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Abstract 

In the last 15 years, several studies investigated the effects of domestic contamination 

in mangrove ecosystems, however, only few have recognized mangrove fauna species as 

effective bioindicators and biomonitors of anthropogenic contamination. The present work 

intends to better understand the effect of high loadings of organic matter on fauna inhabiting 

natural mangrove ecosystems or mangrove mesocosms as well as their ecosystem 

functioning. 

Our results demonstrated that identifying infauna organisms to high taxonomic levels 

may not be a reliable tool as most of the community changes must occur at a functional group 

level and consequently at genus and species levels. Although there was a decrease in their 

diversity indexes at the peri-urban mangrove sites, only Oligochaeta group has shown to be a 

potential reliable indicator. In peri-urban areas, the reproductive season of crustaceans was 

extended, the percentage of ovigerous female increased and reproductive potential and 

embryo quality improved. Nevertheless, negative indicators included high percent of shrimp 

parasitation in natural mangrove creeks as well as lower survival and growth rates of fiddler 

crabs and gastropods in constructed mangrove wetlands (CMW). 

Most recent studies on mangrove sewage filtration have focussed on the role of trees 

and sediment with associated microbes and microalgae. In our study, we have found that key 

mangrove macrofauna decreased feeding activity, and consequently top sediment 

disturbance, although slightly increasing sediment turnover, through burrow construction and 

maintenance. 

Carbon dioxide and methane production and carbon oxidation pathways were also 

evaluated at different sewage concentrations and vegetation conditions and in the absence or 

presence of biogenic structures. Our results clearly show impacts of sewage on the 

partitioning of electron acceptors in mangrove sediment and confirm the importance of 

biogenic structures for biogeochemical functioning, by increasing organic matter 

mineralization, and consequently CMW efficiency.  

 

Keywords: Bioindicators, Biomonitors, Ecosystem engineering, Benthic fauna, Wastewater 

pollution, Mangroves, East Africa 
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Resumo 

As florestas de mangal estão localizadas em zonas costeiras tropicais. Embora 

apresentem uma relevância ecológica global, tais como sumidouro de carbono e áreas de 

viveiro de peixes e crustáceos, os mangais fornecem igualmente alimentos, fibras, madeira, 

produtos químicos e medicamentos às populações humanas locais. No entanto, durante as 

últimas décadas, os ecossistemas costeiros foram sofrendo forte pressão antropogénica 

devido a actividades de desflorestação e despejo de contaminantes, levando a uma redução 

anual da sua área em 1-2%.  

O rápido aumento da população, e consequente urbanização e industrialização em 

zonas costeiras, resultaram em graves problemas ambientais e socioeconómicos. No 

entanto, determinar quando contaminação resulta em poluição exige em particular a análise 

das comunidades biológicas. Desta forma, torna-se importante a identificação precoce de 

biomonitores e/ou bioindicadores específicos de contaminantes. Por outro lado, as alterações 

na estrutura da comunidade e em especial das suas actividades podem conduzir a profundas 

alterações da sua função no ecossistema, afectando significativamente a sua robustez e 

sustentabilidade. Nos últimos 15 anos, vários estudos debruçaram-se no efeito da 

contaminação doméstica em florestas de mangal e comunidades faunísticas associadas, no 

entanto, poucos têm reconhecido espécies de fauna como eficazes bioindicadores e 

biomonitores de contaminação antropogénica. 

Estes sistemas mostraram recentemente um potencial para o tratamento de águas 

residuais, minimizando a poluição costeira. Estudos têm demonstrado que os sedimentos 

destes ecossistemas são muito eficientes na remoção de nutrientes sem aparentes impactos 

negativos sobre as árvores de mangal ou comunidades de invertebrados bentónicos. 

Estações de tratamento de esgoto utilizando plantas de mangal estão agora a ser instaladas 

e estudadas, principalmente devido ao seu baixo custo e alta eficiência, embora tenha já sido 

demonstrado que cargas de água residual acima da capacidade do sistema e fracas 

condições hidrodinâmicas levam geralmente à eutrofização do sistema, e consequentemente 

a condições de hipoxia ou anóxia. Nestas condições é esperada uma redução de diversidade 

e biomassa em sistemas naturais, assim como elevadas taxas de mortalidade em sistemas 

artificiais. Esta situação poderá alterar significativamente o funcionamento dos ecossistemas 

devido à redução da actividade das espécies com maior potencial de bioturbação do 

sedimento, afectando potencialmente a saúde e eficiência de filtração do sistema, quer 

natural quer artificial. Enquanto a maioria dos estudos concentrou-se sobre o potencial das 

plantas e sedimentos, incluindo micróbios e microalgas, na degradação da matéria orgânica 
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e filtração dos nutrientes, poucos têm estudado o potencial filtrador da macrofauna em locais 

peri-urbanos ou em sistemas artificiais sujeitos a elevadas concentrações de esgoto. 

 A secção I fornece uma breve descrição do projecto PUMPSEA, dos ecossistemas 

de mangal e comunidades faunísticas associadas. O efeito da poluição antropogénica em 

zonas costeiras tropicais (mangais) e a potencialidade destes sistemas para o tratamento de 

esgotos serão também brevemente descritos. Serão também ilustrados os processos da 

degradação da matéria orgânica assim como o papel da fauna (bioturbação) como um 

possível instrumento para aumentar o potencial filtrador destes sistemas.  

A fim de cumprir os objectivos do presente estudo, nove estudos foram realizados 

resultando cada um em um manuscrito. Esta dissertação incorpora estes documentos, cada 

um constituindo um capítulo completo (Secção II), estando estes aceites ou publicados (5), 

submetidos (4) em revistas científicas internacionais. 

No capítulo 1 do presente estudo, desenvolvem-se as possíveis diferenças na 

estrutura da comunidade da infauna em zonas de mangal peri-urbanas impactadas por 

esgotos doméstico e zonas não poluídas ao longo da África Oriental, utilizando análises 

multivariadas ou de diversidade básicas. 

 Pela primeira vez parâmetros reprodutivos de espécies de mangal foram avaliados 

como indicadores de contaminação de matéria orgânica e nutrientes. No capítulo 2 

apresentam-se parâmetros reprodutivos, incluindo fecundidade, fertilidade e qualidade dos 

embriões (medido através da análise de ácidos gordos) de populações de caranguejo 

violinista, uma das espécies mais comuns em zonas de mangal, Uca annulipes (H. Milne 

Edwards, 1837), que habitam em locais peri-urbanos (contaminados) e mangais 

relativamente pristinos no sul de Moçambique. 

Dado que a maioria dos contaminantes são descarregados para os canais dos 

mangais, um estudo multidisciplinar foi realizado nos mesmos locais que o estudo anterior 

utilizando populações de camarões residentes (Palaemon concinnus (Dana, 1852)). No 

capítulo 3, a estrutura populacional, parâmetros reprodutivos (como curvas de maturação, 

fecundidade, fertilidade e qualidade dos embriões), infecção parasitária e rácio de RNA / 

DNA foram usados como indicadores para testar a qualidade do habitat. 

No capítulo 4, o efeito de diferentes condições do esgoto e vegetação na 

sobrevivência e bioturbação de caranguejos em unidades artificiais de mangal 

(mesocosmos) foi avaliada. O comportamento destas espécies de caranguejo foi também 

utilizado como um potencial indicador de contaminação de águas residuais (capítulo 5). O 

efeito da concentração de esgotos e presença de vegetação na sobrevivência, crescimento e 

comportamento da Terebralia palustris foi avaliado no capítulo 6. No mesmo capítulo, o papel 
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destes gastrópodes na dinâmica do sedimentos foi avaliada e as suas consequências na 

biogeoquímica do sedimento discutida. Sabendo que estes gastrópodes são capazes de se 

alimentar de uma grande variedade de fontes alimentares, no capítulo 7, a distribuição, o 

comportamento e as estratégias alimentares deste gastrópodes foram avaliadas no campo, a 

fim de melhor compreender o seu potencial nos sistemas artificiais de mangal com o 

objectivo de filtrar os esgotos domésticos. 

No capítulo 8, que teve por objectivo estudar os efeitos dos esgotos domésticos nos 

isótopos estáveis de diferentes compartimentos das unidades de tratamento de esgotos 

(sedimento, microalgas bentónicas, árvores de mangal e fauna), os isótopos estáveis foram 

reconhecidos como bons indicadores de poluição antropogénica. O seu estudo permitiu 

também analisar a dieta das duas espécies de macrofauna estudadas (Uca annulipes e 

Terebralia palustris) sob diferentes cargas de efluentes domésticos e vegetação, a fim de 

compreender a importância destas espécies no funcionamento destas estações de 

tratamento.  

O capítulo 9 incidiu sobre a emissão de dióxido de carbono e metano sob períodos de 

imersão e emersão, com especial ênfase na importância de estruturas biogénicas (como 

raízes aéreas e galerias de caranguejo), bem como nas vias de oxidação de carbono mais 

utilizadas em diferentes condições de esgoto e vegetação. Ambos os processos são 

importantes para compreender totalmente os efeitos de descargas de matéria orgânica sobre 

os ecossistemas de mangal assim como fornecer conhecimentos básicos para o 

desenvolvimento futuro de estações de tratamento de esgotos biológicas, utilizando como 

modelo os ecossistemas de mangal.  

Os resultados mais significativos desta secção são também descritos. O presente 

estudo demonstrou que a identificação de organismos pertencentes à infauna a níveis 

taxonómicos elevado não pode ser um instrumento fiável como indicador de poluição 

doméstica, uma vez que as alterações são geralmente sentidas na alteração dos grupos 

funcionais, e consequentemente só podem ser reconhecidas ao nível do género ou espécie. 

Uma ligeira diminuição dos índices de diversidade e dos organismos pertencentes ao grupo 

Oligochaeta em locais peri-urbanos, poderão ser considerados como potenciais 

bioindicadores de contaminação antropogénica. Em zonas peri-urbanas, a época reprodutiva 

de crustáceos foi prolongada, tendo a percentagem de fêmeas ovígeras aumentado assim 

como o seu potencial reprodutivo e a qualidade dos embriões. No entanto, indicadores 

negativos incluíram elevados níveis de parasitismo de camarões em mangais peri-urbanos, 
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bem como reduzida taxa de sobrevivência e crescimento de caranguejos e gastrópodes nos 

sistemas artificias. 

Neste estudo foi observada uma redução significativa da actividade alimentar de 

caranguejos e gastrópodes, diminuindo significativamente a quantidade de sedimento 

processado durante as actividades de alimentação, embora aumentando ligeiramente o 

volume de sedimento revolvido durante a construção e manutenção das galerias de 

caranguejo. 

Os nossos resultados mostraram também claramente os impactos dos efluentes 

sobre as vias de oxidação de carbono no sedimento e confirmaram a importância das 

estruturas biogénicas na biogeoquímica e metabolismo do sedimento, e consequentemente 

na eficácia das estações de mangal para o tratamento de esgotos.  

Uma discussão geral considerando todos os estudos realizados, as principais 

conclusões extraídas deste estudo e as contribuições feitas para aumentar o conhecimento 

de potenciais bioindicadores e biomonitores de esgoto doméstica utilizando a fauna de 

mangal, bem como as suas implicações no funcionamento do ecossistema em sistema 

contaminados artificiais são o conteúdo da Secção III. Nesta mesma secção será feita uma 

reflexão sobre as questões levantadas durante este estudo e propostas de estudos a realizar 

no futuro próximo. 

 

Palavras-chave: Bioindicadores, Biomonitores, Bioturbação, Fauna bentónica, Esgoto, 

Mangais, África Oriental 
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General Introduction 

Opening remarks 

Ecological damage due to anthropogenic activities is threatening marine eco-systems 

and coastal resources around the world. Growing population, increasing urbanisation and 

rapid industrialisation have resulted in serious environmental and socio-economic crises in 

coastal cities (Sharma, 2000; Mohammed, 2002a; Diaz and Rosenberg, 2008). However, 

determining when contamination results in pollution requires not only chemical but also 

biological measurements (Chapman, 2007). Some of these contaminants are known to cause 

the destruction of entire coastal shallow-water communities, affecting animal physiological 

functioning, behaviour, reproductive success, and outright mortality in associated 

invertebrates and fishes (Peters et al., 1997; Kennish, 2002). This way it becomes important 

to identify early bioindicators or biomonitors of contaminants in natural conditions. On the 

other hand, changes in community structure or in species behaviour and activities may lead 

to changes in the ecological role of fauna, which may affect significantly ecosystems health 

and sustainability. 

The following section of this introduction provides a brief description of the project 

PUMPSEA and an overview of anthropogenic pollution in coastal zones, mainly in tropical 

regions, mangrove ecosystems and their associated fauna communities and early warning 

indicators of pollution used globally and in mangrove forest. Furthermore, the role of 

wastewater wetlands and the potential of mangroves to treat sewage are also briefly 

described. The organic matter degradation and nutrient cycling processes will also be 

illustrated and the ecosystem engineering role of fauna as a potential tool to increase these 

processes will also be clarified. Finally, the aims and objectives of this study are outlined, and 

the rationale driving to the investigations conducted is explained. 

 

PUMPSEA project 

This PhD thesis was done within the PUMPSEA (Peri-urban mangrove forests as 

filters and potential phytoremediators of domestic sewage in east Africa) project that was built 

based on the preliminary observation and studies that mangroves filtrate discharged 

wastewater and prevent coastal pollution, although this ecosystem service has not been 

conveyed to coastal management, nor has the filtration capacity been fully exploited. In this 

light, the overall objective of this project was to demonstrate the ecological and economical 

service that peri-urban mangroves provide by mitigating coastal pollution through sewage-
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filtration, and to offer innovative solutions for the exploitation and management of this service. 

The project examined two innovative ways in which mangrove filtration can be utilised to 

preclude coastal sewage pollution: (1) facilitating sewage filtration by conserving filtering 

mangroves and replanting mangroves in deforested areas exposed to sewage (´strategic 

reforestation and conservation'), and (2) using constructed mangrove wetlands for sewage 

treatment. It also developed an implementation plan for the exploitation of the developed 

technology and know-how, based on analysis of governance, policy, cost and financing 

options. At the same time, several studies tried to better understand the impact of sewage 

contamination on ecosystem health and processes, including microbial, fauna and flora 

diversity and abundance as well as sediment biogeochemical processes. This work took 

place in peri-urban mangrove areas of Maputo (Mozambique), Dar es Salaam (Tanzania) and 

Mombasa (Kenya) and pristine (control) mangrove areas nearby, and involved several African 

and European scientific teams and expertise fields. 

 

Anthropogenic pollution 

In peri-urban areas, wastewater loadings rich in labile organic matter and nutrients are 

common and under weak hydrodynamic conditions usually lead to eutrophication. 

Accumulation of particulate organic matter will encourage microbial activity and the 

consumption of dissolved oxygen in bottom waters leads to hypoxic or even anoxic conditions 

(Gray et al., 2002; Diaz and Rosenberg, 2008). The worldwide distribution of coastal oxygen 

depletion is associated with major population centers and watersheds that deliver large 

quantities of nutrients (Figure 1). Low oxygen levels, and consequently production of toxic 

components (such as sulphite and ammonia) may decrease faunal diversity and biomass due 

to emigration of mobile species or high mortality of less mobile species in natural ecosystems 

(Diaz and Rosenberg, 1995). This could also significantly affect ecosystem functioning (Biles 

et al., 2002; Le Hir et al., 2007), and coupled with a potential decrease in activity and 

behaviour of the more resistant species (Diaz and Rosenberg, 1995) potentially reduce the 

ecosystem health and functioning. 

In tropical developing countries the lack of technical solutions for sewage treatment, 

combined with an increase in population growth and migration to coastal areas, has lead to a 

rapid increase in urban wastewater production, which is putting breakpoint pressures on 

already inadequate sewage systems (e.g., Mohammed, 2002b). 
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Figure 1 – Global distribution of 400-plus systems that have scientifically reported accounts of 
being eutrophication-associated dead zones. Their distribution matches the global human 
footprint in the northern hemisphere, while for the Southern hemisphere, the occurrence of 
dead zones is only recently being reported. (adapted from Diaz and Rosenberg, 2008) 
 

As a result, peri-urban coastal areas receive extensive amounts of untreated sewage, which 

is typically discharged into creeks lined by mangrove forests. Although this uncontrolled 

drainage of raw sewage into peri-urban coastal areas is a factual result, there is hardly any 

understanding of its consequences regarding ecosystem health (Holguin et al., 2001; Adeel 

and Pomeroy, 2002).  

 

Mangrove habitats 

Mangroves can be defined as trees and shrubs that grow in saline (brackish) coastal 

habitats in the tropics and subtropics (see Figure 2), where water temperature does not go 

below 20ºC. The word is used also more broadly to refer to the habitat and entire plant 

assemblage, for which the terms mangrove swamp and mangrove forest are also used. 

Mangrove areas are characterized by multiple substrate conditions but usually fine 

sediments, often with high organic content, low energy wave action, freshwater runoff, 

prolonged hydroperiod, salinity, anoxic conditions, and accumulation of toxic substances 

(Hogarth, 2007). Species composition is strongly influenced by these coastal settings 

because they are linked to differences in mangrove tree species’ capability to become 

established and grow. True mangroves comprise some 55 species in 20 genera, belonging to 

16 families, although the Avicenniaceae and Rhizophoraceae comprise most of the species 

(Hogarth, 2007; Ellison, 2008).  
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Figure 2 – World Distribution Map of Mangroves. 

 

These ecosystems accomplish a number of functions and services (Duke et al., 2007). 

These forests are one of the most productive systems (> 2 t ha-1 yr -1), and as a result they 

play a key role in nutrient cycling of coastal zones and global carbon cycling, and showed to 

act both as source and sink areas (Kristensen et al., 2008; Alongi, 2009). Its structure and 

productivity are crucial components of estuarine habitats that support ecosystem services 

such as nursery areas for fish, prawns and crabs (Sheridan and Hays, 2003; Crona and 

Rönnbäck, 2005). Human communities living near mangroves also rely on the provision of a 

variety of food, timber, chemicals and medicines derived from mangrove forests or associated 

plants (Ewel et al., 1998; Glaser, 2003; Stone, 2006). After the 2004 tsunami, mangrove 

forests proved also their effectiveness in protecting coastlines (Dahdouh-Guebas et al., 2005; 

Kathiresan and Rajendran, 2005).  

Despite the great social, economic, and environmental importance of mangroves in 

tropical ecosystems (Rönback et al., 2007; Nagelkerken et al., 2008; Walters et al., 2008), 

during the last decades, mangrove ecosystem have been reduced at a rate of 1-2% due to 

anthropogenic influence through deforestation and dumping activities (Duke et al., 2007; 

Kruitwagen et al., 2008). Also, environmental monitoring and assessment of these systems 

are still lacking (Peters et al., 1997). Most studies done in these forests have pursued the 

quantification in situ (water, sediment samples as well as in organisms) of anthropogenic 

contaminants such as heavy metals, organotins, organochlorine pesticides and 

polychlorinated biphenyls, among others (Uma Devi and Prabhakara Rao, 1989a; b; De Wolf 

et al., 2001; Mohammed, 2002b; Kruitwagen et al., 2008), while the classification of pollution 

using key fauna communities or species as bioindicators has been neglected. 
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Key mangrove fauna  

Mangrove ecosystems harvest a unique set of associated faunal species (Vannini et 

al., 2002; Lee, 2008). A unique and diverse assemblage of benthic invertebrates, including 

gastropods, polychaetes, oligochaetes and burrowing brachyuran crabs, such as sesarmids 

and fiddler crabs, are considered the most important functional groups in this ecosystem 

(Cannicci et al., 2008). This is mainly due to their high biomass, significantly affecting 

vegetation structure by leaf consuming and propagule predation, regulation of benthic 

microalgae biomass and productivity, sediment properties, mainly through their ecosystem 

engineering activities, and controlling energy flow between mangroves and nearby 

ecosystems (Cannicci et al., 2008; Kristensen et al., 2008).  

 
Gastropods  

Gastropods play an important ecological role in natural systems through organic 

matter consumption (Slim et al., 1997; Fratini et al., 2004), bioturbation effects on nutrient 

cycling (Biles et al., 2002), regulation of meiofauna and microphytobenthos biomass (Carlén 

and Ólafsson, 2002; Pape et al., 2008), changes in the dynamics of suspended material 

(Kamimura and Tsuchiya, 2004) and effects on sediment stability (Orvain et al., 2003; 2004; 

2006). In mangrove forests more than 30 species of gastropods can be found (Hogarth, 

2007), and total densities can achieve values higher than 200 m-2 (Houbrik, 1991). 

The mudwhelk gastropod Terebralia palustris (Linnaeus, 1767) is a key epifaunal 

species in mangrove forests around the world (Soemodihardjo and Kastoro, 1977; Nishihira, 

1983; Houbrik, 1991; Slim et al., 1997; Dahdouh-Guebas et al., 1998; Fratini et al., 2004; 

Pape et al., 2008). Studies have shown that it is important for the nutrient cycling by 

consuming large amounts of Avicennia marina (Forsk.) and Rhizophora mucronata Lam. 

litter, mangrove propagules, carrion, detritus, benthic diatoms and bacteria (Nishihira, 1983; 

Rambabu et al., 1987; Dahdouh-Guebas et al., 1998; Fratini et al., 2000; Fratini et al., 2004). 

It can also regulate microphytobenthic primary productivity and meiobenthos community 

through feeding and/or crawling activities (Schrijvers et al., 1996; Schrijvers et al., 1998; 

Carlén and Ólafsson, 2002; Pape et al., 2008). This intertidal snail seems able to discriminate 

between different food items and can potentially use both air-borne and water-borne odours 

to locate food (Fratini et al., 2001; Fratini et al., 2008). A spatial separation between young 

and older individuals was first observed by Soemodihardjo and Kastoro (1977). Due to 

anatomical differences in the structure of the radula, only large (shell height >5 cm) T. 

palustris actively feed on fallen mangrove leaves, propagules and fruits, while small 

individuals (shell height <5 cm) are usually detritivorous or deposit feeders (Nishihira, 1983; 
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Houbrik, 1991; Slim et al., 1997; Dahdouh-Guebas et al., 1998; Fratini et al., 2004; Pape et 

al., 2008). 

 

Crabs 

Brachyuran crabs, primarily fiddler crabs (family Ocypodidae) and leaf-eating 

sesarmid crabs (family Grapsidae), dominate the mangrove fauna in number and biomass 

(Kristensen, 2008), and these burrowing decapods are key components of Indo-Pacific 

mangroves (Lee, 1998).  

More than 97 species of fiddler crabs (genus Uca), although not all present in 

mangrove ecosystems, establish dense populations reaching more than 150 individuals m-2 

on intertidal flats (Rosenberg, 2001; Skov and Hartnoll, 2001; Skov et al., 2002; Cannicci et 

al., in press), making them important grazers on microalgae and bacteria (Bouillon et al., 

2002; Reinsel, 2004). As many as 36 species of sesarmid crabs have been found in 

mangrove forests of Thailand (see references in Thongtham et al., 2008) and densities are 

much lower than for fiddler crabs, reaching average values of 6 m-2 (Cannicci et al., in press) 

and mainly consuming organic matter, dead fauna and leaves (Thongtham and Kristensen, 

2005; Cannicci et al., 2008; Lee, 2008; Thongtham et al., 2008). 

Fiddler crabs of genus Uca (Ocypodidae) are characterised by strong sexual 

dimorphism and male asymmetry and are a well known group due to the fact that one of the 

male chelae is very enlarged and carried horizontally across the front, like a fiddle. This 

bigger chelae is used for protection, aggressive and female courtship behaviours (Eshky et 

al., 1995). Fiddler crabs are known to inhabit and seal their burrows during immersion periods 

(De la Iglesia et al., 1994), while feeding, waving (as a female courtship behaviour), and 

gallery maintenance activity during emersion period during day time (Eshky et al., 1995). 

These crabs have been the subject of a wide variety of studies, including taxonomic (Crane, 

1975; Rosenberg, 2001), reproductive parameters and behaviour (e.g., Hyatt, 1977; Christy, 

1982; Backwell and Passmore, 1996; Backwell et al., 1999; Litulo, 2004a; c; b; 2005d; c; b; 

2006; Torres et al., 2008; 2009), visual and acoustic display (Salmon, 1965; Salmon and 

Atsaides, 1968; Cannicci et al., 1999), morphometric relations and dynamics (e.g., Huxley, 

1924; Huxley and Callow, 1933; Levinton and Judge, 1993; Takeda and Murai, 1993), 

aggressive, foraging and burrowing behaviour (Murai et al., 1982; Weissburg, 1992; Wolfrath, 

1992; Weis and Weis, 2004) and a few studies on toxicity, environmental monitoring and 

pollution (e.g., Devi, 1987; Weis and Kim, 1988; Ismail et al., 1991; Das and Chakraborty, 

2004; Mokhtari et al., 2008). 
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Infauna 

Diversity and abundance studies of infauna in Indo-Pacific mangrove forests are still 

scarce (Sasekumar, 1974; Guerreiro et al., 1996; Fondo and Martens, 1998; Metcalfe and 

Glasby, 2008) mainly due to limited taxonomic expertise or resources availability in 

developing countries (Thorne and Williams, 1997). Polychaeta species represent more than 

90% of the biomass of macroinfauna and more than 60 species were already observed in 

Australian mangroves (Metcalfe and Glasby, 2008). Regarding meiofauna, total densities can 

easily reach 2.46 x 106 m-2 and nematods are usually the most abundant group representing 

more than 80% of the total density (Dye, 1983; Ólafsson, 1995) and more than 90 genera 

belonging to more than 30 families were recorded (Olafsson et al., 2000). 

Several descriptive studies have been done on the temporal and spatial distribution of 

the infauna (Dye, 1983; Alongi, 1987; Ólafsson, 1995; Olafsson and Elmgren, 1997) along 

with studies on trophic and non-trophic relations between macro and meiofauna as well as 

with macroepifauna and flora (Dye and Lasiak, 1986; Olafsson and Elmgren, 1991; Olafsson 

and Moore, 1992; Schrijvers et al., 1995; Schrijvers et al., 1996; Schrijvers et al., 1997; 

Schrijvers et al., 1998; Paula et al., 2001; Olafsson, 2003), food source to pelagic and visiting 

fauna or avifauna (Sutherland et al., 2000; Lee, 2008), nutrient re-cycling (Kristensen et al., 

2005; Lillebø et al., 2007) and the effects of physical and biogeochemical disturbances 

(Alongi and Christoffersen, 1992; Banta et al., 1999; Kristensen and Kostka, 2005). 

 

Ecological indicators 

During the past decades, researchers have been trying to find appropriate 

bioindicators and biomonitors from each ecosystem for the different types of contaminants 

that they are subjected to. According to Market (2004): “A bioindicator is an organism (or part 

of an organism or a community of organisms) that contains information on the quality of the 

environment (or a part of the environment), while a biomonitor, on the other hand, is an 

organism (or part of an organism or a community of organisms) that contains information on 

the quantitative aspects of the quality of the environment”. 

Studies of contaminant-induced alterations in fauna species abundance and diversity 

were developed and are nowadays commonly used in order to give an indication of 

anthropogenic contamination (e.g., Bigot et al., 2006; Saunders et al., 2007). For example, 

fauna community from different ecosystems (from deep sea to estuaries) has already 

demonstrated to be significantly affected (both in diversity and abundance) by different types 

of pollutants such as heavy metals and hydrocarbons (Inglis and Kross, 2000; Heininger et 

al., 2007), as well as  organic matter and nutrients (Beier and Traunspurger, 2001; Rossi and 
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Underwood, 2002; Hyland et al., 2005; Chambers et al., 2006; Saunders et al., 2007), 

including in mangrove ecosystems (Yu et al., 1997). 

Positive indicators, also named opportunistic species, from polychaete worms, such 

as Capitella capitata (Méndez et al., 1997) to fishes, such as carp Cyprinus carpio (Tsai, 1975 

in Smith and Suthers, 1999), tend to increase abundance in polluted areas out competing 

local species. Negative indicators are usually key fauna species in the environment that tend 

to decrease biomass, show reduced growth rates (e.g., Crouau and Moia, 2006; LeBlanc, 

2007; Amara et al., 2009), as well as low reproduction output and embryo quality (e.g., Smith 

and Suthers, 1999; Elumalai et al., 2005; Crouau and Moia, 2006). They are efficient 

indicators of contamination due to a general reallocation of resources favouring tolerance to 

stress, by combating against contaminants, low oxygen levels or repairing damage (Diaz and 

Rosenberg, 1995; Wu, 2002). Changes in morphological structures and physiological 

processes have been also an alternative indication of organisms (including foraminifera, 

bivalves and crustaceans) condition when facing stress or pollution (e.g., Le Cadre and 

Debenay, 2006; Norkko et al., 2006).  

Biochemical indicators have also become central in such monitoring studies. They are 

key components of synthetic or metabolic pathways, reflecting metabolic activities directly or 

indirectly linked to growth, reproduction or survival, and thus physiological condition (Dahlhoff, 

2004). Biochemical changes usually occur before those in organism growth or reproduction 

become discernable, and thus may help us early identify effects of stressors, such as 

pollution, and thus prevent the loss of critical ecosystem functions. RNA/DNA ratio has been 

especially valuable as a biochemical estimator of organism condition in studies of marine 

invertebrates and fishes (Dahlhoff, 2004; Gilliers et al., 2004; Amaral et al., 2009; in press). 

The principle is that RNA content is correlated with new protein synthesis, usually interpreted 

as being beneficial to the organism, reflecting active metabolic rates canalized to growth and 

reproduction. As DNA content remains relatively constant in an individual due to be a function 

of chromosome number, higher RNA/DNA ratios are expected where, or when, conditions are 

favourable (Dahlhoff, 2004). 

Parasites are useful bioindicators particularly if anthropogenic pollution is to be 

monitored, due their strong impact on fauna communities (Poulin, 1999). They have been 

widely accepted as a good indicator of anthropogenic pollution due a generally decrease of 

host defence mechanism and fitness, thereby increasing the host susceptibility (Sures, 2004; 

Sures, 2006), affecting host abundance, tolerance to pollution, behaviour and mortality 

(Lafferty, 2008). Pollution can either increase parasitism if, for example, host defence 

mechanisms are negatively affected, thereby increasing host susceptibility, or by simply 



Section I 
____________________________________________________________________________ 

            

11 

increasing the population densities of suitable intermediate or final hosts (Lafferty and Kuris, 

1997). On the other hand it can also decrease parasitism provided that: (i) infected hosts 

suffer more from environmental exposure than do uninfected hosts; (ii) parasites are more 

susceptible to the particular pollutant than their host; or (iii) pollution drives the necessary 

intermediate and final hosts to become extinct. Nevertheless, the effects of pollution can vary 

between parasite species and developmental stages as well as between host species (Sures, 

2004). 

Stable isotope (SI) signatures have been successfully used to trace organic matter 

and nutrients fluxes within mangrove ecosystem food web (Bouillon et al., 2008), and several 

studies have focussed on the role of primary producers and microbial community as well as 

on the diet of invertebrates within these forests (e.g., Bouillon et al., 2002; 2004a; 2004b; 

Penha-Lopes et al., in press). Based on the small (0–1‰) or high (2.6 to 3.4‰)  fractionation 

of carbon and nitrogen SI, respectively, between an organism and its dietary sources, 

analysis of 13C can help in elucidating the role of organic matter sources and identifying the 

diet of consumers, while nitrogen isotope signatures are used to assess the trophic levels of 

consumers (McCutchan et al., 2003; Bouillon et al., 2008). Recently, the analysis of carbon 

and nitrogen SI ratios on some key ecosystem components have also been proposed as a 

versatile approach for assessing and monitoring anthropogenic contamination on 

ecosystems, being considered good biomonitors (Cabana and Rasmussen, 1996; Costanzo 

et al., 2001; Vizzini et al., 2005; Cole et al., 2006). Although carbon has shown to be able to 

track sewage-sludge contamination (depleted in 13C) in mesocosms simulating estuarine food 

web (Gearing et al., 1991), nitrogen has been considered globally (from deep sea to coastal 

areas) the most robust and reliable indicator of sewage and animal wastes contamination 

(Van Dover et al., 1992; Heikoop et al., 2000; Vizzini and Mazzola, 2006; Chang et al., 2009). 

SI analysis on sediment, primary producers and invertebrates from pristine and contaminated 

areas with wastewater nutrients and organic matter, derived from animal waste and sewage 

disposal, have shown their high potential as good anthropogenic pollution early biomonitors, 

even at low concentrations (McClelland et al., 1997; McClelland and Valiela, 1998; Struck et 

al., 2000; deBruyn and Rasmussen, 2002; Cole et al., 2004; Cole et al., 2005). However, 

most of biomonitors but specially bioindicators have been identified in developed regions of 

the world and are almost inexistent for developing countries, especially when considering 

organic matter and nutrient contamination (Peters, 1997). 
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Mangrove macrofauna ecological indicators 

There is a lack of clear understanding of the response of key mangrove species to 

anthropogenic sewage contamination in natural environments, mainly because sewage might 

be diffuse and is usually a mixture of different types of contaminants with spatial and temporal 

variations. The majority of pollution assessment studies in mangrove forests are mostly 

focussed on local community diversity and structure, such as the one done by Yu et al (1997), 

in Futian mangroves, P.R.C., experimentally treated with municipal wastewater, where eighty-

four species of ground-dwelling fauna were studied, or Cannicci et al. (in press) where only 

major key species of macro-epifauna, such as gastropods and crabs, were studied in peri-

urban and pristine mangrove of East Africa. This last study has found that East African 

mangrove crab and mollusc populations are significantly affected by domestic wastewater, 

with an increase in density and biomass of the former group and a decrease in the last one in 

peri-urban mangroves compared with relative pristine mangroves. A similar pattern of mollusc 

depopulation was also observed by Yu et al. (1997). Another indication of a negative impact 

of sewage on mangrove gastropod populations is provided by a preliminary study on fauna 

distribution in the disturbed mangrove system of Maruhubi, Zanzibar (Machiwa and Hallberg, 

1995). 

Infauna studies in developing countries are limited due to restricted taxonomic 

expertise or resources availability. Therefore, emphasis should be placed on cost-effective 

techniques such as taxonomic minimalism (Thorne and Williams, 1997), which is also 

currently the case for mangrove meiofauna studies (Nagelkerken et al., 2008). This way, in 

order to save time and resources, the effect of environmental or anthropogenic disturbance 

on meio and macrofauna communities have been effectively detected with multivariate 

analysis at high taxonomic levels, from family to phylum (Thorne and Williams, 1997; 

Chapman, 1998; Kennedy and Jacoby, 1999; Savage et al., 2001; Gesteira et al., 2003). 

Another approach is to select specific groups, such as nematods and polychaets, and identify 

specimens to lower taxonomic levels or separate them into functional groups, another clear 

indication of the degree of contamination (Raffaelli and Mason, 1981; Levin et al., 1996; 

McPherson et al., 2002; Gyedu-Ababio and Baird, 2006; Gillet et al., 2008). This way, is 

urgently needed to develop easy but efficient tools and biological indices to monitor and 

manage near shore marine environments in developing countries such as East African 

countries.  

However, community structure and dynamics is merely an expression of variation in 

the population of constituent species and the response of these species to environmental 

stress (Smith and Suthers, 1999). In turn, the population structure is dictated by its fitness 
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parameters, such as survival and growth, physiological conditions and reproductive output, 

that might be more or less sensitive and used as an early warning to determine deterioration 

in ecosystem health (Attrill and Depledge, 1997). Although in other marshes this approach is 

common, in mangrove ecosystems is rare. Only recently, the physiological stress (using 

RNA/DNA ratio of claw muscle) of key crab species inhabiting a peri-urban and two pristine 

mangroves was assessed and results indicated that RNA/DNA ratio of U. annulipes decrease 

significantly at the contaminated mangrove, indicating stress, and may thus be a useful 

indicator of pollution (Amaral et al., 2009). Although reproductive studies of key mangrove 

species became recently very common on mangrove habitats (Litulo, 2004a; c; 2005d; a; 

2006; 2007; Penha-Lopes et al., 2007; Torres et al., 2007; Mokhtari et al., 2008; Torres et al., 

2008; 2009), none has, till this moment, used it as a proxy for sewage pollution. Also, species 

survival and growth was not assessed in contaminated conditions. 

It thus becomes urgent to better understand the effects of sewage contamination in 

key mangrove species by studying its population structure, survival and growth, changes in 

reproductive parameters and/or behaviour in contaminated and pristine conditions. Although 

not profuse, a multidisciplinary approach to investigate the impacts of sewage pollution on 

several aspects of a single species, usually mainly focussed on polychaetes and fishes, 

started to be used as indicators of anthropogenic impact and are now widely accepted (e.g., 

Smith and Suthers, 1999; Amara et al., 2009; Durou et al., accepted), but once again 

inexistent for mangrove habitats.  

Biomonitors may reflect heavy metal or other contaminants by accumulating it in the 

organism tissues. In mangrove habitats this approach has already been widely used (Saha et 

al., 2006; Kruitwagen et al., 2008), such as in fiddler crabs (Uma Devi and Prabhakara Rao, 

1989a; b), Littoraria scabra gastropods (De Wolf et al., 2001), and oysters (Zanette et al., 

2006; Mtanga and Machiwa, 2007) inhabiting contaminated zones. Another biomonitor tool 

already used at natural mangroves ecosystem contaminated with sewage or agriculture 

wastes is the stable isotope analysis technique, where the nitrogen derived from sewage was 

found in mangrove tree tissues (Fry et al., 2000; Costanzo, 2003; Pitt et al., 2009) and 

associated crabs species (Pitt et al., 2009). To our knowledge no study using SI has been 

conducted in constructed wastewater wetlands, and controlled conditions, in order to validate 

data obtained from the field. 

 

Wastewater Wetlands 

 The main wastewater treatment goal in developing countries is protection of public 

health through preventing transmission of waterborne diseases and eutrophication of surface 
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waters. Stabilization pond systems, septic tanks, activated sludges, trickling filters, anaerobic 

systems and land application systems have been used to treat sewage due to their low cost 

of installation and maintenance, and optimum climatic conditions for ponds found in tropical 

areas where many developing countries are located (Kivaisi, 2001). The most widely used 

treatment systems are stabilization ponds. However, when effluents are released without 

further treatment back into environment, they can lead to eutrophication of downstream 

ground and surface water. Wetlands are potential alternative or supplementary systems for 

wastewater treatment. In combination with established stabilization ponds, the use of 

wetlands for processing nutrient and organic-rich wastewater has proved effective to prevent 

coastal pollution in developing countries, mainly due to low running cost (low energy 

consumption and training requirements) and high filtration efficiency (Kivaisi, 2001; Crites et 

al., 2006). 

The primary productivity of wetland ecosystems is typically high in the tropics, due to 

the ample light, temperatures, water and nutrient supply (mainly near peri-urban centers). 

Many natural and constructed tropical wetlands have net primary productivity of more than 

1000 g C m-2 yr-1 which is greater than most other ecosystems (Alongi, 2009). Incoming 

nutrients support the growth of vegetation, which converts inorganic chemicals into organic 

materials, the basis of the wetland food chain. However they are characterized by high 

organic matter accumulation due to a reduced rate of decomposition as a consequence of 

anaerobic conditions (Kristensen et al., 2008). Finally, they also allow multi-purpose 

sustainable utilization such as swamp fisheries, biomass production, seasonal agriculture, 

water supply, public recreation, wild life conservation and scientific study (Kivaisi, 2001). 

However, previous studies have identified current limitations to widespread adoption of CW 

technology for wastewater treatment in developing countries (see Kivaisi, 2001). These 

include large land requirements, lack of knowledge of tropical wetland ecology and native 

wetland species, prevalence of mixed domestic:industrial wastewaters, and limited knowledge 

and experience with CW design and management.  

 

Mangrove potential as wastewater wetlands 

Mangrove forests have recently shown a potential as natural wastewater treatment 

facility in China, by removing nutrients and organic matter efficiently (Wong et al., 1997; Yang 

et al., 2008). Growth and productivity in natural and pristine mangrove forests are usually 

nutrient limited (Hogarth, 2007). Consequently, discharge of moderate sewage loadings 

results in enhanced growth of trees (Mohamed et al., 2008) as well as stimulation of benthic 
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primary producers and microheterotrophs (Tam, 1998; Meziane and Tsuchiya, 2002). Field 

trials have shown that sediments of these ecosystems are very efficient in removing nutrients 

from sewage (Tam and Wong, 1995; 1996), without apparent impacts on mangrove trees 

(Wong et al., 1997) or significant effect on the benthic invertebrate communities (Yu et al., 

1997). 

However, possible harmful effects due to toxic materials and pathogens in wastewater 

(Al-Sayed et al., 2005) and anthropogenic degradation of natural wetlands have forced 

managers to use constructed wetlands (Kivaisi, 2001). CWs for wastewater treatment involve 

the use of engineered systems that are designed and constructed to utilize natural processes. 

These systems are designed to mimic natural wetland systems, using wetland plants, soil, 

and associated microorganisms to remove contaminants from wastewater effluents (Kivaisi, 

2001). This way sewage filtering of constructed wetlands is now addressed in several tropical 

and subtropical countries (Kivaisi, 2001; Stottmeister et al., 2003), and more recently 

mangroves have also been also considered as an effective alternative (PUMPSEA, 2008; 

Yang et al., 2008).  

 

Ecosystem engineering 

Bioturbation is generally referred as a key process in the transport of various particles 

and compounds by the activity of benthic organisms in terrestrial soils and aquatic sediments 

(Rhoads, 1974; Aller, 1982; Kristensen and Kostka, 2005). Although this topic was addressed 

by Charles Darwin at the end of his life (Meysman et al., 2006), only recently has been 

recognized to affect several major ecological processes, being considered also one of the 

most significant events in the evolution of marine ecosystems (Lohrer et al., 2004; Meysman 

et al., 2006; Solan et al., 2008). The physical, chemical and biological effects of sediment and 

water transport by benthic fauna (or biogenic structures) plays an important role for the 

biogeochemical and ecological functioning of soils and sediments (Meysman et al., 2006). It 

is well known that benthic organisms affect the stability, erodability and particle transport of 

aquatic sediments through locomotion, irrigation and feeding activities as well as construction 

of biogenic structures, such as burrows, tracks and mounts. The actual effect on the 

ecosystem depends on the type of bioturbation, its range, intensity and period (Solan and 

Wigham, 2005). The extent of particle reworking or redistribution is species specific and 

depends on the organism’s mobility, burrowing and feeding mode, as well as activity rhythms, 

animal size and abundance (Rhoads, 1974; Rhoads and Boyer, 1982; Solan and Kennedy, 

2002).  
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Most studies on sewage filtration have focussed on the role of plants and sediment 

with associated microbes and microalgae (e.g., Wong et al., 1995; Wong et al., 1997; Tam, 

1998) and none have dealt with macrofaunal performance under severe conditions. However, 

it was shown that wastewater loadings above the system capacity and under weak 

hydrodynamic conditions usually lead to eutrophication and consequently hypoxic conditions 

(Gray et al., 2002), which could affect significantly fauna survival and growth rates, as well as 

behaviour and ecosystem functioning, of more sensitive species in constructed wetlands, 

affecting the system  sustainability and filtration efficiency. It is important to understand that 

fauna does not only suffer the consequences of sewage contamination in these natural 

ecosystems, being able to consume organic matter detritus, increase its horizontal and 

vertical transport as well as its degradation rate and nutrient cycling (Aller, 1994; Kristensen 

et al., 2005). Although it is also known that pelagic species of fishes and other vertebrates 

can induce severe sediment disturbance (Fleeger et al., 2006; Lohrer et al., 2008), most of 

the previous studies have demonstrated the influence of diversity and abundance (and 

biovolume) of benthic worms (such as polychaets and oligochaetes), crustaceans and 

molluscs in the sediment structure as well as microbial and biogeochemistry dynamics 

(Krantzberg, 1985; Kristensen, 2000; Solan et al., 2004; Mermillod-Blondin et al., 2005; Ieno 

et al., 2006). 

Ecosystem engineers have recently been addressed as powerful agents to restore 

ecological systems when managed well (Byers et al., 2006). Bioturbation activities influence 

the functioning of sediments, causing dramatic changes in nutrient dynamics and organic 

matter decomposition, and thus affect ecosystem health, productivity and filtration capacity 

(Kristensen and Kostka, 2005). However these processes depend on the type of organisms 

and environmental conditions, once each species may change behaviour and consequently 

bioturbation activity in different conditions (e.g., food quality and quantity, water current, 

sediment granulometry). According to Solan and Wigham (2005) there are 7 types of fauna 

bioturbation, although here only 2 will be described in detailed: 

Epifauna bioturbators are organisms whose activities occur predominantly at the top sediment 

surface, although they have a negligible contribution to particle transport other than 

redistribute fine particles randomly over very short distances along the surface. These include 

non-burrowing crabs (or crab’s non burrowing activities) as well as gastropods (such as 

Terebralia palustris). 

Regenerators are organisms that excavate holes, transferring sediment at depth to the 

surface where it is removed by the overlying water currents. The excavated sediment is 
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replaced by surficial sediments from both of the infilling of surface sediment and the collapse 

of burrow walls. Within this group we can allocate fiddler crabs (McCraith et al., 2003). 

Displacement of sediment at the surface or from deep layers by epibenthos and burrowing 

fauna, respectively, will expose new surfaces to oxygen, increasing old and refractory organic 

matter degradation by efficient aerobic bacteria. At the same time, labile organic carbon is 

buried into anoxic layers full of starved anaerobic bacteria, that will degrade this fresh 

substrate easily and rapidly (Kristensen et al., 1995; Kristensen and Holmer, 2001; Kristensen 

and Kostka, 2005). Epifauna bioturbators may also stimulate benthic bacterial biomass and 

activity through faecal pellet production and mucus secretion (Solan and Wigham, 2005). 

Furthermore, the continuous mixing of the top layer by these organisms, will enhance carbon 

mineralization and nutrient cycling by improving sediment aeration and drainage (Aller, 1994), 

as well as by increasing surface areas for microbial activity (Solan and Wigham, 2005). 

Also, by limiting microalgal biomass indirectly by subduction below the sediment 

surface (Carlén and Ólafsson, 2002; Pape et al., 2008), bioturbators suppress the 

development of dense algal mats, and consequently avoid the development of near surface 

anoxic zones (Kristensen and Alongi, 2006; Marsden and Bressington, 2009). 

Microphytobenthic primary production can potentially be enhanced when the biomass is 

grazed below the carrying capacity by deposit-feeding invertebrates (Blanchard et al., 2001). 

Consequently, faunal bioturbation may increase nutrient cycling and sediment capacity to 

degrade organic matter. 

Although many studies have measured bioturbation activities in deep sea and coastal 

areas (e.g., Moodley et al., 1998; Kristensen et al., 1999; Stora et al., 1999), temperate 

estuaries or lagoons (e.g., Rysgaard et al., 1995; Petersen et al., 1998; Mazik and Elliott, 

2000; Gerino et al., 2007; Cardoso et al., 2008), saltmarshes (e.g., Gribsholt et al., 2003; 

Gribsholt and Kristensen, 2003; Botto et al., 2006), rare are the ones done in mangroves 

(Kristensen et al., 1991; Lee, 1998; Nielsen et al., 2003; Amouroux and Tavares, 2005; 

Ferreira et al., 2007), especially in developing countries such as in East Africa. 

 

Organic matter degradation and microbial pathways 

 The actual rates of decay of organic matter depend primarily on its quality, age, and 

ambient temperature (Kristensen, 2000; Canfield et al., 2005). Both the sedimentation rate 

and the remineralisation rate are interdependent processes closely coupled with the microbial 

community, and are affected (and affect) by the sediment properties and environmental 

conditions (Aller et al., 1996; Burdige, 2006). Oxygen availability is a very important 

parameter that affects the distribution of the processes occurring in the sediment, due to its 
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role in microbial respiration as the most energy delivering electron acceptor (Canfield et al., 

2005; Glud, 2008). In the sediment surface layer, availability of oxygen is high, due to the 

high diffusion rates between top sediment and water or air. Also in this top layer, the 

abundance of both nutrients and sun light (restricted photic zone of the sediment: 1-3cm) 

allows microalgae to contribute around 20-35% of the total primary production in soft-bottom 

areas (Kristensen et al., 2005). On the other hand, oxygen produced in the top layer is utilised 

to reoxidize reduced compounds (e.g., H2S and Fe2+) that are brought from deeper layers by 

diffusion or mixing, which, in turn, restricts oxygen availability to benthic respiration 

(Kristensen, 2000).  

As the oxic zone in coastal sediment is usually limited to the upper centimetre 

(Canfield et al., 2005), a large fraction of the organic matter will be buried (more or less 

undecomposed) into anoxic layers. Here organic matter will start being degraded by 

hydrolysing and fermenting anaerobic bacteria into smaller compounds easier to degrade by 

respiratory bacteria. In this anoxic zone, microorganisms use different electron acceptors than 

oxygen (NO3
-, Mn4+, Fe3+ and SO4

2-) following an order that depends on the Gibbs free 

energy, availability and efficiency of the electron acceptors, quality of organic matter, 

sediment characteristics, environmental conditions and bioturbation (Canfield et al., 2005). 

Although sulphate reduction is one of the least favourable respiration processes, the high 

concentration of SO4
2- in seawater (300-1000 times higher than O2) is responsible for its deep 

vertical distribution and thus quantitative importance. Moreover, in organic-rich sediments 

sulphate reduction represents the main respiratory pathway of organic matter mineralization 

(Holmer and Kristensen, 1994b; Holmer et al., 2001). Although some of these can occur as 

pure chemical processes, most of the reactions in the sediment are mediated by 

microorganisms. Due to electron donor stratification, different predominance of microbial 

groups is observed throughout the sediment column (Canfield et al., 2005) (Figure 3).  
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Figure 3 - Scheme of the diagenetic processes occurring throughout sediment depth with the 

distribution of organism (on the right) based on different respiratory mechanisms (on the left). 

Adapted from Canfield et al. (2005). 

 

The sediment biogeochemistry and microorganism diversity, dynamics and processes 

vary not only with environmental conditions but also according to the level of anthropogenic 

pressure on these coastal shallow-water regions. Increased anthropogenic loading of 

nutrients into the coastal zone is now a worldwide problem and the expected changes would 

include the extension of the anoxic layer to the surface, as well as subsequent shift in carbon 

mineralization decomposition pathways (Kristensen, 2000; Valdemarsen et al., in press-a). 

A continuous loading of organic rich wastewater at a level above the system capacity usually 

leads to severely reduced O2 penetration (Gray et al., 2002) and OM accumulation in 

sediments (Holmer and Kristensen, a; b; Valdemarsen et al., in press-a) which may induce 

negative effects on sediment associated flora and fauna due to stimulated SR and toxic 

sulfide accumulation (Hargrave et al., 2008). However, benthic dwelling invertebrates as well 

as flora are known to create important physical and biogeochemical modifications in sediment 

ecosystems (Kristensen et al., 2005). On a global scale, faunal ecosystem engineering 

affects the top 15cm of sediment layer (Boudreau, 1998), while flora roots are known to affect 

sediment dynamic much deeper in the sediment (Alongi, 2005). The burrowing, feeding, 

irrigation, construction and locomotory activities of benthic invertebrates and root 
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development and functioning have significant implications for the physicochemical 

environment, and consequently to microorganism diversity, biomass and activity (Kristensen, 

2000; Alongi, 2005; Canfield et al., 2005; Kristensen et al., 2005). By creating a mosaic of 

oxic/anoxic boundary layers throughout the sediment they influence significantly 

remineralisation pathways and rates counteracting the negative effects of organic matter 

loading. This ecosystem engineer service provided by infauna was already observed in 

organic-enriched sediments (Hansen and Kristensen, 1998; Heilskov and Holmer, 2001; 

Nickell et al., 2003; Nielsen et al., 2003; Heilskov et al., 2006; Kinoshita et al., 2008; 

McHenga and Tsuchiya, 2008; Lindqvist et al., 2009; Valdemarsen et al., in press-b). 

Flora and fauna are known to simultaneously stimulate sulphate reduction through 

root exudates and transport of labile detritus to subsurface layer during bioturbation activities 

(Alongi, 1998; Kristensen, 2000; Kristensen and Alongi, 2006; Ferreira et al., 2007). Also, 

they increase the importance of aerobic and suboxic pathways on carbon mineralization, as 

iron reduction, by increasing the redox potential (Kristensen et al., 2000; Nielsen et al., 2003; 

Kristensen and Alongi, 2006), and denitrification by expanding the oxic/anoxic layer where 

coupled nitrification-denitrification can occur (Hansen and Kristensen, 1998; Heilskov and 

Holmer, 2001; Purvaja et al., 2004). This way, highly contaminated mangrove ecosystems 

might be important emission sites for greenhouse gases (Alongi, 2009). Denitrification 

(Barnard et al., 2005) and methanogenesis (Knowles, 2005) produce nitrous oxide, a known 

greenhouse gas that is 200 to 300 times more powerful than CO2 and very high rates (>150 

µmol m-2 d-1) were already found in nutrient enriched mangroves (Corredor et al., 1999; 

Munoz-Hincapié et al., 2002). Methane, produced during methanogenesis, is also a 

greenhouse gas but less strong than N2O. 
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Aims and importance of this study 

This study aimed at evaluating the impacts of domestic sewage contamination on key 

mangrove species or communities as well as to better understand their role in ecosystem 

functioning, with particular focus on sediment biogeochemistry.  

Most of biomonitors, but specially bioindicators, have been identified in developed 

regions of the world and are almost inexistent for developing countries, especially when 

considering organic matter and nutrient contamination (Peters, 1997). It is thus urgent to 

develop easy but efficient tools and biological indices to monitor and manage near shore 

marine environments in developing countries such as East African countries. In order to 

achieve this goal, in one or more countries was chosen one contaminated mangrove 

surrounding a highly populated city with two pristine mangrove ecosystems. Also, in Dar es 

Salaam, Tanzania, a mesocosms facility was built in order to assess, in controlled conditions, 

fauna endurance when subjected daily to severe sewage concentrations. Community 

diversity, abundance and distribution, and population structure, survival and growth rates, 

behaviour, as well as feeding and reproductive activities and physiological condition of key 

species were examined and related to habitat quality.  

