means of quantitatively express prior information about 

knowledge of some sort of patterns expected even before data are collected. 

In the same paper, the author stresses the close link between this Bayesian paradigm and 

the principle of penalized likelihood. 

If each voxel is given the subscript j, j = 1, 2, …, m (the total number of voxels), then λj 

is the isotope concentration in voxel j, and the whole array of voxels, {λj} can be denoted by λ.  

Similarly, using the subscript i to index each bin, then yi is the number of counts in bin i and y, 

y = {yi}, the complete set of collected data.  Under these models, the reconstruction of the 

isotope concentration will be accomplished by considering the posterior distribution that follows 

Bayes’ theorem [Casella, 90], p(λ|y), from the two components: the data model12, p(y|λ), and the 

prior model, p(λ), i.e., the probability distribution reflecting previous knowledge about isotope 

concentration patterns [Green, 90].  Mathematically: 

 

ln p(λ|y) = ln p(y|λ) + ln p(λ) - ln p(y)   Eq. 2.25 

 

where p(y) is a constant. 

There are many reconstruction schemes that can be classified as Bayesian.  A 

characteristic that may obviously contribute to differences between these techniques, whilst not 

unique, is the nature of the prior. 

                                                 
12 Usually assumed as being a Poisson model. 
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In this same paper by Green, [Green, 90], is described a type of Bayesian reconstruction 

which is an extension of the ML-EM reconstruction, based on the Bayes’ theorem.  We will use 

the algorithm described in this paper as an example for the discussion of the main features of a 

Bayesian reconstruction. The first thing to be considered is the prior and its relation to some 

knowledge a priori.  As advocated by Green and many other researchers in the field of emission 

tomography, long-range, high-level structures in the object may not be important, so the prior 

distribution could be such that only pairwise interactions, among pairs of pixels that are 

neighbors, are allowed.  This is the reason for the widespread adoption of Gibbs priors: they 

allow the capture of local properties of the object as well as result in computationally efficient 

update strategies.  The general expression of a Gibbs distribution is: 

p(λ)  ∝   exp[-β.U(λ)] 

U(λ) is known as the Gibbs energy function, which is defined as a sum of potentials.  The energy 

function should reflect two conflicting properties: the local smoothness of images within the 

same organ or tissue, and the sharp variations in tracer uptake between different structures.  

Different forms of this energy function lead to differences in the Bayesian reconstruction 

algorithm.  In the case of [Green, 90], this prior translates in the following probability 

distribution: 

p(λ)  ∝   exp[-β.U(λ)]  =  
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where β and δ are parameters and wsr is a weight coding the strength of neighborhood between 

pixels s and r: wsr = 1 if s and r are orthogonal nearest neighbors, 2/1  for diagonal neighbors, 

and 0 otherwise.  The function φ is nonnegative, symmetric about 0, and monotonically 

increasing for positive values of its argument.  Choosing the more appropriated function φ 

depends on the knowledge for the pattern of the isotope concentration.  This is, we recall, just 

an example of a prior, but useful for the illustration of some considerations behind its definition. 

The goal of this sort of reconstruction algorithms is to chose λ in order to maximize the 

posterior probability log p(λ|y).  Thus, using Eq. 2.25 and the expression of a Poisson 

distribution, the Bayesian formulation results in: 

 

ln p(λ|y) = ln p(y|λ) + ln p(λ) + const = ∑ ∑∑ ⎟
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ats are for the system matrix elements, and U(λ) is the energy function described above. 

Due to the huge number of Bayesian reconstruction algorithms - making use of different 

priors, data models and strategies to overcome some other practical problems (such as how to 

handle negative counts) – in the following paragraphs we will be shortly referring just a few of 

them that are often cited in the literature devoted to this subject.  However, in any case this 

means that these are more important than others. 

Green [Green, 90] notes that a direct extension of the EM algorithm to maximize log 

p(x|y) can still be appropriated, but the M step becomes impractical, except in the degenerated 

case where the pixels are independent under the prior.  In alternative, a one-step-late (OSL) 

approximation is suggested and its rate of convergence (whilst not proved) is compared with that 

for the standard unregularized ML-EM.  The mathematical equation of the OSL algorithm is the 

following: 
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where ( ))(n
j

j
V λ

λ
β
∂
∂  is the derivative of the energy function (prior term).  If we compare this 

equation with equation 2.22 for the ordinary ML-EM algorithm, we realize that the only 

difference between these two equations lies in the existence of the prior term in the former 

equation.  So, when β is equal to zero, i.e., when the weight associated with the prior term 

vanishes, the OSL algorithm becomes the ML-EM.  Lange [Lange, 90] describes a modified 

version of the OSL algorithm, suggests some energy functions and gives a detailed study of the 

convergence of this algorithm. 

The quadratic prior is discussed in [Bruyant, 02]. 

Hebert and Leahy [Hebert, 89] developed a generalized expectation maximization (GEM) 

Bayesian algorithm based upon the Poisson model and a prior in the form of Gibbs function.  

Development of this algorithm follows that of the regular ML-EM but, for the M-step, a form of 

coordinate gradient ascent is derived.  In addition, as the prior tends toward a uniform 

distribution, the GEM algorithm reduces to the ML-EM. 

Unlike the GEM, the SAGE (Space-Alternating Generalized EM) algorithm [Fessler, 95] 

updates image voxels sequentially using a sequence of small “hidden” data spaces, rather than 

simultaneously using one complete-data space.  Because the new hidden data spaces are less 

informative than the conventional EM complete-data space for Poisson data, the SAGE 
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algorithm yields improvements in convergence rate while maintaining the monotonic properties 

of the EM algorithm. 

Fessler [Fessler, 94] suggests a “penalized weighted least-squares” (PWLS) reconstruction, 

under which a Gaussian model for the data is assumed and, in consequence, a least-squares term 

is included in objective function.  This is an alternative to the more usual combination of a 

Poisson model for the data and the use of likelihood as the objective function.  In addition to 

the least-squares, the objective function also includes a regularizing penalty term, R(λ): 

( ) ( ) ( ) ( )λAλyAλyλ R.'
2
1 1 β+−Ε−=Φ −  

where 1−Ε is a diagonal matrix whose ith entrance is equal to 2
iσ : an estimate of the variance of 

the ith precorrected measurement yi.  The non-negative successive over-relaxation (SOR) 

algorithm [Sauer, 93] - which relies on updates of single pixel values rather than the entire image, 

at each iteration - is adopted by Fessler to minimize the objective function, and is reported a 

rapid convergence to the global minimum of the PWLS objective.  The whole procedure is 

designated by PWLS+SOR. 

Levitan [Levitan, 87] and Herman [Herman, 91] develop an exact EM algorithm for MAP 

optimization with a multivariate Gaussian a priori probability distribution.  Mumcuoğlu 

[Mumcuoğlu, 94; Mumcuoğlu, 96] describes a penalized preconditioned conjugate gradient method 

for both emission and transmission reconstruction, using Markov random field priors and letting 

the preconditioner to be changed at each iteration. 

In [Alenius, 97] it is investigated a type of Bayesian OSL reconstruction method which 

utilizes a median root prior (MRP), as the authors recognize that median filters are good in terms 

of noise reduction and, at the same time, preserve edges.  To implement this method, the 

authors replace the derivative of the energy function in Eq. 2.25 by a non-linear function: the 

median.  Hsiao et al [Hsiao, 03] claim that it is impossible to associate an objective function to the 

MRP algorithm and, thus, formulate a median prior that can be used within a MAP context. 

The inclusion of anatomical a priori information is the scope of an extensive list of 

papers.  The utility of anatomical priors depends on the degree of spatial correlation of 

anatomical structure with radionuclide distribution: if the correlation is good the anatomic 

information is expected to serve as a useful prior.  Bowsher et al [Bowsher, 96] present a method 

for simultaneously segmenting and reconstructing emission images and for incorporating 

anatomical a priori information.  This approach models images as consisting of regions (whose 

number is estimates) such that all voxels within a given region have similar mean activities; 

random variables of the model include region mean activities as well as the mean activities and 
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region classification of individual voxels.  Gindi et al [Gindi, 93] reconstruct images with the aid 

of a prior derived from registered anatomical MR images.  The prior information is obtained 

from the anatomical image by an ‘edge map’ reflecting the confidence that a correlated 

functional edge exists in each location.  The authors stress the fact that each value of the edge 

map should reflect the particular anatomical boundary under consideration.  Lipinski et al 

implemented two approaches (a Markov-GEM and a Gauss-EM algorithm) that use the 

anatomical information obtained from magnetic resonance (MR) images to model a prior 

distribution.  In the same paper is investigated the impact of misleading MR information.  Baete 

et al [Baete, 04a] describe an anatomy-based MAP reconstruction algorithm (A-MAP) that 

includes anatomical information derived from MR imaging data as well as the approximation of 

a tissue composition model as a priori knowledge.  Applications of this algorithm are 

demonstrated in epilepsy [Baete, 04a] and for partial volume correction in brain FDG-PET [Baete, 

04b].  Comtat et al [Comtat, 02] investigate the potential gains in image SNR by incorporating the 

anatomical information derived from aligned CT images obtained from a PET/CT scanner. 

Two disadvantages of penalized algorithms are identified by Fessler and Rogers [Fessler, 

96]: the absence of a method for choosing the value of the regularization parameter, with the 

additional complication that for a fixed β, the reconstructed spatial resolution varies between 

subjects and even within the same subject; and the object-dependent nonuniform spatial 

resolution (even for spatial-invariant tomographic systems), which is a consequence of the 

nonuniform variance of Poisson noise [Fessler, 96]. 

Concerning the first problem, the authors refer the development a method for 

normalizing the penalty function such that the object-dependent component of β is nearly 

eliminated, allowing the building of an object-independent table relating that parameter to the 

spatial resolution (FWHM) for a given tomographic system.  Thus, it is possible [Fessler, 96] to 

select β  to achieve a consistent specified resolution within planes, between planes and between 

subjects.  Since the prior is data dependent, it can no longer be regarded as a Bayesian prior 

[Nuyts, 03] and, in consequence, it is referred as a penalty term.  In relation to the nonuniform 

spatial resolution, the authors examine the spatial properties of penalized-likelihood image 

reconstruction methods via the local impulse response, and propose a modified space-variant 

penalty that yields images with an increased spatial uniformity over conventional space-invariant 

regularization.  Stayman and Fessler [Stayman, 00] update the method for designing a shift-variant 

penalty function that attempts to provide uniform resolution properties, for an idealized PET 

system whose geometric response is space-invariant.  In [Stayman, 04] the same penalty function 
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is applied to space-variant systems.  Another method for obtaining a symmetric and shift-

invariant point spread function is discussed in [Nuyts, 03]. 

Qi and Leahy [Qi, 99] derive approximate equations for the local impulse response 

contrast recovery coefficient (CRC) and variance of each voxel in images reconstructed using 

MAP estimators.  These expressions are then applied on the selection of the smoothing 

parameter, β, in such a way  the authors claim to be more appropriate for lesion detection tasks. 

In fact, the selection of the regularization parameter is a key problem associated with 

Bayesian methods.  Leahy [Leahy, 00a] separates the approaches for choosing β into two broad 

classes: treating β as a regularization parameter and applying techniques such as generalized cross 

validation and the L-curve; and using theoretical estimation approaches such as the maximum 

likelihood.   In the same paper is given an extensive list of these approaches. 

Finally, a short mention to ordered subsets-type algorithms for maximizing the penalized 

likelihood; for example: the Block Sequential Regularized Expectation Maximization (BSREM) 

[DePiero, 01], and the Relaxed OS Separable Paraboloidal Surrogates (OS-SPS). 

 

 

2.5 – Rebinning algorithms 

 

A rebinning algorithm can be defined as an algorithm that sorts 3D data into 2D data.  

As 3D data contains information for oblique planes in addition to transaxial planes (N2 

sinograms, for a scanner with N rings), the amount of information available can be unaffordable 

for the reconstruction algorithm, in terms of time required for this task.  So, whenever the 

reconstruction time is a serious constraint, the use of a rebinning algorithm is a solution to be 

considered. 

This solution, nevertheless, should be considered carefully.  In fact, since it sorts 3D 

into 2D data (2N – 1 transaxial sinograms), there is always the possibility that part of the 

information contained in the 3D data set is lost; and, because the redundancy of 3D data can be 

use to improve the SNR, the final quality of the reconstructed image can be affected.  How far 

information is lost in the rebinning process and how deeply it decreases the image quality 

depends on the rebinning algorithm: the SSRB (Single-Slice Rebinning algorithm), for example, 

has an accuracy very limited in space, so it can considerably contribute to a degradation of the 

reconstructed image; the Fourier Rebinning (FORE), on its hand, can produce similar results to 
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those obtained with fully 3D reconstruction methods [Liu, 01].  As in many other fields, the 

more accurate is the rebinning algorithm the more complex is its implementation. 

In sum: the rebinning decomposes the 3D reconstruction problem into a set o 2D 

independent reconstructions.  If the rebinning algorithm is efficient, the reconstruction becomes 

fast as in 2D, while retaining the increased sensitivity of the 3D acquisition [Defrise, 97]. 

 

 

2.5.1 – FORE (Fourier Rebinning) 

The Fourier Rebinning (FORE) is probably the most important rebinning algorithm for 

PET, since it retains a remarkable accuracy in practice while its implementation and use does not 

burden the reconstruction process.  In the context of the present thesis it is also very important, 

since it is used along with 2D reconstruction algorithms as part of the research we have done. 

Two different approaches can be adopted for the derivation of FORE.  In one of them 

[Defrise, 97], FORE is present as an approximate version of an exact rebinning algorithm; in the 

other [Defrise, 95b], the most intuitive, it is a natural application of the frequency-distance 

relation13.  The latter approach will be discussed in the following paragraphs. 

Let us consider Fig. 1.11 and a cylindrical scanner with length L and radius R.  In 3D, the 

integral of f(x,y,z) – defined in a cylinder of radius RΩ < R - along and LOR is given by [Defrise, 

95b]: 
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13 The frequency-distance relation was introduced by Edholm et al: “Novel properties of the Fourier 
decomposition of the sinogram”, Int. Workshop on Physics and Engineering of Computerized Multidimensional 
Imaging and Processing, Proc. Of the SPIE, 671, 8 – 18, 1986. 
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where δ is the tangent of the polar angle, θ, and can be called the ring difference.  This 

parametrization requires a 1D interpolation across different oblique sinograms [Defrise, 95b], but 

once this interpolation is done, it is a very convenient parametrization. 

The continuous Fourier transform, for each pair (z,δ) of a 3D sinogram with respect to 

the variables x’ and φ is: 
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Using the symmetry ( ) ( )δπφδπφ −+−=+ ,,,',,,' zxpzxp  and combining the two 

equations above we get: 
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Eq. 2.27 

Eq. 2.27 plays an important role in the establishment of the frequency-distance relation.  

In fact, considering the phase in the equation above, it is possible to observe that when k and w 

are large, this phase varies very rapidly with φ.  Therefore, since this is equivalent to an 

exponential oscillating rapidly between positive and negative values, when f is smooth the 

contribution to the integral over φ is negligible.  So, contributions to the integral come from the 

neighborhood of values of φ where the phase is stationary, i.e.: 
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yxwkyxwk  Eq. 2.28 

 

When 22 yxwk +≤ , equation 2.28 has two solutions in the interval [0, 2π[ and both 

solutions correspond to the same y’ (distance along the line of integration) [Defrise, 95b; Xia, 95].  

In other word, the frequency-distance relation can be stated as follows [Defrise, 95b; Alessio, 06]: 

the 3D sinogram at frequency component (k,w) receives contributions primarily from sources 

located at distance y’ = -k/w.  So, different distances along the line of integration contribute to 

different locations in the frequency space. 

The Fourier rebinning approximation, which is the basis for the FORE algorithm and 

relies on the frequency-distance relation, relates de 2D frequency transform of an oblique 

sinogram, P(w,k,z,δ), with the 2D transform of a direct sinogram corresponding to a slice shifted 
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axially by wkz δ−=Δ .  Its mathematical expression is stated in equation 2.29 [Defrise, 95b; 

Defrise, 97]: 
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The implementation of the FORE algorithm involves the following steps [Defrise, 95b; 

Defrise, 97]: 

• for each pair (z,δ), take the 2D Fourier transform of the 3D sinograms: P(w,k,z,δ) and 

P(w,k,z,-δ) 

• Based on Eq. 2.28, estimate each transaxial rebinned sinogram: 
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where W(z) is a weighting for selecting, for each frequency (k,w), the 3D sinograms that 

contribute to the slice z.  This is an interpolation in z (FORE does not include any 

interpolation in k or w) where interpolation strategies can be used; 

• for each transaxial slice z, take the inverse 2D Fourier transform of P2D(w,k,z); 

• reconstruct each transaxial slice separately, using a 2D reconstruction algorithm. 

 

There is, nevertheless, an important constraint associated with the use of FORE.  In fact, 

FORE is based on the stationary-phase approximation, which is an asymptotic formula accurate 

just for large values of k and w [Defrise, 95b].  So, when analysing the whole (k,w) plane, three 

different regions can be considered [Defrise, 97] (Fig. 2.9) in terms of rebinning approaches. 

 

 

 

Figure 2.9 
 

The three different regions of the (k,w) space, in terms 

of rebinning approach: SSRB region, FORE region, and 

NC (Non-Consistency region). 
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The FORE region is the high-frequency region, where the stationary-phase 

approximation is valid and the FORE algorithm is accurate. In the Non-Consistency region, 

Ω≥ Rwk  (the radius of the FOV).  So, P2D(w,k,z) = 0.  Finally, in the low-frequency region, the 

Fourier Rebinning is not applicable (stationary-phase approximation not valid) and another 

algorithm should be considered for data rebinning.  This is called the SSRB because the Single 

Slice Rebinning (discussed in the following section) algorithm’s premises are valid and, therefore, 

it can be adopted.  However, as noted by Matej [Matej, 96], an abrupt change from FORE to 

SSRB is probably not the best strategy.  Fig. 2.9 should be understood as an illustration of the 

region where these two important rebinning algorithms are valid from a theoretical point of view 

(and not where they are strictly used). 

The performance of FORE is less accurate at larger maximum ring differences [Defrise, 

97].  In practice, it is accurate when the axial aperture, θmax,is smaller than about 20º [Defrise, 03]  

The performance of FORE for a wide range of axial acceptance angles is investigated in [Matej, 

96]. 

 

 

2.5.2 – Other rebinning techniques 

The most simple rebinning algorithm is the SSRB (Single Slice Rebinning) [Daube-

Witherspoon, 87], which was introduced before FORE.  Its fundamental assumption is that each 

LOR only traverses a single transaxial plane within the support of the tracer distribution.  If that 

is the case, then each oblique LOR can be converted into a LOR belonging to the transaxial 

plane halfway to the planes containing the extremities of the original LOR.  This is illustrated in 

Fig. 2.10. 

Mathematically, the SSRB algorithm can be expressed as follows [Defrise, 03]: 
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where θmax is the maximum axial aperture for an LOR at distance x’ from the axis in slice z. 

 

 

Fig. 2.10 

 

SSRB: an illustration of the set of oblique 

LORs transformed into a single transaxial LOR. 
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An inspection of the assumption SSRB is based on restricts the use of this algorithm for 

activity distributions that are spanned within a short radial distance from the scanner axis, as well 

as for LORs corresponding to small values of θ.  For realistic distributions these conditions can 

not be met and the accuracy of this algorithm is very limited.  The main advantage of SSRB is its 

simplicity. 

