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Abstract

This dissertation studies the bounded functional interpretation of Ferreira and Oliva. The
work follows two different directions. We start by focusing on the generalization of the
bounded functional interpretation to second-order arithmetic (a.k.a. analysis). This is
accomplished via bar recursion, a well-founded form of recursion. We carry out explicitly
the bounded functional interpretation of the (non-intuitionistic) law of the double negation
shift with bar recursive functionals of finite type. As a consequence, we show that full
numerical comprehension has bounded functional interpretation in the classical case.

In the other direction, we extend the bounded functional interpretation with new base
types, representing an abstract class of normed spaces. Some studies on the representa-
tion of the real numbers are carried out, as it is useful to have a representation which
meshes well with the notion of majorizability. A majorizability theorem holds. We carry
out the extension of the bounded functional interpretation to new base types and prove
a soundness theorem with characteristic principles similar to the numerical case. We also
extend the classical direct bounded functional interpretation of Peano arithmetic to new
base types and prove the corresponding soundness theorem. The characteristic principles
are also similar to the ones in the numerical case. In the classical setting, these prove that
linear operators are automatically bounded and that Cauchy sequences (with a modulus
of Cauchyness) of elements of the new base type do converge. Relying on the characte-
ristic principles (and on a special form of choice), a logical version of the Baire category
theorem of functional analysis is proved. As a consequence, we also prove logical versions
of the Banach-Steinhaus and the open mapping theorems.

Keywords: bounded functional interpretation, majorizability, charateristic princi-
ples, bar recursion, collection.






Resumo

O objecto de estudo desta dissertacao ¢ a interpretacao funcional limitada de Ferreira
e Oliva. Este trabalho segue duas direccoes distintas. Comecamos por nos centrar na
generalizacao da interpretacao funcional limitada para a aritmética de segunda ordem
(andlise). Esta generalizacao obtém-se recorrendo a bar recursion, uma forma bem fun-
dada de recursao. Efectuamos explicitamente a interpretacao funcional limitada da lei
(nao intuicionista) de double negation shift, usando para tal funcionais de bar recursion.
Consequentemente, mostramos que é possivel interpretar, no caso cldssico, compreensao
numérica para férmulas arbitrarias.

Por outro lado, estendemos a interpretagao funcional limitada com novos tipos base,
representando, nomeadamente, espagos normados. Para tal, foram elaborados alguns es-
tudos sobre representacoes dos niimeros reais, uma vez que é conveniente ter uma repre-
sentacao que se relacione bem com a nocao de majoracao. Prova-se que a teoria estendida
¢ uma teoria de majoracao. Estendemos a interpretacao funcional limitada para novos
tipos base e provamos o respectivo teorema de correcgao. Os principios caracteristicos da
interpretacao estendida sao semelhantes aos do caso numérico. Generalizamos também
a interpretacao funcional limitada directa da aritmética de Peano para novos tipos base
e provamos o teorema de correccao. Os principios caracteristicos sao também semelhan-
tes aos do caso numérico. Com base nestes, toda a sequéncia de Cauchy (com mdédulo
de convergéncia) de elementos do novo tipo base converge e todo o operador linear é au-
tomaticamente limitado. Como consequéncia dos principios caracteristicos, aliados a uma
forma especial de escollha, prova-se uma versao légica do teorema da categoria de Baire
da andlise funcional. Seguidamente, provamos versoes logicas dos teoremas de Banach-
-Steinhaus e da aplicacao aberta.

Palavras-chave: interpretacao functional limitada, majoracao, principios caracteris-
ticos, bar recursion, colecgao.
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Resumo Alargado

O objecto de estudo desta dissertacao é a interpretacao funcional limitada de Fernando
Ferreira e Paulo Oliva. A nocao de majoracao desempenha um papel fundamental nesta
nova interpretacao. Ao utiliza-la como ferramenta para extraccao de informacao computa-
cional de demonstragoes em matematica, pretende-se obter majorantes para testemunhas
existenciais, ao invés de testemunhas exactas. O estudo segue duas direccoes diferentes.
Por um lado, pretende-se generalizar a interpretagao funcional limitada com funcionais
de bar-recursion e por outro, com um novo tipo base, representando espagos normados.

Com estes objectivos em mente, comegamos por descrever as aritméticas de Heyting,
HA® e de Peano, PA“, em todos os tipos finitos. Descrevemos também dois dos modelos
destas aritméticas: a estrutura de todos os funcionais de teoria de conjuntos, §“, e a
estrutura de todos os funcionais majorados, M“. A relacao de majoracao de M* deve-se
a Bezem:

r<py:=z<0y
r <3 . y=Vul o’ (u < v —ru <pyv Ayu < yv)

onde p e o sao tipos finitos e <( é a desigualdade entre naturais (os objectos de tipo 0 cor-
respondem aos nimeros naturais). De seguida, fazemos uma abordagem a interpretagao
funcional de Godel (também conhecida por interpretagao Dialectica). Descrevemos a
transformacao de férmulas que a define, assim como os seus principios caracteristicos
(entende-se por principios caracteristicos, os principios que se podem juntar a aritmética,
garantindo a existéncia de um teorema de correcgdo). Apresentamos os correspondentes
teoremas de correccao e caracterizacao, assim como teoremas de extraccao e de con-
servagao.

A interpretacao funcional limitada assenta numa transformacao de formulas diferente
da interpretacao Dialectica, recorrendo a uma versao intensional da relagao de majoracao
de Bezem, denotada por <:

rdoy—=r<py
r <, .,y — V' v (u<,u— 2u <, yv Ayu <, yo)
Apg ANu <, v — su <, to Atu <, to

Apg — 5 Lpp t .

onde p e o sdo tipos finitos e Ap; uma férmula limitada da linguagem (férmula cujas
quantificagoes sao todas limitadas, i.e., da forma Vax <t e dxr < t, sendo ¢ um termo nao
contendo z). No caso da regra, u e v sdo variaveis que ndo aparecem na conclusao. Estas
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relacoes dizem-se intensionais por serem governadas, em parte, por uma regra. Estende-
mos a aritmética de Heyting com os novos simbolos relacionais e quantificadores limitados,
HAY. Apresentamos igualmente a transformagao de férmulas da interpretagao funcional
limitada e os seus principios caracteristicos, assim como os teoremas de correccio e ca-
racterizacao. Ao contrario da interpretagao funcional de Godel, a interpretacao funcional
limitada obtém majorantes para testemunhas (independentes de certos parametros) que
podem contradizer verdades de teoria de conjuntos. Por exemplo, refuta o axioma de
extensionalidade. A interpretacao functional limitada interpreta, ainda, principios que
nao tém analogo na interpretacao Dialéctica, como por exemplo, o lema fraco de Konig.
Discutimos ainda uma nova forma de escolha, que denotamos por tameAC

tameAC : Vf3g < ¥z 3y < fr Az, y) — Az, gz)),

(sendo Apg uma férmula limitada da linguagem de HAY) a qual se pode juntar a teoria por
ser auto-interpretdvel. Este principio é de grande importancia no trabalho desenvolvido.

As duas interpretagoes funcionais referidas acima interpretam a aritmética de Heyting
em todos os tipos finitos. Como exemplo, interpretamos explicitamente o principio (in-
tuicionista) =—A A == B — ——(A A B) através destas interpretagoes funcionais. A ari-
tmética de Peano interpreta-se em dois passos. Primeiro, é interpretada na aritmética de
Heyting, através de uma tradugao negativa, seguidamente, interpreta-se a aritmética de
Heyting através de uma das interpretagoes funcionais. Recentemente, Ferreira introduziu
uma interpretacgao funcional limitada directa da aritmética de Peano. Apresentamos a sua
transformacao de férmulas, principios caracteristicos, assim como os respectivos teoremas
de correcgao e caracterizacao. Demonstramos também que, no caso classico, os principios
caracteristicos desta interpretacao directa sao equivalentes aos da interpretacao funcional
limitada da aritmética de Heyting, quando restritos a férmulas limitadas.

Denomina-se por flattening a passagem das teorias intensionais HAY e PAY para HA®
e PA“, obtida através da substituicdo de todas as ocorréncias dos simbolos intensionais <
pelos extensionais da majorizagao de Bezem, <*.

Bar recursion é uma forma bem fundada de recursao que foi estendida a todos os tipos
finitos por Clifford Spector. O seu uso permite estender a interpretacao funcional limitada
a aritmética de segunda ordem (andlise). Para tal, seguimos o trabalho de Spector e
interpretamos explicitamente (usando a interpretacao funcional limitada) o principio nao
intuicionista de double negation shift

DNS : Vn =—A(n) — —=Vn A(n)

(n é natural e A uma férmula arbitraria da linguagem de HAY), baseando-nos na intuigao
obtida pela interpretacdo funcional limitada do principio ~~AA——B — —~—(AAB) (note-
-se que DNS é uma generaliza¢ao deste principio). De modo a interpretar a tradugao
negativa da compreensao numeérica para todas as formulas

CA": dfvn (f(n) =0 < A(n))

(n é natural, f é uma fungao de N para N e A é uma férmula arbitraria da linguagem),
seguimos os passos de Spector aquando da interpretagao Dialectica da tradugao negativa
de CAY. Nesta andlise, a interpretacao do DNS desempenha um papel fundamental. O
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mesmo se passa no nosso estudo: com base na interpretacao funcional limitada do DNS
(e também no principio tameAC referido acima), interpretamos a traducao negativa da
compreensao numeérica.

Analogamente aos recursores usuais, também a bar recursion tem um principio de
indugao associado, chamado bar induction. No final do capitulo dedicado a extensao com
funcionais de bar recursion, provamos que a bar induction tem interpretacao funcional
limitada.

Todos estes resultados sao verificados na teoria HA* + BR 4+ A, onde BR é o es-
quema de axiomas que regulam os funcionais de bar recursion e Ay é o conjunto de
todas as sentengas universais (com matrizes intensionalmente limitadas) cujo flattening é
verdadeiro na estrutura M®“. Enquanto alguns resultados dependem de uma forma nao
essencial de factos de A e poderiam ter sido demonstrados em HA%, outros parecem
depender de uma maneira crucial de alguns factos de A (por exemplo, para mostrar
que os funcionais de bar recursion sao majorizaveis no sentido intensional). Deste modo, o
tratamento feito nao é 6ptimo. No entanto, optamos por este pois facilita a compreensao
da demonstracao dos resultados e por, deste modo, nao desviar a atencao dos resultados
em si. Deixamos o tratamento 6ptimo para trabalho futuro. Acreditamos ser possivel ver
o principio DNS como um caso particular de bar induction.

No que diz respeito a extensao com novos tipos base para classes abstractas de espacos,
tomamos X como um novo tipo base para espagos normados. Cada objecto de tipo X é
interpretado como um vector do espago normado. A linguagem de HAZ é estendida com
varidveis e constantes de tipo X, nomeadamente com uma constante |.|| para a norma.
As desigualdades intensionais sao estendidas para o novo tipo

rdoy—r <oy
r Ixy — [lz] <z (¥)r
r <, ., y— Vv (v, u— 2u <, yv Ayu <, yo)
Apa A 8]l <r (v
Apg — s Ix t
Ayg Nu <, v — su <y to Atu 4, to
Abd_>8 Slpﬂat ‘

Os majorantes destas desigualdades sao de tipo aritmético, i.e., tipos finitos que nao
envolvam o novo tipo X. Em particular, objectos de tipo X sao majorados por objectos
de tipo 0 (naturais). (y)gr é o natural y representado como real e <g é a desigualdade
entre reais. Naturalmente, temos de trabalhar com uma representacao adequada dos reais.
Por questoes técnicas, é conveniente usar uma representacao que se relacione bem com a
nocao de majoragao. Em particular, esta deve satisfazer a seguinte condicao: queremos
que exista g : N — N tal que se f : N — N representa um real no intervalo [—n, n|, entdo
fi < gn para todo o natural i. Por esta razao, usamos a representacao binaria com sinal,
ao invés da representagao mais usual através de sucessoes de Cauchy de racionais.
Denotamos a extensao da aritmética de Heyting (com os simbolos intensionais) com
novo tipo X por HA‘;,’X (semelhante para a aritmética de Peano). Esta é uma de ma-
joracdo. Estendemos a interpretacao funcional limitada para novos tipos base e provamos
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o respectivo teorema de correcgao. Os principios caracteristicos desta interpretacao es-
tendida sao semelhantes aos do caso numérico. Generalizamos também a interpretacao
funcional limitada directa da aritmética de Peano com novos tipos base e provamos o
teorema de correccao. Os principios caracteristicos sao também semelhantes aos do caso
numeérico.

Com base nos principios caracteristicos, provamos que toda a sucessao de Cauchy (com
modulo de convergéncia) de elementos de tipo X converge e que todo o operador linear é
automaticamente limitado. Os principios caracteristicos, juntamente com o principio de
escolha tameAC, levam a que se prove uma versao légica do teorema da categoria de Baire
da analise funcional. Este pode ser visto como uma forma local de

bCX Vo S ady Ap(z,y) — Ve < aTy L b Az, y)

(Apg é uma férmula limitada da linguagem) generalizada para férmulas universais e exten-
sionais. bC;"C’lX diz-se principio de coleccao limitada e é um dos principios caracteristicos
da interpretacao funcional limitada classica. Os teoremas de Banach-Steinhaus e da
aplicagao aberta demonstram-se a partir do teorema da categoria de Baire. No nosso
estudo, baseando-nos neste princpio de “coleccao local”, que é a versao logica do teorema
de Baire, provamos versoes logicas dos teoremas de Banach-Steinhaus e da aplicacao
aberta, que podem ser vistos como formas de colecgao (global) para certas formulas si-
multaneamente universais e extensionais.
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1

Introduction

In the mid 90’s, Ulrich Kohlenbach developed a successful program for extracting com-
putational information from ordinary proofs in mathematics (even proofs using non-
constructive properties like the weak Konig’s lemma), known as Proof Mining. The main
tool for performing these extractions is Kurt Godel’s functional interpretation [God58],
also known as Dialectica interpretation. The notion of majorizability plays a promi-
nent role as well. For an introduction to Proof Mining, see [KOO03|, [Koh07], [Koh08b]
or Kohlenbach’s recent book [KohO8al. In fact, Kohlenbach uses an interpretation, in-
troduced in [Koh96], obtained from Godel’s interpretation, the monotone functional in-
terpretation. Using this interpretation, he has been defending a shift of attention from
precise witnesses to the extraction of bounds from proofs of V3 sentences. It is this shift
of attention that allows the analysis of certain non-constructive principles. It also enables
the extraction of numerical bounds from proofs in classical analysis. For instance, in the
monotone interpretation, further axioms may be added in the soundness theorem (for
instance, weak Konig’s lemma), in opposition to the Dialectica interpretation, where only
universal sentences may be added.

In 2005, Fernando Ferreira and Paulo Oliva presented in [FOO05] a new interpretation,
the so-called bounded functional interpretation. As opposed to Kohlenbach’s monotone
interpretation, it is based on a new assignment of formulas. In the bounded functional
interpretation, the notion of majorizability also plays a crucial role. The interpretation is
carried out in a new setting, an intensional setting. Heyting arithmetic in all finite types
is extended with new (intensional) relations <, the intensional counterpart (in the sense
that the relations are partly governed by a rule) of the strong majorizability relations,
<*, defined by Marc Bezem in [Bez85] (after the work of William Howard [How73]). The
language also contains new quantifiers, known as bounded quantifiers. In the above men-
tioned paper, Bezem defines the structure M® of the strongly majorizable functionals,
which plays an important role in our studies. The bounded functional interpretation
has similarities to the monotone functional interpretation, in the sense that it does not
care for precise witnesses but only bounds for them. It can be used to prove similar
results, first obtained via the monotone interpretation. The bounded functional interpre-
tation is not set-theoretically faithful, since it “injects” uniformities (obtaining majorizing
witnesses independent from certain parameters) which contradict certain set-theoretical
truths. For instance, it refutes the axiom of extensionality. Furthermore, the bounded
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functional interpretation interprets new principles which have no analogue in the Dialec-
tica or monotone interpretations. For instance, one can interpret a very general form of
L. E. J. Brouwer’s FAN theorem as well as certain non-intuitionistic principles like weak
Konig’s lemma or the lesser limited principle of omniscience. In fact, it also interprets
classical inconsistent principles, relying on the so-called characteristic principles (princi-
ples that can be added to Heyting arithmetic and still have a soundness theorem). The
bounded functional interpretation has, as characteristic principles, versions of the axiom
of choice, the independence of premises principle and Markov’s principle (the three cha-
racteristic principles of Gddel’s Dialectica interpretation), plus majorizability axioms, a
version of contra collection and a disjunction property (which implies the lesser limited
principle of omniscience, mentioned above).

The aforementioned interpretations provide an interpretation of Heyting arithmetic.
In order to interpret Peano arithmetic, we first interpret it into Heyting arithmetic using
a negative translation. Afterwards, Heyting arithmetic is interpreted via one of the
functional interpretations. In 1967, Joseph Shoenfield defined a direct interpretation
of Peano arithmetic in his well-known textbook [Sho67]. In the style of Shoenfield, Fer-
reira presented recently a direct bounded interpretation of Peano arithmetic in all finite
types [Fer09]. Similarly to the bounded functional interpretation, this new interpreta-
tion also “injects” uniformities into classical mathematics (making it set-theoretically
unsound). This is a consequence of the characteristic principles.

This dissertation studies the bounded functional interpretation. The work follows two
different directions, suggested in [Fer06]:

e Extend bounded interpretations with bar recursive functionals;
e Extend bounded interpretations with new base types.

Following a belief of Ferreira stated in [Fer08], we carry out a study on the generaliza-
tion of the bounded functional interpretation to second-order arithmetic (a.k.a. analysis),
relying on bar recursive functionals. In 1962, Clifford Spector used a well-founded re-
cursion principle, known as bar recursion, to give a remarkable characterization of the
provably recursive functionals of full second-order arithmetic [Spe62]. Spector extended
the bar notions to all finite types. In order to achieve our goal, we follow his seminal
work. First, we focus in the double negation shift principle

DNS : Vn =—A(n) — —=Vn A(n)

(n is a natural number and A is an arbitrary formula) and prove that it has bounded
functional interpretation using bar recursive functionals in all finite types. The DNS
principle is a generalization of the intuitionistic law =—=A A ==B — =—=(A A B). In order
to accomplish the DNS interpretation, we rely on the intuition obtained while carrying out
the bounded functional interpretation of ==AA—==B — —=—=(AA B). We follow Spector’s
steps in analyzing full numerical comprehension via the Dialectica interpretation. In
Spector’s analysis, the interpretation of DNS plays an instrumental role. This will also be
the case in our study for the bounded functional interpretation: we get the interpretation
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of the negative translation of full numerical comprehension
CA": Afvn (f(n) =0« A(n)),

where n is a natural number, f is a function from N to N and A is an arbitrary formula,
relying upon the bounded functional interpretation of DNS (in our treatment, we also
need a special form of choice).

In analogy with the usual recursors and induction, bar recursion is a principle of
definition with a corresponding principle of proof, known as bar induction. We finalize
this topic with the bounded functional interpretation of bar induction. The argument of
the proof is an adaptation of the one given by Howard in [How68], relying also on bar
recursors.

All of these results are verified in the intensional Heyting arithmetic in all finite types
extended with bar recursive functionals plus a particular set of universal sentences, de-
noted by Apgw. This set contains all universal sentences with bounded intensional ma-
trices (matrices with bounded quantifications only) whose “flattenings” hold in M*“. By
flattening, we mean the passageway from the intensional to the extensional formulas,
obtained by replacing all occurrences of < by the strong majorizability relations <*. Of
course, in our treatment, we rely on A . However, we must point out that whereas some
use of A seem to be essential (e.g., for proving that the bar recursors are majorizable
in the intensional sense), other are inessential and could be proved in HA%. Therefore,
our treatment is not optimal. Nevertheless, we chose this treatment because it eases the
reading and avoids distractions from the results themselves.

Concerning the second goal, we extend both the bounded functional interpretation of
Heyting arithmetic as well as the direct bounded interpretation of Peano arithmetic to
new base types, namely a type for normed spaces (following Kohlenbach). Until recently,
Proof Mining dealt with theorems involving concrete spaces, such as Polish and compact
metric spaces, necessarily represented in an effective way. Under suitable representations,
functional interpretations may be applied to results in ordinary mathematical analysis.
Lately, this approach has been extended to classes of abstract spaces (such as normed,
metric and hyperbolic spaces) by Kohlenbach in [Koh05]. The introduction of new base
types has expanded the domain of applications and has given further insights into Proof
Mining. In particular, uniform bounds with respect to parameters in metrically bounded
spaces, not only in compact spaces, can sometimes be obtained.

For technical reasons, it is extremely useful to have an effective representation of
the reals which meshes well with the notion of majorizability. Therefore, we adopt the
signed-digit representation instead of the more usual representation via Cauchy sequences
of rational numbers.

As a consequence of extending the bounded functional interpretations to new base
types, some new results can be achieved. For instance, relying on the characteristic prin-
ciples, we show that Cauchy sequences (of objects of the new type) with modulus of
Cauchyness do converge and that linear operators are automatically bounded. Further-
more, we focus on the principle of bounded collection (one of the classical characteristic
principles). In general, collection for universal matrices does not have a bounded inter-
pretation (in fact, it is inconsistent). Nevertheless, we show that the Banach-Steinhaus
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(a.k.a uniform boundness) and the open mapping theorems of functional analysis can be
seen as instances of collection for universal matrices that do have bounded functional
interpretations. Both the Banach-Steinhaus and the open mapping theorems rely on the
Baire category theorem. A logical version of this theorem can, in fact, be proved using
the characteristic principles of the direct bounded functional interpretation plus a “tame”
form of choice, tameAC, (a self-interpretable version of choice). It can be seen as a kind of
local collection for universal extensional formulas. In the Banach-Steinhaus and the open
mapping theorems, this kind of local collection can be lifted up to global collection using
the linearity of the operators.

In the next chapter, we present the necessary background in order to understand the
following chapters. We begin by describing the formal systems of arithmetic used in this
work, namely, Heyting arithmetic, HA”, and Peano arithmetic, PA“, in all finite types.
We also present the type structures S“ of all set-theoretical functionals as well as M* of
all strongly majorizable functionals. In order to focus on the latter, Bezem’s strong ma-
jorizability <* and some of its properties are presented. We describe Godel’s functional
interpretation and the bounded functional interpretation of Ferreira and Oliva and their
main results, namely, the soundness and the characterization theorems. The characteris-
tic principles are described in the process. Some results of extraction and conservation
are presented as well. Before introducing the bounded functional interpretation, we focus
on the intensional theories HAY and PAY, obtained by adding new relation symbols <
(one for each type) as well as bounded quantifiers. The relations < are partly governed
by a rule, hence not all properties of <* are satisfied by the intensional relations. Some
new results on < are proved. While presenting the bounded functional interpretation, we
introduce a tame axiom of bounded choice, denoted by tameAC. Under the characteristic
principles, this principle is equivalent to an universal sentence (with bounded intensional
matrix) and is self-interpretable. This principle is extremely useful, since it gives precise
witnesses. It will play an important role in the following chapters. In chapter 2, we also
carry explicitly the Dialectica and the bounded functional interpretation of the princi-
ple =——A A =—B — ——(A A B). The bounded functional interpretation of this principle
gives some insight to the interpretation of the double negation shift. Finally, in both
interpretations, Peano arithmetic in all finite types is interpreted via the negative trans-
lation of Kuroda. We also present the direct functional interpretation of Ferreira and its
main results. We prove that its characteristic principles are classically equivalent to the
bounded versions of the characteristic principles of the intuitionistic bounded functional
interpretation.

In chapter 3, we present the bar recursive functionals and bar induction. We argue
that intensional Heyting arithmetic extended with bar recursors, HAY + BR, plus the
set A mentioned above is a majorizability theory. Therefore, it has a corresponding
soundness theorem. Following the work of Spector, we carry out explicitly the bounded
functional interpretation of the double negation shift principle in HA% 4+ BR + A4 and,
afterwards, interpret the negative translation of full numerical comprehension. Finally,
we focus on the bounded functional interpretation of bar induction using bar recursors in
HA% 4+ BR + A pw. This is not carried out directly. We prove, instead, that bar induction
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is provable in HAY + BR + Ay plus its characteristic principles.

In chapter 4, we generalize both the bounded functional interpretation as well as its
classical direct version to a new base type X, representing the abstract class of normed
spaces. In order to describe the extended framework, we study two possible represen-
tations of the reals, the usual one via Cauchy sequences of rational numbers and the
signed-digit one. We show that, in HA¥, there is an effective translation between these
two representations. We adopt the latter, since it meshes well with the notion of ma-
jorizability. In fact, it is useful to have a representation which satisfies the following
majorizability condition: there exists g : N — N such that if f : N — N represents a real
number in [—n,n], then f(i) < g(n) for all i € N. As opposed to the Cauchy sequence
representation, the signed-digit one satisfies this condition. Given this representation of
the reals, we continue by presenting the extended arithmetics HAZ’X and PAZ’X. The
bounded functional interpretation and the classical direct bounded functional interpre-
tation are extended to the new base type as well as their characteristic principles. The
soundness and the characterization theorems are proved. As a consequence of the cha-
racteristic principles, we prove that every Cauchy sequence (of objects of type X) with
modulus of Cauchyness converges in X. We show that PA‘;’{X + tameAC plus the charac-
teristic principles prove the Baire-like theorem, a logical version of the Baire category
theorem of functional analysis. This logical version is a “kind” of local collection for uni-
versal extensional formulas. The proofs of the logical versions of the Banach-Steinhaus
and the open mapping theorems rely on this “local collection”. In the process, we define
linear operators and prove that, under the characteristic principles, linear operators are
automatically bounded and extensional.
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2

Functional interpretations:
Dialectica and bounded functional
interpretations

In this chapter, we begin by describing the language of Heyting and Peano arithmetic in all
finite types. Afterwards, we present Godel’s Dialectica interpretation extended to finite-
-type Heyting arithmetic and the recent bounded functional interpretation of Ferreira and
Oliva. On the latter, we describe not only the usual bounded functional interpretation of
Peano arithmetic via a negative translation, but also a direct (Shoenfield-like) one.

2.1 Intuitionistic and classical arithmetic in all finite
types
Let T be the set of all finite types (with ground type 0). T is defined recursively by
i)0eT,
it) if p,o €T, then p—o€eT.
Objects of type 0 represent natural numbers and objects of type p — o represent (total)
functions mapping objects of type p to objects of type o. It is usual to denote type 0 — 0

by type 1 and type (0 — 0) — 0 by type 2. In general, type n+ 1 denote the type n — 0.
These are called pure types.

