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Aos Prof. Herbet Hethcote e Prof. Cláudio Struchiner, por partilharem o seu vasto conhec-
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Sumário

Esta tese tem como motivação um problema de interesse actual – transmissão da tubercu-
lose, do qual focamos sobretudo dois aspectos: o papel da reinfecção na tuberculose recorrente
(recidivas) e na propagação de estirpes resistentes a antibióticos. O objectivo é desenvolver ex-
plicações teóricas para os diversos fenómenos, capturando os mecanismos subjacentes através
de modelos matemáticos simples de modo a permitirem um profundo estudo anaĺıtico. Os
mecanismos explorados são a imunidade parcial e a heterogeneidade. A conjugação destes
dois mecanismos mostrou ser um importante factor na determinação de diferentes aspectos
da epidemilogia da Tuberculose.

A propagação de estirpes resistentes é abordado como a competição entre estirpes senśıveis
e resistentes a antibióticos. O objectivo é caracterizar o impacto da reinfecção na região de
coexistência. Observamos que a reinfecção impõe um novo limiar na transmissão, acima do
qual a dissiminação de estirpes resistentes é facilitada. Consequentemente, as medidas de
controlo beneficiaŕıam de uma alteração do seu focus, passando da tentativa de redução de
casos de resistência adquirida para a interrupção das cadeias de transmissão, dependendo do
enquadramento epidemiológico.

Motivado por estudos epidemiológicos que indicam que as taxas de tuberculose por rein-
fecção são mais altas que as taxas de tuberculose primária, propomos uma explicação assente
na heterogeneidade da população. Esta hipótese permite reconciliar estas observações com
a ideia consensual de que a infecção confere protecção parcial, reduzindo o risco individual
de infecções subsequentes. Assim, postulamos que alguns indiv́ıduos têm a priori um risco
acrescido de infecção, sendo por isso mais afectados. Isto contribui para uma acumulação
de individuos de elevado risco entre o grupo de pacientes, o que inflaciona as taxas de rein-
fecção. Esta hipótese é formulada matematicamente e confrontada com dados epidemiológicos
referentes a várias regiões endémicas. Propomos um critério alternativo de validação desta
hipótese.

O estudo das consequências da heterogeneidade na susceptibilidade à infecção é alargado
a modelos epidemiológicos mais gerais que assumem imunidade parcial - os modelos Sus-
cept́ıveis-Infecciosos-Recuperados-Infecciosos (SIRI).

Palavras Chave: Modelos matemáticos; análise de bifurcação e estabilidade; imunidade
parcial; heterogeneidade; tuberculose



Abstract

This thesis is a compromise between biological realism and mathematical tractability. Our
aim is to provide theoretical explanations for observed phenomena by capturing the underlying
mechanisms involved, with simple mathematical models that allow a deep analytic investi-
gation. The biological motivation is an epidemiological problem of major current interest
–tuberculosis transmission, for which we focus on two questions: the role of reinfection in re-
current disease and the spread of drug resistant strains. The underlying mechanisms explored
are partial immunity and heterogeneity. In conjunction these two prove to be important fac-
tors in the determination of tuberculosis epidemiological landscape.

We address the problem of drug resistance as a competition between drug-sensitive and
resistant strains. Our objective is to characterize how reinfection modifies the conditions for
strain coexistence. Reinfection imposes a new threshold for transmission, above which resis-
tant strains dissemination is facilitated. Consequently, drug resistance control would benefit
from a change in the interventions focus, from drug acquisition reduction to transmission
blocking, depending on the epidemiological setting.

Motivated by molecular epidemiology studies indicating that rates of reinfection tuber-
culosis are higher than rates of new tuberculosis, we propose the selection hypothesis to
reconcile these observations with the consensual view that tuberculosis infection confers par-
tial protection that reduces the individual susceptibility to reinfection. We postulate that
some individuals are a priori more likely to develop the disease. As infection tends to affect
the more susceptible individuals, the distribution of recovered individuals is skewed towards
higher susceptibility, inflating the rates of reinfection. The hypothesis is formulated mathe-
matically and confronted with data for different endemic regions. We propose a new criterion
for further validation.

The consequences of host heterogeneity in susceptibility to infection is also explored in
the context of more general epidemiological models assuming partial immunity (SIRI models).

Keywords: Mathematical models; stability and bifurcation analysis; partial immunity; het-
erogeneity; tuberculosis



Resumo

A motivação para esta tese é um problema epidemiológico de interesse actual – a transmissão
da Tuberculose (TB), do qual focamos sobretudo dois aspectos: o papel da reinfecção na TB
recorrente (recidivas) e na propagacção de estirpes resistentes a antibióticos. Ao longo da
tese, dois aspectos transversais são analisados: imunidade parcial, para a qual a proteccção
conferida pela primeira infeccção não é total mas reduz o risco de reinfecção; e heterogenei-
dade, quer seja na susceptibilidade dos indiv́ıduos à infeccção ou na susceptibilidade do agente
infeccioso a antibióticos.

O nosso objectivo é propôr explicacções teóricas para os fenómenos observados em TB,
capturando os mecanismos que os explicam através de modelos matemáticos simples, pasśıveis
de um profundo estudo anaĺıtico. Na nossa abordagem, procuramos estudar o comportamento
desses fenómenos para diferentes regiões em vez de nos focarmos numa só região ao longo do
tempo. Priviligiamos os modelos matemáticos simples em determimento dos mais complexos,
fortemente dependentes de dados epidemiológicos. Usamos metodologias das áreas da teoria
de sistemas dinâmicos e teoria da bifurcação para desenvolver e analizar os modelos. Em par-
alelo ao trabalho desenvolvido especificamente em TB, propomos metodologias mais gerais
que possam ser aplicadas a outras doenças infecciosas. O trabalho tem como base modelos
anteriores que caracterizam sistematicamente a reinfeccção em sistemas epidemiológicos em
geral e especificamente em TB (Gomes et al., 2004a,b, 2005).

O Caṕıtulo 2 é uma introdução aos conceitos de imunidade parcial e de limiar de reine-
fecção. O conteúdo dos Caṕıtulos 3 e 5 faz parte de manuscritos já publicados (Rodrigues et
al., 2007, 2009). O Caṕıtulo 4 resulta de trabalho ainda em curso que esperamos melhorar
e completar no futuro próximo. Finalmente, o Caṕıtulo 6 constitui um manuscrito completo
recentemente submetido para publicação.

Há muito que os modelos matemáticos são usados no estudo de doenças infecciosas. Os
modelos clássicos SIR (Suscept́ıveis-Infecciosos-Recuperados) e SIS (Suscept́ıveis-Infecciosos-
Suscept́ıveis) têm sido extensamente estudados e aplicados com sucesso (Kermack & McK-
endrick, 1927; Anderson & May, 1991). São modelos em que se considera que a população
está dividida em compartimentos ou classes de acordo com o seu historial de infecção: sus-
cept́ıvel, infeccioso ou recuperado com imunidade. A dinâmica destes modelos é descrita por
sistemas de equações diferenciais. Nos modelos SIR e SIS assume-se que a infecção confere
imunidade que protege totalmente ou não confere qualquer protecção. A primeira forma de
imunidade é t́ıpica das chamadas doenças infantis, como o sarampo, a papeira ou a rubéola,
enquanto que a segunda forma refere-se a infecções que permitem múltiplas reinfecções ao
longo da vida como a malária. Contudo, a maior parte das infecções situar-se-á entre estes
dois extremos. Uma das extensões propostas é o modelo com imunidade parcial - modelo
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SIRI (Suscept́ıveis-Infecciosos-Recuperados-Infecciosos) (Gomes et al., 2004b), no qual se as-
sume que os indiv́ıduos estão protegidos enquanto infectados mas voltam a adquirir alguma
susceptibilidade após recuperarem. Nestes modelos observamos dois tipos de comportamento
endémico: baixo e potencialmente oscilatório, como nos modelos SIR ou alto e não-oscilatório,
como nos modelos SIS. Estes dois comportamentos estão separados por um limiar na trans-
missão que depende da dinâmica de reinfecção - o limiar de reinfecção (LR). Os modelos SIRI
e o conceito do limiar de reinfecção, são conceitos centrais para o trabalho desenvolvido nesta
tese.

O Caṕıtulo 2 surge da necessidade de estender o conceito do limiar da reinfecção a um con-
junto mais alargado de modelos e à definição de um método generalizado para o seu cálculo.
Primeiro, estendemos o conceito LR, inclúıdo no modelo SIRI, a outros fenómenos como a imu-
nidade temporária, a latência e a reactivação. As caracteŕısticas inicialmente descritas para
o SIRI podem variar com a importância da reinfecção relativamente aos outros fenómenos,
mas o LR estará sempre associado a mudanças na dinâmica da doença e reduzido impacto da
vacinaçã. Na Secção 2.5 propomos um método para o cálculo do LR, para qualquer modelo
de transmissão descrito por um sistema de equações diferenciais. O método é baseado na
definição de um sub-modelo de reinfecção, para o qual o processo de reinfecção é isolado dos
restantes fenómenos. Uma bifurcação no parâmetro de transmissão, para o equiĺıbrio trivial,
quando existe, corresponde ao LR. Assim, o LR pode ser mais geralmente interpretado como
o ńıvel de transmissão a partir do qual a infecção pode ser mantida endémica numa população
parcialmente imunizada. O método desenvolvido é usado no Caṕıtulo 5 para um modelo SIRI
heterogéneo, para o qual mais do que um LR é identificado. De facto, quando existe mais do
que um grupo da população com ńıveis distintos de susceptibilidade, a dinâmica do modelo
é determinada por mais do que um LR. A sua identificação pode não ser evidente até que o
sistema seja perturbado e os perfis de susceptibilidade modificados. Um outro exemplo deste
fenómeno pode ser encontrado em Gomes et al. (2007).

A TB é uma doença rica em paradoxos. Foi uma das primeiras doenças para a qual o
agente causador foi identificado (Robert Koch, 1882), e uma das primeiras para as quais uma
vacina foi desenvolvida (por Albert Calmette e Camille Guérin, 1906). Antibióticos eficazes
estão dispońıveis há mais de meio século (Iseman, 2002). No entanto mantem-se uma das
doenças infecciosas mais comuns e mortais. Estima-se que um terço da população mundial
esteja actualmente infectada. TB é uma doença infecciosa causada pelo Mycobacterium tu-
berculosis que afecta sobretudo os pulmões. Apenas 10% dos indiv́ıduos infectados progridem
directamente para doença e tornam-se infecciosos nos dois anos após o contágio. Nos restantes,
a infecção é controlada, mas mantida num estado de latência, podendo ser reactivada após
um peŕıodo variável de tempo. Pode ainda haver reinfecção, aquando do contacto com uma
nova estirpe. Estas duas caracteŕısticas, reactivação e reinfecção, colocam várias dificuldades
na modelação desta doença e são também aqui estudadas em diferentes momentos.

Em conjunto com a co-infecção por HIV a resistência aos antibióticos constitui uma das
preocupações principais no controlo da TB. Coloca importantes restrições à eficácia dos trata-
mentos dispońıveis e o problema continua a agravar-se com o aparecimento de estirpes mul-
tiresistentes. No Caṕıtulo 3, abordamos o problema da propagação das estirpes resistentes.
É proposto um modelo com dois tipos de estirpes: suscept́ıveis e resistentes a antibióticos.
O nosso objectivo é caracterizar como a reinfecção modifica as condições de coexistência.
Conclui-se que a reinfecção impõe um novo limiar na transmissão, acima do qual a dis-
siminação de estirpes resistentes é facilitada. Consequentemente, as medidas de controlo
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beneficiariam de uma alteração do seu focus, passando da tentativa de redução de casos de
resistência adquirida para a iterrupção das cadeias de transmissão, dependendo do equadra-
mento epidemiológico.

Estudos de epidemiologia molecular sugerem que a coexistência de estirpes com diferentes
perfis de susceptibilidade é posśıvel não apenas ao ńıvel da população mas também ao ńıvel
do indiv́ıduo. Na Secção 3.5, adaptamos o modelo proposto anteriormente de modo a incluir
a possibilidade de infecções mistas. Todavia, a necessidade de melhor compreender como a
competição de estirpes senśıveis e resistentes dentro do hospedeiro influência a capaciade da
estirpe ser transmistida na população, motiva a integração de dinâmicas em duas escalas -
população e indiv́ıduo. No Caṕıtulo 4, apresentamos trabalho ainda em curso sobre modelos
para a tuberculose usando estas duas escalas de modelação. São propostos modelos simples
para dinâmica da infecção dentro do hospedeiro que descrevem o progresso das infecções
mistas. A duração das infecções mistas e a frequência de estirpes resistentes durante estas
infecções são relacionadas com o fitness relativo das estirpes. As relações obtidas são então
usadas no modelo epidemiológico. Deste modo, obtemos uma caracterização do cenário epi-
demiológico com base na fitness da estirpe equanto competição dentro do indiv́ıduo.

Como a heterogeneidade, nas suas diferentes formas, altera a dinâmica das doenças infec-
ciosas, tem sido uma questão importante na sua modelação. A principal motivação para a
introdução de heterogeneidade nos modelos é necessidade de melhor fazer corresponder os re-
sultados teóricos aos dados epidemiológicos. No Caṕıtulo 5, propomos uma metodologia para
incluir a heterogeneidade do hospedeiro nos modelos SIRI, capaz de captar os seus efeitos,
sem que seja perdida capacidade de análise matemática dos modelos. Analizamos o impacto
da heterogeneidade na prevalência da doença e comparamos os perfis de susceptibilidade das
sub-populações em risco de primeira infecção e de reinfecção. De acordo com o descrito na
literatura para os modelos SIRI e SIS com heterogeneidade, também estes modelos tendem
a gerar prevalências mais baixas do que os correspondentes modelos homogéneos. Para além
disso, observamos que a heterogeneidade na susceptibilidade à infecção gera um mecanismo
de selecção nos grupos de risco elevado, através da transmissão, o que pode explicar taxas
de reinfecção inesperadamente altas. Este mecanismo de selecção é especialmente notório
em regiões de baixa ou moderada transmissão onde, sob a hipótese de imunidade parcial, se
poderia esperar que a reinfecção fosse rara. As vantagens das estratégias de controlo focadas
nos grupos de elevado risco são exploradas através do estudo da vacinação não uniforme e de
intervenções capazes de alterar o perfil de susceptibilidade da população. Estas últimas, ao
contrário das primeiras, têm o potencial de poder reduzir ou mesmo eliminar a doença para
populações acima do LR.

O tópico no Caṕıtulo 5, é na verdade motivado por um problema em TB. Estudos de
epidemiologia molecular relatam que, para certas regiões, a taxa de tuberculose por rein-
fecção, entre doentes tratados, é maior que a taxa de tuberculose por novas infecções (Verver
et al., 2005). Estas observações podem ser explicadas admitindo que o risco individual de
infecção é maior depois de tratamento (Uys at al., 2009). Baseando-nos nas conclusões do
modelo SIRI com heterogeneidade, formulamos uma explicação alternativa, assente na het-
erogeneidade da população. Assim, postulamos que alguns indiv́ıduos têm a priori um risco
mais elevado de infecção. Estes indiv́ıduos vão ser seleccionados pelo processo de transmissão
contribuindo para uma acumulação de indiv́ıduos de elevado risco entre o grupo de doentes
tratados. Consequentemente as taxas de reinfecção observadas neste grupo aparecem inflac-
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cionadas. Esta hipótese permite reconciliar a ideia consensual de imunidade parcial conferida
pela infecção de tuberculose, com o aumento da taxa de reinfecção observado. No Caṕıtulo
6, as duas hipóteses alternativas para este fenómeno são integradas em dois modelos assu-
mindo a mesma estrutura para a transmissão da TB. Dados publicados sobre a proporção de
reinfecção na tuberculose recorrente (recidivas) para diversas regiões endémicas são usados
para parametrizar os modelos, os quais são analisados e comparados. Conclúımos que só a
hipótese de selecção é compat́ıvel com os critérios epidemiológicos descritos para a TB. Um
critério alternativo para distinguir os modelos, baseado em dados epidemiológicos de taxas
de reinfecção e tuberculose primária, é proposto e discutido.
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Chapter 1

Introduction

1.1 Motivation and history

This thesis is a compromise between biological realism and mathematical tractability. The
motivation for this work is an epidemiological problem of major current interest – Tuberculo-
sis (TB) transmission. We address mainly two questions: the role of reinfection in recurrent
infections and the spread of drug resistance. Throughout the work two transversal aspects
are analyzed: partial immunity, protection against subsequent infections conferred by first
infection is not fully protective; and heterogeneity in host susceptibility to infection or in
strain sensitivity to drugs. Our aim is to provide theoretical explanations for observed phe-
nomena in TB. We intend to capture the underlying mechanisms involved in the different
manifestations across regions, instead of focusing in a certain region/country over time. We
develop simple mathematical models for TB transmission that allow a deep analytic investi-
gation, in opposition to data driven, highly computational complex models. We make use of
methodologies from dynamical systems theory and bifurcation theory to develop and analyze
these models. In parallel, we propose general theoretical frameworks that can easily be ap-
plied to other infectious diseases (chapters 2 and 5). The work builds on original models that
systematically characterize reinfection in epidemiological systems in general, and specifically
in tuberculosis epidemiology (Gomes et al., 2004a,b, 2005).

Mathematical models have long been used in the study of the transmission of infectious
diseases. One of the first examples is the work developed by Daniel Bernoulli on smallpox
(1760), where he used a mathematical model to evaluate the effectiveness of variolation against
smallpox, with the aim of informing public health policy. Also determinant was the work of
Ronald Ross on the transmission of malaria (1908). He is responsible for a continuous-time
framework using mass action principle, which assumes that the rate of infection is propor-
tional to the product of the density of susceptible individuals and the density of infectious
individuals. Few years latter Kermak and McKendrick established the theory of the epidemic
threshold according to which the turning point of an epidemic occurs when the density of
susceptible individuals crosses a certain critical value (Kermack & McKendrick, 1927). This
theory in conjunction with the principle of mass action is the cornerstone of the modern
theoretical epidemiology.

The SIR (Susceptible-Infectious-Recovered) and SIS (Susceptible-Infectious-Susceptible)
frameworks for infectious diseases have been extensively studied and successfully applied

11
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(Kermack & McKendrick, 1927; Anderson & May, 1991). These are compartmental models,
where the host population is considered to be divided into different classes depending on dis-
ease state: susceptible, infectious and recovered with immunity. The dynamics of the various
compartmental models are deterministically determined by systems of ordinary differential
equations. These models correspond to two extreme situations and have been the bases for
many extensions, motivated by the need to describe the specific disease dynamics in more
detail. In this work we are particularly interested in extending these compartmental models
in two directions by allowing for variation in susceptibility to infection due to innate factors
or acquired immunity.

In the SIR and SIS models infection induces an immune response that protects totally
or nothing, respectively. The former is classically applied to childhood diseases like measles,
mumps or rubella, and the latter refers to infections that have repeated reinfections through-
out life, such as malaria. But most infections are somewhere between these two cases. A
natural extension of this framework was developed by Gomes et al. (2004b). We can consider
several mechanism to interpolate between the two extremes: temporary immunity, where
the infection confers total immunity but for just a certain period of time; partial immunity,
where immunity is not fully protective but reduces the risk of subsequent infections; and
combinations of these two in which infection confers partial immunity for a certain period
of time. When these extensions are considered new dynamics appear. In the case of partial
immunity models, we can have two types of endemic behaviour, low and potential oscillatory
or high and steady. These two types of endemic behaviour are separated by a second thresh-
old of transmissibility that depends on the reinfection dynamics - reinfection threshold (RT).
The importance of the RT in marking the emergence of new dynamical behavior will to be
discussed throughout this work.

How host heterogeneity, in its different forms, changes the dynamics of infectious diseases
has been an important question in infectious diseases modeling. One the one hand, models
ought to be simple and tractable but, on the other hand, key traits cannot be neglected
under the risk of not capturing important features of the disease behavior. Discussion on
this subject is scattered through the literature sometimes in different areas and apparently
unrelated problems. Mostly, the incorporation of host heterogeneities into the models is
driven by disease related questions and data interpretation. Structuring work on the subject
was proposed by Anderson & May (1991) and Diekmann et al. (1990) and also by a series of
related papers (Ball, 1985; Anderson & Britton, 1998; Britton, 1998).

Heterogeneity in the host population can be based on biological factors such as genetic
susceptibility or resistance, duration of the infectious period or chemotherapy and also on
social, economic or demographic factors that affect frequency or intensity of contacts. Dif-
ferent frameworks have been proposed to include host heterogeneity into SIR or SIS models,
from compartmental models (Anderson & May, 1991; Hethcote, 1996), to distributed param-
eter systems (Coutinho et al., 1999; Diekmann & Heesterbeek, 2000; Diekmann et al., 1990;
Dushoff, 1999; Veliov, 2005) and more recently, using network models (Miller, 2007).

It generally concluded that the inclusion of host heterogeneity in the models reduces
the epidemic sizes and alters the effects on the control effort. However, it is important to
note that it depends on the phenomena analyzed and that comparison criteria between ho-
mogeneous and heterogeneous models can alter these conclusions (Anderson & Britton, 1998).

Tuberculosis is a disease rich in paradoxes. It was one of the first diseases for which the
causative agent was identified (by Robert Koch, 1882), and one of the first for which a vaccine
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was developed (by Albert Calmette and Camille Guérin, 1906). Effective antibiotics have been
widely available for half a century (Iseman, 2002). Yet it remains one of the most common
infectious disease and a great killer. One third of the world’s population (approximately
two billion individuals) is believed to be currently infected. The World Health Organization
(WHO) estimates that 9.27 million new cases of TB occurred in 2007, killing 1.32 million
among individuals with no human immunodeficiency virus (HIV) infection and 456,000 HIV-
positive people (WHO, 2009). The South-East Asia and Western Pacific regions account
for 55% of global cases and the African Region for 31% (WHO, 2009). The magnitude of
the TB burden within countries can also be expressed as the number of incident cases per
100 000 population. The world incidence of new TB cases, during 2007, was 139 per 100
000 population (WHO, 2009). Some regions have extremely high incidence rates reaching
1,000 per 100,000 population, while the usual incidence is considered to vary between 5 (low-
incidence countries) and 200 (high- incidence countries). Among the 15 countries with the
highest estimated TB incidence rates, 13 are in Africa, a phenomenon linked to high rates
of HIV coinfection (WHO, 2009). Also resistance to the anti-tuberculosis antibiotics poses
serious difficulties to TB control. In 2007, among all cases of TB, around 5% were multi-drug
resistant (WHO, 2009). The only vaccine in current use, the bacille Calmette-Guérin (BCG),
is cost-effective, but its efficacy is highly variable, ranging from 0% to 80%.

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb). Al-
though tuberculosis is primarily a pulmonary disease, the bacterium can infect and cause
disease in almost all organs and tissues, including the central nervous system and bone. TB
is transmitted by airborne particles spread through the air when people who have the disease
cough, sneeze, or spit. Infection usually results when the mycobacterium is deposited in the
lungs of exposed persons. From all infected individuals, less than 10% progress directly to
active disease and become infectious within two years upon infection – primary disease. For
the remainder, infection is successfully controlled but not eliminated – latent infection. La-
tently infected individuals are asymptomatic and do not contribute to transmission. Complex
cellular structures, called granulomas, ensure mycobacterial containment in a dormant stage
that can last for variable periods of time. Latent infection can reactivate to cause active
tuberculosis by endogenous reactivation, mainly due to immunossupress ion, or by exogenous
reinfection, which is typically caused by a different genotype. Different models have been used
in the study the long-term dynamics of tuberculosis. The selection of a model is intimately
connected to the particular question one wants to address. We can say that in the tubercu-
losis modeling literature there is a core group of model structures that have been adapted to
the different questions, such as interpretation of historical data, effectiveness assessment of
different control strategies, spread of drug-resistance or HIV coinfection. The main contribu-
tions can be tracked to the initial models from different research groups such as Blower et al.
(1995); Castillo-Chavez & Feng (1997); Vynnycky and Fine (1997); Dye et al. (1998); Murray
& Salomon (1998); Murphy et al. (2003); Gomes et al. (2004a) or Cohen & Murray (2004).

Tuberculosis is a complex disease and this work is not meant to be exhaustive. We focus
on two aspects: the role of reinfection in tuberculosis transmission and the spread of drug-
resistance. Throughout the present work we introduce the required biological information
and modeling formalism.
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1.2 Summary

Chapter 2 is an introduction on the concepts of partial immunity and the reinfection thresh-
old. The contents of Chapters 3 and 5 are published manuscripts (see Section 1.3). Chapter
4 is ongoing work that we hope to complete in the near future. And Chapter 6 is a complete
manuscript that has been recently submitted for publication in a shorter version.

Chapter 2 is based on the reinfection threshold concept initially introduced in the Susceptible-
Infectious-Recovered-Infectious (SIRI) context where infection induces a partially protective
immune response (Gomes et al., 2004b). The inclusion of partial immunity in tuberculosis
models, in particular for the work on post-exposure interventions in Gomes et al. (2007),
motivated the generalization of the RT to a wider range of models and to the definition of a
generalized method for its computation. We first extend the concept of the RT, by including
into the SIRI model other processes involved in disease transmission: temporary immunity,
latency and reactivation/relapse. The characteristics described for the simple SIRI can vary
with the importance of reinfection in comparison to the other disease processes, but it is al-
ways associated with changes in the disease dynamics. In Section 2.5, we propose a generalized
method for the computation of the RT for any general compartmental disease transmission
model described by a system of ordinary differential equations. The method is based on the
definition of a sub-model, the reinfection sub-model, for which the reinfection process has been
isolated from the remaining disease processes. A bifurcation on the transmission parameter of
the disease-free equilibrium, if it exists, will correspond to the RT. Hence, the RT can be more
generally interpreted as the transmission level above which (re)infection can sustains trans-
mission in a partially immunized population. The method developed is used throughout this
work. For systems where more than one partially immune class exists, multiple reinfection
thresholds can be defined. These thresholds show an increased importance in the context of
interventions that affect the population risk profile, where stability of multiple equilibria can
occur in regions limited by these thresholds. In Section 5.5.2 such an intervention is analyzed.

Together with coinfection with HIV, drug resistance constitutes the main concern in tu-
berculosis control. It poses important restrictions in treatment management and the problem
continues to aggravate with the emergence of strains that are resistant, each time, to a higher
number of anti-tuberculosis drugs. In Chapter 3, we address the problem of drug-resistance
spread. We construct a model with two types of strains, drug-susceptible and resistant strains.
Our goal is to characterize how reinfection modifies the conditions for coexistence by giving
another opportunity of resistant strains to spread, independently of drug acquisition. Differ-
ent control strategies are discussed and it is shown that intervention effectiveness is highly
sensitive to the baseline epidemiological setting.

Molecular epidemiological studies suggest that coexistence of strains with different sus-
ceptibility profiles are possible not only at the population level but also within an individual.
In Section 3.5, we extend the drug resistance TB model to include the possibility of mixed
infections. However, the need to better understand how competition of sensitive and resistant
strains within-host influences the ability of strains to be transmitted in the population, mo-
tivates the integration of dynamics at two scales. In Chapter 4, we present ongoing work on
multi-scale models for tuberculosis. Simple within-host models describing the progression of
mixed infections are proposed. The duration of mixed infections and the frequency of resis-
tant strains during these infections are related to the relative fitness of strains. The obtained
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relations are then used in the epidemiological model. This way, one can obtain a theoretical
epidemiological landscape on coexistence of strains, based on within-host relative fitness. The
models developed, so far, still require further study and validation.

Heterogeneity in susceptibility and infectivity is inherent to infectious disease transmis-
sion in nature. In Chapter 5 we use a simple framework to include host heterogeneity into
mathematical models that is able to capture the essence of heterogeneity effects maintaining
a simple structure suitable of mathematical analysis. We explore the consequences of host
heterogeneity in the susceptibility to infection, for epidemiological models for which immunity
conferred by infection is partially protective (SIRI models). We analyze the impact of hetero-
geneity on disease prevalence and contrast the susceptibility profiles of the sub-populations
at risk for primary infection and reinfection. Heterogeneity in susceptibility to infection gen-
erates a selection mechanism on the high-risk groups driven by transmission, that can explain
unexpectedly high reinfection rates. The enhanced benefits of control strategies that target
the more high-risk groups are explored.

The topic explored in Chapter 5 is, in fact, motivated by a concrete problem in TB epi-
demiology. Molecular epidemiological studies report a rate of reinfection TB higher than the
rate of new TB among treated patients, for transmission community in Cape Town (Verver
et al., 2005). Based on the conclusions of the simple SIRI heterogeneous model, we formulate
an hypothesis that explains the observations noting that infection imposes a selection mech-
anism whereby the risk profile of the recovered compartment is skewed towards high risk.
This hypothesis can reconcile the widely accepted idea of partial immunity conferred by TB
infection with the increased reinfection rate observed, without assuming an increased risk of
subsequent infection after treatment, as proposed by others (Uys at al., 2009). In Chapter 6
the alternative hypotheses for this phenomenon are then integrated into two models assuming
the same structure for tuberculosis transmission. Published data on the reinfection propor-
tion in recurrent TB, for different endemic regions, is used to parameterize the models, which
are analyzed and compared. An alternative measure that can further distinguish both models
based on epidemiological data on reinfection and primary TB rates, is discussed.

Possible extensions and applications of the work developed in this thesis are discussed in
Chapter 7.

1.3 Publications

The contents of this thesis relate to the following publications:

• Chapter 2 is a summary of the effort along different problems and models to generalize
the definition and computation of the reinfection threshold. One of the determinant
problems for this generalization is published in

Gomes M.G.M., RODRIGUES P, Hilker F., Mantilla-Beniers NB, Muehlen M, Paulo
A, Medley G. 2007. Implications of partial immunity on the prospects for tuberculosis
control by post-exposure interventions, J. Theor. Biol. 248,(4):608-17.
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• Chapter 3 is adapted with minor changes from

RODRIGUES P, Gomes MG, Rebelo C. 2007. Drug resistance in tuberculosis - a rein-
fection model, Theor. Pop. Biol. 71: 196-212.

• Chapter 5 is adapted, with exception of the inclusion of section 5.5.2, from the accepted
manuscript

RODRIGUES P, Margheri A, Rebelo C, Gomes MGM, 2009. Heterogeneity in suscep-
tibility to infection can explain high reinfection rates, J. Theor. Biol. 259: 280-290.

• Chapter 6 is an unpublished manuscript. Recently, an adapted version of this manuscript
has been submitted for publication.

RODRIGUES, P, Águas R, Nunes M, Rebelo C, Gomes MGM. 2009. High rates of
reinfection tuberculosis: the selection hypothesis.

