
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Proactive Resilience

Paulo Jorge Paiva de Sousa

DOUTORAMENTO EM INFORMÁTICA
ESPECIALIDADE CIÊNCIA DA COMPUTAÇÃO

2007

http://www.ul.pt
http://www.fc.ul.pt
http://www.di.fc.ul.pt
mailto:pjsousa@di.fc.ul.pt

UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Proactive Resilience

Paulo Jorge Paiva de Sousa

DOUTORAMENTO EM INFORMÁTICA
ESPECIALIDADE CIÊNCIA DA COMPUTAÇÃO

2007

Tese orientada pelo Prof. Doutor Paulo Jorge Esteves Veríssimo
e pelo Prof. Doutor Nuno Fuentecilla Maia Ferreira Neves

http://www.ul.pt
http://www.fc.ul.pt
http://www.di.fc.ul.pt
mailto:pjsousa@di.fc.ul.pt

Abstract

This thesis introduces a new dimension over which systems de-
pendability may be evaluated, exhaustion-safety. Exhaustion-safety
means safety against resource exhaustion, and its concrete seman-
tics in a given system depends on the type of resource being consid-
ered. The thesis focuses on the nodes of a fault-tolerant distributed
system as crucial resources and on understanding the conditions
in which the typical assumption on the maximum number of node
failures may or may not be violated.

An interesting first finding was that it is impossible to build a node-
exhaustion-safe intrusion-tolerant distributed system under the asyn-
chronous model. This result motivated the research on develop-
ing the right model and architecture to guarantee node-exhaustion-
safety. The main outcome of this research was proactive resilience,
a new paradigm to build intrusion-tolerant distributed systems.
Proactive resilience is based on architectural hybridization and hy-
brid distributed system modeling: the system is asynchronous in
its most part and it resorts to a synchronous subsystem to period-
ically recover the nodes and remove the effects of faults/attacks.
The Proactive Resilience Model (PRM) is presented and shown to
be a way of building node-exhaustion-safe intrusion-tolerant dis-
tributed systems.

Finally, the thesis presents two application scenarios of proactive
resilience. First, a proof-of-concept prototype of a secret sharing sys-
tem built according to the PRM is described and shown to be highly
resilient under different attack scenarios. Then, a novel intrusion-
tolerant state machine replication architecture (based on the PRM)
is presented and a new result established, that a minimum of 3 f +

2k + 1 replicas are required to ensure availability, on a system where
f arbitrary faults may happen between recoveries, with at most k
replicas recovering simultaneously.

Keywords: Distributed systems, dependability, security, intrusion-
tolerance, availability.

Resumo

Esta tese introduz uma nova dimensão segundo a qual a confia-
bilidade dos sistemas pode ser avaliada, segurança-contra-exaustão.
Segurança-contra-exaustão significa segurança contra exaustão de
recursos e o seu significado concreto no contexto de um determi-
nado sistema depende do tipo de recurso que se considere. A tese
foca os nós de um sistema distribuído tolerante a faltas e estuda as
condições em que o pressuposto típico sobre o número máximo de
falhas de nós pode ou não ser violado.

Um primeiro resultado interessante foi a conclusão de que é im-
possível, sob o modelo assíncrono, construir-se um sistema dis-
tribuído tolerante a intrusões seguro-contra-exaustão de nós. Este re-
sultado motivou a investigação para desenvolver o modelo e arqui-
tectura adequados para garantir segurança-contra-exaustão de nós.
O maior fruto desta investigação foi a resiliência proactiva, um novo
paradigma para a construção de sistemas distribuídos tolerantes a
intrusões. A resiliência proactiva é baseada em hibridização da ar-
quitectura e modelação híbrida de sistemas distribuídos: o sistema
é maioritariamente assíncrono e faz uso de um subsistema síncrono
para recuperar periodicamente os nós e remover os efeitos das fal-
tas/ataques. O Modelo de Resiliência Proactiva (PRM) é apresen-
tado e é demonstrado que permite construir sistemas distribuídos
tolerantes a intrusões seguros-contra-exaustão de nós.

Por fim, a tese apresenta dois cenários de aplicação da resiliência
proactiva. Em primeiro lugar, é descrito um protótipo prova-de-
conceito de um sistema de partilha de segredos construído de acordo
com o PRM, e uma avaliação deste sistema permite concluir que
é bastante resistente em diversos cenários de ataque. Em segundo

lugar, é apresentada um nova arquitectura (baseada no PRM) para
replicação de máquina de estados tolerante a intrusões. É estabelecido
um novo resultado de que um mínimo de 3 f + 2k + 1 réplicas são
necessárias para garantir disponibilidade, num sistema onde f fal-
tas arbitrárias possam acontecer entre recuperações, com um má-
ximo de k réplicas a recuperar ao mesmo tempo.

Palavras Chave: Sistemas distribuídos, confiabilidade, segurança,
tolerância a intrusões, disponibilidade.

Resumo Alargado

Hoje em dia, e cada vez mais, a confiabilidade dos sistemas informáticos é um
assunto importante, dado que os computadores estão a invadir as nossas vi-
das, criando uma dependência cada vez maior no seu correcto funcionamento.

Informalmente, diz-se que um sistema é confiável se existe uma probabi-
lidade alta de se comportar de acordo com a sua especificação. Quando o
comportamento de um sistema viola a sua especificação, dizemos que ocorre
uma falha. Construir sistemas confiáveis é construir sistemas onde se evita
que as falhas aconteçam. Para se ter sucesso, é necessário perceber primeiro
o processo que leva à falha, e que tipicamente é desencadeado por uma causa
interna ou externa, denominada falta. As faltas são assim os alvos naturais
de muitos dos mecanismos existentes para se obter confiabilidade, tais como:
previsão de faltas, remoção de faltas, prevenção de faltas.

Claro que não é possível garantir que nenhuma falta vá ocorrer durante
a operação do sistema. Logo, é necessário criar mecanismos complementares
que bloqueiem o efeito da falta antes desta gerar uma falha. Quando este tipo
de mecanismos está presente, diz-se que o sistema é capaz de oferecer um
serviço correcto apesar da ocorrência de uma ou mais faltas, ou, em outras
palavras, diz-se que o sistema é tolerante a faltas.

Durante a concepção de um sistema tolerante a faltas, são feitos pressu-
postos sobre o ambiente em que o sistema irá executar. Nomeadamente, o
arquitecto de sistema faz pressupostos sobre o tipo e número de faltas que po-
dem acontecer e sobre o comportamento temporal dos vários componentes do
sistema. Neste contexto, um objectivo fundamental para se ter confiabilidade
é garantir-se que durante a execução do sistema, o número real de faltas nunca
exceda o número máximo de faltas f que se decide tolerar em tempo de pro-
jecto. Em termos práticos, o arquitecto de sistema deveria prever o número
máximo de faltas N f possíveis de acontecer durante a execução do sistema, de
forma a que o mesmo fosse concebido para tolerar pelo menos f ≥ N f fal-
tas. O presente trabalho mostra que a dificuldade de se atingir este objectivo

varia não só com o tipo de faltas considerado, mas também com os pressupos-
tos temporais. Para além disso, os modelos de sistema usados actualmente
escondem parte destas dificuldades, uma vez que não são suficientemente
expressivos. A tese propõe um novo modelo teórico de sistemas (REX), su-
ficientemente expressivo para representar esses problemas. O modelo REX
introduz uma nova dimensão segundo a qual a confiabilidade dos sistemas
pode ser avaliada, segurança-contra-exaustão. Segurança-contra-exaustão sig-
nifica segurança contra exaustão de recursos e o seu significado concreto no
contexto de um determinado sistema depende do tipo de recurso que se con-
sidere. A tese foca os nós de um sistema distribuído tolerante a faltas e estuda
as condições em que o pressuposto típico sobre o número máximo de falhas
de nós pode ou não ser violado. Um sistema distribuído tolerante a intrusões
seguro-contra-exaustão de nós é um sistema que garantidamente não sofre mais
do que o número máximo assumido de falhas de nós.

Um primeiro resultado interessante deste trabalho foi a conclusão de que é
impossível, sob o modelo assíncrono (isto é, não fazendo qualquer pressuposto
temporal sobre o tempo de processamento local e o tempo de entrega de men-
sagens pela rede), construir-se um sistema distribuído tolerante a intrusões
seguro-contra-exaustão de nós. Este resultado motivou a investigação no de-
senvolvimento do modelo e arquitectura adequados para garantir segurança-
contra-exaustão de nós. No contexto desta investigação, percebeu-se que tra-
balhos anteriores já tinham proposto uma abordagem, denominada recupe-
ração proactiva, com objectivos similares. A recuperação proactiva, que pode
ser vista como uma forma de redundância dinâmica, tem o potencial de per-
mitir a construção de sistemas tolerantes a intrusões seguros-contra-exaustão
de nós. O objectivo da recuperação proactiva é conceptualmente simples: os
nós são rejuvenescidos periodicamente para que sejam removidos os efeitos
de faltas/ataques que tenham entretanto ocorrido. Se os rejuvenescimentos
ocorrerem a um ritmo adequado, então um adversário é incapaz de corromper
nós suficientes (isto é, mais do que aqueles que o arquitecto do sistema as-
sumiu poderem ser corrompidos) para comprometer o sistema distribuído.
No entanto, para dar estas garantias, a recuperação proactiva precisa de ser
concebida segundo um modelo suficientemente forte que lhe permita atingir

o seu objectivo: o rejuvenescimento regular do sistema. Nenhum dos trabal-
hos existentes consegue garantir este objectivo. A tese analisa os problemas
particulares dos diferentes trabalhos existentes e apresenta uma generalização
destes problemas. Mais concretamente, os problemas dos sistemas distribuí-
dos tolerantes a intrusões que usam recuperação proactiva são categorizados
em quatro classes:

1. Um adversário malicioso pode ser mais forte (ter mais potência) do que
o originalmente assumido e corromper os nós a um ritmo mais rápido do
que as recuperações.

2. Um adversário malicioso pode tentar atrasar o ritmo das recuperações,
de forma a aumentar as hipóteses de comprometer o sistema com a potên-
cia disponível.

3. Um adversário malicioso pode fazer ataques camuflados às referências
temporais do sistema, o que em sistemas assíncronos ou parcialmente
síncronos pode até nem ser detectado pela lógica essencialmente atem-
poral do sistema, deixando-o indefeso.

4. Os procedimentos de recuperação podem fazer com que os nós fiquem
num estado temporariamente inactivo, baixando o quorum de redundân-
cia e a resiliência do sistema.

O primeiro problema (violação dos pressupostos sobre a potência do ad-
versário) está fora do âmbito da tese, e é um problema irresolúvel, uma vez
que envolve pressupostos fundamentais na área de investigação da tolerância
a intrusões. Este problema pode no entanto ser combatido com técnicas que
mitiguem as possibilidades de o adversário ganhar vantagem de uma forma
não prevista, tais como, diversidade, mutação, ofuscação, ou componentes se-
guros. Todos os restantes problemas são resolvidos pela abordagem proposta
nesta tese, resiliência proactiva, um novo paradigma para a construção de sis-
temas distribuídos tolerantes a intrusões, que permite usufruir de todas as po-
tencialidades da recuperação proactiva. A resiliência proactiva é baseada num

modelo e arquitectura híbridos: o sistema (distribuído) é maioritariamente as-
síncrono e faz uso de um subsistema síncrono para recuperar periodicamente
os nós e remover os efeitos das faltas/ataques. A tese descreve e avalia o mo-
delo genérico de resiliência proactiva (PRM), que por sua vez modela o sub-
sistema de recuperação como um componente abstracto denominado PRW. O
componente PRW pode ter várias instâncias, dependendo dos requisitos do
protocolo de recuperação que for adequado em cada caso (por exemplo, re-
juvenescimento de chaves criptográficas, restauro do código do sistema ope-
rativo e/ou das aplicações). A tese demonstra que o PRM permite construir
sistemas distribuídos tolerantes a intrusões seguros-contra-exaustão de nós.

Por fim, a tese apresenta dois cenários de aplicação da resiliência proactiva.
Em primeiro lugar, é descrito um protótipo prova-de-conceito de um sistema
de partilha de segredos construído de acordo com o PRM e fazendo uso de uma
instância específica do componente PRW. Uma avaliação deste sistema permite
concluir que é bastante resistente em diversos cenários de ataque. Nomeada-
mente, o protótipo desenvolvido é tolerante a intrusões e pode ser configurado
para tolerar qualquer número de intrusões desde que a taxa de intrusões não
seja maior do que uma intrusão por segundo1. Em segundo lugar, é apre-
sentada um nova arquitectura (baseada no PRM) para replicação de máquina
de estados tolerante a intrusões. Esta arquitectura usa outra instância do com-
ponente PRW para remover periodicamente os efeitos das faltas/ataques das
réplicas. É feito um estudo quantitativo do nível de redundância necessário
para se conseguir ter replicação de máquina de estados resiliente e disponível,
e neste contexto é estabelecido um novo resultado: um mínimo de 3 f + 2k + 1
réplicas são necessárias para tolerar f faltas arbitrárias entre recuperações, com
um máximo de k réplicas a recuperar ao mesmo tempo. Para comprovar a im-
portância de assegurar a existência do número mínimo de réplicas, ditado por
este resultado, foi feita uma avaliação por simulação. A avaliação incidiu so-
bre a resiliência e disponibilidade reais de um sistema genérico com replicação
de máquina de estados construído de acordo com a arquitectura proposta e
com um mínimo de 3 f + 2k + 1 réplicas. Paralelamente, efectuou-se o mesmo

1Note-se que não estamos a falar de ataques, mas sim de ataques bem sucedidos, ou in-
trusões.

tipo de avaliação a sistemas de replicação de máquina de estados propostos
em trabalhos anteriores e que usam apenas 3 f + 1 réplicas. Uma das princi-
pais conclusões é que, ao invés da arquitectura proposta nesta tese, as pro-
postas anteriores não conseguem garantir disponibilidade em vários cenários
realistas, apresentando elevados tempos de indisponibilidade, especialmente
na presença de adversários com uma potência próxima do originalmente as-
sumido e/ou quando as recuperações têm tempos de execução elevados.

Acknowledgements

Many were those who contributed to strengthen the quality of the
PhD work reported in this thesis. I would like to thank:

• My advisors Prof. Paulo Veríssimo and Prof. Nuno Neves for
being precious guides and friends. I learned a lot with them.
A special word for Prof. Paulo Veríssimo, who motivated (and
continues to motivate) me to pursue a research career.

• Prof. António Casimiro and Prof. Antónia Lopes for being
always ready to help me.

• My current and past colleagues at Navigators and LaSIGE for
making research so enjoyable.

• My friends Bruno and Nando for being with me since our first
breaths at the university.

• Maria Helena for the constant support.

• M. João for having motivated me to start the PhD.

• My son José for his genuine love for me. He constantly re-
members me that there is life beyond work.

• My parents Isabel and António, my brothers Pedro and Tiago,
and my sister Vanessa, for being my everyday companions. It
would have been impossible to do the PhD journey without
their support. Um beijo especial para a minha mãe, que nunca
deixou de lutar e sempre conseguiu dar as melhores condições
do mundo aos seus filhos. Por esta razão e por muitas mais,
esta tese é-lhe dedicada.

• Mónica for her love and for being a fundamental inspiration
in the last part of the PhD work.

À melhor mãe do mundo

Contents

1 Introduction 1
1.1 Contributions and Thesis Statement 1
1.2 Research Methodology . 6
1.3 Overview . 8

2 Related Work 11
2.1 The FLP Impossibility Result and Beyond 11
2.2 Proactive Recovery . 13

2.2.1 CODEX . 13
2.2.1.1 Overview of the Proactive Recovery Scheme . . 14
2.2.1.2 An Example Attack 15

2.2.2 COCA . 18
2.2.3 BFT and BFT-PR . 20
2.2.4 Asynchronous Proactive Cryptosystems 24
2.2.5 Problem Categorization 26

3 Exhaustion-Safety 29
3.1 Formalization . 29

3.1.1 The Resource Exhaustion Model 30
3.2 Exhaustion-Safety vs Synchrony Assumptions 34

3.2.1 Synchronous Systems . 34
3.2.2 Asynchronous Systems 36

4 Proactive Resilience 39
4.1 The Proactive Resilience Model 40

xv

CONTENTS

4.1.1 Periodic Timely Rejuvenation 43
4.1.2 Building Node-Exhaustion-Safe Systems 47

4.2 Evaluation . 50
4.2.1 Node-Exhaustion-Safety and Availability 51
4.2.2 SAN Models . 57

4.2.2.1 SAN Model for the External/Internal Timebases 60
4.2.2.2 SAN Model for the Stealth Time Adversary . . 61
4.2.2.3 SAN Model for the Conspicuous Time Adversary 62
4.2.2.4 SAN Model for the Classic Adversary 63
4.2.2.5 SAN Model for a Node 64
4.2.2.6 Composed Model 65

4.2.3 Simulation Results . 66
4.2.3.1 Impact of Time Adversaries on Exhaustion . . . 67
4.2.3.2 Recovery Strategy and the Trade-off Between

Intrusion-Tolerance and Availability 70

5 Application Scenarios 75
5.1 Resilient Secret Sharing . 75

5.1.1 Proactive Secret Sharing 75
5.1.2 The Proactive Secret Sharing Wormhole 78
5.1.3 Experimental Results . 85

5.2 Resilient and Available State Machine Replication 91
5.2.1 Motivation . 91
5.2.2 State Machine Replication 92
5.2.3 The State Machine Proactive Recovery Wormhole 95
5.2.4 Achieving Both Node-Exhaustion-Safety and Availability 101

5.2.4.1 Recoveries Coordination 102
5.2.4.2 Why the Need for the n ≥ 3 f + 2k + 1 Bound? 104
5.2.4.3 Recovery Strategies 105

5.2.5 Evaluation . 109
5.2.5.1 SAN Models . 110
5.2.5.2 Simulation Results 119
5.2.5.3 Summary . 125

xvi

CONTENTS

6 Conclusions and Future Work 127
6.1 Conclusions . 127
6.2 Future Work . 129

A Proactive Resilience Evaluation - Detailed SAN Models 131
A.1 Model: External/Internal Timebases 131

A.1.1 Places . 131
A.1.2 Activities . 132

A.2 Model: Stealth Time Adversary 133
A.2.1 Places . 133
A.2.2 Activities . 133

A.3 Model: Conspicuous Time Adversary 135
A.3.1 Places . 135
A.3.2 Activities . 135

A.4 Model: Classic Adversary . 137
A.4.1 Places . 137
A.4.2 Activities . 137

A.5 Model: Node . 139
A.5.1 Places . 139
A.5.2 Activities . 140

A.6 Model: Monitor . 142
A.6.1 Places . 142
A.6.2 Activities . 143

B State Machine Replication Evaluation - Detailed SAN Models 145
B.1 Model: External Time . 145

B.1.1 Places . 145
B.1.2 Activities . 145

B.2 Model: Adversary . 147
B.2.1 Places . 147
B.2.2 Activities . 147

B.3 Model: Replica . 150
B.3.1 Places . 150
B.3.2 Activities . 151

xvii

CONTENTS

B.4 Model: Client . 155
B.4.1 Places . 155
B.4.2 Activities . 156

References 159

xviii

List of Figures

1.1 Fault, error and failure. 2

2.1 BFT-PR architecture: the proactive recovery mechanism (PR) is

composed by a synchronous watchdog timer (W) that triggers

an asynchronous recovery monitor. 23

3.1 (a) An execution not violating ϕr; (b) An execution violating ϕr. 32

4.1 The architecture of a system with a PRW. 42

4.2 Relationship between TP,TD and Tπ in a cluster CX with three

local PRWs. 44

4.3 Relationship between mi f t,mirt and mrd. 53

4.4 SAN model for the external/internal timebases. 61

4.5 SAN model for the stealth time adversary. 62

4.6 SAN model for the conspicuous time adversary. 63

4.7 SAN model for the classic adversary. 63

4.8 SAN model for a node. 64

4.9 SAN model for the composed model. 66

4.10 Exhausted time per conspicuous time attack period and mini-

mum inter-failure time (Asynchronous recovery). 68

4.11 Exhausted time per conspicuous time attack period and mini-

mum inter-failure time (PRW recovery). 69

4.12 Exhausted time per stealth time attack factor and minimum inter-

failure time (Asynchronous recovery). 70

xix

LIST OF FIGURES

4.13 Exhausted time per stealth time attack factor and minimum inter-
failure time (PRW recovery). 71

4.14 Trade-off between intrusion-tolerance and availability with TP=100,
TD=10, mrd=1. (n = 4, f = 1, with PRW). 72

4.15 Trade-off between intrusion-tolerance and availability with TP=100,
TD=10, mrd=1. (n = 7, f = 2, with PRW). 73

5.1 Shamir’s secret sharing scheme for k = 1. 77

5.2 refresh_share execution time distribution with 6 machines and k = 1. 88

5.3 refresh_share execution time distribution with 6 machines and k = 5. 89

5.4 The architecture of a state machine replicated system with an
SMW. 95

5.5 Relationship between the rejuvenation period TP, the rejuvena-
tion execution time TD and k. 106

5.6 Number of rejuvenation groups (l) required per k and f 108

5.7 Number of replicas required per k and f 109

5.8 Minimum number of rejuvenation groups required per n and f . 110

5.9 SAN model for the adversary. 112

5.10 SAN model for a state machine replica. 114

5.11 SAN model for a state machine client. 117

5.12 SAN model for the composed model. 118

5.13 Impact of the adversary power when f = 1. 122

5.14 Impact of the adversary power when f = 2. 123

5.15 Impact of the recovery duration when f = 1. 124

5.16 Impact of the recovery duration when f = 2. 125

A.1 SAN model for the external/internal timebases. 131

A.2 SAN model for the stealth time adversary. 133

A.3 SAN model for the conspicuous time adversary. 135

A.4 SAN model for the classic adversary. 137

A.5 SAN model for a node. 139

A.6 SAN model for the monitor. 142

B.1 SAN model for the external time. 145

xx

LIST OF FIGURES

B.2 SAN model for the adversary. 147
B.3 SAN model for a state machine replica. 150
B.4 SAN model for a state machine client. 155

xxi

List of Tables

5.1 refresh_share execution time with k = 1 (n – number of machines). 87
5.2 refresh_share execution time with 6 machines. 88
5.3 PSSW overhead in order to resist Hare. 90
5.4 PSSW overhead in order to resist Tortoise. 91
5.5 Examples of strategies that may guide the choice of the values

of n, f , and k. 107
5.6 Parameter values used in the simulations regarding the impact

of the adversary power. 120
5.7 Parameter values used in the simulations regarding the impact

of the recovery duration. 121

xxiii

Chapter 1

Introduction

1.1 Contributions and Thesis Statement

Nowadays, and more than ever before, system dependability is an important

subject because computers are pervading our lives and environment, creating

an ever-increasing dependence on their correct operation.

A system is dependable if it exhibits a high probability of behaving according

to its specification. When the system behavior violates its service specification

we say that a failure occurs. Building dependable systems is about preventing

failures from occurring. However, to be successful, we must understand the

process that leads to failures, which starts with an internal or external cause,

called fault. The fault may remain dormant for a while, until it is activated. For

example, a defect in a file system disk record is a fault that may remain unno-

ticed until the record is read. The corrupted record is an error in the state of the

system that will lead to a failure of the file service when the disk is read. The

failure is thus the externally observable effect of the error. The fault, error and

failure definitions can be applied recursively when a system is decomposed

into several components. That is, an error inside the system is often caused by

the failure of one of its components, which at the system level should be seen as

a fault. Figure 1.1 illustrates this recursion. Although we should avoid ambi-

guity when addressing the mechanisms of failure, it is thus possible to address

1

1. INTRODUCTION

the same phenomenon as a (component) failure or a (system) fault, depend-
ing on the viewpoint. Likewise, interactions between components may fail in
several ways (e.g., timing failure) constituting system-level faults that lead to
an erroneous state (e.g., timing error). Faults may cause other faults. An er-
ror may give rise to other errors, by propagation, and in fact, a failure may be
at the end of a chain of propagated errors (Avizienis et al., 2004; Veríssimo &
Rodrigues, 2001).

�����

�����

��	���

���
�

�����

�����

�������

������
��

�����

�����

��	���

������
��

Figure 1.1: Fault, error and failure.

So, there is usually a cause-effect chain from a fault to a failure. To achieve
dependability one should break this chain by applying methods that act at
any point in the chain to prevent the failure from occurring. The source of
the chain, the faults, are thus the natural targets of several means to achieve
dependability. These means can be used in isolation or, preferably, in combi-
nation.

One of the approaches is called fault removal. It consists of detecting faults
and removing them before they have the chance of causing an error. Targets of
fault removal include software bugs, defective hardware, and so forth. Fault
forecasting is the set of methods aiming at the estimation of the probability of
faults occurring, or remaining in the system. Some classes of faults are easier
to detect and remove than others. In consequence, fault forecasting can be seen
as complementing fault removal, by predicting the amount of residual faults
in the system. Fault prevention, as its name implies, consists of preventing the
cause of errors by eliminating the conditions that make fault occurrence prob-
able during system operation. For instance, using high quality components,
components with internal redundancy, rigorous design techniques, etc. The

2

1.1 Contributions and Thesis Statement

combination of fault prevention and removal is sometimes called fault avoid-
ance, i.e., aiming at a fault-free system.

Of course, not all faults can be prevented from occurring during system

operation, whereas other faults may even be present from the beginning of

operation, having eluded fault removal. In consequence, one must create com-

plementary mechanisms that block the effect of the fault before it generates a

failure. In such case, we say that the system is capable of providing correct

service despite the occurrence of one or more faults or, in other words, that the

system is fault-tolerant.

During the design of a fault-tolerant system, assumptions are made about

the environment where the system will execute. Namely, the system architect

makes assumptions about the timing behavior of the system components and

about the types of faults that can happen.

All else being equal, the dependability or trustworthiness of a system is

inversely proportional to the number and strength of the assumptions made

about the environment where the former executes. This applies to any type

of assumptions, namely timing and fault assumptions. Moreover, the same

assumption may have different strengths in different environments. For in-

stance, consider the assumption “hackers will not try to compromise system

correctness”. This fault assumption is admittedly stronger if made in a system

connected to the Internet than in a system operating only on a local network. In

the same way, consider the assumption “message delivery delays never exceed

1 ms”. This timing assumption is weaker when system nodes are all connected

by a local network, than when the connection is over the Internet.

There are several flavors of synchrony models (Veríssimo & Rodrigues,

2001). Synchronous systems (Hadzilacos & Toueg, 1994) make timing assump-

tions, whereas asynchronous ones (Fischer et al., 1985; Lynch, 1996) do not. For

instance, if a protocol assumes the timely delivery of messages by the envi-

ronment, then its correctness can be compromised by overload or unexpected

delays. These are timing faults, that is, violations of those assumptions. The

absence of timing assumptions about the operating environment renders the

system immune to timing faults. In reality, timing faults do not exist in an

3

1. INTRODUCTION

asynchronous system, and this reduction in the fault space makes them poten-

tially more trustworthy. For this reason, a large number of researchers have

concentrated their efforts in designing and implementing systems under the

asynchronous model (a few examples are (Ben-Or, 1983; Cachin et al., 2002;

Castro & Liskov, 2002; Chandra & Toueg, 1996; Chor & Dwork, 1989; Marsh &

Schneider, 2004; Zhou et al., 2002)).

Fault assumptions are the postulates underlying the design of fault-tolerant

systems: the type(s) of faults, and their number (f). The type of faults influ-

ences the architectural and algorithmic aspects of the design, and there are

known classifications defining different degrees of severity in distributed sys-

tems, according to the way an interaction is affected (e.g., crash (Schlichting &

Schneider, 1983), omission (Dolev et al., 1996, 1997), Byzantine (Lamport et al.,
1982)), or to the way a fault is produced (e.g., accidental or malicious, like vul-

nerability, attack, intrusion). The number establishes, in abstract, a notion of

resilience (to f faults occurring). As such, current fault-tolerant system mod-

els feature a set of synchrony assumptions (or the absence thereof), and pairs

〈type, number〉 of fault assumptions (e.g., f omission faults; f intruded hosts).

However, a fundamental goal when conceiving a dependable system is to

guarantee that during system execution the actual number of faults never ex-

ceeds the maximum number f of tolerated ones. In practical terms, one would

like to anticipate a priori the maximum number of faults predicted to occur

during the system execution, call it N f , so that it is designed to tolerate f ≥ N f

faults. As we will show, the difficulty of achieving this objective varies not only

with the type of faults but also with the synchrony assumptions. Moreover, the

system models in current use obscure part of these difficulties, because they are

not expressive enough.

We now give the intuition of the problem. Consider a system where only

accidental faults are assumed to exist. If it is synchronous, and its execution

time is bounded, one can forecast the maximum possible number of accidents

(faults) that can occur during the bounded execution time, say N f . That is,

given an abstract f fault-tolerant design, there is a justifiable expectation that,

in a real system based on it, the maximum number of tolerated faults is never

4

1.1 Contributions and Thesis Statement

exceeded. This can be done by providing the system with enough redundancy
to meet f ≥ N f .

If the system is asynchronous, then its execution time does not have a
known bound— it can have an arbitrary finite value. Then, given an abstract f
fault-tolerant design, it becomes mathematically infeasible to justify the expec-
tation that the maximum number of tolerated faults is never exceeded, since
the maximum possible number of faults that can occur during the unbounded
execution time is also unbounded. One can at best work under a partially-
synchronous framework where an execution time bound can be predicted with
some high probability, and forecast the maximum possible number of faults
that can occur during that estimated execution time.

Consider now a system where arbitrary faults of malicious nature can hap-
pen. One of the biggest differences between malicious and accidental faults
is related with their probability distribution. Although one can calculate with
great accuracy the probability of accidents happening, the same calculation is
much more complex and/or less accurate for intentional actions perpetrated
by malicious intelligence. In the case of a synchronous system, the same strat-
egy applied to accidental faults can be followed here, except that: care must
be taken to ensure an adequate coverage of the estimation of the number of
faults during the execution time. If the system is asynchronous, the already
difficult problem of predicting the distribution of malicious faults is amplified
by the absence of an execution time bound, which again, renders the problem
unsolvable, in theory.