As usual, the language of Heyting arithmetic in all finite types, HA“ is denoted by £,
which is a many-sorted language with variables z”, y”, 2*, ... and quantifiers Va?, Jz* for all
types p € T. It also contains a predicate relation =y (equality between natural numbers)
and the following constants: zero 0°, successor S', combinators II, , of type p — (0 — p)
and 3, of type (p — (0 — 7)) = ((p = o) — (p — 7)), as well as simultaneous re-
cursors R, of type 0 — (p— ((p— (0= p)) — p))). The only primitive predicate is =q.

As usual, a tuple of terms ¢y, ¢y, - ,t; is denoted by t. More precisely, t2 is the ab-
breviation of a tuple (possibly empty) ¢{*, 5%, - | t/*.
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Constants and variables of type p are terms of type p. If t*77 and ¢” are terms, then
tq is a term of type o.

Ift, s1, 89, ..., s, are terms, we write ts; ss...S,, to denote the resulting term (((¢s1)s2)...)sn,
meaning we associate to the left.

Atomic formulas are formulas of the form s =y t with s and ¢ being terms of type 0.
Formulas are constructed recursively as follows:

i) atomic formulas are formulas;
i1) if A, B are formulas, then AAB, AVB, A— B, A— L are formulas;

i1i) if A is a formula, then for all p € T, Vz¥ A and Jz” A are also formulas.

As usual, = A abbreviates A — 1, where L is 0 =¢ 1 and A « B abbreviates
(A— B)A (B — A).

Equality between terms of higher types =,_., is defined by:

S =p_o t is V2 (s =, tx)

where s,t are terms of type p — ¢ and x” is a variable which does not occur in s, t.

HA® is based on intuitionistic logic. Beside the axioms of intuitionistic logic, the theory
also has the following axioms for equality, successor, combinators and recursors:

i) equality azioms:

n =o n;
E: n =g mA An/w] — Alm/w)

where A is an atomic formula of the language, w is a distinguished variable of A
and A[t/w] is obtained by replacing w by t;

ii) successor axioms:

S(n) #o 0;

S(n) =¢ S(m) — n =g m;

iii) axioms for combinators and recursors:

En : Alllzy /w] < Alz/w];
Es: A zyz/w] « Alzz(yz)/wl;
o { A o A |
= A[(Ri),(Sn)yz) /w] — Alzi(R,nyz)n)/w] forall i=1,. .k,

where A is an atomic formula of the language, n is a natural number, w is a distin-
guished variable, p = p1, p2, ..., ks Y = Y1, Y2, -, Yx and z = 21, 29, ..., 2z, With y; of
type p; and z; of type p — (0 — p;);
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iv) induction schema:
IA : A(0) AVR? (A(n) — A(S(n))) — Vn® A(n)

where A is a arbitrary formula of the language;

We only have reflexivity for equality, since it can be shown that it is symmetric and
transitive. One can also show that axiom E, as well as axioms for combinators and recur-
sors hold for every formula of the language.

In HA®, it can be defined the usual less or equal numerical relation <, as well as
the usual term maxg_)(()ﬁo), giving the maximum of two natural numbers (to ease the
readability, we may write max instead of maxg, whenever it is clear). The relation <y is

reflexive, transitive and satisfies:
i) n <gmax(n,m)Am <y max(n,m);
i) n' <gnAm' <ogm — max(n',m’) <o max(n,m).

In fact, at this point, we can define a pointwise less or equal relation <, for each p € T,
given by:

T <ppy =V’ (xu <5 yu).

In order to ease the reading, we may write < instead of <, (or even instead of <),
whenever it is clear.

One may also define a bounded minimization operator, denoted by u, where un <g

k.P(n) is the least natural less or equal to k such that the primitive recursive operator P
holds. For details, see [Koh08a] and [Fer06].

Using the combinators, one can prove the following:

Theorem 1 (Combinatorial completeness). Let t be a term of type o with a distin-
guished variable x of type p. Then, we can construct a term q of type p — o, whose free
variables are those of t except for x, such that

HA® = Alt[s/z]/w] — Algs/w],

where A is an atomic formula of the language L with a distinguished variable w of type
o and s 1s a term of type p.

This property also holds for every formula of the language. Term ¢ is usually denoted
by Az.t and, now, the theorem states that the term t¢[s/x] may be substituted by (A\x.t)s
in any formula.

Using the recursors, one may construct a closed term for each description of a primitive
recursive function, satisfying the respective defining conditions of the description. Hence,
HA® contains all primitive recursive functions. In fact, it is also possible to define functions
beyond the primitive recursive ones, using higher type recursors (e.g., the Ackermann
function). For details, see [Tro73].
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Proposition 1. For each quantifier-free formula A.¢(x), there exists a closed term t such
that

HAY = A p(z) < tz =0 0.
Observe that in HAY, n =q 0V n #¢ 0. Consequently,
Corollary 1. For each quantifier-free formula Ayr, we have
HA* = A, ;v —A,;.

The classical theory PA* extended to all finite types is obtained by adding to HA* the
law of excluded middle A V —A for arbitrary formulas A of the language £“.

To finish this section, we present two models of Peano arithmetic in all finite types,
PA®. Of course, they are also be models of HA”. These models are the full set-theoretical
model, §¥, and the model of majorizable functionals, M*“. We only focus in these two
models since they are the only ones we will need from here on. Nevertheless, for more
models, see [Koh08a] or [Fer06].

The type structure §“ of all set-theoretical functionals is defined inductively as

So:=N;
Sp—m’ = (SU)Sp;
Sw = <Sp>peT.

Note that S,_., is the set of all functions from S, to S,. It is clear that §“ is a model of
PA“. Tt is called the standard structure of finite type arithmetic.

The model of all strongly majorizable functionals, M¥, was constructed by Bezem
in [Bez85], using Bezem’s strong majorizability relation, a variation of Howard’s relation
maj. 1t is usually denoted by s-maj, but we will denote it by <*.

Bezem’s strong majorizability relation is given by

i) r<gy:=z<oYy;
i) v <),y = Vul vf (u <5 v — au <5 yo Ayu <5 yo).
Lemma 1. HA® proves that
i) <5y —y<iy
ii) < yNy<yz—ax <5z
for each type p € T.

The type structure M of all strongly majorizable set-theoretical functionals is defined
inductively by

M() = N,
M, ., :={xe MM 32" € MM z <o T
M® = <Mp>peT-

For every z, function from N to M,, with p = p1 — (p2 — (p3 — ...(px — 0))), we
can define the following (using only the recursor Ry):
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Definition 1. Let x € M} with p = py — (p2 — (ps — ...(pr — 0))). Then, we define

M (n) = \v. maxo{m'g 1< n},

where v = v, . 0Pk,

Lemma 2. Let x,2" € M (p=p1 — (pa — (p3 — ...(px — 0)))) be such that
Vn e N (:Jm < x’n).

Then

r <o, ()M A 2M <0—p (z")M.
Moreover, x,z™ and (x')M are in M,_,.

Proposition 2. For each type p € T, M)} = Mq_.,,.

Although not all functionals are in M*“, we have the following result due to Howard
[HowT73]:

Theorem 2. For each closed term t of type p, there exists a closed term q of the same
type such that

HA® =t <) q.
Theorem 3. M“ is a model of PA”.

For details on the relation <* and on the model M, see [Koh08a].

2.2 Godel’s Dialectica interpretation

2.2.1 Godel’s Dialectica interpretation

In 1958, Godel presented an interpretation of the first-order Heyting arithmetic into a
quantifier-free theory with finite-type functionals [G6d58]. This article was published in
the journal Dialectica, which gave name to the interpretation, Gadel’s Dialectica inter-
pretation, also known as Gddel’s functional interpretation. In this section, we present
Godel’s interpretation extended to HA®. For further deltails, see also [AF98].

The interpretation assigns to each formula A(z) of the language £ a formula AP of
the form JaVb Ap(z,a,b), where Ap is a quantifier-free formula. As before, x,a,b are
tuples of variables.

Definition 2. To each formula A of the language L%, we assign formulas AP and Ap,
such that AP is of the form 3a¥b Ap(a,b) with Ap a quantifier-free formula and a, b tuples
(possibly empty) of variables whose type depends on the structure of A. The free variables
of AP are those of A. Ap is given by

1. AP and Ap are A if A is atomic.
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If the interpretations of A and B are given by 3a¥b Ap(a,b) and IcVd Bg(c, d), respec-
tively, then

2. (AN B)P is3a,cvb,d (Ap(a,b) A Bp(c,d));
AV B) is EITLO,Q, QVI_)’C_Z ((TL =0 0— AD(Qa b) A (TL 7é0 0— BD(Qa C_l)));

(
3. (
5. (Yo A(x))P is 3fVx,b Ap(z, fx,b);

(

6. (3z A(x))P is Jz,aVb Ap(z,a,b).

For a motivation, see [Koh08a].

As a consequence, the interpretation of —A is given by 3fVa =Ap(a, fa), when the
interpretation of A is given by 3aVb Ap(a,b).

In the following, we present the soundness theorem of this interpretation. There are
three fundamental principles which can be joined to the theory:

1. Axziom of choice AC¥
ACP? . VxP3y® A(z,y) — Ifr~Var Az, fx),

where A is an arbitrary formula of the language;

2. Independence of premises principle for universal antecedents 1PY
IP{: (Yz Ags(z) — 3y B(y)) — 3y” (Yo Ay(z) — B(y)),

where A, is a quantifier-free formula and B is an arbitrary formula of the language;

3. Markov’s principle M¥
MP: =VaP Agp(z) — 3aP ~Ay (),

where A, is a quantifier-free formula of the language.

Theorem 4 (Soundness). Let A(x) be a formula of the language LY with functional
interpretation given by Ja¥b Ap(x,a,b), such that

HA® + ACY + 1Py + M* + A+ A(z),

where A is a set of purely universal sentences. Then, there exist closed terms t of appro-
priate types such that

HA® + A b Vb Ap(x, L, b).

28



In the following, we state that every formula is equivalent to its interpretation if the
principles above are added to HA®:

Theorem 5 (Characterization). For each formula A of LY, we have
HAY + ACY +IPY + M¥ - A — AP,

In [Fer09], Ferreira observes that the characterization theorem carries out more infor-
mation than the one stated in it. In fact, it ensures that there are no missing principles
besides AC“, IPY and M*: assume, for instance, that there is another characteristic prin-
ciple, P (different from AC¥, IPY, M¥). Clearly, HA® + AC¥ + IPy + M“ 4+ P F P. By the
soundness theorem, we get HA” F PP, But now, HA“ + AC” + IP{ + M* proves P « PP,
Hence, HA* + AC* + IPy + M¥ |- P, meaning that the principle P is superfluous.

Theorem 6 (Main theorem on program extraction by Dialectica interpreta-
tion). Let Agp(x,y) be a quantifier-free formula whose free variables are among z,y and
B(z, z) an arbitrary formula whose only free variables are x, z. If

HA® 4+ AC* + IPY + M¥ + A+ Vz (Vy Ag(z,y) — 3z Blz, 2))

where A is a set of purely universal sentences, then we can extract closed terms t of
appropriate types such that

HA® + AC* + 1Py + MY + A F Vz (Vg Ag(z,y) — B(g,t_x)).
Moreover, if S* E A, then the conclusion holds in S¥.
In particular, we have the following:

Theorem 7 (Program extraction). Let A,s(x,y) be a quantifier-free formula of L
whose free variables are among x,y. If

where A is a set of purely universal sentences of the language. Then, there can be extracted
closed terms t of appropriate types such that

HAY + A - Vz Ayp(z, tx).
Moreover, if S¥ E A, then the conclusion holds in S%.

Theorem 8 (Conservation). Let Ayr(z,y) be a quantifier-free formula of HA* whose
free variables are among x and y. If

HA® + ACY + IPy + M* = Va3y Ag(z,y),
then

HAY = Va3y Ag(z,y).
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2.2.2 The Dialectica interpretation of ~—A A —-—-B — —-—(AA B)

In this section, we focus on an example. We carry out explicitly the functional inter-
pretation of =——A A == B — ——=(A A B), which is a theorem in HA”| then it must have
a functional interpretation (for a good understanding of this example, see [Oli06]). A
straightforward calculation shows that, in order to carry out this interpretation, we must
produce terms Ay, Ay, I'y, 'y such that

Y1, 02,91, 92 (7= Ap(@1A1, Ai(p1A1) A == Bp(paha, As(p2s)) —
— == (Ap (L1, i[112) A Bp(Ta, goI'as))).

It suffices to solve

{ il =1
Ai(‘;OiAi) =gl

for i € {1,2} and I being the tuple I';,I’s. This seems to carry a circularity problem,
since we need A; to get I'; and we also need I'; to get A;. Nevertheless, this can be solved
by supposing we have I'y. Then, Ay = \y.goI'1y and I's = paAs. Now, we can construct
A1 = Ax.gix(p2(Ay.goxy)) and Ty = p1A;. Define

Ay = Az.g12(02(Ny.g21y)).

Take I';, Ay and 'y as defined above. These terms interpret = —=A A =—=B — —=—(A — B).

2.2.3 Negative translation and Dialectica interpretation

There are several negative translations of the classical into the intuitionistic logic. These
translations assign to each formula A a formula A’. The first negative translation was due
to Godel [G6d33] and Gentzen in 1933 and was refined later by S. Kuroda and others. In
this work, we adopt Kuroda negative translation ( [Kur51]):

Definition 3. Let A be a formula of the language LY. The negative translation of A,
denoted by A, is —— A" with At defined recursively by

1. Al s A if A is an atomic formula;

2. (AOB)" is ATOBY, where 0 € {A,V,—};
3. (Var A(:L’))T is VP —|—|(A(:c))T;

4. (Fzr A(JU))Jr is P (A(x))T

The negative translation A’ of A is intuitionistically equivalent to a negative formula
(negative formulas are the ones build up from negated atomic formulas solely by means
of A, — and V).

Proposition 3. Let A be a formula of PAY. If PA¥ = A, then HAY - A’.

In the following, we denote the axiom of choice for quantifier-free matrices by AC.
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Theorem 9. Let A be a formula of PAY and let A be a set of purely universal sentences.

If
PA” + AC,, + AF A
then
HAY + AC, + M + A= A'.
In the previous theorem, if we have AC* instead of ACy;, the result is not true .

Theorem 10 (Extraction and conservation). Let A,¢(z,y) be a quantifier free formula
in PA¥ whose free variables are among x and y and A be a set of universal sentences.
Suppose that

PA* + AC;; + A+ Vady Ays(z, g)
then, there is closed terms t of appropriate types such that
PAY + A FVz Ayr(z, tz).

In particular, if S¥ E A, then the conclusion holds in 8.

2.3 Bounded functional interpretation

In this section, we describe the bounded functional interpretation within the theory HAZ.
We follow closely [FOO05], omitting all proofs.

2.3.1 The intensional theory HAZ

HAY is an extension of HA® with language £%. This language is the extension of L%,
obtained by joining a new primitive binary relation symbol <, for each type p, where
<, is the “intentional” counterpart of SZ. The terms of E% are the ones in £¥. The
new atomic formulas of the language are of the form s <, ¢ where s and t are terms of
type p. In the language, there are also new quantifiers, bounded quantifiers, of the form
Ve <t A(z) and 3z < t A(z) for terms ¢ not containing z. Formulas in which every
quantifier is bounded are called bounded formulas.

The theory HAY in the language L£% is the extension of HA“ which has the additional
axioms B3, By, M;, My and the rule RI:SI:

By : Ve 9t A(z) < Vo (x <t — A(x))
Bs: dr 9t A(z) < Jz (x It A A(x))

where ¢ is a term not containing x,

M; : rdoy =T <oy
M, : <oy —Yu v (zu <, yo Ayu <, yo)
Apg ANu <, v — sud, to Atu 4, to
RL<]Z
B Abd_>$§]p_>o—t
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where Ay is a bounded formula, s and ¢ are terms in the language and u and v are
variables that do not occur free in the conclusion.
Moreover, the induction axiom is extended to all formulas of £%.

In the following, we state some results:
Lemma 3. HAY proves
i) vdy—ydy;
i) x<yANy<Lz—axdz;
i) < y—x<iy.

Proposition 4. HAY proves that the axvioms E, En, Es and Egr generalize for every
Jormula of L%.

Proposition 5. HAY proves that I1 <11, ¥ < ¥ and R < R.

Definition 4. A theory T4 with language L« is called a majorizability theory if for every
constant ¢ of L there exists a closed term t? such that Tq ¢ <, 1.

Theorem 11. HAZ is a majorizability theory.

In majorizability theories, it can be defined the maximum function for higher types
by

max(u,v) = Azf. max(uz, vz).
g

p—o
Recall that maxg is the usual maximum between natural numbers.
Lemma 4. HAY proves

i) z<aANy<y—z dmax(z,y) Ay < max(x,y);

it)  max < max.

The notion of maximum of two objects can be generalized to the maximum of a set of
objects. To do so, define max?~((0=)=r) given recursively by:

i) max si = s0;
i<0

i1) max si = max ( nax si, s(n+1)).

Although these two maximum functions are different, we denote both of them by max
to ease the readability.

Lemma 5. HAY proves
i) Vi <n (si <ri) — max;<, si < max;<, ri;

i) Vi <n (si Iri) — Vi <n (si <maxg<;rk);
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iii) Vi <n (si Qri) — Vj <nVi <j (maxy<; sk < maxy<; k)

for all n® and s,r of type 0 — p.

Proof These results are easily obtained by induction on n, using the previous lemma. To
be precise, i) and #iz) are proved by induction on n, while i) only depends on i) and on
the previous lemma. ([l

The definition 2" for z € M) with p = p1 — (p2 = (ps — ...(px — 0))), can now be
generalized for functionals = of type 0 — p with p an arbitrary type of T:

Definition 5. Let x be of type 0 — p, p € T. Then, we define z*n = max;<,, xi.
Observe that from the previous lemma, one can easily prove:
i) if s is monotone, then s < s;
i) Vi<n (si<ri) —»Vi,j<n (i <j—si IrMjarti <rMy)
iii) Vi <n (si <Qri) — sMn < rMn
for arbitrary s and r of type 0 — p. Moreover, we can also prove
sﬂr—>s§l7’M/\sM§lrM.

Lemma 6. For every closed term t of L% there exists another closed term q of L% such
that HAZ Ft < gq.

Definition 6. An open term t in L with free variables w has a majorant t with the same
free variables if

HAZ F Aw.t < dw.t.

A term t is called monotone if it is self-majorizing. A functional f is said to be monotone

iff <.
From the lemma above, it follows that every open term has a majorant.

We use the following abbreviations for monotone quantifications:

Vo A(z)is Ve (z <z — Az));
Jz A(z)is 3z (z <z A Az)).
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2.3.2 Bounded functional interpretation

The bounded functional interpretation is defined as follows:

Definition 7. To each formula A of the language L% we associate formulas AP and Ap

of L%. Ap 1is a bounded formula and APB has the form Ve Ap(b,c) where b and ¢ are
tuples of variables (possibly empty) whose types depend on the structure of A.

1. (Ap)®? and (Apg)p are Apg for bounded formulas Apg.
If we already have AP and B® given by 3bVc Ag(b,c) and JdVe By (d, e) respectively, then
2. (ANB)P is 3b, dve, e (A (b,c) N Bg(d, e )

3. (AV B)P is 3b,dvc,e (V' < c Ap(b,d) Vv Ve <e Bg(d,¢),
fbe

4. (A= B)P is 3f,g¥b, e (Ve < gbe Ap(b,c) — Bg(fb,e)),
5. (Vo <t A(z))” is IVeVr At Ap(z, b, 0),

6. (Ju <t A())” is W¥cIr Q1Y < ¢ Ap(a,b.),

7. (Vo Az ) is HfVa vz Ja Ap(w, fa,c),

8. (EIQ: A(:c))B is Ja, WcIr < aVe < ¢ Ap(z,b,c).
We can see negation as a case of implication and obtain
(=A)Pis 3f¥b-Ye < fb Ap(bc).

Lemma 7 (Monotonicity Lemma). Let A(x) be a formula of L% and assume that
(A(z))? is given by Ve Ag(x,b,c). Then

HAZ® F b <6 AcacA Ap(x,b,c) — Ap(z, b, c).
It is now possible to prove the soundness theorem:

Theorem 12 (Soundness). Let A(z) be a formula of the language L with free variables

z. Assume that (A(2))? is given by Jbve Ap(z,b,¢) and that A is a set of universal
sentences (with bounded intensional matrices). If

HAZ + A A(z),
then there exist monotone closed terms t of appropriate types such that

HAZ + A F Vavz < aVe A(z, ta, c).

Similarly to the Dialectica interpretation, the bounded functional interpretation also
interprets some principles beyond those of HAZ. These are:
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. Bounded choice principle bACY
bACPT : Var3y™ A(x,y) — IfV¥z < b3y < fb Az, y),

where A is an arbitrary formula of £%;

. Bounded independence of premise principle bIPY,,
bIPS,, - (Vo Ap(z) — Jy? B(y)) — Ib(Va Aw(z) — Jy < b B(y)),

where Ayq is a bounded formula and B is an arbitrary formula;

. Bounded Markov’s principle bMP,
bMPy, :  (Vy*Va Aw(z,y) — Bia) — 3b (Vy < 0z Aw(z,y) — Ba),

where Ayq and By are bounded formulas. When By, is L it gives
V¥ Apa(z,y) — 3b-Vy < WVz Az, y)
which implies the particular version

=3y Apa(y) — Ib-=Ty b Ap(y);

. Bounded universal disjunction principle bUDY,,
bUDG, :  VBEYe™ (Y < b Awilz) V Yy < ¢ Bua(y)) — Ya Ava(z) VVy Bua(y),

where Ayq and Byy are bounded formulas;

. Bounded contra collection principle bBCCy,
bBCCyy : Qcp(‘g’lfﬂz L eVy Qb Ava(y, 2) — 32 < Vy Awaly, z)),

where Apg is a bounded formula;

. Majorizability axioms MAJ®

MAJ :  Yar3yr (z Q).

In [Fer09], Ferreira refers about 5., that from the weaker statement, saying that for

each monotone b, there exists z < ¢ such that Yy < b Ay(y, z), one gets a stronger
statement: theres exists a z (in fact, z < ¢) such that we have Ay(y, z) for all y. This
element z works uniformly for each b. In this sense, it may be regarded as an ideal element.

We denote by P¥[<] the sum total of all the characteristic principles.
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Proposition 6. HAZ + P“[<] proves the Bounded collection principle bBC:
bBC/™ : V¢ (V2 S cP3y Ay, z) — vz < Fy < b A(y, z))
where A is an arbitrary formula of L%.

Theorem 13 (Soundness extended). Let A(z) be an arbitrary formula of £ with free
variables z. If its bounded interpretation is given by gil_)%’g A(z,b,¢) and

HAZ + P[] + A F A(z),

with A a set of universal sentences (with bounded intensional matrices), then there exist
closed monotone terms t of appropriate types such that

HAL + A+ VaVz < aVe A(z, ta, c).

At this point, we point out an axiom, a special form of choice, which we call tame
axiom of choice

tameAC : VhIf < hVx (32 < ha A(x, 2) — Apalz, f2)),

where Ay is a bounded formula of the language £%. Of course, this can be generalized
for tuples of variables. Observe that this enables one to write a precise witness instead of
bounds for it.

Proposition 7. HAZ + P[] proves that tameAC is equivalent to a purely universal
statement (with bounded intensional matriz).

Proof Let Apq be any bounded formula of the language £% and assume
VhIf < hVa (32 < ha Apa(z, 2) — Aw(z, fr)).

Since (3z < ha Aw(z,z) — Ap(z, fz)) is bounded, by the bounded contra collection
principle, the latter is equivalent to

Va,h3f < hvz <a (32 S ha Ap(z, 2) — Api(z, fz))

which is a purely universal statement (with intensional bounded matrix). O

The principle tameAC can be added to theory HAZ and still have a soundness theorem:

Proposition 8. Let A(z) be an arbitrary formula of the language L4 whose bounded
functional interpretation is given by Ve Ap(z,b,¢). If

HAZ + tameAC + P[] - A(z)
then, there are monotone closed terms t of appropriate types such that

HAY + tameAC VaVz < aVe Ap(z,ta,c).
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Proof The only thing to do is to prove that HA%+tameAC proves the bounded func-

tional interpretation of tameAC, which is given by:
Va,h3f < hVd' < aVz < d (Elz < hx Apg(z, 2) — Apa(z, fx))
where Ap; is a bounded formula of the language. This is an immediate consequence of
tameAC. U
Consequently,

Proposition 9. Let A(z) be an arbitrary formula of L with free variables among z and
assume its bounded functional interpretation is given by IbVc Ap(z,b,c). If

HAZ + P[] + tameAC + A = A(z)
then there are monotone closed terms t of appropriate types such that
HAY + A F VaVz < aVe Ap(z, ta, c),

where A is a set of all purely universal statements (with bounded intensional matrices).

Proof Observe that HAY + P[] + A F tameAC since in HAY + P[], tameAC is
equivalent to a universal statement (with intensional bounded matrix). 0

In analogy with the Dialectica interpretation, there are also characterization and ex-
traction theorems:
Theorem 14 (Characterization). Let A be an arbitrary formula of LY, then
HAY +PY[<]F A « (A)".

Theorem 15 (Program extraction). Let Ay(z,y) be a bounded formula of L4 whose
only free variables are x and y. If

HAS + P[] - Vady Aw(z,y)
then there is a monotone closed term t of the language such that
HAZ - Vavz < ady <ta Apg(z,y).

2.3.3 The bounded functional interpretation of -——A A -——B —
-—(ANB)

We focus again in =—A A == B — ——=(A A B). As before, this intuitionistic principle
must have a bounded functional interpretation. In fact, the terms which interpret it via
the Dialectica interpretation are the same used to the bounded functional interpretation.
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Nevertheless, to verify that these terms are the ones to realize the interpretation is quite
more difficult. o
Take A and B arbitrary formulas of the language £%. Suppose AB is Ja Vb, Ap(ay, by)

and BB is JayVhy Bg(az, be). In fact, we should have written (possibly empty) tuples of
variables in the previous quantifications. Nevertheless, we will omit them to ease the
reading. A straightforward computation shows that we must produce monotone aj, a3, g7
and g;, depending only on monotone fi, f2, ¢1 and ¢o, such that

Vg, < g’f—|§’a1 < hrg1—Vby 4 gra Ag(ay,by) (2.1)
Vgo < g5—Vas < ¢ogaVbe 4 goas Bp(as, bs) .
Va, < aj,as < a3=Vhy < fiaasVby < foaiag (AB(ah b1) A Bg(as, b2)) (2.3)

lead to a contradiction.

