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Prefácio 
 

 

 

O objecto de estudo desta tese foi o mecanismo de acção de um péptido vector, 

pep-1, capaz de introduzir proteínas dentro de células. Para a realização do trabalho 

usaram-se essencialmente técnicas espectroscópicas e de microscopia. Do trabalho 

realizado resultaram os seguintes artigos já publicados: 

 
1) Henriques S.T., Castanho M.A.R.B. (2004) Consequences of nonlytic membrane 

perturbation to the translocation of the cell penetrating peptide pep-1 in lipidic 
vesicles, Biochemistry, 43, 9716-9724. 

 
2) Henriques S.T., Castanho M.A.R.B. (2005) Environmental factors that enhance 

the action of the cell penetrating peptide pep-1. A spectroscopic study using 
lipidic vesicles, Biochim. Biophys. Acta, 1669, 75-86. 

 
3) Henriques S.T., Costa J., Castanho M.A.R.B. (2005) Translocation of β-

Galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles 
and human HeLa cells is driven by membrane electrostatic potential, 
Biochemistry, 44, 10189-98.  

 
4) Henriques S.T., Costa J., Castanho M.A.R.B. (2005) Re-evaluating the role of 

strongly charged sequences in amphipathic cell-penetrating peptides. A 
fluorescence study using Pep-1, FEBS Lett., 579, 4498-502. 

 
5) Henriques S.T., Melo M.N, Castanho M.A.R.B. (2006) Cell-Penetrating 

Peptides and Antimicrobial Peptides: how different are they?, Biochem J, 399, 
1-7. 

 
6) Henriques S.T., Melo M.N, Castanho M.A.R.B. (2007) How to address CPP and 

AMP translocation? Methods to detect and quantify peptide internalization in 
vitro and in vivo, Mol Memb Biol, 24, 173-184. 

 
7) Henriques S.T., Quintas A., Bagatolli L.A., Homblé F., Castanho M.A.R.B. 

(2007) Energy-independent translocation of cell-penetrating peptides occurs 
without formation of pores. A biophysical study with pep-1, Mol Memb Biol, 24, 
282-293. 
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8) Henriques S.T., Castanho M.A.R.B. (2007) Translocation or membrane 
disintegration? Implication of peptide-membrane interactions in pep-1 activity, J 
Pep Science, no prelo.  

 
 Como a maior parte do trabalho experimental relativo ao estudo do pep-1 já foi 

publicado em revistas internacionais, optou-se pela sua apresentação com recurso aos 

artigos científicos e pela redacção da tese em língua inglesa. 

 O manuscrito está dividido em oito capítulos. O primeiro capítulo apresenta uma 

introdução geral ao tema da internalização de macromoléculas dentro das células, com 

particular destaque para os péptidos vectores, vulgarmente designados por cell 

penetrating peptides (CPPs) e ao pep-1 como objecto de estudo. No segundo capítulo 

estão descritos estudos de interacção péptido-membrana realizados com modelos de 

membrana, os quais foram publicados em dois artigos (artigos 1 e 2, ver lista acima). A 

totalidade destes estudos foi realizada no laboratório de biofísica da FCUL sob 

orientação do Prof. Dr. Miguel Castanho onde foram empregues metodologias 

biofísicas. No terceiro capítulo é apresentado um artigo (artigo 7) onde se explorou a 

possibilidade de formação de poro induzida pelo pep-1. A parte experimental foi 

realizada essencialmente em laboratórios estrangeiros sob a orientação do Dr. Fabrice 

Homblé (Université Libre de Bruxelles, Bruxelas, Bélgica) e do Dr. Luís Bagatolli 

(Southern Denmark University, Odense, Dinamarca) onde se aplicaram técnicas não 

disponíveis no laboratório de biofísica da FCUL tais como: espectroscopia de 

infravermelho; equipamento para a realização de medidas de electrofisiologia; 

equipamento para preparar vesículas unilamelares grandes por aplicação do método de 

electroformação e microscopia confocal. No capítulo quatro estão apresentados os 

estudos realizados com linhas celulares de Humano, os quais foram publicados em dois 

artigos (artigos 3 e 4). Os estudos in vitro foram realizados no laboratório de biofísica 

na FCUL e os estudos em linhas celulares foram realizadas em colaboração com a Dr. 

Júlia Costa (ITQB, Oeiras). No capítulo cinco são integrados os resultados e 

apresentadas as conclusões. Uma comparação do mecanismo de acção do pep-1 com o 

mecanismo de outros péptidos vectores é apresentada. No capítulo seis estão os anexos 

onde se encontram três artigos de revisão que foram publicados no decurso do trabalho 

doutoral e relacionados com o pep-1 e os CPPs em geral (artigos 5, 6 e 8).  

Durante o doutoramento foi ainda objecto de estudo um outro péptido, o 

PrP(106-126), correspondente a um fragmento da proteína de prião que é considerado 

como o responsável pela toxicidade na doença do prião. Não se sabe se a toxicidade 
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deste péptido ocorre ao nível da membrana ou se dentro da célula. Como o PrP(106-126) 

possui uma estrutura anfipática semelhante à do pep-1, a possibilidade do PrP(106-126) 

atravessar a membrana por um mecanismo semelhante ao do pep-1 foi testada. Os 

resultados obtidos serão apresentados em dois artigos, ainda em preparação. No capítulo 

sete está um dos artigos ainda não publicado onde se incluem os resultados obtidos nos 

estudos com o péptido PrP(106-126). Por último, o capítulo oito compreende a 

bibliografia. 

 

Gostaria de agradecer a todos aqueles que de alguma forma contribuíram para a 
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Agradeço em primeiro lugar ao Professor Miguel Castanho pela oportunidade 
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Agradeço ao Departamento de Química e Bioquímica e ao Centro de Química e 

Bioquímica da Faculdade de Ciências da Universidade de Lisboa pelas facilidades 
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A introdução de genes e de proteínas dentro de células é vista como uma 

possível ferramenta no estudo de processos celulares, bem como no tratamento de 

doenças genéticas. Esta possibilidade é no entanto limitada pela membrana celular, a 

qual constitui uma barreira para a entrada de moléculas hidrófilas. Para a possível 

entrada de moléculas com interesse farmacológico, ou com qualquer outra finalidade, é 

necessário utilizar um meio de transporte capaz de introduzir moléculas activas dentro 

de células. Nos últimos anos, têm sido desenvolvidas diferentes estratégias no sentido 

de contornar a barreira da célula. Como por exemplo: o uso de vectores virais; uso de 

lipossomas; electroporação ou microinjecção. Os primeiros, apesar de muito eficientes, 

devem ser evitados devido a reacções imunogénicas. Os restantes apresentam menos 

imunogenicidade mas são menos eficientes, apresentam uma baixa especificidade com 

dificuldades em atingir o alvo celular, elevados níveis de toxicidade e de consumo de 

tempo. Isto traduz-se numa incapacidade para atingir os efeitos bioquímicos desejados. 

Algumas proteínas citoplasmáticas, quando adicionadas extracelularmente, são 

capazes de entrar na célula por um mecanismo não tóxico. A capacidade de 

internalização destas proteínas deve-se à existência de sequências peptídicas ricas em 

aminoácidos básicos na proteína. Estas sequências catiónicas, frequentemente 

designadas por cell-penetrating peptides (CPPs), quando acopladas a outras proteínas, 

funcionam como vectores para a introdução de macromoléculas dentro das células. O 

mecanismo usado por estes péptidos revelou-se não tóxico e não invasivo. A introdução 

da proteína ao invés do gene tem ainda a vantagem de conseguir modificar o fenótipo de 

uma forma rápida e eficiente e com um maior impacto para futuras aplicações. Na 

maioria dos CPPs o complexo CPP/macromolécula é obtido pela ligação covalente entre 

CPP e a macromolécula.   
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Os CPPs mais estudados são a penetratina (16 resíduos de aminoácidos) e o TAT 

(13 resíduos de aminoácidos), os quais são provenientes da proteína pAntp (proteína de 

transcrição da Drosophila) e da proteína Tat (proteína de transcrição do HIV-1), 

respectivamente. Estes péptidos foram os primeiros identificados com propriedades de 

vector. Depois da descoberta do possível potencial destes péptidos, um grande número 

de outros péptidos têm sido relatados com propriedades semelhantes. Actualmente esta 

família inclui péptidos provenientes de diferentes fontes: uns derivados de proteínas ou 

de toxinas, outros são sintéticos e há ainda péptidos que resultam da quimera de duas ou 

mais sequências provenientes de diferentes fontes. De um modo geral os CPPs podem 

ser descritos como: pequenos péptidos (não mais do que 35 aminoácidos), solúveis em 

água, não tóxicos, capazes de translocar através da membrana celular por um 

mecanismo independente de receptores e de transportar consigo moléculas hidrófilas.   

Apesar das muitas possíveis aplicações destes péptidos o mecanismo usado 

pelos mesmos é tema de debate na literatura. A elucidação da estratégia usada por estes 

vectores é importante para uma futura distribuição de macromoléculas com interesse 

biológico em organismos vivos. 

Inicialmente foi proposto um mecanismo independente de receptores 

(sequências L e D foram internalizadas com a mesma eficiência, o que exclui a 

intervenção de um receptor para mediar a entrada dentro da célula) e independente de 

endocitose. A possível contribuição da endocitose foi avaliada pela eficiência de 

internalização a 37ºC e a 4ºC por meio de observações microscópicas. Eficiências 

semelhantes para as duas temperaturas sugerem que a entrada dos CPPs é independente 

das vias endossomais (a baixas temperaturas a produção de ATP é inibida e os 

processos celulares dependentes de energia, tal como a endocitose, são inibidos). Estes 

resultados sugerem que a translocação dos CPPs envolve a interacção directa do péptido 

com a membrana, onde as interacções péptido-lípido apresentam um papel central no 

processo. A observação da translocação directa de CPPs em modelos de membrana, 

compostos apenas por lípidos, veio apoiar esta hipótese de translocação. 

Contudo, observações recentes sugerem que a localização dos CPPs dentro das 

células a 4ºC é artificial e resulta de procedimentos de fixação das células para poderem 

ser visualizadas ao microscópio. A possível explicação para esta localização artificial 

prende-se com a grande afinidade dos CPPs para a membrana, devida à carga positiva 

dos péptidos e à carga negativa da membrana celular, o que faz com que permaneçam 
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adsorvidos à superfície da membrana mesmo que não sejam internalizados. Após a 

fixação, um processo agressivo para as células, o péptido aparece no citoplasma ou no 

núcleo. Depois desta observação foi realizada uma reavaliação do processo de 

internalização e houve uma tendência geral para aceitar que o mecanismo fisiológico 

mais relevante para a internalização dos CPPs é a endocitose. Todavia, resultados 

contraditórios têm sido publicados e diferentes grupos apoiam uma ou a outra hipótese. 

 

O péptido anfipático pep-1 (Ac-KETWWETWWTEWSQPKKKRKV-

cisteamina) inclui-se na família dos CPPs. Este péptido apresenta uma grande eficiência 

para a introdução de proteínas, péptidos e anticorpos dentro células de uma forma não 

tóxica e não imunogénica. O pep-1 oferece vantagens relativamente a outros CPPs pois 

em vez de ligações covalentes entre o péptido e a macromolécula, a formação do 

complexo CPP/macromolécula é mediada por interacções electrostáticas e hidrófobas.  

À semelhança do que acontece com os outros CPPs no início deste projecto 

havia incerteza no possível mecanismo de translocação usado por este péptido. Para 

uma aplicação mais generalizada deste transportador, e de outros pertencentes à mesma 

classe, a elucidação do mecanismo de acção é determinante. Os principais objectivos 

deste projecto são: a elucidação do mecanismo de translocação do pep-1; avaliar a sua 

qualidade como vector e comparar a seu modo de acção com os demais do grupo. 

A estrutura primária do pep-1 pode ser dividida em três domínios: um domínio 

hidrófobo rico em resíduos de Trp (Ac-KETWWETWWTEW); um domínio hidrófilo 

rico em aminoácidos básicos (KKKRKV-cisteamina) e um espaçador entre os dois 

anteriores (SQP) aumentando a flexibilidade e a integridade dos outros dois domínios. 

Em condições oxidantes há uma ligação persulfureto entre duas moléculas de péptido 

devido ao grupo cisteamina na extremidade C. Tendo em conta a anfipaticidade do pep-

1 é de esperar que apresente uma elevada afinidade para a membrana celular que poderá 

ser relevante para a sua actividade biológica. Este foi o ponto de partida para a 

realização dos nossos estudos.  

O trabalho experimental foi desenhado no sentido de crescente complexidade. 

Numa fase inicial avaliou-se a interacção do pep-1 com modelos de membranas simples 

compostos apenas por fosfolípidos. Estes modelos lipídicos são simples mas permitem 

modular as propriedades da membrana, como a fluidez e a carga da membrana, a força 

iónica e o pH. Em seguida foram realizados estudos em cultura de células humanas 
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onde se testou a capacidade vector do pep-1 quando complexado com uma proteína. 

Pela utilização de diferentes metodologias aplicando essencialmente técnicas biofísicas 

(e.g. espectroscopia de fluorescência e espectroscopia de UV-vis, dicroísmo circular, 

espectroscopia de infravermelho e electrofisiologia) e técnicas microscópicas 

(epifluorescência e microscopia confocal) foi possível obter resultados que integrados 

indicam que o pep-1 é capaz de translocar através da membrana celular por um 

mecanismo não mediado por endocitose.  

Resumidamente, foi possível verificar que a o mecanismo de translocação do 

péptido é iniciado pela partição do pep-1 na membrana celular. As interacções péptido-

lípido são inicialmente governadas por interacções electrostáticas entre o domínio 

hidrófilo e os grupos polares dos fosfolípidos que compõem a membrana celular. 

Subsequentemente, dada a proximidade com a membrana, o domínio hidrófobo insere-

se na bicamada, adquirindo uma conformação em hélice α. Aquando da inserção, o 

domínio hidrófobo induz destabilizações locais na membrana mas sem indícios para a 

formação de poro. A distribuição assimétrica das cargas na membrana celular 

(relativamente à composição lipídica e a gradiente electroquímico) é responsável pela 

existência de um potencial transmembranar (negativo dentro da célula) o qual promove 

a translocação do pep-1 da camada externa para a camada interna da membrana. Este 

processo é facilitado pelos distúrbios locais promovidos pela inserção do péptido na 

membrana e pelas interacções electrostáticas entre a molécula de péptido carregada 

positivamente e o interior da membrana carregada negativamente. Em contacto com o 

meio intracelular, ambiente redutor em contraste com as condições oxidantes fora da 

célula, o péptido perde afinidade para a membrana tornando-se mais estável dentro da 

célula. O processo torna-se praticamente irreversível e o equilíbrio é sempre deslocado 

no sentido extracelular → intracelular o que facilita a internalização do péptido bem 

como das macromoléculas associadas.  

A translocação ocorre por um processo mediado pela afinidade do pep-1 para a 

membrana onde as interacções de natureza electrostáticas e hidrófoba são determinantes 

no processo. Pelos estudos in vivo foi possível confirmar que este é o único mecanismo 

com relevância fisiológica, não se tendo identificado indícios para a endocitose como 

possível via alternativa. 

A entrada do pep-1 por um mecanismo independente de endocitose, em 

desacordo com o verificado para outros CPPs, sugere que o mecanismo de entrada não é 
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igual para todos os elementos desta família de péptidos e cada caso deverá ser analisado 

independentemente.  

No decurso do nosso trabalho experimental usou-se o pep-1 não derivatizado, 

fazendo-se uso das suas propriedades fluorescentes intrínsecas. No entanto, um pep-1 

derivatizado com uma sonda fluorescente foi também estudado e comparado com o 

péptido original. O péptido modificado apresentou uma menor afinidade para a 

membrana bem como uma menor eficiência de penetração nas células. Verificou-se 

ainda que, a pequena percentagem de péptido que entra na célula fá-lo por endocitose, 

ao contrário do pep-1 original. Estes resultados sugerem que o mecanismo de 

internalização utilizado depende especificamente do péptido, das condições 

experimentais e da sua afinidade para a membrana a qual modula a concentração de 

péptido particionado na membrana celular. Para baixas concentrações a endocitose é o 

mecanismo mais provável, ao passo que concentrações elevadas de péptido na 

membrana activam o processo físico, mais rápido que a endocitose.   

Esta hipótese baseia-se na observação de que alguns péptidos, dependendo das 

condições e em especial da concentração em solução, apresentam uma internalização 

mediada maioritariamente ou por endocitose (para baixas concentrações) ou pela 

penetração directa através da membrana (para altas concentrações). A suportar esta 

hipótese está também a relação entre afinidade e partição observada em vários estudos.  

É de referir que, quando os CPPs são internalizados por um mecanismo mediado 

por endocitose, a macromolécula acoplada ao vector só atingirá o seu alvo final se o 

CPP conseguir escapar dos endossomas. Para que isto ocorra o CPP terá de atravessar a 

membrana dos endosomas o que pressupõe um processo físico. O gradiente de pH, que 

existe entre os endosomas (pH =5) e o citoplasma (pH=7.4), é um possível potenciador 

da passagem de CPPs através da membrana, em semelhança ao que acontece quando a 

translocação é mediada pelo potencial transmembranar. CPPs cuja internalização ocorra 

maioritariamente por um mecanismo mediado por endocitose revelaram-se menos 

eficientes.  

O trabalho aqui apresentado revela os princípios que modulam a translocação do 

pep-1. A internalização deste vector ocorre por um processo físico, rápido e com 

elevada eficiência. A aplicação do pep-1 como vector é mais vantajosa que o uso de 

vectores virais porque não induz imunogeneicidade e é mais eficiente que outros 

métodos não virais como a electroporação, a microinjecção ou mesmo outros CPPs. 
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Com este projecto é possível uma orientação mais focada para a utilização de um meio 

eficaz que consiga ultrapassar a barreira da membrana celular e introduzir fármacos 

dentro de organismos vivos. 
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Abstract 
 

 

 

The introduction of genetic material or proteins to originate a defined 

biochemical effect inside the cell has a remarkable potential for the treatment of Human 

diseases, however this is hampered by the cell membrane barrier for the entry of 

hydrophilic macromolecules. A possible strategy to overcome the membrane barrier 

was proposed after the discovery of basic peptidic sequences with ability to pass trough 

the membrane in a non-toxic and non-immunogenic manner. These peptides are 

commonly designated as cell-penetrating peptides (CPPs). Pep-1 is a CPP and has been 

successfully used to introduce several macromolecules biologically active inside 

cultured cells. The main goal of this thesis is to clarify the mechanism used by this 

peptide to pass through the membrane and to confirm if its efficiency as a carrier to 

introduce proteins inside cells. The interaction with membranes was followed in vitro 

with model membranes: large unilamellar vesicles; planar lipid membranes, giant 

unilamellar vesicles and supported bilayers. HeLa cells were used to follow the 

translocation of pep-1 associated with a protein. Fluorescence and UV-Vis spectroscopy 

methodologies, CD and ATR-FTIR spectroscopy, electrophysiological measurements 

and fluorescence microscopy were used to carry on the experimental work. It was 

shown that pep-1 is able to interact with and to destabilize the lipidic bilayers without 

evidence for pore formation at variance with other CPPs that use an endosomal pathway. 

Although all the evidences show that pep-1 translocates by a physically-mediated 

mechanism promoted by transmembrane potential with no evidences for the use of 

endosomal routes as an alternative pathway. Differences between this particular pep-1 

and other CPPs can be related with the affinity for membrane. Peptides with higher 

affinity for membrane have more propensities to be internalized by a non-endocytic 

mechanism. Lower affinity for membranes favours endocytic uptake. 
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AMPs   Antimicrobial peptides  

ATR-FTIR Attenuated total reflection Fourier transform infrared 

BLMs   Black lipid membranes  

CD  Circular dichroism  

CF   Carboxyfluorescein  

Chol  Cholesterol 

CLIC  Clathrin and dynamin-independent carriers  

CPPs   Cell-Penetrating Peptides  

CTxB   Cholera toxin B  

DPPC  Dipalmitoyl-sn-glycero-3-phosphocholine 

DPPS   1,2-Dipalmitoyl-sn-glycero-3-phosphoserine  

EK   Potassium Nernst potential 

FITC   Fluorescein isothiocyanate  

FRET   Fluorescence resonance energy transfer  

GEEC   Early endosomal compartment  

GUVs  Giant unilamellar vesicle 

IW   Fluorescence intensities in the absence of lipid 

IL   Fluorescence intensities in presence of lipid  

IR   Infrared 

IRE   Internal reflection plate  

K0    Extracellular potassium concentration 

Ki   Intracellular potassium concentrations 

KP   Partition coefficient  
[L]   Lipid concentration 

Lα   Liquid crystalline phase 
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Lβ  Lamellar gel phase  

Lo   Liquid ordered phase 

LDL   Low density lipoprotein 

LUVs  Large unilamellar vesicles 

MAPs   Model amphipathic peptides 

MLVs   Multilamellar vesicles  

MUG   4-methylumbelliferone-β-D-galacto-pyranoside  

NBD   7-nitro-2-1,3-benzoxadiazol-4-il  

NLS   Nuclear localization signal  

NMR  Nuclear magnetic resonance 

ONPG  o-nitrophenyl-β-galactopyranoside  

pAntp   Drosophila antennapedia transcription protein 

PC   Phosphatidylcholine  

PE   Phosphatildylethanolamine  

Penetratin CPP from pAntp 

PLMs  Planar lipid membranes 

POPC  1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine  

POPG   1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol  

PS  Phosphatidylserine  

Rh   Rhodamine  

SM   Sphingomyelin  

SUVs   Small unilamellar vesicles  

Tat   HIV-1 transcriptional activator protein 

TAT   CPP from Tat  

TB  Trypan blue  

TRITC  Tetramethylrhodamine  

 

4-MU   4-Methylumbelliferone  

5-NS   5-Doxyl-stearic acid   

16-NS  16-Doxyl-stearic acid  

 

β-Gal  β-Galactosidase 

γL   Molar volume of lipid   
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Introduction 

 

 

1.1. Strategies to introduce macromolecules inside cells  
 

The introduction of genetic material or proteins to originate a defined 

biochemical effect inside cells has shown tremendous potential as a biological tool for 

studying cellular processes and is challenging for the treatment of human diseases (see 

reference [1] and references therein). 

Hydrophilic macromolecules that lack specific membrane receptors are not able 

to cross plasma membranes due to hydrophobic nature of the core of lipid bilayers. An 

efficient cellular delivery system is of first importance for an insertion of 

macromolecules of pharmacological interest or other biological potential. Over the last 

years, several strategies have been developed to introduce material inside the cells for a 

variety of purposes such as: protein structure/function studies; DNA insertion to 

modulate expression of proteins; and drug delivery with therapeutic purposes. Some 

examples of approaches that have been used are: viral vectors; liposomes-based delivery; 

electroporation and microinjection [2]. 
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Viruses are really efficient infecting a host cell and introducing their DNA or 

RNA genomes, this observation led to the use of viral particles as vectors to introduce 

exogenous genetic material to cells. The development of viral vectors for long-term 

gene delivery to mammalian cells has been the main goal of viral vectorology since 

early 1980s. Adenoviruses and retroviruses have been used in a broad host range and for 

multiple applications (see references [3-5] and references therein). These viral 

associated vectors are efficient, although the possible pathogenic effects against the host 

organism, the high costs of production, the limit size of the genetic material that can be 

packaged for viral gene therapy and a lack of desired tissue selectivity has hampered a 

more extensive and global therapeutic application. So non-viral alternatives have 

gathered much attention [2, 6]. 

 

Non-viral strategies which are potentially less immunogenic have been 

developed to overcome viral vectors limitations. Microinjection is an example; this 

approach involves the transfer of macromolecules into a living cell using micropipettes 

(Figure 1.1).  
 

 

 

Figure 1.1. Microinjection approach to introduce 

material inside cells. Macromolecules are injected 

inside cells by the use of micropipettes; this procedure 

has to be performed cell by cell. Source: 

http://transgenese.crchul.ulaval.ca/transgeniques.htm 

 

This technique has no cell-type restriction and there is no apparent limitation on 

the size or type of macromolecule that can be injected [7]. However, because this 

technique can only be performed one cell at a time with individual glass micropipettes, 

it is time consuming, requires specific technical skills and is practical only when 

treating a small number of cells [8]. There is also a limitation to the cell types that can 

be readily used for microinjection [8]. An efficient method for transforming a larger 

number of cells at once should be improved for a more generalized application.  

 

Another non-viral strategy is the use of electric pulses (electroporation), which 

was first demonstrated with the introduction of DNA in 1982 [9]. When transmembrane 
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potential is above a threshold, transient pores are formed which allow cellular uptake of 

hydrophilic molecules (see Figure 1.2) (see reference [10] and references therein for 

possible applications). This technique can be applied to many cells at once, however it 

is a non-specific strategy and can become toxic, since molecules can enter or exit the 

cell without control during transient membrane destabilizations [2]. A large cell death 

percentage may occur [8].     

 
 

Figure 1.2. Electroporation 

approach to introduce material 

inside cells. An electric field 

induces transient pore formation 

which enables the entry of material. 

A) Electron micrographs of cells 

before and after brief electric pulses; 

opening pores and resealing of 

membrane is observed. B) 

Illustration of material entrance 

during electropermeabilization. 

Source:  

http://www.inovio.com/technology/

electroporation.htm     

 

 

In 1987 Felgner et al. reported the use of cationic liposomes as an efficient and 

effective system to deliver DNA [11]. Upon mixing DNA with cationic liposomes, 

DNA is condensed into small particles called lipoplexes, the process involving an initial 

rapid association of polycationic liposomes and polyanionic DNA through electrostatic 

interaction (see reference [2] and references therein). This gene therapy strategy is not 

immunogenic, does not have size restriction and different types of nucleic acids can be 

delivered ([6]). It is inexpensive and is relatively easy to use in large-scale [6]. 

Liposomal carriers have been successfully used to deliver genetic material into cells and 

can be internalized by endosomal vesicles through endocytosis or by direct fusion with 

the cell membrane. In endosomal route genetic material may stay enclosed within 

endosomes and fail to access the cytoplasm and nucleus, leading to inefficient low gene 

expression (see Figure 1.3). Cell transfection by direct fusion produces increased levels 

A 

Before electric pulse During electric pulse After electric pulse 

B 
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of gene expression [6]. The uncertainty in the pathway for cell entry, the low efficiency 

of delivery [6], a possible toxicity related to gene transfer by lipoplexes [2] and 

potential interference with lipid metabolism [8] hamper a more general application of 

cationic liposomes as a vehicle to introduce material in vivo. Different strategies have 

been developed in order to improve transfection efficiency of liposomal carriers, some 

of them involving direct injection [6, 12]. 

 
 

Figure 1.3. Cationic liposomes can 

be used to introduce genetic 

material inside the cell. Due to 

electrostatic interactions between 

negatively-charged DNA and 

cationic liposomes, a good delivery 

system can be obtained. Cationic 

liposomes are internalized by 

endocytosis. The escape from 

endosomes can hamper an efficient 

delivery. 

 

A non-invasive administration with a better efficiency for a good transfection 

and application in vivo is of particular interest to the future development of gene 

therapy [6]. 

Nucleous 

Cell 

Endocytosis 

?
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1.2. New strategy to introduce macromolecules inside the cells 

using peptides as vectors 
 

All the non-viral strategies above mentioned are more focussed and improved 

for genetic material delivery and all of them have serious drawbacks which result in a 

transient and varied gene expression with a consequent incapacity to reach the final 

desired effect [1]. 

The fact that some intracellular proteins when added to extracellular medium are 

able to pass through the membrane inspired a new approach. This phenomenon was first 

observed with Tat (HIV-1 transcriptional activator protein) [13] and pAntp (Drosophila 

antennapedia transcription protein) [14]. The ability of these proteins to cross the 

membranes is due to basic amino acid sequences and the minimal peptidic sequences 

necessary for the translocation to occur within Tat [15] and pAntp [16] were elucidated.  

Conjugated molecules such as peptides [17] or proteins [18] coupled to these 

basic peptides can be delivered into cells; this observation made these basic sequences 

very attractive and a new class of vectors, initially denoted as Protein Transduction 

Domains (PTDs) [19] and more recently re-baptized as Cell-Penetrating Peptides (CPPs) 

[20], emerged.  

The CPP derived from pAntp has 16 amino acid residues [16] and is commonly 

known as penetratin. The Tat (48-60) fragment which include the whole basic regions of 

the protein and its Nuclear Localization Signal (NLS) is the most efficient in 

internalization [15]. 

This strategy prospects a substantial improvement in cellular delivery. The 

greater advantage of this strategy when compared with the above referred is the 

possibility to introduce proteins in a non-toxic and non-invasive way. Internalization of 

proteins instead of genes can modify the phenotype in less than 2 hours in an efficient 

manner envisaging a fast and effective strategy for drug delivery with a major impact on 

future treatments [21, 22]. This new approach opens new possibilities for the 

development of vaccines and protein therapies for cancer and infectious diseases [23].  

After the discovery of the potential of Tat peptide (TAT) and penetratin as 

vectors a larger number of peptides (Table 1.1), including peptides from protein 

sequences (pVEC [24] and VP22 [25]), synthetic peptides (such as model amphipathic 

peptides (MAPs) [26], and oligoarginines [27]) or chimera peptides (obtained by the 
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fusion of sequences from different sources, as transportan [28] and MPG [29]) have 

been shown to translocate across cellular membrane.  

 
Table 1.1. Source and amino acid sequence of some CPPs. Positively-charged amino acids are 

highlighted. 

Peptide Source Sequence 

Penetratin  pAntp homeodomain [16] RQIKIWFQNRRMKWKK 

TAT HIV-1 Transcriptional activator [15] GRKKRRQRRRPPQ 

VP22 Viral protein (HSV-1) [25] DAATATRGRSAASRPTERPRAPARSASRPRRPVE 

pVEC Murin VE-Cadherin [24] LLIILRRRIRKQAHAHSK 

MAP Synthetic [30] KLALKLALKALKAALKLA 

Oligoarginine Synthetic [31] RRRRRRRR 

Transportan Chimeric (galanin-mastoparan) [28] GWTLNSAGYLLGKINLKALAALAKKIL 

S413-PV Chimeric (dermaseptin S4-SV40) [32] ALWKTLLKKVLKAPKKKRKV-cysteamine 

MPG Chimeric (gp41-SV40) [33] GALFLGFLGAAGSTMGAWSQPKKKRKV 

 

 

This ability is part of the biological function of many of these peptides, although 

this does not automatically mean that they can be used as a carrier. In order to 

distinguish between translocating peptides able to deliver cargoes and others unable to 

do it, a CPP can be defined as a short (no more that 35 residues) water soluble, non-

toxic, peptide able to efficiently translocate through cellular membrane by a mechanism 

independent from a chiral receptor, able to deliver hydrophilic macromolecules into 

cells and eventually originating a defined biochemical effect inside the cell [34]. 

 

Besides proteins [18, 19, 35-37], several other hydrophilic macromolecules have 

been efficiently coupled to these CPPs and delivered inside the cells, such as: peptides 

[17, 38-40]; antisense oligonucleotides [29, 41-44]; SiRNA [45, 46] and plasmid DNA 

[47, 48]. Nanoparticles [49] and liposomes [50] have also been internalized by means of 

CPP. Introduction of cargo macromolecules into primary and transformed cultured cells 

with efficiency close to 100% can be obtained. 

 

The application of CPPs to deliver macromolecules inducing a specific 

biochemical effect has been efficiently used in vivo in rats with a construct of penetratin 

associated to a peptide nucleic acid [44]. A caveolin-1 scaffolding domain peptide 

attached to penetratin was also successfully taken up by mouse aorta rings and its 
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biological effects were detected [51]. The capacity to pass blood brain barrier mediated 

by a CPP strategy was also shown by a CPP-dexorubicin construct [52] and also with a 

construct of TAT-β-Galactosidade [23]. This last CPP-cargo construct can also reach 

mice organs via systemic circulation and transduces in a variety of murine tissues, 

including liver, kidney, heart, muscle, lung, spleen and brain [23]. This unspecificity 

can limit the application of these CPP constructs when a single organ or tissue is the 

target.  
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1.3. How do CPPs translocate across cell membrane? 
 

The exact mechanism underlying the translocation used by CPPs to pass through 

cellular membrane still awaits complete understanding; the information available in the 

literature is scarce and controversial. A mechanism independent on receptors was 

proposed based on studies with reverse and D-enantiomer sequences, which have 

similar translocation efficiency as the original peptide [27, 31, 53]. A mechanism 

independent of endosomal pathway was also purposed supported by the observation that 

internalization of such peptides is similar at 4ºC and 37ºC [15, 16, 27, 53, 54] (at low 

temperatures ATP production is inhibited and energy-dependent cellular processes, like 

endocytosis, are inhibited or greatly diminished).  

 

Recent observations suggesting that the cell localization observed for CPPs is 

artifactual and occurs during cell fixation for immunochemistry and cell imaging [55], 

raised the questioned if the translocation of such peptides is really dependent on 

endocytosis. An artificial cell localization was first reported in 2001 with the structural 

protein VP22 [55], which also possesses vector properties and can be used to transport 

other proteins [25]. VP22 binds to surface which allow the protein to remain attached to 

cells during washing. In the cell fixation process the protein is released and co-localized 

with nucleus due to affinity of VP22 to DNA [55]. The artifactual cell localization by 

fixation was confirmed by comparison of the localization of the Histone H1, which does 

not have cell-penetrating properties, before and after cellular fixation [56]. Biased 

localization of soluble proteins, during preparation of cells for immunofluorescence, 

was formerly reported in 1992 [57]. The possibility of an artifactual cell localization 

was further confirmed in 2003 by Thorén et al [58] and a re-evaluation of the 

translocation mechanism of several CPPs has been done is the last 4 years.  

 

By the re-evaluation of the translocation mechanism it is clear that penetratin [58, 

59], TAT [60-64] and oligoarginine [60, 65-67] among other CPPs, can cross the 

plasmatic membrane by endocytosis. A tendency to accept this pathway as the main 

mechanism for internalization of all the CPPs has been generalized in the literature; 

however, there is no consensus in the specific endocytic pathway used for the uptake of 

these peptides. The involvement of different pathways has been identified, for instance 
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raft-dependent pathway involving macropinocytosis [68], clathrin-mediated endocytosis 

[69, 70] or caveolae-dependent endocytosis [62, 71]. Controversial results are published 

the dissimilarities being due to different experimental conditions in particular with 

different cellular lines, labelled-peptides and protein-conjugated peptides, which can 

inhibit some pathways while favouring other.  

The involvement of the basic residues in peptide translocation was tested and it 

was found that the deletion or substitutions of a single basic amino acid residue 

dramatically reduced TAT uptake [72]. The importance of the overall charge of the 

peptide was further confirmed by Wender et al., and it was identified that nonaarginine 

(R9) is more efficiently internalized than Tat fragment [73]. 

These results suggest that the first interaction with membrane, prior to 

endocytosis event, appears to be governed by electrostatic interactions between the 

basic amino acids within CPPs sequence and biological membranes. The heparan 

sulfate (HS) proteoglycans at the cell membrane were proposed to act as receptors for 

penetratin [63, 74-76], Tat peptide [63, 70] and also for oligoarginine [66].  

The biological activity exhibited by CPPs is consistent with the cargoes 

macromolecules reaching the cytosol. In a picture where the endosomal pathway 

emerges as the physiological uptake of CPPs, the escape from endosomes is mandatory 

for the potential use of CPPs as a strategy to deliver macromolecules with biological 

relevance inside the cell; this raises the question by which mechanism the internalized 

CPPs reach the final target?  

An escape from endosomes due to acidification was proposed for penetratin, 

TAT and oligoarginine [61, 65]. This hypothesis is supported by Granslund and co-

workers results, where penetratin was encapsulated in liposomes. In the absence of pH 

gradient no penetratin escape takes place, while when a pH gradient exist (5.5 inside, 

7.4 outside), there is a fraction escaping from the liposomes and this occurs without 

membrane lysis neither pore formation [77]. In opposite to this it was verified that a 

higher membrane disturbance induced by poliarginines occurs with pH in the average 

7.5-9.5 and an escape of endosomes prior to their acidification was suggested [66].  

 

If a mechanism able to permeate membrane for endosomal escape exists, this 

can also suggest a similar mechanism to pass cell membranes. Direct observation of 

some CPPs translocation in model membranes systems [78, 79] support the existence of 
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a possible energy-independent mechanism, governed by peptide-membrane interactions, 

to cross the membrane. Furthermore, higher amounts of oligoarginine peptide were 

located in cytosol at 4ºC than at 37ºC. A possible explanation for this phenomenon is 

that when incubation is held at 37ºC, oligoarginine release in the cytoplasm can be 

difficult due to endosome entrapment [67], at 4ºC the existence of an alternative 

pathway which operates when endosomal pathways are inhibited can more easily locate 

oligoarginine in cytosol. A possibility of an alternative pathway to endocytosis was 

proposed [80] shortly after the discovery of Tat protein capacity to internalize inside 

cell. 

A translocation dependence on a negative transmembrane potential was 

observed in vitro with liposomes [78] and in vivo into HeLa cells [81] for some CPPs. 

Terrone et al. suggested that a part of the peptide can transverse through the membrane 

by a mechanism dependent on transmembrane potential (negative inside) and other part 

is internalized by endosomal pathway. When in endosomes the membrane potential may 

facilitate translocation of CPPs from endosomal lumen to the cytoplasm, considering 

that the endocytic compartment exhibit a significant transmembrane potential (lumenal 

side positive) [78].  

 

Even with direct observation of CPP internalization in membrane model systems, 

a broadly acceptance that the main cellular internalization mechanism of CPPs involves 

endocytosis, compromise the usage of these peptides for drug delivery. When entering 

in the cell via endocytosis the molecules can become entrapped in the endosome and 

ultimately end in the lysosome, where degradation processes take place. Thus even if 

efficient cellular uptake via endocytosis is observed, the delivery of intact 

peptide/protein or other macromolecule is compromised by insufficient endosomal 

escape and subsequent lysosomal degradation. An inefficient escape from endosomes 

was verified by the observation that after TAT-Cre peptide uptake the majority of the 

complex remained entrapped in endosomes even after 24h [68]. One possible solution is 

to complement CPP with a membrane destabilizing agent (e.g. viral fusogenic peptide 

or membrane-destabilizing peptide) to improve CPP-mediated protein transfection as 

has been proposed by Wadia et al. [68]. A markedly enhanced CPP-cargo construct 

escape from endosomes was verified when a fusogenic peptide was associated with the 

TAT. In a more recent report, Lebleu and co-workers found that a modified penetratin 
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in which six Arg residues where added to N-terminus make the CPP more efficient to 

internalize and to target a PNA with a high efficiency [82]. 

 

For a generalized application of these peptides as a vehicle with pharmaceutical 

relevance or other biological/scientific applications, the elucidation of the translocation 

mechanism is of first importance. The experiments to study CPP internalization are 

frequently carried on with TAT and Penetratin. In the last years, peptides from diverse 

sources have been identified with CPP properties, beside the ability to enter cells and 

the presence of basic amino acid residues, these peptides can vary in size, nature, 

biological function, secondary structure, hydrophobicity and amphipathicity (see 

reference [34] and references therein). The mechanism by which CPPs pass through the 

membrane is far from being completely understood. Taking into account all the 

information available in the literature regarding the translocation mechanism and the 

varied nature of the different peptides belonging to the CPP family, a careful and special 

attention to this topic should be taken and a simplistic comparison with other CPPs 

should be carefully done. 
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1.4. Pep-1 a new peptide carrier 
 

In most CPPs so far referred, the CPP-macromolecule complex is obtained due 

to covalent link between the CPP and the cargo molecule. The strategy to couple 

cargoes to CPPs can be obtained by production of a CPP-cargo by chemical peptide 

synthesis, which is generally restricted to short cargoes (e.g. 10-20 amino acids); larger 

protein cargoes can be produced by recombinant DNA technologies with expression in 

bacteria and their purification prior to use [83]. Another approach is to synthesize the 

CPP and the cargo molecule independently and posterior linkage by a reactive residue 

included in either CPP and cargo molecules (e.g. activated cysteine at CPP N-Terminal 

with a free cysteine included in the cargo molecule). This approach enables coupling of 

large proteins (see reference [83] and references therein). After cellular uptake, the 

reducing environment in the cytosol cleaves the disulfide linkage and frees the cargo 

molecule from the CPP [26], avoiding interferences with cargo biological function or its 

cellular localization. All these strategies to couple a cargo have limitations, are time 

consuming and require specific technical skills; moreover a CPP-cargo may induce 

desnaturation of the protein due to covalent link to the CPP.  

 

A new approach based on an amphipathic peptide named pep-1 (Chatiot®) has 

been proposed for protein delivery. Pep-1 delivers a broad range of protein directly into 

mammalian cells maintaining their biological activity in different cellular lines with 

lack of toxicity and lack of sensitivity to serum [84]. The advantage of this peptide in 

comparison with CPPs above referred is that this peptide forms a non-covalent complex 

with the macromolecule to be delivered, avoiding complicate procedures with covalent 

links above referred. This complex is easily obtained by mixing the peptide with the 

macromolecule during about 30 minutes and a complex, stable in physiological buffer, 

is obtained and ready to use onto cells. The size and the nature of the cargo protein to be 

delivered can influence the number of pep-1 molecules required to obtain an efficient 

complex. After cellular uptake the complex dissociates in the cytosol leaving the 

macromolecule biologically active and free to proceed to its target organelles, while 

pep-1 localizes in the nucleus and does not affect the final cargo location [84]. The 

efficiency of translocation can vary in the range 60-95%, depending on the cell type and 

the cargo molecule [84]. 
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Pep-1 has been efficiently used to introduce several peptides [84-87], proteins 

[88-93] and biologically active antibodies [85, 94-99] inside cultured cells from 

different sources. It is noteworthy the capacity to deliver macromolecules in neuronal 

cells [88, 93, 95, 96], and also plant cells converted into protoplasts [92] producing the 

expected biochemical effect in the correct localization inside the cell. The biological 

activity is generally maintained after translocation of the delivered macromolecule, for 

instance: 1) enzymatic activity was detected after enzyme internalization [84, 90, 91]; 2) 

pep-1 was efficiently employed to deliver an antibody to clarify the intracellular 

trafficking of a membrane-anchored enzyme [98], which indicates that after 

internalization, the antibody diffuses throughout the cells and interacts with the target 

protein and thus, allows the identification of the subcellular compartment that harbours 

the target protein. The use of pep-1 in animals has also been reported [100, 101], where 

pep-1/cargo complexes were intratracheally instilled, for instance Aoshiba et al. have 

used pep-1 to deliver Caspase-3 to the lungs of mice; alveolar wall apoptosis and 

emphysematous changes were detected as a result of actively internalized Caspase-3 

[100].     

Altogether these published reports strengthen the use of pep-1 as a vehicle for 

intracellular deliver of macromolecules with biological interest such as pharmaceutical 

agents.  
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1.5. Main goals of the project 
 

Pep-1 (acetyl-KETWWETWWTEWSQPKKKRKV-cysteamine) is an 

amphipathic peptide with three domains: (i) a Trp-rich “hydrophobic” domain (Ac-

KETWWETWWTEW), responsible for “hydrophobic interaction” with proteins and 

cell membranes; (ii) a hydrophilic domain (KKKRKV-Cys) derived from a nuclear 

localization signal (NLS) of Simian Virus 40 (SV-40) large T antigen, required to 

improve solubility; and (iii) a spacer domain (SQP) which improves the flexibility and 

the integrity of the other two domains [84]. A cysteamine group is present in the C-

terminal and an acetyl group caps the N-terminus. In oxidizing conditions a disulfide 

link is formed between two peptide molecules by the cysteamine group (Figure 1.4). 

 

The term amphipathicity refers to molecules with both hydrophilic and 

hydrophobic parts [102] and is dependent on the relative abundance of hydrophobic and 

hydrophilic domains within a peptide. One possible quantitative measure of 

amphipathicity is the hydrophobic moment [103]. It is possible to distinguish between 

primary amphipathicity and secondary amphipathicity in peptides. Peptides with 

primary amphipathicity are made of a hydrophobic and a hydrophilic domain. A peptide 

with secondary amphipathicity has hydrophobic and only hydrophilic residues however 

a separation of hydrophilic and hydrophobic parts is only achieved with the peptide 

secondary structure [102]. The simplest and most common secondary structure in 

peptides is the amphipathic α-helix [102].   

 

Cell membranes are composed of amphipathic bilayers, therefore an increasing 

hydrophobic moment of model peptide results in a significant increase in the 

permeability and haemolytic activities of these peptides in target membranes, which 

implies a better peptide-membrane affinity (see reference [103] and references therein). 

Antimicrobial peptides (AMPs) activity is known to be dependent on peptide-membrane 

interaction and on the capacity to induce membrane leakage. For AMPs the capacity to 

interact with membranes and the degree of amphipathicity are correlated. For these 

peptides amphipathic α-helix formation occurs upon membrane interaction, which 

seems to favour peptide insertion and cellular toxicity [103].  
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Figure 1.4. Schematic representation of pep-1 molecule. Primary amphipathicity is evident: 

“hydrophobic” domain (Ac-KETWWETWWTEW) is represented by five Trp residues and hydrophilic 

domain (KKKRKV-Cys) is represented by five positive charges. In between a spacer domain (SQP) with 

a Pro residue is responsible by the flexibility and integrity of the other two domains. In oxidizing 

conditions a disulfide link between two cysteamine groups is expected, reducing environment cleavages 

this disulfide link.  

 

 

The use of an amphipathic transporter to deliver cargoes molecules inside cells 

where the cell membrane is the first barrier seems feasible; in this regard, peptide 

interacts first with hydrophilic region and then penetrates the hydrophobic interior of 

the cell membrane [102]. A clear dependence of peptide incorporation upon 

amphipathicity was demonstrated with MAPs [104]. Reports from Divita and Heitz 

group demonstrate that peptides with primary amphipathicity are also efficient to 

interact with lipidic membranes and to translocate across cell membrane [33, 105].  
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Pep-1 is a promising vehicle to deliver macromolecules with biological 

relevance into cells. However, for a more generalized and optimized use of this carrier 

the elucidation of the mechanism of action is mandatory. When I started my PhD, there 

was not much information regarding the possible mechanisms used by this peptide to 

translocate across cellular membranes. Morris et al. suggested that this peptide 

translocates by an endocytosis-independent pathway, although, these results were 

obtained in fixation conditions and with a labelled peptide [84], which can compromise 

the results, as stated above.  

The main objective of this project was to unravel how pep-1 interacts with cells 

at membrane level. Pep-1 is a peptide with primary amphipathicity, which suggests 

direct interaction with lipids in biological membranes and this can be the key-feature to 

explain pep-1 ability to pass through the cell membrane. In order to evaluate this 

hypothesis, the experimental work was first performed with model membranes to 

evaluate the possible effect of membrane charge, viscosity and ionic strength. Different 

model membranes were used depending on the methodology: Large unilamellar vesicles 

were used with fluorescence methodologies; Giant unilamellar vesicles were used in 

confocal microscopy and planar lipid membranes for electrophysiological 

measurements. In order to evaluate the possible effect of a cargo on the translocation 

mechanism studies with a complex pep-1/protein were also performed. The protein 

chosen for these experiments was β-Galactosidade (β-Gal) from E. Coli. After 

characterization of pep-1 interaction with model membranes, cultured mammalian cells 

were used. Results obtained in vitro and in vivo were compared.  

 

In the following chapters published results are presented in the paper format. An 

introduction with the specific objectives, model membranes and the methodologies used 

was included for detailed information.  
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Chapter 2.   

 

 

Pep-1 and model membranes  

 

 

2.1. Introduction  

 

2.1.1. General membrane remarks  

The plasma membrane defines the boundary of the cell and is the surface of 

contact with its environment [106]. Biological membranes play a central role in both the 

structure and function of cells and are complex structures where lipid and proteins are 

the principal components and its relative contribution is dependent on cell type and 

function. Phospholipids are the most commonly found membrane lipids (essentially 

glycerophospholipids, Figure 2.1.A) [107] and due to it amphipathic nature and 

cylindrical shape, the most favourable structure in aqueous environment is the lipidic 

bilayer, which forms spontaneously by self-assembly of lipid molecules with a 

hydrocarbon interior and polar groups on either side (Figure 2.1.B). With this bilayer 

shape, lipids minimize the contact with water and this phenomenon is known as 

entrotopic effect, also named “hydrophobic effect” designated by hydrophobic force 

[108].  
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The hydrophobic core of the lipidic bilayer is the most important structural 

feature in the role of membranes as a barrier [107]. Proteins for instance are embedded 

with their hydrophobic surfaces buried in the lipid. Besides its highly dynamic structure 

where lipids and proteins can rotate or diffuse laterally [106], lipid bilayers are 

impermeable to several molecules and are responsible for a restrict regulation of 

molecules passage inward and outward, which is responsible for maintaining the 

gradient levels essential for vital cellular functions.  

 

 

 

 

 

 

 

 

 
Figure 2.1. A) Schematic representation of 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine (POPC), 

a glycerophospholipid. B) Schematic representation of a lamellar arrangement of a lipidic bilayer. Polar 

headgroups interface the aqueous environment and shield the hydrophobic core.  

 

Cell membranes are complex structures with an enormous diversity with 

multiple lipids that appear to play several roles within membranes (see reference [107] 

for further information). In a simplistic point of view, lipidic mixture can be regard as a 

stable matrix and cell barrier in which the proteins can function. The amount and nature 

of membrane proteins vary and are considered the biochemically active components of 

the membrane, which comprise a diversity of activities such as enzymatic, transporters, 

receptors, pores, depending on the nature of each particular membrane [107].     

 

2.1.2. Membrane phase behaviour 

Depending on the temperature, pressure, hydration and phospholipid nature 

(hydrocarbon tails and the composition of headgroups) a pure lipidic bilayer can present 

different thermodynamic phases. In the most common phospholipids the low-

temperature phase is designated by a lamellar gel phase (Lβ) (Figure 2.2.A). The 

A 
Polar headgroup 

Hydrophobic tails 

B
 

Water-lipid interface

Hydrophobic core 

 

Water-lipid interface
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molecules are packed more tightly together and the acyl chains are more highly ordered 

and are maximally extended [107, 109]. At higher temperature, the gel phase undergoes 

a transition to the Lα phase, which is designated as liquid crystalline or fluid phase 

(Figure 2.2.B). This form has a considerable disorder in the acyl chains and is usually 

assumed to be physiologically the most important phase [107, 109]; in the fluid phase 

the bilayer thickness is shorter than in the gel phase (Figure 2.2).  

The major thermodynamic driving force stabilizing hydrated lipid aggregates is 

the entropic effect, however van der Waals forces (short, weak and attractive forces 

between adjacent hydrocarbon chains) and hydrogen bonding (between polar 

headgroups of some lipid molecules) are also stabilizing factors of the bilayer structure. 

At phase transition van der Waals forces between fatty acyl chains have an important 

role; these forces are responsible for the relative stability of the gel and liquid crystalline 

phases. The stability of the phase increases with the tail length because of the increased 

van der Waals interactions in longer chains [109]. In the presence of a double bond 

(trans or cis) the ability of the chains to interact orderly is decreased and so the ability 

to form a gel phase [107]. 

 

 

 

 

 

 
 

Figure 2.2. Schematic representation of lipidic bilayers in: A) Lamellar gel phase (Lβ) where the 

molecules are packed tightly and orderly together; and B) Lamellar liquid crystalline phase (Lα) with a 

considerable disorder in the acyl chains conformation. These structural features were elucidated by X-ray 

diffraction data. Figures adapted from [107, 109]. 

 

Cholesterol is the most common found sterol in animal cell membranes and it 

constitutes about 30% of the mass of the membrane lipids of many cell plasma 

membranes [107]. Cholesterol modulates membrane fluidity. When cholesterol is added 

to a liquid-crystalline phase a more ordered phase, liquid ordered (Lo) phase (less fluid 

than liquid crystalline phase but more fluid than gel phase), occurs on the membrane 

[110]. Depending on the cholesterol-phospholipid proportion the membrane has fluid 

B

Lβ Lα
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phase or liquid ordered properties. At low cholesterol concentration lipidic membranes 

have fluid phase properties, while at high cholesterol concentration membrane is more 

ordered and Lo phase properties are dominant. For intermediate concentrations the two 

phases coexist [110].    

 

The fluid mosaic model of biological membranes proposed by Singer and 

Nicolson [111] emphasizes membrane fluidity and free lateral diffusion of membrane 

components the fluid phase is considered to be the bulk phase in biological membranes, 

but the observation of patches of lipids with composition and physical state different 

from the rest of the membrane suggests the coexistence of phases. This model is 

referred as “lipid-raft” model and is based on dynamic clustering of sphingolipids and 

cholesterol to form platforms that move in the fluid bilayer. A role on protein 

attachment during signal transduction has been proposed by Simons and Ikari [112]. 

The physical state of these domains is assumed to be similar to a Lo phase [112-114].     

 
Figure 2.3. Schematic drawing of a 

liquid ordered domain (Lo) in a fluid 

phase bilayer (Lα). Hexagon 

represents cholesterol molecules 

which modulate membrane viscosity. 

Figure adapted from [114]. 

 

 

2.1.3. Membrane asymmetry 

The membrane is a twofold asymmetric structure. The two leaflets of the 

membrane bilayer have their specific lipid and protein composition. The asymmetric 

arrangement of membrane proteins was the first to be discovered [115] which accounts 

for the differences in the function of the outer and inner surface. The interior of the 

membrane contains proteins involved in intracellular events while outside may contain 

proteins involved in the defence mechanism of the cell [115], for instance. The 

transverse asymmetry of phospholipids has became apparent due to asymmetrical 

localization of the enzymes involved in phospholipid synthesis [116] and due to the fact 

that the chemical environment of both bilayers is different [115]. Now is known that the 

compositional asymmetry of the plasma membrane does not correspond to the 

  

 
 

 

 

 

 

Lo domain 
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asymmetry of lipid synthesis or hydrolysis. The transbilayer lipid distribution results 

from a continuous inward and outward movement of lipids between two monolayers 

(for further information see reference [117]). Hence, lipid asymmetry is formed and 

afterwards maintained by specific mechanisms that control lipid movement across the 

bilayer [117].   

The asymmetric arrangement of phospholipids in plasma membrane was first 

established for natural lipids in erythrocytes and confirmed with different techniques 

[118-120]. Asymmetry in different animal eukaryotic membranes have also been 

elucidated and in general is possible to assume that the choline-containing lipids, 

phosphatidylcholine (PC) and sphingomyelin (SM), are primarily on the external leaflet 

of the plasma membrane, while amino-containing glycerophospholipids, 

phosphatildylethanolamine (PE) and phosphatidylserine (PS) are located preferentially 

on the cytoplasmic leaflet [115, 121-123]. The relative molar fraction of each lipid 

depends on the membrane organelle and species. Noteworthy are the neutral 

composition of external layer and the negative charge of inner layer of plasma 

membrane in Human cells. The erythrocyte plasma membrane for instance has about 

20% molar of PS in the inner layer [107]).  

 

Besides lipidic and protein transbilayer asymmetry there are also membrane 

potentials contributing for transmembrane asymmetry. There are three types of electric 

potential related to membranes [124]: 1) the transmembrane potential, which is 

associated with gradients of electric charge across the phospholipid membrane (negative 

inside) and is important in different biological processes; 2) the electrostatic surface 

potential, which results from the net charge found on the membrane surface; the 3) 

membrane dipole potential, which results from the net contribution of molecular 

polarizations arising from the water molecules that adopt an organized structure in the 

membrane surface and electrical dipoles associated with the carbonyl group of the lipids 

(see [124] and references therein). The various electrical potentials associated with 

membranes are involved in a large number of cellular processes [125, 126] and they 

may also be implicated in protein- and peptide-membrane interaction, structure and 

function [127-131]; moreover membrane potentials can be modulated when peptides 

insert in the membrane [128, 132].    
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2.1.4. Model membranes used in spectroscopy studies 

Due to the complexity of biological membrane peptide-membrane interaction 

studies are usually initiated with simple model membranes so that different properties 

such as lipid charge, membrane viscosity and the presence of sterols can be modulated. 

Each of the several model membranes that have been used to study membrane-active 

peptides has advantages and disadvantages, depending on the techniques to be 

employed. To start our studies, peptide/membrane interactions were followed using 

spectroscopic methodologies and liposomes.  
 

Figure 2.4. Preparation of LUVs and 

SUVs. A) Lipids are dissolved in 

chloroform and the solvent is 

removed to yield a lipid film. After 

addition of water/buffer, hydrated 

lipid sheets detach spontaneously. B) 

Upon agitation and freeze-thaw 

cycles, a MLVs suspension is 

obtained. C) Sonication may be used 

to produce SUVs while D) extrusion 

can be used to obtain LUVs. Image 

adapted from:  

http://www.avantilipids.com. 

 

. 

When phospholipids are suspended in an excess of aqueous solution they 

spontaneously form multilamellar vesicles (MLVs). These aqueous dispersions 

produced by mechanical agitation of an aqueous medium in the presence of a dry lipid 

film were designated as liposome by Bangham et al. [133] (Figure 2.4). Generically the 

term liposome is applied for hydrated lipid dispersions which can be characterized 

based on size and number of lamellas [134]. MLVs are large vesicles with two or more 

lamellas; vesicles with one lamella can be: small unilamellar vesicles (SUVs) with a 

∼30nm diameter; large unilamellar vesicles (LUVs) with a ∼100nm diameter; and giant 

unilamellar vesicles (GUVs) with a diameter higher than 10μm. The type of liposome 

obtained is dependent on the preparation procedure, where three phases can be 

distinguished: lipidic film preparation, lipid hydration and final processing to obtain a 

Dry lipid film Water Hydration of lipid  

Agitation 
MLVs 

Sonication homogenization 

SUVs 

LUVs 

Extrusion 
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specific liposome (e.g. sonication to obtain SUVs with a diameter of about 30nm [135] 

and extrusion of MLVs to obtain LUVs with a diameter of about 100nm [134], see 

Figure 2.4). 

 

SUVs or LUVs are the preferred vesicles used for the application of 

spectroscopic methodologies; they both have particular advantages and drawbacks. 

SUVs have smaller size and therefore reduced light scattering, but due to high 

membrane curvature these liposomes are characterized by a non-ideal lipid packing 

(less dense packing of phospholipids), which may produces anomalous peptide binding 

(see reference [136] and references therein). LUVs have a lipid packing close to planar 

membrane due to their larger radii of curvature relative to molecular dimensions and are 

more stable than SUVs [136]. Moreover the binding enthalpies and entropies were 

distinctly different for the two membrane systems; the binding to SUVs is enthalpy-

driven whereas the binding to LUVs is entropy-driven [137]. Even with higher 

scattering artefacts associated (which can be easily corrected) LUVs are more suitable 

models of biological membranes [136] and they were chosen for the first 

characterization of the pep-1/membrane interactions.   
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2.2. Interaction of Pep-1 with model membranes followed by 

spectroscopy methodologies 
 

Characterization of pep-1 interaction with model membranes carried in this 

project is published in two articles with the following titles: 1) Environmental factors 

that enhance the action of the cell penetrating peptide pep-1. A spectroscopic study 

using lipidic vesicles and 2) Consequences of nonlytic membrane perturbation to the 

translocation of the cell penetrating peptide pep-1 in lipidic vesicles, which are 

presented afterwards. Experiments presented in these two reports were mainly obtained 

by fluorescence methodologies and using LUVs as model membranes.  
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2.2.1. Environmental factors that enhance the action of the cell 

penetrating peptide pep-1. A spectroscopic study using lipidic vesicles  

 
2.2.1.1. Motivation and methodologies 

In the paper Environmental factors that enhance the action of the cell 

penetrating peptide pep-1. A spectroscopic study using lipidic vesicles a 

characterization of pep-1 interaction with model membranes was performed, where 

peptide affinity for different model membranes and in-depth location in the lipidic 

bilayer was determined.  

Fluorescence spectroscopy is a powerful technique for peptide/membrane 

interactions analysis; peptides containing aromatic amino acids enable the use of 

fluorescence spectroscopy with no need for chemical derivatization with fluorescent 

probes. Pep-1 is intrinsically fluorescent due to its five Trp residues. Trp fluorescence 

emission is environmental-sensitive: when Trp residues are totally exposed to aqueous 

environment its fluorescence emission has a spectral maximum at ~350nm; at variance, 

in a more hydrophobic environment there is a blue shift in fluorescence emission 

spectrum with a concomitant increase in quantum yield and a decrease in emission band 

width at half-height (see references [138, 139] and references therein).  

 

To carry on these studies a photophysical characterization of pep-1 was 

performed in the absence and in the presence of lipid membranes: i.e., quantum yields, 

excited states, red-edge excitation shifts and anisotropies were quantified (for a detailed 

information on these photophysical parameters see reference [138]). Altogether pep-1 

photophysical parameters gave information about peptide organization in aqueous 

solution and affinity for model membranes. The influence of environmental factors such 

as: pH, ionic strength, and reducing environment were addressed.  

 

In the study of the interaction of a peptide with model membranes systems, the 

determination of peptide extension of insertion in lipidic bilayers is of first importance 

to obtain information on the peptide affinity to membranes [140]. The extension of 

interaction of pep-1 with lipid membranes was quantified by means of the molar ratio 

partition coefficient, KP  
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The increase in the fluorescence intensity (I) with lipid concentration was used 

to determine KP by means of eq.2.2:  
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where IW and IL are the fluorescence intensities in the absence of lipid and limit value 

for increasing lipid concentrations, respectively, γL is the molar volume of lipid and [L] 

is the lipid concentration – for more details see reference [140]). 

 

In-depth location when pep-1 inserts in lipidic membrane was studied by 

acrylamide quenching and by differential quenching of 5-Doxyl-stearic acid (5-NS) and 

16-Doxyl-stearic acid (16-NS) using Fernandes et al. formalism [141]. Fluorescence 

quenching refers to the phenomena of fluorescence quantum yield decrease due to direct 

interaction between the fluorophore and a quencher molecule; this can result from a 

static and/or a dynamic mechanism – for more details see reference [139].  

Acrylamide is a quencher of Trp fluorescence emission, soluble in aqueous 

solution [138]. At variance, it is unable to efficiently quench the fluorescence of Trp 

residues deeply buried in the bilayer [142]. With this quencher one has information 

about the sub-population of fluorophores that is accessible to the aqueous environment 

[142] (Figure 2.5). The population of fluorophores that inserts in the lipidic membrane 

can be assessed by 5-NS and 16-NS, which are derivatized fatty acids, able to partition 

in lipidic bilayers, with a doxyl group (NO•) in position 5 and 16, respectively. This 

group is able to quench Trp residues and its in depth location in the membrane is near 

the interface for 5-NS or deeply buried in hydrophobic core for 16-NS (Figure 2.5). 

Stern-Volmer formalism was used to determine KSV  (more details in references [138, 

139, 141]), which provides information about the quenching efficiency and ultimately 

about the in-depth location of fluorophores [142] (see Figure 2.5).  
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Figure 2.5. Peptide in depth location determined by 

quenching of acrylamide, 5-NS and 16-NS. A) 

Quenchers location in the presence of lipidic 

membranes: acrylamide is soluble in aqueous 

medium and is unable to insert extensively in the 

membrane; the doxyl group (NO•) in 5-NS fatty 

acid locates close to the water-lipid interface but 

the doxyl group in 16-NS molecule has deeper 

location, in the hydrophobic core. B) Fraction of 

fluorophores not inserted in the membrane or that 

adsorbs at membrane surface are quenched by 

acrylamide. C) When peptide inserts in the 

membrane close to the water-lipid interface 5-NS is 

a more efficient quencher than 16-NS; if the 

fluorophore inserts more deeply in hydrophobic 

phase 16-NS is a more efficient quencher.   

 

 

Phospholipids with a phosphatidylcholine (PC) headgroup are the major 

component in animal cell membranes. The most common acyl chains are C16, C18 and 

C20; the degree of unsaturation varies widely [107]. Our studies were started with 

liposomes composed by 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (16:0-18:1; 

POPC). This lipid forms bilayers in fluid phase at room temperature and can be used to 

represent the bulk phase in cell membrane. Inner leaflet of plasma membrane is 

considered to have 20% of negatively-charged phospholipids [107]; in order to evaluate 

the charge effect in pep-1 affinity and to mimic the inner leaflet, liposomes with POPC 

and different percentages of a negatively-charged phospholipid with similar acyl chains, 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), were used. The more 

abundant negatively-charged phospholipid in mammalian cells is PS, the use of PG 

instead of PS does not compromise the objective to evaluate electrostatic interaction 

effect, since previous reports demonstrate that interactions mediated by electrostatic 

forces are independent on the lipid headgroup (PG vs. PS) and the basic amino acids 

(Arg vs. Lys) within the peptide [143, 144]. 

A 

           B 
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A possible effect of viscosity and the interaction of pep-1 with more rigid 

domains within plasma membrane were tested with vesicles composed by POPC/Chol 

(2:1 molar ratio). With this lipidic composition homogeneous membranes with a liquid 

ordered-like phase are obtained [145, 146].  

More rigid membranes were obtained with liposomes composed by 1,2-

dipalmitoyl-sn-glycero-3-phosphocholine (16:0-16:0; DPPC). This lipid forms a gel 

phase at room temperature due to saturated acyl chains which favour van der Waals 

forces between molecules and a more highly ordered bilayer. Charge effect in gel-like 

phase was evaluated with 1,2-Dipalmitoyl-sn-glycero-3-phosphoserine (DPPS); 

different DPPC/DPPS mixtures were compared.  

These lipidic systems were used and compared through the studies presented in 

the following manuscripts. 
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Abstract

Pep-1 is a cell penetrating peptide (CPP) derived from the nuclear localization sequence of Simian Virus 40 large antigen T and from

reverse transcriptase of Human Immunodeficiency Virus. Although it has been successfully used to transport proteins into cells, its action at

the molecular level is not yet clear, mainly the local environmental factors that condition partition and translocation. Characterization in

aqueous medium and quantification of partition into bilayers were carried out. Dynamic light scattering studies show that pep-1 self-

associates in aqueous medium. The role of the bilayer phase, anionic lipids, ionic strength of the medium, reducing agents and pep-1

concentration on the extent and kinetics of partition were studied. Unlike others cationic CPP (e.g. penetratin) pep-1 has a high affinity to

neutral vesicles (Kp=2.8�103), which is enhanced by anionic lipids. In a reduction environment partition is strongly inhibited

(Kp=2.2�102), which might be a key-feature in the biological action of pep-1. Peptide incorporation takes place in the millisecond time-

range to the lipidic interfaces. These environmental factors are systematized to enlighten how they help cellular uptake.