1.4 Software

Throughout the work, numeric calculations and some analytical manipulations are obtained
using Matlab 6.5r. In Chapter 3, equilibrium curves are computed with Matcont contin-
uation package of Matlab 6.5r (Dhooge et al., 2003). In Chapter 6, the fitting procedure
is performed using Berkeley Madonna software v8.3.6c.



Chapter 2

Partial immunity and thresholds in
transmission - the Reinfection
Threshold

2.1 Introduction

The basic reproduction number R0 is one of the most important quantities in the study of
epidemics and in the comparison of population dynamical effects of control strategies. It is
present in almost all papers that use mathematical modeling for the study of the spread of
infections in populations. R0 is, biologically, defined as the expected number of new infections
caused by a typical infected individual in a totally susceptible population, during his/her
infectious period. In demography and ecology, R0 has an equivalent interpretation as the
expected number of female offspring born to one female during her entire life. This concept
was fully formed much earlier in the demography context and despite several opportunities to
cross over between demography, ecology and epidemiology (Heesterbeek, 2002), it took until
the 90s to become fully developed and its applicability realized in theoretical epidemiology.
For that, it was determinant the extensive use of the concept and estimates from serological
data by Anderson & May (1991) and the development of a mathematical theory of R0 for
heterogeneous populations by Diekmann et al. (1990) and Dietz (1993).

The value R0 = 1 defines a threshold in disease transmission – the epidemic threshold. Be-
low this threshold, an infectious agent will not invade a totaly susceptible population. Above
the threshold, the pathogen can invade and it is expected that for R0 > 1 the disease becomes
endemic. R0 has been used to characterize different populations according to transmission
potential. It is also used as a measure of the control/elimination effort – if transmission can
be reduced by the control measures implemented and subsequently R0 decreased below one,
then the pathogen can be eliminated. Mathematically, for models expressed by deterministic
dynamical systems, R0 = 1 is associated with a bifurcation in the transmission parameter
that marks the transition of the disease free steady state from stable to unstable. Most of the
times, it is also associated with the emergence and/or stability of an endemic steady state. R0

can be formally defined as the dominant eigenvalue of the so called next generation operator
(Diekmann et al., 1990).

The epidemic threshold is not the only threshold to affect transmission and disease control.
It has been argued that for diseases for which immunity is not fully protective, allowing

17
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reinfection to occur after recovery at a reduced rate, another important threshold is associated
with disease level and control effectiveness – the reinfection threshold (Gomes et al., 2004b,
2005).

The RT was initially defined in the context of the SIRI model. This model assumes that
individuals are protected while infected but regain some susceptibility upon recovery. Com-
pared to susceptibility prior to infection, this susceptibility is reduced by a factor σ. The
SIR and SIS models can be regarded as two extremes of the SIRI model by setting σ to
zero or one, respectively. Associated with the reinfection threshold it was described a steep
increase in disease prevalence, a drop in vaccination impact and a shift from low and steady
equilibrium to high and possible oscillatory as the threshold is crossed, corresponding to a
shift from a SIR-type of behavior, below threshold, to SIS-type of behavior above. The SIRI
model has been further investigated in a spatial stochastic version (Stollenwerk et al., 2007)
and the RT implications have been studied for different diseases for which immunity is not
fully protective (Águas et al., 2006; Gökaydin et al., 2007; Gomes et al., 2004a, 2007).

This chapter is motivated by the need to extend the concept of the RT to more gen-
eral models and to define a generalized method for its computation. Initially, we extend
the concept of the RT, by including into the SIRI model other processes involved in disease
transmission. These processes are analyzed independently. As in Gomes et al. (2004b), we
include temporary immunity as another example of imperfect immunity. Motivated by the
tuberculosis models that are central in this work, we also consider latency and endogenous
reactivation/relapse. We focus on two characteristics of the change in behavior induced by
the RT in the simple SIRI model: (1) steep increase in the disease prevalence, (2) vaccine
impact variation. Both are considered in relation with the basic reproduction number. We
proceed by describing which of these characteristics are maintained and which are changed,
for the different sub-models. Finally, we formulate a generalized method for the computation
of the RT for any general compartmental disease transmission model described by a system
of ordinary differential equations.

2.2 Generalized model

We construct a generalized model where, in addition to SIRI transmission other processes
are included: latency, temporary immunity and endogenous reactivation/relapse. We analyze
each process separately. The total population is divided into disease related classes S, L, I,
R and V , that stand for the proportion of susceptible, latently infected, infectious, recovered
and vaccinated individuals. We use the following set of differential equations to describe the
generalized model: 

S′ = (1− v)µ+ α(R+ V )− λS − µS
L′ = λS + σλ(R+ V )− (ν + µ)L
I ′ = νL+ ωR− (τ + µ)I
R′ = τI − σλR− (µ+ ω + α)R
V ′ = vµ− σλV − (µ+ α)V

(2.1)

A schematic version of the model is represented in Figure 2.1 and Table 2.1 summarizes the
parameter definitions. The model is parameterized by the transmission coefficient (β), which
differentiates regions/countries according to socioeconomic and environmental factors and re-
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Figure 2.1: SIRI Generalized Model. S, L, I and R stand for the proportion of susceptible, latent

infected, infectious and recovered individuals in the population. The model parameters are described in Table

2.1.

flects itself on the force of infection λ = βI. For all sub-models we assume that infection

Table 2.1: SIRI generalized model parameters
parameter definition

µ birth and death rates

β transmission coefficient

σ factor reducing the risk of reinfection

τ rate of recovery

ν rate at which latent individuals progress to the infectious state

α rate of loss of acquired immunity

ω rate of endogenous reactivation/relapse after treatment

v vaccination coverage

confers partial immunity against subsequent reinfections. Parameter σ is the factor reducing
the risk of infection as a result of acquired immunity. The birth and death rates are assumed
to be equal (µ), rendering the total population constant over time. Before entering the infec-
tious state individuals can remain latent for a period 1/ν, where ν is the rate of progression
from the latent to the infectious stage. Infectious individuals recover from the infectious state
at a rate τ to the recovered class. For the temporary immunity model, recovered individuals
loose their protection at a rate α, moving from the recovered back to the susceptible class.
Finally, for the ractivation/relapse process, recovered individuals have a chance of relapse
back to the infectious stage at a rate ω, independently of any infectious contact. We also
include in the model the possibility of vaccinating a proportion v of the population at birth.
In all cases, vaccinated individuals are assumed to have the same protection as that conferred
by natural infection.
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2.3 The epidemic threshold

2.3.1 The basic reproduction number, R0

The basic reproduction number can be formally define as the dominant eigenvalue of the
so called next generation operator associated with the system (Diekmann et al., 1990). We
use the method described in van den Driessche & Watmough (2002) to compute the next
generation matrix, corresponding to this operator. First, we must identify new infections and
distinguish the infected classes from all other class transitions in the population. The infected
classes are L, I and also R if ω 6= 0. So we write system (2.1) as

X ′ = f(X)⇔ X ′ = F(X)− V(X), (2.2)

where X = (L, I,R, S), F = (βIS, 0, 0, 0)T is the rate of appearance of new infections in each
class and the disease-free equilibrium is X0 = (0, 0, 0, 1).

Derivatives DF(X0) and DV(X0) can be partitioned as

DF(X0) =
[
F 0
0 0

]
, DV(X0) =

[
V 0
J3 J4

]
,

where F and V correspond to the derivatives of F and V with respect to the infected classes:

F =

 0 β 0
0 0 0
0 0 0

 , V =

 ν + µ 0 0
−ν τ + µ −ω
0 −τ µ+ ω + α

 .
Now, the basic reproduction number is defined as the spectral radius of the next generation
matrix, FV −1:

R0 = β
ν(µ+ ω + α)

(ν + µ)[(µ+ τ)(µ+ α) + µω]
. (2.3)

Sometimes, the basic reproduction number can be easily computed as the contact number
(Hethcote, 2000), by multiplying the contact rate, the probability of becoming infectious and
the average infectious period. In this case, the contact rate is β, the average fraction surviving
the latent period and arriving to I is ν/(ν + µ) with an infectious period of

1
τ + µ

[
1 +

τ

τ + µ

ω

µ+ ω + α
+
( τ

τ + µ

ω

µ+ ω + α

)2
+ . . .

]
=

µ+ ω + α

(µ+ τ)(µ+ α) + µω
, (2.4)

which stands for the usual infectious period 1/(τ +µ), times the multiple opportunities to go
back to the infectious class by endogenous reactivation (ω).

Note that if we do not consider endogenous reactivation (ω = 0) these calculation are no
longer valid. For the next generation method, the R class is not an infected class and for the
direct method the infectious period is just 1/(τ + µ). Making the corresponding changes the
basic reproduction number becomes

R0(ω = 0) = β
ν

(ν + µ)(µ+ τ)
. (2.5)

For the case ν → +∞ the calculations should also be adapted. When there is no latency
period the probability to survive this stage is one, hence the resulting expression for R0 is

R0(ν → +∞) = R0 = β
µ+ ω + α

(µ+ τ)(µ+ α) + µω
. (2.6)
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The expression of R0 is model dependent, so it should be interpreted as a way to classify
different populations according to their potential for transmission, under the assumptions
made in the model.

2.3.2 Stability of the disease-free equilibrium

The stability properties of the disease-free equilibrium relate to the threshold condition R0 = 1
and are given in the following theorem.

Theorem 2.3.1. The disease-free equilibrium (1, 0, 0, 0) of system (2.1) with no vaccination
(v = 0) is locally asymptotically stable if R0 < 1 and it is unstable for R0 > 1.

Proof. By theorem 2 in van den Driessche & Watmough (2002), for a system Ẋ = f(X) it is
sufficient to prove conditions:

(A1) if X ≥ 0, then F , V+, V− ≥ 0

(A2) if Xi = 0 then V−i = 0 (where i refers to a vector component)

(A3) Fi = 0 for the components that correspond to uninfected classes

(A4) if X∗ is a disease-free equilibrium then Fi(X∗) = 0 and V+
i (X∗) = 0 for the components

that correspond to uninfected classes

(A5) If F is set to zero then all eigenvalues of Df(X0) have negative real parts

with V(X) = V−(X) − V+(X), where V+ is the rate of transfer into each class by all other
means and V− is the rate of transfer out of each class.

For ω > 0, the verification of (A1)-(A4) is straightforward using F , V and X∗ = X0

defined as before. As for condition (A5), the Jacobian of f at X0 with F set to zero, as

Df(F=0)(X0) =


−(ν + µ) 0 0 0

ν −(τ + µ) ω 0
0 τ −(µ+ ω + α) 0
0 β α −µ

 .
The eigenvalues are −µ, −(γ + µ) and the solutions of equation p(λ) = 0, where p(λ) =
λ2 +a1λ+a0 and a1 = 2µ+α+ τ +ω, a0 = (µ+ τ)(µ+α) +µω. Since a1 and a0 are positive,
all eigenvalues have negative real part and the result follows for the case ω > 0.

If ω = 0, we define F , V and X∗ = X0 as in the previous case, just F and V are different
since R is no longer considered an infected class. Hence, the verification of (A1)-(A4) is as
before. As for condition (A5), the Jacobian of f at X0 with F set to zero, is now

Df(F=0)(X0) =


−(ν + µ) 0 0 0

ν −(τ + µ) 0 0
0 τ −(µ+ α) 0
0 β α −µ

 .
The matrix is triangular, so the eigenvalues correspond to the diagonal entries which are all
real and negative.
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2.4 The reinfection threshold

2.4.1 The SIRI sub-model

By using ω = 0, α = 0 and ν → +∞, we recover the simple SIRI model
S′ = (1− v)µ− λS − µS
I ′ = λS + σλ(R+ V )− (τ + µ)I
R′ = τI − σλR− µR
V ′ = vµ− σλV − µV.

(2.7)

System (2.7) without vaccination has a disease-free equilibrium E0 = (1, 0, 0, 0) and an en-
demic equilibrium E1. At the epidemic threshold R0 = 1, as we define in the previous section,
the system undergoes a transcritical bifurcation. As we have showed for the generalized model,
the disease-free equilibrium is stable for R0 < 1 and for R0 > 1 a stable endemic equilibrium
emerges. Note that in the epidemiological context we refer to endemic equilibrium as a posi-
tive solution of the system at equilibrium and we give no meaning to possible negative states.
In the next theorem we prove the existence and stability of the endemic equilibrium.

Theorem 2.4.1. If R0 > 1, system (2.7) has exactly one endemic equilibrium E1 that is
stable for R0 > 1.

Proof. Existence. From the first, third and forth equations of system (2.7) at equilibrium, we
get a relation between S, R, V and I:

S =
µ

µ+ βI
= s(I), R = I

τ

µ+ σβI
= r(I)I, and V = 0.

From the second equation of the system (2.7) we get

I
(
βs(I) + σβr(I)I − (τ + µ)

)
= 0⇔ −µI P (I)

Q(I)
= 0, (2.8)

where P and Q are polynomials of second degree such that:

Q(I) = (µ+ βI)(µ+ σβI),
P (I) = p2(β)I2 + p1(β)I + p0(β),

with p2(β) = σβ2 > 0, p1(β) = β(−σβ+ τ +µ+σµ), and p0(β) = µ((τ +µ)−β). If I = 0 we
get the disease-free equilibrium. For I > 0 then Q(I) 6= 0 and we look for positive solutions
of P (I) = 0. If R0 ≤ 1, then p0(β) ≥ 0 but also p1(β) ≥ 0, for 0 < σ < 1. So, there are no
positive solutions of P (I). If R0 > 1 ⇔ β > τ + µ, then p0(β) < 0 and we have exactly one
positive solution of P (I):

I∗ =
−p1 +

√
p2
1 − 4p2p0

2p2
. (2.9)

Stability. Lets compute the Jacobian matrix of system (2.7) at E1 = (S∗, I∗, R∗, 0)

J =


−βI∗ − µ −βS∗ 0 0
βI∗ βS∗ + σβR∗ − (τ + µ) σβI∗ 0
0 τ − σβR∗ −σβI∗ − µ 0
0 0 0 −σβI∗ − µ





2.4 The reinfection threshold 23

The eigenvalues of J are −µ,−(σβI∗ + µ), that are real and negative, and the solution of
the polynomial p(λ) = λ2 + a2λ + a0, where a1 = βI∗(σ + 1) + 2µ + τ − σβR∗ − βS and
a0 = −σβ2I∗(S∗ +R∗)− µβS∗ − σµβR∗ + σβ2I∗2 + (βτ + σβµ)I∗ + µ(µ+ τ). From second
equation of the system at equilibrium, we can rewrite a1I

∗ as βI∗2(σ + 1) + µI∗ > 0, from
which we conclude that a1 is positive. Using the fact that P (I∗) = 0 and 1 = S∗ + R∗ + I∗,
we get a0 = −σβ2I∗(1− I∗)− µβS∗− σβR∗+ (P (I∗) + σβ2I∗+ βµ). Finaly, by substituting
1− S∗ = I∗ +R∗, we conclude that a0 = σβ2I∗2 + µβI∗ + µβR∗(1− σ) which is positive for
0 < σ < 1. Hence p(λ) has solutions with negative real part and the result follows.

The reinfection threshold is associated with the epidemic threshold in the reinfection sub-
model (Gomes et al., 2004b, 2005){

I ′ = σλ(R+ V )− (τ + µ)I
(R+ V )′ = µ+ τI − σλ(R+ V )− µ(R+ V ),

(2.10)

which is obtained from system (2.7) by setting v = 1. The bifurcation and therefore the RT
takes place at

R0 =
1
σ
. (2.11)

that corresponds to the transmission level above which transmission can be sustained in a
population for which individuals are born with partial protection σ. One of the characteristics
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Figure 2.2: Equilibrium curve for the SIRI model. Dotted lines correspond to the SIS model (σ = 1),

SIR model (σ = 0) and the reinfection sub-model (v = 1). Parameters used are µ = 1/70, τ = 12 and σ = 0.25.

of the SIRI model is the steep increase in disease prevalence that occurs when the reinfection
threshold is crossed. The SIRI model changes from a low endemic level typical of an SIR
model (lower dotted curve in Figure 2.2 obtained for σ = 0) to a high endemic level typical
of an SIS model (top dotted curve in Figure 2.2 obtained for σ = 1).

The difference in the disease prevalence levels, below and above the RT, depends on
population and disease factors. Figure 2.3 describes how this difference changes with two of
these factors: the average life span (1/µ) and the average duration of the infectious period
(1/τ). Later on, we comment on the impact of other disease related factors. To characterize
the potential for variation due to partial immunity we define the ratio

k = log10

I1(R0)
I0(R0)

, (2.12)
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Figure 2.3: Impact of the infectious period and average life expectancy on the disease level
above and below the RT.(a) and (c) Equilibrium infectious proportion for different values of τ : 1, 12, 52

(corresponding to an average duration of infection of one year one month and one weak, respectively) and

µ = 1/50, 1/70, 1/80. (b) and (d) How the difference in the disease prevalence below and above the RT is

affected by the infectious period and the average life expectancy.

where I0(R0) and I1(R0) correspond to the equilibrium proportions of infectious for the SIR
(σ = 0) and SIS (σ = 1) model extremes. We can obtain analytic expressions for I0 and I1

from the proof of the endemic equilibrium existence for the SIRI model (Theorem 2.4.1) as
the roots of polynomial P (I):

I0(R0) =
µ

τ + µ

(
1− 1

R0

)
and I1(R0) = 1− 1

R0
. (2.13)

Interestingly the ratio between them results independent of R0, k ≡ log10

τ + µ

µ
.

Figure 2.3 (a) and (c) show the equilibrium curves for different values of µ and τ and
the corresponding (b) and (d) panels show the theoretical ratio, k. The variation in disease
prevalence decreases with the infectious period duration but it increases with the average life
expectancy. In the second case, the impact is much less for biologicaly meaningful values than
in the first case, for which differences can go from 2 to 4 orders of magnitude for infectious
periods of one year or one weak, respectively.

For the purpose of illustration in the remaining plots in this section we fix µ = 1/70,
τ = 12 and σ = 0.25, corresponding to an intermediate situation.
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2.4.2 The SIRI model with latency

We now consider the case for which there is a latency period. While in the latent class (L),
individuals cannot transmit the disease and are protected against reinfection. The average
latency period is 1/ν yrs. Temporary immunity and reactivation are not taken into account
(α = 0 and ω = 0) 

S′ = (1− v)µ− λS − µS
L′ = λS + σλ(R+ V )− (ν + µ)L
I ′ = νL− (τ + µ)I
R′ = τI − σλR− µR
V ′ = vµ− σλV − µV.

(2.14)

All infectious diseases have a latency period and, therefore, this model is widely applicable.
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Figure 2.4: Equilibrium Proportion of Infectious for different latency periods. From top to

bottom ν=120, 12, 1.2, 0.12 and 0.012. Heavy line represents the limit case SIRI with no latency period

(ν → ∞). Dotted curves correspond to the equilibrium of the respective vaccination sub-model with v = 1

and vertical line marks the RT.

Figure 2.4 shows how the infectious equilibrium curve changes with the latency period.
First, we observe that the reinfection threshold defined for the simple SIRI model, R0 =
1/σ (vertical line in Fgure (2.4)), generally corresponds to an increase in the disease level.
However, its effects depend on parameters values. As we increase the latency period, the
equilibrium is lower and the increase at the RT is not as pronounced. Note that for the lower
curve we used ν = 0.012 (and τ = 12) which corresponds to a latency period of 83 yrs (1/ν)
or, more realistically, it means that an infected individual has only 46% (ν/(ν + µ)) chances
of progressing to disease in its life span. Despite reinfection being possible it is not the most
important mechanism in terms of the contribution to disease burden since for the majority
of the population the infection is chronic. Nevertheless, for all cases the RT marks a critical
transmission for the impact of vaccination, assuming that vaccine confers partial protection
equivalent to natural immunity. The bifurcation in the reinfection sub-model (v = 1) marks
the transmission intensity above which the disease remains endemic (dotted lines in Figure
2.4) revealing the RT for R0 = 1/σ, independently of the duration of the latency period.



2.4 The reinfection threshold 26

2.4.3 The SIRI model with temporary immunity

We now consider the case for which after recovering from infection, individuals have partial
protection against reinfection but this protection wanes and is eventually lost. In the tempo-
rary immunity sub-model we do not consider the existence of a latency period (ν →∞) nor
the possibility of relapse after recovery (ω = 0)

S′ = (1− v)µ+ α(R+ V )− λS − µS
I ′ = λS + σλ(R+ V )− (τ + µ)I
R′ = τI − σλR− (µ+ α)R
V ′ = vµ− σλV − (µ+ α)V.

(2.15)

There are numerous diseases for which immunity is thought to be partial and temporary such
as pertussis, malaria or dengue.

Figure 2.5 shows the equilibrium proportion of infectious for different values of the rate
of waning immunity, α. Disease level is higher for shorter protection periods, above limited
by the SIS scenario when α→∞ and below by SIRI scenario when α = 0.
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Figure 2.5: Equilibrium proportion of infectious for different rates of waning immunity in
relation to R0. From top to bottom α = 20, 2, 0.2 and 0.02. Heavy line represents the limit case SIRI

with no waning immunity (α = 0). Dotted curve corresponds to the equilibrium of the respective vaccination

sub-model with v = 1 and vertical line marks the RT for the extreme case α = 0.

The epidemic threshold R0 = β/(τ + µ) = 1 does not depend on the α. And the RT of
the SIRI model generally marks a behavioral change for the temporary immunity sub-model
(vertical dotted line in Figure 2.5). The RT corresponds to the bifurcation in the reinfection
sub-model R0 = 1/σ, obtained by setting v = 1 but also α = 0. Hence, the RT no longer
coincides with the vaccination control limit, for a vaccine conferring the same protection
as natural infection (i.e. partial and temporary). For a certain vaccination coverage v the
region for which elimination is possible is limited by the epidemic threshold of system (2.15)

corresponding to the disease free-equilibrium (
(1− v)µ+ α

µ+ α
, 0, 0,

vµ

µ+ α
) attained at

R0 =
µ+ α

(1− v)µ+ α+ σvµ
. (2.16)

Hence, the control limit corresponds to R0 = (µ + α)/(σµ + α) when v = 1, here defined as
the vaccination threshold (VT).
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Figure 2.6: Vaccination versus reinfection threshold for the temporary immunity sub-model
model (for α = 0.2). (a) Heavy, light full and dotted curves correspond to the cases no vaccination (v = 0),

limit vaccination coverage (v = 1) and reinfection sub-model (v = 1 and α = 0). Vertical lines mark the

vaccination and the reinfection thresholds (V T and RT ). (b) Limit vaccination efficacy (1 − Iv=1/Iv=0) in

relation to R0.

Figure 2.6 illustrates the difference between the vaccination and the reinfection thresh-
olds for a 5 year immunity duration (α = 0.2). There is a transmission intensity range,
R0 ∈ (V T,RT ), for which vaccination is not able to eliminate the disease but it can re-
duce significantly its level (light grey region in Figure 2.6). As the RT is crossed, there is
a steep decrease on vaccination impact. Therefore, in this context, RT marks the level of
transmission above which partial immunity impairs control by vaccination, independently of
temporary protection (dark grey region in Figure 2.6). In general, we note that the VT is
always lower than the RT. Similarly, the effort needed to eliminate the disease by vaccina-
tion, for a population with a transmission intensity given by a certain R0, depends on both
temporary and partial immunity and it is higher than the vaccination coverage needed to
eliminate the disease in the simple SIRI model. The effort to eliminate the disease is defined
by the vaccination coverage v(α, σ) needed to reduce the epidemic threshold of the model
with vaccination (2.16) below one. Hence,

v(α, σ) =
[
1− 1

R0

] µ+ α

µ(1− σ)
≥ v(0, σ) =

[
1− 1

R0

] 1
(1− σ)

. (2.17)

For an improved vaccine that confers permanent immunity V T and RT coincide and represent
the transmission potential below which elimination can be attained.

2.4.4 The SIRI model with endogenous reactivation/relapse

We now consider the possibility of endogenous reactivation or relapse after treatment, inde-
pendently of infectious contact. Latency and temporary immunity are omitted (ν → ∞ and
α = 0) 

S′ = (1− v)µ− λS − µS
I ′ = λS + σλ(R+ V ) + ωR− (τ + µ)I
R′ = τI − σλR− (µ+ ω)R
V ′ = vµ− σλV − µV.

(2.18)
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Tuberculosis and varicella/zoster are examples of infections for which individuals can remain
infected even after effective treatment of an active disease episode. These individuals cannot
transmit, but infection can be endogenously reactivated back to the disease/infectious state
independently of new infectious contacts. Reactivation is thought to depend mostly on im-
munosupressive factors such as age, co-infection with HIV or immunosupressive treatments.
In the case of TB similar phenomena can also be associated with treatment failure or re-
lapse. In what concerns transmission, the possibility of reactivation/relapse results in a new
infectious period.
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Figure 2.7: Equilibrium proportion of infectious for different relapse rates in relation to the
transmission coefficient (β). From top to bottom ω= 0.2, 0.02 and 0.002. Heavy line represents the limit

case SIRI with no relapse (ω = 0).

Figure 2.7 shows the equilibrium proportion of infectious for different values of the re-
activation/relapse rate ω in relation to the transmission coefficient β (instead of the basic
reproduction number). The change in behavior typical of the RT is observed at a fixed value
β = (τ + µ)/σ, independently of the reactivation rate. Conversely, the epidemic threshold
varies with the reactivation rate, R0 = β(µ + ω)/µ(µ + ω + τ) = 1. Hence, for the reacti-
vation/relapse sub-model we no longer expect that the RT has the same relation with R0 as
before. In fact, the reinfection sub-model must be obtained by setting the reactivation/relapse
rate to zero (ω = 0 and v = 1).{

I ′ = σλ(R+ V )− (τ + µ)I
(R+ V )′ = µ+ τI − σλ(R+ V )− (µ+ ω)(R+ V ).

(2.19)

The RT is then attained at

R0 =
1
σ

[
1 +

τω

µ(τ + µ+ ω)

]
(≥ 1

σ
) (2.20)

meaning that endogenous reactivation/relapse shifts the impact of reinfection to higher trans-
mission intensities (see also Figure 2.8 (a)).

Figure 2.8 illustrates the effects of reinfection in vaccination impact, where vaccinated
individuals are assumed to have partial protection equivalent of that induced by natural in-
fection. The average time until reactivation is assumed to be 1/ω = 50 yrs. Disease can be
eliminated for R0 below the vaccination threshold R0 < V T = 1/σ, and the effort to eliminate
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Figure 2.8: Vaccination versus reinfection threshold for the reactivation/relapse sub-model
(for ω = 0.002.) (a) Heavy, full and dashed curves correspond to the cases no vaccination, limit vaccination

coverage v = 1 and reinfection sub-model (v = 1 and α = 0). Vertical lines mark the vaccination and the

reinfection thresholds. (b) Limit vaccination efficacy (1− Iv=1/Iv=0) in relation to R0.

the disease for a certain R0 depends on both the reactivation rate and on the protection fac-

tor v(ω, σ) =
1− 1/R0

1− σ
. For R0 ∈ (V T,RT ) (light grey region) the disease can be controlled

but not eliminated, independently of the vaccination coverage used. Moreover, when RT is
crossed the impact of vaccination is totally overcome by reinfection (dark grey region).

2.5 How to compute the reinfection threshold

In its original formulation RT is defined as the bifurcation in the transmission parameter for
the reinfection sub-model, obtained by setting v = 1 for the vaccination model (Gomes et al.,
2004b, 2005). However, if the protection conferred by the vaccine is different from natural
immunity or if there are other immunity processes involved such as temporary immunity or
endogenous reactivation, the corresponding bifurcation for v = 1 (referred here as vaccina-
tion threshold (VT)), diverges from the RT. The reinfection sub-model must be defined as
the sub-model for which all individuals are partially immunized. Since it should only reflect
the reinfection impact, additional immune processes must be removed. Latency, for exam-
ple, is considered since it is not a competing immunity process but a delay in the onset of
infectiousness. For the generalized model (2.1) the reinfection sub-model is then defined as

R′ = µ+ τI − σλR− µR
L′ = σλR− (ν + µ)L
I ′ = νL− (τ + µ)I

(2.21)

The bifurcation of the reinfection sub-model is attained at β =
(τ + µ)(ν + µ)

νσ
. The RT

corresponds the critical transmission level above which transmission can be sustained in a
partially immune population. Since the RT is invariable for the different immunity processes
other than reinfection, the relationship between RT and R0 depends on how these processes
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affect the epidemic threshold. Hence, the relation R0 = 1/σ is maintained for the case of
temporary immunity but is changed for the reactivation/relapse model.

For systems where more than one partially immune class exists, multiple reinfection
thresholds can be defined. These RTs are associated with bifurcations of the reinfection
sub-models defined by each partially immune class, from which other competing immunity
processes are set to zero. The SIRI model with heterogeneity in susceptibility to infection,
in Section 5.5.2 and the tuberculosis model for post-exposure interventions, in Gomes et al.
(2007), are examples of models with multiple reinfection thresholds. Overall, the importance
of the multiple reinfection thresholds to the model behavior is determined by the relative size
of the corresponding partially immune classes. Interventions that can alter the susceptibility
profile of the population have the potential to create regions of bistability, as suported by the
examples mentioned above. The study of the multiple RTs can reveal these regions of interest.

2.5.1 The reinfection sub-model

Generally, we can define the reinfection sub-model and corresponding RT for any given com-
partmental disease transmission model based on a system of ordinary differential equations.
The model can accommodate heterogeneous populations in which the demographic and epi-
demiological parameters reflect a dependence on factors such as stage of the disease, social
condition, age, behavior. We assume that the population can be divided into homogeneous
sub-populations, or compartments, such that individuals in a given compartment are identi-
cal. We also assume that the parameters are independent of time. The model is based on a
system of ordinary equations describing the evolution of the proportion of individuals in each
compartment.

Let the disease transmission model consists of nonnegative initial conditions together with
the following system of equations:

x′i = fi(x), i = 1, . . . , n+m+ k, (2.22)

where x = (x1, ..., xn+m+k)t with each xi ≥ 0, are the proportion of individuals in each com-
partment. Compartments are sorted in order that the first n compartments correspond to the
partial immunized classes subject to reinfection, followed by the m remaining classes except
for the k totally susceptible compartments, which are placed at the end. The distinction be-
tween infected, partially immunized and susceptible compartments must be determined from
the epidemiological interpretation of the model and cannot be deduced from the structure of
the equations alone.