Take

g1 = v frw(d2(Ny. fory))

ay = 197

9> = Ay.f2a7y

CL; = ¢2g;7

which, similarly to the Dialectica interpretation of the same principle, are the solution of
{ Cl;-k = ¢igf
g;a; = fiajas.

Since f1, f2, ¢1 and ¢y are monotone, it follows that g7, g5, af, aj are also monotone (this
relies mainly in the rule RLy). Assume we have (2.1),(2.2) and (2.3) for ¢i, g5, a;, a3
defined above. We must reach a contradiction.
Take monotone a; with a; < a} and define go = A\y. foa;y. Take, now, a monotone a
with as < ¢og2. Then g < g5 and ag < al. We get
9[)1 ﬂ g{al AB(Cll,b1> /\9()2 ﬂ goQs BB(CLQ,Z?Q) —
— Vb1 4 fia1ay Ap(ay,by) AVby 9 faaiay Bp(as, ba)
because we have fiaia; < giay by the definition of g and the fact that as < ¢ogo. Note,
also, that gsas = foajas. By (2.3),
Vb 9 fraras¥hy < foaras (Ag(ar,bi) A Bp(as,bs)) — L.
Hence, we may conclude Vb, < giay Ag(ai,by) — —Vby < g202 Bp(ag,by). Due to the
arbitrariness of as, we get
Vb < giay Ap(ar,bi) — Vag < ago—ba < goas Bp(as, by).
By (2.2), Vb, < giayr Ap(ay,by). Due to the arbitrariness of a; and noticing that a] =
®197, we conclude
Yai < ¢1g;-Vby < giay Ap(ar,by),
which contradicts (2.1), when taking ¢, as gj.

This not so simple interpretation will give some insight to carry out the bounded
functional interpretation of the double negation shift principle

DNS: Vn® —==A(n) — —~=Vn® A(n).
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2.3.4 Negative translation and bounded functional interpreta-
tion
We begin by extending Kuroda’s negative translation to bounded quantifications:

Definition 8. Let A be an arbitrary formula of the language L£%. Then Kuroda’s nega-
tive translation A’ is =~—Af. The translation from A in AT maintains unchanged atomic
formulas, conjunctions, disjunctions, implications and existential quantifications. The
translation of an universal quantification inserts a double negation after the quantifica-
tion. For bounded quantifications, it is defined as follows:

i) (Vo <t A(z))T is Vo <t == (A())T;
i) 3z <t A(z)) is 3o <t (A(x))T.

We denote by Py,[<] the modification of P“[<] in which bAC¥ is replaced by bACy,,
the restriction of bAC¥ to bounded matrices.
The following results are obtained:

Theorem 16. Let A be an arbitrary formula of L. If
PAZ + P[] - A

then
HAY + P[] - A

Theorem 17 (Extraction and Conservation). Let A(z) be an arbitrary formula of
4 with free variables z. Suppose that 3b¥c (A')p(z,b, ¢) is the bounded functional inter-
pretation of the negative translation of A. If

PAZ + P[] = A(z)
then there are monotone closed terms t of appropriate types such that
PAY b Vavz < aVe (A)p(z,ta, c).

Although these results were proved in the extended theories HAZ and PAZ, one can
associate to each formula of £ a corresponding formula of £+ by replacing each occurrence
of the intensional relation <, by the extensional one, §:‘,:

Definition 9. Let A be an arbitrary formula of L£Z. Then, it is defined by recursion on
A a corresponding formula A* of L¥:

1. If A is an atomic formula with no occurrence of <, then A* is A;
2. (t<,q)" ist <} q forallpeT;

3. (AOB)* is A*OB* for O € {A,V —};

4. (VYx A)* is Vo A*;
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5. (Fz A)* is Jx A*;

6. (Vo <, t A)* is Vo (x <;t— A*) forall p € T;

7. (<, t A)* is A (ac <5 tA A*) forall p e T.
A* is called the flattening of A.

The following result is clear:

Theorem 18 (Flattening). Let A be an arbitrary formula of £%. If
HASZ F A

then
HAY - A*.

As mentioned above, while presenting the soundness theorem, we can join tameAC
to HAY and still have a soundness theorem. In fact, in order to S be a model of the
flattening of the theory HAY 4 tameAC, we must check that the flattening of tameAC is
set theoretically true: -

Proposition 10.
S¥ F (tameAQ)™.

Moreover, (tameAC)* also holds in M.

Proof Our aim is to prove that the flattening of the instances of tameAC are true in
S¥. Take A a bounded formula (in the extensional sense). We want to show that

Vh (h<*h — 3f <" hVz (32 < h(z) Az, z) — Az, f(x))))
holds in §*. Let us fix h € S,_., such that h <* h. It is clear that
Vo (3= < h(z) Ale,2) — Ty < h(z) Ale,y))
is true. This can be written as
Vady <" h(z) (32 < h(z) Az, 2) — Az, y)).
By the axiom of choice in the real world &%, there exists f such that
Vo (f(x) < h(x) A (32 < h(e) Az, 2) — Alz, f(2))))-
Clearly, f <* h and Vz (3z <* h(z) A(z, 2) — A(z, f(z))), as desired. Moreover, if we

fix h € M,_,,, by the argument above, f is also in M, ,,. 0
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2.3.5 Direct bounded functional interpretation of Peano arith-
metic

In the previous section, Peano arithmetic is interpreted in two steps (similarly to Godel’s
Dialectica interpretation). First, Peano arithmetic is interpreted into Heyting arithmetic
by a negative translation, and second, Heyting arithmetic is interpreted by the bounded
functional interpretation. In 1967, Shoenfield defined a direct functional interpretation of
Peano arithmetic [Sho67]. Recently, Ferreira defined, in [Fer09], a direct bounded func-
tional interpretation of Peano arithmetic, in the style of Shoenfield. This is presented in
this section.

Let the language of (intensional) Peano arithmetic, PAY, be L% restricted to the logi-
cal words =, V,V and to the bounded quantifier Va < t, since the other logical connectives
are defined classically in the usual manner. As so, we will no longer consider axiom B3 in
this direct interpretation.

Definition 10. To each formula A of the language L% we assign formulas AY and Ay,
such that AY is of the form ¥b3c Ay(b,c) and Ay is bounded, according to

1. AY and Ay are A for A atomic formula.

If A and B have interpretations given by Vb3c Ay (b, c) and Vd3d By(d, e), respectively,
then the remaining cases are defined as follows:

2. (Av B)Y is Vb, d3c. e (Auy(b.c) V By(d. ¢)):;

3. (Vo A(x))V is Ya¥bIcve < a Ay(x,b, c);

4. (=AY s VI Db —Ap (U, fI):

5. (Vo <t A(z))Y is VbIcVr < ¢ Ay(z,b,¢).

Lemma 8. Let A be a formula of the language L%. Then

PAY VYV < e (Au(b, ) — Au(b. o).

Since A — B is defined as = A V B, the interpretation of A — B is given by
Vf,d3b.e (V' Qb Ay(V, fiY) — Byl(d, e)).

Again, there are some principles that can be added to PAZ and still have soundness.
The characteristic principles are:

1. Monotone bounded choice mACy,
mACL : VB3 Apa(b,c) — 3fYb3c < fb Apa(b, ),

where Apg is a bounded formula of E‘%;
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2. Bounded collection principle bCy,
bCP? . Vz d 3y Ay, z) — vz < cy Db Awa(y, 2),

where Apg is a bounded formula of E‘é;

3. Majorizability azioms MAJY

MAJ? VarJy (x Qy).

The set consisting on the three characteristic principles is denoted by P%[<], where ¢l
refers to the classical setting.

Recall that when interpreting Peano arithmetic via a negative translation, the charac-
teristic principles we added to the theory were the ones in P¢,[<]. In fact, these principles
are classically equivalent to the ones in P4 [<]:

Proposition 11.

PAZ = Po[] « Pyy[<].

Proof In classical logic, bCy, is equivalent to bBCCy; and the principles bIPy,,;, bMPg,
and bUDY,, are straightforward consequences of MAJ“ plus classical arguments. It re-
mains to prove that bACy; < mAC;; under PAY + bCY + MAJ®. To the left-to-right

implication, assume Vb3e Apa(b,c). By bACY,, theres exists a monotone f satisfying
VaV¥b < ade < fa Apa(b,c). The conclusion follows from MAJ®. For the other impli-
cation, suppose we have Vz3y Apg(x,y). In particular, VoVz < b3y Apy(z,y). By bC¥ and

mACY,, one gets fVbIc I foVa < by < ¢ Apg(x,y), as desired. O

The theory PAY with the characteristic principles is not set-theoretically sound. For
instances, it refutes the weakest form of extensionality:

vorval, gt (VK (ak = Bk) — ®a = ®f3).
Nevertheless, PAZ with the three principles is consistent:

Theorem 19 (Soundness). Let A(z) be a formula of the language L with free variables

z. Assume AP is Ql_élg Ap(z,b,¢) and that A is a set of universal sentences (with bounded
intensional matrices). If

PAZ + P[]+ A F A(z)
then, there are monotone closed terms t of appropriate types such that

PAY + A+ VaVz < aVb Ay(z, b, tab).

42



Consequently,

Theorem 20 (Conservation). Let Ay(z,y) be a bounded formula of the language L%,
whose only variables are x and y. If

PAZ + P& [d] - Va3y Ap(w,y),
then
PAY - Yavzr < ady Apa(z,y).

As before, in the presence of the characteristic principles, each formula of the language
is equivalent to its interpretation:

Theorem 21 (Characterization). Let A be an arbitrary formula of £%. Then
PAY + PY[<] - A« AY.

The passageway from the intensional theory PAZ to PA* is obtained from the next
result:

Theorem 22 (Flattening). Let A be an arbitrary formula of the language L£%. If
PASE A

then
PAY | A*

where A* is the flattening of A.
Moreover, A* is true in 8 and in M.

Although the soundness theorem guarantees that the theory PA%+Pg[<] is consistent,
its “flattened” version PA“ plus the flattening of the characteristic principles is inconsis-
tent. For instance, in PA* 4 (bC;,)* one proves

ImVa <{ 1 (3n (an #0) — In < m (an #0))

which is clearly false.
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3

Full numerical comprehension and
bounded functional interpretation

In [Spe62], Spector extended the Dialectica interpretation to second-order arithmetic.
This was achieved by means of a well-founded recursion, known as bar recursion. Spector
extended it to all finite types. We begin by presenting bar recursive functionals and
bar induction (the respective induction). Afterwards, we extend the bounded functional
interpretation to bar recursors and prove that the negative translation of the schema of full
numerical comprehension has bounded functional interpretation. To do so, bar recursive
functionals play the main role in interpreting the double negation shift principle

DNS : Vn? ==A(n) — -=vn’ A(n).

We get the bounded functional interpretation of the negative translation of full numerical
comprehension relying on the bounded functional interpretation of DNS (plus a special
form of choice, tameAC, mentioned in the previous chapter). We also prove that bar
induction has a bounded functional interpretation.

3.1 Bounded functional interpretation extended to
bar recursors

In this section, we extend the language of HAZ with new constants B2, the bar recursors,
and consider the following defining axioms BRB

V0= =0 ot T2 0 0Py <k ((ws n<ogn — B “Wzuns = =4, %NS, n) A
(1/1§, >0 n — Bfﬁ/}ﬂn§ =, Uj (/\x.B; “zu(n 4+ 1)(3;7 * $)) ns, n) ),
where 7, = (0 — ((0 = p) » 0) ,7, = (p = ) = (0= ((0 = p) — 7)), p, o are tuples
of k 4+ 1 entries and (5,7)°~7 and (5,7 * )°~7 are defined by
sk — sk, if k<n
5 710, otherwise

sk, if k<n
(s;mxa)k =, <z, if k=n
0, otherwise.
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Note that whereas s"~# denotes an infinite sequence of objects of type p, 5,7, al-
though formally of type 0 — p as well, stands for the initial subsequence of s with length
n, (S0, 51, »Sn—-1,0,0,---), and 5,7 * z is the concatenation of the finite sequence 5,7
with . Let BR denote the collection of all statements BR,, for p, o tuples of typesin T.
For details, see [Spe62], [Oli06], [Koh08a] or [AF9S]. B B

In [Spe62], Spector also presents briefly bar induction. It is referred to be a generaliza-
tion of Brouwer’s bar theorem [Bro27] to higher types. While bar recursion is a principle
of definition, bar induction is a corresponding principle of proof, in analogy with the usual
recursion and induction. The scheme of bar induction applied to formulas P and @ is
given by

BI : Hypl A Hyp2 A Hyp3 A Hyp4 — Q(0,0),
where
Hypl : vs'P3n® P(3m,n)
Hyp2 : Vs"™? n’vm <o n (P(s;m,m) — P(s;m,n))
Hyp3 : Vs97P n (P(s,_n, n) — Q(s,m, n))
Hyp4 : Vs¥P n? (Vaz” QEm*xz,n+1) — Qs m,n)

and 0 = An°.07. The hypothesis Hypl-Hyp4 also entail Q(5,m,n) for all s~* and n°
(Hyp2 is essential to obtain this generalization). It is well-known that we can argue by
bar induction in the structure of majorizable functionals M* (see [Koh08a)):

Lemma 9. M* E BI.

Proof To prove that Bl holds in M¥, assume Hyp2, Hyp3, Hyp4 and —Q(0,0) for
P,@Q and sequences s € Mj_,. Then, we claim —Hypl. By the assumption Hyp4,
dzg € M, =Q((x0,0,0,...),1). Again, by Hyp4, 3z, € M, -Q({x¢, x1,0,0,...),2). Using
dependent choice on the meta-level, we get § € My_,,, such that ¥n° -Q(5,n,n). By
Hyp3, we get 35¥n —P(5,n,n), which contradicts Hypl. O

In this chapter, we work within the theory HA* + BR + A \(w, where Ay is the set of
all universal sentences (with intensional bounded matrices) whose flattenings hold in the
structure M“ of majorizable functionals. The proofs in this chapter rely on some facts
of Apw. Although the statements of BR are universal and their flattenings are true in
MY we will use HAY + BR 4+ A instead of HAY + Ajgw. This clearly indicates that
our language contains the bar recursors functionals.

Theorem 23. HAY + BR + A is a majorizability theory.

Proof It suffices to check that the bar recursive functionals have majorants (within the
theory). Let B* be given by

B*Yzuns = max BPvYzuis
i<n
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where
— M : M
» _J znsm if Ysn™ <n
BfYzuns { max (zns, 7™, u (Az.BPYzu(n + 1)(5;n + z)) ns;n™)  otherwise
Kohlenbach’s recent book [Koh08a] is a good reference for the terminology. In there, it is
proved that M“ E B <* B*. Hence, the sentence B < B* is in A . 0

Since HAZ + BR + A is a majorizability theory and the sentences of BR + A are
universal (and so, self-interpretable), we have:

Theorem 24 (Soundness). Let A(z) be a formula of the language of HAL + BR + A e
with free variables z and assume that its bounded functional interpretation is given by
Ve Ap(z,b,¢). If

HAY + BR+ A e + P[] = A(z)

then, there are monotone closed terms t of appropriate type such that
HAS + BR + Ay Vavz < aVc Ap(z,ta,c).

Moreover, M* £ Va¥z <* a¥e (Ap)*(z ta, ).

3.2 The bounded functional interpretation of the dou-
ble negation shift principle

In this section, we carry out explicitly the bounded functional interpretation of DNS. In
order to get some intuition on it, recall the bounded functional interpretation of

~—~A A ==B — ==(A A B).

As we have seen, this interpretation is not straightforward. We follow a similar argument
to prove the following theorem:

Theorem 25. DNS has a bounded functional interpretation in HAG + BR + A .

Proof Let A(n) be an arbitrary formula of the language of HA* +-BR+ Ay and suppose
that AP(n) is given by Javb Ag(n,a,b). A straightforward calculation shows that to
interpreted DNS, given monotone ¢,; and 1, one must produce monotone n*, f* and
g* (depending only on ¢, v and 1) such that
Vn < n*Vg < g*—Va < ¢ng—vb < ga Ag(n,a,b) —
— V[ S fVn < Yy fY0 D f Ap(n, fn,b)
is provable in HAZ + BR + A (to ease the reading, no underlying is used to represent
tuples and we write < instead of <;). Since the above statement is universal, it suffices
to show that its flattening
Vn < n*gg <* g*—&a <* (bng—&b <* ga Ag(n,a,b) —
— V[ < fran < Y Y0 <* 4 f Ap(n, fn,b)
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is true in MY, given ¢, ¢ and 1y monotone in the flattened sense (e.g., » <* ¢). Of course,
in the flattened sense, Vz A(z) is the abbreviation of Vz (z <* z — A(z)). As we will
show, the latter statement holds in M¥, then we can simplify it by replacing the negative
universals by the appropriate existencials. Nevertheless, we will argue intuitionistically
below since the intuitionistical reasoning is rather elegant (in spite of its complexity):
the classical argument is shorter but less natural. Furthermore, the interpretation of
the double negation shift also carries out through in weaker theories. For instance, the
argument given below can be adapted to show that it holds for the theory HAZ +BR+ A,
where A; is the set of all universal sentences (with intensional bounded matrices) whose
flattenings are provable in E-HA“ + BR + Bl (E-HA“ stands for the intensional Heyting
arithmetic together with the axiom of full extensionality). Notice that A; C Apw.

From here onwards and until the end of this proof, we work with the extensional
majorizability symbols <*. The statements we prove below are meant to be proved in
M. Given ¢ in My_.,)—, monotone, we define ¢/ by ¢'s = 1hs™.

Take monotone ¢, 1, and 1y. We define B'ns according to the following clauses

DJCIJ

Bins e 5k if k <n,isk<kandVi<k (¥s,i>1i)
o "(n+1)(s;m*c) otherwise

where n is a natural number, s € M pN and

c = 9ngsm
gsm = Avaby(B'(n+1)(5,mxx)).

The value B'ns is in ME. In fact, we should think of this value as a finite sequence of
elements of M,. It is clear that B’ can be defined by bar recursion.
Before we define n*, f* and ¢*, it is convenient to prove some properties of B’.

Lemma 10. Tuke n € N and s € M}, then

Vi<n (Y1s,i>1) = Vi<n (s5;mi= Bn(sn)i).

Proof We argue by bar induction. Take

P(s,n) =3i <n (¢|s,i<1)
Q(s,n) =Vi<n (Yis,i>1i) > Vi<n (5ni=Bn(sn)i).

Let us see that we have Hypl-Hyp4 of bar induction. As we know, Hypl holds in
the structure of majorizable functionals M“. Hyp2 is trivial. Hyp3 follows from the
intuitionistic axiom ¢ — (¢ — ). Let us focus on Hyp4. Take arbitrary s and n and
assume

Vo (Vi<n+1 (WiEmxwx,i)>i) >Vi<n+1l@En+a,n+1li=
= B'(n+1)(s,n*xx,n+1)i)). (3.1)

48



From the statement above, we want to prove Q(3,7,n). Assume Vi < n (¢is,i > 1). By
definition of B’, B'n(5;m) = B'(n+ 1)(5,7 * ¢) with ¢ given by

¢ = pn(a (B (n + 1)(57 1))
Either ¢ (s;m*c¢) <n+1or ¥|(5;m*c) > n+ 1. If the first case occurs, then
B'(n+1)(5;m*c)=5n*c

and also B'ns,m = 5, *c. From this, it follows that Vi < n (s,_n i = B’n(s,_n)z'). On the
other hand, if | (5,7 % ¢) > n+ 1, then, by (3.1), we get

Vi<n+1 (Em*c)i=B(n+1)(5m%*c)i).

Clearly, Vi < n (5,71 = B'n(s,n)i). O

Lemma 11. Ifn € N and 5,7 € M}, then

Vi<n (si <"ri) > Vj (B'nsj <" B'nrj).

Proof We argue by bar induction. Take P and () given by

P(r,n) = 3k <n (¢ (rk) <k)

Q(r,n) = Vs (Vi<n (si <" ri) = Vj (B'ns;nj <* B'nrj)).
As in the lemma above, Hypl and Hyp2 hold. Let us focus on Hyp3. Assume we have
P(rm,n). Take s € M) such that Vi < n (si <* ri). Let ko be the least natural number
such that ¢|r, ky < ko. Note that ky < n. By the definition of B’, B'nr;n = B'nr = r, ky.
Since s, k:oM <*r kOM, by the monotonicity of 1, W5, ko <* Wir ko < ko. Let ki be the
least natural number such that s, k1 < ki. Note that ky < kg. Then B'ns;m = B'ns =
s, ky. This entails V5 (B'ns;nj <* B'nT,nj). So, Q(F,m,n).

It remains to prove Hyp4, i.e., Vo Q(F;m * x,n + 1) — Q(7,m,n). Suppose that
Ve Qrmxx,n+1). If 3k <n (1/}31",_16 < k;), then by Hyp3, we get Q(7,7,n). Other-
wise, by definition of B, B'nr;n = B'(n + 1) (;n *¢), where ¢ = ¢ngrm and ¢rm =
Az.apy (B'(n+1) (77 * ). Recall we want to prove Q(77,n). Take s € M)’ such that
Vi < n (si <*ri). We claim that ¢ is monotone (extensionally), i.e., ¢ <* ¢. It suffices
to prove that ¢ is monotone, ie., v <" y — gz <* grmy. Take x <* y. Clearly,
Vi<n+1 (Maxz)i <* (I,m+*y)i). Then, by the hypothesis of Vz Q(F;7 * z,n + 1),
we get

Vi (B'(n+1) (Faxx)j <" B'(n+1)(Fm+y)j).

By the monotonicity of 1, it follows that grmx <* grmy. Hence c is monotone.
We aim to show that Vj (B'ns,mj <* B'nT;mj). Now, two cases may occur: either
Vk<n (wis, k> k) or dk <n (wis, k< k:) If the first case occurs,

B'nsn=B'(n+1) (50 *d)
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where d = ¢ngszm and gs7 = vy (B'(n+1) (5;m*x)). We claim that gsm <* grg.
Take  <*y. Then Vi <n+1 ((S;m*x)i <* (7,1 )z) By Q(F,m*y,n+ 1) and the
monotonicity of ¥, the claim follows. Then d <* ¢. By Q(T,m*d,n + 1), we get

Vi (B'(n+1) (57 d)j <* B'(n+1) (Faxe)).

At this point, we only have to observe that B'(n+ 1) (5,7 *xd) = B'ns,n and
B'(n+1) (7, * c) = B'nr, n.

Finally, if 9k < n (@/Jis,_k < kz), take ko the least natural number such that v}s, ko <
ko. Note that ky < n. By definition of B’, B'n5,7m = s, ko. Since Vk <n (1/137“,_1{: > k), by
the previous lemma, Vi < n (7;ni¢ = B'nr,ni). Then

Vi < ko (B'ns;mj <" B'nT,mj).
This result also extends for j > kg since B'nT,mj = (7,7 * ¢) j is monotone (and then
majorizes 0). O
The following is an immediate consequence of the above lemma:

Corollary 2. Taken € N and s,r € MS such that si <* ri for alli < n. Then
Az (B'(n+1) (55 * ) <* Az (B'(n+ 1) (TR * 2)) .

In particular, given r € ME such that ri is monotone for all i < n, then the functional
Az (B'(n+ 1)(7,m % x)) is monotone.

In order to ease the readability, we write (sg, $1, ..., $,-1,0,0,...) to denote s € ME
such that si = 0 for ¢ > n.
Let us define recursively

gy = Az (B'1{x,0,0,...))
= ¢0g;
i1 = Away(B'(i + 2)(ag, a1, -+, af, 20,0, ..))
ai1 = ¢(i +1)giys-

By the above corollary, it is clear by induction that the a;’s and the g;’s are monotone.
Define

M
[ =ag, a, a3, ...)
n' = @le*

g = I;E%ng

The monotonicity of the a}’s and the g’’s ensure that f* and ¢g* are also monotone.
Observe that n*, f* and ¢g* depend only on ¢, ¢, and 5.
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In the following, we prove that the statements

Vn < n*Vg <* g*=Va <* ¢ng—vb <* ga Ag(n,a,b)
Vf <7V < b < f Ap(n, fn,b)

entail a contradiction.

Before continuing, let us introduce the notion of nice sequences and prove some pro-
perties.

Definition 11. A sequence of monotone elements ag, a1, ..., a, of M, is nice if for each
0 <i<mn, a; <* ¢ig;, where g; = \x. Yy (B'(i + 1){ag, a1, ..., a;-1,2,0,0,...)).

Note that each g; depends only on ag, ay, ..., a;_1.
Lemma 12. Take ag, ay, ..., a, a nice sequence with associated functions go, g1, ---, Gns Gn+1-

Then for all t < n +1, g; is monotone, g; <* g and, for i <n, a; < a}. Moreover, for

Proof The result is an easy consequence of corollary 2, reasoning by complete induc-
tion on ¢ < n. O

Lemma 13. Tuke ag,aq,...,a,+ a nice sequence with associated functions go, g1, .-, Gn*,
nra1- Then ¥n < n* (gni1ani1 <* gnay).

Proof Let n < n*. By definition, we have

Inln = @Zé(B/(?’L + 1)((10 HRR ¢ o ana0707 e >)
Gni10ni1 = Vo(B'(n+2){ap -+ ,an, @py1,0,0,---)).

We consider two cases. Suppose that exists k& < n such that ¢|{ag, - ,ax,0,0,---) <
k + 1. Let ko be the least natural number such that ¢]{ag,- - ,ag,,0,0,---) < ko + 1.
Then, by definition of B,

B/(n+1)<a0a"' 7an—17an70a0a"'> = <a0a"' 7ak2070a07"'>
B/(n—|—2)(a0,--~ 7an7an+170707"'> = <(10,"' 7ak070707"'>

Therefore, g, 4+1an4+1 = gnay. Note that g,a, is monotone since ay, ..., ay, are monotone.

For the second case, suppose Vk < n (¢{ag," -+ ,a(,0,0,---) > k+1). Then
B'(n+1){ag, - ,an,0,0,---) = B'(n+2){ag, - ,an, 0,0, ),
where ¢ = ¢(n + 1)g,41. Since, a1 <* ¢(n + 1)gn41 = ¢, then
Wy (B'(n+2){ao, -+, an, ans1,0,0,--+)) < Y5 (B (n+2){ag, -+, an,¢,0,0,---)),
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as desired. O

Given, @ = ag,ay, ..., a,~ a nice sequence, observe that 1, (ag, ai, ..., ap-, 0,0, .. )" <
U1 f* =n* <n*+1. Let kg the least natural number such that ¢ (ag, ai, ..., ax,, 0,0, ...)" <
ko + 1. Note that ky < n*. Define f; as (ag, ai, ..., ag,, 0,0, ...)". Observe that f; <* f*.
Then ¢ fz < n*.