An intuition about these problems motivated the groundbreaking research
of recent years around proactive recovery which made possible the appearance
of asynchronous protocols and systems (Cachin et al., 2002; Castro & Liskov,
2002; Marsh & Schneider, 2004; Zhou et al., 2002) that allegedly can tolerate
any number of faults over the lifetime of the system, provided that fewer than
a subset of the nodes become faulty within a supposedly bounded small win-
dow of vulnerability. This is achieved through the use of proactive recovery
protocols that periodically rejuvenate the system.

However, having presented our conjecture that the problem of assuring
that the actual number of faults in a system never exceeds the maximum num-

5

1. INTRODUCTION

ber f of tolerated ones, has a certain hardness for synchronous systems sub-

jected to malicious faults, and is unsolvable for asynchronous systems, we may

ask: How would this be possible with ’asynchronous’ proactive recovery?

The findings presented in this thesis reveal problems that remained in obliv-

ion with the classical models, leading to potentially incorrect behavior of sys-

tems otherwise apparently correct. Proactive recovery, though a major break-

through, has some limitations when used in the context of asynchronous sys-

tems. Namely, some proactive recovery protocols depend on hidden timing

assumptions which are not represented in the models used.

This being known, the thesis claim is the following:

To design a system architecture and devise the algorithmic underpinnings of pro-

tocols that can tolerate, through proactive resilience, any number of arbitrary faults

over the lifetime of the system, as long as the fault rate does not exceed a predefined

threshold, that depends on the specific system.

Therefore, our goal is to show that one can design dependable protocols

— and thus, dependable systems — that are capable of tolerating any number

of arbitrary faults over the lifetime of the system. The only constraint is on

the rate of the faults: as expected, it cannot exceed a threshold defined at de-

sign time, and this threshold depends on the specific system being designed.

We think that the existence of this constraint is obvious. Without it, the sys-

tem would have to tolerate an unbounded number of arbitrary faults at each

execution time instant, which is infeasible.

1.2 Research Methodology

Given the intuition about the dependability problems described in the previ-

ous section, and in order to prove the thesis claim, the research methodology

that gave origin to the present thesis was composed of the following four tasks:

• Task T1: Definition of a more expressive model able to formally identify

the problems described in the previous section;

6

1.2 Research Methodology

• Task T2: Design and evaluation of a system model and architecture with
the characteristics specified in the thesis claim;

• Task T3: Description of application scenarios where the proposed system
model and architecture can be applied;

• Task T4: Implementation and evaluation of a proof-of-concept prototype
for one of the described application scenarios.

The work produced as a result of the above tasks was validated through the
publication of papers on international conferences of this area. The complete
list of publications related to this research is presented next:

. A New Approach to Proactive Recovery

Paulo Sousa, Nuno Ferreira Neves, Paulo Veríssimo

In Fifth European Dependable Computing Conference (EDCC-5) Supplementary Vol-

ume. Budapest, Hungary, pages 35-40, April 2005.

. How Resilient are Distributed f Fault/Intrusion-Tolerant Systems?

Paulo Sousa, Nuno Ferreira Neves, Paulo Veríssimo

In Proceedings of the 2005 International Conference on Dependable Systems and Net-

works (DSN’05). Yokohama, Japan, pages 98-107, June 2005.

. Resilient State Machine Replication

Paulo Sousa, Nuno Ferreira Neves, Paulo Veríssimo

In Proceedings of the 11th Pacific Rim International Symposium on Dependable Com-

puting (PRDC). Changsha, China, pages 305-309, December 2005.

. Proactive Resilience through Architectural Hybridization

Paulo Sousa, Nuno Ferreira Neves, Paulo Veríssimo

In Proceedings of the 2006 ACM Symposium on Applied Computing (SAC) - Volume

1. Dijon, France, pages 686-690, April 2006.

7

1. INTRODUCTION

. Proactive Resilience Revisited: the Delicate Balance Between Resisting Intru-

sions and Remaining Available

Paulo Sousa, Nuno Ferreira Neves, Paulo Veríssimo, William H. Sanders

In Proceedings of the 25th Symposium on Reliable Distributed Systems (SRDS’06).

Leeds, United Kingdom, pages 71-80, October 2006.

. Proactive Resilience

Paulo Sousa

In Sixth European Dependable Computing Conference (EDCC-6) Supplementary Vol-

ume. Coimbra, Portugal, pages 27-32, October 2006.

. On the Resilience of Intrusion-Tolerant Distributed Systems

Paulo Sousa, Nuno Ferreira Neves, Antónia Lopes, Paulo Veríssimo

Submitted to IEEE Transactions on Dependable and Secure Computing.

. Resilient and Available State Machine Replication

Paulo Sousa, Nuno Ferreira Neves, Paulo Veríssimo

Submitted to ACM Transactions on Computer Systems.

. Protecting CRUTIAL Things

Alysson Neves Bessani, Paulo Sousa, Miguel Correia, Nuno Ferreira Neves,

Paulo Veríssimo

Submitted to DSN’07.

. Hidden Problems of Asynchronous Proactive Recovery

Paulo Sousa, Nuno Ferreira Neves, Paulo Veríssimo

Submitted to HotDep’07.

1.3 Overview

This section provides a synopsis for each of the remaining chapters of this

thesis.

8

1.3 Overview

Chapter 2 describes the related work.

Chapter 3 introduces exhaustion-safety – a new dimension over which dis-

tributed systems resilience may be evaluated. A node-exhaustion-safe intru-

sion-tolerant distributed system is a system that assuredly does not suffer more

than the assumed number of node failures: depending on the system, nodes

may fail by crash, or start behaving in a Byzantine way, or disclose some secret

information, and all these types of failures may be caused by accidents (e.g., a

system bug), or may be provoked by malicious actions (e.g., an intrusion car-

ried out by an hacker). We show that it is not possible to build any type of

node-exhaustion-safe distributed f intrusion-tolerant system under the asyn-

chronous model. In fact, we achieve a more general result, and show that it

is impossible, under the asynchronous model, to avoid the exhaustion of any

resource with bounded exhaustion time. Despite this general result, the focus

on this work is on fault/intrusion-tolerant distributed systems and on node-

exhaustion-safety.

Chapter 4 proposes and evaluates proactive resilience – a new and more

resilient approach to proactive recovery based on hybrid distributed system

modelling (Veríssimo, 2006) and architectural hybridization (Veríssimo, 2003).

It is argued that the architecture of a system enhanced with proactive recov-

ery should be hybrid, i.e., divided in two parts: the “normal” payload sys-

tem and the proactive recovery subsystem, the former being proactively re-

covered by the latter. Each of these two parts should be built under different

timing and fault assumptions: the payload system may be asynchronous and

vulnerable to arbitrary faults, and the proactive recovery subsystem should

be constructed in order to assure a more synchronous and secure behavior.

We describe and evaluate a generic Proactive Resilience Model (PRM), which

proposes to model the proactive recovery subsystem as an abstract compo-

9

1. INTRODUCTION

nent – the Proactive Recovery Wormhole (PRW). The PRW may have many

instantiations according to the application/protocol proactive recovery needs

(e.g., rejuvenation of cryptographic keys, restoration of system code). Then, it

is shown that the PRM can be used to build node-exhaustion-safe intrusion-

tolerant distributed systems.

Chapter 5 describes two examples of application scenarios where proac-

tive resilience can be applied. Section 5.1 describes the design of a distrib-

uted f fault/intrusion-tolerant secret sharing system, which makes use of a spe-

cific instantiation of the PRW targeting the secret sharing scenario (Shamir,

1979). This system is shown to be node-exhaustion-safe and we built a proof-

of-concept prototype that is highly resilient under different attack scenarios.

Then, Section 5.2 describes a resilient f fault/intrusion-tolerant state machine

replication architecture, which guarantees that no more than f faults ever oc-

cur. The architecture makes use of another instantiation of the PRW – the

State Machine Proactive Recovery Wormhole – to periodically remove the ef-

fects of faults from the replicas. A quantitative assessment is performed of

the level of redundancy required to achieve resilient and available state ma-

chine replication. In this context a new result is established, that a minimum

of 3 f + 2k + 1 replicas are required for maintaining availability, on a system tol-

erating f Byzantine faults, with at most k replicas recovering simultaneously.

Chapter 6 presents the conclusions and future work.

10

Chapter 2

Related Work

2.1 The FLP Impossibility Result and Beyond

A distributed system built under the asynchronous model makes no timing as-

sumptions about the operating environment: local processing and message de-

liveries may suffer arbitrary delays, and local clocks may present unbounded

drift rates (Fischer et al., 1985; Lynch, 1996). In other words, in a (purely) asyn-

chronous system it is not possible to guarantee that something will happen

before a certain time. Therefore, if the goal is to build dependable systems, the

asynchronous model should only be used when system correctness does not

depend on timing assumptions. At first sight, this conclusion only impacts the

way algorithms are specified, by disallowing their dependence on time (e.g.,

timeouts) in asynchronous environments. However, as it will be showed in

this thesis, other types of timing dependencies exist in a broader context or-

thogonal to algorithm specification. In brief, every system depends on a set

of resource assumptions (e.g., a minimum number of correct replicas), which

must be met in order to guarantee correct behavior. If a resource degrades

more than assumed at system runtime, i.e., if the time until the violation of a

11

2. RELATED WORK

resource assumption is bounded, then it is not safe to use the asynchronous

model because one cannot ensure that the system will terminate before the

assumption is violated.

Consider now that we want to build a dependable intrusion-tolerant dis-

tributed system, i.e., a distributed system able to tolerate arbitrary faults, in-

cluding malicious ones. In what conditions can one build such a system? Is it

possible to build it under the asynchronous model?

This question was partially answered, twenty years ago, by Fischer, Lynch

and Paterson (Fischer et al., 1985), who proved that there is no determinis-

tic protocol that solves the consensus problem is an asynchronous distributed

system prone to even a single crash failure. This impossibility result (com-

monly known as FLP) has been extremely important, given that consensus lies

at the heart of many practical problems, including membership, atomic com-

mitment, leader election, and atomic broadcast. Considerable amount of re-

search addressed solutions to this problem, trying to preserve the desirable in-

dependence from timing assumptions at algorithmic level. One could say that

the question asked above was well on its way of being answered. However,

the results presented in this thesis show that other (unexpected) dependencies

on timing may exist.

Our results are orthogonal to FLP. Whereas FLP shows that a class of prob-

lems has no deterministic solution in asynchronous systems subject to failures,

our results apply to any kind of problem in asynchronous distributed systems,

independently of the specific goal/protocols of the system.

12

2.2 Proactive Recovery

2.2 Proactive Recovery

Section 1.1 enumerated a set of works about protocols and systems that use

proactive recovery with the goal of tolerating any number of faults over the

lifetime of the system. In this section each of these works is analyzed in de-

tail and the problems they face to achieve their goal are explained, with the

intention of motivating our work. As the reader will note, we will not deal

with classical vulnerabilities or flaws in the cited works, which are in essence

excellent technical pieces. The problems are subtle and derive from the model

used by these works. Afterwards, we summarize the four problems that may

affect systems employing proactive recovery.

2.2.1 CODEX

CODEX (COrnell Data EXchange) is a recent distributed service for storage

and dissemination of secrets (Marsh & Schneider, 2004). It binds secrets to

unique names and allows subsequent access to these secrets by authorized

clients. Clients can call three different operations that allow them to manip-

ulate and retrieve bindings: create to introduce a new name; write to associate

a (presumably secret) value with a name; and read to retrieve the value associ-

ated with a name.

The service makes relatively weak assumptions about the environment and

the adversaries. It assumes an asynchronous model where operations and

messages can suffer unbounded delays. Moreover, messages while in tran-

sit may be modified, deleted or disclosed. An adversary can also insert new

messages in the network. Nevertheless, fair links are assumed, which means

that if a message is transmitted sufficiently often from one node to another,

then it will eventually be delivered.

13

2. RELATED WORK

CODEX enforces three security properties. Availability is provided by repli-

cating the values in a set of n servers. It is assumed that at most f servers can

(maliciously) fail at the same time, and that n ≥ 3 f + 1. Cryptographic op-

erations such as digital signatures and encryption/decryption are employed

to achieve confidentiality and integrity of both the communication and stored

values. These operations are based on public key and threshold cryptography.

Each client has a public/private key pair and has the CODEX public key. In

the same way, CODEX has a public/private key pair and knows the public

keys of the clients. The private key of CODEX however is shared by the n

CODEX servers using an (n, f + 1) secret sharing scheme1, which means that

no CODEX server is trusted with that private key. Therefore, even if an adver-

sary controls a subset of f or less replicas, she or he will be unable to sign as

CODEX or to decrypt data encrypted with the CODEX public key.

In CODEX, both requests and confirmations are signed with the private

key of, respectively, the clients or CODEX (which requires the cooperation of

at least f + 1 replicas). Values are stored encrypted with the public key of

CODEX, which prevents disclosure while in transit through the network or

by malicious replicas. The details of the CODEX client interface, namely the

message formats for each operation, can be found in Marsh & Schneider (2004).

At this moment, we just want to point out that by knowing the CODEX private

key, one can violate the confidentiality property in different ways.

2.2.1.1 Overview of the Proactive Recovery Scheme

An adversary must know at least f + 1 shares in order to construct the CODEX

private key. CODEX assumes that a maximum of f nodes running CODEX

1In a (n, f + 1) secrete sharing scheme, there are n shares and any subset of size f + 1 of
these shares is sufficient to recover the secret. However, nothing is learnt about the secret if
the subset is smaller than f + 1.

14

2.2 Proactive Recovery

servers are compromised at any time, with f = n−1
3 . This assumption excludes

the possibility of an adversary controlling f + 1 servers, but as the CODEX pa-

per points out, “it does not rule out the adversary compromising one server

and learning the CODEX private key share stored there, being evicted, com-

promising another, and ultimately learning f + 1 shares”. To defend against

these so called mobile virus attacks (Ostrovsky & Yung, 1991), CODEX employs

the APSS proactive secret sharing protocol (Zhou et al., 2005). “This protocol

is periodically executed, each time generating a new sharing of the private

key but without ever materializing the private key at any server”. Because

older secret shares cannot be combined with new shares, the CODEX paper

concludes that “a mobile virus attack would succeed only if it is completed

in the interval between successive executions of APSS”. This scenario can be

prevented from occurring by running APSS regularly, in intervals that “can be

as short as a few minutes”.

2.2.1.2 An Example Attack

We now describe an attack that explores the asynchrony of APSS with the goal

of increasing its execution interval, to allow the retrieval of f + 1 shares and

the disclosure of the CODEX private key. Once this key is obtained, it is trivial

to breach the confidentiality of the service.

The intrusion campaign is carried out by two adversaries, ADV1 and ADV2.

ADV1’s attack takes the system into a state where the final attack can be per-

formed by the second adversary. As expected, both adversaries will execute

the attacks without violating any of the assumptions presented in the CODEX

paper. ADV1 basically delays some parts of the system – it slows down some

nodes and postpones the delivery of messages between two parts of the sys-

tem (or temporally partitions the network). The reader should notice that after

15

2. RELATED WORK

this first attack the system will exhibit a behavior that could have occurred in

any fault-free asynchronous system. Therefore, this attack simply forces the

system to act in a manner convenient for ADV2, instead of having her or him

wait for the system to naturally behave in such way.

Attack by adversary ADV1: ADV1 performs a mobile virus attack against

f + 1 servers. However, instead of trying to retrieve the CODEX private key

share of each node, it does a much simpler thing: it adjusts, one after the other,

the rate of each local clock. The adjustment increases the drift rate to make the

clock slower than real time. In other words, 1 system second becomes λ real

time seconds, where λ� 1.

APSS execution is triggered either by a local timer at each node or by a no-

tification received from another node1. This notification is transmitted during

the execution of APSS. The mobile virus attack delays at most f + 1 nodes from

starting their own APSS execution, but it does not prevent the reception of a

notification from any of the remainder n− (f + 1) nodes. Therefore, various

APSS instances will be run during the attack.

After slowing down the clock of f + 1 nodes, ADV1 attacks the links be-

tween these nodes and the rest of the system. Basically, it either temporally

cuts off the links or removes all messages that could (remotely) initiate APSS.

The links are restored once ADV2 obtains the CODEX private key, which means

that messages start to be delivered again and the fair links assumption is never

violated.

The reader should notice that the interruption of communications is not

absolutely necessary for the effectiveness of the ADV2 attack. Alternatively,

one could extend the mobile attack to the n nodes and in this way delay APSS

1These triggering modes were confirmed by the inspection of the CODEX code, which is
available at http://www.umiacs.umd.edu/~mmarsh/CODEX/.

16

http://www.umiacs.umd.edu/~mmarsh/CODEX/

2.2 Proactive Recovery

execution in all of them.

Attack by adversary ADV2: ADV2 starts another mobile virus attack against

the same f + 1 nodes that were compromised by ADV1. Contrarily to the pre-

vious attack, this one now has a time constraint: the APSS execution interval.

Remember that f + 1 shares are only useful if retrieved in the interval between

two successive executions of APSS. However, for all practical considerations,

the time constraint is removed, since the clocks are made as slow as needed, by

a helping accomplice – ADV1. Thus, the actual APSS interval is much larger

than expected.

Without any time constraint, it suffices to implement the mobile virus at-

tack suggested in the CODEX paper, learning, one by one, f + 1 CODEX pri-

vate key shares. The CODEX private key is disclosed using these shares. Us-

ing this key, ADV2 can decrypt the secrets stored in the compromised nodes.

Moreover, she or he can get all new secrets submitted by clients through write

operations.

The described attack explores one pitfall in the reasoning behind the as-

sumptions of CODEX. It implicitly assumes that although embracing the asyn-

chronous model, it can have access to a clock with a bounded drift rate. But,

by definition, in an asynchronous system no such bounds exist (Fischer et al.,

1985; Lynch, 1996). Typically, a computer clock has a bounded drift rate ρ

guaranteed by its manufacturer. However, this bound is mainly useful in en-

vironments with accidental failures. If an adversary gains access to the clock,

she or he can arbitrarily change its progress in relation to real time.

17

2. RELATED WORK

2.2.2 COCA

COCA (Cornell Online Certification Authority) (Zhou et al., 2002) is the pre-

decessor of CODEX. COCA makes the same type of assumptions, namely it

builds on the asynchronous model and uses APSS. However, there are two

main differences between COCA and CODEX:

window of vulnerability assumption COCA assumes a bound on the maxi-

mum number of nodes (f) that can be compromised between consecutive

rejuvenations;

server code and state recovery in COCA, not only the private key shares are

refreshed through APSS, but also the server code and state are periodi-

cally rejuvenated.

Despite these two differences, the attack to CODEX described in the previ-

ous section may work unchanged against COCA. It all boils down to consider

or not to consider each local clock as being part of the COCA servers state and

specification. Let us look at this in more detail.

We start by analyzing the COCA definition of window of vulnerability. Af-

ter it is introduced, the authors qualify it by saying that “Each window of vul-

nerability at a COCA server begins when that server starts executing the proac-

tive recovery protocols and terminates when that server has again started and

finished those protocols.” So, according to this definition, a window of vul-

nerability is defined by local events. This introduces some ambiguity in the

following: “at most t of the n COCA servers are ever compromised during

each window of vulnerability, where 3t + 1 ≤ n holds”.

Independently from considering a local or distributed definition of win-

dow of vulnerability, our attack does not violate the assumption of COCA. This

happens because during the attacks of adversary ADV1, various instances of

18

2.2 Proactive Recovery

the proactive recovery protocols may run. So, we change the clock rate of f + 1

servers, but never more than f servers between consecutive rejuvenations. The

reader may ask how we manage to maintain servers compromised after vari-

ous executions of proactive recovery protocols, specially if these protocols also

rejuvenate the server state. The answer is simple: we do not really compro-

mise any server. This will be more clear after a short explanation of what is

considered to be a correct and compromised COCA server.

In COCA, “servers are either correct or compromised, where a compro-

mised server might”:

1. “stop executing”;

2. “deviate arbitrarily from its specified protocols (i.e., Byzantine failure)”;

3. “disclose information stored locally”.

Our attack changes servers local clock rate, so it is clear that it is not in-

cluded in 1 and 3. Regarding 2, the attack would be compromising if a clock

with bounded drift was part of COCA specification. Authors do not talk in

fact about clocks in COCA system model. However, let us assume this could be

corrected and that it was assumed the existence of local clocks. Then the reader

will note that, by necessity of the asynchronous model under which COCA is

built, clocks will have unbounded drift rates (Fischer et al., 1985; Lynch, 1996).

Even if the model’s asynchrony was relaxed to allow for actual physical clocks

with bounded drift rate, the processes asynchrony would allow readings to be

arbitrarily delayed, creating an effect analogous to unbounded drift rates, from

the clocks readers’ perspective (Veríssimo, 2006). So, local clocks may exist, but

its correctness will not be compromised if one changes its rate: the specification

of the clock allows unbounded drift rates, as seen by clock readers.

19

2. RELATED WORK

In consequence, a mobile clock-rate changing attack leaves the clocks cor-

rect, i.e., in accordance with COCA’s assumptions, and as such does not count

for the number of compromised servers. To make it clearer, “very slow” servers

would still be correct according to COCA’s model, be it because they are too

loaded or because their clocks tick slowly. So, such an attack could legally

slow down the clocks of f + 1 servers during a window of vulnerability, i.e.,

between consecutive rejuvenations, realizing the conditions for the final attack

described earlier for CODEX.

COCA and CODEX authors argue that their proactive recovery protocols

can be executed under the same asynchronous assumptions of the rest of the

system. However, we showed above how this approach makes the COCA

and CODEX systems vulnerable to clock attacks. The reasons for this will be

clarified later in the thesis.

2.2.3 BFT and BFT-PR

Castro & Liskov (2002) proposed the first Byzantine-fault-tolerant (BFT) state

machine replication algorithm not relying on any synchrony assumption to

provide safety. Actually, BFT is proposed in two flavors. Firstly, authors

present non-proactive BFT, which works under the asynchronous model and

assumes that the number f of faulty replicas is bounded by bn−1
3 c during the

entire lifetime of the system. Then, authors propose BFT with proactive re-

covery (BFT-PR), which can tolerate any number of faults provided fewer than

1/3 of the replicas become faulty within a supposedly small window of vul-

nerability corresponding to the interval between two consecutive recoveries.

However, contrarily to COCA and CODEX, the BFT proactive recovery mech-

anism needs extra assumptions: secure cryptography, read-only memory and

watchdog timers. Secure cryptography means that a replica can sign and de-

20

2.2 Proactive Recovery

crypt messages without exposing its private key. Read-only memory is used

both to store the public keys for other replicas and to store the code of the re-

covery monitor that executes the (proactive) recovery procedure. Watchdog

timers are used to periodically interrupt processing and hand control to the

recovery monitor. Therefore, each replica is equipped with a secure crypto-

graphic coprocessor, a watchdog timer and a recovery monitor. It is also as-

sumed that there is some unknown point in the execution after which either

all messages are delivered within some constant time ∆ or all non-faulty clients

have received replies to their requests.

If these assumptions are satisfied, then BFT-PR works correctly. Namely,

authors point out that an appropriate choice of ∆ allows recoveries at a fixed

rate. This suggests that the length Tv of the window of vulnerability can have

a known bounded value in normal conditions.

So, contrarily to COCA and CODEX, BFT-PR explicitly makes an assump-

tion about the need for a more synchronous component – the watchdog timer

– that is able to guarantee the timely triggering of proactive recovery proto-

cols. Thus, BFT-PR is immune to the attack that was described in Section 2.2.1.

However, we argue that these assumptions are still not sufficient to guarantee

the correct execution of the proactive recovery mechanism. Namely, we are

concerned with the timeliness guarantees of the latter in a malicious environ-

ment.

The watchdog timer guarantees a timely periodic interrupt and can there-

fore be used to timely trigger periodic activities. However, the watchdog timer

is a mere ’click’: at best it only guarantees that the recovery monitor is timely

started. The recovery monitor responsible for the recovery procedure, albeit

stored in read-only memory and thus immune to modification faults, is exe-

cuted as a normal task of the asynchronous system. So, in theory, the recovery

21

2. RELATED WORK

monitor, even if timely started, may take an unknown and very long inter-

val to finish its execution. This can also easily happen in practice if BFT-PR

is deployed in a malicious environment where its execution may be delayed

indefinitely by an adversary. For instance, it is straightforward for a malicious

adversary to increase the delivery time of recovery messages by the network.

This can be done by corrupting the OS code that handles the reception of net-

work messages. In the worst case scenario, the recovery mechanism executes

during the entire lifetime of the system, never terminating and therefore never

rejuvenating the system. Therefore, it is subject to the rules of the asynchro-

nous environment, one of them being the non-existence of a known bound for

processing. So, in theory, the recovery monitor, even if timely started, may

take an unknown and very long interval to finish its execution.

BFT-PR authors admit the impossibility of ensuring a bound on Tv, but they

only consider the scenario of a denial-of-service attack. In this scenario, repli-

cas would be able to time recoveries and alert an administrator. However, an

adversary able to compromise the clock rate, may simultaneously increase the

value of Tv and prevent detection. Moreover, it is not explained how the inter-

face between the synchronous watchdog timer and the asynchronous recovery

monitor is secured. This is a very important part of the proactive recovery

mechanism, given that a malicious adversary can neutralize this mechanism

by simply breaking the synchronous-asynchronous interface. Such an attack

would be equivalent to the time attack that allows to compromise COCA and

CODEX.

These synchrony-related problems are better understood by observing Fig-

ure 2.1, which depicts the BFT-PR proactive recovery architecture, in terms of

the synchronous guarantees each component requires. Note that the watchdog

timer does not necessarily fit in the BFT asynchronous system model. The ba-

22

2.2 Proactive Recovery

sic BFT algorithm is designed according to the asynchronous model and then,

to allow proactive recovery, the watchdog timer is engineered as an auxiliary

component, which provides some predefined synchronous actions. We believe

that the watchdog timer, and more broadly the proactive recovery mechanism,

should be considered at the system model level, and not as an engineering so-

lution. Architecting BFT-PR under the same asynchronous system model of

BFT plus some additional assumptions, renders BFT-PR with the same prac-

tical resilience of BFT: in a malicious environment, such as the Internet, the

BFT-PR “small window of vulnerability” may be made as large as the lifetime

of the system.

asynchronousy

synchronous

Wrecovery
monitor

PR

Figure 2.1: BFT-PR architecture: the proactive recovery mechanism (PR) is
composed by a synchronous watchdog timer (W) that triggers an asynchro-
nous recovery monitor.

Therefore, we hope to have shown that in order for BFT-PR to have a greater

resilience factor than BFT, it must work under a different and adequate system

model. BFT resists at most bn−1
3 c replica failures during the entire lifetime of

the system, under an asynchronous system model. On the other hand, BFT-PR

can only tolerate any number of faults provided fewer than 1/3 of the replicas

become faulty within a window of vulnerability. This is only possible if the

window has a guaranteed time length, which in turn can only be achieved un-

der a partially synchronous system model such as the one proposed in Chap-

ter 4.

23

2. RELATED WORK

In summary, albeit periodically triggered, the BFT-PR proactive recovery

mechanism can have an unbounded execution time, aggravated by the fact

that an adversary may render impossible the detection of this anomalous be-

havior.

2.2.4 Asynchronous Proactive Cryptosystems

The process of building a fault-tolerant cryptosystem typically includes the use

of threshold cryptography (Desmedt, 1998). The idea is that a cryptographic

operation is performed by a group of n servers, such that an adversary who

corrupts up to f (f < n) servers and observes their secret key shares can nei-

ther break the cryptosystem nor prevent the system as a whole from correctly

performing the operation.

However, when a threshold cryptosystem operates over a longer time pe-

riod, it may not be realistic (or safe) to assume that an adversary corrupts only

f servers during the entire lifetime of the system. Proactive cryptosystems ad-

dress this problem by operating in phases; they can tolerate the corruption of

up to f different servers during every phase (Herzberg et al., 1995). They rely

on the assumption that servers may have a special reboot procedure that erases

data and removes the adversary from a corrupted server. The idea is to proac-

tively reboot all servers at the beginning of every phase, and to subsequently

refresh the secret key shares such that in any phase, knowledge of shares from

previous phases does not give the adversary any type of advantage. There-

fore, proactive cryptosystems tolerate a mobile adversary (Ostrovsky & Yung,

1991), which may move from server to server and eventually corrupt every

server in the system.

Cachin et al. (2002) introduce the idea of asynchronous proactive cryptosys-

tems, i.e., proactive cryptosystems in asynchronous networks. Namely, they

24

2.2 Proactive Recovery

make two different types of contributions:

1. On a conceptual level, they propose a formal model for cryptosystems in

asynchronous proactive networks.

2. On a technical level, they present an efficient protocol for proactively

refreshing discrete logarithm-based shares of a secret key.

In this section we focus on the first contribution. The formal model pro-

posed for asynchronous proactive networks extends an asynchronous network

by an abstract timer that is accessible to every server. The timer is scheduled by

the adversary and defines the phase of a server locally. It is assumed that the

adversary corrupts at most f servers who are in the same local phase.

When the adversary corrupts a server, she or he may provoke arbitrary

changes to the server state. However, when a local phase begins, the server is

rebooted from a correct state.

The abstract timer is formally modelled by a trivial protocol timer that works

as follows: “Every honest server continuously runs one instance of this proto-

col, which starts when the server is initialized. Upon initialization, the protocol

sends a timer message called a clock tick to itself. Whenever the server receives

a clock tick, the server resends the message to itself over the network. The lo-

cal phase of an uncorrupted server Pi is defined as the number of clock ticks

that it has received so far.” Therefore, it is not possible to upper-bound the

maximum duration of a local phase, given that network messages do not have

bounded delivery time in an asynchronous environment, namely if a malicious

adversary is present.