We will construct the reinfection sub-model by first removing the totally susceptible classes
and transferring the recruitment rate (source population) into the partial immunized com-
partments. Let, y = (x1, . . . , xn+m)t correspond to the proportion of individuals in each
compartment for the sub-model. We define

ḡi(y) = f̄i(y, 0) + ri(y, 0) (2.23)

for i = 1, . . . , n+m, where ri is the recruitment rate verifying ri = 0 for i = n+1, . . . , n+m and
f̄i is given by fi with the rate of transfer of individuals into the last k compartments set to zero.
In particular, this last condition implies that temporary immunity term is removed (α = 0).
Note that the recruitment functions ri depend again on the epidemiological interpretation of
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the model. If only one class is subject to reinfection, x1, then r1 is the sum of all recruitment
rates of the model, corresponding to the total inflow of individuals into the model at each
time step. If there is a correspondence (social condition, age or behavior) between the totally
susceptible classes and partially immunized classes, then n = k and ri are the recruitment
rates of the matching susceptible classes. Finally, we can have different compartments subject
to reinfection with different protection or disease progression. In this case, for each of these
classes alternative reinfection sub-models should be considered, giving rise to several RTs.
For each sub-model, there should be only one or a matching number of reinfection classes of
interest at a time, so the recruitment function will be defined as in the simpler cases.

The reinfection sub-model is then defined by the following set of n+m differential equations

y′i = gi(y) = g+
i (y)− g−i (y), i = 1, . . . , n+m, (2.24)

where y = (y1, . . . , yn+m)t and g+
i and g−i are the rates of transfer of individuals in and out of

compartment i, respectively. Since each function represents a directed transfer of individuals
proportion, they are all non-negative. Thus, we have

(i) if yi ≥ 0, then g+
i , g

−
i ≥ 0, for i = 1, . . . n+m.

If a compartment is empty there can be no transfer out, thus

(ii) if yi = 0, then g−i (yi) = 0, for i = 1, . . . n+m.

Consider the disease transmission model given by (2.24) with gi satisfying conditions (i) and
(ii), hence the non-negative cone (yi ≥ 0, i = 1, . . . , n+m) is forward invariant. By Theorems
1.1.8 and 1.1.9 of Wiggins (1990) for each nonnegative initial condition there is a unique,
non-negative solution of system (2.24).

Let us now define Y0 to be the set of all disease free states, that is Y0 = {y ≥ 0 : yi =
0, i = n+ 1. . . . , n+m}. To ensure that the disease free subspace Y0 is invariant, we assume
that if the population is free of disease then the population will remain free of disease. No
(density independent) immigration of infectives is allowed. This condition is stated as follows:

(iii) if y ∈ Y0, then g+
i = 0, for i = n+ 1, . . . n+m.

This condition implies, in particular, that some immune processes must be set to zero in the
reinfection sub-model. As it is the case for endogenous reactivation/relapse rates.

2.5.2 The reinfection threshold

Let us construct the reinfection sub-model (2.24), satisfying conditions (i)-(iii). If the reinfec-
tion sub-model undergoes a bifurcation in the transmission parameter β, then this bifurcation
will correspond to the RT for the original model. More rigorously, let us consider the linearized
system

y′ = Dg(y0)(y − y0), (2.25)

where Dg(y0) is the Jacobian matrix evaluated at the disease free state y0 ∈ Y0. The bifurca-
tion point for y = y0 will be determined by setting to zero of the determinant of Dg(y0)and
solving the resulting equation for β. We denote the solution by βRT , which will corresponds
to a stability change of the disease free-equilibrium.

Finally, to obtain the relation between the RT and the basic reproduction number of the
original model we must substitute β by the expression of βRT in the R0 formula.
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2.6 Conclusions and outlook

Here we present a simple framework on how to include partial immunity in simple epidemi-
ological models and how to separate the impact of reinfection from other disease processes
such as latency, temporary immunity or endogenous reactivation, through the computation of
the reinfection threshold. RT marks a critical transmission intensity level corresponding to a
change from a SIR to an SIS transmission regime and has important consequences to disease
endemic level and interventions effectiveness, even in the presence of other disease processes.

The manifestation of the characteristics associated with the reinfection threshold changes
with disease factors such as the duration of the infectious period and life expectancy. The
magnitude of this manifestation is affected by other immunity factors, as described in the
temporary immunity and endogenous reactivation sub-models, reflecting the relative impor-
tance of reinfection in the context of each disease. Even if not evident, the two transmission
regions defined by the RT have always considerably different dynamics that can be evidenced
by massive interventions.

The basic reproduction number, R0 has served as a reference quantity to define the con-
trol effort needed to eliminate a disease, in particular, by defining the vaccination coverage.
However, for diseases where immunity is not fully protective, the control effort depends also
on the factor of protection of the partial immunized population (σ). The RT defines the
limit of the vaccination success, which corresponds to a steep decrease on the vaccine im-
pact and the impossibility to eliminate the disease, even if it overcomes the temporary or
reactivation/relapse effects of natural immunity.

When a population has different susceptibility groups with distinct protections there are
multiple reinfection thresholds. These thresholds refer to the transmission intensity above
which transmission can be sustained in each of the groups, independently. The impact on
the overall behavior of the system can be imposed by just one or a part of these thresholds,
depending on the relative size of the corresponding group. Interventions that can change
either the protection or the size of these groups have the potential to dramatically change the
disease landscape by changing the RT of interest. This point will be more clear after Section
5.5.2, where interventions on heterogeneous populations with different levels of susceptibility
to infection, can display catastrophic behavior for a transmission region determined the asso-
ciated reinfection thresholds. Another example can be found in Gomes et al. (2007).

Overall the RT marks a major change in the model behavior, which can help to explain
unexpected behaviors for high transmission regions. The use of RT in combination with the
classical epidemic threshold provide a better description and understanding of disease with
partial immunity, especially in the evaluation of effectiveness of different control measures.
Throughout this work we continue to emphasize the role of reinfection in different contexts,
in particular in the study of tuberculosis transmission.



Chapter 3

Drug resistance in tuberculosis - a
population perspective

3.1 Introduction

3.1.1 Motivation and aims

There is increasing recognition that partial immunity plays an important on TB transmission.
It has been shown that reinfection has significant epidemiological consequences, particularly
in what concerns disease prevalence and effectiveness of control measures. In this Chapter
we explore the impact of partial immunity when the parasite population is heterogeneous
with respect to drug sensitivity. We address the problem of drug-resistance as a competi-
tion between two types of strains of Mycobacterium tuberculosis: those that are sensitive to
anti-tuberculosis drugs and those that are resistant. Our objective is to characterize how
reinfection modifies the conditions for coexistence of sensitive and resistant strains, by giving
an extra opportunity for resistant strains to spread. This sets the scene for discussing how
strain prevalence is affected by different control strategies. It is shown that intervention ef-
fectiveness is highly sensitive to the baseline epidemiological setting. This chapter is adapted
with minor changes from Rodrigues et al. (2007).

3.1.2 The epidemiology of drug-resistant tuberculosis

Despite intensive control efforts, recent data show that global TB incidence is increasing,
largely associated to the increase in the prevalence of HIV (WHO, 2005) but also to the
decrease in treatment efficacy, due to the emergence of multi-drug resistant strains (Dye et
al., 2002). According to a recent report of the World Health Organization (WHO/ IUATLD,
2004), the overall prevalence of drug-resistance ranges from 0% (Andorra, Iceland and Malta)
to 63.9% (Karakalpakstan, Uzebekistan) with a median of 10.4%. The WHO distinguishes
between two types of resistance: acquired resistance – resistance among previously treated
patients; and primary resistance – resistance among new cases (WHO/ IUATLD, 1998). In
all regions studied, prevalence of acquired resistance is higher than prevalence of primary
resistance, but the size of this difference varies between regions (WHO/ IUATLD, 2004).

Treatment of tuberculosis consists of a combination of different drugs to avoid acquisition
of resistance. Despite these precautions, drug resistance continues to emerge being favoured
by the long duration of treatment and improper use of the antibiotics (Crofton et al., 1997).

33
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Drug resistant TB has higher rates of treatment failure and longer periods of infectiousness
in part due to the time lapse between TB diagnosis and obtaining drug-sensitivity test results
(Espinal et al., 2000). Most worrisome is resistance to the two first line drugs, isoniazid and
rifampicin, defined as multi-drug resistance (MDR). Geographical distribution of MDR is very
heterogeneous: it is highly prevalent in several areas of the former Soviet Union and in Israel,
Ecuador and some Provinces of China, but it is absent or present with very low prevalence in
a significant number of countries. Prevalence of MDR TB ranges from 0% to 26.8%, with a
median of 1.7% (WHO/ IUATLD, 2004). More recently extensively drug-resistant TB (XDR-
TB ) defined as TB resistant to multiple drugs as well as to any one of the fluoroquinolone
drugs and to at least one of the three injectable second-line drugs (amikacin, capreomycin or
kanamycin) (WHO, 2007), was reported in all regions of the world. It was rapidly classified
by WHO as a serious emerging threat to global public health, especially, in countries with a
high prevalence of HIV (WHO, 2007). Because XDR-TB is resistant to first- and second-line
drugs, treatment options are seriously limited increasing the concern with the spread of these
strains.

3.1.3 Transmission models of antibiotic resistance

Mathematical models have addressed the transmission dynamics of antibiotic resistance in
general (Austin et al., 1997; Bonhoeffer, 2002; Boni & Feldman, 2005). More specifically to
tuberculosis, a number of mathematical models have also been proposed (Blower & Chou,
2004; Blower & Gerberding, 1998; Blower et al., 1996; Castillo-Chavez & Feng, 1997; Cohen
& Murray, 2004; Dye & Espinal, 2001; Dye & Williams, 2000). Overall these models assume
that resistant strains are less transmissible, reflecting a trade-off between fitness and resis-
tance. Combined results demonstrate that the relative fitness between resistant and sensitive
strains is a crucial parameter: for some values it is predicted that second-line drugs would
be needed to prevent future epidemics (Dye & Espinal, 2001), whereas for other values it
appears as a local problem that can be managed through proper implementation of strategies
currently recommended by the WHO (Dye & Williams, 2000). Moreover, Cohen & Murray
(2004) find that even when resistant strains have, on average, a lower transmissibility a small
subpopulation of a relatively fit MDR strain may outcompete both the drug-sensitive strains
and the less fit MDR strains. The relation between resistance acquisition and fitness cost
as well as its epidemiological consequences are, however, still under discussion (Cohen et al.,
2003; Gagneux et al., 2006).

Although it is recognized that reinfection is an important component of TB transmission
(Chiang et al., 2005), few modellers take it into consideration. It has been shown that
for infectious diseases where immunity acquired by individuals after exposure is not totally
protective, allowing for reinfection to occur at a reduced rate, the equilibrium prevalence
of infection is highly sensitive to a threshold other than the epidemic threshold. This has
been named the ‘reinfection threshold’ and marks a critical transmission rate above which
reinfection processes are dominant (Gomes et al., 2004a,b, 2005; Breban & Blower, 2005).
The reinfection threshold has strong implications on epidemiological reasoning, particularly
in what respects the effectiveness of interventions.

For the case of resistant TB, a few models have considered reinfection (Blower & Chou,
2004; Castillo-Chavez & Feng, 1997; Cohen & Murray, 2004; Dye & Williams, 2000) but
the implementations vary significantly. Blower & Chou (2004) and Dye & Williams (2000)
incorporate reinfection at a reduced rate (partial immunity) applying to latent individuals
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only. Blower & Chou (2004) assume that recovered individuals have either total protection
against reinfection (if treated), or no protection at all (if self-cured). By contrast, Dye &
Williams (2000) assume that self-cured individuals have a high relapse but cannot be rein-
fected. Castillo-Chavez & Feng (1997) neglect exogenous reinfection of latent individuals and
assume super-infection but only by resistant strains. Cohen & Murray (2004) consider that
latent and recovered individuals benefit from partial immunity and have identical susceptibil-
ities to reinfection. Reinfection can happen with different strains and the new strain always
replaces the previous one. The model characterises strains by both fitness and resistance
status reaching a level of complexity that limits its analysis in what reinfection is concerned.

We extend previous work by devoting special care to the implementation of reinfection
and to the analysis of its consequences to the spread of drug-resistant tuberculosis. The
model is based on a reinfection framework for the transmission of tuberculosis (Gomes et
al., 2004a) and extended to describe the competition between two types of strains: sensitive
and resistant to drugs. Model extension is made in steps permitting intermediate analysis
in a systematic way.We describe how coexistence is shaped by reinfection dynamics and by
the outcome of mixed infection. The model predicts that coexistence is common for highly
endemic settings due to the greater relative importance of reinfection. Long term effectiveness
of different control measures is considered, and shows important sensitivity to the baseline
epidemiological setting.

3.2 Model construction

3.2.1 Exogenous reinfection and endogenous reactivation

The host population is divided into different categories based on the individual history of
infection. Three classes characterize the host population: susceptible (S), who have never be
exposed to the mycobacterium; latent (L), who are infected but not infectious; and infectious
(I) with active disease (see the diagram in Figure 3.1). Population size is assumed constant
over time. Susceptible individuals are infected at a rate proportional to the prevalence of

Figure 3.1: TB model. Individuals are classified according to infection state into susceptible (S), latently
infected (L) and infectious (I).

active TB and may develop active disease (progress to I) or maintain a latent infection (enter
L). Individuals who recover from active disease by treatment with antibiotics or self-cure
are transferred from I back to L. Infected individuals acquire some immunity as a result of
infection, which reduces the risk of subsequent infection but does not fully prevent it. Finally,
latent individuals can progress to active TB due to endogenous reactivation or exogenous
reinfection.
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Figure 3.2 shows the equilibrium curve for the proportion of active infections and illustrates
the reinfection threshold as defined in Chapter 2 and originally computed in Gomes et al.
(2004a). Above this threshold most TB cases are due to reinfection. Dashed and full thinner
lines in this Figure trace the equilibrium proportion of cases resulting from primary infection
and reinfection, respectively.
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Figure 3.2: Equilibrium curve: heavy black line represents all TB cases. Thin dashed and full lines

represent primary and reinfection cases, respectively. Vertical line marks the reinfection threshold.

3.2.2 Drug-resistance

The model is extended to include two strains with different sensitivities to antibiotics (see dia-
gram in Figure 3.3). We specify drug-resistant and drug-sensitive strains by adding subscripts
r and s to model variables and parameters.

Figure 3.3: Two-strain TB model. Individuals are classified according to infection state into susceptible
(S), latently infected (L) and infectious (I). Parameters are the transmission coefficient (β), the death and
birth rate (µ), the proportion of individuals developing active TB (φ), the reinfection factor (σ), the rate of
reactivation (ω), the rate of recovery under treatment (τ) and the proportion of resistance acquisition (γ).
Subscripts s and r refer to sensitive and resistant strains, respectively.
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Resistant cases may emerge when individuals are infected with a resistant strain (primary
resistance) or as a result of treatment failure (acquired resistance). We assume that a fraction,
γ, of infectious individuals with active sensitive TB (Is) progresses into the infectious class
of resistant strains (Ir) due to treatment failure. These correspond to cases of acquired
resistance.

3.2.3 Strain interactions

Molecular epidemiological studies suggest that mixed infections (infections with more than
one strain) are common (Warren et al., 2004), and that once an individual is infected with both
sensitive and resistant strains, a differential selection pressure will be imposed by treatment
(van Rie et al., 2004). Moreover, an individual infected with both resistant and sensitive
strains may have two alternative progressions: (i) develop resistant TB if treated with the
drugs to which one of the strains is resistant; or (ii) develop sensitive TB if untreated or if
treated with a regimen set as to overcome the specific resistance pattern.

Initially we assume that when an individual is infected with both resistant and sensitive
strains there will be a preferential activation (and transmission) of resistant strains – scenario
(i) above. This corresponds to a worse case scenario where the treatment regimen available is
not totally effective and selects for resistance. Later, in Section 3.5, we show that the results
essentially extend to a more general implementation of mixed infection - scenario (ii) above.

The two-strain model can be represented as the system of differential equations (3.1).



S′ = b− (βsIs + βrIr + µ)S

L′
s = (1− φ)βsIsS − (ω + φσβsIs + σβrIr + µ)Ls + (1− γ)τsIs

L′
r = (1− φ)βrIrS + (1− φ)σβrIrLs − (ω + φσβsIs + φσβrIr + µ)Lr + τrIr

I ′
s = φβsIsS + (ω + φσβsIs)Ls − (τs + µ+ δ)Is

I ′
r = φβrIrS + φσβrIrLs + (ω + φσβsIs + φσβrIr)Lr + γτsIs − (τr + µ+ δ)Ir

(3.1)

Parameter values are given and described in Table 3.1. Parameters that refer to sensitive

Table 3.1: Two-strain model parameters
symbol definition value

βs, βr transmission coefficient variable

µ death rate and birth rate 1/70 yr−1

δ death rate associated to TB 0.2 yr−1

φ proportion of individuals that develop active TB 0.1

(the remaining 1− φ have latent sensitive TB)

σ factor reducing the risk of infection as a result of acquired 0.25

immunity to a previous infection with sensitive or resistant strains

ω rate of endogenous reactivation of latent TB 0.0002 yr−1

τs, τr rate of recovery under treatment of active sensitive and resistant TB 2, 1.5 yr−1

γ proportion of sensitive TB treatment failure acquiring resistance 0.003 (or γ = 0)
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TB take values as in Gomes et al. (2004a). Reactivation rate is considered the same for sen-
sitive and resistant infections. Individuals reactivate at a low rate so that a majority never
progress to active disease (Gomes et al., 2004a; Vynnycky and Fine, 1997). Different assump-
tions can be found in the literature that discriminate related mechanisms such as relapse
of self-cured individuals or of treated patients, chronic infections and successive treatment
failures (Blower & Chou (2004); Dye et al. (1998); Castillo-Chavez & Feng (1997); Dye &
Williams (2000), respectively). We assume the rate of mortality associated to TB as in Dye
& Espinal (2001). Birth rate b compensates for disease-induced and background mortality to
keep the population size constant over time, so b = µ+ δ(Is + Ir). The proportion acquiring
resistance, γ, is on the lower bound of ranges considered in Cohen & Murray (2004) and Dye
& Espinal (2001). We assume that the period of infectiousness of a resistant TB case is, on
average, two months longer than that of a sensitive case. There is evidence that an individual
infected with a resistant strain stays longer in the infectious state due to either improper regi-
men, late identification of the resistance phenotype, or lower efficacy of treatment (Espinal et
al., 2000). The factor reducing the risk of infection as a result of acquiring immunity, σ, is the
same for both resistant and sensitive strains. Differences in transmission rates are explored
by continuously varying the strain-specific transmission coefficients βs and βr.

3.3 Equilibria and stability

For system (3.1) the simplex

S := {(S,Ls, Lr, Is, Ir) ∈ (R+
0 )5 : S + Ls + Lr + Is + Ir = 1}

is a positively invariant set, and thus we restrict the study of the solutions of the system to
S. By the fundamental theory of ODE’s, we know that (3.1) defines a dynamical system on
S as uniqueness, global existence and continuous dependence of solutions on initial data is
guaranteed when initial values are in S.

3.3.1 Basic reproduction number, R0

We calculate the basic reproduction number, R0, using the next generation approach, devel-
oped in van den Driessche & Watmough (2002). In order to compute the basic reproduction
number it is important to distinguish new infections from all other class transitions in popu-
lation. The infected classes are Ls, Lr, Is and Ir, so we can write system (3.1) as

Ẋ = f(X)⇔ Ẋ = F(X)− V(X), (3.2)

where X = (Ls, Lr, Is, Ir, S), F is the rate of appearance of new infections in each class.
Hence,

F = ( (1− φ)βsIsS, (1− φ)βrIrS, φβsIsS, φβrIrS, 0)T ,

and the disease-free equilibrium is X0 = (0, 0, 0, 0, 1).
Derivatives of F and V with respect to the infected classes at X0 are

F =


0 0 (1− φ)βs 0
0 0 0 (1− φ)βr
0 0 φβs 0
0 0 0 φβr

 , V =


µ+ ω 0 −(1− γ)τs 0

0 µ+ ω 0 τr
−ω 0 µ+ δ + τs 0
0 −ω γτs µ+ δ + τr

 .
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The basic reproduction number is defined, following van den Driessche & Watmough (2002),
as the spectral radius of the next generation matrix, FV −1:

R0 = max{R0s, R0r}, (3.3)

where R0s and R0r are the two eigenvalues:

R0s =
βs(ω + φµ)

(µ+ ω)(µ+ δ + τs)− (1− γ)τsω

R0r =
βr(ω + φµ)

(µ+ ω)(µ+ δ + τr)− ωτr
.

(3.4)

We can also interpret R0s and R0r as the average number of secondary infectious cases that
an infectious individual (with a sensitive or a resistant strain, respectively) would generate
in a totally susceptible host population. A threshold condition for endemicity is given by
R0 = 1: the disease dies out if R0 < 1, and becomes endemic if R0 > 1.

3.3.2 Steady states

System (3.1) has one disease-free equilibrium, E0 = (1, 0, 0, 0, 0) and two endemic equilibria
of the form: Er = (Sr, 0, Lrr, 0, I

r
r ) and Ers = (S∗, L∗s, L

∗
r , I
∗
s , I
∗
r ), corresponding respectively

to states where only resistant strains, or both types of strains are present.
The bifurcation diagram in Figure 3.4(a) divides the (R0s, R0r)−space into three regions

as characterised by the long-term epidemiological outcomes, each corresponding to a stable
steady state of the system: disease eradication (I), persistence of only drug-resistant TB (II)
or coexistence i.e. persistence of both drug-sensitive and drug-resistant TB (III).
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Figure 3.4: Long term epidemiological outcome: (a) γ > 0; (b) γ = 0. I - Disease eradication; II-

Persistence drug-resistant TB only; III - Coexistence. IV - Persistence drug-sensitive TB only. The dotted

line corresponds to the model without reinfection σ = 0.

Note that, infectious cases with sensitive strains give rise to new cases of resistant strains
at a constant rate γ > 0, due the acquisition of resistance through treatment failure. It is
therefore not possible to have an equilibrium where only sensitive strains are present. How-
ever, this equilibrium exists in the limit γ = 0, which corresponds to no acquired resistance.
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The resulting equilibrium has the form Es = (Ss, Lss, 0, I
s
s , 0) and in Figure 3.4(b) we can see

the corresponding stability region (marked as IV). We explore this limit case in more detail
in Section 3.3.5, but otherwise we consider γ > 0.

3.3.3 Stability of the disease-free equilibrium

The stability properties of the disease-free equilibrium (trivial equilibrium) E0, corresponding
to the threshold condition for endemicity are given by the theorem 3.3.1, stated below.

Theorem 3.3.1. The disease-free equilibrium E0 of system (3.1) is locally asymptotically
stable, if R0 < 1, i.e. if R0s < 1 and R0r < 1, and it is unstable for R0 > 1.

Remark 3.3.1. Numerical results suggest that the disease-free equilibrium is in fact globally
asymptotically stable for R0 < 1.

Remark 3.3.2. Numeric calculations and some analytical manipulations were obtained using
Matlab 6.5r. Equilibrium curves were computed with Matcont continuation package of
Matlab 6.5r (Dhooge et al., 2003).

Proof. By theorem 2 in van den Driessche & Watmough (2002) it is sufficient to prove condi-
tions (A1)-(A5), with F , V(X) = (V−(X)−V+(X)) and X0 as defined before and where V+

is the rate of transfer into each class by all other means and V− is the rate of transfer out of
each class. The verification of (A1)-(A4) is straightforward.

The Jacobian of f at X0 with F set to zero, as

Df(F=0)(X0) =


−(ω + µ) 0 (1− γ)τs 0 0

0 −(ω + µ) 0 τr 0
ω 0 −(µ+ δ + τs) 0 0
0 ω γτs −(µ+ δ + τr) 0
0 0 δ − βs δ − βr −µ

 .
The eigenvalues are: −µ and the solutions of equation

p1(λ)p2(λ) = 0

where p1(λ) = λ2 − a1λ+ a0 and p2(λ) = λ2 − b1λ+ b0 and

−a1 = 2µ+ δ + τr + ω,
a0 = µ(µ+ δ + τr) + ω(µ+ δ),
−b1 = 2µ+ δ + τs + ω,
b0 = µ(µ+ δ + τs) + ω(µ+ δ + γτs).

Since −a1, a0 and −b1, b0 are positive, all eigenvalues have negative real part and the result
follows.

3.3.4 Stability of boundary and coexistence equilibria

The existence of an equilibrium for which only resistant strains persist is given by theorem
3.3.2, stated below.
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Theorem 3.3.2. System (3.1) has exactly one non-trivial boundary equilibrium, Er = (Sr, 0, Lrr, 0, I
r
r ),

for R0r > 1.

Proof. From the first, second and third equations of system (3.1) at equilibrium, we get a
relation between S,Ls, Lr and Is, Ir:

S =
µ+ δIs + δIr
µ+ βsIs + βrIr

= F (Is, Ir),

Ls = Is
(1− φ)βsS + (1− γ)τs
µ+ ω + φσβsIs + σβrIr

= Is
(1− φ)βsF (Is, Ir) + (1− γ)τs
µ+ ω + φσβsIs + σβrIr

=

= G(Is, Ir)Is,

Lr = Ir
(1− φ)βr(S + σLs) + τr
µ+ ω + φσ(βsIs + βrIr)

= Ir
(1− φ)βr(F (Is, Ir) + σG(Is, Ir)Is) + τr

µ+ ω + φσ(βsIs + βrIr)
=

= H(Is, Ir)Ir.

Suppose that Is = 0 (and subsequently Ls = 0). If Ir is nonzero, from the fifth equation of
the system (3.1) we get

φβrF (0, Ir) + (ω + φσβrIr)H(0, Ir)− (µ+ δ + τr) = 0. (3.5)

We can write this as follows
P (Ir)
Q(Ir)

= 0,

where P and Q are polynomials of second degree such that:

Q(Ir) = (µ+ βrIr)(µ+ ω + φσβrIr) > 0,
P (Ir) = µ(p2(βr)I2

r + p1(βr)Ir + p0(βr)),

where
p2(βr) = −φσβ2

r < 0,
p1(βr) = φσβ2

r − (τr + ω + µ+ (1− φ)δ + φσ(µ+ δ))βr,
p0(βr) = βr(ω + φµ)− (µ(µ+ τr + δ) + ω(µ+ δ)).

If βr >
µ(µ+ δ + τr) + ω(µ+ δ)

φµ+ ω
⇔ R0r > 1, then p0(βr) > 0 and we have exactly one

positive solution of P (Ir). If βr ≤
µ(µ+ δ + τr) + ω(µ+ δ)

φµ+ ω
⇔ R0r ≤ 1, then p0(βr) ≤ 0 but

also p1(βr) ≤ 0, since 0 < φ, σ < 1. So there are no positive solutions of P (Ir).

In order to derive an expression for the region of stability of the boundary equilibrium
we measure the capacity of sensitive TB strains to invade and persist in a population where
resistant TB is at equilibrium. In this context, Er = (Sr, 0, Lrr, 0, I

r
r ) corresponds to an equi-

librium free of sensitive TB. Applying the methods in van den Driessche & Watmough (2002)
once again we find the basic reproduction number of the sensitive strains in a population
where resistant strains are fixed. Hence, consider the case when only the only sensitive TB
is transmissible, in a population where resistant TB is at equilibrium. The infected compart-
ments are Ls and Is. Following van den Driessche & Watmough (2002), we write system (3.1)
as in (6.2) where X = (Ls, Is, S, Lr, Ir) and F = ( (1−φ)βsIsS, φβsIsS, 0, 0, 0)T . The disease
(sensitive-TB)-free equilibrium is (0, 0, Sr, Lrr, I

r
r ).
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We can compute F and V that correspond to the derivatives at X0 with respect to the
infected classes of F and V, respectively:

F =
[

0 (1− φ)βs
0 βs

]
, V =

[
µ+ ω + σβrI

r
r −(1− γ)τs

−ω µ+ δ + τs

]
.

The basic reproduction number of the sensitive strains in a population where resistant
strains are fixed is then the spectral radius of the next generation matrix, FV −1:

R0s(Er) =
Srβs(φ(µ+ σβrI

r
r ) + ω)

(µ+ σβrIrr+)(µ+ δ + τs)− (1− γ)τsω
. (3.6)

Remark 3.3.3. Note that this is still valid for R0r < 1. In this case the disease-free equilib-
rium is E0 = (1, 0, 0, 0, 0) and we restore the endemicity threshold.

This formalism permits the derivation of a threshold condition for coexistence, now equiv-
alent to a threshold condition for sensitive TB endemicity in a population where resistant
strains are at equilibrium, R0s(Er) = 1: only resistant TB persists for R0s(Er) < 1, while for
R0s(Er) > 1 sensitive strains can invade a population where resistant strains are fixed, that
is to say coexistence is possible.

Theorem 3.3.3 below expresses this result in terms of stability for the equilibrium Er.

Theorem 3.3.3. If R0r > 1 the equilibrium Er of system (3.1) is stable for R0s(Er) < 1 and
unstable for R0s(Er) > 1.

Proof. By theorem 2 in van den Driessche & Watmough (2002) it is sufficient to prove con-
ditions (A1)-(A5). Once more, conditions (A1)-(A4) are of trivial verification. To prove the
remaining condition (A5) we write the Jacobian of f at X0, with F set to zero, ordering
coordinates as (S,Lr, Ir, Ls, Is). Then, the Jacobian has the form

Df(F=0)(S
r, Lrr, I

r
r , 0, 0) =

[
G1 G2

0 G4

]
.

where

G1 =

 −(µ+ βrI
r
r ) 0 δ − βrSr

(1− φ)βrIrr −(µ+ ω + φσβrI
r
r ) (1− φ)βrSr − φσβrLrr + τr

φβrI
r
r ω + φσβrI

r
r φβr(Sr + σLrr)− (µ+ δ + τr)


and

G4 =
[
−(µ+ ω + σβrI

r
r ) (1− γ)τs

ω −(τs + µ+ δ)

]
.