Ecosystem engineering of mangrove key species is limited and focussed on few 

species (sesarmid crabs and gastropods) and activities, such as leaf consumption (Fratini et 

al., 2004; Cannicci et al., 2008; Lee, 2008). Although many studies have assessed fiddler 

crabs influence on sediment biogeochemistry in other ecosystems, such as saltmarshes 

(Gribsholt et al., 2003; Gribsholt and Kristensen, 2003; Kristensen, 2008), very little is known 

on their role in mangrove forest. Terebralia palustris is one of the most important species 

regulating litter export from mangrove forest (Fratini et al., 2004; Cannicci et al., 2008), 

however, its role as a sediment bioturbator has not been seriously assessed. In this study, 

fiddler crab and gastropods ecosystem engineering will be assessed in situ and controlled 

conditions and at different sewage and vegetation conditions.  

Also, very few studies have measured carbon mineralization, microbial pathways 

and/or greenhouse gas emission in constructed wetlands (von Sperling, 1996; Kivaisi, 2001; 

Yang et al., 2008; Maltais-Landry et al., 2009), and especially with focus on the abundant 

biogenic structures commonly present in mangrove natural systems (pneumatophores and 

fauna burrows). In this study, all these processes were evaluated to better understand the 

functioning of mangrove wetlands and their potential as constructed wetlands. 

Benthic invertebrate populations are an essential component of estuarine and coastal 

ecosystems, especially in mangrove forests, by actively maintaining healthy sediment 

conditions, and consequently the entire ecosystem, as well as by supporting higher trophic 
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levels (such as economically important fisheries). The generalized clearance and 

deterioration of nearshore ecosystems are jeopardizing the ecological persistence of such 

populations, putting at risk the stability and functioning of ecosystems and that of local 

communities (Costanza et al. 1997, Walther et al. 2002, Hogarth 2007). Together with the fact 

that mangroves have been recognized as filters for a wide range of contaminants (Wong et 

al., 1995; Wong et al., 1997; Yang et al., 2007; Yang et al., 2008), it becomes urgent the need 

for effective conservation, protection, restoration and sustainable managing programmes for 

such ecosystems and resources (Duke et al., 2007; Rönback et al., 2007; Nagelkerken et al., 

2008). 

This study intends to provide reliable information on the ecosystem health and its 

potential as sewage filtering system so intelligent, responsible and informed policies, 

strategies and actions can be made in order to identify in an early stage potential deleterious 

contamination of mangrove forests, as well as promote the conservation of natural forests 

and creation of constructed wetlands to decrease anthropogenic contamination of natural 

ecosystems. 

 

Structure of the dissertation 

In order to accomplish the objectives of this study, nine specific investigations were 

conducted and each resulted in a scientific manuscript (paper). This dissertation incorporates 

these papers, each constituting a full chapter (Section II), being either in press (5), or under 

review (4) in peer refereed international scientific journals. 

Benthic infaunal community studies are a useful tool in terms of determining whether 

or not chemical contamination is resulting in impacts to resident populations. In chapter 1 of 

this study, possible differences in infauna structure, using some basic (easy and inexpensive) 

metrics, between peri-urban mangroves impacted by sewage dumping and non-urban sites 

(where evident wastewater dumping was not present) along East Africa, was assessed. 

For the first time reproductive parameters of mangrove species was also assessed as 

proxy of organic matter and nutrient contamination. In chapter 2 the reproduction potential 

was measured in terms of fecundity, fertility and embryo quality (measured through fatty acid 

analysis) of the fiddler crab Uca annulipes (H. Milne Edwards, 1837), one of the most 

common crabs in mangrove forests sediments, between a contaminated peri-urban and two 

pristine mangrove creeks in southern Mozambique. Due to the fact that most contaminants 

are discharged to mangrove creeks, a multidisciplinary study a multi-disciplinary study was 

done in the same sites as the previous study to a common and local shrimp population, 

Palaemon concinnus (Dana, 1852), known to inhabit mangrove creeks. In chapter 3, 

population structure, reproductive parameters (such as maturation curves, fecundity, potential 
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fertility and embryo quality), parasite infection, and RNA/DNA ratio were used as proxies to 

test for habitat quality. 

In chapter 4, the effect of sewage and different vegetation conditions on fiddler crabs 

survival and ecosystem engineering was assessed in constructed mangrove wetlands 

(CMW). The behaviour activities of these crabs were also used as a potential proxy of 

sewage contamination (chapter 5). The effect of sewage concentration and presence of 

vegetation on Terebralia palustris survival, growth and behaviour was assessed in chapter 6. 

In the same chapter, the role of these gastropods on sediment disturbance was calculated 

and its biogeochemical consequences discussed. Knowing that Terebralia palustris is able to 

feed on a wide variety of food sources, in chapter 7, the distribution, feeding behaviour and 

strategies of this gastropod was assessed in the field in order to better understand their 

potential role in mangrove constructed wetlands.  

In chapter 8, we have aimed to validate the effects of anthropogenic sewage on the 

stable isotopes of different CMW compartments (sediment, microphytobenthos, mangrove 

trees and fauna species) as indicators of sewage exposure. We also have used stable 

isotopes to examine potential diet shift of two key macrofauna species (Uca annulipes and 

Terebralia palustris) under different domestic sewage loadings and vegetation conditions, in 

order to understand the importance of these macrofauna species on CMW functioning.  

In chapter 9, we have focused on carbon gas (i.e. CO2 and CH4) emissions under 

immersion (sediment-water) and emersion (sediment-air) periods, with special emphasis on 

the importance of biogenic structures (pneumatophores and crab burrows), as well on the 

most important carbon oxidation pathways used. Both these processes are important to fully 

comprehend the effects of organic discharge on mangrove forests and to provide basic 

knowledge for future development of sustainable wastewater wetlands. We provide rough net 

budgets of carbon gas emission in constructed mangrove wetlands under different sewage 

and vegetation treatments and discuss the long-term implications for the ecosystem 

functioning and health.  

A general discussion considering all the investigations conducted, the main 

conclusions drawn from this study and the contributions made to increase the knowledge of 

mangrove fauna bioindicators and biomonitors as well as their ecological functioning in 

contaminated and pristine natural and artificial system are the contents of Section III, together 

with the issues that have arose and on which further research is necessary. 
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Abstract 

East African peri-urban coastal areas are one of the destinations of untreated sewage. 

To consider an environment polluted we need to correlate the levels of contamination with the 

ecosystem health and biological components provide an integrated measure of pollution. 

Benthic infaunal community studies are a useful tool in terms of determining whether or not 

chemical contamination is resulting in impacts to resident populations. An ACI (After 

Control/Impact) unbalanced design was followed, comparing the community structure of 

macro and meio-infauna recorded in one contaminated mangrove swamp with those 

characteristic of two nearby relative pristine mangroves of similar ecological traits in Kenya 

and Mozambique. At macroinfauna communities, Oligochaeta density decreased significantly 

in contaminated mangroves of both countries. While crustaceans increased and molluscs 

decreased at Mozambiquean contaminated mangrove, at Kenya a clear decrease of 

polychaetes was also observed. Meiofauna responded in opposite ways, increasing at the 

Mozambiquean peri-urban mangrove and decreasing at Kenya one. Diversity indexes 

calculated using meiofauna major groups did present lower number of taxa in contaminated 

sites. The differences observed between countries may have to do with the fact that Costa do 

Sol and Mikindani mangrove systems seemed to be completely different systems, plus the 
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fact that Mikindani is subjected to other contaminants (e.g., heavy metals) other than sewage-

derived nutrients and detritus.  

 

Keywords: infauna, mangrove, ecological indication, pollution, East Africa 

 
1. INTRODUCTION 

To consider an environment polluted, the levels of contamination need to be correlated 

with the ecosystem health (Chapman, 2007a). Biomonitoring and bioindication are promising 

methods of observing the impact of external factors on ecosystems and their development 

over a long period, or differentiating between a polluted from a non polluted site (Underwood, 

1992a; 1994a). Both macro and meiofauna are good biologic candidates to assess the quality 

of a aquatic ecosystem and both communities exhibit repeatable patterns of response to 

environmental stressors (Chapman, 2007b).  

Meiofauna has the advantage of being close associated with the sediment matrix, thus 

changes in interstitial chemistry quickly lead to changes in meiofaunal abundance and 

diversity (Kennedy and Jacoby, 1999a). Short generation times and asynchronous 

reproduction of the majority of meiofaunal species have the advantage that all stages in the 

life cycle are exposed to the pollutant, which results in a short time response by the 

community to a pollution event (Coull and Chandler, 1992). Meiofauna may also persist 

where macrofauna is absence and in such cases, the characteristic composition of the 

residual assemblage may help with diagnosing pollutant types (Kennedy and Jacoby, 1999b). 

Macrofauna, on the other hand, has longer life expectancy allowing it to integrate 

environmental conditions over longer periods of time, as well as accumulates contaminants 

that are transferred to higher levels of the food web (Markert et al., 2004). 

Both communities were already used successfully to assess anthropogenic contamination 

in situ at rivers basin areas (Beier and Traunspurger, 2001; Chambers et al., 2006; Heininger 

et al., 2007; Saunders et al., 2007), intertidal zones (Yu et al., 1997; Frouin, 2000; Rossi and 

Underwood, 2002; Solis-Weiss et al., 2004; Bigot et al., 2006; Sutherland et al., 2007; Wear 

and Tanner, 2007), ocean floor (La Rosa et al., 2001), as well as in mesocosms subjected to 

specific contaminants (Austen et al., 1994; Austen and McEvoy, 1997; Gyedu-Ababio and 

Baird, 2006), although most studies have focussed on heavy metals. Sewage effluents can 

affect the receiving benthos in a variety of ways by changing salinity regimes and introducing 

contaminants (e.g., such as metals, pesticides and hydrocarbons), and increasing detritus 

and nutrient availability, and consequently more frequent eutrophication and anoxic events, 
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affecting severely the local community structure and dynamic (Pearson and Rosenberg, 

1978; Wu, 2002; Diaz and Rosenberg, 2008).  

East African peri-urban coastal areas receive extensive amounts of untreated sewage, 

which is typically discharged into creeks usually lined by mangrove areas (Mohammed, 2002; 

Kruitwagen et al., 2008). These forests accomplish a number of ecosystem functions and 

services (Duke et al., 2007), including their great potential as natural wastewater treatment 

areas (Wong et al., 1995; 1997). Preliminary results from field trials or at peri-urban mangrove 

systems (compared with pristine areas) have shown that sewage loading did not produce any 

harmful effect on the higher plant communities (Wong et al., 1997) while its role on the 

benthic macrofauna community structure is insignificant (Yu et al., 1997) or severe affect 

faunal diversity and/or biomass (Machiwa and Hallberg, 1995; Cannicci et al., in press). 

Nevertheless, the influence of anthropogenic sewage in mangrove associated meiofauna is 

inexistent. More importantly, it is known that changes in community structure and dynamic, as 

well as behaviour, can lead to a significant decrease in the bioturbation potential and 

consequently a loss of ecosystem functioning (Mazik and Elliott, 2000; Coleman and 

Williams, 2002; Solan et al., 2004; Bartolini et al., accepted; Penha-Lopes et al., accepted-a; 

Penha-Lopes et al., accepted-b).  

In order to save time and resources, the effect of environmental or anthropogenic 

disturbance on meio and macrofauna communities have been effectively detected with 

multivariate analysis at high taxonomic levels, from family to phylum (Thorne and Williams, 

1997; Chapman, 1998; Kennedy and Jacoby, 1999b; Savage et al., 2001; Gesteira et al., 

2003). This is even more important in developing countries where limited taxonomic expertise 

or resources are available, and therefore emphasis should be placed on cost-effective 

techniques such as taxonomic minimalism (Thorne and Williams, 1997), which is also 

currently the case for mangrove meiofauna studies (Nagelkerken et al., 2008). 

The present study was integrated in PUMPSEA Project (funded by European 

Commission: FP6, INCO-CT2004-510863), which global aim was to demonstrate the 

ecological and economical ecosystem service performed by mangroves as filtering 

discharged wastewater, and thereby limiting coastal sewage pollution, and to positively 

improve coastal zone management within East Africa. The present study aimed at 

investigating the possible differences in infauna structure between peri-urban mangroves 

impacted by sewage dumping and non-urban sites where evident wastewater dumping was 

not present, along East Africa, using some basic (easy and inexpensive) metrics to be used in 

developing countries. These studies are urgently needed to develop easy but efficient tools 

and biological indices to monitor and manage near shore marine environments. 
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2. MATERIALS AND METHODS 

2.1. Study area and sampling design 

Appropriately replicated Before/After sampling designs are perhaps the most reliable 

methods for detecting an environmental impact (Underwood, 1992b; 1994b). However, in the 

absence of such data, with appropriate spatial and temporal replication it has been possible to 

examine differences between potentially disturbed and control locations after the 

‘‘disturbance’’ (Chapman et al., 1995). For these reasons, we followed a ACI (After 

Control/Impact) unbalanced design, comparing the ecological features recorded in one 

contaminated mangrove swamp with those characteristic of two nearby pristine mangroves of 

similar ecological traits, in two countries, Kenya and Mozambique. 

Mangrove areas and sampling design were extensively described in Cannicci et al (in 

press), however a brief description will be done here. Three sampling sites were chosen at 

the southern Kenya coast (Figure 1), Mikindani (impacted site), Gazi Bay and Shirazi creek 

(pristine sites). The Mikindani mangrove system is located within the Tudor creek, which 

surrounds the city of Mombasa. This mangrove has been exposed to sewage for more than a 

decade, primarily affected by the sewage from Mikindani residential estate and also highly 

affected by part of Mombasa city sewage (Mohammed, 2008). The sewage runs through the 

mangrove forest in canals and is discharged directly into the nearby mangrove forest at 

Mikindani in Tudor creek. The mangroves are periodically dozed with sewage every tidal 

cycle the loading exponentially reduces with distance from source (PUMPSEA, 2008). 

At Mozambique, the sampling was conducted in three different mangrove ecosystems, 

a peri-urban mangrove, Costa do Sol, and two pristine mangroves, Saco and Ponta Rasa, at 

Inhaca Island (Figure 1). Costa do Sol mangrove is located at Maputo Bay, ~7 Km north of 

Maputo city. The seasonal river Quinhenganine discharges in the swamp after passing 

through the city. The mangrove is bordered by a residential area, and has been receiving 

domestic sewage, aquaculture residuals and solid dumps of various sources during the last 

decades (PUMPSEA, 2008). Costa do Sol presents higher concentrations of nutrients, 

especially nitrites and nitrates in relation to Saco and Ponta Rasa mangroves (PUMPSEA, 

2008).  

At each site, a stratified random sampling approach was used, since the chosen 

mangroves showed a clear zonation pattern, with a division in obvious vegetation belts, which 

are known to be characterised by different ecological features and, thus, colonised by 

different faunal assemblages (Macnae, 1968; Hogarth, 2007). The considered belts were: a 

landward sandy belt dominated by Avicennia marina (Forssk.) Vierh. trees, representing the 

zone flooded at spring tides only (from now on called the Avicennia belt); and the seaward 
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muddy belt dominated by Rhizophora mucronata Lam. trees, flooded twice a day by high 

tides (from now on called the Rhizophora belt). At Costa do Sol site (southern Mozambique) 

only a wide A. marina dominated area is present and we concentrated our efforts on this belt 

alone, comparing it with the corresponding landward Avicennia belts of the Mozambican 

control sites. 

 
Figure 1 – Map of the sampling sites in Kenya and Mozambique, at East Africa coast. 

 

 

2.2. Sampling 

At each sampling site, two A. marina and two R. mucronata study areas were selected 

(50 m apart). In each area, two sub-areas (1 m of diameter) were delimited and separated 

more than 5 m apart. In each sub-area three replicates for meiofauna (corer 5 cm Ө and 20 

cm depth) and another three for macrofauna (corer 15 cm Ө and 20 cm depth) were taken 

and preserved in 10% formalin. Two temporal replicates were performed: a dry season 

sampling campaign occurred during the months of July and August 2005 at the Mozambican 
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locations and in October 2005 at the Kenyan locations. A second campaign took place at wet 

season, in April 2006 in Kenya and in February 2006 in Mozambique. Meiobenthos was 

extracted from sediment and retained on a 63µm sieve after washing the sample with tap 

water through a 500 µm sieve to remove coarse root material and macrobenthos. The 

material retained on the fine sieve was thoroughly mixed with Ludox HS40® (density 1.15 

g.cm-3) The supernatant was washed on the 63µm sieve with tap water (Burgess, 2001) and 

the material retained was preserved in 4% formalin, to which a small amount of Rose Bengal 

stain was added to aid counting. Macro and meiobenthos were counted and identified to the 

levels of phylum, order or class. 

 

2.3. Data analysis 

The data were analysed using univariate and non-parametric multivariate techniques 

contained in the PRIMER (Plymouth Routines In Multivariate Ecological Research) package 

(Clarke and Gorley, 2006). For meiofauna groups, generic diversity was assessed by using 

the Shannon-Wiener diversity index (H'), Pielou’s evenness index (R') Margalef’s species 

richness index (d). The nematode to copepod ratio was also calculated by dividing the 

number of nematodes in a sample by the number of copepods. These indices were handled 

statically by a two-way ANOVA. For multivariate representation of community structure a  

non-metric multi-dimensional scaling (NMDS) was used, based on lower triangular similarity 

matrices constructed using the Bray-Curtis similarity measure on square root for macrofauna 

and fourth root for meiofauna transformed data (Clarke and Green, 1988; Clarke, 1993). For 

macrofauna, a 4-way Anova was used for each of the major groups to statiscally test 

differences between sites. While for meiofauna distance-based permutational multivariate 

analysis of variance (PERMANOVA) (Anderson, 2001; McArdle and Anderson, 2001) was 

employed to test the null hypotheses of no differences among faunal assemblages on sites 

across sampling time (Anderson and Ter Braak, 2003). A SNK test (Post-hoc test) was used 

in conjunction with ANOVA to determine which specific group pair(s) were statiscally different 

from each other when significant differences between samples were observed. Species 

contributing to dissimilatiries between sites were investigated using similarities percentages 

procedure (SIMPER) (Clarke, 1993). 

 

3. RESULTS 

3.1. Macrofauna 

Four major macrofauna groups where recorded: Polychaeta, Oligochaeta, Mollusca 

and Crustacea. At Avicennia belt in both countries, macrofauna densities was similar between 
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contaminated and pristine mangroves (Table 1 - A), except for polychaets, which presented a 

very low abundance at Mikindani, and crustaceans that were completely absent from Saco 

mangrove and Costa do Sol during the wet season (Figure 2). Oligochaets and molluscs 

assemblages were highly variable at small spatial scales (area). 

At Kenyan contaminated mangrove, Mikindani, a clear decrease in abundance of 

oligochaetes at both tree belts and polychaets from Avicennia belt was observed when 

compared with pristine mangroves (Figure 2, Table 1 - B and SNK tests). MDS plots on 

Kenya data shows that Mikindani can be easily separated from pristine locations at both belts 

and seasons (although more strongly at the wet season), while both pristine locations are 

barely separable (Figure 3). SIMPER analysis between sites corroborates the previous 

results, since Oligochaeta was the group that presented higher contribution to differences 

between sites for both belts (dissimilarity 36-45 %), thus better explains the separation 

between the peri-urban mangroves from pristine ones. 

At Mozambique, a clear decrease of molluscs and oligochaets at Costa do Sol was 

observed and while most fauna groups decreased during the wet season, polychaets 

increased their density (Figure 2, Table 1 - C and SNK tests). The MDS plots separated well 

all three sampling sites (Figure 3). SIMPER analysis showed that Mollusca and Crustacea 

(both making nearly 66%) are the groups responsible to separate Costa do Sol mangrove 

(peri-urban) from Saco (dissimilarity 81%), while Mollusca (49%) is the group that more 

contributed for the dissimilarities (39%) between Costa do Sol and Ponta Rasa mangroves. 

 

3.2. Meiofauna 

Ten major taxa were recorded: Copepoda, Foraminifera, Halacaroidea, Insecta, 

Mollusca, Nematoda, Oligochaeta, Polychaeta, Tardigrada and Turbellaria. Nematodes were 

the dominant group (43-98%) in all samples with copepods usually the second most abundant 

taxon. Halacaroidea and Turbellaria groups were also quite abundant in many samples 

(Figure 4). At Avicennia belt in both countries, significant interactions were found between 

seasons and sites (Table 2 - A), with a general significant decrease of the most abundant 

meiofauna groups at Kenya contaminated mangrove while the opposite was observed at 

Mozambique (Figure 4).  

In Kenya significant interactions were found between Season x Site and Belt x Site 

(Table 2 - B). At non-urban mangroves, while nematods were more abundant at Rhizophora 

belt, Halacaroidea and Turbellaria individuals decreased significantly (Figure 4) when 

compared with Avicennia belt (SNK tests). 
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Figure 2 – Average (±SE) of the macrofauna major groups identified in contaminated and 
pristine mangrove sites in Kenya and Mozambique at dry and wet seasons per square 
meter. 
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2D Stress: 0,17 2D Stress: 0,1

2D Stress: 0,12 2D Stress: 0,05

2D Stress: 0,13 2D Stress: 0,06

2D Stress: 0,07 2D Stress: 0,1

Kenya (Avicennia+Rhizophora)

Kenya (Avicennia)

Kenya (Rhizophora)

Mozambique (Avicennia)

Dry season Wet season
 

Figure 3 - Non-metric multidimensional scaling (NMDS) ordination of root transformed  
macro-infaunal abundance data from three sampling sites, in both Avicennia and Rhizophora 
belts, in Kenya ((x) Mikindani (●) Gazi (▼) Shirazi) and Mozambique       ((x) Costa do Sol (●) 
Saco (▼) Ponta Rasa). 
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Table 1 - Results of the four 4-way ANOVA on macro-infauna major groups density data, log 
(x+1) transformed, estimated for the three sampling sites: A - in both countries (Avicennia belt 
only); B - Kenya (Avicennia and Rhizophora belt) and C - Mozambique (Avicennia belt). 
Factors: season (fixed and orthogonal), country (fixed and orthogonal), site (random and 
orthogonal) and area (random and nested in site). The degrees of freedom, DF, Variance, 
MS, and value of F ratio are showed for each of the four tests.  
 

  Crustacea Polychaeta Oligochaeta Mollusca 
 df MS F MS F MS F MS F 

A - Kenya and Mozambique          
Season  1 1,62 4,68 0,13 0,48 0,04 0,04 0,16 0,65 
Country 1 0,10 0,17 0,12 0,10 9,84 2,65 1,49 5,56 
Site 4 0,58 157,81b 1,17 9,25 b 3,71 3,18 0,27 1,09 
Area 6 0,00 0,02 0,13 0,61 1,17 4,52 b 0,25 3,38 a 

Season x Country 1 0,78 2,26 3,38 12,07 a 0,29 0,30 0,17 0,69 

Season x Site 4 0,35 14,07 b 0,28 0,84 0,98 3,52 0,25 1,74 

Season x Area 6 0,02 0,12 0,33 1,59 0,28 1,08 0,15 1,99 
Residual 24 0,21  0,21  0,26  0,07  
Total 47         
B - Kenya          
Season 1 0,17 0,34 1,60 8,61 3,59 1,17 0,01 0,02 
Belt 1 1,03 4,74 33,03 17,20 5,09 12,92 0,44 11,16 
Site 2 0,09 1,00 0,59 1,36 18,28 27,53 a 0,37 4,21 
Area 3 0,09 0,49 0,44 2,24 0,66 1,06 0,09 0,96 
Season x Belt 1 0,00 0,01 0,04 0,02 2,39 1,96 0,01 0,22 
Season x Site 2 0,52 6,27 0,19 0,39 3,06 2,03 0,32 4,05 
Season x Area 3 0,08 0,44 0,48 2,44 1,51 2,40 0,08 0,87 
Belt x Site 2 0,22 2,15 1,92 12,06 a 0,39 0,20 0,04 0,23 
Belt x Area 3 0,10 0,54 0,16 0,82 2,00 3,18 a 0,17 1,86 
Season x Belt x Site 2 0,12 5,75 1,82 7,15 1,22 7,76 0,04 0,34 
Season x Belt x Area 3 0,02 0,11 0,25 1,30 0,16 0,25 0,12 1,28 
Residual 24 0,19  0,20  0,63  0,09  
Total 47         
C - Mozambique          
Season 1 0,34 1,37 2,43 27,48 a 2,33 3,84 0,27 0,86 
Site 2 0,25 0,89 0,31 4,09 1,02 274,01 b 0,64 16,94 a 
Area 3 0,28 30,56 b 0,08 0,36 0,00 0,02 0,04 1,04 
Season x Site 2 0,25 0,89 0,09 0,26 0,61 26,73 a 0,31 10,97 a 
Season x Area 3 0,28 30,56 b 0,34 1,61 0,02 0,09 0,03 0,78 
Residual 12 0,01  0,21  0,24  0,04  
Total 23         

(a = p < 0.05; b = p < 0.01) 
 

Both these meiofauna groups were also almost absence in the peri-urban mangrove and at 

significantly lower densities when compared with pristine mangroves (SKN tests). 
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While MDS plots (Figure 5) at Kenya, merging both Avicennia and Rhizophora belts, 

show no significant differences between assemblages, data at Avicennia belt shows 

Mikindani separated, although with some overlapping, from both pristine mangroves, and 

mainly at wet season. At the Rhizophora belt, the MDS plot shows all mangroves more or 

less overlapping at the wet season but very well separated at the dry season (Figure 5). 

 
Figure 4 – Average (±SE) of the most abundant meiofauna major groups identified in 
contaminated and pristine mangrove sites in Kenya and Mozambique at dry and wet 
seasons per square meter. 

 

At Mozambique, MDS plot for the Avicennia belt showed that all three mangroves are 

clearly separated (Figure 5). PERMANOVA results support the MDS results, since significant 

differences were obtained between Sites (Table 2). SNK post-hoc test showed significant 

differences between all three mangrove communities assemblages. Meiofaunal composition 

differences between Saco and Ponta Rasa (dissimilarity = 68%) were mainly due the 

contribution of nematodes and foraminifers. Nematodes and halacarids were responsible for 

nearly 50% of the dissimilarity between Saco and Ponta Rasa and Costa do Sol (dissimilarity 
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= 76%) were. Considering differences between Saco e Costa do Sol (dissimilarity = 38%), 

copepods, nematodes and polychaets were the groups that contributed ~50% for dissimilarity 

between this two sites. 

 

Table 2 – Results PERMANOVA on Bray-Curtis distances for abundance data of major 
meiofauna groups recorded at the three sampling sites: A - in both countries (Avicennia belt 
only); B - Kenya (Avicennia and Rhizophora belt) and C - Mozambique (Avicennia belt). The 
factors used in all the analysis were: Season (fixed and orthogonal), Country (fixed and 
orthogonal), Site (random and nested in country), Area (random and nested in site), and Belt 
(random and orthogonal). (Degrees of freedom (df), sum of squares (SS), mean squares 
(MS) and F-ratio value (F)). 
 

Source df SS MS F P 
A - Kenya and Mozambique      
Season 1 3057,22 3057,22 2,01 0,13 
Country 1 16668,02 16668,02 2,81 0,05 
Site 4 23711,77 5927,94 11,44b 0,00 
Area 6 3108,06 518,01 1,03 0,44 
Season x Country 1 966,28 966,28 0,64 0,67 
Season x Site  4 6073,49 1518,37 2,44a 0,02 
Season x Area  6 3725,55 620,93 1,23 0,23 
Residual 24 12098,73 504,11   
Total 47 69409,13    
B – Kenya      
Season 1 2204,75 2204,75 2,42 0,14 
Belt 1 2411,14 2411,14 2,40 0,14 
Site 2 1375,53 687,77 1,37 0,31 
Area 3 1508,28 502,76 2,71b 0,01 
Season x Belt 1 562,64 562,64 1,01 0,45 
Season x Site 2 1819,37 909,69 3,49a 0,03 
Season x Area 3 780,79 260,26 1,41 0,19 
Belt x Site 2 2006,55 1003,28 6,42b 0,00 
Belt x Area 3 468,41 156,14 0,84 0,58 
Season x Belt x Site 2 1109,39 554,70 2,05 0,14 
Season x Belt x Area 3 810,03 270,01 1,46 0,17 
Residual 24 4438,78 184,95   
Total 47 19495,68    
C - Mozambique      
Season  1 2267,61 2267,61 1,03 0,43 
Site  2 20912,57 10456,28 19,54b 0,00 
Area 3 1605,25 535,08 0,72 0,70 
Season x Site 2 4418,25 2209,12 2,41 0,10 
Season x Area 3 2754,61 918,20 1,23 0,29 
Residual 12 8942,77 745,23   
Total 23 40901,05    

(a = p < 0.05; b = p < 0.01) 
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Kenya (Avicennia+Rhizophora)

Kenya (Avicennia)

Kenya (Rhizophora)

Mozambique (Avicennia)

Dry season Wet season

2D Stress: 0,18 2D Stress: 0,06

2D Stress: 0,11 2D Stress: 0,02

2D Stress: 0,09 2D Stress: 0,02

2D Stress: 0,03 2D Stress: 0,06

 

Figure 5 - Non-metric multidimensional scaling (NMDS) ordination of root transformed  
meiofaunal abundance data from three sampling sites, in both Avicennia and Rhizophora 
belts, in Kenya ((x) Mikindani (●) Gazi (▼) Shirazi) and Mozambique ((x) Costa do Sol (●) 
Saco (▼) Ponta Rasa). 
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In Mozambique, Costa do Sol (peri-urban) mangrove presented similar diversity indices, 

calculated for major meiofauna groups (Table 3), than both pristine mangroves, except for a 

much higher nematode/copepod ratio during the wet season. In Kenya, Margalef’s index at 

Mikindani for both tree belts, and in particular at the wet season, was significantly lower 

compared to both pristine mangroves (Table 3). Shannon diversity index obtained at 

Mikindani was only significantly different from the other two mangroves at the Rhizophora belt 

and only at the wet season. The nematode to copepod ratio, in Kenya, presented similar 

values for contaminated mangrove compared to the ones obtained for pristine areas, except 

at dry season where Gazi presented ratios significantly different from Mikindani at the 

Avicennia belt, and both other mangroves at the Rhizophora belt (Table 2).  

 

Table 3 – A comparison of average (±SE) of richness (d), evenness (J’) and diversity (H’) 
indices and nematode/copepod ratio of meiofauna communities between contaminated and 
pristine locations in both seasons, in Kenya and Mozambique (different letter indicate 
significant differences between season for the same site, while different number indicate 
significant differences between sites for the same season). 
 

Kenya 
A. marina Season Margalef’s 

index (d) 
Pielou’s index  

(J’) 
Shannon index  

(H’) 
Nematod/Copepod 

Ratio 
Dry 0.69±0.07 0.19±0.06 0.33±0.10 177±82a 

Mikindani Wet 0.60±0.04a 0.16±0.05 0.21±0.05 288±106 
Dry 0.86±0.08 0.16±0.03 0.31±0.06 301±239 

Shirazi Wet 0.86±0.06b 0.14±0.03 0.32±0.05 410±130 
Dry 0.76±0.08 0.13±0.02 0.25±0.03 881±295b 

Gazi Wet 0.98±0.06b 0.14±0.03 0.30±0.05 410±131 
Kenya 

R. mucronata      

Dry 1.05±0.12(1

) 0.15±0.03 0.31±0.05(1) 151±60a 

Mikindani 
Wet 0.61±0.05(2

)a 0.07±0.01 0.12±0.02(2)a 445±47 

Dry 1.00±0.08 0.11±0.02 0.23±0.04 189±94a 
Shirazi Wet 0.81 ±0.07b 0.10±0.01 0.20±0.03b 283±113 

Dry 0.94±0.04 0.12±0.01 0.25±0.04 638±86b 
Gazi Wet 0.99±0.04b 0.12±0.02 0.25±0.04b 467±87 

Mozambique 
A. marina      

Dry 1.03±0.02 0.35±0.03 0.75±0.06 3±1(1) 
Costa do Sol Wet 1.03±0.07 0.29±0.05 0.58±0.09 291±26(2)a 

Dry 0.91±0.08 0.42±0.07 0.76±0.14 102±53 Saco Wet 1.05±0.12 0.29±0.05 0.52±0.10 85±43b 

Dry 1.47±0.34 0.54±0.14 0.77±0.18 10±5 Ponta Rasa Wet 4.39±3.24 0.65±0.22 0.97±0.40 1±0b 
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4. DISCUSSION AND CONCLUSION 

Human-induced polluting events can exert different effects on exposed populations, 

generating changes in community structure and ecosystem functioning (Parker et al., 1999). 

Infaunal species are considered to be key organisms to detect ecosystem changes as well as 

human impacts and contamination, due to their short life span and low mobility (Warwick and 

Clarke, 1993; Chapman, 2007), although it is also necessary to consider the bioavailability 

and hence toxicity of contaminants to the different fauna groups (Markert et al., 2004). Fauna 

assemblages are also influenced by several factors, such as hydroperiod, sediment 

characteristics and abiotic conditions (e.g., temperature and salinity) (Alongi, 1987a; Coull, 

1999; Lee, 2008). Abundances of infauna in soft sediments are patchy at a range of spatial 

scales, from meters up to several kilometres (Morrisey et al., 1992; Chapman and Tolhurst, 

2004; 2007) and they also undergo strong temporal changes linked to natural and 

unpredictable fluctuations in the ecological factors of the systems they inhabit (Underwood 

and Chapman, 1996).  

Anthropogenic stress tends to exacerbate this spatial and temporal variability by 

increasing variability in the abundance of individual taxa or through changes in the taxonomic 

composition of samples taken from within and among affected sites (Warwick and Clarke, 

1993). For this reason, in order to use infauna community multivariate analysis we need 

nested sampling designs incorporating various spatial and temporal scales to disentangle 

these natural variations from those due to the human impact (Warwick and Clarke, 1993; 

Cannicci et al., in press). Although the present study showed high spatial variability between 

samples (area), it presented a clear distinction between communities inhabiting pristine and 

contaminated mangrove forests at both regions. Nematods, together with copepods and 

Turbellaria organisms, as well as larger individuals such as polychaets and oligochaetes 

comprised more than 90% of all infauna as was previously observed in most mangrove areas, 

and densities are within the range observed in previous studies (e.g., Alongi, 1987b; Fondo 

and Martens, 1998; Nagelkerken et al., 2008). Meiofauna reacted in opposite ways to 

anthropogenic contamination, increasing at the Mozambiquean but decreasing at Kenyan 

peri-urban mangroves. Only Oligochaeta showed to decrease in contamination conditions in 

both countries, confirming the high sensitivity and efficiency of this group to be widely used on 

bioassessement assays as bioindicators of organic pollution as well as heavy metals 

(Chapman, 2001; Markert et al., 2004; Lin and Yo, 2008). At Mozambique there was a 

significant decrease of molluscs and an increase of crustaceans and most meiofauna groups 

(such as Nematoda, Halacaroidea and Copepoda) at the peri-urban mangrove, probably 

explained by an increase in sediment organic matter, microphytobenthos and bacteria.  
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A parallel study done on macroepifauna also found that the peri-urban systems were 

richer than the mangroves not affected by urban sewage in terms of fiddler and sesarmid 

crabs diversity and abundance, known to feed on benthic microalgae and bacteria, or on both 

substratum and leaf litter, respectively (Cannicci et al., in press). The same study also 

documented a complete eradication of certain mollusc’s species (e.g., Terebralia palustris) 

from the contaminated mangroves, probably due to the low tolerance to this sort of pollution. 

In Kenya, a decrease in Oligochaeta, Polychaeta, Halacaroidea and Turbellaria groups 

mainly at the Avicennia belt in peri-urban mangrove, indicated that higher loadings of organic 

matter or other contaminants were present and affected local communities (e.g., Danovaro et 

al., 1995; Gillet et al., 2008). The fact that the dumping of sewage at Mikindani affected 

primarily the landward Avicennia belt, before flowing through the Rhizophora belt, could help 

explain this differences, and since both soils and vegetation of this landward belt can 

efficiently absorb the overload of nutrients (Tam and Wong, 1995; Wong et al., 1997), the 

landward belt of Mikindani is probably acting as a first phytoremediating system, mitigating 

the effect of wastewater dumping to the seaward (Rhizophora) belt of the forest. This was 

also observed by Cannicci et al (in press) that found that macro epibenthic fauna was more 

severely affected at the landwards (Avicennia) belt. 

In environmental monitoring, multivariate techniques have traditionally required 

detailed taxonomic data, but that is no longer the case. For a variety of benthic organisms 

(macrobenthos, meiobenthos and reef corals), aggregation trials suggest that little information 

is lost by this approach based on the assumption that anthropogenic stresses modify 

community structure at a higher taxonomic level than that at which natural environmental 

variables impact on community structure (Warwick, 1988). Taxonomic minimalism thus 

facilitates the discrimination of human and natural causes. In the present study, the MDS 

analysis clearly indicated a separation between peri-urban mangroves and control sites for 

both meio and macrofauna groups at the two countries, tree belt and seasons. Nevertheless, 

a low taxonomic resolution may not be sensitive enough for changes in functional groups 

within the same taxa, as well as changes in biomass or behaviour, known to have significant 

effects on ecosystem functioning.  

Diversity indexes have been widely used in many ecosystems (Kennedy and Jacoby, 

1999b; Markert et al., 2004), including mangrove forests (e.g., Bosire et al., 2004) as 

ecological indicators. The values obtained in this study are significantly lower than the ones 

obtained in other studies due to the fact that higher taxa levels are being used, although the 

diversity indexes calculated did present lower diversity measures in contaminated sites. At 

Kenya, Margalef’s and Shannon index indicated Mikindani as having lower diversity when 
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compared with pristine mangroves, although nematode/copepod ratio indicates lower 

contamination stress (Raffaelli and Mason, 1981), while at Costa do Sol this last index is the 

only one indicating a severe contamination but only during wet seasons, where rains is 

though to bring contaminants from terrestrial to the mangrove creek.  

Very little is known about species interaction among meio and macrobenthos and 

much is yet to be learnt from process shaping community structure and function in these 

complex and productive environments (Lee, 2008), mainly when subjected to intensive 

anthropogenic stress. In a recent compilation done by Oláfsson (2003), most studies indicate 

that the overall effects of macrofauna originating from processes such as predation, physical 

disturbance, competition for food and biogenic structures affect significantly meiobenthic 

community structure, diversity and dynamic. This way, the impact of sewage contamination 

on infauna community is more complex than the direct effect of the contaminants on 

organisms.  

Mangrove infauna species also serve as important food sources for local and mobile 

nekton that enters the mangrove at high tide, including commercial important fish and 

crustaceans, as well as several bird species that feed on these forests habitats (Lee, 2008; 

Nagelkerken et al., 2008). Both groups are also very important on nutrient cycling and organic 

matter degradation (such as litter), by direct feeding on the detritus as well as performing 

bioturbation activities (sediment reworking and bioirrigaton) and constructing biogenic 

structures that stimulate microbial activity and efficiency (Schrijvers et al., 1995; Kristensen, 

2000; Cannicci et al., 2008). This will ultimately play an important role for the biogeochemical 

and ecological functioning of mangrove sediments (Kristensen, 2008; Lee, 2008), and 

consequently on mangrove nutrient and carbon dynamic (Kristensen et al., 2008; Penha-

Lopes et al., submitted), influencing the natural mangrove potential for pollution buffering and 

as systems for potential sewage treatment (Penha-Lopes et al., in prep). 

The results obtained in the present study were able to differentiate peri-urban from 

pristine mangroves in both countries using univariate, multivariate and diversity indexes 

analysis, although meio and macro community responded different in each country. Only 

Oligochaeta individuals decreased significantly in both contaminated mangroves, making 

them a reliable indicator for East African mangroves. Other taxonomic groups should be 

identified to lower levels in order to provide a better understanding of community changes. 

Although the multidimensional scaling analysis, as well as diversity indexes, showed that 

identifying organisms at high taxonomic levels are indeed useful tools for environmental 

impact assessment, more research is needed in order to upgrade knowledge, especially in 

what concerns bioindicators in these habitats and mainly in East Africa region. 
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Abstract 

The effects of anthropogenic activities combined with the lack of technical solutions for 

sewage treatment have lead to serious contamination problems in the coastal ecosystems of 

East Africa. However, not all contaminants can be considered pollutants. Determining when 

contamination results in pollution requires not only chemical but also biological measurements. 

Because benthos integrates conditions over time, macrobenthic organisms are considered good 

bioindicators to assess local environmental quality. Crabs constitute one of the most important 

macrofauna taxa in terms of abundance, species richness and biomass in mangrove 

ecosystems. In the present study, the reproductive potential and quality of Uca annulipes (H. 

Milne Edwards, 1837) population inhabiting a peri-urban mangrove, subjected to domestic 

sewage discharges, was compared to populations inhabiting pristine mangroves. Fecundity, egg 

quality (fatty acids composition) and potential fertility were evaluated and compared by sampling 

a representative fraction of ovigerous females captured in each of the mangrove habitats at two 

seasons (February to March, 2006 – wet season; and August to September, 2006 – dry season). 

Most of the measured reproductive parameters of U. annulipes were different at Maputo peri-

urban mangrove when compared to nearby pristine locations. Although we cannot prove that 

sewage discharge done at Costa do Sol mangrove was the main factor influencing the 

reproductive dynamics of U. annulipes populations, at this peri-urban mangrove this fiddler crab 

species extended its reproductive season, increased fecundity, as well as improved embryo 

quality, mainly regarding the concentration of SFA and MUFA, in relation to the pristine 

mangrove populations. 
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1. Introduction 

In East Africa, the lack of technical solutions for sewage treatment, combined with an 

increase in population growth and migration to coastal areas, has lead to a rapid increase in 

urban wastewater production, which is putting breakpoint pressures on already inadequate 

sewage systems (e.g., Mohammed, 2002). As a result, peri-urban coastal areas receive 

extensive amounts of untreated sewage, which are typically discharged into creeks lined by 

mangrove forests. Although this uncontrolled drainage of raw sewage into peri-urban coastal 

areas is a factual result, there is hardly any understanding of its consequences regarding 

ecosystem health (Holguin et al., 2001; Adeel and Pomeroy, 2002). 

Determining when contamination results in pollution requires not only chemical but 

also biological measurements (Chapman, 2007). Studies of contaminant-induced alterations 

in fauna species abundance and diversity were developed and are nowadays commonly used 

(e.g., Bigot et al., 2006; Saunders et al., 2007). However, other fauna fitness parameters have 

been less used in classifying ecosystems as polluted, such as growth (e.g., LeBlanc, 2007), 

physiological stress (e.g., Elumalai et al., 2007), and reproduction and embryogenesis (e.g., 

Elumalai et al., 2005). Ecotoxicological studies using reproductive parameters as indication 

measurements are scarce for populations inhabiting organic contaminated mangrove 

ecosystems (Peters et al., 1997), especially for mangrove crabs. 

Crabs have already proven to be suitable organisms for use in ecotoxicological 

studies due to their biological and ecological characteristics, making them able to integrate 

environmental ecological condition over time (LeBlanc, 2007). The fecundity of mangrove 

crabs vary significantly according to the species, populations, size, latitude, habitat structure 

and food availability (Koga et al., 2000; Hemni, 2003; Torres et al., 2009). Bergey and Weis 

(2008), have also observed that fiddler crabs inhabiting contaminated saltmarshes (by both 

organic matter and heavy metals) decrease their reproductive season and present lower 

survival rates of early larval stages. 

Over the years, many biomarkers have been developed and claimed to be efficient in 

providing an early warning of deleterious effects on biological systems and estimating 

biological effects due to contaminants (Lam and Gray, 2003). Other than just a simple 

biomarker, the embryos’ fatty acids (FA) content and dynamics may provide information on 

the population life history traits, feeding ecology and habitats. Fatty acids have been recently 
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used as biomarkers in ecotoxicology studies, since some specific fatty acids only exist in 

particular contaminants or pathogenic groups (Seguel et al., 2001). Also, it constitutes an 

important parameter that impact larval quality and survival, since newly spawned eggs FA 

composition is a useful parameter that helps determining the nutritional requirements of 

larvae, especially in crustaceans (Heming and Buddington, 1988). 

Crabs of the Ocypodidae family, such as fiddler crabs (genus Uca), are key 

components of Indo-Pacific mangroves (Lee, 1998), usually occurring at very high densities, 

high number of species and total biomass in the intertidal zones of mud-sandy sediments 

(Skov et al., 2002). These deposit feeders tend to burrow and rely for food on organic matter, 

microalgae and bacteria (Cannicci et al., 2008). These burrowing and feeding activities have 

shown to increase soil aeration, thus preventing the formation of phytotoxins and increasing 

organic matter degradation, resulting in more productive ecosystems (Kristensen, 2008). 

Uca annulipes is a key species of mangrove fauna and has been widely studied, 

mainly regarding its distribution and abundance (Skov and Hartnoll, 2001; Skov et al., 2002), 

behaviour (Zeil, 1998; Cannicci et al., 1999; Litulo, 2005a), ecological role as engineers 

(Kristensen, 2008), reproduction (e.g., Litulo, 2004a; b; Skov et al., 2005), dispersal (Paula et 

al., 2004) and its physiology (e.g., Jadhav et al., 2000; 2001). The first toxicity studies using 

U. annulipes as a biomonitor and bioindicator were done with heavy metals (Devi, 1987; Devi 

and Rao, 1989; Ismail et al., 1991). Only recently this species has been studied as an organic 

pollution indicator. Cannici et al. (in press) have found that U. annulipes significantly increase 

its density at nutrient contaminated mangroves, when compared to pristine locations, 

explained by a likely increase of benthic diatoms and meiobenthos, in which they feed on. 

Despite the relevance of such crabs in mangrove ecosystems and their potential as habitat 

quality evaluation tools, knowledge is lacking on their responses to stress, namely organic 

pollution, regarding reproductive parameters. 

The goal of this study was to compare the reproductive potential and quality of Uca 

annulipes population inhabiting a peri-urban mangrove (Costa do Sol), subjected to domestic 

sewage discharges, with populations from two pristine mangroves (Saco and Ponta Rasa). 

Several reproductive parameters were measured, such as fecundity, potential fertility, egg 

loss, and embryo quality (fatty acids composition) as potential proxy responses to organic 

pollution. We hypothesize that an increase of organic loading at Costa do Sol stimulates 

microbenthic primary production and sewage-derived detritus leading to an increase in egg 

production as well as an increase in embryo nutritional quality. Brood loss was also evaluated 

at all mangrove areas and could depend on sewage contamination, fecundity and embryo 

nutritional value. 
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2. Materials and methods 

For detecting an environmental impact appropriately, replicated Before/After sampling 

designs is one of the most reliable methods (Underwood, 1992; 1994). However, in the 

absence of such data, with appropriate spatial and temporal replication it has been possible to 

examine differences between potentially disturbed and control locations after the 

‘‘disturbance’’ (Chapman et al., 1995). For these reasons, in the present study it was followed 

by an ACI (After Control/Impact) unbalanced design, comparing the ecological features 

recorded in one contaminated mangrove swamp to those characteristic of two nearby pristine 

mangroves of similar ecological traits. 

 

2.1 Study area 

This study was conducted in the south of Mozambique, during the wet (February to 

March, 2006) and dry (August to September, 2006) seasons. While in the wet season 

temperatures are higher, and heavy rains common, promoting an increase of nutrient 

concentration in the water channels (Paula et al., 1998) and mangrove sediments, the dry 

season tends to be cooler with sporadic short rains (Kalk, 1995). Sampling was performed in 

three different mangrove ecosystems located at similar latitudes in southern Mozambique: a 

peri-urban mangrove, Costa do Sol (CS), at Maputo Bay (25º55’S, 32º35’E), and two pristine 

mangroves (26ºS, 32ºE), Saco (S) and Ponta Rasa (PR), located at Inhaca Island (Fig. 1). 

Sites were chosen based on preliminary results obtained within the PUMPSEA project that 

showed that CS was significantly more contaminated than both other systems analysed (see 

description bellow), and some studies done on these same sites have already demonstrated 

effectively the effect of pollution in many other ecosystem compartments, such as 

macroepifauna abundance and diversity (Cannicci et al., in press). Although mangrove 

ecosystems should tend to have similar morphological (e.g., hydrology and sediment) and 

biological (e.g., flora and fauna species density and diversity) properties, all three mangroves 

present particular characteristics (see below), but they were similar enough to be used as 

impacted Vs controls (PUMPSEA, 2008; Cannicci et al., in press).  
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Figure 1 – Location of study sites in southern Mozambique.  

 

Both pristine mangroves are found at Inhaca Island, a small island at ~32 km east of 

Maputo, constituting a barrier between Maputo bay and the Indian Ocean: the west and south 

coasts face Maputo bay, while the east coast is exposed to the Indian Ocean. Maximum tidal 

amplitude is ~3.7 m and average water temperature and salinity varies between 20 to 33 ºC 

and 22 to 39, respectively (Kalk, 1995). No rivers are present in the island, hence the main 

freshwater supply to mangrove ecosystems results from diffused ground water flow and 

rainfall, although the water mass around Inhaca reflects the discharge on estuaries into 

Maputo Bay (Paula et al., 1998). There are few human communities in the south part of the 

island, and the absence of industries contributes to the preservation of pristine areas in 

relation to those of Maputo Bay (Kalk, 1995). One of the pristine locations is Saco, a mangrove 

that covers an area of ~2.1 km2, located in a small, enclosed and shallow bay in the south of 

the island (Fig. 1). While Avicennia marina borders the entire bay, Rhizophora mucronata, 

Ceriops tagal and Bruguiera gymnorrhiza, line channel banks and creeks, dominating the 

vegetation (Kalk, 1995). Ponta Rasa mangrove is the smallest of the island, covering ~0.2 

km2, and is located in the southwest coast, facing Maputo Bay (Fig. 1). The creek is densely 

bordered by R. mucronata, while sparser patches of C. tagal and B. gymnorrhiza dominate 

higher areas of the mangrove, and the uppermost sandier zone is characterized by A. marina. 

Both pristine mangroves present similar abundance and diversity of epimacrofauna, such as 

crabs and molluscs (Cannicci et al., in press).  

Costa do Sol mangrove (peri-urban) is characterized by a small and shallow seawater 

swamp located ~7 km north of Maputo city center, but within urban boundaries. Maximum tidal 

amplitude is ~3.5 m, and water temperature and salinity vary between 18 to 35 ºC and 20 to 
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35, respectively (Litulo, 2005a). The river Quinhenganine discharges in the swamp after 

passing through the city. Avicennia marina and small patches of R. mucronata dominate the 

vegetation (Litulo, 2005a). A residential area surrounds the mangrove that has been receiving 

domestic sewage, aquaculture residuals and solid dumps from various sources (diffuse and 

point sources) during the last decades (PUMPSEA, 2008). Several pollution indicators have 

been studied in the three mangroves as part of the PUMPSEA (2008) project. Higher organic 

contents as well as concentrations of nutrients, especially nitrites and nitrates, characterized 

Costa do Sol (0.49±0.52 µM  3.90±7.69 µM, respectively) in relation to Saco (0.17±0.09 µM  

and 0.08±0.09 µM, respectively) and Ponta Rasa (0.18±0.06 µM and 0.70±0.06 µM, 

respectively) mangroves (PUMPSEA, 2008). As a direct result, the benthic microalgae 

community and organic matter is significantly more exuberant and abundant at Costa do Sol 

(PUMPSEA, 2008). This mangrove also presents much higher abundances of both total and 

faecal coliform bacteria, such as Escherichia coli, Vibrio cholerae and Salmonella spp., which 

is reflected in the frequent observation of levels above the international recommended 

acceptable limits (PUMPSEA, 2008).  

 

2.2 Sampling 

Ovigerous females were collected throughout the wet and dry seasons, during day-time 

at low tide, in Saco, Ponta Rasa and Costa do Sol mangroves, by means of haphazardly 

excavating with a shovel to a depth of 30 cm. Crabs were placed in individual plastic bags and 

were brought to laboratory in cool boxes. 

 

2.3 Fecundity and embryonic development 

Carapace width (CW) and carapace length (CL) of females were measured using 

Verenier callipers. In this study we used the same fecundity and potential fertility concepts 

already employed by Penha-Lopes et al (2007) since the goal was to evaluate the initial egg 

number as well as the changes observed throughout the embryonic development, mainly 

regarding brood loss and embryo fatty acid composition. Thus, fecundity is considered as the 

number of newly extruded embryos (stage I), while fertility, on the other hand, is calculated 

based on the number of newly hatched larvae from a single female. In this study we have not 

measured fertility, but potential fertility, once we have considered the brood size (number of 

embryos) just before hatching (stage IV) and not the actual number of newly hatched larvae. In 

the laboratory, for every egg stage, 10 eggs from each of 10 haphazardly chosen females 

were selected, placed in Petri dishes with seawater (salinity of 33±1) and their diameter 

measured immediately under a microscope with a calibrated micrometer eyepiece to the 
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nearest 0.01 mm. Egg volume (V) (mm3) was then calculated using the formula for spheres V= 

4/3(πR3). 

Eggs were separated with diluted bleach, placed between 2 transparent sheets and 

photographed under a digital camera (Nikon D50) at a distance of 38.1 cm with a 50 mm 2.8 

Sigma lens. Egg counting was done using Image J software (Abramoff et al., 2004), after 

adjustments and calibrations, which counted the egg particles on photographs with an error 

inferior to 3%. The error estimation was done by manual counting of all the eggs present in 

each photograph and comparing it with the output given by the software for 15% of all the 

photographs taken for each embryonic stage, population and season.  