Lemma 14. Givena = ag, ay, -.., Gy« a nice sequence with associated functions go, g1, .-, gn*,
Jne11, define fz as above. Then g fz <* g;a; for all i < n*.

Proof By the previous lemma, it suffices to prove that vy fz = g.-a,«. Let fz be given
by (ag, a1, ..., ar,, 0,0, .. )M with kg the least natural number satisfying

Yilag, ay, ..., ap,, 0,0, .M < ko + 1.
Note that kg < n*. Then
B'(n* +1){ag, - ,a,+,0,0,...) = {ag, - ,ax,0,0,...).

Now, the conclusion is straightforward: o fz = ¥, (B'(n* + 1){ag, - ,a,+,0,0,...)) =
Gn*Qp. [

At this point, we can prove the following:

Lemma 15. Assume (3.3) holds, and let @ = ag, ay, ..., a,= be a nice sequence with asso-
ciated functions go, i, ..., nx, Gne+1- Define fz as above. In this situation,

—|‘v’n S wlfﬁgb S* gnQnp AB(na Ay, b)

Proof Assume Vn < ¢ faVb <* gna, Agp(n,a,,b). By the above lemma,
Vn S @Z}lfﬁgb S* ¢2f6 AB(na Ap, b)7

with fz given by (ag,ay, ..., ax,, 0,0, .Y where kq is the least natural number satisfying
Y{ag, ay, ..., ax,, 0,0, ..M < kg+1. Then ¢ fz < ko. If n < 4y fg, clearly we have a,, <* fan.
By monotonicity of Ag in the entry of a,, we get

Vn < Y1 fa¥h < o fr Ap(n, fan,b),
which contradicts (3.3). O

We have showed that, under the hypothesis (3.3),
Vag, ay, ..., - (Vn <n* (a, <" ¢ng,) — —Vn < wlfa‘ab <* gnan AB(n,an,b)> )
This entails
Vag, ay, ..., aps =Vn < n* (an <* dng, AV <* gnan Ag(n,ay, b)> (3.4)

since ¥y fz < n*.
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Lemma 16. Under the hypothesis (3.2), we have
—Vag, ay, ...,an, —¥i <n (ai <* digi AVb <* g;a AB(i,ai,b))

for alln < n*.

Proof We argue by induction on n. For n = 0, the conclusion comes from (3.2):
—Va <* ¢0go—Vb <* goa Ag(0,a,b).
To prove the induction step, take the induction hypothesis:
—Vag, a1, ..., an Vi < n <ai <* ¢ig; NVb <* g;a; AB(i,ai,b)>
with n < n* and assume
‘g’ao,al, ey Oy VI <n+1 (ai <* ¢ig; AVD <* gi; AB(i,ai,b)> ,
which is equivalent to
‘g’ao,al, ...,anganﬂ —|<W <n (ai <* ¢ig;) AVD <* g;ia; AB(i,ai,b)) A
i1 <5 O+ 1) gpi1 AVD <* gpirnir Ap(n+1,an41, b))

By (3.2), if ag,ay, ..., a, is a nice sequence and ¢, is its (n + 1)th associated function,
then

—Va <* o(n+ 1)gn+1ﬂ9b <" gnt1a Ap(n+1,a,b).
In other words,

Vag, ..., an (Vi <n (a; <" pig;) — ﬂganﬂ—'(anﬂ <" o(n+ 1)gni1 A
Vb <* Gnt10ns1 Ap(n 41, any1, b)))

Applying the intuitionistic rule (see the lemma below)

VaVz = (H(z) N A(x) A B(z,2)) VYo (H(x) — =Vz =B(z,2))
Vo = (H(z) N A(x))

we get
Yag, ay, ..., an —Vi <n (ai <* ¢igi NV <* g;a; Ap(i,a;, b)) .

The contradiction follows from the induction hypothesis. O
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Lemma 17.

VaVz = (H(z) N A(x) A B(z,2)) Vo (H(z) — —Vz =B(z,2))
Ve = (H(z) AN A(x))

is a theorem in HAY. In fact, it is still true for bounded quantifications (in the flattened
sense).

Proof Assume V2Vz = (H(z) A A(z) A B(z, 2)), Vo (H(z) — —Vz =B(z, 2)) and H (o) A
A(zo). By the first assumption, we get Vz — (H(xo) A A(xg) A B(xo,2)). This entails
Vz —B(zo, z) since we have assumed H (z9) AA(zo). By Vo (H(z) — —Vz =B(z,2)), we get
=Yz = B(x, z), which leads to a contradiction. Therefore, we conclude —(H (x¢) A A(zo))
and also Vo — (H(x) A A(z)).

To prove it for bounded quantifications (in the flattened sense), we only need to make
a tiny change to H: H'(z) =z <* x A H(z). O

Under the hypothesis (3.2), by the lemma 16 with n = n*, we get

—Vag, i, ..., aps —¥n < n* (an <* ¢ng, AVD <* gntn Ap(n,ay,,b)

which contradicts (3.4). With this contradiction, we end the proof. O

Corollary 3.
HAZ + BR + A e + P¥[<] - DNS.

Proof Let A be (a universal closure of) an instance of DNS. Then, by the previous
theorem, HA + BR 4+ A = AB. The result follows from the characterization theorem.
O

3.3 The bounded functional interpretation of full nu-
merical comprehension

As mentioned before, Spector introduced bar recursive functionals in order to interpret
the principle CA? of full numerical comprehension,

CAY:  3fn® (f(n) =0 0 < A(n)),

where A is an arbitrary formula of the language of finite-order arithmetic (not containing
f free). The interpretation is done in the classical setting via a negative translation
(Kuroda) followed by the bounded functional interpretation of Heyting arithmetic. In
this section, we show that

PAY + BR + Ay + P[] F CA.
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We begin by proving, within HA“ + BR + A, that CA? is a consequence of the
principle

bAC® . vn3z A(n,z) — IfVnIz < fn A(n,z)
for arbitrary formulas A and x of any type. This is achieved using the following lemma:

Lemma 18. PAZ + BR + Ay + P[] proves
vf (Qaﬂb < faA(a,b) — 3h < fYa Ala, ha)) :

where A is an arbitrary universal formula (with bounded intensional matriz).

Proof As we have seen before, under the bounded contra collection principle for bounded
matrices, tameAC is equivalent to

Va, f3h < f¥x <a (Jy < fr Ar,y) — Az, ha)),

whose flattening holds in M (recall the proof of M* E tameAC in the previous chapter).
Then PA* 4+ BR + A + P[] - tameAC.

Let A(a,b) be given by Vz Byg(a, b, z) with By a bounded formula. Take f monotone
and assume Ya3b < favz Bya(a, b, z). Of course, we have Vd¥a3b < fa¥z < d Bya(a, b, 2)
and by tameAC, it follows

Vd3h < fYa¥z 4 d Byy(a, ha, 2)

and, therefore,ﬁ’c, d3h < fN¥a < vz < d Byi(a, ha, z). By bounded (contra) collection,
we get 3h < fVaVz Bpg(a, ha, 2). O

Proposition 12.
PAY + BR + A e + P4[<] = bAC™ — CA”.

Proof Observe that, in the classical setting, AC® — CA® is a well-known fact. Take
A(n%) an arbitrary formula of the language of PAY + BR. Then, by classical logic
VnIk ((k=0AA(n))V (k#0A-A(n)))). By ACY there is f! which witnesses such
k. Of course, we get Vn (fn =0« A(n)), as desired.

It remains to prove that bAC"™* — AC™. Take an arbitrary formula A(n°, k°) whose
bounded functional interpretation is given by JaVh Ag(n,k,a,b). Suppose we have
VYn3k A(n, k). By characterization theorem, we have Vn3k3IaVh Ag(n,k,a,b). By bAC"Y,
we get

3f, g¥n3k < fnda < gn¥b Ag(n,k, a,b).

By the previous lemma, there are h and s so that VYn¥b (sn < sn A Ag(n, hn,sn,b)). In
particular, we have that Yn3aVb A(n, hn,a,b) which is equivalent to 3h¥n A(n,hn), as
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desired. O

We have showed that, within PAY + BR + A e, we have bAC% — CA’. In order to
achieve our goal, by Modus Ponens, it suffices to prove

PAY + BR + A e + P4[<] = BAC™.
We argue that this result follows from
HA% + BR + Ay + P[] = (bAC™)".

In fact, by the soundness theorem, we get HAY + BR + A ( (bACO"")/)B (we must
see each instance of bAC®* as given by its universal closure). By the characterization
theorem of the bounded functional interpretation for the classical case, it follows that
PAY 4+ BR + A + P4[<] F bAC™.

Now, we finally prove:

Proposition 13.
HAY + BR + A + P[] F (bAC™)".

Proof This relies on the adaptation of a well-known argument. The (Kuroda) nega-
tive translation of bAC" is given by ——(Vn——3z Af(n,z) — 3f¥n-—3z < fn Al(n, z)).
Equivalently, we have Yn——3z Af(n,z) — ==3f¥n-—3z < fn Af(n,z). Assume
Vn——3z Af(n, ). In the previous section, we proved HAY + BR + A . + P<[<] - DNS.
Applying DNS to the assumption, we obtain =—Vn3z Af(n,z). By the bounded choice
principle, Vn3z Af(n,z) — 3f¥n3z < fn Af(n,z). Then, by intuitionistic logic,

—=vn3z Al(n,z) — —=3f¥n3Iz < fn Af(n, x)
and, therefore =—=3f¥Yn——3z < fn A* (n,z). O

3.4 The bounded functional interpretation of bar in-
duction

In this section, we prove that bar induction has a bounded functional interpretation. In
order to do so, we will need the following statements:

VepzuvnVs"—Pyr0—r (Vi <n (si Qri) — (B?7)Ppzuns < (BP7)Ppzunr) (3.5)

with v, z and u of appropriate types. Kohlenbach proves in his recent book [Koh08a| that
the flattenings of these statements hold in M%, hence they are in A w.

Theorem 26.

HA% + BR + Ay + PY[<] F B
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Proof The following proof is an adaptation of the proof made by Howard in [How68].
Take P and @ formulas of the language and assume that

Hypl :
Hyp2 :
Hyp3 :
Hyp4 :

Vsdn P(s;m,n)
Vs,n¥m <n (P(s,_m, m) — P(57, n))
Vs,n (P(s,;m,n) — Q(5,7,n))

Vs, n (Va: QEnxx,n+1) — Q@S mn, n))

We want to prove Q(0,0).
Notice that, in HAZ + BR + Ay + P[], P and @ are equivalent to their bounded
functional interpretations. Suppose

(P(s,n))B = 3a¥b Pp(s,n,a,b)
(Q(S,n))B = 3Vd Qp(s,n,c,d).

Therefore, from Hypl, Hyp2, Hyp3 and Hyp4, it follows

Vs3nIavb Pg(s;m,n,a,b)

Vs,nVm <n (élaﬁbl Pg(s;m,m,ay,by) — Ja by Pg(s;m,n, as, bg))

Vs, n (gla‘g’b Pg(s;m,n,a,b) — Jevd Qp(s,m,n,c, d))

‘v’s,n (‘v’x;lcl%dl QB(S,_’I’L* ZL‘,TL—}- ]_,Cl,dl) — écﬁ’dg QB(S,_TL,TL,CQ,CZQ)).

Concerning (3.6), by bounded choice principle, there exists a monotone f such that

VsVs' < s3n < fs3avb Pg(s’,n,n,a,b)

and by (3.7), it follows VsVs' < s3avh Pg(s', fs, fs,a,b). Collection entails

Vs3aV¥s' < s3a’ < a¥b Py(s, fs, fs,d’,b)

and since Pg is monotone in the entry of a’, we get Vs3aVs' < s¥b Pp(s', fs, fs,a,b). By
bounded axiom of choice, there exists a monotone g such that

Vsda < gs¥s' < sVb Py(s', fs, fs,a,b)

and by monotonicity of Pg on the entry of a, it follows

VsVs' < s¥b Py(s', fs, fs,gs,b).

Now, let us focus in (3.7), which is equivalent to

Vs, n¥m < nVa, (9()1 Pg(s,m,m,ay,by) — Jas by Pg(5,m, 1, as, bg)).

By the bounded independence of premises bIPy, ;,

Vs, nVm < nVa;Jas (le Pg(s,m,m, ay,by) — Jal, < axVh, Pg(5,m,n, ay, bg))
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and by the bounded choice principle bAC¥, there exists h, monotone, such that
Vs, n,a;¥m < nVs' < s3ay < hsna, (9b1 Pp(s',m,m,a1,b;) —
— éla’2 < ayVh, PB(m,n,ag,bQ)).
The latter implies
Vs,n,a;¥m < n¥s' < s (le Pp(s',m,m,ay,b;) — Jas < hsna, Vb, Pp(s',n,n,ay, bz))
and by monotonicity of Pg on entry of as, it follows
Vs, n,a¥m < nVs' < s (‘G’b Pg(s’,m,m,a,b) — Vb Pg(s',n,n, hsna, b))

Hyp3 is equivalent to Vs, nVa (Qb Pg(s;m,n,a,b) — Jevd Qp(s,m,n,c, d)) As we did
with Hyp2, by blPy,,; and bAC¥, there exists p, monotone, such that

Vs, m,aVs' < s (‘G’b Pg(s',n,n,a,b) — Je < psnavd Qp(s,n,n,c, d))
Since ()5 is monotone in the entry of ¢, we get

Vs,n,aVs < s (9() Py(s" n,n,a,b) — Vd Qp(s', n,n, psna, d)).

From (3.9), we get

Vs, n (éf@’a‘v% < ade; < favd, Qpsnxz,n+1,c,d)) — JeuVd, Qp(s,m, co, dQ)),
which implies

Vs, nVf (Qa‘v’m < aVd, QpEmrxxz,n+1, fa,dy) — JeoVd, Qp(sm, Cz,dg)).
The bounded independence of premises principle leads to

Vs, nV f3cs (‘G’(N.’Jc < aVd, QpEnxx,n+1, fa,dy) — élc’2 < c,Vdy Qp(Em, cé,dz))
and by bounded choice principle, there exists a monotone ¢ such that

Vs, n, fVs < s3cy < psnf (QaVI < aVd, Qp(s,n*z,n+1, fa,d) —
— §|C/2 < coVd, Qp(s',n, c'z,dg)).

The monotonicity of ()p in the entry of ¢y entails

Vs,n, f¥s < s (gan Qa¥d Qp(s',n*x,n+1, fa,d) — Yd Qp(s', n, psnf, d)).

At this point, from Hypl-Hyp4, we have showed that there exist monotone f,g,h,p
and ¢ such that

VsVs' < s¥b Py(s', fs, fs,gs,b) (3.10)
Vs, n,aVm < nVs' < s (9b Pg(s',m,m,a,b) — Vb Pgp(s',n,n, hsna, b)) (3.11)

Vs, n,aVs' < s (g’b Pp(s',n,n,a,b) — vd Qp(s',n,n, psna, d)) (3.12)

Vs,n, f¥s' < s (Qa‘v’x Qavd Qp(s,n*xz,n+1, fa,d) —
—Vd Qp(s',n,n, psnf, d)) (3.13)
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We want to prove JwV¥d Qp(0,0,w,d) which is equivalent to Q(0,0) (by the charac-
terization theorem).

In order to do so, let us define Wsn := B? fzuns (BP is defined in the proof of theorem
23), with
zns = psn (hsn (gs))
ulns = ¢snl.

Observe that z and u are monotone, since f, g, p, h, ¢ are all monotone. By (3.5), for n
and s such that Vi < n (si < si)), Wsn monotone. In particular W00 is monotone.

We claim that w given by W00 satisfies vd Q(0,0,w,d). In order to do so, we prove
the following results:

Lemma 19. HAY + BR + Ay + P[] proves that for all n® and s',s of type 0 — p such
that Vi <n (s'i Q si), if f (s,_nM) < n, then

Vd Qp (s n,n, Ws,min,d).

Before proving the above lemma, notice that for all n € N and s,r € M 5’ , if
Vi <n (si <*ri), then Vi (5,m¢ <* 7,7,1) is provable in M“. Consequently, in M*“ we
have 5,m <* 7,7 A5,nM <* 7M. Therefore, A contains the statements

vROvs PP (Vi< (si < ri) — (ssma ™ asa™ <rm).

Notice, also, that until the end of the proof, we may use facts, such as Apq(S, 7% sn) <

Apa(s,n + 1), with Aq a bounded formula. Such a statement is in A pw.

Proof Take n,s and ' such that Vi < n (s'i < si) and assume f (5,7") < n. Then
s',n <5 nM. By (3.10), we have Vb Pg (m,f (s,_nM),f (s,_nM) , g (s,_nM) ,b). Since

fs;nM < n, then

W Py (o, (507). f (5:7) g (57) 0)

and by (3.11), it follows Vb Pg (ﬂ,n, h (s,_nM) n (g (s,_nM)) ,b). The latter and (3.12)
entail

vd Qp (s n,n.p (50) 0 (b (570M) n (g (5:7M))) . d)
which is equivalent to Vd Qp (m, n, Ws,nn, d). O
Lemma 20. HAY + BR+ A + P[] proves that for all n® and s', s of type 0 — p such
that Vi < n (s'i Jsi), if f (3,_nM) > n, then

Va,dvz < a Qp (m*x,n—i—l,W(s,_n*a) (n—l—l),d) —vd Qg (m,n,Ws,_nn,d).

59



Proof Take n,s and s such that Vi < n (st < si). Then s/,n < 5. Assume
f (5;7M) > n. Define ¢ = Az.W (5, % ) (n + 1). By definition of W,

Y= e.BPfzu(n 4+ 1)(5;7 x x).

Using the rule RL4 together with (3.5), it is straightforward to show that 1 is monotone,
since f,z and u are monotone and Vi < n (si < si). By (3.13), we get

Vav¥r < a¥d Qp (s, n+ x,n + 1,9a,d) — Vd Qp(s,n,n, ¢ (57) ny, d),
which is equivalent to

VaVx < aVd Qe(s,n*xz,n+1,W(s;n*a)(n+1),d) —
—Vd Qp(s,n,n, ¢ (5;7M) n MW (5 2) (n + 1)), d).

The latter entails
VaVz < a¥d Qg (m*x,n—k LW (snxa)(n+ 1),d) —VdQp (m,n,Ws,_nn) ,d),
since (Qp is monotone in the entry of Ws nn and this is the maximum between
P (5,_nM) n (h (s,_nM) n (g (s,_nM))) ) and ¢ (&_nM) n(Ae.BPfzu(n+ 1)(5;m*x)). O
By lemmal9 and lemmaZ20,

Vn,s,s’(Vi <n (s dsi) — (Qan < aVd Qp (m* z,n+ 1, W(Enxa)(n+ 1),d) —
_>§/d QB(mvnvw(&_nan)7d)))7

which is equivalent to
Vn, s, s’gd(w <n (s Jsi) — (Qan < avd Qp (¢,nxx,n+1,W(snx*a)(n+1),d) —
—Vd <d Qp (s, n,n,Wsmn,d))).
The bounded Markov and the independence of premises principles imply
Vn, s, s'gdgla, d’(Vi <n (s <si) — Ja' < a,d" < d’(g’a” < a'Vo < a'vd" < d”
QB(W* z,n+ 1, W (sm*ad") (n+ 1),d’”) —Vd <d QB(S’,_n,n, Ws,_nn,d’))).
Equivalently, we have
Vn, s, $'Vd3a, d’(Vi <n (s <si) — (9@’ <aVr < aVd' < d
Qp(sinxx,n+1,WGEA*a)(n+1),d") —=Vd <d Qp(s,n,n,Wsan,d))).

By the bounded choice principle, there exist monotone closed functionals v and v such
that for n, for monotone s*, s**, d and for s’ < s*, s < s** such that Vi < n (s'i < si), then

Va < uns*s*dvz < a¥d < vns*s™d Qp (m xx,n+ 1, WS mnxa)(n+1), d’) —
— Vd' <ad Qp(s,n,n, Ws,an,d) (3.14)
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In order to simplify the notation, let D(s,n,r,d) denote Vd' < d Qp(s,n, Wrn,d') and
define v’ and v’ by

u'nsd = unssd

v'nsd = vnssd.

From (3.14), we have
Va < u/'ns*dvz < a D(s',nxz,n+1,5n*a,vns'd) — D(s',n,n,5,m,d) (3.15)
for all monotone n, s*,d and for s < s*, s < s* such that Vi < n (s'i < si).

For all monotone d, define recursively (a,b) by

< b0 = (u ’OOd v’00d>
< k 1 < Sk+1 )blw (k + 1)<Sk+i\4)bk>’

where

710  otherwise

for k > 0.

Lemma 21. HAY 4+ BR + A + PY[] proves that, given d, monotone, and aj and by,
defined as above (depending on d), then ay and by are monotone for all k.

Proof We argue by induction on k. For k = 0, it is clear since u/,v’,0 and d are mono-
tone. As induction hypothesis, assume a; and b; are monotone for all 7 < k. Then, skM is
monotone since Vi (spi <* si) — s, <* ;M holds in M* (implying that s}/ < sk is
in Ayw). Now, using the induction hypothesis, the conclusion comes easily since u’ and
v" are both monotone. O

Now, we can prove the following:

Lemma 22. HA* + BR + Ay + PY[] proves that given d, monotone, and ay and by
defined as above, if

(Vi<k (¢; <a; Nz; < ¢;)) — D({zo, ..., x4, 0,0, .0,k + 1, {co, ..., k, 0,0, ...}, b,
holds for all cy, ..., Ck, o, --., T} of the appropriate type, then, we have D(0,0,0,d), for all
kY.

Proof We argue by induction on k. For k& = 0, it is straightforward by (3.15). For
k + 1, assume, as the induction hypothesis, that the implication stated in the lemma

holds for k.

61



Suppose

\V/CO, vy Cla 1, L0y ovey Tt 1 (\V/Z S k +1 (C,’ S] a; N\ x; ﬁ Ci) —
— D({(@o, .., 141, 0,0, .0, k 4+ 2, (Cos ooy 1, 0,0, ...), brr)),

which is equivalent to

V€0, wos Cly X0, ooy Tk Vo1 Vg1 (Vi <k (¢ Qag Ay <) — (it < apgr A Tppr < e —

— D(<l‘0, ...,LCk,0,0, >, k4+1x Tkt1, k + 2, <007 ...,ck,0,0, >, k+1x% Ck+1,bk+1)))

and to

Yo, ..., C,y X0, oy Tk (Vi <k (i <aiNz; <) = Vepr < agVegr < cgg

D({xo, ..., 0,0, .0 k + Tk xpyq, k + 2, (co, ey €, 0,0, .0,k + 1 % ck+1,bk+1)).

Observe that axy1 = o' (k + 1)Sk+{wbk, bpr1 =V (k + 1)sk+11wbk, (o, ..., g, 0,0,...) < sk+11w
and {c, ..., ¢, 0,0, ...) I's,, 1" (by the hypothesis of Vi < k (¢; < a; Az; < ¢;)). By (3.15),
it follows
Veo, oy Cloy oy vnny Tk, (‘v’i <k (c; da;Nx; J¢) —
— D({(xg, ..., 21, 0,0, .0,k + 1,k + 1, {co, ..., 5, 0,0, ...), k + 1, b))

Equivalently,

Ve, ooey Cloy oy vvvy T (‘v’i <k(c;Jda;Nzx; d¢) —
— D((z0, ..., 1,0,0, .0,k + 1, (co, ..., ¢, 0,0, ...), b))

By the induction hypothesis, we get D(0, 0,0, d), as desired. O

To finish the proof we will also need the following lemma, known as Kreisel’s trick:

Lemma 23 (Kreisel’s trick). HA” 4+ BR + A + P[] proves that, given f of type
(0 — p) — 0, then we can define 0 (depending on f), by bar recursion, such that

3k < 6500 (fs, k < k)
for all s°=.
Proof Define 6 as

dsrm — 4 0 - if Ik <n (f(rk) <hk)
1+ 0s(rm*sn)(n+1) otherwise.

0 is clearly obtained by bar recursion. Now, take an arbitrary s and define ¢i as ¢i =
0s(s,4)i. Hence

. J0 if Ik <i (f(s,k) <k)
o1 = 1+o(i+1) otherwise
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since 5,7 * si = s,i+ 1. Note that if ¢i # 0 and j < 4, then ¢j = 1+ ¢(j +1). By
induction on j, it is straightforward to show that ¢i # 0A j < i — ¢0 = j + ¢j since
j+1+¢(j+1)=j+ ¢j. Choose j =1i. Then, we get ¢pi # 0 — ¢0 =i + ¢i and taking
i = ¢0 leads to ¢(¢p0) # 0 — @0 = @0 + P¢(Pp0) — (p0) = 0. Thus ¢(¢0) = 0, which
implies that 3k < 0500 (f(s, k) < k). O

Take d, monotone, and define ag, by, and s as above. Define s* by s* = An.a,,. Kreisel’s
trick implies that exists k such that f(s*, k:M> < k. Take s’ = (xo, ..., 751, 0,0, ...) and

s = (cg,...,ck—1,0,0,...) such that Vi < k (z; < ¢; A ¢ < a;). Therefore, s/, k < s,_kM
By (3.10), it follows that

@ P (7 (SE7). (7)o (55) ).

Since &_kM < s*, k:M, then fs,_kM < k. By (3.11),

i (7 (7)o (7)) 1)

and (3.12) entails Vd' Qp <’_k k,p (EM> < ( ) ( < >>> d’), which is
equivalent to Vd' Qg (s kk,Ws, kk,d ) and to Vd' D ( k,k,s ) In particular, we
have D(s’,k, k, s, k,b,_1). We have shown that

Vi <k (Ci < a; N\ x; < Ci) — D(<.T0, ...,xk,l,0,0, ...>,]{Z, <Co, ...,ck,l,0,0, ...>,bk,1)

for all co, ..., cx_1, o, ..., Tp—1. By lemma (22), it follows D(0,0,0,d). Hence, vd D(0,0,0,

d),
which entails JwVd Qz(0,0,w,d) with w = W (0,0), as desired. O

Corollary 4. HAY + BR + Ay + PY[] proves that under Hypl-Hyp4 of Bl, we also
have Q(3,m,n) for all s and n.