Therefore, the eigenvalues of the Jacobian are given by the eigenvalues of G1 and G4.
For G1 the eigenvalues are −µ and the roots of the polynomial

p1(λ) = (λ2 − a1λ+ a0)

where

−a1 = −(φSr + φσLrr)βr + (1 + φσ)Irrβr + (2µ+ δ + τr + ω),
a0 = φσβ2

r I
r
r
2+

+[−φσβ2
r (Sr + Lrr) + βr(τr + ω + µ+ (1− φ)δ + φσ(µ+ δ))]Irr+

+µ(µ+ δ + τr) + ω(µ+ δ)− βr((ω + φµ)Sr − φσµLrr).
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From equation five of the system (3.1) at the equilibrium Er we get:

(φSr + φσLrr)βrI
r
r = (µ+ δ + τr)− ωLrr

so −a1I
r
r = ωLrr + (µ+ ω)Irr + (1 + φσ)Irr

2βr > 0. Since Irr > 0, −a1 > 0. From the proof of
result 3.3.2 we know that Irr is the only positive solution of P (Ir) = µ(p2(βr)I2

r + p1(βr)Ir +
p0(βr)). We can write a0 as

a0 = −p2(βr)Irr
2 − p1(βr)Irr + φσβ2

r I
r
r − φσβ2

r (Sr + Lrr)I
r
r

−p0(βr) + βr(ω + φµ)− βr((ω + φµ)Sr − φσµLrr),

Now using the fact that 1 = Sr + Lrr + Irr we get

a0 = φσβ2
r I
r
r (1− Sr − Lrr) + βr(ω + φµ)(1− Sr − Lrr) + βr(ω + φµ)Lrr − βrφσµLrr

= φσβ2
r I
r
r
2 + βr(ω + φµ)Irr + βr(ω + φµ(1− σ))Lrr > 0

Since −a1 and a0 are positive for all possible values of βr >
µ(µ+ δ + τr) + ω(µ+ δ)

φµ+ ω
all

eigenvalues of G1 have negative real part.
For G4 the characteristic polynomial is

p2(λ) = λ2 − b1λ+ b0

where
b0 = (µ+ σβrI

r
r )(µ+ δ + τs) + ω(µ+ δ + γτs),

−b1 = 2µ+ δ + τs + ω + σβrI
r
r .

Since b0 > 0 and −b1 > 0 are both positive we conclude that all eigenvalues of G4 have
negative real part.

Remark 3.3.4. From the proof of this result we conclude that stability of Er is equivalent to
stability of the endemic equilibrium of the sub-system with only resistant strains and simulta-
neously stability of the sensitive TB-free equilibrium.

Remark 3.3.5. The curve that defines the coexistence region is given by the following relation
(see Figure 3.4):

R0s(Er) = 1⇐⇒ βs = f(βr) =
(µ+ σβrI

r
r )(µ+ δ + τs) + ω(µ+ δ + γτs)
Sr(φ(µ+ σβrIrr ) + ω)

. (3.7)

Remark 3.3.6. Numerical results support that below the curve defined by f in the (R0s, R0r)-
space both types of strains will persist.

Relation (3.7) reveals that persistence of sensitive strains depends on the reinfection pro-
cess. The expression of R0s(Er) is similar to that for R0s in (3.4) with an additional term,
σβrI

r
r . This term corresponds to reinfection by resistant strains of latent individuals infected

with sensitive TB. Contrasting with the case where reinfection is not considered, σ = 0 (dot-
ted line in Figure 3.4), reveals that persistence of only resistant strains is now possible even
when these have lower transmissibility R0r < R0s. Coexistence is no longer governed solely
by the invasion capacities of each strain (R0s and R0r) but also by the ability of sensitive
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strains to overcome the reinfection pressure exerted by resistant strains. In particular, our
results can be compared to the analysis of Blower & Gerberding (1998) (see Figure 2 and
table 1 within), which does not consider reinfection. The model developed by these authors
has the same possible outcomes (I,II,III) but these are fully determined by a linear relation
between pathogen fitness as measured by the respective R0: disease eradication (I) if R0s < 1
and R0r < 1; persistence of only resistant tuberculosis (II) if R0r > 1 and R0r > R0s; of both
drug sensitive and drug-resistant tuberculosis (III) if R0s > 1 and R0s > R0r.

3.3.5 Limit case: γ = 0

The limit case γ = 0 is equivalent to assuming that there is no acquisition of drug resistance
through treatment failure. Analysis of this limit case reveals regions where the elimination of
drug-resistant strains may result from prevention of acquired resistance alone.

For γ = 0, the system has three non-trivial equilibria corresponding to the presence of
each type of strains alone and coexistence (Figure 3.4(b)). The existence of the first two is
given by theorem 3.3.4 stated below.

Theorem 3.3.4. For γ = 0, system (3.1) has exactly two non-trivial boundary equilibria:
Er = (Sr, 0, Lrr, 0, I

r
r ) for R0r > 1 and Es = (Ss, Lss, 0, I

s
s , 0) for R0s > 1.

Proof. To show the existence of Er we just have to repeat the calculations in proof of result
3.3.2 with γ = 0.

Suppose now that Ir = 0 (and subsequently Lr = 0). If Ir is nonzero, from the fourth
equation of the system (3.1) we get

φβsF (Is, 0) + (ω + φσβsIs)G(Is, 0)− (µ+ δ + τs) = 0 (3.8)

where F and G are the same functions as in proof of result 3.3.2. Note that F (Is, 0), G(Is, 0)
have the same expression as F (0, Ir), H(0, Ir) respectively if we just change the subscripts s, r.
Moreover, equation (3.8) will be the same as equation (3.5) if we just change the subscripts
s, r. Therefore we conclude that for R0s > 1 we have exactly one positive solution of P (Is),
that corresponds to Es.

Two coexistence thresholds must be calculated: the first separates the region where only
sensitive TB persists from the region of coexistence; the second marks the shift from coexis-
tence to persistence of resistant TB alone.

Regarding the second threshold, it can be verified that the threshold condition is the same
as when γ > 0, i.e., R0s(Er) = 1. Moreover, the stability results pertaining the equilibrium
Esr (Theorem 3.3.3) can be extended to the case γ = 0.

To compute the first threshold we use the same reasoning as before. We consider resistant
TB as the phenotype invading a population where sensitive TB is already endemic. Then,
Es = (Ss, Lss, 0, I

s
s , 0) corresponds to the equilibrium free of resistant TB. Hence, let us assume

that only resistant TB is considered disease,then the infected compartments are Lr and Ir
and following (van den Driessche & Watmough, 2002), we can write system (3.1) as in 6.2
with X = (Lr, Ir, S, Ls, Is) and F = ( (1− φ)βsIsS, φβsIsS, 0, 0, 0)T .
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The disease (resistant-TB)-free equilibrium is now X0 = (0, 0, Sr, Lrr, I
r
r ). Let us compute

F and V corresponding to the derivatives at X0, with respect to the infected classes, of F
and V, respectively:

F =
[

0 (1− φ)βr(Ss + σLss)
0 φβr(Ss + σLss)

]
, V =

[
µ+ ω + φσβsI

s
s −τr

−(ω + φσβsI
s
s ) µ+ δ + τr

]
.

The basic reproduction number of the resistant strains, in a population where the sensitive
strains are fixed, is the spectral radius of the next generation matrix, FV −1:

R0r(Es) =
(Ss + σLss)βr(φµ+ ω + φσβsI

s
s )

(µ+ ω + φσβsIss )(µ+ δ + τr)− (ω + φσβsIss )τr
. (3.9)

Resistant strains can invade a population where sensitive strains are fixed when R0r(Es) > 1.
The corresponding result for the stability of the boundary equilibrium is expressed by

theorem 3.3.5 stated below.

Theorem 3.3.5. Consider system (3.1) with γ = 0. When R0r > 1, the equilibrium Er is
stable if R0s(Er) < 1 and unstable if R0s(Er) > 1. When R0s > 1, the equilibrium Es is stable
for R0r(Es) < 1 and unstable for R0r(Es) > 1.

Proof. In what matters the stability of Er we can repeat the calculations in the proof of result
3.3.3 with γ = 0.

For the case of equilibrium Es = (Ss, Lss, 0, I
s
s , 0) by the theorem 2 in (van den Driessche

& Watmough, 2002) is sufficient to prove conditions (A1)-(A5) for the system as we described
above. It is straightforward to check (A1)-(A4).

Let us prove the condition (A5). For simplicity of calculations let us write the Jacobian
of f , with F set to zero, at X0 with the following order in the coordinates (S,Ls, Is, Lr, Ir).
Then the Jacobian can be written in the following way

Df(F=0)(S,L
s
s, I

s
s , 0, 0) =

[
H1 H2

0 H4

]
.

where

H1 =

 −(βrIss + µ) 0 δ − βsSs
(1− φ)βsIss −(µ+ ω + φσβsI

s
s ) (1− φ)βsSs − φσβsLss + τs

φβsI
s
s ω + φσβsI

s
s φβs(Ss + σLss)− (µ+ δ + τs)


and

H4 =
[
−(µ+ ω + φσβsI

s
s ) τr

ω + φσβsIs −(τr + µ+ δ)

]
.

Therefore, the eigenvalues of the Jacobian are given by the eigenvalues of H1 and H4. Note
that H1 is similar to G1 in the proof of result 3.3.3 if we just replace the subscript r by s.
So we conclude that all eigenvalues of H1 have negative real part. For H4 the characteristic
polynomial is

p2(λ) = λ2 − b1λ+ b0

where
b0 = (µ+ σβsI

s
s )(µ+ δ + τr) + ω(µ+ δ),

−b1 = (2µ+ δ + τr + ω + σβsI
s
s ).

Since both b0 > 0 and −b1 > 0 all eigenvalues of H4 have negative real parts.
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Again we emphasize the dependence of the coexistence threshold on reinfection. Suscepti-
ble and latent individuals infected with sensitive strains are susceptible to (re)infection with
resistant strains at rates βrIr (infection) and σβrIr (superinfection) respectively. The result
is the nonlinear curve in Figure 3.4(b).

3.4 Fitness impact on the coexistence region

Drug resistance among Mtb isolates is caused by point mutations in the bacterial genome
that affect anti-mycobacterial drug activity. If a mutation that confers drug resistance can
exert a cost to the parasite we may expect these strains to be less transmissible than the drug
sensitive. To explore the epidemiological consequences of resistance cost we fix the relative
transmission coefficient, α = βr/βs, and explore the system behaviour by varying a parameter
β such that

βs := β βr := αβ.

As such, α < 1 means that the resistant strains have lower transmissibility than the sensitive.
Despite being less likely, the possibility α > 1 is also considered since this topic is still open
to discussion (Cohen et al., 2003; Gagneux et al., 2006). Figure 3.5 shows the bifurcation
diagrams obtained for two values of α. When α = 0.5 (full line) low values of βs lead to
coexistence, but only resistant strains persist for high rates of transmission, where reinfection
prevails. In this scenario it is possible to induce coexistence of sensitive and resistant strains by
reducing the disease transmission rate. In turn, coexistence improves the chance of controlling
drug-resistance prevalence. For α = 1.1 (dashed line) βs and βr lie in regions I and II thus,
only resistant strains may persist.

0 50 100 150 200
0

50

100

150

 !
s

 !
r

(a)

0 50 100 150 200
10!6

10!5

10!4

10!3

10!2

10!1

100
(b)

 !
s

Pr
op

or
tio

n 
In

fe
ct

io
us

 I
r
 

 I
r
 

 I
s
 

Figure 3.5: Decreased transmission: (a) Bifurcation diagram: Straight lines correspond to βr = αβs

for different values of α: α = 1.1 dashed line, α = 0.5 full line, and α = αC dotted line. (b) Corresponding

equilibrium curves: α = 1.1 dashed line, α = 0.5 full lines (only stable equilibria represented).

We derive a critical value for α below which a reduction in the overall transmission can
open the possibility for coexistence:

αC =
µ(µ+ δ + τr) + ω(µ+ δ)

µ(µ+ δ + τs) + ω(µ+ δ + γτs)
. (3.10)
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Note that, for the choice of parameters as in Table 1, αC ≈ 0.7745 < 1 (dotted line in Figure
3.5(a)). The critical value αC will be later used to compare the impact of different control
measures on the coexistence region.

In the case illustrated by α = 0.5, as the transmission coefficient, β, increases, the system
evolves from dominance of the sensitive strain to dominance of the resistant. This can be
interpreted as follow. The minimal transmissibility above which resistant strains can be
sustained in the population where sensitive strains are endemic, without the contribution of
acquired resistance (γ = 0), is given by the condition R0r(Es) = 1. This marks a threshold
in trasmission above which superinfection of sensitive by resistant strains occurs. Below the
threshold, resistant strains are outcompeted by the sensitive due to the higher transmission
coefficient of the latter (recall that α < 1). In this regime, resistant cases can only be
maintained due to acquired resistance (γ > 0). This superinfection threshold is marked in
Figure 3.6 (a). Despite being a threshold imposed by reinfection, it is formally obtained
as an invading threshold using an adaptation of the methods for the computation of the
basic reproduction number (see deduction of equation (3.9)). This is possible since we were
considering independent transmission parameters for each strain.
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Figure 3.6: Transmission thresholds for α = 0.5. (a) Equilibrium curves on the coexistence region.

Vertical dotted lines mark the epidemic threshold of sensitive strains and the superinfection threshold of

resistant strains. (b) Equilibrium curves on the region of persistence of drug-resistant TB only. Vertical

dotted line marks the reinfection threshold for the resistant strains, RTr.

Disease prevalence exhibits a new steep increase, for sufficiently high transmission rates,
marked by a threshold in reinfection of the resistant strains, RTr, marked in Figure 3.6 (b).
Since sensitive strains are no longer circulating in the population this threshold is now a
reinfection threshold as defined in Chapter 2 and it corresponds to a shift in dominance
from primary infections to reinfections. Following the method defined in Section 2.5 we can
construct the reinfection sub-model from system (3.1) with Ls = Is = 0 and βr = αβs as{

L′r = µ+ δIr + τrIr − φσβrIrLr − µLr
I ′r = φσβrIrLr − (τr + µ+ δ)Ir.

(3.11)

The system undergoes a bifurcation for the disease-free equilibrium (1, 0) at

βr =
τr + µ+ δ

φσ
, (3.12)

when the determinant of the Jacobian matrix evaluated at the disease-free equilibrium is zero.
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3.5 Model extensions - mixed infections

In the model presented in Section 3.2 we assumed that active TB resulting from a mixed
infection would always express the resistant phenotype. Now we relax this assumption by
also allowing individuals with a mixed infection to progress to sensitive TB (scenario (ii)
in Section 3.2.3). Molecular studies suggest several possible outcomes for mixed infections
(van Rie et al., 2004): sensitive TB may develop in untreated individuals carrying mixed
infections due to the faster replication of sensitive strains; sensitive strains may prevail when
treatment matches drug regimen to the resistance pattern specific to each case; resistant
strains may emerge when treating with first line anti-tuberculosis drugs. Moreover, fitness
trade-offs may favour sensitive strains when competition takes place during the latent stage
but, this will only have impact on transmission once individuals progress to the disease stage.
Although the possible outcomes we describe here are intuitive and expected they are the
product of different and complex mechanisms. These mechanisms are still, quantitatively and
qualitatively, unclear from the molecular point of view.
We extend the two-strain model by introducing a mixed latent class, Lm, representing the
proportion of individuals with a latent infection that combines both resistant and sensitive
strains - mixed infection. When individuals with mixed infections progress to active TB, either
by endogenous reactivation or exogenous reinfection, a fraction θ will manifest resistant TB
entering Imr while the remainder will develop sensitive TB progressing into Ims. The model

Figure 3.7: Mixed infections model. Individuals are classified according to infection state into susceptible
(S), latently infected (L) and infectious (I). Parameters are the transmission coefficient (β), the death and
birth rate (µ), the proportion of individuals developing active TB (φ), the reinfection factor (σ), the rate of
reactivation (ω), the rate of recovery under treatment (τ), the proportion of resistance acquisition (γ) and
proportion of mixed infection contributing to transmission of resistant strains (θ). Subscripts s, r and m relate
to sensitive, resistant or mixed infection, respectively.

is represented diagrammatically by Figure 3.7 and corresponds to the system of equations
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8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

S′ = b− (λs + λr + µ)S

L′s = (1− φ)λsS − (ω + φσλs + σλr + µ)Ls + (1− γ)τsIs

I ′s = φλsS + (ω + φσλs)Ls − (τs + µ+ δ)Is

L′m = (1− φ)σλrLs − (ω + φσ(λs + λr) + µ)Lm + τsIms + τrImr + (1− φ)σλsLr

I ′ms = (1− θ)φσλrLs + (1− θ)(ω + φσ(λs + λr))Lm − (τs + µ+ δ)Ims + (1− θ)φσλsLr

I ′mr = θφσλrLs + θ(ω + φσ(λs + λr))Lm − (τr + µ+ δ)Imr + θφσλsLr

L′r = (1− φ)λrS − (ω + σλs + φσλr + µ)Lr + τrIr

I ′r = φλrS + γτsIs + (ω + φσλr)Lr − (τr + µ+ δ)Ir

(3.13)

where λs = βs(Is + Ims) and λr = βr(Ir + Imr) represent the force of infection of the
two types of TB. The parameters are the same as before with exception of θ and the birth
rate, b, that we consider in such way that the population size is constant over time, so
b = µ + δ(Is + Ims + Ir + Imr). Parameter θ summarizes all mechanisms that determine
the prevailing strain in a mixed infection. It can be varied to explore different scenarios,
depending on the relative contribution of each mechanism to the overall situation. Note that
with θ = 1 we recover the two-strain model presented in Section 3.2.

Figure 3.8 shows the long-term behavior of the mixed infection model when we change
parameter θ. Notably, the coexistence region increases as the percentage of mixed infections
that progress to sensitive active-TB increases. The limit case (θ = 1) is, in fact, the worst
case scenario. Moreover, coexistence again depends on the transmission coefficients of both
types of strains in a nonlinear manner. A more subtle result is that coexistence is possible
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Figure 3.8: Long-term epidemiological outcome: Bifurcation diagram onR0s andR0r. Curves separate

coexistence region from persistence of only resistant strains for different values of parameter θ. For θ = 1 we

have the same curve as in Figure 3.4.

for high transmission levels of drug-resistant strains even when sensitive strains have low
transmissibility. This is related to the assumption that individuals never succeed in fully
clearing tuberculosis bacteria and therefore, mixed infections are very frequent when either
or both strains are highly transmissible. Under the current assumption, a fraction θ(< 1) of
these infections will progress to resistant TB and the remaining will progress to sensitive TB,
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thus forcing coexistence. In contrast, all mixed infections will develop into resistant TB when
θ = 1.
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Figure 3.9: Mixed infections case θ = 0.8: (a) Bifurcation diagram: Straight lines correspond to

βr = αβs for different values of α: α = 1.1 dashed line, α = 0.5 full line. Dotted line corresponds to θ = 1. (b)

Corresponding equilibrium curves: α = 1.1 dashed line, α = 0.5 full lines (only stable equilibria represented).

Let us again explore what happens when the transmission rate of resistant and sensitive
strains have a linear association: βr = αβs. Parameter α thus expresses the impact of
resistance on pathogen fitness. In Figure 3.9(a) straight lines exemplify two contrasting cases:
drug-resistance has an associated cost (α = 0.5, full lines) or resistant strains have a higher
transmission rate (α = 1.1, dashed lines). When α = 0.5, resistant and sensitive strains
coexist for all possible values of βs. If transmission (βs) increases, resistant strains start to
dominate. But inversely to the case θ = 1 (two-strain model) this does not drive sensitive
strains to extinction because some mixed infections develop sensitive cases (compare Figure
3.9(b) with Figure 3.5(b), full lines). Above a certain transmission level, mixed infections
represent almost the totality of TB infections, and the proportion of resistant TB in the total
TB burden is then driven by θ.

3.6 Control strategies

The World Health Organization has two major control programs for TB: DOTS, Di-
rectly Observed Treatment Short-course, consisting of standardized short-course treatment of
TB cases given under direct observation to ensure treatment adequacy and compliance; and
DOTS-Plus, an extension of DOTS specifically designed for controlling multi-drug resistant
TB. DOTS-Plus uses more effective, but also more expensive and toxic drugs. It is not al-
ways clear what should be the strategy of choice to manage resistant TB in a given setting
(Dye et al., 2002; Pablo-Mendez et al., 2002): is DOTS enough or should it be extended to
DOTS-Plus?

Knowing that reinfection can have strong consequences on the effectiveness of interventions
(Gomes et al., 2004a) we explore how our model behaves under these two strategies. These
control measures are designed to fight different processes: DOTS prevents the acquisition
of resistance due to treatment failure by ensuring compliance; whereas DOTS-Plus reduces
transmission of resistant strains by adapting the treatment regimen to better suit resistant
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cases. Therefore, we model DOTS by reducing the proportion of failed treatments that leads
to acquired resistance i.e., lowering γ. DOTS-Plus is modelled by reducing the time during
which individuals infected with resistant strains are infectious i.e., increasing the rate of
recovery from active disease with resistant strains, τr.

We will focus on the case θ = 1 which corresponds to the two-strain TB model (3.1).
However, the mixed-infection model has similar results as we will discuss.

3.6.1 Coexistence region

In Section 3.4 we fixed α = βr/βs and described a trend of strain coexistence at low transmis-
sion and dominance of the resistant strain at high transmission. This trend is verified when
α is below a critical value, αC . Above this critical value, resistance is always dominant irre-
spective of the transmission intensity. Therefore, the impact of control strategies on αC gives
an indication of its effect on the extent of the coexistence region. We evaluate the sensitivity
and elasticity of αC to the two parameters, γ and τr, manipulated by DOTS and DOTS-Plus,
respectively. Using the terminology from mathematical demography in (Caswell, 2001), we
introduce the partial derivatives

sp =
∂αC
∂p

and ep =
p

αC

∂αC
∂p

=
∂ lnαC
∂ ln p

to define, respectively, the sensitivity and elasticity of αC to a parameter p, where p is γ or
τr. Note that, since equal increments on a logarithmic scale correspond to equal proportions
on an arithmetic scale, we can say that elasticity measures proportional sensitivity.

Table 3.2: Sensitivity and elasticity of αC to γ and τr
Initial Change Sensitivity Elasticity Abs. variation New % varation

p value of 1
3

in αC αC in αC

(1) (2) (3) (4) (5) ≈ (2).(3) αC + (5) (2)
(1)
.(4).100

γ 0.003 -0.001 -0.0098 −3.7883× 10−5 9.7797× 10−6 0.7745 0.0013

τr 1.5 0.5 0.4510 0.8735 0.2255 1.0000 29.1157

Table 3.2 shows the sensitivities and elasticities of αC to changes in γ and τr for the case
of 1/3 of change in each parameter. Both changes increase αC which implies an improvement
on conditions to coexistence. Elasticity is approximately −3.7883. × 10−5 for γ and 0.8735
for τr, corresponding to a variation of approximately 0.001% and 29%, respectively. Thus,
for the case of γ the improvement is almost undetectable.

More generally, we can compare the elasticity of αC to the two parameters γ and τr, by
looking to the quotient between absolute value of the elasticities:∣∣∣eτr

eγ

∣∣∣ =
µτr
ωτsγ

1
αC

. (3.14)

Since the rate of endogenous reactivation of latent TB, ω is several orders of magnitude
smaller than the death rate, µ, the rates of recovery under treatment, τr and τs are of the
same order of magnitude and γαC is small, we conclude that the quotient is greater than one.

These results show that αC is more sensitive to changes in the infectious period than in
the proportion of sensitive TB treatment failure acquiring resistance. Therefore, the impact
on the coexistence region is greatest for the DOTS-plus strategy.
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3.6.2 Prevalence of infection

A complementary way to assess the effectiveness of the two control measures is to compare
the equilibrium prevalence of resistant TB before and after the intervention. Interventions
affect both the prevalence of resistant active TB cases in the population and the percentage
of active TB cases that carry the resistant phenotype (Figure 3.10(a) and (b), respectively).
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Figure 3.10: Impact of different control measures on resistant TB (case with α = 0.5): (a)

Proportion of resistant TB in total population; (b) Percentage of resistant phenotype in total TB cases. Full

line corresponds to baseline proportion (no intervention), dotted line represents a DOTS like intervention

(γ = 0.0003) and dashed line represents a DOTS-plus like intervention (τr = 2).

DOTS-plus like interventions decrease not only the percentage of resistant TB in the
coexistence region but also the overall prevalence of drug-resistant strains at all transmission
potentials. As the results of the sensitivity analysis suggest, DOTS-plus can significantly
increase the coexistence region which, by itself, inhibits the transmission of resistance due
to strain competition. Moreover, this control strategy, shifts to the right the superinfection
and reinfection thresholds of resistant strains (R0r(Es) = 1 and R0r = 1/σ) delaying the
predominance of drug resistance (see Figure 3.10(b)).

We can also observe that a DOTS like intervention has impact at low transmissibility. In
fact, Figure 3.10(a) shows that DOTS is not effective above the superinfection threshold of
resistant strains, R0r(Es) = 1. As we have stressed before, above this threshold the sensitive
strains start to decline and the resistant strains become dominant. Therefore, any intervention
that depends on the incidence of sensitive TB, Is, has negligible impact. Indeed, above
the superinfection threshold, the contribution of acquired drug resistance through treatment
failure (γτsIs) is minimum compared to cases caused by transmission of resistant strains.
When the transmission potential is below this threshold, on the contrary, DOTS is the most
effective strategy, both in relative and absolute terms. Moreover, in the limit case γ = 0,
system (3.1) has another equilibrium, Es, corresponding to the presence of only sensitive TB.
Below the superinfection threshold of resistant strains i.e., for R0r(Es) < 1, this equilibrium
is stable (region IV in Figure 3.4 (b)). This means that if acquired drug-resistance could be
completely blocked (γ = 0) drug-resistant strains would be eradicated.

The control strategies modeled here have the same qualitative outcome in the mixed
infection model as in the particular case θ = 1. DOTS causes a decrease in resistant TB
prevalence only below the superinfection threshold of resistant strains whereas DOTS-plus



3.7 Discussion 53

forces a decrease in resistant TB prevalence for all endemic scenarios (results not shown).
Consequently, DOTS-plus may benefit regions of high endemic prevalence where infection

with resistant strains wipes out the impact of DOTS. By contrast, DOTS is only effective for
low endemic settings and in such scenarios it is, in fact, more suitable than DOTS-plus.

3.7 Discussion

By using simple models with reinfection we describe how thresholds in transmission shape
the conditions for coexistence of resistant and sensitive TB strains and how this affects resis-
tant TB prevalence and control.

First, we assumed that individuals carrying at least one resistant strain always manifest
and transmit resistant TB. This simplification is justifiable by the fact that standard regimens
confer a selection advantage to resistant strains, while the availability of treatment regimens
that are recommended to combat resistance is limited. However, other possibilities can and
should be considered. In van Rie et al. (2004), the authors conclude that treatment and
adherence determine which strains are dominant in a mixed infection with sensitive and
resistant strains. They find that treatment with second-line drugs leads to re-emergence of
drug-sensitive strains. Furthermore, within-host competition may also favour drug-sensitive
strains during latency.

We extended the first model by implementing two alternative progressions of mixed infec-
tions into active disease: a proportion θ activates resistant TB; while the remaining (1 − θ)
activates sensitive TB. When θ = 1 (original model) coexistence is only observed at low trans-
missibility. By contrast, when θ < 1 (mixed infection model) coexistence extends to higher
transmissibility. A reinfection threshold marks the endemic level above which the majority
of individuals harbor mixed infections. The fact that mixed infections can result in sensitive
or resistant active infections, favours coexistence.

The results obtained are significantly different from those found in models where reinfec-
tion is not considered (Blower & Gerberding, 1998; Dye et al., 2002). For R0 near 1, the system
is governed by primary transmission and coexistence is only possible when resistant strains
are comparatively less transmissible (Austin et al., 1997; Boni & Feldman, 2005). However,
as we move away from R0 = 1 reinfection starts to play a greater role. When the majority
of individuals harbor mixed infections, the outcome of within-host competition shapes the
frequency of resistance in the population and may sustain coexistence in the community.

The mechanisms that determine which phenotype prevails in mixed infections (during
latency or active disease) are still poorly understood. And even if different pathways have
been described (van Rie et al., 2004), little is known about their frequency in the population.
More epidemiological studies are needed to clarify this issue so that explicit, detailed models
can be constructed and used to explore different interventions.

Reinfection also has implications on the effectiveness of different control strategies. A
DOTS like intervention is ineffective against resistance in regions where primary resistance
is common – above the superinfection threshold by resistant strains. It is precisely in those
populations that a switch from DOTS to DOTS-plus can have the greatest impact. However,
DOTS should continue to be the strategy of choice in populations where superinfection is
rare. Even though DOTS and DOTS-plus interventions are much more complex than consid-
ered here, our work already highlights fundamental differences in outcome between the two
strategies. Although coexistence results for θ = 1 differ from those obtained with θ < 1,
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results concerning intervention efficacy are qualitatively the same.
In conclusion, primary resistance plays a fundamental role on the outcome of competition

between sensitive and resistant strains in the host population. The strategy of choice to coun-
teract the spread of resistance depends critically on the superinfection threshold of resistant
strains.



Chapter 4

Multi-scale models in tuberculosis

4.1 Introduction

New molecular methods have challenged the widely accepted idea that TB is caused by
a monoclonal bacterial infection. Several recent studies have shown that mixed infections
(infections with more than one strain) are common, especially in highly endemic scenarios
where reinfection is frequent (van Rie et al., 2004; Warren et al., 2004). In the context of
drug resistant TB, mixed infections can have particular importance in determining treatment
success. Reinfection by drug-resistant strains can be a powerful source of resistant TB as
compared to resistance acquisition. While reinfection depends on the transmission rate, re-
sistance aquisition depends on spontaneous mutation rate, which is constant throughout the
different endemic scenarios. In Section 3.5, we extended the initial drug resistance tubercu-
losis model to accommodate alternative progressions of mixed infections into active disease
– a proportion θ activates resistant TB, while the remaining (1 − θ) activates sensitive TB.
Parameter θ summarizes the mechanisms that determine the competition outcome between
strains resulting in transmission. However, nothing was said about these mechanisms. This
motivated a change in model scale from host-population models into within-host models in or-
der to try to reveal some of the mechanisms underling strain competition in mixed infections.
Our final goal is to link the within-host model results with the epidemiological model as a
way to infer how competition at individual level combines with transmission at the population
level. Although this work is in progress we describe some of our initial results in this Chapter.

4.2 Within-host models for Mtb mixed infections

Molecular epidemiological studies suggest that mixed infections are common (Warren et al.,
2004), and that once an individual is infected with both sensitive and resistant strains, a
differential selection pressure will be imposed by treatment (van Rie et al., 2004). Molec-
ular analysis of mixed infections reveal several possible observed outcomes (van Rie et al.,
2004): (i) resistant strains may emerge when treating with first line anti-tuberculosis drugs,
independently of a drug resistance acquisition event; (ii) sensitive strains may reemerge after
matching drug regimen to the resistance pattern; (iii) sensitive TB may prevail due to the
faster replication of sensitive strains. The possible outcomes here described are intuitive and
expected and serve the purpose of model validation. The established formalism can be used
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for further research.
We set as our first objective to build a model of within-host competition between sensi-

tive and resistant strains, during an episode of active TB, that is able to reproduce the three
different patterns described. To avoid the unknown mechanisms that lead to active TB upon
reinfection or reactivation, we focus on the period of active TB, assuming that both strains
are present at the moment of resuscitation of the granulomas, at some proportion. We allow
the sensitive and resistant strains to have different relative fitnesses and consider the cases
where mixed active disease is induced by primary infection (primary resistance) or endogenous
reactivation of both strains. We do not consider the case of acquisition of resistance during
treatment (acquired resistance). The model should contain four main mechanisms: bacterial
growth, immune response, chemotherapy, and drug-resistance. Additional complexity can be
included, such as bacterial heterogeneity, the impact of the immune response and treatment
specificities. We start by a preliminary model where all the assumptions are reduced to its
simplest form and we will then increase complexity.