However, in the implementation section it is assumed that neither asyn-

chrony nor malicious actions may affect phase changes. Authors say that, in

practice, the start of every local phase may be done through an impulse from

25

2. RELATED WORK

an external clock, and that an intruder must not be able to influence it. In other

words, implicitly they make the same type of assumption done in BFT-PR: the

existence of a watchdog that periodically triggers phase changes.

This assumption is not minor, since it is not compatible to the authors’ claim

of asynchrony. The formal model allows an adversary to control when local

phases start and terminate, but this power is weakened in the discussion where

they say that local phases may start when wanted, triggered by an external

impulse.

Would this problem be solved by assuming that the system is in fact a par-

tially synchronous system with watchdogs? As discussed in Section 2.2.3, even

assuming that local phases are triggered by a watchdog, an adversary may

still provoke problems. For instance, the adversary may attack the interface

between the external clock and the reboot code such that all servers are always

maintained in the same phase. In this case, the proactive cryptosystem be-

comes a normal cryptosystem living under the classic assumption that at most

f servers may be corrupted during the entire lifetime of the system.

2.2.5 Problem Categorization

The previous sections showed, by example, the problems faced by a set of ex-

isting approaches to proactive recovery, despite being carefully conceived and

designed. This points to the concept of proactive recovery having some com-

patibility problems with the asynchronous model, a fact that deserves a deeper

study. Zhou et al. (2005) briefly discuss some of these problems, and conclude

that the definition of the window of vulnerability in terms of events rather than

the passage of time, can potentially afford attackers leverage. In fact, asynchro-

nous systems evolve at an arbitrary pace, while proactive recovery has natural

timeliness requirements: proactive recovery leverages the defenses of a sys-

26

2.2 Proactive Recovery

tem by periodically “removing” the work of an attacker. This reasoning led us

to think in what ways failures may happen in intrusion-tolerant systems em-

ploying proactive recovery. We found that the problems of intrusion-tolerant

systems employing proactive recovery may be categorized in the following

four classes:

1. A malicious adversary may deploy more power than originally assumed,

and corrupt nodes at a pace faster than recovery;

2. It may attempt to slow down the pace of recovery, in order to leverage

the chances of intruding the system with the available power;

3. It may perform stealth attacks on the system timing, which in asynchro-

nous1 or partially synchronous systems may not even be perceived by

the essentially time-free logic of the system, leaving it defenseless;

4. Recovery procedures may make it necessary to bring individual nodes to

a temporarily inactive state, lowering the redundancy quorum and thus

system resilience.

The first problem (violation of attacker power assumptions) is outside the

scope of this thesis, and it is fundamentally an unsolvable problem, since those

assumptions are at the heart of the intrusion-tolerance body of research. It

must be addressed with techniques that mitigate any leverage an attacker may

unexpectedly try to get, such as diversity (Chen & Avizienis, 1978; Joseph

& Avizienis, 1988; Littlewood & Strigini, 2004), obfuscation (Bhatkar et al.,

2003; Pucella & Schneider, 2006), or trusted components (Meyer, 2003), which

1Notice that it is possible to do attacks on the timing of asynchronous systems, that is, on
the way they make progress according to real time. The difference between synchronous and
asynchronous systems is that the safety of protocols running in the former may depend on
timing guarantees, whereas it should not for protocols running in the latter.

27

2. RELATED WORK

can complement the approach we describe here. In this thesis, it is shown

how an architecture and generic algorithmic approach to proactive recovery,

globally designated proactive resilience, addresses each of the remaining prob-

lems. In certain conditions, our design methodology allows us to build re-

silient intrusion-tolerant services that never suffer more than the assumed num-

ber of faults and are always available. To our knowledge, this is the first time

that solutions to these problems have been presented and analyzed, and the

elimination of these problems drastically reduces the state-space of the at-

tacker, as compared with previous work. In consequence, our results may have

importance in generic on-line services, and even more in critical infrastructure

settings.

Before delving into the description of our proactive resilience approach, in

the next chapter we present a theoretical model that formally expresses the

limitations of current approaches to proactive recovery.

28

Chapter 3

Exhaustion-Safety

3.1 Formalization

Typically, the correctness of a protocol depends on a set of assumptions regard-

ing aspects like the type and number of faults that can happen, the synchrony

of the execution, etc. These assumptions are in fact an abstraction of the actual

resources the protocol needs in order to work correctly (e.g., when a protocol

assumes that messages are delivered within a known bound, it is in fact as-

suming that the network will have certain characteristics of bandwidth and

latency). The violation of these resource assumptions may affect the safety

and/or liveness of the protocol. If the protocol is vital for the operation of

some system, then the system liveness and/or safety may also be affected.

To formally define and reason about exhaustion-safety of systems with re-

gard to a given resource assumption, it is necessary to adopt a suitable model.

Let ϕr be a resource assumption on a resource r. We consider models that

define: (i) for every system S, the set of its executions JSK = {E : E is an

S−execution}, which is a subset of the set EXEC that contains all possible exe-

cutions of any system (i.e., JSK ⊆ EXEC); and (ii) a set |= ϕr, s.t. |= ϕr ⊆ EXEC

29

3. EXHAUSTION-SAFETY

is the subset of all possible executions that satisfy the assumption ϕr. We shall

use E |= ϕr to represent that the assumption ϕr is not violated during the

execution E .

In the context of such models, exhaustion-safety is defined straightforward-

ly.

Definition 3.1.1. A system S is r-exhaustion-safe wrt ϕr if and only if ∀E ∈ JSK :

E |= ϕr.

Notice that this formulation allows one to study the exhaustion-safety of a

system for different types of assumptions ϕr on a given resource r.

3.1.1 The Resource Exhaustion Model

Our main goal is to formally reason about how exhaustion-safety may be af-

fected by any different combinations of timing and fault assumptions. So, we

need to conceive a model in which the impact of those assumptions can be

analyzed. We call this model the Resource EXhaustion model (REX).

Our model considers systems that have a certain mission. Thus, the exe-

cution of this type of systems is composed of various processing steps needed

for fulfilling the system mission (e.g., protocol executions). We define two in-

tervals regarding the system execution and the time necessary to exhaust a

resource, defined by: execution time and exhaustion time. The exhaustion time

concerns a specific resource assumption ϕr on a specific resource r. Therefore,

in what follows, JSK denotes the set of executions of a system S under REX for

a fixed assumption ϕr on a specific resource r.

Definition 3.1.2. A system execution E is a pair 〈TEexec, TEexh〉, where

• TEexec ∈ <+
0 and represents the total execution time;

30

3.1 Formalization

• TEexh ∈ <
+
0 and represents the time necessary, since the beginning of the execu-

tion, for assumption ϕr to be violated.

The proposed notion of system execution captures the execution time of

the system and the time necessary for assumption ϕr to be violated in a spe-

cific run. Notice that, in this way, one captures the fact that the time needed

to violate a resource assumption may vary from execution to execution. For

instance, if a system suffers upgrades between executions, its exhaustion time

may be, consequently, increased or decreased.

Definition 3.1.3. The assumption ϕr is not violated during a system execution E ,

which we denote by E |= ϕr, if and only if TEexec < TEexh.

By combining Definitions 3.1.1 and 3.1.3, we can derive the definition of an

r-exhaustion-safe system under REX.

Proposition 3.1.4. A system S is r-exhaustion-safe wrt a given assumption ϕr if and

only if ∀E ∈ JSK : TEexec < TEexh.

This proposition states that a system is r-exhaustion-safe if and only if re-

source exhaustion (i.e., the violation of ϕr) does not occur during any execu-

tion. Notice that, even if the system is not exhaustion-safe, it does not mean

that the system fails immediately after resource exhaustion. In fact, a system

may even present a correct behavior between the exhaustion and the termina-

tion events. Thus, a non exhaustion-safe system may execute correctly during

its entirely lifetime. However, after resource exhaustion there is no guarantee

that an exhaustion-failure (i.e., a failure caused by resource exhaustion) will

not happen. Figure 3.1 illustrates the differences between an execution of a (po-

tentially) exhaustion-safe system and a “bad” execution of a non exhaustion-

safe system. An exhaustion-safe system is immune to exhaustion-failures. A

31

3. EXHAUSTION-SAFETY

time

Texec

Texh

not executing

immune to exhaustion-failures

vulnerable to exhaustion-failures

(a)

time

Texec

Texh

(b)

Figure 3.1: (a) An execution not violating ϕr; (b) An execution violating ϕr.

non exhaustion-safe system has at least one execution (such as the one depicted

in Figure 3.1b) with a period of vulnerability to exhaustion-failures (the shaded

part of the timeline) where the resource is exhausted and thus correctness may

be compromised.

In a distributed fault-tolerant system, nodes are important resources, so

important that one typically makes the assumption that a maximum number

f of nodes can fail during its execution, and the system is designed in order to

resist up to f node failures. This type of systems can be analyzed under the

REX model, nodes being the resources considered, and the assumption ϕnode

being equal to n f ail ≤ f , where n f ail represents the number of nodes that,

during an execution, are failed at any time. In other words, this assumption

means that no more than f nodes can be failed simultaneously.

Notice that in a system in which failed nodes do not recover, this assump-

tion is equivalent to assuming that no more than f node failures can occur

during the system execution. According to Proposition 3.1.4, a distributed

32

3.1 Formalization

fault-tolerant system whose failed nodes do not recover is node-exhaustion-safe

if and only if every execution terminates before the time needed for f + 1 node

failures to be produced. In order to build a node-exhaustion-safe fault-tolerant

system, one would like to forecast the maximum number of failures bound

to occur during any execution, call it N f ail, so that the system is designed to

handle at least f = N f ail failures.

As Section 3.2 will show, the key aspect of the study of this model is that

condition TEexec < TEexh can be evaluated, that is, that we can determine whether

it is maintained or not, depending on the type of system assumptions. Note

that the idea is not to know the exact values of TEexec and TEexh, but rather to

reason about constraints that may be imposed on them, derived from environ-

ment and/or algorithmic assumptions. This way, one could predict, at system

or even at algorithm design time, if the system can be exhaustion-safe accord-

ing to the environment assumptions. This would allow us, as we shall show,

to make propositions about exhaustion-safety for categories of algorithms and

system fault and synchrony models, i.e., propositions about the potential re-

silience of algorithms long before systems are built. With this goal in mind, we

start by defining two crucial properties of the model, which follow immedi-

ately from the previous definitions.

Property 3.1.5. A sufficient condition for S to be r-exhaustion-safe wrt ϕr is

∃Texecmax ∈ <+
0 (∀E ∈ JSK : TEexec ≤ Texecmax) ∧ (∀E ∈ JSK : TEexh > Texecmax)

Property 3.1.6. A necessary condition for S to be r-exhaustion-safe wrt ϕr is

∃Texhmax ∈ <
+
0 (∀E ∈ JSK : TEexh ≤ Texhmax)⇒ (∀E ∈ JSK : TEexec < Texhmax)

Property 3.1.5 states that a system S is r-exhaustion-safe wrt ϕr if there ex-

ists an upper-bound Texecmax on the system execution time, and if the exhaus-

tion time of every execution is greater than Texecmax .

33

3. EXHAUSTION-SAFETY

Property 3.1.6 states that a system S can only be r-exhaustion-safe wrt ϕr

if, given an upper-bound Texhmax on the system exhaustion time, the execution

time of every execution is lower than Texhmax .

3.2 Exhaustion-Safety vs Synchrony Assumptions

This section analyzes the impact of synchrony assumptions on the design of

exhaustion-safe systems.

3.2.1 Synchronous Systems

Systems developed under the synchronous model are relatively straightfor-

ward to reason about and to describe. This model has three distinguishing

properties that help us understand better the system behavior: there is a known

time bound for the local processing of any operation, message deliveries are

performed within a well-known maximum delay, and components have access

to local clocks with a known bounded drift rate with respect to real time (Hadzi-

lacos & Toueg, 1994; Veríssimo & Rodrigues, 2001).

If one considers a synchronous system S with a bounded lifetime under

REX, then it is possible to use the worst-case bounds defined during the design

phase to assess the conditions of r-exhaustion-safety, for given r and ϕr.

Corollary 3.2.1. If S is a synchronous system with a bounded lifetime Texecmax (i.e.,

∀E ∈ JSK : TEexec ≤ Texecmax) and ∀E ∈ JSK : TEexh > Texecmax , then S is r-exhaustion-

safe wrt ϕr.

Proof: Follows trivially from Property 3.1.5. �

Therefore, if one wants to design an exhaustion-safe synchronous system

with a bounded lifetime, then one has to guarantee that no exhaustion is pos-

34

3.2 Exhaustion-Safety vs Synchrony Assumptions

sible during the limited period of time delimited by Texecmax . For instance, and

getting back to our previous example, in a distributed f fault-tolerant system

this would mean that no more than f node failures should occur within Texecmax .

Note that Corollary 3.2.1 only applies to synchronous systems with a bound-

ed lifetime. A synchronous system may however have an unbounded lifetime.

This seems contradictory at first sight and thus deserves a more detailed expla-

nation. A synchronous system is typically composed by a set of (synchronous)

rounds with bounded execution time (e.g., a synchronous server replying to

requests from clients, each pair request-reply being a round). However, the

number of rounds is not necessarily bounded. We consider that a synchronous

system has a bounded lifetime if the number of rounds is bounded. Otherwise,

the system has unbounded lifetime. If the system lifespan is unbounded, and

Texh is bounded, then we can prove the following.

Corollary 3.2.2. If S is a synchronous system with an unbounded lifetime (i.e., @Texecmax

∈ <+
0 , ∀E ∈ JSK : TEexec ≤ Texecmax) and ∃Texhmax ∈ <

+
0 , ∀E ∈ JSK : TEexh ≤ Texhmax ,

then S is not r-exhaustion-safe wrt ϕr.

Proof: If the set {TEexec : E ∈ JSK} does not have a bound, it is impossible to guar-

antee that TEexec < Texhmax , for every E ∈ JSK and, therefore, by Property 3.1.6, S

is not r-exhaustion-safe. �

In fact, synchronous systems may suffer accidental or malicious faults. Such

faults may have two bad effects: provoking timing failures that increase the ex-

pected execution time; causing resource degradation, e.g., node failures, which

decrease Texh. Notice that both these effects force the conditions of Corol-

lary 3.2.2. Thus, in a synchronous system, an adversary can not only perform

attacks to exhaust resources, but also violate the timing assumptions, even if

during a limited interval, buying time for resources to be exhausted. In con-

sequence, Corollary 3.2.2 formalizes and explains the current belief among the

35

3. EXHAUSTION-SAFETY

research community that synchronous systems are fragile, and that secure sys-

tems should be built under the asynchronous model.

3.2.2 Asynchronous Systems

The distinguishing feature of an asynchronous system is the absence of tim-

ing assumptions, which means arbitrary delays for the execution of operations

and message deliveries, and unbounded drift rates for the local clocks (Fis-

cher et al., 1985; Lynch, 1996). This model is quite attractive because it leads

to the design of programs and components that are easier to port or include in

different environments.

If one considers a distributed asynchronous system S under REX, then S

can be built in such a way that termination is eventually guaranteed (some-

times only if certain conditions become true). However, it is impossible to

determine exactly when termination will occur. In other words, the execution

time is unbounded. Therefore, all we are left with is the relation between Texec

and Texh, in order to assess whether or not S is r-exhaustion-safe, for given r

and ϕr.

Can a distributed asynchronous system S be r-exhaustion-safe? Despite the

arbitrariness of Texec, the condition TEexec < TEexh must always be maintained.

Given that TEexec may have an arbitrary value, impossible to know through

aprioristic calculations, the system should be constructed in order to ensure

that, in all executions, TEexh is greater than TEexec. This is very hard to achieve for

some types of r and ϕr. An example is assuring that no more than f nodes ever

fail. We provide a solution to this particular case in Chapter 4 based on a hy-

brid system architecture that guarantees exhaustion-safety through a partially

synchronous subsystem that executes periodic rejuvenations.

If one assumes that the system is homogeneously asynchronous, and that

36

3.2 Exhaustion-Safety vs Synchrony Assumptions

the set {TEexh : E ∈ JSK} is bounded, one can prove the following corollary of

Property 3.1.6, similar to Corollary 3.2.2:

Corollary 3.2.3. If S is an asynchronous system (and, hence, @Texecmax ∈ <+
0 , ∀E ∈

JSK : TEexec ≤ Texecmax) and ∃Texhmax ∈ <
+
0 , ∀E ∈ JSK : TEexh ≤ Texhmax , then S is not

r-exhaustion-safe wrt ϕr.

Proof: Follows trivially from Corollary 3.2.2. �

This corollary is generic, in the sense that it applies to any type of system

with a bounded Texh for some assumption ϕr. However, its implications on

distributed f fault-tolerant systems deserve a special look, given that in the

remaining of the thesis, we concentrate on the exhaustion-safety of such sys-

tems.

Even though real distributed systems working under the asynchronous

model have a bounded Texh in terms of node failures, they have been used

with success for many years. This happens because, until recently, only acci-

dental faults (e.g., crash or omission) were a threat to systems. This type of

faults, being accidental by nature, occur in a random manner. Therefore, by

studying the environment in detail and by appropriately conceiving the sys-

tem (e.g., estimate a conservative upper bound on Texec i.e., one that applies to

a large number of executions), one can achieve an asynchronous system that

behaves as if it were exhaustion-safe, with as high a probability as we wish.

That is, despite having the above-mentioned failure syndrome, it would be

very difficult to observe it in practice.

However, when one starts to consider malicious faults, a different reason-

ing must be made. This type of faults is intentional (not accidental) and there-

fore their distribution is not random: the actual distribution may be shaped at

will by an adversary whose main purpose is to break the system (e.g., force

the system to execute during more time than any estimated upper bound on

37

3. EXHAUSTION-SAFETY

Texec). In these conditions, having a upper-bounded Texh (which we get when

using a stationary maximum bound for node failures) most probably implies

the actual failure of the system due to exhaustion failure.

Consequently, Texh should not have an upper-bound in an asynchronous

distributed fault-tolerant system operating in a environment prone to anything

more severe than accidental faults. The goal should then be to maintain Texh

above Texec, in all executions.

The findings in this chapter prompt us to two conclusions. Firstly, the the-

oretical impact of these findings remains across the fault spectrum. That is,

such failure syndromes were previously unknown and even with accidental

faults they can cause the inadvertent failure of asynchronous or synchronous

distributed systems. These systems are to our findings fairly the same as “ap-

parently working” pre-FLP asynchronous consensus systems were to FLP. In

consequence, our results may alert researchers and help conceive better dis-

tributed systems.

Secondly, the practical impact of the same findings can in our opinion be-

come higher, commensurate to the measure in which systems, critical or generic,

are becoming prey to hacker attacks (malicious faults). This means that, with

increasing probability, systems having the failure syndrome discovered in this

thesis not only can but will be attacked and made to fail.

Finally, given that proactive recovery systems are a special case of systems

aiming at achieving perpetual execution in face of the continuous production

of faults, they deserve a special attention in this thesis.

38

Chapter 4

Proactive Resilience

One of the most interesting approaches to avoid resource exhaustion due to

accidental or malicious corruption of components is through proactive recov-

ery (Ostrovsky & Yung, 1991), which can be seen as a form of dynamic re-

dundancy (Siewiorek & Swarz, 1992). The aim of this mechanism is concep-

tually simple – components are periodically rejuvenated to remove the effects

of malicious attacks/faults. If the rejuvenation is performed frequently often,

then an adversary is unable to corrupt enough resources to break the system.

Proactive recovery has been suggested in several contexts. For instance, it can

be used to refresh cryptographic keys in order to prevent the disclosure of too

many secrets (Cachin et al., 2002; Garay et al., 2000; Herzberg et al., 1995, 1997;

Marsh & Schneider, 2004; Zhou et al., 2002, 2005). It may also be utilized to

restore the system code from a secure source to eliminate potential transforma-

tions carried out by an adversary (Castro & Liskov, 2002; Ostrovsky & Yung,

1991). Moreover, it may encompass the substitution of software components

to remove vulnerabilities existent in previous versions (e.g., software bugs that

could crash the system or errors exploitable by outside attackers). Vulnerabil-

ity removal can also be done through address space randomization (Bhatkar

39

4. PROACTIVE RESILIENCE

et al., 2003, 2005; Forrest et al., 1997; PaX; Xu et al., 2003), which could be used

to periodically randomize the memory location of all code and data objects.

Thus, intuitively, by using a well-planned strategy of proactive recovery,

Texh can be recurrently increased in order that it is always greater than Texec in

all executions. However, this intuition is rather difficult to substantiate if the

system is asynchronous. As it was explained in Section 2.2, the simple task of

timely triggering a periodic recovery procedure is impossible to attain under

the pure asynchronous model, namely if it is subject to malicious faults. From

this reasoning, and according to Corollary 3.2.3, one can conclude that it is

not possible to ensure the exhaustion-safety of an asynchronous system with

bounded exhaustion time through asynchronous proactive recovery.

The impossibility of building an exhaustion-safe f fault/intrusion-tolerant

distributed asynchronous system, namely in the presence of malicious faults,

and even if enhanced with asynchronous proactive recovery, led us to investi-

gate hybrid models for proactive recovery.

4.1 The Proactive Resilience Model

Proactive recovery is useful to periodically rejuvenate components and remove

the effects of malicious attacks/failures, as long as it has timeliness guarantees.

In fact, the rest of the system may even be completely asynchronous – only the

proactive recovery mechanism needs synchronous execution. This type of re-

quirement indicates that one of the possible approaches to use proactive recov-

ery in a effective way, is to model and architect it under a hybrid distributed

system model or Wormholes model (Veríssimo, 2006).

In this context, we propose the Proactive Resilience Model (PRM), a more

resilient approach to proactive recovery. The PRM defines a system enhanced

40

4.1 The Proactive Resilience Model

with proactive recovery through a model composed of two parts: the proac-

tive recovery subsystem and the payload system, the latter being proactively

recovered by the former. Each of these two parts obeys different timing as-

sumptions and different fault models, and should be designed accordingly to

the guidelines of hybrid distributed system models (Veríssimo, 2006).

The payload system executes the “normal” applications and protocols. In

this way, the payload synchrony and fault model entirely depend on the appli-

cations/protocols executing in this part of the system. For instance, the pay-

load may operate in an asynchronous Byzantine environment. The proactive

recovery subsystem executes the proactive recovery protocols that rejuvenate

the applications/protocols running in the payload part. This subsystem, al-

beit simple in functionality, is more demanding in terms of timing and fault

assumptions, and it is modeled as an abstract distributed component called

Proactive Recovery Wormhole (PRW). By abstract we mean that this component

admits different instantiations. Typically, a specific instantiation is chosen ac-

cording to the concrete application/protocol that needs to be proactively re-

covered.

The architecture of a system with a PRW is suggested in Figure 4.1. Each

host contains a local module, called the local PRW. These modules are orga-

nized in clusters, called PRW clusters, and the local PRWs in each cluster are

interconnected by a synchronous and secure control network. The set of all PRW

clusters is what is collectively called the PRW. The PRW is used to execute

proactive recovery procedures of protocols/applications running between par-

ticipants in the hosts concerned, on any usual distributed system architecture

(e.g., the Internet).

Conceptually, a local PRW is a module separated from the OS. In practice,

this separation between the local PRW and the OS can be achieved in either

41

4. PROACTIVE RESILIENCE

Host D Host E

payload network

synchronous & secure
any synchrony & security (payload)

local PRW
CY

1
local PRW

CY
2

payload network

control network

local PRW
CX

1

Host A Host B Host C
local PRW

CX
2

local PRW
CX

3

payload network

cluster CY with two interconnected local PRWs

control network
cluster CX with three interconnected local PRWs local PRW

C 1

Host F

CZ
1

cluster CZ with a single local PRW

Figure 4.1: The architecture of a system with a PRW.

of two ways: (1) the local PRW is implemented in a separate tamper-proof

hardware module (e.g., smartcard, or PC appliance board (Kent, 1980; Trusted

Computing Group, 2004)) and so the separation is physical; (2) the local PRW is

implemented on the native hardware, with a virtual separation and shielding

(e.g., using software virtualization (Barham et al., 2003)) between the local PRW

and the OS processes.

The way clusters are organized is dependent on the rejuvenation require-

ments. Typically, a cluster is composed of nodes that are somehow interdepen-

dent w.r.t. rejuvenating (e.g., need to exchange information during recovery).

We focus two specific cluster configurations:

PRWl is composed of n clusters, each one including a single local PRW. There-

fore, every PRWl cluster is exactly like cluster CZ depicted in Figure 4.1,

and, consequently, no control network exists in any cluster;

PRWd is composed of a single cluster including all local PRWs. For instance, if

42

4.1 The Proactive Resilience Model

the system is composed of 3 [resp. 2] nodes, then the (single) PRWd clus-

ter would be like cluster CX [resp. CY] depicted in Figure 4.1. In this case

every local PRW is interconnected through the same control network.

PRWl should be used in scenarios where the recovery procedure only re-

quires local information, and therefore there is no need for distributed execu-

tion (e.g., rebooting a replica from clean media as described in Section 5.2).

PRWd should be used when the recovery is done through a fully distributed

recovery procedure in which every local PRW should participate (e.g., proac-

tive secret sharing as explained in Section 5.1). Many more configurations are

possible, namely configurations composed of heterogeneous clusters (i.e., clus-

ters with different sizes). We leave the discussion of such configurations and

their usefulness as future work.

4.1.1 Periodic Timely Rejuvenation

The PRW executes periodic rejuvenations through a periodic timely execution

service. This section defines the periodic timely execution service, proposes an

algorithm to implement it, and specifies the real-time guarantees required of

the PRW. Then, assuming that the local PRWs do not fail, Section 4.1.2 proves

that systems enhanced with a PRW executing an appropriate periodic timely

rejuvenation service are node-exhaustion-safe. Section 4.1.2 also discusses how

this result can be generalized in order to take into account potential crashes of

local PRWs.

Each PRW cluster runs its own instance of the periodic timely execution

service, and there are no constraints in terms of the coordination of the differ-

ent instances. Albeit running independently, each cluster offers the same set

of properties dictated by four global parameters: F, TP, TD and Tπ. Namely,

43

4. PROACTIVE RESILIENCE

all local PRWs all local PRWs

timeround m+1

in round m in round m+1

round mCX
1

timeround m round m+1CX
2

C 3
time

T

≤Tπ ≤TD ≤Tπ ≤TD

round m round m+1CX
3

≤TP

Figure 4.2: Relationship between TP,TD and Tπ in a cluster CX with three local
PRWs.

each cluster executes a rejuvenation procedure F in rounds, and each round is

triggered within TP from the last triggering. This triggering is done by at least

one local PRW (in each cluster), and all other local PRWs (of the same cluster)

start executing the same round within Tπ of each other. In this way, Tπ corre-

sponds to the maximum time interval between a local PRW entering a certain

round, and all other local PRWs entering the same round. Moreover, each clus-

ter guarantees that, once all local PRWs are in the same round, the execution

time of F is bounded by TD. Therefore, the worst case execution time of each

round of F is given by Tπ + TD. Figure 4.2 illustrates the relationship between

TP, TD, and Tπ, in a cluster with three local PRWs. A formal definition of the

periodic timely execution service is presented next.

Definition 4.1.1. Let F be a procedure and TD, TP, Tπ ∈ <+
0 , s.t. TD + Tπ < TP. A

set of components C, organized in s disjoint and non-empty clusters C1, ..., Cs, offers a

periodic timely execution service 〈F, TD, TP, Tπ〉, if and only if:

1. the components of the same cluster C i execute F in rounds, and therefore F is a

distributed procedure within a cluster;

2. for every real time instant t of C execution time, there exists a round of F trig-

44

4.1 The Proactive Resilience Model

gered in each cluster C i within TP from t, i.e., one component C in each cluster

C i triggers the execution of a round of F within TP from t;

3. every component in a cluster C i triggers the execution of the same round of F

within Tπ of each other component in the same cluster;

4. each cluster C i ensures that, once all components are in the same round of F, the

execution time of F is bounded by TD, i.e., the difference between the real time

instant when the last component in a cluster C i starts executing F and the real

time instant when the last component of the same cluster finishes executing is

not greater than TD (both executions refer to the same round).

Corollary 4.1.2. If C is a set of components, organized in s clusters C1, ..., Cs, that

offers a periodic timely execution service 〈F, TD, TP, Tπ〉 then, for every real time in-

stant t of C execution time, there exists a round of F triggered in each cluster C i within

TP from t that is terminated within TP + TD + Tπ from t.

Definition 4.1.3. A system enhanced with a PRW(〈F, TD, TP, Tπ〉) has a local PRW

in every host. Moreover these are organized in clusters and in conjunction offer the

periodic timely execution service 〈F, TD, TP, Tπ〉.

As mentioned before, the PRW admits two particular cluster configurations

— PRWl and PRWd. These are defined as follows.

Definition 4.1.4. A system enhanced with a PRW l(〈F, TD, TP, Tπ〉) is a system en-

hanced with a PRW(〈F, TD, TP, Tπ〉) s.t. there exist n clusters C1, ..., Cn, and each

cluster C i is composed of a single local PRW.

Definition 4.1.5. A system enhanced with a PRWd(〈F, TD, TP, Tπ〉) is a system en-

hanced with a PRW(〈F, TD, TP, Tπ〉) s.t. there exist a single cluster C1 comprising

all local PRWs.

45

4. PROACTIVE RESILIENCE

A periodic timely execution service can be built using, for instance, Algo-

rithm 1, on an environment that ensures the following properties:

P1 There exists a known upper bound on the processing delays of every

local PRW.

P2 There exists a known upper bound on the clock drift rate of every local

PRW.

P3 There exists a known upper bound on the message delivery delays of

every control network interconnecting the local PRWs of a same cluster.

Suppose that each local PRW executes Algorithm 1, where function clock

returns the current value of the clock of the local PRW, F is the recovery proce-

dure that should be periodically timely executed, and TP is the desired recov-

ery periodicity. Value δ defines a safety time interval used to guarantee that

consecutive recoveries are triggered within TP from each other in the presence

of the assumed upper bounds on the processing delays (P1) and the clock drift

rate (P2). Notice that between the wait instruction in line 2 and the triggering

of F in line 7, there is a set of instructions that take (bounded) time to execute.