In strong contrast with SSRB are the exact rebinning methods, whose name derives from 

the fact that they do not consider the approximation FORE is based on.  The study of this sort 

of algorithms is beyond the scope of this thesis, so we are just referring some of them. 

Liu [Liu, 99] introduces the FOREPROJ, a projection algorithm that allows the 

calculation of 3D attenuation correction factors directly from a 2D transmission scan.  In the 

same paper, FOREX, an exact rebinning algorithm, is also discussed.  Another exact rebinning 

algorithm for 3D PET, using the John’s equation – FORE-J – is introduced by Defrise in 

[Defrise, 99]. 
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3 – The weighted OSEM approach and the adopted 

implementation 

 
The work which is on the basis of the present thesis has been centered in the use of 

OSEM for tumor detection.  

This is a chapter bridging the hitherto theoretical part of the thesis, with the following 

chapters, where the experimental results are shown and discussed.   We start by discussing the 

weighted OSEM approach and the main reasons for the fundamental role this strategy plays for 

handling PET corrected data.  After that, we proceed with NEC-OSEM, which allow us to 

accurately model the statistical properties of corrected data.  Finally, we discuss some practical 

subjects, such as the effect of FORE on the variance, as well as some of the most important 

features of the used OSEM implementation. 

As said before, OSEM is an algebraic, non-bayesian, statistical reconstruction algorithm 

which, in practice, can be considered as an accelerated version of ML-EM, and, therefore, a very 

appealing alternative to the latter algorithm.  In short, behind the adoption of OSEM as the 

working algorithm, it is possible to identify three key fundamental decisions: 

- the use of a statistical, algebraic, reconstruction algorithm, instead of an analytical; 

- the choice for a non-bayesian approach, avoiding the practical difficulties usually 

associated with the implementation of Bayesian algorithms as well as the control and 

optimal setting of  some of their intrinsic parameters; 

- the assumption of a Poisson model for describing data (instead, for example, of a 

Gaussian), which is just one way to proceed with the investigation, but the way the group 

of persons taking part in the present work has been following for a few years. 

However, even with the computer power available nowadays, OSEM is still slower than 

FBP when reconstructing images from clinical data1.  Therefore, to make OSEM affordable for 

clinical routine, in special when 3D reconstructions are required, the time consumption of 

                                                 
1 On an empirical basis one can roughly say that one OSEM iteration takes as much time as two FBP 
reconstructions. 
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OSEM must be reduced.  The widespread solution is to rebin data into 2D, using FORE, and, 

after that, to take these data and perform a 2D OSEM reconstruction.  

From a theoretical point of view this is not so straightforward, since the Poisson model 

on the basis of OSEM must be taken into account.  In fact, prior to reconstruction, data are 

often2 corrected for effects such as the attenuation, scattered and random photons, as well as for 

normalization.  In that case, we have shown (section 2.4.1.3) that the relation between corrected 

data, D
iy 3 , and the prompts, D

ip 3 , can be expressed by the following equation (Eq. 2.14): 

( )ii
D

iii
D

i srpANy −−= 33 . .  In addition, this equation led us to derive the mean value, D
iy 3 , 

and the variance, ( )D
iy 32σ , for bin par i, estimated from corrected data:  

• ( )ii
D

iii
D

i srpANy −−= 33 .  

•  ( ) ( )i
D

iii
D

i rpANy += 32232 .σ  

Since these two moments for the variable yi are not equal, it is no longer possible to 

admit that corrected data are Poisson distributed.  This is central in the context of the present 

work: in one hand, OSEM assumes Poisson data; on the other, corrected data are not Poisson 

distributed.  This means that the major premise of OSEM is not verified for corrected data and, 

therefore, the use of OSEM with these data is abusive (nevertheless, with satisfying results!).  

The solution for such contradiction can essentially be one of three: to simply ignore it and 

proceed with data reconstruction using regular OSEM3;  not to correct data before 

reconstruction and include corrections in the iterative equation (this is the strategy in the core of 

the Ordinary-Poisson OSEM3D [Comtat, 04], but it is incompatible with the use FORE); or, 

third option, to devise and use a weighted version of OSEM for the reconstruction of corrected 

data, whose main goal is to partially restore the Poisson characteristics of the data.  This last 

approach is discussed in the following section. 

 

 

3.1 – Weighted OSEM 

 

The weighted OSEM [Michel, 99] was conceived for reconstructing non-Poisson 

corrected data.  In the original weighted approach, corrected data are scaled by a multiplicative 
                                                 
2 When data are to be Fourier rebinned, there is no alternative and should always be first corrected for 
such effects [Liu, 01]. 
3 We recall: it works, but with suboptimal results. 



3 – The weighted OSEM approach and the adopted implementation 
 

100 

weighting factor, W, to partially restore a Poisson-like distribution, i.e., to grant data, as 

completely as possible, the fundamental feature of a Poisson distribution: mean equal to 

variance.  The iterative equation driving a pure multiplicative weighted OSEM algorithm is the 

following: 
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where λj is the value on image voxel j, yi is the input sinogram with corrected data, aij is the 

system matrix element for voxel j and sinogram element i, and wi is the weighting factor.  The 

zero-thresholding, max{yi,0}, is needed to avoid negative values that OSEM is not able to 

handle.  Comparing to Eq. 2.22 (for regular OSEM, without weighting), the difference relies in 

the presence of this latter factor, wi. 

In addition, the expression of the multiplicative weight is also the key difference between 

different weighted OSEM schemes: the extension to which weighted data are given Poisson-like 

characteristics depends fundamentally on this factor.  The most common approaches are: 

• AWOSEM [Hebert, 90b]: nowadays routinely used for clinical studies, it just includes the 

Attenuation Correction Factors (ACFs) in the weighting.  

Therefore: 
i

i Aw 1= , where Ai are the ACFs; 

• ANWOSEM [Michel, 99]: it can be thought as an extension of the AWOSEM, where 

both the attenuation correction and the normalization factors, 

Ni, are taken into account in the definition of the weight: 

( )ii
i NAw .

1= . 

Although attenuation correction is responsible for the major deviation from the Poisson 

model in whole-body PET imaging [Comtat, 98], weighting data according to one of the 

approaches referred above, does not result in Poisson-like data: it gives data properties closer to 

Poisson, as expected, but the fully required equivalence between the two first data moments is 

not met.  So, these to weighted versions (AWOSEM and ANWOSEM) still don’t handle 

Poisson data, as assumed by the OSEM algorithm. 
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In order to achieve this goal, two other weighted versions were devised: NECOSEM, 

with capital importance for the present work and discussed separately in the following section; 

and the Shifted-Poisson approach (SPOSEM), a fully 3D weighted reconstruction4. 

The distinctive feature of the SPOSEM3D [Yavus, 97] (fully 3D) approach is the 

existence of an additive weight, in addition to the multiplicative factor that is present in all the 

OSEM versions we have been reporting.  It was introduced mainly to overcome the 

consequences of on-line random subtraction – through the use of the delayed window technique 

referred in Chapter 1 -, in most clinical systems, a procedure that blocks the access to raw data, 

i.e., the prompts.  This has two important consequences: first, while both the prompts and the 

delayed are Poisson variables, the difference is not5; second, negative values can appear in the 

subtracted data.  But, since OSEM can not handle negative data, one is obligated to set to zero 

all the negative values (zero-thresholding), which may lead to an overestimation at the center of 

the FOV [Liu, 01].  Therefore, the additive weight not only intrinsically reduces the existence of 

negative values6 as well as, reconstructing the variable v = t + 2<d>, recovers the reconstruction 

of a Poisson variable: for v = p – d + 2<d>, <v> = <p> + <d> and σ2(v) = σ2(t) = <p> + <d>, 

i.e., these two moments are equal. 

The driving iterative equation of SPOSEM3D is: 
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where ti are the true coincidences, and di and si the correction factors respectively for randoms 

and scattered coincidences, assuming online random subtraction with a delayed coincidence 

window. 

 

 

 

 

                                                 
4 All the weighted OSEM versions referred above (AWOSEM, ANWOSEM, NECOSEM, and 
SPOSEM) were used in practice for image reconstruction, in the context of the experimental work the 
present thesis is devoted to. 
5 In fact, for t = p – d (t: trues, p: prompts, and d: delayed), the mean and the variance of this variable are 
<t> = <p> - <d> and σ2(t) = <p> + <d>, respectively. 
6 Their existence is still possible, but much less likely. 
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3.1.1 – NEC transform and NEC-OSEM 

The NEC-OSEM approach makes use of the NEC transformation methods proposed by 

J. Nuyts et al [Nuyts, 01], to transform the sinogram values to their noise equivalent counts, such 

that the two statistical first moments of the transformed data become equal. 

As Nuyts refers, the NEC transformation is not unique.  So, three different strategies can 

be used: 

- the NEC-scaling, where the scaling factor, w, is defined by: )(2 y
yw σ= ; 

- the NEC-shifting, that uses, instead, an offset factor, g, defined by: yyg −= )(2σ ; 

- a combination of the former two, known as the general NEC-method, that is also useful 

for avoiding bias due to the zero thresholding of negative values resulting from data 

corrections.  In this case, the shift parameter is 
)(2

i

ii
i x

gx
a

σ
+

= , where gi is a function 

designed to ensure that xi + gi > 0 [Nuyts, 01]. 

In the context of the present work, we will detail the NEC-scaling approach, since it was 

the one adopted for both simulation and clinical data studies. 

It is important, therefore, at first, to clearly understand why this sort of weighting is 

designated as NEC weighting.  If we consider a Poisson variable, L: L ∩  P(λ), for that variable: 

( ) λσ == ll 2 .  So, its signal-to-noise ratio is given by: SNRl ( ) λσ == l
l .  Since, by 

definition, the NEC of x (another variable, not Poisson distributed) is equal to the mean of the 

Poisson distribution with the same SNR as X [Nuyts, 01], it follows that the NEC of x equals the 

square of its SNR.  Schematically: 

 

 
Figure 3.1 

 

Schematics of the NEC 

definition 

 

 

 

So, if, by definition, NECx = λ = (SNRl)2, then, from the requirement that the SNR of 

the two variables must be equal:  

X (not Poisson variable) L ∩  P(λ) 

SNRx 

NECx E{L} = λ 

SNRl = λ  
Required 

By definition
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NECx = (SNRl)2 = (SNRx)2 = 
)(2

2

y
y

σ
    Eq. 3.3 

 

Weighting data using the NEC scaling approach we have been describing corresponds to 

multiply corrected data, y, by the weighting factor )(2 y
yw σ= : 

zi = wi.yi = 
)(2 y

y
y i

i σ
   ≈   

)(2

2

i

i

y
y

σ
 = (NECi)z 

From the expressions above we easily understand the fact that weighted data, z, are 

approximately equal to the NEC of corrected data, y, is the reason for calling this sort of 

weighting, “NEC weighting”. 

For verifying that NEC weighting restores the Poisson characteristic of data, let us 

consider the mean value and the variance of the NEC weighted data: 
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From the comparison of the two equations above, we conclude that these two moments 

are equal, and, therefore, that NEC scaling transforms data into a Poisson-like distribution. 

Nevertheless, two important things must be taken into account.  The first is the fact that 

zero thresholding is still needed for granting non-negative values to the reconstruction process.  

The second, and most important, is the expression of the weighting factor itself, )(2 y
yw σ= .  

In fact, to use this approach one needs to know the variance associated with each bin of the 

corrected sinogram.  Since knowing the variance exactly is impossible (except for the case of 

simulated data), one must devise a procedure for estimating the value of the variance.  And, as 

will be discussed latter on this thesis, this is a very important limiting factor, intrinsic to the 

NEC-OSEM approach.  In addition, if 3D data are to be rebinned into 2D data, the effects of 

the rebinning algorithm on the data variance must also be included on this estimation. 
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3.2 – The effects of FORE on the data variance 

 

The FORE algorithm was the rebinning algorithm used in all the studies performed for 

the research work we are discussing in the present thesis. 

As said previously, FORE represents a good compromise between accuracy and 

implementation feasibility for the rebinning of 3D into 2D data.  Nevertheless, if used to provide 

input for a NEC-OSEM7 reconstruction, it is necessary to understand, and model, the effects of 

FORE on the variance of the rebinned data, because the weighting factor – whose definition 

requires a value for the variance - is applied to the corrected and rebinned data.  In fact: 

 

( ){ }ii
D

iii
D

i srpANFOREy −−= 32 .     Eq. 3.4 

 

A simple and reasonably accurate model of the effect of FORE on the variance of the 

corrected data was developed by Comtat et al [Comtat, 98].  In the frequency space, the Fourier 

rebinning can be mathematically resumed as follows8: 

( ) ( ) ( )∑=
δ

δδ
,'

32 ,',,.,',,,,,
z

DD zkwYzzkwGzkwY  

where z’ is the mid-slice axial position (the others are the usually defined variables).  G are 

weighting factor for taking into account effects such as linear interpolation, zeroing the 

inconsistent regions, and special handling of the low frequency terms [Comtat, 98; Defrise, 97].  

Taking the inverse 2D Fourier transform, ( )zxy D ,,'2 φ : 

( ) ( ) ( )∑∑ −−=
','' ,'

32 ,',','.,',,'',''',,'
φ δ

δφδφφφ
x z

DD zxyzzxxazxy  

The a(x’,φ,z,z’,δ) terms can be calculated for each pair (z’,δ) by applying the FORE 

algorithm to a 3D impulse sinogram: 1 at x’ = φ = 0 for the pair (z’,δ) and zero elsewhere 

[Comtat, 98].  So, assuming uncorrelated data, the variance of the rebinned data can be expressed 

as: 

( )( ) ( ) ( )( )∑∑ −−=
','' ,'

32222 ,',','.,',,'',''',,'
φ δ

δφσδφφφσ
x z

DD zxyzzxxazxy  

                                                 
7 For the rest of this thesis, except if explicitly referred, NEC-OSEM is synonymous of the NEC-scaling 
(multiplicative factor) OSEM approach. 
8 We adopt here the letter y, instead of the literature widespread p, to avoid confusion with designation of 
the prompts.  y refers  to corrected data: prompts after corrections for randoms, scattered, normalization 
and attenuation. 
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In face of this convolution equation, Comtat et al. proceed by simplifying the 

calculations, making the following assumptions: 

- first: for each slice, z, the variance of all 3D sinograms that contribute to z is 

independent of the ring difference, δ.  This is equivalent to make a single slice 

rebinning (SSRB) of the variance; 

- second: a(x’,φ,z,z’,δ) is is highly local in x’ and φ. 

Under these two approximations, the variance of the rebinned sinogram can be 

simplified to [Comtat, 98]: 

 

( )( ) ),,'()(,,'22 zxVzKzxy SSRB
D φφσ =  

 

where ),,'( zxVSSRB φ  is the result of applying the SSRB to the variance sinogram (for corrected 

data), and K(z) are slice variance reduction factors: 

∑∑∑ ==
φ δφ

δφφ
,' ,'
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),',,,'(),,'()(
x zx

zzxazxkzK  

These factors are very local and depend only on the axial position of the rebinned 

sinogram.  In sum, when data are rebinned in accordance to Eq. 3.4, the corresponding effect on 

the variance can be stated as follows: 

 

( ) ( ){ }i
D

iii
D

i rpANSSRBzKy += 32222 .)(σ     Eq. 3.5 

 

once more, assuming online random subtraction with a delayed coincidence window. 

 

 

3.3 – The adopted OSEM implementation 

 

In practice, two different implementations of OSEM were used: one for 2D 

reconstruction and the other for 3D.  However, from a conceptual point of view, the 2D version 

can be understood as a particular case of the 3D one.  The main difference between the two 

versions relies on the need to handle (3D), or not (2D), sinograms with data for oblique plans, 

i.e., to handle the information in theta (azimuthal angle). 
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In face of this, we will describe the structure and the most relevant features of the 3D 

OSEM implementation adopted for image reconstruction in our case.  Schematically, the OSEM 

algorithm can be depicted as in Fig. 3.2. 

The main goal of OSEM (as of any other reconstruction algorithm) is to take as input the 

corrected data and generate the reconstructed image (output).  To succeed, the OSEM core – the 

very reconstruction procedures – requires defining the values of some parameters it will be 

using.  Some of them are definable by the user in the reconstruction stage; the others can be 

defined before the acquisition, or derived from the scanner characteristics. 

Among the former – user definable in the reconstruction stage -  we have: 

• the number of iterations; 

• the number of subsets, which is a particular feature of OSEM and the main difference 

from ML-EM.  As referred before, the number of subsets determines the degree of the 

acceleration introduced by OSEM when compared to ML-EM (OSEM with a single 

subset including all the projections).  However, each subset must balanced, which limits, 

in practice, the maximum number of subsets; 

• the dimensions of the output reconstructed image.  In particular, the number of pixels in 

each of the two coordinates (x and y) characterizing the stack of 2D reconstructed 

images along the axial coordinate.  An usual definition is requiring a stack of 2D images, 

128 × 128 pixels each. 

 
Figure 3.2 – A schematic description of the OSEM core’s interface. 

 

In addition to this sort of input, there are other parameters that depend from the 

acquisition conditions as well as from the scanner model.  The most fundamental is to indicate 

OSEM
algorithm 
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whether data have been acquired in 2D or 3D mode.  The scanner, itself, imposes constrains to 

the values of some variables: the number of rings, the maximum ring difference, the bin size in 

both coordinates (transxaxial and axial), the value of the span, and the number of views.  In the 

adopted reconstruction package there is a file containing a structure with the description of these 

and other parameters associated with the scanner model.  In another file, the values for this set 

of parameters are defined for different scanner models. 

A data description is contained in the header of the data file.  The size of data, and their 

structure, depends strongly from the acquisition process.  For example: the number of segments 

data are organized in, which is very relevant for the reconstruction process, results from the 

combining of the number of rings, the ring difference and the value of the span.  Data 

description should also include information about the data type (integer, float or other), their 

organization in sinogram or projection format, and the segment structure, i.e., in case of 3D 

data, how data are organized for different values of theta. 

The weighting factors are contained in a file which OSEM uses through a flag in the 

command line.  This means that they must be calculated prior to the reconstruction, as expected.  

However, data weighting9 is performed inside the OSEM algorithm, but before the 

reconstruction core. 

 
FOR (iter = 0; iter < iterations; iter++) { 

FOR (subset = 0; subset < number_of_subsets; subset++) { 

FOR (segment = 0; segment < number_of_segments; segment++) { 

 

 

 

 

} 

} 

} 

 

This OSEM core is spread among different files and is the computational 

implementation of Eq. 3.1.  It can be summarized as follows, where: “iterations” is the number 

of iterations defined by the user; “subsets”, the number of subsets also defined by the user; and 

“number_of_segments”, the number of segments that results from the number of rings, the 

maximum ring difference and the span.  It is a value easily drawn from the Michelogram (cf. Ap. 

                                                 
9 What we have mathematically expressed by zi = wi.yi 

Estimate projections; 

Calculate the ratio between measured and estimated projections; 

Backproject the ratio between measured and estimated projections; 

Update the object using normalization and weighting factors; 

SSuubb--iitteerraattiioonn  
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A8) corresponding to the particular acquisition to be considered.  Since there are positive and 

negative segments and all should be used, “number_of_segments” is equal to the absolute value 

of the higher segment, multiplied by two, plus one – for including segment zero (the one 

corresponding to a 2D acquisition). 