There are several mathematical models addressing tuberculosis infection dynamics within
a host. For some of them the main objective has been to describe the mechanisms that
distinguish progression to active TB or maintenance in a latent state upon a first infection
(Antia et al. (1996); Gammack et al. (2005) and references therein). A balance between
the immune response and the bacteria ability to avoid that response is needed to achieve
persistent infections. Other within-host models refer to the acquisition of resistance during
antibiotic treatment in bacterial infections (Alavez-Ramirez et al., 2007; Austin & Anderson,
1999; Austin et al., 1998; Lipsitch & Levin, 1997, 1998; Nikolaou & Tam, 2005; Webb et al.,
2005). Treatment is considered for active TB and for latent TB and in all cases there is only
one strain present at the beginning of infection. Resistant strains develop by mutation and
treatment selection. The goal is to understand which is the appropriated treatment regimen to
minimize the acquisition of drug resistance. It is also discussed the impact of noncompliance
and heterogeneous bacterial populations on the time to develop drug resistant phenotype. To
our best knowledge there are no models that address reinfection with a different strain, even
out of the drug resistance context.

4.2.1 Ground Zero Model

We start by the simplest model that will set the basis for more complex ones. Both populations
of bacteria grow exponentially and they are killed by the immune system at a constant rate
γ. We consider two interventions, initially a first line treatment (T1) which is ineffective to
the resistant population. Later the treatment is changed to match the pattern of resistance
to a second line treatment (T2). Hence, the first intervention does not affect the resistant
population and kills the sensitive bacteria at a rate µ1. For the second intervention, both
sensitive and resistant populations are killed at rates µ2 and µ3, respectively. The model can
be written as the following system of differential equations (in time){

B′s = (ν − γ − (1− g)µ1 − gµ2)Bs
B′r = (fν − γ − gµ3)Br

, (4.1)

where Bs and Br represent the bacterial load of sensitive and resistant strains, respectively.
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Time is measured in days of infection. Parameter ν is the rate of growth of sensitive bacteria
and f corresponds to the relative fitness between strain populations, measured as ability
to grow within a host. Parameter g assumes the values 1 or 0 for treatments T1 and T2,
respectively. The two equations are independent and can be easily solved for a given set of
initial conditions Bs(0) = Bs0 and Br(0) = Br0:{

Bs(t) = Bs0e
(ν−γ−(1−g)µ1−gµ2)t

Br(t) = Br0e
(fν−γ−gµ3)t . (4.2)

We fix parameters ν and γ according to Lipsitch & Levin (1998). Table 4.1 summarizes
parameter definition and values. Since ν > γ, in the absence of treatment sensitive and

Table 4.1: Ground Zero model parameters
symbol definition value

ν bacterial growth 0.4 day−1

γ killing rate by the immune system 0.3 day−1

µi killing rate by drugs variable

f relative fitness variable

g drugs targeting resistant population 0 or 1

resistant populations with sufficiently high relative fitness (f > γ/ν) grow exponentially.
When we introduce treatment T1 with µ1 > ν − γ then sensitive strains are contained. For
the case of treatment T2, resistant strains can be controlled for sufficiently high treatment
rate (µ3 > fν − γ).

Let us try to define and reproduce the behavior of a typical episode of active TB for
different values of the relative fitness parameter and for a particular treatment schedule.
For the first 135 days we let both populations grow in the presence of a immune response.
At that point, we introduce treatment T1. The time of first treatment introduction for
these simulations is chosen such that a monoclonal infection with a sensitive strain remains
infectious for a period close to six months to match what was assumed for the epidemiological
model in the previous chapter (τs = 2). After 45 days, if resistant strains bacterial load is
above its initial value, treatment is changed to a new set of drugs to match the resistant
pattern. Figure 4.1 shows the dynamic behavior of the model for three scenarios: relative
fitness f = 1.1, 0.9 and 0.5 that correspond to the three cases (i)–(iii) described before by the
molecular studies. Two situations can happen: either relative fitness is too small and resistant
strains are killed by the immune system (f = 0.5) or, first treatment gives an advantage to
the resistant strains, that grow above the sensitives and take over the infection (f = 1.1 and
f = 0.9). In this case, it is necessary to introduce a second set of drugs to kill the resistant
bacteria. For intermediate values of f , this can give again advantage to sensitive strains
(f = 0.9).

From this simple model we can already have an idea of which are the transmission patterns
that can be generated by mixed infections depending on the relative fitness, f . However, it is
evident that it cannot reproduce other simple features that are important to this biological
system. Namely, here bacteria can grow indefinitely in the absence of the immune response
and the immune response is constant over time. There is no true competition between the
strains since they grow independently of each other. The fact that both populations never
saturate makes the time of intervention to have a false impact on the intervention outcome.
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Figure 4.1: Episode of active TB: dynamical behaviour of the Ground Zero model for three different
relative fitness values: f = 1.1, f = 0.9 and f = 0.5. Dashed, dotted and full curves represent sensitive,
resistant and total bacteria load, respectively. For all scenarios initial conditions are Bs0 = Br0 = 104 that
is approximately the carrying capacity of a granuloma. Treatment T1 was introduced at t = 135 days with
µ = 0.25 days−1 and changed by treatment T2 at t = 180 days with µ2 = 0.12 and µ3 = 0.2 day−1 and g = 1,
indicated by the vertical lines.

Moreover, the treatment or the immune response can only have two alternatives: either it
eliminates completely the bacteria population or it keeps growing. It is not possible that
bacterial population settles at an intermediate level, alone or in coexistence.

4.2.2 Model with non-constant immune response

The first mechanism of interaction between the tow strains is competition via the immune
system. After that it is more important which drugs are used and the rates at which they
kill each bacterial population. A model for persistent infections is adapted from Antia et
al. (1996) to account for two distinct populations. We let X represent the intensity of the
immune response to bacteria and Bs, Br represent the bacterial load of sensitive and resistant
strains, respectively. In the absence of immune response we assume that the parasite grows
exponentially at rate ν. The intensity of the immune response is assumed to be proportional
to the density of the T-cells specific to the bacteria. These cells migrate from the thymus at a
constant rate a, and die at a rate d. Bacteria stimulate the proliferation of T-cell at a rate that
is proportional to the density of bacteria at low bacteria densities and that saturates at high
bacteria densities. Sensitive and resistant bacteria compete indirectly through the immune
response. Equations are scaled so that in the absence of parasite the density of immune cells
equals unity (a = d). Relative magnitudes of the various parameters for biological reasonable
cases are γ < a = d < ν, s ≈ 1 << k (Antia et al., 1996).

We consider a protected class P for each strain, mimicking the dormant stage (Antia et
al., 1996; Lipsitch & Levin, 1997). During this metabolic state bacteria do not stimulate the
immune response and they are not affected by drugs action. In fact, it has been proposed that
bacteria can undergo four intermediate stages according to its metabolic state (revision on
the subject by Urlichs & Kaufmann (2002)). Parameters m and n are the rates of transition
between the two metabolic states. The equations describing the dynamics of bacteria and the
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immune response are:

B′s = νBs − γXBs − ((1− g)µ1 + gµ2 +m)Bs + nPs
B′r = fνBr − γXBr − (gµ3 +m)Br + nPr
P ′s = mBs − nPs
P ′r = mBr − nPr
X ′ = a+ sX(

Bs +Br
k +Bs +Br

)− dX

(4.3)

The system has a trivial equilibrium where the bacteria density is zero and two steady states
corresponding to the presence of each strain alone. A coexistence equilibrium is also possible
but for a particular relation of the parameters, which has no biological meaning.
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Figure 4.2: Episode of active TB: dynamical behaviour of the model with proportional immune response
for different values of the relative fitness: f = 1.1, f = 0.9 and f = 0.5. Dashed and dotted curves represent
sensitive and resistant active bacteria. Full curve represents the immune response. For all scenarios initial
conditions are Bs0 = Br0 = 104 that is approximately the carrying capacity of a granuloma. Parameter values
are: ν = 0.4, γ = 0.003, a = d = 0.1, s = 1, k = 108, m = 0.5 and n = 0.1 . Treatment T1 was introduced
at t = 135 days with µ1 = 0.6 days−1 and changed by treatment T2 at t = 180 days with µ2 = 0.47 and
µ3 = 0.55 day−1 and g = 1, indicated by the vertical lines.

The dynamical behaviour of the model is illustrated in Figure 4.2, for the cases f = 1.1, 0.9
and 0.5. Patterns of strain dominance observed are closely the same as before. Since the
immune response is proportional to the bacterial load, it reaches a lower bacterial load,
it takes longer to clear infection and it is not possible to eliminate the resistant population
without introducing the treatment T2, even for the case of very low relative fitness (f < γ/ν).

4.3 From a within- to a between-host models

Multi-scale models, integrating within and between-host models, have been proposed in dif-
ferent contexts. In the context of evolution of virulence, for the study of chronic diseases
(Gilchrist & Coombs, 2006) or the existence of evolutionary stable coexistence of pathogens
driven by superinfection (Boldin & Diekmann, 2008). The goal is to link traits that affect
within-host dynamics, such as virulence, to effects or other traits acting on the between-host
level, such as transmission. In a different context, multi-scale models were used to investigate
drug-resistant bacterial epidemics in hospitals (Austin & Anderson, 1999; Webb et al., 2005),
by integrating the selection mechanism on resistant aquisition into the transmission process.
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The linkage between the two levels can be done directly through model variables or by
using common parameters.

We have shown that the simple models explored here can already reproduce the patterns
of infections described in molecular studies. As second objective, we articulate the within-
host model results with the epidemiological model from Section 3.5. Through the within-host
model, we define a ’typical’ active TB episode with a mixed infection depending on the relative
fitness (f) of the strains and assuming a given treatment schedule. We estimate the length of
the infectious period (p) for mixed infections and the proportion at which each strain would
be transmitted (θ), for a certain ’typical’ episode. Then, we use these as parameters for the
epidemiological model.

To illustrate our purpose, we use the results of the Ground Zero model. First, we define
a transmission threshold as the bacterial load above which we consider that at least one of
the strains can be transmitted. We set its value arbitrarily at 105, represented in Figure 4.3
(a) by the horizontal line. Hence, the transmission threshold determines the infectious period
duration. Secondly, we define the average proportion at which resistant strains are present
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Figure 4.3: (a) Episode of active TB for f = 0.9. Dashed, dotted and full curves represent sensitive,

resistant and total bacteria load, respectively. Vertical lines correspond to the beginning and end of the

infectious period. Horizontal line marks the transmission threshold. (b) Percentage of drug resistant
bacteria during the infectious period.

and therefore can be transmitted during the infectious period by

θ =
1
p

∫ p

0

Br(t)
Bs(t) +Br(t)

dt. (4.4)

Illustrated in panel (b) of Figure 4.3. Finally, for the particular case of the Ground Zero
model with relative fitness f = 0.9, we would get mixed infections lasting for a period of
approximately p = 384 days, during which resistant strains would have a 16% (θ = 0.16)
chance of being transmitted.

A more systematic way to link the within- and between-host model is to derive not only
the proportion of resistant strains transmitted θ but also the rate of recovery from a mixed
infection τm, defined by τm = 365/p yr−1, as functions of the relative fitness f and relate
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the long-term behavior of the epidemiological model with this within-host parameter. To do
so, we choose to use a slightly different version from the epidemiological model presented in
Section 3.5, for which we can better integrate parameters θ and τm resulting from the within-
host model. The refined version of the between-host model is schematically represented in
Figure 4.4. We define a mixed infectious class (Im), where individuals can have different

Figure 4.4: Epidemiological model for transmission of drug-sensitive and -resistant strains.
Individuals are classified according to infection state into susceptible (S), latently infected (L) and infectious
(I). Parameters are the force of infection (λ), the death and birth rate (µ), the proportion of individuals
developing active TB (φ), the reinfection factor (σ), the rate of reactivation (ω), the rate of recovery under
treatment (τ) and the proportion of resistance acquisition (γ). Subscripts s, r and m relate to sensitive,
resistant or mixed infection, respectively.

drug resistance patterns depending on the relative fitness parameter f . The frequency at
which resistant strains are transmitted by mixed infectious individuals, θ, determines the
contribution of the mixed infections to the overall force of infection λr = βr(Ir + θIm) and
λs = βs(Is + (1 − θ)Im). The rate at which these individuals recover is defined by the
infectious period duration, τm = 365/p yr−1. As before we assume that in an event of
resistance acquisition, resistant strains replace the sensitive ones, giving rise to a resistant
infection. The new model equations are given by8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

S′ = b− (λs + λr + µ)S

L′s = (1− φ)λsS − (ω + φσλs + σλr + µ)Ls + (1− γ)τsIs

I ′s = φλsS + (ω + φσλs)Ls − (τs + µ+ δ)Is

L′m = (1− φ)σ(λsLr + λrLs)− (ω + φσ(λs + λr) + µ)Lm + τmIm

I ′m = φσ(λsLr + λrLs) + (ω + φσ(λs + λr))Lm − (τm + µ+ δ)Im

L′r = (1− φ)λrS − (ω + σλs + φσλr + µ)Lr + τrIr

I ′r = φλrS + γτsIs + (ω + φσλr)Lr − (τr + µ+ δ)Ir

(4.5)

Figure 4.5 (a) and (b) show the curves for of θ and τm when varying the relative fitness f .
For very low relative fitness, mixed infections resemble a sensitive infection. But for sufficient
high relative fitness, a second-line treatment must be introduced to control resistant bacteria.
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Figure 4.5: (a) and (b) Curves θ and τm when varying the relative fitness f . Results using the

Ground Zero model for the fixed parameters from table 4.1 and for the treatment T1 and T2 implemented as

before. (c) Long-term epidemiological outcome of the between-host model: bifurcation diagram

on R0s and R0s. Curves separate coexistence region from persistence of only resistant strains for different

values of f : 0.7, 1 and 1.1, from left to right. These values correspond to (τm, θ) of (1.9, 0.003), (0.94, 0.63)

and (0.66, 0.97), respectively.

This explains the sudden increase in the infectious period (discontinuity) and in the possibility
of resistant strains transmission.

Finally, the resulting long-term epidemiological outcome depends on within-host relative
fitness instead on θ. This has important consequences since the first can be measured directly
whereas the second was a theoretical construction. Results are represented in panel (c) of
Figure 4.5. As expected, coexistence region (region to the right of the curves) decreases with
the relative within-host fitness f , as the contribution of resistant strains for transmission θ,
increases (compare with Figure 3.8 in Section 3.5).

Note that in both within- and between-host models we can have a relative fitness param-
eter: at the epidemiological level, α is the relative transmission coefficient, corresponding to
the relative ability of strains to be transmitted; and at the individual level, f is the relative
growth rate of strains. Surely, these two strain traits are not independent, since the ability
to be transmitted depends on the bacterial load. However, the relation between them is still
an open question.

4.4 Final remarks

The simple models presented can already reproduce the different patterns described by the
molecular studies. And the linkage to the epidemiological model provides a comprehensive re-
lation between pathogen-specific growth rates and general between- host transmission ability.
The lack of more detailed information on some crucial processes involved is compensated here
by the imposition of arbitrarily threshold values for which we do not have direct evidences,
such as the initial frequency of bacteria, the time of treatment introduction or the transmis-
sion threshold. Consequently, the model dynamics which is sensitive to these quantities still
requires validation.
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At this point we decided to give a step back and investigate the within-host dynamics of
mixed infection more deeply. There are challenging questions about the reinfection process
that are still far from being understood and mathematical models are suitable to explore the
different alternative mechanisms and to formulate suitable hypotheses. Existing models for
the course of a primary TB infection (Gammack et al., 2005; Murphy et al., 2003, 2002) can
be adapted to incorporate reinfection by a different strain. Increasing data available on the
reinfection process and subsequently progression to disease can then be used to calibrate and
validate the models (Cosma et al., 2004, 2008).



Chapter 5

Including host heterogeneity in an
SIRI model

5.1 Introduction

Heterogeneity in susceptibility and infectivity is an important feature of many infectious
diseases and has been considered to improve the accuracy of epidemiological models. In the
analysis of these models, focus has been on the impact of heterogeneity in the final size of
epidemics (Ball, 1985; Miller, 2007) and on its consequences to disease control (Anderson &
Britton, 1998; Britton, 1998) and data interpretation (Gart, 1968; Anderson & May, 1991).
In the context of SIR epidemic models, it has been shown that the final size of the epidemic
is reduced when the risk of infection is heterogeneously distributed in the population, both
for the deterministic and the stochastic formulations (Gart, 1968; Ball, 1985; Anderson &
Britton, 1998). More recently, results were extended to the investigation of epidemic spread
on a random network (Miller, 2007).

In this work we explore the consequences of host heterogeneity in the susceptibility to
infection for endemic models for which immunity conferred by infection is not fully protective
– SIRI model, introduced in Chapter 2. Here, the model is expanded to accommodate multiple
risk groups classified accordingly to risk of infection. We are concerned not only with the
impact on disease prevalence but also on how transmission changes the risk profile of the
population groups that are subject to reinfection.

The SIRI model exhibits two important thresholds in transmission: the epidemic threshold
that marks the transmission intensity necessary to maintain disease endemic in a population;
and the reinfection threshold that indicates whether self-sustained transmission occurs in
a population which has developed a degree of partial immunity. The reinfection threshold
separates two fundamentally distinct model behaviors. Low endemic levels with SIR-like
transmission are maintained below threshold, while high endemic levels with SIS-like trans-
mission characterise the regime above threshold. Therefore, first we consider the case of SIR
and SIS models, exploring their simplicity and mathematical tractability to extract general
trends. We describe how disease prevalence, risk profiles for specific population compartments,
and contribution of the high-risk group to overall incidence, change with the parameters de-
scribing heterogeneity. Second, the same framework is used to explore the SIRI model. Of
particular interest is the interplay between reinfection and the risk profile for the uninfected
compartments, S and R.

64
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The results offer a plausible explanation for observations of higher than expected reinfec-
tion rates. In particular, rates of reinfection that surpass rates of first infection have been
reported for tuberculosis in a high transmission setting in South Africa (Verver et al., 2005).
One could attribute this effect to some form of immunologically dependent enhancement
whereby immunological memory would render individuals more susceptible to subsequent in-
fections. An alternative hypothesis, suggested by the analysis presented here is that relatively
high rates of reinfection can result from the presence of a high-risk group that, being at higher
frequency in the recovered compartment due to selection imposed by the first infection, can
sustain rates of reinfection that are, on average, higher than the rates of first infection even
in the presence of partially protective immunity.

Heterogeneity has many implications for public health policy. In particular, we charac-
terise how the impact of vaccination strategies varies with transmission intensity and quantify
the benefit of targeting high-risk groups. Moreover we analyze how interventions that affect
susceptibility to infection can improve condition for disease control.

The results presented were recently published Rodrigues et al. (2009).

5.2 The model

To incorporate heterogeneity in the infection risk in an SIRI transmission model we use a
formulation analogous to those presented by Ball (1985) and (Coutinho et al., 1999) for SIR
epidemic models. We assume that the population is divided in n different subgroups according
to the susceptibility to infection, αi. Within each risk group, individuals are classified ac-
cording to their disease history into susceptible, infectious or recovered. A schematic version
of the model is shown in Figure 5.1.

Figure 5.1: SIRI model with heterogeneous susceptibility to infection. The population is divided
into Susceptible (Si), Infectious (Ii) and Recovered (Ri) classes, where the index i refers to the risk group
to which the individuals belong. Individuals are born at rate µ and enter the susceptible compartments in
proportions γi. susceptible individuals are infected at a rate αiλ = αiβI, where αi denotes the risk factor, β
is the transmission coefficient and I is the proportion of infectious individuals. Infectious individuals recover
at a rate τ and recovered individuals have a reduced rate of reinfection according to the factor σ.

It is assumed that the n risk groups have constant size over time and represent different
proportions of the total population, γi, such that

∑n
i=1 γi = 1. Individuals are born into each

group at the rate µγi. We use Si, Ii and Ri as the proportion of the total population that
are susceptible, infected or recovered, respectively, and belong to the i risk group. Hence we
have

∑n
i=1(Si + Ii + Ri) = 1. In the following we denote by I the proportion of infectious

individuals in the population, that is I =
∑n

i=1 Ii.
For concreteness, we fix the parameters as described in table 5.1. The table describes an
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Table 5.1: Parameters of the SIRI model with heterogeneous susceptibility to infection
symbol definition value

β transmission coefficient variable

σ factor reducing the risk of infection as a result of acquired 0, 1 or

immunity to a previous infection 0.25

µ death and birth rate 1/70 yr−1

τ rate of recovery 52 yr−1

γi relative size of each risk group variable

αi relative risk of infection of each risk group variable

average life expectancy of 70 years (that is µ = 1/70) and an average infectious period of
one week (that is τ = 52). The factor reducing the risk of infection as a result of acquired
immunity is σ = 0.25. For the limiting cases of the SIR and SIS models, parameter σ
is 0 or 1, respectively. Parameters β, γi and αi are varied to explore different scenarios for
transmission intensity and host heterogeneity. Each risk group has an average risk of infection
that differs from the population average by a factor αi, which we refer to as the relative risk
of infection (Gart, 1968; Ball, 1985). We assume that this factor controls the rate of infection
and reinfection in the ith risk group. In general, the parameters are chosen to resemble an
acute respiratory infection in a developed country. However, we stress that the results are
valid for a wider set of parameters. Differences reside more on the quantitative than on the
qualitative behavior. The model can be written as a system of 3n differential equations

S′i = µγi − λαiSi − µSi
I ′i = λαiSi + σλαiRi − (τ + µ)Ii
R′i = τIi − σλαiRi − µRi, i = 1, . . . , n,

(5.1)

where λ = βI. To ensure comparison between different assumptions on risk distribution,
including the comparison with the homogeneous version of the model, we impose the normal-
ization ᾱ =

∑
αiγi = 1.

Throughout this Chapter we analyze the case n = 2. We denote by γ the proportion of
individuals belonging to the low-risk group (that is, γ1 = γ and γ2 = 1 − γ). For a given
population structure (γ) we vary the infection risk distribution by changing α1, obtaining α2

through the normalization α1γ + α2(1− γ) = 1.
We use the variance as a summary measure of variations in α1,

varα = (ᾱ− α1)2γ + (ᾱ− α2)2(1− γ) =
(1− α1)2γ

1− γ
. (5.2)

Note that for a given population structure the variance is a decreasing function of α1. The ho-
mogeneous model is obtained for α1 = ᾱ = 1 which, consistently, corresponds to zero variance.

5.2.1 Basic reproduction number

The basic reproduction number is an important concept in the study of epidemiological mod-
els. We recall from Chapter 2 (Section 2.4.1), that in the case of the corresponding model for
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homogeneous populations (α1 = 1) the basic reproduction number is given by

R0 =
β

τ + µ
. (5.3)

Considering the heterogeneous model, the basic reproduction number is not altered. In fact,

RHET0 =
β

τ + µ

2∑
i=1

αiγi =
βᾱ

τ + µ
=

β

τ + µ
= R0.

For a more detailed discussion on the calculation of the basic reproduction number in hetero-
geneous populations see Hyman & Li (2000). A threshold condition for endemicity is given
by R0 = 1 (the disease dies out if R0 < 1 and becomes endemic if R0 > 1).

Note that the basic reproduction number for the entire population is a weighted average
of the basic reproduction number within each independent risk group, R0i, given by

RHET0 =
∑
i

αiβ

τ + µ
γi =

∑
i

R0iγi.

Therefore, if the basic reproduction number for each group is greater than one, then the dis-
ease is also endemic in the entire population. On the other hand, it is not necessary to have
all reproductive numbers greater than one to have endemicity.

5.3 The limit cases, SIR (σ = 0) and SIS (σ = 1)

Before studying the SIRI model, we analyze the impact of host heterogeneity in the case of
SIR and SIS models, corresponding to σ = 0 and σ = 1, respectively. The identification
between the SIS model and our model with σ = 1 is made in a natural way, by collapsing the
classes S and R of this last model into a class S +R, which we identify with the susceptible
class of the SIS model. However, in order to make possible the comparison between the limit
case with σ = 1 and the intermediate SIRI model, in what follows we keep distinct the S and
R classes even for σ = 1. We will consider the class S+R in Remark 5.3.4, where we examine
the effect of heterogeneity on the prevalence in the SIS framework.

5.3.1 Endemic equilibrium

For σ = 0 or 1, system (5.1) has one disease-free equilibrium of the form Eσ0 = (γ, 1 −
γ, 0, 0, 0, 0). Above R0 = 1, the system has also an endemic equilibrium, Eσ1 . Stability results
for these equilibria are stated in the two theorems below. We use the superscript σ to denote
the correspondence with the SIR (σ = 0) or the SIS (σ = 1) models.

Theorem 5.3.1. For σ = 0 or 1, the disease-free equilibrium, Eσ0 , of system (5.1) is globally
asymptotically stable if R0 < 1 and it is unstable for R0 > 1.

Proof. First lets rewrite the model equations. For σ = 0 (SIR model), from system (5.1) we
obtain 

S′1 = µγ − βIα1S1 − µS1

S′2 = µ(1− γ)− βIα2S2 − µS2

I ′ = βI(α1S1 + α2S2)− (τ + µ)I.
(5.4)
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When σ = 1 (SIS model), we can collapse the recovered classes into the susceptible ones in
system (5.1). Then, if we denote for simplicity by Si the classes Si + Ri, i = 1, 2, and use
the fact that γi = Si + Ii, we obtain the following system

S′1 = (τ + µ)γ − βIα1S1 − (τ + µ)S1

S′2 = (τ + µ)(1− γ)− βIα2S2 − (τ + µ)S2

I ′ = βI(α1S1 + α2S2)− (τ + µ)I.
(5.5)

Note that system (5.5) is equivalent to an SIR model where the birth and death rate are equal
to µ̃ = τ + µ and the recovery rate is τ̃ = 0.

Let us first consider σ = 0. The Jacobian of system (5.4) at the disease-free equilibrium
is

J(E0) =

 −µ 0 −βα1γ
0 −µ −βα2(1− γ)
0 0 β − (τ + µ)

 .
The eigenvalues of this matrix are −µ and β − (τ + µ). So we conclude that E0 is locally
asymptotically stable for R0 < 1 and unstable for R0 > 1. Moreover, system (5.4) is equivalent
to system (3.1) in Hyman & Li (2005) for n = 2. In Theorem 3.1 of that paper, the authors
prove the global stability for the disease-free equilibrium for R0 < 1.

For the case σ = 1, calculations can be repeated using µ̃ = τ + µ as the new birth and
death rates and τ̃ = 0 as the new rate of recovery.

Theorem 5.3.2. Let σ = 0 or 1 and assume that R0 > 1. Then system (5.1) has exactly
one endemic equilibrium, Eσ1 , that is globally asymptotically stable.

Proof. The second member of system (5.4) vanishes at the equilibria. From the two first

equations we get a relation between Si and I: S1 =
γµ

µ+ βIα1
and S2 =

(1− γ)µ
µ+ βIα2

. Sub-

stituting in the third one we get (τ + µ)
P (I)
Q(I)

I = 0, where P (I) = a2I
2 + a1I + a0 with

a2 = −α1α2R
2
0(τ + µ)2, a1 = R0(τ + µ)µ(α1α2R0 − (α1 + α2)) and a0 = µ2(R0 − 1) and

Q(I) = (µ+ βIα1)(µ+ βIα2). Note that for I ≥ 0 we have Q(I) > 0. We conclude that the
I coordinate of the nontrivial equilibria of system (5.4) will correspond to a positive solution
of P (I) = 0. Since a2 < 0 and a0 > 0 for R0 > 1 we conclude that the polynomial P has
exactly one positive solution of the form:

I0(R0) =
−a1 −

√
a2

1 − 4a2a0

2a2
(5.6)

and this proves the first part of the theorem.
In what concerns stability, system (5.4) is equivalent to system (3.1) in Hyman & Li

(2005) for n = 2. In Theorem 3.2 of that paper, the authors prove the stability for the
endemic equilibrium for R0 > 1 via Lyapunov stability theory.

As in the previous proof, for the case σ = 1, calculations can be repeated using µ̃ = τ +µ
as the new birth and death rates and τ̃ = 0 as the new rate of recovery.
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Remark 5.3.1. From the Proof of theorem 5.3.2 it is possible to establish a relation between
the disease prevalence of both models. In fact, for every γ ∈ (0, 1) and α1 ∈ (0, 1] we have

I1 =
τ + µ

µ
I0, (5.7)

where I0 and I1 represent the disease prevalence at equilibrium for the SIR and SIS models,
respectively. This relation is systematically used to extend the proofs from the case σ = 0 to
the case σ = 1.

We can also conclude that for all γ ∈ (0, 1) and α1 ∈ (0, 1]

lim
R0→+∞

I0 =
µ

τ + µ
and lim

R0→+∞
I1 = 1. (5.8)

Remark 5.3.2. From the Proof of Theorem 5.3.2, taking into account Remark 5.3.1, we
recover the expression of the endemic equilibrium for the homogeneous model, both for the
σ = 0 and the σ = 1 cases, by using α1 = α2 = 1 (or α1 = 1):

I0
Hom(R0) =

µ

τ + µ

(
1− 1

R0

)
and I1

Hom(R0) = 1− 1
R0
. (5.9)

We analyze the impact of heterogeneity on disease prevalence at equilibrium. Figure 5.2
illustrates how disease prevalence changes for different assumptions on population structure
and distribution of infection risk for the SIR and SIS models. We observe that for a fixed
R0, the equilibrium disease prevalence is lower when assuming heterogeneous populations.
From each plot, it is evident that for fixed γ, the prevalence curve goes down as variance
increases. Comparing the three plots it is also apparent that for fixed α1, the prevalence
curve goes down as the proportion of the population at low risk (γ) increases. Moreover,
the disease prevalence appears to increase monotonically with the transmission potential, R0.
The following theorem summarizes these results.