Two ratios were developed: “Fecundity per CW ratio” and “Potential Fertility per CW 

ratio”, for embryonic stage I and IV, respectively. Fecundity per CW is calculated dividing the 

number of embryos at stage I divided by the female CW, while Potential Fertility per CW uses 

the egg number at stage IV instead. 

   

 

2.4 Fatty acids analysis 

To determine the fatty acids (FA) profile of U. annulipes eggs at each developmental 

stage, three replicates (different egg batches at the same stage of development) were used. 

Freeze-dried samples were ground in a Potter homogenizer with chloroform-methanol-water 

(2:2:1.8) (Bligh and Dyer, 1959). An internal standard FA (C19:0) was added to the extracts. 

After saponification and esterification of the lipid extracts (Metcalfe and Schmitz, 1961), the 

fatty acid methyl esters (FAME) were injected into capillary column (30 m fused silica, 0.32 

I.D.) installed in a Varian Star 3400CX gas-liquid chromatograph (GLC). Helium was used as a 

carrier gas at a flow rate of 1mL/min; oven temperature was 180ºC for 7 min, and then 

increased to 200ºC (with a temperature gradient of 4ºC/min) over a period of 71 min. Both the 

injector and the FID detector were set at 250ºC. GLC data acquisition and handling were 

performed using a Varian integrator 4290 connected to the GLC. Peak quantification was 

carried out with a Star Chromatography workstation. Peak identification was performed using 

well-characterized cod liver oil chromatograms and specific standards as a reference. 

 

2.5 Statistical analysis 

A PERMANOVA, permutational multivariate analysis of variance (Anderson and 

Robinson, 2001), asymmetrical design was used to test the null hypothesis that there were no 

differences in crabs dimension and in both the Fecundity per CW and Potential Fertility per 

CW among peri-urban and non-urban sites. Similarity matrices were computed using 
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Euclidean distance on untransformed data. All analyses were based on 9,999 permutations of 

residuals within a reduced model (Anderson and Ter Braak, 2003) and type III sums of 

squares to cope with the unbalanced design (Anderson et al., 2008). Thus, two three-way 

univariate PERMANOVA tests were applied to determine whether there were differences in 

both CW and in the ratio between the number of eggs and the CW with Impact vs Control 

(asymmetrical, fixed and orthogonal), site (random and nested in ‘Impact vs Control’) and 

Fecundity vs Potential Fertility (fixed and orthogonal) as factors. The PERMDISP (Anderson 

et al., 2006)  technique was used to test the homogeneity of multivariate dispersions. All 

analyses were performed using PRIMER v. 6.1 (Clarke and Gorley, 2006) and the 

PERMANOVA+ for PRIMER routines (Anderson et al., 2008). 

To compare egg volume, and fatty acids composition between populations a one-way 

ANOVA test was used (followed by Tukey test in case of significant difference), while for 

comparing data for each population but between seasons or embryonic stages a t-test was 

used. All the results were considered statistically significant at p<0.05 levels. 

 
3. Results 

In this study, while ovigerous females were very abundant during the wet season in all 

three locations, they were not found at Inhaca Island during the dry season. Even at Costa do 

Sol during the dry season, ovigerous females were present at low density making them very 

difficult to obtain. No significant differences were found on the crab morphological correlations 

between embryonic stages, between populations and seasons (F7,158=1.61; p=0.14 for slopes, 

and F7,165=1.95; p=0.06 for interceptions). Since correlations were similar, it was possible to 

calculate a general equation for all U. annulipes populations:  

CW = 0.58*CL+0.04 (r = 0.90; p<0.0001) 

The high correlation between CW and CL, allowed us to proceed using just one of the 

dimension (CW). 

 

3.1 Fecundity and embryonic development 

PERMANOVA revealed that there were no differences in the females´ dimensions 

across both sites and for what concern the samples collected to study Fecundity and Potential 

Fertility (Table 1, Fig. 2-A). On the other hand, the test performed on the number of eggs 

carried by each females, standardised by her CW, showed a positive interaction between the 

factor Impact vs Control and the factor Stage (Table 1, Fig. 2-B). Post hoc pair-wise tests 

showed that females colonising the impacted site of Costa do Sol were producing more eggs 

at stage I than the ones collected in the two control sites (t=8.72; P<0.001), and, moreover, 
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that at the impacted site there was a significant egg loss, with females carrying significantly 

less eggs at stage IV than at stage I, regardless of their size (t=9.64; P<0.001). 

In the dry season, Costa do Sol populations did not present significant brood loss, 

(F=0.53; P=0.47; one-way PERMANOVA test). Regarding the egg volume at initial and final 

stages, similar results were obtained for the three crab populations in both seasons. During 

the wet season, average embryo growth (from stage I to IV) for Costa do Sol, Saco and Ponta 

Rasa was 87.4%, 94.9%, and 97.3%, respectively, while during the dry season was 69.6% for 

the Costa do Sol population. 

 

Table 1 – Results of the three-way PERMANOVA conducted on Carapace Width (CW) and 
the ratio between the number of eggs and CW (# eggs/CW) for females collected at the study 
sites. Factors are as follows: Impact vs Control (asymmetrical, fixed and orthogonal), site 
(random and nested in ‘Impact vs Control’) and Stage of the Embryos (Stage, as a proxy of 
Fecundity vs Potential Fertility, fixed and orthogonal). Degrees of Freedom, df, Mean 
Squares, MS, F and its probability value, P, are shown for each factor 
 
  CW # eggs/CW 
Source df MS F P MS F P 
Impact vs Controls - I vs C 1 34.05 43.55 0.10 46942.00 19.34 0.15 
Stage - St 1 15.85 8.09 0.21 136530.00 1361.00 0.02 
Location(I vs C) 1 0.78 0.58 0.46 2427.30 0.90 0.35 
I vs C x St 1 0.83 0.42 0.63 90136.00 898.56 0.02 
Location (I vs C) x St 1 1.96 1.45 0.24 100.31 0.04 0.85 
Res 136 1.36           2693.60         
Total 141              
 

3.2 Fatty acids analysis 

In general, Uca annulipes showed a similar consumption pattern in the FA used during 

embryogenesis (Tables 2 and 3) for all populations. Total saturated fatty acids (SFA), mainly 

composed of palmitic (16:0) and stearic (18:0) acids, monounsaturated fatty acids (MUFA), 

primarily composed of palmitoleic acid (16:1n-7) followed by vaccenic (18:1n-7) and oleic 

(18:1n-9) acids, decreased through embryo development in all populations. Total 

polyunsaturated fatty acids (PUFA), mainly composed of eicosapentaenoic (EPA - 20:5n-3) 

acid, followed by eicosatetraenoic (20:4n-3) and linoleic (18:2n-6) acids, remained almost 

constant during embryogenesis (Table 2 and 3). 
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Figure 2 – Average (±SD) dimensions (A) and number of carried eggs, standardised on 
carapace dimensions (B) observed for the females carrying eggs of stage I and IV collected in 
the study locations.  
 

Although the general FA dynamic was similar, during the wet season, Costa do Sol 

populations presented some significant differences when compared to pristine populations. 

Starting by total FA of newly laid eggs, the peri-urban population presented the highest value, 

although only significantly different from Saco population, while at the last embryonic stage no 

difference was observed between the 3 populations (Table 4). Most of the SFA at embryonic 

stages I and IV were much more abundant at Costa do Sol population, leading to significantly 

higher concentration of total SFA of newly laid eggs at Costa do Sol when compared to the 

other two pristine mangrove populations (Table 4). For MUFA, the same results were 

obtained, although significant differences between peri-urban and pristine mangrove 

populations were maintained during the whole embryonic development. During the dry 
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season, while the overall FA dynamics at Costa do Sol was similar to the one observed at the 

wet season, its concentration was nearly half lower, at both egg stages. At Costa do Sol the 

EPA/DHA ratio of both egg stages was significantly higher than the one found in embryos of 

pristine locations (Table 4). 

 

Table 2 - Embryo development FA consumption rate (%), between stage I and IV, in U. 
annulipes populations from all studied mangroves. Only the quantitatively most important FAs 
are represented. (FA - fatty acids; SFA - saturated FA; MUFA – monounsaturated FA; PUFA 
– polyunsaturated FA; HUFA - highly unsaturated FA). 
 

 Consumption (%) 

Fatty acids Saco Ponta Rasa Costa do Sol 
(wet season) 

Costa do Sol 
(dry season) 

14:0 69.3 79.0 62.4 63.3 
15:0 78.2 83.6 78.2 83.5 
16:0 69.1 69.0 62.5 60.1 
17:0 60.1 77.1 45.4 51.3 
18:0 49.6 52.3 37.9 42.7 

Σ SFA 67.0 66.5 58.8 57.6 
16:1n-7 71.4 74.7 72.5 61.5 
18:1n-9 50.7 64.3 46.5 51.8 
18:1n-7 54.2 60.6 48.5 51.5 
Σ MUFA 63.5 69.2 61.7 57.6 
18:2n-6 35.1 69.1 31.3 32.8 
18:3n-3 62.3 74.8 39.1 8.04 
20:4n-6 -17.1 30.4 -20.8 -11.5 
20:5n-3 41.2 45.4 5.7 0.0 
22:5n-3 28.9 28.6 8.3 -58.8 
22:6n-3 21.8 21.4 -30.4 -26.6 
Σ PUFA 38.2 51.1 17.3 8.4 
Σ HUFA 35.2 42.7 2.7 -2.1 
Total FA 62.8 65.8 56.6 51.5 

 

 
4. Discussion 

Our findings indicate a clear difference in the reproductive fitness of Uca annulipes 

between polluted and unpolluted mangroves. Females at Costa do Sol (peri-urban mangrove) 

breeds continuously, usually (wet season) with higher number of eggs at stage I and superior 

nutritional quality, followed by high brood loss, while at pristine mangroves populations only 

reproduce during wet season. Litulo (2004b) had already previously reported a continuous 

breeding season for Uca annulipes at Costa do Sol (peri-urban mangrove), while other Uca 

populations inhabiting sub-tropical pristine sites (Torres et al., 2009), as well as U. annulipes 

inhabiting temperate mangrove systems (Mokhtari et al., 2008), are restricted to warm 
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seasons. Spawning at the rainy season (wet season) is known to provide a selective 

advantage to intertidal brachyuran populations, since periods of higher rainfall rate can cause 

changes in the salinity of water and promote an increase of nutrients concentration, favouring 

primary productivity increase and development of planktonic larvae (Mantelatto et al., 2003). 

At Costa do Sol, a continuous flow of domestic sewage, composed of freshwater rich in 

nutrients will boost benthic primary production and detritus abundance, two main food 

sources of fiddler crabs (Meziane and Tsuchiya, 2002). This seems to be favouring 

detritivorous feeding, and consequently gonad development and larval release, allowing 

females to bread continuously. Vergamini and Mantelattto (2008) have also found that other 

crab species (Panopaeus americanus) have changed to a continuous and effective 

reproduction as a strategy to establish and maintain a stable population living associated with 

stressful energy demanding conditions in a human-impacted mangrove in Brazil. This 

potential increase in U. annulipes total embryo annual production could contribute to the 

highest density of these fiddler crabs at Costa do Sol (Cannicci et al., in press), although 

return of released larvae into the same estuary is known to be rare (Paula et al., 2004). This 

increase in fiddler crab reproductive potential, and consequently abundance, has a positive 

consequence for the ecosystem by increasing the bioturbation activity of these crabs (see 

Kristensen, 2008) and consequently the zooremediation performed at mangroves loaded with 

high organic input (Penha-Lopes et al., accepted; Bartolini et al., submitted). 

At all locations, fecundity was similar to that described for fiddler crabs (e.g., Litulo, 

2004b; 2005c; b; 2006; Torres et al., 2009) with an expected increase as the females grow 

larger. At Costa do Sol, ovigerous females also presented a higher brood mass of newly 

extruded embryos when compared to pristine locations during the wet season. This finding 

may be related with the higher organic content found at the peri-urban mangrove, especially 

at the rainy season, that probably leads to the increase of egg number to the abdomen 

maximum carrying capacity. However, in late development stages (IV) the potential 

reproductive output of each female was not significantly different from the populations 

inhabiting pristine sites, due to the egg loss observed during embryonic development. There 

are numerous reports of brood loss in crustaceans, such as egg loss at oviposition, aborted 

development, mechanical losses due to abrasion with the substratum, maternal cannibalism, 

bacterial and fungal infections, embryo predation and parasitism (see review by Kuris, 1991). 

At Costa do Sol, other crustacean species are being severely affected by a high degree of 

parasitism infection (Penha-Lopes et al., unpublished), that is affecting crustacean 

reproductive potential. 
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Table 3 - Average (±SD) of embryos volume, reproduction ratio and fatty acid composition (µg 
mg-1dw) on each developmental stage. Different superscript letters represent significant 
differences between embryonic stages for the same population and season (t-test; 2-tails), 
while different numbers represent significant differences between seasons for the same 
embryonic stages for Costa do Sol (t-test; 2-tails) (FA - fatty acids; SFA - saturated FA; MUFA 
– monounsaturated FA; PUFA – polyunsaturated FA; highly unsaturated FA; EPA – 20:5n-3; 
DHA – 22:6n-3; ARA – 20:4n-6). 
 

 Saco 
Wet season 

Ponta Rasa 
Wet season 

Costa do Sol 
Wet season 

Costa do Sol 
Dry season 

 Stage I Stage IV Stage I Stage IV Stage I Stage IV Stage I Stage IV 
Volume (mm3) 0.014±0.002a 0.029±0.004b 0.014±0.003a 0.027±0.003b 0.015±0.002a 0.028±0.003b 0.016±0.002a 0.027±0.003b 
Reprod. ratio 
(Eggs /  CW) 169±16a 155±14a 157±9a 147±7a 256±11a 136±7b 214±65a 225±76a 

FA (µg. g-1 dw) 187.98±26.3a 70.0±7.59b 235.31±42.66a 78.55±16.51b 267.26±9.72a,1 115.88±39.80b,1 103.81±31.05a,2 50.36±14.22b,2 

Fatty acids         

12:0 0.14±0.04a 0.00±0.00b 0.19±0.22a 0.00±0.00b 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 
13:0 0.35±0.06a 0.03±0.06b 0.59±0.14a 0.06±0.07b 0.25±0.06a 0.00±0.00b 0.06±0.05 0.00±0.00 
14:0 9.23±1.08 a 2.84±0.30 b 9.63±1.32 a 2.02±0.50 b 12.13±1.92a 4.56±1.41b 4.18±1.35a 1.53±0.52b 

15:0 10.89±2.41a 2.37±0.07b 5.57±0.62a 0.92±0.14b 5.00±2.30a 1.09±0.07b 0.13±0.04a 0.02±0.04b 

16:0 58.23±5.64a 17.98±2.37b 67.91±5.16a 21.09±5.04b 88.29±2.74a 33.09±9.49b 31.73±9.63a 12.65±3.82b 

17:0 5.25±4.62 2.09±0.10 4.42±0.88a 1.01±0.20b 4.08±0.76a 2.23±1.61b 0.43±0.13a 0.21±0.07b 

18:0 10.75±1.00a 5.42±0.77b 15.13±1.60a 7.22±1.19b 16.02±1.37a 9.94±4.16b 5.63±1.51 3.23±1.10 
20:0 1.06±0.10 0.80±0.13 1.55±0.05 a 0.68±0.10 b 1.39±0.28 1.09±0.86 0.24±0.06 0.19±0.06 
22:0 0.62±0.36 0.30±0.03 0.74±0.16a 0.38±0.05b 0.68±0.10 0.66±0.50 0.32±0.05 0.30±0.06 

∑SFA 96.53±11.79a 31.85±3.31b 105.74±6.63a 33.40±10.14b 127.83±6.55a 52.67±17.95b 42.72±12.82a 18.13±5.67b 

Iso 15:0 1.69±0.42a 0.35±0.08b 3.16±0.36a 0.60±0.12b 1.14±0.29a 0.31±0.09b 0.09±0.08a 0.00±0.00b 

Anteiso 15:0 0.75±0.20a 0.16±0.02b 1.43±0.24a 0.26±0.06b 0.27±0.06a 0.00±0.00b 0.15±0.04a 0.00±0.00b 

Iso 16:0 0.91±0.16a 0.23±0.05b 1.89±0.17a 0.46±0.11b 0.56±0.13a 0.12±0.18b 0.13±0.10 0.15±0.04 
Anteiso 16:0 0.08±0.07 0.00±0.00 0.18±0.03a 0.03±0.03b 0.06±0.05 0.00±0.00 0.03±0.02 0.00±0.00 

Iso 17:0 1.49±0.25a 0.39±0.07b 2.84±0.42a 0.77±0.17b 1.45±0.36a 0.31±0.18b 0.82±0.12a 0.15±0.10b 

∑BFA 4.92±0.98a 1.13±0.22b 9.49±1.11a 2.14±0.47b 3.48±0.77a 0.74±0.32b 1.22±0.36a 0.30±0.14b 

14:1n-5 0.03±0.05 0.00±0.00 0.15±0.27 0.00±0.00 0.19±0.13 0.00±0.00 0.07±0.05 0.00±0.00 
16:1n-7 39.86±5.67a 11.42±1.53b 45.16±6.86a 11.42±3.01b 73.04±1.62a 20.12±2.10b 31.65±9.46 12.20±3.48 
16:1n-5 0.73±0.08a 0.22±0.03b 1.20±0.18a 0.36±0.09b 0.69±0.13a 0.21±0.09b 0.31±0.10 0.15±0.04 
17:1n-8 1.20±0.22a 0.39±0.03b 2.12±0.36a 0.51±0.11b 1.06±0.31a 0.26±0.01b 0.26±0.18 0.14±0.18 
18:1n-9 7.45±0.96a 3.67±0.64b 17.91±8.82a 6.40±0.95b 18.67±6.75a 9.99±5.15b 6.58±2.15 3.17±1.09 
18:1n-7 8.89±1.07a 4.07±0.48b 13.17±2.87a 5.19±0.97b 12.12±0.90a 6.24±1.78b 5.53±1.70 2.69±0.69 
18:1n-5 0.28±0.04a 0.07±0.06b 0.45±0.08a 0.11±0.02b 0.48±0.09a 0.12±0.17b 0.13±0.05 0.02±0.04 
19:1n-8 0.18±0.04a 0.00±0.00b 0.18±0.04a 0.06±0.01b 0.36±0.06a 0.00±0.00b 0.16±0.05a 0.00±0.00b 

19:1n-10 0.36±0.08 0.26±0.05 0.14±0.03 0.13±0.01 0.29±0.15 0.08±0.11 0.14±0.11 0.03±0.04 

20:1n-9 1.91±0.12 1.50±0.08 2.27±0.51 1.00±0.17 1.91±0.55 2.69±1.41 0.32±0.12 0.12±0.04 
20:1n-7 1.82±0.49a 0.71±0.21b 1.23±0.18a 0.37±0.09b 1.38±0.29a 0.66±0.43b 0.15±0.05 0.10±0.04 
20:1n-5 0.51±0.27a 0.00±0.00b 0.96±0.04a 0.33±0.04b 0.43±0.05a 0.00±0.00b 0.27±0.12 0.14±0.10 
22:1n-11 1.03±0.27 0.99±0.17 1.25±0.21a 0.59±0.14b 1.18±0.25 2.06±0.85 0.62±0.13 0.65±0.55 
22:1n-9 0.80±0.09a 0.41±0.06b 0.73±0.02a 0.31±0.07b 0.74±0.04 0.69±0.25 0.38±0.08 0.32±0.09 
∑MUFA 65.04±7.08a 23.72±2.64b 86.92±18.74a 26.78±5.28b 112.53±9.30a 43.11±12.32b 46.57±14.35a 19.73±6.38b 

16:4n-3 1.15±0.28a 0.56±0.12b 1.23±0.34a 0.66±0.14b 1.71±0.03a 0.56±0.48b 0.85±0.13a 0.28±0.08b 

18:2n-6 2.87±0.87 1.87±0.57 6.19±3.78a 1.92±0.47b 4.40±1.67 3.03±2.08 1.11±0.08 0.74±0.17 
18:3n-3 1.02±0.41 0.38±0.11 2.69±1.19a 0.68±0.16b 1.67±1.44 1.01±1.07 0.17±0.01 0.16±0.05 
18:4n-3 0.75±0.26a 0.31±0.05b 0.68±0.28a 0.17±0.05b 0.96±0.39 0.50±0.27 0.38±0.14 0.43±0.18 
20:4n-6 0.35±0.10 0.41±0.13 0.56±0.07a 0.39±0.07b 0.48±0.07 0.58±0.48 1.22±0.66 1.36±0.33 
20:3n-3 0.52±0.01a 0.38±0.11b 0.63±0.22a 0.24±0.05b 0.47±0.05 0.44±0.03 0.24±0.05 0.22±0.06 
20:4n-3 3.96±1.66 2.25±0.23 5.75±2.84 2.98±0.63 3.38±0.95 3.24±0.90 2.03±0.65 1.95±0.71 
20:5n-3 7.80±3.15 4.58±0.43 11.42±6.20 6.24±1.51 8.20±2.93 7.73±3.63 6.21±1.24 5.70±0.06 
21:5n-3 0.28±0.12 0.16±0.02 0.45±0.24 0.26±0.10 0.31±0.11 0.29±0.10 0.14±0.07 0.12±0.08 
22:4n-6 0.48±0.22 0.32±0.03 0.40±0.39 0.23±0.04 0.21±0.05 0.00±0.00 0.14±0.24 0.46±0.09 
22:5n-3 0.38±0.12 0.27±0.10 0.35±0.32 0.25±0.07 0.24±0.07 0.22±0.32 0.07±0.12 0.07±0.16 
22:6n-3 1.92±0.84 1.50±0.16 2.74±1.66 2.16±0.63 1.35±0.43 1.76±0.71 0.77±0.13 0.81±0.06 
∑PUFA 21.50±8.09 13.29±1.51 33.15±14.58 16.23±3.77 23.41±6.70 19.36±9.07 13.33±3.52 12.20±2.03 
∑HUFA 15.44±6.15 10.00±1.07 21.92±11.59 12.55±2.95 14.36±4.43 13.98±6.04 10.82±3.16 10.59±1.55 

∑(n-3)/∑(n-6) 4.66±0.41 3.72±0.72 3.70±0.71a 5.29±0.66b 3.65±0.91 4.98±1.73 3.07±0.37 2.92±0.53 
18:1n-7/18:1n-

9 1.21±0.19 1.12±0.10 0.80±0.18 0.82±0.15 0.69±0.17 0.67±0.17 0.85±0.09 0.86±0.06 
EPA/DHA 4.14±0.30a 3.06±0.10b 4.24±0.53a 2.92±0.26b 6.02±0.95a 4.33±0.30b 8.08±0.29 7.06±0.56 
EPA/ARA 22.32±6.44a 12.21±4.63b 20.24±10.09 15.88±2.60 16.89±4.75 16.20±7.09b 5.74±2.78 4.34±0.44 
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Table 4 - One-way ANOVA to investigate variation within each stage of embryonic 
development between mangrove populations during the wet season. Significant p-values 
(p<0.05) are indicated in bold. Only the quantitatively most important fatty acids (FAs) are 
represented. (S) Saco ; (P) Ponta Rasa ; (C) Costa do Sol. (FA - fatty acids; SFA - saturated 
FA; MUFA – monounsaturated FA; PUFA – polyunsaturated FA; HUFA - highly unsaturated 
FA). 
 

Stage I Stage IV ANOVA 
results F-ratio P Tukey  test F-ratio P Tukey  test 
Total FA 5.49 0.04 S ≠ C 4.86 0.06 - 
14:0 3.38 0.10 - 11.36 0.01 S,P ≠ C 
15:0 8.26 0.02 S ≠ P,C 217.08 0.00 S ≠ P,C 
16:0 32.12 0.00 S,P ≠ C 7.54 0.02 S ≠ C 
17:0 0.14 0.87 - 2.98 0.13 - 
18:0 13.12 0.01 S ≠ P,C 4.38 0.06 - 
Σ SFA 10.32 0.01 S,P ≠ C 4.06 0.08 - 
16:1n-7 34.93 0.00 S,P ≠ C 16.70 0.03 S,P ≠ C 
18:1n-9 2.85 0.14 - 6.20 0.04 S ≠ C 
18:1n-7 4.40 0.07 - 3.82 0.08 - 
Σ MUFA 10.43 0.01 S ≠ C 8.83 0.02 S,P ≠ C 
18:2n-6 1.39 0.32 - 1.43 0.31 - 
18:3n-3 1.74 0.25 - 0.86 0.47 - 
20:4n-3 1.18 0.37 - 2.77 0.14 - 
20:5n-3 0.62 0.57 - 2.47 0.16 - 
22:6n-3 1.20 0.36 - 1.44 0.31 - 
Σ PUFA 0.91 0.45 - 1.44 0.31 - 
Σ HUFA 0.78 0.50 - 1.30 0.34 - 
EPA/DHA 7.91 0.02 S,P ≠ C 23.86 0.00 S,P ≠ C 
Σn-3/Σn-6 1.91 0.23 - 2.51 0.16 - 

 

 
Although parasitism and bacteria and fungal infection could be explaining U. annulipes 

higher brood loss at the contaminated site, in this case it seems to be related to the incapacity 

of the female to retain all the newly laid eggs in excess in its body-cavity, which increase 

significantly in volume during embryogenesis. No relation with embryo nutritional value 

seemed to have occurred (see bellow). 

The average embryo volume obtained for U. annulipes populations were within the 

range found for other brachyuran species (Wear, 1974) and were not significantly different 

between all locations. In general, the FA consumption pattern during embryonic development 

for all studied populations, namely saturated fatty acids (SFA) and monounsaturated fatty 

acids (MUFA), were essentially similar to that reported for other fiddler crabs (Torres et al., 

2008), with some expected variation as FA content varies between and within populations. 
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SFA were always metabolized at a higher rate than unsaturated fatty acids (UFA), with MUFA 

being preferentially used for energetic purposes. It is important to note that SFA are non-

essential and can be synthesized de novo or obtained by dessaturation of MUFA and 

polyunsaturated fatty acids (PUFA). Therefore, their pattern of consumption may either 

suggest a selective retention during embryonic development or partial utilization and 

replacement.  

The palmitic acid (16:0) was by far the most common fatty acid found in these fiddler 

crab embryos, followed by the monounsaturated 16:1n-7, both very common in mangrove 

sediments (Meziane and Tsuchiya, 2002). The high values of the palmitoleic (16:1n-7) and 

eicosapentaenoic (20:5n-3) acids, both trophic markers of diatoms (Meziane and Tsuchiya, 

2000), cis-vaccenic (18:1n-7) acid, marker of bacteria (Meziane and Tsuchiya, 2002), and 

oleic (18:1n-9) acid, marker of fungus (Chen et al., 2001), suggest that U. annulipes 

consumes these organism during oogenesis. This is supported by previous research done on 

Uca annulipes fatty acid composition (e.g., Meziane et al., 2002; Meziane et al., 2006). The 

EPA/DHA and 18:1n-7/18:1n-9 ratios (2.92-8.08 and 0.67-1.21, respectively) also corroborate 

these findings, placing these populations in a medium-low trophic level, as DHA is highly 

conserved throughout the food chain, and 18:1n-9 is the major FA in marine animals (Auel et 

al., 2002; Dalsgaard et al., 2003). The EPA/DHA ratio also suggests that the fiddler crabs 

inhabiting the peri-urban mangrove (with higher ratio) are situated in a lower trophic level than 

the ones in pristine mangroves. This could be explained by the higher microbenthic algal 

abundance at Costa do Sol, which is also indicated by the higher concentration of palmitoleic 

acid (diatom trophic marker), registered in this population embryos. Higher energy content (as 

fatty acids) at newly hatched embryos reflects a better maternal nutrition during oogenesis. At 

Costa do Sol, the higher values of SFA and MUFA in the embryos are probably caused by a 

more abundant and different microphytobenthos and bacteria community present in the 

sediment. In the dry season, the lowest values obtained seem to indicate that the dry 

sediment, combined with a lower amount of nutrients brought by the river, due to a strong 

decrease in rainfall, may not be enhancing microphytobenthos and bacteria growth, usually 

found during the wet season. 

The present study, as the research made by Cannicci et al (in press), seems to 

indicate that the degree and type of contamination of Costa do Sol is not severe enough to 

cause negative effects on the crabs community inhabiting this ecosystem. Although peri-

urban mangroves of many cities of the tropics are extensively used for sewage dumping, 

these ecosystems (including the fauna component) appear naturally resilient to the 
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introduction of a degree of sewage substances such as organic matter (e.g., Wong et al., 

1995; Wong et al., 1997; Cannicci et al., in press). 

The present work supports the possibility of using reproductive parameters as a 

bioindicator of organic pollution in situ, using a key mangrove crab species in East Africa. 

However, we do not exclude the possibility of other factors observed at Costa do Sol be 

exerting some influence in U. annulipes reproductive dynamics as lower salinities, different 

hydrological regimes, other contaminants, as well as muddier sediment when compared to 

pristine locations (PUMPSEA, 2008; Cannicci et al., in press). Future research should focus 

on other key mangrove species, as well as to better understand the reproductive parameter 

responses to different types and levels of stressors in order to better monitor impacts on 

ecosystems. 

 
5. Conclusion 

Reproduction parameters of U. annulipes were different in Maputo peri-urban 

mangrove when compared to nearby pristine locations. Although Costa do Sol mangrove may 

be contaminated to some degree, U. annulipes reproductive performance does seem to be 

enhanced by increasing its breeding season, fecundity, as well as egg quality, mainly 

regarding the concentration of SFA and MUFA.  
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Abstract 
The shrimp Palaemon concinnus Dana, 1852 was selected as a potential bioindicator 

of organic pollution for East Africa mangroves due its high abundance and fidelity to 

mangrove creeks. A multidisciplinary approach was carried out in southern Mozambique to 

investigate the impacts of sewage pollution on this shrimp, one of the least studied species of 

Eastern African mangrove environments. Population structure, average size, parasite 

infection rate, RNA/DNA ratio and a set of reproductive parameters, including maturation 

curves, fecundity and potential fertility, were used as bioindicators for habitat quality 

comparing a contaminated peri-urban and two pristine mangrove creeks. The domestic 

sewage discharges showed to affect positively the shrimp population, by increasing the 

number of ovigerous females and shrimp average size, fertility and reproductive output. 

Moreover, RNA/DNA ratio did not indicate any physiological stress by the individuals 

inhabiting the contaminated mangrove. However, a higher level of parasitation by a Bopyridae 

isopod, Pseudione elongata that leads to the physiological reproductive death of the host 

indicates some degree of stress on the host shrimp at the peri-urban mangrove. The 

identification of the effects of sewage on P. concinnus increases the choice of possible 

bioindicators in East African mangrove environments. 

 
Keywords: Palaemon concinnus, indicator species, pollution, reproduction, embryonic 

development, parasitism, Mozambique 
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1. Introduction 

During the last decades, mangrove ecosystems have suffered strong anthropogenic 

disturbances through deforestation and dumping activities (Duke et al., 2007; Kruitwagen et 

al., 2008). Despite the great social, economic, and environmental importance of mangroves in 

tropical coasts (Nagelkerken et al., 2008; Walters et al., 2008), environmental monitoring and 

assessment of these systems is still limited (Peters et al., 1997). Most studies performed in 

these forests have pursued the quantification in situ (water, sediment samples as well as in 

organisms) of anthropogenic contaminants such as heavy metals, organotins, organochlorine 

pesticides and polychlorinated biphenyls, among others (De Wolf et al., 2001; Mohammed, 

2002; Kruitwagen et al., 2008). 

However, determining when contamination results in pollution requires not only 

chemical but also biological measurements (Chapman, 2007). Studies of contaminant-induced 

alterations in fauna communities’ abundance and diversity were developed and are nowadays 

commonly used in the investigation of environmental assessment (e.g., Warwick, 1993; Bigot 

et al., 2006; Saunders et al., 2007), including mangroves (Cannicci et al., 2009), and have 

been considered as the most important level for impact assessment studies (Warwick, 1992). 

However, community structure and dynamics is merely an expression of variation in the 

population of constituent species and the response of these species to environmental stress 

(Smith and Suthers, 1999). In turn, the population structure is dictated by its fitness 

parameters, such as growth, physiological conditions and reproductive output, that might be 

more or less sensitive and used as an early warning to determine deterioration in ecosystem 

health (Attrill and Depledge, 1997). Positive indicators, also named opportunistic species, tend 

to increase abundance in polluted areas out competing local species (Tsai, 1975 in Méndez et 

al., 1997; Smith and Suthers, 1999). Negative indicators are usually key fauna species in the 

environment that tend to decrease biomass, show reduced growth rates (e.g., Crouau and 

Moia, 2006; LeBlanc, 2007; Amara et al., 2009), as well as low reproduction output and quality 

(e.g., Smith and Suthers, 1999; Elumalai et al., 2005; Crouau and Moia, 2006). They are 

efficient indicators of contamination due to a general reallocation of resources favouring 

tolerance to stress, by combating against contaminants, low oxygen levels or repairing 

damage (Diaz and Rosenberg, 1995; Wu, 2002). Morphological structures and physiological 

processes (such as RNA/DNA ratios and cytological modifications) have been also an 

alternative indication of organisms (including foraminifera, bivalves and crustaceans) condition 

when facing stress or pollution (e.g., Le Cadre and Debenay, 2006; Norkko et al., 2006; 

Amaral et al., 2009a). Parasite infection have also been recently considered as a good 

indicator of anthropogenic pollution due a decrease of host defence mechanism and fitness, 



Section II 
____________________________________________________________________________ 

            

91 

thereby increasing the host susceptibility (Sures, 2004; Sures, 2006), affecting host 

abundance, tolerance to pollution, behaviour and mortality (Lafferty, 2008). 

While these population fitness indicators have proven to be reliable for different 

anthropogenic contaminants in many different ecosystems, they are scarce for mangrove 

habitats. A range of ecological responses in key mangrove species have been attributed to 

sewage pollution including: increased or decreased abundance, increased mortality and 

reduced growth, changes in reproduction parameters, behaviour and ecosystem functioning 

(Cannicci et al., 2009; Bartolini et al., accepted-a; accepted-b; Penha-Lopes et al., accepted-

a; accepted-b) 

Although not profuse, a multidisciplinary approach to investigate the impacts of 

sewage pollution on single species, although mainly focussing on polychaetes and fishes, 

started to be used as indicator of anthropogenic impact and is now widely accepted  (e.g., 

Smith and Suthers, 1999; Amara et al., 2009; Durou et al., accepted), but never applied to 

mangrove habitats. The shrimp Palaemon concinnus Dana, 1852 was selected as a potential 

bioindicator of organic pollution for Eastern African mangroves due their high abundance and 

fidelity to mangrove creeks, although it is one of the least studied species in mangroves 

habitats. Only a few studies have focussed on geographic distribution, taxonomic or 

morphological variations (Dutt and Ravindra.K, 1974; De Grave, 1999) although is probably a 

potential food source for commercial species that migrate into the mangrove during high tides 

(Nagelkerken et al., 2008). 

The purpose of this article is to examine whether or not marked differences in 

anthropogenic disturbance decreased the estuarine habitat quality for Palaemon concinnus. 

We used several different approaches: population structure and average size, reproductive 

parameters (such as maturation curves, fecundity and potential fertility), parasite infection, 

and RNA/DNA ratio to test for habitat quality differences between a contaminated peri-urban 

and two pristine mangrove creeks in southern Mozambique. 

 

2. Materials and methods 

2.1. Study area and sampling design 

Appropriately replicated Before/After sampling designs are perhaps the most reliable 

methods for detecting an environmental impact (Underwood, 1992; 1994). However, in the 

absence of such data, with appropriate spatial and temporal replication it has been possible to 

examine differences between potentially disturbed and control locations after the 

‘‘disturbance’’ (Chapman et al., 1995). For these reasons, we followed a ACI (After 

Control/Impact) unbalanced design, comparing the ecological features recorded in one 
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contaminated mangrove swamp with those characteristic of two nearby pristine mangroves of 

similar ecological traits in Mozambique. Mangrove areas, sampling design and site selection 

were described in detail in previous studies (Amaral et al., 2009b; Cannicci et al., 2009; 

Penha-Lopes et al., accepted-a; accepted-b). 

The sampling was conducted in three different mangrove ecosystems, a peri-urban 

mangrove, Costa do Sol, and two pristine mangroves, Saco and Ponta Rasa, at Inhaca Island 

(Figure 1). Costa do Sol mangrove is located at Maputo Bay, ~7 Km north of Maputo city. The 

seasonal river Quinhenganine discharges in the swamp after passing through the city. The 

mangrove creek is bordered by a residential area, and has been receiving domestic sewage, 

aquaculture residuals and solid dumps of various sources during the last decades (PUMPSEA, 

2008). Costa do Sol presents significantly higher concentrations of pathogens, organic matter 

and nutrients, especially nitrites and nitrates in relation to Saco and Ponta Rasa mangroves 

(PUMPSEA, 2008).  

Sampling was done every low spring tide (± every 15 days) from August 2005 to 

August 2006 in all 3 mangroves. On each sampling occasion, nearly 100 P. concinnus 

specimens were collected with the help of a 1mm mesh net, and water surface temperature 

and salinity were measured. Wet season was considered from December to May and dry 

season from June to November (Figure 2 and Kalk, 1995). While in the wet season 

temperatures are higher, and heavy rains common, promoting an increase of nutrient 

concentration in the water channels (Paula et al., 1998) and mangrove sediments, the dry 

season tends to be cooler with sporadic short rains (Kalk, 1995). 

 

 
Figure 1 – Location of study sites in southern Mozambique. 
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2.2 Population structure, parasitism and maturation 

Shrimps were preserved in buffered 4% formaldehyde diluted with seawater, and taken 

to the laboratory for examination. Specimens were identified, counted and their sex 

determined (by investigating the presence (male) or absence (female) of an appendix 

masculina on the second pair of pleopods). Standard length (SL), from the posterior margin of 

the orbit to the tip of the telson were taken under a binocular microscope with a calibrated 

micrometer eyepiece, to the nearest 0.02 mm. Presence of the parasite, Pseudione elongata 

africana Kensley, 1968,  in the cephalothorax was also registered. 

According to the criteria used by Kensler (1967) and Aiken & Waddy (1980), female 

maturation size was determined by calculating the size which corresponded to 50% of 

ovigerous females. The proportion of mature females by size was fitted to a logistic equation: 

)(1
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With the logarithmic transformation given by: 
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        (2) 

where “P” is the predicted mature proportion, “a” and “b” the estimated coefficients of the 

logistic equation (“a” as the y-intercept value and “b” as the slope value), and SL the standard 

length. The estimation of parameters of this equation was made by correlation analysis of 

variables of P and SL after linearization. Size at sexual maturity (SL50) was estimated as the 

negative of the ratio of the coefficient (SL50 = - (a/b)) by substituting P=0.5 in Eq. 1. 

 

2.3 Condition indices (RNA/DNA) 

During the January-February 2006 campaign for all sampling sites and August 2006 

campaign only for CS, 7 ovigerous female shrimps in intermoult stage were haphazardly 

selected and evaluated in situ by the hardness of the carapace, measured and not preserved 

in formalin. The individuals were immediately transported to the laboratory in cool boxes and 

body muscle was removed and was promptly freeze-dried and stored at -80 º C until nucleic 

acid quantification. Nucleic acid quantification was conducted based on the Schmidt-

Thannhauser method, according with the procedures of Amaral et al. (in press-b). Analyses 

were performed on ~15 mg (freeze-dried weight) of white claw muscle. RNA and DNA 

absorbances were measured in a NanoDrop® ND-1000 full spectrum spectrophotometer 

(NanoDrop, USA). The full spectrum feature allows inspection of nucleic acid contaminations 

by calculation of 260 / 280 and 260 / 230 nm ratios, concurrently to sample analysis. 
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2.4 Fecundity and Embryo development 

In this study we used the same fecundity and potential fertility concepts already 

employed in previous studies (Penha-Lopes et al., 2007; Torres et al., 2007) since the goal 

was to evaluate the initial egg number as well as the changes observed throughout the 

embryonic development, mainly regarding brood loss and embryo fatty acid composition. 

Thus, fecundity is considered as the number of newly extruded embryos (stage I), while 

potential fertility, on the other hand, is calculated based on the number of embryos just before 

hatching (stage IV). Fecundity and potential fertility were obtained for both wet, known to 

account for the highest reproductive activity in crustaceans in these subtropical mangroves 

(Torres et al., 2009; Penha-Lopes et al., accepted-c), and dry season (except for Saco where 

no ovigerous females were found). 

 

2.5 Statistical analysis 

The PERMANOVA test, permutational multivariate analysis of variance (Anderson and 

Robinson, 2001), with asymmetrical design, was used to test the null hypothesis of: 1) no 

difference in RNA/DNA ratio, RNA content and DNA content, and 2) in both the Fecundity per 

SL and Potential Fertility per SL among peri-urban and non-urban sites and sampling 

seasons. Similarity matrices were computed using Euclidean distance on untransformed data. 

All analyses were based on 9,999 permutations of residuals within a reduced model 

(Anderson and Ter Braak, 2003) and type III sums of squares to cope with the unbalanced 

design (Anderson et al., 2008). Three and two-way univariate PERMANOVA tests were 

applied and factors used are described in each respective table. All analyses were performed 

using PRIMER v. 6.1 (Clarke and Gorley, 2006) and the PERMANOVA+ for PRIMER routines 

(Anderson et al., 2008). Possible differences in the relative frequency of males, females and 

ovigerous females as well as differences in the relative frequency of parasites males and 

females at impacted and control locations were determined using chi-square test. 

 

3. Results 

3.1 Environmental conditions 

Water column temperatures in all three mangrove creeks increased slowly form August 

05 to March 06, decreasing slowly in the pristine mangroves but dramatically at CS during 

February and April06 (Figure 2). Salinity ranged from 35 to 40 in all mangroves, while at CS a 

decrease to values near 10 occurred at the start of the rainy season (January 06), increasing 

afterwards till April and remaining with slightly lower values till September 06 (Figure 2). 
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3.2 Population structure, maturation and parasitism 

Shrimp standard length was higher at Costa do Sol population than at both pristine 

locations for the entire year (Figure 3, Table 1), and average size increased significantly 

(t=1.89; p=0.05) from CS (5.18±0.06 mm), to S (4.41±0.13 mm) and to PR (4.13±0.10 mm). 

Average size of ovigerous females was slightly bigger (t=9.45; p=0.06) than non-ovigerous 

females and males (t=250.51; p=0.0001). The size of all 3 groups decreased significantly 

(p<0.05) according to the sequence CS > S > PR, except non-ovigerous female at S and PR 

(Figure 4 - A). 
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Figure 2 – Temperature and salinity measured at the low tide in all three mangrove creeks 
during a period of 12 months. Values are given as average (±SE). 
 

3

3,5

4

4,5

5

5,5

6

Aug-05 Sep-05 Oct-05 Nov-05 Dec-05 Jan-06 Feb-06 Mar-06 Apr-06 May-06 Jun-06 Jul-06 Aug-06

Time

Av
g 

S
ta

nd
ar

d 
le

ng
th

 (c
m

)  
   

   
   

-

Costa do Sol Ponta Rasa Saco
 

Figure 3 – Average standard length (±SE) of Palaemon concinnus population at the 
contaminated (Costa do Sol) and pristine (Saco and Ponta Rasa) mangroves, south 
Mozambique, during a period of 12 months. 
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Table 1 - Results of the three-way PERMANOVA conducted on size of Palaemon concinnus. 
Factors are as follows: Impact vs Control (asymmetrical, fixed and orthogonal), Location 
(random and nested in ‘Impact vs Control’ – just at the wet season) and sex/ovigerous (fixed 
and orthogonal). Degrees of Freedom, df, Mean Squares, MS, F and its probability value, P, 
are shown for each factor. 
 

    Size of specimens 
Source df      MS F P 
Impacted (I) vs Control (C) 1 54453.00 22052.00 0,0001 
location(I vs C) 1 20426.00 40424.00 0,0484 
Sex/ovigerous 2 34,35 181,33 0,0035 
I vs C x Sex/ovigerous 2 20739.00 11,27 0,0749 
location(I vs C) x Sex/ovigerous 2 0,16816 0,3328 0,718 
Residuals 237 0,5053   

 

The relative abundance of sexes strongly differed among sites (chi-square = 92.15; df 

= 2; p < 0.001), with males much more abundant in Saco and Costa do Sol and females more 

abundant in Ponta Rasa. Costa do Sol presented the higher ovigerous female frequency along 

the year, followed by Ponta Rasa and then Saco, merging these latter two sites in a single 

group representing the “control sites”. We found significant differences in frequency of 

ovigerous females between the controls and the impacted sites (chi-square = 519.11; df = 2; p 

< 0.001; Figure 7-A).  

The maturation index (Figure 7-B), calculated based on the SL at which 50% of the 

females are ovigerous at the time of sampling, presented Ponta Rasa with the lowest values of 

5.3 mm, followed by Costa do Sol (6.15 mm) and Saco (6.25 mm). 

 

Figure 4 – Annual average size and frequency 
of males (grey), non-ovigerous females (white) 
and ovigerous females (black) of Palaemon 
concinnus population at the contaminated 
(Costa do Sol) and pristine (Saco and Ponta 
Rasa) mangroves, south Mozambique. Values 
are given as average (±SE, n = 250-1895) 
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Although parasites were never observed in the cephalothorax of ovigerous females at 

all 3 sites, the percentage of infected males and non-ovigerous females at Costa do Sol was 

almost always superior to 30%, sometimes reaching more than 60% in medium size classes 

(Figure 7-C). The frequency of parasitized shrimps was significantly lower in pristine 

mangroves (chi-square = 179.19; df = 1; p < 0.001), always bellow 20%, and mostly between 

5 and 10%. The frequency of parasite infection did not differed between sexes (chi-square = 

1.01; df = 1; p = ns) and it varied with no specific temporal pattern, although oscillations were 

similar between Costa do Sol and Saco (Figure 5). 

 

3.3 Physiological stress 

The PERMANOVA and post hoc tests showed a significant (p<0.03) lower RNA/DNA 

ratio in PR compared to S and CS (Table 2, Figure 6). At the dry season, RNA/DNA ratio at 

CS was slightly higher but not significantly different from the ratio obtained at the wet season 

(Student’s t = 2.03, df = 12, p =0.551). The overall average of RNA content was significantly 

(p<0.001) different from shrimps inhabiting all 3 mangroves, increasing from PR to S and then 

CS, with average values of 0.77±0.09, 1.06±0.18 and 1.61±0.19 µg per mg of freeze-dried 

dorsal muscle, respectively (Table 2). DNA content was not significantly different (Table 2) 

although higher in contaminated (1.04±0.15 µg per mg of freeze-dried muscle) than in pristine 

mangroves (0.68±0.08 and 0.71±0.11 µg per mg of freeze-dried muscle, for S and PR, 

respectively). Therefore, the overall lower RNA/DNA ratio in PR shrimp populations resulted 

from lower RNA content. At the dry season, CS population presented significantly (p<0.01) 

lower RNA as well as DNA content (1.25±0.16 and 0.69±0.11 µg per mg of freeze-dried 

muscle, respectively) than at the wet season. 
 

3.4 Fecundity, Egg Development and Egg loss 

The number of eggs tended to increase with animal size at all seasons, locations and 

egg stages. PERMANOVA and post hoc pair-wise tests revealed that females sampled at PR 

were slightly smaller that those collected at Saco and CS (Table 3, Figure 8-A,B). The 

PERMANOVA test performed on the number of eggs carried by each female, standardised by 

SL, showed a significant difference between Impact vs Control (Table 3, Figure 8-C,D). Post 

hoc pair-wise tests showed that females colonising the impacted site of Costa do Sol were 

producing more eggs at both egg stages than the ones collected in the two control sites 

(t=323.3; P<0.001), and, moreover, that at the impacted site there was a significant egg loss, 

with females carrying significantly less eggs at stage IV than at stage I (t=3.43; P<0.001). In 

the dry season, Costa do Sol and Ponta Rasa ovigerous females presented similar number of 

eggs/SL at both egg stages. 
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Figure 5 – Monthly parasitic frequency of Palaemon concinnus population by Pseudione 
elongata africana at the Peri-urban (Costa do Sol) and pristine (Saco and Ponta Rasa) 
mangroves, at southern Mozambique, during a period of 12 months. 
 

 
 
Figure 6 - Mean RNA/DNA (±SE) ratios of Palaemon concinnus in three different Mozambican 
mangrove ecosystems, in the rainy and dry seasons. 
 

Table 2 – Results of the two-way PERMANOVA conducted on RNA/DNA ratio, RNA and DNA 
content (µg) per weight of muscle (g). Factors are as follows: Impact vs Control 
(asymmetrical, fixed and orthogonal) and site (random and nested in ‘Impact vs Control’ – just 
at the wet season). Degrees of Freedom, df, Mean Squares, MS, F and its probability value, 
P, are shown for each factor. 
 
A  RNA/DNA RNA DNA 
Source df MS F P MS F P MS F P 
Impact vs Controls - I vs C 1 0,37 0,37 0,50 0,77 0,77 0,16 0,08 0,08 0,33 
Location(I vs C) 2 0,58 0,29 0,04 0,34 0,17 0,00 0,11 0,05 0,08 
Res 17 1,09 0,06  0,41 0,02  0,25 0,01  
Total 20 2,12   3,01   0,79   



Section II 
 

99 

 
 
 
 
 
Figure 7 – A) 
Frequency variation 
(every 15 days) of 
males (grey), non-
ovigerous females 
(white) and ovigerous 
females (black); B) 
Logistic function fitting 
the cumulative 
proportion of ovigerous 
females; and C) 
Percentage, per size 
class, of males, non-
ovigerous females and 
total females infected 
with parasite 
Pseudione elongata 
africana in the 
cephalothorax of 
Palaemon concinnus 
population at the 
contaminated (Costa 
do Sol) and pristine 
(Saco and Ponta 
Rasa) mangroves, 
south Mozambique. 
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Figure 8 – Average (±SD) dimensions (A) and number of carried eggs, standardised on 
carapace dimensions (B) observed for the females carrying eggs of stage I and IV collected in 
the study locations. 
 

Table 3  – Results of the three-way (A – wet season) and two-way (B – dry season) 
PERMANOVA conducted on Standard Length (SL) and the ratio between the number of eggs 
and SL (# eggs/SL) for females collected at the study sites. Factors are as follows: Impact vs 
Control (asymmetrical, fixed and orthogonal), site (random and nested in ‘Impact vs Control’ – 
just at the wet season) and Stage of the Embryos (Stage, as a proxy of Fecundity vs Potential 
Fertility, fixed and orthogonal). Degrees of Freedom, df, Mean Squares, MS, F and its 
probability value, P, are shown for each factor. 
 

A - Wet seasons  SL # eggs/SL 
Source df MS F P MS F P 

Impact vs Controls - I vs C 1 6.77 2.59 0.67 4251.70 104920.00 0.00 
Stage - St 1 0.10 0.31 0.66 594.55 8.39 0.17 

Location(I vs C) 1 1.46 5.87 0.02 0.02 0.00 0.98 
I vs C x St 1 0.09 0.30 0.67 477.11 6.89 0.25 

Location (I vs C) x St 1 0.54 2.17 0.14 42.38 0.59 0.42 
Res 175 0.25   71.44   
Total 180       

 

 

B - Dry seasons  SL # eggs/SL 
Source df MS F P MS F P 

Impact vs Controls - I vs C 1 23432.00 62738.00 0.00 121.67 16403.00 0.22 
Stage - St 1 13391.00 35854.00 0.06 193.92 26144.00 0.10 
I vs C x St 1 1791.00 47952.00 0.03 80513.00 10855.00 0.30 

Res 104 0.37                  74173.00                  
Total 107       
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4. Discussion 

4.1 Population structure and reproduction 

Non-opportunistic fauna species tend to decrease abundance and/or size near sewage 

outfalls (Smith and Suthers, 1999; Bigot et al., 2006; Northington and Hershey, 2006) and 

possible explanations include increased mortality, slower growth, dispersal of larger fish away 

from the sewage, increase in the predation or preferential recruitment. Shrimp species are 

usually used as biomonitors of different types of contaminants (Gokoglu et al., 2008; Opuene 

and Agbozu, 2008; Tang et al., 2009) but no study has use them as reliable bioindicators. 

Also, while several studies have addressed shrimp fecundity, only a few have addressed, in 

detail, embryo production and brood loss for the all size range in particular species (e.g., 

Calado & Narciso, 2003; Penha-Lopes et al., 2007; Torres et al., 2007), and none has used it 

as a proxy of anthropogenic pollution in mangrove habitats. 

Although we have not analysed population dimension and productivity, which could 

have also been a good proxy of organic loading into the systems (deBruyn et al., 2003; Cross 

et al., 2006), the overall size distribution and dynamics during the sampling period have shown 

that the peri-urban site presented the largest shrimps, independent of sex and female maturity. 

Loading of organic detritus and stimulation of primary productivity, bacteria and microalgae, 

(Hillebrand et al., 2000; Savage et al., 2004), may have supplied the shrimp with more 

abundant and diverse food sources, thus increasing growth rates and maximum length. Similar 

results were found to occur in Sudanese fairy shrimp, Streptocephalus proboscideus, being 

fed agro-industrial waste products (Ali and Brendonck, 1993).  