δ should guarantee that consecutive recoveries are always triggered within TP

of each other independently of the actual execution time of those instructions,

and taking into account the maximum possible clock drift rate. However, δ

should also guarantee that every local PRW triggers F within Tπ of each other.

So, δ should not be greater than TP − (TD + Tπ) in order to ensure that the lo-

cal PRW C i
1 in each cluster C i does not start to execute F too early (i.e., when

other local PRWs may still be executing the previous round). In these condi-

tions, the algorithm guarantees that F is always triggered, in each cluster C i,

by local PRWs C i
1 within TP from the last triggering. Moreover, given that it

is assured that different rounds do not overlap, the triggering instant in the

46

4.1 The Proactive Resilience Model

Algorithm 1: Periodic timely execution service run by each local PRW C i
j

in cluster C i
initialization: tlast ← clock
begin

while true do
/* local PRWs C i

j with j = 1 in each cluster C i coordinate the
recovering process */

if j = 1 then1

wait until clock = tlast + TP − δ2

tlast ← clock3

multicast(trigger, C i)4

else5

receive(trigger)6

execute F7

end

local PRWs of the same cluster differs in at most the maximum message de-

livery delay (P3) plus the maximum processing delay, i.e., the time necessary

for message trigger to be delivered and processed in all local PRWs. Thus, the

value of Tπ is defined by this sum. In this situation, each local PRW offers a pe-

riodic timely execution service PRW(〈F, TD, TP, Tπ〉) provided it ensures that,

once all local PRWs are in the same round of F, its execution time is bounded

by TD.

4.1.2 Building Node-Exhaustion-Safe Systems

A distributed system enhanced with a PRW(〈F, TD, TP, Tπ〉) can be made node-

exhaustion-safe under certain conditions, as it will be shown in Theorem 4.1.6.

This theorem states that if it is possible to lower-bound the exhaustion time

(i.e., the time needed to produce f + 1 node failures) of every system execu-

tion by a known constant Texhmin , then node-exhaustion-safety is achieved by

assuring that TP + TD + Tπ < Texhmin .

47

4. PROACTIVE RESILIENCE

In what follows, let JSK denote the set of executions of an f fault-tolerant

distributed system S under the REX model for the condition ϕnode = n f ail ≤ f ,

where n f ail represents the number of nodes which, during an execution, are

failed simultaneously. Notice that the type of failure is not specified, but only

that nodes may fail in some way and that this failure can be recovered through

the execution of a rejuvenation procedure. A node failure may be for instance

the disclosure of some secret information (the type of failures considered in

Section 5.1), or a hacker intrusion that compromises the behavior of some parts

of the system. Notice also that the rejuvenation procedure will depend on the

specific type of failure one wishes to recover from. For instance, whereas a

direct intrusion may require the reboot of the system and the reloading of code

and state from some trusted source, the disclosure of secret information may

be solved by simply turning that information obsolete.

Theorem 4.1.6. Suppose that:

1. S is a system composed of a total of n nodes which, once failed, do not recover,

and let Texhmin = inf({TEexh : E ∈ JSK})1;

2. The time needed to produce f + 1 (≤ n) node failures at any instant is indepen-

dent of the number of nodes that are currently failed;

3. F is a distributed procedure that upon termination ensures that all nodes in-

volved in its execution are not failed.

Then, system S enhanced with a PRW(〈F, TD, TP, Tπ〉) s.t. TP + TD + Tπ < Texhmin

is node-exhaustion-safe w.r.t. ϕnode.

Proof: Assumption (1) entails that, in every execution of S, from a state with 0

failed nodes, it takes at least Texhmin for f + 1 node failures to be produced. Let

1inf() denotes the infimum of a set of real numbers, i.e., the greatest lower bound for the
set.

48

4.1 The Proactive Resilience Model

m be a natural number such that m + f + 1 ≤ n. Then, using assumption (2),

we may conclude that, in every execution of S, it takes at least Texhmin to reach

a state with m + f + 1 failed nodes from a state with m failed nodes1. This also

means that :

4. in every execution of S, the number of node failures during a time inter-

val]t, t + Texhmin [is at most f .

By contradiction, assume that there exists an execution of the system S, en-

hanced with a PRW(〈F, TD, TP, Tπ〉) s.t. TP + TD + Tπ < Texhmin , which vio-

lates ϕnode. This means that there is a time instant tC when there are more than

f failed nodes. Notice that tC cannot occur in less than Texhmin from the system

initial start instant, because this would mean that more than f + 1 node fail-

ures were produced in less than Texhmin from a state with 0 failed nodes, which

is contradictory with assumption (1). Hence, tC occurs in at least Texhmin from

the system initial start instant.

Then, by (4), in tI = tC − Texhmin there is at least one failed node, because in

less than Texhmin is not possible that more than f nodes become failed. Given

that we assumed that the PRW never fails and given that the nature of F is to

recover the nodes of the cluster where F is executed (assumption (3)), the ex-

ecution of S under PRW(〈F, TD, TP, Tπ〉) with TP + TD + Tπ < Texhmin ensures

that any node that is failed at tI is recovered no later than tI + TP + TD + Tπ

and, hence, is recovered earlier than tC = tI + Texhmin . If one of the nodes that

are failed in tI becomes recovered before tC and there are more than f failed

nodes in tC = tI + Texhmin , then more than f nodes become failed in the interval

]tI , tI + Texhmin [. But this is contradictory with (4) above. �

1Notice that a node may fail, be recovered, fail again, and so on. Therefore, the total
number of node failures does not correspond necessarily to the number of currently failed
nodes.

49

4. PROACTIVE RESILIENCE

From Theorem 4.1.6 it follows that, in order to build a node-exhaustion-safe

intrusion-tolerant system, the system architect should choose an appropriate

degree of fault-tolerance f , such that TP + TD + Tπ < TEexh, for every system

execution E . In other words, any interval with length TP + TD + Tπ should not

be sufficient for f + 1 node failures to be produced, throughout the lifetime of

the system.

As mentioned before, the results presented in this section depend on the as-

sumption that local PRWs never fail. This assumption allows to abstract from

PRWs crashes and, in this way, allows to focus on what is really important.

However, Theorem 4.1.6 could be extended to the case where the number of

crashes is upper-bounded by some known constant fc. The difference would

be that one would need to add sufficient redundancy to the system in order to

resist the fc possible crashes, and the protocol(s) executed by the PRW would

also have to take this into account. Section 5.1.2 explains how this could be

done in a concrete scenario. In order to minimize the probability of crashing

more than fc local PRWs, and in this way guarantee the exhaustion-safety of

the overall system, the system architect would need to estimate the probability

of crash according to environment conditions and/or apply techniques of dy-

namic redundancy, where crashed PRWs could be repaired or replaced before

more than fc become crashed.

4.2 Evaluation

This section presents the results of evaluating, through simulation, whether or

not our intrusion-tolerance approach, proactive resilience, is sufficient to achieve

node-exhaustion-safety and availability for an assumed fault rate. It also shows

how previous approaches fail to guarantee such behavior. It starts by present-

50

4.2 Evaluation

ing the modeling formalism and describing both the models developed to rep-

resent an abstract distributed system that periodically recovers, and the adver-

sary that tries to break the system. Then, it presents the results of simulating

such an environment when using and not using proactive resilience.

The simulation model incorporates a technique that allows the system to

live under two different timebases: one representing the pace of generation of

faults and/or attacks, and another representing the internal execution, e.g., of

recoveries. The former largely depends on physical events happening in real

time (such as accidental fault generation and hacker attacks) and thus should

be modeled as having a synchronous behavior, whereas the latter depends on

the internal system synchrony assumptions. The innovation in this separation

is more important than meets the eye, for at the root of our initial findings was

the discovery that the asynchronous system models used so far did not depict

accurately enough the subtle timing relations between the pace at which faults

occur and the pace at which a system executes, leading to unexpected failures

by exhaustion of system resources. For instance, as described in Section 2.2.1, a

simple attack on a node’s clock drift rate may slow down the rate of recoveries,

and thus increase the probability that another type of faults (potentially more

dangerous) will be successful. As already mentioned before, such a (timing)

attack is undetectable under asynchronous assumptions.

4.2.1 Node-Exhaustion-Safety and Availability

In order to perform an evaluation through simulation, we start by defining

a more specialized model for evaluating exhaustion-safety, which can help to

assess if a fault-tolerant distributed system using proactive recovery is node-

exhaustion-safe.

As pointed out in Section 2.2.5, recoveries may introduce availability prob-

51

4. PROACTIVE RESILIENCE

lems given that the recovering nodes may be unavailable during some time.

Therefore, the system architect should take this into account if availability is

a requirement. The model presented here specifies what are the exact condi-

tions to guarantee node-exhaustion-safety and availability. Then, Section 5.2.4

discusses this same issue in the context of state machine replication.

We model a distributed system adversary through a parameter:

• mi f t, the minimum inter-failure time, which measures the speed at which

the adversary is capable of attacking and causing individual node fail-

ures.

We want to keep the model simple enough, so for the purpose of this thesis

we assume that whenever there are dependencies between node failures creat-

ing common failure modes (e.g., two nodes using the same operating system

and thus being vulnerable to the same type of attacks on the OS vulnerabili-

ties), this can be absorbed by a smaller mi f t. Despite this simplification, the

model is sufficiently representative to discuss the problems presented in Sec-

tion 2.2.5.

We model the distributed system itself through three parameters:

• met, the maximum execution time, represents the maximum duration of

a meaningful execution (e.g., protocol run, transaction, server action, or

sequences thereof);

• mirt, the maximum inter-recovery time, specifies the maximum interval

between the triggering of a recovery procedure and the termination of

the next consecutive one (i.e., the maximum interval between the termi-

nation of two consecutive recoveries in any node, given that nodes may

recover by a different order in different recoveries);

52

4.2 Evaluation

mirt

mift

mirt

mift

provokes
d

adversary

a node
failure

≤ mirt
≤ mirt

≤ mrd
recoveries

≤ mrd
recoveries

…system

≥ mift

all nodes are
recovered

all nodes are
recovered

all nodes are
recovered

system

Figure 4.3: Relationship between mi f t,mirt and mrd.

• mrd, the maximum recovery degree, specifies the maximum number of

nodes that are recovered simultaneously at any recovery step (i.e., a re-

covery procedure is composed of at least d n
mrde recovery steps, where n

is the total number of nodes).

The last two parameters typify system recoveries. A recovery execution can

take several steps and recovers all the nodes of the system; hence, regardless

of whether they failed before recovery, all the nodes become correct after a

recovery. Figure 4.3 illustrates the relationship between mi f t, mirt and mrd.

Notice that during a recovery step, the nodes in question may be unavail-

able. Therefore, the system must have extra redundancy if it is to continue

operating uninterrupted through recoveries. The discussion of how the state

of the nodes is affected by a recovery is out of the scope of this work. In fact,

this is an advantage: our model is sufficiently generic that it can be applied to

either stateful or stateless recovery.

If the system maximum execution time met is known, then recoveries are

not necessary if the system avoids exhaustion during execution. It is trivial

53

4. PROACTIVE RESILIENCE

to see that the following condition should be satisfied: the system should be

resourced so as to tolerate f ≥ d met
mi f te faults. However, if the system has an

unbounded execution time, or if there is a bound on the amount of redundancy

available to deploy the system, recoveries are mandatory.

Let us start by defining node-exhaustion-safety and availability under the

described model.

Definition 4.2.1. Let S=(n, fa, fc, met, mi f t, mirt, mrd) be a distributed system with

n nodes, able to resist a maximum number fa ≤ n of arbitrary failures, and a maxi-

mum number fc ≤ n of crash failures, and let, for all nodes, met represent maximum

execution time; mi f t represent minimum inter-failure time; mirt represent maximum

inter-recovery time; and mrd represent maximum recovery degree.

Then, S is node-exhaustion-safe iff n is such that the system resists fa ≥ dmin(met,mirt)
mi f t e

arbitrary failures. Moreover, S ensures availability iff n is such that the system addi-

tionally resists fc ≥ mrd crash failures.

The intuition behind the definition is that a system needs to have enough

redundancy to tolerate at least the number of arbitrary faults given by the ac-

tual maximum number of faults/intrusions that may happen between recov-

eries or until execution ends (in case the system never recovers). Moreover,

and in order to maintain availability, the system should, in addition, tolerate

at least the number of crash faults given by the maximum number of nodes

that may be put to recover simultaneously. It is easy to see that an asynchro-

nous distributed system tolerant of a constant number fa of arbitrary faults is

not node-exhaustion-safe.

Proposition 4.2.2. Let S be a fault-tolerant distributed system under the asynchro-

nous model, and able to resist a known maximum number fa of arbitrary node failures.

Then, S is not node-exhaustion-safe.

54

4.2 Evaluation

Proof: If S is asynchronous, then there is no bound on how long S takes to

process local or distributed actions. Thus, met and mirt are both unbounded,

and it is impossible to guarantee fa ≥ dmin(met,mirt)
mi f t e. �

This result is not surprising given that it was showed in Corollary 3.2.3 that

any asynchronous system with a finite exhaustion time is not exhaustion-safe.

Notice that Proposition 4.2.2 applies to any type of fault-tolerant asynchro-

nous distributed system, including ones using asynchronous proactive recov-

ery (Cachin et al., 2002; Castro & Liskov, 2002; Marsh & Schneider, 2004; Zhou

et al., 2002, 2005). The ultimate goal of asynchronous proactive recovery is to

guarantee that the value of mirt is such that more than fa node failures never

occur. However, as shown above, this is theoretically impossible by definition

of asynchrony. In practical terms, it is also readily observable, since the asyn-

chrony pattern leading to exhaustion can be induced by a malicious adversary,

as it was discussed in Section 2.2.

This problem can be better understood if we consider the following. Vari-

ables met, mi f t, and mirt measure real-time intervals from an omniscient ob-

server’s perspective. mi f t measures the activity leading to the production of

node failures due to faults or intrusions. mi f t largely depends on physical

events that happen in real time (e.g., accidental fault generation or external

hacker attacks), and in the worst case it is independent of the system’s speed

of execution. Also, mi f t needs to be lower-bounded, say by Mi f t: this is an as-

sumption of the type made in several similar systems (Cachin et al., 2002; Cas-

tro & Liskov, 2002; Zhou et al., 2002). If the minimum inter-failure time (mi f t)

were not lower-bounded with Mi f t, the adversary would have infinite power

(e.g., mi f t=0), and it would be impossible to derive an exhaustion-safe design.

Notice that this timing assumption is about fault production and thus is rep-

resented in the external timebase, not compromising at all the asynchrony of

55

4. PROACTIVE RESILIENCE

the system itself, which runs according to the internal timebase. met measures

the longest duration of an execution, which is non-definable if the system is

asynchronous or if the system executes forever.

Finally, mirt defines the maximum interval between the triggering and ter-

mination of two consecutive recoveries. However, note that for a given tar-

get fa and assumed Mi f t, one obtains a design-time Mirt ≤ fa × Mi f t. This

constant Mirt will be used by the internal system timing to trigger and ex-

ecute periodic recoveries. It is perhaps important to clarify that the relation

between mirt and Mirt is not quite the same as the one existing between mi f t

and Mi f t. Mi f t is an assumed lower-bound on mi f t, which is necessary as

explained above. On the other hand, Mirt is a design-time parameter, which

results from the assumed values for fa and Mi f t. This is where the problems of

an asynchronous system start. The mapping between the interval Mirt as seen

by the system internally and the actual real-time interval mirt as seen by an

omniscient observer depends on the internal system synchrony assumptions.

For the sake of giving an example, let us consider an internal time factor (it f),

with mirt=Mirt× it f .

Consider now an asynchronous fault-tolerant distributed system with a

mi f t=20 time units, expected to rejuvenate periodically in intervals equal to

or shorter than mirt=30 time units. Assume also that mrd=1. From Defini-

tion 4.2.1, this system is node-exhaustion-safe iff it is able to resist fa ≥ 2.

Assume that one deploys such a system with fa=2, programmed internally to

rejuvenate in order that Mirt=30. The system should be node-exhaustion-safe

in theory, but this is not necessarily true. Suppose the system’s execution is

slowed down by an internal time factor it f =3: that is, all system actions run

three times slower than expected. This is normal behavior for an asynchro-

nous system, by definition. Then, whatever triggers and executes rejuvenation

56

4.2 Evaluation

is also affected by this delay: mirt=Mirt × it f = 30× 3 = 90 time units. So

in reality, the interval between the start and termination of two consecutive

rejuvenation periods is 90 time units, instead of 30 time units. However, this

interval is long enough for more than two arbitrary faults to occur, inducing a

potential system failure.

A distributed intrusion-tolerant system built according to the proactive re-

silience model is node-exhaustion-safe and ensures availability in the follow-

ing conditions.

Theorem 4.2.3. Let S = (n, fa, fc, met, mi f t, mirt, mrd) be a distributed system able

to resist at most fa arbitrary node failures, and at most fc crash node failures. If S is

periodically recovered through a PRW instantiation with parameters TP, TD, and Tπ,

then S is node-exhaustion-safe iff fa ≥ dmin(met,TP+TD+Tπ)
mi f t e. Moreover, S ensures

availability iff fc ≥ mrd.

Proof: By Definition 4.2.1, S is node-exhaustion-safe iff fa ≥ dmin(met,mirt)
mi f t e and

it ensures availability iff fc ≥ mrd. Thus, it suffices to show that TP + TD +

Tπ = mirt. From Corollary 4.1.2 it follows that the interval between the trig-

gering of a recovery and the termination of the next consecutive one is upper-

bounded by TP + TD + Tπ, and therefore TP + TD + Tπ = mirt. �

4.2.2 SAN Models

We use Stochastic Activity Networks (SANs) (Sanders & Meyer, 2000) as the

modeling formalism. SANs are a convenient, graphical, high-level language

for describing system behavior. SANs are useful in capturing the stochastic (or

random) behavior of a system.

Stochastic Petri nets are a subset of SANs. A stochastic Petri net has the

following components: places (denoted by circles), which contain tokens and

57

4. PROACTIVE RESILIENCE

are like variables; tokens, which indicate the “value” or “state” of a place; tran-

sitions (denoted by ovals), which change the number of tokens in places; input

arcs, which connect places to transitions; and output arcs, which connect transi-

tions to places. A transition is enabled if for each place connected by input arcs,

the number of tokens in the place are greater than or equal to the number of in-

put arcs connecting the place and the transition. When a transition is enabled,

it may fire, removing a token from the corresponding place for each input arc

and adding a token to the corresponding place for each output arc. An expo-

nentially distributed time is assigned to each transition. The term marking of a

place is used to indicate the number of tokens in the place.

Stochastic Petri nets, while being easier to read, write, modify, and debug

than Markov chains, are still limited in their expressive power, since they may

perform only +, −, >, and test-for-zero operations. That makes it very diffi-

cult to model complex interactions, and more general and flexible formalisms

are needed to represent real systems. Stochastic activity networks are one such

extension. They have many properties, which include a general way to specify

that an activity (transition) is enabled, a general way to specify a completion

(firing) rule, a way to represent zero-timed events, a way to represent proba-

bilistic choices upon completion, state-dependent parameter values, and gen-

eral delay distribution on activities.

SANs have all the components of Stochastic Petri nets plus four more: input

gates (denoted by triangles pointing left), which are used to define complex en-

abling predicates and completion functions; output gates (denoted by triangles

pointing to the right), which are used to define complex completion functions;

cases (denoted by small circles on activities), which are used to specify prob-

abilistic choices; and instantaneous activities (denoted by vertical lines), which

are used to specify zero-timed events.

58

4.2 Evaluation

An input gate has two components: an enabling predicate and an input

function. An activity is enabled if for every connected input gate, the enabling

predicate is true, and for each input arc, the number of tokens in the connected

place is greater than or equal to the number of arcs. Each case has a probability

associated with it and represents a probabilistic choice of the action to take

when an activity completes. When an activity completes, an output gate allows

for a more general change in the state of the system than an output arc does.

The output gate function is usually expressed using pseudo-C code. The input

functions of all input gates connected to an activity are also executed when the

activity completes. Those functions are also expressed in pseudo-C code. The

times between enabling and firing of activities can be distributed according to

a variety of probability distributions, and the parameters of the distribution

can be a function of the state.

Composed models consist of SANs that have been replicated and joined

multiple times. Replicated and joined models can interact with each other

through a set of places (called common places) that are common to multiple

submodels. A comprehensive description of SANs can be found in Sanders &

Meyer (2000).

We built atomic SAN submodels for a node and the typical adversary that is

constantly trying to corrupt system nodes. We also built submodels of the ex-

ternal/internal timebases and of two types of time adversaries: a conspicuous

one that delays the overall system execution, including both the application

and the recovery process (e.g., a Denial-of-Service (DoS) attack); and a stealth

time adversary that slows the internal timebases of the various nodes, thus

avoiding detection. The complete model of the system is composed using join

operations. We first present a description of each submodel, and then show

how the submodels are combined to form the composed model.

59

4. PROACTIVE RESILIENCE

In the remainder of the section, Figures 4.4, 4.5, 4.6, 4.7, and 4.8 present the

SAN models. It is not necessary to understand them in order to follow the

explanations in the text. To understand fully the graphical representation of

the models and the models themselves, the interested reader can find detailed

explanations of the generic SAN’s formalism in Sanders & Meyer (2000), and

a detailed documentation of the models is presented in Appendix A.

4.2.2.1 SAN Model for the External/Internal Timebases

The external/internal timebases SAN in Figure 4.4 models the rate at which the

external and internal timebases progress. The external timebase advances at

the same rate as the simulator clock (represented by the activity clock_tick),

while the internal timebase advances at a rate specified by a node parameter,

the internal time rate. In fact, we model two different internal timebases:

the payload one used by normal applications, and the proactive recovery one

used by the recovery mechanism. Although these two internal timebases are

coincident in a typical homogenous system, we need to separate them in order

to model our hybrid architecture. Notice that both internal time (variables

payload_internal_time_vector and pr_internal_time_vector) and internal

time rate (variables payload_internal_time_rate_vector and pr_internal_-

time_rate_vector) are specified as vectors. This happens because different

nodes may have different internal time behaviors.

This SAN model is the basis of our novel approach to intrusion-tolerant

modeling and evaluation. The different timebases will be used by the subse-

quent submodels according to the type of dependencies they have or do not

have on the system timing assumptions.

60

4.2 Evaluation

Figure 4.4: SAN model for the external/internal timebases.

4.2.2.2 SAN Model for the Stealth Time Adversary

The stealth time adversary SAN in Figure 4.5 models a special kind of adver-

sary. This adversary does not behave like the classic one (described in Sec-

tion 4.2.2.4) that simply tries to compromise system nodes, but instead has a

more specific goal: to detach a node’s internal timebase from the external one.

Such an adversary makes it possible to model both random and intentional

(i.e., maliciously triggered) asynchrony. The stealth time adversary behavior is

specified through two parameters:

• stealth time attack period specifies the minimum external time inter-

val between stealth time attacks. In each attack (represented by the ac-

tivity stealth_time_intrusion), the adversary randomly chooses and

compromises (a previously correct) victim.

• stealth time attack factor specifies how much “slowness” is injected

in each attacked node internal timebase.

61

4. PROACTIVE RESILIENCE

Figure 4.5: SAN model for the stealth time adversary.

4.2.2.3 SAN Model for the Conspicuous Time Adversary

The conspicuous time adversary SAN in Figure 4.6 models a different type

of time adversary that simply delays system actions. This adversary may be

seen as a particular case of the generic classic adversary (described in Sec-

tion 4.2.2.4) that develops, for instance, a DoS attack. However, we have de-

cided to model it separately in order to discuss in Section 4.2.3 the theoretical

difference between a conspicuous and a stealth time adversary, and how mali-

cious behavior may be detected in one case but not in the other. The conspicu-

ous time adversary behavior is specified through two parameters:

• conspicuous time attack period specifies the minimum external time

interval between conspicuous time attacks. In each attack (represented

by the activity conspicuous_time_intrusion), the adversary randomly

chooses and compromises (a previously correct) victim.

• conspicuous time attack factor specifies how much delay is injected

in the actions of each attacked node.

62

4.2 Evaluation

Figure 4.6: SAN model for the conspicuous time adversary.

4.2.2.4 SAN Model for the Classic Adversary

The classic adversary SAN in Figure 4.7 models the typical adversary that is

constantly trying to corrupt system nodes, and that ultimately exhausts the

distributed system when more than the assumed number of nodes are com-

promised. The classic adversary behavior is specified through one parameter:

• minimum inter-failure time specifies the minimum external time inter-

val between attacks. In each attack (represented by the activity intru-

sion), the adversary randomly compromises one node.

Notice that both the classic and time adversaries have an almost entirely

deterministic behavior. The only source of randomness derives from the node

targeted in each attack. We could have modeled attack periodicity as random

variables following some probabilistic distribution, but we prefer instead to

consider the worst-case scenario, given that malicious intelligence will try to

make it happen.

Figure 4.7: SAN model for the classic adversary.

63

4. PROACTIVE RESILIENCE

Figure 4.8: SAN model for a node.

4.2.2.5 SAN Model for a Node

The last submodel is the node SAN presented in Figure 4.8, which models

the periodic recoveries done at each node. This submodel is more complex

than the other ones, mainly because activities, such as refresh_triggering

and refresh_execution, are scheduled according to the internal timebase. After

a node recovery, the node becomes correct, its internal timebase is re-synchro-

nized with the external one, and any delay injected by the conspicuous adver-

sary is removed. However, during node recovery, the node is unavailable. The

node behavior is specified through three parameters:

• TP specifies the maximum internal time interval between two consecutive

recoveries.

• TD specifies the maximum internal time interval between the start and

termination of a recovery.

• maximum recovery degree specifies the maximum number of nodes re-

covered simultaneously.

64

4.2 Evaluation

In order to simplify the model it is assumed that recovering nodes start the

recovery exactly at the same time instant, and thus Tπ = 0.

The most relevant variables of the node SAN are described next:

• failed stores a boolean value indicating if the node is failed. This vari-

able can be updated by the classic adversary as a result of an attack, or

by the refresh_execution activity as a result of a recovery.

• unavailable stores a boolean value indicating if the node is recovering.

• num_recovering_nodes stores the number of nodes that are recovering at

each instant. It serves only statistical purposes.

4.2.2.6 Composed Model

The composed model for the simulation environment is presented in Figure 4.9.

It consists of the five atomic SAN submodels presented in the previous sec-

tions, organized in the following way: one node SAN per system node (a

maximum of 7 nodes is used), one classic adversary SAN, one stealth time

adversary SAN, one conspicuous time adversary SAN, and one external/inter-

nal timebases SAN. The composed model also includes a monitor submodel,

which serves only statistical purposes, by collecting statistics about the progress

of other SANs.

The overall model behavior is specified by the parameters defined for the

five submodels, plus the following: n specifies the total number of system

nodes, f represents the assumed maximum number of node failures, and met

specifies the maximum execution time of a simulation. When more than f

failures happen at the same time, the system is considered exhausted.

65

4. PROACTIVE RESILIENCE

Figure 4.9: SAN model for the composed model.

4.2.3 Simulation Results

We used the Möbius (Deavours et al., 2002) tool to build the SANs, define the

availability and the intrusion tolerance measures, design studies on the model,

simulate the model, and obtain values for the measures defined on various

studies. The goal of the simulations was to put in evidence the four problems

of proactively recovered systems that were introduced in Section 2.2.5:

1. A malicious adversary may deploy more power than originally assumed

and corrupt nodes at a pace faster than recovery;

2. she or he may attempt to slow down the pace of recovery in order to

leverage the chances of intruding the system with the available power;

3. she or he may perform stealth attacks on the system timing, which in

asynchronous or partially synchronous systems may not even be per-

ceived by the essentially time-free logic of the system, leaving it defense-

less;

4. recovery procedures often involve bringing individual nodes to a tem-

porarily inactive state, lowering the redundancy quorum and thus sys-

tem resilience.

66

4.2 Evaluation

In the next subsections, it is shown that previous approaches to proactive

recovery can be affected by all these problems, and that proactive resilience

can be used to address all of them with the exception of problem 1, which is a

fundamental one.

We used two metrics in our simulations: percentage of exhausted time and per-

centage of unavailability time. The former shows the amount of time the system

has more than f nodes compromised and is thus very vulnerable to failures,

especially those maliciously provoked (e.g., in a 3 f + 1 Byzantine-resilient sys-

tem for f =1, it shows the percentage of time the system runs with at most 2

nodes). The latter shows the amount of time the system is unavailable due to

recoveries, i.e., when the system cannot make progress due to an insufficient

number of correct replicas, because some of them are recovering. Unless spec-

ified otherwise, the simulations were done with parameters n=4, f =1, mrd=1,

met=10000, TP=35, and TD=4, with times in abstract units.

Notice that, according to Theorem 4.2.3, and in these conditions, the sheer

limit of the resilience of the system to attacks lies around mi f t= TP+TD
f =39, after

which the attack is so powerful that the system starts to give in. This, in fact, is

the previously mentioned fundamental limitation (problem 1) for any design.

4.2.3.1 Impact of Time Adversaries on Exhaustion

We start by analyzing problems 2 and 3. The conspicuous time adversary is

used to trigger problem 2, and the stealth time adversary is used to trigger

problem 3.

Figures 4.10 and 4.11 illustrate how exhaustion time changes as a function

of the combined strength of the classic and the conspicuous time adversaries,

when using, respectively, asynchronous recovery and PRW recovery. With

asynchronous recovery, the system starts to exhaust with much higher val-

67

4. PROACTIVE RESILIENCE

ues of mi f t than the baseline resilience (i.e., with mi f t > 39) in the presence of

time attacks of decreasing period (Figure 4.10), whereas the PRW renders the

system immune to those timing attacks (Figure 4.11).

1000
800

600
400

200
1

800
600

400
200

1
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

% exhausted
time

minimum inter-failure
time (mift)

 conspicuous
time attack period

I: exhausted time vs mift and ctap (delay=100)

Figure 4.10: Exhausted time per conspicuous time attack period and minimum
inter-failure time (Asynchronous recovery).