D 2005 Elsevier B.V. All rights reserved.

Keywords: Translocation; Vector; Peptide carrier; Fluorescence; Vesicle

1. Introduction

The observation that some intracellular proteins trans-

locate naturally across the plasmatic membrane and the

identification of basic peptidic sequences responsible for

this ability, lead to novel techniques of protein transduction

[1–6]. These peptidic sequences, also known as protein

transduction domains (PTDs), have been used and opti-

mized as carriers. The three most investigated PTDs are

derived from the Human Immunodeficiency Virus 1 (HIV-1)

transcriptional activator (tat), the Drosophila homeotic

transcription factor Antennapedia (Antp), and the Herpes

Simplex Virus (HSV) protein VP22 [1,2,5,7]. These PTDs

require covalent coupling with the target protein [3,7].

However, this kind of interaction induces alterations in the

native form of protein, which can limit the technology [7].

Pep-1 is a synthetic peptide carrier forming non-

covalent hydrophobic interactions with the cargo, capable

of introducing a great variety of proteins in different

cellular lines, without the need to denature proteins [7–

10]. This kind of interaction stabilizes the protein,

avoiding degradation and preserving its natural character-

istics [7,9]. Pep-1 delivers proteins into mammalian cells

[7,8,10–12], or in plant cells converted in protoplasts [13],

and maintains at least 80% of the viability of different

cellular cultures in concentrations up to 1 mM [7] at an

average efficiency of 60–95%, depending on the cell type

and the protein being transduced [8]. Since it is a non-

toxic and non-invasive method with results in less than 2

h, pep-1 is an attractive vehicle to introduce functional

proteins in cells [7,8]. This method can potentially: 1)

correct genetic diseases by altering the phenotype; 2)

function like a vaccine by the introduction of antibodies

and 3) be used for research on the study of the function/

structure of proteins.
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Pep-1 has 21 amino acids residues (KETWWETWW-

TEWSQPKKKRKV) with three different domains: the so-

called hydrophobic, rich in Trp residues (KETWWETWW-

TEW), the hydrophilic one rich in basic amino acids

(KKKRKV) and a spacer sequence with a Pro (SQP),

between the other two [7]. The peptide is acetylated in the N

terminal and has a cysteamine group on the C terminal [7]

and has a tendency to form disulfide bonds in aqueous

solution. The hydrophobic domain is from HIV-1 reverse

transcriptase [14] and is responsible for both forming

hydrophobic interactions with proteins and for an efficient

targeting to the cell membrane [7]. The hydrophilic

sequence is a nuclear localization signal (NLS) from the

large antigen T of Simian Virus 40 (SV40) [7] and has been

used in other peptide carriers [9,15]. This domain improves

solubility and intracellular distribution of the peptide [7].

The presence of the Pro residue in spacer sequence

promotes a large flexibility and the integrity of other two

domains [7].

The understanding of the mechanism of Pep-1 action and

the local environmental factors that affect such a mechanism

is of first importance for a generalized application and

optimization of the process. The amphipaticity of the carrier

suggests a strong interaction with the lipidic biomembranes.

Despite some molecular-level details, biochemical and

biophysical actions of pep-1 are still unknown; Silvius

and co-workers recently demonstrated that translocation of

cell penetrating peptides is intimately related to the trans-

membrane potential across lipidic membranes [16]. For pep-

1, dependence on membrane potential for translocation

occurrence was also verified [17]. Deshayes et al. [18]

addressed several specific points relative to pep-1 trans-

location. Our aim in this paper is to give insight on

additional environmental processes that furthermore favour

translocation. The presence of five residues of Trp enables

the application of fluorescence spectroscopy techniques

with no need for derivatization with a fluorescent probe.

2. Material and methods

2.1. Materials

Chariotk, the commercial name of pep-1, was obtained

from Active Motif (Rixensart, Belgium) with purity higher

than 95%, carboxyfluorescein-labelled pep-1 (pep-1-CF;

linked by a Lys in C terminal and blocked with a Ser) was

obtained from GenScript Corporation (Piscataway, New

Jersey) with purity higher than 95%; 2-(4-(2-Hydroxyethul)-

1-piperazinyl) ethanesulfonic acid (HEPES), sodium chlor-

ide, l-Tryptophan, acrylamide, ethanol and chloroform

spectroscopic were from Merk (Darmstadt, Germany); 1-

Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine (POPC),

1-Palmitoyl-2-Oleoyl-sn-Glycero-3-(Phospho-rac-(1-glyc-

erol)) (POPG), 1,2-Dipalmitoyl-sn-Glycero-3-phosphocho-

line (DPPC) and 1,2-Dipalmitoyl-sn-Glycero-3-(phospho-l-

serine) (DPPS), from Avanti Polar-Lipids (Alabaster,

Alabama); 5-Doxyl-stearic acid (5DS) and 16-Doxyl-stearic

acid (16DS) from Aldrich Chem Co. (Milwaukee, Wiscon-

sin); Cholesterol (chol) and DL-Dithiothreitol (DTT) from

sigma (St. Louis, Missouri), tris-(2-cyanoethyl)phosphine

(phosphine) from molecular probes (Eugene, Oregon), and

Oxidized glutathione (GSSG) from Boehringer Manheim

(Germany).

Pep-1 solutions were prepared in HEPES buffer (10 mM

HEPES, pH 7.4 containing 10 mM (low ionic strength) or

150 mM NaCl (the so-called physiologic ionic strength)).

The assays were performed at room temperature in a UV-Vis

spectrophotometer Jasco V-530 and in a spectrofluorometer

SLM Aminco 8100, equipped with 450 W Xe lamp, Glan-

Thompson polarizers, and double monochromators. Fluo-

rescence intensity values were corrected for inner filter

effect [19].

2.2. Characterization of pep-1 in aqueous solution

Spectral characterization was performed and fluores-

cence steady-state anisotropy was used to study red-edge

effects (details have been published elsewhere, see Ref.

[20]). Quantum yield-dependence on peptide concentration,

ionic strength and reduction effects in the presence of

phosphine (1 mM) were also evaluated.

A light scattering apparatus equipped with a He–Ne laser

(632.8 nm; 35 mW) model 127 from Spectra-Physics and a

72 channels UNICOR autocorrelator was used to study the

aggregation of pep-1 in aqueous solution. Peptide solutions

were filtered through a sterile 0.22 AM pore Millipore filter.

Data was fitted with a tri-exponential function; the average

diffusion coefficient, D, was determined (k=632.8 nm;

right angle geometry) and hydrodynamic radius, Rh, was

calculated by means of the Stokes–Einstein equation (details

have been published elsewhere, see Ref. [21]).

Pep-1-CF solutions (0.023, 0.058, 0.12, 0.17, 0.23 and

0.58 AM) at low ionic strength, were titrated with small

volumes of a pep-1 stock solution (688 AM). Pep-1-CF

fluorescence was followed with kexc=490 nm.

2.3. Reduction effect and fluorescence quenching in

aqueous solution

Quenching assays were followed by fluorescence inten-

sity with excitation at 280 nm and emission at 350 nm unless

stated otherwise. Fluorescence quenching by acrylamide was

carried out using kexc=290 nm to minimize the relative

quencher/fluorophore light absorption ratio. Nevertheless,

the quenching data were corrected for the simultaneous light

absorption of fluorophore and quencher [22]. Quenching

assays data with negative deviation from the Stern–Volmer

representation Eq. (1) were analysed using Eq. (2),

I0

I
¼ 1þ KSV Q½ � ð1Þ
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(I and I0 are the fluorescence intensity of the sample in the

presence and absence of quencher, respectively, KSV is the

Stern–Volmer constant and [Q] the concentration of

quencher) [20,23],

I0

I
¼ 1þ KSV Q½ �

1þ KSV Q½ �ð Þ 1� fBð Þ þ fB
ð2Þ

(fB ¼ I0;B
I0

is the fraction of light accessible to the quencher

and I0,B is the fluorescence intensity of the accessible

population to the quencher, when [Q]=0 [20,23]).

2.4. Preparation of lipid vesicles

Large unilamellar vesicles (LUVs), with typical 100 nm

diameter [24] were prepared by the extrusion method

described elsewhere [25] and used as models of biological

membranes.

2.5. Extent and kinetics of partition in LUV

The extent and kinetics of partition assays of pep-1 (6.88

AM) in the absence or presence of phosphine (1 mM), were

carried out with LUVs of POPC and POPG (liquid-crystal

phase), DPPC and DPPS (gel phase) or POPC and chol (2:1)

(liquid-ordered phase). Titrations of pep-1 with lipidic

suspensions (final concentrations ranges from 0 to 3.75

mM), both in low and physiologic ionic strength, were used

to evaluate the extent of the partition. Samples were left to

incubate for 10 min after each addition of lipid suspension.

The partition coefficient, Kp, is calculated from the fit of

experimental data with Eq. (3) as described elsewhere [26]

I

IW
¼

1þ KpcL
IL
IW

L½ �
1þ KpcL L½ � ð3Þ

where IW and IL are the fluorescence intensities in aqueous

solution and in lipid solution, respectively, cL is the molar

volume of lipid and [L] is the lipidic concentration) [26] cL
used was 7.63�10� 1 dm3 mol� 1 for vesicles containing

POPC [27] and 6.89�10� 1 dm3 mol� 1 for vesicles

containing DPPC [28]. Pep-1 is restricted to the outer leaflet

of bilayers in the absence of a transbilayer potential [17], so

data analysis was carried out considering the effective lipid

concentration as half of the total lipid concentration [26].

Kinetic assays were followed by fluorescence emission

intensity (kex=280 nm and kem=340 nm; pep-1 in lipidic

vesicles has a 10 nm blue-shifted emission spectrum, by

application of Eq. (AI.8), see Appendix B). Lipidic

suspensions (final concentration of 3.75 mM; this concen-

tration ensures that the molar fraction of partitioned peptide

in lipidic phase, XL, is z0.8, calculated using Eq. (4) [29])

were added to the peptide solutions (6.88 AM) with

physiologic ionic strength.

XL ¼ KpcL L½ �
1þ KpcL L½ � ð4Þ

The Eq. (AIII.11) deduced in Appendix C was used to fit the

kinetics data.

2.6. Location in lipidic membranes

The membrane in-depth location of the pep-1 Trp

residues was studied by differential quenching method-

ologies. 5DS and 16DS are quenchers of Trp fluorescence,

which have different locations in the lipidic bilayer. 5DS is

located near the interface while 16DS buries more deeply

into the bilayer core [30]. Titration of peptide samples (6.88

and 1.45 AM), in the presence of LUVs composed of

different lipid mixtures (3.5 mM lipid in buffer with low or

physiologic ionic strength), was carried out with ethanolic

solution of 5DS and 16DS (final ethanol concentration was

kept below 2%). The assays were followed by fluorescence

emission intensity (kex=280 nm, kem=340 nm). Data were

corrected for simultaneous absorption of fluorophore and

quencher [22]. Effective concentration of quencher in the

lipidic bilayer matrix, [Q]L,

Q½ �Lc
Kp;Q Q½ �T

1þ Kp;qcL L½ � cL L½ �bb1 ð5Þ

was used in the Stern–Volmer plots; [Q]T is the quencher

concentration in total solution volume and Kp,Q is the

quencher partition coefficient [29]. For gel phase vesicles

Kp,Q equals 12,570 and 3340 for 5 DS and 16 DS,

respectively. In crystal-liquid-like phase the values used for

5 DS and 16 DS were 89,000 and 9730, respectively [31].

Acrylamide is unable to efficiently quench the fluores-

cence of Trp residues deeply buried in the bilayer; titration

of peptide in the presence of LUVs with this quencher also

gives insight on peptide in-depth location [19]. Fluorescence

emission quenching (kexc=290 nm, kem=340 nm) with

acrylamide was carried out with different lipidic mixtures

(3.5 mM lipid concentration) in the absence and presence of

phosphine (1 mM).

3. Results and discussion

3.1. Aqueous solution

The organization of pep-1 may be potentially influenced

by the ionic strength (pep-1 is a charged peptide at pH 7.4)

and reduction agents (via inter-molecular disulfide bonds at

the cysteamine terminal). Pep-1 has five Trp residues

located in its so-called hydrophobic region, which enable

structural characterization by fluorescence spectroscopy.

The fluorescence spectra of peptide and free Trp in aqueous

media present equal vibrational progression (Fig. 1A), this

is true both in low and physiologic ionic strength.

At low ionic strength the peptide quantum yield is slightly

concentration-dependent (Fig. 1B). Dynamic light scattering

correlograms (data not shown) show evidence for the

presence of aggregates with mean (weight-averaged) hydro-
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dynamic radius of bRhNc60 nm in both 1.45 AM and 6.88

AM pep-1 solutions (i.e. below and above the apparent

critical concentrations of 3.4F1.7 AM (Fig. 1B)). However

these averaged values do not exclude the presence of smaller

aggregates in suspension (light scattering techniques have

very low sensitivity for smaller aggregates in polydispersed

systems) [32]. It is not possible to conclude from Fig. 1B

alone if the bcritical concentrationQ is a monomer/micelle

transition or reflects the clustering of previously formed n-

mers (similarly to what was concluded for polyene anti-

biotics [33]). Fig. 1C shows that, when pep-1-CF is titrated

with unlabelled peptide, fluorescence emission intensity of

the carboxy-fluorescein moiety increases when low concen-

trations of labelled peptide are used. This may be explained

on the basis of fluorescence re-absorption (btrivial effectQ
energy transfer) caused by self-aggregation and closely

packed chromophores. Trapping photons in the oligomers

increase the probability of non-radiative decay of the

fluorophores to the ground state. Therefore, oligomeric

forms of the amphipathic peptide occur in solution.

Non-linear Stern–Volmer plots for the fluorescence

quenching of the aggregates by the hydrophilic molecule

Fig. 1. Characterization of Pep-1 in aqueous solution. Pep-1 (or free Trp) in 10 mM HEPES buffer pH 7.4 containing 10 mM NaCl. (A) Fluorescence emission

spectra (kexc=280 nm) of free Trp (solid line) and pep-1 (dashes) in aqueous solution. (B) Fluorescence intensity (kexc=280 nm and kem=350 nm) dependence

on pep-1 concentration. There are two linear zones with different slopes, that intersect at an apparent critical concentration (3.4F1.7 AM); below (circles) and

above (squares) it, the peptide has different quantum yields. (C) Titration of 0.023 (solid circle), 0.058 (open circles), 0.12 (solid square), 0.17 (open square),

0.23 (open triangle) and 0.58 AM (solid triangle) pep-1-CF with non-labelled pep-1 followed by fluorescence emission at kexc=490 nm kem=520 nm. (D) Red-

edge excitation shift of 6.88 AM pep-1: variation of maximum emission wavelength (circles) and variation of anisotropy for pep-1 (black solid line), free Trp in

buffer (control 1; grey solid line) and free Trp in glycerol (control 2; dashes) with the excitation wavelength. (E) Quenching of fluorescence emission of free

Trp by GSSG (circles) and by GSH (squares), notice that hydrolysis of one GSSG molecule forms two GSH molecules. (F) Effect of reducing agent phosphine

on free Trp (control; circles), 6.88 AM pep-1 (squares) and 1.45 AM pep-1 (triangles).

S.T. Henriques, M.A.R.B. Castanho / Biochimica et Biophysica Acta 1669 (2005) 75–8678

37



acrylamide ( fB =0.59 and 0.61 for 1.45 and 6.88 AM,

respectively) are evidence that Trp residues sense heteroge-

neous local micro-environments [26]. Moreover, there is a

fraction of the fluorophores not in contact with the aqueous

solvent (hydrophobic bpocketsQ in the aggregates). This result
is further confirmed by the occurrence of red-edge excitation

shift in the fluorescence spectra of 6.88 AM pep-1 (Fig. 1D),

which supports the hypothesis of a reduced mobility on the

Trp side chain [34]. A complete depolarization of clustered

pep-1 at kexcitationb280 nm at variance to what is observed

with immobilized Trp residues in glycerol (Fig. 1D) is a

consequence of Trp–Trp energy migration (homotransfer),

which is favoured by adjacent Trp residues in the peptide

sequence. Energy migration is known to play a role in red-

edge phenomena since red-shifting of Trp emission leads to a

decrease in the absorption/emission spectral overlap [23].

Depolarization by migration is not efficient and anisotropy

raises at the red-edge. The large ratio of anisotropies taken at

310 /270 nm is a consequence of energy migration. Largely

shifted emission spectra of Trp (Fig. 1D) are not common but

other cases have been reported before [26,35].

It should be stressed that -SH group is a quencher of Trp

fluorescence (Fig. 1E). Moreover disulfide bonds are also

efficient quenchers (Fig. 1E). The differential effect of the

reducing agent phosphine on the fluorescence quantum

yield of the aggregates below and above the apparent critical

concentration (Fig. 1F) is an evidence of an alteration of the

internal molecular structure of the aggregate. Reduction of

the -S-S- bonds implies a more pronounced effect at lower

concentration (quenching is enhanced with the addition of

phosphine; reduction of -S-S- induces a larger diffusional

freedom of pep-1, resulting in improved quenching of Trp

residues by -SH groups). At higher concentrations, the

addition of phosphine does not induce a pronounced

alteration in the contact of -S-S- or -SH groups with Trp

residues. The fraction of fluorophores accessible to acryl-

amide in the presence of reducing agent phosphine is bigger

for 1.45 AM pep-1 ( fB=0.80) than for 6.88 AM ( fB=0.71).

The red-edge excitation shift for 6.88 AM pep-1 is not

significantly influenced by the reducing agent phosphine.

At physiologic ionic strength the pep-1 quantum yield is

independent of concentration and is not altered in the

presence of reducing agent (data not shown). These results

suggest that the organization of pep-1 is similar in the range

of concentrations evaluated. A non-linear Stern–Volmer

( fB=0.73 for 1.45 AM and 0.63 for 6.88 AM pep-1) and a

red-edge excitation shift was also observed for physiologic

ionic strength, indicating that peptide aggregates in aqueous

solution, but organization of these aggregates is not

dependent on concentration.

3.2. Extent of partition into liquid-crystal bilayers

Titration of aqueous suspensions of the peptide (1.45 or

6.88 AM) with lipidic vesicles leads to blue-shifted emission

spectra (Fig. 2A) and an increase in the fluorophore

quantum yield (Fig. 2B). The fluorescence intensity is

related to Kp by Eq. (3). When POPC large unilamellar

vesicles are used ([pep-1]=6.88 AM), Kp= (2.8F0.6)�103

for low ionic strength, which leads to DG =�1.9�104 J

mol� 1. The calculated molar fraction of the peptides

Fig. 2. Partition of pep-1 in LUVs. 6.88 AM pep-1 in 10 mM HEPES

buffer pH 7.4 containing 10 mM NaCl. (A) Fluorescence emission spectra

of pep-1 in aqueous solution (long and short dashes), in the presence of

0.5 mM POPC LUVs (solid line) and when is completely inserted in

lipidic phase (short dashes; spectra calculated using Eq. (AI.8), Appendix

A); fluorescence emission spectra were recorded for other lipidic concen-

trations but only one is represented for the sake of simplicity. (B)

Fluorescence emission intensity of pep-1 normalized to [L]=0 (I / IW)

upon titration with LUVs of POPC (circles) or DPPC (squares)—Eq. (3)

and Eq. (AII.10) (see Appendix B), respectively, were fitted to data. (C) Kp

(logarithmic scale) of pep-1 in vesicles with different molar ratios of

POPC:POPG.
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inserted in the lipidic matrix at 3.5 mM POPC (close to the

reference value in biological systems [36]) is XL=0.80 (Eq.

(4)). This value is not sensitive to the ionic strength of the

medium (Kp= (3.4F0.6)�103 for physiologic strength),

because POPC is globally a neutral lipid. Kp increases

exponentially with the molar fraction content of the

negatively charged lipid POPG in the POPC bilayer (Fig.

2C). Such exponential behaviour is predicted under the

framework of simple theories [37]. For 20% negative lipids

(the expected natural occurrence in most cells [38]) and

[L] =3.5 mM, XL is very close to 100% (Kp=2.8F
0.4)�104), i.e. virtually all the peptide is inserted in

biological membranes. Naturally, at higher ionic strengths,

partition coefficient values are decreased (Kp =2.2F
0.4)�104), but the difference is not significant and for

[L]=3.5 mM XL is also close to 100%. When phosphine is

added to the POPC suspension, Kp is remarkably reduced to

(4.8F1.2)�102, showing that the aggregate formed by

monomeric peptides in aqueous solution is more stable than

the aggregates formed by the dimers. In other words, the

reducing environment stabilizes the peptide in aqueous

solution. A similar phenomenon was reported for a

magainin analogue [39]. When POPG (20%) is present,

Kp is also decreased in reducing conditions ((7.2F
2.4)�102 for physiologic ionic strength), which means that

peptide organization effects superimpose to electrostatic

ones in partition.

3.3. Extent of partition into gel phase bilayers

The importance of biomembranes lateral heterogeneity

(membrane domains) in the occurrence and control of

several biochemical phenomena [40] prompted us to study

gel-phase membranes in addition to fluid liquid-crystal

ones. DPPC, a neutral lipid at pH 7.4, forms gel bilayers in

aqueous environment at room temperature. In the presence

of DPPC, the fluorescence spectrum of the peptide is blue-

shifted relative to aqueous solution (data not shown).

Nevertheless, the fluorescence quantum yield decreases at

low lipid concentrations, increasing afterwards (Fig. 2B).

We explored the hypothesis that this could be due to self-

quenching because at low lipidic concentrations the

peptide/lipid molar ratio is high. Eq. (AII.10) was derived

(see Appendix B) assuming self-quenching occurrence in

partition plots and it fits the experimental data (Fig. 2B).

There is no significant difference in partition coefficients of

[pep-1]=6.88 AM, for low and physiologic ionic strength

(Kp= (1.3F0.4)�104 and (0.6F0.2)�104, respectively).

As partition to gel phase bilayers occurs as surface

adsorption and/or insertion in line defects in the lipidic

palisades, a direct and quantitative comparison with Kp

obtained in POPC is prevented. Yet, it should be stressed

that Kp is also quite big in rigid lipidic areas of heteroge-

neous membranes. As before, in the presence of phosphine

Kp decreases at both ionic strength ((8.0F1.6)�103 for low

ionic strength and (8.0F2.3)�103 for physiologic ionic

strength). DPPS, a negatively charged lipid which keeps gel

phase properties in the DPPC matrix, causes an increase in

Kp up to 10% molar (Kp= (1.4F0.6)�105 for low ionic

strength). In the 10–50% range Kp is broadly constant (data

not shown). This saturation is probably related to a

saturation of the line defects in the gel. Likewise, increas-

ingly blue-shifted emission fluorescence spectra are

observed up to 5% DPPS, the wavelength of the emission

maximum remaining constant after that.

3.4. Extent of partition into cholesterol-containing bilayers

POPC bilayers having 33% molar cholesterol are

homogeneous [41] and can be regarded as model compo-

sitions to study liquid-ordered-like patches in biological

membranes [42]. Both blue-shifted emission spectra and

increased fluorescence quantum yield are detected when

pep-1 is in the presence of POPC/cholesterol vesicles.

Evidence for self-quenching at high peptide/lipid ratios is

obtained (data not shown), as before with DPPC. Never-

theless, the apparent extent of partition is close to the one

measured when only POPC was used, (Kp = (3.4F
0.4)�103 for low ionic strength and (2.2F0.6)�103 for

physiologic ionic strength). Cholesterol affects the partition

patterns but not significantly its extent i.e. it favours sulfur/

indole interactions, whether by modulation of its organ-

Fig. 3. Partition kinetics of 6.88 AM pep-1 (10 mM HEPES buffer pH 7.4

containing 150 mM NaCl) in 3.75 mM DPPC:DPPS (4 :1) LUVs. Fit was

realized with Eq. (A.III.11) (see Appendix C).

Table 1

Parameters of 6.88 AM pep-1 kinetic incorporation in LUVs, determined by

non-linear regression fitting of Eq. (AIII.11) (see Appendix C)

Lipida t1/2 (�102 ms) Kp (�104)

POPC 6.9F5.2 1.2F0.7

POPC:POPG (4 :1) 0.5F0.3 3.4F1.8

POPC:col (2 :1) 1.9F0.3 1.5F0.5

DPPC 2.4F0.8 1.4F0.4

DPPC:DPPS (4 :1) 1.2F0.3 2.6F0.6

a The final lipidic concentration in each case is 3.75 mM (10 mM HEPES

buffer pH 7.4 containing 150 mM NaCl).
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ization, or by forcing peptide location in a narrower space

of the membrane. The second hypothesis seems more

reasonable, on the account of the results obtained with

DPPC.

3.5. Kinetics

Partition of pep-1 into lipid bilayers occurs in the

second time range, presenting an hyperbolic-like depend-

ence of fluorescence intensity with time (Fig. 3).This

dependence was rationalized in terms of a simple

partition model (Appendix C) and t1/2= ln 2 /kin, as well

as Kp, were calculated by fitting Eq. (AIII.11) to the

experimental data (Table 1). Partition is faster for gel-phase

and liquid-ordered membranes relative to liquid-crystal

ones. Anionic lipids decrease t1/2. There is a correlation

between partition extent and velocity. In spite of differences

in methodologies to determine the Kp’s, the ones obtained

from kinetic data are in fair agreement with those obtained

in steady-state experiments (the effect of negative lipids is

well pronounced).

3.6. Pep-1 location in the lipid palisade

In-depth location on the pep-1 Trp residues was carried

out by means of fluorescence quenching with doxyl

derivatized stearic acid. The closer the Trp residues are

to the quencher group, the more efficient is the quench-

ing. Thus 5DS probes the bilayer interface while 16DS

probes its core. More refined methods [30] are difficult to

apply because the Trp residues span a 9-amino acids

sequence in the peptide. Stern–Volmer plots show down-

ward deviation from linearity (Fig. 4). This can be due to

the existence of fluorescence sub-populations with differ-

ential accessibility to the quencher [23]. In the limit, a

fraction of the fluorophores may be completely segregated

from the quenchers [43]. For instance incomplete partition

into membranes (XLb1) renders a fraction of fluorophores

completely inaccessible to lipophilic quenchers. Thus, Eq.

(2) was used for data analysis. fB should be equal to the

fraction of light emitted from the incorporated peptide, fL,

which can be calculated from Kp [29]

fL ¼ IL=IWð ÞKpcL L½ �
1þ IL=IWð ÞKpcL L½ � ð6Þ

The results are presented in Table 2. Regardless of the

lipidic systems or peptide concentrations, 5DS is a more

efficient quencher than 16DS. This is evidence of a

shallow position of the so-called hydrophobic region of

Fig. 4. Pep-1 location in POPC LUVs. Stern–Volmer plot of the

fluorescence quenching of 6.88 AM Pep-1 by 5DS (circles) and 16DS

(squares) concentration. Effective quencher concentration in lipidic phase

was determined using Eq. (5). Eq. (2) was fitted to data by means of non-

linear regression. Lipidic concentration is 3.5 mM in a 10 mM HEPES

buffer pH 7.4 containing 10 mM NaCl.

Table 2

Emission fluorescence quenching of pep-1, incorporated in LUVs, by 5DS and 16DSa

[pep-1] (AM) Lipid Ionic strength fL fB ,5DS KSV,5DS (M� 1) fB ,16DS KSV,16DS (M� 1)

6.88 POPC low 0.90 0.95F0.43 22.1F2.6 0.92F0.45 9.7F1.1

physiologic 0.94 1 12.3F0.5 1 3.6F0.1

POPC:POPG (4 :1) physiologic 0.99 0.96F0.24 29.4F1.9 1 6.3F0.1

DPPC low 0.94 0.95F0.22 70.4F6.3 1 15.7F0.4

physiologic 0.98* 0.97F0.30 207F28 1 16.5F0.7

DPPC:DPPS (4 :1) physiologic 0.99* 0.92F0.33 374F61 1 8.8F0.4

1.45 POPC physiologic 0.95* 0.74F0.24 27.2F3.8 1 3.0F0.1

POPC:POPG (4 :1) physiologic 0.98* 0.78F0.33 29.9F5.2 1 6.3F0. 4

DPPC:DPPS (4 :1) physiologic 0.99* 0.81F0.45 262F67.9 0.77F0.20 22.4F2.4

a Total lipidic concentration was 3.5 mM. Assays were performed in 10 mM HEPES buffer containing 10 mM (low ionic strength) or 150 mM (the so-called

physiologic ionic strength) NaCl. fB and KSV were determined by fitting Eq. (2) or Eq. (1) ( fB=1) to experimental data. fL was determined by application of Eq.

(6) using Kp values obtained by the steady-state or kinetic methodologies (marked with *).

Table 3

Emission fluorescence quenching of 6.88 AM pep-1, incorporated in LUVs,

by acrylamidea

Lipid [phosphine] (mM) KSV (M� 1)

POPC 0 3.1F0.5

1 17F4.5

POPC:POPG (4 :1) 0 2.7F0.4

1 30.9F9.9

DPPC 0 3.1F0.2

1 69.4F16.2

DPPC:DPPS (4 :1) 0 3.8F0.2

1 19.3F3.5

a Total lipidic concentration was 3.5 mM. Assays were performed in 150

mM (the so-called physiologic ionic strength) NaCl. fB and KSV were

determined by fitting Eq. (2) to experimental data.
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pep-1 at the membrane interface. fL is in agreement with

fB,5DS and fB,16DS, given the intrinsic experimental error. It

is interesting to notice that the quenching efficiency using

lipophilic doxyl probes is bigger in gel-phase membranes.

This may be due to segregation of both fluorophore and

quenchers to defect lines in the gel matrix, favouring static

quenching mechanisms at high local concentrations in a

molecular scale.

To further search the membrane insertion extent of pep-1,

fluorescence quenching experiments using the hydrophilic

quencher acrylamide were carried out at 6.88 AM pep-1 and

150 mM NaCl. Results presented in Table 3 demonstrate

that fluorescence emission of pep-1 in the presence of LUVs

is not efficiently quenched by acrylamide. Although Trp

residues are located near the water–lipid interface, they are

protected from aqueous environment. In the presence of a

reducing agent the quenching efficiency was markedly

improved, which suggests that pep-1 is not so extensively

incorporated in lipidic vesicles. These results are in agree-

ment with partition data.

4. Conclusions

In a recently published work [17] the capacity of pep-1

to translocate across a lipidic bilayer was demonstrated.

Translocation in vesicles only occurs in the presence of a

transmembrane potential. The nature of cell membrane

(negatively charged inside and neutral outside) prompted

us to evaluate the pep-1 affinity for lipidic bilayers in

different conditions. The information gathered in the

present study highlights some important features of

environmental factors that may be crucial to pep-1

molecular action at the biological membrane level. Fig. 5

gathers the information into a mechanistic model. Most

biomembranes are asymmetrically charged (neutral at the

outer surface and negative inside [38]). The present study

shows that Pep-1 in the outer aqueous environment inserts

extensively into membranes, whether at high or low

concentration, even when no transbilayer potential is

present. After anchorage at the bilayer surface, electrostatic

attraction combined with lipid bilayer perturbation prob-

ably causes translocation into the inner leaflet of the

membrane [17]. Being an anionic interface, the release into

the cellular environment could be problematic if it was not

for the pep-1 reduction (Fig. 5), which turns the peptide

aggregates into stable structures with low Kp. This makes

the process irreversible in practice inside cells and pep-1 is

then available for uptake by cellular compartments.

Results obtained with DPPC suggest that the liquid hete-

rogeneity boundaries in biological membranes may serve as

gateways for pep-1 crossing. Membrane fusion may

also facilitate translocation, as addressed by Terrone et al.

(2003) [16].

Fig. 5. Mechanistic model for the environmental factors that lead to cellular uptake of pep-1. Pep-1 in the outer aqueous environment incorporates extensively

in lipidic bilayers (see text) and translocation occurs, mainly due to membrane perturbation and electrostatic interaction [17]. This sketch depicts the influence

of a reducing environment at the cell interior, which is responsible for membrane detachment of pep-1 (thus, it is a crucial factor in pep-1 functionality).

Although partition equilibrium of the dimerized peptide to the negatively charged inner leaflet of the mammals’ model membranes (A) greatly favours lipidic

phase (see text), reduction of pep-1 in the cell interior combined with a partition equilibrium (B) which favours aqueous phase for the monomeric peptide (see

text) results in availability of free pep-1 inside the cell. Light blue fragments represent the Lys-rich hydrophilic domain. In dark blue are the Trp-rich domains.
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Appendix A. Theoretical calculation of the peptide

fluorescence emission spectrum when it is completely

inserted in lipid bilayers

The Trp emission fluorescence is very sensitive to the

polarity of the surrounding solvent. The total emission

spectrum of pep-1, It(k), is dependent both on the spectrum

of pep-1 sub-population incorporated in lipid, IL(k), and the

spectrum of the sub-population of the fluorophore present in

aqueous solution, IW(k),

It kð Þ ¼ nLiL kð Þ þ nWiW kð Þ ¼ IL kð Þ þ IW kð Þ ðAI:1Þ

where ii(k) is the spectrum of one molecule and ni the

number of molecules in lipid, L, or in water, W. Eq. (AI.1)

can be rewritten,

It kð Þ ¼ nLULIL;N kð Þ þ nWUWIW;N kð Þ ðAI:2Þ

where Ii,N(k) is the normalized emission spectrum; UL and

UW are the quantum yield in lipid and water, respectively.

Eq. (AI.2) can be rewritten in terms of the molar fraction of

peptide in lipid, XL, and in water, XW,

It kð Þ
nL þ nW

¼ XLULIL;N kð Þ þ XWUWIW;N kð Þ ðAI:3Þ

It(k), can be expressed in terms of the average quantum

yield of peptide, hUiL,W,

It kð Þ ¼ nL þ nWð ÞhUiL;WIt;N kð Þ ðAI:4Þ

hUiL;W ¼ XLUL þ XWUW ¼ 1� XWð ÞUL þ XWUW

ðAI:5Þ

Combining Eqs. (AI.3), (AI.4) and (AI.5):

IL;N kð Þ¼ 1þ XW

1� XW

UW

UL

� �
It;N kð Þ � XW

1� XW

UW

UL

IW;N kð Þ

ðAI:6Þ

Considering the Eq. (4) (see text),

XW

1� XW

c
1

KpcL L½ � ðAI:7Þ

Therefore, the peptide emission spectrum when totally

inserted in lipid membranes, is obtained,

IL;N kð Þ¼ 1þ 1

KpcL L½ �
UW

UL

� �
It;N kð Þ � 1

KpcL L½ �
UW

UL

IW;N kð Þ

ðAI:8Þ

Appendix B. Partition formalism accounting for

self-quenching in membranes

The quantum yield of a fluorophore population is a linear

combination of its components,

U ¼ XLUL þ XWUW ðAII:1Þ

Eq. (4) (see text) can be applied to most experimental con-

ditions (lipidic volume very small relative to the total sam-

ple volume, cL[L]bb1). Combining Eqs. (AII.1) and (4):

U ¼ cLKp L½ �
1þ cLKp L½ � UL þ

1

1þ cLKp L½ � UW ðAII:2Þ

Considering that there is no significant spectral shift

influence on the measured fluorescence intensity, I:

I ¼ cLKp L½ �
1þ cLKp L½ � IL þ

1

1þ cLKp L½ � IW ðAII:3Þ

where IL is the emission intensity of the fluorophore

molecules incorporated in lipid, in the case of self-

quenching absence. IL is constant if the fluorophore

concentration is maintained throughout the experiment. In

the case of existing self-quenching, IL is dependent on

lipidic concentration. When lipid concentration is low, the

fluorophore concentration in the membrane is high, and the

self-quenching notable. In the case of self-quenching, IL is

the intensity that would be recorded in case all fluorophores

had the quantum yield of molecules incorporated in lipid at

infinite dilution.

In homogeneous solution, self-quenching can be

described by, [1]

1

I
¼ kf þ knr

Iexcelkf F½ � þ
kq

Iexcelkf
ðAII:4Þ

where Iexc is the excitation light intensity, kq is the kinetic

constant of the quenching process, kf is the radiative

fluorescence constant, and [F] is the fluorophore concentra-

tion. Considering k1=IexcUel and k2 ¼ kq
kf

1
el , the fluorescence

intensity of flurophore can be described by Eq. (AII.5),

I ¼ k1 F½ �
1þ k2k1 F½ � ðAII:5Þ

In a partition experiment, self-quenching is a conse-

quence of fluorophore compartmentalization inside the

lipidic matrix. Imagining that all illuminated volume is

occupied by lipidic matrix (limit condition for IL) and that

the lipidic concentration is constant, the fluorescence
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intensity dependence on fluorophore concentration, IL([F])

is dictated by Eq. (AII.5), where [F] stands for the

fluorophore concentration in the lipidic matrix ([F]L).

In this limit situation, [F]L=nt/vt, where nt is the total

number of solute moles and vt is the total illuminated

volume. However, in attainable experimental conditions,

only a fraction of the lipid is being illuminated. This

fraction equals the fraction of fluorophores being illumi-

nated (ni /nt, where ni and nt are the illuminated and total

moles of fluorophore, respectively). Thus,

I L½ �ð Þ ¼ k1 F½ �L
1þ k2k1 F½ �L

ni

nt
¼ k1 F½ �t

1þ k2k1 F½ �L
ðAII:6Þ

([F]t is the fluorophore concentration over the whole

volume). Taking Eq. (3) (see text), [F]L is related with

[F]t,

F½ �L ¼ Kp

1þ KpcL L½ � F½ �t ðAII:7Þ

So, fluorescence intensity dependence on lipid concen-

tration is:

I L½ �ð Þ¼ k1 F½ �t
1þ k2k1

Kp F½ �t
1þ kpcL L½ �

¼k1 F½ �t
1þ KpcL L½ �

1þ KpcL L½ � þ k2Kpk1 F½ �t
ðAII:8Þ

k1[F]t= IL is the fluorescence emission intensity recorded

in the absence of self-quenching, so,

I L½ �ð Þ ¼ IL
1þ KpcL L½ �

1þ KpcL L½ � þ k2KpIL
ðAII:9Þ

Combining Eqs. (AII.3) and (AII.9),

I ¼ cLKp L½ �IL
1þ KpcL L½ � þ k2KpIL

þ IW

1þ cLKp L½ � ðAII:10Þ

Appendix C. Kinetic of partition formalism

If the limit conditions are,

nW t ¼ 0ð Þ ¼ nt; nL t ¼ 0ð Þ ¼ 0

nL t ¼ lð ÞccL L½ �KpnW

0btbl nW tð Þ ¼ nt � nL tð Þ

the fluorescence intensity dependence on time can be

described by:

I tð Þ~ULnL þ UWnW

I t ¼ 0ð Þ~UWnt

0btbl

therefore,

I tð Þ
I t ¼ 0ð Þ ¼ UL

UW

nL tð Þ
nt

þ nW tð Þ
nt

ðAIII:1Þ

The relative intensity, IR(t) = I(t) p I(t = 0), can be rewritten:

IR tð Þ ¼ UL

UW

� 1

� �
nL tð Þ
nt

þ 1 ðAIII:2Þ

At t =l,

nL t ¼ lð Þ
nW t ¼ lð Þ ¼ cL L½ �Kp ðAIII:3Þ

nL t ¼ lð Þ
nt � nL t ¼ lð Þ ¼ cL L½ �Kp ðAIII:4Þ

nL t ¼ lð Þ
nt

¼ cL L½ �Kp

1þ cL L½ �Kp

ðAIII:5Þ

Kp can be expressed in terms of kinetic constants,

Kp ¼
kin

kout
ðAIII:6Þ

where kin and kout are the first-order velocity constants of the

fluorophore entering and leaving the lipidic matrix, respec-

tively. Under the framework of our kinetic model, [2]

kint ¼
nL t ¼ lð Þ

nt
ln

nL t ¼ lð Þ
nt t ¼ lð Þ � nL tð Þ

� �
ðAIII:7Þ

Therefore,

exp kint
nt

nL t ¼ lð Þ

� �
¼ nL t ¼ lð Þ

nt t ¼ lð Þ � nL tð Þ ðAIII:8Þ

But

nL tð Þ
nL t ¼ lð Þ ¼ 1� exp � nt

nL t ¼ lð Þ kint
� �

ðAIII:9Þ

combining Eq. (AIII.5) with Eq. (AIII.9),

nL tð Þ
nt

¼ cL L½ �Kp

1þ cL L½ �Kp

1� exp � nt

nL t ¼ lð Þ kint
� �� �

ðAIII:10Þ

when this term is applied in Eq. (AIII.2),

IR tð Þ ¼ UL

UW

� 1

� �
cL L½ �Kp

1þ cL L½ �Kp

� ð1� exp � 1þ Kp L½ �cL
cL L½ �Kp

� �
kintÞ þ 1 ðAIII:11Þ
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 46 

2.2.2. Consequences of nonlytic membrane perturbation to the 

translocation of the cell penetrating peptide pep-1 in lipidic vesicles. 
 

2.2.2.1. Motivation and methodologies used 

After characterization of environmental factors that improve pep-1 affinity for 

lipidic membranes and the possible location of this peptide in the membrane, functional 

abilities of pep-1 and the effects on membrane integrity were aimed. The possibility of 

vesicle aggregation and fusion of lipids; induction of phospholipid flip-flop; segregation 

of anionic phospholipids; ability to induce pore formation and to translocate across cell 

membrane were evaluated. The results and conclusions were published in the article 

titled: Consequences of nonlytic membrane perturbation to the translocation of the cell 

penetrating peptide pep-1 in lipidic vesicles. 

 

The stability of liposomes dispersion is mainly governed by three types of forces: 

electrostatic repulsion, van der Waals attraction and hydration forces [147]. The 

electrostatic force is affected by charge density of the vesicles and the electrolyte 

concentration, while van der Waals interactions can be modulated by modification of 

the vesicle size. The magnitude of hydration force is related to the energy required to 

remove water from the surface. The presence of polyvalent cations is able not only to 

charge surface density upon adsorption to the membrane but also to dehydrated the lipid 

headgroup and thereby induce aggregation of phospholipid vesicles. Pep-1 has 7 

positive charges and a positive global charge (+3) at physiological conditions. 

Regarding this positive global charge and peptide affinity for lipidic membranes it 

would be expected that this peptide could work as a destabilising agent, as observed for 

penetratin [147]. Optical density was employed to monitor vesicle aggregation induced 

by pep-1. Turbidity is directly proportional to the R2 (R, particle size) [148], 

consequently, small increases in the size of the liposomes due to aggregation originate a 

high increase in turbidity which can be followed by optical density. The possibility of 

vesicle aggregation was further confirmed with fluorescence microscopy with vesicles 

doped with a Rhodamine B-labelled phospholipid.  

 

Vesicle fusion may result from a variety of stimuli able to destabilize lipidic 

membranes [149]. Some examples of propitious conditions for fusion events occurrence 
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are discussed in the reference [150]. Pep-1 is amphipathic, which is a common 

characteristic among fusiogenic peptides [151]; the possibility of vesicle fusion induced 

by this peptide was evaluated by the use of Förster Resonance Energy Transfer (FRET) 

methodology. FRET is referred to the process in which the energy associated with 

electronic excitation in a molecule (donor) is “shared” with a nearby molecule (acceptor) 

trough dipole-dipole coupling. The energy shared is dependent on distance between 

dipoles [152] and is strongly dependent on the overlap of emission spectrum of donor 

molecule and excitation spectrum of acceptor molecule.  

To follow vesicle fusion induced by pep-1 FRET between 7-nitro-2-1,3-

benzoxadiazol-4-il (NBD; acceptor) and Rhodamine (Rh; donor) was followed. NBD is 

a fluorophore with an emission at about 463nm and Rh is excited around 470nm. 

Vesicles doped with NBD-PE and with Rh-PE were mixed with non-labelled vesicles. 

In the case of fusion of vesicles induced by pep-1, NBD and Rh molecules become 

more separated on average and a decrease in FRET efficiency is monitored (Figure 2.6). 

 
Figure 2.6. Fusion of vesicles can be 

followed by FRET between NBD 

(yellow, donor) and Rh (red, acceptor). 

A decrease in FRET efficiency is 

expected upon fusion of labelled 

vesicles (doped with Rh and NBD) with 

non-labelled vesicles. A decrease in 

FRET efficiency results from an 

increase in the distance between donor 

and acceptor. Image adapted from 

http://probes.invitrogen.com/handbook/. 

 

 

Pep-1 affinity to lipidic membranes increases in the presence of anionic 

phospholipids [153] (see section 2.2.1); results obtained with other CPPs suggest that 

the internalization mechanism is dependent on the interaction with anionic lipids or 

other negatively-charged molecules at cell surface [63, 66, 70, 154]. A specific 

interaction with anionic phospholipids and the possibility of pep-1-induced anionic lipid 

segregation were tested. This was also followed by FRET between NBD and Rh by the 

use of vesicles labelled with C6-NBD-PG (anionic phospholipid) and Rh-PE 

+ 
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(zwitterionic phospholipid). In the case of segregation of anionic phospholipids due to 

peptide-inducing clustering, the average distance between Rh and NBD would increase 

and a decrease in FRET efficiency upon peptide addition should be notorious.  

 

Some basic peptides are able to induce membrane perturbation that provokes 

membrane leakage and ultimately membrane lyses. This is a common feature among 

AMPs such as Melitin [155, 156], Magainin 2 [157] and Buforin 2 [158]. The 

possibility of pore formation induced by pep-1 was tested by means of NBD 

fluorescence emission quenching in the presence of Co2+ ions [159]. This quencher can 

not access the inner core of membranes but is able to quench NBD molecules attached 

to phospholipid headgroups in the water-lipid interface [159]. When vesicles are doped 

with NBD-labelled phospholipid (N-NBD-PE), NBD molecules are homogenously 

distributed in the two layers. Upon Co2+ addition, fluorescence emission of NBD 

molecules in the outer layer is quenched, while NBD molecules in the inner layer are 

inaccessible to the quencher because Co2+ ions are notable to transverse the lipid bilayer. 

In the case of pore formation upon peptide addition, the membrane becomes permeable 

to Co2+ ions, which will result in quenching of the fluorescence emission of NBD 

molecules in the inner layer (Figure 2.7).     

 
 

Figure 2.7. Pore formation 

followed by quenching of NBD 

with Co2+ ions. NBD fluorophores 

are homogeneously distributed 

trough inner and outer layers. 

Upon Co2+ addition A) 

fluorescence emission of NBD 

fluorophores in the outer layer will 

be quenched; B) in the case of 

pore formation, the membrane 

becomes impermeable to Co2+ 

ions, which in addition will 

quench NBD molecules in the 

inner layer.  
 

+ CO2+ 

A 

B 
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The pore formation was also evaluated by means of Rh fluorescence, which is 

quenched by pep-1 molecules. Vesicles were prepared with Rh B-containing buffer in 

the absence or in presence of pep-1. Then, non-encapsulated Rh B was removed by 

exclusion chromatography. For this particular study MLVs instead of LUVs were used 

to enable a gradual effect in the case of pore formation due translocation through the 

various lamellae. In the sample prepared with peptide, pep-1 is accessible to 

encapsulated Rh B molecules, serving as control; in the samples prepared without 

peptide, pep-1 was added later than and the quenching efficiency was compared to the 

control. If pep-1 does not form pores, it does not quench the Rh B molecules 

encapsulated in the vesicles. In the case of pore formation, pep-1 quenches the Rh B 

fluorophores inside the liposomes and the Rh fluorescence intensity is similar to the one 

obtained when pep-1 was added prior to vesicle formation. 

 

Peptide incorporation in lipidic vesicles can promote flip-flop (transbilayer 

movement) of phospholipids due to lipidic bilayer perturbation [160-162]. Peptide 

mediated “flop” is primarily the results of local disturbances of the bilayer structure in 

the vicinity of the peptide [161].   

If pore formation is not observed, flip-flop can be evaluated with a methodology similar 

to the one used to evaluate pore formation (see Figure 2.7) but with C6-NBD-PG 

instead of N-NBD-PE (in the former molecule NBD fluorophore is in the acyl chain 

while in N-NBD-PE the fluorophore is attached to the headgroup). C6-NBD-PG can 

undergo flip-flop [161, 163, 164], whereas NBD-PE cannot (NBD fluorophores 

derivatized in the polar group of the phospholipids inhibit flip-flop due to hydrophilic 

nature of the probe and its location [165]). In the case of flip flop an increase in NBD 

fluorescence emission quenching induced by Co2+ ions is expected after peptide 

addition.   

 

The biological activity of Pep-1 is dependent on its capacity to translocate across 

cell membrane. The possibility of pep-1 to translocate through model membranes was 

tested. The methodology used took advantage from the pep-1 quencher properties 

relative to Rh fluorescence. For these studies the fluorophore was placed in the lipidic 

bilayers attached to a phospholipid (Rh-PE) and two approaches were used. In the first 

one MLVs doped with Rh-PE were prepared with buffer in the presence or absence of 
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pep-1. In this later sample, pep-1 was added afterwards and the Rh fluorescence 

quenching induced by the pep-1 was compared with the value obtained with the sample 

where the pep-1 was added prior to vesicle formation. In the second approach LUVs 

doped with Rh-PE were used, where the fluorophore is distributed homogeneously in 

the two layers. Upon peptide addition Rh fluorophores outside the membrane will be 

quenched; in the case of translocation pep-1 will became accessible to Rh molecules in 

the inner layer and a more efficient quenching will be notice (similar to what is 

represented in Figure 2.7). 

Terrone et al. [78] verified that penetratin and related CPPs are able to 

translocate across model membranes by a physical mechanism dependent on 

transmembrane potential. The transmembrane potential similar to the one presented in 

cellular membranes (negative inside) can be mimetized with liposomes loaded with K+-

containing buffer and dispersed in a Na+-containing buffer after valinomycin addition. 

Valinomycin forms highly specific pores for potassium ions (at variance with sodium 

ions, for instance) in the cell membrane. It works as a potassium-specific carrier 

facilitating the passage of potassium ions across membranes and modifying the 

electrochemical potential gradient [166, 167], creating a net charge with an excess of 

positive charges in of the bilayer sides. 

 

The methodologies above referred were used to evaluate the functional features 

of pep-1 with model membranes; the manuscript with the results obtained is presented 

afterwards.    
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Consequences of Nonlytic Membrane Perturbation to the Translocation of the Cell
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ABSTRACT: The action of the cell penetrating pep-1 at the molecular level is not clearly understood. The
ability of the peptide to induce (1) vesicle aggregation, (2) lipidic fusion, (3) anionic lipid segregation,
(4) pore or other lytic structure formation, (5) asymmetric lipidic flip-flop, and (6) peptide translocation
across the bilayers in large unilamellar vesicles was studied using photophysical methodologies mainly
related to fluorescence spectroscopy. Neflometry and turbidimetry techniques show that clustering of
vesicles occurs in the presence of the peptide in a concentration- and anionic lipid content-dependent
manner. Results from Forste¨r resonance energy transfer-based methodologies prove lipidic fusion and
anionic lipid segregation, but no evidence for pores or other lytic structures was found. Asymmetric lipid
flip-flop was not detected either. A specific method related to the quenching of the rhodamine-labeled
lipids by pep-1 was developed to study the eventual translocation of the peptide. Translocation does not
occur in symmetrical neutral and negatively charged vesicles, except when a valinomycin-induced
transmembrane potential exists. Our work strongly suggests that the main driving force for peptide
translocation is charge asymmetry between the outer and inner leaflet of biological membranes and reveals
that pep-1 is able to perturb membranes without being cytotoxic. This nonlytic perturbation is probably
mandatory for translocation to occur.

The molecular ability to cross the biomembrane barrier
and introduce material into cells is a recent matter of interest
in research. So far, gene delivery technologies are most used,
but these kinds of delivery systems have some drawbacks,
such as low efficiency, poor specificity, poor bioavailability,
and toxicity (1). Introduction of proteins directly into a cell
is a better alternative because the posttranslation modification
is critical for the biological function of the protein (2).
Nevertheless traditional methods to introduce proteins have
low efficiency; the transduced protein often enters the
endocytic pathway and traffics to the lysosome where it will
be degraded and inactivated (2). New strategies for protein
transduction have been developed that use peptide carriers
designated as protein transduction domains (PTDs)1 (1-7).
These “vectors” are basic sequences capable of translocating
across the plasmatic membranes in a manner independent

of receptors or the endosomal pathway, carrying proteins
covalently linked (1-7).

Pep-1, a synthetic peptide carrier capable of introducing
active proteins into cells, has advantages over “genetic
therapy” because phenotype can be altered in less than 2 h
(3, 8, 9), as well as over other PTDs since the interaction
with proteins is independent of covalent links; the complex
pep-1/protein is promoted by hydrophobic forces (3, 8, 10).
The pep-1 has 21 amino acid residues (KETWWETWW-
TEWSQPKKKRKV), which can be divided into three
different domains: a “so-called” hydrophobic one, rich in
tryptophans (KETWWETWWTEW), a hydrophilic domain
with basic residues (KKKRKV), and a spacer between them
(SQP) (3, 8). The hydrophobic sequence is responsible for
the hydrophobic interactions with proteins (3, 8) and for the
intrinsic fluorescence of the peptide. The hydrophilic domain
improves intracellular distribution and the solubility of
peptide (3, 8). The spacer sequence is a link between the
other two domains (3, 8). Peptide is acetylated on the N
terminus and has a cysteamine group on the C terminus (8);
at physiological pH (7.4), the peptide has a global charge of
+3.

Like others PTDs, pep-1 translocates along biological
membranes in a manner independent of the endosomal
pathway (8), which suggests a physical process dictated by
the lipid bilayer. Pep-1 has high affinity for lipid bilayers,
and the presence of negative charges in the vesicles enhances
the partition to lipid bilayers, showing a strong electrostatic
interaction (11).

In the present paper, our aim is to present functional
abilities of the peptide (vesicle aggregation, dissociation, and
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1 Abbreviations: PTDs, protein transduction domains; HEPES, 2-(4-
(2-hydroxyethyl)-1-piperazinyl)ethanesulfonic acid; POPC, 1-palmitoyl-
2-oleoyl-sn-glycero-3-phosphocholine; POPG, 1-palmitoyl-2-oleoyl-sn-
glycero-3-(phospho-rac-(1-glycerol)); DPPC, 1,2-dipalmitoyl-sn-glycero-
3-phosphocholine; DPPS, 1,2-dipalmitoyl-sn-glycero-3-(phospho-L-
serine); C6-NBD-PC, 1-myristoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazol-
4-yl)amino]caproil]-sn-glycero-3-phosphocholine; C6-NBD-PG, 1-myrist-
oyl-2-[6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]caproil]-sn-glycero-3-
phosphoglycerol; N-NBD-PE, 1,2-dipalmitoyl-sn-glycero-3-phospho-
ethalonamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl); N-Rh-PE, 1,2-di-
palmitoyl-sn-glycero-3-phosphoethalonamine-N-(lissamine rhodamine
B sulfonyl); Rh B, rhodamine B; TX-100, Triton X-100; LUVs, large
unilamellar vesicles; MLVs, multilamellar vesicles; FRET, Forste¨r
resonance energy transfer; OD, optical density.
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fusion, pore formation in the lipidic bilayer, induction of
phospholipid flip-flop, segregation of anionic phospholipid,
and the ability to translocate) and to propose a molecular
model of action.

EXPERIMENTAL PROCEDURES

Reagents and Apparatus.Chariot, the commercial name
of pep-1, was obtained from Active Motif (Rixensart,
Belgium) with purity>95%; 2-(4-(2-Hydroxyethyl)-1-pip-
erazinyl)ethanesulfonic acid (HEPES), sodium chloride, and
chloroform (spectroscopic grade) were from Merk (Darm-
stadt, Germany); 1-palmitoyl-2-oleoyl-sn-glycero-3-phos-
phocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-
(phospho-rac-(1-glycerol)) (POPG), 1,2-dipalmitoyl-sn-
glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-
3-(phospho-L-serine) (DPPS), 1-myristoyl-2-[6-[(7-nitro-2-
1,3-benzoxadiazol-4-yl)amino]caproil]-sn-glycero-3-phos-
phocholine (C6-NBD-PC), 1-myristoyl-2-[6-[(7-nitrro-2-1,3-
benzoxadiazol-4-yl)amino]caproil]-sn-glycero-3-phospho-
glycerol (C6-NBD-PG), 1,2-dipalmitoyl-sn-glycero-3-phos-
phoethalonamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (N-
NBD-PE), and 1,2-dipalmitoyl-sn-glycero-3-phosphoethalon-
amine-N-(lissamine rhodamine B sulfonyl) (N-Rh-PE) were
from Avanti Polar-Lipids (Alabaster, Alabama); Triton X-100
(TX-100), rhodamine B (Rh B), and valinomycin were from
Sigma (St. Louis, Missouri); cobalt(II) chloride hexahydrate
(CoCl2‚6H2O) was from Acro´s organics (Geel, Belgium), and
tris-(2-cyanoethyl)phosphine (phosphine) was from molecular
probes (Eugene, Oregon).

The assays were performed at room temperature in a UV-
vis spectrophometer, Jasco V-530, in a spectrofluorometer,
SLM Aminco 8100 (equipped with a 450 W Xe lamp, Glan-
Thompson polarizers, and double monochromators), and in
a fluorescence microscope, Olympus BX41 (using band-pass
filters). The microscopy results were recorded in a digital
camera, Olympus camedia 4040 zoom. Solutions were
prepared in 10 mM HEPES buffer, pH 7.4, containing 150
mM NaCl (the so-called physiologic ionic strength). Osmo-
lalities were measured in a freezing-point depression os-
mometer (Osmometer Automatic; Knauer, Berlin, Germany).

Preparation of Lipid Vesicles. Large unilamellar vesicles
(LUVs) are a good model of biological membranes having
no significant curvature effects (typical 100 nm diameter)
(12). LUVs were prepared by the extrusion method described
elsewhere (13). To obtain multilamellar vesicles (MLVs),
the extrusion step was not performed. To study the effect of
transmembrane potential in translocation, LUVs were pre-
pared in HEPES buffer with 150 mM KCl or with 150 mM
NaCl and passed through a 10 mL Econo-Pac 10DG column
(Bio-Gel P-6DG gel with 6 kDa molecular weight exclusion)
packed in buffer containing 150 mM NaCl or 150 mM KCl,
respectively (determined dilution factor of vesicles is 1.2).
Addition of valinomycin immediately induces a negative
potential in K+-loaded vesicles in Na+-buffer and a positive
one in Na+-loaded vesicles in K+-buffer (14).

Vesicle Aggregation Induced by Pep-1. Vesicle aggrega-
tion was monitored by optical density (OD) at 436 nm as
described elsewhere (15). Briefly 6.88µM pep-1 was added
to a LUV suspension; additional lipid suspension aliquots
were added after signal stabilization. LUVs of POPC or of
different molar ratios of POPC and POPG (4:1 and 1:1) were

prepared. Initial and final lipidic concentrations used in the
assays were 25 and 106 or 106 and 222µM, respectively.
The pep-1 concentration effect was tested with POPC/POPG
(1:1) vesicles; 0.54, 1.45, 3.40, and 6.88µM pep-1 concen-
trations were used. Fluorescence microscopy studies were
carried out with POPC vesicles doped with 1% of N-Rh-
PE, a 510-550 nm excitation filter, and a 590 nm band-
pass filter. The final lipidic and pep-1 concentrations used
were 0.1 and 1.45 or 6.88µM, respectively.

LUV Fusion and Anionic Lipid Segregation Induced by
Pep-1. Fusion was tracked using the Forste¨r resonance energy
transfer (FRET)-based methodology described before by
others (16-18). Briefly, vesicles doped with both 1%
N-NBD-PE (donor) and 1% N-Rh-PE (acceptor) and unla-
beled vesicles were mixed; after that, 0.54, 1.45, or 6.88µM
pep-1 was added. If fusion between unlabeled vesicles and
donor/acceptor-labeled vesicles occurs, the average distance
between donors and acceptors increases, that is, FRET
efficiency decreases. POPC, POPC/POPG (4:1), and POPC/
POPG (1:1) were used (final lipid concentrations of 50 and
100 µM). Fluorescence intensity was followed withλexc )
463 nm (NBD absorption) andλem ) 590 nm (Rh emission).
Control experiments were carried out in all cases. Fluores-
cence quenching of Rh by pep-1 was evaluated by adding
pep-1 (0-6.88 µM) to 1% N-Rh-PE doped vesicles to
establish the minimal fluorescence intensity decrease ex-
pected (i.e., corresponding to fusion absence). The other end
of the fusion scale (100%) was calculated by adding excess
TX-100 surfactant (0.2% v/v) to the vesicle suspension.
Fusion extent was calculated by linear interpolation between
these limits.

Pep-1-induced anionic lipid segregation was also followed
by FRET between NBD and Rh. Fluorescence emission
intensity of Rh B dependence on pep-1 concentration (0-
6.88 µM) was monitored in LUVs of POPC and POPC/
POPG (4:1) containing 1% C6-NBD-PG and 1% N-Rh-PE.
Final lipidic concentrations of 0.05, 0.1, and 1 mM were
used. Control assays were carried out with C6-NBD-PC
(zwiterionic) instead of C6-NBD-PG.

Pore Formation and Phospholipid Flip-Flop. Co2+ is an
aqueous quencher of NBD fluorescence (19, 20) and is
accessible to N-NBD-PE and C6-NBD-PC inserted in
vesicles (20). Pore formation was tested as described
previously by others (20). Briefly vesicle suspensions of
POPC, POPC/POPG (4:1), DPPC, and DPPC/DPPS (4:1)
containing 1% N-NBD-PE were prepared in the absence and
presence of 20 mM CoCl2. In vesicles prepared without Co2+,
the quencher was added after LUV formation to guarantee
that Co2+ is accessible only to NBD present in the external
layer. No significant shrinkage was detected by turbidimetry
in agreement with the small effect expected for vesicles upon
osmolality variation due to 20 mM Co2+ (in/out osmolality
ratio ) 0.83; see Figure 1 in ref21). NBD fluorophores
derivatized in the polar group of phospholipids inhibit flip-
flop (17, 22) given the hydrophilic nature of the probe and
its localization (17). The same methodology was used to
study flip-flop, but LUVs were doped with 1% C6-NBD-
PC or 1% C6-NBD-PG. Phospholipids derivatized in short
acyl chains can undergo flip-flop (23-25). Flip-flop was
studied in POPC and DPPC LUVs. Fluorescence emission
intensity (λexc ) 460 nm andλem ) 531 nm; excitation
wavelength is optimized for best NBD/Co2+ absorbance
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ratios) was recorded before and after 1.45 and 6.88µM (final
concentrations) pep-1 addition. Control assays without Co2+

were performed. The lipid concentration used was 100µM.
The data values were corrected for the inner filter effect (19).

Pore formation was also evaluated in LUVs loaded with
30 µM rhodamine B. Buffer containing the desired Rh B
concentration was added to the lipidic film prior to MLV
formation; after the extrusion step, the vesicle suspension

FIGURE 1: Vesicle aggregation induced by pep-1. Panel A shows the time course of the optical density (OD) at 436 nm showing aggregation
of POPC/POPG (4:1) LUVs. After signal stabilization, 6.88µM pep-1 was added to the 25µM lipidic suspension in 10 mM HEPES buffer,
pH 7.4, containing 150 mM NaCl. Peptide addition induced vesicle aggregation. Further addition of vesicle suspension to a 106µM lipidic
concentration induces more vesicle aggregation. Panel B shows the dependence of the normalized OD at 436 nm of a 25µM lipidic
suspension of POPC, POPC/POPG (4:1), and POPC/POPG (1:1) LUVs on pep-1 effective concentration in the membrane (eq 10 in ref26)
below (9) and above (b) critical concentration for aggregate organization (3.4( 1.7µM; ref 11) (see Table 1). Panel C shows micrographs
of POPC LUVs doped with 1% N-Rh-PE obtained by fluorescence microscopy with a 510-550 nm excitation filter and a 1000× amplification
(1) in the absence and in the presence of (2) 1.45 and (3) 6.88µM pep-1. In micrograph 3, less and larger bright units (aggregated vesicles)
are presented. Fusion of subunits occurs as seen in amplifications 4 and 5 (6.88µM pep-1). It is possible to identify different LUV subunits
that constitute the aggregates. Panel D shows the percentage of bright units in preparations of POPC LUVs doped with 1% N-Rh-PE
observed by fluorescence microscopy with a 510-550 nm excitation filter (filled columns refer to control, hatched to 1.45µM pep-1
addition, and unfilled to 6.88µM pep-1): (a) bright units where only one LUV could be noticed, (b) aggregates where fusion already
occurred, and (c,d) aggregates formed by 2-3 and 4 or more units, respectively.
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was eluted through a 10 mL Econo-Pac 10DG column (Bio-
Gel P-6DG gel with 6 kDa molecular weight exclusion)
packed with buffer (without Rh B) to remove nonencapsu-
lated Rh B. Encapsulated Rh B fluorescence intensity was
recorded (λexc ) 554 nm andλem ) 576 nm) prior to and
after addition of 1.45 and 6.88µM peptide.

Translocation Assays.Vesicles doped with 1% N-Rh-PE
(100 µM total lipid concentration) were used to evaluate
fluorescence emission quenching of Rh by pep-1. The Rh
emission fluorescence intensity was monitored atλexc ) 570
nm andλem ) 590 nm.

To study translocation in absence of transmembrane
potential, POPC and POPC/POPG (4:1) MLVs were prepared
in the absence and presence of 1.45 or 6.88µM peptide.
Vesicles prepared directly in pep-1 suspensions are controls
because in this case pep-1 is accessible to Rh fluorophores
present in all lamellae. In the other experiments, pep-1 was
added to MLVs prepared in absence of pep-1 to a final
concentration of 1.45 or 6.88µM. The assays were repeated
in the presence of 1 mM phosphine. Usage of MLVs enables
a gradual effect in case translocation occurs.