Although most crustaceans reduce growth when energy is diverted to reproductive 

processes (Anger, 2001; Hartnoll, 2006), in our case it seems that anthropogenic 

contamination supplies enough food sources to sustain higher growth rates, higher percentage 

of ovigerous females and longer reproductive seasons. At the contaminated mangrove, nearly 

40% of all females were ovigerous while at the pristine mangroves these percentages were 

rarely observed above 10-15%. Higher percentage of ovigerous females, mainly during the 

wet and warmer seasons, as commonly observed for other palaemonid species inhabiting 

temperate estuaries (Cartaxana, 1994), increased the population average size at Costa do Sol 

due their higher length when compared to males and non mature females (Cartaxana, 1994; 

Penha-Lopes et al., 2007). It is commonly accepted that mature females possess larger 

bodies that allow them to carry bigger eggs clutches, as was found in the present study and for 

other hippolytid shrimp populations inhabiting mangroves creeks (Penha-Lopes et al., 2007; 

Torres et al., 2007) or temperate coastal zones (Calado and Narciso, 2003).  
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Also, ovigerous females at Costa do Sol possessed a larger brood per female size when 

compared with females collected at the pristine mangroves, although this was more evident at 

the highest reproductive (wet) season. The same was observed for the fiddler crab Uca 

annulipes at Costa do Sol (Penha-Lopes et al., accepted-c) and fish species inhabiting near 

sewage outfalls locations (Smith and Suthers, 1999). Continuous reproduction of Palaemon 

concinnus and Uca annulipes at Costa do Sol (Penha-Lopes et al., accepted-c), as well as 

Panopeus americanus mud crab inhabiting contaminated mangrove in Brazil (Vergamini and 

Mantelatto, 2008), has not been registered in populations inhabiting nearby pristine 

mangroves. Continuous reproduction, as well as increment in fertility, may be due the higher 

nutrient and food availability to the shrimp population found at the contaminated mangrove. 

Lower salinity has also been considered as one of the main responsible factors for higher 

reproduction activity in crab species inhabiting southern Mozambique mangroves (Litulo, 

2004; 2006), and usually mangrove creeks suffering high discharges from domestic 

wastewater have lower salinity during the wet season (see Figure 2). Also, Costa do Sol 

wastewater may also contain a large variety and/or quantity of endocrine disruptors (such as 

hormone-like substances), which could affect the fish reproductive activity (Jobling and Tyler, 

2002; Markert et al., 2004). However, improvement of reproductive activity could also be 

considered as a strategy to establish and maintain a stable population living associated with 

stressful energy demanding conditions in human-impacted mangroves (Vergamini and 

Mantelatto, 2008).  

The brood loss reported in the present study for P. concinnus is basically restricted for 

the pristine sites but significant for the peri-urban populations. Brood loss in crustaceans may 

be induced by numerous factors: aborted development, mechanical loss due to abrasion, 

maternal cannibalism, embryo predation and parasitism (see Kuris, 1991), but has also been 

recently considered as a potential proxy for anthropogenic disturbances (Ford et al., 2003). 

For example, resortion of oocytes is also a common response of fish species inhabiting 

contaminated estuaries (Jobling et al., 2002). Production of big egg clutch (stage I) size, due 

to higher amount of food sources available and limited space available to hold the growing 

embryos (Lardies and Wehrtmann, 2001) was also considered to explain higher brood loss 

during embryo development of fiddler crabs inhabiting Costa do Sol, compared with the same 

pristine mangroves (Penha-Lopes et al., accepted-c). 

Maturation index was tested as an indicator of domestic sewage pollution by potentially 

reducing or increasing the size at which 50% of the females are ovigerous, however this 

potential bioindicator was similar between contaminated and pristine mangroves studied.  
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4. 2 Physiological condition (RNA/DNA) 

The RNA/DNA ratio has been an alternative indication of the physiological condition of 

ecologically relevant organisms in a natural context (e.g., Norkko et al., 2006; Amaral et al., 

2009a), and has furthermore been described as being well correlated with growth and 

nutritional condition of such organisms.  At the same locations of the present study, Amaral et 

al. (2009b), using RNA/DNA ratio of male Uca annulipes claw muscle as an indication of 

physiological stress, stated that this species presented a much lower RNA/DNA ratio at Costa 

do Sol when compared to Saco and Ponta Rasa populations. The authors state that a lower 

rate of new protein synthesis indicated that individuals were facing stress. However, an 

increased protein synthesis might sometimes reflect a stress response as well (Dahlhoff, 

2004), invalidating, in such cases, the bioindicator potential of the RNA/DNA ratio. 

Ponta Rasa presented a significant lower RNA/DNA compared to Saco and Costa do 

Sol. However this is due an increase of RNA content from PR to CS, while DNA content was 

significantly higher at CS than at both populations inhabiting pristine mangroves. By analysing 

only RNA content, we must assume that CS populations presented the lowest stress, being 

well correlated with the larger size and nutritional condition of such organisms, compared with 

pristine locations. Although higher cellular DNA content among closely related species has 

been documented in several crustacean species (e.g., Gregory et al., 2000; Amaral et al., 

2009b), within the same species it has not been demonstrated. Although samples were re-

analysed, in order to sort out methodological faults in laboratory, it is known that larger shrimp 

ovigerous females were collected at CS, which could be supported by larger muscle fibres 

(Govind et al., 1986; Rhodes, 1986), possibly originated by larger muscle cells (e.g., Penney 

et al., 1983). Therefore, a similar weight of freeze-dried muscle tissue may contain fewer 

cells, and thus lowering DNA content in P. concinnus inhabiting the peri-urban mangrove. 

Although a similar explanation was used by Amaral et al (2009b) to explain less DNA content 

in fiddler crabs with larger claws, only histological and genetic studies could clarify this issue. 

 

4.3 Parasitism 

Not only pollutants were found to cause endocrine disruption on fishes, but also 

parasites (Jobling and Tyler, 2003). In the present study, the isopod Pseudione elongata 

africana was not found in a single ovigerous female, clearly indicating that they inhibit shrimp 

reproduction or no longer can parasite a mature female. However, Pseudione elongata 

africana belongs to isopods of the family Bopyridae. These organisms display a free swimming 

epicaridean larva that attaches itself to an intermediate host (a calanoid copepod), later 

metamorphosing into a microniscus (Dale and Anderson, 1982). This larva metamorphoses to 



Chapter 3 
____________________________________________________________________________ 

            

104 

a free swimming cryptoniscus, leaves the copepod and acts as the infective stage of the 

definitive host, usually decapods (e.g., Calado et al., 2008). Bopyrids are known to interfere 

with gonad maturation of their hosts and the decapod reproductive potential is always 

substantially reduced (O´Brien and Van Wyk, 1985), although it is commonly accepted that 

bopyrid infection leads to the ‘reproductive death’ of the host (Vanwyk, 1982), exactly the 

situation in the present study. 

Peri-urban mangrove parasite infection rates for both males and non-ovigerous 

females were usually much higher than the ones obtained at Saco and especially Ponta Rasa, 

indicating that hosts at Costa do Sol are more vulnerable, thereby increasing their 

susceptibility. Other explanations could include a lower abundance of parasites or intermediate 

hosts (the calanoid copepod) in pristine mangroves. This particular host-parasite relationship 

may be used as indicators of pollutants, because this complex seems to meet all of the 

requirements suggested by Kennedy (1997) to use fish parasites as bioindicators: the host 

must be abundant and easily accessible; parasite species, despite their over dispersed 

distribution, must show a high prevalence and abundance in host population; parasites should 

be easily identified and not laborious to remove and count; information on the ecology and 

biology of both host and parasite should be available. 

Nevertheless, one interesting detail is that while Costa do Sol presented the highest 

parasite percentage, it is also where we observed the longest reproductive period, highest 

ovigerous female rate and larger egg clutches. This may indicate that, while on one side Costa 

do Sol provides “resources” to boost reproductive fitness (positive indication) at the same time 

increases the parasite rate in males and non-ovigerous females, reducing the reproductive 

potential of this population. Similar multi-disciplinary studies should be undertaken on other 

species of mangrove biota that are exposed to sewage pollution increasing the choice of 

possible bioindicators in mangrove habitats. 

 

5. Conclusion 

Domestic sewage discharges, at low concentrations, have already shown to affect in a 

“positive way” mangrove ecosystems, due the nutrient limitations that these ecosystem have. 

Growth, fertility and reproductive output are some of these examples presented in this study. 

Palaemon concinnus - Pseudione elongata interrelationship is one of the factors studied that 

indicated some degree of stress (negative effect) on the host shrimp at Costa do Sol. The 

identification of the effects of sewage on P. concinnus increases the choice of possible 

bioindicators in East African coastal mangroves. 
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ABSTRACT 

The effect of different organic-rich sewage concentration (0%, 20% and 60% diluted in 

seawater) and absence or presence of mangrove trees on the survival, bioturbation activities 

and burrow morphology of fiddler crabs species was assessed. After 6 months, males of both 

species always showed higher survival (~80%) when compared to females (~20%). Crabs 

inhabiting pristine conditions achieved higher survival (67-87%) than those living in sewage-

exposed mesocosms (40-71%). At 60% sewage loading, fiddler crabs processed less 

sediment (34-46%) during feeding and excavated slightly more sediment (45-80%) than at 

pristine conditions. While percentual volume of the burrow chambers increased (13-66%) at 

contaminated mesocosms for both vegetation conditions, burrows were shallower (~33%) in 

bare cells loaded with sewage. The results show that fiddler crabs presented moderate 

mortality levels in these artificial mangrove wetlands, but mainly in sewage impacted cells. 

However, they still function as ecosystem engineers through bioturbation activities and 

burrow construction. 
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1. INTRODUCTION 

Constructed freshwater wetlands are now a worldwide accepted technology for water 

pollution control, mainly due to low running cost (low energy consumption and training 

requirements) and high filtration efficiency (Crites et al., 2006) Mangrove forests have 

recently shown a potential as natural wastewater treatment facility in China, by removing 

nutrients and organic matter efficiently (Wong et al., 1997; Yang et al., 2008). Growth and 

productivity in natural and pristine mangrove forests are usually nutrient limited (Hogarth, 

2007). Consequently, discharge of moderate sewage loadings results in enhanced growth of 

trees (Mohamed et al., 2008) as well as stimulation of benthic primary producers and 

microheterotrophs (Tam, 1998; Meziane and Tsuchiya, 2002). The effect on macrofauna 

biomass and diversity seems to be dependent on the degree of contamination, proximity to 

the effluent and sensitivity of the species (Yu et al., 1997; Wear and Tanner, 2007; Cannicci 

et al., in press). 

The benthic fauna in mangrove forests is typically dominated by burrowing decapods, 

such as fiddler crabs (Uca spp.). These crabs establish dense populations on intertidal flats 

(Skov and Hartnoll, 2001; Skov et al., 2002) making them important grazers on microalgae 

and bacteria (Bouillon et al., 2002; Reinsel, 2004), as well as key ecosystem engineers 

(Kristensen, 2008). The effects of Uca spp. on mangrove habitat characteristics have been 

extensively studied (for a review see Cannicci et al., 2008; Kristensen, 2008). Their crawling 

and foraging activities process a significant amount of the top 2 cm sediment layer during a 

single low tide period (Dye and Lasiak, 1986). As a consequence, they disturb the 

microbenthic primary producers and meiofauna communities in the top sediment (Ólafsson 

and Ndaro, 1997; Kristensen and Alongi, 2006). In addition, these crabs actively dig and 

maintain burrows in the sediment which function as a refuge from predation and adverse 

environmental conditions (e.g., high tide), provide water for the crabs’ physiological needs (at 

low tide), and are used for moulting and reproduction (Crane, 1975). These biogenic 

structures may easily reach and pass 10 cm depth for adult mangrove fiddler crabs (Lim and 

Heng, 2007). Through their crawling, foraging and burrow construction and maintenance 

activities, Uca species increase sediment drainage, soil redox potential, translocate sediment, 

organic matter and nutrients, change sediment erosion threshold, and increase the sediment 

surface area (Wolfrath, 1992; Botto and Iribarne, 2000; Kristensen, 2008). Consequently, they 

stimulate microbial metabolism, organic matter degradation and nutrient cycling, as well as 

flora productivity (Gribsholt et al., 2003; Nielsen et al., 2003; Kristensen and Alongi, 2006), 

which may also potentially counteract adverse effects of anthropogenic eutrophication 
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(Nielsen et al., 2003; McHenga and Tsuchiya, 2008).  

Stimulation of microalgal and bacterial growth in sewage contaminated mangrove 

environments has apparently no effect (Yu et al., 1997) or increases fiddler crab abundance 

and/or biodiversity when compared to pristine mangrove areas (Cannicci et al., in press). This 

is probably caused by an enhanced reproductive performance of crabs due to the surplus of 

food availability (Penha-Lopes et al., submitted), particularly in areas where environmental 

conditions (such as wind and water currents) restrict offshore dispersion of the pelagic larvae 

(Paula et al., 2001). However, under poor hydrodynamic conditions or in closed wastewater 

wetlands, organic enrichment above the ecosystem capacity may lead to eutrophication and 

consequently hypoxic conditions (Gray et al., 2002). Low oxygen levels can result in faunal 

migration to normoxic zones, lower survival and activity, and smaller burrow structures of 

marine benthic organisms. As a consequence, a decrease in the ecological role of 

bioturbation is observed (Diaz and Rosenberg, 1995). Among all benthic animals, 

crustaceans are considered one of the most sensitive species to hypoxia, only surpassed by 

fish. First their activity is decreased under hypoxia, and secondly exhibit high mortality if low 

oxygen concentrations are maintained for extended periods (Gray et al., 2002). 

Knowledge on the ecological responses of mangrove associated fauna to urban 

sewage loadings is necessary. Understanding of direct and indirect effects of severe sewage 

contamination on crab survival and bioturbation activities is fundamental to comprehend the 

effects of organic discharge on mangrove forests and to develop sustainable mangrove 

wastewater wetlands. In this study, we addressed the effects of domestic sewage loading and 

vegetation type on (1) the survival, (2) bioturbation activity due to feeding and burrowing, and 

(3) burrow morphology of two fiddler crabs species, Uca annulipes (H. Milne Edwards, 1837) 

and Uca inversa (Hoffmann, 1874), in constructed mangrove mesocosms. 

 

 

2. MATERIALS AND METHODS 

2.1 Mesocosm setup 

Mangrove mesocosms were constructed in the upper intertidal zone of the Jangwani 

mangrove forest, Dar es Salaam, Tanzania. The system consisted of 27 cells (9 m2 each) 

separated by 1-m tall cement walls and protected from tidal influence by a soil embankment. 

The sediment inside the cells was composed of the original sandy mangrove substratum from 

the area. Each cell was equipped with in- and outflow pipes for tidally simulated flooding and 

drainage with seawater or sewage mixtures. A daily tide with 12 h inundation (0.1 m water 

depth) starting at 23:00 and 12 h exposure starting 11:00 was applied. Sewage from a nearby 

hotel facility was subjected to primary treatment in a 86 m3 storage pond before entering the 
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mesocosm system. For complete details of the mesocosm construction and performance see 

PUMPSEA (2008). 

The cells were either kept as unvegetated controls (bare), planted with Rhizophora 

mucronata Lam. or Avicennia marina (Forsk.) mangrove trees. These two species were 

chosen since they dominate mangrove areas along the Eastern African coast. Mangrove 

saplings were planted (at a density of 2.8 m-2) on selected cells in early February 2006. 

Epifauna was introduced to all cells in late August, including males and females of two of the 

most abundant crab species in the area (Uca annulipes and U. inversa) and the common 

mangrove gastropod, Terebralia palustris (Linnaeus, 1767). The fauna was randomly 

collected from the Kunduchi mangrove forest immediately prior to introduction. A density of 5 

ind. m-2 per sex and species was applied, except for Uca annulipes females with only 3 ind. 

m-2. These are at the low range of natural densities in the area (Skov et al., 2002).  

The mesocosm system was inundated exclusively with seawater from February to 

early October 2006. Subsequently, sewage loadings of 0, 20 and 60% mixed in seawater 

were applied. Three replicate cells were assigned for each sewage loading and vegetation 

treatment. The chosen sewage loadings are known to enhance growth of A. marina and R. 

mucronata (PUMPSEA, 2008). The chemical characteristics and biological oxygen demand 

(BOD) of sewage-seawater mixtures are presented in Table 1 and chlorophyll a concentration 

at the sediment surface is presented in Table 2. 

 

Table 1 - Chemical characteristics and oxygen uptake of the sewage-sea water mixtures used 
in the experimental mesocosms from October 2006 to April 2007. (DO: Dissolved Oxygen; 
BOD: Biological Oxygen Demand) (N = 45). Values are given as averages ± SE (adapted 
from PUMPSEA, 2008). Different letters indicate significant difference – p< 0.05 – between 
sewage loading treatments 
 

Sewage 
loading 

Salinity 
(‰) 

DOday  
(µM) 

DOnight 
(µM) 

BOD  
(µM h-1) 

NH4
+  

(µM) 
NO3

-
  

(µM) 
PO4

3-
  

(µM)  
0% 39.1 ± 0.6a 308 ± 133 197 ± 17a 5.1 ± 2.6a 26 ± 2a 3.6 ± 1.4 42 ± 4a 

20% 24.5 ± 0.9b 312 ± 227 10 ± 5b 12.9 ± 2.9a 123 ± 9b 7.1 ± 2.9 109 ± 6b 

60% 18.9 ± 1.4c 225 ± 256 9 ± 1b 21.3 ± 1.2b 194 ± 17c42 5.0 ± 1.4 206 ± 14c 

 

Table 2. Sediment surface chlorophyll-a  (Chl-a (µg.g-1)) concentration at different vegetation 
and sewage concentration treatments in April 2007 is shown (N = 12). Values are given as 
averages ± SE (adapted from PUMPSEA, 2008). 
 

 Chl-a (µg.g-1)   
 0% 20% 60%   

Bare 13.9±3.9 12.5±6.1 23.1±9.4   
A. marina 5.4±1.1 17.1±12.0 14.0±3.5   

R. mucronata 8.1±2.7 10.1±4.0 14.7±7.0   
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2.2 Sediment oxidation level 

The relative difference in Fe (III) and Fe(II) concentration is an excellent indicator of sediment 

oxidation level (Canfield et al., 2005). Two sediment cores were taken for solid phase Fe 

analysis from only one random cell per treatment due to logistic constraints. In the laboratory 

cores were sliced into the following depth intervals: 0-1, 1-2, 2-3, 3-4, 4-6, 6-8 and 10-12 cm 

before any further handling. Solid phase Fe was extracted by a modified version of the HCl 

technique of Lovley & Phillips (1987). Briefly, 100-300 mg subsamples were extracted in 5 ml 

of 0.5 M HCl for 30 min on a shaking platform. After centrifugation (1500 rpm) for 10 min, 50 

µl of the supernatant were transferred to 2 ml Ferrozine solution for Fe(II) analysis and to 2 ml 

Ferrozine solution containing the reducing agent hydroxylamine (10 g l-1) for total-Fe 

(Fe(II)+Fe(III)) analysis. The reactive amorphous Fe(III) oxide concentration was then 

operationally defined as the difference between total Fe and Fe(II).  

 

2.3 Crab survival 

The survival of crabs was checked 6 months after the start of sewage discharge into the 

mesocosm cells (end of March 2007). The density of crabs was determined by counting the 

number of active burrows in each cell. In addition, visual counting of active crabs on the 

surface of each cell was done to obtain the species and sex ratio (Skov et al., 2002). Although 

some crabs retreated into their burrows when the observer approached, the crab population 

on the surface was restored with normal activities after 5 minutes (Bartolini et al., submitted). 

Counting was conducted early in the afternoon (after flushing out the cells) to obtain the 

maximum number of active crabs outside their burrows (Bartolini et al., submitted). The 

counting procedure was replicated twice and the highest burrow and crab counts where used 

to estimate survival. 

 

2.4 Bioturbation activities 

Fiddler crabs feed at the sediment surface by sorting bacteria and microalgae from sediment 

grains placed in the mouth cavity by the minor chaela. The non-ingested particles are shaped 

into small (up to 3 mm) irregular balls, with colour and grain size similar to the surrounding 

surface sediment (‘feeding pellets’). When crabs construct and maintain burrows, they form 

mounds (usually pellets with a diameter of 5-7 mm) near the opening. New mounds have a 

black-grey coloration typical of reduced sediment because they consist of subsurface 

sediment (‘burrowing pellets’) extracted deep in burrows (Botto and Iribarne, 2000). 

The two bioturbation modes performed by crabs (feeding and burrowing) were studied 

in only control (bare) and A. marina mesocosm cells at 0% and 60% sewage loadings due to 

logistical limitations. Since crabs were active until sunset (around 18:00) during emersion 
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periods, all feeding and burrowing pellets produced were collected from around 19:00 to 

23:00 in the haphazardly chosen cells. The sediment surface was smoothened when cells 

were flushed with water during inundation, at 23:00, which removed all irregularities and 

eliminated the bioturbation effects from the previous emersion period. This sampling 

procedure was repeated in two different tidal periods. Sampled sediment pellets were dried at 

60ºC for 48h and weighed (0.01g). The amount of collected sediment due to bioturbation was 

correlated to the maximum number of surface active crabs in each sampled cell and 

compared between treatments.  

About 30 random active crab holes were chosen in each examined cell for burrow 

resin casts. However, due to difficulties in obtaining complete casts, only between 8 and 28 

were considered successful. The chosen burrow openings were, after 18:00, filled with a resin 

and hardening/catalyser solution until water started to emerge from the hole as an indication 

that the whole burrow was filled with resin. When the casts had solidified for about 2 h, they 

were dug up for subsequent measurement of burrow dimensions. Entrapped crabs in the 

burrow casts were identified to species and sexed when possible. However, due to the low 

number of identified casts, only data combining all burrows will be presented. 

Uca burrows are usually considered simple L or J shaped structures (e.g., Lim and 

Diong, 2003). However, for the present purpose we used a classification that divided burrows 

into 3 sections: an upper neck with entrance to the surface, a middle chamber and a deep 

extension leg. The distinction between the 3 sections were identified from the ratio between 

burrow (Bp) and surface opening perimeter (Op): R = Bp/Op. The chamber section was defined 

as burrow regions with R > 1.45, while the neck and extension leg were defined as burrow 

sections above and below the chamber, respectively, with R < 1.45. 

Several additional burrow characteristics were also determined: total depth, wall 

surface area, total volume, volume of burrow sections, and angle of the different sections to 

horizontality. Total depth and angles were measured from lateral photographs of the burrow 

casts positioned with horizontal burrow entrance. The wall surface area was estimated from 

the length of tape with known width needed to cover the casts completely. The burrow volume 

was determined by dividing the weight of cast sections by the resin density (1.22 g cm3). 

Although burrow depth, surface area and total volume was intended to be standardize to the 

burrow opening perimeter in order to minimize sampling bias due to differences in crab sizes, 

regression slopes were not different from zero and goodness of fitness (r2) was always below 

0.1. This way data was not standardized and even when data was standardized similar 

results were obtained (data not shown). 
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2.5 Statistical analysis 

Differences in survival of the two Uca species between treatments were tested by a three-way 

ANOVA. A two-way ANOVA was applied to compare: pellet production by crab feeding and 

burrowing, burrow depth, surface area, total volume and percent volume of the 3 burrow 

sections between treatments (Vegetation vs Sewage loading), as well as chlorophyll-a 

concentration. A one-way ANOVA was applied to compare salinity, oxygen levels and 

nutrients of seawater and sewage solution. Prior to analyses, the homogeneity of variances 

was assessed using Cochran’s test and transformation of data was performed. While Uca 

survival data and percent volume of the burrows sections were transformed to x’ = ArcSin (x), 

Uca bioturbation data was transformed to x’ = log (x+1). When appropriate, Student–

Newman–Keuls (SNK) tests were used as post hoc tests for multiple comparisons of the 

means. 

 

3. RESULTS 

3.1 Mesocosms conditions 

The sewage concentrations discharged into the contaminated mesocosms (20% and 60%) 

was lower in salinity, and higher in biological oxygen demand (BOD) than the seawater used 

to flush the pristine mesocosms (Table 1). As a consequence dissolved oxygen was low 

particularly during the night, while ammonium and phosphate concentrations were high in 

sewage treated cells. Chlorophyll a concentration in the top sediment tended to increase with 

sewage dosing and decrease with vegetation presence, although microalgae patchiness did 

not allow to find significant differences between treatments (Table 2). 

Solid phase iron profiles differed among treatments (Figure 1). Total iron (Fe(II)+Fe(III)) 

content was about twice as high in planted (0-14 cm depth integrated: ca. 250 µmol cm-2) 

than in bare cells (0-14 cm depth integrated: 100-140 µmol cm-3) and was independent of 

contamination level. Fe(II) always dominated over Fe(III) in contaminated cells. Fe(III) never 

exceeded 20 µmol cm-3 and was almost absent below 2 cm depth in 60% sewage treated 

cells, irrespective of vegetation. Fe(II) approached, and occasionally exceeded, 20 µmol cm-3 

in these cells, except at depths below 5 cm in bare 60% cells. Fe(II) and Fe(III) did not 

change significantly with depth in pristine (0%) cells. In general, Fe(III) was higher and Fe(II) 

lower in these cells than those exposed to 60% sewage. Fe(III) was particularly high at all 

depths, and in the vegetated 0% cells presented concentrations ranging from  5 to 30 µmol 

cm-3.  
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Figure 1 – Vertical profiles of solid phase iron in both vegetation and sewage loading 
conditions. Solid and dotter lines represent Fe(II) and Fe(III) concentration, respectively. 
Values are given as mean ± S.E (n = 2). 

 

3.2 Crab survival 

When active crabs are considered the only survivors in each cell (minimum estimate), male 

and female survivorship was estimated to 40% and 10%, respectively. However, from the 
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numbers of active burrows, male survivorship estimate increased to approximately 80% and 

females to 20% (  

Figure 2). While total survival was similar between species (males plus females), a significant 

decrease (Table 3) was observed in survival with increasing sewage loading, from 67-87% 

(0% sewage) to 40-71% (20 and 60% sewage). Vegetation, on the other hand, showed only a 

marginally significant positive effect on survival.  
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Figure 2 – Survival rates based on active burrows and active crabs of U. annulipes and U. 
inversa males and females after 6 months (April 07) for all vegetation factors and 0%, 20% 
and 60% sewage concentration treatments. Values are given as average (±SE), n = 3. UAM – 
Uca annulipes males; UAF – U. annulipes females; UIM – U. inversa males; UIF – U. inversa 
females. 
 

3.3 Bioturbation activities 

Each fiddler crab processed daily approximately 13 g dw during feeding in pristine (0%) cells, 

and showed a significant decrease by 34-46% at higher sewage concentration (Figure 3, 

Table 3). Conversely, there was no significant effect of vegetation on the amount of feeding 

pellets produced. The amount of sediment handled by crabs for burrow maintenance under 

pristine conditions (17 to 20 g dw per active crab-1 day-1) was of similar magnitude to that 

processed by feeding. Crabs exposed to 60% sewage handled 45-80% more burrow 
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sediment (Figure 3), but due to high variability among cells no significant differences were 

evident (Table 3). As for feeding activity, there was no apparent effect of vegetation on 

burrow maintenance. 

 

 
Figure 3 – Weight of sediment (g dw) processed by fiddler crabs feeding and burrowing 
activities at different sewage loadings and presence or absence of A. marina trees. Values 
are given as average (±SE), n = 3 
 

Burrow morphology appeared visually affected by both vegetation and sewage loading ( 

Figure 4). However, only burrow depth and relative volume of burrow sections were affected 

significantly (Figure 5 and 6, Table 3). Burrow surface area (22 to 29 cm2), volume (34 to 48 

cm3), and section angles (neck: 64 to 72º; chamber: 42 to 56º; and extension leg: 52 to 55º), 

were similar under all vegetation and sewage treatments. Burrows in bare sediment were 

significantly 30% (p < 0.01) deeper under pristine than contaminated conditions (~10.6 cm), 

while no such difference was evident in the presence of vegetation (~14 cm deep). While 

sewage also affected the relative volume of all 3 burrow sections significantly, no vegetation 

effect could be detected. The volume of these sections was significantly (p < 0.05) greater 

(30%) in bare than planted cells under pristine conditions. 

About 38% larger chambers (p < 0.001) were found at sewage contaminated 

mesocosms than at pristine ones in the presence of trees. Sewage did not influence relative 

burrow chambers in bare cells. When chamber volume increased both neck and extension 

leg volumes tended to decrease (17 to 35 %), although no significant differences were noted. 

 
 
 
 
 
 
 
 



Chapter 4 
____________________________________________________________________________ 
 

124 

 
Figure 4 – Photos of illustrative burrow casts collected in all treatment types. 

 
 
Figure 5 – Fiddler crab burrow depth, total 
volume and surface area for all active burrows for 
bare and Avicennia marina and 0%and 60% 
sewage loading treatments. Values are given as 
average (±SE) (nB0 = 28; nB60 = 16; nA0 = 8; nA60 = 
15). 
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Figure 6 – Volumetric percentage of burrow neck, 
chamber and extension leg constituting fiddler crab’s 
burrow for bare and Avicennia marina and 0% and 
60% sewage loading treatments. Values are given as 
average (±SE) (nB0 = 28; nB60 = 16; nA0 = 8; nA60 = 
15). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

4. DISCUSSION 

4.1 Crab survival 

U. annulipes and U. inversa can survive for at least 6 months under extreme conditions with 

respect to daily inundation periods of 12 h, low salinity and dissolved oxygen levels in the 

water column, as well as in sediments. However, some mortality occurred, mainly concerning 

females of both species. Although crab survival was negatively affected by sewage exposure, 

female survival was apparently always low even at pristine conditions. This indicates either 

that: (1) low activity of females on the sediment surface may underestimate their real 

abundance (Skov et al., 2002), which occurs particularly during the breeding season usually 

more strongly during the wet season when the sampling was performed (Litulo, 2005 and 

references therein), or (2) females are more sensitive than males to the artificial conditions of 

the wetland with respect to the long and constant inundation cycles. 
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Table 3 – A) Results of the 3-way ANOVA on genus Uca survival rates (Oct 06 to April 07) 
(ArcSin transformation). B) 2-way ANOVA on sediment processed (expressed as DW) log 
(x+1) transformed for total sediment processed for feeding and during the burrow 
maintenance activity in different conditions. C) 2-way ANOVA on crab burrow depth, total 
surface area and volume at both sewage load and vegetation type; and D) 2-way ANOVA on 
volume (%) of neck, chamber and extension leg burrow sections at both sewage load and 
vegetation type (transformation ArcSin %). Factors: Species (fixed and orthogonal), 
Vegetation (fixed and orthogonal) and Sewage Concentration (fixed and orthogonal). The 
degrees of freedom, DF, Variance, MS, and values of F ratio are showed for each of the 
tests. 
 

A Survival Rate 
(April 07 – Oct 07)  

Factors Df MS F  
Species (sp) 1 0.08 0.12  
Vegetation (ve) 2 2.14 3.39a  
Sewage (se) 2 3.92 6.21b  
Species x Vegetation 2 0.15 0.25  
Species x Sewage 2 0.09 0.14  
Vegetation x Sewage 4 0.99 1.57  
spXveXse 4 0.37 0.59  
RES 36 0.63   
TOT 53    

 
B  Feeding Pellets  Burrow Maintenance 
Source DF MS F  MS F 
Vegetation 1 2.95 0.09  3.70 0.02 
Sewage 1 163.30 4.91 a  767.10 3.47 
Interaction 1 3.00 0.09  33.01 0.15 
RES 20 33.22   221.30 221.31 
TOT 23      

 
C)  Depth  Surface area  Volume  
Source DF MS F  MS F  MS F  
Vegetation 1 17.56 0,99  107.10 0,79  278.60 0,50  
Sewage 1 79.29 4,46a  168.00 1,23  967.10 1,73  
Interaction 1 67.04 3,77  47.14 0,35  30.80 0,06  
RES 63 17.76    136.20    558.90    
TOT 66          

    
D)  Vol. neck  Vol. chamber  Vol. extension leg  
Source DF MS F  MS F  MS F  
Vegetation 1 0,10 1,59  0,14 2,37  0,00 0,02  
Sewage 1 0,27 4,31a  1,10 18,28b  0,07 4,89a  
Interaction 1 0,13 2,04  0,31 5,15a  0,01 0,53  
RES 63 0,06    0,06    0,01    
TOT 66          

   (a = p < 0.05; b = p < 0.001) 
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Table 4 –Total Survival and survival based on active burrows counts or active crabs counts corrected with previous studies (see discussion 
section for further explanation). Burrow counting overestimate in about 30% while visual counting underestimate in about 40%, so all raw data 
obtained was multiplied by 0.7 or 1.4, respectively. Values are given as averages ± SE. (N = 3) 
 

   UAM  UAF  UIM  UIF 

 Sewage 
(%) 

Total 
survival 

Active 
Burrows 

(corrected) 

Active 
Crabs 

(corrected) 
  

Active 
Burrows 

(corrected) 

Active 
Crabs 

(corrected) 
  

Active 
Burrows 

(corrected) 

Active 
Crabs 

(corrected) 
  

Active 
Burrows 

(corrected) 

Active 
Crabs 

(corrected) 
0 67.3±3.6 54.7±6.2 59.1±1.8  12.8±0.4 23.3±1.5  62.9±4.1 76.2±2.7  13.3±2.1 14.0±0.9 

20 39.6±7.5 37.3±14.8 33.2±11.0  3.9±3.9 5.2±5.2  40.9±17.0 36.3±12.7  7.4±6.1 6.2±4.8 Bare 
60 59.2±11.5 54.1±15.1 52.9±15.3   10.2±6.8 15.6±10.4   52.8±14.5 49.8±10.9   8.0±1.4 7.3±1.0 
0 87.6±5.7 69.3±0.7 62.2±3.6  9.7±1.5 13.0±1.5  69.3±0.7 80.9±0.0  21.8±6.5 17.1±4.5 

20 71.7±7.3 52.4±14.1 55.0±16.3  8.3±2.6 13.8±4.6  69.3±0.7 81.9±12.0  17.9±1.3 17.6±1.0 Avicennia 
60 55.0±6.4 49.2±11.8 52.9±11.2   11.2±4.0 19.0±4.6   49.2±6.9 52.9±4.8   12.8±1.3 14.5±3.7 
0 76.5±4.1 58.9±5.6 46.7±4.8  8.5±2.3 12.1±4.6  65.9±7.2 59.1±10.0  11.9±6.0 11.4±5.8 

20 49.8±7.1 45.5±11.1 48.7±15.3  9.5±5.1 22,5±13.5  40.9±3.9 43.6±10.0  4.4±2.3 6.2±3.6 Rhizophora 
60 61.6±6.0 49.7±3.7 49.8±3.1   7.7±2.7 13.8±6.2   66.0±4.0 71.6±12.6   8.9±2.7 9.3±3.1 
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Most studies on the effect of hypoxia on crabs have targeted mainly commercial 

and/or non-burrowing species. These have shown that most crabs do not survive more than a 

few hours or days, depending mainly on the species and hypoxia levels (Diaz and 

Rosenberg, 1995). Crabs do not possess efficient anaerobic metabolism and they are more 

dependent on their O2 transport system than most other benthic invertebrates (Das and 

Stickle, 1993). However, both U. annulipes and U. inversa are known to inhabit and seal their 

burrows during immersion periods (De la Iglesia et al., 1994). They must therefore to some 

extent have the capacity to withstand the potentially hypoxic conditions that develop inside 

burrows for several hours. In our experiment, they adapted rapidly to the “artificial 12 h daily 

tides” used in the mesocosms, and remained inside burrows during immersion periods as 

under natural conditions. By doing so, they avoided hypoxia in the water column of 

contaminated cells, but had a higher risk of hypoxic exposure inside burrows. Under normal 

conditions they capture an air bubble inside while sealing their burrows, which provides 

sufficient oxygen for breathing until the next emersion period (De la Iglesia et al., 1994). The 

high organic matter availability and high microbial metabolism in contaminated mesocosms 

may be responsible for low oxygen levels in the water column and sediment (Canfield et al., 

2005). The associated higher microbial oxygen consumption in burrow walls (Gribsholt et al., 

2003; Nielsen et al., 2003) may augment hypoxia inside burrows and coupled with release of 

sulfide increase stress and may cause death by asphyxiation or drowning (Diaz and 

Rosenberg, 1995). The risk of a fatal outcome is higher during moulting as this oxygen 

sensitive process usually takes place inside burrows (Das and Stickle, 1993).  

Also, fiddler crab males were observed to wander around for longer periods in 

contaminated mesocosms (Bartolini et al., submitted) and high agonistic interactions between 

males may have also been a factor increasing crab mortality. 'Hypoxic events are known to 

increase cannibalism in the crab Callinectis sapidus, leading to high mortality rates (Aumann 

et al., 2006). 

The present survival results strongly depend on the approach to estimate abundance. A 

known number of individuals were introduced initially to the cells while the subsequent 

enumeration was done by indirect approaches. Some studies have found that fiddler crab 

burrows numbers overestimate (30%) the actual crab abundance while visual counting of 

active crabs, on the other hand, underestimates (40%) the real crab density (Skov and 

Hartnoll, 2001; Skov et al., 2002). If we correct our data according to these studies, we obtain 

similar survival using both methods (Table 4) at an average of 50% for males and 12% for 

females. This is a clear indication that crabs resist stressful conditions for extended periods of 

hypoxia, but conclusions must be taken with caution because this study was only performed 

for a 6-month period. The estimated low survival of females, coupled with chronic exposure to 
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hypoxic conditions and toxic metabolites may lead to collapse of the crab population due to 

limited reproductive activity and larval development (Tankersley and Wieber, 2000; Wu, 2002; 

Bergey and Weis, 2008), which may jeopardize the fiddler crab sustainability in closed 

systems or heavily contaminated mangrove forests. 

 

4.2 Bioturbation activities 

The amount of sediment processed by crabs during feeding activities depends strongly on 

sewage loadings, while the presence of young trees has no significant influence. The effect of 

sewage concentration is probably caused by the higher nutrient availability in contaminated 

sediment and water, which enhances (>70%) microalgal production as a food source for 

these crabs (Bouillon et al., 2002; Meziane and Tsuchiya, 2002; Reinsel, 2004). The lack of 

effect by trees is probably due to the limited shading by the small canopy of young A. marina 

trees (107.8 ± 7.8 cm height), leading to similar microphytobenthos growth in both bare and 

planted cells. Foraging is the primary activity taking place during the first hours after crabs 

exit their burrows (Eshky et al., 1995) until they get satiated (Bartolini et al., submitted) 

followed by a sequence of activities in a hierarchical temporal series (Eshky et al., 1995). If 

their intake efficiency remains constant the crabs need less time to be satiated at higher 

microalgae and bacteria densities in the sediment. Consequently, there is a decrease of the 

amount of feeding pellets produced and thus bioturbation potential. Alternatively, feeding 

rates can be lowered under hypoxic condition in the water column due to decreased 

metabolism of the crabs (Wu, 2002). A decrease in metabolic activity of more than 20% has 

been observed for important commercial crabs species (Callinectes similis and C. sapidus) 

under long-term (28 days) hypoxic conditions (Das and Stickle, 1993). However, a parallel 

behaviour study done at these mesocosms demonstrated that crab metabolism is not 

reduced but a significant modification of the period of the sequential activities is achieved 

(Bartolini et al., submitted). The lesser time spent feeding allows the crabs to devote more 

time and effort on other behaviours, such as gallery construction and maintenance. We 

actually observed a slight increase in the amount of “deep” sediment brought to the surface 

under high sewage loadings. Other studies have shown the opposite effect, e.g. ghost 

shrimps, with a decrease of the burrowing activity and sediment turnover with increasing 

nutrient availability (e.g., Berkenbusch and Rowden, 1999). However, just as here, this was 

probably linked with lower demand to process sediment for obtaining food, as the burrowing 

activity of ghost shrimps is always linked to feeding. 

The burrow structure of U. annulipes and U. inversa in our mesocosm cells was 

slightly different from the typical L or J funnel-bent chamber, as observed for U. annulipes 

populations in Singapore (Lim and Diong, 2003; Lim and Heng, 2007; Lim and Rosiah, 2007). 
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The majority of burrows in our system exhibited an extra narrow elongation (extension leg) 

below the chamber. Otherwise, the general burrow morphology is within the dimensions 

already registered for fiddler crabs (Lim and Diong, 2003; Lim and Heng, 2007; Lim and 

Rosiah, 2007). The trend for shallower burrows with larger chambers in contaminated cells 

was probably a consequence of low redox conditions in the sediment (high Fe(II)). Shallow 

burrows are more likely to maintain oxic conditions by facilitating the diffusion of air between 

the gallery and atmosphere (Lim and Diong, 2003). Similarly, shallow Uca pugnax burrows 

have also been reported from oil contaminated salt marshes (Culbertson et al., 2007). The 

depth of crab burrows may therefore be a good proxy for environmental stress. 

The decrease in burrowing depth as a consequence of hypoxia is usually not 

associated with concurrent change in burrow volume (Diaz and Rosenberg, 1995; 

Weissberger et al., in press). Burrow volume therefore appears to be a key parameter that 

crabs need to keep constant to assure that sufficient air is trapped inside burrows to survive 

during immersion periods. Crabs seem to compensate shallower burrows by constructing 

larger chambers when reduced sediment conditions demand shallower burrowing depth. 

Consequently, the total burrow volume is maintained with minimum increase in burrow 

surface area, and thus sediment-air interfaces with potential for oxygen uptake (Gribsholt et 

al., 2003; Nielsen et al., 2003). 

The similarity in burrow depth between pristine and contaminated planted cells 

indicates that mangrove trees compensate for the reducing effect of nutrient loading as 

observed in the bare cells. Avicennia marina roots are known to translocate O2 to deep 

sediment layers providing Fe(III) to iron reducers (Alongi, 2005; Kristensen and Alongi, 2006), 

which is clearly evident in planted pristine cells (Fig. 1). However, simultaneous exudation of 

labile DOC from roots also stimulates sulfate reducers forcing reduced conditions with high 

Fe(II) levels to prevail near the sediment surface (Kristensen and Alongi, 2006). This was 

actually what we observed in our planted cells. The presence of roots and pneumatophores 

therefore seems to have stabilized the sediments allowing deeper fiddler crab burrows when 

compared to unvegetated zones (Lim and Heng, 2007; Lim and Rosiah, 2007). It is puzzling, 

though, that this root induced stabilization in contaminated cells is not associated with higher 

Fe(III) concentrations in deep sediment. Except for the reducing effect of sewage, we have no 

explanation for this discrepancy. 

 

4.3 Implications for wetland functioning  

The role of mangrove wastewater wetlands is to remove, through biological, chemical and 

physical processes, organic matter and nutrients from sewage to acceptable levels before it is 

discharged into surrounding aquatic ecosystems (Yang et al., 2008). Bioturbation significantly 
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influence the functioning of sediments, causing dramatic changes in nutrient dynamics and 

organic matter decomposition, and thus affect ecosystem health, productivity and filtration 

capacity (Kristensen and Kostka, 2005). 

We found that fiddler crab survival, feeding intensity, reworking activity and biogenic 

structures were slightly affected by high sewage loadings. The observed decrease in feeding 

activity due to luxury growth of microalgae in contaminated sediments, may potentially lead to 

establishment of thick “algal mats” (Kristensen and Alongi, 2006), causing extended anoxia 

and sulfidic conditions in near-surface sediment (Kristensen and Alongi, 2006; Marsden and 

Bressington, 2009). However, through a simultaneous increase in deposition of excavated 

sediment on top of the microalgae at the surface, crabs prevent the development of algal 

mats and maintain higher benthic primary productivity (Blanchard et al., 2001). The activities 

of crabs may therefore improve mangrove system health and productivity (Kristensen and 

Alongi, 2006) and consequently its filtration capacity. Displacement of sediment from deep 

layers by crabs will also expose new surfaces to oxygen, increasing old and refractory 

organic matter degradation by efficient aerobic bacteria. At the same time, labile organic 

carbon is buried into anoxic layers full of starved anaerobic bacteria, that will degrade this 

fresh substrate easily and rapidly (Kristensen et al., 1995; Kristensen and Holmer, 2001; 

Kristensen and Kostka, 2005). In fact, the turnover time of an average burrow (volume ~40 

cm3) when assuming a daily amount of 10 g excavated sediment per burrow is roughly 8 

days. Furthermore, by creating juxtaposition of oxic and anoxic habitats, fiddler crabs have 

the potential to enhance nitrification-denitrification processes in the sediment and thus 

augment removal of fixed nitrogen from discharged sewage (Canfield et al., 2005). 

A decrease in burrow depth at contaminated bare cells, could influence the sediment 

redox profile (Weissberger et al., in press) and consequently carbon mineralization pathways 

in sub-surface sediment layers (Canfield et al., 2005). However, at planted cells (expected in 

a functional mangrove wetland) burrow depth was kept constant allowing the introduction of 

oxygen into subsurface sediment and promoting conditions for oxic respiration and microbial 

Fe(III) reduction (Kristensen and Holmer, 2001; Kostka et al., 2002; Gribsholt et al., 2003). By 

not decreasing the average burrow wall surface area in contaminated conditions, sediment 

microbial metabolism might be enhanced and nutrient cycling continuously occur, promoting 

removal of nutrients from sediment exposed to organic waste contamination as has been 

shown for fiddler (Nielsen et al., 2003) and grapsid crabs (McHenga and Tsuchiya, 2008).  

It must be emphasized, however that the low abundance of crabs used in the present 

experiment will not provide the optimal functioning and filtering capacity of mangrove 

wastewater wetlands (Nielsen et al., 2003). We only applied ~10 crabs m-2, while much higher 

densities (>100 m-2) can easily be found in natural habitats (Skov et al., 2002). The increased 
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impact of a crab population of 100 crabs m-2 in these wetlands can be stressed by the 

following scenario: the system reworking by feeding (10 g dw crab-1 day-1) and burrowing (25 

g dw crab-1 day-1) of 100 crabs m-2 replaces the upper 0.3 cm every 6 days, instead of every 

second month as in the present situation. This also means that the sediment is reworked to 

~10 cm depth by fiddler crab burrows every 6 months at natural crab densities.  

This study demonstrates that both fiddler crab species studied are efficient ecosystem 

engineers in sewage enriched mangrove sediment. However, the relatively high mortality of 

females renders their populations unstable and recruitment must be assured to maintain a 

sustainable system. The high bioturbation levels under contaminated conditions indicate that 

these crabs have the potential to enhance organic matter decomposition, as known for other 

macrobenthic species (see Kristensen and Kostka, 2005), and thus cause a rapid turnover 

and ultimate removal of organic and inorganic nutrients. While this study only examined one 

functional type of organism, it is important that future studies address the effect of 

multispecies epifaunal and infaunal assemblages, as well as their density and interactions on 

mangrove wastewater wetland biogeochemistry and filtration efficiency. 
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Abstract  
The study aimed at investigating the effects of sewage loadings on the behaviour of 

two fiddler crabs species maintained in a system of experimental mesocosms, built in a 

mangrove area in Tanzania and inundated with different seawater/sewage mixtures. Our 

results show that sewage loads led to a modification of the overall activity budget of the crab 

community as a result of increased hypertrophic conditions (high COD, increased Chl-a 

concentrations). Along their activity period, crabs inside contaminated mesocosms seemed to 

satisfy their feeding demand faster than those of the control cells, spending a significant 

longer time in other activities like courtship and territorial defence. Apart of being a good 

biological indication of ecosystem eutrophication, such a reduced foraging activity by fiddler 

crabs also depresses their sediment bioturbation activity, important factor for the health of 

mangrove systems, suggesting practical implications regarding the efficiency of mangrove-

based wetlands for treatment of domestic sewage. 

 

Keywords: Sewage, East Africa, Mangrove, Fiddler Crab, Behaviour, Ecosystem Engineer. 

 

 

1. Introduction 

Anthropogenic pressure on tropical coasts has been steadily increasing over the 

recent years, prompting a strong impact on coastal ecosystems, and on mangrove forests in 

particular (Alongi, 2002; Duke et al., 2007; Ellison, 2008). Although human impacts on 

mangroves can be ascribed to a variety of different activities (Alongi, 2002), one of the most 

common and increasingly important stress factors derives from the pouring of untreated 

wastewaters directly into these tidal forests. Wastewaters affecting mangroves can have a 
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number of origins, such as shrimp farming (Trott et al., 2004), agricultural activities (Meziane 

and Tsuchiya, 2002) and urban sewage and industrial effluents (Tam and Wong, 1995; 1996; 

Yu et al., 1997). As a consequence of the variety of sources and loadings, wastewater impact 

on mangrove communities is not always the same, and, as a matter of fact, it is often still far 

from being fully understood. 

Sewage loading, in particular, determines an enrichment of organic matter and 

available nutrients within the mangrove environment, and can stimulate the growth of both 

aerobic and anaerobic bacteria (Tam, 1998; Meziane and Tsuchiya, 2002), as well as 

macroalgae and benthic diatoms. Thus, sewage represents a potential enriched nutrient 

source that can support higher levels of primary and secondary production (Meziane and 

Tsuchiya, 2002). However, it must be emphasized that a higher secondary production can still 

represent an overall ecological impoverishment, via the development of high biomass of few 

dominant opportunistic species (Wear and Tanner, 2007). 

Fiddler crabs, as well as several other mangrove crabs, are well known to play a key 

role on the ecological processes of mangrove ecosystems, by means of their continuous soil 

processing and reworking, due to both foraging activity and burrow excavation (Cannicci et 

al., 2008; Kristensen, 2008; Lee, 2008). The fiddler crabs of the genus Uca are indeed the 

main microalgal and bacteria feeders within Indo-Pacific mangroves (Kristensen and Alongi, 

2006; Cannicci et al., 2008) and they can be considered a key taxa to understand the 

consequence of sewage exposure on mangrove benthic species. In fact, the discharge of 

sewage in their habitat can affect their biology and behaviour both directly, thorough O2 

depletion and changes in water salinity and pH, and indirectly, via the overgrowth of their 

preferred food sources, as showed by Meziane and Tsuchiya (2002) for an Okinawan 

population of U. vocans. However, although previous studies clarified the symptomatology 

derived from the exposure of  fiddler crabs to several chemicals related with human activities 

(Devi, 1987; Ismail et al., 1991; Reddy et al., 1997; Souza et al., 2008), only limited 

information is available regarding the biological and behavioural consequences of sewage 

exposure and specifically not dealing with mangrove populations of Uca. 

About the role played by contaminants in Uca population biology, Bergey and Weis 

(2008) found that a U. pugnax population from a New Jersey site characterised by high levels 

of organic contaminants but also heavy metals, had lower population density, lower 

recruitment, reduced reproductive season and lower survivorship of early benthic phases, 

when compared to a population from a far less stressed environment. 

In parallel with the use of biochemical and physiological stress parameters as 

biomarkers of anthropogenic pollution, recently many authors suggested the detection of 
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changes in behavioural traits, of both fiddler crabs and other crustaceans (Ungherese and 

Ugolini, 2009) as a useful diagnostic tool and a reliable early-warning biomarker. As an 

example, Culbertson and colleagues (2007) used a purely behavioural approach to assess 

the effect of chronic exposure to oil pollution in U. pugnax populations. Spilled oil affected the 

burrowing activity of crabs, which avoided the deepest oiled layer of sediments and 

established low population density. A lowered foraging activity as well as a delayed escaping 

response were also observed, compared to a control population from a pristine site.  

Based on this scientific frame we used a mesocosm experimental approach to study 

how different loadings of domestic sewage could change the behavioural patterns of two East 

African mangrove species, U. annulipes and U. inversa. Considering, in fact, their highly 

stereotyped pattern of activity through the surface activity period (Eshky et al., 1995), we 

hypothesized that the altered food abundance could trigger some changes in the average 

time budget of the crab population, ultimately ending in an alteration of their ecological role as 

bioengineers within the mangrove systems. 

 
2. Material and methods 

2.1 Experimental setup 

To test the effect of several domestic sewage loadings on the various components of 

the mangrove ecosystem, a controlled experimental facility was settled at Jangwani Beach 

(6°41’S, 39°13’E; Dar es Salaam, Tanzania) where a structure of 36 3x3x0.8 m plots was built 

with concrete and equipped with a flushing-flooding system. 

The experimental setup was designed in order to enable to disentangle the effect of 

two factors, vegetation type and sewage loading, on various biological and behavioural 

characteristics of mangrove macrofauna. Plots were divided into three groups in terms of 

vegetation condition: bare, Avicennia marina or Rhizophora mucronata saplings (Figure 1). 

These two species were chosen since they are the two dominant mangroves along the East 

African coast, forming almost pure monospecific associations in the landward and seaward 

belts, respectively. Saplings were planted in early February 2006, with a density of 2.7 m-2, if 

present. In late August 2006 the commonest macrofaunal species present in the neighbouring 

forest, the mud whelk Terebralia palustris and the fiddler crabs U. annulipes and U. inversa, 

were introduced to reproduce mangrove communities as similar as possible to the natural 

ones. Crabs were introduced in the mesocosms at a density that reflected minimum natural 

densities (Hartnoll et al., 2002). The density of both males and females of U. inversa and of 

males of U. annulipes was 5 ind. m-2, while for U. annulipes females 3 ind. m-2 were 

introduced, for a total of 18 crabs m-2 and an overall total of 162 crabs per mesocosm. 
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After an initial period, in which the whole system of plots was flooded with seawater 

(as to allow stabilization of the introduced populations), from October 2006 sewage loadings 

were applied. A simulated floodtide was created with a 12-hour periodicity and the system 

was inundated by a water column of 10 cm high, from 12:00 pm till 12:00 am, so that the 

simulated low tide occurred for the first 6 hours under light, coinciding with the activity period 

of the selected fiddler crabs, and the remaining 6 hours under darkness. Seawater only (i.e. 

0% of sewage), as a control, or a mixture of seawater with three different percentage of 

sewage (20%, 40% and 60%) were introduced into four groups of randomly selected plots 

(Figure 1). The sewage came from a tourist receptive structure nearby and it was constantly 

accumulated in a proper storage pond for primary treatment before being used in the 

mesocosms. The distribution of the different treatments throughout the system of mesocosms 

was randomized except for the plots flooded with seawater that were grouped on the same 

side of the structure. This deployment was necessary to avoid the contamination of the 

control plots, served by a different inlet pipe (see figure 1). 