Figures 4.12 and 4.13 illustrate, respectively, for asynchronous recovery and

PRW recovery, the impact of a stealth time adversary that, every 100 time units,

slows the internal timebase of a different node down. The graphs depict in-

creasing amounts of speed-down (time attack factor). As in the previous sce-

nario, the system exhausts much faster when the time attack factor increases

(Figure 4.12), whereas the PRW also renders the system immune to this second

type of attacks (Figure 4.13). However, note that these attacks are more effi-

cient, since with less power (stealth attacks on, e.g., timers, or interrupt rou-

tines, vs. conspicuous direct attacks, e.g., of the denial-of-service type), they

achieve a more dire effect, as shown in Figure 4.12: for attack factors of 200

and up, the system becomes almost permanently exhausted; for an attack fac-

68

4.2 Evaluation

1000
800

600
400

200
1

800
600

400
200

1
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

% exhausted
time

minimum inter-failure
time (mift)

conspicuous
time attack period

I: exhausted time vs mift and ctap (delay=100)

Figure 4.11: Exhausted time per conspicuous time attack period and minimum
inter-failure time (PRW recovery).

tor of 1000, the system is exhausted 80% of the time.

Unlike the conspicuous time attack, in which the delay imposed is propor-

tional to the power exerted, in the stealth attack the amount of delay inserted

is virtually independent of the initial power used to gain control of the back-

doors to the timing devices. Furthermore, the stealth attacker can more easily

evade detection than the conspicuous one: the delays injected by the conspic-

uous adversary may be detected programmatically if the system is partially

synchronous and if the internal timebase is not compromised. Moreover, typi-

cally these are delays that affect the entire system and may get the attention of

monitoring devices.

The attack on the internal timebase is completely different in the sense that

the adversary is attacking the time references of the system and thus program-

matic detections are not reliable, because they use these same time references.

Moreover, the attack will not necessarily affect the entire system. For instance,

69

4. PROACTIVE RESILIENCE

1000
800

600
400

200
1

120
040
060
080
0

10
00

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

% exhausted
time

minimum inter-failure
time (mift)

stealth
time attack factor

K: exhausted time vs mift and taf (tap=100)

Figure 4.12: Exhausted time per stealth time attack factor and minimum inter-
failure time (Asynchronous recovery).

the adversary may tamper with the kernel function that returns the current

value of the local clock, and make it return different values to different appli-

cations. Or, alternatively, the attack may be applied to kernel scheduler/dis-

patcher code, only lengthening the execution of the functions used by some

processes. Therefore, a stealth time adversary may be very difficult to defend

against in classical asynchronous or even partially synchronous systems. The

neutralization of this kind of attacks is one of the main results of this thesis.

4.2.3.2 Recovery Strategy and the Trade-off Between Intrusion-Tolerance

and Availability

Whenever a node recovers, system availability and/or intrusion-tolerance may

be affected. The system architect has to add sufficient redundancy in order to

maintain availability and intrusion tolerance during recoveries.

Let us focus on a typical Byzantine fault-tolerant scenario in which n=4,

70

4.2 Evaluation

1000
800

600
400

200
1

120
040
060
080
0

10
00

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

% exhausted
time

minimum inter-failure
time (mift)

stealth
time attack factor

K: exhausted time vs mift and taf (tap=100)

Figure 4.13: Exhausted time per stealth time attack factor and minimum inter-
failure time (PRW recovery).

f =1, and nodes are recovered in sequence, i.e., mrd=1. When a node is being

recovered, the system temporarily has a total of three nodes. If, during this

time, the system suffers the assumed Byzantine fault, then one of two things

happens: service execution is somehow suspended until recovery is finished,

or service continues to execute. In the former cases, the system becomes un-

available, whereas in the latter, it becomes exhausted (2 nodes are failed). No-

tice that this decision should be taken at system design time and performed in

an automatic way.

This trade-off between intrusion-tolerance and availability should not be

hidden, although availability is a grey notion in asynchronous systems. If the

system architect makes the safest option and chooses unavailability, then the

system will be systematically temporarily unavailable. This is quite different

from the normal stochastic asynchronous behavior, in which the system may

become slower during certain periods of time. On the other hand, avoiding

71

4. PROACTIVE RESILIENCE

unavailability would make the system systematically exhausted and thus in

danger of being compromised.

Figure 4.14 compares exhaustion time and unavailability in each of the

scenarios. For this simulation, we set TP=100 and TD=10. We see that with

mi f t=1000, system resources are never exhausted if the system stops during

recoveries: otherwise, exhaustion will occur 0.66% of the time. Then, if the

system stops during recoveries, it remains 0% exhausted with mi f t=100, but

it is in turn unavailable for 7.17% of the time (precisely the amount of time

the system is exhausted if it does not stop during recoveries). Thus, if the sys-

tem does not stop during recoveries, it is naturally never unavailable due to

recoveries, but it exhausts faster and thus has a greater probability of failing.L1:
%Exhausted Time, %Unavailability due to recovery

VS mift (n=4, f=1, Tp=100, Td=10, met=10000)

0,00% 0,00%

90,46%

99,98%

0,66%
7,17%

0,68% 0,00%0,66%
7,17%

91,14%

99,98%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1000 100 10 1
minimum inter-failure time (mift)

tim
e

(%
)

exhausted time when
stopping in recoveries

unavailability when
stopping in recoveries

exhausted time when
not stopping in recoveries

Figure 4.14: Trade-off between intrusion-tolerance and availability with
TP=100, TD=10, mrd=1. (n = 4, f = 1, with PRW).

In order to ensure both intrusion-tolerance and availability, the system needs

a sufficient redundancy quorum to avoid exhaustion between and during re-

coveries. From Theorem 4.2.3, the system should be able to resist at least

72

4.2 Evaluation
L2:

%Exhausted Time, %Unavailability due to recovery
VS mift (n=7, f=2, Tp=100, Td=10, met=10000, PRW)

0,00% 0,00%

80,11%

99,97%

0,00% 0,00% 2,08% 0,00%0,00% 0,00%

82,20%

99,97%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1000 100 10 1
minimum inter-failure time (mift)

tim
e

(%
)

exhausted time when
stopping in recoveries

unavailability when
stopping in recoveries

exhausted time when
not stopping in recoveries

Figure 4.15: Trade-off between intrusion-tolerance and availability with
TP=100, TD=10, mrd=1. (n = 7, f = 2, with PRW).

fa ≥ dmin(met,TP+TD)
mi f t e arbitrary node failures, and fc ≥ mrd crash node fail-

ures. Using the values of the scenario above, and if we assume at design time

that mi f t ≥ 110, we see that f = fa + fc ≥ 1 + 1 = 2. In order to confirm these

calculations, we simulated such a configuration and obtained the progress of

exhaustion time and unavailability in comparison with the decrease of mi f t.

Figure 4.15 illustrates the behavior of a distributed system with f =2 and n=71.

We see that, independent of the strategy followed, no exhaustion or unavail-

ability occurs if the adversary behaves as assumed (i.e., if mi f t ≥∼ 110). Oth-

erwise, we are in problem 1, which is unsolvable. Notice that we are not taking

into consideration the effects of intentional or random asynchrony; therefore,

TP and TD are guaranteed in both Figures 4.14 and 4.15 (the PRW was used

in both experiments). The important message here is that, at design time, the

system architect should calculate a sufficient redundancy quorum to resist in-

1Given that f =2, 3 f + 1 = 7 nodes are required in a Byzantine fault-tolerant scenario.

73

4. PROACTIVE RESILIENCE

trusions and maintain availability as long as assumptions on the behavior of

the adversary are maintained. And, of course, these assumptions should be

realistic.

74

Chapter 5

Application Scenarios

This chapter describes two examples of application scenarios where proactive

resilience can be applied. Section 5.1 describes the design of a distributed f

fault/intrusion-tolerant secret sharing system, which makes use of a specific in-

stantiation of the PRW – the Proactive Secret Sharing Wormhole – targeting

the secret sharing scenario. Section 5.2 describes a resilient f fault/intrusion-

tolerant state machine replication architecture, which guarantees that no more

than f faults ever occur while ensuring availability. The architecture makes

use of another instantiation of the PRW – the State Machine Proactive Recov-

ery Wormhole – to periodically remove the effects of faults from the replicas.

5.1 Resilient Secret Sharing

5.1.1 Proactive Secret Sharing

Secret sharing schemes protect the secrecy and integrity of secrets by distribut-

ing them over different locations. A secret sharing scheme transforms a secret

s into n shares s1, s2, ..., sn which are distributed to n share-holders. In this way,

75

5. APPLICATION SCENARIOS

the adversary has to attack multiple share-holders in order to learn or to de-

stroy the secret. For instance, in a (k + 1, n)-threshold scheme, an adversary

needs to compromise more than k share-holders to learn the secret, and cor-

rupt at least n− k shares in order to destroy the same secret.

Various secret sharing schemes have been developed to satisfy different

requirements. This work uses Shamir’s approach (Shamir, 1979) to imple-

ment a (k + 1, n)-threshold scheme. This scheme can be defined as follows:

given an integer-valued secret s, pick a prime q that is bigger than both s

and n. Randomly choose a1, a2, ..., ak from [0, q[and set polynomial f (x) =

(s + a1x + a2x2 + ... + akxk) mod q. For i = 1, 2, ..., n, set the share si = f (i). The

reconstruction of the secret can be done by having k + 1 participants provid-

ing their shares and using polynomial interpolation to compute s. Moreover,

given k or fewer shares, it is impossible to reconstruct s.

A special case where k = 1 (that is, two shares are required for reconstruct-

ing the secret), is given in Figure 5.1. The polynomial is a line and the secret is

the point where the line intersects with the y-axis (i.e., (0, f (0)) = (0, s)). Each

share is a point on the line. Any two (i.e., k + 1) points determine the line and

hence the secret. With just a single point, the line can be any line that passes

the point, and hence it is insufficient to determine the right y-axis cross point.

In many applications, a secret s may be required to be held in a secret-

sharing manner by n share-holders for a long time. If at most k share-holders

are corrupted throughout the entire lifetime of the secret, any (k + 1, n)-thresh-

old scheme can be used. In certain environments, however, gradual break-

ins into a subset of locations over a long period of time may be feasible for

the adversary. If more than k share-holders are corrupted, s may be stolen.

An obvious defense is to periodically refresh s, but this is not possible when

s corresponds to inherently long-lived information (e.g., cryptographic root

76

5.1 Resilient Secret Sharing

Figure 5.1: Shamir’s secret sharing scheme for k = 1.

keys, legal documents).

In consequence, what is actually required to protect the secrecy of the in-

formation is to be able to periodically renew the shares without changing the

secret. Proactive secret sharing (PSS) was introduced in Herzberg et al. (1995)

in this context. In PSS, the lifetime of a secret is divided into multiple peri-

ods and shares are renewed periodically. In this way, corrupted shares will not

accumulate over the entire lifetime of the secret since they are checked and cor-

rected at the end of the period during which they have occurred. A (k + 1, n)

proactive threshold scheme guarantees that the secret is not disclosed and can

be recovered as long as at most k share-holders are corrupted during each pe-

riod, while every share-holder may be corrupted multiple times over several

periods.

Let consistent shares designate shares which, when combined in a sufficient

number, make possible the calculation of s. The goal of proactive secret sharing

is to harden the difficulty of an adversary being able to collect a set of k + 1

consistent shares. This is done by periodically changing the shares, assuring

that the interval between consecutive share rejuvenations is not sufficient for

77

5. APPLICATION SCENARIOS

an adversary to collect k + 1 (consistent) shares.

5.1.2 The Proactive Secret Sharing Wormhole

In this section, we address the exhaustion-safety of distributed systems based

on secret sharing, i.e., the assumption ϕnode is n f ail ≤ k, where n f ail represents

the number of consistent shares that, during an execution, are disclosed simul-

taneously. A share is considered disclosed when it is known by an adversary.

We propose the Proactive Secret Sharing Wormhole (PSSW) as an instan-

tiation of the PRWd〈F, TD, TP, Tπ〉 presented in Section 4.1. Notice that this

means that there exists a single cluster composed of all local PSSWs and there-

fore all local PSSWs are interconnected by the same synchronous and secure

control network. The PSSW targets distributed systems which are based on

secret sharing and the goal of the PSSW is to periodically rejuvenate the secret

share of each node, so that the overall system is exhaustion-safe wrt ϕnode.

The presentation of the PSSW is divided in two parts. The first part de-

scribes the procedure refresh_share that renews the shares without changing or

disclosing the secret, and enumerates the assumptions that need to be ensured

in the construction of the PSSW. The second part discusses how the values of

TP, TD and Tπ may be chosen in order to ensure that a secret sharing system

enhanced with a PSSW = PRWd〈 refresh_share , TD, TP, Tπ〉 is exhaustion-safe wrt

ϕnode. The choice of the values TD, TP, Tπ is conditioned by the PSSW assump-

tions, including the assumed adversary power.

The PSSW executes Algorithm 1 (page 47) in order to periodically and

timely execute the procedure refresh_share presented in Algorithm 2 (page 80).

This procedure is based on the share renewal scheme of Herzberg et al. (1995).

In lines 1–2, local PSSW i picks k random numbers {δim}m∈{1...k} in [0, q[. These

numbers define the polynomial δi(z) = δi1z1 + δi2z2 + ... + δikzk. In lines 3–6,

78

5.1 Resilient Secret Sharing

local PSSW i sends the value uij = δi(j) mod q to all other local PSSWs j. Then,

in lines 7–9, local PSSW i receives the values uji from all other local PSSWs.

These values are used to calculate, in line 10, the new share. Notice that the

calculation is done by combining the previous share with a sum of the ran-

dom numbers sent by each local PSSW, and that, in the execution of the first

refreshment, the previous share corresponds to the initial share f (i).

In this work it is not described how the payload applications obtain the

share. We envisage that this could be done in two different ways, either through

a PSSW library composed by functions that could be used to access the current

value of the share, or by resorting to a multi-port memory periodically writ-

ten by the local PSSWs and with read-only access by the payload applications.

In both approaches, it should be guaranteed that the payload applications are

aware of the current version of the shares.

Note that, after the termination of the procedure refresh_share in all local

PSSWs, the time necessary for condition ϕnode to be violated is extended. The

system is exhaustion-safe if the interval between consecutive rejuvenations is

not sufficient for ϕnode to be violated. Next we present the assumptions that

the PSSW must satisfy in order to guarantee the correct and timely execution

of refresh_share .

A1 There exists a known upper bound Tprocmax
on local processing delays.

A2 There exists a known upper bound Tdri f tmax
on the drift rate of local clocks.

A3 Any network message is received within a maximum delay Tsendmax from

the send request.

A4 The content of the network traffic cannot be read by unauthorized users.

In what follows it is first proved that the refresh_share function has a bounded

execution time when executed under assumptions A1–A4. Then, it is shown

79

5. APPLICATION SCENARIOS

Algorithm 2: refresh_share procedure executed by each local PSSW i
initialization: share← f (i)

begin
/* Define the polynomial δi(z) = δi1z1 + δi2z2 + ... + δikzk using
{δim}m∈{1...k} */

for m = 1 to k do1

δim ← generate_random_number([0, q[)2

/* Send δi(j) to each Pj */
for j = 1 to n do3

if j 6= i then4

uij ← δi(j) mod q5

send uij to Pj6

/* Receive δj(i) from each Pj */
for j = 1 to n do7

if j 6= i then8

receive uji from Pj9

/* Calculate the new share */
share← (share + u1i + u2i + ... + uni) mod q10

end

that it is possible to build a PSSW and that by choosing appropriate values

for TD, TP, Tπ, and k, one can have an exhaustion-safe intrusion-tolerant secret

sharing system.

Theorem 5.1.1. If all local PSSWs execute Algorithm 1 with F=refresh_share under

assumptions A1–A4, then:

Bounded execution time Once all nodes are in the same round, there is an upper

bound Texecmax on the execution time of refresh_share , i.e., the difference be-

tween the real time instant when the last node starts executing refresh_share

and the real time instant when the last node finishes executing is not greater

80

5.1 Resilient Secret Sharing

than Texecmax .

Robustness After all nodes finish the execution of each round of refresh_share , the

new shares computed correspond to the initial secret (i.e., any subset k + 1 of the

new shares interpolate to the initial secret).

Secrecy An adversary that at any time knows no more than k shares learns nothing

about the secret.

Proof: Robustness and Secrecy are proved in Herzberg et al. (1995). The proof

of Secrecy uses assumption A4.

Bounded execution time:

We shall prove a stronger result: assuming that all nodes are ready to exe-

cute refresh_share , i.e., all nodes are in the same round, the difference between

the real time instant when the first node starts executing refresh_share and the

real time instant when the last node finishes executing is not greater than

Texecmax . Let I be the set of all instructions used in each execution round of

refresh_share (i.e., all instructions executed between lines 1 and 10). Let Texeci be

a bound on the execution time of instruction i, ∀i ∈ I. Given that the execu-

tion time of any instruction, with the exception of receive, depends only on the

local processing delays, let Tprocmax
be an upper bound on the execution time

of such instructions (assumption A1). This entails that Texeci < Tprocmax
, ∀i ∈

I \ {receive}. The execution time of receive depends on the local processing and

network delivery delays, such that, Texecreceive < Tprocmax
+ Tsendmax (assumption

A2). Therefore, one can upper bound the execution time of the algorithm by

Texecmax = (7n + 2k − 2)Tprocmax
+ (n − 1)Tsendmax . This value results from the

following calculations. The instructions in lines 1 and 2 are within a cycle with

k iterations. Thus, their total execution time is bounded by 2kTprocmax
. Then,

the instructions in lines 3, 4, 5 and 6 are executed in the context of a cycle with

81

5. APPLICATION SCENARIOS

n iterations. However, lines 5 and 6 are not executed in one of the iterations

given that 0 < i ≤ n. This means that the total execution time of lines 3 and

4 is bounded by 2nTprocmax
and that the total execution time of lines 5 and 6

is bounded by 2(n− 1)Tprocmax
. Following the same logic, the total execution

time of lines 7 and 8 is bounded by 2nTprocmax
. Regarding line 9, given that

it includes the instruction receive, its maximum execution time is bounded by

(n− 1)(Tprocmax
+ Tsendmax). Finally, the execution time of line 10 is bounded by

Tprocmax
. �

According to Theorem 5.1.1, refresh_share is a distributed procedure appro-

priate for rejuvenating the secret shares of a distributed system: upon termi-

nation of a round of refresh_share , all the nodes have new shares (and, hence,

are not corrupted) and; once all nodes are in the same round, there exists a

known upper bound Texecmax on the execution time of refresh_share . The fol-

lowing proposition shows that is possible to use this rejuvenation procedure

refresh_share to build a PSSW that offers a periodic timely execution service.

Proposition 5.1.2. Let PSSW be a PRWd built under assumptions A1–A4 and trig-

gering the refresh_share procedure through the execution of Algorithm 1 with δ =

4Tprocmax
+ Tdri f tmax

. Let TP, TD, Tπ ∈ <+
0 such that

a) TP > TD + Tπ + δ

b) TD ≥ Texecmax

c) Tπ ≥ Tprocmax
+ Tsendmax

Then, the PSSW offers the periodic timely execution service 〈 refresh_share , TD, TP, Tπ〉.

Proof: Given that TD + Tπ < TP due to a), we only need to show that conditions

1, 2, 3 and 4 of Definition 4.1.1 are satisfied by the PSSW under assumptions

A1–A4. Consider the Algorithm 1 executed by the PSSW.

82

5.1 Resilient Secret Sharing

Condition 1 This condition is trivially satisfied given that the PSSW is com-

posed by a single cluster and every local PSSW executes refresh_share .

Condition 2 Without line 2, local PSSW C1
1 would execute F within 4Tprocmax

+

Texecmax from the last triggering, given that the procedure F and four instruc-

tions would be executed between consecutive triggering. Therefore, setting

TP ≥ 4Tprocmax
+ Texecmax would satisfy condition 2. The addition of the wait

instruction in line 2 potentially decreases the frequency of F execution in order

to enforce a certain periodicity that is sufficient to guarantee exhaustion-safety.

Notice that this addition is in fact weakening the system, but it is necessary to

minimize the potential overhead provoked by each rejuvenation, and in order

to guarantee that consecutive rejuvenations do not overlap (in different local

PSSWs). Regarding the value of δ, if the local PSSW clocks were perfect, one

could set δ = 4Tprocmax
in order to satisfy condition 2, as long as the chosen TP

would be greater than Texecmax + 4Tprocmax
. However, according to assumption

A2, local PSSW clocks have a bounded drift rate Tdri f tmax
. Therefore, given that

δ has also to cancel this drift rate, we have that if δ = 4Tprocmax
+ Tdri f tmax

and

TP > Texecmax + δ, the PSSW satisfies condition 2.

Condition 3 First of all, given that TP > TD + Tπ + δ, consecutive executions

of refresh_share do not overlap. This means that whenever the local PSSW C1
1

finishes waiting in line 2, all other local PSSWs are already ready to receive the

message trigger and start a new round. Therefore, the difference between the

refresh_share triggering instants on every local PSSW depends on the delivery

delay and processing of the message trigger sent by local PSSW C1
1 in line

4 and received by every other local PSSW in line 6. This means that setting

Tπ ≥ Tprocmax
+ Tsendmax allows the PSSW to satisfy condition 3.

83

5. APPLICATION SCENARIOS

Condition 4 According to Theorem 5.1.1, the PSSW satisfies condition 4 if

TD ≥ Texecmax . �

As a corollary of Theorem 4.1.6, we have that under some conditions, a

secret sharing system S enhanced with an appropriate PSSW is exhaustion-

safe wrt ϕnode. As before, we use JSK to denote the set of executions of a secret

sharing system S under the REX model for assumption ϕnode.

Corollary 5.1.3. Suppose that

1. S is a secret sharing system composed of a total of n nodes, each one with a share

that never changes, and let Texhmin = inf({TEexh : E ∈ JSK});

2. The time needed to discover k + 1 (≤ n) shares at any instant is independent of

the number of shares that are currently known.

Then, the system S enhanced with a PSSW s.t. TP + TD + Tπ < Texhmin is exhaustion-

safe w.r.t. ϕnode.

Proof: This result is a straightforward consequence of Theorem 4.1.6. Notice

that assumption 3 of that theorem is entailed by the robustness property of

refresh_share , as stated in Theorem 5.1.1. �

All these results are based on the assumption that no local PSSW crashes

during the lifetime of the system. Section 4.1 described generically how one

could build a fault-tolerant PRW able to resist fc crashes. Here it is explained

more concretely how could be that done in the context of the PSSW.

Consider a PSSW composed by a total of n local PSSWs, and assume that

at most fc local PSSWs crash during the lifetime of the system, such that n ≥

fc + k + 1 (this condition guarantees that it is always possible to reconstruct

the secret). In such a system and under assumptions A1 and A3 it is possible

to build a leader election protocol (Garcia-Molina, 1982). This protocol could

84

5.1 Resilient Secret Sharing

be used in Algorithm 1 to tolerate the fault of local PSSW C1
1. In each round,

the leader would be the responsible for sending the message trigger. In the

case of a leader crash, the following leader would be then the responsible,

and so on. The parameter δ would have to take into consideration the worst

case execution time of the leader election protocol. Regarding the refresh_share

procedure presented in Algorithm 2, each local PSSW would have to resort

to a perfect failure detector (Chandra & Toueg, 1996) in order to detect the

crash of the other PSSWs and avoid waiting forever for messages from failed

PSSWs. Under assumptions A1 and A3, it is possible to build a perfect failure

detector with bounded detection time. This bound would then be used in the

calculation of Texecmax .

5.1.3 Experimental Results

We have implemented a prototype1 of the PSSW using RTAI (Cloutier et al.,

2000), an operating system with real-time capabilities, and a switched Fast-

Ethernet control network. The feasibility of achieving timeliness guarantees

using this type of operating system and network are discussed in Casimiro

et al. (2000). RTAI allows the construction of an architecturally-hybrid execu-

tion environment (Veríssimo, 2006), with the PSSW executing as a set of real-

time tasks, and the normal applications executing at Linux user-level.

The PSSW prototype makes use of the GNU Multiple Precision Arithmetic

Library (GMP)2, a free library for arbitrary precision arithmetic. The Linux

version of the GMP library was ported to RTAI, and it is available together

with the PSSW prototype source code.

This section presents the results of a set of experiments that were conducted

1Available at http://sourceforge.net/projects/rt-pss/
2http://www.swox.com/gmp

85

http://sourceforge.net/projects/rt-pss/
http://www.swox.com/gmp

5. APPLICATION SCENARIOS

using this prototype, with the goal of observing the execution time of the re-

fresh_share procedure (Algorithm 2) when triggered in the context of the PSSW

periodic timely execution service (Algorithm 1). More precisely, the measure-

ments that will be presented represent the interval of time between the first

local PSSW triggering the procedure and the last PSSW finishing executing it.

These measurements allow one to study: the possible values of TP, TD and Tπ

in a real environment; predict the types of adversary it is possible to resist; de-

termine the cost of the rejuvenation overhead (i.e., rejuvenation time vs total

execution time).

The experimental infrastructure was composed by 500 MHz single-proces-

sor Pentium III based PCs running RTAI, and interconnected by a 3COM Su-

perStack II Baseline 100 Mbps switch. The experiments presented below used

1024-bit shares. The share can be any type of data. It can be, for instance, a

1024-bit RSA key, and in this case, the PSSW could be used as part of a proac-

tive threshold RSA scheme (Rabin, 1998). The results of every configuration

are based on the analysis of 65535 periodic executions triggered by the PSSW.

The first experiment tested configurations from 2 to 6 machines with k = 1.

Remember that the exhaustion-safety condition is n f ail ≤ k, where n f ail repre-

sents the number of consistent shares that, during an execution, are disclosed

simultaneously. The goal was to evaluate the overhead introduced by the al-

gorithm when the number of machines increases. The results (mean, standard

deviation, minimum and maximum execution time) are presented in Table 5.1.

One of the main conclusions is that the mean execution time increases with

the number of machines. This was expected given that more machines re-

quire more messages to be exchanged and thus greater processing and net-

work delays. The maximum execution time, however, remains quite stable in-

dependently of the number of machines. This is very important and shows in

86

5.1 Resilient Secret Sharing

practice that there exists an upper bound Tπ
execmax on the execution time (notice

that Tπ
execmax corresponds to the interval between the first local PSSW trigger-

ing the refresh and the last PSSW finishing executing it, whereas the bound

Texecmax mentioned in section 5.1.2 does not include the interval between the

first and the last triggerings). Moreover, these measurements also allow us to

conclude that one could trigger a rejuvenation every 2 seconds with a max-

imum overhead of less than 2% (given that Tπ
execmax < 30ms, one could say

that TD + Tπ = 30ms and set TP = 2000ms). An adversary would have to

obtain k + 1 = 2 shares in less than 2.1 seconds (≈ TP + TD + Tπ) in order to

reconstruct the protected secret. In Figure 5.2 it is possible to observe the dis-

tribution of the (65535) execution times of the experiment in the configuration

with 6 machines and k = 1. In terms of probability distribution it is clear that

the probability of execution time values above 24 msec is very low.

n Texec (msec)
mean std dev. min, max

2 11.4 3.4 10.0, 20.0
3 15.0 3.1 10.1, 22.3
4 17.0 2.6 10.8, 22.3
5 18.1 2.3 11.3, 23.0
6 19.0 1.5 15.4, 22.8

Table 5.1: refresh_share execution time with k = 1 (n – number of machines).

The next step was to evaluate the impact of increasing k. Notice that in-

creasing k means that one is attempting to resist a stronger adversary, in other

words, resisting the disclosure of a higher number of shares. Therefore, in the

second experiment, 6 machines were used to test the behavior of the system

with k varying between 1 and 5. The results are presented in Table 5.2. One

can see that there is an increment in the mean and maximum execution when

k increases. This increment is also visible in the execution time distribution de-

87

5. APPLICATION SCENARIOS
Refresh Duration Distribution

6 mach, 10 ms, k=1, 32 bits

0

1000

2000

3000

4000

5000

6000

7000

8000

15 17 19 21 23 25 27 29

Texec (msec)

N
um

be
r o

f r
ef

re
sh

es

Figure 5.2: refresh_share execution time distribution with 6 machines and k = 1.

picted in Figure 5.3 and it happens because the size of k impacts the processing

delay. Nevertheless, the maximum execution time for k = 5 remains still under

30 ms. This means that one can extend the previous conclusions and say that

an adversary would have to obtain 6 shares in less than 2.1 seconds in order to

discover the secret.

k Texec(msec)
mean std dev. min, max

1 19.0 1.5 15.4, 22.8
2 19.8 1.9 12.7, 24.1
3 20.6 2.0 14.6, 25.4
4 21.3 2.3 14.2, 26.4
5 22.6 2.4 14.8, 27.4

Table 5.2: refresh_share execution time with 6 machines.

Depending on the assumed adversary strength and on the desired over-

head, the system architect can use the above results to calculate the appropri-

ate degree of fault-tolerance k and the values of TP, TD and Tπ. To illustrate

how can this be done, two different adversary types (Hare and Tortoise) are

88

5.1 Resilient Secret Sharing
Refresh Duration Distribution

6 mach, 10 ms, k=5, 32 bits

0

5000

10000

15000

20000

25000

15 17 19 21 23 25 27 29

Texec (msec)

N
um

be
r o

f r
ef

re
sh

es

Figure 5.3: refresh_share execution time distribution with 6 machines and k = 5.

presented next, and it is described how to configure an appropriate PSSW in

each scenario. In both scenarios the system is deployed with 6 machines.

Hare This adversary is able to compromise any machine (i.e., disclose a single

share) in one second. Such an adversary can be envisaged in the con-

text of ultra-resilient systems (e.g., national security related) defending

against fierce cyber-attacks.

Without proactive secret sharing, Hare would take k + 1 seconds to dis-

cover k + 1 shares and reconstruct the secret. With 6 machines and k = 5,

this would mean that the system could be compromised after 6 seconds.