Deserving mention is also the strategy devised to handle the azimuthal views 

(projections) for each subset.  In fact, as referred in chapter two, subsets should be balanced, 

something that is achieved, in practice, by ordering projections so that each time the algorithm 

uses a different subset, projections should be separated the maximum.  In the present case, this 

done by pairing the subset number (subset) with the segment number (segment)10 is a convenient 

way.  For a reconstruction using 144 views, 8 subsets and 5 segments (-2, -1, 0, 1, 2, nevertheless 

designated, respectively, by a different order number: 3, 1, 0, 2, 4), the pairing of these two 

variables, for each iteration, is described in Table 3.1. 

 

Sub-iteration segment subset Sub-iteration segment subset 
0 0 0 20 0 2 
1 1 4 21 1 6 
2 2 1 22 2 3 
3 3 5 23 3 7 
4 4 2 24 4 0 
5 0 6 25 0 4 
6 1 3 26 1 1 
7 2 7 27 2 5 
8 3 0 28 3 2 
9 4 4 29 4 6 
10 0 1 30 0 3 
11 1 5 31 1 7 
12 2 2 32 2 0 
13 3 6 33 3 4 
14 4 3 34 4 1 
15 0 7 35 0 5 
16 1 0 36 1 2 
17 2 4 37 2 6 
18 3 1 38 3 3 
19 4 5 39 4 7 

 

Table 3.1 – The order by which the pairs of subsets and segments are handled, in order to grant 

OSEM balanced projections.  This is for 8 subsets and 5 segments (-2, -1, 0, 1, 2 

ordered as 3, 1, 0, 2, 4), inside a single iteration. 

 

                                                 
10 In fact, the program uses auxiliary variables derived from these two, but this is a detail not relevant for 
the present discussion. 
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Since all the segments and subsets must be used inside a single iteration and fore each 

pair (segment, subset) the object activity is updated, the handling of the corresponding data by 

the OSEM algorithm is referred as an OSEM sub-iteration. For the case referred, one single 

OSEM iteration would include 40 subiterations. 

In respect to the 144 azimuthal views, they are divided among the 8 subsets, resulting in 

18 views per subset.  So, the subset number establishes the first view for that subset.  The other 

17 are determined by successively adding 8 to the first view.  For example, subset 4 contains 

views  number 4, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116 124, 132, 140. 
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4 – Numerical observer studies comparing different 

OSEM approaches for 3D whole-body PET 

 
In this chapter we will describe simulation studies whose goal was to compare the 

performance of 2D and 3D OSEM implementations.  They were done prior to the clinical 

images studies (the other main framework), where some of the results obtained here were 

directly used. 

Since the comparison of an algorithm’s performance needs a previous definition of the 

clinical task that images are going to be used for, this is the first thing to clearly establish: in the 

present case, the performance was investigated in terms of tumor detectability (and also lesion-

to-tissue contrast) in images from 3D whole-body PET.  The general aim was, therefore, to 

verify if an accurate statistical modeling in OSEM improves tumor detectability.  In particular, 

we aimed to clarify two main things: how does FORE+AWOSEM compare with 

FORE+NECOSEM, investigating if the theoretical improvement behind FORE+NECOSEM – 

the accurate statistical modeling - results in a practical advantage over FORE+AWOSEM; and 

how does fully 3D reconstructions compare with FORE followed by a 2D reconstruction.   

The most important tool adopted for comparing the performance of the different 

OSEM implementations was the 3D Non-Prewhitening Matched Filter (NPWMF) numerical 

observer.  In fact, since it was unaffordable to perform this kind of studies with human 

observers, due to the larger amount of data and images, we had to replace them by an observer 

whose performance for similar studies and similar conditions mimics the performance of 

humans.  Lartizien [Lartizien, 04] has shown in a previous study, for similar imaging conditions, 

that the NPWMF detectability index allows good correlation with human observer detectability.  

Therefore, this numerical observer was chosen for the tumor detection task in 3D whole-body 

PET images. 

In addition, the tumor-to-background contrast and the noise were also used in order to 

compare performances. 

The strategy to implement an accurate statistical modeling in OSEM was to use the NEC 

transform (cf. section 3.1.1).  As referred, the NEC scaling (to correct data by using the NEC 
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weighting factors) restores the Poisson-like characteristics of data.  This confers NECOSEM a 

theoretical advantage over other weighted OSEM versions, such as the AWOSEM or the 

ANWOSEM, because one major premise of OSEM is almost fulfilled: the requirement for 

Poisson data.  In both AWOSEM and ANWOSEM, on the contrary, even considering that the 

attenuation correction is the responsible for the major deviation from the Poisson model in 

whole-body imaging [Comtat, 98] and that such effect is intrinsically accounted for in these 

algorithms, data are no more Poisson-like.  That is the reason why NECOSEM (2D and 3D) is 

compared to the other weighted versions. 

To control many different parameters (such as the original tumor-to-background 

contrast or the noise level) and to have the possibility to calculate the NEC weights for every 

data bin using directly Eq. 3.3 (one needs to know exactly what are the values for the mean and 

variance associated with each bin) it is necessary to proceed with simulation studies.  In fact, in 

clinical data neither it is possible to exactly calculate the NEC weights nor the contrast or noise 

are controllable. 

These simulation studies are the subject of the present chapter.  We will describe the 

analytical simulator and the simulation conditions that we used to generate input data (sinograms 

and/or projections).  The mathematical anthropomorphic phantom for which data were 

generated is also present. 

 

 

4.1 – Data simulation 

 

 

4.1.1 – The anthropomorphic phantom 

The anthropomorphic phantom adopted for the generation of simulated data is based on 

the 3D Mathematic Cardiac Torso (MCAT) phantom [Tsui, 93], with the addition of the head, 

arms, and bladder objects in order to reproduce the skeleton and the main organs in the 

abdomen and torso.  The development of the particular implementation used in our work is due 

to Carole Lartizien [Lartizien, 01].  It is conceived as the superposition of many different 

ellipsoids, each one of them “filled” with a value.  With this superposition scheme, each organ 

gains its own contrast to the background as well as to the other organs. 

Once the organs are defined, it is possible to simulate tumors therein, by adding spheres 

whose locations lie inside the chosen organ.  As an example, Fig. 4.1 shows the aforementioned 
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phantom where it is possible to observe one tumor in the left lung, one in the right lung and 

another in the liver. 

 
Figure 4.1 – Axial (a), coronal (b) and sagittal views of the anthropomorphic phantom used for 

the simulations.  Three tumors are visible and indicated by arrows: one the left lung, 

one in the right lung, and another in the liver. 

 

 

4.1.2 – The analytical simulator (ASIM) 

The ASIM analytical (non Monte-Carlo1) simulator [Comtat, 99] was used for generating 

multiple realizations of 3D whole-body datasets.  The principle of ASIM is to first analytically 

calculate noiseless transmission and attenuated emission sinograms on the basis of geometric 

specifications of the emission and attenuation objects (i.e., the anthropomorphic phantom), the 

geometry of the considered scanner, the position of the objects in the FOV, and the number of 

bed positions (acquisitions) in case of multi-bed whole-body acquisitions [Comtat, 99; Lartizien, 

03].  In addition, sinograms of noiseless random and scattered coincidences are also generated, 

with the assumption, however, that the fraction of scattered coincidences in the transmission 

scan is not significant and that there is no contamination from the emission objects to the 

transmission sinogram.  The developers of the simulator also stress that the goal is not to 

accurately simulate the detection of randoms and scattered, but rather to simulate their effect on 

the emission and transmission scans [Comtat, 99].  For the calculation of these randoms and 

scattered sinograms is used a model where the total activity in each slice is assumed to be 

concentrated along the scanner axis, and instead of the attenuation medium specified by the 

phantom, it is used an uniform cylinder. 

                                                 
1 The amount of data required for this study, namely the need of many replicas, would be not feasible 
with Monte Carlo techniques. 

b) c)a) 
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If a mathematical expression is to be given to the sinograms for scattered and random 

coincidences, it includes two different components, one for axial and other for radial directions.  

The radial profiles of the sinograms containing the randoms (emission and transmission) and the 

scattered (emission) are not calculated, but given as an input to the simulations.  These profiles, 

are typically estimated by very high-count scans of a cylinder with an uniform activity and are 

used regardless of the geometry of the simulated phantom [Comtat, 99]. 

On the contrary, axial profiles are calculated due to the greater dependence on source 

distribution.  For random coincidences, the axial profile is established by the single photon axial 

flux on the detector pair in coincidence, considering only non-scattered photons.  The 

estimation of the axial profile for scattered photons (in the emission sinogram) assumes that only 

one of the two emitted photons undergoes a single Compton interaction.  However, this is a 

more complicated process than in the case of randoms, and involves a Monte Carlo integration 

technique based on the Klein-Nishina Compton scatter cross-section that includes both the 

energy resolution and the lower energy threshold of the detectors [Comtat, 99]. 

In sum: ASIM is able to simulate five fundamental sinograms – the true coincidences and 

the randoms for both emission and transmission scans; and the scattered for the emission scan.  

These sinograms are firstly generated without noise.  In order to produce a realistic simulation, 

ASIM is also able to add Poisson noise to the aforementioned sinograms.  The process is the 

following: first, the simulator is given the total number of true (TE, TT), random (RE, RT), and 

scattered coincidences (SE) for some range of bed positions (as input information).  With this 

information plus the half-life of the isotope, the scan duration, and the scan start type, the 

simulator computes global scale factors: αtE, αrE, αsE, αtT, and αrT.  The values for the noiseless 

sinogram elements (tE, rE, sE, tT, and rT) are computed based on the specified geometries of the 

phantom and the scanner, the bed position, and, for multi-bed acquisitions, the number of bed 

positions and bed overlap.  The global scale factors are then used in the process of adding 

pseudo-random noise to the noiseless sinograms, in accordance to the following equations 

[Comtat, 99]: 

[ ]ESEEREETEE srtp ...P~ ααα ++=  

[ ]TRTTTTT rtp ..P~ αα +=  

where p~  are the noisy prompt coincidences and P[m] is a Poisson pseudo-random realization 

for the mean m. 

 ASIM also accounts for many other different important effects that occur in real clinical 

whole-body PET imaging, such as random and scattered coincidences arising from the activity 

outside the FOV, detector efficiencies, activity decay between bed positions, and the spatially 
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variant detector response function.  The simulator was validated by comparing means and 

variances measured from multiple realizations of simulated and measured studies based on 

identical phantoms, with several activity levels inside and outside the FOV [Lartizien, 03]. 

 

 

4.1.3 – Simulation conditions 

For the simulation of tumors, 1 cm diameter [Lartizien, 01] spheres were generated and 

added to the anthropomorphic phantom depicted in Fig. 4.1.  It was established, taking into 

account the dimensions of the organs and what seemed to be reasonable for this purpose, that 

these tumors would be in the number of 86: 34 in the lungs (distributed among the left and right 

lung), 22 in the liver, and 30 locations in the soft tissues.  With the constraint of the organ they 

were to be added to, each tumor location was randomly generated2. 

However, to avoid an image visually saturated with lesions as well as to properly use the 

numerical observer (no pile up of the tails of the profile involved in the observer’s expression, cf. 

A.7), the tumors were not included all in one single phantom, but equitably distributed among 6 

replicas of the same anthropomorphic phantom. 

As referred, from a structural point of view, the phantom is the result of a superposition 

of different objects.  So, setting the activity of each object properly it is possible to define the 

activity of every organ in the phantom: the final activity of one organ will be the sum of the 

activities of all the objects that are superposed in order to shape the organ.  Using this property, 

one can also establish the activity ratio between the lesion and the surrounding tissue. 

In the studies we are describing, a first activity ratio, AR50%, was chosen such that the 

fraction of lesions found by a human observer was about 50%, for an average patient size, as 

described by Lartizien [Lartizien, 03] for a similar study.  In parallel, another study was performed 

for a lower activity ratio, ARlow, just to investigate if any relevant difference is found between the 

reference activity ratio, AR50%, and the lower one.  Therefore, it was used an activity ratio one 

unit below, in each organ, than the corresponding reference ratio, a value adopted with no other 

objective than setting a lower activity ratio.  The lesion to tissue activity ratios are listed in Table 

4.1. 

                                                 
2 It was observed in a preliminary test, that increasing the number of tumors per organ while keeping 
their locations randomly distributed (within each particular organ) would result (especially in the liver and 
the lungs) in tails overlapping when using the NPWMF observer. 



4 –Numerical observer studies comp. different OSEM approaches for 3D whole-body PET 
 

115

 

 

Table 4.1 - Lesion to tissue activity ratios3 

 

 

 

For each replica of the anthropomorphic phantom, 25 independent noisy realizations 

were generated, using the geometry of the EXACT ECAT HR+ scanner.  Four bed positions 

were simulated, and the following conditions were assumed: 

• maximum ring difference: 22 

• span: 9 

• bed overlap: corresponding to 5 axial planes. 

The third bed position was chosen in order to establish the number of counts in each 

bed position4.  For this bed positions ASIM was given the following input: a total of 37 × 106 

trues, 90 × 106 random coincidences, and 45 × 106 scattered coincidences.  As referred in the 

previous section, these values are used in the process of adding Poisson noise to the sinograms. 

A flowchart of the file generation chain for each replica of the anthropomorphic 

phantom is represented in Fig. 4.2.  Shadow boxes correspond to files used as input in the 

reconstruction stage (which is not included in the flowchart).  Programs’ names are in courier 

font. 

The first step in the simulation is the generation of the noiseless emission sinogram, 

which is the most fundamental file on the basis of the rest of the chain, from the definition of 

the anthropomorphic phantom.  This is main task of ASIM, that uses all the input information 

about the scanner, the simulation conditions and other relevant intrinsic user defined parameters.  

In parallel, a voxelized image on the phantom is created for visual inspection. 

Another fundamental file is the one containing the Attenuation Correction Factors.  It is 

also generated by ASIM, on the basis of the phantom description and detailed input information.  

The use of these ACFs as weighting factors in the AWOSEM reconstruction requires an 

assemble bed operation, because the reconstruction of a single sinogram is done after assembling 

the different bed positions. 

                                                 
3 These values are defined exactly as ratios and not as a contrast, i.e., the ratios are not subtracted by one. 
4 ASIM takes one bed as reference and calculates the values for the others. 

Location of tumor AR50% ARlow 

Soft tissues 7.5 6.5 

Liver 3.0 2.0 

Lungs 6.5 5.5 
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Figure 4.2 – A flowchart of the file generation chain for each replica of the anthropomorphic 

phantom (reconstruction stage not included). 
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In addition to the fundamental noiseless emission sinogram and ACFs’ file, there is a 

third sinogram playing a fundamental role in all the simulation process: it is the normalization 

sinogram.  Once more, with the correct input data, ASIM is able to generate such a file5 and, 

after, to use it for normalizing sinograms as well to take part in the creation of the multiplicative 

and additive 3D weighting factors. 

With these three major files (noiseless sinogram, ACFs’ file, and normalization file), 

ASIM enters the loop on the noisy realizations, 25 times.  However, the script driving this loop 

is structured in such a way that some files are created just once, i.e, for the first noisy realization.  

Once they are created, they can be used in the remaining 24, because the information in there is 

common to all the replicas (for example, the multiplicative and additive weights, as well as the 

NEC weight). 

For all the noisy realizations except the first, each time the script reenters the loop, the 

way it proceeds is straightforward: the number of true, random, and scattered events is used to 

add pseudo-random noise.  Then, the noisy sinogram is normalized, corrected for attenuation, 

scatters and randoms, (using the normalization file) and, since we aim also to reconstruct in 2D, 

the corrected noisy sinogram is Fourier rebinned and their corresponding bed positions 

assembled into a single axially extended file, containing information for all the transaxial planes 

to be reconstructed.  This latter sinogram and the 3D normalized noisy emission scan are used as 

input data for the reconstruction6. 

In addition to these files, the first noisy realization was used for generating other 

important sinograms, required by the weighted OSEM approaches adopted for image 

reconstruction, in particular by NECOSEM. 

Since the multiplicative weighting factor taking part in NECOSEM is defined as a ratio 

between the mean and the variance, the exact value of this factor can only be determined for one 

sinogram bin if the mean and the variance are known for that individual bin.  This is a key point 

in all the research work done for this thesis, because it establishes a deep distinction between 

simulation studies and clinical data handling for reconstruction: while within a simulation is 

possible to keep knowledge about the mean and the variance used for adding pseudo random 

noise to each individual bin, in a sinogram from a real clinical scan there is a single value per bin 

– the counts recorded for the corresponding LOR.  So, for real clinical data, in contrast to 

simulation studies, there is no possibility to accurately calculate the NEC weighting factors. 

                                                 
5 Something that it is not represented in the flowchart of Fig. 4.2. 
6 It is not possible to assemble bed for 3D sinograms. 
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The requirement of keeping knowledge about the mean and the variance for all the 

individual bins in the emission sinogram is fulfilled by storing in the sinogram file corresponding 

to the first noisy realization, not only the simulated counts (as for the other 24 noisy realizations 

or for real clinical data), but also two other sinograms: one containing the mean values, the other 

the variance for each individual bin.  In practice, these three sinograms (emission, mean, and 

variance) are organized inside the same sinogram file by resorting to the expedient of using three 

different gates: gate 1 for the emission sinogram, gate 2 for the variance sinogram, and gate 3 for 

the mean values sinogram.  Because all the 25 noisy realizations for one replica of the 

anthropomorphic phantom are based on the same mean values and variances, it is enough to 

store the two latter sinograms only once. 

After normalizing the noisy emission scan, an additional operation is done for the first 

noisy realization: the calculation of the 3D NEC weighting factors.  They are: 

• the 3D NEC weights: due to the computational implementation of the algorithm, the 

NEC weights are, in fact, the reciprocals of the NEC factors. So, 

the variance is divided by the mean value, or, considering the 

sinogram file structure, values inside gate 2 are divided by those in 

gate 3 (cf. App. A8); 

• the multiplicative weights: to be used in ANWOSEM and, therefore, mathematically given 

by ( )ii
i NAw .

1= , where Ai are the ACFs and Ni the 

normalization factors (previously simulated by ASIM); 

• the additive weights: established in accordance to Eq. 3.2 (SPOSEM3D driving equation). 

A comparison between the radial profiles of the multiplicative and the NEC 3D 

weighting factors is graphically represented in Figure 4.3.  This corresponds to the simulated 

weights obtained from one of the simulated replicas7 of the anthropomorphic phantom, for the 

second bed position and axial plane 42 (in 63) within segment 0 (polar angle equal to zero).  The 

profile has 288 values, since this is the number of radial bins. 

With the same purpose – calculation of NEC weighting factors -, in parallel to the 

Fourier rebinning of the noisy emission sinogram (gate 1), gate 3 of the same file, i.e., the mean 

values sinogram, is also Fourier rebinned.  However, the effect of FORE on the data variance, as 

referred in section 3.2, can be modeled by single-slice rebinning (SSRB) the variance, and 

multiply the result by the slice variance reduction factors, K(z) (that depend only on the axial 

position of the transaxial plane).  Therefore, for the variance data (gate 2), the Fourier rebinning 

                                                 
7 These weights do not depend on the replica. 
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operation is replaced by a SSRB, followed by the multiplication of the result by the slice variance 

reduction factors.   The values for these factors8, one per transaxial plane, are contained in one 

simple dedicated text file (as indicated in Fig. 4.2). 
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Figure 4.3 – Radial profiles of the multiplicative (ANW) and NEC 3D weighing factors.  Profiles 

are for the second bed position, axial plane 42 of segment 0 and azimuthal angle 

equal to 0, for one replica of the anthropomorphic phantom. 