Theorem 5.3.3. Let σ = 0 or σ = 1 and let Iσ, σ = 0, 1, designate the disease prevalence
at equilibrium, for the corresponding system (5.1) with R0 > 1. Then, for γ and α1 ∈ (0, 1)

∂Iσ

∂γ
≤ 0,

∂Iσ

∂α1
≥ 0 (5.10)

and
∂Iσ

∂R0
> 0, σ = 0, 1. (5.11)

Proof. First, let σ = 0 and denote by I0 and I0∗ , respectively, the unique positive and negative
roots of the polynomial P defined in the Proof of Theorem 5.3.2. Differentiating P (I0) = 0
with respect to a parameter ε, we get

∂I0

∂ε
=
−∂a2

∂ε
I02 − ∂a1

∂ε
I0 − ∂a0

∂ε
2a2I0 + a1

. (5.12)

Note that we have I0 +I0∗ = −a1/a2 and that a2 < 0. Hence we conclude that the denomina-
tor of (5.12) verifies 2a2I

0 +a1 = a2(2I0 +a1/a2) = a2(2I0− I0− I0∗) = a2(I0− I0∗) < 0. As
a consequence of this fact, the sign of (5.12) will be the opposite of the one of the numerator.
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Figure 5.2: Prevalence of infection for the SIR and SIS models under different implementations
of two risk groups (low and high). Top and bottom panels correspond to the SIR and SIS models,

respectively: (a)–(c) σ = 0; (d)–(f) σ = 1. The three columns of panels correspond to different proportions of

population at low risk: (a),(d) γ = 0.5; (b),(e) γ = 0.8; (c),(f) γ = 0.95. In each plot, different curves indicate

the equilibrium prevalence of infection under different susceptibility ratios between the low-risk group and the

average: α1 = 1, 0.75, 0.5, 0.2, 0.05, from the higher to the lower curves.

Let ε = γ. In this case,
∂a0

∂γ
= 0. So,

∂I0

∂γ
≤ 0 iff

∂a2

∂γ
I0 +

∂a1

∂γ
< 0. Now we replace

I0 by its expression in (5.6). Since a2 < 0 and ∂a2/∂γ < 0 we get the following equivalent
condition

−a1 + 2a2
∂a1

∂γ
/
∂a2

∂γ
<
√
a2

1 − 4a0a2.

If the left-hand side is negative, then the condition is true and the result is proved. Otherwise,
we can square both sides. In this case we get(

− a1 + 2a2
∂a1

∂γ
/
∂a2

∂γ

)2
− a2

1 + 4a0a2 = −4α1R0(1− γ)(1− α)(1− γα1) < 0,

which ends this part of the proof.



5.3 The limit cases, SIR (σ = 0) and SIS (σ = 1) 71

Let ε = α1. Now we have ∂I0/∂α1 ≥ 0 iff

∂a2

∂α1
I0 +

∂a1

∂α1
> 0. (5.13)

Again, we substitute I0 by its expression in (5.6). Depending on the sign of ∂a2/∂α1( 6= 0)
we obtain two different cases:

1. If
∂a2

∂α1
< 0 then (5.13) is equivalent to −a1 + 2a2

∂a1

∂α1
/
∂a2

∂α1
>
√
a2

1 − 4a0a2 (a);

2. If
∂a2

∂α1
> 0 then (5.13) is equivalent to −a1 + 2a2

∂a1

∂α1
/
∂a2

∂α1
<
√
a2

1 − 4a0a2 (b).

Note that if ∂a2/∂α1 = 0 then we must see if ∂a1/∂α1 > 0, which is true for R0 > 1.
The sign of ∂a2/∂α1 is the same as the sign of 2α1γ − 1. So, for case 1, let us assume

2α1γ < 1. The left-hand side of (a) is

R0(τ + µ)µ[R0α1((1− α1γ)(1− 2α1γ)) + 1− α1]
(1− γ)(1− 2α1γ)

which is positive for 2α1γ > 1. Hence, we can square both sides of (a) and we get(
− a1 + 2a2

∂a1

∂γ
/
∂a2

∂γ

)2
− a2

1 + 4a0a2 =
R2

0(τ + µ)2µ24γα1

(1− γ)2(1− 2α1γ)2
(1− α1)(1− α1γ)

×[R0((1− 2α1γ)2 + α1(1− 2α1γ)) + 1− α1] > 0

which ends the proof of case 1.
In case 2 the left-hand side can change sign. Let us denote the left-hand side by B. So, to

verify (b) we have to show that if B is positive then B2−a2
1+4a0a2 < 0. By the calculations for

the previous case we get that, for 2α1γ > 1, B > 0 iff C = R0α1((1−α1γ)(1−2α1γ))+1−α1 <
0. Again, from the previous case we know that the sign of B2−a2

1+4a0a2 is the same as the one
of R0((1−2α1γ)2 +α1(1−2α1γ))+1−α1 = C/α1 +R0(1−2α1γ)α1(1−γ)−(1−α1)2/α1 < 0,
since C < 0. This ends the proof of case (b).

Finally, let ε = R0. In this case ∂a0/∂R0 6= 0. So, from (5.12) and since the denominator
is non-positive, to prove that ∂I0/∂R0 ≥ 0 we need to prove that

∂a2

∂R0
I02 +

∂a1

∂R0
I0 +

∂a0

∂R0
> 0. (5.14)

Now, taking into account that I02 = −(a1I
0 + a0)/a2 and using the expression of I0 given in

(5.6) we obtain

−Aa1 + 2a2B > A
√
a2

1 − 4a0a2,

where A =
∂a1

∂R0
a2 −

∂a2

∂R0
a1 and B = a2

∂a0

∂R0
− a0

∂a2

∂R0
. By substituting ai and its derivatives

in A we conclude that

A = −α1(1− α1γ)R2
0(τ + µ)3µ(α1(1− γ) + (1− α1γ))/(1− γ)2 < 0.

So, we can divide both sides by A and get

−a1 + 2a2B/A >
√
a2

1 − 4a0a2. (5.15)
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If the left-hand side is negative, then the condition is true and the result is proved. Otherwise,
we can square both sides of (5.15). Finally, we need to prove that the following expression
−4C(1 − α1γ)α1µ

2(τ + µ)2R2
0/(1 − γ)(α1(1 − γ) + (1 − α1γ))2 is negative, where C is a

polynomial in R0 of degree 2 with coefficients c2 = α1(1 − α1γ)(α1(1 − γ) + γ(1 − α1)),
c1 = 2α1(1− α1)(1− α1γ)(1− 2γ) and c0 = (1− α1)2. We note that, the minimum value of
C is attained at Rm0 = 1− (1− γ)/(α1(1− γ) + γ(1− α1)) < 1 and C is positive at Rm0 . As
a consequence, since c2 > 0 we conclude that C is positive for R0 > 1. This concludes this
part of the proof.

For σ = 1 the proofs follow easily from Remark 5.3.1.

Previous studies based on the SIR framework have shown that heterogeneity in suscepti-
bility to infection gives rise to smaller epidemics (Gart, 1968; Ball, 1985; Anderson & Britton,
1998). Here we find that disease prevalence at equilibrium is also lower in the presence of
heterogeneity, and this is true for both SIR and SIS models. This effect is more pronounced
the higher the variance in risk distribution.

5.3.2 Infection risk profiles

The profiles of the infection risk, within the susceptible and the recovered classes at endemic
equilibrium, depend on assumptions on population heterogeneity and transmission intensity.
For σ = 0, 1, we define the average risk factor among susceptible and recovered individuals as

ᾱσS =
α1S

∗
1 + α2S

∗
2

S∗1 + S∗2
, ᾱσR =

α1R
∗
1 + α2R

∗
2

R∗1 +R∗2
, (5.16)

where S∗i and R∗i are the susceptible and recovered individuals in each risk group, represented
as proportions of the total population at endemic equilibrium. Figure 5.3 shows contour
plots for the average risk factor among individuals never infected (S) and those infected and
recovered at least once (R). Note, however, that these factors are further multiplied by λ and
σλ to produce the average per capita rates of infection in S and R, respectively. This figure
reflects how selection imposed by infection acts on the risk profiles.

In the SIR model, the average risk decreases as R0 increases both for never-infected in-
dividuals and previously-infected individuals (Figure 5.3(a) and Figure 5.3(b), respectively).
This selection mechanism underlies counter-intuitive trends that will emerge with the explo-
ration of σ ∈ (0, 1) in Section 5.4, such as rates of reinfection decreasing with increasing R0

and rates of reinfection appearing higher than rates of first infection even in the presence of
partially protective immunity.

In the SIS model, selection maintains a large proportion of the high-risk group in the
infected class and the mechanism is not entirely visible in the uninfected sub-population.
Note that the average risk among never-infected individuals is roughly constant with R0

(Figure 5.3(c)) while among previously infected individuals (Figure 5.3(d)) the average risk
decreases with increasing R0 as in the susceptible class of the SIR model (Figure 5.3(a)).

The properties observed for ᾱ0
S are summarized in the following theorem.

Theorem 5.3.4. Let R0 > 1. Then, for γ and α1 ∈ (0, 1)

∂ᾱ0
S

∂γ
≤ 0,

∂ᾱ0
S

∂α1
≥ 0 (5.17)

and
∂ᾱ0

S

∂R0
< 0. (5.18)
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Figure 5.3: Average risk factor before and after infection. (a),(b) Contour plots for ᾱ0
S , ᾱ0

R in the

SIR model; (c),(d) contour plots for ᾱ1
S , ᾱ1

R in the SIS model. Contours are represented in terms of the basic

reproduction number, R0, and the relative susceptibility of the low risk group, α1. The proportion at low risk

is γ = 0.8 in both cases.

Proof. First we derive an expression which relates the disease prevalence with the relative
risk of the susceptible class in the case of the SIR model and the average risk of infection of
the S +R class in the case of the SIS system. Then we can use the results from the previous
section to prove the theorem.

In the SIR case, from (5.4) letting S = S1 + S2, we obtain{
S′ = µ− βIᾱ0

SS − µS
I ′ = βIᾱ0

SS − (τ + µ)I.
(5.19)

Hence, we get an implicit expression for the disease prevalence at equilibrium in the case
σ = 0

I0 =
µ

τ + µ

(
1− 1

ᾱ0
SR0

)
. (5.20)

Similarly, from system (5.5), we obtain the relation between the disease prevalence I1 and
the average risk of infection

I1 = 1− 1
ᾱ1
S+RR0

. (5.21)
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Let σ = 0. From (5.20) we obtain the following expression for ᾱ0
S

ᾱ0
S =

µ

R0(µ− (τ + µ)I0)
. (5.22)

Thus, for ε = γ or α1 we get

∂ᾱ0
S

∂ε
=

µ(τ + µ)
R0[µ− (τ + µ)I0]2

∂I0

∂ε
, (5.23)

which has the same sign as ∂I0/∂ε.
For the derivative of ᾱ0

S with respect to R0 we get

∂ᾱ0
S

∂R0
=

µ

[R0(µ− (τ + µ)I0)]2
[
µ− (τ + µ)I0 −R0(τ + µ)

∂I0

∂R0

]
. (5.24)

Hence, to prove that the derivative is negative is equivalent to prove that I0 +∂I0/∂R0 <
µ/(τ + µ). Now we substitute (I0)2 by −(a1I

0 + a0)/a2 and ∂I0/∂R0 by the expression from
(5.12). Furthermore, we replace I0 by its expression in (5.6). So, taking into account that
a2 < 0 and

A = R0
∂a2

∂R0
a1 − a2a1 −

∂a1

∂R0
a2R0 − 2a2

2µ/(τ + µ) = −µ(τ + µ)3α2
1(1− α1γ)2R4

0/(1− γ)2 < 0

we get to the equivalent condition

−a1 + 2a2B/A <
√
a2

1 − 4a0a2. (5.25)

If the left-hand side is negative then the condition is true. Otherwise we can square both sides
of (5.25). Hence

(
− a1 + 2a2B/A

)2 − a2
1 + 4a0a2 = −4R2

0γµ
2(τ + µ)2(1− α1)2/(1− γ) < 0.

which ends this part of the proof.

Remark 5.3.3. In particular, from Remark 5.3.1 and by equality (5.21) we conclude that
ᾱ0
S = ᾱ1

S+R.

The decrease on the average risk of infection of the susceptible class explains how preva-
lence decreases with population heterogeneity. In fact, the average force of infection, λ̄0,
depends on the transmission intensity and on the average infection risk of the population
subject to infection,

λ̄0 =
λα1S

∗
1 + λα2S

∗
2

S∗1 + S∗2
= λ0ᾱ0

S = βI0ᾱ0
S = µ(R0ᾱ

0
S − 1), (5.26)

where we expressed I0 as a function of ᾱ0
S according to formula (5.20). Directly from Theorem

5.3.4 it follows that heterogeneity decreases the force of infection, since

∂λ̄0

∂γ
≤ 0,

∂λ̄0

∂α1
≥ 0. (5.27)
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Remark 5.3.4. As mentioned above, when σ = 1 we can identify our model with a SIS model
through the identification of the class S + R with the susceptible class of the SIS. It is then
natural to investigate the effect of heterogeneity on prevalence by considering the dependence
on the parameters of the average risk of infection of the S +R class, ᾱ1

S+R, defined as

ᾱ1
S+R :=

α1(S∗1 +R∗1) + α2(S∗2 +R∗2)
(S∗1 +R∗1) + (S∗2 +R∗2)

and of the corresponding force of infection, λ̄1, defined as λ̄1 = λ1ᾱ1
S+R = βI1ᾱ1

S+R. This is
easily done, since from Remark 5.3.3 and equation (5.7) we have, respectively, that ᾱ1

S+R =
ᾱ0
S and that λ̄1 = τ+µ

µ λ̄0. As a consequence, λ̄1 satisfies the inequalities (5.27), and we
conclude that the decrease on the average risk of infection of the susceptible plus recovered
class explains how prevalence decreases with population heterogeneity in the SIS model.

Finally, as a side remark, we would like to note that with respect to the quantities defined

in (5.16), it is ᾱ1
S+R =

ᾱ1
SS
∗ + ᾱ1

RR
∗

S∗ +R∗
.

Despite having the same infectivity, the risk groups contribute differently to the force of
infection. Disease is more easily spread on the high-risk group due to its increased suscepti-
bility, so the relative size of class I2 is also greater. To further explore how the contribution of
the high-risk group to the total proportion of infections changes with transmission intensity
and heterogeneity, we define the quotient Qσ = Iσ2 /I

σ at equilibrium. For σ = 0 or σ = 1,
the contribution of the high-risk group, Qσ, decreases as transmissibility increases and it is
greater when the high-risk group is larger (γ close to 0) or when its relative risk of infection
is further from the population average (α1 close to 0). The following theorem summarizes
these results.

Theorem 5.3.5. Let R0 > 1. Then, for γ and α1 ∈ (0, 1)

∂Qσ

∂γ
≤ 0,

∂Qσ

∂α1
≤ 0 (5.28)

and
∂Qσ

∂R0
< 0 σ = 0, 1. (5.29)

Proof. As for the previous proofs, we start by studying the case σ = 0 and then the case
σ = 1 follows directly from Remark 5.3.1. In fact, in this case we have Q0 = Q1.

For simplicity we write Q0 = I0
2/I

0 as 1− I0
1/I

0 = 1−R0α1µγ/(R0(τ +µ)I0α1 +µ). The
derivative of Q0 with respect to γ is

∂Q0

∂γ
= −

R0α1µ[µ+R0α1(τ + µ)
(
I0 − γ ∂I0∂γ

)
]

(R0(τ + µ)I0α1 + µ)2
. (5.30)

But I0 − γ ∂I
0

∂γ
= I0

(
1 + γ

∂a2
∂γ I

0 + ∂a1
∂γ

2a2I0 + a1

)
≥ 0 from what was seen in the Proof of Theorem

5.3.3. Thus we conclude that ∂Q0

∂γ ≤ 0.
The derivative of Q0 with respect to α1 is

∂Q0

∂α1
= −

R0γµ[µ−R0α
2
1(τ + µ) ∂I

0

∂α1
]

(R0(τ + µ)I0α1 + µ)2
. (5.31)
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This expression has the opposite sign of C = µ−R0α
2
1(τ + µ) ∂I

0

∂α1
. Again, we replace I02 by

−(a1I
0 + a0)/a2 and then I0 by its expression in (5.6). Finally, we conclude that C ≥ 0 iff

−a1A + 2a2B ≤ A
√
a2

1 + 4a2a0, where A = 2µa2
2 − R0α

2
1(τ + µ) ∂a2

∂α1
a1 + R0α

2
1(τ + µ) ∂a1

∂α1
a2

and B = a1a2µ−R0α
2
1(τ +µ) ∂a2

∂α1
a0. Note that by substituting ai and its derivatives in A we

can easily conclude that A is positive. Therefore, we can divide both sides by A, obtaining
that C ≥ 0 iff

−a1 + 2a2B/A ≤
√
a2

1 + 4a2a0. (5.32)

If the left-hand side is negative, then the condition is verified. Otherwise we can square both

sides of (5.32). Hence, we get −4(1− α1γ)2γα2
1µ

2(τ + µ)2R4
0

(1− γ)
≤ 0. This implies that C ≥ 0

or, equivalently, that ∂Q0/∂α1 ≤ 0, which ends this part of the proof.

The derivative of Q0 with respect to R0 is

∂Q0

∂R0
=
α1γµ[µ−R2

0α1(τ + µ) ∂I
0

∂R0
]

(R0(τ + µ)I0α1 + µ)2
. (5.33)

This expression has the same sign of C = b−R2
0
∂I0

∂R0
, where b = µ/(α1(τ + µ)). We conclude

that C > 0 iff −a1A + 2a2B > A
√
a2

1 + 4a2a0, where A = ∂a2
∂R0

a1 − ∂a1
∂R0

a2 − 2a2
2b
′, B =

a0
∂a2
∂R0
− ∂a0

∂R0
a2 − b′a1a2 and b′ = ba2/R

2
0. Note that by substituting ai and its derivatives in

A we can easily conclude that A is negative. So, we can divide both sides by A, obtaining
that C > 0 iff

−a1 + 2a2B/A <
√
a2

1 + 4a2a0. (5.34)

If the left-hand side is negative the condition is verified. Otherwise we can square both sides

of (5.34). Hence, we get −4(1− α1γ)2γα2
1µ

2(τ + µ)2R4
0

(1− γ)
< 0. This ends the proof.

Overall, the contribution of the high-risk group can vary from α2 times its relative size,
near the epidemic threshold, to its relative size, for sufficiently high transmission. This can
have important consequences for the effectiveness of interventions, specially in low endemic
regions where the groups with increased risk have more impact. We will focus more on this
aspect when studying the SIRI model.

5.4 The SIRI model

5.4.1 Thresholds in Transmission

Here we consider the effect of heterogeneity in the intermediate scenario where infection
induces partial immunity. It is assumed that individuals are protected while infected but
regain some susceptibility upon recovery. Susceptibility to reinfection is reduced by a factor
σ ∈ [0, 1], compared to susceptibility to first infection. Endemic equilibria and infection
risk profiles have been analyzed for the limiting cases σ = 0, 1 (corresponding to SIR, SIS
models) in Section 5.3. In both cases, disease persistence is determined by the threshold
condition, R0 > 1, irrespective of population structure, sustaining levels of infection that
are generally much higher in the SIS scenario due to reinfection. For the SIRI model, R0
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remains a threshold parameter and it corresponds to a shift in stability from the disease-free
equilibrium to the endemic one. In the following theorem we state the result relative to the
stability of the disease-free equilibrium.

Theorem 5.4.1. For σ ∈ [0, 1], the disease-free equilibrium, Eσ0 , of system (5.1) is globally
asymptotically stable if R0 < 1 and it is unstable for R0 > 1.

Proof. In theorem 5.3.1 we proved this result in the cases σ = 0 and σ = 1. So, assume
σ ∈ (0, 1) and n = 2. Following van den Driessche & Watmough (2002), first we must
distinguish new infections from all other class transitions in population. The infected classes
are I1 and I2, so we can write system (3.1) as

Ẋ = f(X)⇔ Ẋ = F(X)− V(X) = F(X)− (V−(X)− V+(X)), (5.35)

where X = (I1, I2, S1, R1, S2, R2), F is the rate of appearance of new infections in each class;
V+ is the rate of transfer into each class by all other means and V− is the rate of transfer
out of each class. Hence, F = (β(I1 + I2)α1S1, β(I1 + I2)α1S2, 0, 0, 0, 0)T , and the disease-free
equilibrium is X0 = (0, 0, γ, 0, 1− γ, 0).

By theorem 2 in van den Driessche & Watmough (2002) it is sufficient to prove conditions
(A1)-(A5). The verification of (A1)-(A4) is straightforward. To show that condition (A5) is
verified, we write the Jacobian of f at X0 with F set to zero, as

Df(F=0)(X0) =



−(τ + µ) 0 0 0 0 0
0 −(τ + µ) 0 0 0 0

−α1βγ −α1βγ −µ 0 0 0
τ 0 0 −µ 0 0

−α2β(1− γ) −α2β(1− γ) 0 0 −µ 0
0 τ 0 0 0 −µ

 .

Since the eigenvalues, −µ and −(τ + µ), are real and negative the result follows.

Remark 5.4.1. The endemic equilibrium is numerically computed as a root of a fourth order
polynomial on I = I1 + I2. Analytical expression of the polynomial can be obtained but, due
to its complexity, we were unable to show the existence of a positive real root.

In the intermediate case, another threshold is identified, similar to what happens in the
homogeneous case for R0 = 1/σ, which marks a transition from SIR- to SIS-like behavior
(Section 2.4.1). We show that the same expression holds for the reinfection threshold in the
presence of heterogeneity in susceptibility to infection. Following the method developed in
Section 2.5, we first have to define the reinfection sub-model that corresponds to the limit
situation where all individuals that enter in the system are partially immunized and only
subjected to reinfection. Hence, the reinfection sub-model for system (5.1) with n = 2, has
only four classes and can be represented by the following system of differential equations:

R′1 = µγ + τI1 − σλα1R1 − µR1,
R′2 = µ(1− γ) + τI2 − σλα2R2 − µR2,
I ′1 = σλα1R1 − (τ + µ)I1
I ′2 = σλα2R2 − (τ + µ)I2

(5.36)
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The reinfection sub-model has a unique disease-free equilibrium E0 = (γ, 1 − γ, 0, 0). Ana-
lyzing the Jacobian at E0, we conclude that a bifurcation on the transmission parameter β
occurs at β = (τ + µ)/σ, when the disease-free equilibrium changes its stability. In terms of
the basic reproduction number the bifurcation is attained at R0 = 1/σ.

5.4.2 Endemic equilibrium

Quantitative discrepancies between epidemiological data and model results have been reported
previously and generally attributed to case sub-notification or population heterogeneity not
captured by simple models (Fine & Clarkson (1982), Anderson & May (1985), van Boven
at al. (2001)). Systematic investigations of these factors are expected to provide valuable
insights with wide application in infectious disease epidemiology. In Section 5.3 we have
shown that heterogeneity in susceptibility to infection reduces prevalence of infection in SIR
and SIS models and here we extend this conclusion to the general SIRI framework. Figure 5.4
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Figure 5.4: Prevalence of infection for the SIRI model under different implementations of two
risk groups (low and high). The three panels correspond to different proportions of the population at

risk: (a),(d) γ = 0.5; (b),(e) γ = 0.8; (c),(f) γ = 0.95. In each plot, different curves indicate the equilibrium

prevalence of infection under different susceptibility ratios between the low-risk group and the average: α1 = 1,

0.75, 0.5, 0.2, 0.05, from the higher to the lower curves.

shows the endemic equilibrium for different infection risk profiles of the population. When
heterogeneity is considered the disease prevalence is lower than in the homogeneous case, and
this effect is more pronounced when the variance, varα, is higher (high γ and low α1). These
trends are observed for 0 ≤ σ ≤ 1, including the particular cases σ = 0, 1, analyzed previously.

Remark 5.4.2. For the SIRI model, it was not possible to obtain detailed proofs of the main
results. In the next sections, we present numerical results as illustrations of a more exhaustive
numerical investigation, performed using Matlab 6.5r software. We were unable to adapt
the argument used to determine the sign of the denominator of formula (5.12) for the SIRI
model, which was central to proof the remanning results.
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5.4.3 Infection risk profiles

The reduction in disease prevalence is associated with the changes in the infection risk profile
imposed by transmission on both susceptible and recovered classes. In this section we analyze
how the average infection risk of susceptible and recovered individuals change with R0 and
heterogeneity (represented by the proportion of the population with low risk, γ, and risk of
these individuals relative to the average, α1). We remark that when σ ∈ (0, 1) the average
risk factors in the susceptible and recovered classes, ᾱS and ᾱR respectively, are defined as in
(5.16).

Figure 5.5 illustrates the average risk factor for susceptible and recovered classes for γ =
0.8 and σ = 0.25, by means of contour plots in the parameter space of transmissibility,
R0, and heterogeneity, α1. Generally, the average risk among susceptible and recovered
individuals decreases as R0 increases (Figure 5.5(a) and (b) respectively). The reinfection
threshold, indicated by vertical dotted lines, marks the shift from SIR to SIS regime. It is
associated with a saturation of the trend observed for the susceptible (ᾱS appears constant
for R0 above threshold as for σ = 1) and an average risk equal to one in the recovered class
(ᾱR = 1). Compare with Figure 5.3. Overall, we have two equilibrium regimes. Below the
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Figure 5.5: Average risk factor for susceptible and recovered classes in the SIRI model. Contour

plots for: (a) the susceptible class, ᾱσS ; and (b) the recovered class, ᾱσR. Contours are represented in terms of

the basic reproduction number, R0, and the relative susceptibility of the low risk group, α1. The proportion

at low risk is γ = 0.8 and susceptibility reduction due to partial immunity is σ = 0.25.

reinfection threshold, the uninfected population is composed of many susceptible individuals
with an average risk factor below one, and few recovered individuals with high risk due
to selection imposed by infection. Above the reinfection threshold, most individuals have
already experienced at least one infection and are still susceptible to reinfection but have an
average risk factor below one. In the latter case, selection maintains a large proportion of the
population in the infected class.

The patterns described for susceptible and recovered risk profiles have strong implications
for the interpretation of disease dynamics, notably the contribution of reinfection to the overall
disease incidence. We define the incidence of first infection and the incidence of reinfection,
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in the respective populations at risk, as

Y1 =
λ(α1S

∗
1 + α2S

∗
2)

S∗
= λᾱS , (5.37)

Y2 =
σλ(α1R

∗
1 + α2R

∗
2)

R∗
= σλᾱR. (5.38)

The total incidence in the entire uninfected population is then calculated as

Ytotal =
Y1S

∗ + Y2R
∗

S∗ +R∗
.
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Figure 5.6: Intensity of reinfection. (a) Rate of reinfection among recovered individuals over the total

incidence. (b) Rate of reinfection among recovered individuals over the incidence of first infection. Different

values are considered for the relative risk of the low risk group, α1, including the homogeneous case, α1 = 1.

The proportion of the population at low risk, γ, is fixed at 0.8.

Figure 5.6 shows that despite reinfection being hindered by heterogeneity, the rate of
reinfection among recovered individuals, Y2, can be higher than overall rate of infection in
the entire uninfected population, Ytotal. We see that, for the homogeneous case (α1 = 1),
the quotient, Y2/Ytotal, increases monotonically with R0, and for R0 > 1/σ it is above one.
For the heterogeneous case, reinfection among the recovered class can be higher than disease
incidence also below the reinfection threshold. Even for low endemic populations, where the
contribution of reinfection is low, it is possible that recovered individuals, as a group, show a
higher risk of reinfection than expected when assuming partial immunity. This can have major
implications for the interpretation of epidemiological data. In particular, overlooking host
heterogeneity may lead to misleading expectations for the effectiveness of control measures.

5.4.4 Contribution of the high-risk group

As we have observed before, for the SIR and SIS models, the contribution of the high-risk
group decreases when transmission increases (Theorem 5.3.5), due to the accumulation of
high-risk individuals in the recovered or infectious class, respectively. For the SIRI model the
contribution of the high-risk group is expected to be greater than in the previous cases, due
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Figure 5.7: Contribution of the high-risk group to the total disease prevalence. Infection risk

distribution is given by γ = 0.8 and α1 = 0.2. The dashed line corresponds to both σ = 0 and σ = 1, while

other lines correspond to values of σ as indicated. The special case σ = 0.25 is distinguished as a full line as

this parameter values is used for illustration in other figures. The horizontal line represents the case for which

the infection risk distribution is homogeneous (α1 = α2 = 1).

to the additional contribution of reinfection, for intermediate levels of transmission, where
the high-risk group is still overrepresented in the recovered class (αR close to one).

Figure 5.7 shows the contribution of the high-risk group to the total disease prevalence
for the particular case γ = 0.8 and α1 = 0.2. This corresponds to a risk group of 20% of the
total population with an increased risk of infection α2 equal to 4.2 times that of the total
population, and 21 times that of the low-risk group. Moreover, for this choice of parameters
and for σ = 0.25, disease prevalence corresponds to about 30% of the homogeneous model
prediction as represented by the dashed line in Figure 5.4(b). Here a sub-population of 20%
accounts from 70% to 85% of the infection, depending on the intensity of transmission. The
contribution of the high-risk group is stronger near the endemic and reinfection thresholds.
Near the thresholds the classes that are susceptible to infection and reinfection, S and R,
respectively, reach their maximum capacity, accounting for almost the entire population.
Therefore, the average risk on these classes and the selection pressure on the high-risk group
are maximum.

When considering heterogeneous infectivity, theoretical work and different field studies
have suggested that roughly 20% of the infectious individuals can be responsible for 80% of
transmission (Galvani & May, 2005; Woolhouse et al., 1997). This 20/80 rule has important
consequences for disease control (Woolhouse et al., 1997). Here we obtain similar effects by
assuming heterogeneity in susceptibility to infection as previously estimated for the case of
malaria transmission, where 20% of people receive 80% of all infections (Smith at al., 2005)
due to heterogeneity in mosquito biting or in susceptibility to infection.

5.5 Interventions

5.5.1 Targeted vaccination

The greater impact of the high-risk group on transmission should be taken into account
when planning interventions for disease control. In this section, we compare uniform and
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targeted vaccination strategies. Comparison is made on the basis of the vaccination coverage
required, under different strategies, to obtain the same impact. We implement vaccination at
birth assuming that the protection conferred by the vaccine is equivalent to that of natural
immunity. Vaccination reduces the risk of infection but the relative susceptibility of the two
risk groups is maintained. This is formalised by the following system

S′i = (1− vi)µγi − λαiSi − µSi
I ′i = λαiSi + σλαiRi − (τ + µ)Ii
R′i = viµγi + τIi − σλαiRi − µRi, i = 1, 2,

(5.39)

where we assume that vaccinated individuals born directly into the R class. The vaccination
model has a disease-free equilibrium E0 = (v1γ1, 0, (1− v1)γ1, v2γ2, 0, (1− v2)γ2 and it under-

goes a bifurcation at β =
τ + µ

(1− v1 + σv1)γα1 + ((1− v2) + σv2)(1− γ)
, when the determinant

of the Jacobian matrix

−µ −α1β(1− v1)γ1 0 0 −α1β(1− v1)γ1 0
0 α1βγ1((1− v1) + σv1)− (τ + µ) 0 0 α1βγ1((1− v1) + σv1) 0
0 τ − σα1βv1γ1 −µ 0 −σα1βv1γ1 0
0 −α2β(1− v2)γ2 0 −µ −α2β(1− v2)γ2 0
0 α2βγ2((1− v2) + σv2) 0 0 α2βγ2((1− v2) + σv2)− (τ + µ) 0
0 −σα2βv2γ2 0 0 τ − σα2βv2γ2 −µ


evaluated at E0 is zero, corresponding to a change in stability of E0. This marks a transmission
threshold below which disease is eliminated by vaccination, that we refer to as the vaccination
threshold. With respect to the basic reproduction number (5.3) of the original system we can
say that the vaccination threshold is achieved at

R0 =
1

((1− v1) + σv1)γα1 + ((1− v2) + σv2)(1− γ)α2
. (5.40)

The vaccination threshold is always to the right of the epidemic threshold R0 = 1, as can be
confirmed by inspection of (5.40).