In order to resist Hare, one has to build a PSSW able to refresh k + 1 shares

in less than k + 1 seconds. Table 5.3 compares the resulting overhead of

choosing different values of k and the corresponding maximum value of

TP. The overhead is calculated using the formula TD+Tπ
TP+TD+Tπ

, with TD +

Tπ = 30. The conclusion is that independently of the value of k, it is

possible to defend against Hare with a negligible overhead. Therefore,

89

5. APPLICATION SCENARIOS

one can say that the PSSW can be used efficiently to secure secret sharing

systems even in the presence of very powerful adversaries.

k max TP overhead
1 1.9 sec 1.6%
2 2.9 sec 1.0%
3 3.9 sec 0.8%
4 4.9 sec 0.6%
5 5.9 sec 0.5%

Table 5.3: PSSW overhead in order to resist Hare.

Tortoise This adversary is slower than Hare, being able to compromise any

machine (i.e., disclose a single share) in one minute. Tortoise may be

used to model typical cyber-attacks on the web.

Without proactive secret sharing, Tortoise would take k + 1 minutes to

discover k + 1 shares and reconstruct the secret. With 6 machines and

k = 5, this would mean that the system could be compromised after 6

minutes.

In order to resist Tortoise, one has to build a PSSW able to refresh k + 1

shares in less than k + 1 minutes. Table 5.4 compares the resulting over-

head of choosing different values of k and the corresponding maximum

value of TP. The overhead is calculated using the same formula as above

with TD + Tπ = 30. As expected, the overhead is significantly lower than

when defending against Hare. Therefore, the conclusion is that the PSSW

can also increase the resilience of money-critical secret sharing systems

deployed on the web.

To the best of our knowledge, we are the first to present and evaluate a

proactive secret sharing implementation in a real time environment. In Barak

et al. (1999), a Java prototype of a proactive security toolkit (using the same

90

5.2 Resilient and Available State Machine Replication

k max TP overhead
1 119.9 sec 0.03%
2 179.9 sec 0.02%
3 239.9 sec 0.01%
4 299.9 sec 0.01%
5 359.9 sec 0.01%

Table 5.4: PSSW overhead in order to resist Tortoise.

PSS protocol our PSSW is based on) is presented, but authors do not discuss

the temporal guarantees of their approach. The work presented in Zhou et al.

(2005) describes APSS, a proactive secret sharing protocol for asynchronous

systems. APSS is in theory a fine replacement of PSS protocols in asynchro-

nous environments. However, to be useful, APSS needs to be executed with

guaranteed periodicity and, by definition, this cannot be guaranteed in asyn-

chronous conditions (see Section 2.2.1). Nevertheless, one could envision a

PSSW using APSS instead of the synchronous PSS it currently uses. We leave

this as future work.

5.2 Resilient and Available State Machine Replica-

tion

5.2.1 Motivation

Nowadays, one of the major concerns about the services provided by com-

puter systems is related to their availability. This applies specially to services

provided over the Internet. Building highly available services involves, on the

one hand, the design and implementation of correct services that are tolerant

to a wide set of faults, and on the other hand, the assurance that the access

to them is always guaranteed with a high probability. Interestingly, these two

91

5. APPLICATION SCENARIOS

tasks can both be accomplished by employing replication techniques.

Replication is a well-known way of improving the availability of a ser-

vice: if a service can be accessed through different independent paths, then

the probability of a client being able to use it increases. But replication has

costs, namely it is necessary to guarantee a correct coordination between the

servers. Moreover, the Internet being an unpredictable and insecure environ-

ment, coordination correctness should be assured under the worst possible op-

erational conditions, i.e., the absence of local or distributed timing guarantees

and the possibility of arbitrary faults triggered by malicious adversaries. Sev-

eral past works addressed agreement and replication techniques that tolerate

arbitrary faults under the asynchronous model. The majority of these tech-

niques make the assumption that the number of faulty replicas is bounded

by a known value (Bracha & Toueg, 1985; Cachin et al., 2000; Canetti & Ra-

bin, 1993; Correia et al., 2004; Doudou et al., 1999; Malkhi & Reiter, 1997a,b,

2000). However, under the asynchronous model, this type of assumption may

be problematic. As shown in Section 3.2.2, there is no way of ensuring that

no more than f faults will occur during the execution of the system offering

the service (arbitrary processing and message delays may result in a very long

execution time).

5.2.2 State Machine Replication

A state machine is defined by a set of state variables and a group of commands.

The collection of state variables defines the state of the system. Commands

are used to perform modifications on the state variables and/or to produce

some output (e.g., read the value of a state variable) (Lamport, 1978; Schneider,

1990). Almost every computer program can be modeled as a state machine. In

particular, we will focus on client/server applications, which also fit under this

92

5.2 Resilient and Available State Machine Replication

model: the server is responsible for maintaining the state and the clients issue

commands that modify or read the state. This way of looking at client-server

applications facilitates the reasoning on how to make this type of applications

fault-tolerant. The simplest way of implementing a client-server application is

by deploying a single centralized server that processes all the commands is-

sued by clients. As long as the server does not fail, commands are performed

according to the order they are received from clients. But if faults may happen,

then this centralized approach does not work. The server may crash and ren-

der the system unavailable or worst, the server may be compromised by some

malicious adversary, which can arbitrarily modify the state. In order to toler-

ate these types of faults, one has to replicate the server. The replication degree

depends both on the type (e.g., crash, Byzantine) and quantity of the faults

to be tolerated. As such, some protocols allow to implement state machine

replication tolerant to crash faults (Lamport, 1998; Oki & Liskov, 1988; Skeen,

1982), whilst others target the Byzantine scenario (Amir et al., 2006; Castro &

Liskov, 2002; Correia et al., 2004; Reiter, 1995). In the present work, we do not

make any restrictions on the type of faults than can happen – a server may fail

arbitrarily, either by crash or by compromise of the state and/or the execution

logic. The current state of the art allows one to build client/server applications

resilient to a specified number f of arbitrary faults.

f fault-tolerant replicated systems (with f ≥ 1) are not unconditionally re-

silient to failure. In fact, the actual resilience of the replicated system depends

both on the correlation between replica failures and on the strength of the ma-

licious adversary. On the one hand, if all replicas use the same design and

implementation (operating system, protocols, applications), then an adversary

only needs to discover how to compromise a single replica in order to (easily)

compromise the remaining replicas. On the other hand, even if the replicas

93

5. APPLICATION SCENARIOS

are diverse, a malicious adversary with the ability of triggering attacks in par-

allel may substantially reduce the time needed to corrupt more than f repli-

cas. Moreover, in long-lived systems, whether or not replicas are attacked in

sequence, the probability of more than f replicas being compromised is signif-

icant, given enough time. From this reasoning, we identify three key factors

that influence the actual resilience of an f fault-tolerant system:

• Diversity of replicas: design and implementation;

• Type of attack: in sequence or in parallel;

• Service duration: total execution time.

The first two factors determine the time needed to corrupt more than f

replicas. By assessing if this value is greater or lower than the third factor, the

total execution time of the system, one can determine the resilience of an f

fault-tolerant replicated system.

These systems can only be highly resilient if one can guarantee that at most

f faults occur simultaneously during system execution. This goal should be

ensured by construction at design time, and proactive recovery seems to be a

very interesting approach to achieve it: replicas are periodically rejuvenated

and thus the effects of accidental and/or malicious faults can be removed.

However, proactive recovery execution needs some synchrony guarantees in

order to ensure regular triggering and bounded execution time.

We propose to apply the Proactive Resilience Model (PRM), presented in

Section 4.1, to the state machine replication scenario. The PRW periodic timely

execution service is used to proactively recover replicas, ensuring that:

• no more than f replicas are ever corrupted;

• the execution of the distributed state machine is never interrupted.

94

5.2 Resilient and Available State Machine Replication

Our approach is minutely explained in the next section.

5.2.3 The State Machine Proactive Recovery Wormhole

We propose the State Machine Proactive Recovery Wormhole (SMW) as an in-

stantiation of the PRWl〈F, TD, TP, Tπ〉 presented in Section 4.1. This means that

there exists one replica per cluster, and that no control network is used. Fig-

ure 5.4 depicts the architecture of a system with an SMW. The goal of the SMW

is to periodically rejuvenate replicas such that no more than f replicas are ever

compromised and thus node-exhaustion-safety is guaranteed. Moreover, re-

coveries should not affect the overall system availability.

synchronous & secure
any synchrony & security (payload)

Replica C

payload network

Replica A

payload network

y

local SMW
CY

1

Replica C
local SMW

CW
1

Replica A

cluster CW cluster CY
payload
network

l d t k

network

local SMW

Replica D

payload network

l l SMW

Replica B

payload network

local SMW
CZ

1

cluster CZ

local SMW
CX

1

cluster CX

Figure 5.4: The architecture of a state machine replicated system with an SMW.

The SMW executes Algorithm 1 (page 47) in order to periodically and timely

95

5. APPLICATION SCENARIOS

execute the procedure refreshCodeAndState presented in Algorithm 3 (page 97).

Notice that there is a single local SMW C i
1 in each cluster C i. Therefore, there

is no need to multicast the trigger message in line 4 of Algorithm 1.

In Algorithm 3, line 1 shutdowns the payload operating system, and con-

sequently stops the execution of the local state machine. Notice that the al-

gorithm continues to execute even after the payload operating system being

shutdown. This happens because of architectural hybridization: the SMW is a

distinct subsystem, which can be achieved in practice, for instance, by imple-

menting each local SMW in a PC appliance board (Kent, 1980; Trusted Com-

puting Group, 2004), or by making use of virtualization techniques (Barham

et al., 2003). Line 2 checks if the operating system code is corrupted. To accom-

plish this task, a digest of the operating system code can be initially stored in

some read-only memory, and then the digest of the current code is compared

with the stored one. In line 3, the operating system code can be restored from a

read-only medium, such as a Read-Only Memory (ROM) or a write-protected

hard disk (WPHD), where the write protection can be turned on and off by

setting a jumper switch (e.g., Fujitsu MAS3184NP). In order to introduce some

diversity, different versions of the operating system may be used in each recov-

ery. It is even possible to use different operating systems, but then it would be

necessary to have a version of the state machine code for each of them. In lines

4–5, the state machine code can be checked and restored using similar methods

to the ones used to check and restore the operating system code. Alternatively,

both the operating system and the state machine code can be installed on a

read-only medium, thus avoiding the execution of lines 2–5. Line 6 boots the

operating system from a clean code and thus brings it to a correct state. We

assume that the local state machine is automatically started once the operating

system finishes the booting process.

96

5.2 Resilient and Available State Machine Replication

Algorithm 3: refreshCodeAndState procedure executed by each local SMW.
begin

/* shutdown the payload operating system */
shutdownOS()1

/* restore operating system code if corrupted */
if OS code is corrupted then2

restoreOScode()3

/* restore state machine code if corrupted */
if SM code is corrupted then4

restoreSMcode()5

/* at this point, the OS and the SM can be safely booted because their
code is correct */

bootOS()6

end

Given that the state of the local state machine may have been compromised

before the rejuvenation, it may be necessary to transfer a clean state from re-

mote replicas. We assume that this state transfer/recovery is done automati-

cally by the state machine code once it starts. Castro & Liskov (2002) present

an efficient mechanism to perform checkpoints and state transfer, specially tai-

lored for state machine replication subject to Byzantine faults. However, de-

pending on the synchrony guarantees of the network, state recovery may have

an unbounded execution time, given that it requires the exchange of informa-

tion through the payload network. Since the payload network is potentially

asynchronous, messages sent through it can take an unbounded time to be

delivered. Nevertheless, one can estimate an upper-bound on the delivery

time which will be satisfied with high probability in normal conditions. In the

worst-case, if abnormal delays occur, the availability of the replicated state ma-

chine may be affected but safety is preserved. This issue will be discussed in

Section 5.2.4.1.

After the termination of the rejuvenation procedure refreshCodeAndState in a

97

5. APPLICATION SCENARIOS

local SMW, the corresponding replica is correct. The system is exhaustion-safe

w.r.t a given adversary if rejuvenations are organized in a way such that the

adversary does not have enough time to compromise more than f replicas be-

tween rejuvenations. Next we present the assumptions that the SMW must

satisfy in order to guarantee the correct and timely execution of refreshCodeAnd-

State in every replica.

A1 There exists a known upper bound Tprocmax
on local processing delays.

A2 There exists a known upper bound Tdri f tmax
on the drift rate of local clocks.

In what follows it is first proved that the refreshCodeAndState procedure has

a bounded execution time when executed under assumption A1. Then, it is

shown that it is possible to build an SMW under assumptions A1 and A2, and

that by choosing appropriate values for TD and TP, one can have an exhaustion-

safe intrusion-tolerant replicated state machine system.

Theorem 5.2.1. If a local SMW executes Algorithm 1 with F=refreshCodeAndState

under assumption A1, then there is an upper bound Texecmax on the execution time of

refreshCodeAndState .

Proof: In the worst-case scenario, i.e., when the code of both the operating sys-

tem and the local state machine are corrupted, Algorithm 3 (refreshCodeAndState)

executes a total of 6 operations. The execution time of these operations can be

upper-bounded in the following manner.

• shutdownOS(): Typically, an operating system can be shutdown through

a hardware interrupt. This operation has predictable execution time and

thus one can define an upper-bound Tshutdown.

• check OS/SM code correctness: This can be implemented through a bit-

wise comparison between the digest of the current OS/SM code with a

98

5.2 Resilient and Available State Machine Replication

digest initially stored in a read-only medium. An upper-bound Tcheckcode

on the execution time of this operation can be defined based on the max-

imum time necessary to copy the digest from the medium and to make a

simple bitwise comparison.

• restoreOScode() and restoreSMcode(): Restoring the OS/SM code corre-

sponds to a copy from a read-only medium. So, an upper-bound Trestorecode

can be defined based on the maximum time necessary to copy the code

from the medium.

• bootOS(): Booting an operating system can take some time, but given

that we are always booting the same OS (because no application gets

installed between boots), it is possible to estimate an upper-bound Tboot

on the boot time.

So, one can define an upper-bound Texecmax on the execution time of Algo-

rithm 3, such that Texecmax = Tshutdown + 2Tcheckcode + 2Trestorecode + Tboot.

�

The following proposition shows that it is possible to use this rejuvenation

procedure refreshCodeAndState to build an SMW that offers a periodic timely ex-

ecution service.

Proposition 5.2.2. Let SMW be a PRWl built under assumptions A1–A2 and trig-

gering the refreshCodeAndState procedure through the execution of Algorithm 1 with

δ = 4Tprocmax
+ Tdri f tmax

. Let TP, TD, Tπ ∈ <+
0 such that

a) TP > TD + Tπ + δ

b) TD ≥ Texecmax

c) Tπ = 0

99

5. APPLICATION SCENARIOS

Then, the SMW offers the periodic timely execution service 〈 refreshCodeAndState

, TD, TP, Tπ〉.

Proof: Given that TD + Tπ < TP due to a), we only need to show that conditions

1, 2, 3 and 4 of Definition 4.1.1 are satisfied by the SMW under assumptions

A1–A2. Consider the Algorithm 1 executed by the SMW.

Condition 1 This condition is trivially satisfied given that the SMW clusters

are composed of a single local SMW that executes refreshCodeAndState .

Condition 2 Without line 2, the local SMWs C i
1 would execute F within

4Tprocmax
+ Texecmax from the last triggering, given that the procedure F and four

instructions would be executed between consecutive triggering. Therefore,

setting TP ≥ 4Tprocmax
+ Texecmax would satisfy condition 2. The addition of the

wait instruction in line 2 potentially decreases the frequency of F execution in

order to enforce a certain periodicity that is sufficient to guarantee exhaustion-

safety. Regarding the value of δ, if the local SMW clocks were perfect, one

could set δ = 4Tprocmax
in order to satisfy condition 2, as long as the chosen TP

would be greater than Texecmax + 4Tprocmax
. However, according to assumption

A2, local SMW clocks have a bounded drift rate Tdri f tmax
. Therefore, given that

δ has also to cancel this drift rate, we have that if δ = 4Tprocmax
+ Tdri f tmax

and

TP > Texecmax + δ, the SMW satisfies condition 2.

Condition 3 Given that there is only one replica per cluster, this condition is

trivially satisfied with Tπ = 0.

Condition 4 According to Theorem 5.2.1, the SMW satisfies condition 4 if

TD ≥ Texecmax . �

Following the reasoning presented in Section 4.1.2, we have that (1) if one

enhances a replicated state machine with an SMW and (2) if it is possible to

100

5.2 Resilient and Available State Machine Replication

lower-bound the exhaustion time (i.e., the time needed to produce f + 1 replica

failures) of every system execution by a known constant Texhmin , then node-

exhaustion-safety is achieved by assuring that TP + TD < Texhmin .

5.2.4 Achieving Both Node-Exhaustion-Safety and Availabil-

ity

We now discuss the recovery strategy to be applied in order that no more than

f replicas are ever corrupted, and the execution of the distributed state ma-

chine is never interrupted.

A straightforward solution to achieve node-exhaustion-safety would be

to rejuvenate all the replicas at once: the replicas would be simultaneously

stopped, rejuvenated, and restarted again. Given that no progress would occur

during rejuvenation, only the previously compromised replicas would have to

restore their state. The problem with this solution is that the distributed state

machine would be unavailable during the rejuvenation, which is contrary to

one of our goals. However, in scenarios where the interruption of the service

is not a problem, this solution has the advantage of minimizing the number of

state transfers, given that only compromised states have to be restored.

In order to avoid service interruption, one needs to do two things:

1. Define the maximum number of replicas allowed to recover simultane-

ously (call it k). Note that a recovering replica may not process client

requests until the recovery finishes. In this way, a recovering replica can

be considered as being crashed from the perspective of the state machine

replication algorithms (e.g., atomic broadcast (Défago et al., 2004)).

2. Deploy the system with a sufficient number of replicas to tolerate f Byzan-

tine servers and k crashed servers. We derived a new bound on the to-

101

5. APPLICATION SCENARIOS

tal number of replicas for constantly available state machine replication of

n ≥ 3 f + 2k + 1, which will be explained next. The requirement that no

more than f replicas be compromised between rejuvenations is obviously

maintained.

Section 5.2.4.1 explains how one can coordinate recoveries such that no

more than a certain number of replicas recover at the same time, then Sec-

tion 5.2.4.2 clarifies why we need n ≥ 3 f + 2k + 1 replicas, and, finally, Sec-

tion 5.2.4.3 discusses some recovering strategies and the results of combining

different values of f and k.

5.2.4.1 Recoveries Coordination

The goal is to devise a way of enforcing an upper-bound k on the number of

replicas that recover simultaneously. In other words, we want to ensure that,

at any time, no more than k replicas are recovering. This goal can be achieved

using different approaches, with distinct guarantees and cost.

One possible approach is to use a technology that has been readily available

for some years: GPS (Parkinson & Gilbert, 1983) (Global Positioning System).

GPS provides an extremely precise absolute time reference and thus can be

used to maintain the local SMW clocks highly accurate and precise (Veríssimo

et al., 1997). Therefore, by enhancing the local SMWs with a GPS receiver,

recoveries can be scheduled such that no more than k replicas are recovering

at the same time. Although this approach offers high guarantees, it has the

cost of buying a GPS receiver per local SMW.

A less costly approach is to use the payload network to (internally) syn-

chronize the clocks of local SMWs. Although the payload network may be

asynchronous, local SMWs are synchronous and thus have the ability to detect

when the precision of the clock synchronization is not sufficient to guarantee

102

5.2 Resilient and Available State Machine Replication

that at most k replicas are recovering (Fetzer & Cristian, 1997). In this case,

an alarm could be triggered to warn the system administrator that problems

were detected. Notice that, even with the GPS approach, one depends on the

payload network if state transfer is needed after the recovery. A more detailed

explanation is given next.

The recovery algorithm presented in Algorithm 3 does not include the state

transfer operation that may be potentially necessary after a replica being re-

booted. We consider that a replica is correct after being rebooted with clean

code, but it may happen that correct replicas take some time to resume normal

operation. We argue that the system architect should estimate a reasonable

upper-bound Treintegrate on the time necessary for the replica to reintegrate nor-

mal operation, and then choose an adequate TD (the bound on the recovery

execution time) sufficient to allow recovery and reintegration. However, dur-

ing unstable periods (e.g., a DoS attack), resuming normal operation may take

more time than assumed, potentially leading to more than k recoveries at the

same time, which may cause unavailability. Nevertheless, the system is always

assuredly correct (as long as the power of the adversary is within the assumed

limits). Moreover, if the network is under a DoS attack, then unavailability

was most probably being already experienced by the service clients, and thus

having more than k recoveries at the same time does not degrade significantly

the QoS (Quality-of-Service).

In order to avoid complete unavailability, the SMW could be extended with

a second service to be used by the state machine application running in the

payload, to notify the SMW that reintegration was completed. In this way,

each local SMW could monitor if the assumed reintegration times were being

met, and take appropriate measures when problems were detected, such as

warn the system administrator.

103

5. APPLICATION SCENARIOS

5.2.4.2 Why the Need for the n ≥ 3 f + 2k + 1 Bound?

Typically, a replicated state machine with 3 f + 1 replicas is able to tolerate up to

f arbitrary faults (Pease et al., 1980). This bound is associated with the specific

atomic broadcast (or consensus) protocol used to guarantee the consistency of

the replicated state machine. If more than f faults occur, both the safety and the

liveness of the atomic broadcast protocol may be compromised. In particular,

if f + 1 crash faults occur, the protocol will (normally) block. Therefore, a

replicated state machine with 3 f + 1 replicas may become unavailable during

recoveries when more than f of them are compromised/crashed.

Consider now that you have a replicated state machine system with n repli-

cas, able to tolerate a maximum of f Byzantine faults, and where rejuvenations

occur in groups of at most k replicas. At any time, the minimum number of

replicas assuredly available is n − f − k. So, in any operation, either intra-

replicas (e.g., an atomic broadcast execution) or originated from an external

participant (e.g., a client request), a group with n− f − k replicas will be used

to execute the operation. Given that some of these operations may affect the

state of the replicated system, one also needs to guarantee that any two groups

of n− f − k replicas intersect in at least f + 1 replicas (i.e., since f replicas can

be malicious, this bound guarantees the participation of at least one correct

replica). Therefore, we need to ensure that 2(n− f − k)− n ≥ f + 1, which can

only be satisfied if n ≥ 3 f + 2k + 1.

The above result can also be obtained by making use of the Byzantine quo-

rum systems theory (Malkhi & Reiter, 1997a), namely by analyzing the Byzan-

tine dissemination quorum system construction. This construction applies to

replicated services storing self-verifying data, i.e., data that only clients can

create and about which clients can detect any attempted modification by a

faulty server (e.g., public key distribution system). In a dissemination quorum

104

5.2 Resilient and Available State Machine Replication

system, the following properties are satisfied:

Intersection any two quorums have at least one correct replica in common;

Availability there is always a quorum available with no faulty replicas.

If one designates |Q| as the quorum size, then the above properties origi-

nate the following conditions:

Intersection 2|Q| − n ≥ f + 1;

Availability |Q| ≤ n− f − k.

From these conditions, it results that we need n ≥ 3 f + 2k + 1 in order to

have a dissemination quorum system in a environment where at most f repli-

cas may behave arbitrarily, and at most k replicas may recover simultaneously

(and thus become unavailable during certain periods of time). In the special

case when n = 3 f + 2k + 1, it follows that |Q| = 2 f + k + 1.

5.2.4.3 Recovery Strategies

Each recovering replica executes the code presented in Algorithm 3. Replicas

are recovered in groups of at most k elements, by some specified order: for

instance, replicas P1, ..., Pk are recovered first, then replicas Pk+1, ..., P2k follow,

and so on. A total of dn
k e replica groups are rejuvenated in sequence. Fig-

ure 5.5 illustrates the rejuvenation process. The SMW coordinates the rejuvena-

tion process (see Section 5.2.4.1), triggering the rejuvenation of replica groups

one after the other. The maximum execution time of the rejuvenation process,

i.e., the maximum time interval between the first group rejuvenation start in-

stant and the last group rejuvenation termination instant, is upper-bounded

by TDglobal = dn
k eTD. Given that recoveries should not overlap if one wants to

105

5. APPLICATION SCENARIOS

guarantee availability (or else more than k replicas could end recovering at the

same time), the system architect must choose a TP value greater than TDglobal .

time

P1...Pk Pn-k+1...Pn...

recover
k replicas

recover
k replicas

recover n replicas

P1...Pk Pn-k+1...Pn...

≤TP

≤TD

recover
k replicas

recover
k replicas

recover n replicas

≤TP

≤TD

Figure 5.5: Relationship between the rejuvenation period TP, the rejuvenation
execution time TD and k.

Therefore, when analyzing the feasibility of a concrete value of TP, one

should also take into consideration the different possibilities in terms of re-

covery strategies, and their impact on the recovery execution time. Thus, an

important design parameter that should be considered is the value of k. This

value defines the number of nodes that may recover simultaneously, and con-

sequently the number of distinct dn
k e replica groups that recover in sequence.

Intuitively, choosing a higher k, reduces the number of rejuvenation groups,

but increases the total number of nodes n (required to guarantee availability

during recoveries). On the other hand, a smaller k means more recoveries in

sequence, but a lower n. Remember that each rejuvenation group will reboot

and, after recovery, potentially execute a state transfer. Both these operations

may take a considerable amount of time, and therefore one should try to min-

imize the number of rejuvenation groups. This being said, let us analyze how

the value of dn
k e evolves in different scenarios.

First of all, a minimum of 3 rejuvenation groups will exist in every config-

106

5.2 Resilient and Available State Machine Replication

uration with k ≥ 1, i.e., either the replicas do not rejuvenate at all (k = 0), or if

they rejuvenate, at least a sequence of 3 rejuvenations will occur. This follow

from the fact that n ≥ 3 f + 2k + 1, and thus n
k ≥ 3.

Secondly, the number of rejuvenation groups is upper-bounded by n. In the

worst case, k = 1, and therefore dn
k e = n. So, we see that the number of rejuve-

nation groups may vary between 3 and n, depending on the value of k. In fact,

it is easy to see that in order to have a certain number l = dn
k e of rejuvenation

groups, one has to choose k ≥ 3 f +1
l−2 . A special case of this condition is that the

minimum number of rejuvenations (l = 3), is obtained by setting k ≥ 3 f + 1.

For instance, if f = 1, and one wants l = 3 rejuvenation groups, then k should

be greater or equal than 4. Notice that, setting k ≥ 3 f + 1 impacts the total

number of replicas in an interesting way: n ≥ 3(3 f + 1). This means that in

order to ensure availability with a minimum number of rejuvenation groups,

one needs three times more replicas than in the scenario where no availability

is guaranteed. Table 5.5 summarizes the minimum number of replicas needed

when different strategies are followed.

Goal #rejuv. groups (l) k f #replicas (n)
no availability – 0 1 4

guarantees 2 7
3 10

availability & n 1 1 6
min. num. of replicas 2 9

3 12
availability & 3 ≥ 3 f + 1 1 12

min. num. of rejuv. groups 2 21
3 30

Table 5.5: Examples of strategies that may guide the choice of the values of n,
f , and k.

Figure 5.6 depicts the evolution of the number of rejuvenation groups re-

sulting from combinations of k and f values. As expected, the number l of reju-

107

5. APPLICATION SCENARIOS

venation groups is lower for higher values of k, and l = 3 for every k ≥ 3 f + 1.Number of Rejuvenation Groups per f and k

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

k

re

ju
ve

na
tio

n
gr

ou
ps

f=5
f=3
f=1

Figure 5.6: Number of rejuvenation groups (l) required per k and f .

Figure 5.7 shows the cost, in terms of the minimum number of replicas

required, to guarantee n ≥ 3 f + 2k + 1. We see that n linearly increases with k,

at a rate that is independent of the specific value of f .

Figures 5.6 and 5.7 can help the system architect to calculate the cost of

choosing a specific f and k, in terms of the total number of replicas and the

number of rejuvenation groups. A different perspective is presented in Fig-

ure 5.8. In this figure, one can analyze what is the minimum number of reju-

venation groups allowed by a given n and f . It can help the system architect

to decide if it pays to tolerate a higher k in order to decrease the number of

rejuvenation groups. For instance, with n = 13 and f = 3, a minimum of 13

rejuvenation groups is required (because k = 1), but with a single one more

replica (n = 14), only 7 rejuvenations in sequence are needed, because k can

now be set to 2. If one continues to follow the line representing f = 3, the

conclusion is that adding still one more replica (n = 15) would rather worsen

recoveries than improving it, given that both the number of replicas and reju-

108

5.2 Resilient and Available State Machine Replication

Number of Replicas per f and k

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20

k

re

pl
ic

as

f=5
f=3
f=1

Figure 5.7: Number of replicas required per k and f .

venation groups increase.

The general conclusion is that, if one starts from a configuration with k = 1,

the higher gain in terms of the number of rejuvenation groups is achieved by

adding the necessary number of replicas such that k can be set to 2. By doing

this, the number of rejuvenation groups is reduced from n to dn
2 e. In practice,

if the system is deployed with n = 3 f + 2k + 1 = 3 f + 3 replicas because

k = 1, then one should add two more replicas to allow k = 2. These two extra

replicas decrease substantially the minimum number of rejuvenation groups.

This decrease is proportional to the value of f . For instance, with f = 1, the

decrease is from 6 to 4 rejuvenation groups, but with f = 5, the decrease is

from 18 to 10 rejuvenations in sequence.

5.2.5 Evaluation

This section evaluates, through simulation, the actual resilience and availabil-

ity of a generic state machine replication system enhanced with an SMW and

109

5. APPLICATION SCENARIOS
#rejuvenation groups per f and #replicas

0

2

4

6

8

10

12

14

16

18

20

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

#replicas

m
in

 #
 re

ju
ve

na
tio

n
gr

ou
ps

f=5
f=3
f=1

Figure 5.8: Minimum number of rejuvenation groups required per n and f .

using the proposed recovery strategies. Moreover, it is also shown that previ-

ous Byzantine-resilient state machine replication approaches may not guaran-

tee availability under realistic settings.