 

After the FORE stage, data are assembled in terms of bed positions, and once this is 

done, the 2D NEC weighting factors are finally determined by just dividing, for each sinogram 

bin, the mean value by the corresponding variance, i.e., dividing gate 3 by gate 2 values9. 

 

4.1.3.1 – Calculation of the slice variance reduction factors 

The calculation of the slice variance reduction factors, K(z), is done only once, since all 

the simulations are for the same scanner and, therefore, the normalization file is also the same.  

As referred, these factors depend only on the axial position of the transaxial plane. 

A uniform cylinder was considered for the simulation on the basis of this calculation, 

because it is a very simple object with a geometry equal to the scanner’s geometry.  After 

generating the noiseless emission sinogram, 50 noisy realizations are created by adding pseudo-

random noise to the former sinogram.  Then, all these noisy realizations are Fourier rebinned.  

Once this task is completed, the variance across the 50 noisy realizations is determined for each 

bin in the sinogram, and the sum of all the variance values (one per bin) in each transaxial plane 

                                                 
8 To be more exact, their reciprocals. 
9 All programs keep track and update the values of the mean (gate 3) and variance (gate 2). 
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is recorded in a variable named “var_fore(z)”.  So, this variable is, in fact, a vector with 63 

elements (one per transaxial plane). 

In parallel, the variance used for adding Poisson noise to the original noiseless emission 

scan is stored and subsequently rebinned using the SSRB algorithm.  The values in each 

transaxial plane of this rebinned variance sinogram are summed and the resulting value attributed 

to another variable, “var_ssrb(z)”. 

With the values contained in “var_fore(z)” and “var_ssrb(z)”, the slice variance reduction 

factors are mathematically established according to the following equation: 

)(var
)(var

)(
z_ssrb
z_fore

zK =  

The reciprocals of these factors are graphically represented in Figure 4.4. 
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Figure 4.4 – The reciprocal values of the slice variance reduction factors, K(z). 

 

 

4.2 – Image reconstruction 

 

The simulated data were reconstructed with five different weighted versions of the 

OSEM algorithm: FORE+AWOSEM, FORE+NECOSEM, ANWOSEM3D, NECOSEM3D, 

and SPOSEM3D.  Figure 4.5 illustrates how the output of the simulation is used in the 

reconstruction stage. 

With the exception of SPOSEM3D, all approaches use just a multiplicative weighting 

factor and can be mathematically expressed as in Eq. 3.1.  In SPOSEM3D (Eq 3.2), there is also 

an additive weight, that introduces the additional need of an estimation of the mean for the 
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randoms, id .   The multiplicative factor, as in the case of ANWOSEM, is given by 

( )ii
i NAw .

1= . 

 
Figure 4.5 – A schematic representation of the five different weighted versions of OSEM used for 

reconstructing simulated data. 

 

The implementation of NECOSEM3D, combined with the way the NEC weights were 

established (variance over mean value), requires caution in the use of these weights.  In fact, for 

bins corresponding to LORs that do not cross the object, the mean value (gate 3) will be equal to 

zero.  Therefore, without any procedure to avoid this situation, the computer will be required to 
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perform a division by a zero value.  The strategy adopted to overcome this problem was to 

define the object boundaries by using the attenuation map: sinogram bins where the ACFs are 

equal to 1, correspond to LORs that are not attenuated and, thus, do not cross the object. 

However, an additional problem was found for bins in the borders of the object: the 

mean values for such bins are very small and the resulting NEC weights would be extremely 

high, in sharp contrast to the situation outside the object where the NEC weights were forced to 

be equal to 1.  So, to avoid sharp transitions in the NEC weighting factors, instead of exactly 1, a 

threshold slightly higher than 1 was used in the attenuation map to discard a region over the 

borders where the NEC weights would be extremely high due to the rather low mean values on 

the emission sinogram.  In sum, the NEC weighting was expressed as: 

• for LORs outside the object or crossing the borders: wNEC3D  = 1 (Fig. 4.3); 

• for LORs crossing the object: y
yw DNEC
)(2

3
σ= . 

The threshold used within the attenuation map to distinguish these two situations – 

attenuation superior to 10% -  was established empirically, after testing many different values.  

This fact, however, raises a few questions that will be addressed later on this chapter. 

In all OSEM reconstructions, eight subsets were used.  This value was adopted mainly 

based on practice, since it is usually assumed that the result of an OSEM reconstruction after a 

certain number of iterations is equivalent to the result of a ML-EM reconstruction after iterating 

a number of times equal to the product of the OSEM iterations by the number of subsets.  

Under such a premise, four iterations of these weighted OSEM versions (except for 

SPOSEM3D) would by directly comparable to 32 iterations of the ML-EM algorithm – a 

relation people usually find useful in practice. 

The maximum number of iterations was limited to 12, except for the SPOSEM3D 

algorithm, where a ceiling of 20 iterations was defined.  This is because the additive term relents 

the convergence rate of SPOSEM and, therefore, it should be allowed to iterate more. 

A 3D Gaussian post-smoothing filter was applied to the reconstructed images in order to 

improve the tumor detectability.10 

 

 

 

                                                 
10 In a previous study, for similar conditions, Lartizien et al. [Lartizien, 00] used a post-smoothing filter for 
maximizing the SNR on reconstructed images. 
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4.3 – Image quality assessment 

 

In medical imaging, the definition of image quality is intrinsically dependent of the 

clinical procedure.  In the present case, the goal, as said in the introduction of this chapter, is to 

detect tumors in whole-body PET imaging.  Therefore, from this point of view, image quality 

will be directly dependent on the improvement on the ability of the human observer (physician, 

in most of the cases) to perform the detection task.  Since the dimension of the sample (number 

of images to be analyzed) is enormous, relying on human observers becomes impracticable. The 

3D Non-Prewhitening Matched Filter (NPWMF) numerical observer was chosen. 

An image contrast versus image noise study was also performed in order to complete the 

information from the numerical observer study. 

 

 

4.3.1 – NPWMF observer study 

The NPWMF observer was used since it has been shown in a previous study for similar 

imaging conditions that the NPWMF detectability index allows good correlation with human 

observer detectability [Lartizien, 04].  In fact, even if the tasks under comparison were different 

(detection and localization for the case of the human observer whereas signal known exactly for 

the numerical observer), both observers gave similar ranking orders for the reconstruction 

approaches under study. 

The NPWMF numerical observer uses as a decision variable, dNPW, the inner product of 

the image with the noise-free volumetric target (tumor) profile in the image, and the 

corresponding detectability index is given by (cf. Appendix A.7): 

 

( ) ( )( )0
2

1
2

01

2
1 gsgs

gsgs

⋅+⋅⋅

⋅−⋅
=

σσ
NPWd    Eq. 4.1 

 

where g0 and g1 are respectively the vectors of the image voxel values of the signal-absent (no 

lesion) and signal-present (with lesion) class, s the vector of the expected signal profile, < > and 

σ2() the average and the variance across the realizations. 

Lartizien et al. [Lartizien, 04] have also studied the minimum number of realizations that 

would lead to a stable estimate of the variance terms in Eq. 4.1, concluding that the variance 
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estimates stabilizes after approximately 25 realizations.  So, this is the justification for the 

number of realizations adopted for our own study. 

As required by the NMWMF index, in addition to the noisy, signal-present, emission 

sinograms whose simulation is described in section 4.1.3, two other sets of sinograms had to be 

generated: 

• noisy emission sinograms of the same anthropomorphic phantom, without any signal 

present, i.e., with no tumors added.  The same number of noisy realizations, 25, was 

simulated, under the same simulation conditions; 

• noisless emission sinograms of the tumors alone, using, again, the same simulation 

conditions.  Since there is no noise, these sinograms needed to be generated only once 

for each of the 6 tumor sets associated with the 6 replicas of the anthropomorphic 

phantom. 

All of these additional sinograms were reconstructed with the same OSEM algorithms 

used for reconstructing former noisy emission sinograms of the phantom with tumors.  The 

same number of iterations was also used and, when calculating the NPWMF index for a certain 

iteration number, the image vectors and the template (expected signal profile) in Eq. 4.1 were 

based on reconstructed images after that particular number of iterations.  For example, if the 

NPWMF is calculated for iteration number 4, this means that all the reconstructed images, i.e., 

anthropomorphic phantom with tumors, anthropomorphic phantom without tumors, and 

tumors alone, are those obtained after 4 iterations of the OSEM algorithm under study. 

The standard deviation associated with the definition of the NPWMF index (Figures 4.11 

– 4.15 ) can be estimated based on the error propagation formula [Bevington, 94]: 
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equation 4.2: 
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4.3.2 – Study of contrast versus noise 

For each independent realization, i, and reconstruction method, j, the activity ai,j,k of the k 

lesion was defined as the average value of all image voxels within 10 mm spherical region-of-

interest (ROI) centered on the true lesion location. The mean value kja ,  and the standard 

deviation ( )kja ,σ  of the lesion activity was estimated across all realizations { }25,...,1,, =ia kji . 

Noise was defined as ( )kja ,σ  and the contrast, Cj,k, as 1~
,

,
, −=

kj

kj
kj a

a
C , where kja ,

~  is the average 

across the 25 independent noisy realizations of the phantom without tumors. 

 

 

4.3.3 – Methodology to fix the amount of post-smoothing and the 

number of iterations. 

To select the appropriate amount of post-smoothing we studied the variation of the 

NPWMF index as a function of the FWHM of the post-smoothing filter, for all the OSEM 

approaches under study.  This was done for tumors in the liver, lungs, and soft tissues, as well as 

for the two activity ratios.  The optimum value for the FWHM was chosen such as to optimize 

the NPWMF indices. 

For the number of iterations, we proceeded differently: we have, first of all, investigated 

how does the NPWMF index vary with the number of iterations.  Since, as it will be shown latter 

on this chapter, a monotonic variation was found, i.e., there is a lack of an optimum value for 

the number of iterations, some other criterion had to be identified in order to define the number 

of iterations.  This criterion involved taking as reference the tumor-to-background contrast level 

in reconstructed images for FORE+AWOSEM (since it is used in clinical practice) and find, for 

the other algorithms, the number of iterations resulting in images with an equivalent contrast for 

the corresponding organ. As it is possible to fit this criterion for a different number of 

FORE+AWOSEM iterations, we fixed in 4 the number of iterations for this reconstruction 

scheme, which is a number usually adopted in clinical routine, and used the aforementioned 

criterion to establish the number for the other algorithms.  Whenever it was interesting to 

observe the results for another number of iterations, the same procedure was used, taking as 

reference 8 iterations of the FORE+AWOSEM. 
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4.4 – Results 

 

A different number of results were obtained, concerning the different parameters under 

investigation.  These results will be grouped and introduced in different sub-sections of the 

present section. 

We will start by showing how the NPWMF index varies with the number of iterations, 

and use this knowledge to investigate the post-smoothing filter’s FWHM that maximizes the 

NPWMF detectability index.  These can be considered preliminary results upon which relies the 

most fundamental comparison between the performance of the different weighted OSEM 

versions.  Such a comparison is the core of the present study, and detailed results will be present, 

in special those involving the NPWMF numerical observer.  As complementary information, the 

most important results from the study of contrast versus noise are also described. 

The discussion of all the results is postponed to section 4.5. 

 

 

4.4.1 – Preliminary results for fixing the amount of post-smoothing 

and the number of iterations 

The first parameter to be fixed was the number of iterations.  As referred in section 4.3.3, 

we started by plotting the variation of the NPWMF index, averaged over all tumors in each 

region, as a function of the number of iterations, for the two activity ratios and using a post-

smoothing filter with a FWHM equal to 5.5 mm.  These plots are in Figure 4.6.  The observed 

monotonic variation – lack of an optimum value - justifies the requirement of another criterion 

(as done). 

Based in results reported later on this section, suggesting equivalent values for the tumor-

to-background contrasts on the liver and lungs, on images after 4 iterations of 

FORE+AWOSEM, FORE+NECOSEM, ANWOSEM and NECOSEM3D, for studying the 

amount of post-smoothing we used this number of iterations for all of these strictly weighted 

OSEM versions.  Due to the slower convergence of SPOSEM3D, as a consequence of the 

additive term on the equation (Eq. 3.2), we used, instead, 15 iterations of this algorithm.  In 

Figure 4.7, the variation of the NPWMF index averaged over all the tumors in each organ (lungs, 

liver, and soft tissues), is plotted against the FWHM of the post-smoothing filter, for the two 

activity ratios, A50% and Alow, after 4 iterations of OSEM (except for the case of SPOSEM3D 

where 15 iterations were used). 
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Figure 4.6 – Variation with number of iterations of the NPWMF index averaged over all tumors 

in the liver (top), lungs, and soft tissues (bottom row).  Left column: AR50%; right 

column: ARlow.  Post-reconstruction smoothing filter FWHM = 5.5 mm. 

 

Observing the curves, we verify that there is no absolute optimum value for all the 

organs, activity ratios and OSEM versions.  However, a FWHM equal to 5.5 mm corresponds 

either to the optimum value (in most of the cases), or is close to this value11.  Using images after 

                                                 
11 Exceptions are the NECOSEM3D, whose maximum value is, in general, slightly higher, and the 
situation in the liver, for the SPOSEM3D (after 15 iterations), where it seems there is no optimum value. 
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8 iterations12 (figures not shown), we found similar trends. So, henceforth this value will be used 

for the FWHM of the post-smoothing filter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 – Variation with the post-smoothing filter’s FWHM of the NPWMF index averaged 

over all tumors in the liver (top ), lungs, and soft tissues (bottom row), after 4 

iterations (15 iterations of SPOSEM3D).  Left column: AR50%; right column: ARlow. 

 

                                                 
12 This refers to all the OSEM versions except SPOSEM3D. 

5.7

6

6.3

6.6

6.9

7.2

7.5

2.
5 3

3.
5 4

4.
5 5

5.
5 6

6.
5 7

7.
5 8

FWHM of the post-smooth filter (mm)

N
PW

M
F 

in
de

x

4.8

5

5.2

5.4

5.6

5.8

6

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

FWHM post-smooth filter (mm)

N
PW

M
F 

in
de

x
FORE+AWOSEM

FORE+NECOSEM

ANWOSEM3D

NECOSEM3D

SPOSEM3D

LungsAR50% 

4

4.2

4.4

4.6

4.8

5

5.2

2.
5 3

3.
5 4

4.
5 5

5.
5 6

6.
5 7

7.
5 8

FWHM of the post-smooth filter (mm)

N
PW

M
F 

in
de

x

2

2.1

2.2

2.3

2.4

2.5

2.6

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

FWHM of post-smooth filter (mm)

N
PW

M
F 

in
de

x

FORE+AWOSEM

FORE+NECOSEM

ANWOSEM3D

NECOSEM3D

SPOSEM3D

LiverAR50% ARlow

ARlow

5

5.6

6.2

6.8

7.4

8

8.6

2.
5 3

3.
5 4

4.
5 5

5.
5 6

6.
5 7

7.
5 8

FWHM of the post-smooth filter (mm)

N
PW

M
F 

in
de

x

4.8

5.2

5.6

6

6.4

6.8

7.2

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

FWHM post-smooth filter (mm)

N
PW

M
F 

in
de

x

FORE+AWOSEM

FORE+NECOSEM

ANWOSEM3D

NECOSEM3D

SPOSEM3D

Soft tissuesAR50% ARlow



4 –Numerical observer studies comp. different OSEM approaches for 3D whole-body PET 
 

129

In Figure 4.8 we show a coronal view of the reconstructed phantom with 

FORE+AWOSEM, FORE+NECOSEM, ANWOSEM3D, and NECOSEM3D after 4 

iterations, as well as a reconstruction with the SPOSEM3D algorithm after 15 iterations (8 

subsets in all cases).  Images were post-smoothed with a gaussian filter (FWHM = 5.5 mm) and 

are shown for the activity ratio A50%. 

 

 
 

Figure 4.8 – Coronal view of the reconstructed phantom.  All the images were obtained after 4 

iterations, except for SPOSEM3D (15 iterations).  Image in the bottom right is the 

average image taking 25 reconstructions with ANWOSEM3D after 4 iterations.  

Post-smoothing filter: FWHM = 5.5mm; activity ratio: AR50%.  Arrows point to the 

tumors visible on the average image. 

 

FORE+AWOSEM FORE+NECOSEM

SPOSEM3D (15 it.) ANWOSEM3D

NECOSEM3D 
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Deserving mention is the fact that, for a few realizations of the reconstructed images, 

typically one in each set of 25, as the number of NECOSEM3D iterations increases, the activity 

becomes concentrated in a few points on the border of the object – something that we can infer 

by comparison with a regular reconstructed image.  Whenever this effect is verified, after 8 

iterations, for example, the image contrast is virtually reduced to zero, because all the activity is 

distributed among a few points in the reconstructed volume.  For the purpose of image quality 

assessment through the use of the NPWMF observer, these images were discarded. 

 

 

4.4.2 – Study of contrast versus noise 

The tumor-to-background contrast is used as a complementary figure-of-merit to 

compare the performance of the reconstruction algorithms as a function of the number of 

iterations.  In Figure 4.9 are plotted the values for the contrast, averaged across all the tumors in 

the liver, lungs, and soft tissues, as a function of noise values (averaged in the same way), based 

on images for activity ratio AR50% and using a post-smoothing filter with a FWHM of 5.5 mm.  

It should be stressed that since the noise increases with the number of iterations (a very well 

know result for this sort of reconstruction algorithms), plots in Fig. 4.9 can also be interpreted as 

showing the variation of the tumor-to-background contrast with the number of iterations.  

Therefore, in this figure, each noise value corresponds to a different iteration. 

The higher number of iterations adopted for the SPOSEM3D (15 iterations) is based on 

the slower convergence of this algorithm, which is clearly shown in Fig. 4.9. 
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Figure 4.9 

 

Variation with the number of 

iterations of the tumor-to-background 

contrast and noise averaged over all the 

tumors in the liver, lungs, and soft 

tissues.  FWHM = 5.5 mm. 
 

 

OSEM implementation LIVER LUNGS
SOFT 

TISSUES 
Contrast 0.414 0.854 1.176 

dNPW 4.357 6.471 6.113 FORE+AWOSEM (4 it) 
 

Noise 0.327 0.082 0.249 
Contrast 0.393 0.821 1.125 

dNPW 4.785 6.845 6.386 FORE+NECOSEM (4 it) 
 

Noise 0.280 0.076 0.226 
Contrast 0.385 0.836 0.919 

dNPW 4.945 7.023 7.036 ANWOSEM3D (4 it) 
 

Noise 0.282 0.076 0.204 
Contrast 0.397 0.895 0.953 

dNPW 4.855 7.237 8.077 SPOSEM3D (15 it) 
 

Noise 0.273 0.086 0.177 
Contrast 0.372 0.801 0.890 

dNPW 4.757 6.451 6.398 NECOSEM3D (4 it) 
 

Noise 0.255 0.072 0.188 
 

Table 4.2 – Tumor-to-background detectability index, contrast and noise, averaged across all the 

tumors on each organ, for different reconstruction schemes and number of 

iterations.  (FWHM = 5.5 mm). 
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4.4.3 – NPWMF observer study 

On Table 4.2 we list the detectability indices, dNPW, for the five different weighted OSEM 

reconstructions.  We also show the corresponding values for the tumor-to-background contrast 

(as defined in section 4.3.2) and noise.  Values in the table are the average values across all the 

tumors in each organ, i.e., 
organNPWjd , 

organjC , and ( )
organjaσ  (the average noise).  Images 

were obtained for the activity ratio AR50% and smoothed using a gaussian filter with a FWHM 

equal to 5.5 mm. 