Transbilayer potentials were created in POPC, POPC/
POPG (4:1), and POPC/POPG (1:1) vesicles (see Preparation
of Lipid Vesicles). Pep-1 was added to vesicles to a final
concentration of 6.88µM. After the fluorescence signal was
constant, valinomycin was added to vesicles at a 1:104 molar
ratio (mol/mol lipid;14; from ethanolic solution; final ethanol
concentration 0.2%). Controls without valinomicin (i.e., in
the absence of a transmembrane potential) were also
prepared. Pore formation (in POPC/POPG (4:1) LUVs) and
flip-flop (of C6-NBD-PC and C6-NBD-PG in POPC LUVs)
were also evaluated (see methodology in previous section)
in the presence of negative transmembrane potential. Vali-
nomycin was added after addition of 6.88µM pep-1.

RESULTS AND DISCUSSION

Pep-1 Induced Vesicle Aggregation.Vesicle aggregation
is dependent on three main forces (15): electrostatic repul-
sion, van der Waals attraction, and hydration. Multivalent
cations may alter the charge density at the vesicles surfaces,
as well as dehydrate the lipid polar groups, and therefore
eventually lead to aggregation of vesicles. Pep-1 is a
multivalent cation that anchors at the lipidic membrane
interface (11): this prompted us to study the effect of pep-1
on aggregation of vesicles. When the peptide is added to
LUVs of POPC/POPG 4:1 (molar), the optical density of
the solution slowly increases (Figure 1A) until a plateau is
reached∼100 min later. Further addition of lipids results in
a second increase in optical density (Figure 1A), that is, lipid
addition does not revert the vesicle aggregation, at variance
to penetratin-induced aggregation (15). Table 1 presents data
that account for the effect of anionic lipids, total lipidic
concentration, and peptide concentration on vesicle aggrega-
tion ability. Effective concentration of the peptide at the
lipidic environment was calculated in all cases to enable
direct comparisons (see ref11 and eq 10 in ref26). The
main experimental evidences from Table 1 are as follows:
(1) Anionic lipids favor aggregation, although the effect is
relatively weak (Figure 1B). (2) Addition of lipids to increase
the total lipid concentration also leads to further aggregation
(Figure 1A); when penetratin is used, the opposite effect is

observed (15), suggesting that pep-1 and penetratin do not
coincide in their mode of action at molecular level. (3) The
optical density obtained upon peptide addition when the
initial lipidic concentration is 106µM is different from the
one obtained when initial lipidic concentration is 25µM and
is increased to 106µM after peptide addition. The final
dimension of vesicle aggregates does not depend on the
lipidic concentration, only. Stepwise addition of lipid results
in bigger aggregates (in terms of light scattering intensity,
the effect of volume change superimposes to the simulta-
neous process of scattering particle concentration decrease).
One possible explanation is the ability of pep-1 to add
isolated vesicles to previously formed aggregates but inability
to cluster large previously formed aggregates. Stepwise
addition of vesicles enlarges previously formed aggregates
rather than create new small aggregates. (4) Pep-1 organiza-
tion in the aqueous environment (i.e., 1.45 vs 6.88µM in
Table 1) influences vesicle aggregation (Figure 1B).

Fluorescence microscopy studies using POPC vesicles
doped with N-Rh-PE confirm aggregation (Figure 1C). Pep-1
addition results in less and bigger bright units relative to the
control in the micrographs. At higher pep-1 concentration,
aggregation of smaller units is noticeable with a magnifica-
tion of 1000× (Figure 1C,D). Because turbidity is propor-
tional to the squared volume of scattering entities, a small
fraction of big aggregates may lead to high optical density
values.

Peptide-induced vesicle aggregation implies a severe
reduction in vesicle stability due to a decrease in electrostatic
repulsion and interference with the hydration layer. This
second factor seems dominant since POPC vesicle aggrega-
tion is quite significant and similar to the one obtained with
POPC/POPG (i.e., anionic vesicles).

Pep-1 Induced Vesicle Fusion. Vesicle fusion implies that
(1) the inner content of two or more vesicles is mixed and
(2) lipids from previously separated bilayers coexist in the
same bilayer after fusion (27). Fusion may result from a
variety of stimuli (27). Pep-1 induced lipidic vesicle fusion
seems plausible because vesicle aggregation (see previous
section) creates propitious conditions (28). Moreover, pep-1
is amphipathic, which is a common characteristic among
fusiogenic peptides (18).

Table 1: Vesicle Aggregation Induced by Pep-1

lipid

[lipid]
(µM)a

initial/final
XL

b

initial/final
[pep-1]T

(µM)

[pep-1]memb
(mM)c

initial/final
ODd

peptide/lı´pid

POPC 25/106 0.03/0.12 6.88 11.3/10.3 4.1/7.9
0.12/0.23 6.88 10.3/9.08 4.8/8.2

POPC/POPG 25/106 0.17/0.47 6.88 74.1/69.5 4.6/9.5
(4:1) 106/222 0.47/0.65 6.88 69.5/63.8 4.4/6.9

POPC/POPG 25/106 0.49/0.80 0.54 13.8/5.35 1.1/1.2
(1:1) 1.45 37.1/14.7 1.5/1.9

0.65/0.89 3.44 117/37.7 4.2/6.0
6.88 233/75.4 5.8/8.8

a Before peptide addition, lipid concentration was 25 or 106µM;
after more lipid was added, the final concentration became 106 or 222
µM, respectively.b The molar fraction of peptide inserted in lipid (XL)
was determined by eq 3 in ref34 using partition coefficients for pep-1
(11). c Pep-1 concentration in lipidic bilayer by application of eq 10 in
ref 26. d Optical density (OD) at 436 nm (normalized to [pep-1]) 0)
of POPC and POPC/POPG vesicles (prepared in 10 mM HEPES, pH
7.4, buffer containing 150 mM NaCl) after peptide, first number, and
more lipid addition, second number (see Figure 1B).
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The FRET-based methodology described elsewhere (16-
18) to study vesicle fusion was adapted to account for the
N-Rh-PE fluorescence quenching by pep-1 (Figure 2A). The
Rh fluorescence intensity depends on the exact effective
pep-1 concentration in the membrane environment, [pep-
1]memb (see eq 10 in ref26, reported as [Q]L), even in the
absence of fusion because N-Rh-PE fluorescence is quenched
by pep-1. This fluorescence emission intensity corresponding
to 0% fusion is calculated from the Stern-Volmer formalism
(Figure 2A,B). In excess TX-100, donor/acceptor mean
interdistance becomes much bigger than the Fo¨rster radius,
R0, minimizing the fluorescence intensity (100% of the fusion

scale). Figure 2B illustrates the data analysis procedure. NBD
quenching by TX-100 (18) is not relevant for our purpose.

The results obtained using different lipid concentrations,
lipidic charge densities, and pep-1 concentration are pre-
sented in Table 2. Fusion is only significant when [pep-1]
) 6.88µM, which is also true for aggregation. Anionic lipids
may not have a direct role in fusion. POPG interference with
fusion may result from enhanced partition into the membrane
(11). When fusion percentage is plotted as a function of [pep-
1]membfor systems having different anionic charge densities
and lipid concentrations (Figure 2C), one single homoge-
neous data set is obtained. Thus, [pep-1]memb seems to be

FIGURE 2: Vesicle fusion induced by pep-1. Fusion assays were monitored by FRET between NBD (donor) and rhodamine B (acceptor)
(λex ) 463 nm;λem ) 590 nm; sensitized emission of acceptor). Vesicle suspensions doped with 1% N-NBD-PE and 1% N-Rh-PE were
prepared in 10 mM HEPES, pH 7.4, buffer containing 150 mM NaCl. Panel A shows a Stern-Volmer plot of the fluorescence emission
quenching of 100µM POPC LUVs doped with 1% N-Rh-PE (λem ) 570 nm;λex ) 590 nm) by pep-1 (the effective pep-1 concentration
in membrane is considered; eq 10 in ref26). The Lehrer equation (see eq 11 in ref26) was fitted to the data (solid line). Panel B shows
the relative fusion scale of 50µM POPC/POPG (4:1) LUVs; 0% fusion (full line) is obtained by the Stern-Volmer plot of the Rh B
quenching by pep-1 (Figure 2A), and 100% fusion (dashed line) is the fluorescence emission of vesicle suspensions in excess TX-100.
Effective peptide membrane concentration in the membrane is used for the sake of comparison with other LUV compositions since the
extent of peptide partition is dependent on the anionic lipid composition. The filled circle refers to the fluorescence intensity obtained by
addition of 6.88µM total concentration of pep-1. Fusion percentage (22.1%) was calculated from linear interpolation. Panel C shows the
fusion percentage in POPC and POPC/POPG LUVs. All data were obtained in the presence of 6.88µM pep-1 total concentration; however,
effective concentration in membranes vary (see Table 2). Fusion extension and effective concentration in membranes are linearly correlated.

Table 2: Vesicle Fusion Induced by Addition of Pep-1

lipid
[lipid]
(mM)

[pep-1]Ta

(µM)
[pep-1]memb

b

(mM)
I0/Ic

(0% fusion)
I0/Id

(100% fusion)
I0/I

(assay) fusion (%)e

POPC 0.05 6.88 11.3( 3.9 1.30( 0.61 4.35( 0.07 1.45( 0.02 4.9( 0.07
POPC/POPG (4:1) 0.05 6.88 49.8( 39.8 1.38( 1.27 3.87( 0.09 1.93( 0.004 22.1( 0.05

0.1 6.88 39.0( 31.2 1.37( 1.27 3.15( 0.05 1.64( 0.02 15.2( 0.18
POPC/POPG (1:1) 0.05 0.54 9.3( 6.7 1.28( 1.08 3.98( 0.09 1.21( 0.02 0

1.45 24.9( 17.9 1.35( 1.13 3.98( 0.09 1.38( 0.02 1.1( 0.02
6.88 141.7( 85.6 1.40( 1.02 3.98( 0.09 3.18( 0.07 69.0( 1.5

0.1 6.88 79.3( 47.9 1.38( 1.00 3.28( 0.05 1.90( 0.03 27.4( 0.43
a Refers to total pep-1 concentration in bulk solution.b Refers to effective peptide in lipidic matrix.c Refers to pep-1 quenching fluorescence of

rhodamine B.d Refers to the addition of Triton X-100.e The vesicle fusion percentage of different lipidic mixtures (POPC, POPC/POPG (4:1) and
POPC/POPG (1:1)) in 10 mM HEPES, pH 7.4, buffer containing 150 mM NaCl was determined as illustrated in Figure 2B. Results are presented
along with standard errors.
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the key regulator issue in vesicle fusion. Pep-1 organization
in the aqueous environment is another important factor (no
fusion detected in 1.45µM pep-1 solution). Fusiogenic
activity is usually associated withR-helix conformation in
membranes (18). This suggests that pep-1 may adoptR-helix
conformation at 6.88µM in the presence of lipidic bilayers.
However, direct evidence from CD spectroscopy, for in-
stance, is prevented due to the typical low sensitivity of these
techniques.

Pep-1 Induced Anionic Lipid Segregation. Some cell-
penetrating peptides such as penetratin are believed to have
their biochemical mode of action dependent on the interaction
with anionic lipids (29). Electrostatic interaction is essential
for lipidic bilayer structure perturbation afterward. To test
the hypothesis that perturbation results from peptide-induced
anionic lipid lateral redistribution in the membranes, we used
NBD-labeled PG (anionic) and Rh-labeled PE (zwitterionic)
in POPC vesicles and carried out FRET experiments. Anionic
lipid segregation results in a decrease in FRET efficiency in
the presence of peptide. Control experiments were carried
out using NBD-labeled PC instead of PG (the quenching of
Rh B by the peptide is accounted for in the control). Figure
3 shows that pep-1-induced anionic lipid segregation occurs
to an extent that depends both on the lipidic and on the
peptide concentrations. Variations in FRET efficiency are
not detected when 20% (molar) POPG is present in the
vesicles (results not shown), as expected due to the “dilution”
of anionic lipidic probes in excess anionic lipids.

Pore Formation in the Absence of Transmembrane Po-
tential. Some membrane-interacting peptides, such as mel-
litin, possess unspecific lytic ability (30, 31). Mellitin
resembles pep-1 for the presence of a proline residue in its
sequence (27) among other reasons. These similarities
prompted us to test pep-1-induced pore formation across
lipidic membranes. Co2+ is an aqueous quencher of NBD
fluorophores (19, 20) and was used to quench N-NBD-PE
inserted in LUVs in the presence and absence of pep-1 (a
method based on previously published ones (19)). In the
absence of pep-1, Co2+ is expected to leave 50% of the
N-NBD-PE fluorophores accessible if added to a LUV
suspension after vesicles are formed and all the fluorophores

if it is added before vesicles are formed. In the case that
pores or other lytic perturbations are formed by the peptide,
Co2+ first present only outside lipidic vesicles is able to
penetrate vesicles and reach all the fluorophores, that is, the
quenching extent is dependent on lytic perturbations of the
membrane induced by pep-1 (Figure 4A). Results presented
in Figure 4B show that no lytic action occurs in POPC
vesicles because peptide presence does not change NBD
quenching by Co2+. Similar results were obtained with
POPC/POPG (4:1) vesicles (results not shown). These results
were confirmed in LUVs with encapsulated Rh B (dissolved
in buffer). The addition of pep-1 does not induce a significant
quenching of Rh B fluorescence emission (data not shown),
revealing that peptide is inaccessible to vesicle lumen and
that there is no ion leakage.

Asymmetric Lipidic Flip-Flop in the Absence of Trans-
membrane Potential. Flip-flop refers to the lipidic exchange
between outer and inner layers (23) and may be promoted
by peptide insertion in membranes (23, 24). Peptides perturb

FIGURE 3: Anionic lipid segregation induced by pep-1. The assays
were followed by FRET between NBD (donor) and rhodamine
(acceptor) (λex ) 463 nm;λem ) 590 nm; sensitized emission of
acceptor). The POPC vesicle suspension was prepared with 1%
N-Rh-PE and 1% C6-NBD-PG (or C6-NBD-PC in the control
assay,9) in 10 mM HEPES, pH 7.4, buffer containing 150 mM
NaCl. The total lipidic concentrations used were 50 (2) and 100
µM (b). A more pronounced decrease of Rh B fluorescence
intensity relative to the control assay means a greater distance
between donor and acceptor, that is, segregation of anionic lipids
near the partition local of pep-1 in vesicles.

FIGURE 4: Vesicle pore formation induced by pep-1. Co2+

quenching of fluorescence emission of LUVs doped with 1%
N-NBD-PE (λem ) 460 nm;λex )531 nm) was performed to test
for pep-1-induced pore formation in vesicles. Vesicles with 20 mM
Co2+ accessible to both layers and vesicles with 20 mM quencher
accessible just to external layer have been produced in a 10 mM
HEPES, pH 7.4, buffer containing 150 mM NaCl. In panel A, the
hyperbole-like curve (full line) simulated with the Lehrer equation
with fB ) 50% (see eq 11 in ref26) indicates the NBD fluorescence
quenching of the latter vesicles in the case of no pore formation. If
the addition of pep-1 leads to a more pronounced quenching (dashed
line), near linearity (the limit where the quencher is accessible to
all NBD fluorophores) pores are formed. At a given quencher
concentration,I0/I, can be used to account for pore formation. Panel
B shows the ratio of NBD intensity of 100µM POPC LUVs in the
absence of quencher and in the presence of 20 mM Co2+ for the
vesicles with Co2+ accessible to both layer (white columns) and
accessible only to the outer layer (black columns). Comparing the
results with control, it is possible to conclude that there is no pore
formation in the presence of 1.45 or 6.88µM pep-1.
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membranes causing defects at the interfacial packing that
allow passage of the polar lipidic heads through the aliphatic
region of membranes (24). The same methodology used
before for pore formation assays was used to test for
asymmetric lipidic flip-flop, except that C6-NBD-PC and
C6-NBD-PG were used instead of N-NBD-PE. The latter
probe does not translocate across membranes due to the bulky
NBD residue at its polar head (17). Results (not shown) do
not present evidence of asymmetric flip-flop of lipids in any
of the lipidic systems tested (POPC and DPPC with and
without anionic lipids). In case that flip-flop occurs at all, it
is bidirectional and occurs at the same rate in the inner/outer
and opposite direction.

Peptide Translocation across Lipidic Bilayers. The bio-
chemical activity of pep-1 is related to its ability to
translocate across lipidic membranes. Translocation assay
methodologies were based on the peptide quencher properties
relative to Rh B (Figure 2A). We prepared MLVs with
peptide solutions from the start (samples A) or buffer without
peptide. In the latter samples, peptide was added after vesicle
formation (samples B) to the final peptide concentration used
in samples A. In the case that translocation occurs, fluores-
cence intensity in samples B decreases with time until the
fluorescence intensity of samples A is reached. No translo-
cation was detected in POPC and POPC/POPG (4:1) vesicles
both in the absence (Figure 5A) and presence of phosphine
(results not shown).

Previous studies have shown that translocation of peptidic
sequences across a synthetic bilayer is largely stimulated in
the presence of a transmembrane potential (14, 32, 33). In a
recently published work, Terrone et al. (32) showed that
penetratin translocation in LUVs is mediated by transbilayer
potential in a manner dependent on vesicle composition. The
effect of transbilayer potential in pep-1 translocation was
evaluated in POPC, POPC/POPG (4:1), and POPC/POPG
(1:1) doped with N-Rh-PE. After peptide addition to LUVs,
a significant fluorescence quenching of Rh B emission
fluorescence was recorded in studied lipidic systems (I0/I ≈
2, which is an expected value because in these conditions
pep-1 is accessible only to Rh B in the external layer). If
translocation occurs in the presence of a transbilayer
potential, an increase of Rh emission fluorescence quenching
is expected (pep-1 is accessible to Rh in the internal layer).
The presence of valinomycin-induced negative transbilayer
potential (maximum transbilayer potential about 120 mV (32,
33), stable for 10 min (14)) in K+-loaded vesicles in Na+-
buffer causes a significant translocation of pep-1 in POPC/
POPG (4:1) and POPC/POPG (1:1) (Figure 5B) on the
second time scale. In POPC, the translocation occurs to a
minor extent. The rapid translocation is in agreement with
in vivo studies (8) that show translocation of the peptide
across cell membranes on the minute time scale. The effect
of a positive transbilayer potential was tested in POPC/POPG
(4:1) vesicles. The addition of valinomycin to Na+-loaded
vesicles in K+-buffer does not alter the fluorescence emission
quenching of Rh B by pep-1. This result shows that a positive
transbilayer potential does not lead to translocation. Similar
results were obtained with vesicles dispersed in buffer
containing 150 mM KCl (K+ in and out) and with vesicles
prepared in buffer with 150 mM NaCl (Na+ in and out).

Figure 5C, which represents a Stern-Volmer-like plot,
shows that translocation is dependent on the effective

FIGURE 5: Pep-1 translocation across lipidic bilayer. Translocation
assays were followed by fluorescence quenching of rhodamine B
(λex ) 570 nm;λem ) 590 nm) by pep-1 in 100µM vesicles doped
with 1% N-Rh-PE. In panel A, POPC and POPC/POPG (4:1) MLVs
(10 mM HEPES, pH 7.4, buffer containing 150 mM NaCl) were
used. The results are presented in terms of intensity ratio without
and with 6.88µM pep-1 added at the moment of the vesicle
preparation (white columns) and after the vesicle preparation (black
columns). In case translocation exists, the same fluorescence
intensity is expected for both columns. No peptide translocation
was detected. Panel B shows translocation of pep-1 in the presence
of transmembrane potential in POPC, POPC/POPG (4:1), and
POPC/POPG (1:1) LUVs (loaded with 10 mM HEPES pH 7.4
buffer containing 150 mM KCl and dispersed in buffer containing
150 mM NaCl). Rhodamine B fluorescence emission was recorded,
and a decrease to approximately half of the initial value was detected
after 6.88µM pep-1 addition (pep-1 accessible to N-Rh-PE in
external layer). The Rh B fluorescence intensity ratio after (Ival)
and before (I0) addition of valinomycin (1:104 mol/mol lipid) is
represented for the three lipidic systems in the presence (white
columns) and absence (black columns) of 6.88µM pep-1. A
decrease inIval/I0 upon valinomycin addition (negative transmem-
brane potential) indicates that pep-1 is accessible to N-Rh-PE in
the inner layer and translocation across bilayer occurs. An enhanced
effect is visible with an increase in anionic lipid. Panel C shows a
Stern-Volmer-like plot, which representsI0/Ival (see panel B)
dependence on effective pep-1 concentration in membrane (see eq
10 in ref 26). Translocation extension is dependent on effective
pep-1 concentration in membrane (increases with peptide concen-
tration in membrane).
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concentration of peptide in membrane ([pep-1]memb). The
results show that the translocation driving force is the
negative membrane potential across bilayer and affinity of
peptide to membrane determines the extent of translocation.

In the presence of negative transmembrane potential, no
significant drop in NBD fluorescence was detected, when
valinomycin was added (after 6.88µM pep-1 addition) to
POPC/POPG (4:1) LUVs doped with N-NBD-PE or to
POPC vesicles doped with C6-NBD-PC or C6-NBD-PG
(Co2+ accessible to the external layer of the vesicles in both
cases). Fluorescence intensities with the quencher accessible
to internal and external layers were used as a positive control.

No pore formation or significant phospholipid flip-flop
occurs during peptide translocation (data not shown).

CONCLUSION

Pep-1 is effective in inducing vesicle aggregation and
lipidic fusion. Aggregation takes place by vesicle clustering,
but lipidic exchange among vesicles is possible. The process
is dependent both on anionic lipid content and on peptide
concentration. Segregation of anionic lipids in the presence
of peptide is detected. Despite all these effects, no evidence
was found for lytic action or ion leakage. Translocation
occurs only in vesicles with a negative membrane potential
and is enhanced by the presence of anionic lipids, probably
by electrostatic attraction of the peptide to anionic bilayers.

Taking our work as a whole, one concludes that the main
driving force for peptide translocation is a charge gradient
across membrane (negative inside). In biological membranes,
the transmembrane potential caused by charge asymmetry
between outer and inner leaflets created by anionic lipids in
the inner layer is probably responsible for translocation.
Moreover, pep-1 is a strong perturber of lipid membrane
organization (Figure 6), which is probably a key role of its
action because the energetic cost of solvation layer removal
(mandatory for crossing an unperturbed membrane) would
be prohibitive. Bilayer perturbation renders electrostatic
attraction dominant over solvation effects. As proposed
schematically in Figure 6, fusion is probably the main cause
of close range electrostatic attraction between positively
charged peptide and negatively charged lipids in the cell
membrane inner leaflets. Transient inverted micelle-like
structures may be formed, leading to translocation. An active
role of membrane aggregation in translocation was very
recently proposed for the cell-penetrating peptide penetratin
(32).
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Chapter 3.   

 

 

Does pep-1 form pores? 
 
 

3.1. Introduction  

 
A translocation mechanism for peptides involving direct interaction with 

membrane lipids was proposed shortly after the identification of these basic sequences 

with capacity to pass through the membrane [15, 16]. This was further supported by the 

strong correlation of uptake with lipid-binding affinity [168]. A passive diffusion by 

charged molecules is not likely to occur due to the membrane properties including the 

low dielectricity in the core of the bilayer. Nevertheless, different mechanisms have 

been proposed to explain a possible internalization mechanism independent on 

endocytosis (Figure 3.1). 

 

One of the earliest energy-independent mechanism proposed for transmembrane 

translocation is the “inverted micelle” model [53]. The proposed mechanism was based 

on Nuclear Magnetic Resonance (NMR) studies in which the penetratin and an analogue 

were compared. The first peptide was demonstrated to induce formation of hexagonal 

phase/inverted micelles and to have the capacity to translocate, whereas the analogue 

does not form these structures, or translocates across the lipidic membranes. In this 

model the interaction of the peptide with membrane in promoted by electrostatic 

interactions between the cationic peptide and the negative charges in the lipidic 
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membranes. A recruitment of negatively-charged phospholipids and induction of 

formation of an inverted micelle occurs upon interaction of the peptide with the lipidic 

membrane. The hydrophilic cavity of the micelle would accommodate putatively the 

cargo (Figure 3.1.A) [53]. However, this mechanism cannot account for the uptake of 

highly basic peptides such as oligoarginines (which do not contain hydrophobic amino 

acids required to induce hexagonal phase formation) [34], either for the uptake of high 

cargoes.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1. Schematic representation of permeation mechanisms independent on endocytosis. These 

models are dependent on the mode of peptide interaction with phospholipid bilayers: A) peptide passes 

through the membrane enclosed in “inverted micelle”, which originates from membrane bilayer 

disruption upon peptide insertion; B) barrel-stave pore formed by a cluster of peptide molecules which 

span across the lipidic membrane; in this model hydrophobic interactions are relevant for pore formation 

and stability; C) toroidal pore across lipidic membrane, in which the phospholipids headgroups are 

always in contact with the peptidic chain to screen the net positives charge of peptide molecules; and D) 

Carpet model, peptide molecules bind to the membrane surface “carpeting” the membrane surface; above 

a threshold concentration the peptide disrupt the lipid packing leading to the peptide internalization. 

Image adapted from reference [169]. 

 

 

A mechanism involving pore formation has been suggested for MPG, an 

amphiphatic peptide that can be an efficient carrier for nucleic acids [170]. This is a 

typical feature of several toxins and antimicrobial peptides that have an action at 

B

C D
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membrane level. In this mechanism the interaction of the peptide with the membrane is 

followed by alteration of membrane structure and in some cases entry of peptide into the 

interior of the target cell [171]. It is clear that peptide-lipid interactions govern the 

function of most membrane-lytic peptides, rather than a receptor-mediated process 

[172]. Three alternative mechanisms were proposed to account for the membrane 

permeability of amphipathic lytic peptides: “barrel-stave” pore (Figure 3.1.B), 

“toroidal” pore (Figure 3.1.C) and “carpet” model (Figure 3.1.D). In all models there is 

an initial adsorption of the peptide with the membrane surface. Adsorption in the lipid 

headgroup surface leads to a lateral expansion of the membrane and a thinning of the 

hydrophobic core [173, 174]. The lipidic membrane can respond in different ways to 

reduce the strain imposed on the lipidic bilayers by the adsorption of peptide, depending 

on different physicochemical characteristics of the peptide and membrane [175].  

 

The “barrel-stave”-type pore (Figure 3.1.B) was first proposed for alamethicin, 

an amphipathic peptide with helical conformation [176]. This model is dominated by 

hydrophobic interactions between peptide and membrane, with the peptide chain 

inserted perpendicular to the lipidic bilayer surfaces and recruiting more peptide 

molecules to form a transmembrane pore that resembles a “barrel-stave” [177, 178]. In 

this arrangement hydrophobic amino acid residues interact with the lipid membrane 

while the hydrophilic residues face inwards to the lumen of the pore [177, 178]. Such 

organization requires peptides that span the lipid bilayer with an amphipathic α-helix 

conformation [172], forming contacts with other peptide molecules. Therefore, their 

length should match the bilayer thickness [175]. Weakly-charged peptides are 

compatible with this model to avoid intermolecular electrostatic repulsion within the 

pore [179]. Noteworthy, in this model peptide-membrane interactions are predominantly 

driven by hydrophobic interactions and they should bind to phospholipid membranes 

irrespective of their charge [172].  

 

In the toroidal model (Figure 3.1.C), which has been proposed for magainins, 

melittin and protegrins [180], pores are also formed, but headgroups are always in 

contact with inserted peptides, even when they adopt a transmembrane orientation. In 

this model, to relieve the curvature strain caused by peptide binding, phospholipids 

bend continuously from the top to the bottom. Peptide pack together with lipid 
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headgroups to form a pore [34, 175, 180]. This model is usually associated with highly-

charged peptides that do not self-associate at low peptide concentration [179]. The lipid 

headgroups play an important role in screening the peptide charges, whereas in the 

barrel-stave such screening is absent [180]. A cooperative assembly of pores only 

occurs when the concentration of peptides on the membrane surface exceeds a certain 

limiting value [179]. 

 

Another translocation mechanism involving membrane permeation is based on 

the “carpet” model (Figure 3.1.D) which was proposed for the first time to describe the 

mode of action of dermaseptin S [181]. In this model, reorientation of peptide chains 

can be hampered by strong electrostatic interactions between positively-charged 

residues and lipid headgroups [175], as a result peptides bind onto the surface of 

membrane and cover it in a carpet-like manner [172]. Membrane permeation occurs 

only if there is a high local concentration of membrane-bound peptide, where peptide 

molecules accumulation on the membrane surface causes tension between the two 

leaflets of the bilayer, which above a threshold concentration leads to disintegration of 

the membrane [175] due to disruption of the bilayer curvature [172]. In this mechanism 

the peptide does not necessarily adopt a specific structure upon its binding to the 

membrane, neither span across lipidic bilayer or assemble with their hydrophilic 

surfaces facing each other [172]. The carpet model seems to be a more general 

permeabilization mechanism than barrel-stave pore [175].  

The formation of transient holes can occur as an intermediate step before the 

collapse of the membrane [172, 175], enabling the passage of low molecular weight 

molecules prior to membrane disruption [172]. In this transient pores peptide molecules 

remains in contact with the lipid headgroups during all the process and a peptide match 

with the bilayer thickness is not required; such features are similar to the toroidal pore 

model [175]. The similarities between carpet model and toroidal model suggest that 

torus-type pores may be part of a transient step before the membrane collapse [182].  

 

In all models described an initial association of the peptide with the surface of 

the bilayer constitutes the first step, which is generally assumed to be governed by 

electrostatic interaction with negatively charged membrane lipids. However entropy-

driven events in partition can also take part on the next steps [169]. Electrostatic 
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interaction are long range [183], so the structure of the peptide is less important in 

interactions governed by electrostatic interaction than when hydrophobic interactions 

are dominating. Actually many peptides are unstructured in solution but acquire a 

secondary structure upon interaction with lipidic membranes [184]. However it is worth 

mentioning that the nature of membrane perturbation depends on the orientation of the 

peptides. Interfacially-adsorbed peptides with an horizontal orientation with respect to 

the membrane plane perturb the lipid bilayer significantly more severely than 

transmembrane peptides that form barrel-stave pores [179]. It is suggested by Zemel et 

al. that the membrane perturbations induced by peptide can provides unspecific driving 

force that facilitates the pore formation, depending on the peptide orientation [179].  

The above referred models that involve pore formation mechanisms may be 

relevant to CPPs with pronounced toxic effects, or ultimately can explain its toxic effect 

for high peptide/lipid ratios. This is relevant because peptide translocation resulting in 

membrane permeabilization conferring cytotoxic effects hampers it use in drug delivery 

applications [169].   
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3.2. Energy-independent translocation of cell-penetrating peptides 

occurs without formation of pores. A biophysical study with pep-1  

 

3.2.1. Motivation and methodologies 

 It has been previously suggested by Deshayes et al. [185] that pep-1 is able to 

pass trough the membrane by a mechanism mediated by pore formation. In this 

hypothesis the pore is formed with the hydrophobic domain, which upon interaction 

with membrane becomes helical and inserts in the membrane with a perpendicular 

orientation to the membrane surface [185]. The pore model proposed is not clear and the 

possible perpendicular orientation is putative. No experimental evidences are presented.  

 Our previous results on permeability of LUVs to Co2+ in the presence of pep-1 

suggests that this peptide in unable to form pores or induce leakage [186], however the 

hypothesis of pore suggested by Deshayes et al. [185] prompt us to make a more 

detailed study and to consider more carefully this possibility. In that way several 

questions regarding the differences between different permeation models need to be 

addressed, for instance: Is the binding of the peptide to the lipidic membranes 

electrostaticaly driven only or is dependent on hydrophobic interactions? Does pep-1 lie 

on the membrane surface or inserts in the hydrophobic core? Are there alterations in 

peptide conformation upon interaction with membrane? 

 

Different methodologies were used to answer these questions. A characterization 

of the secondary structure of pep-1 and the study of the effect of membranes on peptide 

conformations were carried out by circular dichroism (CD) spectroscopy and also by 

Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy 

techniques. The possible orientation of peptide when in the presence of lipidic bilayers 

was also studied by ATR-FTIR. The prospect of pore formation was tested with 

electrophysiological measurements by the use of planar lipid membranes (PLM) and 

also by confocal fluorescence microscopy using GUVs. 

 

CD is a technique that has been widely used for determination of the secondary 

structure of proteins/peptides. CD refers to differential absorption of the left and right-

handed circularly polarized light that occurs when a chromophore is chiral (optically 
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active) [187]. In practice, when two circularly polarized light components are absorbed 

by the sample in different extension, the resultant radiation would trace out an ellipse. 

The CD instrument detects the two components independently and then displays the 

dichroism at a given wavelength of radiation, which can be expresses as the ellipticity in 

degrees.  

CD ellipticity is highly sensitive to the different secondary structures which have 

ellipticity bands with characteristic wavelengths and magnitudes [188], mainly in the 

far-UV (in the wavelength range 170-250nm). There are three major secondary 

structures identifiable by CD: a random coil structure that is coincident with the well 

defined poli(Pro)II (P2) CD spectral form with a strong negative band around 195nm; a 

α-helix conformation with minima bands at 208 and 222nm and a positive band at 

192nm; and β-sheet with a positive band below 200nm but with a single negative band 

at ∼ 220nm [187, 189-191]. (Figure 3.2). The CD signal of β-sheet conformation is 

weaker that the others.  

 

 

 

 

 

 

 

 

 

 
 

Figure 3.2. CD spectra of α-helix, β-sheet and poliproline II deconvoluted from a reference protein set. 

MRE is the mean residue ellipticity. Figure adapted from [192]. 

 

Protein/peptide structure is determined by comparison of the obtained spectra 

with CD data in literature. A number of algorithms can be used to provide an estimation 

of the secondary structure composition of proteins/peptides. Most procedures use data 

bases which comprise sets of CD spectra of different proteins whose structures have 

been solved by x-ray crystallography [191]. For a CD analysis is necessary to know 

precisely the peptide concentration to calculate the mean residue ellipticity (MRE) for 

α

β 

  P2 
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comparison with the data base spectra. Generally all the methods assume that the 

spectrum of a protein/peptide can be represented by a linear combination of the spectra 

of the secondary structure elements [188].  

 

ATR-FTIR is a powerful tool to study the structure of peptides and their 

interaction with lipids without introducing a perturbing probe and requires small 

quantities of sample [193]. Because of the long IR wavelength, light scattering does not 

affect such measurements, in contrast to most other spectroscopic techniques. In ATR-

FTIR experimental setup a drop of the sample (liposomes containing the peptides) is 

spread on the internal reflection plate (IRE) (e.g. trapezoidal Ge plate, see Figure 3.3) 

by slowly evaporation of the solvent, which results in several thousands 

macroscopically aligned multibilayers [194].  

 
Figure 3.3. Total internal reflection at the 

interface of an internal reflection element 

(trapezoidal plate design). The components 

of electric field along the X, Y and Z axis are 

shown. The incident light can be polarized 

with a parallel orientation with the respect to 

plane of incidence (E//) or perpendicular to 

plane of incidence (E⊥). The angle θ is the 

light beam incident angle with respect to the 

IRE surface. Figure adapted from the 

reference [194]. 

 

The light travels inside the plate by means of a series of internal reflections from 

one surface of the plate to the other (see Figure 3.3), creating an exponentially decaying 

evanescent radiation outside the plate. Absorption of the energy of the evanescent field 

by the supported membranes and the peptide, provides ATR-FTIR spectra which 

contain information about the structure of the sample [195]. The spectra of peptide-lipid 

systems possess well-resolved absorbance bands not only on the lipidic membranes but 

also on the different structural groups within peptides. The amide I mode, among 

various “amid vibrational modes”, is the most sensitive to the protein secondary 

structure and is found between 1700 and 1600cm-1 [193, 195, 196]. Amide I frequencies 

are essentially determined by the properties of the peptide backbone structure and so 
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practically independent on the amino acid sequence, its hydrophilic or hydrophobic 

character, its size, and its charge [196]. Determination of the peptide/protein secondary 

structure relies on the fact that the amide I vibrations of different conformations occurs 

at different frequencies as specified in the Table 3.1. 

 
Table 3.1. Amide I frequencies of typical secondary structures elements in 

proteins in non-deutered (H2O) and deutered (D2O) environments. Table 

adapted from [195]. (↑↓ antiparallel) 

 Frequency (cm-1) 

Secondary structure H2O D2O 

αI - helix  1658-1650 1655-1646 

αII - helix 1666-1658 1658-1652 

310 - helix 1670-1660 1670-1660 

↑↓β- sheet 1638-1632 1636-1630 

↑↓β- sheet 1695-1675 1680-1670 

Intermolecular β- sheet 1625-1615 1625-1615 

β- turns  1685-1655 1675-1640 

γ- turns 1690-1650 1690-1650 

irregular 1660-1652 1648-1640 

amide or aromatic side chains 1618-1605 1615-1600 

 

For secondary structure determination, the spectra of deutered and non-deutered 

samples can be intercompared to gain insight. This procedure relies on the possible 

interference of the solvent due to the strong HOH bending mode around 1643cm-1 [197] 

and also on the fact that in non-deutered form the random coil and α-helix conformation 

absorb IR radiation at the same frequency range (see Table 3.1). In the deutered form 

the random coil is shifted to lower wavenumbers, which facilitate the distinction and 

quantification of these two types of structure. Moreover, non-deutered amino acid 

chains can also contribute to the spectra in the amide I vibration range (see Table 3.1) 

[196].  

For determination of the secondary structure of a peptide a curve-fitting of the 

amide I band that includes the decomposition of the amid I band into its constituent 

bands and their assignment (see Table 3.1), is necessary (for further information on 

curve-fitting and band assignment see references [193, 196, 197]). The component 
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bands are calculated and assigned to secondary structures comparing the results with 

previous reports, for instance [195-199].  

 

For secondary structure determination is broadly accepted that CD 

measurements provide more accurate estimations of α-helix content whereas IR is more 

sensitive to the presence of β-sheets [200], so both techniques complement each other. 

 

With polarized light in ATR-FTIR measurements is possible to have information 

about the orientation of the peptide with respect to lipidic membranes [195]. The 

method is based on the fact that the IR light absorption is maximal if the dipole 

transition moment is parallel to the electric field component of the incident light. In an 

ordered membrane deposited on the IRE surface all the lipid molecules have the same 

orientation with respect to a normal to the IRE surface. By measuring the spectral 

intensity with polarized light is therefore possible to detect changes in the orientation of 

dipoles of both peptides and phospholipids [194]. In practice, spectra with parallel and 

perpendicular polarization of the infrared light (relative to the incident plane) are 

collected, which enable the calculation of the dichroic spectrum (i.e. the difference 

between the spectra recorded with parallel and perpendicular polarization) and of the 

ATR dichroic ratio (RATR; which is the ratio between the integrated absorbance of a 

band measured with a parallel polarization of the incident light (A//) and the absorbance 

measured with a perpendicular polarization of the incident light (A⊥) [194]: 

⊥

=
A
AR ATR //           (eq. 3.1) 

This parameter provides information on the orientation of the peptide inserted in the 

lipidic bilayer. A larger absorbance for the parallel polarization (upward deviation on 

the dichroism spectrum) indicates a dipole oriented preferentially closer to the normal of 

the ATR plate, whereas a larger absorbance for the perpendicular polarization 

(downward deviation in the dichroism spectrum) indicates a dipole oriented 

approximately parallel to the ATR plate [201].  

To determine the orientation of a specific peptide with respect to the membrane 

is necessary to first assign the contribution of each band in the IR spectrum and then to 

quantify the possible contribution of α-helix conformation within the peptide (this is the 

secondary structure that is commonly associated with linear peptides inserted in lipidic 
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membranes [172, 184]). By determination of RATR relative to the α-helical band is 

possible to calculate the orientation of the α-helix long axis with respect to the IRE 

surface normal and therefore the orientation of the peptide within the membrane [194]. 

Briefly, the RATR is related to an orientational order parameter S by the equation: 

⎟
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        (eq. 3.2) 

where 2
xE , 2

yE and 2
zE are the time averaged square electric field amplitudes of the 

evanescent wave in the lipidic film at the IRE/film interface. The Sexperimental is related 

with the helix axis by the relation: 

dipolehelixmembraneerimental SSSS ××=exp        (eq. 3.3) 

where Smembrane describes the distribution function of the lipid membrane with respect to 

the IRE, Shelix describes the orientation of the helix with respect to the membrane plane, 

and Sdipole describes the dipole orientation of amide I with respect to the helix axis (see 

Figure 3.4 for a better understanding). Sdipole is correlated with the angle α (angle 

between the amide I transition dipole moment and the helix angle; see Figure 3.4) by 

the equation: 

2
1cos3 2 −

=
α

dipoleS          (eq. 3.4) 

It is normally assumed that Smembrane = 1 and Sdipole is a characteristic of the secondary 

structure (for helix conformation the angle α is considered to be 33.3º [201]; this value 

permits the calculation of the Sdipole by the eq. 3.4). With the Sexperimental and Sdipole, Shelix 

can be determined and therefore the tilt β (see Figure 3.4) of the helix axis with respect 

to the membrane normal by the following equation [194]: 

3
12arccos +

= helixSβ          (eq. 3.5) 
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Figure 3.4. Axially symmetric distributions for the 

calculation of the angle of a dipole in relation with 

the IRE normal. The angle between the plate normal 

and the lipidic membrane is angle γ (assumed to be 

0), the angle between the molecular axis (helix axis) 

and the membrane normal is angle β and the 

transition dipole moment in relation with the helix 

angle is α (assumed to be ∼33.3º). By experimental 

determination of the order parameter S (see text) it is 

possible to determine the peptide tilt (angle β) in 

respect with the membrane normal. Figure adapted 

from the reference [194].  

 

 

Previous reports on pep-1 secondary structure suggest that the hydrophobic 

domain of pep-1 has tendency to adopt an α-helical conformation when in contact with 

the membrane environment [185]. Taking into account the possible helical 

conformation of the peptides, ATR-FTIR can be used to determine the orientation of the 

hydrophobic domain when the pep-1 is interacting with lipidic membranes. 

  

Different strategies can be used to detect pore formation in lipidic bilayers. The 

most important evidence for the possibility of barrel-stave model is the single-channel 

conductance induced by peptides when in lipidic bilayers, can be detected by ion 

conductance and are characterized by reproducible multiple discrete states [180]. Ion 

conductance can be studied with electrophysiological measurements using planar lipid 

membranes (PLMs) [202], also known as black lipid membranes (BLMs). With 

macroscopically assembled PLMs is possible to have access to both sides of the lipidic 

bilayers; the measurement of current flow across the lipidic bilayer gives information on 

the possible pore formation or membrane perturbation induced by the presence of 

peptides. 
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Figure 3.5. Experimental setup for planar lipid bilayers electrophysiology. Two chambers (cis and trans) 

are separated by a Teflon film which contains a small hole, ~50 to 200 μm in diameter. The chamber is 

filled with electrolyte-containing buffer and a lipid bilayer is formed across the hole. Electrodes are 

connected to each chamber (via salt bridges). The membrane potential is controlled (clamped) and the 

current is amplified using a voltage-clamp amplifier. Channel formation is monitored by step-wise 

increases in the current due to channels into the membrane. Figure adapted from [203]. 
 

PLMs can be prepared by the method originally developed by Montal and 

Mueller [202], where the experimental setup is prepared with the two chambers, cis and 

trans, separated by a thin Teflon film (25μm) containing a hole where lipidic membrane 

is formed (Figure 3.5). The chambers should be filled with an electrolyte-containing 

solution where the level of solution should be initially below the aperture. Lipid 

solution should be spread over the surface on two chambers to form a lipid monolayer at 

water-air interface. To form a planar lipid bilayer the two monolayers are folded 

together by raising the solution level of each compartment above the hole [202]. Both 

compartments have an electrode and are connected through a salt bridge. The formation 

and stability of bilayer membrane can be checked by continuously following membrane 

capacitance [204, 205]. This method has the possibility to form asymmetric bilayers by 

spreading lipid solutions with different lipid compositions in cis and trans chamber 

[202].  
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A planar lipid bilayer can be regarded as an insulator, therefore the presence of a 

conducting channel will lead to an electric field perturbation [203] which can be 

recorded with time. A pattern with reproducible multiple discrete states upon voltage 

potential application is indicative of pore formation by a barrel-stave mechanism 

(Figure 3.6) 

 
Figure 3.6. Current fluctuations with 

discrete conducting states, (step-wise 

increase) typical for proteins/peptides 

able to induce a channel formation 

across lipidic bilayers. 

 

  

GUVs vesicles are suitable membrane models systems due to their size 

(diameter >10μm), which is similar to the size of the plasma membrane of the cells and 

can be directly visualized using microscopy techniques [206]. GUVs can be obtained by 

electroformation based on the protocol originally developed by Angelova and Dimitrov 

[207] among other techniques. In this protocol GUVs are formed by lipid swelling on 

platinum electrodes, under an electrical field. In a chamber (Figure 3.7), containing two 

parallel platinum wire electrodes, connected to an alternating current field generator, the 

lipid solution is spread onto each of the two wires and dried. An aqueous solution is 

added until wires cover. Upon attenuate electric field application osmotic forces and 

electrostatic forces drive the formation of liposomes [207]. 

 

To gain more information on the lytic action of peptides a strategy developed by 

Ambroggio et al. was used [208]. In this methodology, GUVs filled with fluorescent 

dyes with different sizes are followed by confocal microscopy. With this approach, 

visual information is obtained and related to the possible leakage mechanism. The 

capacity of this peptide to induce leakage is imaged and, in the case of pore formation, 

the pore size can be estimated [208, 209] (Figure 3.8). Briefly, to evaluate whether 

pores are formed, GUVs were prepared in a sucrose solution containing three dyes 

emitting at different wavelengths and with different sizes (Alexa Fluor633 C5-maleimide 

(Mr ∼1330), Alexa Fluor488-Dextran (Mr∼10000) and Alex Fluor488 Dextran Mr ∼3000). 

To remove the fluorescence dye from outside the vesicles GUVs solution was passed 
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through a sephadex G-100 column equilibrated with a glucose iso-osmolar solution. 

Vesicles loaded with sucrose and dispersed in a glucose solution led the GUVs to 

precipitate, making imaging in the inverted confocal fluorescence microscope easier.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.7. Array of individual chambers (12) to prepare GUVs by the electroformation method. The 

array is prepared with Teflon and Pt wires (with a diameter of 0.5mm) and the water flux from the 

circulating bath in a plastic tube surrounding the module. Lipid is dried on the pt wires and GUVs are 

formed upon Alternating current application. Figure adapted from [206] and [210].  

 

In the case of pore formation, after peptide addition, a sequential escape of the 

three dyes (from the smaller to the large one), or the leak of just one or two dyes will 

give information about pore size (see Figure 3.8). Membrane integrity can be evaluated 

by a membrane dye [208, 209]. 
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Figure 3.8. Approach for direct visualization of the lytic activity of peptides. By the use of GUVs loaded 

with fluorescent dyes with different size and by screening these fluorescent markers with confocal 

microscopy is possible to evaluate the leakage caused by the peptide. If the membrane becomes leaky to 

one, two or the three dyes one has information on the pore size. In this schematic representation the dyes 

with different sizes are represented by blue, green and red.  

 

   

The methodologies above referred were used to evaluate pore formation induced 

by the pep-1. The following manuscript presents the most relevant results achieved with 

these studies. 

  
 

  
 

  

   
 Peptide

 



Chapter 3.  Does pep-1 form pores? 
 
 

    79

3.2.2. Declaration on authorship of published manuscript: Energy-

independent translocation of cell-penetrating peptides occurs without formation of 

pores. A biophysical study with pep-1  

 

I, Sónia Troeira Henriques declare that the experimental design was carried on 

by me under advice of Dr. Miguel ARB Castanho. All the laboratory work, data 

analysis, discussion were carried on by me under supervision of Dr. Luis A. Bagatolli, 

Dr. Fabrice Homblé and Dr. Alexandre Quintas. CD measurements were carried on at 

Instituto Superior de Ciências da Saúde Egas Moniz (Costa da Caparica, Portugal) and 

supervised by Dr. Alexandre Quintas. ATF-FTIR and electrophysiological 

measurements were carried out with guidance of Dr. Fabrice Homblé at Université libre 

de Bruxelles (Brussels, Belgium) and the studies with GUVs were carried out at 

Southern Denmark University (Odense, Denmark) with Dr. Luis Bagatolli.  

Manuscript preparation was carried on by me with contribution from the other 

co-authors. 

 

 I, Miguel ARB Castanho, as Sónia T Henriques supervisor, hereby acknowledge 

and confirm the information above is correct. 

 

 

____________________     __________________ 

Sónia Troeira Henriques     Miguel ARB Castanho 

 

 

 

 

 

 

 

 

 

 

 



D
ow

nl
oa

de
d 

By
: [

M
on

as
h 

U
ni

ve
rs

ity
] A

t: 
06

:5
4 

24
 A

pr
il 

20
07

 

Energy-independent translocation of cell-penetrating peptides occurs
without formation of pores. A biophysical study with pep-1
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Abstract
Pep-1 is a cell-penetrating peptide (CPP) with the ability to translocate across biological membranes and introduce active
proteins inside cells. The uptake mechanism used by this CPP is, as yet, unknown in detail. Previous results show that such
a mechanism is endocytosis-independent and suggests that physical-chemical interactions between the peptide and lipid
bilayers govern the translocation mechanism. Formation of a transmembrane pore has been proposed but this issue has
always remained controversial. In this work the secondary structure of pep-1 in the absence/presence of lipidic bilayers was
determined by CD and ATR-FTIR spectroscopies and the occurrence of pore formation was evaluated through
electrophysiological measurements with planar lipid membranes and by confocal microscopy using giant unilamellar
vesicles. Despite pep-1 hydrophobic domain tendency for amphipathic a-helix conformation in the presence of lipidic
bilayers, there was no evidence for membrane pores in the presence of pep-1. Furthermore, alterations in membrane
permeability only occurred for high peptide/lipid ratios, which induced the complete membrane disintegration. Such
observations indicate that electrostatic interactions are of first importance in the pep-1-membrane interactions and show
that pores are not formed. A peptide-lipid structure is probably formed during peptide partition, which favours peptide
translocation.

Keywords: Peptide carrier, peptide-membrane interaction, translocation mechanism, membrane pore, peptide secondary

structure, model membranes

Introduction

Whilst the introduction of hydrophilic molecules

into mammalian cells is controlled by the lipid

membrane barrier, the use of cell-penetrating-pep-

tides (CPPs) has become a good strategy to over-

come the membrane impermeability. A CPP is a

short, basic and water-soluble, peptide able to

translocate through cell membranes, with high

efficiency and low toxicity, in a way independent

on receptors [1,2].

Despite their potential for drug delivery, the

mechanism used by CPPs to translocate across the

cell membrane, without damaging it, is still a

mystery. A single general mechanism for all does

not seem reasonable and more than one mechanism

for each individual peptide is a possibility [2�4].

Nonetheless, the existence of the basic amino acid

residues in all the peptides suggests that the electro-

static interaction with phospholipid bilayers is a

common step in the mechanism of action of CPPs.

Many CPPs including penetratin, TAT and

oligoarginines are internalized by an endocytotic

pathway (so-called ‘energy-dependent’ mechanism)

[2�4]. However, the strong correlation of uptake

with lipid-binding affinity, the direct observation of

translocation in model membranes, and the impor-

tance of electrostatic interactions, suggests that a

translocation mechanism involving only direct phy-

sical interactions with lipids can operate for some

peptides [1].

Pep-1 (Ac-KETWWETWWTEWSQPKKKRKV

-cysteamine) is a chimeric CPP with a primary

amphipathicity, which can be divided into three

domains: (i) a so-called hydrophobic domain
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(KETWWETWWTEW), responsible for hydropho-

bic interactions with proteins and for an interaction

with the cell membrane; (ii) a hydrophilic Lys-rich

domain derived from the nuclear localization signal

(NLS) of simian virus 40 (SV-40) large T antigen

(KKKRKV), required to improve solubility and

intracellular distribution of the peptide, and (iii) a

spacer domain (SQP) which improves the flexibility

and the integrity of the other two domains. This

CPP has advantages relative to the others because it

does not need covalent link with the cargo [5];

physical assemblies between peptide and macromo-

lecules, stabilized by hydrophobic and electrostatic

interactions, are formed [6].

Our previous works demonstrated that pep-1 is

able to translocate in vitro or in vivo by a physical-

mediated mechanism promoted by transmembrane

potential [6,7], with no evidences for any alternative

‘energy-dependent’ process [6]. The high efficiency

of the peptide to be translocated by an ‘energy-

independent’ process seems to be related to its

primary amphipathicity, which is responsible for

the high affinity for lipidic membranes [8]. Further-

more, it has been shown that the C-terminal

cysteamine group is relevant for membrane affinity

and translocation efficiency [8�10].

A variety of models have been suggested to

describe an ‘energy-independent’ pathway for the

translocation of CPPs (recently reviewed in refer-

ences [1,11]) and a possible mechanism is pore

formation. In our previous studies, with model

membranes, no evidence for pore formation was

detected in the presence of pep-1 [7] and this result

was confirmed by Weller et al. [10]. However, this

issue remains very controversial as electrophysiolo-

gical studies using oocyte membrane [12] suggest

that a transmembrane pore-like structure could be

formed, mediated by pep-1 conformational changes.

The main aim of the present work is to find out if

pore formation occurs and is a relevant mechanism

for pep-1 translocation. Attenuated total reflection-

Fourier transform infrared (ATR-FTIR) spectro-

scopy was performed in order to identify the peptide

conformation and its orientation when inserted in

the membrane [13]. The pore formation hypothesis

was tested by electrophysiological measurement in

Planar Lipid Membranes (PLMs) [14] and by

confocal microscopy using Giant Unilamellar Vesi-

cles GUVs [15].

Material and methods

Reagents

Pep-1 with purity �/95% was produced by custom

synthesis by GenScript Corporation (Piscataway,

New Jersey). Synthetic lipids 1-Palmitoyl-2-Oleoyl-

sn-Glycero-3-Phosphocholine (POPC), 1-Palmi-

toyl-2-Oleoyl-sn-Glycero-3-(Phospho-rac-(1-glyce-

rol)) (POPG), 1,2-Dipalmitoyl-sn-Glycero-3-phos-

phocholine (DPPC), 1,2-Diphytanoyl-sn-Glycero-

3-phosphocholine (DPhPC) and 1,2-Dipalmitoyl-

sn-Glycero-3-Phosphoethalonamine-N-(Lissamine

Rhodamine B Sulfonyl) (N-Rh-PE), were obtained

from Avanti polar lipids (Alabaster, Alabama).

Cholesterol (Chol) and Thioflavin T (ThT) were

from Sigma-Aldrich (St. Louis, Missouri). Alexa

Fluor633 C5-maleimide (Mr�/1300), Alexa

Fluor546- Dextran (Mr�/10000) Alexa Fluor488-

Dextran (Mr�/3000) and 1,1?-dioctadecyl-3,3,3?,3-

tetramethylindocerbocyanine perchlorate (DiIC18)

were purchased from Molecular Probes (Eugene,

Oregon).

The samples were prepared in 10 mM HEPES

buffer with 150mM NaCl and pH 7.4, unless stated

otherwise.

Circular Dichroism (CD) measurements

CD spectra were recorded for 68.8 mM pep-1 in

aqueous solution or in the presence of lipid. 1 mM of

POPC or POPC:Chol (2:1 molar) large unilamellar

vesicles (LUVs), prepared by the extrusion method

[16], were used for these studies (peptide/lipid molar

ratio�/0.069). Samples with negatively-charged li-

pids (e.g., POPG down to 20%) were not possible to

prepare due to aggregation of vesicles induced by

pep-1 at these peptide/lipid ratios (see [8]), which

are mandatory to perform spectra with good S/N

ratios. Samples were prepared in 10 mM phosphate

buffer with 75 mM NaF, pH 7.5. The CD measure-

ments were made on a Jasco J-810 Circular Dichro-

ism Spectropolarimeter equipped with a Julabo F25-

HE Temperature Unit Control in a quartz cell with

an optical path of 0.1 cm at 208C. Wavelengths from

260 to 185 nm were recorded with a 0.1 nm step and

a 20 nm/min speed. Spectra were collected and

averaged over 3 scans and corrected for background

contributions. Molar absorptivity was calculated

considering o�/1.8�/104 M�1cm�1 (data not

shown). Computer fittings using the Jasco software

package JWSSE-480 with the CD reference dataset

of Yang [17] were performed to estimate the con-

tributions of spectral components from different

secondary structures.

ATR-FTIR spectroscopy

Attenuated total reflection infrared (ATR-FTIR)

spectra were obtained on a Bruker Equinox 55

FTIR spectrophotometer (Ettlingen, Germany)

equipped with a MCT detector (broad band

2 S. T. Henriques et al.
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12000�420 cm�1, liquid N2 cooled, 24 h hold time)

at a resolution of 2 cm�1. The spectrometer was

continuously purged with dry air (Whatman 75�62,

Haverhill, MA, USA). The internal reflection ele-

ment was a 52�/20�/2 mm trapezoidal germanium

ATR plate (ACM, Villiers St Frédéric, France) with

an aperture angle of 458 yielding 25 internal reflec-

tions. A total of 128 scans (800�4000 cm�1) were

averaged for each spectrum with a resolution of

2 cm�1. The spectrophotometer was continuously

purged. Background of the internal reflection ele-

ment was collected and subtracted to the samples.

Peptide samples in the absence/presence of lipid

were prepared with 10 mM HEPES buffer pH 7.4

and spread on the Ge plate under a stream of N2 to

evaporate the solvent (see [18] for further informa-

tion).

Secondary structure of the pep-1, in absence and

in the presence of membranes with various lipidic

compositions: POPC, POPC:Chol (2:1 molar) and

DPPC, was evaluated (negatively-charged phospho-

lipids could not be used due to precipitation caused

by pep-1, as stated above). After liposome forma-

tion, pep-1 was added to the solution to obtain a

final peptide concentration of 20% (w/w) and mixed

in vortex; the lipidic concentration was maintained

at 2 mg/mL (�/2.6 mM, depending on the exact

lipid molar mass) and the peptide concentration at

0.4 mg/mL (0.138 mM, peptide/lipid molar ratio�/

0.053). A film with 8 mg peptide�/40 mg lipid was

prepared by spreading the peptide/lipid solution on

the Ge plate. The kinetic of peptide deuteration was

evaluated; non-deutered and deutered samples were

compared.

The determination of protein secondary struc-

tures was performed using a curve-fitting procedure,

where the amide I band was decomposed into the

various component bands which can be assigned to

the different types of secondary structure. First the

band positions were determined by deconvolution

using a Lorentzian deconvolution function

(FWHH�/30), a Gaussian apodization function

(FWHH�/15) and a 2 cm�1 resolution enhance-

ment. The amide I was fitted with bands placed at

the positions found and the integrated absorbance of

the component bands was calculated. The compo-

nents bands were assigned to secondary structures

comparing the results with data presented in differ-

ent references [19�23].

Orientation of the secondary structure

ATR-FTIR Spectroscopy provides information on

the orientation of peptides inserted in lipid bilayers

[18,23]. Peptide spectra were recorded with parallel

and perpendicular polarized incident light at the

same conditions as non-polarized spectra (see

above). With polarized light it is possible to deter-

mine the dichroic spectra (see Supplementary Figure

S.2 in the Online version for results obtained with

pep-1) and the dichroic ratio (RATR) which provides

information about the orientation of the peptide

inserted in lipidic bilayers.

The integrated areas corresponding to the a-helix

components from the two polarized spectra were

determined and the ratio of the integrated areas is

the dichroic ratio of a-helix, RATR
a : Dichroic ratios

were used to determine the tilt angle with the

membrane normal (see [13] for further informa-

tion). The angle between helix axis and the amide I

transition dipole moment is 33.38 [24]. Riso was used

to compute the film thickness and the values of the

electric field components at 1650cm�1 as described

previously [18]. For these calculations refractive

indexes of 4.0 and 1.44 were used for the Ge plate

and the sample film, respectively.

Electrophysiological studies

PLMs were formed according to the Montal and

Mueller method [25]. Briefly, a thin teflon film

(25 mm) with a hole (130�160 mm) was clamped

between two compartments (referred as cis and trans

chambers) filled with HEPES buffer (the level of

solution was kept below the hole) 5 ml of a lipid

solution (20 mg/ml in n-hexane) were spread in each

compartment and the solvent was left to evaporate

(10 min). Raising the level of the buffer solution

above the aperture, first in one side and then in the

other, induced the formation of the bilayer in the

teflon hole. The two chambers were connected

(through Ag/AgCl electrodes and a 1 M KCl agar

bridge) to a BLM-120 amplifier (biologic). The cis

chamber was connected to the active input of the

BLM-120 amplifier and trans chamber was held at

ground. The electrical potential was defined as cis

with respect to trans . The formation of bilayer was

followed by membrane capacitance, see [26]. Only

membranes with a resistance�/100GV were used to

perform the measurements. Pep-1 was added to the

cis side of the chamber and the ion current was

recorded for increasing potential differences (alter-

nating from negative to positive potential). The

electric signal was low pass filtered at 100 Hz,

sampled at 44.1 kHz and stored on CD using a

DRA 200 analog to digital converted (biologic).

DPhPC was used to perform PLMs because it is

known to form stable bilayers [27], this lipid exhibits

no detectable phase transition over a large tempera-

ture range (�/1208C to �/1208C) [28] and the

presence of methyl groups along acyl chains results

in considerable disorder chain [29], so a fluid-like

Pep-1 translocates without pore formation 3
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phase is expected at room temperature. DPhPC was

preferred over POPC because POPC did not form

bilayers. Both lipids form fluid phase bilayers at

room temperature. The charge effect was tested by

the presence of 10% and 20% (mol/mol) of POPG

in the bilayers. Different peptide concentrations

were added at cis chamber. Asymmetrical mem-

branes were also tested with 20% POPG in the trans

side and pure DPhPC in the cis side. Titrations with

peptide were realized in the trans side or in the cis

side or alternating (one addition in the trans side and

other in the cis side). Controls without peptide were

carried on.

Leakage experiments with GUVs

Membrane leakage induced by pep-1 was evaluated

in GUVs using the method previously described by

Ambroggio et al. [15,30]. Briefly, for GUVs produc-

tion 4 ml of lipid stock solution (0.2 mg/ml) in

chloroform were spread on each Pt wire under

a stream of N2, residual organic solvent was removed

in a vacuum chamber overnight. Sucrose solution

with three dyes, (2 mM Alexa Fluor633 C5-

maleimide (Mr�/1300), 2 mM Alexa Fluor546-

Dextran (Mr�/10000) and 2 mM Alexa

Fluor488-Dextran (Mr�/3000)) with an overall os-

molarity of 150 mOsM, was equilibrated at a

temperature above lipid phase transition and added

to the chamber (500 ml final volume) covering the Pt

electrodes. The Pt wires were connected to a

function generator and a low frequency AC field

(sinusoidal wave function with a frequency of 10 Hz

and amplitude of 1.5V) was applied for 120 min to

form GUVs. Vesicle solutions were carefully re-

moved from the chamber and placed into a sephadex

G-100 column equilibrated with a gluocose iso-

osmolar solution [15]. With this procedure the

fluorescent dyes located out of the vesicles are

removed and vesicles with homogeneous size (about

10�15 mm) are obtained. GUVs solution suspended

in glucose (250 mL) were added to an eight well

plastic chamber (Lab-tek Brand Products) and left

to precipitate overnight. The density difference

between glucose and sucrose causes the precipitation

of the vesicles, which facilitates observation in the

inverted confocal fluorescence microscope. An iso-

osmolar solution of pep-1 was added to the chamber

and the fluorescence intensity of the different dyes

was followed for a period of time of up to 30 min;

different peptide concentrations were studied in the

presence of GUVs prepared with POPC or POPC:-

POPG (4:1 molar). The membrane integrity was

evaluated repeating these experiments with GUVs

labelled with a membrane dye (0.5% DiIC18/lipid

mol/mol) and with 2 mM Alexa Fluor633 C5-mal-

eimide internalized. An inverted scanning confocal

fluorescence microscope (Zeiss -LSM 510 META,

Carl Zeiss, Jena, Germany) was used to perform the

experiments. The excitation wavelengths were 543

nm (HeNe laser, 1 mW; for DiIC18 or Alexa

Fluor546- Dextran), 488 nm (Ar laser, 30 mW; for

Alexa Fluor488-Dextran) and 633 nm (HeNe laser, 5

mW; for Alexa Fluor633 C5-maleimide). The objec-

tive used for the experiments was a Zeiss C-

Apochromat 40�/1.20 W corr (water immersion,

NA�/1,2). The fluorescent images were simulta-

neously collected using the fluorescence micro-

scope’s META detection device (Polychromatic 32-

channel detector) by selecting the proper emission

wavelength range for the different fluorescent

probes. The time-dependence of the fluorescent

intensities of the different dyes during the course of

the experiment were quantitatively recorded and

treated by the standard Zeiss LSM 510 META

software package (with the inclusion of the multiple

time series software option).

Lipid quantification in GUVs solution was carried

out to enable the determination of the peptide/lipid

ratio. POPC GUVs doped with 5% N-Rh-PE were

prepared using the same procedure above described

and the Rh fluorescence emission intensity

(lexcitation�/570 nm and lemission�/590 nm) was

followed before and after the washing step in the

Sephadex G100 column. The calibration curve was

set with multilamellar vesicles dispersions in sucrose

or glucose with a well-known lipidic concentration.

Blanks were discounted. Considering the total lipid

added to the Pt wire, the final lipid concentration in

the chamber is �/4 mM; after GUV formation the

average lipid concentration determined was 1.03

9/0.49 mM (8 samples) before washing step and

0.719/0.22 mM (4 samples) after vesicle washing.

Results and discussion

Pep-1 has a high affinity for zwiterionic membranes,

which is enhanced in the presence of negatively-

charged phospholipids [8]. The peptide has an

amphipathic nature, the hydrophobic domain, con-

taining five Trp residues, inserts in the membrane

with a shallow position [8,10], but not accessible to

the aqueous environment [8]. The hydrophilic

domain, with five basic residues, does not insert in

the hydrophobic core of the membrane [9]. This

highly charged domain is probably responsible for

the first contact of the peptide with the membrane

due to electrostatic attraction between the polar

phospholipids headgroup and the positive charges

of pep-1 [9]. The dehydration induced by the

hydrophilic domain at membrane surface and the

insertion of hydrophobic domain promote mem-

4 S. T. Henriques et al.
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brane destabilization. As a consequence of

membrane destabilization induced by pep-1, aggre-

gation and fusion events with LUVs were detected

[7]. These perturbations in the membrane occurred

without evidence for pore formation. [7,10]. Fusion

events without leakage were also observed for other

CPPs such as R7W, TATP59W and TATLysP59W

[31]. Moreover, membrane integrity in HeLa cells is

only disrupted in the presence of high peptide

concentration (concentration much higher than the

one required for the translocation to occur) [10].