Proof Assume Hypl-Hyp4 for formulas P and (). By the theorem above, it follows
Q(0,0). Take s°7” and n° and define the following

P'(r,m) := P(Em*r,n+m)
Q'(r,m) = QEm*r,n+m),
where
—— it i<n
’ | r(i—n) otherwise.

We claim that

Vram P'(r,m). (3.16)
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by Hypl, Jk P(s,_n*r,k,k:). If £k > n, take m =n — k. We get

P(s;m*r,m,n+m,n+m),

which is equivalent to P’ (7;m, m). If k < n, Hyp2 ensures that P (s,_n* r,m, m) for
m > k, in particular, we have P(s,7 * 7, m,n + m).

Vr,mVk <m (P'(r,k, k) — P'(F;m,m)) (3.17)
and

Vrn (P(r,m) — @ (7, m)) (3.18)
are trivial, by Hyp2 and Hyp3. Finally, we claim that

Vr,m (Vz Q' (mm*z,m+ 1) — Q' (r;m, m)). (3.19)
Take r,m and assume Vz Q' (7, m * x,m + 1), which is equivalent to

Ve Qs (T,m*x),n+m+ 1)

and to Vx Q(5,m 7, m,n+mx*x,n+m+1). By Hyp4, it follows

Q(rnxT,m,n+m,n+m).

Hence, we have Q(s;7 x 7,m, n + m) and Q'(7,m, m). By (3.16)-(3.19) and the previous
theorem, it follows Q’(0,0), hence, we get Q(3,7,n). O

Observe that in the previous proof, we used sentences of the type A(S;7 * sn) «
A(s,n + 1) for arbitrary formulas (P and () in the particular case). These sentences may
not be in A (we know that they are in the case of bounded formulas). Nevertheless, in
HAY + BR 4+ Ay + P¥[<], this equivalence for arbitrary formulas is an immediate conse-
quence of the same equivalence for bounded formulas and the characterization theorem.
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4

Bounded functional interpretations
extended to new base types

Recently, Kohlenbach generalized the Dialectica and the monotone functional interpreta-
tions to classes of abstract spaces (normed, metric, hyperbolic, etc). This is accomplished
by means of the introduction of new base types for abstract spaces. In this chapter, we
generalize the bounded functional interpretation to new base types for normed spaces.
We begin by presenting the extended framework. Afterwards, we generalize not only the
bounded functional interpretation of Heyting arithmetic, but also the classic direct one
of Peano arithmetic. At last, we present some applications in functional analysis.

4.1 The extended framework

As Kohlenbach presents in [Koh05], we extend the set of finite types to a new ground
type and then extend the theories HAY and HAZ. Let X be a normed vector space over
the reals and take it as a new ground type for the set of all finite types. Before going on
describing the new set of all finite types with two base types, we have to make a digression
on the representation of real numbers, since X is a normed space over the reals. In fact, we
must determine how to represent them and how to describe their equality and inequality
relations.

4.1.1 Representations of the real numbers

There are many classical constructions of the real numbers, such as Cauchy sequences of
rational numbers, Dedekind cuts in the field of rationals, binary representations, signed-
-digit representations, and so on. Classically,, all these representations are equivalent, in
the sense that they give rise to isomorphic structures.

In the following, we give a brief notion of the Cauchy sequence representation (for
details see [Koh95]) and we explain the reasons to adopt another representation.

Cauchy sequence representation:
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In the Cauchy sequence representation, real numbers are represented by Cauchy se-
quences of rational numbers with fixed Cauchy modulus 27". In order to accomplish this,
we begin by defining rational numbers. These are represented as codes j(n,m) of pairs

(n,m) of natural numbers: j(n,m) represents the rational number -2 if n is even and
n+1

—27 it n s odd. As so, each rational number can be represented as a code of a certain
pair of natural numbers (not unique). The equality relation =g between the represen-
tants of rational numbers, the inequalities <g, <@ and the operators +¢ and .g are defined
in the usual way. To simplify the notation, we may write the rational numbers instead

of their representations. Nevertheless we must always understand it as the representation.

Real numbers are represented as functions f : N — N such that

(x) o (Ifn—of(n+1)lg <q z7) -

Notice that f can be conceived as an infinite sequence of codes of rational numbers and

therefore an infinite sequence of rationals. Every f verifying (x) represents a Cauchy

sequence of rationals with Cauchy modulus %

So that each function f of type 1 represents a real number, f is chosen to code the
real number given by the Cauchy sequence coded by f, where f is defined as

fn= fn if Yk <on (|fk—o f(k+ 1o <o z77)
; fk  for the least natural k <o n such that |fk —g f(k+ 1)|g > 57 -

Notice that for each type one f, fsatisﬁes (x). Moreover, if f satisfies (), then
Vn® (fn =q fn). In this way, each function f codes a uniquely determined real number:

the one given by the Cauchy sequence coded by f
The equality and inequalities between real numbers represented as Cauchy sequences
are defined as follows:

~

. N 1
fl =c gl is Vn <‘f(n+ 1) —Q g(n + 1)‘@ <Q 2_n)
. ~ ~ 1
fr<cglisn (9(n+1) —o f(n+1) g 2—n>
. -~ ~ 1
[t <cg'is¥n (f(N+1) —og(n+1) <g 27) :
If f =c g, then f! and ¢! are representatives of the same real number.
Notice that none of the relations =¢, <¢ and < is decidable. While =¢ and < are
II§ statements, the relation <¢ is a X statement. The operations between real numbers
are defined in the natural way, as well as the immersion of naturals and rationals into the

reals.

The relations above have the usual properties. We will only show a few of them.
Lemma 24. HA” proves

i) <c is transitive;
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it) <c is transitive;
i) x<cy—r<cy for all 1, y*;

w)r<cy—zr<cy+1 for all z*, yt.

Proof In order to simplify, it will be used 4+ and — instead of +¢ and —q.

i) Take z!',y', 2! such that x <¢ yAy <¢ z. This means that there are natural numbers
ng and mg which verify §(ng+1)—Z(no+1) >g 555 and Z(mg+1)— (m0+1) >Q 755
We want to show that there exists n such that Z(n +1) — Z(n + 1) >g 5~. Take n
as maxg(no, mg) and assume, without loss of generality, that n = mg. Then

Zn+1)=2(n+1) =g 2n+1) —yn+1)+yn+1) = §n) +yn) — .. +
>0
+5(no +2) = Jno +1) + gno + 1) = T(ng + 1) >q 3=

1
2Q 270

since

[J(n+1) —y(n) +y(n) —y(n —1) + - +y(no +2) — y(no + 1)g <o
<Q Dby 3F = F0FT <Q 77

ii) Take z!,y! and 2! such that * <¢ y and y <¢ z. By definition of <¢, we have
v (Z(n+1) —gy(n+1) <g 5 ) and Vn° (g(n+1) —gZ(n + 1) <g 3= ). Take an
arbitrary n°. We claim that

Tn+1)—Z(n+1) <g 5.

Take m® such that m >y n+ 1. Then

Tn+1)—Z(n+1) Z ( ) — 2k + )>+(§(m+1)—§(m+1))+
<Q:;+1 <Q2}"
+(@m+1) —Zm+1))+ Y <z(k 1) - z(k)) <g
Vl -~ k:TL-‘rl\ ~ J
<Qzm <@2k1+1
N | 1 1 1
Z _k “Qonr2 T omt2 + om—1 <Q
o 1

_|_

<Q on+l | 9n+l —Q on”
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iii) Take 2! and 3! and assume z <¢ y. By definition, there exists ny such that
Y(no +1) —gZ(no + 1) >q 355 We claim that

¥l (F(n+1) —gin+1) <g ).

First, let us analyse the case n <y ng. Take an arbitrary n <y ng. Then

no

Bn+1) = gn+1) =g > (F6) = B+ 1)) +3no + D)~ il +1)+

k=n+1"° -~
<oz <e—3m
0 0 1
+ ) \@(kﬂLl)—?(k)) <o Y o~ om —©
k=n+1 Vl k=n+1
<QW
1 1 1 1

For the second case, take n > ng. We get

n

Bn+1)—gn+1)=q Y (@k+1)—2(k)+Z(no+1) =Flno+1)+

k=n . e
o+1 <Q2k% <Q72%0
+i((k)—(k+1))< i L1
k=no+1 T k=no+1
<Q3FFI
1 1 1 31 1 1

TQgmrz gz gm @ gom  geiz ~Qow

iv) Take 2! and y'. Assume z <¢ y, i.e, Vn (Z(n+1) =g g(n+ 1) <g 5~). We want
to prove dng (y/\ﬂ(no +1)—gZ(ng+1) >¢ 2%), which is equivalent to

Elno (@\(no + 1) —Q /x\(no + 1) +Q 1 Z@ 2%0) .
It suffices to choose ng = 1:
J(2) —@2(2) +o 1 >g —5+ 1 =q 5 >0 3-

0

This representation is very intuitive and easy to work with. Nevertheless, for techni-
cal reasons, it is useful to have an effective representation of the reals which meshes well
with the notion of majorizability. In order to carry out efficiently the extension of the
bounded functional interpretations to new base types, the representation must satisfy the
following majorizability property: there exists a function g from N to N such that, if f
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is the representation of a real number in [—n,n|, then for all i € N, fi < gn. This is
not satisfied by the Cauchy sequence representation, since the representation of a rational
number may be very large.

In the following, we present the signed digit representation (for details, see [Wei00]).
As we will see, this representation satisfies the notion of majorizability described above.

Signed digit representation:

Real numbers are represented by tuples (n,«), where n € N and o = (g, g, ...) 18
a sequence of numbers in {0,1,2}. (n,a) represents the number intn + >, (o; — 1),
where int is a type 1 function such that intn is equal to m € N, as a rational, if n =y 2m
and is equal to —m (again, as a rational) if n =g 2m — 1. Note that intn represents
an integer number. In fact, we see intn not as a natural coding a rational, but as the
rational itself. The sequence (o, — 1), is a sequence in {—1,0,1}. Each of this sequences

a represents the real number Z;Of(a, — 1)% € [—1,1]. Note, however, that real numbers

shall be represented by type one objects. To each f!, we associate f

fo = f0
and forn > 1
B 0 if fn=20
fn = 1 if fn is even
2 if fn is odd.

Whenever we need to work with real numbers, we shall use ]}V instead of f. Each f
represents an unique real number. Observe that f' € R is an universal condition:

Vi' (f(i+1) €{0,1,2}). Of course, for each f!, f € R.

Equality and inequality for this representation are given below:

42

f=rgisVi ( int(f0) —int(g0) + Z(fk — k)27 <qg %)
=1 Q
i+2 ' 1 i+2
f<rgis 3 (mt(f()) +) (fR)27F + 7 <o int(g0) + Z(gk)rk)
]:: 3 i+2 = 1
f<rgisVi (mt(fO) + Z(fk)2*]c <g int(g0) + Z(gk)Q*k + @)
k=1 k=1

These relations have the right complexity for proof-theoretic studies: <g is a Xy state-
ment and =g and <g are both II{ statements. We will see that these relations have the
usual properties. In particular, any relation established between real numbers is indepen-
dent from its representations.

In order to ease the reading, if n is a natural number, then we see n and —n as elements
of R and represent them by
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(n)g = (2n,1,1,...)
(—n)r = (2n—1,1,1,...).

Whenever it is clear that n is to be read as a real number, we simply write n instead

of (n)R

Proposition 14. HAY proves that, given gn = 2n + 3, then for each f' representing a
real number in [—n,n| with n € N, we have fi < gn for all i € N.

Proof Take f! representing a real number in [—n,n|. This means that f <z n and
f >r —n. In fact, it suffices to prove that f0 < 2n + 3, since fi € {0,1,2} for all i > 0.
For all 7, we have

int(f0) + 35 (fk = Dge <gn + 5
int(f0) + 305 (fk = 1) gx >q —n — 4,
which imply
int(f0) <g int(f0) + 33 (fk —1)g + 1 <gn+2
int(f0) 2q int(f0) + Y (Fk — 1) — 1 5¢ —n -2,

If int(f0) >q 0, then f0 =g 2f(20) <o 2n + 4 (since int(f0) is a positive integer,
we look at it as a natural) and if int(f0) <g 0, then int(f0) =g —k with £ € N and
f0 =02k —1 <g2n+ 3. Hence, f <; gn. O

This result gives the majorizability property. The following presents a majorizability
condition between two different representations of the same real number. Notice that in
the Cauchy sequence representation none of this properties is satisfied.

Lemma 25. HA® proves that if f and g represent real numbers, then

f=rg— g0 < fO+4AVi (i>0—gi <2).

Proof Take f and g real numbers such that f =g g. We claim that
g0 < fO+4AVi (1>0—gi <2).

It suffices to show that g0 < f0-+4, since the second condition is trivially satisfied. From
f =r g, it follows

i+2

: : : : 1
[int(g0) — int(fO)|g <q |int(g0) — int(f0) + > (gk — o) 5r
k=1 Q
i+2 1 )
+ ;(gk - fk)2—k . <ot 2 forall .
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Hence, |int(g0) — int(f0)|g <@ 2, which implies
int(g0) <g int(f0) + 2 Aint(g0) >q int(f0) — 2.

Suppose that int(f0) >q 0 and int(g0) >¢ 0. From this, we get
g0 = 2int(g0) <o 2(int(f0) + 2) = 2int(f0) +4 = f0+ 4.

If int(g0) <@ 0 and int(f0) >@ 0, which implies that int(g0) =¢ —k with k£ € N,
g0 =2k — 1 and f0 =q 2int(f0). We get

g0 =2k —1 <2(—int(f0)+2) —1=—-f0+3 < fO+4.

The remaining cases are similar. 0

Theorem 27. HA” proves that there is an effective translation between the signed-digit
representation and the Cauchy sequence representation. Furthermore, the arithmetic re-
lations =, < and < are provably preserved by the translation.

Proof First, we construct the translation from the signed-digit into the Cauchy se-
quence representation. Let (n,a) be a signed-digit representation of the real number
intn+ 3,2 (ax — 1)5r. Then we define the following Cauchy sequence

<intn + (g — 1)5,intn+ (g — 1)5 + (g — 1), ..., int n + Zle(ozi - 1), > ,

where int is the type 1 function defined above. As desired, the limit of this Cauchy
sequence is intn + Z:; (o — 1) - and, indeed, it represents a real number. Let a; be

given by intn + Y1 (ay, — 1) for all i € N. Then
|aiv1 — ailo =g |ai + (Qip2 — Dy — 4]y =g |(Qiy2 — 1)zt <o gt
Therefore, these two representations stand for the same real number.
The inverse translation is more complicated but the proof is straightforward. Take

(ag,ay, as, ...) a Cauchy sequence representation of a real number. For each i € N, a; can
be decomposed as

CLOZQTL+b0, |b0| <Q 1, neZ
1
a, =q ag + b, b1 <Q§
1

(p4+1 =Q Un + bn+17 |bn+1| <Q ﬁ

We aim to obtain an integer number m and a sequence « in {—1,0,1} such that
m + Zk 1ak2k is the real number represented by (ag,as,as,...). With m and «, we
construct (k,« + 1), where k € N is given by 2m if m >¢ 0 and by —2m — 1 if m <g 0.
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The sequence o+ 11is (a1 + 1,2 + 1, a3 + 1,...) in {0,1,2}. In the following, we work
with m and « instead of (k, @ + 1) to simplify the reading.

First, we determine the integer m. Let us sum by with b;. We want to write by + by as
ap + o with ag € {—1,0,1} and |zo| <g 1, since |by + b1| <g 3. Then

1 if bo+b >g1
oy = 0 if ’bo—l—bll <Q%
-1 if by+b <g —3

Choose m = n + ay.
To determine «; (the first terms of the sequence «), we sum xy with by and write it
as ozlé + 21 with

1 if $0+b2 2@4—11
ap = 0 if |l‘0 + bg‘ <Q %
—1 if ZEo—f—bz SQ —i

Since |zg +q ba| < 3, we get |21] <g 3.

In general, if we want to compute the a; with ¢ > 2, we need to know x;_; and sum
it with b;,1. «; is determined by

1 if 21+ 0biy1 >0 21%
a=140 if |21+ bit1| <g 5o
—1 it x4+ b1 <g _21'%

and we write z;_1 + biy1 = az-% + z; with |z;| <g@ 2%

It remains to prove that (k, a+1) (intuitively (m, «)) represents the real number coded
by <a0, a, az, - > It consists in proving that the limit of the sequence (an)n is equal to
m+zl | 0;27". By construction, we have Z b; = Zl o Qi L+, with |z,_1| <g Qik
Hence,

: : k : k :
limy, oo ar =@ limg_ oo <n + >0 bi) =0 M 4@ iMpyoo D iy ¥igr + My oo Tp1.
Since limy_ 40 2x =g 0 (recall VE° (|zy| <g 5r5r), we get

hmk—>+oo ap =qQ m +Q Zz 1 Qg 21

as desired.

So, we presented how to effectively translate from signed-digit to the Cauchy sequence
representation and vice-versa. It remains to show that the translation between these
representations preserve the equality and inequalities. We will see that the equality is
preserved. Let (n,«a) and (m,3) be the signed representation of the same real number.

Hence7 (n7 a) —R (maﬁ>:
o <0 %) :

.

mtn —intm + 22121(0% - 514:)2%
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which is equivalent to

Vi (| {intn+ (a1 — D3, intn+ (o — 1) + (ag — 1)1, .) (i + 1)
—(intm+ (B — i intm+ (B —1)5+ (B — 1L, ) (i+1 ‘Q<Q2L)'

By definition of =¢, we get

<mtn+ (o; — 1)%,mtn+ (o — 1)% + (g — 1)}1’...> —c
=c (intm+ (61 — D1 intm+ (B — )5+ (B2 — 1)1, ).

Now, take (a,)n, =¢ (bp)n. We write (ay,), and (b,),, as (n+cg, n+co+c1, n+co+ci+co, - +)
and (m + do,m + do + dy,m + dy + dy + da, - - - ), respectively. If

(n+co,n+co+cr,n+co+cr+ca,) =c (m+dy,m+dy+dy,m+do+dy +da,-+),

then Vi (‘n + Zk 1Ck — (m + Z’H )’Q) <Q % By construction, we can determine
sequences (), and (/3,), such that

Do ok =0 Yo Ohge T2 and YT di =g 2hog Brzr + Ui
for some (), and (yn)n with |2;], |y;] <g 547 for all ¢ € N. Hence, for all i, we get

Q N+ Z;jgo Ck — (m + ZHS )‘Q + [Ziyalo + [¥ir2lo <o

1 1 1 1
<Q 7z T 773 T 7715 <Q -

n+ag— (m+ Bo) + 30 (o — Br) Lk

The later is equivalent to (ky, + 1) =g (k2,5 + 1), where (k1,a + 1) with int(k;) =
n+ap and @ = {ay, as, ...) is the translation of (a,), and (ks, 5+ 1) with int(ke) = m+ 5y
and 8 = (0o, (1, ...) is translation of (b,), to the signed-digit representation. In a similar
way, we prove that the less or equal relation is preserved by these translations. O

As shown above, given the signed-digit representation of a real number, there is an
effective way to translate it to the Cauchy sequence representation and vice-versa, pre-
serving =, < and <. Hence, all the well-known properties of =¢, <¢ and < are still
satisfied by =g, <g and <g. We adopt the signed-digit representation. Nevertheless, it is
easier to define the arithmetic operations and compute them with the Cauchy sequence re-
presentation. So, whenever it is necessary to perform computations with reals represented
by the signed-digit representations, we translate them to the Cauchy sequence represen-
tation, make the desired computations and then, translate them back to the signed-digit
representation. Reasoning in this way, we can easily prove some properties:

Lemma 26. HA* proves, for all n® and m°, that
i) (n)r + (M)r =g (n+m)r
it) (n)r(m)r =g (nm)r
i) |(intn)r|r <g (n)r
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i) |f — (int(f0))glr <g (g for all f'.

Proof
i) We have (n)g = (2n,1,1,...) and (m)r = (2m, 1,1, ...) and represent them in Cauchy
sequence representation: (n)c = (n,n,...) and (m)c = (m,m,...). Then, we sum
(n)c with (m)e and obtain (n+m)e = (n+m,n+m,...), which we represent now
in the signed-digit representation as (2(n +m), 1,1,...) = (n + m)g.

ii) This proof is very similar to the one above.

iii) We prove this in two steps. First, assume intn >g 0. Then intn =g m with
n =¢ 2m. Hence |(intn)r|g =r (intn)g, since |(intn,intn,intn,...)|c is equal to
(intn,intn,intn,...). We want to see that |(intn)r|g <g (n)r, which is equivalent
to (2m,1,1,...) <g (2n,1,1,...). And this is clear, since n = 2m.

Second, if intn <g 0, then intn =g —m with n = 2m — 1. Then |(intn)r|r =r
|(=m)gr| = (2m, 1,1, ...). Hence, we want (2m,1,1,...) <g (2n,1,1,...). This follows
clearly from 2m =n+ 1 < 2n.

iv) This is proved for two cases: f— (int(f0))r >x 0 and f— (int(f0))r <g 0. However,
since they are similar, so we only prove it for the first case. Assume that
f—(anf(fO))R ZR 0. Then |f~—(Z7}t(fO))R|R =R f—(mt(fO))R Let f be(f(), fl, f2, >,
then f — (int(f0))r = (f0, f1, f2,...) —r (f0,1,1,...). In the Cauchy sequence re-
presentation this is represented by

—clint(£0), int(£0),int(f0), ...) =¢ <(f1 — 1)L (f1-1)L

Then, the signed-digit representation of the result is (0, f1, f2, ...). Let us check
that (0, f1, f2,...) <g (2,1,1,...):
m (FE= Dz <o XS g = l<el+x

for all - € N.

4.1.2 The theory HA‘;’X

Part of this section follows closely the work of Kohlenbach (see, for instance, [Koh08a],
[Koh05], [Koh08b] and [GKO08]. Take a normed vector space over the reals and let X be
a new ground type representing elements of the normed space. We denote the set of all
finite types with ground types 0 and X as TX. It is defined recursively by:

i) 0,X € T*

ii) po € T" = (p—o0o)e T~
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T is still the set of all finite types with a unique ground type 0.

Let £4X be the extension of the language £ obtained by adding variables of type X,
new constants

Ox of type X

+x of type X — (X — X)
—x of type X — X

x of type 1 — (X — X)
Il of type X — 1,

new quantifiers Va*, 327 for all p € TX and by extending the constants II, ¥ and R in the
natural way to the new types.

Using the new variables, we define an equality relation in X, denoted by =x:
T =xyis ||z —x y|| =r Or.

In fact, to be exact, we have to write ||z —x y|| since || —x y|| may not be the represen-
tation of a real number. In the future, this will no longer be a problem, since we will add
to the theory an axiom which guaranties that ||z|| is always the representation of a real
number. We use Vz® A(z) to abbreviate Va' A(Z). With this abbreviation, there is no
need to constantly remark that, when working with the reals, we must use z instead of x.
Whenever it is clear, to ease the reading, we use 0, +, — instead of Ox, +x and —x. In the
case of -x, we may even not write the operation sign (and write ax instead of « -x ).

Let HA®X be the extension of HA“ to the language £“*, with the additional axioms
for +x, —x, x and ||.]|:

vector space axioms for +x, —x, -x and Ox formulated with the equality
=x, such as commutativity, associativity of +x and distributivity of +x

with respect to -x

R : va* (||z € R)

N1 VX (||z —x z|| =g Or)

N2 VX " ([lz —x yl == ly —x z|))

N3 VX, g% 2 (o —x 2| <r [z —x yl| += [y —x z]|)

N4 - va!, z* (\oz-x:c—xoé'xyH =r |alr ® [|[* —x yH)

N5 Va! 61 “(laxz—x B x| = @ g 5 = [])

NG = V2% w0 (@ +xy) —x (ux0)]| <g [l —xull += ly —x vl])
N7 : VX, g ([[(—xx) —x (=x)|| =r [z —x yl|)

N8 = Vel ([l == (lyll]; <w [z —xyll)-
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We use this unfamiliar set of axioms instead of the usual ones to ensure that the
+x, —x, x and ||.|| are extensional with respect to =x.

In N4 and N5, we can write Yo, A% instead of Ya!, 3, with no need of writing & to
represent a real number. In this case, the axioms become easier to read. Nevertheless,
recall that -x is of the type 1 — (X — X), and then, the properties shall hold for all type
1 objects. Of course, whenever we are dealing with real numbers, a must be replaced by
a, as happens in N4 and N5.

As aforementioned, the axiom R states that for any x of type X, ||z|| represents a
real number. The vector space axioms together with the axioms N1 to N8, prove that
(X, +x, —x, 0x) is a linear space with a pseudo-norm ||.|| and that ||Ox|| =g Og. The only
primitive predicate is =q still.

The axioms N1-N8 prove the reflexivity, symmetry and transitivity of =x, besides of
proving the =x-extensionality of +x, —x, -x and ||.|:

N3,N4 and N5 = Val, g% 2%, ¢~ (a =g BANT=xy— a-xx:xﬁ-xy)
N6 = Vxx,yx,ux,vx (x =X UNY =xV —>x+xy:xu+xv)
N7 = V& ¢° (x =X Y — —xT =x —xy)
N8 = Vo™, o (x=xy — [lz] =x Ilyll).

Note however, that z =x y does not imply that ||z||(k) =¢ ||y||(k), since the represen-
tation of a real number is not unique.

From the above, ||.|| is a norm in the equivalence classes generated by =x.

Since the theory HA“” is already presented, we proceed by extend it. In order to do
so, we extend Bezem’s strong majorizability for all types p in TX. The following definition
is due to Kohlenbach:

Definition 12. For every p € T* we define inductively p € T:
i) 0:=0;
i) X = 0;
i) p—o:=p—0.
We call arithmetic types to the types in T and mixed types to all the other types if TX.

Clearly, if p is an arithmetic type, then p is p and that for all types z\ is p.

Bezem’s strong majorizability relation extended to all types in TX is given by:

Definition 13.

i) noggm‘)::ngom

i) 2% <gn® = 7| <g (n)r
iii) xP0 g;w P . Vu”,vﬁ(u §: v— au < yv) A Vuﬁ, VP (u g;; v — yu <i yv).
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Notice that the majorants are all of arithmetic type. In particular, if both objects are
of arithmetic type, then the generalized <* coincides with usual Bezem’s strong majori-
zability <*. The properties of <* are also extended to all p € T*:

Lemma 27. HA“* proves
i) r<sy—y<iy

. * * *
ii) r<yyANy<;z—ux<) 2.