 

 

We also investigated how the results obtained for two particular algorithms compare with 

each other, in one particular organ and after a convenient number of iterations (based on 

previous results from the study of contrast versus noise), taking all the tumors in that organ.  All 

the scatter plots are for AR50% and a post-smoothing filter’s FWHM equal to 5.5 mm.  Error bars 
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Figure 4.10 

 

Comparison between 

FORE+NECOSEM (4 it.) and 

FORE+AWOSEM (4 it) NPWMF indices, 

for tumors in the liver, lungs, and soft 

tissues.  AR50%, FWHM = 5.5 mm. 

 

) ) 
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associated with the NPWMF index for each tumor were set considering the standard deviation 

derived from the error propagation formula, as described in section 4.3.1. 

In Figure 4.10 we compare the indices resulting from FORE+NECOSEM with those 

obtained with FORE+AWOSEM, after 4 iterations, for all the tumors in the liver, lungs and soft 

tissues.  Activity ratio in the phantom is AR50% and images were subjected to a post-smoohting 

filter with FWHM equal to 5.5 mm. 

Figure 4.11 is for the comparison between ANWOSEM3D (4 iterations) and 

FORE+AWOSEM (4 iterations).  As in the former case, post-smoothing filter’s FWHM equal 

to 5.5 mm, original activity ratio: AR50%. 

 

Figure 4.12 is for the comparison between ANWOSEM3D and FORE+NECOSEM 

after 4 iterations and Figure 4.13 for the comparison between NECOSEM3D and 

FORE+AWOSEM (both after 4 iterations).  The activity ratio in the original phantom and the 

post-smoothing filter are the same as previously: AR50%, and FWHM = 5.5 mm. 
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Figure 4.11 

 

Comparison between ANWOSEM3D 

(4 it.) and FORE+AWOSEM (4 it) NPWMF 

indices, for tumors in the liver, lungs, and 

soft tissues.  AR50%, FWHM = 5.5 mm. 

 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

FORE+AWOSEM (4 it)

A
N

W
O

SE
M

3D
 (4

 it
)

Liver



4 –Numerical observer studies comp. different OSEM approaches for 3D whole-body PET 
 

134 

 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

FORE+NECOSEM (4 it)

A
N

W
O

SE
M

3D
 (4

 it
)

Liver

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

FORE+NECOSEM (4 it)

A
N

W
O

SE
M

3D
 (4

 it
)

Lungs

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

FORE+NECOSEM (4 it)

A
N

W
O

SE
M

3D
 (4

 it
)

 

Figure 4.12 

 

Comparison between ANWOSEM3D 

(4 it.) and FORE+NECOSEM (4 it) 

NPWMF indices, for tumors in the liver, 

lungs, and soft tissues.  AR50%, FWHM = 5.5 

mm. 
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Figure 4.13 

 

Comparison between NECOSEM3D 

(4 it.) and FORE+NECOSEM (4 it) 

NPWMF indices, for tumors in the liver, 

lungs, and soft tissues.  AR50%, FWHM = 5.5 

mm. 
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p  = 0.134
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Figure 4.14 

 

Comparison between NECOSEM3D 

(4 it.) and FORE+NECOSEM (4 it) 

NPWMF indices, for tumors in the liver, 

lungs, and soft tissues.  AR50%, FWHM = 5.5 

mm. 
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Figure 4.15 

 

Comparison between SPOSEM3D 

(15 it.) and ANWOSEM3D (4 it) NPWMF 

indices, for tumors in the liver, lungs, and 

soft tissues.  AR50%, FWHM = 5.5 mm. 
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Finally, in Fig. 4.14 are compared NECOSEM3D and FORE+NECOSEM (once again 

after 4 iterations of these algorithms), and in Fig. 4.15 we compare two fully 3D OSEM 

algorithms: SPOSEM3D (15 iterations) and ANWOSEM3D (4 iterations).  The activity ratio in 

the original phantom and the post-smoothing filter are still the same: AR50%, and FWHM = 5.5 

mm. 

 

 

4.5 – Discussion and conclusions 

 

During this study it was possible to find a value for the FWHM of the post-smoothing 

filter, which, applied to the reconstructed images, results in a maximum value for the NPWMF 

detectability index.  This is the case for all the studied OSEM versions.  This value is not 

absolute, i.e., it is not exactly the same for all the activity ratios and organs, but a FWHM of 5.5 

mm, for 1 cm diameter spherical tumors, is the optimum value in most of the cases or is close to 

this optimum.  Also relevant is the fact that such an optimum value is not dependent from the 

number of iterations used. 

On the other hand, the NPWMF detectability index can not be used to define the 

optimum number of iterations, since it was verified that this index is monotonicaly decreasing 

with the number of iterations.  Due to this, we adopted the tumor-to-background contrast level 

as a figure-of-merit, to define the number of iterations. 

Considering the variation of the contrast with the number of iterations (Fig. 4.9), we 

observe the slower convergence of SPOSEM3D compared to the other studied 

implementations.  This result is not surprising since there is an additive term that is responsible 

for the effect.  The fact that three times more iterations (15 instead of 4) were needed to reach 

similar tumor-to-background contrast, is dependent on the ratio between scattered plus random 

coincidences and unscattered true coincidences.  Thus, this ratio between the number of 

iterations is valid just for this particular study. 

For the other reconstruction algorithms studied, there are no significant variations in the 

way the contrast depends on the number of iterations, except for the case of FORE+AWOSEM 

where the noise seems to increase faster with the number of iterations. 

From the direct comparison of the NPWMF indices for different tumors in each region, 

it is clear that FORE+NECOSEM has an overall better performance than FORE+AWOSEM.  

The same conclusion could be drawn observing the figures where ANWOSEM3D is plotted 
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against FORE+AWOSEM: the former results in higher detectability indices than 

FORE+AWOSEM.  The difference between ANWOSEM3D and FORE + NECOSEM is less 

evident than in the previous case.  Similar results are found when comparing SPOSEM3D with 

FORE+AWOSEM and FORE+NECOSEM. 

The analysis of Figure 4.13 suggests less obvious differences between NECOSEM3D 

and FORE+NECOSEM.  However, from the observation of a similar plot where 

NECOSEM3D is compared with FORE+AWOSEM (Fig. 4.13), it is possible to argue for a 

better performance of the former over the last reconstruction algorithm.  In relation to the other 

3D algorithms, no relevant differences were found, except is the soft tissues, where 

SPOSEM3D, after 15 iterations, performs better than ANWOSEM (4 iteration). 

Thus, it seems that the additional complexity associated with NECOSEM3D has no 

direct positive impact on the detectability of tumors on images reconstructed using this version 

of the weighted OSEM algorithm. 

The behavior of the fully 3D NECOSEM reconstruction depends very much on the 

profile of the NEC weights, due to rounding and other numerical artifacts that could result from 

the processing of these weights.  We observe that sharp variations on the profile of the NEC 

weight lead to a reconstruction very sensitive to the noise on the sinograms.  In some cases, the 

algorithm proceeds towards reconstructed images that look similar to images obtained with the 

other algorithms, in terms of visible structures and contrast. For other cases, however, some 

points drain all the activity during the reconstruction process: the final image after a few 

iterations is reduced to zero everywhere except in these points.  The referred strategy of 

constraining the NEC weight to be equal to one for sinogram bins inside the object but close to 

its border (as well as outside the object), is an attempt to reduce sharp variations on the NEC 

weight profile.  The use of the attenuation map to achieve this goal proved useful but didn’t 

resolve the problem: we still had to eliminate, on average, one noisy realization per each set of 

25.  The threshold on the attenuation is a way to define how deep inside the object we are 

constraining the use of the expression established in section 3.1.1 to calculate the 3D NEC 

weight.  Since the attenuation map is usually accessible, in theory it should be possible to tune 

the threshold so that reconstruction proceeds correctly.  This is, nevertheless, a rather empirical 

choice. 

We finally note that the trends observed on the results we have been describing are, in 

general, very similar for the two tumor-to-background activity ratios: AR50%, and ARlow. 

In the next chapter we will describe the use of some of these reconstruction algorithms 

with real clinical data, in a context where, among other constraints, there is no knowledge about 
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the variance or the mean.  Such fact has strong implications in the implementation of 

NECOSEM and a strategy must be devised to overcome this lack of information. 
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5 – Comparing NEC-based OSEM with other 

weighted OSEM approaches for clinical 3D whole-

body PET imaging 

 
In this chapter we compare the performance of different weighted OSEM approaches 

for the reconstruction of 3D clinical whole-body PET data.  Among these approaches, we aim to 

verify if the use of an accurate statistical model for OSEM, i.e., if the use of a NEC-based 

OSEM, is affordable with clinical data and if it produces images with an improved quality (again, 

for the clinical task of tumor detection) when compared to the clinical widespread 

FORE+AWOSEM reconstruction algorithm. 

The results described in the former chapter for simulated data show improvements in 

tumour detectability when a realistic statistical model for the data is used.  This is the case of 

FORE+NECOSEM when compared with FORE+AWOSEM.  However, these results are for 

simulated data, which means that relevant information concerning data is available and can be 

used directly in the reconstruction stage.  In particular, as referred previously, this is critical for 

the use of NECOSEM, since the NEC weighting factor, wNECi, is defined as the ratio between 

the mean and the variance (section 3.1.1): 

( )i

i
NECi y

y
w 2σ

=      Eq. 5.1 

 

Simulated data provide the ideal conditions from this point of view since the NEC 

weighting factors can be determined exactly. 

This is not the case for clinical data, for which there is no other value associated with a 

particular bin than its own value, i.e., there is no information about the mean and the variance 

associated with each data bin.  Therefore, in order to use a NEC based reconstruction, it is 

necessary, first, to estimate these moments for each data bin.  However, even if this is possible, 

these will be just estimated and not exact values, which means that they contain an error factor.  

How far this error translates into the NECOSEM performance is part of the research work this 
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chapter is devoted to: FORE+NECOSEM is compared not only to FORE+AWOSEM but also 

to fully 3D weighted OSEM approaches. 

Another important point regarding clinical data is to verify if the use of an accurate 

statistical model is advantageous for over weighted patients, whose resulting whole-body PET 

images are very noisy. 

In the following sections we will be describing how data was acquired and post-

processed (corrected for some effects) before matching the requirements for being given as 

input data to the reconstruction algorithms.  The estimation of the weighting factors, in 

particular for NEC, is also detailed.  The chapter proceeds with a description of the 

reconstruction stage and, finally, the most important results are presented and discussed. 

 

 

ID 
Weight 

(kg) 
Height 

(cm) 
Dose 

(MBq) 
Age 
(y) 

Sex 
 

BMI  

1 52 179 384.8 56 M 16.2 
2 45 164 370 76 F 16.7 
3 48 167 370 42 F 17.2 
4 65 178 188 71 F 20.5 
5 65 174 351,5 52 M 21.5 
6 63 170 370 80 M 21.8 
7 59 158 384.8 64 F 23.6 
8 75 178 338.5 44 M 23.7 
9 75 178 381.1 44 M 23.7 
10 90 186 547.6 44 M 26.0 
11 86 180 499.5 44 M 26.5 
12 83 174 484.7 75 M 27.4 
13 90 181 444 45 M 27.5 
14 67 156 414.4 74 F 27.5 
15 90 178 370 70 M 28.4 
16 94 180 407 71 M 29.0 
17 79 160 407 71 M 30.9 
18 96 171 ? 41 F 32.8 
19 92 164 429.2 54 F 34.2 
20 87 158 396 73 F 34.9 
21 85 152 370 73 F 36.8 
22 95 160 370 76 F 37.1 
23 115 175 555 51 M 37.6 
24 110 168 403.3 72 M 39.0 
25 120 164 414 64 F 44.6 

 

Table 5.1 – A description of the 25 scans used in the present study, ordered according to their 

body mass index.  Records for patient #26 were not available.  (BMI = Weight(kg) / 

Height(m)2) 
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5.1 – Data acquisition and description 

 

Clinical data were acquired in 3D mode using the Siemens/CTI HR+ scanner and 

corrected for attenuation, randoms and scattered photons, as well as for geometric effects 

(normalization).  Data handling and processing will be detailed in the following section. 

All the scans were obtained at the Service Hospitalier Frédéric Joliot, in accordance with 

the clinical protocols established at the institution.  It should be noted, however, that the author 

was not present during the scans, which are performed, under the supervision of the medical 

staff, by a nurse or a technologist.  Data were, therefore, chosen a posteriori. 

This choice was made among the exams available, considering 25 patients with different 

body mass indices (BMI).  Due to the interest in comparing reconstructed images for over 

weighted patients, most of the exams correspond to patients with large BMIs. In Table 5.1 we 

list some useful data regarding each exam. 

 

 

5.2 – Data pre-processing 

 

The designation of data pre-processing is meant to distinguish a set of operations 

performed over the data using proprietary routines available only in the scanner’s dedicated 

computer, from the other conventional processing that can be done elsewhere (as long as output 

files from proprietary pre-processing become available and usable as input files at this stage) and 

is similar to the processing chain simulated data are also subjected to1. 

This pre-processing chain, which is graphically represented in Figure 5.1, is necessary due 

to some specific characteristics of the clinical data acquired with the HR+ scanner operating in 

regular conditions.  In fact, in order to match the requirements of the subsequent stages, i.e., in 

order to use these data as input for the routines that were previously adopted for correcting 

simulated data for attenuation, normalization, and other operations (c.f. Fig. 4.2), clinical data 

must be first properly worked. 

First of all, at the very beginning of the chain are the three files that can be downloaded 

from the server where all the clinical exams are stored.  These files are: 

                                                 
1 With the very important exception of the operations that are required for estimating the NEC weighting 
factors. 
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Figure 5.1 – A flowchart of the data pre-processing stage that uses dedicated routines available 

only in the scanner’s proprietary computer.  Outside the boxes, but close to them, is 

the name of the routine involved in each process. 

 

• the emission scan (*emission scan*): a file with the trues; 

• the original attenuation file (*segmented_attenuation), containing the ACFs in 2D 

corrected for the arc effect; 
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• the original normalization file (*Norm3D_VP*), not in sinogram format, accounting for 

geometric effects and a calibration factor. 

As soon as these files become available, before using them outside the scanner’s 

proprietary computer, for ethical reasons the patient name is removed and the data made 

anonymous.  This procedure was strictly followed. 

Concerning the original attenuation file, the most important feature to be considered is 

the fact that it is already corrected for the arc effect (something that is automatically done by the 

proprietary routines used for its generation). However, as for the case of simulated data, raw data 

is normalized and corrected for the arc effect latter, by using the normalize routine.  So, since 

the attenuation data is also input for that routine, it must not be corrected for the arc effect. 

To match this requirement of the main normalization stage, the original attenuation file 

must be previously de-corrected for the arc effect, something that is done at the beginning of the 

pre-processing chain (as described in Fig. 5.1) by using the arc_atten2 routine and results in 

the file designated as “attenuation_arc.a”.  In addition to this important task, another routine – 

submit3DAttenJob – is used to compute 3D ACFs from 2D ACFs, and also for granting 

data the correct format (in accordance with the data organization requirements of the 

subsequent processing routines). 

The scattered photons component – which is necessary for the calculation of the NEC 

weighting factors – is not directly available from the scanner, once more because of the 

characteristics of the proprietary software.  However, it can be estimated indirectly from two 

different files that can be generated from the original emission sinogram, using the proper 

corrections. 

As illustrated in Fig. 5.1, using as input the original emission sinogram, the 3D 

attenuation sinogram with arc effect, and the original normalization file, the submitReconJob 

routine can perform different corrections over the emission data and, therefore, generate 

different files.  In particular, by properly setting the routine parameters’, one can order the 

following files: 

 

• corr_scati = Ni.Ai.Ti, where Ni is for the normalization factors, Ai for the attenuation 

correction factors and Ti for the trues; 

• corri = Ni.Ai.(Ti -si), where si is for the scattered. 

  

                                                 
2 This routine was written by Charles Pautrot [Pautrot, 03]as part of his research work developed in the 
S. H. F. J.. 
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Once we have these files, their difference results in the following file: 

corri - corr_scati = Ni.Ai.si 

A final division by Ni.Ai results in the file scat_corr.S, that contains the data scattered 

component. 

Strictly for 2D reconstruction purposes, and in spite of the routine name, a parallel pre-

processing path is taken to convert the original 2D attenuation file’s structure according to the 

latter processing requirements, keeping its 2D nature.  In case of multi-bed acquisitions, an 

assemble bed operation is also performed. 

 

 

5.3 – Data corrections and the estimation of data mean and 

variance 

 

Given the goal of this study, the most critical part of the work is the estimation of the 

NEC weighting factors.  As referred at the beginning of this chapter, the use of Eq. 5.1 requires 

knowledge about data mean and variance, and, since for clinical data this sort of information is 

not available (in strong contrast with simulated data), it must be estimated. 

The trues, D
it 3  ( )( )i

D
i

D
i rpt −= 33 , are the raw clinical data.  Correcting these data for 

attenuation and geometrical effects – normalization - can be mathematically expressed as 

follows: 

 

( )i
D

iii
D

i stANy −= 33 .     Eq. 5.2 

 

Therefore, the mean value and the variance of the 3D clinical data after corrections are 

given by Eq.5.3 and 5.4, respectively. 

 

( )i
D

iii
D

i stANy −= 33 .     Eq. 5.3 

( ) ( ) ( )i
D

iiii
D

iii
D

i rtANrpANy 2.. 32232232 +=+=σ    Eq. 5.4 
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5.3.1 – The estimation of the mean 

From Eq. 5.3 it results the need to estimate the mean value for the trues, D
it 3 , in order to 

obtain the mean value of the corrected data.  Since there is a single value per bin (the number of 

counts for the corresponding LOR) and there is no possibility to replicate the number of 

realizations of the exam, the original raw data were smoothed and the value of each bin after the 

smoothing operation assumed as an estimator of its own mean value. 

The smoothing was done by using the Fast Fourier Transform (FFT) and a Gaussian 

filter in the Fourier space, using a routine designed by C. Pautrot, who has verified in his 

research work [Pautrot, 03] that such a method represents a good trade-off between the desired 

result and speed in the computational execution of the task.  The Gaussian transaxial FWHM 

was set equal to 2.20 mm and the axial FWHM equal to 2.13 mm [Pautrot, 03]. 

Before smoothing, however, the trues must be corrected for geometrical effects and 

detector efficiency, i.e., must be normalized.  Once they are normalized, they are smoothed as 

described above.  Because the original file with the raw data will be latter submitted again to the 

normalization routine (a stage where not only the normalization but also the attenuation are 

considered and corrected for), the smoothed trues must, therefore, be de-corrected for the 

normalization. 