At variance, Deshayes et al. proposed a barrel-

stave-like mechanism of pore formation [12]. Such a

hypothesis is based on the observation that pep-1

undergoes conformational changes after insertion in

the lipidic bilayer (hydrophobic domain change from

unordered to a-helix structure) and due to changes

in the membrane conductance in voltage-clamped

oocytes, when a transmembrane potential is applied.

Moreover, it is suggested that the helical axis of pep-

1 is inserted with a perpendicular orientation to the

membrane plane; this proposal was putative.

Secondary structure determination

In the present work a study of the peptide secondary

structure was carried out in the absence and

presence of lipidic membranes at physiological pH.

To evaluate the conformational state of pep-1, its

secondary structure was studied by both CD spec-

troscopy and ATR-FTIR spectroscopy in the pre-

sence and absence of lipidic bilayers. It is normally

accepted that CD spectroscopy is a powerful tech-

nique to identify the presence of random coil and a-

helix contributions [17,32,33] where IR is more

sensitive to b-sheets structures [34].

In CD measurements a good computer fitting

with concomitant quantification of different spectral

components contributions was obtained in the

spectra carried out on aqueous solution with 68.8

mM pep-1 (Figure 1A). Contributions of a-helix and

random coil were identified.

LUVs are an adequate model of biological mem-

branes with no significant curvature effects as the

ones present in SUVs (small unilamellar vesicles)

[35]. The secondary structure of 68.8 mM pep-1 in

the presence of 1mM POPC or POPC:Chol (2:1

molar) vesicles (Figure 1B and C) has a higher

contribution of a-helix than in aqueous environ-

ment.

ATR-FTIR spectroscopy enables to further ex-

tend the information on peptide secondary structure

because this technique is more robust than CD

spectroscopy to identify the presence of b-structures.

Amide I mode (�/1700�1600 cm�1) is the most

sensitive to the protein secondary structure [23].

The membrane phase effect was evaluated with

different lipids at room temperature, instead of

heating/cooling one lipidic system, to avoid arte-

facts/denaturation in the pep-1. At room tempera-

ture POPC forms fluid phase bilayers, POPC:Chol

(2:1 molar) forms liquid-ordered phases and DPPC

forms gel phase bilayers.

A broad band was obtained in the absence and

presence of the lipidic systems (Figure 2A), suggest-

ing that there are contributions of different con-

formations. Comparison of deconvoluted spectra

Figure 1. The 68.8 mM pep-1 Far-UV CD spectra obtained,

Mean Residue Elipticity (MRE) is presented, (A) in aqueous

solution, (B) in the presence of 1 mM POPC LUVs or (C) in the

presence of 1 mM POPC:Chol (2:1 molar). Solid lines represent

original spectra; dotted lines fitted spectra and dashed lines the

residual. The samples were prepared in 10 mM phosphate buffer

(pH 7.5) containing 75 mM NaF.

Pep-1 translocates without pore formation 5
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(Figure 2B) reveals that the same secondary struc-

tures but with different percentages are present in

the different conditions tested.

Spectra of deutered samples (1 h of deuteration;

see 1H/2H exchange kinetic in Supplementary ma-

terial Online, Figure S.1) were used to improve the

assignment of band components and for a better

quantification of secondary structure. In the non-

deutered form the random coil and a-helix confor-

mation absorb at the same wave number range. At

variance, the band of the deutered form of the

random coil is usually shifted to lower wave num-

bers. Therefore, the deutered form facilitates the

identification and quantification of the two classes of

structures. Moreover, the amide I in non-deutered

form can also have contribution of the water hydra-

tion [23] and of amino acid side chains [20], which

further hampers detailed data analysis.

The spectra of pep-1 or pep-1-lipid mixtures dried

on the Ge plate were compared after 1 h of

deuteration (Figure 2C). Deconvolution (Figure

2D) shows 3 peaks (1691, 1674 and 1622 cm�1),

and a large shoulder between 1657�1640 cm�1.

By comparison with deconvoluted spectra ob-

tained in non-deutered and deutered forms (Figure

2B,D) it is possible to say that there is a contribution

of intermolecular b-structure (1692 and 1625 cm�1

in 1H, which are shifted to 1674 and 1622 cm�1 in
2H) [21,23]. The existence of intermolecular b-

structure instead of intramolecular b-sheet is identi-

fied by the low frequency signal at 1625 cm�1 in 1H,

and 1622 cm�1 in 2H; in the case of intramolecular

b-sheet a longer wave number was expected for the

low frequency component (1636�1630 cm�1 in-

stead of 1625 cm�1) [23]. The existence of a

contribution at �/1674 cm�1 in 1H suggests the

existence of b-turns [23]. In 2H a peak with this

wavenumber has a contribution of b-turn [19] and

also with the high frequency component of inter-

molecular b-sheet. Absorbances between 1657

cm�1 and 1640 cm�1 in 2H are characteristic for

a-helix and random coil [23]. Results obtained with

Figure 2. ATR-FTIR amide I band of 8 mg of pep-1 in aqueous solution (solid line) or in the presence of 40 mg of lipid in multilayers with

different compositions: POPC (alternated dashes and dots), POPC:Chol (2:1 molar) (long dashes) and DPPC (short dashes). (A) Non-

deutered form, (B) Deconvoluted spectra of the non-deutered form. (C) Recorded after 1 h of deuteration. (D) Deconvoluted spectra of

deutered form. All the spectra were normalized. The samples were prepared in 10 mM HEPES with 150 mM NaCl (pH 7.4).

6 S. T. Henriques et al.
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CD spectroscopy confirm the existence of these two

contributions.

For the quantification of each contribution a five-

band fitting was preformed in deutered spectra, as

follows: (i) 1705�1685cm�1, (ii) 1680�1669cm�1,

(iii) 1660�1648cm�1, (iv) 1648�1640cm�1, (v)

1630�1620cm�1. Band assignment and relative

weights are present in Table I.

In the presence of lipids, the contribution of b-

sheet (bands with maximum at 1674 cm�1 and

1621 cm�1) decreases, while a-helix (1657 cm�1)

and random coil contributions (1640 cm�1) in-

crease. The contribution at �/1690 cm�1 is weak for

all the conditions and may result from a small

fraction of peptide quantity in non-deutered form

in b-sheet conformation (see Figure 2 and Table I).

In ATR-FTIR measurements, an increase in

intermolecular b-sheet signal, with the peptide

quantity spread in the Ge plate, was verified (data

not shown). It was previously published that pep-1

has a tendency to aggregate in aqueous solution [8];

in order to verify that the b-structure signal is due to

intermolecular interactions resulting from peptide

aggregation with b-sheet conformation, a titration of

the ThT dye with a pep-1 stock solution was realized

(see Supplementary material online). An increase in

ThT fluorescence intensity emission (with excitation

at 450 nm) with peptide concentration (see Figure

S.3 in Supplementary material online) confirms that

pep-1 has a tendency to aggregate with b-sheet

conformation.

While analysing ATR-FTIR results one should

bear in mind that samples are semi-dehydrated.

When the sample is semi-dehydrated for multi-

bilayer deposition, the fraction of pep-1 not inserted

in the membranes precipitates in the aggregated

form and contributes in this form to the ATR-FTIR

spectrum. Comparison of spectra in Figure 2 shows

that the signal at 1621 cm�1 (intermolecular b-

structure component) decreases in the order H2O�/

DPPC�/POPC:Chol�/POPC. The percentage of

peptide precipitated decreases when the membrane

becomes more fluid (membrane fluidity follows the

order: DPPCB/POPC:CholB/POPC) which is re-

lated to the ability of the peptide to insert in the

membrane [8]. Therefore, the relative percentage for

the contribution of the different secondary struc-

tures is affected by the contribution of aggregates in

solution. To evaluate if there is alteration in the a-

helix content of the fraction of peptides inserted in

the lipidic matrix it is a better approach to compare

the contribution of a-helix components in relation to

random coil component. For instance in the absence

of lipid a-helix/random coil contribution�/3.8%/

32.7%�/0.12. When DPPC is present, 7.7%/

35.4%�/0.22, and for POPC�/14.6%/44.2%

�/0.33 (see Table I). These results show that in

the presence of lipidic bilayers there is an increase in

a-helix contribution relative to random coil, and this

contribution is enhanced by membrane fluidity (see

Figure 2 and Table I).

CD and ATR-FTIR measurements were carried

out with different peptide and lipidic concentrations

but the peptide/lipid ratios were nearly the same

(0.069 and 0.054, respectively). With CD measure-

ments it was possible to identify the presence of

random coil and a-helix contributions; this facili-

tated the band assignment in amide I ATR-FTIR

spectra. A fraction of peptide, either in the absence

or in the presence of vesicles, is aggregated when the

peptide/lipid suspensions is spread over the Ge Plate

(identified by the presence of intermolecular b-

sheet). An a-helix conformation of the other frac-

tions is favoured when the pep-1 is inserted in the

membrane (see Figure 1, Figure 2 and Table I).

Considering the primary structure of pep-1, the

hydrophobic domain has a bigger tendency to

acquire an amphipathic a-helix conformation, in

agreement with NMR results proposed by others

[10,12], while the hydrophilic domain is expected to

be in the random coil conformation. The presence of

Pro residue in the spacer domain, between hydro-

philic and hydrophobic domains, is responsible

for the separation of a-helix and random coil

conformations, inducing the flexibility necessary

for the integrity of these two domains.

Table I. Pep-1 secondary structure evaluated by ATR-FTIR spectroscopy in the absence/presence of different lipidic multibilayers at 208C
and pH7.4*.

Frequencies (cm�1) Assignment POPC POPC:Chol (2:1) DPPC Aqueous solution

1690 �/¡/ b-Sheet 2.89/0.1 1.99/0.0 1.39/0.3 1.39/0.5

1674 Turn and �/¡/ b-Sheet 31.29/1.1 28.89/1.7 34.59/2.6 39.59/2.1

1657 a-helix 14.69/0.6 11.29/0.4 7.79/1.5 3.89/1.1

1640 Random coil 44.29/0.1 47.29/2.3 35.49/1.2 32.79/1.4

1621 Intermolecular b-Sheet 7.29/0.4 10.99/0.1 21.19/2.1 22.79/0.8

*Samples were spread on Ge plate from solutions with 138 mM pep-1 and �/2.6 mM lipid (8 mg of pep-1 and 40 mg lipid); spectra were

recorded after 1 h of deuteration. Five bands were used to fit amide I spectra as follows: (i) 1705�1685 cm�1, (ii) 1680�1669 cm�1, (iii)

1660�1648 cm�1, (iv) 1648�1640 cm�1, and (v) 1630�1620 cm�1. The frequency (cm�1) of Amide I components and the respective

percentage for each condition are presented in the form.

Pep-1 translocates without pore formation 7
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Orientation of the pep-1 when partitioned in lipidic

membranes

Polarized ATR-FTIR is a powerful technique to

obtain information about peptide orientation in a

lipid bilayer [18]. Calculation of the a-helix mean tilt

angle, with membrane normal, was performed. This

required the evaluation of RATR
a (see Material and

methods section). Barrel-stave-like pore formation,

such as the one proposed for antimicrobial peptides

[36] and pep-1 [12], demand the a-helix domain of

peptide to span across lipid membrane with an

amphipathic helix and acquire an orientation parallel

to the membrane normal (08) [36]. In POPC

vesicles and POPC:Chol (2:1 molar) the mean tilt

angle of helix contribution with respect to the

normal to the membrane is 46.58 and 44.58,
respectively. These values are close to the average

value expected for a randomly oriented structure

(54.78) [37]. So, peptide populations with no pre-

ferred orientation cannot be discarded. A perpendi-

cular orientation relative to the bilayer surface for

peptide hydrophobic domain was not expected from

the previous quenching experiments [8]. These

findings are not consistent with a barrel-stave-like

organization.

In DPPC an angle closer to membrane normal

(208) was found for the a-helix domain. This result

supports the idea that peptide is constricted to gel

line defects in these rigid membranes [8].

Membrane disruption caused by pep-1

When planar bilayers, PLMs, are used it is possible

to have access to both sides of the membrane and the

ion flux can be determined by electrical measure-

ments. The electrical capacity of bilayers prepared

by the Montal and Mueller method matches that of

biological membranes [25].

DPhPC, which form stable and neutral bilayers at

room temperature, was used. Pep-1 was added to the

cis chamber and the ionic current was recorded for

increasing potential differences alternating from

negative to positive potential (from 0 to9/100mV).

Different peptide concentrations were added

(0�3 mM). For low peptide concentration

(0.5 mM) there was no effect; increasing peptide

concentration (�/2 mM), ion current fluctuations

were detected in the presence of transmembrane

potential (Figure 3A). The current-voltage relation-

ship (Figure 3B) shows that these current fluctua-

tions are amplified with the transmembrane

potential; however, the shape of fluctuations is

completely disordered. When the transmembrane

potential was increased to values higher than9/100

mV, or the peptide concentration was increased (�/3

mM), the membrane was destroyed.

In the presence of a transmembrane potential, an

increase in peptide concentration in the membrane

due to electrostatic attraction is expected. Therefore,

the membrane becomes more loosely packed, which

results in transient membrane permeability instabil-

ities in the presence of the electric field (Figure 3B).

In the presence of a barrel-stave pore a single-

channel conductance was expected, which is

characterized by reproducible multiple discrete con-

ducting states [36]. A barrel-stave model cannot

account for the results performed with DPhPC

PLMs because the conductance induced by the

pep-1 is continuously variable rather than discrete

[36] (Figure 3A).

The charge effect in the membrane was tested in

DPhPC bilayers with 10% or 20% of POPG and also

with asymmetrical membranes. These membranes

were less stable. By the addition of peptide to

bilayers an intermediary step with current fluctua-

tions did not occur. The membrane became leaky at

low pep-1 concentration (�/1 mM) (data not

shown). This is probably due to high electrostatic

attraction of pep-1 to negatively-charged membranes

[8].

The hypothesis of pore formation whether barrel-

stave-like or not was further tested by fluores-

cence microscopy with GUVs loaded with three

fluorescent dyes differing in their molecular sizes

(Alexa Fluor633 C5-maleimide (Mr�/1300), Alexa

Fluor488-Dextran (Mr�/3000) and Alexa Fluor546

-Dextran (Mr�/10000)). This experimental setup

enables direct observation of any change in the

membrane permeability during time course observa-

tions [15,30]. Moreover, in the case of pore forma-

tion it is also possible to have information on pore

size due to sequential escape of the dyes from the

GUVs. The membrane integrity was evaluated with

DiIC18 to probe the membrane bilayer structure

[30]; this dye was incorporated in GUVs loaded with

Alexa Fluor633 C5-maleimide (Mr�/1300)

GUVs prepared with POPC or POPC:POPG (4:1

molar) with a final lipid concentration of �/0.7 mM

were studied in the presence of different peptide

concentrations. POPC:POPG vesicles in the pre-

sence of peptide concentrations bellow �/0.7 mM

did not undergo noticeable effect in the membrane

shape, permeability or integrity; none of the probes

escape from the GUVs, during the time window of

the experiment (�/30 min). With higher peptide

concentration (�/0.7 mM) GUVs were completely

destroyed with the simultaneous leakage of the three

dyes (Figure 4), which resulted in deformed lipid

aggregates (see also Movies 1 and 2 in the Supple-

mentary material Online).

Figure 5 confirms membrane destruction caused

by pep-1 in these conditions, where the leakage of

8 S. T. Henriques et al.
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Alexa Fluor633 C5-maleimide (Mr�/1300) and the

membrane disintegration (followed with DiIC18)

occurred concomitantly. These results prove that

the peptide does not induce pore formation. Instead,

it induces disintegration of the vesicles with a

detergent-like mechanism (see Movies 1 and 2 in

the Supplementary material Online). It is worth

stressing that the approximate lipid concentration in

GUVs solution is �/0.7 mM which is approximately

the peptide concentration required for the mem-

brane disruption. With lower peptide concentrations

there was no effect on the membrane permeability.

Similar results were obtained with POPC vesicles,

but a higher peptide concentration was required for

vesicle destruction, about 2�4 mM. This is expected

because pep-1 has higher affinity for negatively-

charged vesicles [8].

The lag time between peptide addition and

vesicles destruction is dependent not only on peptide

affinity for membranes but also on the peptide

concentration and its diffusion in the chamber

(continuous stirring was not possible in these con-

ditions) [15].

Taken together, the results obtained in GUVs and

in PLMs suggest that pep-1 at low peptide/lipid (P/

L) ratios does not cause significant alterations in

membrane properties and does not induced serious

perturbations in permeability. For high bulk P/L

ratio the membrane is disrupted with a detergent-

like mechanism. The P/L ratio required to cause this

effect is dependent on the membrane composition,

which governs the local peptide concentration in the

membrane.

‘Carpet’-model disintegration vs. barrel-stave pore

formation

Aurein and Citropin, antibiotic peptides, disrupt

membranes in a similar way to pep-1 and a ‘carpet’

model mechanism was proposed [15]. In this model,

electrostatic interactions drive the peptide binding

onto the surface of the membrane and cover it in a

‘carpet’-like manner. Membrane permeation only

occurs above a certain critical local peptide concen-

tration, resulting in disintegration of the membrane.

Figure 3. Electrical measurements in the DPhPC planar bilayers prepared in buffer with 10 mM HEPES (pH 7.4) and 150 mM NaCl.

Pep-1 was added to the cis compartment. (A) Current fluctuations in the presence of 2 mM pep-1 at the membrane voltage was clamped at

�/70 mV. (B) Current-voltage relationship in the absence (filled circle) or in the presence of 0.86 mM pep-1 (open circle) or 2.58 mM pep-1

(filled triangle). Current signals were averaged over 10 s.

Figure 4. Pep-1 (0.9 mM) interaction with POPC:POPG (4:1)

GUVs (0.7 mM) by confocal microscopy. Time course of the

normalized fluorescence intensity, of the three internalized

vesicles: Alexa Fluor546- Dextran (Mr�/10000) (open triangle),

Alexa Fluor488-Dextran (Mr�/3000) (filled circle) and Alexa

Fluor633 C5-maleimide (Mr�/1300) (filled square). Fluorescence

intensity was determined in each micrograph using the standard

Zeiss LSM 510 META software package (with the inclusion of the

multiple time series software option) to quantify the average

fluorescence intensity over time. Background was corrected and

fluorescence intensities were normalized to zero time.

Pep-1 translocates without pore formation 9
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A previous step before the collapse of the membrane

packing may include the formation of transient holes

in the bilayer [38]. The formation of such holes

enables the passage of low molecular weight mole-

cules prior to complete lyses [38]. These small

transient holes explain the ion current fluctuations

detected in DPhPC PLMs and also the results

obtained by Deshayes et al. [12]. Nevertheless,

such holes do not make the membrane permeable

for molecules with a molecular weight ]/ 1300 Da

(See Figures 4 and 5 and also Movies 1 and 2 in the

Supplementary material online), so this mechanism

cannot explain the translocation of proteins as big as

b-Galactosidase (116 KDa), which, as verified

previously, can be translocated by pep-1 in HeLa

cells [6,9].

The adequacy of a ‘carpet’ model-like mechanism

to explain membrane disruption and absence of the

pore formation (barrel-stave or other) are further

supported by the fact that the hydrophobic domain

length in a-helix conformation mismatches the

membrane depth. Considering 1.5 Å per residue

Figure 5. Direct visualization of membrane integrity, of POPC:POPG (4:1 molar) GUVs (0.7 mM) in the presence of pep-1 (0.9 mM), by

confocal microscopy. (A) GUVs before and after peptide addition (3.7 and 6.5 min). Pictures show the merge fluorescence of the DiIC18

and Alexa Fluor633 C5-maleimide (Mr�/1300) (red and blue, respectively in online version). Scale bar, 15 mm. (B) Time course of the

normalized fluorescence intensity of the two dyes during the experiment: DiIC18 (open triangle), and Alexa Fluor633 C5-maleimide (Mr�/

1300) (filled circle). Fluorescence intensity was determined as stated in Figure 4. Part A of this Figure is reproduced in colour in Molecular

Membrane Biology online.

10 S. T. Henriques et al.
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for an ideal a-helical structure [15], 19.5 Å length is

expected for the peptide domain inserted in the

membrane while 40 Å is the thickness for fluid lipid

bilayers [39]. In barrel-stave pore the peptide inter-

action with the target membrane is driven predomi-

nantly by hydrophobic interactions and the peptides

should bind to phospholipid membranes irrespective

of their charge [38], with a transmembrane domain

that spans across the membrane [36]. These events

are favoured in the absence of Trp residues in the

peptide [40]. Pep-1 however does not fulfil any of

such requirements for pore formation.

Membrane destruction is an extreme event that

only occurs at very high pep-1 concentration. There-

fore ‘carpet’-like mechanism may explain the cyto-

toxicity of pep-1, but does not explain its

translocating activity at lower concentrations

[5,6,10].

Conclusions

Pep-1 translocates and transports proteins across

membranes even with relatively low peptide concen-

trations [5,6,10]. With concentrations required for

peptide translocation pep-1 shows a high affinity for

membranes [8] and is able to induce membrane

destabilization [7] without evidence of pore forma-

tion [7,10]. Translocation occurs both in vitro [7]

and in vivo [6] by a mechanism mediated by the

transmembrane potential. Such a mechanism is

governed by electrostatic interaction between the

peptide and the membrane and the peptide ability to

destabilize membranes seems to play an important

role.

For high peptide concentration more pronounced

membrane damage occurs, which induces toxicity in

cells [5,10]. Membrane disintegration occurs for

high P/L ratios and is dependent on the peptide

affinity for membranes. A ‘carpet’-model mechan-

ism is suggested by all sets of data but only in

extreme conditions, far from typical physiological

conditions.

It should be stressed that in the presence of a

transmembrane potential, translocation occurs and

peptide accumulation in the membrane is not

favoured, i.e., the membrane saturation/disintegra-

tion point is only reached at very high peptide

concentration, which explains the low cytotoxicity

of pep-1.

In spite of the a-helix contribution increase when

pep-1 inserts in the membrane, there was no direct

evidence for a transmembrane pore. Pep-1 first

interaction with membrane is driven by electrostatic

interaction [9] followed by membrane carpeting,

which occurs with lateral rearrangement of the acidic

lipids [7]. Similar phenomena were observed with

other peptides and a ‘membrane-thinning’ effect was

proposed [41]. In this model, the peptide aggregates

on the surface and the reduced local surface tension

allow the peptide to intercalate the membrane.

Flexible sealing between peptide side-groups and

lipid head-groups minimize leakage during the CPP

passage through the membrane [1].

Supplementary material available online

(1) Pep-1 deuteration in the presence of lipidic

bilayers monitorized by ATR-FTIR; (2) Pep-1

dichroic spectrum obtained by ATR-FTIR spectro-

scopy; (3) Evaluation of existence of pep-1 b-sheet

aggregates by Thioflavin T fluorescence, and (4)

Movies showing the interaction of the pep-1 with

GUVs.
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Director from the National Fund for Scientific

Research, Belgium.

References

[1] Magzoub M, Graslund A. 2004. Cell-penetrating peptides:

from inception to application. Q Rev Biophys 37:147�195.

[2] Thoren PE, Persson D, Isakson P, Goksor M, Onfelt A,

Norden B. 2003. Uptake of analogs of penetratin, Tat(48-

60) and oligoarginine in live cells. Biochem Biophys Res

Commun 307:100�107.

[3] Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait

MJ, Chernomordik LV, Lebleu B. 2003. Cell-penetrating

peptides. A reevaluation of the mechanism of cellular uptake.

J Biol Chem 278:585�590.

[4] Drin G, Cottin S, Blanc E, Rees AR, Temsamani J. 2003.

Studies on the internalization mechanism of cationic cell-

penetrating peptides. J Biol Chem 278:31192�31201.

[5] Morris MC, Depollier J, Mery J, Heitz F, Divita G. 2001. A

peptide carrier for the delivery of biologically active proteins

into mammalian cells. Nat Biotechnol 19:1173�1176.

[6] Henriques ST, Costa J, Castanho MA. 2005. Translocation

of beta-galactosidase mediated by the cell-penetrating pep-

tide pep-1 into lipid vesicles and human HeLa cells is driven

by membrane electrostatic potential. Biochemistry

44:10189�10198.

[7] Henriques ST, Castanho MA. 2004. Consequences of

nonlytic membrane perturbation to the translocation of the

cell penetrating peptide pep-1 in lipidic vesicles. Biochem-

istry 43:9716�9724.

Pep-1 translocates without pore formation 11

90



D
ow

nl
oa

de
d 

By
: [

M
on

as
h 

U
ni

ve
rs

ity
] A

t: 
06

:5
4 

24
 A

pr
il 

20
07

 

[8] Henriques ST, Castanho MA. 2005. Environmental factors

that enhance the action of the cell penetrating peptide pep-1

A spectroscopic study using lipidic vesicles. Biochim Biophys

Acta 1669:75�86.

[9] Henriques ST, Costa J, Castanho MA. 2005. Re-evaluating

the role of strongly charged sequences in amphipathic cell-

penetrating peptides: a fluorescence study using Pep-1.

FEBS Lett 579:4498�4502.

[10] Weller K, Lauber S, Lerch M, Renaud A, Merkle HP, Zerbe

O. 2005. Biophysical and biological studies of end-group-

modified derivatives of Pep-1. Biochemistry 44:

15799�15811.

[11] Fischer R, Fotin-Mleczek M, Hufnagel H, Brock R. 2005.

Break on through to the other side �biophysics and cell

biology shed light on cell-penetrating peptides. Chembio-

chem 6:2126�2142.

[12] Deshayes S, Heitz A, Morris MC, Charnet P, Divita G,

Heitz F. 2004. Insight into the mechanism of internalization

of the cell-penetrating carrier peptide Pep-1 through con-

formational analysis. Biochemistry 43:1449�1457.

[13] Vigano C, Manciu L, Buyse F, Goormaghtigh E,

Ruysschaert JM. 2000. Attenuated total reflection IR

spectroscopy as a tool to investigate the structure, orienta-

tion and tertiary structure changes in peptides and mem-

brane proteins. Biopolymers 55:373�380.

[14] Zhang S, Udho E, Wu Z, Collier RJ, Finkelstein A. 2004.

Protein translocation through anthrax toxin channels formed

in planar lipid bilayers. Biophys J 87:3842�3849.

[15] Ambroggio EE, Separovic F, Bowie JH, Fidelio GD,

Bagatolli LA. 2005. Direct visualization of membrane

leakage induced by the antibiotic peptides: maculatin,

citropin, and aurein. Biophys J 89:1874�1881.

[16] Mayer LD, Hope MJ, Cullis PR. 1986. Vesicles of variable

sizes produced by a rapid extrusion procedure. Biochim

Biophys Acta 858:161�168.

[17] Yang JT, Wu CS, Martinez HM. 1986. Calculation of

protein conformation from circular dichroism. Methods

Enzymol 130:208�269.

[18] Goormaghtigh E, Raussens V, Ruysschaert JM. 1999.

Attenuated total reflection infrared spectroscopy of proteins

and lipids in biological membranes. Biochim Biophys Acta

1422:105�185.

[19] Torrecillas A, Martinez-Senac MM, Goormaghtigh E, de

Godos A, Corbalan-Garcia S, Gomez-Fernandez JC. 2005.

Modulation of the membrane orientation and secondary

structure of the C-terminal domains of Bak and Bcl-2 by

lipids. Biochemistry 44:10796�10809.

[20] Goormaghtigh E, Cabiaux V, Ruysschaert JM. 1994. De-

termination of soluble and membrane protein structure by

Fourier transform infrared spectroscopy. I. Assignments and

model compounds. Subcell Biochem 23:329�362.

[21] Arrondo JL, Goni FM. 1999. Structure and dynamics of

membrane proteins as studied by infrared spectroscopy. Prog

Biophys Mol Biol 72:367�405.

[22] Barth A, Zscherp C. 2002. What vibrations tell us about

proteins. Q Rev Biophys 35:369�430.

[23] Tatulian SA. 2003. Attenuated total reflection Fourier

transform infrared spectroscopy: a method of choice for

studying membrane proteins and lipids. Biochemistry

42:11898�11907.

[24] Bechinger B, Ruysschaert JM, Goormaghtigh E. 1999.

Membrane helix orientation from linear dichroism of infra-

red attenuated total reflection spectra. Biophys J 76:

552�563.

[25] Montal M, Mueller P. 1972. Formation of bimolecular

membranes from lipid monolayers and a study of their

electrical properties. Proc Natl Acad Sci USA 69:

3561�3566.

[26] Fuks B, Homble F. 1994. Permeability and electrical

properties of planar lipid membranes from thylakoid lipids.

Biophys J 66:1404�1414.

[27] Redwood WR, Pfeiffer FR, Weisbach JA, Thompson TE.

1971. Physical properties of bilayer membranes formed from

a synthetic saturated phospholipid in n-decane. Biochim

Biophys Acta 233:1�6.

[28] Lindsey H, Petersen NO, Chan SI. 1979. Physicochemical

characterization of 1,2-diphytanoyl-sn-glycero-3-phospho-

choline in model membrane systems. Biochim Biophys

Acta 555:147�167.

[29] Hung WC, Chen FY, Huang HW. 2000. Order-disorder

transition in bilayers of diphytanoyl phosphatidylcholine.

Biochim Biophys Acta 1467:198�206.

[30] Ambroggio EE, Kim DH, Separovic F, Barrow CJ, Barnham

KJ, Bagatolli LA, Fidelio GD. 2005. Surface behavior

and lipid interaction of Alzheimer beta-amyloid peptide 1-

42: a membrane-disrupting peptide. Biophys J 88:2706�
2713.

[31] Thoren PE, Persson D, Lincoln P, Norden B. 2005.

Membrane destabilizing properties of cell-penetrating pep-

tides. Biophys Chem 114:169�179.

[32] Sreerama N, Venyaminov SY, Woody RW. 1999. Estimation

of the number of alpha-helical and beta-strand segments in

proteins using circular dichroism spectroscopy. Protein Sci

8:370�380.

[33] Woody RW. 1995. Circular dichroism. Methods Enzymol

246:34�71.

[34] Oberg KA, Ruysschaert JM, Goormaghtigh E. 2004. The

optimization of protein secondary structure determination

with infrared and circular dichroism spectra. Eur J Biochem

271:2937�2948.

[35] Wieprecht T, Beyermann M, Seelig J. 2002. Thermody-

namics of the coil-alpha-helix transition of amphipathic

peptides in a membrane environment: the role of vesicle

curvature. Biophys Chem 96:191�201.

[36] Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. 2001.

Barrel-stave model or toroidal model? A case study on

melittin pores. Biophys J 81:1475�1485.

[37] Thulstrup EW, Michl J. 1989. Elementary polarization

spectroscopy. New York: VCH Publishers; 52 pp.

[38] Shai Y. 1999. Mechanism of the binding, insertion and

destabilization of phospholipid bilayer membranes by alpha-

helical antimicrobial and cell non-selective membrane-lytic

peptides. Biochim Biophys Acta 1462:55�70.

[39] Wiener MC, White SH. 1992. Structure of a fluid dioleoyl-

phosphatidylcholine bilayer determined by joint refinement

of x-ray and neutron diffraction data. III. Complete struc-

ture. Biophys J 61:434�447.

[40] Herbig ME, Weller K, Krauss U, Beck-Sickinger AG,

Merkle HP, Zerbe O. 2005. Membrane surface-associated

helices promote lipid interactions and cellular uptake of

human calcitonin-derived cell penetrating peptides. Biophys

J 89:4056�4066.

[41] Ludtke S, He K, Huang H. 1995. Membrane thinning

caused by magainin 2. Biochemistry 34:16764�16769.

12 S. T. Henriques et al.

91



D
ow

nl
oa

de
d 

By
: [

M
on

as
h 

U
ni

ve
rs

ity
] A

t: 
06

:5
4 

24
 A

pr
il 

20
07

 

Online supplementary material

(1) Pep-1 deuteration in the presence of lipidic

bilayers monitorized by ATR-FTIR

The 1H/2H exchange kinetics was studied to estab-

lish an appropriate duration for peptide deuteration

to evaluate secondary structure by ATR-FTIR

spectroscopy. The kinetics of pep-1 deuteration in

the presence of POPC bilayers is fast (Figure S.1).

There are no significant differences in amide I band

after 1 min of deuteration. A decrease in the area of

the amide II band (1590�1505 cm�1) is also

noticed. The shape change in amide I and the area

decrease in amide II bands suggest that the pep-1 is

easily accessible to the solvent [1]. A fast kinetics of

pep-1 deuteration was observed for all the lipidic

systems tested (POPC, POPC:Chol (2:1) and

DPPC).

(2) Pep-1 dichroic spectrum obtained by ATR-

FTIR spectroscopy

The dichroic spectrum is the difference between the

spectra recorded with parallel and perpendicular

polarizations; the perpendicular spectrum was multi-

plied by the dichroic ratio of the lipid n (C�/O)

determined at 1738cm�1 (Riso) to take into account

the difference in the relative power of the evanescent

fields (see [2] for further information). The dichroic

spectrum provides information on the peptide or-

ientation relative to the normal of membrane plane

[2].

The dichroic spectrum, //-Riso�/, for pep-1 in the

presence of different lipids shows a positive dichro-

ism signal, for amide I region, indicating that the

peptide has a preferential orientation in the lipid

membrane (see Figure S.2). This band, however, is

relatively broad (FWHH�/50cm�1) with a max-

imum at 1674cm-1 and a shoulder at 1650cm�1.

(3) Evaluation of existence of pep-1 b-sheet

aggregates by Thioflavin T fluorescence

ThT dye was used to evaluate if pep-1 forms b-sheet

aggregates in aqueous solution. In the absence of b-

sheet aggregates the dye has an excitation and

emission maxima at 350 and 438nm, respectively.

In the presence of amyloid fibrils the ThT excitation

spectrum shifts with a new peak at 450nm and

emission at 482nm [3]. Titration of 15mM ThT with

a pep-1 stock solution (688 mM) was followed by

fluorescence intensity at lemission�/490nm with

lexcitation�/450nm.

(4) Movies showing the interaction of the pep-1

with GUVs

Movie 1. Leakage of the probes entrapped in GUVs.

0.9mM pep-1 was added to the vesicles composed by

POPC:POPG (4:1 molar) with a lipid concentration

�/ 0.7mM. Fluorescence merge of the three dyes

(Alexa Fluor546- Dextran (Mr�/10000) (red), Alexa

Fluor488-Dextran (Mr�/3000) (green) and Alexa

Fluor633 C5-maleimide (Mr�/1300) (blue)) is pre-

sented. The three dyes escape from the vesicles at

the same time. In the film the velocity was increased

40 times.

Figure S.2. ATR-FTIR spectra of pep-1 (20% w/w) partitioned in

POPC bilayers obtained using parallel or perpendicular polariza-

tion. The dichroic spectrum was obtained by the difference

between the spectra recorded with parallel and perpendicular

polarizations; the perpendicular spectrum was multiplied by Riso.

All the spectra are in the same scale, but dichroic spectrum

intensity has been multiplied by 2.

Figure S.1. 1H/2H exchange kinetic of pep-1 in the presence of

POPC bilayers (20% w/w). Spectra of 8 mg of pep-1 in the

presence of 40mg of POPC were recorded as a function of the

deuteration time (from 0 to 60 min of deuteration). All the spectra

were normalized.

Pep-1 translocates without pore formation 13
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Movie 2. Leakage of DiIC18-labelled GUVs filled

with Alexa Fluor633 C5-maleimide (Mr�/1300).

0.9mM pep-1 was added to the vesicles composed

by POPC:POPG (4:1 molar) with a lipid concentra-

tion �/ 0.7mM. Fluorescence merge of the DiIC18

(red) and Alexa Fluor633 (blue) is presented. Mem-

brane disruption and Maleimide escape occurred at

once, which demonstrates that membrane is dis-

rupted in these conditions. In the film the velocity

was increased 30 times.

Supplementary material references:

[1] Manciu L, Chang XB, Buyse F, Hou YX, Gustot A, Riordan

JR, Ruysschaert JM. 2003. Intermediate structural states

involved in MRP1-mediated drug transport. Role of glu-

tathione. J Biol Chem 278:3347�3356.

[2] Bechinger B, Ruysschaert JM, Goormaghtigh E. 1999.

Membrane helix orientation from linear dichroism of infra-

red attenuated total reflection spectra. Biophys J 76:552�
563.

[3] LeVine H 3rd. 1993. Thioflavine T interaction with syn-

thetic Alzheimer’s disease beta-amyloid peptides: detection

of amyloid aggregation in solution. Protein Sci 2:

404�410.

Figure S.3. Peptide concentration effect in the ThT (15mM)

fluorescence emission intensity, with excitation at 450nm and

emission at 490nm. Experiments were carried out in 10mM

HEPES buffer, pH 7.4, with 150mM NaCl.
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Chapter 4.   

 

 

Pep-1 and mammalian cells 

 

 

4.1. Introduction  

 
 It is accepted that Tat peptide and penetratin are internalized by an endosomal-

dependent mechanism; however there is no consensus in the specific endocytic pathway 

used for the import of these peptides [62, 68, 70]. A description of these endocytic 

pathways, how can they be used, what is the physiological significance of these routes 

and how can be used for the uptake of extracellular material is presented next.  

 

4.1.1. Endocytic routes for cell entry 

Endocytosis is a hallmark of all eukaryotic cells and is responsible for the uptake 

of membrane proteins and lipids, extracellular ligands and soluble molecules from the 

cell surface [211]. It modulates the delivery of essential metabolites to cells (e.g. 

nutrients uptake) and also the responses to many protein hormones and growth factors. 

Proteins targeted for destruction are taken up by endosomes and delivered to lysosomes 

for digestion [212]. In addition, endocytosis is also involved in synaptic vesicle 
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recycling and regulation of cell-surface expression of signalling receptors, remodelling 

of the plasma membrane and the generation of cell polarity [211]. To meet these 

different functions endocytic pathways have different regulation processes, specificity 

for different cargoes and destination within cells [211]. Endocytosis can be divided into 

two broad categories: phagocytosis, responsible for the uptake of large particles, and 

pinocytosis for the uptake of fluid and solutes [213-215] (see Figure 4.1).  

 

Figure 4.1. Different endocytosis routes for cell entry. Endocytic pathways can be classified according to 

the size of the endocytic vesicle, the nature of the cargo and the mechanism of vesicle formation. Large 

particles can be engulfed by phagocytosis, while solutes are internalized by pinocytosis. Phagosomes are 

responsible for internalization and afterwards degradation in lysosomal compartment. In macropinocitosis, 

large uncoated vesicles are formed, while in clathrin- and caveolin- mediated uptake vesicles are coated 

and present a smaller and uniform size. Clathrin- and caveolin- independent pathways are uncoated but 

present a small size when compared with macropinosomes or phagosomes. These vesicles are here 

designated as clathrin and dynamin-independent carriers (CLIC) and are derived from the plasma 

membrane. Virtually all the pinocytosis routes reach early endosomes but may first traffic to intermediate 

compartments such as the caveosome or glycosyl phosphatidylinositol-anchored protein enriched early 

endosomal compartment (GEEC). The fate of cargos macromolecules internalized by these different 

endocytic pathways is dependent on the cargo nature and possible target signal. By default, 

macromolecules without signal sequence end in lysosomal compartment where enzymatic degradation 

takes place. Image adapted from reference [216]. 

 

Phagocytosis is conducted primarily by specialized cells like neutrophils, 

macrophages and dendritic cells, that function to clear pathogens such as bacteria or 

Micropinocytosis 

Pinocytosis
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yeast and other particles such as remnants of dead cells or fat particles [214] higher than 

> 0.5µm in diameter [213]. It is an active and highly regulated process that involves 

interaction with specific cell-surface receptors, that trigger the formation of phagocytic 

compartments and subsequent internalization of the particles [213]. There are multiple 

modes of phagocytosis, which are determined by the particle to be ingested and the 

receptor that recognizes that particle; however in all the phagosomes actin drives its 

formation [214]. 

 

Pinocytosis, also known as fluid-phase uptake, can be followed by the 

intracellular accumulation of tracer molecules (e.g. enzymes, proteins, or labelled 

compounds known to be internalized by a specific pinocytosis route) present in the 

medium. Endocytosis can be initiated with non-specific binding of solutes to the cell 

membrane or captured by specific high-affinity receptors. Such receptors are 

concentrated into specialized endocytic transport vesicles where the molecule and its 

receptor determine the pathway through which the solute enters into the cell [214]. 

Fluid-phase uptake can be divided into macropinocytosis and micropinocytosis [213].  

Macropinocytosis is related to phagocytosis but is less specific [215, 217]. They 

are alike in morphology but differ in the biochemical mechanisms employed in their 

regulation [213]. Typically, macropinocytosis is triggered by growth factor stimulation 

or downstream-activated signalling molecules [217] and refers to the formation of large 

irregular primary endocytic vesicles by the closure of lamellipodia at ruffling membrane 

domains [213, 217], which can be transiently induced in most cells [214]. 

Macropinosomes are uncoated dynamic structures and can reach several μm in diameter 

[217]. Macropinocytosis fulfils diverse functions such as endocytic removal of large 

membrane domains, alter the adhesive and communicative properties of the cell and it is 

involved in cell contraction and migration [217]. The formation of large 

macropinosomes is also driven by actin as occurs for phagosomes [214]. 

Micropinocytosis refers to endocytic processes and differs mechanistically from 

the previous ones. It involves more selective plasma-membrane domains [214] that 

originate small pinocytic vesicles that appear somewhat uniformly over the cell surface 

[218]. Micropinocytosis can be divided in three mechanistically distinct pathways of 

uptake: clathrin-mediated endocytosis; caveolin-mediated endocytosis and clathrin- and 
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caveolin- independent endocytosis, which probably encompasses more than one 

pathway [214].  

Clathrin-mediated endocytosis occurs in all mammalian cells and is responsible 

for the continuous uptake of essential nutrients. It is also involved in cell and serum 

homeostasis and is required for efficient recycling of synaptic vesicle membrane 

proteins after neurotransmission [214]. Clathrin-mediated endocytosis is involved in 

concentrating of transmembrane receptors together with their bound ligands into 

“coated pits” [214]. This receptor-mediated endocytosis starts with the invagination of a 

coated pit that is encapsulated by clathrin-induced excision from the plasma membrane 

to form a “coated vesicle”, which rapidly loses it clathrin coat and fuses with an 

endosome [212].  

Caveolae-mediated endocytosis is a dynamin-dependent endocytic route. 

Caveolae are 50-80nm flask-shaped, plasma-membrane invaginations enriched in 

caveolins, sphingolipids and cholesterol that are present in many cells [216]. Different 

signalling molecules and membrane transporters are concentrated in these caveolae 

domains pointing to a role in the regulation of specific signalling cascades [214]. 

Caveolar cargoes are diverse, including lipids, proteins, lipid-anchored proteins and 

pathogen [216]. A cargo molecule can be internalized by different mechanisms under 

different conditions, the molecular basis for the correlation between caveolae-localized 

receptors and triggered endocytosis remains to be elucidated [214, 216]. 

The mechanisms responsible for caveolae- and clathrin- independent 

endocytosis seem to be dependent on rafts, which can presumably be captured by, and 

internalized within any endocytic vesicles. The unique lipid composition of these 

domains, where specific glycolipids and membrane proteins are associated, may be 

responsible for their specific sort [214]. In contrast to clathrin-dependent endocytosis, in 

which a ligand-receptor binding is required, no such well defined finding for clathrin-

independent endocytosis has been identified. A possible mechanism is the association of 

cargo with plasma membrane domains. However association of the cargo with such 

domains does not assume subsequent internalization by endocytosis [216]. The potential 

mechanisms for the selection o cargo for endocytosis can be divide into lipid- and 

protein-based mechanisms and were reviewed in reference [216]. An example is cholera 

toxin B (CTxB) which seems to be internalized by a non-clathrin, non-caveolar 
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mechanism. CTxB is observed in parts of the membrane where its receptor, the 

monosialoganglioside GM1, is located [216] 

 

Overall, it seems that endocytosis is regulated by the cargo nature and its 

hypothetical receptor, thus cargo molecules internalized by endocytosis are not passive 

passengers [214]. A variety of destinations can be followed after entry into the 

endocytic route. The fate of internalized solutes is also dependent on the cargo 

molecules. Virtually all routes of pinocytosis merge at early endosomes (see Figure 3.1); 

cargo molecules are then organized to be delivered to different intracellular targets or to 

be recycled back to the plasma membrane (e.g. some endocytic receptors such as LDL 

receptors) [216]. Lysosome is the default destination of any material that does not 

possess a signal sequence with target information. In the lysosome, macromolecules 

degradation takes place due to hydrolytic enzymes within the compartment [219]. It is 

worth mentioning that when two cargo molecules are internalized by the same 

mechanism they may have different intracellular destinations [216]. A particular amino 

acid sequence for instance may target proteins to the endoplasmic reticulum or a protein 

modification may target proteins to lysosomes [219].  
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4.2. Pep-1 internalization into mammalian cells 
 

Uptake of pep-1 into mammalian cells is of first importance for peptide 

functionality and applications in vivo. The elucidation of the mechanism for cell entry is 

compulsory in order to fully take advantage of its properties. In this chapter two articles 

with studies carried on with pep-1 and HeLa cells are presented.  

In the article titled: Translocation of β-Galactosidase mediated by the cell-

penetrating peptide pep-1 into lipid vesicles and Human HeLa cells is driven by 

membrane electrostatic potential, the principles that govern the mechanisms of 

internalization of pep-1 associated with the protein β-Galactosidase are unravelled. 

In the short communication titled: Re-evaluating the role of strongly charged 

sequences in amphipathic cell-penetrating peptides. A fluorescence study using pep-1, 

the effect of an attached fluorescent dye and the importance of the hydrophilic domain 

to translocation efficiency are revealed. A comparison between labelled and non-

labelled peptide is presented.  
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4.2.1. Translocation of β-Galactosidase mediated by the cell-

penetrating peptide pep-1 into lipid vesicles and Human HeLa cells is 

driven by membrane electrostatic potential.  

 
4.2.1.1. Motivation and methodologies 

The functionality of pep-1 as CPP is related to its capacity to internalize 

macromolecules inside cells. Results presented in chapter 2 reveal its high affinity for 

lipidic membranes and ability to pass through model membranes by a mechanism 

mediated by electrostatic interactions and promoted by transmembrane potential [153, 

186]. Previous reports on CPP translocation suggest endocytosis as the main mechanism 

[59, 61]. In this chapter a comprehensive study on the pep-1 capacity to pass through 

cell membrane and to introduce a macromolecule inside mammalian cells is presented. 

The possibility of a physical mechanism mediated by transmembrane potential was 

tested against an alternative mechanism mediated by endocytosis using HeLa cells 

(Adherent human negroid cervix epitheloid carcinoma cells). The result and conclusions 

are presented in the published article titled: Translocation of β-Galactosidase mediated 

by the cell-penetrating peptide pep-1 into lipid vesicles and Human HeLa cells is driven 

by membrane electrostatic potential.  

 

Most of published studies on CPP translocation with cellular lines were carried 

out with fluorescently-labelled peptides and in the absence of a cargo. Such procedures 

can create artefacts and bias CPP activity; moreover the significance of these peptides 

as CPP is not achieved unless its capacity to internalize cargoes inside cells is proven. 

In addition, recent observations show that fixation conditions can mask the peptide 

internalization mechanism [55, 58]. In order to avoid such artefacts, a protein cargo was 

followed through the studies, instead of the peptide.  

β-Galactosidase (β-Gal) from E. Coli was chosen to study the capacity of pep-1 

to internalize a protein and to evaluate the translocation efficiency. This protein does not 

have a valid signal sequence inside human cells and consequently is unable to address a 

specific organelle inside the cell. This protein is a homotetramere (116kDa each subunit) 

with an enzymatic activity dependent on it quaternary structure. The usage of a protein 

with these characteristics is useful because its cellular location, upon internalization 

mediated by pep-1, can give valuable information about the possible entry route. 
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Moreover, accessing its enzymatic activity one can conclude on the 

stability/functionality of the protein upon interaction with pep-1 and after cellular 

uptake. A disruptive aggressive process leave the protein unable to work as a catalytic. 

One should also emphasise the protein size; if pep-1 is able to mediate the uptake of this 

large protein one can consider that proteins can be internalized by a mechanism where 

size restriction is not operative (not likely a pore, for instance).  

 

A photophysical characterization of the protein and of the complex pep-1/β-Gal 

was performed by means of Trp fluorescence (each subunit of β-Gal has 38 Trp residues) 

using the methodologies referred in chapter 2. β-Gal enzymatic activity was followed 

upon pep-1/β-Gal complex formation for different pep-1/β-Gal ratios. Internalization of 

β-Gal mediated by pep-1 into HeLa cells was accessed by immunofluorescence using 

epifluorescence microscopy and confocal microscopy. Enzymatic activity after cellular 

internalization was also studied.  

 

For immunofluorescence detection, cell fixation and permeabilization 

procedures were performed prior to primary antibody anti-β-Gal addition. Primary 

antibody can be recognized by a secondary antibody with a fluorescent marker (e.g. 

Fluorescein isothiocyanate (FITC) or tetramethylrhodamine (TRITC)) (Figure 4.2). 

 

 

 
Figure 4.2. β-Gal internalization mediated by pep-1 can be 

detected by indirect immunofluorescence method. In the 

primary reaction binding of antibody anti-β-Gal with the 

antigen occurs. Followed by the secondary reaction where 

FITC-conjugated secondary antibody binds to anti-β-Gal 

to obtain complexes of β-Gal-antibody-FITC-conjugated 

antibody. FITC fluorescence is observed by fluorescence 

microscopy after washing. Source: 

http://www.mbl.co.jp/e/diagnostics/product/method.html.  

 

 

The entry by a mechanism dependent on endocytosis was tested by co-

localization of β-Gal with different endocytic markers: Dextran-TRITC was used to 
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follow macropinocytosis; antibody anti-early endosome antigen 1 to localize early 

endosomes; antibody anti-caveolin-1 to target caveosomes in caveolae endocytosis and 

antibody anti-cathepsin D to localize lysosomes. The two fluorescent markers (one to 

identify β-Gal location and the other to mark the specific endosomal compartment) were 

imaged in the same cells and each fluorophore was excited and detected independently 

by confocal microscopy to avoid any signal crossover. Quantification of co-localization 

of β-Gal with each endosomal marker was performed by comparison of a z-series of 14 

images in 6-10 cells [220-222]. Briefly, using the open source Image J software 

(http://rsb.info.nih.gov/ij/), the pixels of interest were first identified by generating a 

mask for each channel (in this particular case, red and green signals) to eliminate 

background signal resulting from the non-specific binding signal. Shared pixels between 

the red and green masks were identified and quantified; the overlap was defined as the 

percentage of total pixel intensity for the shared pixels.   

 

β-galactosidase is an enzyme responsible by the hydrolysis of β-galactosides 

into monosaccharide’s, releasing β-(1-4) linked galactose from the non-reducing end of 

oligosaccharides. This enzyme’s substrate specificity can be used to evaluate it activity 

by the use of synthesizing compounds which when hydrolyzed by β-gal result in a 

measurable product. The most commonly used chromogenic subtract is o-nitrophenyl-β-

galactopyranoside (ONPG); when β-gal cleaves ONPG, o-nitrophenol is released, 

which has a yellow colour and its formation can be accessed by absorbance at 420nm 

[223]. Alternatively, a fluorescence based assay can be used because it is more sensitive 

than the colorimetric ones. An example is 4-methylumbelliferone-β-D-galacto-

pyranoside (MUG) which becomes fluorescent upon hydrolysis, producing 4-

methylumbelliferone (4-MU) along with galactose (Figure 4.3). 4-MU emits 

fluorescence at 440nm (excitation at 360nm), whereas the precursor molecule MUG 

does not. A basic pH is necessary for the development of the fluorescence signal (i.e. 

higher quantum yield) from 4-MU. Addition of NaOH stops the enzymatic reaction and 

enables the development of the fluorescent signal [224].  
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Figure 4.3. Reaction catalysed by β-galactosidase using a non-fluorescent substrate (4-MUG; 4-

methylumbelliferone-β-D-galacto-pyranoside) which can be converted into a fluorescent product (4-MU; 

4-methylumbelliferone) along with galactose. 

 

The enzymatic activity of β-Gal was followed by progression curves of MUG 

hydrolysis and the initial velocity of the enzymatic reaction. Considering that the 

substrate is at non-limiting concentrations, MUG conversion into 4-MU is limited to 

enzyme concentration and functionality. For further information on enzymatic 

parameters see reference [212]. 

 

Oligoarginine is able to translocate lipid membranes; a passive diffusion across 

the non-polar interior of plasma membrane seems unrealistic to describe the 

internalization of a peptidic sequence with such polarity. An association of 

oligoarginines with cell surface groups with complementary charge was proposed by 

Rothbard et al. to attenuate the polarity of the basic amino acids [81]. The previous 

chapter, shows that the presence of anionic phospholipids facilitates the association of 

pep-1 with the cell membrane but is not sufficient to promote the passage of this 

positively charged peptide through the lipidic membrane [153]. Translocation, in vitro 

was only achieved when negative transmembrane potential across the lipidic membrane 

exists [186].  

The transmembrane potential is related to the concentration gradient and 

permeabilities of K+, Na+ and Cl- ions [225]. Channels that enable the potassium flow in 

and out of the cell are much more abundant than channels that enable the passage of the 

other ions, therefore, the changes in membrane potential are intimately dependent on K+ 

permeability [225-227]. Intracellular K+ is mainly regulated by active inflow of K+ 

trough the Na+/K+ pump and passive influx and efflux of K+ depending on the 

concentration gradient through K+ leak channels in the cell membrane [225]. 

Depolarization of the resting membrane potential can be achieved by an increase in 

β-galactosidase

H2O
+

MUG 4-MU Galactose 
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extracellular K+ which induces a decrease of the electrochemical gradient of these ions 

across the cell membrane [228]. In practice this can be obtained by substitution of 

extracellular Na+ by K+ [110, 228, 229].  

The possible effect of electrochemical gradient on pep-1 translocation in 

cultured cells was tested by incubating cells with an isotonic buffer with K+ 

concentrations ranging between 5mM and 115mM. The intracellular concentration of 

potassium is about 140mM whereas the extracellular concentration is believed to be 

around 5mM [81]. With the partial of the sodium salt in PBS with equimolar amounts of 

the equivalent potassium salt, it was possible to obtain different degrees of membrane 

depolarization (the total ionic strength was kept constant ([K+] + [Na+] =150mM)). 

Therefore it was possible to evaluate the effect of membrane polarization.  

Membrane polarization can be related to a certain extent with the potassium 

Nernst potential, which is dependent on K+ concentration in extracellular medium (the 

intracellular concentration was considered to be constant and 140mM). Negative 

transmembrane potential was calculated by potassium Nernst potential, EK, by the use 

of the equation:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

i
K K

K
F

RTE 0ln           (eq. 3.1) 

R is the gas constant, T is the absolute temperature, F is the Faraday constant and K0 and 

Ki are the extracellular and intracellular potassium concentrations respectively. With 

increasing extracellular K+ concentration a decrease in the negative potential is noticed. 

It should be stresses that the contributions of other ions is also important for the total 

membrane potential and make the membrane potential more positive than the potassium 

Nernst potential prediction at low extracellular concentration of K+. Nevertheless 

Potassium Nernst is a good approximation [81].  

 

The methodologies above referred were used to evaluate the internalization of 

pep-1/β-Gal inside cultured cells; the following manuscript presents the most relevant 

results achieved on the studies with pep-1 and mammalian cells. 
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ABSTRACT: The cell-penetrating peptide (CPP) pep-1 is capable of introducing large proteins into different
cell lines, maintaining their biological activity. Two possible mechanisms have been proposed to explain
the entrance of other CPPs in cells, endosomal-dependent and independent types. In this work, we evaluated
the molecular mechanisms of pep-1-mediated cellular uptake ofâ-galactosidase (â-Gal) fromEscherichia
coli in large unilamellar vesicles (LUV) and HeLa cells. Fluorescence spectroscopy was used to evaluate
the translocation process in model systems (LUV). Immunofluorescence microscopy was used to study
the translocation in HeLa cells. Enzymatic activity detection enabled us to monitor the internalization of
â-Gal into LUV and the functionality of the protein in the interior of HeLa cells.â-Gal translocated into
LUV in a transmembrane potential-dependent manner. Likewise, the extent ofâ-Gal incorporation was
extensively decreased in depolarized cells. Furthermore,â-Gal uptake efficiency and kinetics were
temperature-independent, andâ-Gal did not colocalize with endosomes, lysosomes, or caveosomes.
Therefore,â-Gal translocation was not associated with the endosomal pathway. Although an excess of
pep-1 was mandatory forâ-Gal translocation in vivo, transmembrane pores were not formed as concluded
from the trypan blue exclusion method. These results altogether indicated that protein uptake both in
vitro with LUV and in vivo with HeLa cells was mainly, if not solely, dependent on negative transmembrane
potential across the bilayer, which suggests a physical mechanism governed by electrostatic interactions
between pep-1 (positively charged) and membranes (negatively charged).

The introduction of hydrophilic molecules into mammalian
cells has become a key strategy for the investigation of
intracellular processes and drug therapy. CPPs1 are very
attractive for these purposes because of their ability to
mediate cellular uptake of proteins and nucleic acids, which
is otherwise impossible because of membrane selective

permeability (1-7). These peptides are small (9-33 amino
acid residues), and their only common feature is the presence
of basic amino acid residues (2).

The most widely used CPPs are derived from HIV-1 tat
(TAT) andDrosophilaAntennapedia homoprotein (1, 4, 6).
Covalent linkage of CPP with cargo molecules leads to their
nontoxic import into cells, both rapidly and efficiently, while
maintaining functional activity inside the cell (2). The
process, however, is dependent on CPP, cargo, and cell type
(8). The translocation of these cationic peptides is not well
understood. A single general mechanism for all does not
seem reasonable, and there are examples of CPPs (e.g., TAT)
that are able to use both endosomal and nonendosomal
pathways (5, 9).

Pep-1 (Ac-KETWWETWWTEWSQPKKKRKV-cyste-
amine) is an artificial CPP that has the ability to establish
hydrophobic interactions with the cargo molecule, which may
render covalent links unnecessary and favor the native
structure (10). This sequence contains a Trp-rich hydrophobic
domain, KETWWETWWTEW, a hydrophilic sequence,
KKKRKV, that is the nuclear localization sequence of simian
virus 40 large T antigen, and a spacer, SQP, linking the two
previous ones (10). This peptide has been successfully used
to translocate different biomolecules into distinct cell lines,
for instance, proteins into protoplasts (11), antibodies into
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porcine renal epithelial cells (LLC-PK1) (12), and peptides
into rat pheochromocytoma cells (PC-12) (13). The unspeci-
ficity of this peptide is a potential advantage for ubiquitous
applications.

It has been shown that pep-1 translocates across lipidic
vesicles only when a negative transmembrane potential exists
(14). However, it is not known if endocytosis is also involved
in pep-1 translocation in vivo as described for CPPs Tat 48-
60 and (Arg)9 (5, 9). Furthermore, it is necessary to determine
if the translocation of cargo proteins via pep-1 follows a
mechanism identical to that of the free peptide.

In this work, we usedâ-galactosidase (â-Gal) from
Escherichia colias the cargo protein.â-Gal is a homo-
tetramere with an enzymatic activity (EC 3.2.1.23) that is
easy to assess and dependent on its quaternary structure (15).
Each subunit contains 1023 amino acid residues (116 kDa),
with 38 Trp residues that enable a characterization by
fluorescence spectroscopy. The formal global charge at pH
7.4 is approximately-38 (the estimated charged is based
on the pKa’s for the isolated amino acids and was determined
using the software available at www.scripps.edu/∼cdputnam/
protcalc.html).

In this work, we have studied formation of the pep-1-â-
Gal complex and its translocation across membranes. We
have found thatâ-Gal translocation into LUV and human
HeLa cells depends on the negative transmembrane potential.
Alternative pathways, such as classical and caveolin-mediated
endosomal pathways, or possible pore formation induced by
pep-1, did not account for translocation ofâ-Gal into the
HeLa cells.

EXPERIMENTAL PROCEDURES

Reagents. Pep-1 (Ac-KETWWETWWTEWSQPKKKRKV-
cysteamine) that was>95% pure was obtained from Gen-
Script Corp. (Piscataway, NJ).â-Gal fromE. coli, 4-methyl-
umbelliferyl galactoside (MUG), porcine pancreatic lyo-
philized trypsin, phenylmethanesulfonyl fluoride (PMSF),
cholesterol (chol), Triton X-100 (TX-100), and dextran (Mr

) 10 000) were obtained from Sigma-Aldrich (St. Louis,
MO). Tris(2-cyanoethyl)phosphine (phosphine) and dextran
tetramethylrhodamineâ-isothiocyanate (TRITC) conjugate
(Mr ) 10 000) were from Molecular Probes (Eugene, OR).
1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC),
1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glyc-
erol)] (POPG), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
(DPPC), and 1,2-dipalmitoyl-sn-glycero-3-(phospho-L-serine)
(DPPS) were from Avanti Polar-Lipids (Alabaster, AL);
Minimum essential medium Eagles with Earle’s salts (MEME),
L-glutamine, nonessential amino acids (NEAA), fetal bovine
serum (FBS), streptomycin and penicillin, and trypsin-EDTA
solution (0.05% trypsin and 0.53 mM EDTA‚4Na) were
obtained from Gibco Invitrogen Corp. (Carlsbad, CA). 4′,6-
Diaminidino-2-phenylindole (DAPI) was from Sigma. The
primary antibodies used were as follows: mouse monoclonal
anti-â-Gal (AB1; 1/500 dilution) from Promega (Madison,
WI), rabbit polyclonal anti-â-Gal (AB2; 1/500) from 5Prime
(Boulder, CO), mouse monoclonal anti-EEA1 (1/100) from
BD Biosciences (Palo Alto, CA), mouse monoclonal anti-
cathepsin D (1/20) from Sigma-Aldrich (St. Louis, MO), and
rabbit polyclonal anti-caveolin-1 (1/50) from Santa Cruz
Biotechnology (Santa Cruz, CA). The secondary antibodies

were goat polyclonal anti-mouse IgG TRITC conjugate
(1/60) and goat polyclonal anti-rabbit IgG fluorescein
isothiocyanate (FITC) conjugate (1/100) obtained from
Sigma-Aldrich.

Photophysics ofâ-Gal in Aqueous Solution. The experi-
ments in aqueous solution and with LUV were performed
at room temperature with a UV-vis Jasco V-530 spectro-
photometer and a SLM Aminco 8100 spectrofluorometer
(equipped with a 450 W Xe lamp and double monochroma-
tors). The solutions were prepared in 10 mM HEPES buffer
(pH 7.4) containing 150 mM NaCl, at physiologic ionic
strength. Fluorescence intensities were corrected for the inner
filter effect with the equationIc ) I × 100.5A, whereIc is the
corrected intensity,I the measured intensity, andA the
absorbance at the excitation wavelength.

Protein photophysical characterization was carried out by
means of Trp fluorescence emission (λexcitation ) 280 nm).
Fluorescence emission characterization and determination of
quantum yield (16) were performed. Variation of fluores-
cence emission intensity with concentration (0-269 nM) and
fluorescence quenching by acrylamide (aqueous soluble Trp
quencher) were carried out in the absence and presence of a
reducing agent, 1 mM phosphine. The quenching assay was
performed by titration ofâ-Gal with acrylamide (0-60 mM)
and followed by fluorescence emission with aλexcitation of
290 nm (to minimize the relative quencher/fluorophore light
absorption ratio). The Stern-Volmer equation (I0/I ) 1 +
KSV[Q], whereI andI0 are the fluorescence intensity in the
presence and absence of quencher, respectively,KSV is the
Stern-Volmer constant, and [Q] is the concentration of
quencher; for a revision, see ref17) was applied to the data.
Data were corrected for simultaneous absorption of the
fluorophore and quencher (see eq5 in ref 18).

Enzymatic Assay ofâ-Gal. Enzyme activity ofâ-Gal was
determined by hydrolysis of 4-methylumbelliferone
â-D-galactopyranoside (MUG), a nonfluorescent substrate,
to 4-methylumbelliferone (4-MU), a fluorescent product
(λexcitation) 360 nm,λemission) 440 nm) (19). Time progres-
sion curves were performed (0-60 min); briefly, enzyme
was added to 2.5 mM MUG (substrate at nonlimiting
concentrations), in 10 mM HEPES buffer (pH 7.4), contain-
ing 150 mM NaCl, to start the reaction. The reaction was
stopped by the addition of 0.2 M NaOH-containing buffer
(to a final substrate dilution of 1/40, pH 13.2). The assay
was followed by 4-MU fluorescence intensity. The concen-
tration was determined byA360 [ε360 ) 1.9× 104 M-1 cm-1

(20)].
Formation of the Pep-1-â-Galactosidase Complex. The

titration of 72 nM protein with peptide was performed up to
a pep-1/â-Gal molar ratio of 100. Trp fluorescence emission
spectra were monitored to follow complex formation. The
maximum of the fluorescence emission spectrum ofâ-Gal
occurs at a wavelength significantly different from that of
pep-1 (329 nm vs 346 nm). The fluorescence emission
spectra of pep-1 in the absence ofâ-Gal and vice versa were
followed simultaneously, under the same conditions. Enzy-
matic activity ofâ-Gal and quenching of Trp fluorescence
by acrylamide at different pep-1/â-Gal ratios was followed
as mentioned above.