First, we consider a strategy based on a limited quantity of vaccines corresponding to
a given coverage, v. We can then vary the percentage of each risk group covered by the
program by fixing v = v1γ1 + v2γ2 = v1γ + v2(1 − γ) and varying v2. Naturally, increasing
the representation of the high-risk group in the vaccinated sub-population will increase the
impact of the program by shifting the vaccination threshold to the right (Britton, 1998). In

fact, by substituting v1 =
v − v2(1− γ)

γ
in equation (5.40) and assuming that it defines R0

as a function of the vaccination coverage for the high-risk group v2, we obtain

∂R0

∂v2
=

(1− α1)(1− σ)
[((1− v1) + σv1)γα1 + ((1− v2) + σv2)(1− γ)α2]2

> 0 (5.41)

Now, we reverse the argument and inspect what coverage we need to attain with a targeted
strategy in order to achieve the same effectiveness as the corresponding uniform strategy
(v1 = v2). This will provide an estimation for how many doses we save by targeting the
vaccination program to those individuals at higher risk, as a so called top-to-bottom strategy
(Britton, 1998). Figure 5.8 illustrates the saving associated with targeting. For Figure 5.8(a)
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Figure 5.8: Uniform vs. targeted vaccination programs. (a) Vaccination coverage required for the

targeted strategy to obtain the same disease reduction as a uniform strategy with 50% coverage, for each R0.

(b) Vaccination coverage required to eliminate the infection for each R0. Full lines corresponds to the uniform

strategy (v∗u) and broken lines correspond to the targeted strategy (v∗t ), dotted if vaccination is restricted to

the high-risk group and dashed if this is complemented by vaccination in the low-risk group. Infection risk

distribution is given by γ = 0.8 and α1 = 0.2.

we use as a reference the reduction in disease prevalence achieved with a uniform vaccination
strategy with coverage v1 = v2 = 0.5. The figure shows the coverage needed for a targeted
strategy to achieve the same reduction in disease prevalence as for the uniform vaccination
strategy. This result was obtained numerically, by computing, for each β, the vaccination
coverage for the targeted strategy v for which the prevalence curves under each vaccination
strategy intersect at β. Below the reinfection threshold (R0 = 4) it is always possible to
achieve the same reduction using a targeted strategy with lower coverage, while above the
reinfection threshold there is no difference (result not shown). Note that this is achieved by
vaccinating only a proportion of the high-risk group, if R0 is low enough and for v < γ2

(dotted line in the figure) or by vaccinating completely the high-risk group and a proportion
of the low-risk group (dashed lines in the figure).

Figure 5.8(b) represents elimination coverages under different strategies. The critical
vaccination coverage to eliminate the infection, for a given R0, for the uniform strategy (full
line) is obtained by substituting v1 = v2 = v in equation (5.40) and solving for v:

v∗u =
1− 1/R0

1− σ
. (5.42)

For the top-to-bottom strategy, we substitute v1 = 0 and v2 = v/(1 − γ), for v ≤ 1 − γ, or
v2 = 1 and v1 = (v − (1− γ))/γ, if v > 1− γ, in equation (5.40). Solving for v we obtain

v∗t =
(1− 1/R0)(1− γ)
(1− σ)(1− γα1)

or v∗t =
1− 1/R0

(1− σ)α1
− (1− α1)

α1
, (5.43)

with vaccination of only the high-risk group (dotted line) or both groups (dashed line), re-
spectively. Below the reinfection threshold, the elimination coverage is always lower for the
targeted strategy. Above the reinfection threshold, it is impossible to interrupt transmission
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and eliminate the infection. In fact, one can easily show that if R0 > 1/σ both v∗u and v∗t
become greater than one. As previously discussed (Gomes et al., 2004b, 2005) above this
threshold only a superior vaccine, capable of inducing an immune response more effective
than natural infection, would be efficacious.

5.5.2 Controlling risk profile

We have just described how targeting strategies have the potential to improve vaccination
impact. However, this fails for populations above the reinfection threshold. In this section,
we analyze the effect of interventions intended to convert high-risk individuals into low-risk.
We will see that these interventions that have the potential to reduce disease endemic state
even above the reinfection threshold.

We assume that it is possible to reduce the risk of infection of part of the individuals in
the high-risk group, either by biomedical or behavioral interventions. We assume that these
targeted interventions act on the high-risk individuals by transferring them to the low-risk
group, at a rate φ. The new model is described by the following set of differential equations

S′1 = µγ + φS2 − λα1S1 − µS1

I ′1 = λα1S1 + aφI2 + σλα1R1 − (τ + µ)I1
R′1 = τI1 + aφR2 − σλα1R1 − µR1

S′2 = µ(1− γ)− λα2S2 − (µ+ φ)S2

I ′2 = λα2S2 + σλα2R2 − (τ + µ+ aφ)I2
R′2 = τI2 − σλα2R2 − (µ+ aφ)R2

(5.44)

Remark 5.5.1. The model with intervention represented by the system (5.44) coincides with
the original one, system (5.1), when no intervention is implemented (φ = 0) and in the
homogenous case (α1 = 1).

We compare two possible interventions. First, we assume an early intervention, where
only the susceptible individuals are able to reduce the infection risk (a = 0). Improvement
of social conditions for children or immune protection conferred by breast-feeding, can serve
as an example. Second, we expand the intervention to all individuals in the high-risk group
(a = 1). This can be the case of interventions that focus on behavioral changes or treatment
follow-up of high-risk individuals.

Region of possible disease elimination.

The possibility to eliminate the disease for a certain population corresponds to the existence
and stability of a disease-free equilibrium for a range of transmission intensities, given by
R0. For both early or extended interventions (a = 0 or a = 1), system (5.44) has a disease-
free equilibrium of the form E0 = ((γµ + φ)/(µ + φ), 0, 0, µ(1 − γ)/(µ + φ), 0, 0). For this
equilibrium, system (5.44) undergoes a bifurcation in the transmission parameter at β =
(τ+µ)(µ+φ)/(µ+α1φ), which corresponds to a shift in the equilibrium stability summarized
in the theorem below.

Remark 5.5.2. The bifurcation point for system (5.44) for the disease-free equilibrium cor-
responds to

R0 =
µ+ φ

µ+ α1φ
= ETφ, (5.45)
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where R0 is the basic reproduction number (5.3) for the original model (5.1). Moreover, this
bifurcation is always to the right of R0 since (µ+ φ)/(µ+ α1φ) > 1, for φ > 0.

Theorem 5.5.1. For σ ∈ (0, 1), the disease-free equilibrium of system (5.44), E0, is globally
asymptotically stable if R0 < ETφ and it is unstable for R0 > ETφ.

Proof. Lets compute the Jacobian for system (5.44) at E0

−µ −α1β
γµ+φ
µ+φ 0 φ −α1β

γµ+φ
µ+φ 0

0 α1β
γµ+φ
µ+φ − (τ + µ) 0 0 α1β

γµ+φ
µ+φ + aφ 0

0 τ −µ 0 0 aφ

0 −α2β
(1−γ)µ
µ+φ 0 −(µ+ φ) −α2β

(1−γ)µ
µ+φ 0

0 α2β
(1−γ)µ
µ+φ 0 0 α2β

(1−γ)µ
µ+φ − (τ + µ)− aφ 0

0 0 0 0 τ −(µ+ aφ)


.

The eignvalues are −µ, −(µ+φ), −(µ+aφ), −(aφ+µ+ τ) and β(α1φ+µ)/(µ+φ)− (τ +µ).
Hence, for R0 < ETφ i.e. for β < (µ+φ)(τ+µ)/(α1φ+µ) all eigenvalues are real and positive
and the result follows.

Early intervention (a=0).

By changing the risk profile of individuals at risk for reinfection, early interventions on sus-
ceptible high-risk individuals can give rise to bistable situations, as illustrated in Figure 5.9
and 5.10. Bistable behavior indicates that these interventions have the potential to signifi-
cantly reduce the disease, even above the reinfection threshold. However, their effect will be
negligenciable unless the intervention effort is above a certain critical level.

For intermediate intervention intensity, φ, the endemic equilibrium curve exhibits an S-
shape as illustrated by the thin curve (φ = 0.5) in Figure 5.9 (a). For a range of R0, two stable
endemic equilibria exist, one low and one high, separated by one unstable endemic equilibrium.
Panel (c) shows the corresponding bistability region in the (R0, φ)− space marked by A. To
improve the impact of this intervention additional measures must be taken in order to bring
the disease level below the unstable equilibria that separates the two stable ones or to reduce
R0.

We can say that bistability results from the interplay between population compartments
with different susceptibility status: a factor α1 modifies susceptibility factor to reinfection of
individuals in the low-risk group when compared to the population average σ. In the absence
of intervention the reinfection threshold is determined by the population average susceptibility
factor R0 = 1/σ, as previously observed in Section 5.4.1. A widespread strategy of treatment
(very high φ) would increase significantly the low-risk population moving the reinfection
threshold to the right at R0 = 1/α1σ. Formally this threshold is defined for the extreme
case φ → +∞, where all susceptible individuals belong to the low-risk group. Following the
method in Section 2.5 to system (5.44), which in the limiting case (φ→ +∞) is equivalent to

S′1 = µ− λα1S1 − µS1

I ′1 = λα1S1σλα1R1 − (τ + µ)I1
R′1 = τI1 − σλα1R1 − µR1

(5.46)

we obtain the reinfection sub-model given by{
R′1 = µ+ τI1 − σλα1R1 − µR1

I ′1 = λα1S1 + σλα1R1 − (τ + µ)I1.
(5.47)
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Figure 5.9: Early intervention for γ = 0.5, α1 = 0.5 (a) Equilibrium curves with intervention

intensity φ = 0.5 (unstable equilibrium is marked by dotted lines). Heavy full and dashed lines correspond to

equilibria with no intervention and the limit case where φ → +∞, respectively; (b) Two-parameter diagram

where bistability region is marked by A. Full line corresponds to R0 = ETφ. Horizontal lines correspond to

the particular cases represented in (a).

The reinfection sub-model has a unique disease-free equilibrium E0 = (1, 0). Analyzing the
jacobian at E0 we conclude that a bifurcation on the transmission parameter β occurs at
β = (τ +µ)/α1σ, when the disease free equilibrium changes its stability. In terms of the basic
reproduction number the bifurcation is attained at R0 = 1/α1σ.

For intermediate intensities the relative size of the recovered classes of each risk group,
after the intervention, will then determine which of the reinfection thresholds has more impact
in determining the disease level.

These results are applicable to many contexts or diseases. In general, when there is more
than one susceptibility group, multiple reinfection thresholds can play a role in defining the
disease prevalence. Different susceptibility factors that affect the reinfection rates are crucial
to determine the position of the behavior of interest on the transmissibility axis, given by
the corresponding reinfection thresholds. Moreover, the success of interventions that alter
the relative size of the partially susceptible classes depend on this position. Another example
is analyzed in Gomes et al. (2007) in the context of post-exposure interventions in tuberculosis.

Another form of bistable behavior may occur from the interplay between the reinfection
threshold, R0 = 1/σ, and the epidemic threshold, R0 = ETφ for the intervention model.
When ETφ is close to the reinfection threshold, bistability of the disease-free and an endemic
equilibrium can occur. In fact, when α1 is low (high heterogeneity) the curve R0 = ETφ
intersects region A, which gives rise to a new bistability region, marked by B in Figure 5.10
(b). The upper stable equilibrium exists now to the left of the epidemic threshold R0 = ETφ
as illustrated by the case φ = 0.5 in Figure 5.10 (a). This scenario can have important conse-
quences to intervention impact since disease can now be eliminated with additional measures
that allow to bring the disease level below the unstable equilibrium that separates the stable
ones.
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Figure 5.10: Early intervention for γ = 0.8, α1 = 0.2. (a) Equilibrium curves with intervention

intensity φ = 0.15 and 0.5, from left to right (full line with unstable equilibrium is marked by dotted lines).

Heavy lines correspond to equilibria with no intervention, and dashed heavy lines represent the limit case

where φ→ +∞; (b) Two-parameter diagram where bistability region is marked in grey. Bistability of the two

endemic equilibria, high and low is marked by A. Bistability of the disease-free and one endemic equilibrium

is marked by B and C. Horizontal lines correspond to the particular cases represented in the panels above.

Also for the bifurcation at R0 = ETφ, two distinct situations may occur that have different
consequences for the intervention impact. The nontrivial equilibrium may exist only to the
right of the bifurcation point or to the left, for R0 in some interval (ETφ − ε, ETφ) with
ε > 0. Accordingly, these are called forward (or supercritical) and backward (or subcritical)
bifurcations (Dushoff, 1996). For the forward bifurcation the range for disease elimination is
maximum, while for the backward bifurcation disease may remain endemic below R0 = ETφ.
Moreover, note that when the bifurcation is backwards, the unstable nontrivial equilibrium
bents forward in a saddle node bifurcation, giving rise to bistability of the disease-free and
endemic equilibria, below R0 = ETφ (region C in Figure 5.10 (b)). This situation is illustrated
by the thin left curve in Figure 5.10 (a), corresponding to φ = 0.15. It implies that, for a
population with transmission intensity in this range, it is only possible to eliminate the disease
if additional measures are taken in order to bring disease level below the unstable equilibria.
Otherwise disease level is reduced to the level of the stable endemic equilibrium. The result
concerning the direction of the bifurcation is summarized in the following theorem.

Theorem 5.5.2. For system (5.44) with a = 0, the bifurcation of the disease-free equilibrium,
E0, at ETφ is backwards iff

στ(τ + φ)[(1− γ)(α2
1φ+ µ) + µγ(1− α1)2]

(τ + µ)[φ2α2
1(1− γ) + µφα1(1− γ)(α1 + 1) + µ2(γ(α1 − 1)2 + (1− γ))]

> 1. (5.48)

Proof. By solving each equation from system (5.44), at equilibrium, in order to I = I1+I2 and
substituting in equation İ = 0 (sum of the second and third equations) we get a polynomial
of fourth order P (β, I) = a4(I)β3 + a3(I)β3 + a2(I)β2 + a1(I)β + a0(I). The equilibrium
solutions satisfy P (β, I∗) = 0, where I∗ is the equilibrium proportion of infectious. Defining
β as a function of I∗, differentiating this equation and setting (β, I∗) = (β∗, 0), where β∗ is
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such that R0 = ETφ, we obtain

dβ
dI∗
|(β∗,0) = − (µ+ φ)(τ + µ)

µ(1− γ)(µ+ α1φ)3
A.

With the opposite sign of A = aσ+ b where a = (µ+φ)τ((1− γ)(µ+φα2
1) +µγ(1−α)2) > 0;

and b = −(τ + µ)[φ2α2
1(1 − γ) + µφα1(1 − γ)(1 + α1) + µ2(γ(1α1)2 + (1 − γ))]. Hence, a

backward bifurcation occurs iff A > 0 which is equivalent to condition (5.48).

Remark 5.5.3. We omit the expression of the polynomial P coefficients due to its complexity.
Algebraic manipulation was obtained using the symbolic toolbox from Matlab 6.5r.

Extended intervention (a=1).

When the risk-reduction intervention is applied irrespective of infection status (system (5.44)
with a = 1) bistability no longer occurs, independently of the intervention intensity (Figure
5.11). In fact, since all classes S, I and R, change at the same rate, only the structure of
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Figure 5.11: Extended intervention. Equilibrium curves for intermediate intervention intensity (φ = 0.5)

and for different scenarios for different scenarios for the risk distribution: (a) low (γ = 0.5, α1 = 0.5); and

(b) high distribution variance (γ = 0.8, α1 = 0.2). Heavy line corresponds to the equilibrium curve with no

intervention (φ = 0).

the population and the average population risk are changed. The equations for the total
population in each group Pi are{

P ′1 = γµ+ φP2 − µP1

P ′2 = (1− γ)µ− (µ+ φ)P2.
(5.49)

Hence the equilibrium solutions are P1 =
µγ + φ

µ+ φ
and P2 =

(1− γ)µ
µ+ φ

and the average risk is

α1P1 + α2P2

P1 + P2
=
µ+ α1

µ+ φ
=

1
ETφ

. This means that the new disease equilibrium corresponds
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to the case where the low-risk group represents a higher proportion of the population, (φ +
γµ)/(φ + µ) instead of γ, and the average risk of infection among the population is reduced
from 1 to 1/ETφ.

Below the reinfection threshold, both early and extended interventions have the similar
results. Above the reinfection threshold the results of the extended intervention (a = 1) are
strikingly better. However, note that the intervention effort is not directly comparable. For
the early intervention the proportion of individuals covered is φS2, whereas for the extended
intervention, is φ(S2 + I2 +R2) = φ(1−γ), which is independent of the transmission intensity
and always higher. For higher endemic regions, the difference is much more pronounced.

5.6 Discussion

We have previously identified a reinfection threshold in the SIRI model and characterised how
this induces a sharp division of the transmissibility axis into two regimes: reinfection is rare
below threshold (SIR behavior) and very frequent above (SIS behavior). Here we describe
how heterogeneity in innate susceptibility to infection smoothens this transition by making
both regimes less extreme. Heterogeneity is always present in nature and it is important to
understand how it can affect system behavior both qualitatively and quantitatively.

We perform a systematic analysis of the SIRI model with distributed susceptibility. The
most striking result is the prediction that the average rate of reinfection may be higher than
the average rate of primary infection, which may seem paradoxical given that primary infection
induces life-long partial protection. The rationale behind this result is that infection generates
a selection mechanism that skews the susceptibility profiles of the S and R compartments
to lower and higher susceptibility, respectively. In other words, selection acts to keep less
susceptible individuals in S and more susceptible individuals in R. If this effect is strong
enough we have a scenario where, on average, the rate of reinfection (infection out of R) is
higher than the rate of primary infection (infection out of S) even though each individual
has a risk reduction following primary infection. This mechanism may explain high rates of
tuberculosis reinfection recently reported (Verver et al., 2005), as we will describe in Chapter
6.

A rule of thumb has been proposed in infections disease dynamics, whereby 20% of the
population is responsible for 80% of all infections due to heterogeneity in susceptibility or
infectivity (Woolhouse et al., 1997). However, direct confirmation of this hypothesis requires
very large epidemiological studies. For diseases that induce partial immunity, mathematical
models such as those proposed here offer the practical alternative of using the ratio between
reinfection and primary infection rates as an indirect measure of population heterogeneity.

In the SIRI models with heterogeneous susceptibility, we predict that disease prevalence
is lower than the corresponding homogeneous model, as described before for epidemic SIR
models (Gart, 1968; Ball, 1985; Anderson & Britton, 1998; Miller, 2007). In other words, to
obtain a given level of disease prevalence, the heterogeneous model requires a higher value
for the transmission intensity, R0. This implies that elimination strategies require more effort
under wider heterogeneity (Anderson & May, 1991).

The success of vaccination depends then on the ability to target those individuals at higher
groups. Generally, there is an additional benefit associated with targeting vaccination strate-
gies, as previously described for the SIR epidemic model (Britton, 1998; Koopman et al.,
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2005). In the case of the SIRI model, however, the added value of targeting high-risk groups
is limited to those regions where transmission is below the reinfection threshold. To overcome
this limitation, interventions must be able to change the infection risk of the targeted popu-
lation. Early interventions, that act on susceptible individuals only, can generate a bistable
situation for which an adequate intervention intensity can eliminate the disease or bring it to
a lower endemic level for certain regions. If these interventions are more extensively applied
irrespective of infection status, then the effect is stronger and the reinfection threshold can
be moved to higher transmission intensities.



Chapter 6

The selection hypothesis in
tuberculosis

6.1 Introduction

Despite important improvements in tuberculosis treatment, adequately treated patients are
still at high risk of developing recurrent pulmonary disease. Recurrent TB is defined as a
second episode of TB occurring after a first episode had been considered cured. A review on
the recurrence rate of TB for different regions revealed an average of 2,290 cases per 100,000
person-years at 12 months after treatment completion (Panjabi et al., 2007). However, this
estimate is biased towards the more common low incidence regions. In high incidence regions,
the average TB recurrence rate can reach 7,850 per 100,000. Recurrent TB poses a significant
challenge to public health and control programs, as it is associated with drug resistance and
treatments with low cure rates. Re-treatment is costly, posing further difficulties in regions
with low income that normally have a greater TB burden.

The role of exogenous reinfection with Mtb, versus endogenous reactivation (relapse) of
latent Mtb in the recurrence of pulmonary disease is not completely understood. Deciphering
the weigh of each of these mechanisms is of great importance in the choice of the most effec-
tive control program. Advances in DNA fingerprinting techniques allowed the genotyping of
the Mtb causing different disease episodes (McNabb et al., 2002). These methods can reveal
whether a new episode of disease is caused by infection with the same strain that caused
a previous episode or a different one, permitting a classification into relapse or reinfection,
respectively. Despite this correlation not being completely accurate due to the possibility of
mixed infections, reinfection with the same strain or laboratory cross-contamination, it can
be used as a proxy for the relative frequency of reinfection, and relapse in recurrent TB. In re-
gions with moderate to high endemicity, molecular epidemiological studies have reported that
disease caused by reinfection can be responsible for the majority of recurrent cases (Verver et
al., 2005). This phenomenon can have strong implications for public health control strategies
(Chiang et al., 2005).

Recently, it was observed that reinfection rates correlate with the logarithm of local TB
incidence (Wang et al., 2007), and an algorithm based on linear regression was proposed to
predict the proportion of reinfection from local incidence. The significantly high recurrence
rate and the increased evidence of reinfection contribution to recurrent TB have raised the
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issue of better quantifying the infection risk among successfully treated patients. In particular,
in an area of South Africa with high disease prevalence it has been reported that the rate
of TB reinfection after successful treatment is significantly higher than the rate of new TB
(Verver et al., 2005). This observation led the authors to deduce that previous TB episodes
induce a form of immune-mediated enhancement of susceptibility to reinfection (Uys at al.,
2009).

Based on incidence and reinfection data from 6 regions distributed worldwide, we contrast
this explanation with the selection hypothesis, whereby high-risk individuals are overrepre-
sented in the previously infected subpopulation (Yew & Leung, 2005) inflating the rate of
reinfection at the population level even though immunity confers partial protection at the
individual level. Specifically, we postulate that some individuals are a priory more likely to
develop the disease because they are more exposed or have some form of innate susceptibility.
In this case, the risk of reinfection in the group of people who previously had TB disease
could be higher due to heterogeneity in exposure or innate susceptibility (Austin et al., 2004;
Hoal et al., 2004; Sonnenberg et al., 2001; Story et al., 2007).

In this Chapter we a different methodology. We construct two alternative models (with
and without heterogeneity) each parameterized by fitting to publish data. The fitting proce-
dure was performed in collaboration with Ricardo Águas using a standard software. Unfor-
tunately, the data consists on only 6 regions which does not allow for a satisfactory statistical
discrimination of the models. We advocate for the selection hypothesis based in epidemi-
ological arguments. In the appendix (Section 6.5) we also discuss some of the differences
between the models from the structure point of view. The understanding of the behavior of
the heterogeneous model results also from the analysis of the simple SIRI model presented in
the previous chapter (Section 5.4).

6.2 Methods

6.2.1 The model

Our purpose here is to get data comparable results therefore we have to refine the simple tu-
berculosis model used in Chapter 3. We choose as reference the model in Gomes et al. (2007),
where a new compartment is considered for recently exposed individuals harboring a primary
infection and where distinction between latent and previously treated classes individuals is
made, allowing to differentiate reinfection and reactivation events.

The assumption on partial immunity is relaxed to allow the reinfection rate to be any
factor of first infection. We further expand the model to accommodate host heterogeneity
in susceptibility to infection, using the same formulation as in the previous chapter. The
population is divided into two risk groups. Within each group (indexed by i = 1, 2), individ-
uals are classified, according to their infection history, into susceptible (Si), recently exposed
harboring a primary infection (Pi), latent (Li), active pulmonary tuberculosis (Ii) and recov-
ered (Ri). Figure 6.1 provides a schematic representation of the model. We denote by γ , the
proportion of the population assigned to group 1, following that a proportion 1−γ is assigned
to group 2, that is S1 +P1 +L1 + I1 +R1 = γ and S2 +P2 +L2 + I2 +R2 = 1− γ. The force
of infection acting on each risk group is λi = αiβI, where I = I1 + I2, β is a transmission
coefficient specific to each population, and αi represent the risk factors that differentiate the
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Figure 6.1: Tuberculosis model diagram. Individuals are classified according to infection history into
susceptible (Si), primary infection (Pi), latent (Li), active pulmonary tuberculosis (Ii) and recovered (Ri),
where the index (i = 1, 2) designates the risk group. Parameters are the rate of progression from primary
infection (δ), the proportion progressing to pulmonary disease (φ), the rate of endogenous reactivation of
latent infections (ω), the rate at which infectious individuals are detected and treated (τ) and the relative risk
of reinfection over first infection (σ). The force of infection applying to each risk group is λi.

two risk groups. To standardize the analysis and interpretation, we normalize the average
risk factor such that γα1 +(1−γ)α2 = 1. The rate of reinfection is affected by the reinfection
factor, σ, that corresponds to the relative risk of reinfection in relation to first infection. The
model can be written as a system of 2× 5 differential equations

S′i = µγi − (λi + µ)Si
P ′i = λiSi + σλi(Li +Ri)− (δ + µ)Pi
I ′i = φδPi + ωLi + ωRi − (τ + µ)Ii
L′i = (1− φ)δPi − (σλi + ω + µ)Li
R′i = τIi − (σλi + ω + µ)Ri.

(6.1)

Individuals are born at a fixed rate, µ, and enter S1 or S2 in the fixed proportions, γ1 = γ
and γ2 = 1 − γ, respectively. For both risk groups, susceptible individuals, when infected,
move to the primary infection compartment, which they leave at a rate, δ = 12 yr−1. A
fraction of infections, φ = 0.05, progresses directly to disease, while the majority is able to
contain the infection moving to the latent class. Infectious individuals recover by treatment
to the recovered class at a rate, τ = 2 yr−1, which reflects the average time to detection and
smear conversion after treatment initiation. Both latent and recovered infections can further
progress to disease upon endogenous reactivation or exogenous reinfection. We assume the
simplest possible scenario where both of these processes are equivalent for latent and recovered
classes. Populations differ in the transmission potential given by β. Parameters µ, φ, δ and τ
are fixed and their values are the same as in Gomes et al. (2007). The remaining parameters
are estimated.

6.2.2 Basic reproduction number

The basic reproduction number, R0, is calculated using the next generation operator described
in (van den Driessche & Watmough, 2002).

Accordingly, the infected classes are Pi, Li, Ii and Ri, provided that ω 6= 0. So we write
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system (6.1) as
X ′ = f(X)⇔ X ′ = F(X)− V(X), (6.2)

where X is the ordered vector of the state variables, F = (α1βIS1, 0, 0, 0, α2βIS2, 0, 0, 0, 0, 0)T

is the rate of appearance of new infections in each class and the disease-free equilibrium is
X0 = (0, 0, 0, 0, 0, 0, 0, 0, γ, 1 − γ). The derivatives of F and V with respect to the infected
classes at X0 are

F =



0 0 α1βγ 0 0 0 α1βγ 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 α2β(1− γ) 0 0 0 α2β(1− γ) 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


and

V =



δ + µ 0 0 0 0 0 0 0
−(1− φ)δ ω + µ 0 0 0 0 0 0
−φδ −ω τ + µ −ω 0 0 0 0

0 0 −τ ω + µ 0 0 0 0
0 0 0 0 δ + µ 0 0 0
0 0 0 0 −(1− φ)δ ω + µ 0 0
0 0 0 0 −φδ −ω τ + µ −ω
0 0 0 0 0 0 −τ ω + µ


.

Now, the basic reproduction number is defined as the spectral radius of the next generation
matrix, FV −1:

R0 =
βδ(φµ+ ω)

µ(µ+ δ)(τ + ω + µ)
. (6.3)

Using the direct calculations as in Hethcote (2000) we can rewrite R0 with a more manful
expression:

R0 = β
( φδ

δ + µ
+

(1− φ)δ
δ + µ

ω

ω + µ

) 1
τ + µ

(τ + µ)(ω + µ)
µ(τ + ω + µ)

. (6.4)

We can see that R0 is proportional to the transmission coefficient, β, and encompasses the
two alternative paths to disease progression corresponding to the two terms inside brackets.
The average infectious period, 1/(τ + µ), is multiplied by the average time to reactivation of
the recovered individuals. Note that the expression for R0 is model dependent, so it should be
interpreted as a way to classify different populations according to their potential for transmis-
sion, under the assumptions made. R0 is a threshold parameter for endemicity, as for R0 > 1
the disease free equilibrium becomes unstable and an endemic stable equilibrium emerges.

6.2.3 The data

This study includes data points obtained from Wang et al. (2007) corresponding to the rein-
fection proportion in recurrent TB and local TB incidence for 6 regions distributed worldwide.



6.2 Methods 95

The data points in (Wang et al., 2007) were gathered by systematic literature review, fol-
lowing a set of inclusion criteria defined by the authors. Recurrent TB was defined as cases
with culture positive after bacteriologically confirmed cure or complete treatment for the first
episode. Reinfection and reactivation were distinguished by comparing Mtb DNA fingerprint-
ing of the initial and recurrent episodes. The proportion of reinfection was defined as patients
with reinfection over all with recurrent TB. We excluded the point corresponding to the
Netherlands (de Boer & Soolingen, 2000) since the proportion of reinfection has been revised
in a more recent study conducted by the same authors (de Boer et al., 2003). After careful
analysis of the original papers we have corrected the value for the reinfection proportion for
Houston to 24% (El Sahly, 2004). For Cape Town, we used the average total notification
incidence of TB, 761 per 100,000 (supplementary material in (Verver et al., 2005)) instead
of the new TB incidence previously used to represented the local TB incidence (Wang et al.,
2007). Finally, we have included the point corresponding to the study conducted in Taiwan
(Wang et al., 2007), which in the original paper was used to confirm the prediction from a
linear regression model.