Proof In case ), the result for types 0 and X follows from the reflexivity of <,. For
type p — o, it is straightforward from the definition of <} . In case 4i), it is trivial for

type 0. For type X, it follows from the transitivity of <g, since n <o m — (n)r <g (m)g.
For type p — o, we argue by induction on types. Assume z <}y and y SZ/_}\U z. It

suffices to prove that ‘v’up,v/3 (u <, v — U <z zv), since Vuﬁ, VP (u S% v — 2u <X zv)
follows from y <* _ 2. Take u” and v? such that u SZ v. By i), u S/*) v — v S:‘; v. Then
ru < yv Ayv <% zv. Using the induction hypothesis, it follows that zu <} zv. ([l

Let E‘i{x be the extension of the language £“* obtained by adding new relational
symbols <, (between objects of type p and p) for every type p € TX and new quantifiers
Ve <t and 3z < t for terms ¢ not containing x. The relation <, is still the inten-
sional counterpart of the generalized <7. Of course, the new quantifiers are still called
bounded quantifiers and formulas in which every quantifier is generalized bounded are

called bounded formulas.

Definition 14. HA‘;’X is the extension of HA“* with language E‘%’X, obtained by adding
the following axioms

By : Vo dtA(z) « Vo (z <t — A(z))

Bs: Jz <tA(z) < Jz (v <t A Ax))
where t 1s a term not containing x, and

M : ndyme—n<ogm

M, : z dxn — |z]| <r (n)r

M; : Ty — \v’up,vﬁ (u <L, v— au <, yv) /\Vu’A’,v’3 (u <L v —yu G yv)
and rules

Apg — |Isll <wr (t)r
Apg — s Ix t
Ay Nu <, v Au <G o' — su <, to At <5 tf
Apg — 5 Lpp t

RL1 .

RL2 .

where s and t are terms of E‘g’x and w,v,u’,v" are variables not occurring free in the
conclusion of RLy and Apg is a bounded formula. Notice that in RLy, s is of type X and t
is of type 0 and in RLy, s and t are of types p — o and p — o, respectively.
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The axioms By and B3 are the generalization of the ones in HAZ. Since the converse
of My and M3 do not have a generalized bounded interpretation, we use the rules RL; and
RL, instead of the axioms.

Lemma 28. HAg’X proves

i)r<y—ydy

i) x <yAhNy<Lz—xdz

Proof This proof is an adaptation of the proof of lemma 27, since this one does not
use the converse of My and M3, only its weakened versions, RL; and RL,. O

As we have seen, x <g y is of the form Vn® A ¢(n,z,y) with Ayr(n,z,y) given by
int(20) + 312 (wk)27F <g int(y0) + S0 2 (yk)27F + 27", Sometimes, it is useful to have
an intensional inequality between real numbers:

Definition 15. Take arbitrary z® and y®. The relation <g is defined by
z dry:=plz,y) < 0,

where p' ==Y s defined as

0 i Agp(n,z,y)
p(,y)n = { 1 otherwise.

As opposed to x <g y, x < y is a quantifier-free statement.
Lemma 29. HA;{X proves that for all n°, z®, y® and 2X, we have
i) r<gy—r<gyandr gy—x<py;
it) <g is transitive;
iii) z Ix n o [|z]| Sr (n)r;
w) ||zl <k y Ay <g (n)g — z Ix n + 1.

It is worth to note that by i) and iii), we also get ||z]| <g n — 2z <x n and
z dxn — ||z]| <g n.

Observe that we have z <x n > ||2]| <g (n)g for all 2% and n® and < is easily related
with <g and <g. With this equivalence we may avoid the use of the rule RL; and the
axiom M,. Nevertheless, we may use My and RL; whenever we need them.

Proof Along the proof, we will quantify over R. Recall that we use Vz® A(z) to abbre-
viate Vo' A(Z). The properties must be proved for 7, nevertheless, to ease the reading,
we omit this notation.
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i)

ii)

iii)

iv)

Take 2%, y®. Of course, we have v < y — = <g ¥y, which is equivalent to

Ing (int(0) + S0+ ok 2n0 <gq int(y0) + S22 yk ) —
— Vn (int(z0) + ZZJ? zk 55 <g int(y0) + Sk + )

By intuitionistic logic,

Yno¥n (int(z0) + Y102 ok o + 5 <q int(y0) + Z"OH yk 5 —
— int(20) + 317 xk 1 L < int(y0) + 3717 yk s 4+ %),

In particular, we have

int(20) + S0 2k & + 5 < int(y0) + S p P yk & — p(z,y)n <o 0.
By RL,

int(z0) + S0t ok o + 35 < int(y0) + STk o — p(z,y) < 0.

From the latter, we obtain x <g y — x <g y. The proof of that x g y — x <g v,
is straightforward.

Take z®, y® and 2® and assume that x g y and y < 2. From i) together with the
transitivity of <g, we get © <g z. Therefore, for all n°, we get

int(20) + 7 ak & <q int(20) + Y3027 2k o + o5

2n
i.e., p(x,z)n <o 0. By the rule RLy, we get g y Ay g 2 — & <R 2, as desired.

Take n° and 2%X. First, let us prove z <Ix n — ||z|| <g n. Assume z <x n. M,
implies ||z|| <g n. Hence, for all m® we get

2 xn — int([[2]0) + S35 Nz llk ge <o 20+ Y0 g + g
which is equivalent to z <Jx n — p(||z]|,n)m <o 0. By RLg, we get z Ix n — ||z]| <gr
n.

On the other hand, by i), we get ||z|| g n — ||2]| <g n and by RLy, it follows that
|zl <gr n — z <Jx n, since ||z]| <g n is quantifier-free.

This result is a direct consequence of i) and iii). Take n°, y® and 2*. Then
Izl <k y Ay <gn— 2] <rn.

Then ||z|| <g n + 1 and, by i), ||z]| <g n + 1. By iii), we get z <x n + 1.
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Lemma 30. Let A be an arbitrary formula of the language Lg’x. Then HA%’X proves

V2RI (Vo Ixn (2] <r 2 — A(z,2)) < V2° (2] <z 2 — A(z,2))).

Proof Take z®. There is m° such that z <g m. Define n = m+1. The right-to-left impli-
cation is trivial. To prove the direct implication, assume Yz <x n (||z]| <g z — A(z, 2)).
Take an arbitrary 2% and assume ||z|| <g z. Then, since z <g m, from iv) of the previous
lemma, we get © <x n. Using the hypothesis, it follows A(z, z), as desired. 0

Proposition 15. HAg’X proves that the arioms E, Er, Ex and Egr generalize for every

formula of Eg’x.

Proof We present the proof for E and Ep;. For the other axioms, the argument is similar.

Since E generalizes for every formula of £, it suffices to prove it to the new atomic

formulas of E‘Z{X: formulas of the form s <, ¢ where p is not an arithmetic type. We
argue by induction on the type p. Let s[w] be a term of type X and t[w] a term of type
0 with a distinguished variable w of type 0 and assume n =y m A s[n/w] <x t[n/w|. By
My, n =¢ mA ||s[n/w]|| <g t[n/w]. And since ||s[n/w]|| <g t[n/w] is a formula in £** we
have ||s[m/w]|| <g t[m/w]. By RLy, it follows n =q m A s[n/w| <x t[n/w] — sm/w] I
t{m/w].

For the induction step, take s[w] and t[w] terms of types p — o and p — 7, respectively,
with a distinguished free variable w of type 0. And assume n =¢ m A s[n/w| <,_., t{n/w].
Hence

n=omAsn/wl 4, tinjw] Au <L, vAu Gov' —

— n =g mA s[n/wlu <, t{n(wjv Atln/wlu s tn/w
Using the induction hypothesis, we get

n=omAsn/wl 4, tn/w] Au<L,vAu o' —

— s[m/wju Dy t{m/w]v A tfm/wlu’ <5 t[m/w]v’
and by RLs, it follows n =g m A s[n/w] 9, tin/w] — s[m/w| <, t{m/w].
For Ey, it is also enough to prove the result for the new atomic formulas, formulas of

the form s <, t. We argue by induction on p. For p = X, take s[w| a term of type X and
t{w] a term of type 0, with a distinguished free variable w. We claim that

s[Ilzy /w] <x tHxy/w] < s[x/w] <x t[z/w].

We only prove the direct implication, since the other way around is similar. Assume
slllzy/w] Jx t[Ilzxy/w]. It implies ||s[llzy/w]|| <g (t[Ilzy/w])r, and since Ep holds in
HA“X then, we get ||s[z/w]| <g t[z/w]. The conclusion follows by RL;.
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For the induction step, take s[w] of type p — o and t[w| of type p — & with a
distinguished free variable w. Then

slzy/w] Qpep tllay/w] Au <, v A’ 50" —
— s[Ilzy/wlu <, t[llzy /wjv A t[Hwy/w]u <5 t[Hay /w]v

and by induction hypothesis applied to types o and 7, we get
sHzy/w] Dpep tIzy/w]Au <, vAU 0" — sz/wlu <, tx/wioAtfz/wlu < tz/w]o'

By RL,, we get s[ll(z,y)/w] <, t[II(z,y)/w] — s[z/w] <,—., tlz/w]. The converse
implication is similar. 0

Proposition 16. HA‘;’X proves that 11, , QA1l;5, 3, .- 13557 and R, < (EA

Proof The argument of the proof is similar in the two first cases, hence we only prove it
for I, , and R, with p,0,7 € TX.
To prove II < II, notice that from

u<,vAu GuUAw L, 2 Aw G2 —u<, oA Goad
and the previous proposition, we get

<, oAU GuvAw <L, 2 A L 2 —
— I, suw <, Hpavz/\HAAvw <5 HAavz N5 5 su'w <5 Hpguz

By applying RL; once, we get
u<L,vAu Gu' =1, u L,, 50 ANl 50" <5 1550
and by applying it twice, it follows II,, < II;5.

For R, we begin by proving that, for all n° , Ryn < RAn with p being the tuple
p1p2...pk. We argue by induction on n°. Take i §0 k. For n = 0, notice that

udoAY QU Aw Lz AW Q2 —w <o Av Qo Al Qo A v <

IS

By the previous proposition, the latter is equivalent to

u<v

>

v AwdzAw 12 — (Ry), OuwQ(R)AOQ

and from this and RLs, it follows

uduAy v — (Ri),0u 2 (Ri);,00



Again, by RLy, we get (R;),,0 < (R;);0. For the induction step, assume we have the
induction hypothesis of R,n < R;n. Then

udoAu v Aw

Thus, it follows

udvAY <V Aw Lz AW 42— (Ri),,(n+Duw I (Ri)s(n+1vzA
ARz (n+ 1y w' < (Ri)s(n + v 2/ A (Ri)p, (n + Du'w’ D (Ri)p,(n 4+ 1)v'z" A
ARi)z (n + Dv'w' 9 (Ri)p, (n + 'z’

By applying RL;, twice, we get (R;),,(n + 1) < (R;)5,(n + 1).
Hence, R,n < R;n for all n® and also R,n <
Then N - N

n<m—R,nd(Ry)nn(By)"'n < (R,

By RL,, it follows R, < (Eﬁ)M, as desired. 0]

So far, we know that some constants of E%’X have majorants. We prove below that all
constants have a majorant:

Proposition 17. HA‘%’X 1s a magjorizability theory.

Proof As we had seen above, II,¥ and R are majorizable. Hence, it suffices to prove
that there exists closed terms majorizing the constants Ox, +x, —x, x and ||.||. We have
that 0x <x 0°, since ||Ox|| =g 0°. This result is a consequence of RL;.

For +x we claim that +x <x_(x—x) A, m%n+4+m. Take v <x n,y <x m,n <o n’ and
m <o m'. Then, by My and N6, we get ||z +x y|| <wr ||| + [|y|| <z 7+ m. Then

rdxnAn<gn' AyxmAm<om — ||z +xy|| <gn+mAn+m<gn+m' A
AMm4m<gn +m'An +m<gn +m,

which implies

rdynAn<gn' AyxymAm<om' - z+xyIxn+mAn+m<gn+m'A
MmA+m<gn +m' An +m<gn +m,
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by the rule RL;. Using RL; twice, we obtain +x <Jx_x—x) An, m.n +m.

To prove that —x <x_x An%.n, notice that z <x n — ||—xz| <g n, since ||—xz|| =r
||z||. Then, by RL;, z <x n — —xa <Jx n and, now, the conclusion follows by the rule RL,.

For -x, let us prove that -x <i_x—x) Aa',n%.(1 + a0)n. First, we claim that
| x z|| <g (1 + a0)||z]|| for all z*:
o -x x| =g [@lellz]| < (J& = int(a0)[r + |int(a0)|r)[|lz]| <r (1 + a0)|z].

The last inequality is due to the lemma 26. Take o <y (3,2 <Jx n and n <y m. Then
la x || <g (1+ a0)n and a0 <, 50. Hence

a<dy Az <dknAn<ogm—|axz| <g (1+50)nA(1+50)n <y (1+ 50)mA
A1+ a0)n <y (1 + B0)m.

By RL,, it follows

a<dy fAzdxnAn<gm—axz(1+80)nA1+L60)n <, (1+50)mA
AL+ a0)n <o (1 + 30)m

and by using twice RLy, we obtain -x < Aat, n%.(1 + a0)n.
At last, we prove that ||.|| <x_1; An® m°.(2n + 3). Take z <x n, n <o m and i <g j.

Then ||z|| <g n and by the proposition 14, we get ||x||(7) <o 2n + 3. The conclusion is
obtained by applying RL, twice. O

Lemma 31. For each closed term t° of the language, there exists another closed term g
such that

HAY Ft <, q.

Proof Easy induction on the structure of terms. O

The notion of majorant of a term, monotone term and monotone functional are natu-
rally extended. Notice, however, that only terms or functionals of arithmetic type may be
monotone. By the lemma above it is immediate that any term in HA“X has a majorant.

4.2 Bounded functional interpretation extended to
new base types

The theory HAZ as been extended. The bounded functional interpretation will, as well,

be extended to interpret the theory H/—\“SJ{X. The clauses which define this interpretation
extends naturally to the new types. Nevertheless, one shall pay attention to the monotone
terms, since these must be of arithmetic type.
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Definition 16. To each formula A of the language EZ’X we associate formulas AP and

Ap of E‘%’X. Ag is a bounded formula and AP has the;‘brm JbVe Ap(b,c) where b and ¢
are (possibly empty) tuples of (arithmetic type) monotone terms.
1. (Ay)? and (Apg)p are Aypg for bounded formulas Apg.
If we already have AP and BB given by 3bVc Ag (b,c) and JdVe By (d, e) respectively, then
2. (AAB)P is Ib,dVc, e (Ap(b,c) A Bp(d,e)),

3. (AV B)® is 3b,dvc,e (V' < c Ap(b,d) VvV Ve <e Bg(d,¢)),
Ve <t A(w))B is VT <t Ap(z,b,c),
Jdx <t A(:L'))B is IVe3xr AV < ¢ Ap(z,b,d),

7. (Vx A(x))B is glfg’a,g‘v’x <a Ap(w, fa,c),

D

8. (Jx A(x))B is Ja, WcIzr < aVe < ¢ Ap(z,b,c).

By inspecting the clauses of the definition of the interpretation, one easily proves the
following extension:

Lemma 32 (Monotonicity Lemma). Let AP be Ve Ag(z,b,c). Then

HAY b < b Acac A Ap(z,b,c) — Ap(z,V, ).

In the previous section, it was proved that HA‘;X is a majorizability theory. We are
now ready to prove the soundness theorem:

Theorem 28 (Soundness). Let A(z) be a formula in the language £°§X with free variables

2. Suppose that AB is JbVe Ap(z,b,c) and take A a set of universal (with bounded
intensional matrices) sentences. If

X
HA; +AF A(z)
then there exist closed monotone terms t of appropriate type such that

HA‘;’x + A+ VaVz < aVe Ag(z,ta,c).

Proof We argue by induction on the length of the derivation of A(z). In order to ease the
readability, we do not use the underlining to represent tuples. First, we focus on the non-
-logical axioms and rules. All these axioms except By and B3 are universal statements,
hence are sound. In the case of By and Bs, we prove it in two steps, left-to-right and
right-to-left implications.
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By : Vo <t A(z) < Vo (2 <t — A(z)).

Let AB be IV Ap(x,b,c). Then, we have:
(Vo <t A(:v))B is IVeVa <t Ag(x, b, c)
(Vo (z <t — A(x)))B is 3fVa, Vr < a(z <t — Ap(z, fa,c)).

The bounded functional interpretation for left-to-right implication is
3f, gV, c,d(@c’ < fbedVr <t Ap(x,b,d) — Vo Jc(z <t — Ap(z, gbe, d)))
Hence, we ask for closed monotone terms ¢ and r such that
VaVz < avb, c,d(‘%’c’ < gbedVr <t Ap(z,b,¢) — Vo < e(x <t — Ap(z,rbe, d))),

where z is the tuple of free variables occurring in ¢. The terms ¢ and r, given by
qbed := d and rbc := b do the job.

The right-to-left implication asks for monotone terms ¢, r and s such that
Vavz < a@f,c(%’d QqfNd Qrfcve < d(:c <t — Ap(z, fd, c’)) —
— Va < t(Ap(z, sf, c)))

Clearly, qfc := t[a/x], rfc := c and sf := f(t[a/z]), where { is a majorant for ¢, are
monotone and do the job.

Bs: Jz <t A(z) < Jz (z It A A()).
Assuming (A(x))? is given by 3bVe Ap(z,b, ¢), we have

(Jx <t A(a:))B is IVedz Q1Y < ¢ Ap(z,b, )
(Elas(:v <t A A(:E)))B is Ja, Wedz < aVe < c(x <t A Ap(z, b, c’)).

We assume z as the tuple of free variables of ¢. The left-to-right implication asks
for monotone terms ¢, and s such that

Yavz < agb, d<9’c < gbddx < Ve < e Ap(x,b,d) —

— 3o < rbYd Qd(z Dt A Ap(z, sb, d’))).

Take qbd := d, rbd := t[a/z] and sb := b, where f is a majorant for ¢. These terms
do the job and are monotone. For the right-to-left implication we have to determine
monotone terms ¢ and r such that

Yavz < agb, c,d(gc" < gbeddx < dvc < c"(x <t A Ap(x, b, c/)) —
— Jz AtV < Ap(z,rbd, c’)).
Clearly, gbcd := ¢ and rbd := b do the job.
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Now, we analyse the two rules.

Apalz] — ||s]| < (t)R'

RL; :
! Abd[Z] — S S]x t

Take z as the tuples of the free variables of Apy. Assume that the premise has been
derived in HA‘;’X. By the induction hypothesis,

HAY - Va, bz < a¥n® <o b (Apalz] — |Isll(n +1) —t <g &) .
Since n is a natural number, it is clearly monotone. Hence, taking b = n we obtain
Vavz < a¥n (Apalz] = |Isll(n+1) —t <g 5=,
which implies YaVz < a(Apilz] = ||s]| <r (t)r). Equivalently,
Vavz (Awlzl Az <anaDa—|s|| <z (t)r).
By RLy, it follows
YaVz (Abd[z] ANz<aAa<a— s <x t).
which is equivalent to YaVz <l a (Abd[z] — 5 <x t).
Apalz] ANu Qo Ad Qo — slzlu D t[zlo Atfz]u” S t[z]

RL,: Al = sl D 1]7]

Take z as the tuple of the free variables of Ay, s and ¢t and that the premise has
been derivable in HA%’X. Hence, by the induction hypothesis, HA%’X proves that

Vz <aVu < bVo V' < dvv' e (Abd[z] ANu<oAd <o —
— s[z]u < t[2]v Atz D t[z]))

for every monotone a, b, ¢,d and e.
Choose b =c=v and d = e =v". Then
Vav¥z < a (Aplz) Au<oAd Qo' — s[2]u Qt[z]o At[2]d’ Qe[
which is equivalent to
Vavz (Awz] Az <anaDanu Doad Do — s[zlu Dtfz]o Atl]u D t]).

By RLs, HA‘;’X proves VaVz (A2l Az < ana < a— s[z] Dtz]), which is equiva-
lent to VaVz < a (Apalz] — s[z]u D t[z]), as desired.
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We continue by proving the theorem for the logical axioms. Until the end of the proof,
take (A(z))?, (B(z))? and (C(z))® as Ve Ag(x, b, ), IdVe Bg(z,d, e) and Juvv Cp(x,u,v),
respectively.

1.

A A— B
B

Assume that HA‘%’X proves A and A — B. By the induction hypothesis, there are
monotone terms t,q and r such that

HAYS = Ve Ag(t,b)
HAZS b ¥b,e (V¢ < gbe Ap(b,c) — Bo(rb,e)).

We want a monotone closed term s such that HA‘;’X - Ve Bg(s,e). Clearly, s := rt
is monotone and does the job.

A— B B—-C
A—C

Assume that HAg’X proves A — B and B — C. By the induction hypothesis, there
are monotone terms ¢, ¢, r and s such that

HAZX = Wb.e (Ye < the Ap(b,c) — Ba(gb,e))
HAY® = Vd,v (Ye < rdv Bp(e,d) — Cp(sd,v)).

We want to produce monotone closed terms p and [ such that
Vb, v (Qc < pbv Ag(b,c) — Cg(lb,v)).

Let pbv := tb(r(gb)v) and b := s(gb), clearly monotone. We fix monotone b and v
and assume

Ve < th(r(gh)v) Ap(b,c). (4.3)
By (4.1), we get

Ve Qr(gb)v (Ve < th(r(gb)v) Ap(b,c) — Bplgb,e)) (4.4)
and by (4.4) and (4.3), it follows

Ve < r(gb)v Bg(gb,e). (4.5)
We conclude C(s(gb), v) by (4.2) and (4.5).
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31 AvA— A

We want to produce monotone closed terms ¢, ¢ and r such that

Vb, ¢, d (Qc” < thedVe" < gbed (‘5’0’ <" Ap(b, ) VY < Ag(d, c’)) —
— Ag(rbd, c)).

Let tbed := ¢, gbed := ¢ and rbd := max(b, d). Recall that HAZ - max < max and
that r is only defined on arithmetic types. Hence, these terms are monotone. We
fix monotone b, ¢ and d and assume

V' < v e (‘5’0’ <" Ag(b, )V v <" Ap(d, c’)).

Then V¢’ < ¢ (Ap(b, )V Ap(d, ) and also Ag(b, ¢)V Ap(d, ¢). Since b < max(b, d)
and d < max(b, d), by the monotonicity lemma we get Ap(max(b, d), ¢)VAg(max(b,d),c)
which implies Ag(max(b,d), c).

32 A— AANA.
We have to produce monotone closed terms ¢, q and r such that

Vb, " (Qc < tbd " Ap(b,c) — Ap(gb, ) A Ap(rb,c")).

By the monotonicity lemma it is clear that ¢,q and r given by tbd'¢” := max(c, "),
qb := b and rb := b do the job.

41 A— AV B.
To interpret this axiom we need monotone terms ¢, g and r such that

Vb, c,e (V' D tbce Ap(b,d) — V' < Ap(gb,d’) Ve Qe Bp(rd,e)).
Clearly tbce := ¢, qb := b and rb := b do the job.

42 ANB — A.
We need to produce monotone closed terms ¢, ¢ and r such that

Vb, c,d (V¢ Qtbedve < gbed (Ap(b,¢) A Bp(d,e)) — Ap(rbd,c)).

Take tbed := ¢, gbed := b and rbd := b. By the monotonicity lemma, these terms do
the job.

51 AVB — BVA.
We want monotone closed terms ¢, g, r and s such that

Vb, c,d, e (90” < thedeVe” < gbede (‘5’0’ " Ag(b, ) vV Ve < e Bg(d, e/)) —
— Ve’ Qe Bg(rbd,e') v Ve < e Ap(shd, d)).

The terms given by tbcde := ¢, qbcde := e, rbd := d and sbd := b do the job.

52 ANB — BAA.
The proof is similar to the previous one.

88



7.1

7.2

8.

A— B
CVA—CVB

Assume that HA“<’,’x proves A — B. By the induction hypothesis, there exist mono-

tone closed terms t and ¢ such that
HAY® = Wb,e (Ve Qtbe Ap(b,c) — Bg(gb,e)). (4.6)
We aim to produce monotone closed terms r, s, p and [ such that

Vb, e, u, v (g’v” < rbeuvVe < sbeuv (g’v’ <" Cp(u,v') VY Qe Ag(b, c’)) —
— Vo' v Cp(pbu,v') v Ve' < e Bg(lbu, ¢)).

Take rbeuv := v, sbeuv := tbe, pbu := u and lbu := ¢gb. These terms are monotone.
Fix monotone b, e, u, v and assume

Ve <e (‘5’7)” < Ve < the' (‘6’1}’ <" Cp(u,v') VY < e Ag(b, c'))).

Then Ve' < e (91}’ Qv Cp(u,v') Ve < t(be) Ap(b, c)). By the latter and (4.6),
it follows Yo' < v C(u,v') Vv Ve’ Qe Bg(q(b),e), as desired.

AANB — C
A— (B—C)

Assume that HA‘;’X proves A A B — (. By the induction hypothesis, there are
monotone closed terms t,q and r such that

HA%Y Wb, d,o (\9@ A thdv¥e < gbdv (Ap(b, ) A By(d, e)) — Ci(rbd, v)).
We want monotone closed terms s, p and [ such that

Vb, d, v (g’c < sbdv Ap(b,c) — (9@ < pbdv Bg(d,e) — Cp(rbd,v))).

Clearly, s, p and [ given by sbdv := tbdv, pbdv := qbdv and lbd := rbd are monotone
and do the job.

A— (B—C)
AANB — C

This proof is similar to the previous one.

1 — A.
Trivial.
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10.

11.

12.

A — B(z)
A —VzB(z)

Assume that HA‘;’X proves A — B(z). By the induction hypothesis, there are
monotone terms ¢ and ¢ such that

HA‘;’X - Va,b,evVz <a (90 < tabe Ap(b,¢) — Bp(z,qab,e)). (4.7)
We want to produce monotone closed terms r and s such that
Va,b, e (90 < rabe Ag(b,c) — ¥z < a Bp(z, sab, e)).

Take rabe := tabe and sabe := gab. Fix monotone a,b and e and assume
Vz QaVe D q(a,b,e) Ag(b, c). By the latter and (4.7), it follows Vz < aBg(z, rab, e).

VeA(x) — A(t).
Let z be the tuple of all the free variables of A and t. We want to produce monotone
terms ¢, and s such that

Va,c, fVz <a (96 < qacfVe¢ Qracf¥r < b Ag(z, z, fb,¢) —
- AB(t[Z],Z7S(lf, C))

Take gacf := t[a/z] where t is a majorant for ¢ (hence, monotone), racf := ¢ and
saf := f(t[a/z]). Fix monotone a,c and f and assume

Vb A ta/2)V¢ < Vo Qb Ag(x, 2z, fb, ).