Sewage+Seawater pipe 

 

Seawater pipeSewage+Seawater pipe 

 

Seawater pipe
 

Figure 1. Scheme of the 36 mesocosms at the experimental site. Within each module, 
representing a single concrete plot, is reported the vegetation type (Control: bare; Avi: 
Avicennia marina; Rhiz: Rhizophora mucronata) and the sewage  concentration (0%, 20%, 
40%, 60%). A schematic disposition of the pipes system used to flood the plots is shown.  
 

2.2 Observation and sampling techniques 

The behavioural observations were carried out 6 months after the experimental 

system was established and fully working, in March 2007. The young trees, at the moment of 



Section II 
____________________________________________________________________________ 

143 

the behavioural observations, were 50 to 100 cm tall. At that moment Rhizophora saplings 

had just started to produce prop roots and plots with Avicennia trees already presented 

pneumatophores, proportional to the small age of the plants. The main chemical parameters 

of the different seawater/sewage mixture flushed into the system, at the beginning of the 12-

hour permanence, are reported in table 1. It can be noticed that sewage was basically 

characterized by increased amounts of nutrients, with no presence of heavy metals or other 

toxic compounds. This is not surprisingly since the sewage came directly from the sanitary 

sewer of a hotel, not being linked to any urban pipelines. 

 

Table 1. Chemical composition of the four sewage-sea water  mixtures used to flush the 
experimental mesocosms (COD: Chemical Oxygen Demand). Averages ± SE are shown. 
     

Sewage 
concentration Salinity  COD (mg/l) NH3-N 

(mg/l) PO4 (mg/l)  NOx (mg/l) Chl-a 
(mg/m3) 

0% 39.1 ± 0.6 274 ± 23 0.37 ± 0.03 1.29 ± 0.11 0.09 ± 0.03 7.8 ± 1.2 

20% 24.5 ± 0.9 535 ± 26 1.72 ± 0.13 3.38 ± 0.20 0.17 ± 0.06 23.7 ± 5.0 

40% 20.5 ± 0.8 758 ± 25 2.15 ± 0.17 4.81± 0.30 0.19 ± 0.07 29.9 ± 5.4 

60% 18.9 ± 1.4 1055 ± 29 2.71± 0.24 6.38 ± 0.43 0.13 ± 0.04 21.8 ± 3.6 

 
 

Two plots for each combination of sewageXvegetation were simultaneously observed, 

while one temporal replicate per each natural spring and neap tide was used for each 

treatment. Although the crabs were not exposed to the natural tide rhythm for 6 months, the 

sampling was done on both natural spring and neap tides as temporal replication, due to the 

possibility of crabs still showing endogenous activity rhythms (which was not the case).  

Because of the small size of the mesocosms and the height of the outside walls, the 

use of the binocular by a distant observer (as suggested by various authors) was not 

possible. Instead, the observer watched the crabs inside each mesocosm standing 

motionless close to it. Although some crabs retreated in their burrows when the observer 

approached, after few minutes a normal and intense activity on the surface was restored. 

Each of two observers checked crabs behaviour inside six plots every hour over a full 6-hour 

diurnal low tide period (12pm-6pm), registering the exhibited behaviour of every crab in each 

single plot. 

To record the activity of all the crabs in a plot, observation of the instantaneous activity 

was carried out rather than following few focal animals for a longer period. This kind of survey 
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allowed to extrapolate what was the most frequent behaviour in each mesocosm at every 

hour, thus reasonably asserting the most dominant activities throughout the six sampling 

hours. The information obtained for each plot, therefore, was analogous to 6 independent 

snapshots of the activity patterns throughout the entire artificial low tide period. Although a 

conspicuous number of animals was observed at the same time (few minutes), these were 

fairly distributed within the plots and the record of a single animal more than once during the 

fast observations was a negligible source of mistake.  

The main traits of Uca behavioural patterns are well known and related to 

environmental cyclic phenomena (Nobbs, 2003; Weis and Weis, 2004). They are active 

during low tide when, outside their burrow, spend most of the time foraging, in social 

behaviours, especially males fighting for territorial defence and displaying with the enlarged 

claw, or maintaining their den (Caravello and Cameron, 1991). Accordingly to the literature 

and to hours of preliminary observations carried out both on wild populations and on the plots, 

we recognised and described 9 main behaviours, which are listed and explained in Table 2. 

 

Table 2. List and description of the main behaviours exhibited by the two species of fiddler  
crabs. 

 

Behaviour Detail 

Burrow maintenance Digging activity for den enlarging, restoration after high tide, 
or ex-novo establishment.  

Courtship Female chased by male trying to get her into his own den for 
mating 

Display  Standing high on the legs, usually close to burrow entrance 

Feeding 

Easily identified by the constant movement of the minor claws 
from the substratum towards the mouth parts with 
progressive production of small pseudopellets of processed 
sediment 

Fighting Aggression or reciprocal males’ offence by means of the 
major claw 

Grooming 
Cleaning activity of body surface and of  major claw, in the 
case of males, from mud residuals. Often observed when 
exiting the den. 

Inactive No activity shown 

Wandering Continuous wandering activity, apparently without a defined 
goal 

Waving 
Typical male display towards females to attract them, by a 
rotating (U. annulipes) or  up-down movement (U. inversa) of 
the major claw. 

 

2.3 Microphytobenthos abundance 

An environmental parameter closely linked to fiddler crabs feeding activity, the 

chlorophyll-a concentration in the surface sediment, was also measured in plots flushed with 
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0% and 60% sewage mixture, as a measure of microalgal abundance. During the behavioural 

activity period of the crabs, four 15x20 cm cages were randomly placed in each plot to avoid 

crabs depletion of the sediment by foraging on it, and samples were collected every three 

hours (12:00 pm, 3:00 pm, 6:00 pm). 

After measured the wet weights, sediment samples were placed in vials containing 5ml of 

90% ethanol and incubated for a 24 hours period at 4 °C. Each sample was then spun down 

at 3000 rpm for 10 minutes and the supernatant analyzed for Chlorophyll-a (Chl-a) by the 

spectrophotometric method of Lorenzen (1967). 

 

2.4 Statistical Analysis 

Behavioural data were analysed by mean of analysis of variance (ANOVA) using a 

three-way full factorial design (factors: species, vegetation type, sewage %). Behavioural 

frequencies observed were standardized across the different crabs densities of the plots 

using percentage frequency of observed behaviours and transformed to x’ = ArcSin (%) 

before the analysis that was performed at the 1st, 3rd and 5th hours of the emersion period. 

The homogeneity of variances was assessed using Cochran’s test and if found significant a 

permutational analysis of variance (PERMANOVA) (Anderson, 2001) was carried out. 

Student-Newman-Kelus (SNK) tests were used for multiple comparisons of means 

when the ANOVA presented significant differences. ANOVAs were performed using GMAV 5 

program (University of Sydney, Australia) and the permutational analysis of variance by using 

FORTRAN program PERMANOVA (Anderson, 2005). Chlorophyll-a concentration data were 

analyzed using Student t-test or Welch t-test for those datasets with unbalanced variances. 

 
3. Results 

3.1 Overall behavioural patterns 

No significant differences were observed between the 2 neap and the 2 spring tides, 

thus the data were pooled and considered as four independent temporal replicates. The 

results of the analysis of variance are reported in detail in table 3, while a synthesis of the 

relative frequencies of the main behaviours observed throughout the six hours of 

observations  for the four sewage loads and the two species is provided in figure 2. 

As expected, there were some clear trends for the dominant behavioural patterns 

exhibited by the two species, independently of the experimental treatments. In particular, as 

soon as the crabs exited the burrows to start their surface activities after the high tide, the 

feeding behaviour was the most frequent, and after this the other behaviours tended 

progressively to increase. Waving frequency increased in the early hours of the low tide, 
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successively in some case it decreased in some other it maintained almost constant rates 

until the end of the activity period. The burrow maintenance, as well as the observed inactive 

crabs, assumed the highest occurrence approaching the last hours of the activity interval. 

Grooming behaviour, even though scarcely observed, was interestingly exhibited mostly 

during the first hour, that is when the crabs exited their burrow and needed to ‘clean’ the 

major claw, in the case of males, and the rest of the carapace from mud residuals attached to 

it. 
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Figure 2. Percentage crabs observed performing the listed behaviours, averaged over 
vegetation treatment, for different sewage loadings and different species, throughout the six-
hour activity period (n=4). 1 Uca annulipes; 2 U. inversa.  A 0%; B 20%; C 40%; D 60%.  
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3.2 Behavioural differences between the two species 

Some differences between the activity patterns of the two fiddler crab species 

considered were evident. First of all, the beginning and conclusion of the activity period of the 

two species were weakly out of phase (Figure 3). In particular U. inversa reached a peak of 

surface activity at the beginning of the low tide interval, then this value started to decrease 

soon after the second hour. On the other hand, for U. annulipes the highest number of 

presences on the surface was attained in the final part of the non flooded period, around the 

5th hour. 

Rates of both feeding and waving behaviour were significantly different between the 

two species (Table 3, SNK test) except during the first hour, when they were equally high and 

similarly low, respectively. Uca annulipes was characterized by lower foraging rates and by a 

more intense displaying activity that rose after the low frequencies of the first hour reaching a 

maximum and maintaining it asymptotically in the last part of the day. Uca inversa, instead, 

kept low levels of this behaviour, with a peak at the third hour. 

 

 

Figure 3. Comparison between 
activity patterns of U. annulipes and 
U. inversa. (A) Observed active 
crabs (normalized as percentage of 
the maximum number observed), 
averaged over sewage and 
vegetation treatments, at each of the 
six hours. Feeding (B) and waving 
(C) rates of the two species 
averaged over sewage and 
vegetation treatments. Error bars 
indicate SE (n=4). 
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3.3 Effect of vegetation type on crab behaviour  

The vegetation treatment (Figure 4) did not strongly affect the activity patterns 

observed in the mesocosms. In fact, the only influence found is a weak tendency to a lower 

waving activity in the plots without young trees. This tendency becomes significant (Table 3, 

SNK test) in the final part of the sampling period. 

 

Figure 4. Waving activity for the three 
vegetation types, averaged over 
species factor (U. annulipes and U. 
inversa) and sewage treatment, 
during the entire low tide activity 
period. *: 0.01<p<0.05; **: p<0.01. 
Error bars indicate SE (n=4). 
 

 

 

 

3.4 Effect of sewage load on crab behaviour 

Examining the trend of the feeding ratio among different sewage loadings throughout 

the entire six-hour period (Figure 5), it can be noted that significantly higher foraging rates 

were exhibited on average by both species of crabs present in the control plots (Table 3, SNK 

test). Although the lowest registered feeding frequencies belong almost always to the 

populations living in the 60% sewage mesocosms, no statistically relevant differences were 

observed among the three different sewage mixtures (SNK test). On the contrary, the waving 

activity (Figure 5), estimated considering only males, had low values at the beginning of the 

emersion period, increasing till the 3rd of 4th hour and then slightly decreasing approaching the 

sunset. The waving activity period was longer with increasing sewage concentrations 

throughout the entire sampling period, however, significant differences were only observed 

between 0% and 60% conditions at the 3rd hour of the emersion period (Table 3, SNK test).  

The crabs wandered mostly in the central part of the low tide interval (2nd, 3rd, 4th 

hours) but interestingly this kind of restlessness was almost never present in the control plots 

(Figure 5). During the 3rd hour this activity reached a peak in all the polluted plots that 

significantly differed from the controls, where it kept being not observed at all (Table 3, SNK 

test). 
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Figure 5. Effect of sewage 
concentrations on the behaviour 
of crabs, throughout the six-hour 
activity period, averaged over 
species factor (U. inversa and U. 
annulipes) and vegetation 
treatment. (A) Feeding; (B) 
Waving; (C) Walking. Error bars 
indicate SE (n=4). 
 

 

 

 

 

 

 

 

 

 

 

3.5 Chlorophyll-a measurement 

The chlorophyll-a concentration measured in the sediment of the bare mesocosms reached 

significantly higher values in the impacted than in the pristine plots (12h: Welch t-test for 

unbalanced variances; t=-2.13, df=10, p<0.05; 15h: t-test for unbalanced variances; t=-3.12, 

df=11, p<0.01; 18h: Student t-test; t=-3.87, df=6, p<0.01), independently of the hour of the 

day (Figure 6), although such difference was less pronounced at 12:00, namely soon after the 

emptying of the plots.  

 

Figure 6. Chlorophyll-a 
concentrations on the top 1 
cm sediment layer in 
treated plots (60% sewage 
concentration) compared to 
non contaminated ones, 
throughout 6 hours. Error 
bars indicate SE. 
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Table 3. Results of three-way full factorial analysis of variance (ANOVA; * PERMANOVA) for 
three behaviours (feeding, waving and wandering) and for the densities of active crabs during 
three hours of the entire low tide period.  

 

4. Discussion 
Although some differences between the activity patterns of U. inversa and U. 

annulipes were observed, the two species basically showed a similar stress response to 

sewage loading. These results seem to confirm a recent  study carried out within the same 

research frame and in the same experimental system by Penha-Lopes and colleagues (in 

press). These authors found similar mortality rates as well as similar levels of top sediment 

reworking between the two species exposed to similar sewage loadings, leading to the 

conclusion of no differences in sewage impact on the crabs’ biologies. 

The observed asynchrony at the beginning of the surface activity of U. annulipes that 

emerged from the burrows slightly later than the other species is, however, difficult to discuss, 

since no studies do exist specifically on daily time budget of these two species. In natural 

ecosystems, in fact, these two species do share common areas inside specific mangrove 
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belts, often reaching densities well higher than the ones we used to populate the mesocosms 

(Skov et al., 2002), thus excluding strong competition for food and space. 

Our observations showed that foraging is the main surface activity of U. annulipes and 

U. inversa, agreeing with previous studies dealing with the time budget of several other Uca 

species (Eshky et al., 1995; Weis and Weis, 2004). The frequency of this behavioural pattern 

tended to decrease along the artificial low tide, while, conversely, the frequency of all the 

other behavioural patterns increased after an initial minimum. 

The vegetation of the plots did not strongly affect the surface activity of the crabs and 

the only significant difference observed was a weak lower rate of waving activity in the bare 

plots with respect to the vegetated ones. This difference could be related to the presence of 

both physical and visual obstacles, such as pneumatophores, stilt roots and leaves of the 

saplings. This would be consistent with some of the observations made by Nobbs (2003) on 

U. elegans, an Australian species, which was supposed to avoid vegetated areas that may 

hinder visibility during visual communication. However the lack of differences on some results 

when comparing between bare and planted mesocosms needs to be carefully interpreted by 

considering that at this stage mangrove trees were still young (small canopy). It is possible 

that if these observations were done later in the experiment (with more developed plants) or 

with mature trees, vegetated and bare conditions would have showed more enhanced 

differences. 

Within the mesocosms impacted by different sewage/seawater mixtures, the foraging 

time exerted by fiddler crabs was strongly reduced when compared to the control plots. Within 

the impacted plots the high amounts of chemical oxygen demand (COD), which indirectly 

measures the amount of organic compounds in the water, ammonium and phosphate, 

testified of hypertrophic conditions occurring in those mesocosms. This rise in nutrients bursts 

benthic microalgae growth (as showed by the increase in Chl-a concentrations on the top 

sediment) and bacteria (Tam, 1998), which are known to be the main food source for fiddler 

crabs (Dye and Lasiak, 1986; Meziane and Tsuchiya, 2002). This seems to be the major 

explanation of their shift in activity patterns. In other terms, U. annulipes and U. inversa 

proved to limit their feeding rates up to a similar amount of microalgae in both the control and 

the impacted mesocosms, thus, since the food concentration was higher in the impacted 

plots, their intake rate was higher and they reached that limit in a shorter period.  

Interestingly enough, the differences in terms of feeding time were not proportional to 

the increase of sewage in the mixture, rather a threshold effect was observed. This threshold 

seemed to be very low, since a relatively small alteration of nutrients concentration in the 

mesocosms, i.e. the addition of 20% of sewage, had a strong effect on the crabs feeding 
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demand. These latter results are important in view of the fact that fiddler crabs are recognized 

to be important ecosystem engineers (Kristensen, 2008). They showed, in fact, to actively 

alter sediment biogeochemistry by means of their bioturbative activities, performed both 

below (within-burrowing activity) and above (feeding and crawling activities) the sediment 

(Cannicci et al., 2008).  

Moreover, it was recently showed by Kristensen and Alongi (2006) that without the 

active feeding of Uca species the microalgal communities, which in normal conditions provide 

the heterotrophic microbial community with labile organic carbon, may overgrow and establish 

very dense and continuous layers. In such altered situation, anoxic conditions may occur with 

high rates of iron and sulphate respiration leading to high concentration of sulphide, thus 

negatively affecting mangrove saplings settlement and growth. Thus, a massive introduction 

of nutrients in the environment, such as the case of sewage loading, would totally prevent 

such a beneficial action exerted by the crabs, since we showed that an increase in food 

availability strongly limited their foraging activity. The indirect evidences coming from our 

behavioural observations well integrate with the results obtained by Penha-Lopes et al. (in 

press), who proved a lesser amount of sediment processing due to a depressed foraging 

activity of the crabs, here demonstrated. Such a scenario, would testify for a subtle 

detrimental effect on the ecosystem determined by sewage contamination via a process 

mediated by key macrobenthic species (Dahdouh-Guebas et al., 2005). 

However, no difference in the number of crabs active on the surface was observed at 

any time of the period between impacted and control mesocosms, meaning that the induced 

effect of the trophic abundance is not an overall reduction of the activity period but rather a 

modification of the crabs’ time budget. Indeed, a direct outcome of the increased amount of 

food in the impacted plots seemed to be the extension of the actual period spent in the social 

activities, usually limited by temporal constraints related to feeding. 

In the present study the main behavioural pattern enhanced in frequency is the waving 

activity of the males. The escalation of this male behaviour with sewage concentration may 

be interpreted as a possible substitute activity elicited by the strong modification of the time 

budget of the crabs as well as by the stressing conditions due to environmental modifications. 

Similarly, the wandering behaviour observed only in the plots flooded with sewage mixtures 

can be read as a peculiar activity stimulated by the particular conditions within the treated 

mesocosms. In these plots, and mostly in the central hours of the activity period, many crabs 

were observed wandering frenetically and without any apparent purpose or goal. Most of 

them walked rapidly forward and backward along the concrete walls, surprisingly not 

triggering any aggressive reaction by other males, repeatedly encountered during this 
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relentless wandering phase. Many studies have described such behavioural pattern in several 

ocypodids, interpreting this so called “droving” activity as a strategy to implement feeding 

efficiency (Murai et al., 1983; Gherardi et al., 2002), as a reproduction linked behaviour 

(Takeda, 2003) or as a strategy for water loss limitation (Yoder et al., 2005). The fact that this 

wandering behaviour was almost absent in the control mesocosms at any time of the activity 

period, could have two possible interpretations. Firstly, it could be seen as an escape 

response from some mesocosms stressful conditions and directly related to the sewage 

impact suffered by the crabs, such as lower salinity or pH alteration of the interstitial water 

faced within their dens. This would be consistent with the very stereotyped kind of 

movements observed, often along the walls of the plots. Recent research, carried out 

comparing populations of U. annulipes leaving in a pristine mangrove forest with others 

dwelling in a forest affected by raw domestic sewage discharge in Mozambique, (Amaral et 

al., 2009) confirmed a stressing effect of chronic exposure of U. annulipes to domestic 

sewage, showing an alteration of the RNA/DNA ratio inside the muscular tissue of the crabs. 

A further support to the interpretation of the enhanced wondering activity as determined by 

stress condition would came from the study on the differential survival among treated and 

uncontaminated mesocosms, carried out by Penha-Lopes et al (in press). In particular, after 

six months the experiment was running, the treatment with sewage was observed to reduce 

the survival of the two species with a rate of about 22% when compared to the plots flushed 

with sea water only.  

It must be considered however a second possible explanation to this particular activity, 

consistent with the logic of a time budget modification which could implicate an enhanced 

explorative attitude of replete animals. At the present stage these hypotheses need further 

analyses and studies to be consistently supported 

 

5. Conclusions 
The present results show that behavioural patterns of U. annulipes and U. inversa are 

strongly affected by domestic sewage dumping and have the potential to be used as 

bioindicators. Once a deep understanding of the changes in behaviour is obtained the time 

budget could be included in a battery of biomarkers used for biomonitoring areas of 

suspected pollution. In fact, the activity of these East African fiddler crabs can easily be 

studied due to the high density of their populations and a comparison between the time 

budget of populations occurring in purportedly impacted vs. pristine sites can be made. 

Moreover, it was demonstrated that behavioural changes related to sewage impact had a 
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threshold effect and started immediately at low sewage loadings, making these ocypodid 

crabs quite sensitive indicators. 

However, the main conclusions to be depicted by this study deal with the impact of 

sewage loading on mangrove macrofauna communities and, on a broader extent, on the 

overall mangrove system. In fact, although the fiddler crabs communities dwelling in the 

mesocosms were able to feed and perform social behaviours, apparently confirming the 

results of Yu et al (1997) which found no significant impact of wastewater on the macrofaunal 

community of a Chinese mangrove forest, clear signals of an incipient stress on the system 

were described. Actually, feeding rates of crab communities did not increase with the growing 

availability of microalgae, responding to an increase in nutrients. On the contrary, they 

reduced their feeding activities earlier, thus failing to perform those bioturbating and algal 

removal activities so important for the overall health of mangrove sediments. Thus, although 

preliminary, the present results show that our understanding of the mangrove communities 

response to sewage loadings is far from being understood and further research is strongly 

needed before proposing constructed mangrove wetlands as possible phytoremediation 

areas, as recently suggested (Wong et al., 1997; Wu et al., 2008; Yang et al., 2008). 
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Abstract 

The effect of different sewage concentrations (0, 20, 60 and 100%), vegetation (Bare, 

Avicennia marina or Rhizophora mucronata) and immersion periods (immersion/emersion 

period of 12/12h or 3/3 days just for 100%) conditions were studied for 6 months on survival 

and growth rates of Terebralia palustris (Linnaeus, 1767). Gastropods´ activity and 

ecosystem engineering preformed at bare and A. marina planted cells and 3 sewage 

conditions (0, 20 and 60%) were determined. Survival rates were higher than 70% in all 

treatments. Growth rate decreased significantly with increasing sewage concentrations 

(mainly at unplanted conditions) and longer immersion periods. A complete shift (from 

immersion to emersion periods) and a significant decrease in mobility and consequently its 

engineer potential, due to sewage contamination, lead to a 3-4 fold decrease in the amount 

of sediment disturbed. Sewage contamination, primary producers’ abundance and 

environmental conditions may have influenced the gastropods survival, growth and its 

ecosystem engineering potential. 

 

Keywords: Terebralia palustris, survival, ecosystem engineering, pollution, mangrove 
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1. Introduction 

Mangrove forests are known to provide important ecosystem goods and services such 

as nursery areas for several important aquatic species, and a variety of food, timber and 

chemicals for local communities (Duke et al. 2007). These systems have recently shown a 

potential as natural wastewater treatment facilities, thus preventing coastal pollution (Wong et 

al., 1997). Field trials have shown that sediments of these ecosystems are very efficient in 

removing nutrients from sewage (Tam and Wong, 1995; 1996), without apparent impacts on 

mangrove trees (Wong et al., 1997) or significant effect on the benthic invertebrate 

communities (Yu et al., 1997). 

Sewage filtering of constructed mangrove wetlands is now addressed worldwide, 

mainly due to low running cost and high efficiency potential (PUMPSEA, 2008; Yang et al., 

2008), although it was shown that wastewater loadings above the system capacity and under 

weak hydrodynamic conditions usually lead to eutrophication and consequently hypoxic 

conditions (Gray et al., 2002). Low oxygen levels may decrease faunal diversity and biomass 

due to emigration of mobile species or high mortality of less mobile species in natural 

mangroves (Diaz and Rosenberg, 1995) or lower survival rates in constructed wetlands 

(Penha-Lopes et al., accepted). This could significantly affect ecosystem functioning (Biles et 

al., 2002; Le Hir et al., 2007), and coupled with a  potential decrease in activity and behaviour 

of the more resistant species (Diaz and Rosenberg, 1995) potentially reduce the mangrove 

health and filtration efficiency.  

Most studies on sewage filtration have focussed on the role of plants and sediment 

with associated microbes and microalgae (e.g., Wong et al., 1995; Wong et al., 1997; Tam, 

1998) and only few have dealt with macrofaunal performance under severe conditions. 

Mangrove fiddler crabs maintained survival rates near 50% and efficient bioturbation via 

feeding and burrowing for 6 months in severe organic contaminated mangrove mesocosms 

(Penha-Lopes et al., accepted). Most infauna species such as crabs and polychaetes are key 

players in healthy ecosystems by increasing mineralization processes and nutrient cycling 

through burrowing and irrigation activities (Kristensen and Kostka, 2005), mainly in organic-

rich systems (Hansen and Kristensen, 1998; Nielsen et al., 2003; Kinoshita et al., 2008; 

McHenga and Tsuchiya, 2008; Lindqvist et al., 2009). 

Among all benthic species, gastropods are considered very resistant to low oxygen 

levels (Gray et al., 2002). They generally maintain high survival during hypoxic events (Stickle 

et al., 1989; Das and Stickle, 1993; Sagasti et al., 2001) and are among the first colonizers of 

previous anoxic environments (Gamenick et al., 1996). Nevertheless, they respond to low 

oxygen concentrations by decreasing their crawling and feeding activities, and consequently 
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diminish metabolic rate and growth (Stickle et al., 1989; Das and Stickle, 1993; Cheung et al., 

2008; Riedel et al., 2008). Gastropods play an important ecological role in natural systems 

through organic matter consumption (Slim et al., 1997; Fratini et al., 2004), bioturbation 

effects on nutrient cycling (Biles et al., 2002), regulation of meiofauna and microphytobenthos 

biomass (Carlén and Ólafsson, 2002; Pape et al., 2008), changes in the dynamics of 

suspended material (Kamimura and Tsuchiya, 2004) and effects on sediment stability (Orvain 

et al., 2003; 2004; 2006). 

The mudwhelk Terebralia palustris (Linnaeus, 1767) is a key epifaunal species in East 

African mangrove forests. Studies have shown that it is important for the nutrient cycling by 

consuming large amounts of Avicennia marina (Forsk.) and Rhizophora mucronata Lam. litter 

It can also regulate microphytobenthic primary productivity through feeding and crawling 

activities (see Cannicci et al., 2008; Lee, 2008). However, this species disappeared 

completely following organic contamination of mangrove areas in Mozambique, Kenya and 

Zanzibar (Cannicci et al., in press) suggesting an upper tolerance limit to the conditions 

present in those areas.  

It is therefore fundamental to investigate the direct and indirect effects of severe 

sewage contamination on species like Terebralia palustris to comprehend the effect of 

organic discharges on natural mangrove forests as well as to develop a sustainable and more 

efficient mangrove wastewater wetland. The major goal of this study was to determine 

survival and growth of Terebralia palustris under different domestic sewage loading, 

immersion periodicity and vegetation conditions. Further, its behaviour and bioturbation 

activities, and thus ecosystem engineering potential, were evaluated at different sewage 

concentrations in the presence or absence of mangrove trees. 

 
2. Materials and methods 

2.1 Experimental setup 

A mesocosm system consisting of 27 cells (9 m2 each) was constructed at the upper 

Avicennia marina (Forsk.) belt of the Kunduchi mangrove forest (Jangwani Beach) located at 

longitude 39o 12’-39o 13’ E and latitude 6o 39’-6o 41’ S, about 18 km from Dar es Salaam City 

Centre, Tanzania (see system description in Penha-Lopes et al., accepted). The 27 cells 

were divided as follows: “vegetation” treatment, with nine unvegetated cells, nine cells planted 

with Avicennia marina, and nine with Rhizophora mucronata Lam. saplings. Sediment was 

laid and saplings planted (at a density of 2.8 m-2) on selected plots in early February 2006.  

The system was initially inundated exclusively with seawater and sewage discharge 

was initiated in early October 2006. For each vegetation treatment, three replicate cells were 
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exposed to sewage loading of 0, 20 and 60 % in seawater for the first 6 months period 

(October 2006 to April 2007). A diurnal tidal rhythm was simulated with 12 hour immersion to 

0.1 m depth starting at 23:00. The sewage concentration was increased to 100% during the 

second 6 months period (April 2007 – October 2007) with 12/12 hours (10012h) and 3/3 days 

(1003d) immersion/emersion periods for all vegetation conditions (only 2 replicates). The basic 

chemical and biological characteristics of sewage-seawater mixtures are presented in Tables 

1 and 2 (adapted from PUMPSEA, 2008). Avicennia marina and R. mucronata were 

50.30±1.17 and 55.3±0.5 cm (±SE) tall, respectively, and litter fall from the young trees was 

absent when sewage discharge was initiated. They grew to 223.9±18.0 and 133.0±13.2 with 

litter fall of 1.17±0.20 and 2.8±0.7 g m-2 day-1 (for A. marina and R. mucronata, respectively) 

in October 2007 (PUMPSEA, 2008).  

Terebralia palustris individuals were introduced to each cell in August 2006 together 

with individuals of abundant fiddler crab species found in East African mangrove forests, Uca 

annulipes (H. Milne Edwards, 1837) and U. inversa (Hoffmann, 1874). All fauna was 

randomly collected from the Jangwani mangrove forest near the mesocosm system. The 

chosen abundance of T. palustris (5 ind m-2) was in the lower range of natural densities 

(Cannicci et al., in press). Fauna adapted to the system for almost two months before sewage 

discharge was initiated. At that time the gastropods had an average size (±SE) of 62.49±0.31 

mm. 

 

2.2 Gastropod Survival and Growth 

Terebralia palustris survival and size increment (also denominated as growth from 

now on) in 0, 20 and 60% sewage concentrations was followed for the first 6 months. At this 

time, survival and growth rates were calculated based on the difference of the average value 

obtained for each cell with initial conditions. The survival and growth rates in 100% sewage 

(both 10012h and 1003d) were calculated from the fraction of individuals that stayed alive 

during the second 6 months period. For gastropod survival and size analysis (shell height), all 

individuals in each mesocosm were collected, checked for life activity, counted and measured 

(maximum linear dimension of the shell from the apex to the anterior edge of the lip) at each 

sampling period (immediately before, and 6 months and 12 months after starting sewage 

discharge), and then returned to the respective cell. 

 

2.3 Gastropod Behaviour and Bioturbation 

This set of experiments was done during an intensive  campaign from March to April 

2007. Due to similar survival and growth results between both planted cells, 3 replicates of 
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0%, 20% and 60% sewage in bare and A. marina cells were used. Temporal replication was 

conducted during half (except for 20%) and full moon, which coincides with neap and spring 

tides in the surroundings. 

Environmental conditions: Top-sediment temperature, porewater content and dissolved 

oxygen (DO) of sewage mixtures were measured on one occasion in all cells receiving 0% and 

60% sewage. Temperature was measured every 2 hours (except at night, 02.00 to 07:00) in 5 

replicates per cell. Sediment for porewater content (determined as weight loss after drying 

sediment samples at 100°C for at least 12 hours) was sampled in 5 replicates per cell every 2 

hours during the emersion period (12:00 to 22:00). Dissolved oxygen was measured right after 

immersion (24:00), before sunrise (6:00) and just before flushing out (11:00) twice in every cell 

using a dissolved oxygen probe (WTW Oxi 330i with an associated WTW CellOx 325 

electrode). 

Behaviour: Due to the considerable differences in behaviour between 0% and 60% 

sewage treatments during the first temporal replication, it was decided to include 20% sewage 

treated cells during the second replication period. At each period, the position of 8 marked 

gastropods of different sizes in each examined cell was noted every 2 hours over a 24 h cycle. 

The total daily movement of each individual was estimated as the sum of all 2 hour events, 

which were measured as the straight line between the initial and final position. Whenever 

possible (N=66, approximately 10% of all 2 hours events), the real path of each individual was 

measured from tracks in the surface sediment to obtain a correction of the straight line 

estimate. Individuals were located and identified by a buoy with a specific colour code 

attached to the shell during immersion and a specific colour code painted on their shell during 

emersion. Flags with the same colour codes were used to mark the 2-h positions. 

Bioturbation: The amount of sediment displaced by different sized T. palustris 

individuals during movement was determined in the laboratory and extrapolated to the 

mesocosm results. Sediment displaced by the track area of individuals in different sediment 

types (i.e. porewater content) was measured and calculated under flooded, wet and dry 

conditions. Wild animals were collected from the same location as those used in the 

mesocom experiment, while sediment was collected from cells receiving no sewage. 

Sediment was transferred to 40x40x10 cm plastic boxes to a depth of 4 cm and seawater was 

added in excess. To simulate flooded periods 4 cm of water column were maintained, for wet 

conditions (21.9±0.4% of porewater) excess of water was removed only, and for dry 

conditions (6.9±0.9% of porewater) sediment was in addition placed at the sun for 1 hour. 

Gastropods with fresh weights ranging from 2.2 to 42.3 g were used. Individuals were placed 

on the sediment at flood, wet and dry conditions and allowed to move at least 30 cm. The 
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displaced sediment was estimated on 5 cm subsections of the 30 cm track by assuming that, 

the cross section of tracks approximated half of an ellipse area (Asection=1/4*π*a*b). Measured 

track width is equivalent to a and maximum depth represents b. Using these laboratory based 

results, the total sediment displaced by individuals of known weight in the mesocosms during 

a 24 h cycle was estimated.  

 

2.4 Statistical analysis 

Survival and growth experiments: A two-way ANOVA was used to compare Terebralia 

palustris survivorship (using ArcSin transformed data) and average height increment for the 

two 6 months periods, under different vegetation conditions and sewage loading (0, 20 and 

60% for the first period, and 10012h and 1003d for the second period). Initial population 

structure from each cell was compared with a Chi Square test. Because no differences were 

obtained in October 2006 (initial conditions), population data was pooled in order to compare 

the 6 month population structure to only one initial data set. The goal of this analysis was to 

understand if there is a size-dependent differential mortality. Prior to analyses, the 

homogeneity of variances was assessed using Cochran’s test and data were transformed to 

x’ = √(x + 1) to remove heteroscedascity. 

Behaviour and Bioturbation Experiment: A two-way ANOVA was used to compare 

total daily distance traveled and total weight of sediment displaced by gastropods under 

different vegetation conditions and sewage loading. To compare gastropod average velocity 

during emersion and immersion periods between sewage and vegetation treatments a three-

way ANOVA was used. Due to the similar results obtained between temporal replicates for 

0% and 60%, for the daily distance travel, total weight of sediment displaced and average 

velocity ANOVA analyses, both temporal replicates of 0% and 60% sewage loading 

treatments were averaged per plot, allowing only one balanced statistical analysis including 

20% sewage loading. Prior to analyses, the homogeneity of variances was assessed using 

Cochran’s test and data were transformed to x’ = log (x + 1) to remove heteroscedasticity. 
When appropriate, Student–Newman–Keuls (SNK) tests were used for multiple 

comparisons of the means. ANOVAs were performed using GMAV 5 software (University of 

Sydney, Australia). Prism 6.0 software was used to compare average individual distance per 

hour (velocity) along T. palustris size range correlations among different sewage and 

vegetation treatments, as well as sediment area disturbed as a function of T. palustris weight 

under different sediment conditions (wet and flooded). 
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3. RESULTS 

3.1 Environmental conditions  

Generally, nutrient concentration increased with increasing sewage loading (Table 1) 

while salinity and dissolved oxygen decreased. However, during the second 6 months period, 

although organic loading was similar, leading to lower DO during day and night periods, 

nutrient concentration was slightly lower, due to changes in the sewage quality coming from 

the hotel. Chlorophyll a concentration (as a measure of microalgal biomass) in the top 2 cm 

sediment layer was highest in unvegetated cells and tended to increase with sewage dosing 

(Table 2). Although chlorophyll was not measured in the 100% cells, the sediment surface 

was dark green indicating a higher concentration of microalgae when compared with all other 

treatments.  

 

Table 1 - A) Chemical characteristics and oxygen uptake of the sewage-sea water mixtures 
used in the experimental mesocosms from October 2006 to April 2007 for 0 to 60% and from 
April 2007 to October 2007 for 100% sewage loading. (DO: Dissolved Oxygen) (N = 45). 
Values are given as averages ± SE (adapted from PUMPSEA, 2008). 
 

Sewage 
loading 

Salinity 
(‰) 

DOday 
(µM) 

DOnight 
(µM) 

NH4
+ 

(µM) 
NO3

-
 

(µM) 
PO4

3-
 

(µM) 
0% 39.1 ± 0.6 308 ± 133 197 ± 17 26 ± 2 3.6 ± 1.4 42 ± 4 

20% 24.5 ± 0.9 312 ± 227 10 ± 5 123 ± 9 7.1 ± 2.9 109 ± 6 
60% 18.9 ± 1.4 225 ± 256 9 ± 1 194 ± 17 5.0 ± 1.4 206 ± 14 

100%12h and 3d 1.87± 0.47 102 ± 98 4 ± 1 91 ± 11 6.0 ± 1.7 173 ±48 
 
Table 2. Sediment surface chlorophyll a concentration at different vegetation and sewage 
concentration treatments in April 2007 is shown (N = 12). Values are given as averages ± SE 
(adapted from PUMPSEA, 2008). 
 

 Chl a (µg.g-1) 
 0% 20% 60% 

Bare 13.9±3.9 12.5±6.1 23.1±9.4 
A. marina 5.4±1.1 17.1±12.0 14.0±3.5 

R. mucronata 8.1±2.7 10.1±4.0 14.7±7.0 
 

During the March-April 2007 campaign, the diurnal variation in top sediment 

temperature was similar in all treatments (Figure 1). The temperature was constant at around 

27ºC at night and started to increase at dawn (7:00) reaching a maximum of about 37ºC 

around noon (13:00) followed by a gradual decrease back to the night time level. Dissolved 

oxygen (DO) in 0% cells decreased slightly from 200 µM in seawater entering at night (23:00) 

to 90-150 µM at sunrise and increased steeply during the day to values of 300- 400 µM just 

before emptying the cells (11:00) (Figure 1). The sewage mixture entering 60% cells 
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contained almost no DO initially (23:00) and during the immersion period DO increased after 

sunrise in these cells, only slightly in planted cells (to 7-50 µM) and considerably in 

unvegetated cells (to more than 500 µM). Porewater content of the sediment was similar 

among treatments and decreased gradually during emersion from 25-27% at noon to about 

22% at 23:00.  

 
Figure 1 – Overlying water dissolved oxygen as 
well as sediment temperature and porewater 
content in cells with different vegetation and 
sewage treatments at April 2007. Values are 
given as average (±SE). n = 6 – 15. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

3.2 Gastropod Survival and Growth 

The 6 months survival of Terebralia palustris was high and ranged from 72 to 91%. 

Significant differences were observed irregularly among some vegetation treatments: A. 

marina 0% versus R. mucronata 0% (p<0.05), Bare 20% versus A. marina 20% (p<0.05) and 

Bare 60% versus R. mucronata 60% (p<0.01) (Figure 2 and Table 3-A). Sewage dosing only 

affected survival significantly in the bare cells where more individuals survived in 0% (p<0.05) 

and 20% (p<0.01) than the 60% treatment.  
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Figure 2 - Survival rates of T. palustris after 6 months (April 07) for all vegetation factors and 
0%, 20% and 60% sewage concentration treatments. For the 100% sewage concentration 
plots, survival rates at Oct 07 (6 months after April 07) are calculated based on the April 07 
survival. Values are given as average (±SE). n = 2-3. 

 

Also the 100% treatments showed survival above 80% with no significant impact of vegetation 

and immersion-emersion treatments (Figure 2 and Table 3-B).  

During the first 6 months, gastropods tended to increase height at a rate of 3 to 4 mm 

month-1 when reared at pristine conditions and at a rate of 2 mm month-1 when stressful 

situations were present. During this period T. palustris size increment (Figure 3 and Table 3-

A) at pristine conditions (0%) was slower (p<0.05) in unplanted (~10 mm increase) than 

planted mesocosms (~16 and 19 mm for A. marina and R. mucronata, respectively). 

However, while growth remained constant with increasing sewage concentration in bare 

sediment, a significant decline of 23% and 50% (p<0.05) was detected in A. marina and R. 

mucronata treatments, respectively (Figure 3). The average height increment in 100% 

sewage during the second 6 month period was significantly lower than for 60% in the previous 

period, but within the range obtained during the second period for 0 to 60% (just indication). 

Furthermore, growth of 1003d individuals (±0.2 mm month-1) was reduced by 50% compared 

with 10012h individuals (Figure 3 and Table 3-B). 
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Table 3 – A - Results of the three 2-way ANOVA on Terebralia palustris Survival Rates (Oct 
06 to April 07) (transformation Arcsen), Average Size at initial conditions (Oct 06) and 
Average Size Increment (Oct 06 to April 07) just for 0, 20 and 60% sewage loading 
experiments. B - Results of the three 2-way ANOVA on T. palustris Survival Rates (April 07 to 
Oct 07)) (transformation Arcsen) and Average Size Increment (April 07 to Oct 07) just for 
100% sewage loading experiments. Factors: Vegetation (fixed and orthogonal) and Sewage / 
Immersion Period (fixed and orthogonal). The degrees of freedom, DF, Variance, MS, F ratio 
and p-value (p) are showed for each of the tests.  
 

A Survival Rate 
(Oct 06 – April 07)  Average Size 

(Oct 06)  Average Size Increment 
(Oct 06 – April 07) 

 Df MS F  Df MS F  Df MS F 
Vegetation 2.0 0.05 4.84a  2.0 63.50 0.43  2 3.52 1.70 

Sewage 2.0 0.01 0.50  2.0 53.71 0.36  2 23.21 11.21b 

Interaction 4.0 0.07 6.22b  4.0 87.45 0.59  4 12.34 5.96b 

Residual 18.0 0.01   1341.0 147.80   18 2.07  
Total 26.0    1349.0    26   

            

B Survival Rate 
(April 07 – Oct 07)  Average Size Increment 

(April 07 – Oct 07)   

 Df MS F  Df MS F     
Vegetation 2.0 0.13 1.53  2.0 11.23 1.73     

Immersion Period 1.0 0.03 0.35  1.0 47.15 7.27a     
Interaction 2.0 0.17 2.06  2.0 0.17 0.03     
Residual 6.0 0.08   6.0 6.49      

Total 11.0    11.0       
   (a = p < 0.05; b = p < 0.01) 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 - Average height increment (± SD) of T. palustris after 6 months (April 07) for all 
vegetation factors and 0%, 20% and 60% sewage loading treatments. For the 100% sewage 
loading plots (12h and 3days), average height increment at Oct 07 (6 months after April 07) are 
calculated based on the April 07 gastropod average size. Values are given as average (±SE). n = 
2-3. 
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Table 4 – A) Results of the 2-way ANOVA on: (1) distance accomplished (expressed as 
meters) log (x+1) transformed for total distance per individual in different conditions of 
vegetation (bare and planted) and sewage (0, 20 and 60%) averaging the two temporal 
replications; (2) sediment weigh (expressed as DW) log (x+1) transformed for total daily 
sediment disturbed per individual in different conditions of vegetation (bare and planted) and 
sewage (0%, 20% and 60%) averaging the two temporal replications. Factors: vegetation 
(fixed and orthogonal) and sewage (fixed and orthogonal). B) Results of the 3-way ANOVA on 
individual average velocity (expressed as m h-1) after log (x+1) transformation in different 
conditions of vegetation (bare and planted) and sewage (0%, 20% and 60%) averaging the 
two temporal replications. Factors: vegetation (fixed and orthogonal), sewage (fixed and 
orthogonal) and immersion/emersion periods (fixed and orthogonal). The degrees of freedom, 
DF, Variance, MS, and value of F ratio are showed for each of the tests. 
 

A) 
(2) Daily distance 

(0%, 20% and 60%) 
 

(3) Sediment 
disturbed 

(0%, 20% and 60%) 

Source DF MS F  DF MS F 

Vegetation 1 0.15 0.75  1 0.39 2.10 

Sewage 2 11.94 60.00 *  2 147.24 739.91 * 
Interaction 2 0.33 1.69  2 2.14 10.98 * 

RES 138 0.20   138 0.20  

TOT 143    143   

    

    

B) 
Average Velocity 

(0%, 20% and 60%) 
Source DF MS F 

Vegetation – ve 1 0.01 0.02 
Sewage – se 2 25.26 75.38 * 

Immersion/Emersion  - im 1 51.97 155.09 * 

ve X se 2 1.7 5.14 * 

ve X im 1 0.89 2.64 
se X im 2 112.28 335.08 * 

ve X se X im 2 0.84 2.52 
RES 132 0.34  
TOT 143   

 (* = p < 0.01) 
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Figure 4 – A) Daily distance 
accomplished by T. palustris and B) 
Weight of sediment displaced per 
individual at different sewage loading and 
vegetation treatments. Values are given 
as average (±SE). n = 24. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

3.3 Gastropod Behaviour and Bioturbation 

Behaviour: The daily crawling distance of T. palustris decreased significantly (p<0.01) 

by more than 40% from pristine to sewage contaminated cells, while vegetation had no 

significant role (Figure 4-A and Table 4-A). Travel distances were always independent of 

individual size, exhibiting relationships with slopes that were not significantly different from 

zero. However, individuals inhabiting non-contaminated mesocosms (pristine) travelled longer 

daily distances than those inhabiting 60% cells (data now shown). 

The response of T. palustris to different sewage loading and immersion is evident from 

the average individual crawling velocity over a 24 h cycle (Figure 5 and Table 4-B). 

Gastropods inhabiting pristine cells (0%) showed higher crawling activity (p<0.01) during 

immersion (30-80 cm h-1) than during emersion (0-20 cm h-1) regardless of the vegetation 

cover. Conversely, the gastropods did not move at all during immersion under contaminated 

conditions (15-80 cm h-1), while they exhibited crawling during emersion (p<0.01), even in the 

afternoon sun peak. 
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Figure 5 – Crawling velocity by T. 
palustris individuals at different 
sewage loading and vegetation 
treatments during immersion and 
emersion periods. Values are given 
as average (±SE). n=8 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bioturbation: Laboratory experiments on sediment displacement by gastropods as a 

function of body weight showed significant linear positive relationships for individuals kept 

under flooded and wet conditions (Figure 6). Those kept under dry conditions (6.9±0.9%) left 

no tracks, suggesting that no sediment was reworked. Slopes of the relationships were similar 

between wet and flooded conditions (P=0.228; pooled slope = 0.006), but the intercept was 

not (P<0.0001). This indicates that gastropods under flooded conditions displaced more 

sediment (by a factor of 1.5 to 2) than under wet conditions. 

The sediment water content obtained for flooded and wet conditions in the laboratory 

agrees well with that found during immersion and emersion in the mesocosm cells (see 

Figure 1). The section area of gastropod tracks was greater during immersion than emersion, 

indicating that the amount of sediment displaced was not only related with the distance 

crawled, but also the flood condition.  
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Figure 6 – Sediment area 
disturbed by crawling of T. 
palustris individuals as a 
function of displaced 
sediment weight under 
flooded and exposed, but 
wet sediment conditions. 
Linear regression equations 
are shown. Values are given 
as average (±SE). n=10 

 

 

 

 

The amount of sediment disturbed decreased significantly with increasing sewage loading 

(p<0.05 for planted 20% Vs planted 60%, and p<0.001 for all other combinations). The daily 

amount of sediment disturbed per individual reached more than 60 g in pristine cells (at both 

vegetation conditions), while under contaminated conditions sediment displacement did not 

exceed 30 g (Figure 4-B). Individuals disturbed slightly less sediment (6%) in unplanted than 

planted pristine cells (p<0.05). The opposite was observed for 20% sewage exposure 

(p<0.01) with 33% higher displacement in unplanted cells.  

The real and straight distances crawled by each individual showed a significant linear 

relationship with a slope close to unity, but an intercept towards the real distance 

(Dreal=1.12*Dstraight + 12.1, R2=0.84). Consequently, the straight distance underestimated the 

real distance by 50% for short and about 25% for long distances. The amount of displaced 

sediment is therefore underestimated when derived from the straight distances, which must 

be taken into consideration. 

 
4. Discussion 

4.1 Survival and Growth 

Although most animals may not survive in chronic stable hypoxia (defined as DO <64 µM), 

they have physiological and behavioural mechanisms to survive intermittent hypoxic periods 

for days (Diaz and Rosenberg, 1995). The immersion/emersion periodicity in our mesocosms 

may explain the high survival rates (>60%) registered even at high sewage loading (100%) 

and long immersion periods (3 d). Some gastropods crawled the cell walls above the water 

level during immersion with sewage mixtures apparently to escape from the “toxic” 

environment (also observed by Sagasti et al., 2001; Riedel et al., 2008 for other gastropod 

species). This sub-lethal behaviour may have also helped gastropods facing long periods of 
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severe hypoxia conditions (< 10 µM) in contaminated cells during night. The remaining 

individuals stayed dormant and immobile, but alive on the sediment surface (see below). High 

tolerance to prolonged periods (days to weeks) of hypoxia or even anoxia has been shown for 

other gastropods (see Kapper & Stickle 1987 in Stickle et al., 1989; Das and Stickle, 1993; 

Sagasti et al., 2001; Cheung et al., 2008). These authors suggest that most gastropods are 

oxy-conformers, with oxygen consumption decreasing in proportion with the oxygen 

availability that can survive extended periods of hypoxia or anoxia. Also, metabolic rate 

depression is possible in molluscs because, instead of the classical and less efficient glycosis 

system, they switch to relatively more efficient succinate and propionate pathways during 

exposure to hypoxia and anoxia (Gade, 1983; Wu, 2002). 

Survival of T. palustris was lowest (22%) in unvegetated treatments with 60% sewage. 

The lack of shading by trees during the sunny emersion periods may have exposed snails, 

suffering from hypoxia during night, to heat and stress by desiccation (Slim et al., 1997; Pape 

et al., 2008) causing excess mortality as shown for other molluscs (Stickle et al., 1989). 

Otherwise, sewage did not affect survival of small and larger gastropods differently, indicating 

similar tolerance to low oxygen by all sizes used in the present study (25 to 114 mm). 

The average height increments of T. palustris registered in this study are within the 

range (~2 mm month-1 for 15 mm individuals) observed for this species in natural habitats 

(e.g., Soemodihardjo and Kastoro, 1977). The fast growth observed in pristine planted cells is 

probably supported by fallen litter as a complementary food source, because benthic 

microalgal biomass was low in pristine cells. Conversely, microalgae and probably bacteria 

are known to be major food sources for the conspecific T. sulcata in organic contaminated 

mangrove areas (Meziane and Tsuchiya, 2002). Despite the higher abundance of benthic 

microalgae and the presence of leaves in sewage treated planted cells, the gastropods height 

increments were similar to those obtained in pristine unvegetated cells. This indicates that at 

contaminated conditions the higher availability and quantity of food do not provide gastropods 

with a greater amount of energy for growth. If we assume that gastropods are food limited 

under pristine unvegetated conditions and that animals express maximum growth in planted 

pristine cells, a decline in oxygen levels may decrease the metabolic rate and thus feeding 

activity, assimilation or energy flow to growth. As a consequence we will observe reduced 

shell height increment as found for Stramonita haemastoma (Das and Stickle, 1993) and 

Nassarius festivus (Cheung et al., 2008). Furthermore, as Terebralia palustris is known to 

prefer salinities of 15-35 (Houbrik, 1991). The low salinity at high sewage loading could also 

have been a stress factor affecting physiology and consequently growth, especially when 

coupled with hypoxic conditions (Stickle et al., 1989). 
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The 100% sewage loading reduced shell size increment considerably compared with 

the more diluted sewage treatments. The impact was more pronounced in the 1003d than the 

10012h treatment, although the total immersion/emersion time was identical over a 6 days 

period in both treatments. However, the longer immersion periods in the 1003d treatment with 

low oxygen and salinity may affect the gastropod metabolism so severely that they cannot 

recover feeding activity and somatic growth fully during the extended emersion periods. 

Nevertheless, other factors should be considered when comparing the lower growth rates 

obtained at 100% compared with the 0 to 60% during the previous 6 months which could 

include: 1) the natural growth rate decrease as the gastropods grow (e.g., Chatzinikolaou and 

Richardson, 2008); 2) the decrease in feeding activity (or food assimilation) due to an 

increase in chronic stress possibly due to the artificial system “environment” and/or hypoxic 

conditions; 3) as well as the colder temperatures that are typical from April to October (cold 

season) (Sallema and Mgaya, 2004), known to decrease snails metabolism and consequently 

growth (e.g., Chatzinikolaou and Richardson, 2008). 

 

4.2 Behaviour and Bioturbation 

The daily activity of Terebralia palustris changed according to environmental 

conditions. Tidal simulations in the experimental mesocosms functioned similarly to tides in 

natural mangroves, where animals are covered with seawater once (or twice) a day. The 

crawling distance achieved at 60% sewage loading is similar (~3 m d-1) to that registered by 

Wells and Lalli (2003) in Australian mangrove forests. Under less contaminated or even 

pristine conditions these gastropods moved much faster, reaching crawling distances higher 

than 8 m d-1 as reported for Kenyan mangrove forests (Vannini et al., 2008). 

Reduced locomotory activity of T. palustris in the wild can be caused by obstacles (i.e. 

high density of pneumatophores) and excess availability of food (i.e. high abundance of litter). 

A gastropod feeding on leaf litter will decrease its motile activity and attract other individuals 

to feed on the same litter (Fratini et al., 2001). It is therefore expected that the crawling 

distance in the planted mesocosms cells is lower than in the unplanted cells. However, this 

pattern was only observed in the 20% sewage treated cells, probably due to the low biomass 

of benthic microalgae. 