Finally, for a question of convenience, the sinogram with the smoothed trues is 

concatenated to the original sinogram (with the trues), by maintaining the last in gate 1 and 

storing the latter in gate 3. 

In order to validate de procedure for estimating a mean value for the trues, we used 

simulated data and compared, for a noisy sinogram obtained from the anthropomorphic 

phantom, the known mean values (stored in gate 3) with those values resulting from the 

smoothing of the simulated noisy values (gate 1)3. 

Therefore, we proceeded as follows: we took the noiseless emission scan (Fig. 4.2) and 

use the noise routine to generate the emission scan with noise (*_nsy.S).  However, for the 

present study, we didn’t correct for scattered photons, in order to replicate the conditions of 

clinical data.  The noisy sinogram was stored in gate 1, the data variance in gate 2, and the mean 

value of the trues, in gate 3.  This last sinogram (mean value in gate3), D
it 3 , was used, as 

referred, as the reference for validating the method under study.  The smoothed sinogram, 

                                                 
3 For noisy sinograms, data are stored in Gate 1, the associated variance in Gate 2, and the associated 
expectation in Gate 3; the latter two if option –V is used in the routine noise. In addition, the prompts or the 
trues are stored in Data=0, the randoms or delayed in data=1, and the scatters in data=4 (cf. Appendix A.8). 
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( )D
itsm 3 , was obtained according to the following equation, where sm() is the Gaussian 

smoothing operation performed in the Fourier space and Ni the normalization factors: 

( ) ( )D
ii

i

D
i tNsm

N
tsm 33 .1

=  

In Figure 5.2 a) we show one projection corresponding to D
it 3  (gate 3), for one bed 

position, segment 0 and azimuthal angle equal to 0º.  In Figure 5.2 b), for the same bed position, 

segment and azimuthal angle, is shown the projection for the smoothed trues, ( )D
itsm 3 .  Finally, 

in Fig. 5.2 c) is the image with the difference between the two projections: D
it 3  - ( )D

itsm 3 . 

 

 

 

 
 

All the images were obtained before normalization, which justifies the observed structure 

along the axial direction. 

In Figure 5.3 is shown a radial profile drawn from the previous projections: D
it 3  and 

( )D
itsm 3 .  An addition profile for the simulated trues (gate 1), D

it 3 , is also presented.  The line in 

Figure 5.2 c) indicates the axial position corresponding t the profiles. 

As it can be observed from Figure 5.3, the differences found between the radial profiles 

for the smoothed trues and the trues’ mean values are not significant.  The trend observed for 

that particular profile is verified (not shown) for all the profiles obtained for different axial ad 

bed positions.  This lead us to conclude that smoothing the trues is  valid approach for obtaining 

an estimative of the trues’ mean values, validating, therefore, the procedure to be used for 

clinical data. 

 

a) 

b) 

c) 
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Figure 5.3 – A radial profile of the trues (gate 1), D
it 3 , the trues’ mean values (gate 3), D

it 3 , and 

the smoothed trues, ( )D
itsm 3 .  Profiles drawn from projections shown in Figure 5.2. 

 

 

5.3.2 – The estimation of the variance 

The estimation of the variance is done according to Eq. 5.4.  As for the estimation of the 

mean value, we used simulated data to validate the approach described by Eq. 5.4 and adopted 

for clinical data. 

We started by adding noise (noise routine) to a simulated emission sinogram previously 

obtained based on the anthropomorphic phantom.  In this operation, we used the ASIM 

simulator’s options –V (to store the variance data on gate 2 and the mean value on gate 3) and 

-R (for simulating the trues and not the prompts, i.e, not correcting for scattered photons (Fig. 

5.4).  This is the sinogram designated by “emission scan with noise 1” in Fig. 5.4.  Then, this 

sinogram was corrected for scattered photons, attenuation and normalization, in the so-called 

normalization step (using the normalize routine).  The obtained sinogram contains in gate 2 

the variance data based on which noise add been added to the sinogram, i.e., the exact variance 

data values. 

D
it 3

( )D
itsm 3  

D
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Figure 5.4 – A flowchart of the processing chain simulated data were subjected to in order to 

compare the exact data variance with the variance estimation process used for 

clinical data. 
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sinogram file4, corresponding to data category 1 (D1).  Since the simulator’s option –V was set, 

in gate 3 are stored data mean values.   So, in the sinogram section labeled D1G3 are stored the 

mean values for the randoms, ir .  The mean values for the trues, D
it 3 , were determined as 

described in section 5.3.1: smoothing the trues.  Once these data were available, the 

i
D

i rt 23 +  sinogram was generated. 

Finally, in one copy on the first noisy sinogram - “emission scan with noise 1” - values in 

gate 2 were replaced by the  i
D

i rt 23 +  sinogram, and gate 3 was overwritten by the smoothed 

trues sinogram.  After this replacement, the sinogram was corrected for scattered, attenuation 

and geometrical effects.   

For validating the variance estimation procedure used with clinical data, two comparisons 

were made between the exact variance in gate 2 and the estimated variance using Eq. 5.4: before 

and after the normalization procedure. 
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Figure 5.5 – A radial profile of the exact variance (gate 2) and D
i

D
i rt 33 2+ .  Profiles drawn 

from projections at the chest level for segment 0 and φ = 0º. 

 

                                                 
4 As referred in Appendix A8, in the ECAT sinogram structure data are labelled according to 5 different 
parameters: frame, plane, gate, data and bed.  The data label is used to distinguish between the trues (or 
prompts) (D0), the randoms (D1) and the scattered (D4). 
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In Fig. 5.5, the comparison is between the exact variance before normalization and 
D

i
D

i rt 33 2+ , i.e., the corresponding variance estimation.  Among the four bed positions 

simulated, it was chosen one at the chest level.  The projection corresponding to segment 0 and 

φ = 0º was considered.  The radial profile is for axial position 32 (among the 63 available). 

The second comparison (Fig. 5.6) is between the exact variance (G2) after normalization 

and ( )D
i

D
iii rtAN 3322 2. + , as indicated at the bottom of Fig. 5.3.  Once again, the projections 

were obtained at the chest level of the anthropomorphic phantom, for segment 0 and φ = 0º. 

In both cases we can observe that the two profiles are very similar.  This was also verified 

for other radial profiles at different transaxial levels, as well as for different axial profiles (plots 

not shown).  In particular after normalization, as we observe in Fig. 5.6, profiles almost overlap, 

which is due to the larger values range of the y axis.  Therefore, it is reasonable to assume that 

Eq. 5.4 can be used as a good way to estimate the variance for clinical data. 
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Figure 5.6 – A radial profile of the exact variance (gate 2) after normalization and 

( )D
i

D
iii rtAN 3322 2. + .  Profiles drawn from projections at the chest level for 

segment 0 and φ = 0º. 

 

As referred, the use of Eq. 5.4 for estimating the variance requires a previous estimation 

of ir  - the mean of each value obtained from the random coincidences. 
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However, during the clinical exams on the HR+ scanner, random data are not collected.  

The delayed technique is used, but the randoms are subtracted online.  Therefore, just the trues 

are stored and one has no access to delayed.    In order to estimate the randoms, a posteriori, the 

strategy is to use the singles (cf. Fig. 1.12) recorded in each detector.  This is done by considering 

that the random event count rate is a function of the square of the number of disintegrations per 

second and, for detectors a and b, rab, is given by (cf. section 1.3.5 of the present thesis): 

 

Rab = 2τ.SaSb      Eq. 1.1 

 

where Sa and Sb are the single event rates for detectors a and b, respectively, and 2τ is the width 

of the coincidence timing window. 

Based on this approach, the mean value for the radoms is estimated as: 

 

biaii SSr τ2=       Eq. 5.5 
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Figure 5.7 – A radial profile of the trues, ti, smoothed trues, <ti> and <ti> + 2<ri>.  Data 

extracted from a transaxial plane crossing the chest of one of the patients, for 

segment 0 of a projection obtained for an azimuthal angle equal to zero. 
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It is important to underline that random data obtained as described above is not 

smoothed.  This is because the single rate is high compared to the trues’ rate and, therefore, the 

single are much less noisy than the trues [Pautrot, 03]. 

Once ir  and D
it 3  are estimated, the variance is calculated using Eq. 5.4.  In Figure 5.7 

we plot the a radial profile of the trues, D
it 3 , the smoothed trues, D

it 3 , and i
D

i rt 23 + , 

before normalization and attenuation correction.  This profile was extracted from segment 0, 

azimuthal angle equal to 0º, and corresponds to one of the clinical exams used for the present 

study.  The profile belongs to a transaxial plane crossing the chest. 

In practice, i.e., considering the computation routines used for the different tasks, the 

original file with the trues (gate 1) are appended the values of i
D

i rt 23 +  (gate 2), and D
it 3  

(gate 3).  The corrections for attenuation and normalization are done in the same stage, for the 

three types of data, in accordance with the corresponding equations.  The result is, therefore, a 

single file, with the corrected data in gate 1 (trues), the variance in gate 2, and the mean value in 

gate 3 (cf. App. A.8). 

 

 

5.4 – FORE and the weighting factors 

 

Clinical data were supposed to be reconstructed in both 2D and fully 3D mode.  Since 

data were acquired in 3D mode, it was necessary to rebin data into 2D.  As for simulated data, 

the Fourier Rebining (FORE) algorithm was used.  So, once more the need to include the effect 

of FORE on the variance arose. 

In order to model this effect it was used the approach described in chapter 3: a Single 

Slice Rebinning (SSRB) on the variance. This is mathematically formulated as in Eq. 3.5: 

 

( ) ( ){ }i
D

iii
D

i rpANSSRBzKy += 32222 .)(σ    Eq. 3.5 

 

where K(z) are the slice variance reduction factors. 

In Figure 5.we plot the radial profiles of the data after FORE, for one bed position (at 

the chest level) extracted from one of the exams.  The projection data were obtained for an 
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azimuthal angle equal to 0º and the 32nd transaxial plane.  The gate number is the 

aforementioned: gate 1, trues; gate 2, variance, gate 3, mean value. 

 

Figure 5.8 - Radial profiles of the data after FORE.  The projection data were drawn was 

obtained for one bed position of one of the clinical exams (azimuthal angle equal 

to 0º; transaxial plane 32).  Gate 1 (G1), trues; Gate 2 (G2), variance; Gate 3 (G3), 

mean value. 

 

An axial profile of the variance, along the scanner axis, i.e,. at the centre of the FOV 

(radial bin #144), is ploted in Figure 5.9.  The projection is once more shown for φ = 0º. 

 

 

 

Figure 5.9 

 

Radial profile of the variance 

after fore, at the centre of the 

FOV.  Projection obtained for 

φ = 0º. 

 

 

 

A flowchart of the whole data processing after appending the values of i
D

i rt 23 +  

(gate 2) and D
it 3  (gate 3) to the original file with raw data (trues), raw.S, is depicted in Figure 

5.10 
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Figure 5.10 – A flowchart of the data processing stages and NEC weighting factors creation.  

Close to each box is indicated the routine used for generating the corresponding file.  

 

After the rebinning operation (FORE applied to gates 1 and 3 and SSRB to gate 2), data 

are assembled so that instead of being split among different bed positions, they are concatenated 

into a virtual longer single bed.  The result is a set of transaxial planes, whose number is equal to 

the sum of the number of planes for each bed position (63) minus a certain number of them 

corresponding to bed overlap.  For example: for 7 bed positions (bp) with a bed overlap (bo) 

corresponding to 7 planes, the total number of transaxial planes after assemble_bed will be 

equal to 7 (bp) × 63 – 6 × 7 (bo) = 399 planes. 

Raw data 

(raw.S)

Rebinned data 

FORE 

(fore.S) 

G1, G3: ecat_fore 

G2: ecat_ssrb 

3D normalization file

(norm.S) 

assemble_bed

Normalized 

data 

(em_corr.S) 

Rebinned and assembled data 

(fore_wb.S)

normalize

Gate 1 ( )D
it 3  

Gate 2 ( )i
D

i rt 23 +  

Gate 3 ( )D
it 3  

Slice variance 
reduction factors 

G1: ( ){ }i
D

iii
D

i stANFOREy −= 32 .  

G2: ( ) ( ){ }i
D

iii
D

i rpANSSRBzKy += 32222 .)(σ

G3: ( ){ }i
D

iii
D

i stANFOREy −= 32 .  

3D attenuation sinogram

with arc effect 

(attenuation_arc_3D.a) 

Variance  

(variance_wb.S) 
Mean value  

(mean_wb.S) 

2D NEC weighting factors 

(wNEC2D.S) 

 

G1: ( )i
D

iii
D

i stANy −= 33 .  

G2: ( ) ( )i
D

iii
D

i rtANy 2. 32232 +=σ  

G3: ( )i
D

iii
D

i stANy −= 33 .  



5 – Comparing NEC-based OSEM with other weighted OSEM approaches for clinical 3D 
whole-body PET imaging 

 

155

The very important process of determining the 2D NEC weighting factors incorporates 

knowledge gained from the simulation studies.  As explained in chapter 4, the use of 3D NEC 

weights raised the problem of how to deal with bins over the boundaries of the object5.  The 

problem, we recall, is a consequence of the fact that mean values for bins over the object 

boundaries are very small.  Since the computational implementation of the algorithm requires the 

reciprocals of the weights, i.e., D
i

D
i

DNEC y
yw 2

22

2
)(σ= , very low values of y  correspond to 

very high values of wNEC.  Therefore, instead of using a ceiling in the OSEM algorithm to limit 

the pixel values that could result from this particular effect, the attenuation map is used as a 

mask to identify bins in the sinogram that are inside the object. 

This is the role of the poids_nec routine: it takes the attenuation sinogram and 

identifies all the bins where the attenuation is less than 1.05.  Since 1 is recorded for bins whose 

corresponding LOR does not cross the object – there is no attenuation along such an LOR – 

establishing a threshold in the attenuation as 1.05 is equivalent to assume that if the photon 

beam is attenuated  less than 5% then the beam is not crossing the interior of the object but, 

eventually, its boundaries.  Therefore, not only the estimated mean value will be very small, 

resulting in very high weighting factors, but also it won’t be too much relevant for the final 

reconstructed image.  The strategy implemented through the use of poids_nec is to set the 

NEC weighting factors for these bins equal to 1, replacing the otherwise extremely high values 

of these weighting factors. 

Additionally, it is also possible to anticipate a situation where some bin inside the object 

(attenuation higher than 1.05) records a very small number of counts.  Once again, the estimated 

NEC weight will be very high.  To avoid the existence of a bin with a very high value, in relation 

its neighbors, of the corresponding NEC weighting factor, it was defined a ceiling which is 

established as a function of the other radial bins for the same axial and azimuthal coordinates 

[Pautrot, 03]. 

Figure 5.11 represents a profile of the 2D NEC weighting factors, for one of the clinical 

exams (drawn from a projection obtained for φ = 0º).  The ceiling is clearly observed in the 

figure, and it is possible to infer that it is being used for bins over the object boundaries. 

 

                                                 
5 During the calculation of the 2D NEC weighting factors and subsequent 2D NECOSEM 
reconstruction, for simulated data, the problem was not found.  However, the latter adopted solution 
remains valid for 2D and could have been used. 
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Figure 5.11 – A radial profile of the calculated 2D NEC weighting factors, after assemble bed, for 

one of the clinical exams (drawn form a projection obtained for φ = 0º). 

 

The weighting factors to be used by the AWOSEM algorithm are the reciprocals of the 

assembled attenuation factors stored in the file “attenuation_orig_3D_wb.a”.  For the fully 3D 

counterpart – the ANWOSEM3D algorithm – the file with the attenuation factors with arc 

effect, “attenuation_arc_3d.a”, is first normalized6 by using the normalization sinogram, 

“norm.S”, within the usual routine: normalize.  Data in the resulting file, “wmult.S”, are, then, 

taken as the reciprocals of the weighting factors. 

 

 

5.5 – Image reconstruction and final results 

 

5.5.1 – Image reconstruction 

After correcting data as previously described and establishing the weighting factors, 

images were reconstructed using two different strategies: 

• 2D mode: using the AWOSEM2D and NECOSEM2D algorithms, after FORE; 

• fully 3D mode: using the ANWOSEM algorithm. 

A schematics of input and output data is shown in Figure 5.12. 

                                                 
6 Where, among others, data are corrected for the arc effect. 
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Figure 5.12 – Diagram of data input and output in the reconstruction stage, for the three 

algorithms: AWOSEM, NECOSEM, and ANWOSEM. 

 

For all the reconstruction schemes, 8 subsets were used and a zoom factor of 1.5.  

Images were obtained after 4 iterations of the algorithm.  This choice was made based on the 

usual clinical protocol at the S. H. F. J., where reconstructed images after 4 iterations of 

FORE+AWOSEM are used by the physician when performing the clinical task of tumor 

detection in whole-body PET images, and is coherent with the criteria previously adopted for 

the simulation studies. 

Reconstructed images were finally post-smoothed using a Gaussian filter with a FWHM 

equal to 6 mm.  This post-processing was adopted not only considering the simulation results 

(cf. section 4.5) but also the previous research work by C. Lartizien [Lartizien, 00; Lartizien, 03] 

and C. Pautrot [Pautrot, 03]. 

 

 

5.5.2 – Reconstructed images. 

In this section we show the reconstructed images using the three reconstruction 

approaches.  Among the set of patients whose exams were used for the present study, we chose 
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them in accordance to their BMI [Kuczmarski, 97]: one with a low (< 19.0) body mass index 

(BMI.), ID #1 (cf. Table 5.1), another with a normal BMI (19.0 – 24.9), ID #8, and three obese 

patients (> 30.0): one of them with a B. M. I. equal to 30.9 (ID #17), whilst the others are 

markedly obese (B. M. I. values of 39.0 (ID #24) and 44.6 (ID #25)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 - Patient ID #1.  B.M.I. = 16.2, injected dose = 384.8 MBq.  Right : 

FORE+AWOSEM ; centre : FORE+NECOSEM ; left : ANWOSEM3D. 

 

In Figure 5.13 we show the reconstructed images after 4 iteration and a post-smoothing 

with a Gaussian filter (FWHM = 6 mm), for patient ID #1: B.M.I. = 16.2; injected dose = 384.8 

MBq. 

Figure 5.14 is for patient ID #8: B.M.I. = 23.7 and a dose of 338.5 MBq  

Figure 5.15 is for patient ID #17: B.M.I. = 30.9 and a dose of 407 MBq.  As is the 

former cases, images were obtained after 4 iterations and a Gaussian post-smoothing using a 

filter’s FWHM of 6 mm.  Figures 5.16 and 5.172 are for two very obese patients: patient #24, 

B.M.I. = 39.0, dose = 403.3 MBq; patient #25: B.M.I. = 44.6, dose = 414 MBq. 
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Figure 5.14 - Patient ID #8.  B.M.I. = 23.7, injected dose = 338.5 MBq.  Right : 

FORE+AWOSEM ; centre : FORE+NECOSEM ; left : ANWOSEM3D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 - Patient ID #17.  B.M.I. = 30.9, injected dose = 407 MBq.  Right : 

FORE+AWOSEM ; centre : FORE+NECOSEM ; left : ANWOSEM3D. 
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Figure 5.16: - Patient ID #24.  I.B.M. = 39.0, injected dose = 403.3 MBq.  Right : 

FORE+AWOSEM ; centre : FORE+NECOSEM ; left : ANWOSEM3D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 - Patient ID #25.  B.M.I. = 44.6, injected dose = 414.3 MBq.  Right : 

FORE+AWOSEM ; centre : FORE+NECOSEM ; left : ANWOSEM3D. 
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5.6 – Discussion and conclusions 

 

The first thing to retain is the complexity involved in the determination of the NEC 

weighting factors for clinical data.  However, as shown in Figure 5.3 based on simulated data, 

smoothing the trues is a valid procedure for obtaining an estimation of the trues’ mean values.  