Interaction ofâ-Gal and the Pep-1-â-Gal Complex with
Large Unilamellar Vesicles. LUV were prepared, in 10 mM
HEPES buffer (pH 7.4) containing 150 mM NaCl, by the
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extrusion method (21). To evaluate the interaction of 72 nM
â-Gal (free or complexed with pep-1 at different concentra-
tions) with LUV, Trp fluorescence spectral shifts were
followed (λexcitation ) 280 nm) by titration of samples with
lipidic suspensions (0-3.75 mM). POPC and POPC/POPG
(4/1) bilayers in vesicles are in liquid crystalline phases;
POPC/chol (2/1) bilayers in vesicles are in the liquid-ordered
phase, and DPPC and DPPC/DPPS (4/1) bilayers are in the
gel phase.

Uptake of the Pep-1-â-Gal Complex in LUV with Nega-
tiVe Transmembrane Potential. The pep-1-â-Gal complex
(molar ratio of 320) was incubated (30 min) with POPC/
POPG (4/1) (final lipid concentration of 0.5 mM) LUV in
the absence or presence of negative transmembrane potential
(see ref14 for a description of production of LUV with a
negative transbilayer potential). Briefly, valinomycin was
added, at a 1/104 molar ratio (moles per mole of lipid), to
K+-loaded LUV dispersed in Na+ buffer. Afterward, a trypsin
solution (final concentration of 1.3 mM) was added, and the
mixture was allowed to digest the nonincorporated pep-1 and
â-Gal, incubated for 30 min at 37°C. After that, incubation
with 4 mM PMSF (final concentration) was carried out for
15 min to inhibit trypsin. To induce LUV permeabilization
and leakage of the incorporatedâ-Gal, 0.2% (w/v) TX-100
was added. Releasedâ-Gal was detected by means of its
enzymatic activity, namely, by MUG hydrolysis during 20
min at 37 °C followed by fluorescence spectroscopy, as
described above. Controls without pep-1 were performed,
and the slight contribution from nonincorporatedâ-Gal
resistant to trypsin hydrolysis was discounted.

Cell Culture and Cell Viability Assays. Adherent human
negroid cervix epitheloid carcinoma cells (HeLa) were grown
in MEME supplemented with 2 mM Glu, 2 mM NEAA, 10%
(v/v) FBS, and 1% (v/v) streptomycin and penicillin, in a
5% CO2 humidified atmosphere at 37°C. Cells were split
in a 1/4 dilution every 3-4 days, after they reached
confluency, which was monitored using an inverted micro-
scope (Olympus CK30). Cell viability was determined by
the colorimetric assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT). MTT is reduced by
mitochondrial dehydrogenases of viable cells (22). Briefly,
cells were grown in 96-well plates and washed with serum-
free medium; 10µL of MTT (5 mg/mL) was added to each
well, and a 3 h incubation at 37°C was performed. The
purple product was solubilized in dimethyl sulfoxide (DMSO),
and the absorbance at 540 nm was determined. Alternatively,
cell viability was determined by the trypan blue exclusion
assay. Briefly, after being detached, the cell suspension was
added to a trypan blue solution (1/10 dilution) and counted
in hemacytometer. Viable cells exclude trypan blue; non-
viable cells absorb the dye and appear blue.

Cellular Uptake of Proteins and Dextran Monitored by
Immunofluorescence Microscopy. For immunofluorescence
microscopy, cells were grown on 12 mm diameter glass
coverslips in 24-well plates to approximately 70% conflu-
ence. Prior to the uptake assays, the pep-1-â-Gal complex
was formed in serum-free medium (23) during 30 min at
room temperature following the instructions of the supplier
(ActiVe Motif; Rixensart) (24). Translocation efficiency was
evaluated with different pep-1/â-Gal ratios (4, 32, 100, 200,
320, 600, and 1000) at 10.8 nMâ-Gal. Coverslips were
inverted and placed over a drop of a macromolecular

complex solution (25) and incubated for 60 min at 37°C.
Cells were washed three times in PBS containing 0.5 mM
MgCl2, fixed in 4% (w/v) paraformaldehyde for 20 min,
permeabilized with 0.1% (w/v) TX-100 for 15 min, and then
incubated in a blocking solution that consisted of PBS
containing 1% bovine serum albumin (BSA) for 1 h (26).
After that, incubations with primary and secondary antibodies
in blocking solution, for 2 and 1 h, respectively, were
performed. Washings were carried out in PBS. Coverslips
were mounted in Airvol and observed in the Leica DMRB
fluorescence microscope and/or in the Bio-Rad MRC1024
confocal microscope. The nucleus was visualized with DAPI
that was added to the secondary antibody mixture at a
dilution of 1/1000. The kinetics of theâ-Gal translocation
process was evaluated by incubation at a pep-1/â-Gal ratio
of 320 for 10, 20, 30, 40, 50, 60, and 120 min at 4 or 37°C.
Enzymatic activity of internalizedâ-Gal by HeLa cells was
monitored by the use of MUG (see Enzymatic Assay of
â-Gal). After incubation of the complex for 60 min at 4 or
37 °C, trypsin was added to the cells to hydrolyze non-
incorporated peptide and protein. Cells were centrifuged at
500g for 5 min, washed twice in PBS, and resuspended in
0.1% (w/v) TX-100 for 15 min for permeabilization. Then
2 mM substrate was added to cells, and product progression
curves were followed for 120 min at 37°C. NaOH was
added, and product formation was monitored as described
above. A control without pep-1 was carried out.

The uptake of the anti-mouse IgG-TRITC conjugate
mediated by pep-1 was monitored by immunofluorescence
microscopy under live conditions, without the paraformal-
dehyde fixation step, in a 60 min incubation at 4 or 37°C,
at a 1/320 protein/pep-1 ratio.

Cells were also incubated with the endocytic tracer
dextran-TRITC at 2 mg/mL associated with pep-1, at 37
and 4°C for 60 min, in the presence or absence of 20 mg/
mL nonlabeled dextran.

Confocal Microscopy and Colocalization Analysis. For
each picture, laser intensities and amplifier gains were
adjusted to prevent pixel saturation. This was done using
GLOW LUT in the Leica Confocal software. Each fluoro-
phore that was used was excited and detected separately to
avoid any signal crossover. Each picture consisted of a
z-series of 14 images of 1024× 1024 pixel resolution with
a pinhole Airy unit. Colocalization analysis was per-
formed using open source Image J version 1.30 (http://
rsb.info.nih.gov/ij/). The procedure was applied for a popula-
tion of 6-10 cells. Quantification of colocalization ofâ-Gal
(AB1 or AB2) with endosomes (anti-EEA1), lysosomes (anti-
cathepsin D), and caveosomes (anti-caveolin-1) was based
on that previously described (27).

Effect of Transmembrane Potential on the Uptake of the
Pep-1/â-Gal Complex by HeLa Cells. To decrease the
transmembrane potential, cells were incubated, for 30 min
at 37°C, with the pep-1-â-Gal complex preformed in PBS
buffer, containing different K+ concentrations, with Na+

replaced by K+, at increasing concentrations (28). Quanti-
fication of internalizedâ-Gal was carried out by using
enzymatic activity. Cell viability in the presence of different
K+ concentrations was determined by the trypan blue
exclusion method. Absolute fluorescence intensity data were
divided by the number of viable cells.
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RESULTS

Formation of the Pep-1-â-Gal Complex in Aqueous
Solution. To investigate the suitability ofâ-Gal for cellular
uptake studies mediated by pep-1, characterization of the
protein and the complex formed in aqueous solution has been
performed. Each subunit ofâ-Gal contains 38 Trp, 35 Phe,
and 25 Tyr residues. Fluorescence emission with aλexcitation

of 280 nm is largely dominated by the Trp residues. Most
hydrophobic residues are not accessible to the aqueous
environment as concluded from theâ-Gal crystallographic
structure. In aqueous solution, fluorescence emission has a
quantum yield (Φ) of 0.099 ( 0.005 (constant up to 269
nM) with a band maximum at 329 nm which was signifi-
cantly different from the maximum of free Trp. This blue-
shifted emission is in agreement with most of the Trp
residues being inaccessible to the aqueous environment. The
low accessibility of Trp residues to the aqueous environment
was confirmed by acrylamide quenching;KSV was signifi-
cantly lower from that obtained for free Trp (5.6( 0.3 and
18.9( 0.3 M-1, respectively). The initial velocity of MUG
hydrolysis, catalyzed byâ-Gal, was 17.5µM min-1, and
linearity was maintained for 30 min.

Since the cytoplasm is a reducing environment, we have
tested the effect of the reducing agent phosphine (1 mM) on
â-Gal conformation and activity. The quantum yield was
slightly decreased (Φ ) 0.067( 0.007), but the accessibility
of Trp to aqueous solution (KSV by acrylamide is 5.4( 0.2
M-1) was not altered. A concomitant slight decrease in the
initial velocity of enzymatic activity occurred (12.0µM
min-1).

The initial velocity of the enzymatic reaction catalyzed
by â-Gal was maintained up to a peptide/protein molar
ratio of 16. In this range, the peptide strongly interacts
with the protein (see the Supporting Information for experi-
mental results and discussion). The initial velocity de-
creased to 78% (V0 ) 13.4 µM min-1) and 54% (V0 ) 9.4
µM min-1) of the starting value at pep-1/â-Gal ratios of 40
and 400, respectively. In a reducing environment, a more
pronounced decrease was observed: for the 400 complex,
V0 ) 5.8 µM min-1, which corresponded to a reduction of
52% of the enzymatic activity in the absence of pep-1 (12.0
µM min-1).

Transmembrane Potential Is Required for Translocation
of the Pep-1-â-Gal Complex into LUV. No spectral alter-
ations occurred whenâ-Gal was in the presence of neutral
or negatively charged LUV [POPC, POPC/POPG (4/1),
POPC/chol (2/1), DPPC, and DPPC/DPPS (4/1)] (Table 1).
A slight blue shift in emission spectra was detected for pep-
1-â-Gal complexes (molar ratios of 4, 16, 38, 60, and 400)
in POPC, POPC/POPG (4/1), and POPC/chol (2/1) lipidic
systems (Table 1).

We investigated the uptake ofâ-Gal mediated by pep-1
into LUV after the induction of an electrostatic gradient
across the membrane by valinomycin. Briefly, after a 30 min
incubation with the complex, hydrolysis of the pep-1-â-
Gal complex outside LUV was achieved with trypsin; then
the activity of â-Gal enclosed in the LUV lumen was
determined after release with TX-100. Product formation
concentration was enhanced by a factor of 5 in the presence
of the negative transmembrane potential (when compared
with the situation without a potential). The fraction of

translocated protein is low, which is expected considering
the total volume of the vesicles in the total bulk solution
(∼0.016%).

Therefore, these results indicate not only that pep-1
improves the affinity of the protein for the membrane but
also that the presence of a transmembrane potential induces
its translocation across a bilayer.

Pep-1 Does Not Induce Pore Formation in HeLa Cells. It
has been suggested that protein uptake mediated by pep-1
involves pore formation (29), but this is controversial in light
of biophysical studies with lipidic vesicles (14). To test this
hypothesis, we have determined the cell viability by the
trypan blue exclusion method. This method relies on the
inclusion of the dye trypan blue by dead cells once their
plasma membrane is permeable or damaged. If pep-1 would
induce pores on the plasma membrane of cells, a larger
amount of intracellular trypan blue would be observed.
However, this was not the case since viabilities were similar
for control cells (96.4( 0.6%) or cells incubated with pep-1
and the pep-1-â-Gal complex (95.5( 1.6 and 95.6( 0.1%,
respectively). These results indicated that pep-1 did not
induce permeability changes and hence pore formation in
the plasma membrane of HeLa cells.

To evaluate the possible toxic effect of pep-1 on the cells,
we have used an independent cell viability test, the MTT
assay. MTT is a very sensitive way of determining cytotox-
icity. In living cells, mitochondrial dehydrogenase enzymes
oxidize the yellow MTT and convert it into purple formazan
crystals (22). It was observed that the peptide induced a
reduction in cell viability of approximately 22%. Since
viability calculated by the trypan blue assay was not
decreased after addition of pep-1, these results suggested that
pep-1 might inhibit mitochondrial dehydrogenases.

Electrostatic Transmembrane Potential Is a Sine-Quanon
Requirement for Translocation of the Pep-1-â-Gal Complex
into HeLa cells. To monitor the uptake of the pep-1-â-Gal
complex by HeLa cells, increasing pep-1 concentrations and

Table 1: Partition of the Pep-1-â-Gal Complex into LUVa

lipid sample

aqueous
solution

(nm)
3.75 mM
lipid (nm)

shift
(nm)b

POPC â-Gal 329 329 0
pep-1-â-Gal (4/1) 330 325 5
pep-1-â-Gal (16/1) 331 327 4
pep-1-â-Gal (38/1) 336 332 4
pep-1-â-Gal (60/1) 337 332 5
pep-1-â-Gal (400/1) 343 336 7
pep-1 346 338 8

POPC/POPG â-Gal 329 329 0
(4/1) pep-1-â-Gal (4/1) 330 327 3

pep-1-â-Gal (16/1) 332 330 2
pep-1-â-Gal (38/1) 337 333 4
pep-1-â-Gal (60/1) 335 331 4
pep-1 346 338 8

POPC/chol â-Gal 329 329 0
(2/1) pep-1-â-Gal (4/1) 330 325 5

pep-1-â-Gal (16/1) 331 325 3
pep-1-â-Gal (38/1) 335 330 5
pep-1-â-Gal (60/1) 341 336 5
pep-1 346 337 9

a Maximum fluorescence emission of the pep-1-â-Gal complex, at
different ratios, in aqueous solution [10 mM HEPES buffer containing
150 mM NaCl (pH 7.4)] and in the presence of a 3.75 mM lipidic
suspension.b The shift is the difference between the two conditions.
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different incubation times have been tested. After a 60 min
incubation at a pep-1/â-Gal ratio of 320, a significant uptake
of â-Gal has been observed (Figure 1A).â-Gal was found
dispersed in aggregates within the cytosol. The presence of
protein inside the cell and not adsorbed on the cell surface
was confirmed by confocal microscopy. Apparently, the
translocation efficiency did not increase for complex ratios
between 320 and 1000. For lower ratios, between 4 and 200,
uptake ofâ-Gal did not occur. Therefore, the chosen pep-
1/â-Gal ratio for all the experiments was 320. At this ratio,
there was an excess of soluble pep-1 in solution (see Figure
S1 of the Supporting Information).

Transfection was relatively fast; after 10 min, it was
already possible to identify a small quantity of protein in
some cells. The level of transfection increased until ap-
proximately 40 min; after this time, it seemed to stabilize
(data not shown). Translocation occurred with a similar
efficiency at 4°C (Figure 1A). To test ifâ-Gal was active
after translocation, MUG hydrolysis was monitored in cells
incubated at 37 and 4°C with the complex. It was observed
that â-Gal was indeed active after translocation at both
temperatures (Figure 1B).

For a typical animal cell characterized by dominant
potassium permeability, increasing the external potassium
concentration necessarily reduces the transmembrane poten-
tial due to the decrease in the electrochemical gradient of
K+ across the cell membrane (28, 30). Negative transmem-
brane potential is dominated by potassium potential equi-
librium, which can be estimated by the potassium Nernst
potential (EK): EK ) (RT/F) ln(K0/Ki), whereR is the gas
constant,T is the absolute temperature,F is Faraday’s
constant, andK0 andKi are the extracellular and intracellular
potassium concentrations, respectively. So, increasing the
extracellular K+ concentration leads to less negative Nernst
potentials (Figure 2).

To test if the electrostatic membrane potential would be
required for translocation of the pep-1-â-Gal complex, HeLa
cells have been incubated with the complex at increasing
external K+ concentrations. The total ionic strength ([K+]
+ [Na+] ) 150 mM) was kept constant. The internalized
â-Gal concentration was estimated from enzymatic MUG
hydrolysis. This assay was performed for 30 min to guarantee
that the initial velocity of the reaction was maintained, and
that the concentration ofâ-Gal uptake was directly related

FIGURE 1: Translocation ofâ-Gal, mediated by pep-1, into HeLa cells. Panel A shows immunofluorescence microscopy detection ofâ-Gal.
The pep-1-â-Gal complex (molar ratio of 320) was incubated with HeLa cells, at 37 or 4°C, for 60 min. Cells were fixed with 4%
paraformaldehyde and permeabilized with 0.1% (w/v) TX-100.â-Gal was detected with rabbit polyclonal anti-â-Gal and the secondary
anti-rabbit antibody coupled to FITC. DAPI was used to identify the nucleus. Internalizedâ-Gal is in the cytosol. The scale bar is 10µm.
Panel B shows enzymatic activity ofâ-Gal internalized in a HeLa cell suspension.â-Gal uptake, after incubation with the pep-1-â-Gal
complex (molar ratio of 320) for 60 min at 4 (9) or 37 °C (0), was followed by the progression curve of enzymatic MUG hydrolysis, at
37 °C. The control without pep-1 was subtracted. The formation of 4-MU monitored by fluorescence intensity at 440 nm with excitation
at 360 nm indicates thatâ-Gal was efficiently translocated, at both temperatures, in an active form.
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with 4-MU production. A decrease in the absolute value of
the electrochemical K+ gradient (calculated consideringKi

) 140 mM) led to a severe drop in the level ofâ-Gal uptake
(Figure 2). WhenK0 ) 114.6 mM, uptake was almost
completely inhibited.

Although for low extracellular K+ concentrations the
contribution of other conductors makes the membrane
potential less negative than that predicted by K+ Nernst

potential (28), the dependence ofâ-Gal uptake on trans-
membrane K+ Nernst potential was clear.

The Pep-1-â-Gal Complex Is Not Internalized by HeLa
CellsVia the Endosomal Pathways. Other CPPs such as the
one derived from TAT and (Arg)9 (5) seem to translocate
proteins across cells by two different mechanisms: one is
fast and physical in nature and the other is mediated by
endocytosis. In the case of an endosomal-dependent pathway
of â-Gal uptake mediated by pep-1, colocalization with
endosomes or lysosomes at some extension would be
expected. To evaluate this possibility, colocalization of pep-
1-translocatedâ-Gal with EEA1 (early endosomal marker),
caveolin-1 (caveosomes marker), and cathepsin D (lysosomal
marker) was performed. Monitoring localization of the
protein, instead of a fluorescence-labeled pep-1, is a better
choice. It prevents problems associated with the apparent
uptake of cationic peptides bound to negatively charged
membranes, causing an artifactual localization in cells (5)
and the possible influence of the fluorescent label in the
uptake and intracellular localization of the peptide (31). The
percentages of colocalization with each of the organelles from
the endocytic pathway determined after immunofluorescence
confocal microscopy were very low (shown on the right in
Figure 3), after incubation for 60 or 120 min. Similar results
were obtained at 4°C. These results indicate that the uptake
of â-Gal did not involve the endocytic pathway.

It has been suggested that fixation conditions could lead
to an artifactual uptake of cationic peptides associated with
the cell membrane at 4°C (5, 9, 32). The uptake of a protein

FIGURE 2: Variation of uptake ofâ-Gal into a HeLa cell suspension,
mediated by pep-1, with potassium Nernst potential. The pep-1-
â-Gal complex (molar ratio of 320) was incubated with HeLa cells,
for 30 min at 37°C, in the presence of increasing external K+

concentrations, and a constant ionic strength ([K+] + [Na+] ) 150
mM). The relative level ofâ-Gal uptake was determined fromâ-Gal
enzymatic hydrolysis of MUG for 20 min at 37°C. The potassium
Nernst potential was determined considering an internal K+

concentration of 140 mM; the external K+ concentration ranged
from 5 to 114.6 mM, which corresponded to a range from-89 to
-5.4 mV, respectively (see the equation in the text). An increasing
external K+ concentration severely reduces the level ofâ-Gal
uptake.

FIGURE 3: Immunofluorescence microscopy localization of pep-1-translocatedâ-Gal, EEA1, caveolin-1, and cathepsin D from HeLa cells.
Cells were incubated with the pep-1-â-Gal complex (molar ratio of 320) for 60 min. Cells were fixed with 4% paraformaldehyde and
permeabilized with 0.1% (w/v) TX-100.â-Gal, detected with rabbit polyclonal or mouse monoclonal antibodies, was colocalized with early
endosomal EEA1, caviosomal caveolin-1, and lysosomal cathepsin D. Secondary antibodies were the anti-rabbit antibody coupled to FITC
and the anti-mouse antibody coupled to TRITC. Pictures of az-series of 14 images from the confocal microscope were analyzed with
Image J version 1.3 to perform colocalization analysis. Six to 10 cells were observed. The scale bar is 10µm.
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covalently marked with a fluorescent probe can be visualized
by fluorescence microscopy without the need to fixate or
permeabilize the cells. The uptake of anti-mouse TRITC at

4 and 37°C was performed and visualized by immuno-
fluorescence microscopy without fixation (Figure 4). It was
possible to identify the presence of protein inside the cell at

FIGURE 4: Uptake into HeLa cells of anti-mouse antibody conjugated with TRITC, mediated by pep-1. Incubation of cells with a pep-1-
anti-mouse-TRITC complex was performed for 60 min at 4 or 37°C. Cells were visualized under live conditions in a fluorescence microscope.
The scale bar is 10µm.

FIGURE 5: Immunofluorescence microscopy localization of translocatedâ-Gal and the dextran-TRITC marker in HeLa cells (incubation
for 60 min at 37 or 4°C). Panel A shows incubation with the pep-1-â-Gal complex (molar ratio of 320) where the endocytic dextran-
TRITC marker (2 mg/mL) was added to the complex at the time of cell incubation. Panel B shows incubation with the preformed pep-
1-â-Gal-dextran-TRITC complex. Cells were fixed with 4% paraformaldehyde and permeabilized with 0.1% (w/v) TX-100.â-Gal was
detected with rabbit polyclonal anti-â-Gal and anti-rabbit antibodies coupled to FITC. Pictures of az-series of 14 images from the confocal
microscope were analyzed with Image J version 1.3 and were used to perform colocalization analysis. Six to 10 cells were used. The scale
bar is 10µm.

Uptake Mechanism of the Pep-1-â-Galactosidase Complex Biochemistry, Vol. 44, No. 30, 200510195

115



both temperatures. This indicated that internalized protein
was not an artifact associated with fixation.

The Polysaccharide Dextran Is Translocated into HeLa
Cells by Pep-1. Uptake of the dextran-TRITC complex by
HeLa cells occurs by a classical endosomal pathway. At
37 °C, â-Gal did not colocalize with the dextran-TRITC
marker (1.0%) (Figure 5A), supporting the idea thatâ-Gal
would be translocated into the cells by a mechanism
independent of the endocytic pathway. However, at 4°C,
there was an extensive colocalization betweenâ-Gal and the
dextran-TRITC marker (51.3%) (Figure 5A). At 4°C, the
classical endosomal pathway is inhibited, so the endocytic
dextran-TRITC marker did not enter the cells via this
pathway (see control in Figure 6, left image). The internal-
ization of the dextran-TRITC marker at 4°C and its
colocalization with â-Gal suggested that the uptake of
translocation of the polysaccharide was mediated by pep-1.
However, if the dextran-TRITC marker was preincubated
together with pep-1 andâ-Gal, a ternary complex seems to
be formed andâ-Gal-dextran-TRITC colocalization oc-
curred, even at 37°C (Figure 5B).

To confirm that pep-1 was translocating the dextran-
TRITC marker via the polysaccharide without inter-
ference of artifacts from the fluorophore moiety, the HeLa
cells were incubated with pep-1-dextran-TRITC complex,
at 4°C, in the presence of nonlabeled dextran (Figure 6). It
was observed that the presence of nonlabeled dextran
dramatically reduced the amount of dextran-TRITC marker
translocated into the cells, showing competition between
nonlabeled dextran and the dextran-TRITC marker. This
confirmed that pep-1 mediated the transport of the polysac-
charide into HeLa cells without any artifactual interference
of TRITC.

DISCUSSION

â-Gal from E. coli was chosen for the study of the
interaction of pep-1 with a protein and evaluation of the
translocation efficiency inside human tumoral cells. Its
enzymatic activity is easy to access. Trp residues enable
fluorescence spectroscopy techniques to be used as analytical
tools. The absence of a signal sequence makes the protein
unable to address any specific organelle inside the cell;
therefore, this molecule is very useful in evaluating if the
pep-1-mediated translocation leads protein to a specific
organelle in human cells. HeLa cells are derived from a
human cervix epitheloid carcinoma; they are relatively large
(approximately 20µm) and particularly suitable for organelle
visualization by immunofluorescence studies. Therefore, they
were chosen as the cellular model system.

â-Gal characterization in aqueous solution and in the
presence of LUV revealed that Trp residues are protected
from interaction with aqueous solution and no significant
interaction with membranes was observed. Enzymatic assays
revealed thatâ-Gal maintains its quaternary structure, which
is required for enzymatic activity (15) in aqueous solution,
under reducing and nonreducing conditions. These results
showed that the reducing environment did not modify the
â-Gal conformation, so maintenance of enzyme activity
inside the cell was expected.

Fluorescence quenching upon the titration of the protein
with pep-1 suggests the existence of an excess of pep-1 in
solution not interacting with the protein above peptide/protein
molar ratios of 60 (data and detailed discussion in the
Supporting Information). Enzymatic activity is still detected
in the pep-1-â-Gal complex (a molar ratio of up to 400),
which eliminates the severe perturbation ofâ-Gal structure
due to pep-1.

FIGURE 6: Uptake of the dextran-TRITC marker, mediated by pep-1, into HeLa cells. Comparison of dextran-TRITC (2 mg/mL) uptake,
mediated by pep-1, at 4°C for 60 min when the dextran-TRITC-pep-1 complex was preformed in the presence or absence of dextran (20
mg/mL). Cells were fixed with 4% paraformaldehyde and permeabilized with 0.1% (w/v) TX-100. The dextran-TRITC marker at 4°C
was detected only when pep-1 was present. In the presence of dextran (nonconjugated), the rate of uptake of the dextran-TRITC marker
is decreased, indicating a competition of pep-1 for nonconjugated dextran. The scale bar is 10µm.
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The wavelength of maximal fluorescence emission inten-
sity of pep-1 in lipidic membranes systems is higher than
that observed for the complex (see Table 1). The blue shift
observed for pep-1-â-Gal complexes relative to that of pep-1
alone together with its dependence on the peptide/protein
molar ratio showed that pep-1 is mediating the partitioning
of â-Gal into lipidic membranes.

Pep-1 translocation in LUV was previously found to be
dependent on the transmembrane potential across bilayers
(14). In fact, in this work, the same was concluded for the
translocation ofâ-Gal mediated by pep-1 in LUV. These
results suggested a common translocation mechanism for free
and complexed pep-1. This property has been shown
previously for other free peptides (28, 33) but is here
presented for the first time for a CPP-cargo protein complex,
to the best of our knowledge.

â-Gal from E. coli was efficiently transported by pep-1
into HeLa cells, maintaining its enzymatic activity. The
translocation of protein is dependent on peptide concentra-
tion; at a pep-1/â-Gal molar ratio of up to 200, translocation
was not detected. With a pep-1/â-Gal ratio of 320, the
process is very efficient. At this ratio, there is free pep-1 in
solution (see Figure S1 of the Supporting Information), which
seems to play a role in the translocation process. An excess
of pep-1 is probably necessary for membrane destabilization
(14), facilitating the uptake of the protein. If the translocation
was mediated by pore formation, a very large pore (≈104
Å × 140 Å, estimated from theâ-Gal crystallographic
structure) would be necessary for a protein as large asâ-Gal
(116 kDa) to pass across the bilayer. A pore with such a
diameter would probably induce leakage of the cellular
contents at some extension, compromising cellular viability.
Cell viability was maintained in the presence of pep-1 and
the complex, and pore formation was not detected. This is
in agreement with the study of interaction of pep-1 with LUV
(see ref14), where pep-1 translocation occurred without pore
formation.

The high velocity of the translocation mechanism (10 min
was enough to detect protein inside the cell) and the
independence of temperature (see Figure 1A,B) suggested a
physical mechanism not dependent on complex cellular
biochemical processes. This hypothesis was confirmed by
the correlation found between cell depolarization andâ-Gal
translocation. Destroying the potassium electrochemical
gradient drastically reduced the level ofâ-Gal uptake in HeLa
cells (see Figure 2). These results are in agreement with those
obtained with LUV. Therefore, in vivo the membrane charge
asymmetry (34, 35) and the combined effect of membrane
potentials (36) seemed to be the driving forces responsible
for the translocation process.

Inside the cell, the protein was found in the cytosol and
did not colocalize with endosomes, lysosomes, or caveo-
somes (see Figure 3). These results were consistent with a
translocation process independent of the classical endosomal
pathways or caveolin-mediated endosomal pathways. In the
case of endocytosis being a secondary mechanism for uptake,
at least a small colocalization with one of these organelles
would be expected. Monitoring localization of the protein,
instead of pep-1, prevents problems associated with the
apparent uptake of cationic peptides bound to negatively
charged membranes, causing an artifactual localization in
cells (5). Lebleu and co-workers found that TAT and

oligoarginine uptake was dependent on endocytosis (5), but
Nordén and co-workers (9) have proven that for arginine-
rich peptides both nonendocytic and endocytic uptake
pathways were involved in their cellular internalization. This
nonendocytic mechanism was fast and biologically relevant
(9). An endocytic pathway was not detected for pep-1, but
a physical transmembrane crossing mechanism was.

A translocation mechanism independent of endocytosis
was further confirmed under nonfixation conditions with anti-
mouse TRITC where protein uptake at 4°C has been
observed (see Figure 4).

The transport of the dextran-TRITC marker mediated by
pep-1 under conditions where the endocytosis was inhibited
was also demonstrated (see Figures 5 and 6). It has been
suggested by Morris et al. (10) that pep-1 interacts with
macromolecules via hydrophobic interactions. Given the
hydrophilic nature of the molecule, the capacity of pep-1 to
translocate dextran demonstrated that hydrophobic pockets
are not essential for complex formation and uptake. Complex
formation of pep-1 and dextran is probably due to polar
interactions and hydrogen bonding.

In conclusion, the interaction of pep-1 withâ-Gal from
E. coli was extensively studied to gain insight into the
translocation mechanism at the molecular level. It has been
demonstrated that pep-1 can establish a variety of electro-
static and/or hydrophobic and/or hydrophilic interactions with
the cargo. The existence of a negative transmembrane
potential promotes uptake ofâ-Gal, mediated by pep-1, in
vitro and in vivo, and the absence of a transmembrane
potential inhibits it. The charge asymmetry (negative inside)
seems to be the driving force for translocation to occur. There
was no evidence found for the involvement of the endocytic
pathway in the uptake of cargo mediated by pep-1. Further-
more, pep-1 did not induce the formation of pores in the
membrane. These results together suggested that the peptide
and the cargo translocate only by a physical process.
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pp 365-375, CRC Press Pharmacology and Toxicology Series,
CRC Press, New York.

2. Bogoyevitch, M. A., Kendrick, T. S., Dominic, C. H., and Barr,
R. K. (2002) Taking the cell by stealth or storm? Protein
transduction domain (PTDs) as versatile vectors for delivey,DNA
Cell Biol. 21, 879-894.

3. Bonetta, P. (2002) Getting protein into cells,Scientist 17, 38-40.
4. Eguchi, A., Akuta, T., Okuyama, H., Senda, T., Yokoi, H.,

Inokuchi, H., Fujita, S., Hayakama, T., Takeda, K., Hasegawa,
M., and Nakanisshi, M. (2001) Protein transduction domain of
HIV-1 Tat protein promotes efficient delivery of DNA into
mammalian cells,J. Biol. Chem. 247, 27205-27210.

Uptake Mechanism of the Pep-1-â-Galactosidase Complex Biochemistry, Vol. 44, No. 30, 200510197

117



5. Richard, J. P., Melikov, K., Vives, E., Ramos, C., Verbeure, B.,
Gait, M. J., Chernomordik, L. V., and Lebleu, B. (2003) Cell-
penetrating peptides, a reevaluation of the mechanism of cellular
uptake,J. Biol. Chem. 278, 585-590.

6. Schwarze, S. R., Hruska, K. A., and Dowdy, S. F. (2000) Protein
transduction: Unrestricted delivery into all cells?Trends Cell Biol.
10, 290-295.

7. Chaloin, L., Mau, N. V., Divita, G., and Heitz, F. (2002)
Interactions of cell-penetrating peptides with membranes, inCell-
penetrating peptides, processes and applications(Langel, Ü., Ed.)
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SUPPORTING INFORMATION 
 

As expected titration of β-Gal with pep-1 led to a progressive red-shift in the 

emission spectra (Figure S1A) until the pep-1 maximum emission wavelength (346 nm) 

was achieved. Fluorescence spectrum for each pep-1:β-Gal ratio has the contribution of 

β-Gal and pep-1 in free and complexed form. The occurrence of the fluorescence 

emission spectral peak at 346 nm for the 100 pep-1:β-Gal ratio suggests an excess of 

free pep-1 in this condition. The result of integrated fluorescence intensity of the 

complex at different pep-1:β-Gal ratios are presented in Figure S1B. Curve 1 represents 

the fluorescence intensity variation of the complex, where three regimes were detected: 

I) up to 14 molar ratio there was a slight decrease in intensity; II) from 14 to 60 ratio 

there was a small increase in intensity and III) from 60 up, the slope increased. This 

curve was compared with the summed fluorescence intensities from free peptide and 

free protein (curve 2 in Figure S1B). Fluorescence quenching occurs in the first regime; 

in the second regime the fluorescence quenching was less pronounced, and in the third 

regime quenching was barely noticeable. This last regime corresponds to peptide-

saturated protein. From peptide:protein molar ratios of 60 and up peptide added to 

solution will remain free (unbound to the protein). In reducing environment the results 

were similar but the second regime did not vanish in the pep-1:β-Gal ratio experimental 

range (<100). 

A hypothesis to explain the results at molecular level is that in the first regime 

electrostatic interaction between pep-1 and β-Gal take place for charge neutralization 

(β-Gal has -38 charge and pep-1 +3; a peptide/protein ratio of 13 is required for 

neutralization). These interactions are strong enough to induce a decrease in 

fluorescence intensity relative to the summed individual contributions pep-1 and β-Gal. 

In the second regime weaker interactions are occurring (quenching is diminished); 

considering the amphipathic-like nature of pep-1, hydrophobic interactions between 

pep-1 and β-Gal can be speculated. Pep-1 in free form appears to be dominant after a 60 

ratio. Inexistence of a third slope in reducing environment up to a ratio of 100 suggests 

an increase of peptide affinity to β-Gal. 



Pep-1 and mammalian cells  Chapter 4. 
 
 

 120 

0

1

2

3

4

5

6

7

8

9

10

300 320 340 360 380 400
Wavelenght (nm)

Fl
uo

re
sc

en
ce

 in
te

ns
ity

B -Gal
pep-1/B-Gal (8:1)

pep-1/B-Gal (22:1)

pep-1/B-Gal (42:1)
pep-1/B-Gal (60:1)

pep-1/B-Gal (80:1)

pep-1/B-Gal (100:1)

 

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

0 20 40 60 80 100

Pep-1/β-Gal ratio

M
ax

im
um

 fl
uo

re
sc

en
ce

 in
te

ns
ity

I II II

2

1

 

FIGURE S1: Pep-1/β-Gal complex formation by β-Gal titration with pep-1. Panel A shows some of the 

fluorescence emission spectra obtained at constant protein concentration (72 nM) with excitation at 280 

nm. There is a change in the integrated intensity besides spectral shifting. Panel B shows the dependence 

of the integrated emission intensity on Pep-1:β-Gal molar ratio (curve 1). When the complex integrated 

intensity is divided by the sum of the isolated contributions of free β-Gal and free pep-1 (curve 2), it is 

possible to identify three different regimes having different slopes. I) up to 14 molar ratio quenching of 

fluorescence exists (direct or indirect consequence of electrostatic interaction between pep-1 and protein); 

II) from 14 to 60 molar ratio quenching of protein by pep-1 still exists but is less pronounced 

(hydrophobic interactions between pep-1 and β-Gal are probably dominant in this regime); III) β-Gal 

fluorescence intensity has a slightly increase (suggesting that there are no more pep-1-protein 

interactions). 
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4.2.2. Re-evaluating the role of strongly charged sequences in 

amphipathic cell-penetrating peptides. A fluorescence study using pep-1.  
 

4.2.2.1. Motivation and methodologies 

In the previous paper [230] we have tracked the internalization of the cargo (β-

Gal) mediated by pep-1. The cargo was followed instead of the CPP to avoid possible 

artefacts associated with high affinity of peptides for membranes which may remain 

attached to cells and an apparent localization in the cell could result therefrom [55, 56]. 

The experimental work presented in the previous paper [230] was important to confirm 

the ability of pep-1 to introduce large proteins inside the cell and to gain information 

about the translocation mechanism. Besides the translocation mechanism, we decided to 

gain insight on the pep-1 route after internalization. A modified pep-1 with a fluorescent 

probe attached to the hydrophilic domain was used.  

CPPs internalization into cellular lines has been followed by means of several 

methodologies through the literature. Fluorescent labels are commonly used to 

investigate the mechanisms of cellular uptake and intracellular distribution of CPPs [15, 

27, 31, 32, 54, 58-61, 65-67, 70, 73, 75, 78, 79, 105, 168, 231-255]. Fluorescein is the 

most frequent probe attached to CPPs [15, 27, 31, 58, 60, 61, 65, 73, 75, 79, 231, 232, 

234, 235, 237, 238, 241, 243-245, 250], however Lucifer yellow [105], Rhodamine [32, 

54, 59, 66, 242], Texas red [67, 233], NBD [59, 78, 239] or Alexa fluor [63, 251] are 

other possibilities. Alternatively CPPs can be biotynilated and detected by avidin or 

streptavidine [63, 252] or detected by a specific antibody [256]. Microscopy [32, 61, 65-

67, 241, 242, 254, 257], flow cytometry [67, 237, 245, 257, 258] or spectrofluorimetry 

[59, 78] are techniques that can be employed for CPP internalization detection.  

 To follow the pep-1 uptake into cultured cells the probe carboxyfluorescein (CF) 

was used. CF was linked to the hydrophilic domain by an extra Lys residue and the C 

terminal was blocked with a Ser instead of Cysteamine to avoid steric constraints. The 

final hydrophobic domain sequence was: KKRKVK(CF)-S.  

Fluorescein, as other labels are relatively large and lipophilic, and may 

significantly modify physicochemical properties of CPPs [259]. A careful evaluation of 

the possible effect of this fluorescent label attached to pep-1 was carried on.  

The characterization of the interaction of pep-1-CF with model membranes was 

followed by Trp fluorescence, as previously explained (see chapter 2 and reference 
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[153]), and by CF fluorescence. Partition and in-depth location of peptide in lipidic 

membranes was studied and compared with results obtained for unlabelled pep-1.  

Alterations on membrane polarization were evaluated by the use of lipophilic 

probes DiSBAC2(3). This dye belongs to the family of bis-barbituric acid oxonols, also 

referred to as DiBAC dyes, or as “bis-oxonol”, which have an excitation maximum 

close to 490nm [260]. When it moves from a polar environment to a non-polar 

environment, like lipidic membranes, its fluorescence quantum-yield is markedly 

increased. Upon membrane depolarization the uptake the dye by the membrane 

increases and the overall fluorescence intensity also increases. When the membrane is 

hyperpolarized, partition to the membrane decreases and also does fluorescence 

intensity [261]. DiSBAC2(3) has affinity for liposomes, in the presence of peptide one 

can evaluate if the membrane is becoming more or less polarized. 

 

The possibility of peptide translocation across mammalian cells was evaluated in 

the presence/absence of β-Gal by fluorescence microscopy using the same methodology 

previously referred (see section 4.2.1.3 and reference [230]), however it was verified 

that pep-1-CF fluorescence intensity was not strong enough to be followed by 

microscopy. To overcome this limitation a fluorescence plate reader was used instead, 

taking advantages on trypan blue (TB) quencher properties [262-265]. TB diffuses 

rapidly into non-viable cells [266], however is unable to enter into viable cells [267], 

consequently TB will quench non-specific background fluorescence and also the 

fraction of peptide adsorbed at cell surface and non-internalized pep-1CF [262]. With 

this approach it is possible to follow internalization at several incubation times in non-

fixation conditions; briefly, TB is added after cell incubation and CF fluorescence is 

followed in the plate reader.   

  

Methodologies and results obtained are explained in more details in the short 

communication: Re-evaluating the role of strongly charged sequences in amphipathic 

cell-penetrating peptides. A fluorescence study using pep-1. 
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Abstract Cell-penetrating peptides (CPPs) are able to translo-
cate across biological membranes and deliver bioactive proteins.
Cellular uptake and intracellular distribution of CPPs is com-
monly evaluated with fluorescent labels, which can alter peptide
properties. The effect of carboxyfluorescein label in the Lys-rich
domain of the amphipathic CPP pep-1, was evaluated and com-
pared with non-labelled pep-1 in vitro and in vivo. A reduced
membrane affinity and an endosomal-dependent translocation
mechanism, at variance with non-labelled pep-1, were detected.
Therefore, the charged domain is not a mere enabler of peptide
adsorption but has a crucial role in the translocation pathway
of non-labelled pep-1.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: Cell-penetrating peptide; Drug delivery;
Translocation mechanism; Transmembrane potential

1. Introduction

The discovery of various basic peptides (9–33 amino acid

residues) with ability to translocate across cell membranes

has attracted much interest in biomedical research [1]. These

peptides, known as cell-penetrating peptides (CPPs), have been

successfully used to deliver biopharmaceutical macromolecules

in vivo. The use of such delivery systems is of great interest to

evade the poor cellular access and bioavailability of drugs [2].

The translocation mechanism used by this group of carriers

has been extensively studied in the last 10 years, but the results

are frequently contradictory and disperse. A single general

mechanism for all does not seem reasonable and more than

one mechanism for a unique peptide is a possibility [3,4]. To

evaluate the cellular uptake and intracellular distribution of

CPP, fluorescent labels are commonly used. However, when

these labels are large and lipophilic they may alter physico-

chemical properties and the cellular distribution of the peptide

[5].

Pep-1 (Ac-KETWWETWWTEWSQPKKKRKV-cystea-

mine) is a synthetic peptide carrier forming physical assemblies

with a great variety of proteins and other macromolecules,

which have been successfully translocated in different cell lines

[6–10]. It has been shown that pep-1 translocates across mem-

branes by a physical process mediated by transmembrane po-

tential, both in vitro and in vivo, in free form [11] or when

complexed with a protein, with no evidence for an alternative

mechanism [7]. Because the translocation is solely physically

mediated, the hydrophobicity and charge distribution of the

peptide and its interaction with membranes is of first impor-

tance. The amphipathicity of the carrier is probably responsi-

ble by the strong interaction with the lipidic membranes [12].

Unlike other cationic CPPs (e.g., penetratin) [13] pep-1 has a

high affinity for neutral vesicles and for membranes in gel-like

phase. The presence of cysteamine group in C terminal seems

to play a crucial role in the delivery efficiency of cargoes into

cells [12].

In the present paper, the study of a modified peptide with a

carboxyfluorescein probe (pep-1CF) is compared with pep-1.

In this peptide, the hydrophilic domain (KKKRKV-cyste-

amine) has been customized to accommodate the label. An ex-

tra Lys was introduced to link the probe and C terminal is

blocked with a Ser instead of cysteamine to avoid steric con-

straints (KKRKVK(CF)-S). The effect of the alteration intro-

duced in this hydrophilic domain in the translocation

mechanism is presented, using both the Trp residues and CF

moiety as reporters of the so-called hydrophobic and hydro-

philic domains, respectively.

2. Materials and methods

Pep-1 and Pep-1CF with purity >95% were obtained from
GenScript Corporation, New Jersey. b-Galactosidase from Esche-
richia coli (b-Gal), 4-methylumbelliferyl-galactoside (MUG), Triton
X-100 (TX-100) and trypan blue (TB) were obtained from Sigma–
Aldrich, MO. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-(phospho-rac-(1-glycerol))
(POPG), were from Avanti Polar-Lipids, Alabama. 5-Doxyl-stearic
acid (5DS) and 16-doxyl-stearic acid (16DS) from Aldrich Chem
Co., WI. Minimum essential medium Eagles with Earle�s salts
(MEME) and supplements were obtained from Gibco Invitrogen
Corporation, CA.

Abbreviations: CPP, cell-penetrating peptide; CF, carboxyfluorescein;
b-Gal, b-galactosidase; MUG, 4-methylumbelliferyl-galactoside; TX-
100, Triton X-100; TB, trypan blue; POPC, 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine; POPG, 1-palmitoyl-2-oleoyl-sn-glycero-3-
(phospho-rac-(1-glycerol)); 5DS, 5-doxyl-stearic acid; 16DS, 16-doxyl-
stearic acid; MEME, minimum essential medium Eagles; LUVs, large
unilamellar vesicles; 4-MU, 4-methylumbelliferone
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2.1. Characterization of pep-1CF in aqueous solution
Pep-1CF solutions were prepared in HEPES buffer (10 mM HEPES,

pH 7.4 containing 10 mM (low ionic strength) or 150 mM NaCl (the
so-called physiologic ionic strength)). The assays were performed at
room temperature in a UV–Vis spectrophometer Jasco V-560 and in
a spectrofluorometer SLM Aminco 8100. Fluorescence intensity values
were corrected for inner filter effect [14].
The absorption and fluorescence emission characteristics of the

hydrophobic domain (by means of Trp fluorescence; kexc = 280 nm,
kem = 350 nm) and of the hydrophilic domain (by CF group;
kexc = 490 nm, kem = 520 nm), were studied. Quantum yield-depen-
dence on peptide concentration (0–18 lM) and ionic strength (by
means of NaCl concentration variation) were also evaluated. Fluores-
cence quenching of Trp residues by acrylamide was carried out using
kexc = 290 nm to minimize the relative quencher/fluorophore light
absorption ratio. Quenching data were corrected as described in [12].

2.2. Interaction of pep-1CF with model membranes
Large unilamellar vesicles (LUVs), with typical 100 nm diameter

were prepared by the extrusion method described elsewhere [15] and
used as model of biological membranes. Liquid-crystal phase vesicles
composed by POPC or POPC:POPG (4:1 molar) were used to model
the outer leaflet (neutral) and the inner leaflet (negatively charged) of
mammals� biological membranes [16]. The extent and kinetics of parti-
tion and the in-depth location of pep-1CF were evaluated using the
same procedure as for pep-1 [12]. Both hydrophobic and hydrophilic
domains were studied.
The DiSBAC2(3) dye is a probe with a higher affinity for depolarized

than polarized membranes and its apparent quantum yield being
dependent on the extent of interaction with membranes [17]. These
fluorescence properties were used to evaluate alterations in transmem-
brane potential of model membranes upon addition of pep-1CF. Ves-
icles in the absence and presence of a negative transmembrane
potential were prepared as described in [11]; DiSBAC2(3) was added
to lipidic suspension to a final concentration of 0.25 mM and fluores-
cence emission intensity (kexc = 540 nm, kem = 558 nm) was followed
during titration of lipidic suspension with pep-1CF (576 lM stock
solution) or non-labelled pep-1 (688 lM stock solution).

2.3. Translocation studies of pep-1CF in HeLa cells
Adherent human negroid cervix epitheloid carcinoma cells (HeLa)

were grown in MEME supplemented with 2 mM LL-Glu, 2 mM non-
essential aminoacids, 10% (v/v) fetal bovine serum and 1% (v/v)
streptomycin and penicillin, in a 5% CO2 humidified atmosphere
at 37 �C. Cell viability was determined by the TB exclusion assay,
see [7].
The translocation of pep-1CF and it capacity to mediate the uptake

of b-Gal were followed in non-fixation conditions. Cells with 90% con-
fluence, seeded in 96-well plates, were incubated with 40 lL of 3.5 lM
pep-1CF, (in free or complexed form with b-Gal (peptide/protein ratio
of 320), prepared in free-serum medium), in sixplicates, during 0, 30,
60, 90, 120, 150, 180, 210 and 240 min at 4 or 37 �C.
The quencher properties of TB and it inability to enter in viable cells

[18] were used to evaluate the pep-1CF translocation. This hydrophilic
molecule is able to quench non-internalized particles, including the
fraction adsorbed to the cell membrane, but is inaccessible to internal-
ized fraction [19], so removal of extracellular peptide is needless. The
pep-1CF fluorescence was followed, before and after addition of TB
(1.9 lL of stock solution, 0.4% w/v), with excitation and emission fil-
ters at 485/20 (centre/width) and 590/35 nm, respectively, in a FL500
microplate fluorescence reader. To evaluate the effect of protein in
the extension of peptide internalization, the same procedure was fol-
lowed with pep-1CF complexed.
Delivery efficiency of b-Gal mediated by pep-1CF was evaluated by

it enzymatic activity using a non-fluorescent substrate (MUG) which is
converted in a fluorescent product (4-methylumbelliferone, 4-MU), see
[7] for a detailed description. Briefly, after incubation with pep-1CF/b-
Gal complex (see above), cells were washed three times with phosphate
buffer saline solution to eliminate non-incorporated protein and pep-
tide. Internalized b-Gal was accessed after cell permeabilization with
0.1% (w/v) TX-100. Substrate (0.1 mM MUG) was added to the cells
and incubated with the enzyme during 30 min at 37 �C. NaOH was
added to stop the reaction (pH � 12) and product formation (4-MU)
was monitored with excitation and emission filters at 360/40 and

460/40 nm, respectively. The same procedure was performed with
non-labelled peptide. Controls without pep-1 or pep-1CF were carried
out.
The effect of peptide in the protein was determined by comparing it

enzymatic activity in free and complexed forms (with non-labelled pep-
1 or pep-1CF) in vitro (see [7]).

3. Results and discussion

3.1. Pep-1CF aggregates in aqueous solution

Similarly to non-labelled pep-1 [12], Trp residues in the

hydrophobic domain of pep-1CF, have a red-edge excitation

shift and an efficient fluorescence quenching by acrylamide

(51.8 ± 12 and 42.1 ± 9.1 M�1 for low and physiologic ionic

strength, respectively) with a negative deviation from linearity.

These results indicate that the peptide aggregates in solution

(see [12]). Nevertheless, the quantum yield and steady-state

anisotropy of the CF group in hydrophilic domain is not

dependent on concentration, for both ionic strengths (10 and

150 mM), which suggests that internal organization of the pep-

tide is not affected by these factors.

3.2. Partition and in-depth location of pep-1CF in model

membranes

Affinity of hydrophobic and hydrophilic domains for lipidic

membranes was evaluated by titration of an aqueous suspen-

sion of the pep-1CF (5.76 lM) with lipidic vesicles; both Trp

and CF fluorescence emission were monitored. Spectral altera-

tions on fluorescence emission and anisotropy (r = 0.05) were

not detected, either for POPC or POPC:POPG (4:1) LUVs.

These results suggest that the hydrophilic domain does not

strongly interact with model membranes. When Trp residues

were followed, the addition of lipidic suspension led to both

blue-shifted emission spectra (Fig. 1A) and an increase in the

fluorophore quantum yield (Fig. 1B). The partition coefficients

(determined by fluorescence emission intensity as in [12]) are

(4.2 ± 0.8) · l02 for POPC and (1.7 ± 0.2) · l03 for POPC:-

POPG (4:1) at physiologic ionic strength. These values are sig-

nificantly smaller than the ones obtained for non-labelled pep-1

((3.4 ± 0.6) · l03 and (2.8 ± 0.4) · l04 [12]), which indicates a

decrease in membrane affinity even for the hydrophobic do-

main. Concomitantly, partition rates decrease (t1/2 = 197 ms

in POPC and 147 ms in POPC:POPG (4:1) for pep-1CF in com-

parison with 120 and 34 ms, respectively, for unlabelled pep-1).

An extensive fluorescence emission quenching of Trp resi-

dues by acrylamide, in the presence of lipidic membranes, is

indicative of significant amounts of peptide non-inserted in

the membrane, at discrepancy with pep-1 in the same condi-

tions where no significant acrylamide quenching was detected

[12].

In-depth location of the hydrophobic domain of pep-1CF

was carried out by means of fluorescence quenching of Trp res-

idues with doxyl-derivatized stearic acids. The quenching is

more efficient when the quencher is closer to the Trp residues.

Therefore, 5DS probes the bilayer interface while 16DS probes

its core [20]. Quenching by 5DS is more efficient than by 16DS,

this is true for POPC (KSV,5DS = 16.1 ± 3.8 M�1, KSV,16DS =

5.2 ± 0.9 M�1) and POPC:POPG (4:1) (KSV,5DS = 15.3 ±

3.5 M�1, KSV,16DS = 4.9 ± 1.0 M�1). This is evidence for a

position of the hydrophobic region at the membrane interface

in both lipidic systems studied. The same conclusion was ob-

tained in the study of non-labelled pep-1 [12].
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Quenching of CF group by 5DS and 16DS was negligible,

supporting the hypothesis that the hydrophilic domain does

not insert in the membrane.

3.3. Translocation of pep-1 and pep-1CF in LUVs is dependent

on transmembrane potential

To evaluate pep-1CF translocation in model membranes, the

fluorescence of DiSBAC2(3) was followed. The quantum yield

of the probe increases with depolarization of membranes.

Titration of POPC LUVs (in absence (1) or presence (2) of

transmembrane potential) with pep-1CF is presented in

Fig. 2. The variation of probe fluorescence emission differs

for the two situations (with/without potential). When trans-

membrane potential exists the addition of pep-1CF induces

an increase in fluorescence intensity, so membrane is depolar-

ized. In the absence of a transmembrane potential a decrease

quantum yield was detected, which indicates a polarization

of membrane.

These results suggest that in the absence of transmembrane

potential the peptide accumulates in the outer leaflet of mem-

brane, without translocation. The positive global charge of

pep-1CF is responsible by membrane polarization.

In the presence of a transmembrane potential (negative

inside) pep-1CF is able to translocate across membrane, reduc-

ing the negative transmembrane potential, with an increase in

quantum yield of DiSBAC2(3).

Similar results were obtained with non-labelled pep-1 using

this (Fig. 2, curve (3)) and other methodologies [11], but the

effect of a negative transmembrane potential is more pro-

nounced, which suggest that pep-1 has a more efficient translo-

cation than pep-1CF. This is expected considering the lower

affinity of pep-1CF for phospholipids membranes.

3.4. Translocation kinetic of pep-1CF and pep-1CF/b-Gal in
HeLa cells

Translocation of pep-1CF in HeLa cells was evaluated at 4

and 37 �C (Fig. 3) by the use of TB quenching properties. Its

capacity to interact with the CF dye and to quench its fluores-

cence emission was used to distinguish internalized from sur-

face-bound pep-1CF [18]. The quenching extent is decreased

when the peptide translocates across cell membranes and

become inaccessible to the quencher.

At 37 �C, we observed fluorescence recovery up to 240 min

incubation at variance with results at 4 �C where the fluores-

cence intensity remained unchanged during the same time

(Fig. 3A). This suggest that translocation of pep-1CF occurs

via endocytosis. Recently, it has been found that two N-termi-

nally CF-labelled CPPs are internalized by HeLa cells via raft-

mediated endocytosis [21].

Significant differences in the kinetics of translocation, for

free (Fig. 3A) or complexed (Fig. 3B) forms, of Pep-1CF were

not detected.

The uptake of the b-Gal cargo itself, at 4 and 37 �C, was
evaluated by following the enzymatic hydrolysis, of a non-fluo-

rescent substrate (MUG) to a fluorescent product (4-MU). The

hydrolysis step is carried out at 37 �C after the translocation

incubation step. We observed that the translocated protein

was active and that the uptake of protein was much more effi-

cient at 37 �C than at 4 �C (180 min after incubation the fluo-

rescence emission intensity of 4-MU was found to be 14.5

times higher at 37 �C relative to 4 �C).
In order to investigate the effect of CF-derivatization in pep-

tide translocation, we compared the efficiency of b-Gal inter-

nalization mediated by pep-1 vs. pep-1CF (Fig. 4). When the

Fig. 1. Partition of Pep-1CF-hydrophobic domain in POPC LUVs
(kcxc = 280 nm). (A) shifting of pep-1CF fluorescence emission spectra
with lipidic concentration (0–3.75 mM). (B) Fluorescence intensity
emission maximum dependence on lipidic concentration.

Fig. 2. Variation of transmembrane potential in POPC LUVs by
titration with pep-1CF in absence (1) or presence of transmembrane
potential (2) or with non-labelled pep-1 in presence of transmembrane
potential (3). Monitored with DiSBAC2(3) fluorescence emission
(kexc = 540 nm, kem = 558 nm) (inserts indicate addition of 5lL from
pep-1CF or pep-1 stock solution).
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b-Gal uptake was mediated by pep-1 there were no significant

differences between 4 and 37 �C [7]. However, efficiency was

different for the labelled and unlabelled peptides (Fig. 4),

revealing that the hydrophilic domain of the peptide is of crit-

ical importance for translocation.

We analysed the enzyme activity, in vitro, in free and in

complexed forms. The determined v0 of b-Gal are:

19.18 ± 0.24 lM/min for free form; 11.60 ± 0.53 lM/min when

complexed with unlabelled-pep-1 and 19.61 ± 0.38 lM/min in

the complex with pep-1CF. The presence of pep-1 reduces

the activity of the enzyme (in agreement with [7]), but this does

not hold for pep-1CF. This suggests that the pep-1CF does not

interact as strongly with the protein, which is an additional

effect induced by the presence of CF in the Lys-rich domain.

This supports the hypothesis that pep-1 interacts with the car-

go both by means of hydrophobic and electrostatic interac-

tions [7].

The mechanism of translocation of pep-1CF is different from

the one identified previously for pep-1. A simple physical

mechanism mediated by electrostatic interaction between

pep-1 and membrane is supported by different sets of experi-

mental data [7,11]. However, Pep-1CF follows a different path-

way, dependent on temperature, i.e., endocytic.

It should be stressed that pep-1CF has translocation ability

via physical (non-endocytic) processes (Fig. 2), however, such

ability is clearly decreased compared to unlabelled pep-1

(Fig. 2), in agreement with its smaller partition into mem-

branes. At 4 �C, the low cell membrane fluidity also contrib-

utes to inhibit physical translocation of pep-1CF. It is only

at 37 �C that the endocytic pathway becomes an alternative

to the physical process and translocation occurs. A small

contribution of the endocytic pathway for translocation of

unlabelled pep-1 at 37� cannot be discarded, although a phys-

ical process is clearly dominant [7,11].

A reduced protein-uptake mediated by pep-1CF is due, not

only, to a decrease in translocation efficiency but also to a

diminished interaction of the pep-1CF with b-Gal.

3.5. Conclusion

Translocation of pep-1 is mediated by a physical process

governed by electrostatic interactions [7,11]. Modification of

the hydrophilic domain, with a CF group, extensively de-

creases the affinity of pep-1 for phospholipid membranes and

for the cargo macromolecule, which affects the translocation

of the peptide alone as well as its capacity as delivery agent.

It was recently proposed that labelling CPPs influence the final

location inside the cell [5]. We now generalize this difference to

a decrease in the extension of internalization and to a change

in the main mechanism of translocation. A small chemical

modification of these sequences may modify the translocation

efficiency and even its pathway. It is worth mention that oligo-

Arg peptides have translocation ability on their own [22] with

no need for ‘‘hydrophobic’’ sequences.
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Conclusion 

 

 

5.1. The overall mechanism – the importance of the lipidic 

membrane and electrostatic interaction on pep-1 uptake. 

 

The results presented through the thesis, along with some other published work 

related to pep-1 properties and its ability to internalize will be interpreted and gathered 

with other information available in the literature. Pep-1 translocation across plasma 

membrane has also been the subject of a recent review [268], which is presented in 

Chapter 6.  

 

Interaction of peptides with lipidic membranes comprises three thermodynamic 

steps governed by electrostatic forces, hydrogen bond formation and hydrophobic 

interactions. The first step is initiated by the electrostatic attraction between peptide and 

membranes; the second step involves a transition of the peptide into the plane of 

binding, which depends on the hydrophobic/hydrophilic balance of the molecules 
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groups and forces involved; and the third step involves a conformation modification of 

the bound peptide, normally from a random coil conformation into a α-helix structure 

upon interaction with lipidic bilayer [183]. Insertion in the lipid matrix may follow. 

The interaction of pep-1 can be described by these three steps as follow: in the 

first step, mainly governed by electrostatic interaction between peptide and membrane, 

there is an increase of peptide concentration at membrane surface due to large 

electrostatic interactions between basic amino acid residues and the phosphate groups in 

lipid molecule [183]; in the second step, pep-1 in close proximity to the membrane 

removes the hydration shell at membrane surface and promotes membrane 

destabilization by hydrophobic domain insertion [186]; in the third step, hydrophobic 

domain upon interaction with membrane acquires an α-helical conformation, as verified 

by us [269] and also by others [185, 270]. Such secondary structure modification is 

understood with respect to a reduction on the free energy at membrane surface and is 

thus an important driving force for membrane binding [183]. 

The hydrophobic domain inserts in the membrane with a shallow position [153, 

269]. This location was also confirmed by others [270]. Upon peptide insertion, 

liposome aggregation and fusion were detected [186], which indicates that pep-1 is able 

to destabilize the lipidic membrane. It is worth mentioning that the absence of 

membrane leakage as detected by us [186, 269] and by others [270, 271] conflicts  with 

the pore formation hypothesis suggested by Deshayes et al. [185, 272]. The peptide 

orientation in the membrane further rule out such hypothesis [153, 269]. A pore 

formation implies that the peptide spans across lipidic membrane with a perpendicular 

orientation to the membrane plane [172, 175]. Such orientation is thermodynamically 

unfavourable for pep-1 due to peptide length and structure: the hydrophilic domain with 

a large charge density and random coil conformation does not insert in the bilayer and 

the hydrophobic domain length with an α-helical conformation (∼19.5Å) does not 

match the bilayer membrane thickness (∼40Å), which is further hampered by the 

presence of five Trp residues in this domain, which work as anchors at membrane 

interface [273, 274].  

A membrane disintegration for high peptide/lipid ratios, as observed by us [269], 

and also by others [270, 271] suggests that the hydrophilic part binds onto the surface of 

the membrane and cover it in a “carpet”-like manner, whereas the hydrophobic domain, 

in the interface region, induces membranes destabilization, which above a critical local 
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peptide concentration (dependent on the lipidic composition and peptide affinity for 

these bilayers) induces membrane disintegration. This is an extreme event and cannot 

explain the capacity of peptide to translocate. Together, our results demonstrate that the 

pep-1 has a high affinity for membranes and is able to destabilize the lipidic bilayer 

without leakage of the aqueous contents of the vesicles. Membrane disintegration 

occurs in extreme conditions (peptide/lipid ≥1), which also explain the pep-1 

cytotoxicity in cultured cells with peptide concentrations much above the concentrations 

used for transfection purposes [84, 270].  

The plasma membrane is characterized by a negative transmembrane potential, 

due to electrochemical gradient and also by membrane composition asymmetry (inner 

leaflet is enriched on negatively-charged phospholipids, while the outer leaflet is mainly 

composed by zwitterionic phospholipids). In vitro studies show pep-1 capacity to 

disturb membranes without forming pores and to translocate by a mechanism dependent 

on transmembrane potential; moreover it also shows that pep-1 has a higher affinity for 

membranes with negatively-charged phospholipids. In cultured cells it was possible to 

confirm the capacity of pep-1 to translocate by a mechanism dependent on membrane 

potential gradient and no evidences for an endosomal pathway, were detected [230] in 

agreement with a previous report by Morris et al. [84].  

The importance of the peptide affinity for the membrane on the translocation 

process was confirmed with pep-1CF, where both a loss in membrane affinity and a 

decrease in uptake were identified. This suggests that translocation efficiency and 

partition of pep-1 in lipidic membranes are strongly correlated. However, comparing 

results at 4ºC and 37ºC it was possible to identify a slight internalization of pep-1CF by 

an endocytosis-dependent uptake (at 4ºC internalization was inhibited). This small 

uptake by endocytosis seems to operate only when the membrane affinity is severely 

decreased or lost, suggesting that membrane partition and the capacity to perturb it, 

dictate the extent to which the peptide enters the cell by a physical mechanism in 

detriment of endocytosis. 

 

Briefly, it is possible to conclude that the high affinity of pep-1 for lipidic 

bilayers leads to a high local concentration in the membrane, disturbing the cell surface. 

This effect associated with the transmembrane potential (negative inside) facilitates pep-

1 passage through the plasma membrane [153, 186]. Electrostatic attractions, which are 
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long range and are dominate when compared with hydrophobic ones [183], reallocate 

the peptide from the outer layer to the inner layer (more negatively-charged than the 

outer layer). The reduced local surface tension allows the peptide to intercalate the 

membrane and a flexible sealing between peptide side-groups and lipid head-groups 

minimize leakage during the peptide passage through the membrane and no leakage 

occurs [186, 269]. Once in contact with cytoplasm, pep-1 decreases the affinity for the 

lipidic membrane due to disulfide bond cleavage in the reducing environment [153], and 

is transferred into cytoplasm where is then available for uptake by cellular 

compartments. When a cargo molecule is associated with the peptide, an excess of pep-

1 molecules in free form is required for an efficient translocation. This suggests that part 

of the pep-1 molecules take part on pep-1/cargo complex formation whereas the pep-1 

molecules in free form are responsible for interaction with plasma membrane [230]. The 

overall mechanism is outlined in the Figure 5.2: 
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Figure 5.2. Pep-1 translocation mechanism across biological membranes is initiated by pep-1 partition 

into lipidic membrane. The peptide-lipid interaction is first governed by electrostatic interaction between 

hydrophilic domain and lipid headgroups, and subsequently in close proximity to the membrane 

hydrophobic domain inserts in the membrane, acquires an α-helical conformation and perturbs membrane. 

In extreme conditions where peptide concentration is higher than lipid concentration, peptide becomes 

cytotoxic due to membrane disintegration by a “carpet” model-like mechanism. In physiological 

conditions due to negative transmembrane potential and membrane asymmetry pep-1 passes from the 

outer layer to the inner layer by a electrostatic-mediated process where the peptide intercalates the 

membrane during the peptide passage through the membrane and no leakage occurs. When pep-1 faces 

the cytoplasm, loses the affinity for lipidic membrane. Therefore the equilibrium is shifted to intracellular 

environment, which facilitates peptide and cargo uptake.   
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5.2. Towards a new phase regarding CPP mechanisms: the 

coexistence of translocation mechanisms 
 

The plasma membrane is a barrier to the passage of a number of therapeutic 

agents. The efficient delivery of macromolecules into living cells is a challenge. In spite 

of all the approaches that have been used in the last decade to overcome membrane 

impermeability, they all present serious drawbacks. The recent strategy that employs the 

use of cationic peptides as carriers to introduce macromolecules has attracted much 

attention during the past few years and is a new hope on drug delivery for therapeutic 

purposes [1]. The use of CPPs for a general application implies the knowledge of the 

mechanism used to pass through the membrane and this has been the main goal in CPP 

research. In the last 20 years the studies on CPPs mechanism can be divided into three 

phases. 