Although many gastropods showed little or no mortality under low oxygen conditions, 

hypoxia induced sub-lethal behavioural changes (Sagasti et al., 2001; Riedel et al., 2008, and 

present study). Gastropods showed a distinct behavioural change in sewage impacted cells 

when compared with pristine ones. T. palustris in pristine cells behave similarly to that 

reported for natural environments (Fratini et al., 2004; Vannini et al., 2008). Conversely, the 
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inactive behaviour during immersion periods in cells subjected to 20% or 60% sewage 

loading is probably due to low DO and associated toxic metabolites (e.g, sulphide) release 

from the sediment. A similar response has been shown for the gastropod Hexaplex trunculus, 

which showed significantly reduced activity during severe hypoxic events (Riedel et al., 2008).  

Since individuals in contaminated cells do not feed during immersion, they 

compensate with high activity levels during emersion periods. Other invertebrates (e.g., 

crabs) may also increase foraging activity after periods of hypoxia (Sagasti et al., 2001). 

However, the animals need not to move much during emersion in contaminated treatments 

because of the higher biomass of benthic microalgae. However, the reported lower growth 

rates under contaminated planted conditions, suggests that the low animal activity during 

emersion periods (at 20 and 60% sewage loading) may therefore not only be caused by the 

high food availability, but rather by other less obvious factors. One such factor could be to 

avoid desiccation by decreased activity during hot and dry periods (Slim et al., 1997; Pape et 

al., 2008), which was exactly the condition during the first 5 hours (almost 50% of the time) of 

emersion periods in our system. Total daily activity was not different in small and large snails, 

that responded similarly to increase of sewage loading, demonstrating that larger animals 

process bigger amount of food, mainly microalgae and bacteria due to the low abundance of 

litter available, during the same travel distance. 

The amount of sediment displaced by T. palustris depended significantly on the 

gastropod size (weight), environmental conditions (sediment characteristics and availability of 

different food types) and especially on anthropogenic influence (sewage), which altered the 

intensity and periodicity of animal activity. The estimated sediment displaced by gastropods 

was, as expected, positively correlated to their weight. During movement, these organisms 

displace (e.g., by pushing directly into the frontal and surrounding sediment) sediment in 

proportion to their volumetric size (Gilbert et al., 2007). Also, a decrease in locomotion and 

foraging activity due to depressed metabolism under hypoxic or hot and dry conditions will 

result in lower particle reworking and redistribution. Especially, if gastropod activity is shifted 

to periods (emersion) where more stable (drier) sediments conditions diminish bioturbation 

potential, as occurred in the contaminated cells. 

 

4.3 Implications for constructed mangrove wetland functioning  

The high tolerance of T. palustris to severe sewage loading demonstrated its high 

potential for use in constructed mangrove wetlands. However, the low growth rates and 

changes in behaviour and activity even at relatively low sewage concentrations (e.g., 20%) 

demonstrated a certain degree of stress. Besides, hypoxic conditions cause a decrease in the 
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amount of energy allocated by gastropods to reproduction (Sagasti et al., 2001; Cheung et 

al., 2008), and hamper hatching success and larval development (Chan et al., 2008). As a 

consequence, T. palustris populations will eventually decline due to lack of recruitment. This 

may explain the complete absence of this species from organically enriched mangrove areas 

as reported by Cannicci et al (in press) and Machiwa and Hallberg (1995). 

Ecosystem engineers have recently been addressed as powerful agents to restore 

ecological systems when managed well (Byers et al., 2006). By limiting microalgal biomass 

directly by grazing or indirectly by subduction below the sediment surface (Carlén and 

Ólafsson, 2002; Pape et al., 2008), T. palustris suppresses the development of dense algal 

mats, and consequently avoid the development of near surface anoxic zones (Kristensen and 

Alongi, 2006; Marsden and Bressington, 2009). Microphytobenthic primary production can 

potentially be enhanced when the biomass is grazed below the carrying capacity by deposit-

feeding invertebrates (Blanchard et al., 2001). These invertebrates may also stimulate benthic 

bacterial biomass and activity through faecal pellet production and mucus secretion (Solan 

and Wigham, 2005). Furthermore, the continuous mixing of the top layer by epifauna will 

enhance carbon mineralization and nutrient cycling by improving sediment aeration and 

drainage (Aller, 1994), as well as by increasing surface areas for microbial activity (Solan and 

Wigham, 2005). Consequently, faunal grazing and bioturbation may increase sediment 

capacity to degrade organic matter. Nevertheless, the high tolerance of T. palustris to survive 

long periods of hypoxia is counteracted by lowered, growth rates due to decreasing foraging 

activity. This will inevitably diminish the significance of T. palustris as an epibenthic microalgal 

grazer, sediment bioturbator and consequently its role for improving the functioning of 

mangrove wastewater treatment facilities. 

The decrease in individual-specific activity at high contamination levels can be 

compensated by increasing the population size sufficiently to maintain the desired 

bioturbation activity. These gastropods may achieve much higher densities (>100.m-2) and 

larger sizes (>> 10 cm) in natural mangroves (Houbrik, 1991; Pape et al., 2008) than used in 

our mesocosm system. By increasing the mangrove wetlands gastropod density to values of 

100 m-2 will allow a complete top sediment (3 mm deep) reworking every 10 days based on 

the results obtained in the present study. The high survival under sewage exposure justifies 

the use of an increased gastropod density and average size in the wetlands. However, due to 

lack of recruitment, the sewage exposed populations must continuously be supplemented 

with individuals from pristine areas. Nevertheless, further studies are needed to better 

understand the consequences of increasing fauna density on biotic (e.g., microalgae growth) 

and abiotic (e.g., sediment biogeochemistry and oxygen concentrations during immersion 



Section II 
____________________________________________________________________________ 

177 

periods), as well as develop low energy cost methodologies to improve environmental 

conditions for Terebralia palustris, or introduction of other mangrove species (such as 

sesarmid crabs) able to cope with the severe conditions at contaminated mesocosms, as was 

found for fiddler crab species (Penha-Lopes et al., accepted). 

The use of T. palustris to improve mangrove wetland functioning also faces other 

positive consequences. A large proportion of the large litter fall in mature wetlands can be 

processed by these gastropods (~0.65g h-1) (Fratini et al., 2004). As a consequence, large 

accumulations of decaying litter are avoided and ecosystem functioning is improved. 

However, a shift in feeding behaviour from microphytobenthos to litter may significantly 

change the sediment bioturbation potential and probably counteract the improved functioning 

by processing litter. Another important consequence of gastropod bioturbation is the 

construction of “fluffy” (less consolidated) surface sediment and increasing the roughness of 

the sediment-water interface (Orvain et al., 2003), thus enhancing the sediment erosion and 

transport (Le Hir et al., 2007; Orvain et al., 2007). Conversely, a decrease in gastropod 

bioturbation will result in higher benthic microalgal biomass (Carlén and Ólafsson, 2002; Pape 

et al., 2008), which reduces erosion and transport of sediment (Sutherland et al., 1998; 

Quaresma et al., 2004). Thus, decreased bioturbation due to discharge of nutrient-rich 

sewage may reduce sediment transport and affect nutrient cycling and dynamics in mangrove 

forests and adjacent systems (Kristensen et al., 2008). 

Most coastal marine areas are today strongly affected by human activities (Howarth et 

al., 2000; Halpern et al., 2008), which lead Teal et al. (2008) to speculate: “how much the 

world’s bioturbation has already been reduced and what effect any further loss may have on 

the function of the marine ecosystem”. In this study, we addressed this problem in mangrove 

ecosystems where such studies are scarce (Teal et al., 2008), and concluded that even small 

contamination levels may strongly decrease the activities and consequently bioturbation of 

key species in mangrove habitats. 
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Abstract 
Population structure and distribution of Terebralia palustris were compared with 

environmental parameters within microhabitats in a monospecific stand of Avicennia marina 

in southern Mozambique. Stable carbon and nitrogen isotope analysis of T. palustris and 

potential food sources (leaves, pneumatophore epiphytes, and surface sediments) were 

examined to establish the feeding preferences of T. palustris. Stable isotope signatures of 

individuals of different size classes and from different microhabitats were compared with local 

food sources. Samples of surface sediments 2.5 to 10 m apart showed some variation (-

21.2‰ to -23.0‰) in 13C , probably due to different contributions from seagrasses, 

microalgae and mangrove leaves, while 15N values varied between 8.7‰ to 15.8‰, 

indicating its very high variability within a small-scale microcosm. Stable isotope signatures 

differed significantly between the T. palustris size classes and between individuals of the 

same size class, collected in different microhabitats. Results also suggested that smaller 

individuals feed on sediment, selecting mainly benthic microalgae, while larger individuals 

feed on sediment, epiphytes and mangrove leaves. Correlations were found between 

environmental parameters and gastropod population structure and distribution versus the 

feeding preferences of individuals of different size classes and in different microhabitats. 
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While organic content and the abundance of leaves were parameters that correlated best with 

the total density of gastropods (>85%), the abundance of pneumatophores and leaves, as 

well as grain size, correlated better with the gastropod size distribution (>65%). Young 

individuals (height <3cm) occur predominantly in microhabitats characterized by a low density 

of leaf litter and pneumatophores, reduced organic matter and larger grain size, these being 

characteristic of lower intertidal open areas that favour benthic microalgal growth. With 

increasing shell height, T. palustris individuals start occupying microhabitats nearer the 

mangrove trees characterized by large densities of pneumatophores and litter, as well as 

sediments of smaller grain size, leading to higher organic matter availability in the sediment.  

 

Keywords: Terebralia palustris, population structure, distribution, feeding, stable isotopes, 

mangroves. 

 

1. Introduction 

Mangrove systems represent complex and highly dynamic environments in which 

faunal assemblages typically occupy distinct horizontal or vertical zones, and manifest 

complex temporal patterns in their activities (Robertson and Alongi, 1992; Hogarth, 2007). 

Although biological, chemical and physical properties are expected to be reflected in strong 

correlations between benthic fauna and sedimentary properties, most studies have shown 

these relationships to be relatively weak (e.g., Chapman and Tolhurst, 2007). The crucial role 

of marine invertebrates in the food web, nutrient cycling and overall energy flux in Indo-Pacific 

mangrove ecosystems has become a standard paradigm in ecological research on these tidal 

forests (Bouillon et al., 2008). Recently, evidence is emerging that many invertebrates have a 

small home-range and derive most of their diet from locally available food sources (Guest et 

al., 2006). Small-scale changes in their stable isotope signatures (derived from the carbon 

and nitrogen sources of their diet) may be a useful tool to track and explain invertebrate 

microdistribution patterns (Guest and Connolly, 2004; Guest et al., 2004).  

During the last decade, one of the most common and abundant mangrove gastropods, 

Terebralia palustris (Linnaeus), has been the subject of several ecological studies due to the 

significant quantities of leaf litter that it consumes and processes, and it has become a 

recognized link in nutrient cycling in mangrove forests (Slim et al., 1997; Fratini et al., 2004). 

It is found in substrata that range from mud to sand, and extends from the upper Avicennia 

marina belt down to the lower fringe stands (Rambabu et al., 1987; Fratini et al., 2004). 

Terebralia palustris is known to be omnivorous, feeding on detritus, leaf litter, mangrove 
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propagules, carrion, sediment particles, benthic diatoms and bacteria (Nishihira, 1983; 

Rambabu et al., 1987; Dahdouh-Guebas et al., 1998; Fratini et al., 2000).  

A spatial separation between young and older individuals was first observed by 

Soemodihardjo and Kastoro (1977). Due to anatomical differences in the structure of the 

radula, only large (shell height >5 cm) T. palustris actively feed on fallen mangrove leaves, 

propagules and fruits, while small individuals (shell height <5 cm) are usually detritivorous or 

deposit feeders (Nishihira, 1983; Houbrik, 1991; Slim et al., 1997; Dahdouh-Guebas et al., 

1998; Fratini et al., 2004; Pape et al., 2008). This different feeding strategy has been used to 

explain the spatial segregation between juveniles (more common in tidal channels and pools) 

and adults (common in the forest) reported by various authors for Jakarta (Soemodihardjo 

and Kastoro, 1977), Western Australia (Wells, 1980) and Gazi Bay, Kenya (Slim et al., 1997; 

Pape et al., 2008). In contrast, some other studies have shown no spatial separation between 

juveniles and adults (e.g., Fratini et al., 2004 for Gazi Bay, Kenya). Only Pape et al. (2008) 

have attempted to elucidate the population structure or distribution of T. palustris  relative to 

environmental variables and stable isotopic composition.  Their study was undertaken along 

two transects from the landward mudflat zone to the seaward seagrass zone (passing 

through the mangrove forest), with sampling intervals of 8 m.  

The present study aimed to elucidate T. palustris microdistribution, as well as its 

feeding strategies, at spatial scales of 1.25 to 2.50 m. Its spatial distribution and population 

structure was compared with important abiotic and biotic parameters, such as organic matter 

content, sediment granulometry, leaf litter and pneumatophore abundance. Together with the 

environmental parameters, foot muscle and potential food sources of T. palustris were 

subjected to stable isotope analysis (carbon and nitrogen) to better elucidate the relationship 

between gastropod feeding strategy and distribution. The variability in stable isotope 

signatures of the sediments and different size classes of T. palustris were also documented in 

each microhabitat.  

 
2. Materials and methods  

2.1 Study site 

Inhaca is a small island (42 km2) situated 32 km off Maputo in southern Mozambique, 

East Africa (26ºS 33ºE). The east coast is exposed to the Indian Ocean, whereas the western 

and southern coasts face Maputo bay. The island is positioned in a transitional region of 

tropical to warm subtropical conditions and constitutes a barrier between Maputo Bay and the 

Indian Ocean. The climate of Inhaca island is characterized by hot and wet (September – 

March) and warm and dry (April-September) seasons (Bandeira, 1995).  
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In August 2006, this study was conducted in the low intertidal Avicennia marina belt in the 

Saco mangrove during a spring low tide.  The Saco bay is located at the southern end of 

Inhaca Island, occupies an area of 204 ha, and is bordered by mangroves. While Ceriops 

tagal, Bruguiera gymnorrhiza and Rhizophora mucronata are found along the channels and in 

the most densely forest areas, A. marina covers the upper and lower limits of the mangrove 

(Kalk, 1995; De Boer, 2000). The subtidal zone is characterized by patches of seagrasses 

(Kalk, 1995). At the seaward edge, the A. marina trees are large, often more than 5 m high, 

and their pneumatophores can extend to several meters around the trunk (Kalk, 1995). In this 

lower A. marina belt, three areas were randomly selected and, in each of these, four 

pneumatophore zones were studied (Fig. 1): 

Lower - lower half of the pneumatophore zone (over half a pneumatophore zone away 

from the A. marina canopy) 

Mid – central pneumatophore zone. 

Upper - upper half of the pneumatophore zone (the latter two zones comprising equal 

divisions of under half a pneumatophore zone from the A. marina canopy). 

Canopy – under the A. marina canopy. 

 

Each of the pneumatophore zones (excluding the Canopy) comprised a belt that was 

between 5 and 10 m long and an average of 5 m wide (see Fig. 1 for clarification). An Inter-

pneumatophore zone was similarly delineated between pneumatophore zones corresponding 

to the area adjacent to the Upper and Canopy regions of the pneumatophore zones (see 

Fig.1). 

 

2.2 Population structure 

Four quadrats of 0.25 m² were randomly allocated in each of the pneumatophore and 

inter-pneumatophore zones. All T. palustris specimens inside the quadrats were collected 

(including those with more than 50% of the body inside the quadrat) and stored in a cool box. 

In the laboratory, they were counted, weighed (wet weight) and their height (shell height – SH 

- maximum linear dimension of the shell from the apex to the anterior edge of the lip) was 

measured. 

 

2.3 Environmental data 

While some biogeochemistry parameters are known to be relatively constant throughout 

the year, or oscillate seasonally or with important events (e.g., heavy rains or winds), some 
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A 

5.00m 

Inter-
Pneum. 
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Fig. 1 – Zonation in the lower Avicennia marina belt in the Saco, Inhaca Island, southern 
Mozambique, during low tide. A –top view of two pneumatophores zones, where Canopy, 
Upper, Mid and Lower sampling zones are shown as rectangular areas 1.25 - 5.00 m long 
and 5 m wide. An Inter-pneumatophore zone (grey zone) is also shown.  Small black dots 
designate pneumatophores (  ) and small squares sample quadrats of 0.25 m-2 (     ). B –
lateral view of a pneumatophore zone.  
 

fluctuate significantly during a single tidal cycle (e.g., temperature, salinity) (e.g., Chapman 

and Tolhurst, 2007). Only parameters more or less consistent within a tidal cycle were thus 

measured in this study, providing a realistic explanation of the observed population structure 

and distribution patterns.  

2.3.1 Pneumatophore and leaf density 

The number of pneumatophores (protruding >0.5 cm above the sediment) and leaves were 

counted in each quadrat. 

2.3.2 Granulometry 

Two sediment cores (3 cm Ø and 2 cm depth) were extracted per quadrat. Each core was 

stored in a plastic vial and stored in a cool box during transport to the laboratory. There the 

sediment samples were oven-dried at 105 °C to constant weight. The different sediment 

particle sizes were separated on a mechanical shaker using a series of sieves ranging from 2 

mm upwards and graded following the Wentworth scale. The residues in each sieve were 

weighed and assigned to a textural group according to Folk (1954). The median grain size of 
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each sample and the textural group in each zone (derived from 24 replicates from each of the 

three study areas) was determined using Gradistat 5 software  (Blott and Pye (2001). 

2.3.3 Organic content 

Each sediment core was stored in a cool box during transport to the laboratory. There the 

samples were dried at 105 ºC to a constant weight, ignited at 550 ºC for three hours and 

cooled in a desiccator. The loss on ignition (LOI) was measured and the organic content 

expressed as a percentage of the dry weight (Heiri et al., 2001). 

 

2.4 Stable isotopes 

2.4.1 Terebralia palustris 

Whenever possible, five (or more) individuals of each size class (SH<3, 3<SH<5 and 

SH>5 cm) per zone were washed with distilled water and part of the foot muscle was 

removed and dried at 60°C for 72 h. After drying, the samples were frozen until further 

processing for stable isotope analysis.  

2.4.2 Sediment, leaves and pneumatophore epiphytes 

Two sediment cores (3 cm Ø and 2 cm depth) were collected in each zone. As the 

isotopic signature of mangrove leaves generally does not change significantly with 

decomposition (Zieman et al., 1984; Dehairs et al., 2000), at least five mangrove leaves of all 

the species present (A. marina, R. mucronata and C. tagal) were randomly picked from 

different trees in or just around the study area. Pneumatophore epiphytes were gently 

scraped off with surgical blades. These scrapings were randomly taken from within the range 

occupied by T. palustris. Sediment, leaves and epiphytes were transport to the laboratory in a 

cool box. Leaves and epiphytes were subsequently washed with distilled water, and dried at 

60°C for 72 h, while the sediment samples were freeze-dried. 

2.4.3 Analytical procedures 

All samples were ground to a fine powder and subsamples of the sediment and epiphytes 

were acidified with dilute (5 %) HCl before analysis to remove carbonates. 13C and 15N 

analyses were performed with a ThermoFinnigan Flash1112 elemental analyzer, coupled to a 

ThermoFinnigan delta +XL via a Conflo III interface, with a typical reproducibility of ± 0.15 ‰ 

for both  13C and  15N. All stable isotope ratios are expressed relative to the conventional 

standards (VPDB limestone for carbon and atmospheric N2 for nitrogen) as  values, defined 

as:  

 

3

dardtans

dardtanssample13 10*
X

XX
C




 [‰] 

where X = 13C/12C or 15N/14N in the case of 15N. 
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2.5 Statistical analyses  

Stable isotope signatures of all samples (sediment, leaves and epiphytes) and 

between Terebralia palustris of different size classes and zones were compared using non-

parametric tests (Kruskal–Wallis), followed by a Dunn multicomparisons test whenever 

statistical significances were found. Principal component analysis (PCA) was used to reduce 

the multidimensional environmental data sets to lower dimensions. The variables used in the 

PCA were percent organic matter, granulometry, number of leaves and pneumatophores per 

quadrat. Analysis of similarities (ANOSIM) has been widely used for testing hypotheses on 

spatial differences and temporal changes in biological assemblages (Clarke and Gorley, 

2006). This test was used to separate zones by analysing each of the following data sets 

separately: 1) population data (T. palustris density and average height); 2) environmental data 

(% organic matter, granulometry, number of leaves and pneumatophores per quadrat). The 

link between environmental variables and T. palustris’ distribution and abundance was 

analysed using the BEST analysis. This test maximises the rank correlation between the 

resemblance matrices of the environmental (percent organic matter, abundance of leaves and 

pneumatophores, and average grain size) and community variables (average shell length and 

average density), where all permutations of the variables are tried in the BIOENV algorithms 

(Clarke and Gorley, 2006). Prior to the PCA, ANOSIM and BEST analyses, environmental 

data were log(x+1)-transformed (for PCA and ANOSIM) or log(x)-transformed (for BEST) and 

normalized, while T. palustris population data were square root-transformed. Although 

ANOSIM compares zones with all variables, for a more detailed analysis of each 

environmental or population variable, non-parametric tests (Kruskal-Wallis) were used 

followed by Dunn’s test whenever differences were detected using the Kruskal-Wallis test. 

Kruskal-Wallis and Dunn tests were performed using GraphPad Instat, while PCA, ANOSIM 

and BEST analyses were performed using Primer 6 software. 

 

3. Results 
3.1 Environmental factors 

Environmental variables were significantly different between zones (Table 1). When 

analysed with ANOSIM (Table 2), there was a clear separation between all the five zones, 

defined a priori (global R= 0.65). All the pairwise tests between the zones manifested 

significant differences between them, although some zones were found to overlap (Lower vs 

Mid, and Mid vs Upper). With the help of PCA (Fig. 2), it was possible to reduce all the 

environmental data sets to two principal components, which explained more than 77% of the 

cumulative percentage variation (PC1, 50% and PC2, 27%).  
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Table 1 – Average (± SD) pneumatophore and leaf density, sediment median grain size, percentage of sediment organic matter (LOI), 
Terebralia palustris height, density and total biomass registered in each of the 5 zones. Different letters indicate a significant difference (p<0.05) 
between the 5 zones for each variable. (number in parenthesis indicate number of replicates) 
 

 Local Properties  Terebralia palustris 

Zone Pneumatophore density 
 (m-2) 

Leaf density 
 (m-2) 

Median grain  
size (mm) 

LOI 
(% Org. Mat)  Height  

(cm) 
Density  
(ind m-2) 

Biomass  
(wet weight)  

(g m-2) 

Inter- pneumatophore 2.3±5.5a 

(12) 
23. 7±68.5a 

(12) 
1.3±0.2a,b 

(12) 
2.7±2.5a,b 

(8) 
 2.3±0.8a 

(551) 
182. 7±224.5b,c 

(12) 
44.05 ± 58.44b 

(12) 

Lower 64. 7±28.5b 

(12) 
2. 7±3.9a 

(12) 
1.4±0.4a 

(12) 
1.6±0.4a 

(8) 
 2.8±1.3a,b,c 

(7) 
2.3±4.7a 

(12) 
0.85 ± 1.56a 

(12) 

Mid 85.0±37.3b,c 

(12) 
8, 7±7.2a,b 

(12) 
1.4±0.3 a 

(12) 
3.4±3.1a,b 

(8) 
 2.6±0.8b 

(582) 
193. 7±159.3c 

(12) 
62.42 ± 39.65b 

(12) 

Upper 256.3±77.6c,d 

(12) 
37.3±27.4b,c 

(12) 
0.9±0.4b,c 

(12) 
3.1 ±1.5a,b 

(8) 
 3.8±1.1c 

(383) 
127.7±81.0c 

(12) 
114.26 ± 46.96c 

(12) 

Canopy 398.0±142.0d 

(12) 
140. 7±99.4c 

(12) 
0.8±0.2c 

(12) 
5.0±1.3b 

(8) 
 4.7±0.6d 

(86) 
29.0±39.9a,b 

(12) 
46.42 ± 62.36a,b 

(12) 
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Table 2 - Results from an ANOSIM global and pair-wise tests using Bray–Curtis similarity (for 
population data) or Euclidean distance (for environmental), when comparing: 1) population 
data (T. palustris density and average height); 2) environmental data (% organic matter 
content; median grain size; number of leaves and pneumatophores per quadrat. R-values 
>0.75 were interpreted as well separated; R>0.5 as overlapping but clearly different, and 
R<0.25 as barely separable at all. p-values also provide the significance of the results 
obtained. 
 

Pair-wise 
Environmental  

data 
GlobalR=0.65 

(p=  0.001) 

Population data 
GlobalR=0.26 

(p=  0.001) 

Lower Vs Mid R=0.176  
(p=  0.009) 

R=0.077 
(p=  0.002) 

Lower Vs Upper R=0.822 
(p=  0.001) 

R=0.768 
(p=  0.001) 

Lower Vs Canopy R=0.997  
(p=  0.001) 

R=0.203 
(p=  0.041) 

Lower Vs Inter-pneumatophore R=0.453 
(p=  0.002) 

R=0.542 
(p=  0.002) 

Mid Vs Upper R=0.218 
(p=  0.012) 

R=0.007 
(p=  0.847) 

Mid Vs Canopy R=0.800  
(p=  0.001) 

R=0.017 
(p=  0.017) 

Mid Vs Inter-Pneumatophore R=0.500 
(p=  0.001) 

R=0.041 
(p=  0.701) 

Upper Vs Canopy R=0.902  
(p=  0.001) 

R=0.131 
(p=  0.043) 

Upper Vs Inter-Pneum. R=0.830 
(p=  0.001) 

R=0.022 
(p=  0.517) 

Canopy Vs Inter-Pneum. R=0.936 
(p=  0.001) 

R=0.058 
(p=  0.142) 

 

 

The Canopy and Upper zone data are found more frequently on the negative side of the PC1 

axis, where the number of leaves, pneumatophores and sediment organic matter are higher 

and the mean grain size is smaller. The Lower and Inter-pneumatophore zones are clearly 

located at the positive side of the axis, while the Mid zone attained both negative and positive 

values. In the PC2, negative values are related to an increase in medium grain size and the 

number of pneumatophores, and a decrease in sediment organic matter. This axis clearly 

separates the Inter-pneumatophore zone from all the other zones (Fig. 2). Using Gradistat 5, 

the Lower and Mid zones were classified as “sandy gravel”, the Upper and Inter-

pneumatophore zones as “muddy sand” and the Canopy zone as “gravelly mud”.
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Fig. 2 – Two-dimensional scatter 
plot of the First and Second 
Canonical axes for all 
environmental variables 
measured in each study zone. 
Variable eigenvectors for PC1 
(x-axis) and PC2 (y-axis) are 
respectively: leaves (-0.626; -
0.173), pneumatophores (-
0.510; -0.528), organic content 
(-0.516; 0.304), and average 
grain size (0.285;-0.774) (see 
text for further explanation). 
 

 

 

 

 

3.2 Stable isotope analysis 

3.2.1 Primary producers 

The mean carbon stable isotope ratio of Avicennia marina (-28.8±0.5‰) was 

significantly lower than the values obtained for Rhizophora mucronata (-27.5±0.5‰) and 

Ceriops tagal (-27.2±0.3‰) (Fig. 3). The nitrogen stable isotope ratios manifested the 

opposite trend with much higher values in A. marina (7.1±1.2‰) compared to R. mucronata 

and C. tagal (0.9±0.3 and 1.4±0.5‰, respectively) (Fig. 3). The carbon stable isotope ratios of 

epiphytes (-24.1±1.1‰) scraped off the pneumatophores were more enriched than those of 

the mangrove leaves and their 15N signatures were rather low (1.3±0.3‰) (Fig. 3).  

 

Fig. 3 – Plot of average 
13C and 15N values in T. 
palustris foot muscle, 
sediment and primary 
producers in the study area. 
Microphytobenthos data 
were obtained from 
previous studies in Saco 
Bay, Inhaca, Mozambique 
(Abreu et al., in press). 
Error bars indicate SE (n= 
5-60). 
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3.2.2 Sediment 

The sediment 13C signatures (-22.2±0.7‰) were generally enriched compared to 

mangrove leaf tissue (~-28‰) (Fig 5). However, sediment from the different zones manifested 

some significant differences regarding their 15N and C/N ratios (Table 3). From the canopy 

down to the lower pneumatophore zone, there was a slight increase in the sediment 13C 

signatures (going from -22.6 to -21.2 ‰), whereas the C/N ratios remained more or less 

constant along this transect (~14±0.5, Table 3). In contrast, sediment from the inter-

pneumatophore zone differed from that in the pneumatophore zone, having 13C even more 

depleted than in the canopy zone and a greater C/N ratio. Although sedimentary 15N values 

became enriched from the Canopy towards the Lower zone (from 8.7‰ to 15.8‰), the high 

variability masked any clear trend. Average 13C and 15N values in the Inter-pneumatophore 

zone were similar to those found in Mid and Upper zones. 

 

Table 3 – Average (±SD) 13C (‰) and 15N (‰) and C/N ratios obtained for sediment 
samples from different zones. Different letters indicate significant difference - p<0.05 - 
between the 5 zones. (N=6) 

 Stable Isotopes 
Zone 15N 13C C/N ratio 

Inter-pneumatophore 11.7±2.9a,b -23.0±1.6 18.8±2.0a 
Lower 15.8±2.0a -21.2±1.6 13.6±1.3b  

Mid 10.6±0.7b -22.2±1.1 14.5±1.0b 
Upper 12.0±1.2a,b -22.0±0.8 14.5±0.8b 

Canopy 8.7±1.3b -22.6±1.2 13.7±1.2b 
 
 

3.2.3 Terebralia palustris 

Stable isotope signatures in T. palustris individuals changed according to individual 

size, as well as to the zone they inhabited. Irrespective of the sampling zone, the overall 

picture was that, with increasing animal size, 13C values tended to decrease but the 15N 

values were more irregular (Table 3, Fig. 5). The 13C signatures of individuals larger than 5 

cm was significantly different (p<0.001) from smaller size classes (-20.1±0.8 ‰, -19.9±0.8 ‰ 

and -21.3±0.9 ‰ for size classes <3, 3-5 and >5 cm, respectively). Small individuals (<3cm) 

collected in the Mid zone were significantly (p<0.001) depleted in 13C when compared to the 

ones collected in the Upper and Inter-pneumatophore zone, while individuals 3 to 5 cm in 

height were significantly (p<0.001) enriched in the Inter-pneumatophore zone relative to those 

found in the Mid and Upper zones. The 15N signature of small T. palustris was significantly 

enriched in the Upper zone when compared to the individuals collected in the Mid (p<0.05) 

and Inter-pneumatophore (p<0.001) zones, while mid-size individuals inhabiting the Inter-
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pneumatophore zone were significantly enriched relative to those found in the Canopy zone 

(p<0.05). 

 

Table 4 – Average (±SD) 13C (‰) and 15N (‰) of foot muscle of T. palustris for different size 
classes and zones. Different letters indicate significant difference - p<0.05 - between the 
zones. Number in parenthesis indicates number of replicates. (n.a. – not available) 

 
 13C Stable Isotope (‰)  15N  Stable Isotope (‰) 

Size 
classes 

(cm) 

Inter- 
pneumatophore Mid Upper Canopy 

 
Inter- 

pneumatophore Mid Upper Canopy 

x < 3 -19.4±0.6a 

(8) 

-
20.9±0.4b 

(7) 

-20.0±0. 
5a 

(8) 

n.a. 
 3.9±0.2a 

(8) 
3.7±0.2a 

(7) 
2.9±0.2b 

(8) 
n.a. 

3 < x < 5 -18.9±0.7a 

(8) 

-
20.3±0.6b 

(9) 

-
20.5±0.8b 

(5) 

-
19.9±0.3a,b 

(4) 

 4.6±0.4a 

(8) 
4.3±0.3a,b 

(9) 
4.1±0.2a,b 

(5) 
4.0±0.1b 

(4) 

x > 5 -21.2 
(1) 

-21.1±0.8 
(2) 

-21.0±1.0 
(7) 

-22.0±0.8 
(4) 

 4.0 
(1) 

3.9±0.2 
(2) 

3.7±0.3 
(7) 

3.7±0.5 
(4) 

 

 
Fig. 4– Changes in 15N and 13C (Avg±SE) in T. palustris foot muscle with increasing shell 
height in the study area. 
 

3.3 Population distribution and structure 

A clear pattern was found in T. palustris microscale distribution (Fig. 5). In the Lower 

zone, none or very few individuals were found (Table 1). The smallest animals occurred 

predominantly in the Inter-pneumatophore and Mid zones, where the highest densities of T. 

palustris were observed. Small to large individuals were collected in the Upper zone, although 

the latter at much higher densities, while only larger individuals were observed in the Canopy 

zone. There was a significant increase in size in T. palustris from the Mid zone towards the 

Canopy zone (Table 1). Although the mean biomass (wet weight) mirrored the average 

density, the former is strongly influenced by the average size, resulting in a very low biomass 

in the Lower zone and very high in the Upper zone (Table 1). 



Section II 
____________________________________________________________________________ 
 
 

197 

 
Fig. 5 – Size frequency distribution of T. 
palustris (Avg±SE) in the four (Mid, Upper, 
Canopy and Inter-pneumatophore) Avicennia 
marina zones. The Lower zone is not shown 
due the very low density of individuals 
encountered. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANOSIM analysis (Table 2) indicated that the zones were barely separable with regard 

to both T. palustris density and average size (Global R = 0.26). However, the pairwise tests 

indicated that the Lower zone was significantly different from all the other zones (p < 0.041), 

as was the Canopy zone from the Mid (p < 0.041) and Upper (p < 0.041) zones, but they were 

barely separable (R < 0.25). All the other pairwise comparisons overlapped and were not 

significantly different from each other (Table 2). 

BEST analysis indicated that 85.5% of the T. palustris abundance can be explained by 

only two environmental variables: sediment organic content and the abundance of leaves, 

with the former accounting for ~80% of the variation. Granulometry and the density of leaves 

and pneumatophores account for ~65% of the gastropod size distribution, with the 

pneumatophore density explaining slightly more than 45% of this distribution.  
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4. Discussion 

4.1 Microhabitat characterization 

The environmental variables covered in this study were found to gradually change 

from Lower and Inter-pneumatophore zone towards the Canopy. The more congested the 

mangrove root systems (towards the Canopy) the more effective they become as litter traps, 

increasing the organic content of the soil, and also trap smaller sediment particles, creating a 

more muddy sediment (Robertson and Alongi, 1992; Hogarth, 2007). This further increases 

the organic content as finer particles have a larger surface area for the adsorption of organic 

matter (Gray, 1974). The Inter-pneumatophore zone had almost no pneumatophores and 

very sandy sediments. However, the leaf density was also as high as the Mid zone, where 

pneumatophore density was much higher. This may be due to the fact that the Inter-

pneumatophore zones is located between the Upper and Canopy zones, both of these 

generating considerable leaf litter, and the Inter-pneumatophore zone is a passive corridor 

that exports mangrove litter (supported by the depleted 13C values measured in sediment in 

this zone).  

With regard to the stable isotopic analyses, all the mangrove leaves had similar C and 

N isotopic signatures when compared to previous studies undertaken in the Saco mangrove 

(e.g., Macia, 2004), except for the 15N values obtained for Avicennia marina leaves, which 

were much higher. Results obtained in the surface sediments yielded average 13C values 

that were similar to other studies, although the 15N was, on average, much higher (8.7‰ to 

15.8‰) than that found in previous studies (1.0‰ to 4.0‰) (e.g., Bouillon et al., 2002; 2004; 

Macia, 2004). Previous literature has already recorded high 15N signatures for A. marina 

leaves as well as for mangrove surface sediment (for a review see Bouillon et al., 2008). The 

high values and variability of the 15N signatures are likely to be due to a difference in nitrogen 

processes in the sediments of the different zones. Also, during sampling, runoff water from a 

nearby village was regularly observed, which could be a source of isotopically enriched 

nitrogen (Bouillon et al., 2008). 

Due to difficulties in sampling, 13C data for seagrasses and benthic microalgae were 

obtained from previous studies (Abreu et al., in press). These data provide a clear distinction 

between the 13C signatures of mangrove tissues (~ -28 ‰) compared to the other carbon 

sources available in the area, i.e. epiphytes (-23.7‰), benthic microalgae (-19.4‰) and 

seagrass (-11.9‰) detritus. 
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4.2 Population structure microdistribution and feeding preferences 

The spatial segregation between juveniles and adults of T. palustris reported by 

various authors for Jakarta (Soemodihardjo and Kastoro, 1977), Western Australia (Wells, 

1980) and Gazi Bay, Kenya (Slim et al., 1997; Pape et al., 2008) was also encountered in the 

present study. Small T. palustris were more common on lower, open sandflats, while larger 

individuals tended to reside inside the mangrove forest. Both previous studies (Slim et al., 

1997; Pape et al., 2008) suggested that 5 cm was the critical size at which 13C decreased, 

indicating an increase in leaf consumption, most likely caused by an ontogenetic change in 

diet (Houbrik, 1991). However, it should be stressed that in the Saco, the T. palustris 

population attained a maximum height of 6.25 cm. The clear decrease in 13C values in 

individuals measuring more than 5 cm in height is in agreement with previous research 

undertaken in Ceriops tagal (Slim et al., 1997) and Sonneratia alba (Pape et al., 2008) 

mangrove forests where gastropods reach much larger shell sizes.  

Small T. palustris were characterized by an average stable carbon isotope value of 

-20.1‰, which was 2.1‰ enriched relative to their suggested main food source (sediment, 

with a 13C average value of -22.2 ‰). Although a general increase of 0 – 1 ‰ could partially 

explain the observed discrepancy (Bouillon et al., 2008), selective assimilation of 

microbenthic algae could be taking place, as suggested by Pape et al (2008). Microbenthic 

algae in the Saco displayed an average 13C value of -19.4 ‰ (Abreu et al., in press), a value 

similar to the one we obtained for smaller T. palustris. The high nutritional value of microalgae 

compared to mangrove tissue may also explain the higher densities of smaller gastropods in 

the lower intertidal zones, since the microalgal biomass in the upper zones is probably lower 

due to the lower light intensity under the dense canopy and inhibition caused by soluble 

tannins released by mangrove leaves (Alongi and Sasekumar, 1992). On the other hand, 13C 

signatures of larger T. palustris all fell in a narrow range between -21 and -22 ‰, which is still 

~6.0 ‰ enriched relative to their apparent food source, namely A. marina leaves (13C value 

of -28.8 ‰), which accounted for more than 90% of the total number of leaves found in litter in 

the study area (personal observation).  

The large difference in carbon isotope signatures between larger snails and A. marina 

mangrove leaves suggests that other food sources contributed the bulk of their diet. In this 

study, larger individuals were also observed to actively feed on pneumatophore epiphytes 

and graze the surface sediments. Both these carbon sources would provide the more 

enriched values of 13C observed. These findings thus suggest that leaves may not be the 

most important diet of these gastropods and, although they are known to consume a large 
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amount of leaf material (Fratini et al., 2004), other food sources merit consideration in global 

carbon budgets in mangrove habitats. This is especially true of small gastropods that may 

represent a significant percentage of the T. palustris biomass, as in the present study. 

Despite the potentially large-scale movement of organic matter, the significant differences 

found between gastropods inhabiting the different zones indicate that they obtain their 

nutrition variably from the local sediment, leaves and epiphytes. This has been illustrated by 

Guest et al. (2004) for crabs and other gastropod species inhabiting the perimeter of 

saltmarshes and mangrove forests. However, it must also be recognised that the 13C and 

15N in the animals they studied is not only a reflection of their food source at the time of 

sampling, but also results from the diet consumed during the preceding period (McCutchan et 

al., 2003). 

Previous studies have demonstrated that the density of these gastropods is strongly 

correlated to grain size and organic content (e.g., Wells, 1980; Rambabu et al., 1987; Fratini 

et al., 2004), while others have found no such relationship (Pape et al., 2008). Results of our 

study indicate that the environmental parameter that best explained T. palustris distribution 

and density (higher than 85%) is the sediment organic matter content, followed by the 

abundance of leaves. This correlation seems reasonable since a higher availability of food 

resources usually positively affects the invertebrate biomass inhabiting a particular 

microhabitat. 

The environmental variables that better explained T. palustris population size structure 

distribution (more than 65%) were grain size, and the number of leaves and pneumatophores, 

with the latter (pneumatophores) accounting for more than 45% of this distribution. The higher 

the density of pneumatophores, the finer the sediment and the greater the abundance of 

leaves, leads to a larger animal size in any particular zone. According to our stable isotope 

analyses, a higher concentration of organic detritus and microalgae would promote higher 

densities of smaller individuals, while a high density of mangrove leaves would lead to a 

greater abundance of larger individuals. However, if we focused only on organic matter 

content and leaf density, we would be unable to explain more than 40% of the T. palustris 

population structure microdistribution. 

The absence of juvenile gastropods from muddier sediments in the mangrove forest 

was observed in earlier studies, and was attributed to the finer sediment and the associated 

biogeochemical properties, such as high salinity (Pape et al., 2008). It is also known that 

smaller individuals have a larger surface/volume ratio, decreasing their resistance to 

desiccation, and may occupy lower zones that provide a longer immersion period, as well as 

benefiting them with more or less continuous run-off from the upper zones during low tide 
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(personal observation). Although this seems to indicate the existence of an “ontogenic 

migration” from the Inter-pneumatophore zone to the Mid pneumatophore zone, after which 

the animals migrate towards the Canopy zone, this was not proven in this study and other 

reasons may also merit consideration. Differences in recruitment, growth, mortality and 

predation, as well as intra-specific competition for space or resources, may also be 

contributors in this regard. 

 

5. Conclusion 
Stable isotope signatures suggest that smaller T. palustris feed on sediment and 

benthic microalgae, while larger individuals feed on sediment, epiphytes and mangrove 

leaves. This further suggests that the population structure and distribution of T. palustris are 

correlated with environmental factors within the different microhabitats. While the organic 

content seems to better correlate with the density of T. palustris, gastropod size distribution 

correlates best with the number of pneumatophores. Young T. palustris (height <3 cm) occur 

predominantly in lower intertidal microhabitats characterized by a reduced number of leaves 

and pneumatophores, reduced organic matter content and large sediment grain sizes. As 

they grow larger, T. palustris are found closer to the mangrove tree microhabitats 

characterized by a higher density of pneumatophores and litter, as well as smaller sediment 

grain sizes, providing richer organic matter.  
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Abstract 

The effect of 60% organic-rich secondary treatment sewage concentration (diluted in 

seawater) and presence of mangrove trees on the benthic food web structure of mangrove 

constructed wetlands (MCW) was assessed. Stable isotopes (SI) proved to be a reliable tool 

to better understand MCW food web structure and to measure anthropogenic impact in 

different ecosystem compartments. In plots receiving secondary sewage, 15N signatures of 

microalgae and sediments were elevated, while those of mangrove leaves remained similar 

as in the control plots. A significant increase in 15N signatures was also observed in higher 

trophic levels exposed to sewage (the fiddler crab Uca annulipes and the gastropod 

Terebralia palustris). These results suggest that in mangrove sewage treatment facilities, the 

introduction of macrofauna may be essential to maintain and control microphytobenthos 

biomass and productivity, as well as mangrove litter consumption and degradation in sewage 

treatment facilities, reducing these systems running and maintenance cost. 

 

Keywords: constructed wetlands, mangroves, stable isotopes, pollution, ecological indicators 
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1. Introduction 

Mangrove forests have shown the potential to act as filters for anthropogenic wastes, thus 

preventing coastal pollution (Wong et al., 1997; Valiela and Cole, 2002), and the efficiency of 

constructed mangrove wetlands (CMW) has recently been addressed (Yang et al., 2008). 

These systems do not mimic the ecosystem structure and dynamics of natural mangrove 

environments. They often have specific sediment, hydrological and geochemical properties 

that tend to improve system efficiency (Crites et al., 2006). Sewage loading can lead to higher 

primary (Hillebrand et al., 2000; Savage et al., 2004) and secondary productivity (deBruyn et 

al., 2003; Cross et al., 2006), but also to a decrease in fauna and flora diversity, due to the 

low oxygen levels and high concentrations of toxins, such as sulfide (Wu, 2002; Hargrave et 

al., 2008). The food web structure and dynamics within constructed mesocosms systems are 

often impoverished as observed in contaminated natural ecosystems (Cross et al., 2006; 

Singer and Battin, 2007).  

Stable isotope (SI) signatures have been successfully used to trace organic matter 

and nutrient transformations within mangrove food webs, due to the distinct signal from 

different food sources (Bouillon et al., 2008), and several studies have focussed on the role of 

primary producers and microbial communities for the diet of invertebrates within these forests 

(e.g., Bouillon et al., 2002; 2004b; Penha-Lopes et al., in press). The limited (0–1‰) or 

substantial (2.6 to 3.4‰) fractionation of carbon and nitrogen SI, respectively, between an 

organism and its dietary sources is the key to understand food web dynamics. While analysis 

of 13C can elucidate the origin of the diet of consumers, 15N signatures can identify the 

trophic level of consumers (McCutchan et al., 2003; Bouillon et al., 2008). 

Recently, carbon and nitrogen SI signatures have also been proposed as a versatile 

approach for assessing and monitoring anthropogenic contamination within ecosystems 

(Cabana and Rasmussen, 1996; Costanzo et al., 2001; Vizzini et al., 2005; Cole et al., 2006). 

Although δ13C may track sewage-sludge contamination (depleted in 13C) (Gearing et al., 

1991), δ15N are considered the most robust and reliable indicator of sewage and animal 

waste contamination (Van Dover et al., 1992; Heikoop et al., 2000; Vizzini and Mazzola, 

2006). The dissolved inorganic N pool in sewage has a significantly higher 15N than marine 

nitrogen as a result of microbial activity (nitrification and denitrification) and volatilization of 

gaseous NH3 before sewage discharge (Michener and Lajtha, 2007). δ15N signatures of 

sediment, primary producers and invertebrates have shown their high potential as early 

indicators of anthropogenic pollution, even at low sewage concentrations (McClelland et al., 

1997; McClelland and Valiela, 1998; Struck et al., 2000; Cole et al., 2004; Cole et al., 2005). 

Anthropogenic pollution enters the food web through primary producers assimilation of 
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sewage-derived N, and is as such transferred to higher trophic levels, although some 

consumers can also directly exploit sewage organic matter (Michener and Lajtha, 2007). 

Stable isotope studies from natural mangrove ecosystems contaminated with sewage 

or agricultural wastes are scarce. Only three studies have identified nitrogen SI derived from 

sewage in mangrove tree tissues (Fry et al., 2000; Costanzo, 2003; Pitt et al., 2009) and 

associated crab species (Pitt et al., 2009). No studies have, to our knowledge, yet applied SI 

as a tool to track sewage derived carbon and nitrogen in CMW food webs. 

The present study aims to validate the effects of anthropogenic sewage on the SI of 

different CMW compartments (sediment, microphytobenthos, mangrove trees and fauna 

species) as indicators of sewage exposure. We also use SI to examine potential diet shift of 

two key macrofauna species (Uca annulipes and Terebralia palustris) under different 

domestic sewage loadings (i.e. 0 and 60% of sewage with BOD of 150 mg L-1 diluted in 

seawater) and vegetation conditions (i.e. Avicennia marina, Rhizophora mucronata, or 

unvegetated). Our ultimate goal is to understand the importance of these macrofauna species 

on CMW functioning. Both these species already demonstrated to play an important 

ecological role in natural and CMW through organic matter consumption, regulation of 

meiofauna and microphytobenthos biomass, affect sediment turnover and stability through 

bioturbation activities, and increase organic matter degradation and gas exchange mainly 

during emersion periods (Cannicci et al., 2008; Kristensen, 2008; 2008a; Kristensen et al., 

2008b; Lee, 2008; accepted-a; accepted-b). In parallel studies, both these species survival 

was evaluated in pristine and contaminated conditions, and survival rates nearly 50 and 80% 

for crabs and gastropods were observed, respectively, regardless of sewage concentration 

(Penha-Lopes et al., accepted-a; accepted-b). 

 

2. Materials and methods 

2.1 Experimental setup 

A mesocosm system consisting of 18 cells (9 m2 each) was constructed at the upper 

Avicennia marina (Forsk.) belt of the Jangwani mangrove forest near Dar es Salaam, 

Tanzania (see system description at Penha-Lopes et al., accepted-b). Six cells were either 

kept as unvegetated controls (bare), planted with Rhizophora mucronata Lam. or A. marina 

(Forsk.) mangrove trees. Sediment was established and saplings planted (at a density of 2.8 

m-2) on selected cells in early February 2006. Epifauna was introduced to all cells in late 

August 2006. Males and females of the two most abundant fiddler crab species in the area 

(Uca annulipes and U. inversa) were introduced at a total density of 18 crabs m-2, while the 

common mangrove gastropod, Terebralia palustris (Linnaeus, 1767) was established at a 
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density of 5 ind. m-2. The fauna was randomly collected from the Kunduchi mangrove forest 

immediately prior to introduction. The system was initially inundated exclusively with seawater 

and sewage loading was initiated in early October 2006. Sewage was mixed with natural 

seawater to obtain a loading of 60%. A diurnal tidal rhythm was simulated with 12 hour 

inundation to 0.1 m depth starting at 23:00. The basic chemical and biological characteristics 

of sewage-seawater mixtures are presented in Tables 1 and 2 (adapted from PUMPSEA, 

2008). A. marina and R. mucronata were 50.30±1.17 and 55.3±0.5 cm (±SE) tall, respectively, 

and litter fall from the young trees was absent when sewage discharge was initiated. They 

grew to 223.9±18.0 and 133.0±13.2 cm, respectively, with litter fall rates of 1.2 ± 0.2  and 2.8 

± 0.7 g DW m-2 day-1 (for A. marina and R. mucronata, respectively) in October 2007 

(PUMPSEA, 2008)  

 

Table 1 - Chemical characteristics and oxygen uptake of the sewage-sea water mixtures used 
in the experimental mesocosms. (DO: Dissolved Oxygen) (n = 45). Values are given as 
averages ± SE (adapted from PUMPSEA, 2008). 
 
Sewage 
loading Salinity (‰) DOday 

(µM) DOnight (µM) NH4
+ 

(µM) 
NO3

-
 

(µM) 
PO4

3-
 

(µM) 
0% 39.1 ± 0.6 308 ± 133 197 ± 17 26 ± 2 3.6 ± 1.4 42 ± 4 
60% 18.9 ± 1.4 225 ± 256 9 ± 1 194 ± 17 5.0 ± 1.4 206 ± 14 

 
 
Table 2. Sediment surface chlorophyll-a concentration at different vegetation and sewage 
concentration treatments in April 2007 is shown (n = 12). Values are given as averages ± SE 
(adapted from PUMPSEA, 2008). 
 

 Chl a (µg g-1)  
 0% 60%  

Bare 13.9±3.9 23.1±9.4  
A. marina 5.4±1.1 14.0±3.5  

R. mucronata 8.1±2.7 14.7±7.0  
 
 

2.2 Stable isotopes 

2.2.1 Fauna 

Fauna was sampled before sewage loading was initiated and again after six and twelve 

months (October 2006, April 2007 and October 2007). At each date, two to four male crabs of 

U. annulipes and T. palustris individuals were collected from each cell. To discriminate the 

effects of sewage in the mesocosms, five to ten specimens were collected from 

uncontaminated sites in the Kunduchi mangrove forest concurrently to the samplings in the 

plots. After collection, the animals were immediately transported in cool boxes to the 



Section II 
____________________________________________________________________________ 
 

211 

laboratory where the tissues from the largest claw of each crab and part of the foot muscle of 

each gastropod was removed and immediately freeze-dried and stored at -30 ºC until stable 

isotope analysis. 

 

2.2.2 Sewage, sediment and primary producers 

Three sediment cores (3 cm Ø and 2 cm depth) were collected in each cell at October 2006 

and March and October 2007. A single sample of sewage particulate organic matter (SPOM) 

was obtained from the primary wastewater pond before sewage was discharged into the 

mesocosms. Six mangrove leaves (3 old and 3 new) were randomly picked from different 

trees in each of the planted cells at the 3 sampling periods. Benthic microalgae (BMA) were 

gently scraped off the sediment with surgical blades in March 2007. Sediment, leaves and 

BMA were transport to the laboratory in a cool box. Leaves were subsequently washed with 

distilled water, and dried at 60°C for 72 h, while the sediment and benthic microalgae samples 

were freeze-dried. 

 

2.2.3 Analytical procedures 

All samples were powdered by grinding before analysis. Subsamples of the sediment were 

furthermore acidified with dilute (5 %) HCl to remove carbonates. Concentrations of organic 

carbon, total nitrogen and C/N ratios were determined by combusting pre-weighted 

subsamples in a ThermoScientific Flash1112 elemental analyzer, using acetanilide for 

calibration. 13C and 15N analyses of fauna samples were performed on the same 

subsamples after combustion gases were transferred to a ThermoFinnigan delta V via a 

Conflo III interface. All stable isotope ratios are expressed relative to the conventional 

standards (VPDB limestone for carbon and atmospheric N2 for nitrogen) as:  

3

dardtans

dardtanssample 10
R

RR
X 







 
  [‰] 

where R = 13C/12C or 15N/14N and where X = 13C or 15N . 

IAEA-CH-6 and IAEA N1reference materials were used for normalizing our δ13C and δ15N 

data, respectively, using the single-point anchoring method. 