In addition, the use of Eq. 5.4 for estimating the variance of clinical data was also validated by 

the study performed with simulated data (Fig. 5.6).   

It is important to stress that even if there is some bias in the estimation of the mean and 

variance, hence a bias in the estimation of the NEC weight, this will only impact on the 

calculation of the weight.  The expected image should not be bias because the weights are 

compensated for in the EM equation. 

Handling the values for bins over the object boundaries requires, nevertheless, 

establishing ceilings and thresholds on the attenuation map (for defining which region 

corresponds, in fact, to the object), a procedure that is very dependent from the user judgment, 

i.e., there is not a definitive reason to use a specific value.  It is not certain that the use of one 

particular threshold and ceiling will result for all the NECOSEM reconstructions of clinical data. 

The reconstructed images were visually analyzed by a physician who is largely familiar 

with the images obtained for this sort of whole-body PET scans.  She was asked to perform a 

preliminary visual inspection to check for some image feature suggesting an improvement of 

FORE+NECOSEM or AWOSEM3D over FORE+AWOSEM, in respect to the clinical task of 

tumor detection.  The conclusion that could be drawn is the following: based on the set of 

images used for this study, no relevant differences were found between those reconstructed with 

FORE+AWOSEM and FORE+NECOSEM or ANWOSEM.  This is the case even for obese 

patients, who are those for whom FORE+NECOSEM could eventually result in images with 

better quality. 

So, from this observation, it is possible to infer that the additional complexity involved in 

FORE+NECOSEM does not necessarily translate into an increase on image quality.  Moreover, 

there are cases where the contrary is true: FORE+NECOSEM reconstructed images are less 

useful than those obtained by using FORE+AWOSEM, for the present clinical task. 

The comparison of FORE+AWOSEM and ANWOSEM3D does not show better 

performance of the last over the former.  This is, however, a somewhat unexpected result.  We 

stress, nevertheless, that this statement is valid just for that particular set of images, and no 

detailed observer study was performed in order to generalize it. 
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Final discussion and conclusion 

 
As suggested by the title and reinforced in the Introduction, the goal of the research 

work described in the present document was to incorporate an accurate statistical modeling in 

the OSEM reconstruction algorithm, for whole-body PET imaging. 

This was achieved through the use of weighted versions of OSEM, instead of the regular 

implementation of this algorithm.  In this way, it was possible to restore the Poisson-like 

characteristics of the corrected data, as theoretically required by OSEM. 

Another important assumption of this work was that all the collected data were 3D data.  

This had two different and relevant implications.  First of all, two approaches were used for 

image reconstruction: fully 3D reconstructions (ANWOSEM3D, SPOSEM3D and 

NECOSEM3D) and 2D reconstructions after rebinning (FORE+AWOSEM and 

FORE+NECOSEM).  The comparison between the performances of these two approaches was 

a very important issue of our investigation.  In this context, differences in image reconstruction 

times became obvious: we have experienced that fully 3D reconstructions were 8 to 10 times 

more time consuming than FORE + 2D OSEM reconstructions, for the same number of 

iterations, underlining the importance of the rebinning operation. 

Moreover, the use of the Fourier Rebinning (FORE) requires data corrected for 

geometrical and physical effects.  Due to this, and under the FORE + 2D OSEM approach, 

input data given to the OSEM algorithm are not Poisson distributed  This is to say: what could 

otherwise be envisaged in a fully 3D reconstruction, i.e., accounting for the corrections in the 

system matrix (as in OP-OSEM1), became forbidden by the use of FORE.  Thus, the pertinence 

of studying the possibility of incorporating an accurate statistical model for the data was 

inevitable as soon as the FORE+2DOSEM approach was adopted.  The same is true for most 

of the fully 3D reconstruction schemes often considered, since they take as input this sort of 

non-Poisson corrected data. 

The strategy of using weighted versions of OSEM, as referred in Chapter 3, in some 

cases restores the Poisson-like characteristics of the data – NECOSEM and SPOSEM3D – but 

not always – AWOSEM and ANWOSEM, depending on the weight strategy used.  Therefore, 

just in the former cases is the Poisson data requirement completely fulfilled.  The comparison 

                                                 
1 Not used in our work. 
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between the performances of these two groups of algorithms working over the same corrected 

non-Poisson data was done. 

Schematically, there are two different perspectives behind the performance analysis we 

have done: the 2D versus 3D perspective (P1), and the complete and non-complete restoring of 

Poisson data (P2) (Fig. C1). 

 
Figure C1 – The two different perspectives behind the developed performance analysis of 

reconstruction algorithms: P1, the 2D versus 3D perspective; P2, the complete 

versus non-complete restoring of Poisson data. 

 

From the point of view of how data were obtained, two complementary studies were 

developed: one with simulated data produced by using the ASIM analytical simulator; another, 

with real clinical data resulting from exams undertaken on the S.H.F.J.’s HR+ scanner. 

We started by an extensive simulation study, where the use of the ASIM simulator 

allowed us to have control over the data generated.  In particular, it was possible to keep track of 

the mean value and of the variance used to add pseudo-random noise to the data, as well as to 

know, without any error, the attenuation correction factor (ACF) for each LOR.  Considering 

the weighted OSEM reconstruction, this is the ideal situation: it was possible to calculate exactly, 

for each data bin, the corresponding weighting factor, in all the cases, i.e., for all the weighted 

reconstruction algorithms.  Therefore, any additional effect introduced by the uncertainty 

associated with the weight estimation was discarded in the simulation study. 
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The simulation conditions were as realistic as possible, in terms of both phantom 

conception and simulator capability.  The tumors’ dimension, number and activity ratios were 

chosen to mimic situations that were validated in previous studies [Lartizien, 03; Lartizien, 01]. 

The very large amount of data2 made human observers studies unaffordable.  So, the 

alternative was to resort to numerical observers.  The NPWMF numerical observer had been 

previously tested under similar imaging conditions, showing that its detectability index allows 

good correlation with human observer detectability [Lartizien, 04].  Therefore, we relied on this 

observer to compare the performance of the reconstruction algorithms.  In addition, the noise 

and the tumor-to-background contrast (cf. section 4.3.2) were also used to access the image 

quality. 

To make the task of comparing the performance of the algorithms feasible, we had to fix 

two parameters: the post-smoothing filter applied to reconstructed images, and the number of 

iterations to be used. 

We started by studying the effect of the post-smoothing filter.  The NPWMF 

detectability index was adopted to verify the existence of an optimum value for the FWHM of 

this Gaussian filter.  Reconstructed images were smoothed using different values of the FWHM 

of the filter, something that was done for images obtained after different numbers of iterations.  

The results showed the existence of a maximum value for the NPWMF detectability index, when 

this index was plotted against the FWHM of the post smoothing filter.  This was true for all the 

studied OSEM versions, but the value was found to be different for different organs.  However, 

for 1 cm diameter spherical tumors, a FWHM of 5.5 mm was in most cases close to the 

optimum value.  Also significant is the fact that this trend revealed to be independent from the 

number of iterations used to obtain the images over which the analysis was being done.  So, 

these results allowed us to assume that the use of a Gaussian post-smoothing filter with a 

FWHM equal to 5.5 mm is the best compromise for the task of maximizing the tumor 

detectability, under the conditions established for our study. 

On the contrary, the NPWMF index could not be used to define the optimum number 

of iterations: it was verified that this index does monotonically decrease with the number of 

iterations.  Therefore, some other criterion had to be chosen, and we decided to use the tumor-

to-background contrast level as a figure-of-merit to set the number of iterations.  This allowed us 

to establish the equivalence between different weighted OSEM versions.  First of all, we 

assumed as reference the tumor-to-background contrast level in FORE+AWOSEM 

reconstructed images, since it is widespread in clinical practice.  After, we searched, for the other 

                                                 
2 More than forty thousand files with images. 
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algorithms, the number of iterations resulting in images with an equivalent contrast for the 

corresponding organ. As it was possible to fit this criterion for a different number of 

FORE+AWOSEM iterations, we fixed in 4 the number of iterations for this reconstruction 

scheme, which is a number usually adopted in clinical routine, and used the aforementioned 

criterion to establish the number for the other algorithms. 

As shown if Fig. 4.9, except for SPOSEM3D, the tumor-to-background contrast was 

found to be equivalent, after 4 iterations, for all the situations taken into account.  In the 

SPOSEM3D case, we observed, without surprise, the slower convergence (when compared to 

the other algorithms), due to the presence of the additive term.  So, in this case, in order to reach 

similar tumor-to-background contrasts it was necessary to iterate almost four times more than 

for the other algorithms: 15 iterations instead of 4.  Nevertheless, since this difference is 

dependent on the ratio between scattered plus random coincidences and unscattered true 

coincidences, this ratio between the number of iterations is valid just for this particular study. 

Based on the results described in the paragraphs above, we fixed both the FWHM of the 

post-smoothing filter and the number of iterations.  Then, we were in position to start the direct 

comparison of the reconstruction algorithms, using the NPWMF detectability index as a mean to 

access image quality. 

We did, at first, a comparison between the performance of FORE+AWOSEM and 

FORE+NECOSEM.  Considering the NPWMF indices for different tumors in each region, it 

became clear that FORE+NECOSEM had an overall performance better than 

FORE+AWOSEM.  The same conclusion could also be drawn when comparing 

ANWOSEM3D and FORE+AWOSEM (the former resulted in higher detectability indices than 

FORE+AWOSEM).  Less evident differences were found when comparing ANWOSEM3D 

with FORE+NECOSEM.  The comparison between SPOSEM3D and the two FORE + 2D 

OSEM algorithms resulted similar to those obtained for ANWOSEM3D. 

The differences between NECOSEM3D and FORE + NECOSEM revealed to be much 

less obvious.  On the contrary, the obtained results allowed us to argue for a better performance 

of NECOSEM3D over FORE+AWOSEM.  In relation to the other 3D algorithms, no relevant 

differences were found, except for one situation concerning the soft tissues. 

So, one important conclusion is that: even for the case of simulated data, where one has 

the possibility to calculate the exact NEC weights, the additional complexity associated with 

NECOSEM3D has no direct positive impact on the detectability of tumors. 

Still referring to the simulation study, in spite of being possible to calculate the exact 

values of the NEC weights, we verified that the behavior of the fully 3D NECOSEM depends 
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very much on the profile of the noiseless NEC weights.  This is due to rounding and other 

numerical artifacts that could result from the processing of these weights.  We observed that 

sharp variations on the profile of the NEC weights lead to reconstructions very sensitive to the 

noise present on the sinograms.  This is so more critical as in some cases the reconstruction 

proceeded as if some points drained all the activity during the reconstruction process: the final 

image after a few iterations was reduced to zero everywhere except in these points.  We tried to 

avoid this problem by using the attenuation map to establish the borders of the object, and 

artificially setting the NEC weight equal to one in every sinogram bin corresponding to LORs 

not crossing the object or crossing its very boundaries.  In such a way we were trying to limit 

sharp variations on the NEC weights profiles.  This strategy proved to decrease the number of 

reconstructions where some points behaved as drains, but didn’t completely avoid the existence 

of these cases. 

This fact reinforces the complexity associated with the use of NECOSEM3D in practice, 

which, as referred, proved not to perform better than the other 3D weighted versions of OSEM. 

With this set of results, obtained from simulated data, we stepped forward to the 

application of some of these algorithms to real clinical data.  However, for the reasons adduced 

above, we discarded NECOSEM3D reconstructions.  Moreover, due to the fact that, even after 

15 iterations, SPOSEM3D was shown to produce images whose usefulness for the task of tumor 

detection is similar to those obtained with 4 iterations of ANWOSEM3D, we decided to use just 

the latter for the case of fully 3D reconstructions of clinical data. 

These data were chosen among the exams that had been done at the S.H.F.J., on the 

HR+ scanners, and were stored on the proper backup computer.  We retrieved 25 of them, 

corresponding to patients with different body mass indices, in the range of 16.2 kg/m2 up to 

44.6 kg/m2. 

Data were reconstructed with FORE+AWOSEM, FORE+NECOSEM and 

ANWOSEM3D.  Markedly different from the simulation study is the fact that one has no access 

to the mean value and the variance of each bin: these statistical moments must be estimated.  

Therefore, the NEC weights were dependent from this estimation, and, in consequence, were no 

more exact neither noiseless values (as for simulation studies). 

Our study suggests smoothing the trues as a procedure for obtaining an estimation of the 

trues’ mean values, as well as the use of Eq. 5.4 for estimating the variance of clinical data.  Thus, 

the possibility to have a valid procedure for the calculation of the NEC weights exists.  The 

drawback is that this procedure can introduce some bias in the estimations of the two referred 

moments and, hence, in the estimation of the NEC weight.  However, it must be stressed that 
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the expected image should not be biased because the weights are compensated for in the EM 

equation. 

As for the simulation study, estimating NEC weights for bins over the object boundaries 

required establishing ceilings and thresholds on the attenuation map (for defining which region 

corresponds, in fact, to the object).  This procedure is very dependent from the user judgment, 

because there is not a definitive reason to use a specific value.  In other words: we used a 

threshold of 5% on the attenuation to define the object boundaries, but we have no strong 

arguments for object against the use of 8%, for example.  It is also not certain that the use of 

one particular threshold and ceiling will work in the same way for all the NECOSEM 

reconstructions of clinical data. 

Reconstructed images were visually analyzed by a physician who is largely familiar with 

the images obtained for this sort of whole-body PET scans.  She was asked if there was any 

image feature suggesting an improvement of FORE+NECOSEM or AWOSEM3D over 

FORE+AWOSEM, in respect to the clinical task of tumor detection.  Based on the set of 

images used for this study, the answer was: there are no relevant differences between those 

reconstructed with FORE+AWOSEM and FORE+NECOSEM or ANWOSEM.  This is the 

case even for obese patients, who are those for whom FORE+NECOSEM could eventually 

result in images with better quality. 

The fact that a single physician was involved in this study doesn’t give room for drawing 

definitive conclusions.  However, the results we have obtained are in-line with the conservative 

perspective, i.e., the additional complexity involved in FORE+NECOSEM does not necessarily 

translate into an increase on image quality.  Moreover, in some cases the contrary was found to 

be true: FORE+NECOSEM reconstructed images less useful, for the present clinical task, than 

those obtained by using FORE+AWOSEM. 

Concluding in the opposite direction – i.e., arguing by the advantages of 

FORE+NECOSEM -, under the conditions of our study, would certainly be more daring.  

However, we assume that more work, involving more physicians, is certainly necessary to 

strengthen the scope of our conclusion. 

In any case, we believe that we gave an additional contribution to show that is possible to 

use NECOSEM with clinical data.  As said above, we also believe that the additional complexity 

introduced by the estimation of the NEC weights will probably, in practice, slant the complexity-

usefulness trade-off to the side of costs, hence making this algorithm not advantageous for 

reconstructing clinical data, if the clinical task is to detect tumors in whole-body PET imaging. 
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The results we have obtained for the AWNOSEM3D reconstruction algorithm, on the 

other hand, are somehow surprising, not only considering the simulation study we have done 

before, but also other additional work developed within the research group at the S.H.F.J..  

Therefore, one suggestion for the future is to proceed to the investigation of the fully 3D 

reconstruction algorithms.  The inclusion of a PSF modeling within the OSEM algorithm, in 

order to increase the spatial resolution, is already being done with success [Sureau, 06].  Since 

there is not the constraint to correct data prior to the reconstruction, incorporating the 

aforementioned corrections inside the reconstruction stage is also a very interesting field with 

large room for future developments. 
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A.1 – Coordinate Systems in 2D and 3D 

 

A.1.1 – 2D case 

In 2D, the two coordinate systems to be considered are co-planar.  One of them is fixed, 

(x, y), and could be thought as having an origin coincident with the scanner axis (independent 

from the relative orientation of the plane).  The other, (x’, y’), is a rotating coordinate system and 

the relative position of their axis from the corresponding axis of the former system defines the 

azimuthal angle, φ.  These systems are illustrated in Fig. A1.1. 

 

Figure A1.1 

 

The two coordinate systems.  

(x, y) is fixed; (x’, y’) is the rotating 

system and φ is azimuthal angle. 

 

 

The relation between the 

coordinates in the two systems is 

established in equations A1.1 – A1.4 

[Townsend, 93; Bruyant, 02]: 

 

x’ = xcosφ + ysinφ  Eq. A1.1 x = x’cosφ - y’sinφ  Eq. A1.3

 y’ = -xsinφ + ycosφ  Eq. A1.2 y = x’sinφ + y’cosφ  Eq. A1.4

 

 

A.1.2 – 3D case 

In 3D the situation is somehow more complex, but the equations relating the two 

coordinate systems, (x, y, z) fixed and (x’, y’, z’) rotating, are easily deduced if the whole rotation 

is split and understood in terms of three sequential steps (Fig. 1): one axis renaming and two 

rotations around two different axis. 

The previous axis renaming (step 1, shown in Fig. 1a) is relevant for the sake of 

coherence with the integration variables that are usually found both in literature and 

x

y’ y 

x’

O 
φ 
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reconstruction software.  As consequence of this operation, in the new rotating system the 

scanner axis is coincident with axis y’’; in-plane integration along a LOR translates into an 

integration on variable z’’; and the radial position is described by variable x’’.  The second step 

(Fig. 1b) is a rotation around the scanner axis (z or y’’).  It defines the azimuthal angle which is 

usually identified with φ.  Finally, there is another rotation, this time around x’ axis, that changes 

the orientation of the planes inside which integrations are done, i.e., where LORs are to be 

considered.  This last step results in the introduction of the polar angle, θ, a particular feature of 

3D PET insofar as for the 2D case all the considered planes are direct planes (planes normal to 

the scanner axis). 

 

 

 

 

 

 

 

 

 

 

 

 
Figura A1.2 

 

A schematic three-steps 

description of the whole rotation 

in 3D.  a) 1st: renaming of the 

rotating system’s axis.  b) 2nd: 

rotation around the z axis 

(scanner axis).  c) 3rd: rotation 

around the x’’ axis. 

 

 

 

The operations above result in relations between coordinates that could be 

mathematically described as following: 

y ≡ x’’ 

x ≡ z’’ 

z ≡ y’’

Scanner axis

a) 

x 

y  

z ≡ y’’ 

x’
z’

φ’  

Azimuthal 
angle 

b)

θ’ Polar 
angle θ’

c)

y’

z ≡ y’’

x’’
z’’ 

θ’ 
z’ 
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x = z’’  x = x’’sinφ’ + z’’cosφ’  x’’ = x’ 

y = x’’  y = x’’cosφ’ - z’’sinφ’  y’’ = y’cosθ’ - z’sinθ’ 

z = y’’  z = y’’  z’’ = y’sinθ’ + z’cosθ’ 

 

and so, using θ’ = -θ and φ’ = -φ [Kak, 88; Defrise, 98]: 

 

x = -x’sinφ - y’cosφsinθ + z’cosφcosθ Eq. A1.5 

y = x’cosφ - y’sinφsinθ + z’sinφcosθ Eq. A1.6 

z = y’cosθ + z’sinθ Eq. A1.7 



Appendix 
 

174 

A.2 – The Radon Transform 

 
If f(x, y) is an arbitrary function defined on some domain D of R2 and L is any line in the 

plane, then the mapping defined by the line integral (projection) of f along all possible lines L is 

the two-dimensional Radon transform of f, ℜf or ),'(ˆ φxf , provided the integral exists [Deans, 

83]. 