First it was observed that internalization of CPPs and their cargoes was not 

inhibited by incubation at low temperature, by depletion of cellular ATP or by inhibitors 

of endocytosis. Furthermore structure-activity studies and the use of D-isomers 

indicated that the internalization of CPPs was not dependent on receptor recognition. 

Based on these observations the internalization of CPPs was commonly accepted to be 

both endocytosis- and receptor-independent and a translocation mechanism involving 

direct interaction with membranes and lipids was proposed [15, 16, 27, 53]. This 

hypothesis was supported by the strong correlation between lipid-binding affinity and 

cell uptake [168] and also by the observation of translocation in model membrane 

systems [78, 79, 147]. 

More recently it was verified that the fixation procedures used for 

immunochemistry and cell visualization may lead to artifactual cell localization [55, 56]. 

These observations led to a re-evaluation of the internalization mechanism by Richard et 

al. [60] followed by Thorén et al. [58] in 2002 and 2003. The confirmation of the 

involvement of endosomal pathway for internalization of, penetratin, TAT and 

oligoarginine [58, 60] led to a drastic turn on the CPP research and subsequent reports 

have shown that many CPPs are internalized by endocytosis [59, 61-66, 275]. From that 

period until now it was generally assumed that all the CPPs were internalized by an 

endocytic pathway and this can be regarded as the second phase on the CPP research. 

However, a consensus in the specific route was never reached and contradictory results 
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have been published [60, 62, 68]. In a picture where endosomal pathway is the 

physiological route used by CPP uptake, the escape from endosomes for an efficient 

delivery of a functional cargo must involve membrane interaction and a physically 

driven mechanism. Moreover the direct observation of the uptake of some CPPs in 

model membranes [77-79, 147] reinforces this mechanism. CPPs are an heterogeneous 

family with peptides from different sources (see reference [34]) and the mechanism of 

their action cannot be only black or white. A thorough and open-minded evaluation of 

the mechanism should be done. 

Our results with pep-1 [153, 186, 230, 269, 276] together with recently 

published reports [242, 248, 251, 252, 258] suggest a third phase in the CPP research, 

where the main physiological mechanism used by CPPs is dependent on the peptide and 

experimental conditions. A greater contribution of physically-mediated process in 

detriment of endocytosis is dependent on the bulk peptide concentration, the cargo 

molecule, the peptide affinity for cell membrane and the quantity of cells, which 

modulate the peptide concentration in membrane vicinity. For a further comprehension 

of this statement I will compare the uptake mechanism of different CPPs: Penetratin, 

TAT and analogues, maurocalcine, S413-PV and pep-1. This has also been object of a 

recent review by us ([277] presented in Annex I). 

Penetratin does not show a strong affinity for zwitterionic membranes [74, 278, 

279] and does not induce significant membrane destabilization [234, 280]. Interaction 

with model membranes is only evident when negatively-charged phospholipids are 

present [74, 278]. A large consensus on internalization of penetration by endocytosis as 

the physiological uptake route is evident through the literature [58, 59, 65] with no 

evidences for an alternative pathway [58]. 

For TAT, oligoarginine and other TAT analogues a more pronounced affinity for 

the membrane, together with capacity to induce more severe membrane destabilization 

when compared with penentratin, was oberved [234, 280]. For these peptides a 

contribution of the endocytosis and energy-independent mechanism was reported [58, 

281, 282] while other authors claim that endocytosis is the only physiological 

mechanism for TAT internalization [60, 61, 65, 70]. This apparent contradiction was 

recently elucidated by Duchardt et al. [248]. In this report the uptake of penetratin, TAT 

and oligoarginine was compared and evaluated at different peptide concentrations. 

Penetratin uptake mechanism was found to be endocytosis-dependent even at high 
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concentrations (20 μM) while for TAT and oligoarginine the endocytosis is particularly 

operative at low concentrations (2μM). At higher concentrations (20 μM) these later 

peptides were insensitive to endosomal inhibitors and a rapid release into the cytoplasm 

by a membrane mediated mechanism was detected. It was proposed that a critical 

concentration of peptide associated with the plasma membrane is required to trigger this 

physically-driven mechanism [248]. Similar conclusions were obtained by Fretz et al. 

[251] where the uptake mechanism followed by oligoarginine was dependent on the 

existence of a threshold concentration which when exceeded promotes direct 

translocation across the plasma membrane [251]. Moreover, Nakase et al. identified that 

higher quantities of oligoarginine were obtained in the cytoplasm when cells were 

incubated at 4ºC than at 37ºC. They proposed that when endosomal pathways are 

inhibited, and an alternative pathway can operate, the peptide is more efficiently 

translocated into the cytosol. When incubation is held at 37ºC, oligoarginine release in 

the cytoplasm is difficult due to endosome entrapment [67]. At variance, for penetratin a 

physically-driven mechanism was not operative and a strong contribution of the 

endocytic mechanism was always evident [248]. 

Results obtained with the chimaeric peptide S413-PV (a combination of a 13 

aminoacid sequence derived from the dermaseptin S4 (S413 domain) with the NLS from 

SV-40 large T antigen and also with CPP properties [32]) also support the finding that 

the peptide affinity for cell membrane and the cell concentration close to the cell surface 

dictates the main uptake mechanism. The uptake efficiency of this peptide was not 

reduced in the presence of endocytic inhibitors [257]. However, at low peptide 

concentration a contribution of endocytosis was verified [242]. A transient membrane 

destabilization due to electrostatic interactions between the S413-PV peptide and 

negatively-charged components at cell surface is considered to be responsible for the 

translocation [257, 283]. Endosomal internalization with low peptide concentration 

suggests that higher peptide concentrations are mandatory to induce membrane 

destabilization.  

The hypothesis of the coexistence of endosomal and physically-mediated 

mechanisms was also proposed by Boisseau et al. [258] in a study with maurocalcine, a 

CPP isolated from the scorpion Scorpio maurus palmatus [236]. A contribution of both 

mechanisms was identified where the physically-driven mechanism results from a 

transmembrane potential [258]. In a recent study with maurocalcine analogues, where 
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peptides with different point mutations were compared, it was verified that the 

analogues with a stronger interaction with membrane lipids have a better penetration 

into cells [252]. Conversely, analogues with less cellular uptake presented a diminished 

ability to interact with negatively-charged lipids [252].  

In all the above referred peptides no interaction with zwiterionic membranes or 

significant destabilizations were verified through the studies and it was evident that the 

interaction with model membranes only occurs in the presence of anionic lipids or 

proteoglycans [66, 252, 278, 280, 283]. In contrast, pep-1 has a high affinity for lipidic 

membranes, even in the absence of negatively-charged phospholipids or proteoglycans 

[153] and induces a significant membrane destabilization [186, 269] which seems to 

favour internalization [230]. At physiological concentrations, endocytosis was not 

detected even at 37ºC [230, 276], and so it is possible to conclude that the physically-

driven uptake is the only mechanism with physiological relevance for the pep-1. The 

observation that the pep1-CF, with a lower affinity for lipidic membrane when 

compared with pep-1, is not internalized at 4ºC but has a slight internalization at 37ºC, 

indicating an endosomal internalization, supports the hypothesis that membrane-affinity 

and the local concentration of the peptide partitionated in the membrane dictates the 

preferred uptake mechanism. 

Overall, is possible to conclude that the strategy used by a specific CPP to 

internalize inside the cell is dependent on the bulk peptide concentration [242, 248, 251], 

on the cargo molecule attached [241, 282], on the cellular line and the number of cells 

[284]. Altogether these factors modulate the peptide affinity for lipidic membrane and 

the peptide concentration on the membrane. Penetratin and pep-1 can be regarded as 

two extremes in the CPPs family. In one hand the penetratin with a low affinity for 

lipidic membrane and low ability to disturb it [234, 280] is mainly (if not solely) 

internalized by endocytosis [58, 248]. Pep-1, in the other extreme, with a high affinity 

for lipidic membranes [153] and able to disturb the membrane stability [186, 269] 

translocates across biological membranes without evidence for endocytosis mechanism.  

 

There are two requisites for an efficient cargo delivery by a CPP: a specific 

location inside the cell and an escape from endosomes into the cytoplasm. This implies 

membrane interaction and permeation. pH gradient in/out the lisosomes (pH5 in 

endosomal lumen and pH7 in cytosol) was suggested as a possible driving force to 
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promote the release of CPPs into cytosol [65], as supported by Magzoub et al. studies 

[77] where translocation into model membranes driven by a pH gradient was shown for 

penetratin. Another possibility is a transmembrane potential-driven mechanism [78, 81]. 

Once inside the endosomes the transmembrane potential (luminal side is positive) drives 

translocation from the endosomal lumen to the cytoplasm environment. The ability to 

pass through a pure lipid membrane mediated by the transmembrane potential was 

verified for TAT [282], oligoarginine and penetratin [78].  

 

The energy-independent mechanism has physiological relevance if the uptake 

occurs in non-toxic conditions. The importance of electrostatic interactions between the 

peptide and the cell membrane is consensual trough the literature (see for instance [168, 

230, 234, 252, 255, 276, 283, 285]). The transmembrane potential between extracellular 

and intracellular medium (negative inside) was implicated in the uptake of different 

CPPs as oligoarginine [81], TAT [282], maurocalcine [258], and pep-1 [186, 230].  

 

The biological application of CPPs as carriers is a compromise between efficacy 

and non-toxicity. Like CPPs, AMPs are short and cationic sequences with a high 

affinity for membranes, and in extreme conditions CPPs show antimicrobial effects 

[253] and can also be toxic for mammalian cells [270] (see also the review paper [277] 

in Annex I).  

 

Our contribution in the CPP field was important to exclude the general 

acceptance of an endosomal pathway to explain the uptake of all the CPPs. Pep-1, being 

clearly related to a physical mechanism was significant to reach this third stage where 

the particular peptide and the experimental conditions dictate the mechanism. This 

project has also contributed with new methodologies to study the translocation across 

model membranes, which has been the topic of a review [286] presented in Annex I. 
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Annex I 

 

 
6.1. Translocation or membrane disintegration? Implication of 

peptide-membrane interactions in pep-1 activity. 
 

 

The review titled: Translocation or membrane disintegration? Implication of 

peptide-membrane interactions in pep-1 activity, presents the most significant results 

obtained on pep-1 translocation studies. Our results together with other published 

reports are reviewed. In this review the pep-1 ability for cell penetration and/or 

antimicrobial activity is highlighted. The threshold between these two properties relies 

in the peptide concentration; the composition of the membrane and the final 

peptide/lipid ratio. In mammalian cells and at pep-1 physiological conditions the pep-1 

works as a CPP. With some bacteria strains pep-1 may work as AMP. 
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Abstract: The Cell membrane is impermeable for most peptides, proteins, and oligonucleotides. Moreover, some cationic peptides,
the so-called cell-penetrating peptides (CPPs), are able to translocate across the membrane. This observation has attracted much
attention because these peptides can be covalently coupled to different macromolecules, which are efficiently delivered inside
the cell. The mechanism used by these peptides to pass across the membrane is a controversial matter of debate. It has been
suggested that endocytosis is the main mechanism of internalization and this was confirmed by several studies for different
peptides. Pep-1 is an exception worthy of attention for its ability to translocate cargo macromolecules without the need to be
covalently attached to them. A preferential internalization by an endocytosis-independent mechanism was demonstrated both
in vitro and in vivo. Pep-1 has a high affinity to lipidic membranes, it is able to insert and induce local destabilization in the lipidic
bilayer, although without pore formation. No cytotoxic effects were found for pep-1 concentrations where translocation is fully
operative. At much higher concentrations, membrane disintegration takes place by a detergent-like mechanism that resembles
anti-microbial peptide activity. In this review, the ability of pep-1 to transverse the membrane by an endocytosis-independent
mechanism, not mediated by pores as well as an ability to induce membrane disintegration at high peptide concentration, is
demonstrated. Copyright  2007 European Peptide Society and John Wiley & Sons, Ltd.
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INTRODUCTION

The hydrophobic nature of the cell membrane is respon-
sible for cellular integrity and is one of the limitations
for the introduction of hydrophilic macromolecules in
the cytoplasm. Microinjection, electroporation, lipo-
somes and viral vectors have been used as delivery
strategies to overcome membrane permeability. All
these methods have drawbacks such as toxicity, poor
specificity and being time consuming [1]. The observa-
tion that some cytoplasmic proteins are able to cross the
membrane when added to extracellular medium, (e.g.
HIV-1 transcriptional activator Tat protein [2] and the
Drosophila antennapedia transcription protein (pAntp)
[3]) originated an alternative strategy based on the basic
amino acid sequences within these proteins which are
translocating-enabling sequences. The observation that
these basic peptides allow cellular delivery of conju-
gated molecules such as peptides or proteins made
these molecules attractive and a new class of vectors,
known as cell-penetrating peptides (CPPs), emerged [4].
This family now includes all the peptides with the abil-
ity to translocate across membranes, whether natural
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peptides, synthetic, or chimaeric peptides.So far, these
vectors have been used to translocate a wide range of
macromolecules into living cells such as proteins [5–7],
peptides [8,9], oligonucleotides [10,11], peptide nucleic
acids [12], and polysaccharides [13]. Nanoparticles [14]
and liposomes [15] have also been internalized in cells
by means of CPP.

The mechanism used by these peptides to translocate
across biologic membranes has been a subject of
debate and controversy in the literature (Ref. 16 and
references therein). The CPP derived from pAntp
(penetratin) and the one from Tat protein (TAT)
are the two most intensively studied CPPs. Both
peptides use endocytic pathways to reach the cytoplasm
[17–23]. Moreover, even in a scenario where the
endocytosis is the physiological means of CPP uptake,
the escape of the CPP/cargo from endosomes into the
cytoplasm is mandatory for a successful delivery of
the cargo molecule. An escape from endosomes due
to acidification was proposed for penetratin and TAT
and confirmed [24]. A translocation dependent on a
transmembrane potential was also identified in vitro for
TAT and penetratin [25].

PEP-1 A CHIMAERIC PEPTIDE

Pep-1 (acetyl-KETWWETWWTEWSQPKKKRKV-cystea-
mine) is a CPP with primary amphipathicity (i.e

Copyright  2007 European Peptide Society and John Wiley & Sons, Ltd.
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amphipathicity resulting from the aminoacid sequence
itself, not from the folding structure) composed by:
(i) a Trp-rich domain (KETWWETWWTEW), responsible
for hydrophobic interactions with both proteins and
cell membranes, (ii) a hydrophilic domain (KKKRKV)
derived from a nuclear localization signal (NLS) of
Simian Virus 40 (SV-40) large T-antigen, required to
improve solubility, and (iii) a spacer domain (SPQ),
which improves the flexibility and the integrity of the
other two domains [26]. A cysteamine group is present
in the C-terminal and an acetyl group caps the N-
terminus. In oxidizing conditions dimmers may form
due to a disulfide linking of cysteamine groups.

Pep-1 has been efficiently used to introduce several
large proteins inside different cellular lines such as
mammalian cells [26–29] or plant cells converted
into protoplasts [30]. The efficiency of translocation,
however, can vary depending on the cell type and the
cargo molecule.
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PEP-1 INTERACTION WITH MEMBRANES

Pep-1 is intrinsically fluorescent, which overcomes the
necessity to couple a fluorescent dye in fluorescence
spectroscopy studies. Trp fluorescence emission is
environmental-sensitive: when Trp residues are totally
exposed to aqueous environment its fluorescence emis-
sion has a spectral maximum at ∼350 nm; at variance,
in a more hydrophobic environment there is a blue
shift in fluorescence emission spectrum with a con-
comitant increase in quantum yield (Figure 1(A)). The
pep-1 extent of interaction with lipid membranes was
quantified by means of molar ratio partition coefficient,
KP (KP = [Pep − 1]Lipid/[Pep − 1]Aqueous). The increase in
the fluorescence intensity (I ) with lipid concentra-
tion was used to determine KP (I = (IW + KpγL[L]IL)/(1 +
KPγL[L]); where IW and IL are the fluorescence intensi-
ties in the absence of lipid and limit value for increasing
lipid concentrations, respectively, γL is the molar vol-
ume of lipid and [L] is the lipid concentration – for
more details see Ref. 31). Pep-1 has high affinity for
neutral membranes vesicles. The peptide insertion
kinetics is fast and the interaction is highly enhanced
in the presence of negatively-charged phospholipids
(Figure 1(B)) [32]. This suggests that the highly charged
hydrophilic domain, should be responsible for the first
contact with the membrane owing to the electrostatic
interactions between the polar headgroup of phospho-
lipids and the positive charges of pep-1. This was
further confirmed by the effect of ionic strength on
peptide–membrane interaction [33]. The hydrophobic
domain, containing five Trp residues, inserts in the
membrane with a shallow positioning [32]. Together, the
dehydration at membrane surface by the hydrophilic
domain and the insertion of the hydrophobic domain
promote membrane destabilization. Membrane destabi-
lization was confirmed by aggregation (Figure 2(A)) and
fusion (Figure 2(B)) of vesicles in the presence of pep-1
[33,34]. Moreover, segregation of anionic phospholipids
induced by the presence of pep-1 was also detected
[34]. However, pore formation was not detected [34–37].
At variance, other study [38] proposed a pore forma-
tion by a barrel-stave-like mechanism. This conclusion
was based on changes in the membrane conductance
in voltage-clamped oocytes, when a transmembrane
potential was applied [38].

In reducing conditions the peptide decreases its
affinity for the membrane [32]. Under these conditions
the disulfide link in between two peptide molecules
is reduced. Therefore, the loss in affinity can result
from an alteration in peptide conformation due to
the cleavage of the disulfide bond. The importance
of the cysteamine group was confirmed with peptide
molecules without this group (non-capped peptide [35]
or peptide with an amide group [35] or a fluorophore
[39]) at C-terminal). The modified peptides have a
decreased capacity to translocate into cells.
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Figure 1 Pep-1 interaction with phospholipid bilayers, reported by Trp fluorescence emission (excitation at 280 nm). Titration
of 6.88 µM pep-1 with large unilamellar vesicles (LUVs) of POPC, followed by normalized Trp fluorescence emission spectra (A) and
total Trp fluorescence emission (B). With lipid addition there is a blue shift in the emission spectra and an increase in fluorescence
intensity. The pep-1 affinity for lipidic membranes can be quantified by means of partition coefficient, KP, which was calculated
by fluorescence emission intensity and obtained by non-linear regression fit (data points omitted for the sake of clarity) – see text
and Refs. 31,32 for further information. Neutral bilayers (POPC) and negatively-charged membranes [POPC : POPG (4 : 1)] are
compared. A more extensive partition is obtained with negatively-charged vesicles (for further details see Ref. 32).

Figure 2 Vesicle aggregation and fusion induced by pep-1. (A) Aggregation of LUVs [25 µM POPC : POPG (4 : 1)] induced by
6.88 µM pep-1, followed by optical density and confirmed by fluorescence microscopy (inserts). (B) Fusion percentage in POPC and
POPC/POPG LUVs. All data were obtained in the presence of 6.88 µM pep-1 total concentration; however, effective concentration
in membranes vary (Ref. 34). Fusion extension and effective concentration in membranes are linearly correlated.
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Pep-1 interaction with membranes is associated with
a conformational alteration [35,36,38]. In aqueous
environment the peptide is mainly unstructured but
with a tendency to aggregate forming inter-molecular
β-sheet aggregates [36]. In the presence of lipidic
membranes, a structural alteration from random coil to
α-helix conformation, was detected. NMR studies show
that the part of the molecule that undergoes structural
alteration is the hydrophobic domain [35,38]. This
domain is known to easily insert in the membrane [32].

PEP-1 TRANSLOCATION ACROSS CELL
MEMBRANES

Pep-1 has been efficiently used in different cellular
lines, with several proteins and cargoes. Although,
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in vitro studies with model membranes revealed a high
affinity for lipidic bilayers and capacity to perturb the
membrane mainly in the presence of anionic phos-
pholipids [34], peptide translocation in vitro was only
detected in the presence of a negative transmembrane
potential (negative inside) [34]. In the absence of trans-
membrane potential, the peptide inserts only in the
outer layer [32]. An excess of negative charges inside
the liposome promotes the passage of the peptide from
the outer layer to the inner layer (Figure 3(A)) [34].

The pep-1 uptake by endocytosis was tested by
means of different methodologies. Delivery efficiency
of a cargo molecule attached to pep-1 was compared
at 4 and 37 °C [13,26] and no differences in deliv-
ery efficiency were observed (Figure 4). These results
were confirmed not only by imaging methods follow-
ing the protein by immunofluorescence [13,26] but
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Figure 3 Pep-1 passes through membranes by a mechanism dependent on negative transmembrane potential, �, (inside).
(A) Pep-1 translocation in vitro followed by rhodamine (Rh) quenching [POPC : POPG (4 : 1) LUVs doped with 1% of Rh-labelled
phospholipid] induced by the pep-1. In the absence of a � pep-1 is able to quench Rh fluorophores in the outer layer. In the
presence of a negative � (created by the addition of valinomycin to liposomes loaded with K+ and dispersed in Na+) pep-1
translocates and a drop in Rh fluorescence is clear. With a positive � (liposomes loaded with Na+ and dispersed in K+) pep-1
does not translocate. Controls without pep-1 and where a � is not established in the presence of valinomycin (a – liposomes
loaded with Na+ and dispersed in Na+; b – liposomes loaded with K+ and dispersed in K+) (Ref. 34 for further details) are also
represented. (B) β-Gal delivery into HeLa cells, mediated by pep-1. Pep-1/β-Gal complex was incubated with HeLa cells, for 30 min
at 37 °C. Cell polarization was decreased by increasing external K+ concentrations, and maintaining the ionic strength constant
([K+] + [Na+] = 150 mM). The relative level of β-Gal uptake was determined by its enzymatic activity (Ref. 13). Depolarization of
cells severely reduces the level of β-Gal uptake.

Figure 4 β-Gal delivery into HeLa cells mediated by pep-1 or pep-1 CF, followed by β-Gal enzymatic activity. HeLa cells
were incubated during different intervals [16] with Pep-1/β –Gal complex or pep-1CF/β-Gal (molar ratio 320) at 37 or 4 °C. No
fixation procedures were used in this protocol. Pep-1 is able to internalize β-Gal in HeLa cells maintaining its enzymatic activity.
No differences were detected for incubations at 4 or 37 °C, which suggests an endocytosis-independent internalization. β-Gal
internalization is decreased when pep-1CF is used instead of pep-1 (Ref. 39 for further details).
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also by protein activity (measurement of β-Gal enzy-
matic activity) (Figure 4) [13,26,39]. Procedures used to
quantify the protein activity inside the cells exclude the
possibility of artefacts associated with fixation proce-
dures. Moreover co-localization of β-Gal internalized by
the pep-1 with different endocytotic markers (Dextran,
EEA1, Caveolin-1, and cathepsin D) followed by confo-
cal microscopy revealed that this protein is inside cells
and does not co-localize with any of these endocytic
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markers [13] (in the case of translocation by an endo-
cytic pathway a co-localization with at least one of
these endocytic markers would be expected when the
incubation of cells with the complex pep-1/protein is
performed at 37 °C).

At variance, Weller et al. proposed an endocytosis-
mediated entrance based on the internalization of
pep-1/Thioredoxin (TRX) in the presence/absence of
endocytic inhibitors. In these experiments 0.1% NaN3
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and 50 mM deoxy-D-glucose were added to the cells
to inhibit ATP production. When pep-1/TRX was
incubated with cells (still in the presence of NaN3 and
50 mM deoxy-D-glucose) the TRX uptake was reduced
[35]. As has been previously verified, pep-1 is able
to interact with dextran molecules with 10 kDa (i.e.
about 55 glucose monomers per dextran molecule) and
introduce these molecules inside cells [13]. A decrease
in the TRX uptake mediated by the pep-1 could thus
result from the interference of glucose (which was
present in a high concentration, 50 mM), decreasing
pep-1/TRX complex formation and/or pep-1 capacity
to deliver TRX inside cells.

Under in vitro conditions, pep-1 translocates through
a mechanism mediated by the transmembrane poten-
tial. This hypothesis was also tested in vivo. Cellular
depolarization inhibited β-Gal uptake mediated by pep-
1 (Figure 3(B)) [13]. Considering the overall results we
conclude that the endocytic pathway is not the main
internalization pathway used by this peptide to intro-
duce proteins inside cells.

A modified pep-1, in which a carboxyfluorescein (CF)
probe was added at the C-terminus, lost the ability to
internalize β-Gal (Figure 4) [39]. This was emcompassed
by a decrease in the affinity for lipidic bilayers [39]. The
loss in membrane affinity with a decrease in uptake
suggests that translocation efficiency and partition of
pep-1 in lipidic membranes are strongly correlated.
However, comparing incubations at 4 and 37 °C it
was possible to identify a slight internalization of pep-
1 CF by an endocytosis-dependent uptake (at 4 °C
internalization was inhibited) [39]. This small uptake by
endocytosis seems to operate only when the membrane
affinity is lost, suggesting that membrane affinity and
the capacity to destabilize it, dictate the extent to which
the peptide enters the cell by a physical mechanism (a
process faster than the endocytosis) to the detriment of
the endocytosis itself.

CAN PEP-1 WORK AS ANTI-MICROBIAL PEPTIDES?

Like CPPs, anti-microbial peptides (AMPs) are short
and cationic peptides with high affinity for membranes.
These peptides are characterized by an efficient killing
of several species of bacteria with the ability to preserve
host-cell integrity. The main target of these peptides
is the bacterial membrane, provoking membrane lysis,
membrane permeabilization or other forms of bilayers
disruption [40].

A pep-1 translocation by pore formation was recently
suggested [38] but this suggestion was not confirmed
by experiments where the capacity of pep-1 to induce
leakage was tested [34–37]. For high peptide/lipid
ratios, pronounced membrane damage takes place in
lipidic vesicles. Pore formation is not the course of the
damage. A detergent-like mechanism seems to operate

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

[36]. This explains the toxicity when pep-1 is present at
high concentration [26,35].

Pep-1 anti-microbial activity was tested for different
bacterial strains. The minimal inhibitory concentration
(MIC) is dependent on the strain [37]. Although pep-1
is not as efficient as mellitin to kill bacteria, it is able to
efficiently kill bacillus subtilus at a low concentration,
and to kill other strains at higher concentrations.
The capacity to kill bacteria was truly improved and
comparable to the one observed for mellitin when Glu
residues were replaced by Lys. The capacity of Lys-
modified-pep-1 to kill bacteria is not related with the
capacity to induce leakage [37], this further implying
that pep-1 translocation and vector activity cannot be
explained by a pore formation mechanism.

Considering these results we can conclude that
pep-1 has the capacity to work as a CPP or as an
AMP. The threshold between these two properties relies
on the peptide concentration, the composition of the
membrane, and the final peptide/lipid ratio.

CONCLUSION

Pep-1 translocates and is able to work as a vector
to introduce proteins or other cargo molecules inside
cells. This peptide is able to strongly interact with
the lipid bilayer causing local pertubation, and is also
able to cross the membrane by a physical mediated
mechanism promoted by the transmembrane potential
and not involving pore formation. For many CPPs
endocytosis uptake may be the main mechanism
of uptake but sound evidence show that pep-1
translocates by a mechanism mediated by physical
peptide–membrane interactions when a favourable
transmembrane potential is present. This does not
exclude a possible internalization by an endocytic route
in all situations. Nevertheless, the time required for
the physical mechanism to be completed is lesser
than that for the endocytic uptake. Therefore, if both
mechanisms are operative the non-endocytic route is
dominant. Differences between pep-1 and other CPPs
can be related to the affinity for membrane lipids.
Peptides with higher affinity have a greater propensity to
be internalized by a non-endocytic mechanism. Lower
affinity for membranes can favour endocytic uptake.
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6.2. Cell-Penetrating Peptides and Antimicrobial Peptides: how 

different are they? 
 

The observation that some AMPs can translocate across the cell, without 

damaging cytoplamatic membrane, as well as kill pathogenic agents, has attracted much 

attention. Like CPPs, AMPs are short and cationic sequences with high affinity for 

membranes. Similarities between CPPs and AMPs prompted us to question if these two 

classes of peptides are really unrelated families. In the paper titled: Cell-Penetrating 

Peptides and Antimicrobial Peptides: how different are they?, a critical comparative 

consideration of the mechanisms underneath cellular uptake is reviewed. Various CPPs, 

presenting different membrane affinities and uptake mechanisms, are compared and 

related with antimicrobial activity of some peptides belonging to AMP family. A 

reflection and a new perspective about CPPs and AMPs are exposed.  
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Cell-penetrating peptides and antimicrobial peptides:
how different are they?
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Some cationic peptides, referred to as CPPs (cell-penetrating pep-
tides), have the ability to translocate across biological membranes
in a non-disruptive way and to overcome the impermeable nature
of the cell membrane. They have been successfully used for drug
delivery into mammalian cells; however, there is no consensus
about the mechanism of cellular uptake. Both endocytic and non-
endocytic pathways are supported by experimental evidence. The
observation that some AMPs (antimicrobial peptides) can enter
host cells without damaging their cytoplasmic membrane, as well
as kill pathogenic agents, has also attracted attention. The capacity
to translocate across the cell membrane has been reported for some

of these AMPs. Like CPPs, AMPs are short and cationic sequences
with a high affinity for membranes. Similarities between CPPs and
AMPs prompted us to question if these two classes of peptides
really belong to unrelated families. In this Review, a critical
comparison of the mechanisms that underlie cellular uptake is
undertaken. A reflection and a new perspective about CPPs and
AMPs are presented.

Key words: antimicrobial peptide, cell-penetrating peptide, drug
delivery, internalization, translocation mechanism.

INTRODUCTION

The hydrophobic nature of cellular membranes makes them im-
permeable for most peptides, proteins and oligonucleotides. Dif-
ferent strategies have been employed to penetrate the membrane
barrier and deliver hydrophilic molecules inside the cell for either
experimental or therapeutic purposes. So far, microinjection,
electroporation, liposomes and viral vectors have been used.
Most of these delivery strategies have serious drawbacks, such as
low efficiency, poor specificity, poor bioavailability and extensive
toxicity [1]. Moreover, they are time-consuming. The endocytic
route has been used as an alternative for the import of hydrophilic
macromolecules into living cells [2]. However, the proteins
engaging in this mechanism stay enclosed within endosomes,
and so fail to access the cytoplasm, thus missing their final target.

Peptides as vectors to introduce macromolecules into cells

An efficient strategy with which to penetrate the membrane barrier
was identified by the observation that some intracellular proteins,
when added to extracellular medium, were able to pass through the
membrane. Tat (HIV-1 transcriptional activator protein) [3] and
pAntp (Drosophila antennapedia transcription protein) [4] were
the first proteins to be identified with this characteristic. The abi-
lity to translocate is attributed to basic amino acid sequences
in these proteins, and the minimal peptide sequence necessary
for the translocation to occur within Tat [5] and pAntp [6] have
been elucidated. The observation that these basic peptides allow
cellular delivery of conjugated molecules such as peptides [7] or
proteins [8] made these molecules attractive, and a new class of
vectors, initially known as PTDs (protein transduction domains)
[9], but more recently re-baptized as CPPs (cell-penetrating
peptides) [10], emerged. This family now includes all the peptides
with the ability to translocate across membranes, regardless of
whether they are natural, synthetic or chimaeric peptides.

So far, these vectors have been used to translocate a wide range
of macromolecules into living cells, including proteins [8,9,11],
peptides [7,12], oligonucleotides [13,14], peptide nucleic acids
[15] and polysaccharides [16]. Nanoparticles [17] and liposomes
[18] have also been internalized by means of CPPs.

Can AMPs (antimicrobial peptides) also work as vectors?

Most organisms produce gene-encoded AMPs as innate defences
to prevent colonization and infection by several microbial
pathogens [19–22]. Despite their ubiquity, AMPs can have very
distinct sequences and modes of action [23,24]; nonetheless,
they usually share several characteristics, such as their short
length (a few tens of residues) and their cationicity, typically
of charge 4+ or 5+ [25]. Other features of these peptides include
their strong interaction with lipidic membranes, a usually broad
killing spectrum and their ability to preserve host-cell integrity
[23,24].

Clinically these peptides display antimicrobial activity at
micromolar concentrations or less, and target bacteria do not seem
to readily develop resistance. These properties make AMPs very
promising candidates for new generations of drugs to fight anti-
biotic-resistant strains of pathogens [23,26].

Although most AMPs seem to act mainly at the membrane level
[24,25], their translocation into the cytoplasm is not uncommon
[27,28]; because of this property, membrane-crossing AMPs have
also been used as templates for CPP development [29]. Thus
AMPs can have clinical applications both as antibiotics and as
precursors of drug transporters.

HOW DO CPPs TRANSLOCATE ACROSS THE CELL MEMBRANE?

There is no consensus regarding the mechanism of translocation of
CPPs; the information available in the literature is controversial.
First it was suggested that these peptides translocate by a

Abbreviations used: AMP, antimicrobial peptide; CF, carboxyfluorescein; CPP, cell-penetrating peptide; NLS, nuclear localization signal; pAntp,
Drosophila antennapedia transcription protein; SV40, simian virus 40; Tat, HIV-1 transcriptional activator protein.
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Table 1 Source, amino acid sequences and possible internalization mechanism for some examples of peptides that work as CPPs or as AMPs

Name (sequence) Source [reference] [internalization mechanism(s), reference(s)]

Penetratin (RQIKIWFQNRRMKWKK) pAntp homeodomain (amino acids 43–58) [6]
(mainly endocytosis [39], endosomal escape mediated by pH gradient or
transmembrane potential [36,53])

Tat (GRKKRRQRRRPPQ) HIV-1 transcriptional activator Tat protein (amino acids 48–60) [5]
(mainly endocytosis [40], endosomal escape mediated by pH gradient or
transmembrane potential [37])

Pep-1 (Ac-KETWWETWWTEWSQPKKKRKV-cysteamine) Amphipathic chimaeric peptide with a tryptophan-rich domain and an NLS [57]
(physical mechanism mediated by peptide–membrane interaction promoted by
pore formation [60] or by transmembrane potential without pores [35])

S413-PV (ALWKTLLKKVLKAPKKKRKV-cysteamine) Chimaeric peptide with AMP dermaseptin S4 and an NLS [61]
(mainly physical mechanism promoted by a transient membrane destabilization [62])

Magainin 2 (GIGKFLHSAKKFGKAFVGEIMNS) AMP from the skin of the South-African clawed frog Xenopus laevis [101]
(translocation mediated by toroidal pore formation; peptide molecules translocate
stochastically as the pore disintegrates [28])

Buforin 2 (TRSSRAGLQFPVGRVHRLLRK) AMP from the stomach of the Korean common toad Bufo bufo gargarizans [102]
(peptide molecules translocate stochastically after the formation and disintegration
of a non-permeabilizing pore-like structure [84])

Apidaecins (RP - - - - - PRPPHPR (conserved AMP from the lymph fluid of several insects [103]
sequence among class members) (receptor-dependent membrane docking and translocation into target cell [104])

mechanism independent of receptors [30] and independent of
the endosomal pathway [5,6]. A physically driven mechanism
was suggested, because the cellular uptake at 4 ◦C and 37 ◦C was
similar [5,6,30,31].

More recent observations led to controversial results, sug-
gesting that the cell localization observed for CPPs is an artefact
and results from cell fixation for immunochemistry and cell visu-
alization [32]. The high peptide affinity for membranes may allow
CPPs to remain attached to cells during washing. During the cell
fixation process, CPPs are released, and the apparent localization
inside the cell results therefrom. However, direct observation
of translocation in model membrane systems for some CPPs
[33–35] supports the existence of physically driven mechanisms
governed by spontaneous peptide–membrane interactions. The
translocation mechanism issue is thus complex and may differ for
different classes of CPPs (Table 1).

CPPs derived from natural proteins

The CPP derived from pAntp has 16 amino acids and is the
sequence necessary and sufficient for translocation to occur [6]
(Table 1) and is commonly called ‘penetratin’. The Tat fragment
corresponding to residues 48–60 [5] (Table 1), and a shorter
fragment (residues 47–57) [18,36,37], have frequently been used
in CPP research.

An endosomal pathway for internalization was initially ex-
cluded by comparison of the uptake at 4 ◦C and 37 ◦C under fixa-
tion conditions [5,6,30]. After re-evaluation for the interference of
artefacts during fixation, an internalization mediated by endo-
cytosis was concluded for both penetratin [38,39] and Tat peptide
[37,40–43]. The basic amino acids are essential for translocation
to occur, and membrane binding seems to be the first step
prior to endocytic uptake. Heparan sulfate proteoglycans at the
cell membrane were proposed to act as receptor for penetratin
[42,44–46] and Tat peptide [42,47].

Although it is accepted that these CPPs can enter the cells
by endocytosis, there is no consensus in the specific endocytic
pathway used for the import of these arginine-rich peptides. A raft-
dependent pathway involving macropinocytosis [48] or caveolae

[41,49,50], or a clathrin-dependent endocytosis [47,51,52], were
proposed. The dissimilarities among these results can arise from
the use of different cell lines, methodologies, labelled peptides,
protein-conjugated peptides and different conditions, which can
inhibit some pathways while favouring others.

Even in a picture where the endosomal pathway emerges as the
physiological uptake of CPPs, the escape from endosomes into
the cytoplasm through a physically driven mechanism persists.
An escape from endosomes due to acidification was proposed for
penetratin and Tat peptide [36,37]. This hypothesis is supported
by the results obtained by Gräslund and co-workers [53] with
penetratin encapsulated in large unilamellar vesicles. The escape
of penetratin occurred only in the presence of a pH gradient. The
role of intracellular pH in the internalization of CPPs was also
investigated using neutralization agents [38].

A dependence of translocation on a negative transmembrane
potential was identified in vitro for both penetratin and Tat peptide
[34] and in vivo for Tat peptide [54]. Terrone et al. [34] suggested
that a fraction of the peptide can transverse through the membrane
by a transmembrane potential-driven mechanism, whereas the
other fraction is internalized by an endosomal pathway. Once in-
side the endosomes, the transmembrane potential (luminal side
positive) drives translocation from the endosomal lumen to the
cytoplasm. By contrast, Drin et al. [38] did not find any internal-
ization of penetratin in liposomes, even in the presence of a trans-
membrane potential. Recently Bárány-Wallje et al. [55], following
electrophysiological measurements in planar bilayers, failed to
detect translocation, even in the presence of applied voltages.

Chimaeric peptides

The usefulness of peptides as vehicles to introduce macromole-
cules into cells led to the development of many chimaeric peptides.
Pep-1 (acetyl-KETWWETWWTEWSQPKKKRKV-cysteamine)
is a CPP with primary amphipathicity (i.e amphipathicity resulting
from the amino acid sequence itself, not from the folding structure
[56]) that comprises a tryptophan-rich so-called ‘hydrophobic’
domain, a hydrophilic domain derived from an NLS (nuclear local-
ization signal) of SV40 (simian virus 40) large T-antigen, and a
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spacer between them [57]. A cysteamine group is present at the
C-terminus [57] (Table 1).

Pep-1 has been used to introduce large proteins inside cell lines
[57–59]. An endosomal pathway was rejected because (1) there
was no difference in translocation efficiency at 37 ◦C and 4 ◦C [57]
and (2) no co-localization of a delivered protein (β-galactosidase
from Escherichia coli) with different cellular organelles (early
endosomes, caveosomes and lysosomes) was detected [59]. By
contrast, Weller et al. [58] proposed an endosome-mediated mech-
anism based on the internalization of Pep-1–protein complexes in
the presence or absence of endocytic inhibitors.

Deshayes et al. [60] proposed a transient transmembrane-pore-
like structure promoted by α-helix conformation of the hydro-
phobic domain when it interacts with membranes. This conclusion
was not corroborated by other groups, because no membrane leak-
age was detected [35,58]. An alternative mechanism, mediated
by electrostatic peptide–lipid interactions, was proposed after
observation that Pep-1 translocation both in vitro [35] or in vivo
[59] only occurs in the presence of a transmembrane potential.

When Pep-1 was modified at the C-terminus [lack of cysteamine
group and grafting of a CF (carboxyfluorescein) group], the mem-
brane affinity and the translocation efficiency was truly impaired,
but a small uptake seems to occur by an endocytic mechanism
[16].

The chimaeric peptide S413-PV, which results from the combi-
nation of a 13-amino-acid sequence derived from the dermaseptin
S4 (S413 domain) with the NLS from SV40 large T-antigen (see
Table 1), was proposed as a potential vehicle to introduce macro-
molecules into cells [61]. The uptake of this peptide under non-
fixation conditions was not decreased in the presence of endocytic
inhibitors [62]. An endocytic uptake was only evident at low
peptide concentration [63]. The binding of the S413-PV peptide to
the cell membrane is promoted by electrostatic interactions with
negatively charged components at the cell surface, and a confor-
mation change in the S413 domain upon insertion into the bilayers
was detected [62]. The translocation of S413-PV across the cell
membrane is considered to be a consequence of a transient mem-
brane destabilization produced by peptide–membrane interactions
[62]. Endosomal internalization at low peptide concentration
suggests that higher peptide concentrations are necessary to
induce membrane destabilization.

Translocation mechanism or mechanisms?

Considering the abovementioned examples, it is clear that the
mechanism by which CPPs translocate across cell membrane and
deliver their cargoes in the cytosol is far from being totally under-
stood. Although some CPPs are able to translocate by an endocytic
pathway, the escape from endosomes demands a physically driven
mechanism.

The affinity of each CPP for lipid bilayers may be the key factor
for their main mechanism of uptake. Penetratin, for instance, does
not show a strong affinity for zwitterionic membranes [46,64,65]
and does not induce significant membrane destabilization [66].
Interaction with model membranes only occurs in negatively
charged lipid bilayers [46,65]. In studies of the interaction of this
peptide with eukaryotic cells, negatively charged proteoglycans
presented at the cell surface were regarded as essential for trans-
location to occur [42,44,45]. Cellular uptake of penetratin occurs
via endocytosis, but requires the expression of proteoglycans [42],
which demonstrates the importance of electrostatic interactions in
increasing the affinity of the peptide for cell membranes [45].

By contrast, Pep-1 has a high affinity for lipidic membranes,
even in the absence of negatively charged phospholipids or pro-
teoglycans [67], and it induces significant membrane destabi-

lization [35], which seems to favour internalization. Moreover,
the introduction of a CF dye into the hydrophilic domain of
Pep-1 and/or deletion of a cysteamine group decreased the
peptide’s affinity and, consequently, its uptake [16,58], and a
slight internalization by endosomal pathway occurs [16]. This
suggests that the membrane affinity and the capacity to destabilize
it dictate the extent to which a peptide enters the cell by a physical
mechanism (a fast process during which the endosomal pathway
may be considered stationary) to the detriment of the endosomal
pathway.

The hypothesis of the co-existence of endosomal and physically
mediated mechanisms was also proposed by Boisseau et al. [68]
in a study with maurocalcine, a CPP isolated from the Israeli gold
scorpion (Scorpio maurus palmatus). A contribution of both me-
chanisms was identified where the physically driven mechanism
results from a transmembrane potential. Moreover, Nakase et al.
[69] showed that greater amounts of oligo-arginine were found
in the cytoplasm when cells were incubated at 4 ◦C than at 37 ◦C.
They proposed that, when endosomal pathways are inhibited and
an alternative pathway can operate, the peptide is more efficiently
translocated to the cytosol. When incubation is at 37 ◦C, oligo-
arginine release in the cytoplasm is difficult, owing to endosome
entrapment.

Translocation by a physical mechanism demands not only the
existence of a high membrane affinity, but also a promoting force:
pH gradients [53] and transmembrane potentials [34] are two poss-
ible driving forces. The existence of such driving forces is well
understood in the cell context, where in/out media are char-
acterized by the preservation of gradients.

HOW DO AMPs GET INSIDE CELLS?

The mechanisms by which AMPs gain access to a cell’s interior
can be classified as pore-dependent and pore-independent, the
former being the most usual. In fact, there are relatively few AMPs
that do not exert their main function via cell lysis, membrane
permeabilization or other forms of bilayer disruption. Few AMPs
attack internal targets, and, of those, only a small number can do
so without membrane perturbation [70].

AMPs that induce membrane permeabilization

After the initial peptide–membrane interaction, mechanisms
diverge; besides lysis, usually by a mechanism known as the
‘carpet’ model [71,72], two other models have been proposed for
AMP pore formation: the barrel-stave pore and the toroidal pore
(for further detailed information, see references [73,74]).

Independently of the pore type, diffusion of free peptide through
the pore may not be the principal process of translocation; instead,
it has been proposed that it is the peptide molecules that are in-
volved in pore formation that stochastically translocate as the pore
disintegrates [28]. Several factors support this statement, the most
relevant being the fact that, for AMPs, the local concentration
of membrane-bound peptide molecules is usually several orders of
magnitude higher than in the aqueous phase (e.g. [75,76]); as
such, there will be many more peptide molecules available for
pore formation than for pore crossing. In addition, pore diameters
are relatively narrow and usually not longer than the length of the
peptides (alamethicin barrel stave pores have a diameter of 2–3 nm
[77] and those of toroidal mellitin have a diameter of 3–4 nm [74]),
preventing or hindering a free diffusion of the peptide; lastly, pore
lifetimes are in the microsecond-to-millisecond range (between
40 µs for magainin and 200 ms for dermaseptins [28,78]), which
is long compared with a single-molecule translocation time, but
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probably not long enough to quickly equilibrate inner and outer
peptide concentrations.

Given this hypothesis, pore formation can be regarded not only
as a membrane perturbation process, but also as an important
intermediate step towards cellular invasion by AMPs. This is
in agreement with recent findings that indicate that a synergic
effect of activity at both membrane and cytoplasm levels may be
required to fully explain the mechanisms of some pore-forming
AMPs [79–81].

Non-lytic AMPs

For AMPs that preferentially attack internal cellular targets,
similar translocation mechanisms have been reported: for buforin
2, which translocates efficiently, but with little membrane activity
[70,82,83], the structure and orientation in the bilayer have been
observed to be very similar to those of magainin 2 (Table 1)
[83,84]. From these results a model was proposed whereby buforin
2 molecules would form a toroidal pore, just as magainin 2 does,
but less stable; this would result in shorter pore lifetimes – with a
concomitant decrease in permeabilization – at the same time that
the translocation rate would increase because pore disintegration,
which is the actual translocation step, would become more
frequent [83,84]. This model is supported by results that show
that the presence of bilayer components that prevent the formation
of toroidal pores (such as dioleyl phosphatidylethanolamine [28])
inhibit buforin 2 translocation, whereas anionic phospholipids,
which decrease the charge repulsions between the cationic peptide
molecules, stabilize the pore to a point that significant leakage
and flip-flop is observed [84]. Buforin 2 translocation has also
been shown to withstand cargo addition, as demonstrated by the
attachment of green fluorescent protein [29,85], which makes this
peptide a promising candidate for its development into a CPP.

Other mechanisms of translocation

Apidaecins, which are another class of non-lytic AMPs that are
able to kill bacteria with undetectable membrane permeabili-
zation, act by binding to a cytoplasmic target (Table 1) [86]. In this
case, translocation has been proposed to occur by specific inter-
action with a putative membrane permease or transporter in the
target bacterial cell; this was suggested by the fact that the all-D
enantiomers of the peptides lose the ability to cross the membrane
[86]. This characteristic confers a high selectivity on these pep-
tides, which can even be modulated [87], but, on the other hand,
the need for a membrane transporter makes apidaecins unap-
pealing as templates for CPP design.

Despite their apparent simplicity, many AMPs have been shown
to possess activity-specific regions: through sequence manipula-
tion it has been possible to regulate translocating behaviour, target
specificity or antimicrobial efficiency [87–89]. By means of these
alterations, it has become possible to broaden the spectrum of CPP
template candidates beyond non-cytotoxic translocating AMPs.
This has been taken advantage of, for example, in the derivatives
of the membrane-active Bac7 peptide [29,88,90], which, unlike
their precursor, are not membrane-disruptive, but have retained
translocation capabilities.

CPPs AND AMPs OR JUST MEMBRANE-ACTIVE PEPTIDES?

Membrane translocation is a corollary for membrane permeabili-
zation. Although treated differently by people interested in CPPs
and AMPs, the ability to reach the inner leaflet of lipid bil-
ayers is of crucial importance to both. Potentially, all CPPs are
AMPs and all AMPs are CPPs. At high enough concentration, pep-

tides reported as CPP perturb membranes and become membrane
permeabilizers (see reference [91], in which antimicrobial activity
of different CPPs is evaluated), whereas AMPs may reach cyto-
plasmatic targets before membrane permeabilization. This is
not surprising, because both CPPs and AMPs are very similar
molecules: short cationic peptides. It should be stressed that both
classes cannot be differentiated on account of their structure
because there is a wide diversity of conformations within each
class of peptides [25,92]. The attention devoted to both CPPs
and AMPs is very application-oriented, which dictates why
these very similar classes of molecules are considered in such
a separate fashion. CPPs are mainly studied by people focusing
on gene therapy and drug delivery. AMPs are mainly regarded as
tools to fight bacterial infections. However, from the molecular
mechanistic point of view, the separation of these peptides into
two groups is really rather academic.

Cellular membranes of target cells where the activity of these
two peptides are evaluated are quite different. CPPs are generally
evaluated against mammalian cells, whereas the target of AMPs
is the bacterial cell. The major differences rely on anionic-lipidic
and cholesterol contents. The bacterial membrane has a higher
percentage of negatively charged lipids and does not contain
sterols [24]. Different effects reported with CPPs and AMPs
can arise from the differences in membrane composition, factors
which modulate peptide affinity and membrane destabilization.

Considering the overlap between the mode of action of CPPs
and AMPs, it does not seem reasonable to obstinately seek an
exclusive answer to the question whether CPPs enter cells through
endocytic or physical processes. As indicated above in the present
Review, depending on circumstances, the same peptide may
potentially use both [16,63,68]. Moreover, endocytic entrapment
has to be followed by physical membrane translocation if the
peptide is to reach the cytoplasm. The physical pathway can be
mechanistically described by the interaction equilibrium between
the peptides in the medium and the outer leaflet of membranes,
perturbation of bilayers, translocation among leaflets and a
second equilibrium of the peptides between the inner leaflet of
the membrane and the reducing conditions of the cell interior
[67,93–95] (Figure 1). A more effective or faster formation of a
membrane-disturbing structure, mediated by the AMP magainin,
was identified when a transmembrane potential was present [96].

Certain chimaera peptides, such as Pep-1, may even be con-
sidered a ‘blend’ between AMPs and CPPs. Although reported
as a CPP, Pep-1 is a strongly amphipathic cationic peptide,
rich in basic amino acids and tryptophan, having a proline residue
in its sequence. These are classical characteristics attributed to
AMPs. The ability to cysteine-bridge monomers, which greatly
improves translocation efficiency, further increases the similar-
ities to AMPs. Not surprisingly, Pep-1 uses mainly physical routes
to translocate membranes [35,57,59]. However, this route is not
always operative [16], and endocytic pathways are alternatives.
The results obtained with Pep-1 confirm the co-existence of
endocytic and physically mediated pathways. Such co-existence
was previously proposed by other authors [97] using other CPPs,
but this proposal was largely overlooked. The kinetic factor
is important, as progress through physically driven pathways is
rapid compared with that through endocytic pathways: when
both physical and endocytic pathways are operative, the physical
pathway is dominant, owing to faster kinetics [67,93].

These peptides are able to destabilize the membrane (fusion and
vesicle aggregation were detected) without evidence for pore
formation or flip-flop [35,66]. A ‘membrane-thinning’ effect was
proposed for the AMP magainin 2 [98], in which the peptide
aggregates on the surface of the membrane and the decreased local
surface tension allows the peptide to intercalate the membrane.
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Figure 1 CPP translocation by a physically driven process can be regarded
as a composite of three sequential steps

(A) The peptide (dark-grey cylinder) inserts in the bilayer outer interface (light-grey head-groups
with fatty acid tails) and causes local membrane perturbation. (B) Owing to a membrane gradient
(e.g. transmembrane potential, pH gradient) or concentration effects, the peptide overcomes
the hydrophobic core of the bilayer by an unknown mechanism. (C) The peptide is released
from the inner leaflet of the membrane (blue head-groups with fatty acid tails) to the cytoplasm.
In a model artificial system (e.g. a vesicle) the system would tend to an equilibrium that can
be accounted for by three different partition constants, one for each of the elementary steps
(A, B and C).

Flexible sealing between peptide side groups and lipid head-
groups minimize leakage during the peptide passage through the
membrane [29].

A pore-formation mechanism was proposed for MPG (a 27-
residue amphipathic peptide) and Pep-1 [60,99], which is also
a common mechanism used by antimicrobial peptides. In the
case of a transmembrane pore, a large pore would be necessary
to allow the passage of attached macromolecules, a situation
that compromises cell viability and all the significance of these
peptides as vehicles. In some cases pore formation can explain
the translocation of the peptides per se; however, these pores are
not large enough to explain the translocation of proteins [28].

The history of CPP research can be summarized from two dif-
ferent periods, with a sudden change of paradigm in 2001 [32],
later confirmed in 2003 [100]. First, the physical paradigm domi-
nated. CPPs were considered to cross bilayers by a physical
process. Since 2001–2003 there has been a tendency to think the

opposite. Reality may not be so black-and-white, and this rather
simplistic view of physically driven versus endocytic mechanisms
seems inadequate. The CPP research community should go back
to basics and redefine CPPs on the basis of their cargo trans-
location ability rather than their stand-alone peptide properties.

Most of the CPP research focuses on the peptides’ membrane-
translocation ability in the absence of cargoes. It is thus crucial to
develop new methodologies to detect and quantify translocation
of peptide-mediated cargo translocation in vesicles and cells.

As to the peptides themselves, and their interaction with lipid
bilayers, it may be that the frontiers between fusogenic peptides,
AMPs and CPPs become so undefined that, in the near future,
only the unified broad-scope title of ‘membrane-active peptides’
will make sense.
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53 Magzoub, M., Pramanik, A. and Gräslund, A. (2005) Modeling the endosomal escape of
cell-penetrating peptides: transmembrane pH gradient driven translocation across
phospholipid bilayers. Biochemistry 44, 14890–14897

54 Rothbard, J. B., Jessop, T. C., Lewis, R. S., Murray, B. A. and Wender, P. A. (2004) Role
of membrane potential and hydrogen bonding in the mechanism of translocation of
guanidinium-rich peptides into cells. J. Am. Chem. Soc. 126, 9506–9507
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6.3. How to address CPP and AMP translocation? Methods to 

detect and quantify peptide internalization in vitro and in vivo? 

 
 

To guarantee that a specific peptide works as a CPP, its ability to cross the 

membrane is of first importance. Despite the fact that most AMPs exert their activity at 

the membrane level, translocation of some of them has been shown. The experimental 

methods to evaluate and quantify peptide translocation are of first importance in CPP 

and AMP field. Several methods for the assessment of membrane translocation have 

been reported in the last decades; however the information is scarse and spread over the 

literature. In the paper titled: How to address CPP and AMP translocation? Methods to 

detect and quantify peptide internalization in vitro and in vivo? we review the different 

methodologies described in the literature. Advantages and disadvantages associated to 

each methodology are presented in order to help others to find the most appropriate 

method for their studies.  
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Abstract
Membrane translocation is a crucial issue when addressing the activity of both cell-penetrating and antimicrobial peptides.
Translocation is responsible for the therapeutic potential of cell-penetrating peptides as drug carriers and can dictate the
killing mechanisms, selectivity and efficiency of antimicrobial peptides. It is essential to evaluate if the internalization of cell-
penetrating peptides is mediated by endocytosis and if it is able to internalize attached cargoes. The mode of action of an
antimicrobial peptide cannot be fully understood if it is not known whether the peptide acts exclusively at the membrane
level or also at the cytoplasm. Therefore, experimental methods to evaluate and quantify translocation processes are of first
importance. In this work, over 20 methods described in the literature for the assessment of peptide translocation in vivo and
in vitro , with and without attached macromolecular cargoes, are discussed and their applicability, advantages and
disadvantages reviewed. In addition, a classification of these methods is proposed, based on common approaches to detect
translocation.

Keywords: Cell-penetrating peptides, antimicrobial peptides, membrane translocation, peptide uptake, evaluation of peptide

internalization

Introduction

The introduction of hydrophilic molecules into

mammalian cells has become a key strategy for the

investigation of intracellular processes and drug

therapy. Several methods have been devised to

achieve this goal, but they all have limitations [1].

Some peptides are able to translocate across cell

membranes with low toxicity [2�5] and to mediate

cellular uptake of proteins [3] and other macromo-

lecules [6,7]. These peptides are known as cell-

penetrating peptides (CPPs) but the CPP designa-

tion is now generalized for all the peptides with the

ability to translocate across membranes even when

cargo uptake properties are unknown. They include

natural, newly synthesized and chimeric peptides

[8]. Beside the ability to translocate through cell

membrane, these peptides are normally character-

ized as short, cationic, water-soluble peptides with

high efficiency and low cytotoxicity [9]. The me-

chanism used by CPPs to pass the membrane is not

well understood and is a controversial topic in the

literature. At the beginning the internalization me-

chanism of CPPs was generalized and considered to

be endocytosis-independent [2,5]. Nowadays there

is experimental evidence for both endocytic and

non-endocytic routes (for further information see

[9,10]). Considering the information available in the

literature a unique mechanism for all the peptides

does not seem reasonable and more than one

mechanism can operate for a single peptide [10].

Ribosomal antimicrobial peptides, or AMPs, are

efficient antibiotics against a variety of microbial

pathogens [11�14]. These peptides are usually short

and cationic [15] such as CPPs, but they are also

characterized by a strong interaction with cellular

membranes, and by the ability to selectively attack

pathogens without disturbing host cell integrity

[16,17]. AMPs are potential candidates of a new

antibiotic generation against multiresistant bacterial

strains [16].

Despite the fact that most AMPs exert their

principal activity at the membrane level [15,17],

translocation processes have been shown to occur for

many of them [18,19]. Considering this, AMPs are

natural templates for designing cell-penetrating
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molecules, which can be developed into carriers

[9,20]. AMPs and their derivatives are thus very

promising molecules to use both as antibiotics and as

drug transporters.

To guarantee that a specific peptide works as a

CPP, its ability to cross the membrane and the

capacity to transport attached cargoes is of first

importance. Regarding AMPs, internalization is not

a prerequisite and the biological efficiency of AMPs

can be evaluated without translocation assessment.

However the characterization of such membrane

processes is of great value both in the development

of new antibiotics and in the design of templates for

CPPs [10].

In this paper we will review methods that are

available to evaluate peptide uptake into cells or

vesicular model membranes.

Methods used to evaluate peptide uptake

Assessment of peptide translocation without attached

cargo or labelled with a fluorescent probe

In vivo methods. The CPPs internalization mechan-

ism is a matter of vibrant discussion in the literature.

To evaluate if CPPs are internalized by endocytosis

the dependence of translocation on temperature, or

in the presence of specific endocytic inhibitors must

be assessed in vivo. The intrinsic fluorescence of Trp

or Tyr residues cannot be used to investigate peptide

internalization in vivo, due to the relatively large

cellular background fluorescence in the near-UV.

Therefore, CPPs are normally derivatized with

fluorophores such as Rhodamine B (Rh) [21�24],

Fluorescein [5,25�32] and Nitrobenzoxadiazole

(NBD) [24,33]. Alternatively, the properties of

macromolecular cargoes can be used. In most of

the methods described in this section, peptide

fluorescence is the experimentally measured signal.

However the need to derivatize a peptide can be a

limitation not only due to experimental and costly

requirements but also because the presence of a dye

may alter its properties [34].

Available methods for the in vivo detection of

peptide internalization can be divided into three

categories: quantification of cytosolic concentration,

direct visualization of internalization and peptide

activity analysis.

Quantification of cytoplasmic concentration. Quantifi-

cation of cytoplasmic concentration is usually car-

ried out by means of direct measurement of

fluorescence emission of peptides. In these methods,

elimination of the non-internalized and cell-

adsorbed peptide fractions is required to avoid an

overestimation of peptide internalization; conse-

quently, extensive washing procedures, including

trypsinization and centrifugation, are required

[21,22,29,30,35,36]. Quenching of peptide fluores-

cence is an alternative to annihilate non-internalized

peptide signal [24,33,37].

A cell lysate should be prepared and the fluores-

cence intensity of labelled-CPP in supernatant

measured [29,32]. The washing procedures can be

responsible for a signal reduction, due to sample loss

and fluorescence bleaching. An additional limitation

is the necessity to distinguish the peptide fluores-

cence from the cell background fluorescence; to

assure a good signal/noise ratio the fluorophore

should be chosen carefully to avoid overlap with

intrinsic cellular fluorescence emissions and to

circumvent a fast fading of fluorescence. For in-

stance, Trp fluorescence of peptide can hardly be

used due to the intrinsic fluorescence of cellular

proteins. The fluorescence of cellular NAD(P)H

(�/460 nm) and FAD (�/530 nm) is an additional

concern. A high amount of cellular sample should be

used to provide a good emission signal and controls

without fluorophore in the same conditions (e.g.,

cell number and washing procedures) must also be

used; a calibration curve should be prepared to allow

quantification of internalization. In this case, abso-

lute quantification of the internal peptide concentra-

tion may also require information on the total

cellular volume.

Oehlke et al. developed a method to discriminate

membrane surface-bound, membrane-inserted and

internalized peptide fractions [38]. To obtain quan-

titative information on the peptide fraction asso-

ciated with plasma membrane and the peptide

fraction actually internalized, the exposed peptide

was treated with diazotized 2-nitroaniline. This

procedure modifies the peptide fraction bounded

to the surface, without damaging the cell [39].

Bound and internalized fractions were detected by

HPLC analysis of cell lysates and quantified by

spectrofluorimetry (5(6)-carboxyfluorescein-N-hy-

droxysuccinilmide ester�labelled peptide detected

with excitation at 445 nm and emission at 520 nm).

The fraction of surface bound peptide is strongly

modified by the diazo reagent which renders the

peptide completely undetectable in HPLC chroma-

togram (there is a strong retention of highly hydro-

phobic modified products on the stationary phase of

the HPLC column). The fraction of peptide inserted

into plasma membrane is slightly protected from

the attack of the diazo reagent, so this fraction is

only partially modified. The fraction of peptide

inaccessible to the diazo reagent is the internalized

fraction [38].

Flow cytometry analysis by fluorescence activated

Cell Sorter (FACS) is a tool to quantify cellular
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association of a fluorophore-labelled peptide. A large

number of cells are analysed and dead cells are

identified by propidium iodide staining [21,22,30,

32,33,35,40]. The cell subpopulation displaying

significant fluorescence emission is identified and

quantified, and the CPP uptake is measured as the

cell-associated fluorescence intensity. An absolute

quantification of the internalized amount of peptide

requires either a comparison with a standard [41] or

the use of additional methods, such as the ones

described above. The need to wash/quench the

membrane-bound peptide fraction, also applies for

flow cytometry analysis.

A kinetic evaluation of the translocation process

has been obtained by testing the inaccessibility of

externally added trypan blue to fluorescein-labelled

peptides [42]; the rationale behind this approach is

shared by many methods described for in vitro

translocation studies (see below).

Matrix-assisted laser desorption ionization-time-

of-flight mass spectroscopy (MALDI-TOF MS) has

been used to evaluate the exit of internalized

peptides from cells into the culture medium

[32,43], to detect peptide internalization and to

investigate intracellular degradation [32,36,43�45].

This method allows the direct detection of the

peptide and uptake quantification [44]. The sample

(extracellular or intracellular supernatant) has to be

concentrated to improve the signal. Elmquist and

Langel proposed a procedure where samples are zip-

tipped, analysed by MALDI-TOF MS and com-

pared with synthetic peptides for a quantitative

analysis [32,43]. Instead of synthetic peptides the

quantification of the internalized CPP can be

achieved with an internal standard with the same

sequence but labelled with deuterium. Peptides are

biotinylated and, after cell lysis, they are captured by

streptavidin-coated magnetic beads. Finally, beads

are washed and analyzed by MALDI-TOF MS and

the absolute amount of internalized peptide is

determined. This procedure is also adequate to

know if the peptide has been degraded during

sample preparation or inside the cell [44]. Inherent

disadvantages in this method are the necessity for

specialized and expensive procedures, and equip-

ment to obtain peptide quantification. Moreover, it

is rather time-consuming.

Direct visualization of internalization. In early studies,

CPP internalization into cells was studied by fluo-

rescence microscopy or in fixed cells where the

fluorescence emission of a peptide-derivatized probe

was directly visualized [5,26,33,46]. Internalization

of some AMPs has also been identified by a

fluorescent label and visualized under the confocal

microscope. For instance, biotin-labelled polyphe-

musin I [47] and FITC-labelled buforin II [48] were

detected in the cytoplasm of E. coli without dama-

ging the membrane; FITC-labelled magainin 2 was

detected on the E. coli cell wall [48]. Internalization

in mammalian cells was also observed with biotin-

labelled LL-37 and localization in the perinuclear

region was detected [49]. Alternatively, the presence

of peptides in cells can be detected by immuno-

fluorescence; for example, the localization of LL-37

was visualized with a specific antibody [49].

Fixation procedures can bias the location of

peptides in cells as the illusionary presence of

peptides inside cells can arise from the high affinity

of cationic peptides to cell surface [50]. Therefore,

peptide internalization in cells has to be compared in

fixed and non-fixed conditions [27,30]. Cell treat-

ment with trypsin to digest the peptide at cell surface

[27,30,32], or quenching of peptide fluorescence has

to be performed to remove the interference of the

membrane-bound fraction. In these conditions it is

possible to distinguish a deep localization inside the

cell from membrane adsorption [24]. With confocal

microscopy different cellular plans can be used to

confirm, or refute, peptide internalization.

Peptide activity analysis. In this class of methodolo-

gies, the effect of the peptides in the cytosol or in the

membrane is evaluated. AMP translocation in vivo

has been inferred from observations of intracellular

damage (e.g., [51]) or morphological alterations of

bacteria [52�54].