Take b as f[a/z].NThen, Vo D tla/z] Ag(z, 2, f(tla/2]),c). Since t(z) < tla/z], we
get Ap(t[z], 2, f(tla/z]), c).

A(t) — Jz A(x).
Let z be the tuple of all the free variables of A and t. We want to produce monotone
closed terms ¢, and s such that

Va,b, vz < a (9(:’ < qabe Ag(t[2], z,b,¢) — 3o D rab¥eé < ¢ Ag(z, z, sab, ).
It is clear that gabc := ¢ , rab := t[a/z], where t is a majorant for ¢, and sab = b do

the job, since t[2] < t[a/2].

A(z) — B
dz A(z) — B

Assume that HA‘;’x proves A(z) — B. By the induction hypothesis, there exist
monotone terms ¢ and ¢ such that

HA%’X - Va,b,eVz <a (Qc Jtabe Ag(z,b,¢) — Bp(qab,e)).
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We want to produce monotone closed terms r and s such that
Va,b, e (Qc < rabedz < a¥e < ¢ Ap(z,b,¢) — Bp(sab, €)).
Clearly, r and s given by rabe := tabe and sab := qab are monotone and do the job.

To end the proof let us focus on the induction rule

A(0) vn® (A(n) — A(n +1))
Vn® A(n) '

Assume that HA‘;’X proves A(0) and Vn (A(n) — A(n+1)). By the induction hypothesis,
there are monotone closed terms ¢, p and ¢ such that

HAY® = Ve Ap(0,t,¢)
HA“%’X F Va,b,evn < a (90 < pabeAg(n,b,c) — Ap(n+1,qab,e)).

We want to produce a monotone closed term r such that Va, cvn <, a A s(n,ra,c). From
(4.9) follows

Ya,bvn <y a (QCAB(TL, b,c) — VcAg(n+1,qab, e)). (4.10)

Take ¢a as 1aa, where 1 is recursively defined as

{ Y0a =1
Y(n + 1)a = max(¢na, qa(ypna)).

¢ has arithmetic type. One can show Qa, bvn <y a AB(n,~ ¢a,b) by induction: take a and
n <o a and assume Ve Ag(n,vna,c). By (4.10), we get Ve Ag(n + 1, qa(ina),e), which
implies

Ve Ap(n+1,4(n+ 1)a,e,n+ 1),
by monotonicity. Hence, by the latter and (4.8), it follows Vn <, ave Ag(n,vna,c), and
by monotonicity in the first entry, we obtain Vn <y aVe Ag(n, ¢a,c), as desired. To end

the proof, take r as Aa.¢a. By construction, v is monotone in the second entry and it is
easy to prove that VavVn < m ¢¥na < ¢Yma. Hence, ¢ is monotone. ([

The characteristic principles in P[] are naturally extended to the new language Eg’x.
The set of the extended principles is denoted by P*X[<].

Proposition 18. HA‘%’X + P“X[<] proves bBC.

Proof Take ¢, monotone, and assume Vz < ¢3y A(y, z) which is equivalent to

Vz (2 Qe — 3y Ay, 2)). By bIPS, it follows Vz3b (2 ¢ — Jy < b Ay, 2)) and by
bAC“X, we get 3fVaVz < aFb < fa (z<c¢— 3y Kb A(y,z)). Choose a and b as ¢ and
fe, respectively. Then 30z < ey < b Ay, 2). O
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Theorem 29 (Soundness extended). Let A(z) be a formula of the language of HA‘;’X

with free variable z. Let (A(2))P be JbVe Apg(z,b,¢) and suppose A is a set of universal
(with bounded intensional matrices) sentences. If

HAL + PX[<] + A F A(z)
then there are monotone closed terms t of appropriate types such that

HAY + A b VaVz < aVe Ag(z,ta, o).

Proof It suffices to prove that all the characteristic principles have bounded functional
interpretation. To ease the reading, we will not underline tuples.

1. bAC¥X,
Let (A(z,y))? be Ve Ap(z,y, b, ¢). The interpretation of the left hand of bAC*X
is

3f, g¥e,dvx < dIy < fdvd Qe Ag(z,y, gd, ).

In order to simplify, we write Vo < a3y < faVd e Ag(z,y,b,c') as B(a, b, ¢, f).
Hence, the interpretation of the left hand becomes 3f, gVc, d B(d, gd, ¢, f), while the
interpretation of the right hand is

3f, Ve, d3f' Q fY¢" QN QdVa < d Bla, gd, ", f).
We must produce monotone closed terms ¢, ¢,r and s such that
Vb,c, f,g¥d L tbefgt < qbefg(B(Y, gb' ¢, f) —
_ §|f/ S‘ rfg‘%’c" Sl Cgb” ﬁ b\&b/// S] b// B(bm,sf(gb//),cu, /))
Take t,q,r and s given by tbcfg := ¢, gbcfg :=b, rfg:= f and sfa := a and take
also monotone b, ¢, f,g. Assume V¢’ < V0 < b B(V,gb,c, f) and take f' = f.

Then, using the transitivity of < and the monotonicity of B in the entry of gb/, it
follows

§|f/ S‘ fg/cll Sl Cg;b// Sl bgb/// S‘ b// B(b"’,gb",c",f’).
2. bIPE.

Let (B(y))® be 3¢¥d Bp(y,c,d). The bounded functional interpretation of the
premise of bIP@gﬁ is

3b, ¢, fVd (9(1 A fdv¥z < a Apg(x) — Iy AWV < d Bp(y,c, d)).

Take C(a,b,c, f) as Vd < faVr <.d Ay(xr) — Jy < Wa' < a Bg(y,c,a’). Then,
the interpretation above is 3b, ¢, f¥d C(d, b, c, f), while the bounded functional in-
terpretation of the conclusion of bIP‘\;JZ;ZZ< is

3b, ¢, FYdI < BYd" < d C(d" V¢, f).
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We want to produce monotone closed terms ¢, ¢, and s such that
Vb,c,d, f (Vd < tbedf C(d',b,c, f) — T < qbedfvd < d C(d,V,rbef, sbef)).
Clearly, t,q,r, s given by tbedf := d, qbedf = b, rbcf := c and sbef := f do the job.

. bMPy,.
The interpretation of the antecedent of bMPY;* is

Ja, b (‘5’@' S aVl QbVy S BVz < d Apg(z,y) — Bbd)
while the consequent has the following interpretation
Ja, b3 < b(‘%’a’ daVy QVVr <ad Az, y) — Bbd).
We want monotone closed terms ¢ and ¢ such that,
(g’a’ S aVl <QbVy S WVz < d Apa(x,y) — Bbd) —

— 3V <A tab (Q’a’ < gabVy <A VVr <a' Az, y) — Bbd)

for all monotone a and b. Obviously, take tab := a and qab := b.

. bUD{,,.
The interpretation of the premise is

Vb, VY <ABYE < e (V:c <Y Apg(z) VVYy < Bbd(y)),

while Vb, ¢ (Vz < b Apa(x) VVy < ¢ Biy(y)) is the interpretation of the consequent
of bU Df;l;ﬁ. We must produce monotone closed terms ¢ and ¢ such that

Vb, ¢ (‘5’1)’ < theVd < gbeVl! QWY < (Vx <Y Apg(z) VVY < Bbd(y)) —
— Vo b Ap(z) VVy <c Bbd(y)>.

Clearly, tbc := b and ¢bc := ¢ do the job.

. bBCCYy.
We have to produce a monotone closed term t such that for all monotone b, ¢ and
c such that ¢ < ¢

Vb < theVh” b3z VY QY Apa(y, 2) — 3z VY QWYY QY Ay, 2).
Take tbc := b and monotone b, ¢, ¢ such that ¢ < ¢. Assume that
VY QYD Q32 QY b Awaly, 2).

By the transitivity of < we get V0" < b3z < ¢Vy < V" Awly, z). Take b’ = b.
Then, 3z Q Vy < b Api(y, 2). Again, by transitivity, it follows

Jz QYYD bVy QY Apg(y, 2).
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6. MAJ?.
The bounded functional interpretation of MAJ“ is

JfVavz < aJy < fa (x Qy).

Hence, we need to produce a monotone closed term ¢ such that, for all monotone a,
Vr < ady <ta (x Jy). Clearly ta := a does the job.

O

The principle tameAC is also naturally extended. As before, under the characteristic
principles, tameAC is equivalent to a purely universal statement. Moreover, it has a
bounded functional interpretation in HAQ’X + tameAC.

Theorem 30. Let A(z) be a formula of the language Eg’x with free variables z and
bounded functional interpretation given by Ve Ag(z,b,c). If

HA;’X + PX[<] + tameAC + A F A(2),

where A is a set of all purely universal statements, then there are monotone closed terms
t of appropriate types such that

HAZ™ + A b VaVz < aVe Ap(z ta, c).
Proposition 19 (Monotone axiom of choice). HA‘;’X + P“X[<] proves

(9@@9@’ qb (A(a,b) — A(a,b)) AVadb A(a, b)) — 3fVa Ag, fa),

where A is an arbitrary formula of E%’X.

Proof To ease the reading, we do not underline the tuples. Assume the monotonicity

property Va¥bvb' < b (A(a,b') — A(a,b)). Va3b A(a,b) is equivalent to
Va (a<a—3b(b<SbA A(a,b))).

By bIF’\‘f/’l;Z;7 Va3b (a <a— 3 b IV A Ala, b’))) and by the monotonicity property,
we get Ya3b (a < a — A(a,b). By bAC®X, 3fVaVa' < a3 < f(a) (a/ < a' — A(d,D)).
Take b := fa and @’ := a. Then 3fV¥a A(a, f(a). O]

Theorem 31 (Characterization). For each formula A of L7, HA%S™ + P<X[<] proves
A AB, - -

Proof We argue by induction on the logic structure of the formula. The conclusion
is trivial for bounded formulas. To simplify the notation, no tuples will be underlined.
We assume that AP and B are given by 3bVe Ap(b,c) and IdVe Bp(d, ), respectively.
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1. ANB.
Assume that HA% + PX[<] proves A <> AP and B — BP. We want to prove that
(AN B) < (AA B)E, where (A A B)P is given by 3b,dVe,e (Agp(b,c) A Bg(d,e)).
By the induction hypothesis, we have A A B < AB A BB, which is equivalent to
0¥ Ap(b,c) AddVe Bp(d,e). Hence (AA B) < 3b,dVe, e (Ag(b,c) A Bg(d,e)), as
desired.

2. AV B.
Assume HAg’X + PYX[d]F A« AP and HA“é’X + P*X[d] + B « BP. To prove the
left-to-right implication we only use intuitionist logic. By the induction hypothesis,
we have AV B « AB Vv BB which is equivalent to

¥ Ag(b,c) v IdVe Bp(d, e).
Hence, 3b, d(‘%’c Ag(b,c) V Ve Bg(d, e)), which implies
Ib,d (Vv < e Ap(b,d) v VeVe <e Bg(d,e')).

Equivalently, 3b, dVe, e (90’ dc Ag(b,d) Vv Ve < e Bg(d, e’)). For the right-to-left
implication, bUD{}; implies (A V B)? — 3b,d (Ve Ap(b,c) V Ve By(d, e)), which is
equivalent to 3b¥e Ag(b, ) V IdVe Bp(d, e).

3. A— B.
Assume that HA%® + P“X[<] proves A <+ AP and B < BZ. We claim that
(A — B) « (A — B)5. To the left-to-right implication, assume A — B.
This implies clearly that A® — BP. Hence, 30Ve Ag(b,c) — JdVe Bg(d,e),
which implies, Vb (90 Ap(b,¢) — 3Jdv¥e Bg(d, e)). By bIPZ and the monoto-
nicity lemma, we get Vb3d (g’c Ag(b,c) — Ve Bg(d, e)), which is equivalent to
Vb3dve (Ve Ag(b,c) — Bp(d,e)). By bMP$7*, we conclude

Vb3dVede (Ve < e Ap(b,d) — Bg(d,e)).
By using twice the previous lemma, we obtain
3f, Vb, e (90 < gbe Ag(b,c) — Bg(fb, e)),

as desired.
To prove the right-to-left implication, assume (4 — B)? is given by

3f, gvb, e (Qc < gbe Ag(b,c) — Bg(fb, e)) (4.11)
and assume also AP. Take b monotone. From AP, it follows Ve Ag(b,c) and,
consequently, Vc <1 gbe Ap(b,c) for an arbitrary monotone e and g. By (4.11), we
get Bp(fb,e). Therefore, IcVe Bg(c,e) for ¢ := fb. Clearly, ¢ is monotone. Thus,

(A— B)? — (AP - BP) - (A — B).
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4. Yz A(z).
Assume HAY® + PeX[<] - A(z) < (A(z))? and that (A(x))? is given by
3fVa,c Ag(x, fa,c). First, we prove the left-to-right implication. By the induc-
tion hypothesis, we have Vo A(r) « Vz3bve Ap(z,b,c). By bAC*X and the mo-
notonicity property, it follows 3fVaVz < aVe Ap(w, fa,c), which is equivalent to
(Vz A(z))". For the right-to-left implication, assume 3fVa, vV < a Ag(z, fa,c).
Hence, Va3VeVe < a Ag(x,b,c), where b is given by fa. Then,

VaVz < a3Ve Ap(z,b, c).

The conclusion follows by MAJ“X,

5. dz A(x).
Assume HA%* +P“X[<] - A(z) < (A(z))P. The bounded functional interpretation
of 3z A(z) is 3a, b¥eIz < a¥e < c Ap(z,b,c). In the left-to-right implication, the
induction hypothesis implies Jz3bVe Ag(z,b, c). By MAJ*X we get

Jz (3a (z < a) A Ve Ap(z,b, 0)).

Since x < a ensures that a is monotone, we get Jx (gla (z < a) AIVe Ag(x,b, c)).
Then, it is straightforward to get (3 A( ))B. In the right-to-left implication, by
bBCdeX, we get Ja, bIzr < aVe Ag(x,b,c). Jz A(x) follows from intuitionistic logic
and from the induction hypothesis.

6. Vo 9t A(z).
Assume HA%X +PX[<] - A(z) < (A(z))2. The bounded functional interpretation
of Vo < t A(z) is IVeVe < t A(z,b,c). For the left-to-right implication, the
induction hypothesis implies Yz <1 t3bVc Apg(z,b,¢) and by bBCX, we get

Ve <3 <D bYe Ag(z, b, c).

By the monotonicity property and intuitionistic logic, we get (Vo <t A(x))®. Using
only intuitionistic logic, the right-to-left implications is straightforward.

7. dx It Ax).
Assume that HA%® + P“X[<] proves A(z) < 3¥e Ap(z,b,c). The interpretation
of 3z < t A(z) is IVe3x < V¢ <4 ¢ Az, b,¢). The left-to-right implication
is straightforward, using the induction hypothesis and intuitionistic logic. In the
right-to-left implication, assume WVeAr < V¢ <D e Az, b,¢). By bBCC, it
follows 3b3z < t¥e A(z, b, ¢), and,by the induction hypothesis, we get 3z <t A(x).

0

As mentioned before, the characterization theorem ensures that there are no missing
characteristic principles.

The following is a consequence of the soundness theorem:
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Theorem 32 (Program extraction). Let Ayi(z,y) be a bounded formula of E“SI”X whose
only free variables are x and y. If

HAS™ + PX[<] - VaTy Aw(,y)
then there is a monotone closed term t of the language such that
HA“%’X - Vavz < a3y < ta Awg(z,y).

Recall, that for z of type 0 — p, with p € T, we defined

eMn = maz,{zi : i <o n}.

We extend this definition for types 0 and X:
Definition 17. For each n® and 2%, we define n™ :=n and 2™ = ||z[|(0) + 1.

Then, we prove the following:

Lemma 33. Take 2 with p € {0,1,X}. Then HA‘;’X proves v < M.

Proof The case of p = 0 is trivial and for p = 1, the result is a straightforward con-
sequence of the definition of ™. If p = X, we want to prove that z <x ||z||(0) + 1. We
claim that [|z[ <g (||z|/(0) + 1)r. Recall that int (||z||(0)) <g [|z//(0), since |z||(0) is a
natural number. Then int (||z[|(0)) + 3252 (J|lz||(k) — 1) 5% <g ||z[(0) + 1 + 5 for all i°.
Therefore, [|z]] <g (||z][(0) + 1). By RL;, we get = <lx ||z[|(0) + 1. O

As a consequence of the previous lemma and the program extraction theorem, we have

Theorem 33. Let Api(z,y) be a bounded formula in E‘;’X containing only free variables
x? and y°, where p is restricted to the set {0,1,X} and o is an arbitrary type. If

HAY + PX (<] - Y23y Aa(z,y)
then there exists a monotone closed term t such that

HAS® - Vady < ta Aw(z,y).

Proof Take Ap(z,y) a bounded formula of EZ’X with « of type p € {0,1,X}. By the
program extraction theorem, there is a monotone closed term ¢ such that

VaVz < ady < qa Apg(z,y) is provable in HA%X. By the lemma above, z < ™. Thus
Vody < gq (xM) Apa(z,y). Then, choose t such that tx := ¢ (xM) O

Let PAQ’X denote the classical version of HA‘;’X, ie., PA‘;’X is Peano Arithmetic extend

to the language Eg’x. To interpret the extended Peano arithmetic (with base types 0 and
X), we proceed as usual. First, Peano arithmetic is interpreted into Heyting arithmetic
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via a negative translation and afterwards, Heyting arithmetic is interpreted by the ex-
tended bounded functional interpretation. We will use again Kuroda negative translation
(A ~» A") extended to bounded quantifiers.

Let P[] be the modification of P*X[<] obtained by replacing bAC** by bAC:,
where bAC‘b“(;X is the restriction of bAC** to bounded matrices. As well, bBC** restricted
to bounded matrices is denoted by bBCy®

Following the proof of proposition 18, then HA“S’,’X + P& [<] proves bBCY™.

Theorem 34. If PA%’X+P‘;(2X[§I] proves A, then HA‘;’X—i—PZ”(}X[ﬁ] proves A’ for an arbitrary
formula A in the language E‘;’X.

Proof It suffices to prove the theorem for the axioms By, B3 (since the remaining non-
-logical axioms are universal), for the rules RL;, RL, and for the principles in Pféx[ﬁl].

(By)" is given by == (Vo <t =—(A(2))! < Vo == (v <t — (A(z))")). From By, we
get Vo <t == (A(z))! « Vo (z <t — ==(A(2))") and since (¢ — =) — —=(p — V)
is intuitionistically true, then

Vo <t ——(A(z)) Vo —(z <t — (A(z))").

The proof for B3 is even simpler. For the the rule RL;, assume PA%™ 4+ P2X[<] proves
Apg — ||5]| < (t)r. In order to ease the reading, let us write ||s|| <g (t)r as Vn C(s,t,n),
where C' is decidable. By the induction hypothesis, HA%X + Pféx[ﬁ] proves
== ((Apa)"T — Vn ==C(s,t,n)), which is equivalent to (Ay)" — ==¥n ==C(s,¢,n). This
implies (Apg)" — Vn —==C(s,t,n). Equivalently, we have (Ay)! — Vn C(s,t,n) since C
is decidable. By RLy, it follows (Ap)! — s <x t.

The proof for rule RL, is similar, hence we skip it.

Now, we focus on the principles of P‘:C;X[gl].

1. bAC.
We claim that HAg’X + P& [<] proves

— (vmﬁay (Apa(z, y))T — If¥b——Va < b=-Ty < F(b) (Apalz, y))*) :

Assume Vz——3y (Awg(z,y))I. By bMPX, we obtain Yz3a——3y < a (Awa(z, )T,
which, implies 3fVb¥z < bJa < f(b)=-3y < a (Aw(z,y))! by bACS. Since < is
transitive and 3z ——A « —=3x A, it follows IfVbVx < b-~—Fy < f(b) (Apa(x,y))'.
Now, the conclusion is straightforward.

2. bIPE.
By bIP%%, it is clear that HA%X 4 P[] proves

= (Ve = (Aual@))! = 3y (BW))) = B (Yo ~(Au(@))' = 3y Db (B )
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. bMPX,
Similar to the one above, using bMP;™ instead of bIPS;).

w,X
. bUDZ.
We want to prove that HA‘;’X + P [<] proves the double negation of

Vb—=Ve == (Vo Qb —~=(Apa(2))T v ¥y < ¢ =(Bu(y))T) —
— Vo == (Apa(2))"V Yy (Bua(y))'.

It is a straightforward consequence of bUDSs, ——(AV B) — (-—AV —==B) and
-V A — Vo -—A.

. bBCCY™.
We claim that the double negation of

\ac — (9() ——dz ﬁ va S‘ b _‘_‘(Abd(y7 Z)T — Jdz S] va _‘ﬁ(Abd(y’ Z))T>

is provable in HA‘%’X. Assume Vb =—=3z < ¥y < b == (Apa(y, 2). Then
32 < ¥y =(Apa(y, 2))1 is a straightforward consequence of bMPY; and bBCC:X,

. MAJ@X,

Trivial.

As a consequence of the previous and the soundness theorems, it follows:

Theorem 35. Let A(z) be an arbitrary formula of Eg’x with negative translation A'(z).
The bounded functional interpretation of A'(2) is given by Ive (A)g(z,b,¢). If

PAY + P (<] = A(z),

then there exist monotone closed terms t of appropriate types such that

HAY 1= Vavz < aVe (A)p(z,b, ¢).

Theorem 36 (Extraction and Conservation). Let Ay(x,y) be a bounded formula in
the language Eg’x, containing only free variables x* and y°, where p € {0,1,X} and o is
an arbitrary type. If

PAY + Py (<] - Va2 3y Apa(z,y)

then there exists a monotone closed term t of appropriate type such that

PAg’X FVedy <te Apa(z,y).
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Proof Assume PA;{X—I— Py X[<] proves Va#3y” Apg(z,y). Then, in HA%’X—i—Pb“;’X[ﬂ], we get
Vr—=—3y Ap(z,y). Using bMPZJéX and the theorem 33, there is a monotone closed term ¢
such that HAS™ = Va3b < ta=-3y <9 b Api(z, y). Hence PAS proves

Y 3b Jtr——3y b Ap(z,vy),

and, clearly, also proves Va3y <tz Ayy(z,y). ([l

To each formula A of the language £%%, we associate its corresponding flattening,
obtained by replacing all intensional symbols < by the extensional ones <*. The flattened
formula is denoted A*.

Then, the following is clear:

Theorem 37 (Flattening). Let A be an arbitrary formula of the language Lg’x. If HA‘;’X
proves A, then HA®* proves A*.

There are two kind of models for HA“”*. On one hand, such a model can be obtained
by letting the variables range over the appropriate universe of the full set-theoretic type
structure S¥* with N and (X, ||.|[x) as the universe for base types 0 and X, respectively.
All objects of type X are interpreted as vectors in the normed space X. In particular,
Ox is interpreted by the zero vector of the normed space. The operations +x and —x
are interpreted, respectively, as the addition in X and as the inverse of a vector with
respect to +, while -x is interpreted as the operator which, given o € NN and = € X,
returns the scalar multiplication of unique real represented by & by z. Finally, |.| is
interpreted by the function which associates to each vector x € X, a specific representa-
tion (non-effective) of the real number ||z||x. For instance, ||x||x can be represented by
the sequence (k,ni,ns,...) of integer numbers (we ignore the representation of integers
by natural numbers), where k is the integer part of ||z||x and (nj,ns,...) is the binary
representation (with no infinite sequence of 1’s) of its decimal part. This corresponds to
the canonical (also ineffective) representation (.), of Kohlenbach [Koh08a].

On the other hand, a normed space (/Al, m) (necessarily separable) can be seen as the
completion of the countable normed space (A4, ||.||). The elements of this countable normed
space are coded by natural numbers while a function ||.||4 of type 0 — 1 represents the
pseudo-norm on N: ||n||4 =g (||z||)r, where x € A is represented by n and (||z||)r is the
representation of the real number ||z||. For instance, the space C([0,1]) of all continuous
functions f : [0, 1] — R together with the supremum norm || f|| = sup{|f(z)| : € [0, 1]}
is the completion of (X, ||.||) where X is the set of all finite tuples of rationals numbers
and ||.|| is given by

I{ao, as, ..., an)|| := sup{lao + a1z + ... + a,z"| : z € [0, 1]}.

The completion (A, m) of (A, ||.]]) is now represented by the completion of (N, ||.||.4):
elements of the completion are represented as functions from N to N satisfying certain

properties and the pseudo-norm .|| 4 is extended to a pseudo-norm |.|| , on N¥. Actually,
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we may suppose that every element of NV is a representation. For details, see [Koh93]
and [Koh08a].

The new kind of model of HA“”* can be obtained by letting the variables range over
the appropriate universe of the structure S*X where N and NY are the universes for types
0 and X. Each object in X is interpreted as the representation (in NY) of an element of
A. The operations in X are interpreted by the operations in NV and ||.|[*~

by |-l 4 on N¥.

is interpreted

4.3 Bounded functional interpretation of Peano arith-
metic extended to new base types

In this section, we extend the direct bounded functional interpretation of Peano arithmetic
to new base types. As in the numerical case, the logical connectives are reduced to
V,V,—. The other connectives and existential quantifiers are defined classically in the
usual manner.

Definition 18. To each formula A of the language E‘;’X, we assign formulas AV and Ay,

such that Ay is bounded and AY is of the form VbIc Ay (b, ¢), according to the following
clauses

1) if A is bounded, then Ay and AV are A;

Take AV and BY as Vb3Ic Ay (b, c) and Vd3e By (d, e), respectively. The remaining cases
are described below

2) (Av B) is b, d3c,e (Au(b.c) V Bu(d, ));
3) (Vo A(x))V is Ya¥b3cvVx < a Ay(x,b,c);
4) (CA)Y s VA Db (A, fI));

5) (Vo <t A)Y is VbIcvr < ¢ Ay (z,b,c).

The defining clauses are exactly the same of the numerical case. However, one now
must recall that the monotone terms are of arithmetic type. The monotonicity lemma
also holds in the extended version:

Lemma 34 (Monotonicity Lemma). PA%’X proves VBV < ¢ (AU(Q, d) — Apl(b, g))
for every formula A of the language.