6.2.4 Measures of TB incidence

Following the criteria used in the data collection, we classify a recurrent TB case as any
individual who enters the infectious compartment after having gone through the recovered
class. There are two alternative pathways: (i) reactivation while in the recovered class; or (ii)
reinfection with progression to active pulmonary disease (direct or following a latent period).
From system (6.1), these are formally defined by

reACT = ω
∑
i

Ri, (6.5)

reINF =
∑
i

σβIαiRi

( φδ

δ + µ
+

(1− φ)δ
δ + µ

ω

ω + µ+ σβIαi

)
×

( (ω + µ+ σβIαi)(δ + µ)
(ω + µ)(δ + µ) + σβIαi(µ+ φδ)

)
, (6.6)

for i = 1,2, where I and Ri are equilibrium values. The expression for reINF is given by
the rate at which recovered individuals are reinfected, σβIαi, times the probability to survive

the exposed period either progressing directly to disease,
φδ

(δ + µ)
, or going first through an ex-

tended latent period,
(1− φ)δω

(δ + µ)(ω + µ+ σβIαi)
, and by the term

ω + µ+ σβIαi)(δ + µ)
(ω + µ)(δ + µ) + σβIαi(µ+ φδ)

which accounts for the chance of being again reinfected while latent, going back to the exposed
class.

The proportion of reinfection, at equilibrium, is given by

p =
reINF

reINF + reACT
. (6.7)

TB incidence, defined by the number of cases per 100,000, is calculated from equation I ′ =
φδ(
∑

i Pi) + ω
∑

i(Li +Ri)− (τ + µ)I at equilibrium, as the proportion of cases entering the
infectious class times 100,000 cases:

y = (τ + µ) I × 100, 000. (6.8)
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6.2.5 Fitting procedure

Parameters are estimated under two sets of assumptions: homogeneous susceptibility (α1 =
α2 = 1); and heterogeneous susceptibility (α1 < α2). In both situations we assume that the
rate of endogenous reactivation (ω), the reinfection factor (σ), and the parameters regulating
heterogeneity (αi and γ), do not vary between populations (global parameters). The force of
infection, λ (or λi), is assumed to be a linear parameter and it is allowed to vary between
regions (local parameters). Parameters are then estimated as the best fit to the proportion of
recurrences due to reinfection (p) and local incidence (y) for the 6 data points, simultaneously.
We assume that the data observations were performed at a time when TB transmission has
reached a stationary state. This assumption allowed us to ensure the robustness of the
parameter estimates. Hence, we run the model in time until equilibrium is reached, and
compare the resulting values of p and y with the data points for each region. This is embedded
in a least squares minimization fitting method using the Berkeley Madonna software v8.3.6c.
The method minimises the sums of the squares of residuals, which is the difference between the
model prediction and the data output at each data point. We assume a Gaussian distribution
for scatter of residuals and the same standard deviation for all points. Initial guesses for the
parameters are chosen a priori from a biologically plausible range of values, in such a manner
as to serve as boundaries for the most likely value for those parameters. Guesses are fined
tuned iteratively, according to the resulting estimates. The ideal fit is the one that results in
the least sum of square of residuals, and gives estimates for the parameters which are within
our plausibility range.

The strategy, adopted here, of simultaneously fitting datasets for different population
leaving the force of infection (λ) as the only regions specific parameter has proven successful
in studies for other diseases (White et al., 2007; Águas et al., 2008).

From the estimated region-specific forces of infection we derive the region-specific trans-
mission coefficients by dividing the force of infection by the total prevalence following the
relation λi = βαiI. So, formally we have:

βj =
λj
αiIj

, for i = 1, 2 and j = 1, . . . , 6, (6.9)

where Ij = yj
(τ+µ)100,000 is the region specific proportion of infectious individuals, obtained

from equation (6.8). From relation (6.3) we can also compute the region specific reproduction
numbers:

R0,j =
βjδ(φµ+ ω)

µ(µ+ δ)(τ + ω + µ)
, j = 1, . . . , 6.. (6.10)

6.2.6 Ratio of reinfection over new TB

We define ρ as the ratio of the rate of reinfection among successfully treated patients,
reINF

R1 +R2
,

over the rate of new TB among never-infected individuals,
newINF

S1 + S2
, where reINF is defined
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above and similarly we define newINF as

newINF =
∑
i

βIαiSi

( φδ

δ + µ
+

(1− φ)δ
δ + µ

ω

ω + µ+ σβIαi

)( (ω + µ+ σβIαi)(δ + µ)
(ω + µ)(δ + µ) + σβIαi(µ+ φδ)

)
,

(6.11)
Note that even reinfected individuals who have never experienced disease before are classified
as new cases. More formally, we calculate ρ as

ρ =
reINF (S1 + S2)
newINF (R1 +R2)

. (6.12)

Interestingly, for the homogeneous model, we have ρ = σ, since α1 = α2 = 1. For the
heterogeneous model, the rates of reinfection and new infection are weighted according to
the equilibrium susceptibility profiles of the R and S compartments, respectively. Data and
calculations for Cape Town are shown in Table 6.3.

Based on our previous study of the SIRI heterogeneous model behavior (Chapter 5) we
propose ρ as an alternative measure that can further distinguish the competing hypotheses.
For the simple SIRI model ρ corresponds to Y2/Y1 (equations 5.37 and 5.38), illustrated in
Figure 5.6 (b) for different values of α1. In populations for which susceptibility to infection
is sufficiently heterogeneous, the selection hypothesis distinguishes itself from homogeneous
susceptibility, for which the ratio is constant ρ = σ, by predicting a much higher reinfection
rate for low to intermediate transmission intensities due to selection of high-risk individuals
to the recovered sub-population.

6.3 Results

We construct a mathematical model for TB transmission (adapted from Gomes et al. (2007))
where increased attention is given to recurrent TB. The model is based on the assumption
that individuals with a latent infection, or that have recovered from an active disease episode
after effective treatment, can be reinfected at a rate that is proportional to the rate of first
infection, with multiplicity factor σ. We also consider the possibility that susceptibility to
infection can be heterogeneously distributed among the population. The total population is
divided into two susceptibility groups with distinct risk factors, α1 ≤ α2. The low-risk group
constitutes a proportion, γ, of the population which is constant over time. Within each group
group, individuals are classified according to their infection history (see Figure 6.1).

We analyze the differences in the contribution of reinfection and reactivation to recur-
rent TB across distinct regions/countries. The model is parameterized by the transmission
coefficient (β), which differentiates regions/countries according to socioeconomic and envi-
ronmental factors and impacts on the force of infection (λ, see Methods). The two alternative
hypotheses for the inflation of reinfection rates are then contrasted by two distinct model
implementations. The hypothesis of immune-mediated enhancement is realized in a homo-
geneous host population (α1 = α2 = 1, σ > 1), while the selection hypothesis invokes a
heterogeneous host population to reconcile high reinfection rates with the view of partial im-
mune protection (α1 < α2, σ < 1). The two model versions are parameterized on published
data for the proportion of reinfection in recurrent TB versus TB incidence across a range of
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communities from low to high incidence (Wang et al., 2007).

As in previous models (White et al., 2007; Águas et al., 2008) we have considered the force
of infection (λ) as the local parameter that capture the differences in transmission among
regions, the remaining being set as global parameters. Tables 6.1 and 6.2 show the estimated

Table 6.1: Estimated Global Parameters.

Symbol Definition Homogeneous Heterogeneous

Model Model

σ reinfection factor 6.56 0.617

ω rate of endogenous reactivations 0.00425 0.00779

γ proportion low-risk group 1 (imposed) 0.937

α1 low risk factor 1(imposed) 0.0690

α2 high risk factor 1(imposed) 14.8

global and local parameters, respectively, according to the procedure described in Methods.
Concerning the region-specific transmission parameters we have, initially, estimated the forces

Table 6.2: Estimated region-specific force of infection (λ or λi) and derived transmission
coeffitient (β) and basic reproduction number R0.

US & Lombardy, Houston, Taiwan Madras, Cape Town,

Canada Italy US India South Africa

Homogeneous model

λ 0.00014733 0.00050992 0.00062570 0.0018278 0.001006 1 0.023296

β 5.8231 5.8323 5.8352 5.8631 5.8451 6.1224

R0 1.0013 1.0029 1.0034 1.0082 1.0051 1.0527

Heterogeneous model

λ2 0.0012664 0.0053642 0.0059830 0.045075 0.016876 2.0896

β 3.6691 4.4998 4.6211 10.604 6.5942 40.275

R0 1.0802 1.3247 1.3604 3.1218 1.9413 11.856

of infection and then calculated the corresponding values for the transmission coefficients and
basic reproduction numbers (R0), through equations (6.9) and (6.10).

Figure 6.2 shows the equilibrium solutions of the model that best fit the proportion of
recurrent TB attributed to reinfection (p) and local TB incidence (y) for the 6 study popu-
lations included in this study (see inclusion criteria in Methods). When innate susceptibility
to infection is homogenous (Figure 6.2(a,c)) the estimated value for the reinfection factor
(σ = 6.56) suggests some form of immune-mediated enhancement whereby immunity renders
individuals more susceptible to subsequent infections (Uys at al., 2009). Contrastingly, when
two susceptibility groups are permitted (Figure 6.2(b,d)) the estimated value for the reinfec-
tion factor (σ = 0.62) is compatible with the more consensual view that immunity confers
partial protection against subsequent reinfections (Smith at al., 1994; Dye et al., 1998). The
estimates for the heterogeneity parameters indicate that susceptibility is considerably higher
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Figure 6.2: Comparison of model and data. (a,b) Proportion of reinfection in recurrent tuberculosis

as a function of local incidence (log). The data points correspond to 6 regions (% reinfection, incidence per

100,000 person-years): US & Canada (4%, 5.1); Lombardy, Italy (16%, 17.5); Houston, US (24%, 19); Taiwan

(51%, 62.4); Madras, India (31%, 130) and Cape Town, South Africa (77%, 761). The curves correspond to

(a) homogeneous model and (b) heterogeneous model equilibria, using local parameters according to Table

6.1. (c,d) TB incidence per 100,000 person-years, at equilibrium, as a function of R0 for the homogeneous

model (c) and the heterogeneous model (d). The dots mark the transmission coefficients for the 6 regions, as

in Table 1, and the associated incidences predicted by the model.

(α2 = 14.8 times higher than population average) among a small sub-group consisting of 6%
(1− γ) of the population. This is in agreement with TB transmission, especially in regions of
low to moderate transmission, where TB is confined to particular risk groups (such as home-
less, immigrants or prisoners) with sporadic small outbreaks in the general population (Story
et al., 2007; Nardell et al., 1986). Both scenarios indicate reactivation rates (ω = 0.00425 and
ω = 0.00779, respectively) on the upper range of previously published estimates (Dye et al.,
1998; Sutherland et al., 1982). The equilibrium curves are parameterized by the local trans-
mission coefficient, showing a marked nonlinear relation between the proportion of reinfection
and local incidence, not capture by previous studies (Wang et al., 2007).

Figure 6.2(c,d) shows the same equilibrium curves plotted as incidence in terms of R0. The
6 study populations are positioned according to the local TB incidence. In the homogeneous
case (Figure 6.2(c)) despite the range of TB incidence observed, the values found for the basic
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reproduction numbers accumulate just above the epidemic threshold (R0 = 1), which is not
compatible with the notable persistence of TB transmission under the most aggressive con-
trol measures. In the heterogeneous scenario (Figure 6.2(d)) the estimates for R0 correspond
to a wider range of transmission coefficients in accordance with previously estimated values
(Trunz et al., 2006), showing a noticeable separation between Cape Town and the remaining
regions (US/Canada, Lombardy, Houston, Taiwan, Madras).

Concerns with the intensity of transmission in Cape Town have motivated follow-up studies
to characterize the contribution of reinfection (Verver et al., 2005; Uys at al., 2009). Patients
with reported TB in the area were followed for an average duration of 5 years, and the
incidence rate of TB attributable to reinfection after successful treatment was estimated as
seven times higher than the rate of new TB (four times higher when incidence rates are
adjusted for age).

We have calculated the ratio, ρ (6.12), of the two rates (reinfection TB over new TB) with
outputs from the model, using the local parameters estimated for Cape Town, and obtained
ρ = 6.6 in the homogeneous implementation and ρ = 5.4 when two risk groups are considered
(see Table 6.3), both within the range 4–7 predicted by (Verver et al., 2005; Uys at al., 2009).
We have calculated the ratio, ρ, over the entire range of local TB incidences included in this

Table 6.3: Rates of new TB and reinfection TB using parameter values estimated for the
Cape Town region. The values obtained for the ratio, ρ, are in the range 4–7 estimated in
(Verver et al., 2005; Uys at al., 2009).

Homgeneous Heterogeneous

Model (prediction) Model (prediction)

Rate new TB∗

newINF/(S1 + S2) 1095 579

Rate reinfection TB∗

reINF/(R1 +R2) 7180 3114

ρ 6.6 5.4
∗Cases per 100,000 person-years.

study. The resulting curves obtained with both model implementation reveal different trends
(Figure 6.3) suggesting a potential criterion for model discrimination and hypothesis testing.
While the homogeneous model predicts a constancy of reinfection TB over new TB across
the entire range of transmission intensities, the heterogeneous models predicts that regions
of low to moderate transmission intensity support relatively higher reinfection rates. As for
the simple SIRI model we study in the previous section, this is explained by the gradient
in the selective pressure for high-risk individuals to the recovered subpopulation (see Meth-
ods). The rationale is that infection tends to affect individuals at higher risk, skewing the
distribution of recovered individuals towards higher susceptibility and inflating the rates of
reinfection. Transmission intensity tends to homogenize the two distributions making this
effect less pronounced. Cape Town is, to our knowledge, the only study reporting a suffi-
ciently long follow-up of successfully treated patients to permit a reliable estimation of this
ratio. The nearest is the study of US & Canada (Jasmer et al., 2004) based on a follow-up
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Figure 6.3: Ratio between reinfection TB and new TB. Model predictions for the ratio, ρ, of

reinfection TB after successful treatment and new TB as a function of TB incidence per 100,000 person-

years. Symbols (×) and (◦) correspond to the homogeneous (σ = 6.56) and heterogeneous (σ = 5.38) models,

respectively, for the region of Cape Town, using local parameters as in Tables 6.1 and 6.2.

of 2 years, which suggests that the rate of reinfection TB is nearly thirty times higher than
the rate of new TB. Although more date is necessary to validate the trends predicted here,
preliminary results are consistent with the selection hypothesis.

6.4 Discussion

We propose a minimal model for TB transmission to describe the relative contributions of rein-
fection and reactivation to recurrent TB across a range of transmission intensities. A nonlinear
relation between the proportion of reinfection and the local incidence is derived by fitting this
mechanistic model to a dataset compiled by (Wang et al., 2007) under two different assump-
tions on the distribution of susceptibility to infection among the population: homogeneous
(α1 = α2 = 1) and heterogeneous (α1 < α2). In both cases, we assume that the reinfection
rate is a multiple of the rate of first infection, with a reinfection factor, σ. Two alternative
hypotheses were confronted to explain recent results from molecular epidemiological studies
indicating that rates of reinfection tuberculosis are higher than rates of new tuberculosis. For
the homogeneous model, the estimated parameters suggest that increased reinfection results
from some form of immune-mediated enhancement in susceptibility after successful treatment
(σ > 1). For the heterogeneous model, results suggest that infection confers partial immunity
(σ < 1) to subsequent infections and that high susceptibility to infection is restricted to a
small group of the population. The increased rate of reinfection is then explained by a selective
pressure imposed by infection on the more susceptible group, sewing the distribution of the
recovered subpopulation towards higher susceptibility. Although both model implementations
reproduce a previously reported correlation between tuberculosis reinfection proportion and
local incidence (Wang et al., 2007), they lead to contrasting conclusions regarding adaptive
immunity. We propose the selection hypothesis to reconcile the more consensual view that
infection with Mtb confers partial protection to subsequent reinfection (Smith at al., 1994;
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Dye et al., 1998) with recent reports of rates of reinfection that are higher that rates of new
infection (Verver et al., 2005; Jasmer et al., 2004). We have obtained estimates for the basic
reproduction number in 6 distinct regions that are compatible with previous estimates (Trunz
et al., 2006). As a criterion for indirectly testing the selection hypothesis for tuberculosis we
propose that rates of reinfection and new infection are obtained under different transmission
intensities and confronted with the trend predicted by the model. More specifically, the model
predicts that rates of reinfection are relatively higher under low to intermediate transmission
intensities due to selection of high-risk individuals to the recovered subpopulation.

6.5 Appendix

In this section we extend the analysis of the competing models and complete some of the
arguments in favor of the selection hypothesis.

Nonlinear relation between the proportion of reinfection and local incidence

Apart from the scarce data available to be able to compare these models statistically, there
is another difficulty in validating or refusing one of them. This difficulty resides in the fact
that the comparison is based on the proportion of reinfection as compared to reactivation in
recurrent cases. In fact, since both models assume that reactivation rate (ω) is independent
of disease level in opposition to reinfection, that is proportional to the proportion of infec-
tious individuals (σβI), it will always result a nonlinear relation between the proportion of
reinfection and local incidence. Above a certain transmission level and therefore a certain
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Figure 6.4: Change in the proprotion of reinfection in recurrent TB with R0. (a) Proportion
of reinfection for the homogeneous model with different values of the reinfection factor σ: 6.56 (estimated
values), 4, 1 and 0.62, from top to bottom. (b) Proportion of reinfection for the heterogeneous model with
different distribution of the infection risk (γ, α1): bottom full curve (0.937,0.069) (estimated values), dashed
curve (0.937,0.5), dotted curve (0.5,0.069) and top full curve (1,1) (homogeneous distribution). Remaining
model parameters according to Table 6.1.

level of endemicity, reinfection is very common and it surpasses reactivation. The shape of
the (y, p) curve is mainly driven by the model structure and robust to parameter changes,
unless a more extreme infection-risk distribution is chosen. However, if instead of considering
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disease incidence on y-axis we consider transmission intensity (R0) we observe that the range
we obtain for R0 can be very different.

Figure 6.4 illustrates how the proportion of reinfection (p) changes with the reproduction
number (R0) for different values of the reinfection factor (σ) for the homogeneous model (panel
(a)) and for different assumptions on the infection risk distribution among population groups
(panel (b)). For the homogeneous model, the reinfection factor determines the range of R0

observed, maintaining the same curve shape. Now, fixing σ, the introduction of heterogeneity
in the infection risk contributes to smoothen the reinfection impact as we have described for
the simple SIRI model, in Section 5.4. It increases reinfection for low transmission settings
due to the selection of more susceptible individuals and it reduces reinfection likelihood when
compared to the homogeneous model (top curve in panel (b)), especially when common.

These observations have motivated us to use the estimated local R0 as another criteria
to compare the models, as discussed in Section 6.3. The best fitted parameters suggest a
very narrow range of R0 for the homogeneous model and considerable wider range for the
heterogeneous one, which is in better agreement with published data (Trunz et al., 2006).

Enhancement in susceptibility after successful treatment and bistability

Previous models have raised the possibility of the existence of multiple equilibria in tubercu-
losis, driven by the reinfection process (Feng et al., 2000). However these were not consensual,
since multiple equilibria existence depend on the assumption that already-infected individuals
must be more likely to get TB and become infectious than uninfected individuals (Lipsitch
& Murray, 2003). Here, under the assumption of homogeneous susceptibility to infection,
enhancement in susceptibility after successful treatment can also lead to a multiple equilibria
situation for R0 < 1, provided that the reinfection factor σ, be sufficiently large. Moreover,
independently of the other model parameters it can only happen assuming increased risk
(σ > 1). Theorem 6.5.1 at the end of this section summarizes this result for system (6.1) with
α1 = α2 = 1.

An important aspect of this result is its impact in the interpretation of the fitting results.
For technical reasons, for the fitting procedure it is common to use the force of infection λ, as a
linear parameter instead of the transmission coefficient β, as in the original formulation λ = βI
(Uys at al., 2009; White et al., 2007; Águas et al., 2008). The correspondent dynamical system
(system (6.1) with βI ≡ λ) becomes linear and the backward bifurcation is no longer possible.
Hence, the estimation procedure can lead to parameter values that give unreasonable results
for the nonlinear dynamical system, attributing observed incidences to unstable equilibria.

In this Chapter we used the same simplification aforementioned. Thoerem 6.5.1 allowed us
to accept the results obtained by the fitting procedure, by posteriorly inspecting the condition
for the existence of backward bifurcation for the estimated parameters. This subject certainly
deserves further investigation.

Note that the obtained reinfection factor for the homogeneous model is close to the critical:
σ = 6.56 < 7.03 = σc.

Theorem 6.5.1. For system (6.1) with α1 = α2 = 1 a backward bifurcation at R0 = 1 occurs
if ω < δφ for

σ > σc =
(µφ+ ω)(δ + µ)(ω + µ+ τ)
µ(µ(1− φ) + τ)(δφ− ω)

(> 1). (6.13)
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Remark 6.5.1. Note that for the backward bifurcation to occur it is also required that the
reactivation rate be lower than the rate of progression from primary infection directly to active
TB (ω < δφ), which is reasonable from the epidemiological point of view.

Proof. System (6.1) with α1 = α2 = 1 can be reduced to a system of 5 differential equations
S′ = µ− (λ+ µ)S
P ′ = λS + σλ(L+R)− (δ + µ)P
I ′ = φδP + ωL+ ωR− (τ + µ)I
L′ = (1− φ)δL− (σλ+ ω + µ)L
R′ = τI − (σλ+ ω + µ)R

(6.14)

where λ = βI is the force of infection. Since we assumed that the reactivation from recovered
and latent classes is the same ω it can be furthered simplified into only 4 equations by
collapsing these classes into one RL = (R+ L)

S′ = µ− (λ+ µ)S
P ′ = λS + σλRL− (δ + µ)P
I ′ = φδP + ωRL− (τ + µ)I
RL′ = τI + (1− φ)δP − (σλ+ ω + µ)RL

(6.15)

Now by solving each equation, at equilibrium, in order to I and substituting in the third
equation we get a polynomial of second order P (β, I) = a2(I)β2 + a1(I)β + a0(I), for which
the equilibrium solutions satisfy P (β, I∗) = 0, where I∗ is the equilibrium proportion of
infectious and

a2 = σI[(δφ+ µ+ τ)I − φδ]
a1 = I[(µ+ δ)(ω + τ + µ) + σµ(τ + δφ+ µ)− δ(µφ+ ω)]
a0 = µ(µ+ δ)(µ+ τ + ω).

Treating β as a function of I∗, differentiating this equation and setting (β, I∗) = (β∗, 0),
where β∗ is such that R0 = 1, we obtain

dβ
dI∗
|(β∗,0) =

µ(δ + µ)(µ+ τ + µ)
(µφ+ ω)3δ2

[µ(µ(1− φ) + τ)(ω − δφ)σ + (µφ+ ω)(δ + µ)(ω + µ+ τ)].

Hence, a backward bifurcation occurs if ω < δφ for σ > σc =
(µφ+ ω)(δ + µ)(ω + µ+ τ)
µ(µ(1− φ) + τ)(δφ− ω)

.

In particular, we can show that if the bifurcation at R0 = 1 is backward then σ > 1.
Considering the case where ω < δφ, the critical value for σ increases with ω ∈ [0, δφ[ since

∂σc
∂ω

=
−ω2 + 2φδω + µ2φ+ µδφ2 + τµφ+ δφµ+ τδφ

µ(δφ− ω)2(µ(1− φ) + τ)
> 0

for which the numerator is a polynomial of second degree p(ω) with negative second derivative
that verifies p(0) > 0 and p(δφ) > 0. Hence, the minimum values for σc is attained for ω = 0,

min{σc}ω∈[0,δφ[ = 1 +
µ(µ+ τ + δφ)
µδ(1− φ) + δτ

which is still above one.



Chapter 7

Conclusions and prospects

This thesis has been developed in two lines of work: heterogeneity and partial immunity. Tu-
berculosis has served as biological problem that driven the progress of the work. We present
here how theses results provide several possibilities for further research and applications.

In Chapter 2, a simple framework is developed to extend the concept and computation
of the Reinfection Threshold (RT) for infectious diseases with partial immunity, described by
deterministic models. We interpret the RT as the transmission level above which is possible
to sustain transmission in a partially protected population. For its computation we define
the reinfection sub-model from the original one by separating reinfection from other immune
processes. The RT marks important changes in the system dynamical behavior and in different
occasions we saw that reinfection imposes limitations to interventions impact marked by the
RT, such as for vaccination.

When more than one susceptibility level exists in the population, reinfection is no longer
characterized solely by one threshold in transmission. Instead, multiple RT exist, associated
to the contribution of each susceptibility class to the overall dynamics. Their impact to
the model behavior can go unnoticed unless perturbed. Interventions that can alter the
susceptibility profile of the population have the potential to reveal these RTs, by creating
regions of bistability (section 5.5.2). The knowledge of their position can help to design
better intervention programs, able to overcome classical interventions limitations as uniform
vaccination programs.

This framework offers a systematic way to identify these regions of interest on the trans-
missibility axis. Furthermore, it is widely applicable to other infectious disease for which
immunity is not fully protective.

Chapter 3 we address the problem of drug resistance in tuberculosis. This can be seen
as an example of heterogeneity in the pathogen population. Reinfection in conjunction with
heterogeneity proves to be an important factor in the determination of the tuberculosis epi-
demiological landscape. It imposes a new threshold for tuberculosis transmission, above which
resistant strains dissemination is facilitated, superinfection threshold. Consequently, drug re-
sistance control would benefit from a change in the interventions focus, from reducing drug
acquisition to blocking transmission of specially fitted resistant strains, depending on the
epidemiological setting.

Reinfection also opens the possibility of infections with more then one strain, with different
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drug-susceptibility and from distinct lineages. The question about how these mixed infections
can contribute to transmission motivated a change in model scale, from host-population mod-
els to within-host models. The goal is to try to reveal some of the mechanisms underling strain
competition in mixed infections within the host and use those results together with the epi-
demiological model as a way to infer how the competition at individual level affects the spread
of drug resistant strains at the population level. Chapter 4 constitutes a first effort to make
the link between within and between host strain competition.

We were able to reproduce the patterns of drug-susceptibility described in the literature
at the individuals level and link these different disease manifestations with the relative fitness
of competing strains. Based on the duration of infection and on the strain frequency we repa-
rameterized the epidemiological model. This way we could draw a theoretical epidemiological
landscape depending of the relative within-host fitness of strains.

In this process, we were confronted with the lack of studies on the reinfection process, at
the within-host level. So far, most of the experimental or modeling work concentrates itself in
the immune response to primary infection or drug resistance acquisition. Thus, we confined
our model to a stage where both strains are already present and active, ignoring the initial
process (reinfection and latency). A more challenging task, would be to model the reinfection
process and subsequent progression from latency to active disease. It is known that, during
latency, most bacteria load remains isolated in complex cellular structures, the granulomas,
formed by the immune response. However, little is known about the mechanisms that affect
the immune response upon a new infection (reinfection). How these structures are affected
by the new strain and if this enhances or impairs the immune response and the progression
to active disease. Experimental knowledge is accumulating and new techniques allow a bet-
ter understanding of the immune processes involved. Mathematical within-host models are
suitable to test alternative hypothesis on the immune response to the challenge with a sec-
ond strain, confronting the model results with the available data. Models that describe the
immune response using dynamical systems, in the line of Gammack et al. (2005) provide an
adequate framework that can be extended to this problem. With these more detailed models
we hope to address not only the question of mixed infections but also to clarify the meaning
of partial immunity on TB transmission.

Most of simple, theoretical models considers ’typical’ individuals and ’average’ behaviors
assuming that the underlying heterogeneity does not affect significantly the model outcome.
However, in some cases heterogeneity itself can be one of the problem determinants. In
Chapter 5, we introduce heterogeneity in the host population by considering distinct groups
with different susceptibility to infection. Infection tends to affect individuals at higher risk
and as a consequence the high-risk individuals accumulate in the recovered class, implying
a higher rate of reinfection among this group. One of the heterogeneity signatures we find
is, in fact, an increased reinfection rate, in low to moderate transmission settings, for which
reinfection is expected to be low under the hypothesis of partial immunity. The idea is applied
for the particular case of tuberculosis in Chapter 6.

The simple framework proposed can capture the essence of heterogeneity while keeping
a simple structure suitable of analytical treatment. Heterogeneity in other disease related
processes can be investigated and its consequences to data interpretation drawn. Further
complexity could be added to the model when the general behavior is understood, especially
when dealing with concrete applications where data on heterogeneity is available.
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Recurrent episodes of tuberculosis can be due to endogenous reactivation or exogenous
reinfection, and the discrimination of these two processes is crucial to control planning. A
number of studies, based on molecular typing of Mtb, have alerted for the relative contribution
of reinfection (Wang et al., 2007). It has been stipulated that, for some endemic regions, rates
of reinfection tuberculosis after successful treatment are higher than rates of new tuberculosis
(Verver et al., 2005). And, more recently, it has been suggested that these observations are
compatible with the hypothesis that individuals who had tuberculosis before become more
susceptible to reinfection (Uys at al., 2009). We apply the results from Chapter 5 and propose
the selection hypothesis for tuberculosis. To reconcile high reinfection rates with the more
consensual view that infection confers some degree of protection that reduces the individual
susceptibility to reinfection, we postulate that some individuals are a priory more likely to
develop the disease because they are more exposed or have some form of innate susceptibility.
As infection tends to affect individuals at higher risk, the distribution of recovered individuals
is skewed towards higher susceptibility inflating the rates of reinfection. Using a mathematical
model, the two alternative hypotheses, which lead to contrasting conclusions regarding adap-
tive immunity in tuberculosis, are confronted with data from six regions representing distinct
transmission intensities distributed worldwide. We show that only the selection hypothesis is
compatible with previous estimates for the basic reproduction number and propose a criterion
for further validation.

One of the most challenging proposals that come out of this work is the selection hy-
pothesis. We hope to continue the work by further characterize the source of heterogeneity.
HIV seems to be one of the possible candidates to differentiate the population into different
infection susceptibility groups. It is known that coinfection with HIV is associated with in-
creased risk for recurrent TB (Panjabi et al., 2007). When clarified, which factor or factors
discriminate the risk groups we can consider heterogeneity parameters for the different regions
instead of assume them globally and independent of the epidemiological setting. What will
probably contribute to a better agreement with data. Parallel to that, more data on the rates
of reinfection and new infection must be gathered for different transmission intensities and
confronted with the trend predicted by the model under the selection hypothesis.
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