In other reports, the peptide interaction with

membranes was evaluated by electrophysiological

transmembrane current measurements in oocytes

[55,56]. With this setup it is possible to have access

to both sides of lipidic membranes and it is not

necessary to derivatize the peptide with a fluoro-

phore. However, this detection can be ambiguous

because transbilayer current can arise from the

activation of endogenous channels in oocyte mem-

branes. In order to rule out this possibility these

experiments should be repeated on artificial lipid

membranes [57]. In addition, only qualitative

information about translocation can be obtained

unless a quantitative relationship between trans-

membrane current and internalization is assumed.

Lastly, the occurrence of membrane destabilizations

induced by peptides is not a proof of their ability to

translocate across the membrane and reach the

cytoplasm.

In vitro methods. Various biophysical approaches

have been used to study peptide-lipid interaction in

model bilayers. When CPPs are internalized by a

physically-driven translocation mechanism, peptide-

lipid interactions are truly important. Application of

CPP and AMP translocation 175
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in vitro methods to evaluate the internalization of

CPP is, however, scarce; on the other hand, AMP

translocation has been essentially studied using

model membranes. Nevertheless, in vitro studies

face some difficulties and limitations. Large unila-

mellar vesicles (LUV), or small unilamellar vesicles

(SUV), are the most used membrane models for the

in vitro study of peptide-bilayer interactions. But,

detection of peptide entry into the vesicular lumen is

not easy. Theoretically, in a simple setup, it is

possible to encapsulate an aqueous phase entity

that could report peptide proximity or interaction

(a quencher, or a fluorescence resonance energy

transfer (FRET) acceptor for Trp fluorescence for

example) and use it to probe the translocation event.

However, the feasibility of this task can be hampered

by several factors (see worked examples in part 1 of

the Supplementary material in the online version).

Several methods have been proposed to overcome

these limitations, for instance peptide-lipid FRET

(e.g., between Trp-labelled peptide and Dansyl-

PE-labelled lipidic vesicles) and/or permanent

alteration of the peptide either in or out of the

vesicles (e.g., peptide digestion by trypsin) [18,19].

A classification of methods can be devised regarding

the peptide location with respect to the bilayer:

(i) detection of entrapped peptide lack of accessi-

bility from the outer phase, (ii) detection of inward

peptide positioning within the membrane, (iii) direct

detection of peptide in the inner phase, and

(iv) detection of encapsulated peptide escape. Be-

cause of the many possible combinations of techni-

ques and experimental setups some reported

methods do not fall within the given categories,

therefore, a fifth group of ‘unclassified methods’ is

also presented. This classification differs from the

one used for the in vivo methods mostly because for

in vitro a wider range of approaches to the assess-

ment of translocation have been described.

A schematic representation of in vitro methods

from all the classes, with focus on the fluorescence

methodologies, is depicted in Figure 1.

Detection of entrapped peptide lack of accessibility from

the outer phase. A semi-quantitative determination of

translocation can be performed by detection of

peptide inaccessibility to a non-translocating entity

[19,24,58�60] after incubation with the model

membranes (see Figure 1, panel A). For example,

translocation of AMP magainin 2 was identified by

the observation that the percentage of inaccessible

peptide increases with peptide-lipid incubation

time [19]. To perform this experiment trypsin was

used to digest peptide after interaction with accep-

tor-labelled lipid vesicles. It was shown that proteo-

lysis-dependent FRET reduction decreases with

incubation time before trypsin addition. It was thus

concluded that the peptide becomes inaccessible to

trypsin with time. This is consistent with peptide

translocation.

This concept can be used with different external

components, for instance non-labelled vesicles to

desorb the peptide from the labelled vesicles [19,60].

An inverted setup has also been reported where the

peptide (in this case, labelled with NBD or bimane

fluorophores) was incubated with the non-labelled

vesicles and desorption was induced by addition of

acceptor-labelled anionic vesicles [59] (a FRET

increase, rather than a decrease, was detected in

this case). The use of NBD-labelled peptides and

addition of dithionite ion as the non-translocating

entity is another possibility; in this case, the NBD

fluorescence intensity was measured without the

need to label the vesicles [24,59]; dithionite acts in

a way similar to digestion by trypsin in that the NBD

reduction/quenching is permanent. In all these

approaches, an estimation of the translocation

kinetics can be obtained by adding the non-translo-

cating component at different incubation times

[24,59].

It should be noted that in all these methods a

time-dependent measurement is required to deter-

mine the degree of peptide inaccessibility (as ex-

plained in detail in section 2 in the Supplementary

material online).

These methods have a number of disadvantages:

first, they are unable to discriminate membrane-

bound and internalized peptide; second, in the case

of lysis, which can occur for AMPs, peptide popula-

tions in inner and outer layers could be accounted as

accessible, resulting in a low extent of apparent

translocation; finally, not all of these methods are

compatible with all peptides: for instance some

AMPs are resistant to trypsin proteolysis (e.g.,

Polymixin B and Gramicidin S) [18]. In addition,

when using trypsin, extents of translocation may be

overestimated if the peptide fragments also interact

with the membrane.

Detection of inward peptide positioning within the

membrane. In this category, the passage of the

peptide to the inner leaflet of the bilayer is mon-

itored. In all the reports where this method is used

[19,61,62], internalization is evaluated by the use of

vesicles with asymmetric labelling. The fluorophore

in membranes is a FRET acceptor for Trp-contain-

ing peptides (see Figure 1, panel B).

Wimley and White developed a methylcoumarin

derivatized lysophospholipid (LysoMC). This lipid

is easily incorporated into bilayers (into both bilayers

or only into the outer one) and is able to act as an

efficient Trp-fluorescence acceptor/quencher [63].

176 S. T. Henriques et al.

165



D
ow

nl
oa

de
d 

By
: [

M
on

as
h 

U
ni

ve
rs

ity
] A

t: 
23

:2
4 

23
 M

ay
 2

00
7 

This probe was initially used to characterize the in-

depth membrane distribution of Trp-containing

peptides [63], but more recently, Norden and co-

workers have developed a method in which LysoMC

is used to specifically test translocation; in addition,

they described a procedure where is possible to use

LysoMC to selectively label the inner layers [61,62].

Experimentally, translocation information is ob-

tained by comparison of emission spectra of inner

leaflet LysoMC-labelled vesicles in the presence and

absence of the peptide. The Trp residues are donors

for FRET. An increase in FRET efficiency in the

presence of the peptide means internalization; how-

ever, because some outer-to-inner bilayer FRET

may occur, it becomes necessary to compare the

obtained results with controls where translocating

(tryptophan octyl esther [63]) or non-translocating

(Ac-18A-NH2: Ac-DWLKAFYDKVAEKLKEAF-

NH2 [63]) Trp-containing molecules are used

[61,62].

Matsuzaki and co-workers had already described a

similar method to assess peptide translocation in

which vesicles are labelled only on the outer leaflet,

with the tryptophan FRET acceptor DNS-PE [19].

With this method it is possible to follow the FRET

change during time with a single sample and an end-

point approach for each incubation time is not

required. Experimentally, after peptide addition,

there is an initial increase in FRET efficiency (this

corresponds to a peptide partitioning to the outer

Figure 1. In vitro methods for translocation assessment, using FRET and quenching methodologies. Peptide molecules are represented by

empty rectangles and additional non-translocating compounds by circles; peptide molecules that have interacted with those compounds are

dashed; phospholipids labelled with an acceptor for the peptide’s fluorescence are indicated by light grey headgroups. (A) Measurement of

the inaccessibility of the peptide to a non-translocating entity with the ability to digest, sequester or permanently quench it; the interaction

between the two prevents the peptide from acting as a FRET donor to the labelled phospholipids; small FRET reductions will indicate that

the peptide was protected from that interaction; this indicates that the peptide is buried in the membrane or is located in lumen.

(B) Detection of inward peptide movement; after the initial adsorption interaction of the peptide with asymmetrically acceptor-labelled

vesicles (despite the representation, both inner-leaflet and outer-leaflet labelling can be used), translocation or membrane penetration

processes causes the mean distance between peptide and labelled phospholipids to increase (assuming an outer-leaflet labelling) and a

concomitant reduction of FRET. If the peptide has quenching capabilities, a quenchable probe can be used to symmetrically label the

vesicles; translocation can then be identified by full probe quenching, which is only possible if the peptide reaches the inner bilayer surface.

(C) Detection of peptide in the inner phase; in the case of translocation, digestion by encapsulated trypsin (solid circles) reduces the overall

amount of peptide available for membrane interaction and, consequently, FRET between peptide and labelled-membrane; trypsin

inhibition (dashed circles) is required in the outer phase, prior to peptide addition. (D) Detection of encapsulated peptide escape; in the

event of translocation, the peptide fluorescence decreases as it becomes accessible to an externally added, non-translocating quencher; the

quencher can, alternatively, be co-encapsulated with the peptide, and the quenching reduction monitored instead. The figure is reproduced

in colour in Molecular Membrane Biology online.
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leaflet); with time, a decrease in FRET efficiency is

observed (which corresponds to translocation where

peptide is no longer close to the FRET acceptor in

the outer leaflet). With this method, a kinetic

analysis of the translocation event can be carried

out. Quantitative information may be obtained if

additional methods are used to quantitatively relate

FRET intensity to luminal peptide concentration.

With these methodologies, peptides do not need

to be derivatized and small peptide and lipid con-

centrations can be used (0.7mM and 100mM respec-

tively [61]). With these methods, in-depth location

of peptide can be erroneously measured as translo-

cation; inaddition, they cannot be used with peptides

that induce lipid flip flop (FRET acceptor bilayer

asymmetry is lost). So far this methodology has been

applied only to Trp-containing peptides, although

the use of others donor/acceptor pairs is also

possible.

Direct detection of peptide in the inner aqueous phase.

Methods based on this principle are able to detect

the presence of peptides in the inner luminal

aqueous phase. With this approach actual transloca-

tion, rather than just membrane internalization, is

measured (see Figure 1, panel C).

Three different approaches fit in this class of

methods. In the first, described by Matsuzaki and

co-workers [19], encapsulated trypsin and a peptide-

lipid FRET system (Trp-containing peptide and

Dansyl chromophore incorporated in vesicles) is

used: trypsin is added at the hydration stage of the

preparation of symmetrically labelled vesicles; after

extrusion, non-encapsulated trypsin is inhibited by a

trypsin inhibitor. Upon addition of the peptide to

this system, an increase in acceptor fluorescence

through FRET is expected as the peptide enters the

bilayer; if the peptide is not internalized afterwards,

the fluorescence intensity is expected to remain

constant after the initial increase. However, if the

peptide translocates into the vesicle lumen, it be-

comes accessible to the uninhibited trypsin and is

digested; assuming that the resulting fragments

do not interact with the membrane, this degradation

of the peptide will lead to a decrease of the amount

of peptide in the bilayer and consequent reduction of

FRET. A quantitative analysis of the extent of

translocation can be easily carried out considering

that 100% translocation implies the digestion of all

the peptide molecules and absence of FRET; the

fluorescence intensity of the system should be the

same as in the absence of the peptide. Conversely,

0% translocation will correspond to the maximum

fluorescence intensity right after the peptide addition

[18,19]. This method cannot be applied to proteo-

lysis-resistent peptide and/or without Trp residues

(e.g., Polymixin B and Gramicidin S) [18]. At high

translocation efficiency, membrane perturbation

caused by peptide fragment accumulation inside

vesicles can cause difficulties in internalization

quantification. In addition, there is the possibility

of digested fragments re-entering the membrane,

which can lead to a translocation underestimation.

A second method that detects the presence of the

peptide in the inner aqueous phase was recently

developed by Bárány-Wallje et al. In this method the

experiment is performed with planar lipid mem-

branes (PLMs) and the distribution of fluorescently-

labelled peptides, between the two compartments

and partitioned in PLM, is followed by confocal

fluorescence spectroscopy [64]. This powerful

method allows the direct scanning of fluorescence

intensity and quantification of peptide in each

compartment. Another advantage is the possibility

to easily generate asymmetric aqueous phase condi-

tions: a transmembrane potential can be set without

the need for ionophores [64]. Besides the need to

label the studied peptides (and care must be taken to

choose a photostable label), this method has the

disadvantage of requiring an uncommon setup with

a custom PLM trough.

Another possible method to evaluate peptide

translocation with model membranes is to follow

peptide interaction with giant vesicles (GVs). With

this method direct visualization of peptide interac-

tion with membranes is possible by confocal micro-

scopy. The translocation of peptide across these

vesicles can be confirmed by the presence of the

fluorophore inside the vesicles [64,65]; in this case,

just as with the methodology described for fluores-

cence imaging of in vivo internalization, the use of

confocal analysis is crucial to distinguish whether the

peptide is inside the vesicle or only adsorbed at the

membrane surface. As with the PLM method

described above, the peptide has to be derivatized

with a fluorophore, which should be carefully chosen

to avoid photobleaching.

With GVs it is possible not only to directly

visualize the peptide inside the vesicles but also to

evaluate its effect on membrane properties: mem-

brane integrity can be followed with a labelled lipid

such as N-Rh-PE (the fluorochrome has to be

different from the one used to label the peptide),

and the possibility of pore formation can be eval-

uated in GVs loaded with two similar dyes attached

to other molecules of very different sizes (for

instance Alexa488-Dextran (MW 10000) and

Alexa546-maleimide (MW�/1300)). This experi-

mental setup enables direct observation of changes

in the membrane permeability during the course of

observations and in the case of pore formation to
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have information on pore size due to sequential

escape of the dyes from the GVs [66,67].

Detection of encapsulated peptide escape. Using a

fluorescence quenching assay, Magzoub et al. had

developed methodologies in which the escape of a

CPP from liposomes is determined in the presence

and absence of a pH gradient [68] (see Figure 1,

Panel D). To track the peptide escape two assays

based on encapsulation were carried out: (i) vesicles

were prepared with the peptide inside and the Trp

quencher acrylamide was added to the outer phase

(the escape of peptide from liposomes was followed

by fluorescence quenching of peptide Trp residues

caused by acrylamide); (ii) fluorescein-labelled pep-

tides were encapsulated with a quencher (iodide)

and, in the case of translocation, a de-quenching of

the fluorescein label was observed. The fluorescence

intensity corresponding to 100% peptide escape was

determined by vesicle lyses with Triton X-100 and

the fraction of peptide escape was calculated at

different incubation times [68].

Both these approaches allow the quantification of

translocation as well as the determination of mem-

brane crossing kinetics. Under certain situations,

however, both methods can lead to misleading

conclusions: in method (i) acrylamide is excluded

from membranes, so only the fraction of peptide that

reaches the outer aqueous environment is accounted

for (if the peptide remains essentially partitioned in

the outer leaflet after crossing the membrane, a

lower translocation extent is measured); in method

(ii) if the peptide does not translocate but has a deep

location in the bilayer, it becomes inaccessible to the

encapsulated quencher and is counted as having

crossed the membrane.

In these methods if the peptide translocates very

efficiently a significant amount of peptide can escape

from the liposome during the gel filtration step (used

to remove non-encapsulated peptide); therefore,

these methods are only applicable to peptides that

require special conditions to translocate (such as pH

or potential membrane gradients), so that mem-

brane crossing can be triggered only after the

separation procedure.

Another peptide escape assay was described by

Bárány-Wallje et al. in which vesicles uniformly

preloaded with peptide both in the lumen and outer

medium are dialysed so that any peptide outside of

the liposomes is washed away [64]. If any peptide

absorption/fluorescence remains after the dialysis,

it can be concluded that translocation from the

lumen/inner leaflet to the outer side did not occur;

conversely, the occurrence of translocation can

be inferred from the absence of any peptide signal.

Due to the very simple setup and instrumentation

requirements, this seems a good option to begin a

translocation study with; however, there are a

number of disadvantages that are addressed in

section 3 of the Supplementary material online.

Other methods. A methodology based on a particular

peptide property was developed in reference [69].

For this purpose, the specific fluorescence quench-

ing of Rh by the CPP pep-1 was taken advantage of.

Vesicles labelled symmetrically with N-Rh-PE were

used to evaluate fluorescence emission quenching of

Rh by pep-1 in the presence and absence of a

transmembrane potential. After the peptide is added

to LUVs, Rh fluorescence in the outer layer is

quenched. If translocation occurs, it can be identi-

fied by a further reduction in Rh fluorescence due to

contact of the peptide with Rh in the inner leaflet.

The effect can be improved by using labelled multi-

lamellas vesicles (MLVs): the fraction of Rh-PE

available for peptide access is smaller than if LUVs

are used, therefore a much larger relative increase in

quenching is expected if the peptide translocates and

accesses all the phospholipids [69]. Alternatively,

soluble Rh can be encapsulated in vesicles and its

fluorescence followed after peptide addition [69].

This method allows measurements to be taken

during a time course, enabling the kinetic evaluation

of the translocation process. Its main disadvantage is

that it is only applicable to peptides that are able to

quench a given fluorophore.

Another method using MLVs has been reported

[60,70]: dithionite ion was externally added to

NBD-PE-doped MLVs, resulting in quenching of

the fluorophores in the outermost leaflet; upon the

addition of a pore-forming peptide the dithionite ion

will have access to the first intramembranar space of

the MLVs, resulting in an increase in quenching; full

NBD quenching, however, will only be attained if

the peptide can translocate and form pores in the

inner bilayers because only then will all the fluor-

ophore become accessible to the dithionite ion.

This method does not require any peptide label-

ling or intrinsic fluorescence but, on the other hand,

this can only be applied to peptides that perturb the

membrane to an extent where dithionite can cross it

(by a pore or otherwise). Kinetic information can be

extracted but it is necessary to take into considera-

tion the multiple membrane crossing steps.

Assessment of peptide translocation with attached cargo

The translocation process of CPPs may vary if the

peptide is in free form or attached to a cargo.

Differences in peptide kinetics and cell localiza-

tion can occur [71�73]. In the above described

methodologies the only attached ‘cargoes’ were
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fluorophores. The nature and size of the cargoes and

the nature of attachment to the peptide (whether

covalent [3,74] or weaker [7,75]) can also be a

determinant for the translocation mechanism. Given

these differences, development of consistent meth-

ods to evaluate the capacity to translocate/deliver

proteins across artificial/natural membranes would

be fruitful to systematically confirm (or refute)

vector properties of CPPs. Practically all methods

described above for in vivo or in vitro testing can, in

principle, be extended to assess the translocation of

CPP-cargo complexes, although no reports on such

usage were found; however, some properties of the

macromolecule attached to the peptide are addi-

tional advantages to detect and quantify transloca-

tion, opening the possibility for more sensitive

methodologies. Three methods that have been

reported for the in vivo studies and one for the in

vitro studies of the internalization of CPP-cargo

complexes are discussed here; while these can easily

fit into the above classification, they are presented

separately to underscore their importance in con-

firming the vector properties of a CPP.

Morris et al. had observed the efficiency of pep-1

to deliver GFP [75] and a similar approach demon-

strated the ability of the AMP buforin 2 to translo-

cate across bilayers with a macromolecular cargo

[76]. Recombinant proteins with CPP and GFP

domains have also been produced [77�79]. Instead

of GFP, Wadia et al. labelled TAT-Cre recombinase

by coupling it to Alexa 488 or Alexa 546 fluoro-

phores [80]. GFP or Cre recombinase translocation

is followed by its intrinsic fluorescence; this is in all

aspects identical to what was previously described

for the in vivo direct visualization of internalization.

Another possibility to measure Cre recombinase

translocation mediated by TAT is by recombination

reporter assay, where the expression of enhanced

GFP (EGFP) is dependent on TAT-Cre transduc-

tion into cells, followed by nuclear import. The

signal of EGFP is followed and measured as a

consequence of TAT-Cre import [80].

Detection of b-Gal delivery into cells was also

reported. Translocation was assessed by monitoring

the X-Gal staining enzymatic activity of b-Gal

[75]. The detection of the enzymatic activity of the

cargo not only allows a sensitive detection of the

Figure 2. To evaluate the translocation of b-Gal/pep-1 (hexagons/rectangles) complexes across model membranes the following steps were

reported [81]: (1) valinomycin was added to K�-loaded vesicles in Na�-buffer to create a negative transmembrane potential; the complex

was added to the solution and translocated across bilayer; (2) trypsin (circles) was added to digest non-incorporated complex and free pep-1

or b-Gal (dashed hexagons/rectangles); (3) after digestion, trypsin was inhibited (dashed circles) with phenylmethylsulfonyl fluoride and

TX-100 was then added to facilitate the release of internalized b-Gal and allow its quantification (digestion debris were excluded from the

last two panels, and inhibited trypsin from the last, to avoid image crowding); (4) b-Gal activity was assayed by MUG (black triangles)

hydrolysis to a fluorescent product, 4-MU (lighter triangles). The figure is reproduced in colour in Molecular Membrane Biology online.
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internalized CPP-cargo complex, but also tests

whether CPP-mediated translocation can occur

without cargo damage/denaturation. A quantifica-

tion of b-Gal internalization was developed by

means of its enzymatic activity on the substrate 4-

methylumbelliferone b-D-galactopyranoside (MUG),

a non fluorescent substrate that is converted to 4-

methylumbelliferone (4-MU), which is a fluorescent

product. 4-MU production enables quantification of

protein internalization from its activity [37,81].

Another possibility to evaluate protein delivery

efficiency is by immunofluorescence, using a pri-

mary antibody raised against the carried protein and

a fluorescently labelled secondary antibody, as was

preformed with b-Gal [81]. This method is inde-

pendent of particular cargo properties; therefore, it

is suited to study the transport of cargoes that do not

have intrinsic fluorescence or detectable enzymatic

activity. With these methodologies it is possible to

obtain cell transfection efficiency, but not the

quantification of peptide/protein internalization.

Protein uptake was also evaluated in vitro with

pep-1/b-Gal, by taking advantage of the b-Gal

enzymatic activity and 4-MU fluorescent properties

(see Figure 2). Briefly, after peptide/protein incuba-

tion with LUVs, trypsin was added externally to

digest the non-incorporated peptide and b-Gal;

afterwards, phenylmethanesulfonyl fluoride (PMSF)

was added to inhibit trypsin. To induce LUV

permeabilization and leakage of the incorporated

b-Gal, Triton X-100 was added, and enzymatic

activity of b-Gal was determined by MUG hydrolysis

[81]. Intrinsic cargo fluorescence and/or enzymatic

activity are specific properties that can be used

for application of a similar methodology to other

peptides/proteins complexes.

The classification and the general advantages and

disadvantages of the application of each reviewed

method are summarized in Table I.

For all the methods presented here, it is possible

to conclude about the ability of peptides to translo-

cate. When further information is sought, quantita-

tive analysis should always be carefully carried out;

for this, several different complementing methodol-

ogies should be conjugated, regarding not only the

actual evaluation of translocation but also to quan-

tify the peptide distribution between the membrane

and aqueous environments and to characterize the

membrane topology upon peptide interaction (oc-

currence of membrane thinning, pore formation,

lysis, etc.).

Concluding remarks

Because most methods for the assessment of mem-

brane translocation have only been reported during

the last decade, it is understandable that this field is

regarded as being underdeveloped, methodology-

wise [18]. In addition, the description of new

methods has not always been given the due emphasis

by their authors, which further contributed to the

lack of visibility of these procedures. Yet, over 20

methods that address the assessment of membrane

translocation have been found. The authors of this

work hope that the gathering of this knowledge will

help others find and use the most appropriate

methods for their studies. On the other hand, this

compilation should by no means be regarded as an

ultimate source for information on translocation

assessment methodologies in a way that the devel-

opment of new methods, or the improvement of

already described ones, is discouraged. Rather, by

exposing the strengths and weaknesses of several

methodologies, it is hoped that the development of

newer and better methods is encouraged and facili-

tated.
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Supplementary Material

Problems associated with the detection of entry

of peptide into vesicles

At usual lipid concentrations, used to perform in vitro

studies, the volume occupied by the vesicles is very

small when compared to the bulk aqueous phase: for

100 nm diameter LUVs, produced at a total lipid

concentration of 1 mM, and assuming a mean

membrane surface area of 0.7 nm2 per phospholipid

[1], the ratio of luminal volume over the total volume

will be about r�/0.003 v/v. Another problem arises

from the fact that these peptides usually have large

molar ratio partition constants towards lipidic mem-

branes (about 103 to 104, e.g., [2,3]). This means

that only a small concentration of peptide will be in

the aqueous phase unless relatively low lipid con-

centrations are used. Given the above-mentioned

obstacles, it is clear that methods based on the

detection of the concentration of internalized peptide

will have to deal with very low signal intensities that

will likely lie below instrumental detection limit.

Comments on time-dependent measurements

It should be noted that in all the methods presented

in the section Measurement of peptide inaccessibility

from the outer phase a time-dependent measurement

is required to determine the degree of peptide

inaccessibility: because the amount of free peptide

in the outer phase will decrease � as it is digested,

sequestered or permanently quenched � the inter-

nalized peptide will equilibrate back to the outer

phase. Consequently, two stages are expected: in the

first, signal magnitude increases (here ‘signal’, in a

very broad sense, can be FRET reduction, FRET

increase or fluorescence reduction, depending on the

particular method used), detecting the adsorbed/

non-internalized peptide fraction; then a second

stage ensues with a usually slower signal increase

[4,5], which corresponds to the detection of the

internalized peptide molecules that are returning to

the outer phase. At equilibrium, the signal magni-

tude should be approximately the same whether

translocation has occurred or not. The percentage of

accessible peptide is usually obtained by comparing

the end of the first stage with a control where

peptide, membrane and the non-translocating entity

are added simultaneously [4, 5]. From this, it can be

seen that, in a hypothetical situation where the

translocation kinetics were of the same magnitude

of the desorption kinetics, this method would be very

difficult to apply as both stages would have the same

approximate slopes and the end of the first stage

would be hard to detect. On the other hand,

information about translocation kinetics could, in

principle, be obtained from the rate at which the

peptide molecules return to the outer phase, in the

second stage.

Advantages and disadvantages associated with

the dialysis method

Due to the very simple setup and instrumentation

requirements for this experiment (see the section

Detection of encapsulated peptide escape) this seems a

good option to begin a translocation study with,

because membrane crossing may be ruled out

immediately avoiding the need to use more complex

and costly methodologies. However, in order for this

method to provide a measurable absorbance/fluores-

cence peptide signal in the absence of translocation

it is required that the amount of internalized peptide

be relatively large, to compensate for the effect of the

small encapsulation volume. This is only possible to

attain if the peptide partitions strongly towards the

bilayer and the lipid concentration is high enough:

under these conditions, upon vesicle preparation,

the peptide molecules can be expected to be equally

distributed by the inner and outer leaflets and very

few to be left in the aqueous phase; in the absence of

translocation, roughly one half of the peptide signal

will remain, correspondent to the peptide molecules

partitioned in the inner leaflet. Should the peptide

partition weakly to the membrane or there be a small

lipid concentration, the inner leaflet peptide fraction

could be undetected in the absence of translocation,

which would generate a false positive. This limita-

tion has to be accounted for by quantifying the

extent of membrane interaction. Other disadvan-

tages include the lengthy dialysis process and the

lack of any kind of translocation characterization,

which makes this method more suited to rule out,

rather than ascertain, peptide translocation.
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7.1. Neurotoxicity of PrP(106-126) revisited. A biophysical study 

with model membranes. 
 

During this PhD project other peptide was studied, PrP(106-126), a prion protein 

fragment considered to be responsible for toxicity in prion disease. The exact 

mechanism behind PrP(106-126) toxicity is largely unknown. In similarity with pep-1, 

PrP(106-126) has an amphiphatic structure. In this work the possibility of PrP(106-126) 

to translocate across the membrane by a related mechanism was studied. Once inside the 

cell, PrP(106-126) could become toxic. This was the hypothesis tested. Fluorescence 

and UV-vis spectroscopies, CD spectroscopy and surface Plasmon resonance were used 

to carry on these studies.  

Fluorescence and UV-Vis methodologies were used at the Molecular Biophysics 

laboratory in FCUL, while CD spectroscopy and surface plasmon resonance were 

carried out at Monash University in Victoria, Australia.  
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Part of the obtained results are presented in a first version of the manuscript, 

titled: Neurotoxicity of PrP(106-126) revisited. A biophysical study with model 

membranes. This will be shortly submitted. 
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ABSTRACT 

 

Transmissible spongiform encephalopathies are neurodegenerative diseases with 

characteristic accumulation of an abnormal isoform of the prion protein, PrPSc. Its 

fragment 106-126 was reported to maintain most of the pathological features of PrPSc 

and a role in neurodegeneration has been proposed based on the modulation of 

membrane properties and channel formation. Nevertheless, this issue is quite 

controversial in the literature. In the case channels are formed the peptide-membrane 

interactions should be the key feature to explain the toxicity of PrPSc. In the present 

work we examined the interaction of PrP(106-126) with model membranes by surface 

plasmon resonance and fluorescence methodologies. A comprehensive study where 

different conditions, such as: membrane charge, viscosity, lipid composition, presence 

of ganglioside, pH and ionic strength, were tested, modulated, and compared. PrP(106-

126) has a very low affinity for lipidic membranes at physiological conditions. Only in 

extreme conditions, where strong electrostatic interactions are operative, insertion in 

lipid bilayer and leakage were detected. These results support the hypothesis of the 

requirement PrPC to mediate PrP(106-126) toxic effects in neuronal cells. 

 

Keywords: Prion Disease, Fluorescence methodologies, Model membranes, Surface 

Plasmon resonance, Pore formation. 
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INTRODUCTION 

 

Prion diseases, also known as transmissible spongiform encephalopathies (TSE), are 

human and animal diseases, characterized by progressive neuronal loss often 

accompanied by a spongiform brain alteration and the deposition of amyloid fibrils. 

These diseases appear in sporadic, familial and infectiously acquired forms and are 

invariably fatal without evoking in the host any inflammatory or immune response [1]. 

The interest in prion diseases has grown from the emergence of bovine spongiform 

encephalopathy and the possible infection of human beings [2].  

This pathology is initiated by a post-translational modification of a glycoprotein called 

prion protein (PrP) abundantly expressed in the central nervous system (CNS) of 

mammalian species. A pathological scrapie form, PrPSc, interacts with the physiological 

form, PrPC, which is converted into another scrapie form molecule (PrPSc + PrPC → 2 

PrPC). This conversion occurs by a mechanism not well understood and is likely to take 

place at cell surface, more specifically in rafts domains, where the PrPC is preferentially 

located due to its glycosylphosphatidylinositol (GPI)-anchor (see [3, 4] and references 

therein). 

These two PrP isoforms possess different physico-chemical properties: PrPC has an α-

helical structure susceptible to enzymatic digestion, while PrPSc has a large amount of 

β-structure contribution and is resistant to proteolysis. With this conformation, highly 

insoluble aggregates are formed within the brain and seem to be responsible for the 

neurological damages that occur in this disease [5].  

PrPSc aggregates are not the only cause of pathology and the time course of its 

accumulation is not coincident with the time course of neurodegeneration [6]. The 

observation of PrPSc accumulation in intracellular compartments and the identification 

of some other forms of PrP (transmembrane forms [6] and a cytosolic form [7]) suggest 

that the endosomal pathway can also be involved in disease propagation where all these 

forms can be involved and take part on the propagation of the disease (see [6] and 

references therein).  

Among all the synthetic peptides that have been tested, the fragment spanning human 

PrP region 106-126 (KTNMKHMAGAAAAGAVVGGLG) was identified as the most 

highly amyloidogenic region, with the capacity to readily form fibrils [8, 9], with 

neurotoxic activity [10] and partially resistant to proteolysis [11]. Regarding these 
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observations it was postulated that the PrP(106-126) may be a major contributor to the 

physico-chemical and pathogenic properties of PrPSc [12] with a role in amyloid 

formation and in the nerve cell degeneration occurring in prion-related 

encephalopathies, therefore it was proposed as a model peptide of PrP infectious form 

[11]. PrP(106-126) sequence is present in all abnormal PrP isoforms accumulated in the 

patients brain [12] suggesting that this region may possess the ability to trigger or 

enable a fundamental pathogenic mechanism common to different forms of Prion 

disease [13].   

The amphiphatic primary structure of PrP(106-126), characterized by two domains, one 

hydrophilic (KTNMKHM) and other hydrophobic (AGAAAAGAVVGGLG), suggests 

an ability to interact with cell membrane [14]. Previous studies of the interaction of PrP 

(106-126) with model membranes show that the pH and ionic strength are of first 

importance both on secondary structure and interaction with membranes [8, 15]. An 

increased affinity for membranes at acidic pH together with a concomitant increase in β-

sheet content support the hypothesis of endosomal pathway involment in PrPSc 

formation/propagation through the neuronal cells and a possible effect of PrP(106-126) 

fragment in the Prion disease toxicity. Not only the formation of fibril aggregates but 

also membrane pore induced by PrP(106-126) may be a possible explanation for PrP 

toxicity, as shown by electrophysiological studies [16, 17]. However, pore formation 

[18] and neurotoxicity [19] were not confirmed by other groups. Moreover Fioriti et al, 

had not found evidences for PrP(106-126) infection or ability for conversion of PrPC to 

PrPSc or to any other toxic PrP species [13]. Furthermore, it was suggested that PrP(106-

126) is not toxic by itself, it becomes toxic only in the presence of PrPC form [13, 20]. It 

was proposed that it toxicity results from an alteration of physiological functions of 

PrPC instead of an effect induced by the PrP(106-126) fragment per si [13]. 

Therefore, the existence of a physiological role for this peptide remains unclear in the 

literature. If a toxic effect in fact exists, peptide-membrane interactions are the key 

feature to explain it effects. This prompt us to perform a study of the interaction of 

PrP(106-126) with model membranes. These experiments were carried out by Surface 

Plasmon Resonance (SPR) with supported lipid bilayers and by fluorescence 

spectroscopy methodologies with large unilamellar vesicles (LUVs). Peptide affinity to 

membranes, kinetics of peptide interaction, effects on membrane stability, and the 

possibility of pore formation were addressed. Different conditions such as: membrane 
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charge, viscosity, lipid composition, pH, and ionic strength were studied. The 

interaction with membranes appears to be relevant only at low ionic strength and high 

anionic-phospholipids contents, which are non-physiological conditions, and no 

evidence for pore formation was detected. This supports the hypothesis that PrP(106-

126) toxicity can be explained by a loss/modification of biological PrPC function within 

neuronal cells in opposition to this peptide being toxic by itself.  
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MATERIALS AND METHODS 

 

Materials 

PrP(106-126) with purity higher than 95% was obtained from Genscript corporation 

(piscataway, New Jersey); 2-(4-(2-Hydroxyethul)-1-piperazinyl)ethanesulfonic acid 

(HEPES), sodium chloride, L-Tryptophan, acrylamide, ethanol and chloroform 

spectroscopic were obtained from Merk (Darmstadt, Germany); 1-Palmitoyl-2-Oleoyl-

sn-Glycero-3-Phosphocholine (POPC), 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-(Phospho-

rac-(1-glycerol)) (POPG), 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-(Phospho-rac-(1-serine)) 

(POPS), 1,2-Dipalmitoyl-sn-Glycero-3-phosphocholine (DPPC) and 1-Palmitoyl-2-

Oleoyl-sn-Glycero-3-(phospho-L-serine) (POPS), 1,2dipalmitoyl-sn-glycero-3-

phosphoethanolamine-N(7-nitro-2-1,3-benzoxadiazol-4-yl) (N-NBD-PE), and 

monoganglioside GM1 were obtained from Avanti Polar-Lipids (Alabaster, Alabama); 

congo red (CR), Thioflavin T (ThT), (3-[3-Cholamidpropy)-dimethyl-ammonio]-1-

propanesulfonate (CHAPS) and Cholesterol (chol) were obtained from sigma (St. Louis, 

Missouri); tris-(2-cyanoethyl)phosphine (phosphine), 1-anilinonaphthalene-8-sulfonic 

acid (ANS) and 4-(2-[6-(dioctylamino)-2-naphthalenyl]ethenyl)-1-(3-sulfopropyl)-

pyridinium (Di-8-ANEPPS) were obtained from molecular probes (Eugene, Oregon).  

 

Working conditions and apparatus  

PrP(106-126) was dissolved in sterile water with 2mg/mL (1.05mM). Throughout this 

study, pH effect was evaluated comparing cytoplasmatic physiological conditions (10 

mM HEPES, pH7.4 containing 150mM NaCl) with pH5 to mimic endosomal medium 

(20mM Sodium Acetate, pH 5 containing 150 mM NaCl). The effect of low ionic 

strength was evaluated at pH5 (20mM Sodium Acetate, 10mM NaCl). Assays were 

performed at room temperature (25ºC). UV-vis spectrophotometer Jasco V-560 was 

used for UV-vis measurements. Steady-state fluorescence measurements were carried 

out in a Spex ® FluoroLog-3 (Horiba Jobin Yvon) with double excitation and emission 

monochromators and a 450W xenon lamp. SPR measurements were performed in a 

Biacore T100 (GE Healthcare) with a series S sensor chip L1. Circular Dichroism (CD) 

measurements were done on a Jasco J-810 spectropolarimeter equipped with a 

temperature unit control.  
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Intermolecular β-structures determined by Thioflavin T and Congo Red 

The presence of β-structures was analysed by fluorescence emission of ThT [21] and 

CR absorbance [22, 23]. Titration of 15µM ThT with PrP(106-126) was followed by 

fluorescence spectra with λexcitation=450nm.  

CR absorption was followed by titration of 5μM CR with PrP(106-126) stock solution 

for final peptide concentrations in the range 0-50μM.  

 

Peptide aggregation followed by ANS fluorescence 

The effect of peptide concentration on PrP(106-126) aggregation was followed by 

means of ANS fluorescence emission [24-26] with excitation at 369nm; 12.8μM ANS 

(A369~0.1) was used through the experiments.  

 

Lipid vesicles preparation for peptide-membrane studies 

Large unilamellar vesicles (LUVs) are good model membranes due to their large radii 

of curvature and because they are equilibrium structures [27]. With these model 

membranes different properties can be modulated (e.g. lipid charge, membrane 

viscosity, the presence of a sterol, the effect of pH and ionic strength). Using different 

lipidic mixtures is possible to explore selected membrane properties on peptide 

insertion. LUVs were prepared by extrusion method as previously stated [28]. Briefly, 

lipid solutions in chloroform were dried under a stream of N2 and residual organic 

solvent was removed in vacuum chamber overnight. The lipidic film was hydrated with 

buffer and subject to eight freeze-thaw cycles to produce multilamellar vesicles 

(MLVs). MLVs were extruded through polycarbonate filters (400nm and 100nm pore 

size filter two and eight times, respectively), to obtain LUVs. For SPR measurements 

vesicles were prepared by the same procedure but extruded with a 50nm pore size in 

order to obtain smaller vesicles, more unstable and easier to fuse at chip surface. 

 

Peptide affinity for lipidic membranes followed by SPR 

Interaction of PrP(106-126) with lipidic bilayers was studied by SPR. Liposomes 

composed by different lipidic mixtures (POPC, POPC/POPG (20% POPG molar), 

POPC/Chol (33% Chol molar) and POPC/GM1 (10% GM1 molar)) were prepared as 

stated above. For lipid deposition on chip surface, LUVs (1mM lipid concentration) 
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were injected across the L1 chip for 40min at a flow rate of 2μL/min; with this 

procedure an equilibrium level was reached. The signal obtained varied with lipidic 

composition, but was reproduced for each composition though the assays.  

A short injection of 10mM NaOH (36s at a flow rate of 50μL/min) was used to remove 

loosely bound LUVs with a final stabilization period of 300s, which resulted in a stable 

baseline. The response units of lipid membranes immobilized on the chip were in the 

range 5000-11000, depending on the liposome lipidic composition.   

Peptide solutions with different concentrations (0-50μM) were injected over the lipid 

surface for 180s at 20μL/min, and dissociation was followed for 600s. The sensor chip 

surface was washed with injection of 20mM CHAPS (60s, 5μL/min), 10mM NaOH in 

20% MeOH (36s, 50μL/min) and 10mM NaOH (36s, 50μL/min), with a final 

stabilization period of 600s. All solutions were freshly prepared and filtered through 

0.22μm pores. The operating temperature was 25ºC. The procedure was followed 

maintaining the conditions to ensure that the experimental conditions are comparable 

between experiments as far as possible.  

The affinity of peptide for the lipid bilayer membrane was determined from analysis and 

curve fitting of a series of response curves collected with different peptide 

concentrations. When appropriate, association and dissociation rate constants were 

globally fitted using BIAevaluation version 3.0. 

 

Secondary structure by CD spectroscopy 

CD measurements were performed to have insights on PrP(106-126) secondary 

structure. CD spectra in absence and presence of LUVs composed by POPC/POPG 

(20% POPG molar percentage) (2mM final lipid concentration) were carried out with 

100μM PrP(106-126) in a quartz cell with an optical path of 0.1cm at 25ºC. For this 

particular experiment, samples were prepared in buffer containing NaF instead of NaCl. 

Wavelengths from 260 to 190nm were recorded with a 0.1nm step and 20nm/min speed. 

Spectra were collected and averaged over 5 scans and corrected for background 

contribution.  

A peptide lipid/ratio of 1:20 was used. Lower peptide lipid ratios are normally advised 

(e.g. 1:100) however in this particular case it was not possible (10mM of lipid would be 

necessary which would greatly contribute for dispersion). In the case of alteration of 
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secondary structure upon interaction with lipid, an effect on CD spectrum should be 

evident.  

 

Membrane effects induced by the presence of PrP(106-126) 

Pore formation was tested for different lipid compositions with 100µM final lipid 

concentration and was evaluated with a methodology based on NBD fluorescence 

quenching by Co2+ ions (see ref [29] and references therein). To follow permeability to 

Co2+ ions, vesicles doped with 1% of N-NBD-PE were prepared with or without 20mM 

Co2+ inside and outside (positive control). For positive control, lipid was hydrated with 

buffer containing 20mM Co2+; therefore, quencher is accessible to NBD in the outer and 

in the inner layer. This control was compared with samples where Co2+ was added after 

vesicle preparation; in this case Co2+ is accessible only to outer layer. In the case of pore 

formation, after peptide addition, Co2+ will become accessible to the NBD fluorophores 

in the inner layer. Addition of different PrP(106-126) concentrations was carried out (0-

50µM). Controls with the different peptide concentrations were performed. PrP(106-

126) was left to incubate for 30 min and Co2+ was added to the samples. NBD 

fluorescence emission spectrum was followed with λexcitation = 460 nm before and after 

PrP(106-126) addition. Data were corrected for the inner filter effect [30]. Control 

samples with Co2+ outside and inside vesicles were carried out at the same conditions. 

For this particular assay MLVs were used instead of LUVs. Usage of MLVs enables a 

gradual effect in case of translocation after pore formation and therefore a more reliable 

reading of the spectroscopic signal. Several lipid mixtures were used: POPC/POPG (0, 

5, 10, 20 and 50% molar POPG); POPC/Chol (33% molar chol) and POPC/POPG/Chol 

(47, 20 and 33 molar respectively).  

 

Dipolar potential in the presence of PrP(106-126) and the pH gradient effect 

Membrane dipolar potential is dependent on the orientation of dipoles in the 

membrane/water interface. Variations of the membrane dipole potential can be used to 

report membrane binding and insertion of molecules by recording fluorescence 

excitation spectra of di-8-ANEPPS-labelled vesicles which are particularly sensitive to 

dipolar potential variations [31]. 25μM PrP(106-126) was added to LUVs with 200μM 

lipid and 4μM of dye (di-8-ANEPPS is not fluorescent in aqueous medium). To detect 

spectral variations in di-8-ANEPPS excitation the spectrum (λemission=570nm) in the 
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absence of the peptide was subtracted from the spectrum in the presence of 25μM 

PrP(106126) (both spectra were normalized to total integrated area). This differential 

spectrum enables detection of peptide-induced changes on the membrane dipolar 

potential [31, 32]. Fresh solutions and aging peptides (48h, 37ºC) were used in these 

experiments. Several lipid compositions were used: POPC/POPG (0, 20, 30, 40, 50 and 

100% molar POPG) to evaluate the charge effect; POPC/POPS (20% molar POPS) to 

test any particular effect with serine; POPC/Chol (0, 18 and 33% molar Chol) to 

evaluate the effects of the presence of cholesterol; POPC/GM1 (0, 5, 10, 20 and 50% 

molar GM1) and a mixture of POPC/POPG/Chol/GM1 (37, 20, 33, 10% molar, 

respectively) was also used to test if the mixture would improve the interaction with 

membranes. Liposomes with a pH gradient (pH=5.0 inside and pH=7.4 outside 

liposomes) were prepared in order to mimetize the environment at the 

liposome/cytoplasm interface. POPC/POPG (50% molar percentage) vesicles were 

tested. Controls with pH=7.4/pH=5 (in/out); pH=7.4 (in/out) and pH=5 (in/out) were 

performed.  

 

RESULTS 

 

It has been suggested that PrP(106-126) has a role in PrPSc- PrPC association and also in 

prion disease propagation and amplification [6], which is dictated by its physico-

chemical properties. Several activities have been attributed to this peptide but so far its 

contribution in Prion disease is not clarified (see references [6, 13] and references 

therein). In this study it is our main goal to elucidate the membrane role on the activity 

of this PrP fragment.  

The endosomal pathway may be implicated on PrPSc synthesis and propagation [3, 33-

35]. PrPSc synthesis is likely to occur during PrP recycling through the endosomal 

pathway. Exogenous prions could initiate infection by entry through the endosomal 

pathway to induce the conversion of PrPC molecules from cell surface to PrPSc [35]. 

Moreover toxic forms of PrP have been identified in endosomal pathway and have been 

suggested to play a role in neurotoxicity which cannot be explained solely by fibril 

formation [6]. In this regard, PrP(106-126) interaction with membranes was studied not 

only at pH7.4, but also at pH5 to evaluate pH effect on peptide-membrane interaction 

and possible differences in cytoplasm/endosomal environment.  
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PrP(106-126) aggregates in aqueous solution and forms amyloid fibrils  

Previous studies had shown that PrP(106-126) tends to aggregate and to form β-

structures as the scrapie PrP isoform [9, 10]. In order to verify if the same occurs in 

conditions of the present study, the formation of β-structures aggregates was tested by 

the fluorescence of ThT and also by the absorbance of CR. These two dyes are widely 

used to detect the formation of amyloid structures [25].  

In the absence of β-sheet aggregates, the ThT dye has an excitation and fluorescence 

emission maxima at 350 and 438nm, respectively. In the presence of amyloid fibrils the 

ThT spectra shift to 450nm and 482nm, respectively [21]. During titration of ThT with 

PrP(106-126) a slight increase in the fluorescence intensity at 482nm, characteristic of 

ThT interacting with β-sheet structures was observed (data not shown). This effect is 

not strong, but some β-sheet-rich proteins are unable to induce the characteristic ThT 

fluorescence [36]. CR absorbance was used to further study if this peptide has a 

significant β-sheet conformation. In the case of amyloid fibrils formation a red-shift in 

CR absorbance spectrum at physiological pH is expected [22, 23]. At pH 7.4, 150mM 

NaCl the CR maximum appears at 489nm. When CR was titrated with PrP(106-126) a 

red shift in absorbance spectra was observed (Figure1A), due to an increase of the 

component at 535nm (see differential spectra inset in Figure1A). At pH 5, 150mM 

NaCl, the CR absorbance spectrum peaks at 502nm which is blue shifted in the presence 

of PrP(106-126) (Figure1B). An increase at 496nm is detected in differential spectra 

(see inset in Figure1B). The direct comparison of the effects on CR absorbance at pH5 

and pH7.4 is not straightforward because CR absorbance properties change with pH 

[15]. However it is possible to conclude that at pH7.4 and pH5 PrP(106-126) is able to 

interact with CR and this strongly suggests β-sheet conformation.  

 

As a final test, the possibility of peptide aggregation was also followed by ANS 

fluorescence. This dye is sensitive to the polarity of its micro-environment and is 

frequently used to identify the presence of hydrophobic “pockets” in proteins and 

peptides [24-26]. In the presence of hydrophobic “pockets”, ANS fluorescence emission 

intensity increases and concomitantly blue-shifts.  

Titration of ANS with PrP(106-126) causes an increase in the fluorescence intensity and 

a significant blue shift (59nm) on the maxima of ANS emission (Figure 2), which is 
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indicative of the presence of aggregates in solution. This was detected at pH7.4 and pH5 

both for low and physiologic ionic strength. 

 

A        B 

 
Figure 1. Identification of β-structures in the PrP(106-126) by Congo Red absorbance. Absorbance 

spectra of 5μM CR in the presence of PrP(106-126) 0-50μM (A) at pH7.4, 150 mM NaCl or (B) at pH5, 

150mM NaCl. Absorbance was normalized to highlight the red shift at pH7.4 and the blue shift at pH5.0 

upon peptide addition. Inset: initial CR absorbance spectrum was subtracted to all the spectra obtained 

after peptide addition at pH 7.4 or pH5. At pH 7.4 is possible to identify an increase in the CR absorbance 

at 535nm with peptide concentration and at pH5 there is an increase at 496nm. This indicates that 

PrP(106-126) is interacting with CR, suggesting β-structures. This effect is stronger at pH7.4 than at pH5.  

 
 

Figure 2. Aggregation of PrP(106-126) evaluated 

by ANS fluorescence properties. A) The effect of 

peptide concentration in 12.5 μM ANS 

fluorescence emission spectrum (λexcitation=369nm, 

pH7.4, 150mM NaCl). Spectra were normalized to 

highlight ANS blue shift upon interaction with 

PrP. Inset: Dependence of integrated fluorescence 

intensity of ANS with peptide concentration. A 

significant blue shift and a concomitant increase in 

ANS fluorescence intensity indicates that this 

peptide is in an aggregated form.  
 

PrP(106-126) interaction with membranes – kinetic and affinity  

The interaction and affinity of PrP(106-126) to lipidic bilayers was studied by SPR with 

lipid membranes onto a sensor chip L1 (which contains a carboxymethylated dextran 
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matrix with lipophilic alkyl chains giving the surface amphiphilic properties). SPR has 

proven to be a valuable experimental approach to study the interaction of peptides with 

lipidic bilayers, which allows the real-time monitoring of peptide binding to and 

dissociation from the lipidic bilayers, and has the advantage of overcoming the need to 

use labelled peptides [37]. Liposomes are immobilized on the surface of the sensor chip 

and the peptide is passed across membrane. SPR detects changes in the optical 

properties of the sensor surface caused by the association/dissociation of the peptide 

to/from the lipid immobilized onto the sensor surface. The sensor surface response is 

proportional to the adsorbed mass on the sensor surface [37].  

In this study we have examined the association/dissociation of PrP(106-126) to/from 

lipidic membranes with different lipid compositions to get more insights on the 

parameters that govern peptide affinities and membrane preferences. 

 

A       B 

 
Figure 3. Lipidic composition and buffer effects on peptide affinity for lipidic membranes. (A) pH and 

ionic strength effect on PrP(106-126) (25μM) interaction with POPC membranes immobilized on the 

surface of L1 chip. HEPES buffer pH7.4, 150mM NaCl, Acetate buffer pH5, 150mM NaCl and Acetate 

buffer pH5, 10mM NaCl were used. The peptide does not have a detectable affinity for physiological 

membranes. At acidic pH a slightly increase in the peptide fraction bound occurs, which is enhanced at 

low ionic strength. (B) 25μM PrP(106-126) affinity for lipidic membranes immobilized on the surface of 

L1 chip at pH5, 10mM NaCl is represented for different lipidic composition: POPC, POPC/POPG (20% 

molar POPG), POPC/Chol (33% molar Chol) and POPC/GM1 (10% molar GM1). PrP(106-126) has 

higher affinity for membranes when anionic phospholipids are present. The Peptide does not bind 

significantly to POPC/Chol and POPC/GM1 lipidic membranes.  
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After bulk shift correction and evaluation of possible mass transport effect (see 

supporting information for this subject) it was possible to compare different sets of 

sensorgrams obtained in different conditions. The effect of pH and ionic strength on 

PrP(106-126) interaction with POPC is represented in Figure 3A. It is possible to 

conclude that in physiological conditions (pH7.4, 150mM NaCl) the peptide does not 

have a significant affinity for POPC membranes (see Figure 3A and Figure S.1.A in 

supporting information). A weak peptide interaction was detected for POPC at pH5, 

150mM NaCl (see Figure 3A and Figure S.1.B in supporting information). With acidic 

pH and low ionic strength (pH5, 10mMNaCl) an increase of RU signal intensity is 

observed (see Figure 3A and Figure S.1.C in supporting information). By comparison of 

POPC membranes with the ones containing POPG a charge effect is evident; an 

increase of peptide bound occurs in the presence of anionic phospolipid (Figure 3B). 

Interaction with POPC/Chol (33% molar chol) and POPC/GM1 (10% molar GM1) is 

not significant whatever the conditions tested (Figure 3B).  

 

A kinetic analysis was performed only with sensorgrams obtained with concentrations 

up to 25μM with POPC and POPC/POPG (20% molar POPG) surfaces in pH5 10mM 

NaCl (see Figure 4). These were the conditions where peptide/membrane interactions 

are more notorious. Using the simplest 1:1 Langmuir binding model resulted in a poor 

fit of the sensorgrams. The two-step binding model, which assumes a change in the 

structure of the peptide after initial binding to the membrane, leads to a significant 

improvement in fit quality. In this model the first step is the initial peptide interaction 

with membranes and is described by ka1 and kd1. Peptide binding is followed by 

reorientation and/or insertion of the peptide into the hydrophobic core (step two, 

described by ka2 and kd2) (for further details see references [37, 38] and references 

therein). Association rates (ka1, ka2), dissociation rates (kd1, kd2) and affinity constant 

obtained are present in Table 1. The most significant outcome of this kinetics analysis is 

the higher affinity constant for this peptide on the POPC/POPG membranes.  
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TABLE 1 Association (ka1 and ka2), dissociation (kd1 and kd2) and affinity constant (K) of PrP(106-126) 

binding to POPC and POPC/POPG (20% POPG molar percentage) lipidic bilayers in Acetate buffer, pH5 

containing 10mM NaCla 

 

Lipid type 
ka1 

(×102 1/Ms) 

kd1 

(×10-2 1/s) 

ka2 

(×10-3 1/s) 

kd2 

(×10-3 1/s) 

K 

(×104 1/s) 
χ2 

POPC 5.05 1.35 5.30 1.56 1.26 5.14 

POPC/POPG 2.14 5.69 1.37 1.17 4.39 13.9 

 
a Binding constants were obtained after fitting the SPR data from Figure 5 to a two-step binding model 

with BIAevaluation version 3.0. Experimental conditions are described in the legend of Figure 4. 

 

 

A       B 

 
Figure 4. Global analysis of SPR data PrP(106-126) in the presence of POPC and POPC/POPG (20% 

molar POPG) membranes immobilized onto a L1 chip surface. Peptide samples (5, 10, 15, 20 and 25μM) 

prepared in acetate buffer, pH5, 10mM NaCl were injected at 20μL/min flow rate. Sensorgrams were 

corrected for bulk shift effect (grey lines) and a two-step binding model was fitted to data with 

BIAevaluation version 3.0 (black lines). All the parameters were fitted globally. K is the global affinity 

constant. Other kinetic constants are presented in table 1. 

 

CD spectroscopy for PrP(106-126) – secondary structure   

Regarding the previous results with ThT and CR dyes and previous publications [8] on 

PrP(106-126) secondary structure there are evidences for the contribution of β-sheet 

secondary structure in solution. In order to study the implications of the secondary 

structure of the peptide upon interaction with membranes, CD spectroscopy was used. 
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There are three major secondary structures identifiable by CD: a random coil structure 

which is characterized by the well defined poli(Pro)II (PPII) CD spectral form with a 

strong negative band around 195nm; a α-helix conformation with minima bands at 208 

and 222nm and a positive band at 192nm; and β-sheet with a positive band below 

200nm but with a single negative band at ∼ 220nm [39]. The CD signal for β-sheet 

conformation is weaker than the other two. β-rich proteins, depending on the 

interference of random coil signal can have a CD spectra that resemble those of model 

β-sheets or a CD spectra mainly dominated by random coil conformation domains, 

depending on the total random coil contribution. [39, 40]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. CD spectra of 100μM 

PrP(106-126) in the absence and in 

the presence of POPC/POPG (20% 

molar POPG) LUVs ([Lipid]=2mM). 

Three conditions were tested: 10mM 

HEPES buffer, pH7.4, 150mM NaCl; 

20mM Acetate buffer, pH5, 150mM 

NaCl and 20mM acetate buffer, pH5, 

10mM NaCl. 
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Figure 5 show no α-helix signal. At pH5, PrP(106-126) CD spectra have a strong 

negative band around 198nm which suggests that at acidic pH the peptide has a high 

contribution of random coil structure. This characteristic band is in agreement with 

previous results obtained in similar conditions [15], where the hydrophobic core 

(AGAAAAGAVVGGLG) seems to be important in the magnitude of this negative band 

(Ala was identified as the aminoacid with more propensity to have this random-like 

structure spectrum [41]).  

Upon interaction with membranes, the effect of the positive β band convoluted with the 

198nm random coil signal causes an apparent shift to lower energies and a concomitant 

decrease in intensity (see references [41-43]). This effect can only be ascertained to an 

increase in β content because the strong α-helix component at 222nm is absent. At 

physiological condition alteration in the band position was not detected in the presence 

of liposomes. Alteration in PrP(106-126) convoluted spectra after lipid addition, at pH 5 

and not at pH 7.4 is in agreement with SPR results. 

 

PrP(106-126) does not form ionic channel in physiological conditions 

One possible explanation for PrP(106-126) toxicity is channel formation across cell 

membranes. To test pore formation we took advantage of Co2+ properties as quencher of 

NBD fluorophores (for further details see material and methods section). SPR results 

showed that PrP(106-126) prefers vesicles with negatively-charged phospholipids. 

PrP(106-126) was not able to make vesicles permeable to Co2+ ions, regardless of the 

POPG percentages (0, 5, 10, 20 and 50% molar) at physiological conditions. At acidic 

pH it was only possible to have a noteworthy effect with low ionic strength (10mM 

NaCl) and high POPG percentage (50% molar – Figure 6). These are extreme 

conditions, and Co2+ permeability can only be achieved if electrostatic interactions force 

PrP(106-126) to interact with negatively charged vesicles. To rule out the possibility of 

a specific effect of phospholipid headgroup, experiments with POPS instead of POPG 

were also performed and no difference was noticed in the capacity to induce channel 

formation. 

The presence of cholesterol, and GM1 was also tested by the use of liposomes 

composed by POPC/Chol (33% molar chol) and POPC/GM1 (10% molar GM1). No 

leakage was observed in these liposomes neither in POPC/POPG/Chol (47:20:33 molar) 

in any of the buffers tested.  
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A       B 

  
Figure 6. Cross-bilayer channel formation induced by PrP(106-126) in 100 μM POPC/POPG (50% molar 

POPG) vesicles followed by NBD quenching by Co2+. The ratio of NBD fluorescence emission (λexcitation 

= 460nm) in the absence of quencher (I0) and in presence of 20mM Co2+ (I), for the vesicles with Co2+ 

accessible to both layers (white columns) and for the vesicles where Co2+ is only accessible to the outer 

layer (black columns), is presented for different peptide concentrations. These experiments where carried 

at pH5 containing A) 150mM NaCl or B) 10mM NaCl. Comparing the results (black columns) with the 

positive control (white columns) is possible to conclude that at 150mM NaCl PrP(106126) does not form 

pores even at high peptide/lipid ratio (1:2, for 50μM PrP(106-126)). At 10mM NaCl leakage increases is 

evident with peptide concentration. 

 

The effect of PrP(106-126) on membrane potential and the pH gradient 

Peptide insertion in lipidic bilayers is likely to perturb membrane dipolar potential 

which can be monitored by means of spectral shift in the excitation spectra of Di-8-

ANEPPS [32]. This dye is located in lipid headgroup region, where is sensitive to the 

local electric field [31]. In order to screen PrP(106-126) interaction with membranes, 

25μM PrP(106-126) fresh solution or aged solution was added to liposomes with 

different lipid compositions: POPC/POPG (0, 20, 30, 40, 50 and 100% molar POPG); 

POPC/POPS (20% molar POPS); POPC/Chol (0, 18 and 33% molar Chol); POPC/GM1 

(0, 5, 10, 20 and 50% molar GM1) and a mixture of POPC/POPG/Chol/GM1 

(37:20:33:10 molar). A noticeable shift in Di-8-ANEPPS was only observed with pH5 

10mM NaCl in lipidic vesicles composed by POPC/POPG (50% molar POPG) (Figure 

7). 



Annex II  Chapter 7.  
 
 

 198 

 

 
 

Figure 7. PrP(106-126) effect in the dipolar potential of POPC/POPG (50% molar POPG) vesicles 

followed by fluorescence difference spectra of Di-8-ANEPPS-labelled vesicles. Excitation spectrum 

obtained in the absence of peptide was subtracted to the spectrum obtained in the presence of 25μM 

PrP(106-126); both spectra were normalized to the integrated areas to reflect only the spectral shift. The 

difference spectrum obtained in acetate buffer, pH5 10mM NaCl has a more pronounced shift than the 

other four difference spectra obtained with 150mM NaCl: pH 7.4, pH5 or with a pH gradient pH7.4/pH5 

(in/out) and pH5/pH7.4 (in/out). PrP(106-126) effect on dipolar potential is independent on pH or pH 

gradient but depends on ionic strength.  

 

A pH gradient can promote translocation across membrane of some peptides [44]. In the 

present work we have tested if pH gradient across endosomes/cytoplasm can promote 

PrP(106-126) interaction with membranes and induce membrane translocation. With a 

constant ionic strength (150mM NaCl), a pH gradient across membranes was created in 

POPC/POPG (50% molar POPG). Liposomes with pH5/pH7.4 (in/out) were compared 

with pH7.4/pH5 (in/out), pH7.4 (in/out) and pH5 (in/out) 150mM NaCl. No significant 

differences were detected between the samples with pH gradient and the controls (see 

Figure 7).  

 

DISCUSSION 

 

In the present work our main goal is to understand if PrP(106-126) interacts with 

biological membranes and if this possible interaction can or cannot explain toxic effect 

due to PrP(106-126). The study was carried on in model membranes and different 

membrane properties were modulated and three different buffers were tested: pH7.4 

containing 150mM NaCl to evaluate PrP(106-126) features at physiological conditions; 

pH5 containing 150mM NaCl to have insights in the possible interaction with 
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endosomes where some toxic PrP species were identified and possible PrPSc 

propagation has been suggested. A third condition, pH5 with low ionic strength (10 mM 

NaCl) was also studied for a better evaluation of charge effect and possible electrostatic 

interactions driving events.  

 

PrP(106-126) aggregation and secondary structure dependence on pH 

The existence of aggregates for PrP(106-126) was confirmed (Figure 2). CD spectra 

show a random coil organization without contribution of α-helix (Figure 5). 

Peptides/protein with different secondary structures (α-helix, α + β contributions) are 

able to interact with CR, while unfolded proteins are unable to interact with CR [45]. 

Due to lack of α-helix, binding of PrP(106-126) to CR (Figure 1) is explained by the 

presence of β-sheet structures. The relative contribution of random coil and β-sheet 

conformation in PrP(106-126) is dependent on pH and ionic strength (Figure 5). A 

higher β-sheet contribution is present at pH7.4 than at pH5.  

 

PrP(106-126) does not interact strongly with lipid membranes at physiological 

conditions 

PrP(106-126) interaction with membrane could be involved in cytotoxicity mechanisms 

by perturbation of membrane functions [46]. Interaction of PrP(106-126) with lipid 

membranes was evaluated by SPR and using fluorescence methodologies related to the 

variation of dipolar potential at the membrane. In an attempt to screen different lipidic 

systems in order to evaluate the effect of a specific phospholipid or other membrane 

components, model membranes of POPC were compared with membranes with more 

complex lipidic compositions such as POPC/POPG (20% molar POPG), POPC/Chol 

(33% molar Chol) or POPC/GM1(10% molar GM1). 

Phospholipids with a phosphatidylcholine (PC) headgroup are the major component in 

animal cell membranes [47]. This lipid forms bilayers in fluid phase at room 

temperature and can be used to represent the bulk phase in cell membrane. Negatively-

charged phospholipids are mainly present in the inner leaflet of plasma membrane [47] 

and have been implicated in amyloid fibril stimulation in vivo whatever the acidic 

headgroup [46]. This was been tested by means of membranes composed by 

POPC/POPG.   
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Rafts are specialized plasma membrane domains enriched in cholesterol and have been 

implicated in conversion of PrPC to PrPSc, where both isoform are localized. A chol 

depletion induces a decrease in PrPC-PrPSc conversion in prion infected cellular lines 

[48, 49]. The possible interaction of PrP(106-126) with these domains within plasma 

membrane was tested with vesicles composed by POPC/Chol.  

GM1 is a ganglioside abundantly expressed in neurons and concentrated in caveolae and 

lipid rafts regions and has been identified to bind specifically to Aβ peptide leading to 

the induction of β-structure [50-52] and also to induce membrane disruption [53]. The 

similarities between Aβ peptide amyloid formation in Alzheimer disease and Prion 

disease prompt us to study the effect of GM1 in PrP(106-126) membrane affinity with 

vesicles composed by POPC/GM1.  

At physiological conditions no interaction of PrP(106-126) with any of these lipidic 

membranes was detected. A lack of affinity for membranes at physiological buffer 

conditions was confirmed by membrane dipolar potential studies and leakage 

measurements. Moreover POPC/POPS was also tested, to exclude a possible specific 

interaction with PS and also a mixture of POPC/POPG/GM1/Chol. In none of these 

conditions PrP(106-126) insertion or membrane leakage was identified.  

 

PrP(106-126) only interacts with membranes at conditions where strong 

electrostatic interactions are operative 

At pH5, His residue in PrP(106-126) sequence is ionized and the formal net charge of 

peptide increases from +2 to +3 [6]. With pH5, 150mM NaCl a slight increase in 

membrane affinity was detected by SPR for POPC membranes. This affinity was greatly 

increased in the presence of POPG (negatively-charged phospholipid) and with low 

ionic strength. In such conditions, electrostatic interactions are enhanced due to 

electrostatic interactions between the positively charged peptide and negatively charged 

membrane. Even though, the RU obtained by SPR are lower than values verified for 

other peptides known to interact with membranes (values between 1000-10000 were 

obtained for peptides with similar length with the same sensor chip, [54, 55] compared 

to 100-250 for PrP(106-126) – Figure 4B). Nevertheless no insertion or pore formation 

was detected. 