First, we present the modeling formalism and the models developed to rep-

resent both a generic state machine replication system that periodically recov-

ers, and the adversary that tries to break the system by compromising more

than f replicas. Then, we present the results of simulating such an environ-

ment under different settings and we conclude that our approach is indeed

effective in assuring both resilient and available operation.

5.2.5.1 SAN Models

As in Section 4.2.2, stochastic activity networks (SANs) were used as the mod-

eling formalism.

We built atomic SAN submodels for a state machine client, a state machine

replica and the typical adversary that is constantly trying to corrupt system

110

5.2 Resilient and Available State Machine Replication

replicas. The complete model of the system is composed using join operations.

We first present a description of each submodel, and then show how the sub-

models are combined to form the composed model.

In the remainder of the section, Figures 5.9, 5.10, and 5.11 present the SAN

models. It is not necessary to understand them in order to follow the expla-

nations in the text. To understand fully the graphical representation of the

models and the models themselves, the interested reader can find detailed ex-

planations of the generic SAN’s formalism in Sanders & Meyer (2000), and a

detailed documentation of the models is presented in Appendix B.

SAN Model for the Adversary

The SAN in Figure 5.9 models the typical adversary that is constantly try-

ing to corrupt system replicas, and that ultimately exhausts the replicated

state machine when more than the assumed number of replicas are compro-

mised. In our model, replicas are attacked in sequence not in parallel (see

Section 5.2.2). Parallel attacks are more complex to model, and for the pur-

pose of the evaluation sequential attacks are sufficient. Moreover, in certain

conditions, a parallel attack may be represented by a fast sequential one. The

adversary behavior is specified through one parameter:

• minimum inter-failure time (mift) specifies the minimum interval be-

tween attacks. In each attack, the adversary randomly compromises one

replica.

The adversary SAN distinguishes between the first and the remaining at-

tacks in order to generate different sequences of attacks. The first attack (rep-

resented by the activity first_attack) occurs at a random time instant t1 such

that t1 ∈ [0, mift], and the following attacks (represented by attack2) occur

111

5. APPLICATION SCENARIOS

Figure 5.9: SAN model for the adversary.

at time instants ti, i > 1 such that ti = ti−1 + mift. The alternative would

be to always deploy the first attack at the first time instant of the system ex-

ecution time, but this fixed behavior would not allow to make an exhaustive

evaluation of the resilience and availability of the attacked system under dif-

ferent attack patterns. The most relevant variables of the adversary SAN are

described next:

• external_time stores the current execution time instant of the simula-

tion.

• next_attack stores the identifier of the next replica that should be at-

tacked. This identifier is calculated randomly after each attack.

• failed stores an array of boolean values, one per replica, indicating which

replicas are failed. The value of each position of the array is shared with

the corresponding replica. When the adversary attacks a replica, the

corresponding position in the array is updated. Each replica constantly

checks the value of its position in order to know when it is failed.

• replicas_id stores an array of integer values, one per replica, indicating

which replicas are active in the simulation. The composed model defines

112

5.2 Resilient and Available State Machine Replication

a total of 9 replicas, but in some simulations only some of them are used.

The adversary needs to know which replicas are active in order to attack

just these ones.

• system_compromised stores a boolean value indicating if the system is

compromised, i.e., if more than f replicas are failed at the same time.

This variable is only updated by the adversary (when f + 1 replicas are

simultaneously failed), but the remaining SAN models also use it in order

to know when a simulation can be stopped.

SAN Model for a State Machine Replica

The SAN in Figure 5.10 models a state machine replica. The replica peri-

odically receives a request from a client, orders the request, and executes it.

The ordering and the execution are modelled by a normal distribution with

a certain mean and variance. The goal is that different atomic broadcast pro-

tocols (ordering) and different applications (execution) can be represented by

the model. Moreover, the replica proactively triggers periodic recoveries. The

replica behavior is specified through seven parameters:

• ab_mean, ab_variance specify the mean and the variance values of the

normal distribution modelling the request ordering.

• exec_mean, exec_variance specify the mean and the variance values of

the normal distribution modelling the request execution.

• TP specifies the maximum interval between two consecutive replica re-

coveries.

• TD specifies the maximum interval between the start and termination of

a replica recovery.

113

5. APPLICATION SCENARIOS

Figure 5.10: SAN model for a state machine replica.

• k specifies the maximum number of replicas recovered simultaneously.

The state machine replica model can be decomposed in the following three

parts:

request processing This part is composed of three activities: receive_request,

order_request, and execute_request.

The receive_request activity is instantaneous and it is triggered when a

request is received from the state machine client.

The order_request activity is modelled by a normal distribution with

mean ab_mean and variance ab_variance and it is triggered after a re-

quest being received by a sufficient number of replicas. This triggering

condition is used to simulate the behavior of a normal atomic broadcast

114

5.2 Resilient and Available State Machine Replication

protocol: if a sufficient number of replicas is not available (due to ac-

cidental or malicious actions), the protocol blocks. The exact number

of replicas that is considered sufficient varies from protocol to protocol

but, given that it has to ensure the intersection property revisited in Sec-

tion 5.2.4.2, this number is lower-bounded by dn+ f +1
2 e. Therefore, we

used this number in our experiments.

The execute_request activity is modelled by a normal distribution with

mean exec_mean and variance exec_variance and it is triggered after a

request being ordered.

recovery This part is composed of two activities: start_recovery and end_re-

covery.

The start_recovery activity is instantaneous and it is triggered in the

time slots allocated for the replica recovery. Each replica recovers exactly

once in each TP time interval, but given that at most k recover at the same

time, the interval TP is split into dn
k e slots with duration TD, and each

group of k replicas recover in each one of these slots (see Section 5.2.4.3).

During a recovery, the replica behaves as being failed, and thus requests

are neither received, ordered, or executed.

The end_recovery activity is instantaneous and it is triggered TD time

units after the triggering of the start_recovery activity. The end_recov-

ery activity resets the value of the variable failed, thus recovering the

replica if it was failed before.

id assignment This part is composed of a single activity: assign_id. This ac-

tivity is instantaneous and it is triggered in the beginning of a simulation.

The goal is to dynamically assign identifiers to the quantity of replicas

used in each simulation. Although 9 replicas are always present, only n

115

5. APPLICATION SCENARIOS

can have a valid identifier and effectively participate in the simulation.

Therefore, the first n replicas to trigger the assign_id activity obtain a

valid identifier, whereas the remaining ones do not obtain any identifier

and therefore are inactive during the simulation.

The most relevant variables of the state machine replica SAN are described

next:

• external_time stores the current execution time instant of the simula-

tion.

• pending_requests stores the number of requests sent by the state ma-

chine client that were not yet received (by the receive_request activity).

• failed stores a boolean value indicating if the replica is failed. This vari-

able can be updated by the adversary as a result of an attack, or by the

end_recovery activity as result of a recovery.

• system_compromised stores a boolean value indicating if the system is

compromised, i.e., if more than f replicas are failed at the same time.

SAN Model for a State Machine Client

The SAN in Figure 5.11 models a state machine client. The state machine

client periodically sends a request to the state machine replicas and waits re-

plies. A new request is only sent after the reception of 2 f + 1 replies to the pre-

vious request. We choose to model a client in this way in order to avoid concur-

rent requests, and thus reduce the complexity of the various SANs. However,

we are still able to measure the impact of concurrency on the ordering and

execution operations of the replicated state machine. This is possible because

116

5.2 Resilient and Available State Machine Replication

Figure 5.11: SAN model for a state machine client.

these operations are modelled using normal distributions, and one may use

mean and variance values obtained from experiments with real request loads.

In addition, the state machine client SAN maintains statistics about the execu-

tion time of a request and there is a counter of the number of replies received.

The state machine client model is composed of two activities: send_request

and receive_reply.

The send_request activity is instantaneous and it is triggered if 2 f + 1

replies were received in response to the previous request. This activity incre-

ments the number of pending requests of every replica.

The receive_reply activity is instantaneous and it is triggered if 2 f + 1

replies are received. This activity is responsible by updating the execution

time statistics.

The most relevant variables of the state machine client SAN are described

next:

• external_time stores the current execution time instant of the simula-

tion.

117

5. APPLICATION SCENARIOS

Figure 5.12: SAN model for the composed model.

• pending_requests stores an array of integer values, one per replica, in-

dicating how many requests are pending for each replica. The value of

each position of the array is shared with the corresponding replica. Given

that there are no concurrent requests, the number of pending requests is

never greater than one.

• system_compromised stores a boolean value indicating if the system is

compromised, i.e., if more than f replicas are failed at the same time.

Composed Model

The composed model for the simulation environment is presented in Fig-

ure 5.12 and consists of the three atomic SAN submodels presented before,

organized in the following way: one replica SAN per state machine replica,

one client SAN, and one adversary SAN. The composed model also includes

an external time submodel, which simply simulates an external time reference.

Note that the composed model includes only 9 replicas. More could have been

added, but this number was sufficient for the experiments that are described

in Section 5.2.5.2.

The overall model behavior is specified by the parameters defined for the

three submodels, plus the following: n specifies the total number of state ma-

118

5.2 Resilient and Available State Machine Replication

chine replicas, and f represents the assumed maximum number of failed repli-

cas.

5.2.5.2 Simulation Results

We used the Möbius (Deavours et al., 2002) tool to build the SANs, and sim-

ulate the model. The goal of the simulations was to show the importance of

taking into account recoveries, and the unavailability that may be provoked by

them, when choosing the total number of replicas of a state machine replicated

system.

We used a single metric in the simulations: request average execution time.

This metric measures the average execution time between a request being sent

and 2 f + 1 replies being received. Notice that in the worst case a state machine

client needs 2 f + 1 replies: although f + 1 identical replies guarantee that the

response is correct, at most f replies may be sent by compromised replicas.

Therefore, for simulation purposes, we consider the worst-case scenario.

In the next subsections we first analyze the impact of different adversary

powers on the execution time when using 3 f + 1 replicas and 3 f + 2k + 1 repli-

cas; and then it is evaluated the impact of increasing recovery durations on the

execution time when using the same two types of replica quorums. The re-

sults confirm our initial expectations in that 3 f + 1 replicas are not sufficient to

guarantee availability.

Tables 5.6 and 5.7 present the actual parameter values used to perform the

simulations. The time unit is seconds. The maximum execution time is set

to 10.000 seconds (∼ 3 hours) just for simulation purposes. Real systems ex-

ecute during much longer intervals of time, but we found that 3 hours is a

good tradeoff, because it allows reasonable simulation processing times, and it

represents a significant window of time to derive conclusions on the expected

119

5. APPLICATION SCENARIOS

system resilience and availability. The majority of the remaining parameter

values are based on the reported performance results of BFS (Castro & Liskov,

2002), a Byzantine fault-tolerant state machine replication system. Although

most of these values are not relevant in terms of the goal of the simulations,

we choose to extract them from a real system, in order to extrapolate how

such a system would behave in the conditions evaluated in the simulations.

Some specific parameter values are explained next. ab_mean, ab_variance,

exec_mean, exec_variance, and TD (in the analysis of the impact of the adver-

sary power), were extracted from the benchmark results presented in Castro &

Liskov (2002). The value of TP was chosen in order to guarantee that recoveries

do not overlap, as explained in Section 5.2.4.3. Therefore, TP is always greater

than dn
k eTD in every simulation configuration.

Parameter Impact of the Adversary Power
Figure 5.13 Figure 5.14

n 4 vs 6 7 vs 9
f 1 2
k 1 1

met 10000 10000
TP 260 400
TD 43 43

ab_mean 0.0015 0.0015
ab_variance 0 0
exec_mean 0.04 0.04

exec_variance 0 0
mift ∞, 3600, 2700, 1800, 900, 600, 300, 240, 180, 120, 60

Table 5.6: Parameter values used in the simulations regarding the impact of
the adversary power.

120

5.2 Resilient and Available State Machine Replication

Parameter Impact of the Recovery Duration
Figure 5.15 Figure 5.16

n 4 vs 6 7 vs 9
f 1 2
k 1 1

met 10000 10000
TP 1000 1000
TD 10, 30, 60, 90, 120, 150

ab_mean 0.0015 0.0015
ab_variance 0 0
exec_mean 0.04 0.04

exec_variance 0 0
mift 1000 500

Table 5.7: Parameter values used in the simulations regarding the impact of
the recovery duration.

Impact of the Adversary Power

We performed two different sets of simulations in order to assess the im-

pact of adversaries of increasing power on the same state machine replicated

system, deployed with different replica quorums.

In the first set of simulations, f is set to 1 and thus the replicated state ma-

chine is able to resist up to one intrusion between recoveries. When no attack

occurs, the average execution time of the system is very low, in the order of

50 milliseconds. Figure 5.13 compares the average execution time of systems

using 3 f + 1 = 4 replicas and 3 f + 2k + 1 = 6 replicas. The main conclusion

is that the average execution time remains constant (close to 50 milliseconds)

when 6 replicas are used, whereas a system with only 4 replicas is highly sensi-

tive to the interval between attacks. One can observe that when the adversary

power is near the maximum value assumed (i.e., when the adversary is al-

most as fast as recoveries), the average execution time of a system using 3 f + 1

replicas is greater than 3 seconds.

121

5. APPLICATION SCENARIOS

2

2,5

3

3,5
xe

cu
ti

on
 t

im
e

(s
ec

.)
3f+1 vs 3f+2k+1: BFS, f=1, k=1, diferentes mift

0

0,5

1

1,5

no attack 3600 2700 1800 900 600 300

av
er

ag
e

re
qu

es
t e

x

minimum inter‐failure time (sec.)

n=4

n=6

Figure 5.13: Impact of the adversary power when f = 1.

The second set of simulations makes the same type of comparison, but now

f is set to 2 and thus the replicated state machine is able to resist up to two

intrusions between recoveries. When no attack occurs, the average execution

time is still in the order of 50 milliseconds. Figure 5.14 compares the average

execution time of systems using 3 f + 1 = 7 replicas and 3 f + 2k + 1 = 9

replicas. As before, the conclusion is that the average execution time remains

constant when 3 f + 2k + 1 replicas are used, whereas a system with only 3 f + 1

replicas is sensitive to the interval between attacks. However, one can observe

that a system with 3 f + 1 replicas is less sensitive to the adversary power when

f = 2 than when f = 1. This happens because when f = 2, the system is able

to tolerate two arbitrary faults between recoveries. But this also means that the

system is able to tolerate one intrusion and one recovering replica, without any

impact on availability. Therefore, availability is only affected when the interval

between attacks is sufficient to compromise two replicas.

122

5.2 Resilient and Available State Machine Replication

0 8

1

1,2

1,4

1,6

xe
cu

ti
on

 t
im

e
(s

ec
.)

3f+1 vs 3f+2k+1: BFS, f=2, k=1, diferentes mift

0

0,2

0,4

0,6

0,8

no attack 3600 2700 1800 900 600 300 240

av
er

ag
e

re
qu

es
t e

x

minimum inter‐failure time (sec.)

n=7
n=9

Figure 5.14: Impact of the adversary power when f = 2.

Impact of the Recovery Duration

As in the previous section, we performed two different sets of simulations,

but now the goal was to evaluate the impact of having different recovery exe-

cution times on the same state machine replicated system deployed with dif-

ferent replica quorums. Moreover, in order to observe the worst-case behavior

of the system, the minimum inter-failure time (mift) is set to the lowest pos-

sible “safe” value, i.e., sufficient to provoke exactly f replica failures between

recoveries.

In the first set of simulations, f is set to 1. Figure 5.15 compares the average

execution time of systems using 3 f + 1 = 4 replicas and 3 f + 2k + 1 = 6 repli-

cas. The conclusion is that the average execution time remains constant when

6 replicas are used, whereas a system with only 4 replicas is highly sensitive

to the duration of a replica recovery: with 10 seconds recoveries the average

123

5. APPLICATION SCENARIOS

10

12

14

16

18

20
xe

cu
ti

on
 t

im
e

(s
ec

.)
3f+1 vs 3f+2k+1: BFS, f=1, k=1, different recovery duration

0

2

4

6

8

10

10 30 60 90 120 150

av
er

ag
e

re
qu

es
t e

x

recovery duration per replica (sec.)

n=4

n=6

Figure 5.15: Impact of the recovery duration when f = 1.

request execution time is around 1.5 seconds, whereas if the recovery dura-

tion increases to 150 seconds, the resulting average request execution time is

around 18 seconds!

In the second set of simulations, f is set to 2. Figure 5.16 compares the

average execution time of systems using 3 f + 1 = 7 replicas and 3 f + 2k +

1 = 9 replicas. Given that this set of simulations uses a higher number of

replicas (nine at maximum), and that the recovery period TP = 1000, the set of

recovery durations considered in this graph do not include some that appear

in the graph of Figure 5.15. Otherwise, the recovery of all replicas could take

more time than the recovery period. The simulations results show that the

average execution time remains constant when 3 f + 2k + 1 replicas are used,

whereas a system with only 3 f + 1 replicas is sensitive to the duration of a

replica recovery.

124

5.2 Resilient and Available State Machine Replication

3

4

5

6

xe
cu

ti
on

 t
im

e
(s

ec
.)

3f+1 vs 3f+2k+1: BFS, f=2, k=1, different recovery duration

0

1

2

3

10 30 60 90

av
er

ag
e

re
qu

es
t e

x

recovery duration per replica (sec.)

n=7

n=9

Figure 5.16: Impact of the recovery duration when f = 2.

5.2.5.3 Summary

The different types of simulations that were performed show that a state ma-

chine replicated system needs at least 3 f + 2k + 1 replicas in order to guarantee

availability. Classical approaches, such as BFS, using only 3 f + 1 replicas, may

naturally present very high unavailability times, specially in two relevant sce-

narios: in the presence of strong adversaries; or when recoveries have long

execution times. We showed that in practical terms the addition of two more

replicas may considerably improve the situation.

125

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis makes two distinct contributions. The first part of the thesis (Chap-

ters 2 and 3) was devoted to a discussion about the actual resilience of cur-

rent intrusion-tolerant synchronous and asynchronous systems. We proposed

a model that takes into account the evolution of a specified resource along the

timeline of system execution. We offered a predicate that allows to reason for-

mally about the possibility or impossibility of achieving exhaustion-safety, i.e.,

safety against resource exhaustion. On the possibility side, we showed that it

is feasible to build a node-exhaustion-safe intrusion-tolerant synchronous sys-

tem, as long as it has a bounded lifetime, and timing assumptions are never

violated. However, and against the current belief, we also showed that it is im-

possible to build a node-exhaustion-safe intrusion-tolerant system under the

classical asynchronous model, even using proactive recovery.

The theoretical impact of these findings remains across the fault spectrum.

That is, such failure syndromes (by exhaustion) were previously unknown and

even with accidental faults they can cause the inadvertent failure of asynchro-

nous or synchronous distributed systems (without bounded lifetime). These

systems are to our findings fairly the same as “apparently working” pre-FLP

127

6. CONCLUSIONS AND FUTURE WORK

asynchronous consensus systems were to FLP. In consequence, our results may

alert researchers and help conceive better distributed systems. The practical im-

pact of the same findings can in our opinion become higher, commensurate to

the measure in which systems, critical or generic, are becoming prey to hacker

attacks (malicious faults). This means that, with increasing probability, sys-

tems having the failure syndrome discovered in this thesis not only can but

will be attacked and made to fail.

In the second part of the thesis (Chapters 4 and 5), we did a deeper in-

vestigation of the impossibility of building a node-exhaustion-safe intrusion-

tolerant proactively recovered system under the asynchronous model, con-

cluding that proactive recovery mechanisms typically require stronger envi-

ronment assumptions (e.g., synchrony, security) than the rest of the system,

which can remain asynchronous. Based on this, we proposed proactive resilience

as a novel approach to proactive recovery that is based on a hybrid distributed

system model and architecture: the proactive recovery mechanisms execute in

a subsystem with “better” properties than the rest of the system.

The Proactive Resilience Model (PRM) was presented and it was shown

that it can be used to build node-exhaustion-safe systems. This model was

applied to the secret sharing and the state machine replication scenarios, in

order to derive corresponding node-exhaustion-safe versions of these systems.

Regarding the secret sharing application scenario, we presented some ex-

perimental results that confirm our theoretical postulates. Our experimental

secret sharing prototype is intrusion-tolerant and can be configured to tolerate

any number of intrusions as long as the intrusion rate is not greater than one

intrusion per second.

We also performed a quantitative assessment of the level of redundancy re-

quired to achieve resilient and available state machine replication, i.e., simulta-

128

6.2 Future Work

neously securing node-exhaustion-safety and availability: we established the

new result that a minimum 3 f + 2k + 1 replicas are required for tolerating f

Byzantine faults, with at most k replicas recovering simultaneously.

6.2 Future Work

We plan to implement an experimental prototype of an intrusion-tolerant pro-

active resilient state machine replication system, in order to confirm the sim-

ulation results described in Section 5.2.5.2. This prototype can be used to en-

hance the resilience and availability of any existing deterministic service.

Moreover, we intend to research other application scenarios of proactive re-

silience in the context of the CRUTIAL1 EU-IST project. The goal is to enhance

the resilience and availability of critical infrastructures like the power, water

and gas distribution networks, which have a fundamental role in modern life.

As described in the thesis, proactive recovery is crucial if one wants to build

intrusion-tolerant distributed systems that are simultaneously node-exhaus-

tion-safe. Reactive recovery can be seen as a complementary approach to

proactive recovery, in the sense that it may trigger recoveries sooner when

malicious behavior is detected. These early recoveries may have benefits not

only in terms of performance, but also in terms of system safety. Proactive re-

covery guarantees node-exhaustion-safety as long as recoveries are faster than

fault production, i.e., if recoveries take less time than a lower-bound on the

time needed to produce f + 1 node failures. This lower-bound is calculated

at design time and must have a very high coverage (Powell, 1992). However,

during system execution, malicious adversaries may prove to be more fierce

than expected and may have the ability to compromise f + 1 nodes within the

interval between two consecutive recoveries. Proactive recovery alone would

1CRitical UTility InfrastructurAL Resilience: http://crutial.cesiricerca.it/

129

http://crutial.cesiricerca.it/

6. CONCLUSIONS AND FUTURE WORK

not be sufficient to maintain node-exhaustion-safety in this scenario (because

design time assumptions were violated), but reactive recovery has the ability

to defend the system against such fierce attacks if it is possible to detect the

malicious behavior of some nodes before f + 1 being compromised. We are

currently studying ways of combining proactive and reactive recovery.

One of the fundamental assumptions of intrusion-tolerant distributed sys-

tems is that nodes are different - or diverse - in order to have a different set

of vulnerabilities. Otherwise, an attack that is effective against one node is

effective against all of them, and a coordinated attack could compromise all

the nodes almost at the same time. Many different diverse techniques have

been proposed in the past targeting accidental and/or malicious faults (Chen

& Avizienis, 1978; Joseph & Avizienis, 1988; Littlewood & Strigini, 2004; Pu-

cella & Schneider, 2006; Randell, 1975). Moreover, Obelheiro et al. (2006) iden-

tify several possible axes of diversity, i.e., several components of a system that

may admit different instances: application software, administrative domain,

physical location, operating system, and hardware. Proactive resilience should

be combined with diversity techniques in order to increase its effectiveness.

For instance, each recovery may randomize certain parts of the system in or-

der that vulnerabilities are somehow changed or removed and the adversary

cannot make use of knowledge learnt before the recovery. This is another pos-

sible research line to follow as future work.

130

Appendix A

Proactive Resilience Evaluation -
Detailed SAN Models

A.1 Model: External/Internal Timebases

Figure A.1: SAN model for the external/internal timebases.

A.1.1 Places

Place Names Initial Markings

external_time 0

payload_internal_time_rate_vector 1

131

A. PROACTIVE RESILIENCE EVALUATION - DETAILED SAN MODELS

payload_internal_time_vector 0

pr_internal_time_rate_vector 1

pr_internal_time_vector 0

A.1.2 Activities

Timed Activity: clock_tick

Deterministic Distribution Period: 1

Activation Predicate (none)

Reactivation Predicate (none)

Input Gate: IG

Predicate 1

Function

external_time->Mark()++;
for (int i=0; i<n; i++){

payload_internal_time_vector->Index(i)->Mark()+=
1.0/payload_internal_time_rate_vector->Index(i)->Mark();

pr_internal_time_vector->Index(i)->Mark()+=
1.0/(pr_internal_time_rate_vector->Index(i)->Mark());

}

132

A.2 Model: Stealth Time Adversary

A.2 Model: Stealth Time Adversary

Figure A.2: SAN model for the stealth time adversary.

A.2.1 Places

Place Names Initial Markings

payload_internal_time_rate_vector 1

pr_internal_time_rate_vector 1

A.2.2 Activities

Timed Activity: stealth_time_intrusion

Deterministic Distribution Period: time_attack_period

Activation Predicate (none)

Reactivation Predicate (none)

133

A. PROACTIVE RESILIENCE EVALUATION - DETAILED SAN MODELS

Input Gate: IG

Predicate
(payload_time_attack_factor > 1)
||
(pr_time_attack_factor > 1)

Function

int already_attacked, count, current_victim;
if (payload_time_attack_factor > 1) {

/* randomly time attack 1 node not already attacked */
count = 0;
already_attacked=1;
while (already_attacked && count<n) {

current_victim = rand()%n;
if (payload_internal_time_rate_vector->

Index(current_victim)->Mark()
!= payload_time_attack_factor) {

payload_internal_time_rate_vector->
Index(current_victim)->Mark()

= payload_time_attack_factor;
already_attacked = 0;
count++;

}
}

}
/* delays both pr and payload */
if (pr_time_attack_factor > 1) {

count=0;
already_attacked=1;
while (already_attacked && count<n) {

current_victim = rand()%n;
if (pr_internal_time_rate_vector->

Index(current_victim)->Mark()
!= pr_time_attack_factor) {

pr_internal_time_rate_vector->
Index(current_victim)->Mark()

= pr_time_attack_factor;
payload_internal_time_rate_vector->
Index(current_victim)->Mark()

= pr_time_attack_factor;
already_attacked = 0;
count++;

}
}

}

134

A.3 Model: Conspicuous Time Adversary

A.3 Model: Conspicuous Time Adversary

Figure A.3: SAN model for the conspicuous time adversary.

A.3.1 Places

Place Names Initial Markings

delay_vector 0

A.3.2 Activities

Timed Activity: conspicuous_time_intrusion

Deterministic Distribution Period: time_conspicuous_attack_period

Activation Predicate (none)

Reactivation Predicate (none)

135

A. PROACTIVE RESILIENCE EVALUATION - DETAILED SAN MODELS

Input Gate: IG

Predicate (time_conspicuous_attack_delay > 0)

Function

int already_attacked, count, current_victim;
/* delays both pr and payload */
count=0;
already_attacked=1;
while (already_attacked && count<n) {

current_victim = rand()%n;
if (delay_vector->Index(current_victim)->Mark()

!= time_conspicuous_attack_delay){
delay_vector->Index(current_victim)->Mark()

= time_conspicuous_attack_delay;
already_attacked = 0;

}
count++;

}

136

A.4 Model: Classic Adversary

A.4 Model: Classic Adversary

Figure A.4: SAN model for the classic adversary.

A.4.1 Places

Place Names Initial Markings

failed 0

A.4.2 Activities

Timed Activity: intrusion

Deterministic Distribution Period: mift

Activation Predicate (none)

Reactivation Predicate (none)

137

A. PROACTIVE RESILIENCE EVALUATION - DETAILED SAN MODELS

Input Gate: IG

Predicate 1

Function

int i, count, already_failed, count_failed,
count_recovering, current_victim;
/* counts the number of compromised nodes */
count = 0;
for (i=0; i<n; i++){

if (failed->Index(i)->Mark())
count++;

}
/* only does something if at least one node is still ok */
if (count<n){

/* randomly compromises 1 node not already failed */
already_failed=1;
while (already_failed) {

current_victim = rand()%n;
if (failed->Index(current_victim)->Mark()==0){

failed->Index(current_victim)->Mark()=1;
already_failed = 0;

}
}

}

138

A.5 Model: Node

A.5 Model: Node

Figure A.5: SAN model for a node.

A.5.1 Places

Place Names Initial Markings

delay_time_conspicuous_adversary 0

failed 0

last_payload_task_execution 0

last_refresh_execution 0

num_recovering_nodes 0

num_requests 0

payload_internal_time 0

payload_internal_time_rate 1

pr_internal_time 0

pr_internal_time_rate 1

refresh_execution_trigger 0

139

A. PROACTIVE RESILIENCE EVALUATION - DETAILED SAN MODELS

unavailable 0

A.5.2 Activities

Instantaneous Activities Without Cases:

payload_task

refresh_execution

refresh_triggering

Input Gate: IG1

Predicate

pr_internal_time->Mark()-last_refresh_execution->Mark()>=
(Tp-Td+delay_time_conspicuous_adversary->Mark())

&&
num_recovering_nodes->Mark() < mrd

Function ;

Input Gate: IG2

Predicate

mrd>0
&&
refresh_execution_trigger->Mark()==1
&&
pr_internal_time->Mark()-last_refresh_execution->Mark() >=

(Td/((n*1.0)/mrd))+
delay_time_conspicuous_adversary->Mark()

Function ;

140

A.5 Model: Node

Input Gate: IG3

Predicate

failed->Mark()==0
&&
unavailable->Mark()==0
&&
payload_internal_time->Mark()-

last_payload_task_execution->Mark()>=
(payload_task_period+
delay_time_conspicuous_adversary->Mark())

Function
last_payload_task_execution->Mark() =

payload_internal_time->Mark();
num_requests->Mark()++;

Output Gate: OG1

Function

last_refresh_execution->Mark() =
pr_internal_time->Mark();

refresh_execution_trigger->Mark()=1;
num_recovering_nodes->Mark()++;
if (mrd_exhausts==1){

//the node is failed (and not available) during recovery
failed->Mark()=1;
unavailable->Mark()=1;

}
else {

//the node is only not available during recovery
unavailable->Mark()=1;

}

Output Gate: OG2

Function

refresh_execution_trigger->Mark()=0;
failed->Mark()=0;
unavailable->Mark()=0;
if (internal_time_rejuvenation){

pr_internal_time_rate->Mark()=1;
delay_time_conspicuous_adversary->Mark()=0;

}
num_recovering_nodes->Mark()- -;

141

A. PROACTIVE RESILIENCE EVALUATION - DETAILED SAN MODELS

A.6 Model: Monitor

Figure A.6: SAN model for the monitor.