 

2.2.4 Statistical analysis 

Fauna specimens were collected in October 2006 and March and October 2007, while 

sediment and leaf samples were obtained in October 2006 and October 2007, and microalgae 

at October 2007, due to logistical limitations or absence of sufficient material during those 

campaigns.  Slightly different analyses were done, therefore, on each variable. As the system 
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is considered to be in a steady state in October 2007, carbon and nitrogen stable isotopes 

differences in different ecological compartments (sediment, leaves and BMA) were analysed 

using a 2-way ANOVA, with sewage as one factor and compartment-vegetation as another 

factor. Statistical analysis between new and old leaves of both mangrove species was done 

using a 3-way ANOVA. The factors were Time x Sewage (3 levels – October 2006, October 

2007 0% and October 2007 60%), mangrove species (2 levels) and leave age (2 levels). 

Stable isotope variation in biota was analysed using 3-way ANOVA. The factors were time (3 

levels), vegetation (3 levels) and sewage (2 levels). All factors were fixed and orthogonal. 

Prior to analyses, the assumption of homogeneity of variances was tested using Cochran’s 

test. When significant differences were detected, post-hoc SNK tests were used to identify 

differences.  

 

3. Results 

Nutrient concentrations in the water column increased with increasing sewage loading, while 

salinity and dissolved oxygen decreased (Table 1). Chlorophyll-a concentration (as an 

indicator of microalgae biomass) in surface sediment increased with sewage dosing and 

decreased with vegetation cover (Table 2). Sewage discharge resulted in an increase of 15N 

in almost all mangrove compartments (sediment, MBA, as well as macrofauna) except for leaf 

tissues, while it had little effect on 13C signatures (Figure 1). 

 

3.1 Primary producers and sediment 

Sewage SPOM obtained from the primary wastewater pond showed a δ13C signature of -22.6 

‰, and was relatively depleted in 15N (5.0 ‰). No significant changes in 13C values of 

mangrove leaf tissues were observed during the 12 months sewage exposure from October 

2006 to October 2007 compared with seawater exposure, but old leaves slightly enriched in 
13C (-27.2±0.3 and -26.3±0.9‰, respectively) compared to new leaves (-28.0±0.3 and -

28.0±0.5‰, respectively) (Table 3). Sediment TOC and TN (Table 4-A) showed a striking 

difference at the beginning and end of the experiment, with values on average 1.8 and 2.3 

times higher after 12 months of experiment (at 0% and 60% sewage concentrations, 

respectively for both carbon and nitrogen). Although an increase in TOC and TN was clearly 

observed mainly in cells subjected to sewage discharge, the C/N ratios remained similar with 

large variability. 
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Table 3. –Results of 3-way ANOVA of 13C and 15N leaf signatures among campaigns vs 
Sewage (initial, 12 months 0% and 12 months 60%), mangrove species (A. marina and R. 
mucronata) and leaf age (old and new) conditions. DF = degrees of freedom; MS = mean 
square; F = F statistic. Cochran’s C = 0.08 (13C) and C = 0.11 (15N). n = 3 
 

 13C  15N 

Source DF MS F  DF MS F 
Time - Sewage – Ti-Se 2 0.4391 0.52  2 106.372 9.19** 

Vegetation – Ve 1 0.0400 0.05  1 1422 122.86** 
Age – Ag 1 101.124 11.96**  1 52.212 4.51* 

Ti-Se X Ve 2 11.750 1.39  2 28.261 2.44 
Ti-Se X Ag 2 0.3547 0.42  2 41.769 3.61* 

Ve X Ag 1 14.884 1.76  1 96.410 8.33** 
Ti-Se X Ve X Ag 2 0.1643 0.19  2 58.772 5.08* 

RES 24 0.8458   24 11.575  
TOT 35    35   

 * p < 0.05 
** p < 0.01 
 
 

The 13C signature of sediment POC exposed to seawater, regardless of vegetation condition, 

decreased slightly during the 12 months and exhibited a value of -18.7‰ in October 2007, 

which was similar to that of BMA (-18.5‰) and more enriched (p<0.001) than leaf tissue 

signatures of both mangrove species (Figure 1). However, sediment 13C signatures under 

sewage exposure exhibited lower values in planted (-19.4 ‰ and -21.4 ‰ for R. mucronata 

and A. marina respectively) than bare cells (-17.9 ‰) due to litter fall in the planted cells, 

although differences were not statistically significant (Table 5).  

There was considerable variability in 15N signatures of mangrove leaves, with a 

significant effect of both time-sewage exposure, mangrove species and leaf age (Table 3). 

Post-hoc SNK tests revealed that 15N of A. marina (8.9±0.5‰ as an average for both new 

and old leaves) was significantly higher than that obtained for R. mucronata (6.1±0.5 and 

3.2±0.8‰ for new and old leaves, respectively). 15N tended to decrease with time, 

particularly in cells loaded with 60% sewage, although no significant differences were 

observed (Figure 1). 

The mean 15N signatures of microalgae under sewage exposure (10-12.6 ‰) was 

significantly higher (p<0.001) than those obtained under seawater exposure (~0.7 ‰). 

Sediment 15N signatures (Table 4-A) followed sewage POM, microalgae and leaf 
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composition. Sediment δ15N increased significantly (Table 5) with time and sewage 

concentration.  

 

Table 4 – Sediment carbon and nitrogen stable isotopes, TOC, TN and C/N ratio at different 
campaigns (0, 6 and 12 months), vegetation (Bare, A. Marina, R. mucronata) and sewage (0 
and 60%) conditions. Values are given as averages ± SE (n=3) 
 
   0% 60% 

   Bare A. marina R. 
mucronata Bare A. marina R. 

mucronata 

13C  (‰)      
 0 -16.5 ± 1.1 -16.5 ± 1.1 -16.5 ± 1.1 -16.5 ± 1.1 -16.5 ± 1.1 -16.5 ± 1.1 
 6 -18.2 ± 0.2 -19.2 ± 1.4 -18.5 ± 0.2 -17.5 ± 0.0 -17.5 ± 0.6 -17.5 ± 0.1 
 12 -18.4 ± 0.2 -19.3 ± 0.3 -18.3 ± 0.5 -17.9 ± 0.4 -21.4 ± 0.9 -19.4 ± 1.2 

15N (‰)      
 0 4.8 ± 1.2 4.8 ± 1.2 4.8 ± 1.2 4.8 ± 1.2 4.8 ± 1.2 4.8 ± 1.2 
 6 4.2 ± 0.6 4.7 ± 1.7 4.8 ± 0.5 7.7 ± 0.6 8.1 ± 0.6 8.1 ± 0.1 
 12 8.5 ± 1.2 8.7 ± 0.4 7.3 ± 0.5 10.1 ± 0.2 9.3 ± 0.8 10.2 ± 1.0 

TOC (%)      
 0 0.30 ± 0.16 0.30 ± 0.16 0.31 ± 0.17 0.31 ± 0.17 0.31 ± 0.17 0.31 ± 0.17 
 6 0.23 ± 0.01 0.20 ± 0.03 0.25 ± 0.01 0.31 ± 0.03 0.34 ± 0.00 0.30 ± 0.01 
 12 0.49 ± 0.04 0.49 ± 0.10 0.65 ± 0.09 0.67 ± 0.09 0.62 ± 0.04 0.78 ± 0.20 

TN (%)      
 0 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 
 6 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.00 0.04 ± 0.01 0.04 ± 0.00 0.04 ± 0.00 
 12 0.05 ± 0.01 0.05 ± 0.01 0.07 ± 0.01 0.08 ± 0.01 0.06 ± 0.01 0.09 ± 0.02 

C/N (mol/mol)      
 0 10.3 ± 1.3 10.3 ± 1.3 10.3 ± 1.3 10.3 ± 1.3 10.3 ± 1.3 10.3 ± 1.3 
 6 10.8 ± 1.0 10.8 ± 2.4 10.0 ± 1.1 9.4 ± 0.1 10.5 ± 1.0 9.9 ± 0.6 
  12 11.0 ± 0.2 11.2 ± 0.4 10.6 ± 0.2 9.3 ± 0.3 11.4 ± 0.3 10.7 ± 0.3 

 

3.2 Primary consumers 

SI signatures of crabs and gastropods in the Kunduchi mangrove forest bordering the 

Jangwani mesocosm system (13C of -16.0±1.3‰ and -22.5±0.7‰, and 15N of 5.6±0.6‰ and 

4.8±0.2‰, respectively) showed no significant variation throughout the year (Figure 1). 

Fiddler crabs in cells exposed to seawater showed similar SI signatures to those living in the 

wild (-16.2±0.8‰ and 6.8±1.4‰ for 13C and 15N, respectively) regardless of vegetation 

conditions, except in October 2007 where 15N was significantly (p<0.05) higher (8.7±0.7‰) 

(Table 4-B). 
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Figure 1 - Plot of 13C and 15N of sediments, leaves, benthic microalgae (BMA), Terebralia 
palustris (foot muscle) and Uca annulipes (claw muscle) under different vegetation and 
sewage concentration conditions. Values are given as mean ± S.E (n = 3-9). Red colour 
mean samples from 60% sewage concentration plots, while grey from pristine plots (0%). 
Fauna and flora samples are indicated as “O” at time zero, “□” at time 6 months and “∆” at 
time 12 months. Sediment data is given for time zero (□ – indicated with a line) and 12 
months (∆). 
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Table 5 – Summary of 3-way ANOVAs for A) Sediment, B) crab and C) gastropods 13C and 
15N signatures among campaigns (0, 6 and 12 months), vegetation (Bare, A. Marina, R. 
mucronata) and sewage (0 and 60%) conditions. DF = degrees of freedom; MS = mean 
square; F = F statistic. A) Cochran’s C = 0.35 (13C) and C = 0.14 (15N); B) Cochran’s C = 
0.13 (13C) and C = 0.15 (15N); C) Cochran’s C = 0.08 (13C) and C = 0.11 (15N). n = 3 
 

A 13C  15N 

Source DF MS F  DF MS F 
Time - Ti 2 312117.0 44.59**  2 824.817 96.41** 

Vegetation – Ve 2 38117.0 5.45**  2 0.0217 0.03 
Sewage – se 1 0.0817 0.12  1 390.150 45.60** 

Ti X Ve 4 20817.0 2.97*  4 0.4442 0.52 
Ti X Se 2 46717.0 6.67**  2 130.050 15.20** 
Ve X Se 2 0.3617 0.52  2 0.6050 0.71 

Ti X Ve X Se 4 13067.0 1.87  4 0.7025 0.82 
RES 36 0.7000   36 0.8556  
TOT 53    53   

        
B 13C  15N 

Source DF MS F  DF MS F 
Time - Ti 2 8.82 15.27**  2 1.65 2.36 

Vegetation – Ve 2 17.00 29.43**  2 117.26 167.52** 
Sewage – se 1 1.04 1.80  1 206.50 295.01** 

Ti X Ve 4 6.13 10.62**  4 2.33 3.34* 
Ti X Se 2 0.40 0.70  2 0.90 1.29 
Ve X Se 2 6.92 11.98  2 61.75 88.22** 

Ti X Ve X Se 4 1.94 3.37  4 3.85 5.5** 
RES 36 0.57   36 0.7  
TOT 53    53   

C 13C  15N 

Source DF MS F  DF MS F 
Time - Ti 2 230017.0 18.32**  2 15.650 2.52 

Vegetation – Ve 2 192267.0 15.31**  2 646.550 103.91** 
Sewage – se 1 187267.0 14.92**  1 558.150 89.70** 

Ti X Ve 4 16992.0 1.35  4 37.525 6.03** 
Ti X Se 2 47017.0 3.74*  2 10.850 1.74 
Ve X Se 2 76467.0 6.09**  2 188.750 30.33** 

Ti X Ve X Se 4 17292.0 1.38  4 0.4525 0.73 
RES 36 12556.0   36 0.6222  
TOT 53    53   

        
 * p < 0.05  ** p < 0.01 
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Gastropods in seawater cells showed slightly (-17.8±0.9‰) or distinctly (-20.0±0.7‰) higher 

13C values under planted or bare conditions, respectively, compared with individuals from the 

wild. The 15N signature of gastropods increased significantly from October 2006 (4.5±0.3‰) 

to October 2007 (8.4±0.3‰) under bare conditions, while the increment was low (from 5.5 to 

6.7‰) under planted condition (Table 4-C).  

Fiddler crabs and gastropods kept under sewage exposure for 6 and 12 months were 

substantially enriched in 15N compared to those obtained from seawater exposure or in the 

wild. 15N of T. palustris ranged from 8.7 to 12.0‰ and were always slightly lower than for U. 

annulipes (11.4 to 14.3‰). While in most treatments both species tended to increase their 

15N signature with time, at A. marina mesocosms, a slight decrease was observed for 

gastropods (from 9.8 to 8.9‰) and crabs (from 14.3 to 11.7‰). Planted mesocosms exposed 

to sewage only showed a decrease in 13C after 6 months for both species. The change was 

more pronounced for fiddler crabs (-13.8 to -19.5‰) than for gastropods (-17.8 to -18.8‰). 

 

4. Discussion 

4.1 Primary producers and sediment 

Mangrove plants, such as benthic microalgae and mangrove trees, have the potential  to strip 

nutrients efficiently from wastewater (e.g., Tam and Wong, 1989; Lau et al., 1997; Wu et al., 

2008). Microalgae are particularly interesting in this context because they assimilate DIN 

directly from water column, which makes them reliable indicators of nutrient removal (Cole et 

al., 2004; Cole et al., 2005). Furthermore, due to the rapid turnover of microalgal biomass, 

their elemental composition reflects any changes in wastewater composition swiftly. BMA 

incorporate carbon into their tissues by assimilating bicarbonate (Michener and Lajtha, 2007). 

Although SPOM was enriched in 13C, the 13C signature of BMA was not influenced by 

sewage exposure in our study and maintained values commonly found in natural mangrove 

areas (approximately ~ 17‰, Bouillon et al. 2008). Conversely, sewage exposure resulted in 

a significant increase of the BMA 15N signature, reaching values above 10‰. Values 

between 10 and 25‰ are commonly observed for microalgae subjected to sewage-derived 

nitrogen (Costanzo et al., 2001; Cole et al., 2004; Pitt et al., 2009). Although in the present 

study only sewage SPOM data is available, it is predicted that sewage DIN 15N signature 

would be much higher due to the intensive nitrification and denitrification processes occurring 

in the wastewater pond where sewage is kept for nearly 12h before being discharged into the 

mesocosms (Michener and Lajtha, 2007). 

Mangrove trees, on the other hand, have slower biomass turnover and the 15N 

signature of tissues represents N acquired over time scales of growing seasons (Fry et al., 
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2000). Furthermore, mangrove trees may to a large extent obtain DIN from ground water and 

porewater deep in sediments via their extended root system (Boto et al., 1985; Alongi, 1996). 

The use of mangrove tree stable isotope signatures as environmental markers have therefore 

provided mixed results (Fry et al., 2000; Cole et al., 2004; Pitt et al., 2009, and present study). 

The 15N signatures of mangrove tissues at initial conditions in our study are at the higher 

range (-22 to 20‰) found in natural and uncontaminated mangrove areas (France, 1998; 

Bouillon et al., 2002; Bouillon et al., 2008). Low concentration of nutrients in the sediment 

during initial conditions might have increased 15N due to root stimulation of nitrification and 

denitrification and consequently 15N fractionation (Fry et al., 2000; McKee et al., 2002). In any 

case, a slight difference in the 15N signature (nearly 3‰) was found between old and new 

leaves of R. mucronata, which could indicate assimilation of sewage-derived nitrogen by the 

new leaves. However, since mangrove trees may resorb up to 64% of N from senescing 

leaves prior to abscission (Rao et al., 1994), foliar N cannot be used as a short-term proxy of 

the source of tree N (Kolb and Evans, 2002). 

Sediments may act as a sink of N derived from primary treated sewage through the 

burial of microalgae and diffusion of dissolved organic and inorganic nitrogen. However, these 

sources are apparently of limited importance in our mesocosm system as only a small 

increase in sediment 15N (up to 5‰) was observed in sewage exposed cells. The inventory 

of refractory organic matter in these sediments is sufficiently large to prevent a marked 

changes in 15N within the 12 months time scale  

 

4.2 Primary consumers 

Mangrove fiddler crabs and gastropods feed on microphytobenthos, bacteria and mangrove 

detritus (France, 1998; Meziane and Tsuchiya, 2002; Bouillon et al., 2004a; Penha-Lopes et 

al., in press), but these gastropods are also capable of feeding on mangrove leaves (e.g., 

Fratini et al., 2004; Penha-Lopes et al., in press). Similar SI signatures of Uca annulipes and 

Terebralia palustris collected in the wild and in planted mesocosms indicate that both species 

had similar diets irrespective of captivity or sewage treatment as also found by previous 

studies (e.g., France, 1998). Terebralia palustris individuals in bare cells were enriched in 13C 

(13C of ~-18‰) due to a shift in diet towards a larger contribution of microphytobenthos (13C 

of ~-16‰), given the absence of mangrove litter (13C of ~-27‰) in these plots. The 13C 

depletion of T. palustris in planted cells (13C of ~ -20‰) indicates that litter is indeed 

consumed, but the δ13C signatures still do not reach those observed in the wild (13C of 

~-22‰), which is probably a consequence of the young age and low biomass of trees. 
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The 15N signature of both consumers was significantly higher in sewage exposed 

cells, corroborating that mangrove fauna have a potential as ecological indicators of sewage 

impacted environments (Pitt et al., 2009). Primary producers in sewage impacted aquatic 

systems assimilate nitrogen enriched in 15N, which subsequently lead to higher 15N in 

consumers (McClelland and Valiela, 1998; Cole et al., 2004; Pitt et al., 2009). The higher 

consumer 13C in sewage exposed cells during March 2007 indicates a preferential 

consumption and assimilation of microalgae. The subsequent decrease in the 13C signature 

of gastropods and crabs in planted cells in October 2007 is a consequence of the increase in 

tree biomass (i.e. litter fall) and canopy shading (mainly in A. marina cells). Despite the low 

13C, it is unlikely that fiddler crabs fed directly on mangrove detritus. They probably gained 
13C from microorganisms that have colonized decaying litter (France, 1998).  

The unexpected slight increase in 15N of fauna in the cells that were considered 

isolated from sewage (most evident for T. palustris and U. annulipes in bare and R. 

mucronata mesocosms) indicates a possible contamination. This has subsequently been 

confirmed by the engineers to be due to temporary logistical problems with the piping. 

However, this unintended methodological fault allow us to confirm that 15N signatures of the 

fauna are sensitive for detecting more subtle sewage loadings. 

  The highly sensitive SI signatures of these organisms to pollution may provide a tool to 

get early warnings of an incipient sewage problem before more dramatic effects are evident 

(McClelland et al., 1997; McClelland and Valiela, 1998). Furthermore, fiddler crabs (Cannicci 

et al., 1999) and gastropods (Vannini et al., 2008) show high fidelity to a specific area; 

increasing their competence as a local biomarker (Schlacher et al., 2005). However, care 

should be taken when using T. palustris for this purpose, because it is usually absent in 

anthropogenically impacted mangrove environments (Cannicci et al., 2009) and it may shift 

between diets depending on food source availability (Fratini et al., 2004; Fratini et al., 2008; 

Pape et al., 2008; Penha-Lopes et al., in press). Fiddlers crabs, on the other hand, seem to 

be a better and more reliable choice as they are abundant in peri-urban mangrove forests 

(Cannicci et al., 2009) and are loyal to their food source (i.e. BMA). 

However, the fact that T. palustris chose also to feed on mangrove leaves in planted 

contaminated mesocosms, with high microalgae biomass, is of a great importance to the 

functioning of these constructed wetlands. A large proportion of refractory material (litter) in 

mature wetlands can be processed by these gastropods, known to consume  an average of 

0.65g leaves h-1 (Fratini et al., 2004), and are either assimilated or release in the form of more 

labile substrates through faeces. As a consequence, large accumulations of decaying litter 

are avoided and ecosystem functioning is improved. 
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A decrease in feeding activity due to luxury growth of microalgae in these mesocosms 

contaminated sediments was observed for fiddler crabs (Bartolini et al., accepted; Penha-

Lopes et al., accepted-b), which may potentially lead to establishment of thick “algal mats” 

(Kristensen and Alongi, 2006), causing extended anoxia and sulfidic conditions in near-

surface sediment (Kristensen and Alongi, 2006; Marsden and Bressington, 2009). 

 

5. Conclusion 

Our results confirm the potential use of stable isotopes (SI) as a useful tool to better 

understand food web structure in mangrove constructed wetlands, and provide experimental 

support for the use of 15N signatures as a robust indicator of anthropogenic nutrient inputs in 

different ecosystem compartments. The application of secondary treated sewage increased 

the 15N signatures of both microalgae and sediment organic matter, which was subsequently 

ingested and assimilated by both species of primary consumers. Mangrove leaves, in 

contrast, showed no significant shifts in 15N over the time frame considered here. These 

results suggest that in mangrove sewage treatment facilities, the introduction of macrofauna 

may be important to maintain the natural food web dynamics, thus reducing these systems 

running and maintenance cost. 
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Abstract 

Carbon dioxide and methane production and carbon oxidation pathways were 

evaluated in 4 mangrove mesocosms subjected daily (for 12 h) to seawater mixed with 0% 

(pristine) or 60% sewage (contaminated) in the absence or presence of mangrove trees and 

biogenic structures (pneumatophores and crab burrows). Total CO2 and methane emissions 

increased significantly in sewage contaminated mesocosms, as well as benthic primary 

production. Biogenic structures increased low tide carbon gas emissions at contaminated 

(30%) and particularly pristine conditions (60%). FeR was substituted by SRR when sewage 

was loaded into the cells under unvegetated and planted conditions, while the contribution of 

aerobic respiration to total metabolism remained above 50%. Our results clearly show 

impacts of sewage on the partitioning of electron acceptors in mangrove sediment and 

confirm the importance of biogenic structures for biogeochemical functioning.  

 

Keywords: carbon mineralization, microbial pathways, constructed wetlands, mangrove, 

domestic sewage, biogenic structures 
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1. Introduction 

Mangrove forests represent a productive ecosystem that play a key role for carbon 

and nutrient cycling along many tropical coasts (Duarte et al., 2005; Kristensen et al., 2008a). 

They are sources or sinks of atmospheric CO2 depending on the balance of primary 

production, accretion and permanent storage of organic matter (OM) in sediments, OM 

exported by tides or consumed by both terrestrial and marine species, as well as carbon 

mineralization in sediments and creek waters (Bouillon et al., 2008b; Kristensen et al., 2008a; 

Nagelkerken et al., 2008).  

Carbon oxidation in sediments is controlled by the availability of labile OM and 

electron acceptors (Canfield et al., 2005). Aerobic respiration and anaerobic sulfate reduction 

(SR) are usually the major decomposition pathways in mangrove sediments, while 

manganese  and iron respiration, denitrification and methanogenesis have traditionally been 

considered unimportant (Kristensen et al., 2008a; Alongi, 2009). Low oxygen penetration into 

reactive marine sediments typically favours high importance of SR (Canfield et al., 2005), but 

other anaerobic processes may predominate in mangrove environments depending on factors 

such as sediment grain size, tidal inundation, forest type, organic content, and bioturbation 

intensity (Kristensen, 2000; Alongi, 2009).   

Mangrove sediments are characterized by an abundance of biogenic structures, such 

as tree pneumatophores and infauna burrows. These structures change the biogeochemical 

balance and increase the exchange of gases and solutes several fold, making them important 

conduits that influence carbon dynamics in mangrove forest (Holmer et al., 1999; Kitaya et al., 

2002; Kristensen et al., 2008b). Pneumatophores have open lenticels during air exposure, 

allowing rapid diffusion of gases into (e.g. O2) and from (e.g. CO2 and CH4) deep sediments 

via the air-filled aerenchyma tissue to the atmosphere (Purnobasuki & Suzuki 2004, 2005), 

but can also stimulate SR through root exudates (Alongi, 1998; Kristensen and Alongi, 2006). 

Infaunal burrows, on the other hand, enhance the exchange of gases and nutrients through 

increasing the area of sediment and air/water interfaces as well as transport of labile detritus 

to subsurface layer during bioturbation activities (Kristensen, 1988; 2008; 2008b).  

This way biogenic structures may increase the importance of aerobic and suboxic, 

such as Fe reduction (Nielsen et al., 2003; Kristensen and Alongi, 2006) and denitrification 

(Hansen and Kristensen, 1998; Heilskov and Holmer, 2001; Purvaja et al., 2004) pathways for 

carbon mineralization in subsurface sediments ay the same time that fuel anaerobic carbon 

degradation deep in the sediment (Kristensen, 2000; Ferreira et al., 2007). Also, both 

denitrifying bacteria (Corredor and Morell, 1994; Rivera-Monroy and Twilley, 1996) and 

methanogens (Purvaja and Ramesh, 2001; Hegde et al., 2003; Alongi et al., 2005) can 
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increase significantly their activity at high nutrient and organic loading, coexisting with highly 

productive sulphate reducers (Holmer and Kristensen, 1994a; Lyimo et al., 2002). 

The use of wetlands for processing nutrient and organic-rich wastewater has proved 

effective to prevent coastal pollution in developing countries (Crites et al., 2006). However, 

possible harmful effects due to toxic materials and pathogens in wastewater (Al-Sayed et al., 

2005) and anthropogenic degradation of natural wetlands have forced managers to use 

constructed wetlands (Kivaisi, 2001). In many cases constructed mangrove wetlands have 

proven to be efficient in nutrient filtration (Wu et al., 2008a; Yang et al., 2008), with high 

survival and growth rates of mangrove flora (Wong et al., 1997b; Yang et al., 2008) and 

associated macrofauna (Penha-Lopes et al., accepted-a; Penha-Lopes et al., accepted-b). 

However, a continuous loading of organic rich wastewater at a level above the system 

capacity usually leads to severely reduced O2 penetration (Gray et al., 2002) and OM 

accumulation in sediments (Holmer and Kristensen, a; b; Valdemarsen et al., in press-a) 

which may induce negative effects on sediment associated flora and fauna due to stimulated 

SR and toxic sulfide accumulation (Hargrave et al., 2008). Studies on nutrient filtration 

efficiency of constructed wetlands for wastewater treatment have so far only focused on the 

behaviour of plants and/or microorganisms for periods shorter than 2 years (Wong et al., 

1995; Stottmeister et al., 2003; Wu et al., 2008b), while macrofauna and associated 

biogeochemical functioning have been ignored. 

Knowledge on the ecological response of mangrove sediments to urban sewage 

emissions is urgently needed and this study aims to improve the understanding of direct and 

indirect effects of severe sewage contamination. This manuscript focuses on carbon gas (i.e. 

CO2 and CH4) emissions under immersion and emersion periods, with special emphasis on 

the importance of biogenic structures (pneumatophores and crab burrows), as well on the 

most important carbon oxidation pathways used. Both these processes are important to fully 

comprehend the effects of organic discharge on mangrove forests and to provide basic 

knowledge for future development of sustainable mangrove wastewater wetlands. We also 

provide rough net budgets of carbon gas emission in constructed mangrove wetlands under 

different sewage and vegetation treatments and discuss the long-term implications for the 

ecosystem functioning and health. 
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2. Materials and methods 

2.1 Experimental setup 

A mesocosm system consisting of 4 cells (9 m2 each) was constructed at the upper 

Avicennia marina (Forsk.) belt of the Jangwani mangrove forest near Dar es 

Salaam,Tanzania (see system description in Penha-Lopes et al., accepted-a). The 4 cells 

were divided according to “vegetation” treatment, with 2 unvegetated cells and 2 cells planted 

with A. marina saplings. Sediment was laid and saplings planted (at a density of 2.8 m-2) on 

selected plots in early February 2006. The system was initially inundated exclusively with 

seawater and secondary sewage loading was initiated in early October 2006. One replicate 

was assigned per sewage loading for each vegetation treatment. Secondary sewage was 

mixed with natural seawater to obtain loadings of 60%. A diurnal tidal rhythm was simulated 

with 12 hour inundation to 0.1 m depth starting at 23:00. The basic chemical characteristics of 

sewage-seawater mixtures are presented in Table 1. Avicennia marina trees were 50.3±1.2 

cm (±SE) tall and litter fall from the young trees was absent when sewage discharge was 

initiated. They grew to 107.8±7.8 cm with litter fall of 1.17±0.20 g m-2 day-1 in April 2007 

(PUMPSEA, 2008). 

 

2.2. Epifauna and biogenic structures 

Mangrove epifauna was introduced to each cell in August 2006. Two of the most 

abundant crab species found in Indo-Pacific mangrove forests, Uca annulipes (H. Milne 

Edwards, 1837) and U. inversa (Hoffmann, 1874) populated the mesocosms (approximately 

20 crabs m-2). Fauna density, abundance of biogenic structures (pneumatophores and 

burrows) and burrow morphology at the time of the present measurements were obtained 

(Table 2) from parallel studies (PUMPSEA, 2008; Penha-Lopes et al., accepted-b). Although 

other macro (e.g., gastropods, polychaetes and pligochaetes) and meiofauna were registered 

at the mesocosms, no differences on biomass and diversity were found between mesocosms 

at different sewage concentrations and vegetated conditions (Penha-Lopes et al, unpublished 

data). 

 

2.3 Sediment Properties 

Triplicate sediment cores (5 cm i.d.) from each mesocosm cell were sliced into 0–2, 4–

6, 8-10 cm depth intervals and analyzed for organic content (loss on ignition, LOI) in February 

2007. Simultaneously, 9 cores for determination of sediment density and water content was 

sliced into 0-1, 1-2, 2-3, 3-4, 4-6, 8-10, 12-14 cm depth intervals. Water content was 

determined from water loss upon drying of sediment subsamples at 100°C for 24 h. Wet 
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density was measured as the weight of a known sediment volume. Water content and density 

is presented as average porosity of all examined cells due to limited variability. Organic 

content was determined as weight loss of dried sediment after combustion for 6 h at 520°C. 

Chlorophyll-a (Chl a) content was analyzed only in the surface sediment (0-2 cm) by the 

standard spectrophotometric method (Lorenzen, 1967). Solid phase Fe was determine for the 

same cells in a previous study (Penha-Lopes et al., accepted-b) following the methodology 

described in Kristensen et al (submitted). 

 

2.4. Sulfate reduction assay 

Rates of sulfate reduction were measured by the core injection technique of 

Jørgensen (1978). Three 16-cm-long sediment cores were retrieved from each mesocosm 

cell using 20-cm long and 2.6-cm i.d. core tubes with silicone-filled injection ports. Carrier-free 
35S-SO4

2- was injected at 1-cm intervals to 13 cm depth, and the cores were incubated at 

25ºC with dry surface in darkness for 4–6 h. Subsequently, each core was sliced at 2-cm 

intervals and fixed in 20% zinc acetate. Samples were stored frozen until distillaiton by the 

one step total reduced sulfide extraction described in Fossing and Jørgensen (1989). The 35S 

activity in sediment and distillate was determined by liquid scintillation analysis, and sulfate 

reduction rates were determined from the relative activity of 35S recovered in the distillate.  

 

2.5. Anoxic sediment incubations 

The vertical distribution of total anaerobic microbial CO2 production (TACP) and 

respiratory Fe(III) reduction was determined in sediment from all treatments. Three sediment 

cores (8 cm i.d.) were sliced into 0-2, 2-4, 8-10, 12-14 cm depth intervals. Sediment from 

each depth was rapidly homogenized and transferred into 8 glass scintillation vials (jars), 

which were capped with no headspace, taped to prevent oxygen intrusion and incubated in 

the dark at 28C. Every 7 days two vials from each depth were sacrificed for determination of 

changes in dissolved CO2 and reactive Fe pools. Sediment was transferred to double 

centrifuge tubes and porewater was obtained by centrifugation (10 min, 1500 rpm). Samples 

for CO2 were preserved with HgCl2 and analyzed as soon as possible using the flow 

injection/diffusion cell technique of Hall & Aller (1992). Furthermore, solid phase particulate 

iron pools were determined on jar sediment as described above. Reaction rates in jars were 

calculated as the slope of the linear fit of concentration versus time.  

 

2.6. Denitrification assay. 

Rates of denitrification during immersion were measured in April 2006 using the 15N 
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isotope pairing technique on intact sediment cores (Nielsen, 1992). Ten undisturbed sediment 

cores from each cell were adjusted to ~10 cm height and placed in groups of 5 into 2 tanks. 

After stabilization overnight, one tank was exposed to light and the other was kept in 

darkness. The denitrification assay was initiated by amending the water of each tank with 
15NO3

- (99.2% 15N, Sigma-Aldrich) to a final concentration of ~60µM. The water above the 

cores was mixed manually to ensure homogeneous distribution of tracer. About 15 min later, 

the core tubes were sealed gas tight either with rubber stoppers or transparent lids for dark 

and light incubations, respectively.  After incubation for 3 to 5 h (O2 did not change more than 

20% from air saturation), sediment and water column in each core were mixed completely 

with a PVC rod. Duplicate 20 ml samples of the resulting slurry were transferred to gas-tight 

vials (12 ml Extainers, Labco), preserved with formaldehyde (100 µL, 38%) and sealed 

ensuring no entrapped air. 15N content of N2 was analyzed using combined gas 

chromatography/mass spectrometry (Robo-Prep-G1 in line with Tracermass, Europa 

Scientific) as described by Risgaard-Petersen and Rysgaard (1995). Denitrification rates were 

calculated from 29N2 and 30N2 production rates as described by Nielsen (1992). 

 

2.7. CO2 and CH4 exchange across the sediment-water/air interface 

 Exchange of carbon gases across the sediment-water interface (TCO2) and over air 

exposed bare (without biogenic structures) sediments (TCO2 and CH4) were determined in 

mesocosm cells following the techniques described in detailed by Kristensen et al (2008b). 

Three of the cores were left exposed to sunlight to determine net primary production (NPP) 

and three cores were darkened with aluminium foil to determine respiration (RSP) at pristine 

and contaminated sediment at both planted and unplanted conditions. The CO2 fluxes were 

also determined in deployments on exposed sediments (emersion) with one crab burrow and 

sediment with 3 pneumatophores of Avicennia marina. Occasionally, sediment–air methane 

emissions were tested simultaneously with the in situ CO2 exchange measurements in 

selected mesocosms. In this study we designate the carbon release from sediment at 

emersion periods as CO2, while wet flux and jar accumulation of dissolved inorganic carbon is 

considered as TCO2 and TACP, respectively. 

 

2.8. Epifauna respiration 

The respiratory CO2 release by fiddler crabs (both Uca species) and gastropods were 

determined from laboratory incubations at in situ temperature using the LI-6400 equipment 

and technique described in Kristensen et al (2008b). A group of 30 different sized (0.4 to 8 g 

wet weight) fiddler crabs of each species and sex, and 30 gastropods (2 to 45 g wet weight) 
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were caught randomly at the Kunduchi mangrove forest and immediately brought to the 

laboratory. 

 

2.9. Statistical analysis 

Gas fluxes were tested using 2-way ANOVA, except for denitrification where a 3-way 

ANOVA was used. When relevant, the ANOVA’s were followed by a Bonferroni test or SNK to 

find differences between treatments. A significance level of α = 0.05 was used in all ANOVA 

tests, unless otherwise stated. 

 

3. Results 

3.1 Water and sediment characteristics 

Nutrient concentrations increased with increasing sewage loading, while salinity and 

dissolved oxygen decreased (Table 1). The daily variation in top sediment temperature was 

similar in all treatments. The temperature was constant at around 27ºC at night and increased 

at dawn (7:00) to reach a maximum of ~37ºC at noon (13:00) followed by a slow but gradual 

decrease back to the night time level. In all cells porosity ranged from 0.35 to 0.47, except for 

high porosity of 0.66 in the 12-14 cm depth interval (Figure 1). Organic content was constant 

with depth in the upper 10 cm of the sediment in all treatments and ranged from 0.9 to 1.9 % 

(Figure 1). In non-contaminated cells Chlorophyll-a concentration in the top sediment was 

13.9 ± 3.9 µg g-1 in unvegetated and 5.4 ± 1.1 µg g-1 in A. marina vegetated treatments, and 

in the 60% sewage treated cells the corresponding values were 23.1 ± 9.4 and 14.0 ± 3.5 µg 

g-1, respectively, increasing then with sewage dosing and decreasing with vegetation cover. 

Solid phase iron profiles differed among treatments (Figure 2). Total iron differed 

according to vegetation, and when integrated to 14 cm depth total iron was ~250 and 100-140 

µmol cm-3 in vegetated and non-vegetated sediment, respectively, irrespective of 

contamination level. Fe(II) always dominated in contaminated cells occasionally exceeding 20 

µmol cm-3, decreasing with depth at unvegetated but remained constant below 5 cm at 

planted treatments, while Fe(III) never exceeded 10 µmol cm-3 and was almost absent below 

2 cm depth irrespective of vegetation. In non-contaminated cells, however, the distribution of 

Fe(II) and Fe(III) appeared constant with depth, and a much higher importance of Fe(III) was 

observed (Fe(III) was on average 90 and 40 µmol cm-3 non-vegetated and vegetated cells, 

respectively).  
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Table 1 - Chemical characteristics of the sewage-sea water mixtures used in the experimental 
mesocosms from October 2006 to April 2007. (DO: Dissolved Oxygen) (N = 45). Values are given 
is averages ± SE (adapted from PUMPSEA, 2008). 
 
 

Sewage 
loading 

Salinity 
(‰) 

DOday 
(µM) 

DOnight 
(µM) 

NH4
+ 

(µM) 
NO3

-
 

(µM) 
PO4

3-
 

(µM) 
0% 39.1 ± 0.6 308 ± 133 197 ± 17 26 ± 2 3.6 ± 1.4 42 ± 4 
60% 18.9 ± 1.4 225 ± 256 9 ± 1 194 ± 17 5.0 ± 1.4 206 ± 14 

 

 

Figure 1 – Vertical profiles of A. initial sediment porosity in mesocosms (October 2006) and B. 
organic matter (loss on ignition, LOI) under both vegetation (A. marina vegetated (Av) and 
non vegetated (Nv)) and sewage loading conditions (February 2007). Values are given as 
mean ± S.E (n = 3). Adapted from Penha-Lopes et al (accepted-b) 

 

 

Figure 2 – Vertical profiles of solid phase 
iron under both vegetation (A. marina 
vegetated (Av) and non vegetated (Nv)) and 
sewage loading conditions. Values are 
given as mean ± range (n = 2). 
 

 

 

 

 

 

 

 

 



Section II 
____________________________________________________________________________ 

235 

3.1 Carbon mineralization pathways 

 Anaerobic respiration processes, sulfate reduction (SRR) and iron reduction (FeR), 

were determined independently and total anaerobic CO2 production (TACP) and FeR was 

assessed from the same jar incubations. TACP was clearly affected by sewage amendment 

(Figure 3 - upper). TACP ranged from 117-667 nmol cm-3 d-1 in non-contaminated sediment 

and was 386-939 nmol cm-3 d-1 in contaminated sediment. On average sewage amendment 

increased TACP by 58 to 330% in unvegetated sediment, mainly in the 12-14 cm depth 

interval, while the corresponding TACP enhancement of 87 to 150% in vegetated sediment 

was primarily observed in the uppermost sediment layers (1-2cm). 

 SRR also showed a clear and significant response to sewage loading, mainly in the 

upper 5 cm of the sediment (Figure 3 - mid). SRR was < 30 nmol cm-3 d-1 in non-contaminated 

sediments, but was generally stimulated to >> 100 nmol cm-3 d-1 in the top 4 cm of 

contaminated sediments. Below 4 cm depth SRR resembled non-contaminated sediment 

(~25 nmol cm-3 d-1, vegetated cells) or was significantly higher (>75 nmol cm-3 d-1, non-

vegetated cells). 

 The trend was opposite for FeR (Figure 3 - lower) where non-contaminated sediments 

showed highest rates of FeR in the upper 10 cm (0.8 and 0.45 µmol cm-3 d-1 in unvegetated 

and vegetated sediment), roughly twice as high as FeR in the corresponding contaminated 

sediment (0.5 and 0.2 in unvegetated and vegetated sediment). Below 10 cm depth FeR rates 

were similar in all treatments. The very low value at 3 cm depth in contaminated unvegetated 

sediment is considered an outlier. Overall, the presence of trees appeared to decrease FeR in 

both non-contaminated (up to 92%) and contaminated treatments (by 32 to 75%). 

 Denitrification was strongly affected by the interaction of vegetation, sewage and light 

exposure (p<0.001). In contaminated sediments denitrification rates in the dark (400 to 550 

µmol m-2 d-1) were stimulated nearly 10 times when compared to non-contaminated sediments  

(30 to 50 µmol m-2 d-1), for non-vegetated and vegetated sediments, respectively (Figure 4). 

Light exposure positively stimulated denitrification in all treatments, leading to denitrification 

rates of ~2800 and 1900 µmol m-2 d-1 in non-vegetated and vegetated contaminated 

sediments, respectively. The corresponding rates in non-contaminated cells were more than 

one order of magnitude lower, and similar values were obtained between light and darkness 

and both vegetation conditions (ranging from 33 to 88 µmol m-2 d-1). 

 Depth profiles of TACP was generally higher than the estimated sum of SRR, FeR and 

denitrification (assumed to occur only in the upper 2 cm) when converted to carbon units 

(SRR x 2 = CO2 production; FeR/4 = CO2 production; Den = 4/5 CO2) (Table 2). TACP was 20 

to 2000% higher than the sum of individual anaerobic processes, except for unvegetated non-
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contaminated sediment where TACP was 20 and 50% lower at 8 and14 cm depth, 

respectively. In any case, FeR was the most important measured contributor to TACP in non-

contaminated sediments, while SRR dominated TACP in contaminated sediments.  

 

 

Figure 3 - Vertical profiles of 
anaerobic CO2 production 
(upper); sulfate reduction (SRR, 
mid); and iron reduction (FeR, 
lower) in 0 and 60% sewage 
treated sediments. Results are 
shown for sediment from A. 
marina vegetated (Av) and non 
vegetated (Nv) cells. Values are 
given as mean ± SE (n=3). () 
indicates an outlier. 
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Figure 4 - Denitrification by the 
sediment in 0 and 60% treatments 
with different vegetation types (Av – 
A. marina; B – non-vegetated). 
Rates are given for light and dark 
conditions. Values are given as 
mean ± SE (n=2-3). 
 

 

 

 

 

3.2 CO2 exchange across the sediment-water/air interface 

The sediment-water exchange of TCO2 was not influenced by plants but was significantly 

enhanced by sewage (Figure 5 - upper). Sewage exposure increased the dark TCO2 efflux 

(respiration: RSP) by a factor of four (p<0.05) from 25 to 104 mmol m-2 d-1 in non-vegetated 

cells and a factor of two (although statistically insignificant) from 33 to 62 mmol m-2 d-1 in 

vegetated cells. Benthic net primary production (NPP) during inundation was not influenced 

by the presence of plants, since CO2 uptake rate in the light ranged from 11 to 34 mmol m-2 

d-1 under pristine conditions and increased significantly (p<0.01) for contaminated sediments 

to 136 to 301 mmol m-2 d-1 in non-vegetated and vegetated cells, respectively.  

 

Table 2 - Depth integrated (0-14 cm) total anaerobic CO2 production (mmol m-2 d-1) in jar-
experiments as well as depth integrated FeR and SRR based CO2 production. “Other” 
represents unaccounted CO2 from jars, which supposedly is aerobic respiration. Values 
represent a 24 h cycle emission (emersion / immersion during dark period). Numbers in 
parenthesis indicate percent contribution to total CO2 production. (For integrated calculations 
average values from 4-6 accounted for 4-7cm, 8-10 for 7-11cm, and 12-14 for 11-14cm 
depth) 
 
Process Unvegetated Vegetated 
 0% 60% 0% 60% 
Total Jar CO2 prod 44 89 72 97 
FeR  CO2 prod 25 (57) 18 (20) 13 (18) 7 (7) 
SRR  CO2 prod 5 (11) 26 (29) 5 (7) 18 (19) 
Other (aerobic!?) 13 (30) 47 (53) 54 (75) 69 (71) 
CO2 flux 31 167 48 103 
CO2 jar / CO2 flux 1.41 0.53 1.5 0.94 
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Gross primary production (GPP = RSP – NPP) was similar in planted and unplanted 

mesocosm cells. However, under pristine conditions GPP ranged from 45 to 60 mmol m-2 d-1 

while under 60% sewage treatment the rates were 4.3 to 6.7 times higher (p<0.05) for 

unvegetated and planted conditions, respectively. 

CO2 emissions from exposed and darkened sediment to the atmosphere (RSP) were 

greatly increased (p<0.05) by sewage exposure from 6-14 to 42-62 mmol m-2 d-1, while 

vegetation had no significant effect (Figure 5 - lower). RSP was nearly 10 times higher in 

contaminated (62 ± 14 mmol m-2 d-1) than non-contaminated (6±1 mmol m-2 d-1) cells for 

unvegetated mesocosms (p<0.01). In vegetated cells CO2 emmissions were not significantly 

stimulated by sewage amendment, although the average CO2 emission was ~3 times higher 

in contaminated cells (14 ± 6 and 42 ± 3  mmol m-2 d-1 in non-contaminated and contaminated 

sediment, respectively). RSP of air-exposed sediment was similar in rates and pattern to that 

of inundated sediment. Benthic net primary production (NPP) in exposed non-contaminated 

sediment was similar regardless of vegetation (~0.5 ± 1.5 mmol m-2 d-1). NPP in non 

vegetated contaminated sediment was significantly stimulated (p<0.001) by sewage 

amendment and was 61 ± 10 mmol m-2 d-1. However, in vegetated contaminated cells, a 

surprising light CO2 emission was observed (3.9 ± 1.4 mmol m-2 d-1), which was only different 

(p<0.001) from that measured in unvegetated 60% cells. Furthermore, in exposed sediment 

there was significant interaction between vegetation and sewage contamination (p<0.001). 

Gross primary production was greatly enhanced (p<0.05) in unvegetated contaminated cells 

(~123 mmol m-2 d-1) when compared with the other treatments (6 to 38 mmol m-2 d-1).  

 

Figure 5  – Sediment-Water (S-W) and Sediment-Air (S-A) 
fluxes of CO2 in unvegetated (solid and open bars) and 
Avicennia marina vegetated (hatched bars) cells exposed to 
0 and 60% sewage loading in the dark (RSP – black 
background) and in light (NPP – white background). Notice 
the difference in scaling between upper and lower panels. 
Values are given as mean ± SE (n=3).  
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CH4 emissions were generally 2-3 orders of magnitude lower than CO2 emissions. CH4 

emission during air exposure was similar in unvegetated and vegetated non-contaminated 

sediments (34.8 to 53.7 µmol m–2 d–1) but increased significantly (p<0.05) 8 to 10 times in 

contaminated sediments (Figure 6). Furthermore, one test deployment showed dramatically 

increased CH4 emissions up to 6000 µmol m–2 d–1.in sediments with biogenic structures (A. 

marina pneumatophores, ~400 m-2). 

 

 
Figure 6 - Emission of CH4 from unvegetated (Nv - open bars) and Avicennia marina 
vegetated (Av - solid bars) sediment exposed to 0 and 60% sewage loading in the darks. 
Values are given as mean ± SE (n=3) 
 

3.3 CO2 emissions by pneumatophores, burrows, crabs and gastropods 

Emission of CO2 was enhanced considerably by the presence of pneumatophores and 

burrows (Figure 7). The measured rates of CO2 release from chamber deployments with 

Avicennia marina pneumatophores in pristine and contaminated cells were 17 to 5.7 times 

higher, respectively, than across the bare sediment surface (p<0.001). CO2 emission in 

deployments with burrows was increased 5.6 in non-contaminated sediment (p<0.01) and 2.9 

in contaminated sediment (p<0.001). It is important to note, however, that the number of 

pneumatophores and burrows trapped inside the measuring chamber (1 burrow equivalent to 

200 m-2 and 3 pneumatophores equivalent to 600 m–2) was much higher than the abundance 

of biogenic structures in the cells (Table 2). 

 

 

 

 



Chapter 9 
____________________________________________________________________________ 
           
 

240 

 
Figure 7 – Dark emission of CO2 from 
air-exposed sediment in unvegetated 
and Avicennia marina vegetated 
sediment exposed to 0 and 60% 
sewage loading. Rates are shown for 
sediment with 600 Avicennia marina 
pneumatophores m-2 and sediment 
with 200 crab burrows m-2. Values are 
given as mean ± SE (n=3-6) 
 
 
 
 
 
 
 
 
 

 
Table 3 – Abundance of fiddler crabs, gastropods and pneumatophores in mesocosm cells 
with and without vegetation and sewage treatment. Burrow volume and wall surface area data 
are from (Penha-Lopes et al., accepted-a). Values are given as mean ±se (n=3). Na: not 
applicable 

 
 

The estimated CO2 emission per pneumatophore was similar in pristine (0.27±0.08 

mmol pneum.-1 day-1) and contaminated sediment (0.38±0.11 mmol pneum.-1 day-1). By 

multiplying with the average pneumatophore density observed in each treatment (Table 2), 

we obtain an estimate for the increase in CO2 emission due to pheumatophores of 4.1 (29%) 

and 9.5 mmol m-2 d-1 (15%) in non-contaminated and contaminated cells, respectively. The 

average CO2 emissions from individual crab burrows (including animal respiration) were 

within the same range than from single pneumatophores at non-contaminated and 

contaminated conditions (0.23±0.11 and 0.51±0.10 mmol m-2 d-1, respectively). Most burrows 

contained one crab, but this could not be documented since crabs rapidly retreated to their 

burrows when disturbed. No attempts were made to recover the inhabitants, but in many 

cases, they were visible in the burrow opening. We therefore must rely on the estimate of 

        

Vegetation Sewage 
(%) 

Crab 
density 
(m-2) 

Burrow 
density 
(m-2) 

Gastropod 
density 
(m-2) 

Pneumatophore 
density 
(m-2) 

Burrow 
volume 
(cm-3) 

Burrow wall 
surface area 
(cm-2) 

0 12±1 16±1 4±0 n.a 37.91±4.14 27.48±2.17 Unvegetated 60 11±3 14±4 4±0 n.a 41.57±9.55 28.04±4.47 
0 16±1 21±1 4±0 15±1 34.74±2.33 22.73±3.27 Vegetated 60 10±2 13±3 4±0 25±2 47.52±6.57 28.97±2.92 
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Skov et al, (2002) that 81% of all burrows were inhabited. Part of the excess CO2 emission 

from burrows must therefore originate from crab respiration.  

Since crabs inhabiting the sampled burrows were not identified, but average CO2-

production by crabs was described by a power function regardless of crab species and sex 

(Figure 8 - upper). Thus, when using the average weight of all sampled crabs (1.1 g wet wt) 

CO2-production by crabs was 0.16 mmol CO2 ind.-1 d-1. Taking into consideration the crab 

respiration inside the burrow and corrected (subtract) for RSP from a surface area 

corresponding to the burrow opening, CO2 emissions per burrow increased (p<0.001) from 

0.08±0.07 mmol burrow-1 day-1 to 0.39±0.01 mmol burrow-1 day-1 in non-contaminated and 

contaminated cells, respectively. Multiplying these values by the average burrow density in 

each treatment (Table 2), the area-specific burrow wall respiration increased (p<0.05) from 

68.7±57.7 mmol m-2 day-1 in non-contaminated to 312.5±28.2 mmol m-2 day-1 in contaminated 

mesocosms. Dividing the burrow CO2 release by the amount of gas released by an area of 

exposed sediment equivalent to the area of the burrow opening (BOA), a ratio of 44 is 

obtained at non-contaminated conditions. However, since the burrow total surface area 

(BTSA) is only 21 times larger than the BOA, the area-specific burrow wall CO2 release 

appears 2.1 times greater than that of the surface sediment. In contaminated sediments the 

corresponding CO2 flux ratio is 56, resulting in 2.7 times increased area-specific CO2 release 

in the burrow lumen.  

Terebralia palustris respiration also followed a power function when related to body 

weight (Figure 8 - Lower). The  average T. palustris individual (22g wet wt) therefore respired 

0.24 mmol CO2 ind.-1 d-1.Thus when applying the abundance of T. Palustris in the mesocosm 

cells (4 m-2), 0.97 mmol m-2 d-1 CO2 production is attributable to gastropods.. 

The role of the different compartments for CO2 emission in air exposed sediment 

during dark incubations, suggested that the bare sediment surface was responsible for >70% 

of CO2 release in contaminated cells and < 60% in non-contaminated cells (Table 3). Thus 

fauna and crab burrows accounted for up to 40% of the CO2 release in unvegetated cells, 

whereas pneumatophores increased the importance of biogenic structures for CO2 emissions 

by 13 and 16% in planted non-contaminated and contaminated cells, respectively. 
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Figure 8 – Respiratory CO2 production (R) by individual fiddler crabs (Uca spp.) and 
Terebralia palustris as a function of live body weight (M). Values are given as mean ± SE (n = 
100 sequential 10 s measuring intervals). The fiddler crab data contains males and females. 
The regression equation is given. 
 

 

Table 4 - CO2 emission budget in the dark during emersion for both unvegetated and 
Avicennia marina planted sediment exposed to 0% and 60% sewage. Rates are partitioned 
into the contribution of bare sediment, pneumatophores, burrows, crabs and gastropods. 
Terebralia palustris respiration is based on an average animal size of 22 g (0.24 mmol CO2 
ind.-1 d-1), while crab respiration is based on an average size of 1.1 g (0.16 mmol CO2 ind.-1 d-

1). It is assumed that 0.81 crabs were present inside each burrow. Rates are given as mean ± 
SE (mmol m–2 d–1). Numbers in parenthesis are the % contribution of each component. na: 
not applicable. 
 