 

 

 

Figure A2.1 

 

One example of a line in 

D, along which f(x, y) is to be 

integrated. 

 

 

 

Due to the different 

applications of the Radon 

transform, some variants of its 

mathematical expression could be found in literature.  In the field of emission computed 

tomography, the widespread formulation is the following [Toft, 96; Deans, 83; Herman, 79]: 

 
Eq. A2.1 

 

which is equivalent to: 

 
Eq. A2.2 

 

In equation A2.2 we recognize the line integral of f(x, y) along a line parallel to the axis y’.  

Radon showed that if f is continuous and has a compact support, then ℜf is uniquely determined 

∫ ∫
+∞

∞−

+∞

∞−
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by integrating along all lines L.  When ),'(ˆ φxf  is known for only certain values of x’ and φ, we 

have a sample of the Radon transform [Deans, 83]. 

Among the properties of the Radon transform [Deans, 83; Defrise, 02], there are: 

 

• Linearity:   ℜ[c1f + c2g] = c1 f̂  + c2 ĝ  

• Invariance for translation (for object space and sinogram space):   ℜ[ℑa,b f]= ℑa,b[ℜf] 

• Invariance for rotation (for object space and sinogram space):   ℜ[Cθ f]= Cθ[ℜf] 

It is interesting to note that Cormack, in 1964 [Cormack, 63], described a method of 

finding a real function in a finite region of a plane giving its line integrals along all straight lines 

intersecting the region, without an explicit reference to the Radon transform.  The properties of 

the set of one-dimensional integral equations that are identified as solutions to this problem are 

also referred.  One application that Cormack devised for this method was the determination of 

the distribution of positron annihilations when there is an inhomogeneous distribution of the 

positron emitter in matter.  Thus, after the seminal paper by Radon, in 1919, (whose translation 

in English can be found in [Deans, 83]), this is probably the work where this formulation is 

applied to emission computed tomography. 

The discrete Radon transform (DRT), its relation with the former classical (continuous) 

counterpart and inversion procedures are describe, for example, in [Beylkin, 87; Fishburn, 97; 

Svalbe, 04].  Among other things, it was shown [Beylkin, 87] that a discrete version of the Radon 

transform can be inverted only approximately if its inversion is directly based on a discretization 

of the Radon’s formula (Eq. A2.2). 
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A.3 – The Backprojection Operator 

 

Assuming an arbitrary function Ψ(x’,φ), where x’ = xcosφ + ysinφ is the x coordinate of 

the conventional in-plane rotating system (Fig. A3.1), the backprojection operator, B, considered 

the adjoint to the forward projection [Defrise, 98], is defined as [Deans, 83; Herman, 80]: 

∫ +Ψ=Ψ
π

φφφφφ
0

),sincos(),'( dyxxB    Eq. A3.1 

In terms of polar coordinates, x = rcosθ and y = rsinθ: 

∫ −Ψ=Ψ
π

φφφθθ
0

)),cos((),( drrB     Eq. A3.2 

Thus, if Ψ(x’,φ) is identified with the projection ),'(ˆ φxf , then, for a fixed angle φ, the 

incremental contribution to BΨ at the point (x,y) is the value of ),'(ˆ φxf  multiplied by dφ.  It is 

possible to show [Deans, 83] that the true image convolved with 1/r yields the backprojected 

image, b(x,y): b(x,y) = f(x,y) ** 1/r, where r = (x2 + y2)1/2 and ** is a 2D convolution. 

In practice, ),'(ˆ φxf  is known for a discrete set of angles, φ, and radial points, x’.  For 

this reason, a discrete implementation of backprojection is required.  If the object is divided into 

voxels, denoted as f(xl, ym) where xl and ym are the coordinates of the centre, this discrete 

implementation can be established as follows [Peters, 81]: 

( ) ( ) ( )( )∑
−

=

=
1

0
/sin,/cosˆ,

N

n
mlnml NnyNnxgyxf ππ

 

where )'(ˆ xg n  is an interpolated version of 

)'(ˆ
kn xf : 

( )∑
=

−=
N

k
nkn xfxxhxg

1
)'(ˆ'')'(ˆ  

and h(x’) is an interpolation kernel. 

 
Figure A3.1 

 

A geometrical interpretation of the 

backprojection operator. 
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x
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A.4 – Central Section Theorem 

 
The Central Section Theorem [Defrise, 02; Kak, 88; Herman, 79] (also know as Central-

Slice, Fourier-Slice or Projection-Slice Theorem), relates the two-dimensional Fourier transform 

of one function with the Radon transform of the same function. 

Let us start by considering the 1D Fourier transfom of function p(x’, φ), in the present 

context identified with the function used to describe the projection data:  

 

 

 

Using the Radon transform it is possible to link this data function with the object 

function, i.e., with the 2D function describing the activity distribution, f(x’, y’):  

 

 

 

 

 

And finally: 

Eq. A4.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4.1 – An illustration of the 2D Central Section Theorem. 
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Equation A4.1 is the mathematical formulation of the Central Section Theorem, which 

could be stated as following: the 1D Fourier transform of a projection at an angle φ is equivalent 

to the value along a line through the origin (at the same angle) of the 2D Fourier transform of 

the activity distribution.  This is illustrated in Figure A4.1. 

The 3D extension of this theorem [Defrise, 98; Lewitt, 03] is derived from the 3D Fourier 

transform of f(x, y, z), F(νx, νy, νz): 

 

( ) ( ) ( )[ ]∫ ∫ ∫Ω ++−= dxdydzzyxizyxfF zyxzyx νννννν exp,,,,  

 

We now consider the values of the 3D Fourier transform of f(x, y, z) on the 2D plane 

νy = 0 through the origin of the 3D Fourier space: 

 

( ) [ ] ( )[ ]dxdzzxidyzyxfF zxzx ∫ ∫ ∫ +−=
Ω

νννν exp),,(,0,  

 

The inner integral in the equation above can be identified with the 2D projection of f(x, y, z) on 

the plane xOz, for φ = θ = 0, where φ and θ are the azimuthal and polar angles, respectively.  

Thus1: 

 

( ) ( )[ ]∫ ∫Ω == +−= dxdzzxizxpF zxzx νννν θφ exp),(,0, 0,0   Eq. A4.2 

 

Denoting by ( )'', , yxP ννθφ  the Fourier transform of pφ,θ(x’,y’): 

 

( ) ( ) ( )[ ]∫ ∫Ω +−= ''''exp',', '','', dydxyxiyxpP yxyx νννν θφθφ  

 

we can use this result in Eq. A4.2, obtaining a final relation between ( )zxF νν ,0,  and the 2D 

Fourier transform of the parallel ray projection at the orientation φ = θ = 0, for lines of 

integration perpendicular to the plane y = 0: 

 

                                           
1 For the shake of simplicity and since we are deriving the relation for the special case of φ = θ = 0, we 
do not consider the usual change in the name of the axis when establishing the relation between 
coordinates in the fixed and rotating systems. 
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( ) ( )zxzx PF νννν θφ ,,0, 0,0 ===  

 

Using the rotation property of the Fourier transform, we can state the general relation, 

which is, in fact, the 3D Central Section Theorem: the 2D Fourier transform of a parallel-ray 

projection at a specific orientation (φ,θ) is equal to the values of the 3D Fourier transform on 

the 2D plane νy through the origin having the corresponding orientation.  This can be 

mathematically expressed as follows: 

 

Eq. A4.3 

 

A very important condition for the validity of this theorem is that the set of parallel 

projection should contain just non-truncated projections [Defrise, 03]. 

 

),,(),( ''''', zyxzx FP νννννθφ =
0' =yv
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A.5 – The Likelihood Function 

 
The likelihood function provides information about a joint probability.  It could be 

defined as following [Casella, 90]: 

 

• Let    = (X1, X2, ... Xn) be a sample,                                   , depending from a parameter, θ. 

xk   k ∈ K 

i) If X is a random discrete vector:   X =  

pk(θ) = P[X=xk] 

 

the likelihood function, given                              , is the joint probability mass 

function to be evaluated for various possible values of θ: 

 

 

 

ii) For the continuous case, denoting                                        as the probability density 

function, the likelihood function, given                                       , is: 

 

 

 

The value of the parameter maximizing the sample probability is the value for which the 

likelihood function attains its maximum, thus referred as the maximum likelihood estimator 

(MLE) of the parameter θ based on sample X, )(ˆ Xθ . 

According to this definition, the task of obtaining the maximum likelihood estimator 

involves the evaluation of the extrema of a product of n values, something that could revealed 

very hard in practice.  As a consequence, the logarithm plays an important role, since it converts 

products in sums and, very important, it is a strictly increasing function.  From the latter 

property results that the extrema of L(θ|x) and log L(θ|x) coincide. 

Let us now consider a random Poisson variable, X  ∩  P(λ), with λ unknown.  Using a 

sample                               : 
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the likelihood function is: 

 

 

and the log-likelihood: 

 

 

∏
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A.6 – A Reconstruction Techniques Diagram 
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A.7 – The Non-Prewhitening Matched Filter 

(NPWMF) Numerical Observer 

 
The ultimate goal of medical imaging is to produce good clinical images.  However, a 

“good clinical image” is a very slippery concept since an image might be very useful for one 

specific task but not so relevant for another.  Image quality can thus be defined in terms of how 

well desired information can be extracted from the image [Barrett, 93].  This means that the 

specific purpose images are to be used for by the observer is critical for the definition of what is 

a good clinical image. 

Once the clinical task is perfectly established, a criterion is required to access image 

quality2.  This is where numerical observers may play an important role.  In fact, if medical 

images are to be used for tumor detection, psychophysical studies with human observers are the 

accepted standard for assessing image quality [Gifford, 05].  Nevertheless, in practice, human 

observer studies can only be performed when involving just a relatively small number of images 

and/or test strategies.  Otherwise, the task would be too much time consuming.  The alternative 

is, therefore, the use of numerical observers – which are intended to replace the human observer 

entirely (or, in other cases, to increase the human performance) [Barrett, 93]. 

A numerical observer is a statistical decision model where a value for a statistical 

parameter, λ, is calculated from the available image and compared to a theoretical threshold.  

Considering the approach for calculating the value of such parameter, numerical observers can 

be grouped into two main groups: ideal (or Bayesian), and linear [Lartizien, 01] - the λ parameter 

associated with the statistical test is a linear function of the image.  The former are used to set an 

upper bound to the performance of the observer [Barrett, 93; Lartizien, 01], while the latter are 

essentially adopted to mimic the performance of human observers [Lartizien, 01]. 

Linear observers are intrinsically different from Bayesian algorithms because they do not 

rely in the assumption of any probability distributions: they just use information about the first 

and second order moments drawn from the image [Lartizien, 01]. 

The Non-Prewhitening Matched Filter (NPWMF) observer is a linear observer used to 

predict the performance of human observers [Barrett, 93].  The test statistics (linear) on its basis 

is given by [Barrett, 93; Lartizien, 01; Kim, 04]: 
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( ) ggg t
NPW 01 −=λ  

where g is a sample image vector and kg  is an ensemble mean of classe k (k = 1 for signal-

present and k = 0 for signal-absent).  As referred, no detailed knowledge of the noise statistics is 

needed, and the observer forms the scalar product of a mask proportional to the signal profile to 

be detected ( )01 gg − , and the image under test, g.  It shows an optimal behavior for a signal 

whose position is known and constant over a background of Gaussian white noise [Lartizien, 01]. 

The corresponding signal-to-noise or detectability index for the NPWMF observer is 

given by [Lartizien, 01; Lartizien, 04]: 

 

( ) ( )( )0
2

1
2

01

2
1 gsgs

gsgs

⋅+⋅⋅

⋅−⋅
=

σσ
NPWd    Eq. A7.1 

 

where g0 and g1 are the vectors of the image voxel values of the signal-absent (no lesion) and 

signal-present (with lesion) class, s the vector of the expected signal profile, < > and σ2() the 

ensemble average and variance for the ensemble. 

                                                                                                                                   
2 A definition of image quality must specify [Barrett, 02]: the task (what information is to be obtained from 
the image), the observer (how will information be extracted), and the object and image statistics (what 
sort of objects are to be observed and what is the measurement of noise). 
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A.8 – The EXACT HR+ PET scanner 

 
The EXACT HR+ is a PET scanner developed by the CPS Innovations (Knoxville, USA).  Its 

performance has been extensively studied and many detailed descriptions can be found in the 

literature, being either global descriptions or focusing some parts of the scanner.  We can refer, 

for example: [Brix, 97], [Adam, 97] (which are among the first devoted to this scanner), [Ferreira, 

01] or [Humm, 03] (where the values for some parameters are listed for different scanners).  In 

addition, there are also the scanner manuals. 

The purpose of this section is to underline some parameters which are fundamental for the 

reconstruction process and whose values are required by the OSEM algorithm. 

 

 
 

Figure A8.1 - The ECAT EXACT HR+ scanner (from www.medical.siemens.com) 

 

The HR+ scanner has a ring geometry: its structure consists in four detection rings (82.7 

cm diameter), coupled along the axial direction.  Each detector ring is made of 72 detector 

blocks, whose configuration is depicted in Fig. 1.6: 8 × 8 (radial × axial) detection elements, 

referred as crystals3, resulting from the fine score of a BGO crystal.  These individual matrix 

crystals, which are, in fact, pseudo-crystals, have the following dimensions: 4.39 × 4.05 × 30.0 

mm3, respectively in the transaxial, axial and radial direction.  Each detector block is optically 

coupled to four circular PMTs (Fig. 1.6). 

From the paragraph above, it becomes clear that each ring contains 576 crystals (72 × 8) 

and there are 32 (4 × 8) crystals along the scanner axis.  Considering the cross planes, it is, 

therefore, possible to define 63 planes along the axial direction.  These planes can be used in 2D 

or 3D mode, an option that is controlled by the use of retractable tungsten septa. 

                                           
3 In practice, one detector block is assumed as a 8 × 8 matrix of crystals. 
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To perform transmission scans, the HR+ has three linear sources of 68Ge, separated by 

120º, that go round the patient at, about, 10 cm from the crystals and are removed to their 

shielding compartment whenever they are not being used [Ferreira, 01]. 

The timing window for the HR+ is 12 ns large and the default energy window is fixed 

between 350 keV and 650 keV.  Slightly different values can be found in the literature in respect 

to the performance (resolution, sensitivity, scatter fraction, etc.) of this scanner.  So, we refer 

here the work developed by Ferreira [Ferreira, 01], who has exhaustively investigated the 

performance of one of the S.H.F.J’s. HR+ scanners according to the NEMA protocol.  A more 

general comparison of the performance of many different scanners can be found in [Humm, 03]. 

The most important characteristics of the EXACT ECAT HR+ scanner, from the point 

of view of reconstruction, are resumed in Table A8.1.  Other relevant values concerning the 

performance of this scanner can be found in [Humm, 03], for example. 

 

Crystal BGO
Patient port 56.2 cm
Number of structural rings (block rings) 4
Number of blocks per structural rings 72
Total number of blocks 288
Number of crystal per block 64 (8 × 8) 
Number of detector rings) 32 (4 × 8) 
Number of crystals per ring 576 (72 × 8) 
Detector ring diameter 82.7 cm
Crystal dimensions (transaxial × axial × radial) 4.39 × 4.05 × 30.0 mm3 
Transaxial FOV 58.3 cm
Axial FOV 15.5 cm
Number of slices 63
Default (maximum) axial sampling (plane separation) 2.425 (2.25) mm 
Default sinogram dimensions (transaxial bins × views) 288 × 144 

 

Table A8.1 – Some relevant characteristics of the ECAT EXACT HR scanner (adapted from 

[Ferreira, 01] and [Humm, 03]). 

 

At the level of the computer implementation, OSEM gets information about the scanner 

from two distinct files: an header (scanner_model.h), and a source file 

(scanner_model.c).  Inside the header is defined a structure whose inner variables 

correspond to the scanner parameters important for the reconstruction stage: 
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typedef struct _ScannerModel { 
/* (…) */ 
int dirPlanes;     /* number of direct planes */ 
int defElements;    /* default number of elements */ 
int defAngles;     /* default number of angles */ 
int crystals_per_ring;   /* number of crystal */ 
float crystalRad;    /* detector radius in mm*/ 
float planesep;          /* plane separation in mm*/ 
float binsize;     /* bin size (mm): spac. transaxial elem. */ 
/* (…) */ 
int defRingdiffmax;    /* default maximum ring difference */ 
int defspan3d;     /* default span factor for 3D scan */ 
/* (…) */ 
int defbedverlap;    /* default amount of rings overlap for multibed 
                            scans */ 

} ScannerModel; 
 

As the name suggests, binsize is the size of each detection bin, along the transaxial 

direction, i.e., the data sampling for this direction.  It reflects not only the double sampling (cf. 

section 1.3.2) but also the spatial resolution for the transaxial direction.  The values for all of 

these variables are set from the definitions inside scanner_model.c: 

 
ScannerModel _scanner_model = {/*(…)*/ 32, 288, 144, 576, 412.5, 2.425, 
2.247, /*(…)*/ 22, 9, /*(…)*/, 5}; 

 

With this information, it is possible to design the Michelogram corresponding to a 

default acquisition with the HR+ scanner (Fig. A8.2). 

 
Figure A8.2 – The Michelogram corresponding to a default acquisition with the HR+ scanner. 
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For 32 rings, the use of cross planes along the axial direction results in 63 transaxial 

planes (θ = 0º).  In addition, considering a maximum ring difference of 22, the planes 

represented by the grey dots in the Michelogram (upper left and right bottom corners) are 

discarded, i.e, data are not collected for LORs inside these planes.  For the others (black dots in 

the Michelogram), data are stored using a span of 9 and, therefore, resulting in 5 segments (Fig 

A8.2): +2, -2 (containing data acquired along LORs corresponding to the larger values of θ); +1, 

-1, and 0 (made by the 63 transacial planes).  

For segments +1 and -1, the number of samples along the axial coordinate is 53, whereas 

for segments +2 and -2 there are data just for 35 axial samples. 

The conditions referred in the paragraphs above correspond to a default acquisition. 

They were used for both the simulation and clinical studies carried on under the research work 

that is being described in the present thesis. 

It is finally important to note that the HR+ scanner uses the ECAT7 file structure for 

the output and input of data.  Within an ECAT7 sinogram, for example, data are labeled 

according to 5 parameters: frame, plane, gate, data, and bed.  Therefore, sinograms acquired 

for different bed positions can be concatenated within a single file by setting properly the bed 

parameter.  The same is true for different types of data - trues, randoms, or scattered - through 

the use of the data parameter (each type as a unique numerical code). 

In the simulation work, the gate parameter played a very important role, since it was 

through its use that one could have stored in the same sinogram the trues (gate 1), the variance 

(gate 2), and the mean value (gate 3). 

All the structure is described properly in a look-up table stored within the ECAT7 file. 
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