A.6.1 Places

Place Names Initial Markings

exhausted_when_recovering 0

external_time 0

failed 0

global_unavailable 0

max_num_failed 0

max_num_unavailable 0

resource_exhausted 0

unavailable 0

142

A.6 Model: Monitor

A.6.2 Activities

Timed Activity: monitor

Deterministic Distribution Period: 1

Activation Predicate (none)

Reactivation Predicate (none)

Input Gate: IG

Predicate 1

Function

int count_failed, count_recover, i;
/* checks if more than f nodes are failed */
count_failed = 0;
for (i=0; i<n; i++){

if (failed->Index(i)->Mark())
count_failed++;

}
/* max_num_failed is used only for statistics purposes */
if (count_failed>max_num_failed->Mark())

max_num_failed->Mark()=count_failed;
/* system is globally failed if > f nodes are failed */
if (count_failed>f)

resource_exhausted->Mark()=1;
else

resource_exhausted->Mark()=0;
/* counts the number of recovering nodes */
count_recover = 0;
for (i=0; i<n; i++){

if (unavailable->Index(i)->Mark())
count_recover++;

}
if (count_recover>max_num_unavailable->Mark())

max_num_unavailable->Mark()=count_recover;
if ((count_failed<=f) && (count_failed+count_recover>f))

exhausted_when_recover->Mark()=1;
else

exhausted_when_recover->Mark()=0;

143

Appendix B

State Machine Replication
Evaluation - Detailed SAN Models

B.1 Model: External Time

Figure B.1: SAN model for the external time.

B.1.1 Places

Place Names Initial Markings

external_time 0

system_compromised 0

B.1.2 Activities

145

B. STATE MACHINE REPLICATION EVALUATION - DETAILED SAN
MODELS

Timed Activity: clock_tick

Deterministic Distribution Period: 1

Activation Predicate (none)

Reactivation Predicate (none)

Input Gate: IG1

Predicate

/**********************************
max exec time not reached AND
system not compromised
**********************************/
external_time->Mark()<=met &&
(system_compromised->Mark() == 0)

Function external_time->Mark()++;

146

B.2 Model: Adversary

B.2 Model: Adversary

Figure B.2: SAN model for the adversary.

B.2.1 Places

Place Names Initial Markings

external_time 0

failed 0

first_attack_done 0

next_attack 0

replicas_id 1000

system_compromised 0

B.2.2 Activities

Timed Activity: attack2

Deterministic Distribution Period: mift

Activation Predicate (none)

Reactivation Predicate (none)

147

B. STATE MACHINE REPLICATION EVALUATION - DETAILED SAN
MODELS

Timed Activity: first_attack

Uniform Distribution
LowerBound: 0

UpperBound: mift

Activation Predicate (none)

Reactivation Predicate (none)

Input Gate: IG1

Predicate

/*************************************
max exec time not reached AND
system not compromised AND
first attack not done AND
attacks are enabled
*************************************/
(external_time->Mark() <= met) &&
(system_compromised->Mark() == 0) &&
(first_attack_done->Mark() == 0) &&
(attacks_enabled == 1)

Function

first_attack_done->Mark() = 1;
//finds the next victim (has valid id AND not failed)
while (

(replicas_id->Index(next_attack->Mark())->Mark() == 1000)
|| (failed->Index(next_attack->Mark())->Mark()==1)) {

//random attack
next_attack->Mark() = rand()%10;

}
//node next_attack becomes failed
failed->Index(next_attack->Mark())->Mark() = 1;
//updates the next node to attack (random attack)
next_attack->Mark() = rand()%10;
//checks if more than f nodes are already failed
int num_failed = 0;
for (int i=0; i<10; i++) {

if (failed->Index(i)->Mark() == 1)
num_failed++;

}
if (num_failed>f)

system_compromised->Mark() = 1;

148

B.2 Model: Adversary

Input Gate: IG2

Predicate

/*************************************
max exec time not reached AND
system not compromised AND
first attack already done
*************************************/
(external_time->Mark() <= met) &&
(system_compromised->Mark() == 0) &&
(first_attack_done->Mark() == 1)

Function

//finds the next victim (has valid id AND not failed)
while (

(replicas_id->Index(next_attack->Mark())->Mark() == 1000)
|| (failed->Index(next_attack->Mark())->Mark()==1)) {

//random attack
next_attack->Mark() = rand()%10;

}
//node next_attack becomes failed
failed->Index(next_attack->Mark())->Mark() = 1;
//updates the next node to attack (random attack)
next_attack->Mark() = rand()%10;
//checks if more than f nodes are already failed
int num_failed = 0;
for (int i=0; i<10; i++) {

if (failed->Index(i)->Mark() == 1)
num_failed++;

}
if (num_failed>f)

system_compromised->Mark() = 1;

149

B. STATE MACHINE REPLICATION EVALUATION - DETAILED SAN
MODELS

B.3 Model: Replica

Figure B.3: SAN model for a state machine replica.

B.3.1 Places

Place Names Initial Markings

external_time 0

failed 0

id 1000

id_store 0

pending_requests 0

ready_to_execute 0

ready_to_order 0

recovering 0

150

B.3 Model: Replica

request_executed 0

system_compromised 0

B.3.2 Activities

Timed Activity: execute_request

Normal Distribution
Mean: exec_mean

Variance: exec_variance
Activation Predicate (none)

Reactivation Predicate (none)

Timed Activity: order_request

Normal Distribution
Mean: ab_mean

Variance: ab_variance
Activation Predicate (none)

Reactivation Predicate (none)

Instantaneous Activities Without Cases:

assign_id

end_recovery

receive_request

start_recovery

151

B. STATE MACHINE REPLICATION EVALUATION - DETAILED SAN
MODELS

Input Gate: IG1

Predicate

/********************************
max exec time not reached AND
id assigned AND
there is a pending request AND
node not recovering AND
node not failed AND
system not compromised
********************************/
(external_time->Mark()<=met) &&
(id->Mark()!=1000) &&
(pending_requests->Mark() == 1) &&
(recovering->Mark() == 0) &&
(failed->Mark() == 0) &&
(system_compromised->Mark() == 0)

Function
ready_to_order->Mark()++;
pending_requests->Mark()=0;

Input Gate: IG2

Predicate

/**
max exec time not reached AND
not yet ready to execute the request AND
at least n-f or n-f-k nodes are available to order AND
node not recovering AND
node not failed AND
system not compromised AND
id assigned
**/
(external_time->Mark()<=met) &&
(ready_to_execute->Mark()==0) &&
(ready_to_order->Mark()> (n+f)/2) &&
(recovering->Mark() == 0) &&
(failed->Mark() == 0) &&
(system_compromised->Mark() == 0) &&
(id->Mark()!=1000)

Function
//ready to execute the request
ready_to_execute->Mark()=1;

152

B.3 Model: Replica

Input Gate: IG3

Predicate

/*****************************
max exec time not reached AND
ready to execute the request AND
node not recovering AND
node not failed AND
system not compromised AND
id assigned
******************************/
external_time->Mark()<=met &&
ready_to_execute->Mark()==1 &&
(recovering->Mark() == 0) &&
(failed->Mark() == 0) &&
(system_compromised->Mark() == 0) &&
(id->Mark()!=1000)

Function
ready_to_execute->Mark()=0;
//increment the number of requests executed
request_executed->Mark()++;

Input Gate: IG4

Predicate

/***
If the node still does not have an id assigned AND
the next id available is less than n
***/
(id->Mark()==1000) &&
(id_store->Mark()<n)

Function
//assing the current value of id_store and increment it
id->Mark()=id_store->Mark();
id_store->Mark()++;

153

B. STATE MACHINE REPLICATION EVALUATION - DETAILED SAN
MODELS

Input Gate: IG5

Predicate

/********************************
max exec time not yet reached AND
not recovering AND
recovery start instant is now AND
system not compromised AND
id assigned AND
recoveries are enabled
********************************/
(external_time->Mark() <= met) &&
(recovering->Mark()==0) &&
(external_time->Mark()%Tp ==

id->Mark()*(recovery_duration)) &&
(system_compromised->Mark() == 0) &&
(id->Mark()!=1000) &&
(recoveries_enabled == 1)

Function
//node recovering
recovering->Mark()=1;

Input Gate: IG6

Predicate

/********************************
max exec time not yet reached AND
recovering AND
recovery end instant is now AND
system not compromised
********************************/
(external_time->Mark() <= met) &&
(recovering->Mark()==1) &&
(external_time->Mark()%Tp ==

((id->Mark()+1)*(recovery_duration)-1)) &&
(system_compromised->Mark() == 0)

Function

//not recovering
recovering->Mark()=0;
//not failed
failed->Mark()=0;

154

B.4 Model: Client

B.4 Model: Client

Figure B.4: SAN model for a state machine client.

B.4.1 Places

Place Names Initial Markings

average_exec_time 0

external_time 0

max_exec_time 0

min_exec_time 0

num_replies 0

num_requests 0

pending_requests 0

ready_to_order 0

request_executed 0

send_timestamp 0

155

B. STATE MACHINE REPLICATION EVALUATION - DETAILED SAN
MODELS

system_compromised 0

waiting_reply 0

B.4.2 Activities

Instantaneous Activities Without Cases:

receive_reply

send_request

Input Gate: IG1

Predicate

/*************************************
max exec time not reached AND
no pending requests for replica 0 AND
not waiting a reply AND
system not compromised
*************************************/
(external_time->Mark() <= met) &&
(waiting_reply->Mark()==0) &&
(external_time->Mark()-send_timestamp->Mark()>=

request_interval) &&
(system_compromised->Mark() == 0)

Function

//init replica variables
ready_to_order->Mark() = 0;
request_executed->Mark() = 0;
//waiting a reply
waiting_reply->Mark()=1;
//store the current timestamp in order to measure
//request exec time
send_timestamp->Mark() = external_time->Mark();
//send the request to every node (max: 10)
for (int i=0; i<10; i++)

pending_requests->Index(i)->Mark() = 1;
//statistics
num_requests->Mark()++;

156

B.4 Model: Client

Input Gate: IG2

Predicate

/*****************************
max exec time not reached AND
at least 3f+1 replies AND
system not compromised
******************************/
(external_time->Mark()<=met) &&
(request_executed->Mark() >= 2*f+1) &&
(system_compromised->Mark() == 0) &&
(waiting_reply->Mark() == 1)

Function

//calculate the request execution time
int exec_time;
exec_time = external_time->Mark()-send_timestamp->Mark();
//update statistics
num_replies->Mark()++;
if (num_replies->Mark()==1)

min_exec_time->Mark() = exec_time;
else if (exec_time < min_exec_time->Mark())

min_exec_time->Mark() = exec_time;
if (exec_time > max_exec_time->Mark())

max_exec_time->Mark() = exec_time;
average_exec_time->Mark() =

(average_exec_time->Mark()*(num_replies->Mark()-1)+
exec_time)/num_replies->Mark();

//resets the number of pending requests in order to send a new
request
for (int i=0; i<10; i++)

pending_requests->Index(i)->Mark() = 0;
//resets the number of replies received
request_executed->Mark()=0;
//not waiting a reply
waiting_reply->Mark()=0;
//init replica variables
ready_to_order->Mark() = 0;
request_executed->Mark() = 0;

157

References

AMIR, Y., DANILOV, C., DOLEV, D., KIRSCH, J., LANE, J., NITA-ROTARU, C.,

OLSEN, J. & ZAGE, D. (2006). Scaling Byzantine fault-tolerant replication

to wide area networks. In Proceedings of the 2006 International Conference on

Dependable Systems and Networks, 105–114, IEEE Computer Society. 93

AVIZIENIS, A., LAPRIE, J.C., RANDELL, B. & LANDWEHR, C. (2004). Basic

concepts and taxonomy of dependable and secure computing. IEEE Transac-

tions on Dependable and Secure Computing, 1(1):11–33. 2

BARAK, B., HERZBERG, A., NAOR, D. & SHAI, E. (1999). The proactive secu-

rity toolkit and applications. In CCS ’99: Proceedings of the 6th ACM Conference

on Computer and Communications Security, 18–27, ACM Press. 90

BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A.,

NEUGEBAUER, R., PRATT, I. & WARFIELD, A. (2003). Xen and the art of vir-

tualization. In SOSP ’03: Proceedings of the 19th ACM Symposium on Operating

Systems Principles, 164–177, ACM Press. 42, 96

BEN-OR, M. (1983). Another advantage of free choice: Completely asynchro-

nous agreement protocols. In Proceedings of the 2nd ACM Symposium on Prin-

ciples of Distributed Computing, 27–30, ACM Press. 4

159

REFERENCES

BHATKAR, S., DUVARNEY, D.C. & SEKAR, R. (2003). Address obfuscation:

An efficient approach to combat a broad range of memory error exploits. In

Proceedings of the 12th USENIX Security Symposium, 105–120. 27, 39

BHATKAR, S., SEKAR, R. & DUVARNEY, D.C. (2005). Efficient techniques for

comprehensive protection from memory error exploits. In Proceedings of the

14th USENIX Security Symposium, 271–286. 40

BRACHA, G. & TOUEG, S. (1985). Asynchronous consensus and broadcast pro-

tocols. Journal of the ACM, 32(4):824–840. 92

CACHIN, C., KURSAWE, K. & SHOUP, V. (2000). Random oracles in Con-

tanstinople: Practical asynchronous Byzantine agreement using cryptogra-

phy. In Proceedings of the 19th ACM Symposium on Principles of Distributed

Computing, 123–132, ACM Press. 92

CACHIN, C., KURSAWE, K., LYSYANSKAYA, A. & STROBL, R. (2002). Asyn-

chronous verifiable secret sharing and proactive cryptosystems. In CCS ’02:

Proceedings of the 9th ACM Conference on Computer and Communications Secu-

rity, 88–97, ACM Press. 4, 5, 24, 39, 55

CANETTI, R. & RABIN, T. (1993). Fast asynchronous Byzantine agreement with

optimal resilience. In Proceedings of the 25th Annual ACM Symposium on The-

ory of Computing, 42–51, ACM Press. 92

CASIMIRO, A., MARTINS, P. & VERÍSSIMO, P. (2000). How to build a Timely

Computing Base using Real-Time Linux. In Proceedings of the IEEE Interna-

tional Workshop on Factory Communication Systems, 127–134. 85

CASTRO, M. & LISKOV, B. (2002). Practical Byzantine fault tolerance and

proactive recovery. ACM Transactions on Computer Systems, 20(4):398–461. 4,

5, 20, 39, 55, 93, 97, 120

160

REFERENCES

CHANDRA, T. & TOUEG, S. (1996). Unreliable failure detectors for reliable dis-

tributed systems. Journal of the ACM, 43(2):225–267. 4, 85

CHEN, L. & AVIZIENIS, A. (1978). N-version programming: a fault-tolerance

approach to reliability of software operation. In Fault-Tolerant Computing

1995, Highlights from Twenty-Five Years, FTCS. 27, 130

CHOR, B. & DWORK, C. (1989). Randomization in Byzantine agreement. In

Advances in Computing Research 5: Randomness and Computation, 443–497, JAI

Press. 4

CLOUTIER, P., MANTEGAZZA, P., PAPACHARALAMBOUS, S., SOANES, I.,

HUGHES, S. & YAGHMOUR, K. (2000). DIAPM-RTAI position paper. In Real-

Time Linux Workshop. 85

CORREIA, M., NEVES, N.F. & VERÍSSIMO, P. (2004). How to tolerate half less

one Byzantine nodes in practical distributed systems. In Proceedings of the

23rd IEEE Symposium on Reliable Distributed Systems, 174–183, IEEE Com-

puter Society. 92, 93

DEAVOURS, D.D., CLARK, G., COURTNEY, T., DALY, D., DERISAVI, S.,

DOYLE, J.M., SANDERS, W.H. & WEBSTER, P.G. (2002). The Möbius frame-

work and its implementation. IEEE Transactions on Software Engineering,

28(10):956–969. 66, 119

DESMEDT, Y. (1998). Some recent research aspects of threshold cryptography.

In ISW ’97: Proceedings of the First International Workshop on Information Secu-

rity, 158–173, Springer-Verlag. 24

DÉFAGO, X., SCHIPER, A. & URBÁN, P. (2004). Total order broadcast and mul-

ticast algorithms: Taxonomy and survey. ACM Computing Surveys, 36(4):372–

421. 101

161

REFERENCES

DOLEV, D., FRIEDMAN, R., KEIDAR, I. & MALKHI, D. (1996). Failure detectors

in omission failure environments. Tech. Rep. TR96-1608, Cornell University,

Computer Science Department. 4

DOLEV, D., FRIEDMAN, R., KEIDAR, I. & MALKHI, D. (1997). Failure detectors

in omission failure environments (brief announcement). In PODC ’97: Pro-

ceedings of the 16th Annual ACM Symposium on Principles of Distributed Com-

puting, 286, ACM Press. 4

DOUDOU, A., GARBINATO, B., GUERRAOUI, R. & SCHIPER, A. (1999). Mute-

ness failure detectors: Specification and implementation. In EDCC-3: Pro-

ceedings of the Third European Dependable Computing Conference on Dependable

Computing, 71–87. 92

FETZER, C. & CRISTIAN, F. (1997). A fail-aware datagram service. In Proceed-

ings of the 2nd Annual Workshop on Fault-Tolerant Parallel and Distributed Sys-

tems. 103

FISCHER, M.J., LYNCH, N.A. & PATERSON, M.S. (1985). Impossibility of dis-

tributed consensus with one faulty process. Journal of the ACM, 32(2):374–

382. 3, 11, 12, 17, 19, 36

FORREST, S., SOMAYAJI, A. & ACKLEY, D.H. (1997). Building diverse com-

puter systems. In Proceedings of the 6th Workshop on Hot Topics in Operating

Systems, 67–72. 40

GARAY, J.A., GENNARO, R., JUTLA, C. & RABIN, T. (2000). Secure distributed

storage and retrieval. Theoretical Computer Science, 243(1-2):363–389. 39

GARCIA-MOLINA, H. (1982). Elections in a distributed computing system.

IEEE Transactions on Computers, 31(1):48–59. 84

162

REFERENCES

HADZILACOS, V. & TOUEG, S. (1994). A modular approach to fault-tolerant

broadcasts and related problems. Tech. Rep. TR94-1425, Cornell University,

Department of Computer Science. 3, 34

HERZBERG, A., JARECKI, S., KRAWCZYK, H. & YUNG, M. (1995). Proactive se-

cret sharing or: How to cope with perpetual leakage. In Proceedings of the 15th

Annual International Cryptology Conference on Advances in Cryptology, 339–352,

Springer-Verlag. 24, 39, 77, 78, 81

HERZBERG, A., JAKOBSSON, M., JARECKI, S., KRAWCZYK, H. & YUNG, M.

(1997). Proactive public key and signature systems. In Proceedings of the 4th

ACM Conference on Computer and Communications Security, 100–110, ACM

Press. 39

JOSEPH, M.K. & AVIZIENIS, A. (1988). A fault tolerance approach to computer

viruses. In Proceedings of the IEEE Symposium on Security and Privacy, 52–58,

IEEE Computer Society. 27, 130

KENT, S. (1980). Protecting Externally Supplied Software in Small Computers.

Ph.D. thesis, Laboratory of Computer Science, Massachusetts Institute of

Technology. 42, 96

LAMPORT, L. (1978). Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM, 21(7):558–565. 92

LAMPORT, L. (1998). The part-time parliament. ACM Transactions on Computer

Systems, 16(2):133–169. 93

LAMPORT, L., SHOSTAK, R. & PEASE, M. (1982). The Byzantine generals prob-

lem. ACM Transactions on Programming Languages and Systems, 4(3):382–401.

4

163

REFERENCES

LITTLEWOOD, B. & STRIGINI, L. (2004). Redundancy and Diversity in Secu-

rity, vol. 3193 (9th European Symposium on Research in Computer Security,

Sophia Antipolis, France – ESORICS ’04) of LNCS, 423–438. Springer. 27, 130

LYNCH, N. (1996). Distributed Algorithms. Morgan Kaufmann. 3, 11, 17, 19, 36

MALKHI, D. & REITER, M. (1997a). Byzantine quorum systems. In Proceedings

of the 29th ACM Symposium in Theory of Computing, 569–578, ACM Press. 92,

104

MALKHI, D. & REITER, M. (1997b). Unreliable intrusion detection in distrib-

uted computations. In Proceedings of the 10th Computer Security Foundations

Workshop, 116–124. 92

MALKHI, D. & REITER, M. (2000). An architecture for survivable coordination

in large distributed systems. IEEE Transactions on Knowledge and Data Engi-

neering, 12(2):187–202. 92

MARSH, M.A. & SCHNEIDER, F.B. (2004). CODEX: A robust and secure secret

distribution system. IEEE Transactions on Dependable and Secure Computing,

1(1):34–47. 4, 5, 13, 14, 39, 55

MEYER, B. (2003). The grand challenge of trusted components. In Proceedings

of the 25th International Conference on Software Engineering (ICSE’03), 660–667,

IEEE Computer Society. 27

OBELHEIRO, R.R., BESSANI, A.N., LUNG, L.C. & CORREIA, M. (2006). How

practical are intrusion-tolerant distributed systems? DI/FCUL TR 06–15,

Department of Informatics, University of Lisbon. 130

OKI, B.M. & LISKOV, B.H. (1988). Viewstamped replication: a new primary

copy method to support highly-available distributed systems. In PODC ’88:

164

REFERENCES

Proceedings of the 7th Annual ACM Symposium on Principles of Distributed Com-

puting, 8–17, ACM Press. 93

OSTROVSKY, R. & YUNG, M. (1991). How to withstand mobile virus attacks

(extended abstract). In Proceedings of the 10th Annual ACM Symposium on

Principles of Distributed Computing, 51–59, ACM Press. 15, 24, 39

PARKINSON, B. & GILBERT, S. (1983). Navstar: Global positioning system –

ten years later. Proceedings of the IEEE, 71(10):1177–1186. 102

PaX (2001). PaX. http://pax.grsecurity.net/. 40

PEASE, M., SHOSTAK, R. & LAMPORT, L. (1980). Reaching agreement in the

presence of faults. Journal of the ACM, 27(2):228–234. 104

POWELL, D. (1992). Failure mode assumptions and assumption coverage. In

Proceedings of the 22nd IEEE International Symposium of Fault-Tolerant Comput-

ing, 386–395, IEEE Computer Society. 129

PUCELLA, R. & SCHNEIDER, F.B. (2006). Independence from obfuscation: A

semantic framework for diversity. In Proceedings of the 19th IEEE Workshop on

Computer Security Foundations, 230–241, IEEE Computer Society. 27, 130

RABIN, T. (1998). A simplified approach to threshold and proactive RSA. In

CRYPTO ’98: Proceedings of the 18th Annual International Cryptology Conference

on Advances in Cryptology, 89–104, Springer-Verlag. 86

RANDELL, B. (1975). System structure for software fault tolerance. In Proceed-

ings of the International Conference on Reliable Software, 437–449, ACM Press.

130

165

http://pax.grsecurity.net/

REFERENCES

REITER, M.K. (1995). The Rampart toolkit for building high-integrity ser-

vices. In Theory and Practice in Distributed Systems, vol. 938 of LNCS, 99–110,

Springer. 93

SANDERS, W.H. & MEYER, J.F. (2000). Stochastic activity networks: Formal

definitions and concepts. In E. Brinksma, H. Hermanns & J.P. Katoen, eds.,

European Educational Forum: School on Formal Methods and Performance Analy-

sis, vol. 2090 of LNCS, 315–343, Springer. 57, 59, 60, 111

SCHLICHTING, R.D. & SCHNEIDER, F.B. (1983). Fail-stop processors: an ap-

proach to designing fault-tolerant computing systems. ACM Transactions on

Computer Systems, 1(3):222–238. 4

SCHNEIDER, F.B. (1990). Implementing faul-tolerant services using the state

machine approach: A tutorial. ACM Computing Surveys, 22(4):299–319. 92

SHAMIR, A. (1979). How to share a secret. Communications of the ACM,

22(11):612–613. 10, 76

SIEWIOREK, D.P. & SWARZ, R.S. (1992). Reliable Computer Systems: Design and

Evaluation (2nd Edition). Digital Press. 39

SKEEN, D. (1982). A quorum-based commit protocol. In Berkeley Workshop, 69–

80. 93

TRUSTED COMPUTING GROUP (2004). TCG Specification Architecture

Overview, revision 1.2. https://www.trustedcomputinggroup.org/groups/

tpm/. 42, 96

VERÍSSIMO, P. (2003). Uncertainty and predictability: Can they be reconciled?

In Future Directions in Distributed Computing, vol. 2584 of LNCS, 108–113,

Springer. 9

166

https://www.trustedcomputinggroup.org/groups/tpm/
https://www.trustedcomputinggroup.org/groups/tpm/

REFERENCES

VERÍSSIMO, P. (2006). Travelling through wormholes: a new look at distributed

systems models. SIGACT News, 37(1):66–81. 9, 19, 40, 41, 85

VERÍSSIMO, P. & RODRIGUES, L. (2001). Distributed Systems for System Archi-

tects. Kluwer Academic Publishers. 2, 3, 34

VERÍSSIMO, P., RODRIGUES, L. & CASIMIRO, A. (1997). CesiumSpray: a pre-

cise and accurate global time service for large-scale systems. Journal of Real-

Time Systems, 12(3):243–294. 102

XU, J., KALBARCZYK, Z. & IYER, R.K. (2003). Transparent runtime randomiza-

tion for security. In Proceedings of the 22nd International Symposium on Reliable

Distributed Systems (SRDS), 260–269, IEEE Computer Society. 40

ZHOU, L., SCHNEIDER, F. & VAN RENESSE, R. (2002). COCA: A secure distrib-

uted on-line certification authority. ACM Transactions on Computer Systems,

20(4):329–368. 4, 5, 18, 39, 55

ZHOU, L., SCHNEIDER, F.B. & RENESSE, R.V. (2005). APSS: proactive secret

sharing in asynchronous systems. ACM Transactions on Information and Sys-

tem Security, 8(3):259–286. 15, 26, 39, 55, 91

167

	1 Introduction
	1.1 Contributions and Thesis Statement
	1.2 Research Methodology
	1.3 Overview

	2 Related Work
	2.1 The FLP Impossibility Result and Beyond
	2.2 Proactive Recovery
	2.2.1 CODEX
	2.2.1.1 Overview of the Proactive Recovery Scheme
	2.2.1.2 An Example Attack

	2.2.2 COCA
	2.2.3 BFT and BFT-PR
	2.2.4 Asynchronous Proactive Cryptosystems
	2.2.5 Problem Categorization

	3 Exhaustion-Safety
	3.1 Formalization
	3.1.1 The Resource Exhaustion Model

	3.2 Exhaustion-Safety vs Synchrony Assumptions
	3.2.1 Synchronous Systems
	3.2.2 Asynchronous Systems

	4 Proactive Resilience
	4.1 The Proactive Resilience Model
	4.1.1 Periodic Timely Rejuvenation
	4.1.2 Building Node-Exhaustion-Safe Systems

	4.2 Evaluation
	4.2.1 Node-Exhaustion-Safety and Availability
	4.2.2 SAN Models
	4.2.2.1 SAN Model for the External/Internal Timebases
	4.2.2.2 SAN Model for the Stealth Time Adversary
	4.2.2.3 SAN Model for the Conspicuous Time Adversary
	4.2.2.4 SAN Model for the Classic Adversary
	4.2.2.5 SAN Model for a Node
	4.2.2.6 Composed Model

	4.2.3 Simulation Results
	4.2.3.1 Impact of Time Adversaries on Exhaustion
	4.2.3.2 Recovery Strategy and the Trade-off Between Intrusion-Tolerance and Availability

	5 Application Scenarios
	5.1 Resilient Secret Sharing
	5.1.1 Proactive Secret Sharing
	5.1.2 The Proactive Secret Sharing Wormhole
	5.1.3 Experimental Results

	5.2 Resilient and Available State Machine Replication
	5.2.1 Motivation
	5.2.2 State Machine Replication
	5.2.3 The State Machine Proactive Recovery Wormhole
	5.2.4 Achieving Both Node-Exhaustion-Safety and Availability
	5.2.4.1 Recoveries Coordination
	5.2.4.2 Why the Need for the n 3f+2k+1 Bound?
	5.2.4.3 Recovery Strategies

	5.2.5 Evaluation
	5.2.5.1 SAN Models
	5.2.5.2 Simulation Results
	5.2.5.3 Summary

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	A Proactive Resilience Evaluation - Detailed SAN Models
	A.1 Model: External/Internal Timebases
	A.1.1 Places
	A.1.2 Activities

	A.2 Model: Stealth Time Adversary
	A.2.1 Places
	A.2.2 Activities

	A.3 Model: Conspicuous Time Adversary
	A.3.1 Places
	A.3.2 Activities

	A.4 Model: Classic Adversary
	A.4.1 Places
	A.4.2 Activities

	A.5 Model: Node
	A.5.1 Places
	A.5.2 Activities

	A.6 Model: Monitor
	A.6.1 Places
	A.6.2 Activities

	B State Machine Replication Evaluation - Detailed SAN Models
	B.1 Model: External Time
	B.1.1 Places
	B.1.2 Activities

	B.2 Model: Adversary
	B.2.1 Places
	B.2.2 Activities

	B.3 Model: Replica
	B.3.1 Places
	B.3.2 Activities

	B.4 Model: Client
	B.4.1 Places
	B.4.2 Activities

	References