 Unvegetated Vegetated 
 0% 60% 0% 60% 
Bare sediment 6 ± 1  (60) 62 ± 14 (94) 14 ± 6 (47) 42 ± 3 (70) 
Pneumatophores na Na 4 ± 1 (13) 10 ± 1 (16) 
Burrows 1 ± 1 (10) 1 ± 1 (1.5) 8 ± 2 (27) 5 ± 1 (9) 
Crabs 2 ± 0 (20) 2 ± 0 (3) 3 ± 0 (10) 2 ± 0 (3) 
Gastropods 1 ± 0 (10) 1 ± 0 (1.5) 1 ± 0 (3) 1 ± 0 (2) 
Total 10 ± 1 66 ± 14 30 ± 6 60 ± 3 
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4. Discussion 

4.1 Carbon fluxes 

The exchange of TCO2 across mangrove sediment surfaces devoid of biogenic 

structures represents the net outcome of near surface heterotrophic carbon mineralization 

and carbon fixation by microphytobenthic primary producers (Kristensen & Alongi 2006). 

Benthic respiration (RSP) are comparable to the global average of 61 ± 46 mmol m–2 d–1 

found for mangrove sediments (Bouillon et al., 2008a). While sewage amendment and 

inundation/emersion periods clearly affected RSP in our mesocosm system, there was no 

apparent effect of vegetation on benthic RSP. Even though the saplings of A. marina grew 

well during the 12 month period since February 06, their biomass was apparently insufficient 

to significantly affect microbial pathways and organic matter dynamics. This way the results 

obtained here from vegetated cells should therefore be considered with care with respect to 

the effects of vegetation, especially when trying to extrapolate to mature constructed wetlands 

and forests.  

Alongi (2009) noted higher average CO2 efflux when mangrove sediment are exposed 

to the atmosphere (69 ± 8 mmol CO2 m–2 d–1) than when they are immersed by tides (49 ± 6 

mmol CO2 m–2 d–1), which may be explained by the combination of higher sediment 

temperatures during emersion, faster molecular diffusion in gases than fluids and increased 

surface area for aerobic respiration and chemical oxidation. In contrast, we found a tendency 

towards a ~2 times faster CO2-efflux during immersion than emersion, which could be 

explained by the higher amount of dissolved labile organic matter (secondary treatment or 

seawater) available for decomposition when mesocosms were inundated with seawater - 

sewage mixture. 

The consistently 2 to 4 times higher near-surface microheterotrophic activity observed 

in contaminated than non-contaminated cells, as indicated by higher CO2 release in the dark 

during both inundation and air exposure (Figure 5), is caused by the regular amendment with 

organic matter and subsequent stimulation of microbial heterotrophic activity in these cells. 

Other aquatic systems subjected to massive and continuous organic loading, such as natural 

sediments impacted by fish farming (Holmer and Kristensen, 1992; Holmer and Heilskov, 

2008) and constructed laboratory systems (Valdemarsen et al., in press-a; Valdemarsen et 

al., in press-b), show similar dramatic increases in mineralization rates (2 to 10 times). In this 

experiment, where organic matter content was similar in non-contaminated and contaminated 

mesocosms (Figure 1), it therefore appears that excess benthic metabolism in amended 

mesocosms is primarily driven by organic/nutrient input as opposed to indigenous organic 

matter. Furthermore, the lack of C-accumulation in sewage amended mesocosms indicate 
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that sewage derived organic carbon was either totally or partially mineralized during 

inundation, or lost from system when the water phase was flushed during emersion periods. 

Also, the organic matter deposited or infiltrated in the sediment seems also to be rapidly 

mineralize hampering its accumulation in the sediment, as observed in previous studies 

(Valdemarsen et al., in press-a). 

Stimulated nutrient driven benthic primary production during immersion also 

contributed significantly to the C-loading in contaminated cells, with values 10 times higher 

than at pristine conditions, although benthic Chla concentration was only 2 to 3 times higher. 

The lower primary productivity at inundated pristine mesocosms as well as during emersion 

period at both sewage concentration is probably caused by deficiency/exhaustion of nutrients 

and/or photoinhibition and dessication (Blanchard et al., 2001; Consalvey et al., 2004). We 

have no explanation for the surprising lack of NPP in contaminated planted cells during 

emersion, except for unknown methodological faults or coincidental selection of sites poor in 

microphytobenthos (Colijn and Dejonge, 1984). In any case, GPP was 4.3 to 6.7 times higher 

in contaminated than non-contaminated mesocosm cells. A similar difference was found 

between an anthropogenically impacted (Mtoni) and a pristine (Ras Dege) mangrove forest in 

Tanzania (Kristensen et al., 2008b). 

Methane emission from sediment to the atmosphere in our non-contaminated 

mesocosms was hardly detectable, as observed for most pristine natural mangrove areas 

(Alongi 2009). The higher nutrient and organic loading in contaminated cells stimulated 

methane emissions 8-10 times, which is similar to other organic enriched mangrove 

sediments during oxygen depletion (Purvaja and Ramesh, 2001; Hegde et al., 2003; Alongi et 

al., 2005). However, since CH4 emissions were 2 to 3 orders of magnitude lower than CO2 

emissions in our system, they contribute insignificantly to carbon budgets in sewage amended 

mesocosms (see below). 

 

4.2 The role of biogenic structures 

When measuring CO2 exchange across the sediment-air interface at bare sites, 

measured rates may be underestimates due to the exclusion of biogenic structures 

(pneumatophores and crab burrows) (see Kristensen et al., 2008a).  Transport of gases is 

then largely limited to diffusion across the horizontal sediment–water/air interface. This deficit 

is most pronounced during emersion when gas exchange from deep sediment is enhanced 

through open lenticels of pneumatophores (Allaway et al., 2001) and unplugged fiddler crab 

burrows (De la Iglesia et al., 1994). Under contaminated conditions, the effect of biogenic 

structures on CO2 emissions is decreased due to the high carbon mineralization at the 
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sediment surface (Table 5). In this experiment, pneumatophores increases (13 to 16%) CO2 

emission from air-exposed sediment during darkness (Table 3), but we cannot partition the 

relative contribution of root respiration (Kitaya et al., 2002) and CO2 derived from 

heterotrophic CO2 production in deep sediments (Scholander et al., 1955). Thus, our methods 

may overestimate the importance of pneumatophores for CO2 exchange between sediment 

and air in exposed sediments. However, estimated CO2 emission from A. marina 

pneumatophores in pristine and contaminated cells (0.27 to 0.38 mmol d–1) was comparable 

to rates found by Kristensen et al. (2008b) for pristine and anthropogenic impacted 

mangroves in Tanzania, as well as for 50% taller pneumatophores measured in Japan by 

Kitaya et al. (2002). 

Diffusive CO2 transport from crab burrows to the atmosphere originates from carbon 

mineralization in the deep sediments that diffuses through the burrow walls (Pinder and 

Smits, 1993; Datta, 2005) as well as crab respiration. The contribution from burrows is 

augmented due to the large surface area of burrow walls and enhanced decomposition within 

the burrow lining (e.g., Botto et al., 2006). These processes not only occur during emersion, 

but also during inundation when fiddler crab burrows are plugged. Consequently CO2 must 

accumulate inside inundated burrows, causing a burst of CO2 emission once the crab burrows 

are opened, but this process is unknown and should be considered. In contrast to root 

respiration, crab and burrow respiration is an integrated part of C-budgets as they reflect 

heterotrophic CO2 production (Kristensen & Alongi 2006). Although, crab burrows occurred in 

low abundance in this experiment, they may contributed significantly (2 to 27%) to the total 

CO2 emission (Table 3). 

The CO2 emission rates from single burrows are within the range reported in 

Kristensen et al (2008b) in Tanzanian for ocypodid or grapsid mangrove crabs (0.2 to 0.5 

mmol bur.-1 d-1). However, the presence of sewage increased CO2 emission from individual 

burrows by a factor of 5 times due to stimulated activity along the burrow walls of microbial 

communities known to inhabit these systems (Kristensen et al., 2005). However, the area 

specific CO2 emission by burrow walls was 2 to 3 times larger when compared with sediment 

surface under both pristine and impacted situations. Higher burrow emission values are 

expected if other mangrove crabs are present, such as sesarmids, known to have much 

larger burrows (Berti et al., 2008). 

 

4.3 Carbon mineralization pathways 

Organic loading and biogenic structures also affected major pathways for organic C 

mineralization between treatments and with depth in the sediments (Table 4). The high rates 
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of anaerobic CO2 production in contaminated sediment are typical for environments with a 

continuous input of organic matter (Kristensen et al., 2000). However, there is no consistent 

depth pattern, which may be due to the low depth resolution, considering that the majority of 

the sewage organic matter as well as primary and secondary productivity is mineralized 

explicitly at the sediment surface. Also, is more likely that organic matter lability is 

independent of sediment depth and that the contamination signal reaches to more than 10 cm 

depth. Since only unvegetated sediment with 0% sewage showed a depth dependent 

decrease in CO2 production, tree roots in the vegetated sediment must drive high metabolic 

activity at depth through dissolved carbon exudation (Kristensen and Alongi, 2006). Rates of 

CO2 jar production in our mesocosms are within the lower range observed by Kristensen et al 

(submitted) for pristine and polluted mature mangroves. 

Apart from aerobic respiration (OxR), all other major microbial pathways, such as 

Fe(III) reduction (FeR) and sulfate reduction (SRR) were quantified in this experiment, Since 

total anaerobic CO2 production by jar incubations is considered a measure of total carbon 

oxidation (TACP), carbon oxidation by aerobic respiration should in principle be: OxR = TACP 

– FeR/4 –  2SRR, where FeR and SRR are converted to carbon units using standard 

stoichiometries (Canfield et al. 2005). However, total anaerobic CO2 production in jars was 

much higher than the sum of SRR and FeR, mainly in vegetated mesocosms (Table 4).  This 

must be due to importance of other respiration pathways not quantified in jar experiments. 

However, while denitrification showed to be minor in the present study, manganese and 

methanogenesis have traditionally been considered unimportant in mangrove sediments 

(Kristensen et al., 2008a; Alongi, 2009), leading us to consider that in situ these discrepancies 

could be due aerobic respiration (Table 4). Although these rates must be overestimated, 

although no good explanations can be given at the present moment. it has been shown that 

aerobic respiration is considered one of the most important respiration processes with a share 

of 40 to 50% (see review by Kristensen et al., 2008a). 

FeR was substituted by SRR in contaminated sediment due to the almost complete 

absence of Fe(III) (Figure 2 and 3). Thus, SRR increased particularly in the upper 5 cm of 

contaminated cells, as observed in other sediments where labile organic matter is 

continuously supplied to the sediment surface (Valdemarsen et al 2009). Pneumatophores 

appeared to increase OxR by stimulating O2 diffusion, via the roots, into otherwise anoxic 

sediment (Table 4). This process appears crucial for maintaining Fe(III) for FeR, especially in 

vegetated non-contaminated cells.  
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Table 5 - Calculation overview of daily (24 h) total system carbon gas emission budgets. The table is separated into measured input parameters 
and calculated budget components. Basic assumptions: (a) 1 d has 12 h light and 12 h dark periods; (b) sediment is covered by water 
(immersion period) during half of each 12 h period; (d) (d) abundance of pneumatophores (pneum.) and crab burrows is equal to a crude median 
of all examined cells: 20 and 16 m–2, respectively; (e) burrows contain on average 0.81 crab inhabitants (Skov et al. 2002). Input parameter: time 
= time of day; budget component: time = timing per day 
 

 

 Acronym Calculation/ 
Upscaling Unit Time Tidal Level Data 

Location 
Input parameters       
Sediment emission (immersion) Se-im Measured mmol m-2 h-1 Light/Dark immersion Fig. 3 
Sediment emission (emersion) Se-em Measured mmol m-2 h-1 Light/Dark emersion Fig. 4 
Sediment emission (em) + 3 pneum. PSe Measured mmol m-2 h-1 Light/Dark immersion Fig. 5 
Sediment emission (em) + 1 burrow PBe Measured mmol m-2 h-1 Light/ immersion Fig. 5 
Pneumatophore emission Pe (PSe – Se-em)/3 mmol ind.-1 h-1 Dark immersion Text 
Total Burrow emission TBe PBe – Se-em mmol bur.-1 h-1 Dark immersion Text 
Crab emission Ce Measured mmol ind.-1 h-1 Dark immersion Text 
Burrow emission Be TBe – 0.81Ce mmol bur.-1 h-1 Dark immersion Text 
       
Budget component       
Sediment (im) DSe (im) Se x 9 m-2 mmol 12-1 6 h light + 6 h dark immersion  
Sediment (em) + Be DSe (em) (Se + 0.5*16 Be) x 9 m-2 mmol 12-1 6 h light + 6 h dark emersion  

Sediment (em) + Be + Pe DSe (em) (Se + 20Pe + 0.5*16 Be) x 9 
m-2 mmol 12-1 6 h light + 6 h dark emersion  
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Roots may also stimulate heterotrophic processes by excreting labile organic exudates into 

the surrounding sediment (Andersen and Kristensen, 1988; Aller, 1994; Kristensen, 2000; 

Kristensen and Alongi, 2006), and this process may explain the slightly higher mineralization 

rates observed at depth in vegetated non-contaminated sediment when compared to bare 

non-vegetated sediment. 

 The ratio of total anaerobic CO2 production (14cm depth integrated) and gas emission 

from sediments during a 24h cycle was 1.5 in non-contaminated cells (Table 4), which might 

indicate CO2 consumption during authigenic mineral formation and losses via chemotrophy by 

sulphide oxidizers (Bouillon et al. 2008a, Kristensen et al. 2008a), or CO2 is being released 

and not measured (e.g., burst CO2 from crab burrows).  For unvegetated contaminated 

sediments, the ratio is <1, indicating that CO2 production via SRR must occur below 14 cm 

sediment depth, (Alongi et al., 2005). 

Denitrification in mangrove ecosystems, is primarily regulated by nitrate availability, 

temperature, salinity and organic matter availability (Alongi, 2009). The rates obtained in our 

non-contaminated experimental cells are within the low range (27 to 470 µmol m-2 d-1) of the 

ones found in East African (e.g., Kristensen et al., submitted) and Thailand mangroves 

(Kristensen et al., 1998). The high rates obtained in contaminated sediment must be driven by 

high ammonium availability and consequently coupled nitrification-denitrification and 

increased O2 availability due to high benthic NPP (Canfield et al., 2005). Other studies have 

also recorded high denitrification at rates of more than 15000 µmol m-2 d-1 in contaminated 

mangrove sediments (Corredor and Morell, 1994; Rivera-Monroy et al., 1999), and it has 

been proposed that high denitrification rates in contaminated mangroves is governed by 

increased N-availability and higher nutrient driven 02 production by benthic microalgae (e.g., 

Risgaard-Petersen et al., 1994). The present data confirm the potential of mangrove 

sediments for nitrate depuration of secondary sewage as suggested by Corredor and Morell 

(1994). 

 

4.3 Wetland functioning and environmental implications 

Estimates of total inorganic carbon in the different mangrove mesocosms can be 

provided by taking into consideration the contribution by various mangrove compartments 

(Table 5). The estimated total CO2 emission to the atmosphere in the mangrove mesocosms 

in February 2007 showed that more than 50% is in most cases released from the sediment 

during emersion periods, especially in vegetated cells where pneumatophores are present 

(Table 6). 
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Fauna and biogenic structures accounted for up to 60% of the total CO2 emission in non-

contaminated mesocosms, increasing by 2-3 times the global average found for mangrove 

sediments (Bouillon et al., 2008a), while the corresponding contribution in contaminated cells 

was always below 30% (Table 3). 

The role of fauna in organic matter degradation is known to decrease in anthropogenic 

impacted situations, such as in sediments bellow fish farms (Holmer and Heilskov, 2008). 

However, the biogenic contributions in our mesocosms must be lower than in mature 

wetlands, where mangrove trees are typically larger with more well developed 

pneumatophores (e.g., Dahdouh-Guebas et al., 2007) and the abundance and diversity of 

crabs is much higher (Hartnoll et al., 2002; Skov et al., 2002). For instance, if the density of 

biogenic structures is raised to a level corresponding to that commonly observed in mature 

mangrove environments (e.g. 300 burrows m-2 and 70 pneumatophores m-2, Kristensen et al. 

(2008b)) their contribution to CO2 emissions during emersion increase considerably, to 

account for at least 16% and up to 180% for unvegetated and vegetated conditions, 

respectively, by increasing OM decay rate and consequently decrease OM sediment pool 

(Kristensen, 2000). 

 

Table 6 – Total emission of CO2 (mmol 12h-1) to the atmosphere in the mangrove mesocosms 
at both inundation and emersion periods and different vegetation and sewage conditions. The 
emissions at the unvegetated plots are assumed to be devoid of pneumatophores but not 
burrows. At plots conditions, burrows and pneumatophores density are shown in Table 3 
while natural densities conditions 300 burrows m–2 and 70 pneumatophores m–2 are 
considered. See Table 5 for further explanation. The rates were calculated for 12 h low tides 
and 12 h high tides d–1. Error values are SE. 
 

A  Immersion CO2 
Emersion CO2 
(plots) 

Total CO2 
(plots) 

0% 87.3 ± 14 27.9 ± 16.1 115.2 ± 21.0 Unvegetated 
60% 164.0 ± 13.0 146.5 ± 15.6 310.5 ± 20.3 
0% 72.9 ± 13.0 93.4 ± 15.6 166.3 ± 20.3 Vegetated 
60% -399.6 ± 13.0 250.2 ± 15.6 -149.4 ± 20.3 

 
B  Immersion CO2 

Emersion CO2 
(natural) 

Total CO2 
(natural) 

0% 87.3 ± 14 79.8 ± 16.1 167.1 ± 21.0 Unvegetated 
60% 164.0 ± 13.0 197.0 ± 15.6 361.0 ± 20.3 
0% 72.9 ± 13.0 406.1 ± 15.6 479.0 ± 20.3 Vegetated 
60% -399.6 ± 13.0 610.4 ± 15.6 210.8 ± 20.3 

 
 

 

 



Chapter 9 
____________________________________________________________________________ 

            
 

250 

 A higher abundance of biogenic structures (roots, pneumatophores and burrows) will 

also have profound effects on sediment biogeochemistry through simultaneously enhanced 

translocation of oxygen and organic matter to deep sediment layers. As a consequence, both 

FeR and SRR may be stimulated by organic enrichment  (Alongi, 1998), and whereas FeR 

may dominate C-mineralization at low to intermediate organic loading, SRR is typically the 

dominating mineralization pathway in heavily impacted sediments. Below a certain maximum 

metabolic threshold, accumulation of generated sulfides may be sufficiently hampered by 

continuous O2-driven reoxiditation processes and precipitation of Fe-sulfides (Valdemarsen et 

al., in press-a). Conversely, if the maximum metabolic threshold is exceeded and Fe available 

for precipitation is depleted, free sulfide may accumulate with deleterious consequences for 

flora and fauna (Hargrave et al., 2008). The threshold for sewage delivery was not exceeded 

in our mesocosm study and it is at present not known. The exact threshold must depend on 

sediment properties (e.g. iron content and permeability), the type and age of the vegetation as 

well as the abundance of burrowing infauna. Although the organic loading rate in the present 

study was below the maximum metabolic threshold, the oxidation/reduction balance had 

shifted in favour of SRR, which in combination with the low salinity of discharged sewage also 

favoured methanogenesis as observed in (Purvaja and Ramesh, 2001). Furthermore, it 

appeared that the presence of pneumatophores and burrows facilitated CH4 transport and 

emission from the sediment to the atmosphere (Purvaja et al., 2004; Kristensen et al., 2008b), 

indicating that specific studies should address these processes to better understand the role 

biogenic structures in heavily impacted ecosystems on greenhouse gas emissions. 

In conclusion, biogenic structures and bioturbation activities change sediment 

physical, chemical and biological structure and dynamics, leading not only to an increase in 

benthic mineralization but also to change the dominating microbial mineralization pathways. 

Our results confirm the importance of fauna and flora for the functioning of mangrove forests 

(Alongi, 2009) as well as their effective contribution to system mineralization and 

consequently filtration efficiency under organic-rich conditions (Canfield et al., 2005; 

Kristensen, 2008). 

Furthermore, models on carbon dynamics in constructed wetlands exposed to sewage 

are strongly needed to improve our understanding of the system efficiency and metabolic 

threshold, including the reduction/oxidation processes involving sulphur and iron, as well as 

the role wetlands, including biogenic structures, for the emission of potential greenhouse 

gases (CO2, CH4 and N2O), and consequences for global warming. 

 

  



Section II 
____________________________________________________________________________ 

251 

Acknowledgements 

The authors would like to thank Dr. K. Njau and Prof. Y. Mgaya and Prof. J. Machiwa for 

logistical support and Thomas Valdemarsen for commenting and correcting a previous 

version of this manuscript. We would also like to thank Fundação para a Ciência e a 

Tecnologia (scholarship SFRH/BD/25277/2005 for GPL). This study is part of the PUMPSEA 

(Peri-urban mangrove forests as filters and potential phytoremediators of domestic sewage in 

East Africa), contract number (INCO-CT2004-510863), funded by the 6th framework of the 

European Commission. 

 

References 
Al-Sayed, H.A., Ghanem, E.H., Saleh, K.M., 2005. Bacterial community and some physico-

chemical characteristics in a subtropical mangrove environment in Bahrain. Mar. 
Pollut. Bull. 50, 147-155. 

Allaway, W.G., Curran, M., Hollington, L.M., Ricketts, M.C., Skelton, N.J., 2001. Gas space 
and oxygen exchange in roots of Avicennia marina (Forssk.) Vierh. var. australasica 
(Walp.) Moldenke ex N. C. Duke, the Grey Mangrove. Wetl. Ecol. Manag. 9, 221-228. 

Aller, R.C., 1994. Bioturbation and remineralization of sedimentary organic matter: effects of 
redox oscillation. Chemical Geology 114, 331-345. 

Alongi, D.M., 1998. The influence of stand age on benthic decomposition and recycling of 
organic matter in managed magrove forests of Malaysia. J. Exp. Mar. Biol. Ecol. 225, 
197-218. 

Alongi, D.M., 2009. The Energectics of Mangrove Forests. Springer Science 
Alongi, D.M., Pfitzner, J., Trott, L.A., Tirendi, F., Dixon, P., Klumpp, D.W., 2005. Rapid 

sediment accumulation and microbial mineralization in forests of the mangrove 
Kandelia candel in the Jiulongjiang Esturay, China. Estuar. Coast. Shelf. Sci., 605-
618. 

Andersen, F.Ø., Kristensen, E., 1988. Oxygen microgradients in the rhizosphere of the 
mangrove Avicennia marina. Mar. Ecol. Prog. Ser. 44, 201-204. 

Berti, R., Cannicci, S., Fabbroni, S., Innocenti, G., 2008. Notes on the structure and the use 
of Neosarmatium meinerti and Cardisoma carnifex burrows in a Kenyan mangrove 
swamp (Decapoda Brachyura). Ethol. Ecol. Evol. 20, 101-113. 

Blanchard, G.F., Guarini, J.M., Orvain, F., Sauriau, P.G., 2001. Dynamic behaviour of benthic 
microalgal biomass in intertidal mudflats. J. Exp. Mar. Biol. Ecol. 264, 85-100. 

Botto, F., Iribarne, O., Gutierrez, J., Bava, J., Gagliardini, A., Valiela, I., 2006. Ecological 
importance of passive deposition of organic matter into burrows of the SW Atlantic 
crab Chasmagnathus granulatus. Mar. Ecol. Prog. Ser. 312, 201-210. 

Bouillon, S., Borges, A.V., Castaneda-Moya, E., Diele, K., Dittmar, T., Duke, N.C., Kristensen, 
E., Lee, S.Y., Marchand, C., Middelburg, J.J., Rivera-Monroy, V.H., Smith, T.J., 
Twilley, R.R., 2008a. Mangrove production and carbon sinks: A revision of global 
budget estimates. Global Biogeochemical Cycles 22, 12. 

Bouillon, S., Connolly, R.M., Lee, S.Y., 2008b. Organic matter exchange and cycling in 
mangrove ecosystems: Recent insights from stable isotope studies. J. Sea Res. 59, 
44-58. 

Canfield, D.E., Kristensen, E., Thamdrup, B., 2005. Aquatic geomicrobiology. Elsevier, 
Amsterdam 

Colijn, F., Dejonge, V.N., 1984. Primary Production of Microphytobenthos in the EMS-Dollard 
Estuary. Mar. Ecol. Prog. Ser. 14, 185-196. 



Chapter 9 
____________________________________________________________________________ 

            
 

252 

Consalvey, M., Paterson, D.M., Underwood, G.J.C., 2004. The ups and downs of life in a 
benthic biofilm: Migration of benthic diatoms. Diatom. Res. 19, 181-202. 

Corredor, J.E., Morell, J.M., 1994. Nitrate Depuration of Secondary Sewage Effluents in 
Mangrove Sediments. Estuaries 17, 295-300. 

Crites, R.W., Middlebrooks, E.J., Reed, S.C., 2006. Natural Wastewater Treatment Systems. 
CRC Press, FL, USA 

Dahdouh-Guebas, F., Kairo, J.G., De Bondt, R., Koedam, N., 2007. Pneumatophore height 
and density in relation to micro-topography in the grey mangrove Avicennia marina. 
Belg. J. Bot. 140, 213-221. 

Datta, M., 2005. Computer model for gas diffusion from nests of burrowing animals. Ethn. Dis. 
15, 62-63. 

De la Iglesia, H.O., Rodriguez, E.M., Dezi, R.E., 1994. Burrow plugging in the crab Uca 
uruguayensis and its synchronization with photoperiod and tides. Physiology and 
Behavior 55, 913-919. 

Duarte, C.M., Middelburg, J.J., Caraco, N., 2005. Major role of marine vegetation on the 
oceanic carbon cycle. Biogeosciences 2, 1-8. 

Ferreira, T.O., Otero, X.L., Vidal-Torrado, P., Macías, F., 2007. Effects of bioturbation by root 
and crab activity on iron and sulfur biogeochemistry in mangrove substrate. 
Geoderma 142, 36-46. 

Gray, J.S., Wu, R.S.S., Ying, Y.O., 2002. Effects of hypoxia and organic enrichment on the 
coastal marine environment. Mar. Ecol. Prog. Ser. 238, 249-279. 

Hall, P.O.J., Aller, R.C., 1992. Rapid, small-volume, flow injection analysis for CO2 and NH4+ 
in marine and freshwaters. Limnology & Oceanography 37, 1113-1119. 

Hansen, K., Kristensen, E., 1998. The impact of the polychaete Nereis diversicolor and 
enrichment with macroalgal (Chaetomorpha linum) detritus on benthic metabolism and 
nutrient dynamics in organic-poor and organic-rich sediment. J. Exp. Mar. Biol. Ecol. 
231, 201-223. 

Hargrave, B.T., Holmer, M., Newcombe, C.P., 2008. Towards a classification of organic 
enrichment in marine sediments based on biogeochemical indicators. Mar. Pollut. Bull. 
56, 810-824. 

Hartnoll, R.G., Cannici, S., Emmerson, W.D., Fratini, S., Macia, A., Mgaya, Y., Porri, F., 
Ruwa, R.K., Shunula, J.P., Skov, M.W., Vannini, M., 2002. Geographic trends in 
mangrove crab abundance in East Africa. Wetl. Ecol. Manag. 10, 203-213. 

Hegde, U., Chang, T.-C., Yang, S.-S., 2003. Methane and carbon dioxide emissions from 
Shan-Chu-Ku landfill site in northern Taiwan. Chemosphere 52, 1275-1285. 

Heilskov, A.C., Holmer, M., 2001. Effects of benthic fauna on organic matter mineralization in 
fish-farm sediments: importance of size and abundance. ICES J. Mar. Sci. 58, 427-
434. 

Holmer, M., Andersen, F.Ø., Holmboe, N., Kristensen, E., Thongtham, N., 1999. 
Transformation and exchange processes in the Bangrong mangrove forest-seagrass 
bed system, Thailand. Seasonal and spatial variations in benthic metabolism and 
sulfur biogeochemistry. Aquat. Microb. Ecol. 20, 203-212. 

Holmer, M., Heilskov, A.C., 2008. Distribution and bioturbation effects of the tropical alpheid 
shrimp Alpheus macellarius in sediments impacted by milkfish farming. Estuar. Coast. 
Shelf. Sci. 76, 657-667. 

Holmer, M., Kristensen, E., 1992. Impact of marine fish cage farming on metabolism and 
sulfate reduction of underlying sediments. Mar. Ecol. Prog. Ser. 80, 191-201. 

Holmer, M., Kristensen, E., 1994a. Co-existence of sulfate reduction and methane production 
in an organicrich sediment. Mar. Ecol. Prog. Ser. 107, 177-184. 

Holmer, M., Kristensen, E., 1994b. Organic matter mineralization in an organic-rich sediment: 
Experimental stimulation of sulfate reduction by fish food pellets. FEMS Microbiol. 
Ecol. 14, 33-44. 



Section II 
____________________________________________________________________________ 

253 

Kitaya, Y., Yabuki, K., Kiyota, M., Tani, A., Hirano, T., Aiga, I., 2002. Gas exchange and 
oxygen concentration in pneumatophores and prop roots of four mangrove species. 
Trees - Structure and Function 16, 155-158. 

Kivaisi, A.K., 2001. The potential for constructed wetlands for wastewater treatment and 
reuse in developing countries: a review. Ecological Engineering 16, 545-560. 

Kristensen, E. 1988 Benthic fauna and biogeocemical processes in marine sediments: 
Microbial activities and fluxes. In: Blackburn TH, Sørensen J (editors), Nitrogen 
cycling in Coastal Marine Environments. John Wiley & Sons, Chichester, pp. 275-299. 

Kristensen, E., 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine 
sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426, 1-24. 

Kristensen, E., 2008. Mangrove crabs as ecosystem engineers; with emphasis on sediment 
processes. J. Sea Res. 59, 30-43. 

Kristensen, E., Alongi, D.M., 2006. Control by fiddler crabs (Uca vocans) and plant roots 
(Avicennia marina) on carbon, iron, and sulfur biogeochemistry in mangrove sediment. 
Limnol. Oceanogr. 51, 1557-1571. 

Kristensen, E., Andersen, F.Ø., Holmboe, N., Holmer, M., Thongtham, N., 2000. Carbon and 
nitrogen mineralization in sediments of the Bangrong mangrove area, Phuket, 
Thailand. Aquat. Microb. Ecol. 22, 199-213. 

Kristensen, E., Bouillon, S., Dittmar, T., Marchand, C., 2008a. Organic carbon dynamics in 
mangrove ecosystems: A review. Aquat. Bot. 89, 201-219. 

Kristensen, E., Flindt, M., Ulomi, S.A., Borges, A.V., Abril, G., Bouillon, S., 2008b. Emission of 
CO2 and CH4 to the atmosphere by sediments and open waters in two Tanzanian 
mangrove forests. Mar. Ecol. Prog. Ser. 370, 53-67. 

Kristensen, E., Haese, R.R., Kostka, J.E., 2005. Interactions Between Macro- and 
Microorganisms in Marine Sediments. American Geophysical Union, Washington, DC 

Kristensen, E., Jensen, M.H., Banta, G.T., Hansen, K., Holmer, M., King, G.M., 1998. 
Transformation and transport of inorganic nitrogen in sediments of a southeast Asian 
mangrove forest. Aquat. Microb. Ecol. 15, 165-175. 

Kristensen, E., Mangion, P., Tang, M., Flindt, M., Holmer, M., Ulomi, S.A., submitted. Benthic 
metabolism and partitioning of electron acceptors for microbial carbon oxidation in 
sediments of two Tanzanian mangrove forests. Mar. Ecol. Prog. Ser. 

Lorenzen, C.J., 1967. Determination of chlorophyll and phaeopigments: Spectrophotometric 
equations. Limnol. Oceanogr. 12, 343-346. 

Lyimo, T.J., Pol, A., Op den Camp, H.J.M., 2002. Sulfate reduction and methanogenesis in 
sediments of Mtoni mangrove forest, Tanzania. Ambio 31, 614-616. 

Nagelkerken, I., Blaber, S.J.M., Bouillon, S., Green, P., Haywood, M., Kirton, L.G., Meynecke, 
J.O., Pawlik, J., Penrose, H.M., Sasekumar, A., Somerfield, P.J., 2008. The habitat 
function of mangroves for terrestrial and marine fauna: A review. Aquat. Bot. 89, 155-
185. 

Nielsen, L.P., 1992. Denitrification in sediment determined from nitrogen isotope pairing. 
FEMS Microbiol. Ecol. 86, 357-362. 

Nielsen, O.I., Kristensen, E., Macintosh, D.J., 2003. Impact of fiddler crabs (Uca spp.) on 
rates and pathways of benthic mineralization in deposited mangrove shrimp pond 
waste. J. Exp. Mar. Biol. Ecol. 289, 59-81. 

Penha-Lopes, G., Bartolini, F., Limbu, S., Cannicci, S., Mgaya, Y., Paula, J., accepted-a. 
Ecosystem engineering potential of the gastropod Terebralia palustris (Linnaeus, 
1767) in mangrove wastewater wetlands - a controlled mesocosm experiment. 
Environmental Pollution Series A, Ecological and Biological 

Penha-Lopes, G., Bartolini, F., Limbu, S., Cannicci, S., Paula, J., accepted-b. Are fiddler 
crabs potentially useful ecosystem engineers in mangrove wastewater wetlands? Mar. 
Pollut. Bull. 



Chapter 9 
____________________________________________________________________________ 

            
 

254 

Pinder, A.W., Smits, A.W., 1993. The burrow microhabitat of the land crab Cardissoma 
guanhumi - Respiratory ionic conditions and physiological respenses of the crabs to 
hypercapnia. Physiol. Zool. 66, 216-236. 

PUMPSEA, 2008. Peri-urban mangrove forests as filters and potential phytoremediators of 
domestic sewage in East Africa. Final activity report. European Comission: FP6, 
INCO-CT2004-510863, Instituto de Ciências Aplicadas e Tecnologia, Lisbon, 
Portugal. 447 pp. 

Purvaja, R., Ramesh, R., 2001. Natural and Anthropogenic Methane Emission from Coastal 
Wetlands of South India. Environ. Manag. 27, 547-557. 

Purvaja, R., Ramesh, R., Frenzel, P., 2004. Plant-mediated methane emission from an Indian 
mangrove. Global Change Biology 10, 1825-1834. 

Risgaard-Petersen, N., Rysgaard, S., Nielsen, L.P., Revsbech, N.P., 1994. Diurnal variation 
of denitrification and nitrification in sediments colonized by benthic microphytes. 
Limnol. Oceanogr. 39, 573-579. 

Rivera-Monroy, V.H., Torres, L.A., Nixon, B., Newmark, F., Twilley, R.R., 1999. The Potential 
Use of Mangrove Forests as Nitrogen Sinks of Shrimp Aquaculture Pond Effluents: 
The Role of Denitrification. J. World Aquacult. Soc. 30, 12-25. 

Rivera-Monroy, V.H., Twilley, R.R., 1996. The relative role of denitrification and 
immobilization in the fate of inorganic nitrogen in mangrove sediments (Terminos 
Lagoon, Mexico). Limnol. Oceanogr. 41, 284-296. 

Scholander, P.F., Dam, L.v., Scholander, S.I., 1955. Gas Exchange in the Roots of 
Mangroves. Am. J. Bot. 42, 92-98. 

Skov, M.W., Vannini, M., Shunula, J.P., Hartnoll, R.G., Cannicci, S., 2002. Quantifying the 
density of mangrove crabs: Ocypodidae and Grapsidae. Marine Biology 141, 725-732. 

Stottmeister, U., Wießner, A., Kuschk, P., Kappelmeyer, U., Kästner, M., Bederski, O., Müller, 
R.A., Moormann, H., 2003. Effects of plants and microorganisms in constructed 
wetlands for wastewater treatment. Biotechnol. Adv. 22, 93-117. 

Valdemarsen, T., Holmer, M., Kristensen, E., in press-a. Metabolic threshold and sulfide-
buffering in diffusion controlled marine sediments impacted by continuous organic 
enrichment. Mar. Ecol. Prog. Ser. 

Valdemarsen, T., Kristensen, E., Holmer, M., in press-b. S, C and N cycling in faunated 
marine sediments impacted by continuous organic enrichment. Mar. Ecol. Prog. Ser. 

Wong, Y.S., Lan, C.Y., Chen, G.Z., Li, S.H., Chen, X.R., Liu, Z.P., Tam, N.F.Y., 1995. Effect 
of wastewater discharge on nutrient contamination of mangrove soils and plants. 
Hydrobiologia 295, 243-254. 

Wong, Y.S., Tam, N.F.Y., Chen, G.Z., Ma, H., 1997b. Response of Aegiceras corniculatum to 
synthetic sewage under simulated tidal conditions. Hydrobiologia 352, 89-96. 

Wu, Y., Chung, A., Tam, N.F.Y., Pi, N., Wong, M.H., 2008a. Constructed mangrove wetland 
as secondary treatment system for municipal wastewater. Ecological Engineering 34, 
137-146. 

Wu, Y., Tam, N.F.Y., Wong, M.H., 2008b. Effects of salinity on treatment of municipal 
wastewater by constructed mangrove wetland microcosms. Mar. Pollut. Bull. 57, 727-
734. 

Yang, Q., Tam, N.F.Y., Wong, Y.S., Luan, T.G., Su, W.S., Lan, C.Y., Shin, P.K.S., Cheung, 
S.G., 2008. Potential use of mangroves as constructed wetland for municipal sewage 
treatment in Futian, Shenzhen, China. Mar. Pollut. Bull. 57, 735-743. 

 



Section III 
____________________________________________________________________________ 

   
            

 

 

 

 

 

 

SECTION III 
 



General Discussion 
____________________________________________________________________________ 
 

256 



Section III 
____________________________________________________________________________ 

   
            

257 

GENERAL DISCUSSION 

Ecosystem indicators 

Until recently, the reliable fauna biomonitors found in mangrove ecosystems were few and 

mainly in developing countries (Table 1). Most biomonitor studies have shown that 

epimacrofauna tends to accumulate, with high efficiency, heavy metal contaminants in their 

tissues (Uma Devi and Prabhakara Rao, 1989a; b; MacFarlane et al., 2000; De Wolf et al., 

2001; Mtanga and Machiwa, 2007), as well as anthropogenic derived organic matter 

characterized by high concentrations of 15N (Pitt et al., 2009). In Brazil, different contaminants 

(from domestic sewage to sodium hydroxide) have shown to interfere with the biochemical 

and physiological conditions of mangrove oysters (Zanette et al., 2006).  

Bioindicators are also not that common, and most studies have been done in developing 

countries (Table 1). Industrial pollution is known to affect growth and development of one of 

the most common fish species in mangrove habitats, the mudskipper (Kruitwagen et al., 

2006; Kruitwagen et al., 2008). In mangrove ecosystems subjected to high discharges of 

organic matter and nutrients, increase in saprobic indexes (Chen et al., 2008), using ciliate 

species, as well as lower (bryozoan and gastropod communities) or higher (crab 

communities) diversity and abundance can be observed, potentially being dependent of the 

degree of contamination, system functioning and species involved (Machiwa and Hallberg, 

1995; Yu et al., 1997; Linton and Warner, 2003; Cannicci et al., in press). Very recently, 

physiological changes in fiddler crabs inhabiting peri-urban and pristine mangroves indicated 

that lower RNA/DNA ratio could be a potential indicator of anthropogenic sewage 

contamination (Amaral et al., 2009). 

The data collected and analysed during this thesis allowed to increase significantly the 

number of potential bioindicators of sewage pollution for East Africa, as well as validate 

biomonitors in controlled situations. Limited taxonomic expertise or resources are 

characteristic in developing countries, one of the main reasons why emphasis is placed on 

cost-effective techniques such as taxonomic minimalism. This technique already proved to 

effectively detect the effect of environmental or anthropogenic disturbance on meio and 

macrofauna communities at high taxonomic levels, from family to phylum (Thorne and 

Williams, 1997; Chapman, 1998; Kennedy and Jacoby, 1999; Savage et al., 2001; Gesteira et 

al., 2003). In this study, taxonomic minimalism targeting infauna major groups (chapter 1) was 

not a reliable tool to assess anthropogenic contamination mainly due to the fact that different 

systems and contaminants lead to completely different responses of infauna communities. 

Although differences between countries were observed, the multidimensional scaling 
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analysis, as well as diversity indices, showed that identifying organisms at high taxonomic 

levels are indeed useful tools for environmental impact assessment to be used within the 

same region/country. The only exception was the Oligochaeta group that decreased in both 

peri-urban mangroves studied, being considered a potential bioindicator of disturbed 

ecosystems. Nevertheless, taxonomic groups should be identified to lower levels in order to 

provide a better understanding of community changes. 

Although reproductive parameters of crustaceans have already been addressed as a proxy of 

heavy metal contamination in temperate countries (e.g., Elumalai et al., 2005), only recently 

the distinction between fecundity and fertility as a proxy of contamination was used and 

proved to be an effective indicator of industrial sewage contamination, and provided better 

information than analysing clutch size by pooling all embryo stages (Ford et al., 2003). This 

study (chapter 2 and 3) corroborated these findings, as in contaminated areas females of 

mangrove fiddler crabs and shrimps were found to carry higher number of eggs at early 

stages (fecundity), followed by higher brood loss and similar egg numbers before hatching 

(potential fertility). Other positive bioindicators observed in the same studies included longer 

reproductive periods and higher ovigerous female percentage, as well as better embryo 

quality. While sewage discharge could be favouring detritivorous feeding, and consequently 

gonad development and larval release, allowing females to bread continuously, Vergamini 

and Mantelattto (2008) have also found that another crustacean species (Panopaeus 

americanus) has changed to a continuous and effective reproduction as a strategy to 

establish and maintain a stable population living associated with stressful energy demanding 

conditions in a human-impacted mangrove in Brazil. However, it should not be exclude the 

possibility of other factors observed at Costa do Sol be exerting some influence in 

crustaceans reproductive dynamics, such as lower salinities, different hydrological regimes, 

other contaminants, as well as muddier sediment when compared to pristine locations 

(PUMPSEA, 2008; Cannicci et al., in press).  

Negative indicators included higher level of parasitism by a Bopyridae isopod, Pseudione 

elongata, that lead to the physiological reproductive death of the host (Palaemon concinnus), 

indicating some degree of stress on the host shrimp at the peri-urban mangrove. Other 

negative indicators included decrease survival of fiddler crabs (chapter 4) and changes in 

crabs’ behaviour (chapter 5) and growth rates of gastropods (chapter 6) in severe 

contaminated conditions. The high organic matter availability and high microbial metabolism 

in contaminated mesocosms may be responsible for low oxygen levels in the water column 

and sediment (Canfield et al., 2005). The associated higher microbial oxygen consumption in 

burrow walls (Gribsholt et al., 2003; Nielsen et al., 2003) may augment hypoxia inside 
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burrows and coupled with release of sulfide increase stress and may cause crab death by 

asphyxiation or drowning (Diaz and Rosenberg, 1995). Both the immersion/emersion 

periodicity in mesocosms and the high tolerance to prolonged periods of hypoxia or even 

anoxia of gastropods (see Kapper & Stickle 1987 in Stickle et al., 1989; Das and Stickle, 

1993; Sagasti et al., 2001; Cheung et al., 2008) may have explained the high survival rates 

(>60%) registered even at high sewage loading (100%) and long immersion periods (3 days). 

However, the low salinities at high sewage loading could have been a stress factor affecting 

physiology and consequently decreasing growth, especially when coupled with hypoxic 

conditions (Stickle et al., 1989). 

Stable isotope studies from natural mangrove ecosystems contaminated with sewage or 

agricultural wastes are scarce, with only one study registering an increase in nitrogen stable 

isotope ratio on mangrove associated crab species (Pitt et al., 2009). In chapter 8, it was 

demonstrated for the first time the potential use of stable isotopes (SI) as a useful tool to 

prove the existence of a continuous anthropogenic impact, even at low concentrations. This 

study registered a significant increase in nitrogen isotope ratio in microphytobenthos and 

detritus found in sediment, then ingested and assimilated by both primary consumers, 

increasing 15N signature of fauna mangrove species’ muscle tissues (fiddler crabs and 

gastropods). This study further revealed that in mangrove sewage treatment facilities, the 

introduction of macrofauna appears to be essential to maintain the natural food web 

dynamics, thus reducing these systems running and maintenance cost, mainly in mature 

systems where large accumulations of decaying litter are expected and consumed by 

Terebralia palustris (also demonstrated in Chapter 7). 
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Table 1 – Mangrove fauna biomonitors and bioindicators registered in (A) the literature, (B) 
as well as those identified during the present study. 

 

A      
Monitor/ 
Indicator 

Type of 
contaminant Species Location Response Reference 

Fiddler crabs Visakhapatnam 
Harbor (India) accumulation 

Uma Devi and 
Prabhakara Rao, 

1989a; b 
Littoraria scabra, 

gastropod 
Dar es Salaam 

(Tanzânia) 
Accumulation and 

morphology 
De Wolf et al., 

2001 
oysters, Saccostrea 

cucullata 
Mzinga Creek 

Tanzânia accumulation Mtanga and 
Machiwa, 2007 

Heavy metals 
 

crab, Heloecius 
cordiformis Sydney, Australia accumulation MacFarlane et al., 

2000 
Domestic sewage, 
fertilizer, sodium 

hydroxide, chlorine 

oyster Crassostrea 
rhizophorae Brazil biochemical and 

physiologycal Zanette et al., 2006 

Monitor 

Organic matter and 
nutrients Mangrove crabs Moreton Bay, 

Australia 

15N enrichment in 
muscle tissues Pitt et al., 2009 

      

Industrial pollution 
mudskipper 

Periophthalmus 
argentilineatus 

Tanzania 

abnormal growth 
pattern and 

occurrence of 
unilateral 

anophthalmia 

Kruitwagen et al., 
2006; Kruitwagen 

et al., 2008 

bryozoan communities Kingston harbour, 
Jamaica Lower diversity Linton and Warner, 

2003 

Uca annulipes Maputo, 
Mozambique Lower RNA/DNA ratio Amaral et al., 2009 

Fiddler and sesarmid 
crabs 

Kenya and 
Mozambique 

Increase diversity and 
abundance 

Cannicci et al., in 
press 

Terebralia palustris, 
gastropod 

Kenya and 
Mozambique Decrease abundance 

Machiwa and 
Hallberg, 1995; Yu 

et al., 1997; 
Cannicci et al., in 

press 

Indicator 

Organic matter and 
nutrients 

Ciliates 

constructed 
mangrove sewage 
treatment belts in 
Southern China 

Saprobic índex 
increase Chen et al., 2008 

      
B      

Monitor Organic matter and 
nutrients 

Uca spp and 
Terebralia palustris 

constructed 
mangrove sewage 
treatment wetland 

in Tanzania 

enrichment in 15N in 
muscle tissues 

Penha-Lopes et al., 
submitted-a 

      

Uca annulipes Maputo, 
Mozambique 

Increase reproductive 
season and activity 

Penha-Lopes et al., 
accepted-c 

Palaemon concinnus 
shrimp 

Maputo, 
Mozambique 

Increase in size, 
reproductive period 
and % of ovigerous 
females and % of 

shrimps with 
parasites 

Penha-Lopes et al., 
submitted-b 

Uca spp and 
Terebralia palustris  

constructed 
mangrove sewage 
treatment wetland 

in Tanzania 

Change in behaviour 
and bioturbation 

activities, decrease in 
growth rates 

Bartolini et al., 
accepted; Penha-

Lopes et al., 
accepted-a; Penha-

Lopes et al., 
accepted-b 

Indicator 
 
 

Organic matter and 
nutrients 

Infauna Mozambique and 
Kenya 

Decrease diversity 
indexes and 

abundance of 
Oligochaeta 

Penha-Lopes et al., 
submitted-c 
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The role of ecosystem engineering 

Mangrove forests represent a productive ecosystem that play a key role for carbon 

and nutrient cycling along many tropical coasts (Duarte et al., 2005; Kristensen et al., 2008). 

These systems have recently shown a potential as natural wastewater treatment facilities, 

thus preventing coastal pollution (Wong et al., 1997), with field trials showing that sediments 

of these ecosystems are very efficient in removing nutrients from sewage (Tam and Wong, 

1995; 1996). However, most studies have focused on the behaviour of plants and/or 

microorganisms (Wong et al., 1995; Stottmeister et al., 2003; Wu et al., 2008b), while 

macrofauna and associated biogeochemical functioning have been ignored. In chapter 4, 5, 

and 6 the bioturbation potential of two key macrofauna groups fiddler crabs and gastropods 

indicated that although general behaviour was significantly changed, mainly by decreasing its 

feeding activity and consequently bioturbation on top sediment layers, the overall sediment 

manipulation was not severly affected in contaminated mangrove mesocosms. Higher MBA 

biomass will inevitably diminish the significance of benthic fauna as an epibenthic microalgal 

grazer, allowing higher primary productivity (Blanchard et al., 2001), sediment bioturbator and 

consequently its role for improving the functioning of natural mangroves as well as mangrove 

wastewater treatment facilities. 

Also, crab galleries morphology only changed in unvegetated conditions, becoming 

shallower, probably due to hypoxic or anoxic subsurface sediments, although volume and 

surface area was still similar in constructed wetlands. In these systems, mangrove trees will 

be present and their roots will be able to counteract the elevated oxygen consumption due to 

the high organic matter mineralization (Kristensen and Alongi, 2006). 

In chapter 9, for the first time, the carbon mineralization measured as carbon dioxide 

emission and microbial pathways were identified and quantified in different vegetated and 

sewage conditions, as well as in the presence or absence of biogenic structures in mangrove 

constructed wetlands. Increased sewage contamination lead to higher carbon mineralization 

and methane emissions in the constructed mesocosms, as well as benthic primary 

production. Biogenic structures increased low tide carbon gas emissions at contaminated 

30% and particularly in pristine conditions 60%. FeR was substituted by SRR when sewage 

was loaded into the cells under unvegetated and planted conditions, while the contribution of 

aerobic respiration to total metabolism remained above 50%. These results clearly show 

impacts of sewage on the partitioning of electron acceptors in mangrove sediment which may 

induce negative effects on sediment associated flora and fauna due to stimulated SR and 

toxic sulfide accumulation (Hargrave et al., 2008). Also, it confirmed the importance of 
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biogenic structures in constructed wetlands by improving significantly the organic matter 

mineralization, as was found to occur in natural systems (Kristensen, 2000) or control 

laboratory experiments (Heilskov and Holmer, 2001; Heilskov et al., 2006; Valdemarsen et al., 

in press-a; b). 
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Final remarks 

Considering the above discussion, one might consider that the present study clearly 

increased the number of ecological indicators and biomonitors of sewage pollution, as well as 

focussed on new ways of analysing the effect of sewage on mangrove associated fauna. 

Although easy and inexpensive methods, such as taxonomic minimalist, tried to be applied to 

East Africa infauna communities with little effect, identification should be taken to lower levels 

in order to provide a better understanding of community changes. As was already used in 

other ecosystems, and as an indication of several types of contaminants, for the first time in 

mangrove ecosystems population structure, parasite infection, RNA/DNA ratio and a set of 

reproductive parameters, comprehending maturation curves, fecundity, potential fertility and 

embryo quality assessed through fatty acid analysis, as well as nitrogen SI ratios, were tested 

as bioindicators or biomonitores for habitat quality, with most of these being recognized as 

reliable indicators of domestic sewage pollution. Nevertheless, these bioindicators tested in 

natural ecosystems should be validated in controlled conditions. Future research should focus 

on other key mangrove species, such as sesarmid crabs, as well as to better understand 

these bioindicators’ responses to different types and levels of stressors in order to better 

identify and monitor impacts on ecosystems. 

Most of the world natural estuarine and coastal ecosystems are becoming extensively 

degraded, mainly due to increasing anthropogenic pollution and habitat destruction.  The 

information compiled in this study bioindicators and biomonitores can thus be useful for 

sustainable management programmes of mangrove ecosystems and associated resources, 

as well as to be applied to other valuable ecosystems or other types of forcing functions 

acting on these sensitive ecosystems, such as climate change, and consequent sea-level 

rise, global trends in human activities, including habitat destruction and overexploitation of 

resources.  

Ecosystem engineers have recently been addressed as powerful agents to restore 

ecological systems when managed well. Both key macrofauna species studied managed to 

keep high survival rates in extreme anoxic and contaminated conditions, although growth 

rates and daily activities were significantly affected. Nevertheless, by limiting microalgal 

biomass directly by grazing or indirectly by subduction below the sediment surface, both key 

mancrofauna species suppressed the development of dense algal mats, and consequently 

avoided the development of near surface anoxic zones even at high sewage concentrations. 

Also, the continuous mixing of the top layer by epifauna enhanced carbon mineralization and 

nutrient cycling by improving sediment aeration and drainage, and by increasing surface 

areas for microbial activity. Consequently, faunal grazing and bioturbation, as well as biogenic 
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functioning, increased sediment capacity to degrade organic matter. Biogenic structures and 

bioturbation activities change sediment physical, chemical and biological structure and 

dynamics, leading not only to an increase in benthic mineralization but also to change the 

dominating microbial mineralization pathways to more efficient ones sub-oxic or aerobic 

respiration. Our results confirmed the importance of fauna and flora biogenic structures on the 

functioning of mangrove forests sediments as well as their effective contribution to system 

mineralization and consequently filtration efficiency under organic-rich conditions.  

Notwithstanding, further research is necessary to address the processes and microbial 

communities inhabiting mangrove fauna galleries, especially at high sewage loadings, in 

order to explain the higher mineralization rates found in these biogenic structures. Also, 

research should focus on greenhouse gas emissions from these wetlands, knowing that most 

anaerobic respiration pathways lead to the release of gases much more powerful than carbon 

dioxide and consequently their effect on global warming is much more effective.  

Also, the advantage of longer immersion periods versus sustainable fauna 

communities should be further investigated over long periods. Such zooremediation approach 

should be widespread to other functional constructed wetlands in order to better understand 

the potential in its efficiency and associated ecosystem sustainability. 
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