Proof The proof is made by induction on the complexity of A. OJ

The three characteristic principles are naturally extended to new types. They are de-
noted by mACfU’lX, bCZJC’lX and MAJ“X. The set containing the three characteristic principles
is denoted by P%[<]. Recall that is was proved before that P%[<] is classically equivalent

to )F(’;jd[gl]. Using a similar argument, one proves that P“”[<] is classically equivalent to
Phi (<.
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Theorem 38 (Soundness). Take A(z) an arbitrary formula of the language £§’X with
free variables z. Let A(z)Y be VbIc Au(z,b,2). If

PALS + P <] - A(2),
then there are monotone closed terms t of appropriate types such that

Proof We argue by induction on the length of the derivation of A(z). To simplify the no-
tation, we will not underline the tuples. As in the intuitionist case, all universal sentences
are self interpreted. The proof follows closely the one given in [Fer09]. Hence, only some
axioms and rules will be discussed. It relies in Shoenfield’s axiomatization for classical
logic.

1. "AV A
Take z as the tuple of free variables of A and let AV be given as Vb3c Ay(z,b, c).
Then we look for closed monotone terms ¢ and ¢ such that

Va,b, f¥z <a (AU(z, b, tabf) v 3d < qabf ~Ay(z,d, fd)) .

Clearly t := Aa,b, f.fb and q := Aa,b, f.b do the job. These terms are closed and
obviously monotone.

A
AV B

Take A and B formulas of the language with free variables z and bounded in-
terpretations given by Vb3c Ay(z,b,c) and Vd3e By(z,d,e), respectively. Assume
PAg’X + PyX[<] F A(z). By the induction hypothesis, there exist monotone closed

terms ¢ such that PA“* |- %a, Wz < a Ay(z,b,tab). We look for monotone closed
terms r and s such that Va,b,dVz < a (Ay(z,b,sabd) V By(z,d,rabd)). Take
r:= Aa,b,d.b and s := \a, b,d.tab. They are closed, monotone and do the job.

A(0) vn® (A(n) — A(n+1))
VnY A(n)

This proof is similar to the one in the intuitionistic setting. Assume PA‘%’X proves
A(0) and Vn® (A(n) — A(n+1)). Then, there are monotone closed terms t,p, q
such that PAg’X proves both Vb Ay(0,0,tb) and

Ya,d, f¥n <y a (glb < padf —Ay(n,b, fo) V Ay(n +1,d, qadf)).
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From the latter, we obtain Va, f¥n <o a (VbAy(n,b, fb) — ¥bAy(n + 1,b,qabf)),
which, together with the induction rule, implies g’a, bn <o a Ay(n,b, pab), where
¢ab := 1Yaba and v is recursively defined as

b0ab = tb
(n + 1)ab = max (¢Ynab, gab(Ab.4n, a,b))

¢ has arithmetic type. We want to produce monotone closed terms r such that
Va,bvn <y a Ay(n,b,rab). It is enough to choose r := ¢. To prove the monotonicity
of ¢, we proceed as in the intuitionistic case.

. Bv.
Take A a formula of the language and ¢ a term. Let AUV be Vb3c Ay(z,b,c), where
z is the tuple of free variables of A and ¢. It is proved in two steps. First, we look
at the left-to-right implication Vo <t A(z,2) — Vz (z <t — A(z, 2)). We want
monotone closed terms r and s such that

Va,d', b, f¥Vz < a(élc Jradbf —Vx <t Ay(x, z,¢, fe) V
Wz <d (=(z D)V Ay(z, 2,b, sad'bf)) ).
Take r and s given by raa’bf := b and saa’bf := fb. We claim that these terms do
the job. Take a,d’,b, f monotone terms and z < a. From the law of the excluded
middle, it follows 3z < t Ay (x,z,b, fb) VVr It Ay(z,z,b, fb). Then, we get
dr <t —Ay(z, 2,0, fb) vVr <t (z <d — Ay(z,z,b, fb)), which is equivalent to
dx 9t =Ay(b, fb,x,2) VVe <d (=(x <t)V Ay(b, fb,x, z)). Hence
Je<b (=Va <t Ayle, fe,x,2)) VVz < d' ((z D t) vV Au(b, fb,2,2)),
as desired.
Second, to interpret the right-to-left implication, we want to produce monotone
closed terms p, ¢, r that for monotone a, b, f and z < a we have

Je < pabf3d < gabf —Vx < ¢ (—|(ac <t)V Ay(x, z,d, fcd)) VVr <t Ay(z, z,b,rabf).

As was done above, one easily prove that the terms given by pabf := t[a/z],
qabf = b,rabf := fb(t[a/z]), with  such that t < ¢, do the job.

: mACZ"C’lX.
Let Apq be a bounded formula of £g’x with free variables x, y, z. A simple calculation
shows that the direct bounded functional interpretation of mAC‘b”éX is

Va, f, 036, Wz <a (3V Qb =AU, 2) VIR QR <D ph'3e S RY A, c, 2)).

Hence, we look for monotone closed terms t,q such that for monotone a, f, p and
z < a we have

b < tafe —Ap(z,b, fb)V Ih < qafeVh < phIe < hY Az, b, c).

Take tafy := ¢f and qafp := f. It is straightforward to see that these terms do
the job.
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6. bCX.
Take Apq a bounded formula of the language. A simple calculation shows that we
need to produce monotone closed terms ¢ such that

Va, Wz < a (—|Vz QA <QbIy QY Apa(z,y,2) VVz < ey < tab Az, y, z))
It suffices to define t as t := Aa, b.b.
7. MAJ®X, o }
Since (MA:J“”X)U is given by Va3bVr < a3t Q b3y J 0 (x Qy), then t := Aa.a is

such that VaVx < adb < tady < b x <y for all monotone a.

The proofs for the rules RL; and RL; are similar to the one in the intuitionistic case, thus
we will not discuss them. 0

Corollary 5. Let Ay be a bounded formula of ﬁg’x whose only free variables are x and
y. If

PAY + P (<] - Va3y Aalz,y),
then

pA‘;vX F Vavz < a3y Apa(z, y).

Proof Assume PA‘;’X + PYX[<] F Va3y Apg(z,y). Hence, by the Soundness Theorem,
there exists a monotone closed term ¢ such that

PA‘;’X FVavz < aJb < tady < b Ap(x,y),

which implies VaVz < a3y Apg(z, ). O

Theorem 39 (Characterization).
PAY  + P[] - A AY

for any formula A of the language E‘;’X.

Proof We argue by induction on the complexity of A. If A is bounded, it is trivially done.
In the case of negation, take A, a formula of the language such that A < AY, where AY
is given Vb3c Ay (b, c). We claim that =A — (=A)V or, equivalently, A < =(=A)V, with
—(=A)V given by IfVOVY < b Ay(V, f'). By MAJ*X it is equivalent to 3fVb Ay (b, fb)
and using the monotonicity lemma, the latter is equivalent to 3fvb3ec < fb Ay(b,c). By
bCZJéX, we get AV, which is equivalent to A by the induction hypothesis.
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The disjunction is straightforward. Now, let us look at the universal quantification.
We want to prove that Vz A(z) — (Vz A(z))Y. Let (A(z))” be given by Yb3c Ay (z,b, c).
Then, (Vz A(z))" is Ya,b3cVx < a Ay(z,b, ¢). From the monotonicity lemma and bCi7%,
we get Va, bWz < a3Je Ay (b, c,x), which is equivalent to VavbIe Ay (b, c, ), by MAJ“X,
The conclusion follows from the induction hypothesis.

The case of the bounded quantification is similar. It is straightforward using only the
monotonicity lemma and the bounded collection principle. ([l

Each formula of the language E‘;’X has a corresponding flattening, obtained by repla-
cing all occurrences of < by <*. The following result is clear:

Theorem 40 (Flattening). Let A be an arbitrary formula of the language E“ﬁ”x. If PA“;;X
proves A, then PA“* proves A*, where A* is the flattening of A.

As in the intuitionistic case, there are two kind of models for PA“*, obtained in the
same way as the models for HA“X.

As a consequence of the direct bounded functional interpretation, we claim that every
linear normed space is weak-complete:

Definition 19. A Cauchy sequence (x,), has modulus of Cauchy convergence (also
known as modulus of Cauchyness) if there exists fO~° such that

VEONR, m >0 fk (|zn — 2ml| <r 5¢) -

If such f exists, one may assume it is monotone.
A linear normed space X is said to be weak-complete if every Cauchy sequence with
modulus of Cauchy convergence converges in X.

Proposition 20. PA‘;’X - Pfl’x[ﬂ] proves that X is weak-complete.

Proof Take (z,), be a Cauchy sequence with monotone modulus of convergence f. Then
VEVn,m >0 fk (|zn — 2wl <w 5¢) -

The latter is also true with <y instead of <p.
First, let us check that there exists N such that ||z, || <g N for all n°. Tt is clear that
Vn > fO (||xn — x|l <g 1). Take N as a natural (N # 0) satisfying

1 4+ max{||x; — x| + [|zgoll : ¢ < fO} <g N.
Then

[znll <k llzn — 250l + 750l <r N.
At this point, we claim that

Y03z <y NVk <o r¥m <o r (m >0 fk — |2, — 2| <z 5) .
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Take r° and define z as .. Since f is the modulus of convergence of (z,),, we have
that Vk < rVm <r (m > fk— ||xm — x| <g 2%), since fr > fk. As we had seen above,
|z|| <g N. By collection, we get

1
dr Jx NVEVm > fk ||z, — 2| <g ok

as desired. 0

Observe that every Cauchy sequence (with modulus of convergence) (z,,), converges
for certain x with z = =z, for some r. Furthermore, if z,, <x N for all natural n, then
T Slx N.

4.4 A logical view of the Banach-Steinhaus and the
open mapping theorems

In the bounded functional interpretation of Peano arithmetic, one of the characteristic
principles is a collection principle. In the classical case (as opposed to the intuitionistic
case), collection must be restricted to bounded formulas. It is easy to provide a counter-
example to collection for universal formulas. For instance, in the classical setting, we have
that Vo <; 13n° (zn = 0V VK" (zk #, 0)). If we had collection for universal matrices,
from the latter, we would have

ImVz <y 13n <o m (zn =¢ 0V Vk (vk #¢ 0)).

Equivalently, 3m°%z <; 1 (In <gm (zn =¢ 0) VVEk (zk #( 0)), which is, clearly, an
absurd.

Nevertheless, in very particular situations, one has “collection” for universal formu-
las. As we will see, the Banach-Steinhaus and the open mapping theorems of functional
analysis can be seen as collection of this sort.

In functional analysis, the Banach-Steinhaus and the open mapping theorems rely on
the Baire category theorem. Our next result can be seen as a “logical” version of the Baire
category theorem, in fact, a kind of local collection for extensional universal matrices.

Theorem 41 (Baire-like Theorem). Let Ayy(2*,n° k%) be a bounded formula of the
language £2°. Then PA%™ + P‘(fl’x[ﬁ] -+tameAC proves the implication whose antecedent is
T =x y AVk Apg(z,n, k) — Vk Apa(y,n, k) (i.e. Yk Apg(x,n, k) is extensional with respect
to x) and the consequent is given by

Vo <y 13n°VE? Apg(x,n, k) —

1
3z <y 13r°3n Ve <y 1 (Hx —z|| <r T VEY Apg(z,m, k:)) .

This result states that, within a specific ball with center z and radius r, the quantifi-
cation Vd can be replaced by 3V for extensional universal matrices.
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By the Baire-like theorem, if {z € X : ||z|| <g 1} is contained in a countable union of
closed sets, then at least one of the closed sets has non-empty interior.

For each n, let F, be the set (|, {z € X : Ay(x,n,k)}. By the extensionality of
Vk Apa(z,n, k), we have

Vo't (r=xyAy ¢ F, »x ¢ F,)
for all n. Take y € X\ F,, i.e., y € X such that 3k —Ap(y, n, k). The latter entails
VX (z=xy —x ¢ F,).
Consequently,
Vo (Vr (lz =yl <r 57) — 3k Az, n, k),
and, equivalently,
VeIrdk ([lz —yll <r 5 — ~Apalz, 0, k)) .
By collection,
YN 3IkVz I NI < r3k < k <||x —yll <r & — Ay, k’)) ,
and also
YNIVz <x N (|lz —y|| <p 5= — 2 & F,),

meaning that F}, is closed for all n. Under this observation, the Baire-like theorem states
that if {2 : ||z|| <g 1} C |, Fy, then there exist ng, z <x 1 and 7 such that

{2l < 1Az — 2]l <g 57} € Fu,

i.e. there exists ng such that F,, has non-empty interior.

Proof Assume
Vz Ix 1Vr0, n3z <x 13K (||z — 2| Dr 527 A ~Avalz,n, k)

By bounded collection and monotone choice, there exists a monotone f such that
Vr,n3k <o frnVz Ix 13k <o k3 I 1([|z — 2| <r 557 A ~Apa(z, 0, K)).

By classical logic and tameAC, there exists g (such that g < A\r® n% p°.1%) and h (such
that h < A% n° p°. frn) such that

Vr,nVz dx 1 (|lgrnz — 2| <g 3= A ~Aw(grnz, n, hrnz)) . (4.12)
From the extensionality of Yk Apy(z,n, k) with respect to x, we get
Vo x 1Vn (=Vk Apa(z,n, k) — Vy <x 1 (z =x y — VK Apa(y, n, K')))
which is equivalent to

Vo <x 1Vn (Elk: —Apa(z,n, k) — Yy I 1(VT (Hx —y|l <gr 2%) — Ik = Ay, n, k:)))
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By collection and classical logic, we get

Vo <y 1Vn, k3’ K" (ﬁAbd(x, n, k) —
— Wy I 13r <o '3k <o K'(lz — yll < 5+ — —Awa(y.n, K))),

and, by bounded collection and monotone choice, there exist monotone f and [ such that

Vn, k3r" <o fnk3k"” <gInkVr <x 13" <o r"3E" <o k" (ﬂAbd(x,n, k) —

— Yy Ix 13r <o /3K <o k' (lz — vl < 5 — ~Apa(y, 1, K))).

By classical logic and tameAC, there exists f’ (such that f' < An® k% p° ¢°.Ink) such that

Vo <x 1Vn, k (ﬁAbd(x,n, k) —
Vy Ix 1 (||$ -yl <wr 2f++1 — Ay, n, f’nkxy))). (4.13)

1

By (4.12), for all n,r and z <x 1, we have |grnz — z| <x 5.

exists k° such that 5 <p o — |lgrnz — z||:

Consequently, there

Vr,nVz Ix 13k (35 <r 5+ — [lgrnz — z|) .

By monotone choice and bounded collection, there exists a monotone ¢ such that
Vr,nVz <x 13k <q ¢rn (2% <r 2% — ||lgrnz — z||)

and also

Vr,nVz Ix 1 (5= Ik 5 — |lgrnz — 2])) . (4.14)

The rest of the proof is an adaptation of the proof of the Baire category theorem of
functional analysis. We define a sequence of nested balls (defined by their center x,, and

radius r,). Then, we prove that sequence (z,), converges for a point in the intersection
of all balls.

Let us define ¢¥n := (z,, ky,, r,) by primitive recursion:

Y0 := (¢g100, h100, max (f0(h100) + 1,1, ¢10))
¢(” + 1) = <$n+17 kn+1ﬂ”n+1>,

where

Tpi1 = gra(n+ 1)z,
kny1 = hrp(n+ D)z,
Tni1 = max (f(n+ Vkpy1 + 1,0+ 2,¢r,(n+1)).

Lemma 35. PA%’X proves that, given x,,k,,r, defined by above, then

Vy <x 1vn° (||?J — x| <wr 2% —Vi<on _'Abd(yai,f/ik’ﬂiy)) :
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Proof
From (4.12), we have —Ayq(xn, n, ky,) for all n°, and from (4.13), it follows

vn'Vy <x 1 (|ly — || <g g0 — ~Aba(y, 1, fink,z,y)) . (4.15)
We claim that

ly = Zniall < g = My = 2all < 7

Take ||y — .Z'n_;'_lH SR anﬁ Then

ly — znll <r |y = Zpga | + |701 — 20|l <r 2%% + | Zng1 — 2]
By the definition of 7,1 and (4.14), we get

1 1
o <Rr 2o D) <Rr o | Zr41

— Z.

Consequently, ||y — z,| <r
By induction, we get

2rn

VIn® (|ly — 2l < 55 — ¥m <o |y — 2wl <p 52) -

Take y <x 1 and n°. By the latter and the definition of ,,, we conclude

ly — 2|l <r 507 = Vm <on ([ly — 2zl <r g7m77) -

Then, the conclusion follows by (4.15). O

Lemma 36. PA‘;’X proves that, given x,, and r, defined by above, then (z,), is a conver-
gent sequence. Moreover, if x is the limit of (z,)n, then ¥n° (H:I: — 2| <wr Q%L)

Proof We claim that (z,), is Cauchy sequence with modulus of convergence f = An.n.
Take n,m >¢ k. Without loss of generality, assume m <y n. Then

[2n — Zm| <r Z?:m-i—l”xi =zl <wr Z?:m—&-l 2%;—17

by (4.12). Moreover, the definition of r, implies

|20 — zm| <w Z?:m-i—l % <R 2% <r QLIc
as desired. Therefore, by proposition 20, the sequence converges for = (with = = x4
for a certain k). Since x, <x 1 for any n°, then z <x 1. To end the proof, assume
that exists ng such that ||z — z,,|| >r 745. Then, there exists a >r 0 such that

|2 — @n, || >k 55 + @ It is easy to prove that ||z — Znoi1]| >r gt + @ >r a and
by induction we get ¥n >¢ ng (||z — x,|| >r @), which contradicts the fact that (z,),
converges to z. Therefore, Vn® (||z — z,| <r 7). O
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By the two previous lemmas, we conclude
Az Ay 1VnVi <o n —Apg(x, i, flikx;x).
Consequently, Iz <dx 1¥n°3k —A(x,n, k). We have showed
Vo dx 13nVEY Az, n, k) — 3z Sx 130, 0V <x 1 ([|o — 2| <r 52 — VE® A(z,n,k))

and this entails the thesis of the Baire-like theorem. O

Corollary 6. Let Apg(2*,n° y*, k%) be a bounded formula of the language Eg’x. Then

PAg’X + P‘C"l’x[ﬁl] + tameAC proves that the extensionality of Vk Apg(x,n,y, k) with respect
to x implies

Vo <x 13n°3y <y nVE Ayg(z,n, 9, k) —

1
— J2 <y 130, 0Oz <x 1 (HZE —z|| <wr o Jy <x nVE® Ag(z,n,v, k)) )

Proof Assume Vz <Jx 13n3dy <Ix nVk Api(z,n,y, k). In particular,
Vo <x 13nVE' Ty <x nVk <o k' Ap(z,n,y, k).

We claim that the formula VE'Jy <x nVk < k' Ap(z,n,y, k) is extensional with respect
to x. Take x =x 2’ and assume Vk'Jy Qx nVk <o k&’ Apy(z,n,y, k). By bounded collection,
Jy Ix nVk Apa(z,n,y, k), and, by the extensionality of Yk Apy(x, n,y, k) with respect to
x, we get

Ely S]X nvk Abd(x/a n,y, k:)

In particular, we have V&'Jy x nVk <o k' Apa(2’,n,y, k), as desired.
Applying the Baire-like theorem, there exists z <x 1 and 7° such that

InVr <x 1 (||z — 2|| <g 3= — Y&y <Ix nVk <o k' Apa(z,n,y,k)).

The conclusion follows from bounded collection. O

Since the Banach-Steinhaus and the open mapping theorems are stated for linear
operators, we define them and prove some properties.

Definition 20. Let L be of type X — X. L 1is called a linear operator if the following is
verified:

i) L(x +y) =x Lz + Ly for all 2, y%;
i) L(az) =x a(Lx), for all & and 2*.

Proposition 21. The theory PAQ’)< + P“c’l’x[gl] proves that each linear operator is bounded,
i.e., given L*=X if L is a linear operator, then there exists a € R such that

VX (|| Lz|| <g aflz]).
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Proof Well, we have YmVz <x m3n® (||Lz|| <g n). Collection entails
VmanVe <Ix m (|| Lz|| <r n).

In particular, there exists N such that Vo <x 2 (||L(z)| <g N). Take x #x 0. Then
Hﬁx“ <R 2— H”TleH <g 2. By iii) of lemma 29, we get ﬁx <y 2. Then

et = 1 () e

1
lll [l

since HL(@:{;)” <g N. The latter entails ||Lz| <g N|z|| for x #x 0.

It still remains to prove that x =x 0 — |[[Lz|| =g 0. Take z =x 0 and assume
|Lz| #r 0. Then, there exists k° such that ; <g [|Lz||. Since z =x 0, we have kNz =x 0,
with IV the one used above. Again, by iii) of lemma 29, [|[kNz| <g 1 <> kNx <x 1. Then
kENz =x 0 — kNz <x 1 and, as a consequence, it follows that ||[L(kNx)|| <g N. This
yields a contradiction: ||Lz|| <g + <g ||Lz]. O

As a consequence, linear operators are extensional:

Corollary 7. PA‘;’X + P‘C"l’x[ﬁ] proves that if L*=* is a linear operator, then L is exten-
stonal.

Proof We want to prove that x =x y — Lz =x Ly. By the linearity of L, there exists
a € R such that Va* (|| Lz|| <g al|z|]). Take 2*,y* such that z =x y. Then z — y =x 0,
which implies that ||z — y|| =g 0 and consequently, L(z — y) =x 0.

Notice that the equality L(x —y) =x Lz — Ly is not trivial, since extensionality has
not been proved yet. Let us prove L(z — y) =x L(z + (—y)). From

(z=y)+(=(z+(=y))) =x (x=y)+(y+(-2)) =x 2+((=y+y)+(-)) =x 2+(-2) =x 0,
we get, L((z —y)+ (—(z+(—y)))) =x 0, which is equivalent to L(z —y) =x L(z + (—y)).
Now, it is clear that L(z —y) =x Lz — Ly. O

In the following, the uniform boundness principle is presented as an instance of col-
lection for universal formulas:

Theorem 42 (Banach-Steinhaus theorem). PA‘;’X + P[] +tameAC proves that for
each family of linear operators (Ly)wo, with Ly of type X — X (for all k), then

Vo <x 13MVEk (||Lpz| <g M) — IMVa <Ox 1Yk (||Lyz| <p M).

Proof Assume that LX~X is a linear operator for each k. Assume, as well,
Vo dyx 13MOVEY (|| Lyz|| <g M).
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For all k, ||Lgz|| <g M is universal with bounded intensional matrix and is extensional
with respect to x. Then, it is straightforward to check that Vk (||Lxz| <g M) is also
extensional with respect to z. Therefore, by the Baire-like theorem

M3z <x 13rVe <x 1 (|lz — 2 <g 5= — Yk (||Lrz|| < M),

meaning that there exists a ball with center in z <x 1 and radius r” such that || Lyz| <g M
for  in the intersection of this ball with the unitary ball. Clearly, the unitary ball contains
a smaller ball in which ||Lyz| <g M holds:

M3z <x 13r (5 + 2] <e 1AVZ I 1 (|2 — 2| <r 5 — V& (|| Liz| <g M))).
Take M’ as a natural such that 2"71(M + || Liz||) <g M’. We claim that

If z =x 0, it is trivial. Take an arbitrary z <x 1 (z #x 0) and define y as #ﬁ + 2.
Then

Iyl = || 2y + 2| <w 2+ 2l < 1

and |ly|]| <g 1. By lemma 29, it follows y <x 1. Moreover,

1 x

ly — 2|l =r 7 T

| = 7 <z
Hence, ||Lry|| <g M for all k. Consequently, ||Liyz| <g M"

ILill < 27|zl (NZeyll + 1 Laz]l) <m 27 (M + || Liz]))-

Theorem 43 (Open-mapping theorem). PA‘;X + P[] + tameAC proves that for all
linear operators L*=X, we have

Vy Ix 13z (Lz =x y) — IMVy Ix 132 Ix M (Lx =x y).

When stated in this form, the open-mapping theorem is a form of collection for uni-
versal matrices.

Proof Take L*7* and assume it is a linear operator and that Vy <x 13z (Lz =x y).
By MAJ®X it follows Vy <x 13M 3z <x M (Lxz =x y), which is equivalent to

Vy <x 13M3z <dx MYk (||Lz -y <g 5) .

The formula ||Lz — y|| <g 5 is universal and is clearly extensional with respect to y.
Then, it is straightforward to prove that Vk (||Lz — y|| <g 5r) is also extensional with
respect to y. By corollary 6, we obtain

M3z <x 13rVy Ix 1 ([ly — 2| <g o — Fz <x MVE (|Le =y <r 5)) -
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Clearly, the latter holds in a smaller ball
AM3z Ix 13r (5= + |2 <k 1AVYy Ix 1 (ly — 2| <r 3= — Fz Ix M (Lz =x y))) -

Since z <x 1, there exists xy such that Lxy =x z. Take M’ as a natural such that
(M + |aoll) <z M
We claim that Vy <x 132" Ix M’ (Lz' =x y). For y =x 0, it is trivial. Take y #x 0

such that y <x 1 and define w as #ﬁ + z. Then

loll = || ety + 2| <o o5 + U] <o 2+ Jol] <a 1
and ||w|| <g 1. Hence, by lemma 29, w <x 1. Also

1
lw — z[| = Wﬁ

‘ =R 2% <R QL
Then 3z <Ix M (Lz =x w). Define 2’ as 2" ||y||(x — zy). We have

127l == 2" lyllll2 — woll <m 2""*(ll2l| + llwoll) <m 27" (M + [|zoll) <m M.
Then ||2/|| 9g M'. By lemma 29, 2’ <x M’. Moreover,

La’ =x L (2" lyll(z — z0)) =x 2" |yl (Lx — Lao) =x 2" ly [ (w — =) =x .

O

In both these logical versions of the Banach-Steinhaus and the open mapping theorems,
the “local collection” for universal matrices in the Baire-like theorem is lifted to global
collection. This is a consequence of the linearity of the operators, as occurs in the proofs in
functional analysis. Observe that while the Banach-Steinhaus follows the usual textbook
proof, the open mapping theorem does not, but relies instead in a collection principle.
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5
Epilogue

We have extended the bounded functional interpretation to second-order arithmetic. All
the results involved in this extension were verified in the theory HA% + BR + Ay, where
Ao is the set of all universal sentences (with bounded intensional matrices) whose
flattenings are true in M¥. Of course, this treatment is not optimal, since we do not
need all the sentences of Ayw. We will leave a better treatment for future work. In
fact, it is possible that the optimal treatment can be achieved by looking at the double
negation shift from a new angle: we believe that it can be seen as a particular case of bar
induction.

The extension of the bounded functional interpretation lead to some interesting results
concerning some well-known theorems of functional analysis. It may be possible that a
wider scope of theorems can be analysed using these tools. Moreover, some studies should
be carried out with the goal of extending Spector’s generalization to new base types.

These are interesting developments to consider for future work.
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