It was suggested that amyloid formation is stimulated in the presence of hydrophobic 

environment at acidic pH [56]. PrP(106-126) at acidic pH and low ionic strength has a 
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lower propensity for β-sheet conformation, although an increase in β-structures was 

verified in the presence of lipidic vesicles (see Figure 6). SPR shows that a two state 

model kinetics of PrP(106-126) interaction with membranes at pH5 10mM NaCl are 

adequate to describe the data. Based on the results obtained, the two states may be 

identified: 1st) peptide interaction with membrane interface (governed by electrostatic 

interactions between peptide and membrane) and 2nd) the peptide undergoes a secondary 

structure modification at the bilayer surface; no insertion was detected.   

PrP(106-126) does not bind specifically with ganglioside GM1. GM1 has tendency to 

form microdomains in PC membranes [57, 58]. These domains are probably hindering 

the interaction of PrP(106-126) with POPC due to sugar headgroups stearic constraints, 

which explains the lower affinity for POPC/GM1 than to POPC at acidic pH (see Figure 

3B).  

The presence of Chol also reduces the affinity of PrP(106-126) to POPC membranes. A 

decrease in peptide affinity can arise from an increase in membrane viscosity due to 

Chol presence [59].  

Membrane insertion and channel formation was only detected with model membranes 

composed by POPC/POPG (50% molar POPG) at pH5 containing 10mM NaCl. In these 

conditions the membrane is strongly negatively charged and the low ionic strength is 

not enough to prevent a strong electrostatic attraction to the positively charged peptide. 

Regarding the possible importance of endosomes in PrP propagation we decided to 

mimic the pH gradient in cytoplasm/endosome environment. The pH gradient: pH7.4/5 

(in/out) or pH 5/7.4 (in/out) could eventually be a driving force for peptide insertion in 

the membrane, as observed for other peptides [44]. However for PrP(106-126) the pH 

gradient does not lead insertion (see Figure 7).  

 

Altogether peptide membrane studies show that PrP does not have affinity for lipidic 

membranes at conditions similar to the cytoplasmatic environment. At conditions 

similar to endosomal environment PrP(106-126) has weak interaction with membrane 

and in these conditions insertion or pore formation were not detected. Only in extreme 

conditions insertion and leakage were detected.   

The lack of affinity for lipid membrane can be understood based on thermodynamics of 

lipid-peptide interactions [60] and the interfacial hydrophobicity scale published by 

White and Wimley [61]. The interaction of a peptide with the lipid membrane can be 
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divided into three thermodynamic steps governed by electrostatic forces, hydrogen bond 

formation and hydrophobic interactions. The first step is initiated by the electrostatic 

attraction between peptide and membranes; the second step involves a transition of the 

peptide into the plane of binding, which depends on the hydrophobic/hydrophilic 

balance of the molecules groups and forces involved; and the third step involves a 

conformation modification of the bound peptide [60]. Electrostatic attraction is 

responsible for increasing the peptide concentration in membrane vicinity, however, 

even in conditions were PrP(160-126) charge can be prominent and a concentration of 

peptide occurs, the interfacial partitioning, mainly governed by hydrophobic effect, is 

not favourable considering the free energy for interfacial transfer of the overall PrP(106-

126) sequence (see Figure 8). An increase in partition at low ionic strength results from 

the increase in peptide concentration close to membrane environment.       

 
 

 

Figure 8. Theoretical analysis of PrP(106-126) 

partition into interfacial membrane region 

based free energy change ΔGwif from water 

transfer to lipid membrane interface (see 

reference [61]). Residues with Values ΔGwif <0 

have tendency to the membrane water-

interface. 

 

 

Contextualization of present results and biological relevance of PrP(106-126) 

Prion disease is initiated by conversion of physiological PrPC, a protein abundantly 

expressed in mammalian brain, into a pathological isoform PrPSc, which accumulates 

within the brain as highly toxic insoluble aggregates [1]. The neurodegeneration rate 

verified in Prion disease cannot be explained solely by PrPSc formation and deposition 

[6]; some other PrP toxic species have been identified inside the cells, which seem to 

have an important role in disease propagation and transmission after infection by PrPSc 

[6]. A neurotoxic PrP fragment, PrP(106-126) with physico-chemical properties similar 

to PrPSc and present in all abnormal toxic species within the patient brain, has been used 

as a model of PrPSc and to study the possible mechanism in disease propagation and 

transmission [8-13]. 
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PrP(106-126) toxicity remains controversial in literature. A mechanism by a non-

selective pore formation responsible for ionic gradient destabilization was proposed to 

explain PrP(106-126) neurotoxicity [16]. However channel formation was not 

reproduced in some reports [18] and neurotoxicity of this peptide was verified only in 

the presence of PrPC [62, 63].  

The present work shows that PrP(106-126), in conditions that mimic cytoplasmic 

environment, lacks propensity to interact with lipidic membranes and to form pores, 

whatever the lipid composition tested. Such observation indicates that toxic effects of 

PrP(106-126) cannot be explained by cell membrane leakage. Alternatively, it can be 

hypothesized that the PrP(106126) toxic effects occur inside the cell. Such suggestion 

implies PrP(106-126) cellular internalization, which is a phenomenon that has been 

verified for some peptides belonging to the cell-penetrating peptides (CPPs) family (for 

further information see reference [64]). The uptake of CPP can follow two routes: one is 

physically-mediated and the other is dependent on endosomal pathway. Both routes 

require peptide-membrane interactions as the first step [65] . With the lack of affinity of 

PrP(106-126) for lipid membranes both routes for cell entry are discarded, unless 

PrP(106-126) cellular internalization occurs via a mechanism mediated by the presence 

of a physiological PrP (e.g. mediated by caveolae or rafts where PrP is localized in cell 

surface). The N-terminal domain of PrP with a non-cleaved signal sequence has CPP 

properties and can be responsible by internalization of sizeable cargo into cells [66]. 

Implication in PrP trafficking as well as in prion infectivity has been suggested [66]. A 

possible internalization of PrP(106-126) in cells mediated by this N-terminal domain of 

PrP could explain possible toxic effects inside cells after internalization.  

In the present work we have tested if at endosomal environment PrP(106-126) has 

affinity for the membrane. An increased propensity to interact with lipid bilayer (see 

Figure 3A) and to form β-sheet structures in membrane vicinity (see Figure 5) was 

shown, however this does not represent a significant membrane insertion (see Figure 7) 

or an improved tendency to form transmembrane pore. This is in agreement with 

previous finding that the fibrilogenic properties alone are not sufficient for neurotoxicity 

as verified by other PrP fragments able to assemble into filaments but with lack of toxic 

effects [10]. Moreover, even with a pH gradient across membrane, similar to 

endosomal/cytoplasmic interface, insertion in membrane was not identified. Therefore, 

in the case PrP(106-126) fragment endosomal internalization, the toxic effect cannot be 
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explained by acidic pH. Altogether is possible to rule out the pore formation/or any 

direct effect on membrane properties to explain PrP(106-126) toxicity.  

Our results corroborate with previous reports where pore formation was not detected 

[18] reinforcing the hypothesis that PrPC is necessary to mediate PrP(106-126) toxicity 

[13]. One possible explanation is the formation of heterodimers of PrPC with PrP(106-

126) that stimulate PrPSc conversion into a pathological channel formation and manifest 

neurotoxicity or induce formation of abnormal PrP species upon interaction with PrPC. 

Formation of abnormal PrP species induced by PrP(106-126) was not confirmed [13]. 

Instead, it was suggested that this peptide may kill neurons by modification/inhibition of 

a physiological function of PrPC. In this hypothesis PrP(106-126) toxicity is related to a 

loss of PrP function instead of a gain of toxic properties in the presence of PrP(106-126) 

[13]. 

Physiological function of PrP is still in debate in literature. A SOD activity has been 

attributed to PrPC [67, 68] and recent reports suggest that PrP(106-126) inhibits SOD 

activity of PrPC [69]. Other hypothesis is that PrPC is important on β-secretase activity, 

which is responsible for Aβ peptide formation as in Alzheimer disease [70]. PrPC has 

been implicated in signal pathway, namely a possible blockage of a signal mediated by 

PrPC was also proposed to explain PrP(106-126) toxic effects [13]. 
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SUPPORTING INFORMATION 

 

Bulk shift correction 

Equivalent buffer composition in the sample and in running buffer is required, although 

exact matching was difficult to achieve due to varying peptide concentrations in the 

samples. Peptide samples were prepared by diluting stock solution in the running buffer. 

Because stock solution was in H2O sterile, the final concentration of buffer varies with 

peptide concentration, which results in different refractive indexes and thus vertical 

jumps in the responses upon peptide addition are observed in sensorgram curves (see 

Figure S.1). In order to compare the data analysis for the different peptide 

concentrations in different buffers studied, a bulk shift correction was applied to all sets 

of sensorgrams as suggested by good practice guidelines [71]. Examples of this effect 

and the correction of sensorgrams obtained with POPC are shown in Figure S.1.  

 

 
 

 

 

 

 

 

 

 

 

Figure S.1. Bulk refractive index effect on sensorgrams obtained in the study of PrP(106-126) interaction 

with POPC membranes immobilized on the surface of L1 chip. Sensorgrams obtained for PrP(106-126) 

interaction with lipidic membranes are affected by bulk refractive index, the response observed during 

injection sample in Biacore results from a combination of peptide binding to the sensor and differences 

between refractive index between samples and running buffer. To correct this effect, refractive indexes 

were calculated by the signal difference between the end of injection and a report point clear of bulk 

effects (in this case 2s after injection end). Refractive indexes were subtracted from the association curve. 

Sensograms obtained with different PrP(10-126) samples (0-50μM) injections onto POPC lipidic 

membrane at three different conditions are represented: A) HEPES buffer, pH7.4 with 150mM NaCl; B) 

Acetate buffer, pH5 with 150mMNaCl and C) Acetate buffer, pH5 with 10mMNaCl. At pH7.4 with 

150mM NaCl there is not a concentration effect, the signal is low and comparable with buffer signal. 

Peptide binding in this buffer is neglected.   
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A) pH7.4, 150mM NaCl 

 
 

 

 

 

 

 

 

 

 

 

  

B) pH5 150mM NaCl 

  

 

 

C) pH510mMNaCl 
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Evaluation of mass transport effect on SPR sensorgrams  

The kinetic in a sensorgram is a result of peptide molecules diffusion from the bulk 

solution to the surface and the peptide-membrane binding rate. The ideal situation is 

when the transport is faster than the binding and kinetic is not affected by molecule 

diffusion [72]. When the peptide/membrane binding rate is faster than peptide diffusion 

to the surface, or when the rate of these two processes are of similar magnitude kinetic 

an accurate binding rate constant is not possible to calculate unless this diffusion effect 

is accounted for. This effect is commonly designated by mass transport effect and its 

magnitude is dependent on the peptide flow rate [71]. In order to evaluate if kinetics is 

or not affected by this effect, sensograms obtained at different flow rates should be 

compared. In this particular case, peptide injections at 5μL/min and 20μL/min flow 

rates were compared. Peptide-membrane binding rate is highest at the beginning of the 

injection, while mass transport rate is constant through the injection since the peptide 

concentration is constant in solution. The relative contribution of mass transport rate on 

biochemical interaction varies during peptide injection. Diffusion effects have a higher 

contribution to the overall kinetics immediately after injection start. Comparing the 

initial rates for the sensograms obtained at 5μL/min vs. 20μL/min (Figure S.2) it was 

possible to conclude that the flow rate does not affect the kinetic. Binding rate for this 

system is not affected by mass transport effect; even though, the faster flow rate was 

chosen to carry on the experiments in order to avoid unspecific interactions or other 

effects.  
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Figure S.2. Evaluation of mass transport effect on PrP(106-126) interaction with POPC/POPG(4:1) 

membranes immobilized on the surface of L1 chip, pH 5 with 10mM NaCl. Two peptide injection flow 

rates, 5μL/min and 20μL/min, were compared to test if kinetic binding is affected by mass transport. 

Initial peptide binding rate was calculated in sensorgrams (corrected for bulk refractive index effect) by 

the initial slope of the sensogram using a report point placed shortly after the injection start (2s). By 

calculation of initial binding rates obtained within a peptide range concentration of 0-50μM it was 

possible to verify that initial binding is dependent on peptide concentration but independent on flow rate. 

No mass transport effects were detected for PrP(106-126). 

 

REFERENCES 
 
1 BIACORE (2001) Biacore concentration analysis handbook. Version AA. Biacore AB, Upsala 
 
2 Goldstein, B., Coombs, D., He, X., Pineda, A. R. and Wofsy, C. (1999) The influence of 

transport on the kinetics of binding to surface receptors: application to cells and BIAcore. J Mol 
Recognit 12, 293-299 

 
 
 



 214 

 



 

   

 

 

 

 

 

 

 

Chapter 8 
 
 

 Bibliography 
 



 

 

 
 
 
 



Chapter 8.  Bibliography 
 
 

  217

 

 

Chapter 8.   

 

 

Bibliography 

 

 
1 Wadia, J. S., Becker-Hapak, M. and Dowdy, S. F. (2002) Protein Transport. In Cell-

penetrating peptides, processes and applications (Langel, Ü., ed.), pp. 365-375, CRC 

Press, New York 

 

2 Gao, X., Kim, K. S. and Liu, D. (2007) Nonviral gene delivery: what we know and what 

is next. Aaps J 9, E92-104 

 

3 Burton, E. A., Fink, D. J. and Glorioso, J. C. (2002) Gene delivery using herpes simplex 

virus vectors. DNA Cell Biol 21, 915-936 

 

4 Lai, C. M., Lai, Y. K. and Rakoczy, P. E. (2002) Adenovirus and adeno-associated virus 

vectors. DNA Cell Biol 21, 895-913 

 

5 Quinonez, R. and Sutton, R. E. (2002) Lentiviral vectors for gene delivery into cells. 

DNA Cell Biol 21, 937-951 

 



Bibliography  Chapter 8. 
 
 

 218 

6 Smyth Templeton, N. (2002) Liposomal delivery of nucleic acids in vivo. DNA Cell 

Biol 21, 857-867 

 

7 Celis, J. E. (1984) Microinjection of somatic cells with micropipettes: comparison with 

other transfer techniques. Biochem J 223, 281-291 

 

8 Stephens, D. J. and Pepperkok, R. (2001) The many ways to cross the plasma 

membrane. Proc Natl Acad Sci U S A 98, 4295-4298 

 

9 Neumann, E., Schaefer-Ridder, M., Wang, Y. and Hofschneider, P. H. (1982) Gene 

transfer into mouse lyoma cells by electroporation in high electric fields. Embo J 1, 

841-845 

 

10 Henshaw, J. W. and Yuan, F. (2007) Field distribution and DNA transport in solid 

tumors during electric field-mediated gene delivery. J Pharm Sci 

 

11 Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., Northrop, 

J. P., Ringold, G. M. and Danielsen, M. (1987) Lipofection: a highly efficient, lipid-

mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84, 7413-7417 

 

12 Hashida, M., Kawakami, S. and Yamashita, F. (2005) Lipid carrier systems for targeted 

drug and gene delivery. Chem Pharm Bull (Tokyo) 53, 871-880 

 

13 Frankel, A. D. and Pabo, C. O. (1988) Cellular uptake of the tat protein from human 

immunodeficiency virus. Cell 55, 1189-1193 

 

14 Joliot, A., Pernelle, C., Deagostini-Bazin, H. and Prochiantz, A. (1991) Antennapedia 

homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A 88, 1864-

1868 

 

15 Vives, E., Brodin, P. and Lebleu, B. (1997) A truncated HIV-1 Tat protein basic domain 

rapidly translocates through the plasma membrane and accumulates in the cell nucleus. 

J Biol Chem 272, 16010-16017 

 



Chapter 8.  Bibliography 
 
 

  219

16 Derossi, D., Joliot, A. H., Chassaing, G. and Prochiantz, A. (1994) The third helix of 

the Antennapedia homeodomain translocates through biological membranes. J Biol 

Chem 269, 10444-10450 

 

17 Theodore, L., Derossi, D., Chassaing, G., Llirbat, B., Kubes, M., Jordan, P., Chneiweiss, 

H., Godement, P. and Prochiantz, A. (1995) Intraneuronal delivery of protein kinase C 

pseudosubstrate leads to growth cone collapse. J Neurosci 15, 7158-7167 

 

18 Fawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L. L., Pepinsky, B. and Barsoum, J. 

(1994) Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U 

S A 91, 664-668 

 

19 Ezhevsky, S. A., Nagahara, H., Vocero-Akbani, A. M., Gius, D. R., Wei, M. C. and 

Dowdy, S. F. (1997) Hypo-phosphorylation of the retinoblastoma protein (pRb) by 

cyclin D:Cdk4/6 complexes results in active pRb. Proc Natl Acad Sci U S A 94, 10699-

10704 

 

20 Lindgren, M., Hallbrink, M., Prochiantz, A. and Langel, U. (2000) Cell-penetrating 

peptides. Trends Pharmacol Sci 21, 99-103 

 

21 Prochiantz, A. (2000) Messenger proteins: homeoproteins, TAT and others. Curr Opin 

Cell Biol 12, 400-406 

 

22 Schwarze, S. R. and Dowdy, S. F. (2000) In vivo protein transduction: intracellular 

delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci 21, 

45-48 

 

23 Schwarze, S. R., Ho, A., Vocero-Akbani, A. and Dowdy, S. F. (1999) In vivo protein 

transduction: delivery of a biologically active protein into the mouse. Science 285, 

1569-1572 

 

24 Elmquist, A., Lindgren, M., Bartfai, T. and Langel, U. (2001) VE-cadherin-derived cell-

penetrating peptide, pVEC, with carrier functions. Exp Cell Res 269, 237-244 

 

25 Elliott, G. and O'Hare, P. (1997) Intercellular trafficking and protein delivery by a 

herpesvirus structural protein. Cell 88, 223-233 



Bibliography  Chapter 8. 
 
 

 220 

 

26 Hallbrink, M., Floren, A., Elmquist, A., Pooga, M., Bartfai, T. and Langel, U. (2001) 

Cargo delivery kinetics of cell-penetrating peptides. Biochim Biophys Acta 1515, 101-

109 

 

27 Futaki, S., Suzuki, T., Ohashi, W., Yagami, T., Tanaka, S., Ueda, K. and Sugiura, Y. 

(2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides 

having potential as carriers for intracellular protein delivery. J Biol Chem 276, 5836-

5840 

 

28 Langel, U., Pooga, M., Kairane, C., Zilmer, M. and Bartfai, T. (1996) A galanin-

mastoparan chimeric peptide activates the Na+,K(+)-ATPase and reverses its inhibition 

by ouabain. Regul Pept 62, 47-52 

 

29 Morris, M. C., Vidal, P., Chaloin, L., Heitz, F. and Divita, G. (1997) A new peptide 

vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids 

Res 25, 2730-2736 

 

30 Scheller, A., Oehlke, J., Wiesner, B., Dathe, M., Krause, E., Beyermann, M., Melzig, M. 

and Bienert, M. (1999) Structural requirements for cellular uptake of alpha-helical 

amphipathic peptides. J Pept Sci 5, 185-194 

 

31 Mitchell, D. J., Kim, D. T., Steinman, L., Fathman, C. G. and Rothbard, J. B. (2000) 

Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept 

Res 56, 318-325 

 

32 Hariton-Gazal, E., Feder, R., Mor, A., Graessmann, A., Brack-Werner, R., Jans, D., 

Gilon, C. and Loyter, A. (2002) Targeting of nonkaryophilic cell-permeable peptides 

into the nuclei of intact cells by covalently attached nuclear localization signals. 

Biochemistry 41, 9208-9214 

 

33 Chaloin, L., Vidal, P., Lory, P., Mery, J., Lautredou, N., Divita, G. and Heitz, F. (1998) 

Design of carrier peptide-oligonucleotide conjugates with rapid membrane translocation 

and nuclear localization properties. Biochem Biophys Res Commun 243, 601-608 

 



Chapter 8.  Bibliography 
 
 

  221

34 Magzoub, M. and Graslund, A. (2004) Cell-penetrating peptides: from inception to 

application. Q Rev Biophys 37, 147-195 

 

35 Harada, H., Hiraoka, M. and Kizaka-Kondoh, S. (2002) Antitumor effect of TAT-

oxygen-dependent degradation-caspase-3 fusion protein specifically stabilized and 

activated in hypoxic tumor cells. Cancer Res 62, 2013-2018 

 

36 Klekotka, P. A., Santoro, S. A., Ho, A., Dowdy, S. F. and Zutter, M. M. (2001) 

Mammary epithelial cell-cycle progression via the alpha(2)beta(1) integrin: unique and 

synergistic roles of the alpha(2) cytoplasmic domain. Am J Pathol 159, 983-992 

 

37 Rojas, M., Donahue, J. P., Tan, Z. and Lin, Y. Z. (1998) Genetic engineering of proteins 

with cell membrane permeability. Nat Biotechnol 16, 370-375 

 

38 Borsello, T., Clarke, P. G., Hirt, L., Vercelli, A., Repici, M., Schorderet, D. F., 

Bogousslavsky, J. and Bonny, C. (2003) A peptide inhibitor of c-Jun N-terminal kinase 

protects against excitotoxicity and cerebral ischemia. Nat Med 9, 1180-1186 

 

39 Giorello, L., Clerico, L., Pescarolo, M. P., Vikhanskaya, F., Salmona, M., Colella, G., 

Bruno, S., Mancuso, T., Bagnasco, L., Russo, P. and Parodi, S. (1998) Inhibition of 

cancer cell growth and c-Myc transcriptional activity by a c-Myc helix 1-type peptide 

fused to an internalization sequence. Cancer Res 58, 3654-3659 

 

40 Rojas, M., Yao, S., Donahue, J. P. and Lin, Y. Z. (1997) An alternative to 

phosphotyrosine-containing motifs for binding to an SH2 domain. Biochem Biophys 

Res Commun 234, 675-680 

 

41 Cutrona, G., Carpaneto, E. M., Ulivi, M., Roncella, S., Landt, O., Ferrarini, M. and 

Boffa, L. C. (2000) Effects in live cells of a c-myc anti-gene PNA linked to a nuclear 

localization signal. Nat Biotechnol 18, 300-303 

 

42 Moulton, H. M., Hase, M. C., Smith, K. M. and Iversen, P. L. (2003) HIV Tat peptide 

enhances cellular delivery of antisense morpholino oligomers. Antisense Nucleic Acid 

Drug Dev 13, 31-43 

 



Bibliography  Chapter 8. 
 
 

 222 

43 Allinquant, B., Hantraye, P., Mailleux, P., Moya, K., Bouillot, C. and Prochiantz, A. 

(1995) Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro. 

J Cell Biol 128, 919-927 

 

44 Pooga, M., Soomets, U., Hallbrink, M., Valkna, A., Saar, K., Rezaei, K., Kahl, U., Hao, 

J. X., Xu, X. J., Wiesenfeld-Hallin, Z., Hokfelt, T., Bartfai, T. and Langel, U. (1998) 

Cell penetrating PNA constructs regulate galanin receptor levels and modify pain 

transmission in vivo. Nat Biotechnol 16, 857-861 

 

45 Simeoni, F., Morris, M. C., Heitz, F. and Divita, G. (2003) Insight into the mechanism 

of the peptide-based gene delivery system MPG: implications for delivery of siRNA 

into mammalian cells. Nucleic Acids Res 31, 2717-2724 

 

46 Simeoni, F., Morris, M. C., Heitz, F. and Divita, G. (2005) Peptide-based strategy for 

siRNA delivery into mammalian cells. Methods Mol Biol 309, 251-260 

 

47 Ignatovich, I. A., Dizhe, E. B., Pavlotskaya, A. V., Akifiev, B. N., Burov, S. V., Orlov, 

S. V. and Perevozchikov, A. P. (2003) Complexes of plasmid DNA with basic domain 

47-57 of the HIV-1 Tat protein are transferred to mammalian cells by endocytosis-

mediated pathways. J Biol Chem 278, 42625-42636 

 

48 Rudolph, C., Plank, C., Lausier, J., Schillinger, U., Muller, R. H. and Rosenecker, J. 

(2003) Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of 

transferring plasmid DNA into cells. J Biol Chem 278, 11411-11418 

 

49 Lewin, M., Carlesso, N., Tung, C. H., Tang, X. W., Cory, D., Scadden, D. T. and 

Weissleder, R. (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo 

tracking and recovery of progenitor cells. Nat Biotechnol 18, 410-414 

 

50 Torchilin, V. P., Rammohan, R., Weissig, V. and Levchenko, T. S. (2001) TAT peptide 

on the surface of liposomes affords their efficient intracellular delivery even at low 

temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci U S A 98, 

8786-8791 

 



Chapter 8.  Bibliography 
 
 

  223

51 Bucci, M., Gratton, J. P., Rudic, R. D., Acevedo, L., Roviezzo, F., Cirino, G. and Sessa, 

W. C. (2000) In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide 

synthesis and reduces inflammation. Nat Med 6, 1362-1367 

 

52 Rousselle, C., Clair, P., Lefauconnier, J. M., Kaczorek, M., Scherrmann, J. M. and 

Temsamani, J. (2000) New advances in the transport of doxorubicin through the blood-

brain barrier by a peptide vector-mediated strategy. Mol Pharmacol 57, 679-686 

 

53 Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G. and Prochiantz, A. 

(1996) Cell internalization of the third helix of the Antennapedia homeodomain is 

receptor-independent. J Biol Chem 271, 18188-18193 

 

54 Suzuki, T., Futaki, S., Niwa, M., Tanaka, S., Ueda, K. and Sugiura, Y. (2002) Possible 

existence of common internalization mechanisms among arginine-rich peptides. J Biol 

Chem 277, 2437-2443 

 

55 Lundberg, M. and Johansson, M. (2001) Is VP22 nuclear homing an artifact? Nat 

Biotechnol 19, 713-714 

 

56 Lundberg, M. and Johansson, M. (2002) Positively charged DNA-binding proteins 

cause apparent cell membrane translocation. Biochem Biophys Res Commun 291, 367-

371 

 

57 Melan, M. A. and Sluder, G. (1992) Redistribution and differential extraction of soluble 

proteins in permeabilized cultured cells. Implications for immunofluorescence 

microscopy. J Cell Sci 101 ( Pt 4), 731-743 

 

58 Thoren, P. E., Persson, D., Isakson, P., Goksor, M., Onfelt, A. and Norden, B. (2003) 

Uptake of analogs of penetratin, Tat(48-60) and oligoarginine in live cells. Biochem 

Biophys Res Commun 307, 100-107 

 

59 Drin, G., Cottin, S., Blanc, E., Rees, A. R. and Temsamani, J. (2003) Studies on the 

internalization mechanism of cationic cell-penetrating peptides. J Biol Chem 278, 

31192-31201 

 



Bibliography  Chapter 8. 
 
 

 224 

60 Richard, J. P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., Gait, M. J., 

Chernomordik, L. V. and Lebleu, B. (2003) Cell-penetrating peptides. A reevaluation of 

the mechanism of cellular uptake. J Biol Chem 278, 585-590 

 

61 Potocky, T. B., Menon, A. K. and Gellman, S. H. (2003) Cytoplasmic and nuclear 

delivery of a TAT-derived peptide and a beta-peptide after endocytic uptake into HeLa 

cells. J Biol Chem 278, 50188-50194 

 

62 Fittipaldi, A., Ferrari, A., Zoppe, M., Arcangeli, C., Pellegrini, V., Beltram, F. and 

Giacca, M. (2003) Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat 

fusion proteins. J Biol Chem 278, 34141-34149 

 

63 Console, S., Marty, C., Garcia-Echeverria, C., Schwendener, R. and Ballmer-Hofer, K. 

(2003) Antennapedia and HIV transactivator of transcription (TAT) "protein 

transduction domains" promote endocytosis of high molecular weight cargo upon 

binding to cell surface glycosaminoglycans. J Biol Chem 278, 35109-35114 

 

64 Lundberg, M., Wikstrom, S. and Johansson, M. (2003) Cell surface adherence and 

endocytosis of protein transduction domains. Mol Ther 8, 143-150 

 

65 Fischer, R., Kohler, K., Fotin-Mleczek, M. and Brock, R. (2004) A stepwise dissection 

of the intracellular fate of cationic cell-penetrating peptides. J Biol Chem 279, 12625-

12635 

 

66 Fuchs, S. M. and Raines, R. T. (2004) Pathway for polyarginine entry into mammalian 

cells. Biochemistry 43, 2438-2444 

 

67 Nakase, I., Niwa, M., Takeuchi, T., Sonomura, K., Kawabata, N., Koike, Y., Takehashi, 

M., Tanaka, S., Ueda, K., Simpson, J. C., Jones, A. T., Sugiura, Y. and Futaki, S. (2004) 

Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin 

rearrangement. Mol Ther 10, 1011-1022 

 

68 Wadia, J. S., Stan, R. V. and Dowdy, S. F. (2004) Transducible TAT-HA fusogenic 

peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat 

Med 10, 310-315 

 



Chapter 8.  Bibliography 
 
 

  225

69 Vendeville, A., Rayne, F., Bonhoure, A., Bettache, N., Montcourrier, P. and Beaumelle, 

B. (2004) HIV-1 Tat enters T cells using coated pits before translocating from acidified 

endosomes and eliciting biological responses. Mol Biol Cell 15, 2347-2360 

 

70 Richard, J. P., Melikov, K., Brooks, H., Prevot, P., Lebleu, B. and Chernomordik, L. V. 

(2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent 

endocytosis and heparan sulfate receptors. J Biol Chem 280, 15300-15306 

 

71 Renigunta, A., Krasteva, G., Konig, P., Rose, F., Klepetko, W., Grimminger, F., Seeger, 

W. and Hanze, J. (2006) DNA transfer into human lung cells is improved with Tat-

RGD peptide by Caveoli-mediated endocytosis. Bioconjug Chem 17, 327-334 

 

72 Vives, E., Granier, C., Prevot, P. and Lebleu, B. (1997) Structure-activity relationship 

study of the plasma membrane translocating potential of a short peptide from HIV-1 Tat 

protein. Lett Pept Sci 4, 429-436 

 

73 Wender, P. A., Mitchell, D. J., Pattabiraman, K., Pelkey, E. T., Steinman, L. and 

Rothbard, J. B. (2000) The design, synthesis, and evaluation of molecules that enable or 

enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A 97, 

13003-13008 

 

74 Ghibaudi, E., Boscolo, B., Inserra, G., Laurenti, E., Traversa, S., Barbero, L. and Ferrari, 

R. P. (2005) The interaction of the cell-penetrating peptide penetratin with heparin, 

heparansulfates and phospholipid vesicles investigated by ESR spectroscopy. J Pept Sci 

11, 401-409 

 

75 Letoha, T., Gaal, S., Somlai, C., Venkei, Z., Glavinas, H., Kusz, E., Duda, E., Czajlik, 

A., Petak, F. and Penke, B. (2005) Investigation of penetratin peptides. Part 2. In vitro 

uptake of penetratin and two of its derivatives. J Pept Sci 11, 805-811 

 

76 Letoha, T., Kusz, E., Papai, G., Szabolcs, A., Kaszaki, J., Varga, I., Takacs, T., Penke, 

B. and Duda, E. (2006) In vitro and in vivo NF-{kappa}B inhibitory effects of the cell-

penetrating penetratin Mol Pharmacol 69, 2027-2036 

 



Bibliography  Chapter 8. 
 
 

 226 

77 Magzoub, M., Pramanik, A. and Graslund, A. (2005) Modeling the endosomal escape 

of cell-penetrating peptides: transmembrane pH gradient driven translocation across 

phospholipid bilayers. Biochemistry 44, 14890-14897 

 

78 Terrone, D., Sang, S. L., Roudaia, L. and Silvius, J. R. (2003) Penetratin and related 

cell-penetrating cationic peptides can translocate across lipid bilayers in the presence of 

a transbilayer potential. Biochemistry 42, 13787-13799 

 

79 Thoren, P. E., Persson, D., Karlsson, M. and Norden, B. (2000) The antennapedia 

peptide penetratin translocates across lipid bilayers - the first direct observation. FEBS 

Lett 482, 265-268 

 

80 Mann, D. A. and Frankel, A. D. (1991) Endocytosis and targeting of exogenous HIV-1 

Tat protein. Embo J 10, 1733-1739 

 

81 Rothbard, J. B., Jessop, T. C., Lewis, R. S., Murray, B. A. and Wender, P. A. (2004) 

Role of membrane potential and hydrogen bonding in the mechanism of translocation of 

guanidinium-rich peptides into cells. J Am Chem Soc 126, 9506-9507 

 

82 Abes, S., Turner, J. J., Ivanova, G. D., Owen, D., Williams, D., Arzumanov, A., Clair, 

P., Gait, M. J. and Lebleu, B. (2007) Efficient splicing correction by PNA conjugation 

to an R6-Penetratin delivery peptide. Nucleic Acids Res 35, 4495-4502 

 

83 Bogoyevitch, M. A., Kendrick, T. S., Ng, D. C. and Barr, R. K. (2002) Taking the cell 

by stealth or storm? Protein transduction domains (PTDs) as versatile vectors for 

delivery. DNA Cell Biol 21, 879-894 

 

84 Morris, M. C., Depollier, J., Mery, J., Heitz, F. and Divita, G. (2001) A peptide carrier 

for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol 19, 

1173-1176 

 

85 Peluso, J. J., Pappalardo, A. and Fernandez, G. (2001) Basic fibroblast growth factor 

maintains calcium homeostasis and granulosa cell viability by stimulating calcium 

efflux via a PKC delta-dependent pathway. Endocrinology 142, 4203-4211 

 



Chapter 8.  Bibliography 
 
 

  227

86 Zhou, J. and Hsieh, J. T. (2001) The inhibitory role of DOC-2/DAB2 in growth factor 

receptor-mediated signal cascade. DOC-2/DAB2-mediated inhibition of ERK 

phosphorylation via binding to Grb2. J Biol Chem 276, 27793-27798 

 

87 Zhang, Q., Nottke, A. and Goodman, R. H. (2005) Homeodomain-interacting protein 

kinase-2 mediates CtBP phosphorylation and degradation in UV-triggered apoptosis. 

Proc Natl Acad Sci U S A 102, 2802-2807 

 

88 Jurney, W. M., Gallo, G., Letourneau, P. C. and McLoon, S. C. (2002) Rac1-mediated 

endocytosis during ephrin-A2- and semaphorin 3A-induced growth cone collapse. J 

Neurosci 22, 6019-6028 

 

89 Bandichhor, R., Petrescu, A. D., Vespa, A., Kier, A. B., Schroeder, F. and Burgess, K. 

(2006) Synthesis of a new water-soluble rhodamine derivative and application to 

protein labeling and intracellular imaging. Bioconjug Chem 17, 1219-1225 

 

90 Jiang, J., Borisenko, G. G., Osipov, A., Martin, I., Chen, R., Shvedova, A. A., Sorokin, 

A., Tyurina, Y. Y., Potapovich, A., Tyurin, V. A., Graham, S. H. and Kagan, V. E. 

(2004) Arachidonic acid-induced carbon-centered radicals and phospholipid 

peroxidation in cyclo-oxygenase-2-transfected PC12 cells. J Neurochem 90, 1036-1049 

 

91 Sebbagh, M., Hamelin, J., Bertoglio, J., Solary, E. and Breard, J. (2005) Direct cleavage 

of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-

independent manner. J Exp Med 201, 465-471 

 

92 Wu, Y., Wood, M. D., Tao, Y. and Katagiri, F. (2003) Direct delivery of bacterial 

avirulence proteins into resistant Arabidopsis protoplasts leads to hypersensitive cell 

death. Plant J 33, 131-137 

 

93 Jain, A., Brady-Kalnay, S. M. and Bellamkonda, R. V. (2004) Modulation of Rho 

GTPase activity alleviates chondroitin sulfate proteoglycan-dependent inhibition of 

neurite extension. J Neurosci Res 77, 299-307 

 

94 Buster, D., McNally, K. and McNally, F. J. (2002) Katanin inhibition prevents the 

redistribution of gamma-tubulin at mitosis. J Cell Sci 115, 1083-1092 

 



Bibliography  Chapter 8. 
 
 

 228 

95 Coulpier, M., Anders, J. and Ibanez, C. F. (2002) Coordinated activation of 

autophosphorylation sites in the RET receptor tyrosine kinase: importance of tyrosine 

1062 for GDNF mediated neuronal differentiation and survival. J Biol Chem 277, 1991-

1999 

 

96 Gallo, G., Yee, H. F., Jr. and Letourneau, P. C. (2002) Actin turnover is required to 

prevent axon retraction driven by endogenous actomyosin contractility. J Cell Biol 158, 

1219-1228 

 

97 Ikari, A., Nakano, M., Kawano, K. and Suketa, Y. (2002) Up-regulation of sodium-

dependent glucose transporter by interaction with heat shock protein 70. J Biol Chem 

277, 33338-33343 

 

98 Remacle, A. G., Rozanov, D. V., Baciu, P. C., Chekanov, A. V., Golubkov, V. S. and 

Strongin, A. Y. (2005) The transmembrane domain is essential for the microtubular 

trafficking of membrane type-1 matrix metalloproteinase (MT1-MMP). J Cell Sci 118, 

4975-4984 

 

99 Tisdale, E. J. (2002) Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by 

protein kinase Ciota /lambda and plays a role in microtubule dynamics in the early 

secretory pathway. J Biol Chem 277, 3334-3341 

 

100 Aoshiba, K., Yokohori, N. and Nagai, A. (2003) Alveolar wall apoptosis causes lung 

destruction and emphysematous changes. Am J Respir Cell Mol Biol 28, 555-562 

 

101 Maron, M. B., Folkesson, H. G., Stader, S. M. and Walro, J. M. (2005) PKA delivery to 

the distal lung air spaces increases alveolar liquid clearance after isoproterenol-induced 

alveolar epithelial PKA desensitization. Am J Physiol Lung Cell Mol Physiol 289, 

L349-354 

 

102 Fernandez-Carneado, J., Kogan, M. J., Pujals, S. and Giralt, E. (2004) Amphipathic 

peptides and drug delivery. Biopolymers 76, 196-203 

 

103 Yeaman, M. R. and Yount, N. Y. (2003) Mechanisms of antimicrobial peptide action 

and resistance. Pharmacol Rev 55, 27-55 

 



Chapter 8.  Bibliography 
 
 

  229

104 Oehlke, J., Krause, E., Wiesner, B., Beyermann, M. and Bienert, M. (1996) 

Nonendocytic, amphipathicity dependent cellular uptake of helical model peptides. 

Protein Peptide Lett 3, 393-398 

 

105 Chaloin, L., Vidal, P., Heitz, A., Van Mau, N., Mery, J., Divita, G. and Heitz, F. (1997) 

Conformations of primary amphipathic carrier peptides in membrane mimicking 

environments. Biochemistry 36, 11179-11187 

 

106 Edidin, M. (2003) Lipids on the frontier: a century of cell-membrane bilayers. Nat Rev 

Mol Cell Biol 4, 414-418 

 

107 Gennis, R. B. (1989) Biomembranes molecular structure and function Spreinger-Verlag, 

New york 

 

108 Tanford, C. (1978) The hydrophobic effect and the organization of living matter. 

Science 200, 1012-1018 

 

109 Kranenburg, M. and Smit, B. (2005) Phase behavior of model lipid bilayers. J Phys 

Chem B 109, 6553-6563 

 

110 Sankaram, M. B. and Thompson, T. E. (1990) Modulation of phospholipid acyl chain 

order by cholesterol. A solid-state 2H nuclear magnetic resonance study. Biochemistry 

29, 10676-10684 

 

111 Singer, S. J. and Nicolson, G. L. (1972) The fluid mosaic model of the structure of cell 

membranes. Science 175, 720-731 

 

112 Simons, K. and Ikonen, E. (1997) Functional rafts in cell membranes. Nature 387, 569-

572 

 

113 de Almeida, R. F., Fedorov, A. and Prieto, M. (2003) 

Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and 

composition of lipid rafts. Biophys J 85, 2406-2416 

 



Bibliography  Chapter 8. 
 
 

 230 

114 Chiantia, S., Kahya, N. and Schwille, P. (2007) Raft domain reorganization driven by 

short- and long-chain ceramide: a combined AFM and FCS study. Langmuir 23, 7659-

7665 

 

115 Op den Kamp, J. A. (1979) Lipid asymmetry in membranes. Annu Rev Biochem 48, 

47-71 

 

116 Depierre, J. W. and Dallner, G. (1975) Structural aspects of the membrane of the 

endoplasmic reticulum. Biochim Biophys Acta 415, 411-472 

 

117 Pomorski, T., Hrafnsdottir, S., Devaux, P. F. and van Meer, G. (2001) Lipid distribution 

and transport across cellular membranes. Semin Cell Dev Biol 12, 139-148 

 

118 Bretscher, M. S. (1972) Phosphatidyl-ethanolamine: differential labelling in intact cells 

and cell ghosts of human erythrocytes by a membrane-impermeable reagent. J Mol Biol 

71, 523-528 

 

119 Crain, R. C. and Zilversmit, D. B. (1980) Two nonspecific phospholipid exchange 

proteins from beef liver. 2. Use in studying the asymmetry and transbilayer movement 

of phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin in intact rat 

erythrocytes. Biochemistry 19, 1440-1447 

 

120 Verkleij, A. J., Zwaal, R. F., Roelofsen, B., Comfurius, P., Kastelijn, D. and van 

Deenen, L. L. (1973) The asymmetric distribution of phospholipids in the human red 

cell membrane. A combined study using phospholipases and freeze-etch electron 

microscopy. Biochim Biophys Acta 323, 178-193 

 

121 Daleke, D. L. (2003) Regulation of transbilayer plasma membrane phospholipid 

asymmetry. J Lipid Res 44, 233-242 

 

122 Hill, W. G. and Zeidel, M. L. (2000) Reconstituting the barrier properties of a water-

tight epithelial membrane by design of leaflet-specific liposomes. J Biol Chem 275, 

30176-30185 

 

123 Zachowski, A. (1993) Phospholipids in animal eukaryotic membranes: transverse 

asymmetry and movement. Biochem J 294 ( Pt 1), 1-14 



Chapter 8.  Bibliography 
 
 

  231

 

124 O'Shea, P. (2003) Intermolecular interactions with/within cell membranes and the 

trinity of membrane potentials: kinetics and imaging. Biochem Soc Trans 31, 990-996 

 

125 Izumida, Y., Seiyama, A. and Maeda, N. (1991) Erythrocyte aggregation: bridging by 

macromolecules and electrostatic repulsion by sialic acid. Biochim Biophys Acta 1067, 

221-226 

 

126 McLaughlin, S. (1989) The electrostatic properties of membranes. Annu Rev Biophys 

Biophys Chem 18, 113-136 

 

127 Cladera, J. and O'Shea, P. (1998) Intramembrane molecular dipoles affect the 

membrane insertion and folding of a model amphiphilic peptide. Biophys J 74, 2434-

2442 

 

128 Shapovalov, V. L., Kotova, E. A., Rokitskaya, T. I. and Antonenko, Y. N. (1999) Effect 

of gramicidin A on the dipole potential of phospholipid membranes. Biophys J 77, 299-

305 

 

129 Skerjanc, I. S., Shore, G. C. and Silvius, J. R. (1987) The interaction of a synthetic 

mitochondrial signal peptide with lipid membranes is independent of transbilayer 

potential. Embo J 6, 3117-3123 

 

130 Wall, J., Ayoub, F. and O'Shea, P. (1995) Interactions of macromolecules with the 

mammalian cell surface. J Cell Sci 108 ( Pt 7), 2673-2682 

 

131 Wall, J., Golding, C. A., Van Veen, M. and O'Shea, P. (1995) The use of 

fluoresceinphosphatidylethanolamine (FPE) as a real-time probe for peptide-membrane 

interactions. Mol Membr Biol 12, 183-192 

 

132 Veiga, A. S. and Castanho, M. A. (2006) The membranes' role in the HIV-1 

neutralizing monoclonal antibody 2F5 mode of action needs re-evaluation. Antiviral 

Res 71, 69-72 

 

133 Bangham, A. D., Standish, M. M. and Watkins, J. C. (1965) Diffusion of univalent ions 

across the lamellae of swollen phospholipids. J Mol Biol 13, 238-252 



Bibliography  Chapter 8. 
 
 

 232 

 

134 Mayer, L. D., Hope, M. J. and Cullis, P. R. (1986) Vesicles of variable sizes produced 

by a rapid extrusion procedure. Biochim Biophys Acta 858, 161-168 

 

135 Huang, C. (1969) Studies on phosphatidylcholine vesicles. Formation and physical 

characteristics. Biochemistry 8, 344-352 

 

136 Ladokhin, A. S., Jayasinghe, S. and White, S. H. (2000) How to measure and analyze 

tryptophan fluorescence in membranes properly, and why bother? Anal Biochem 285, 

235-245 

 

137 Wieprecht, T., Beyermann, M. and Seelig, J. (2002) Thermodynamics of the coil-alpha-

helix transition of amphipathic peptides in a membrane environment: the role of vesicle 

curvature. Biophys Chem 96, 191-201 

 

138 Lakowicz, J. R. (1999) Principles of fluorescence spectroscopy. Kluwer Academis, 

New York 

 

139 Santos, N. C. and Castanho, M. (2002) Fluorescence spectroscopy methodologies on 

the study of proteins and peptides. On the 150th anniversary of protein fluorescence. 

Trends Applied Spectroscopy 4, 113-125 

 

140 Santos, N. C., Prieto, M. and Castanho, M. A. (2003) Quantifying molecular partition 

into model systems of biomembranes: an emphasis on optical spectroscopic methods. 

Biochim Biophys Acta 1612, 123-135 

 

141 Fernandes, M. X., Garcia de la Torre, J. and Castanho, M. A. (2002) Joint determination 

by Brownian dynamics and fluorescence quenching of the in-depth location profile of 

biomolecules in membranes. Anal Biochem 307, 1-12 

 

142 Caputo, G. A. and London, E. (2003) Using a novel dual fluorescence quenching assay 

for measurement of tryptophan depth within lipid bilayers to determine hydrophobic 

alpha-helix locations within membranes. Biochemistry 42, 3265-3274 

 



Chapter 8.  Bibliography 
 
 

  233

143 Buser, C. A., Sigal, C. T., Resh, M. D. and McLaughlin, S. (1994) Membrane binding 

of myristylated peptides corresponding to the NH2 terminus of Src. Biochemistry 33, 

13093-13101 

 

144 Murray, D., Hermida-Matsumoto, L., Buser, C. A., Tsang, J., Sigal, C. T., Ben-Tal, N., 

Honig, B., Resh, M. D. and McLaughlin, S. (1998) Electrostatics and the membrane 

association of Src: theory and experiment. Biochemistry 37, 2145-2159 

 

145 Parasassi, T., Di Stefano, M., Loiero, M., Ravagnan, G. and Gratton, E. (1994) 

Influence of cholesterol on phospholipid bilayers phase domains as detected by Laurdan 

fluorescence. Biophys J 66, 120-132 

 

146 Reyes Mateo, C., Ulises Acuna, A. and Brochon, J. C. (1995) Liquid-crystalline phases 

of cholesterol/lipid bilayers as revealed by the fluorescence of trans-parinaric acid. 

Biophys J 68, 978-987 

 

147 Persson, D., Thoren, P. E. and Norden, B. (2001) Penetratin-induced aggregation and 

subsequent dissociation of negatively charged phospholipid vesicles. FEBS Lett 505, 

307-312 

 

148 Khlebtsov, B. N., Burygin, G. L., Matora, L. Y., Shchyogolev, S. Y. and Khlebtsov, N. 

G. (2004) A method for studying insoluble immune complexes. Biochim Biophys Acta 

1670, 199-207 

 

149 Basanez, G. (2002) Membrane fusion: the process and its energy suppliers. Cell Mol 

Life Sci 59, 1478-1490 

 

150 Nir, S. and Nieva, J. L. (2000) Interactions of peptides with liposomes: pore formation 

and fusion. Prog Lipid Res 39, 181-206 

 

151 Pecheur, E. I., Martin, I., Ruysschaert, J. M., Bienvenue, A. and Hoekstra, D. (1998) 

Membrane fusion induced by 11-mer anionic and cationic peptides: a structure-function 

study. Biochemistry 37, 2361-2371 

 



Bibliography  Chapter 8. 
 
 

 234 

152 Huebsch, N. D. and Mooney, D. J. (2007) Fluorescent resonance energy transfer: A tool 

for probing molecular cell-biomaterial interactions in three dimensions. Biomaterials 28, 

2424-2437 

 

153 Henriques, S. T. and Castanho, M. A. (2005) Environmental factors that enhance the 

action of the cell penetrating peptide pep-1 A spectroscopic study using lipidic vesicles. 

Biochim Biophys Acta 1669, 75-86 

 

154 Dupont, E., Joliot, A. and Prochiantz, A. (2002) Penetratins. In Cell-Penetrating 

Peptides. Processes and Applications. (Langel, U., ed.), pp. 23-51, CRC press, New 

York 

 

155 Matsuzaki, K., Yoneyama, S. and Miyajima, K. (1997) Pore formation and translocation 

of melittin. Biophys J 73, 831-838 

 

156 Papo, N. and Shai, Y. (2003) Exploring peptide membrane interaction using surface 

plasmon resonance: differentiation between pore formation versus membrane disruption 

by lytic peptides. Biochemistry 42, 458-466 

 

157 Matsuzaki, K., Murase, O., Fujii, N. and Miyajima, K. (1995) Translocation of a 

channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a 

pore. Biochemistry 34, 6521-6526 

 

158 Kobayashi, S., Chikushi, A., Tougu, S., Imura, Y., Nishida, M., Yano, Y. and 

Matsuzaki, K. (2004) Membrane translocation mechanism of the antimicrobial peptide 

buforin 2. Biochemistry 43, 15610-15616 

 

159 Chattopadhyay, A. and London, E. (1988) Spectroscopic and ionization properties of N-

(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids in model membranes. Biochim 

Biophys Acta 938, 24-34 

 

160 Fattal, E., Nir, S., Parente, R. A. and Szoka, F. C. (1994) Pore-Forming Peptides Induce 

Rapid Phospholipid Flip-Flop in Membranes. Biochemistry 33, 6721-6731 

 

161 Kol, M. A., de Kroon, A. I. P. M., Rijkers, D. T. S., Killian, J. A. and de Kruijff, B. 

(2001) Membrane-spanning peptides induce phospholipid flop: A model for 



Chapter 8.  Bibliography 
 
 

  235

phospholipid translocation across the inner membrane of E-coli. Biochemistry 40, 

10500-10506 

 

162 Matsuzaki, K., Murase, O., Fujii, N. and Miyajima, K. (1996) An antimicrobial peptide, 

magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and 

peptide translocation. Biochemistry 35, 11361-11368 

 

163 John, K., Schreiber, S., Kubelt, J., Herrmann, A. and Muller, P. (2002) Transbilayer 

movement of phospholipids at the main phase transition of lipid membranes: 

implications for rapid flip-flop in biological membranes. Biophys J 83, 3315-3323 

 

164 Marx, U., Lassmann, G., Holzhutter, H. G., Wustner, D., Muller, P., Hohlig, A., Kubelt, 

J. and Herrmann, A. (2000) Rapid flip-flop of phospholipids in endoplasmic reticulum 

membranes studied by a stopped-flow approach. Biophys J 78, 2628-2640 

 

165 Maier, O., Oberle, V. and Hoekstra, D. (2002) Fluorescent lipid probes: some properties 

and applications (a review). Chemistry and Physics of Lipids 116, 3-18 

166 Abdalah, R., Wei, L., Francis, K. and Yu, S. P. (2006) Valinomycin-induced apoptosis 

in Chinese hamster ovary cells. Neurosci Lett 405, 68-73 

 

167 Rose, L. and Jenkins, A. T. (2007) The effect of the ionophore valinomycin on 

biomimetic solid supported lipid DPPTE/EPC membranes. Bioelectrochemistry 70, 

387-393 

 

168 Drin, G., Mazel, M., Clair, P., Mathieu, D., Kaczorek, M. and Temsamani, J. (2001) 

Physico-chemical requirements for cellular uptake of pAntp peptide. Role of lipid-

binding affinity. Eur J Biochem 268, 1304-1314 

 

169 Herbig, M. E., Weller, K., Krauss, U., Beck-Sickinger, A. G., Merkle, H. P. and Zerbe, 

O. (2005) Membrane surface-associated helices promote lipid interactions and cellular 

uptake of human calcitonin-derived cell penetrating peptides. Biophys J 89, 4056-4066 

 

170 Deshayes, S., Gerbal-Chaloin, S., Morris, M. C., Aldrian-Herrada, G., Charnet, P., 

Divita, G. and Heitz, F. (2004) On the mechanism of non-endosomial peptide-mediated 

cellular delivery of nucleic acids. Biochim Biophys Acta 1667, 141-147 

 



Bibliography  Chapter 8. 
 
 

 236 

171 Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415, 389-

395 

 

172 Shai, Y. (1999) Mechanism of the binding, insertion and destabilization of phospholipid 

bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-

lytic peptides. Biochim Biophys Acta 1462, 55-70 

 

173 Ludtke, S., He, K. and Huang, H. (1995) Membrane thinning caused by magainin 2. 

Biochemistry 34, 16764-16769 

 

174 Chen, F. Y., Lee, M. T. and Huang, H. W. (2002) Sigmoidal concentration dependence 

of antimicrobial peptide activities: a case study on alamethicin. Biophys J 82, 908-914 

 

175 Toke, O. (2005) Antimicrobial peptides: new candidates in the fight against bacterial 

infections. Biopolymers 80, 717-735 

 

176 Baumann, G. and Mueller, P. (1974) A molecular model of membrane excitability. J 

Supramol Struct 2, 538-557 

 

177 Ojcius, D. M. and Young, J. D. (1991) Cytolytic pore-forming proteins and peptides: is 

there a common structural motif? Trends Biochem Sci 16, 225-229 

 

178 Shai, Y. (1995) Molecular recognition between membrane-spanning polypeptides. 

Trends Biochem Sci 20, 460-464 

 

179 Zemel, A., Ben-Shaul, A. and May, S. (2005) Perturbation of a lipid membrane by 

amphipathic peptides and its role in pore formation. Eur Biophys J 34, 230-242 

 

180 Yang, L., Harroun, T. A., Weiss, T. M., Ding, L. and Huang, H. W. (2001) Barrel-stave 

model or toroidal model? A case study on melittin pores. Biophys J 81, 1475-1485 

 

181 Pouny, Y., Rapaport, D., Mor, A., Nicolas, P. and Shai, Y. (1992) Interaction of 

antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid 

membranes. Biochemistry 31, 12416-12423 

 



Chapter 8.  Bibliography 
 
 

  237

182 Shai, Y. (2002) Mode of action of membrane active antimicrobial peptides. 

Biopolymers 66, 236-248 

 

183 Seelig, J. (2004) Thermodynamics of lipid-peptide interactions. Biochim Biophys Acta 

1666, 40-50 

 

184 Blondelle, S. E., Lohner, K. and Aguilar, M. (1999) Lipid-induced conformation and 

lipid-binding properties of cytolytic and antimicrobial peptides: determination and 

biological specificity. Biochim Biophys Acta 1462, 89-108 

 

185 Deshayes, S., Heitz, A., Morris, M. C., Charnet, P., Divita, G. and Heitz, F. (2004) 

Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-

1 through conformational analysis. Biochemistry 43, 1449-1457 

 

186 Henriques, S. T. and Castanho, M. A. (2004) Consequences of nonlytic membrane 

perturbation to the translocation of the cell penetrating peptide pep-1 in lipidic vesicles. 

Biochemistry 43, 9716-9724 

 

187 Kelly, S. M. and Price, N. C. (2000) The use of circular dichroism in the investigation 

of protein structure and function. Curr Protein Pept Sci 1, 349-384 

188 Greenfield, N. J. (1996) Methods to estimate the conformation of proteins and 

polypeptides from circular dichroism data. Anal Biochem 235, 1-10 

 

189 Sreerama, N. and Woody, R. W. (2003) Structural composition of betaI- and betaII-

proteins. Protein Sci 12, 384-388 

 

190 van Mierio, C. P. M., de Jongh, H. H. J. and Visser, A. J. W. G. (2000) Circular 

dichroism of proteins in solution and at interfaces. Applied spectroscopy reviews 35, 

277-313 

 

191 Kelly, S. M., Jess, T. J. and Price, N. C. (2005) How to study proteins by circular 

dichroism. Biochim Biophys Acta 1751, 119-139 

 

192 Miles, A. J. and Wallace, B. A. (2006) Synchrotron radiation circular dichroism 

spectroscopy of proteins and applications in structural and functional genomics. Chem 

Soc Rev 35, 39-51 



Bibliography  Chapter 8. 
 
 

 238 

 

193 Goormaghtigh, E., Raussens, V. and Ruysschaert, J. M. (1999) Attenuated total 

reflection infrared spectroscopy of proteins and lipids in biological membranes. 

Biochim Biophys Acta 1422, 105-185 

 

194 Vigano, C., Manciu, L., Buyse, F., Goormaghtigh, E. and Ruysschaert, J. M. (2000) 

Attenuated total reflection IR spectroscopy as a tool to investigate the structure, 

orientation and tertiary structure changes in peptides and membrane proteins. 

Biopolymers 55, 373-380 

 

195 Tatulian, S. A. (2003) Attenuated total reflection Fourier transform infrared 

spectroscopy: a method of choice for studying membrane proteins and lipids. 

Biochemistry 42, 11898-11907 

 

196 Goormaghtigh, E., Cabiaux, E. and Ruysschaert, J. M. (1994) Determination of soluble 

and membrane protein structure by Fourier transform infrared soectroscopy. I. 

Assignments and model compounds. In Subcellular Biochemistry. Volume 23: 

Physicochemical methods in the study of Biomembranes (Herwig, J. and Ralston, G. B., 

eds.), pp. 329-362, Plenum Press, New York 

 

197 Arrondo, J. L. and Goni, F. M. (1999) Structure and dynamics of membrane proteins as 

studied by infrared spectroscopy. Prog Biophys Mol Biol 72, 367-405 

 

198 Barth, A. and Zscherp, C. (2002) What vibrations tell us about proteins. Q Rev Biophys 

35, 369-430 

 

199 Torrecillas, A., Martinez-Senac, M. M., Goormaghtigh, E., de Godos, A., Corbalan-

Garcia, S. and Gomez-Fernandez, J. C. (2005) Modulation of the membrane orientation 

and secondary structure of the C-terminal domains of Bak and Bcl-2 by lipids. 

Biochemistry 44, 10796-10809 

 

200 Oberg, K. A., Ruysschaert, J. M. and Goormaghtigh, E. (2004) The optimization of 

protein secondary structure determination with infrared and circular dichroism spectra. 

Eur J Biochem 271, 2937-2948 

 



Chapter 8.  Bibliography 
 
 

  239

201 Bechinger, B., Ruysschaert, J. M. and Goormaghtigh, E. (1999) Membrane helix 

orientation from linear dichroism of infrared attenuated total reflection spectra. Biophys 

J 76, 552-563 

 

202 Montal, M. and Mueller, P. (1972) Formation of bimolecular membranes from lipid 

monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A 69, 

3561-3566 

 

203 Bivas, I. and Danelon, C. (2004) Fields and forces acting on a planar membrane with a 

conducting channel. Phys Rev E Stat Nonlin Soft Matter Phys 69, 041901 

 

204 Fuks, B. and Homble, F. (1994) Permeability and electrical properties of planar lipid 

membranes from thylakoid lipids. Biophys J 66, 1404-1414 

 

205 Micelli, S., Gallucci, E., Meleleo, D., Stipani, V. and Picciarelli, V. (2002) 

Mitochondrial porin incorporation into black lipid membranes: ionic and gating 

contribution to the total current. Bioelectrochemistry 57, 97-106 

 

206 Fidorra, M., Duelund, L., Leidy, C., Simonsen, A. C. and Bagatolli, L. A. (2006) 

Absence of fluid-ordered/fluid-disordered phase coexistence in ceramide/POPC 

mixtures containing cholesterol. Biophys J 90, 4437-4451 

 

207 Angelova, M. I. and Dimitrov, D. S. (1986) Liposome electroformation. Faraday 

Discuss. Chem. Soc. 81, 303-311 

 

208 Ambroggio, E. E., Separovic, F., Bowie, J. H., Fidelio, G. D. and Bagatolli, L. A. (2005) 

Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, 

citropin, and aurein. Biophys J 89, 1874-1881 

 

209 Ambroggio, E. E., Kim, D. H., Separovic, F., Barrow, C. J., Barnham, K. J., Bagatolli, 

L. A. and Fidelio, G. D. (2005) Surface behavior and lipid interaction of Alzheimer 

beta-amyloid peptide 1-42: a membrane-disrupting peptide. Biophys J 88, 2706-2713 

 

210 Bagatolli, L. A. and Gratton, E. (1999) Two-photon fluorescence microscopy 

observation of shape changes at the phase transition in phospholipid giant unilamellar 

vesicles. Biophys J 77, 2090-2101 



Bibliography  Chapter 8. 
 
 

 240 

 

211 Nichols, B. J. and Lippincott-Schwartz, J. (2001) Endocytosis without clathrin coats. 

Trends Cell Biol 11, 406-412 

 

212 Stryer, L. (1996) Biochemistry. W. H. Freeman and company, New York 

 

213 Cardelli, J. (2001) Phagocytosis and macropinocytosis in Dictyostelium: 

phosphoinositide-based processes, biochemically distinct. Traffic 2, 311-320 

 

214 Conner, S. D. and Schmid, S. L. (2003) Regulated portals of entry into the cell. Nature 

422, 37-44 

 

215 Soldati, T. and Schliwa, M. (2006) Powering membrane traffic in endocytosis and 

recycling. Nat Rev Mol Cell Biol 7, 897-908 

 

216 Mayor, S. and Pagano, R. E. (2007) Pathways of clathrin-independent endocytosis. Nat 

Rev Mol Cell Biol 8, 603-612 

 

217 Meier, O. and Greber, U. F. (2003) Adenovirus endocytosis. J Gene Med 5, 451-462 

 

218 Swanson, J. A. and Watts, C. (1995) Macropinocytosis. Trends Cell Biol 5, 424-428 

 

219 Lewin, B. (2000) Genes VII. Oxford University Press, Oxford 

 

220 Hammond, A. T. and Glick, B. S. (2000) Dynamics of transitional endoplasmic 

reticulum sites in vertebrate cells. Mol Biol Cell 11, 3013-3030 

 

221 Sousa, V. L., Brito, C. and Costa, J. (2004) Deletion of the cytoplasmic domain of 

human alpha3/4 fucosyltransferase III causes the shift of the enzyme to early Golgi 

compartments. Biochim Biophys Acta 1675, 95-104 

 

222 Zhao, X., Lasell, T. K. and Melancon, P. (2002) Localization of large ADP-ribosylation 

factor-guanine nucleotide exchange factors to different Golgi compartments: evidence 

for distinct functions in protein traffic. Mol Biol Cell 13, 119-133 

 



Chapter 8.  Bibliography 
 
 

  241

223 Griffith, K. L. and Wolf, R. E., Jr. (2002) Measuring beta-galactosidase activity in 

bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays. Biochem 

Biophys Res Commun 290, 397-402 

 

224 McGuire, J. B., James, T. J., Imber, C. J., St Peter, S. D., Friend, P. J. and Taylor, R. P. 

(2002) Optimisation of an enzymatic method for beta-galactosidase. Clin Chim Acta 

326, 123-129 

 

225 Remani, P., Ostapenko, V. V., Akagi, K., Bhattathiri, V. N., Nair, M. K. and Tanaka, Y. 

(1999) Relation of transmembrane potential to cell survival following hyperthermia in 

HeLa cells. Cancer Lett 144, 117-123 

 

226 Li, Y., Um, S. Y. and McDonald, T. V. (2006) Voltage-gated potassium channels: 

regulation by accessory subunits. Neuroscientist 12, 199-210 

 

227 Iliev, I. G. and Marino, A. A. (1993) Potassium channels in epithelial cells. Cell Mol 

Biol Res 39, 601-611 

 

228 Chifflet, S., Hernandez, J. A., Grasso, S. and Cirillo, A. (2003) Nonspecific 

depolarization of the plasma membrane potential induces cytoskeletal modifications of 

bovine corneal endothelial cells in culture. Exp Cell Res 282, 1-13 

 

229 Sheline, C. T., Takata, T., Ying, H., Canzoniero, L. M., Yang, A., Yu, S. P. and Choi, D. 

W. (2004) Potassium attenuates zinc-induced death of cultured cortical astrocytes. Glia 

46, 18-27 

 

230 Henriques, S. T., Costa, J. and Castanho, M. A. (2005) Translocation of beta-

galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and 

human HeLa cells is driven by membrane electrostatic potential. Biochemistry 44, 

10189-10198 

 

231 Scheller, A., Wiesner, B., Melzig, M., Bienert, M. and Oehlke, J. (2000) Evidence for 

an amphipathicity independent cellular uptake of amphipathic cell-penetrating peptides. 

Eur J Biochem 267, 6043-6050 

 



Bibliography  Chapter 8. 
 
 

 242 

232 Kramer, S. D. and Wunderli-Allenspach, H. (2003) No entry for TAT(44-57) into 

liposomes and intact MDCK cells: novel approach to study membrane permeation of 

cell-penetrating peptides. Biochim Biophys Acta 1609, 161-169 

 

233 Takeshima, K., Chikushi, A., Lee, K. K., Yonehara, S. and Matsuzaki, K. (2003) 

Translocation of analogues of the antimicrobial peptides magainin and buforin across 

human cell membranes. J Biol Chem 278, 1310-1315 

 

234 Thoren, P. E., Persson, D., Esbjorner, E. K., Goksor, M., Lincoln, P. and Norden, B. 

(2004) Membrane binding and translocation of cell-penetrating peptides. Biochemistry 

43, 3471-3489 

 

235 Barany-Wallje, E., Keller, S., Serowy, S., Geibel, S., Pohl, P., Bienert, M. and Dathe, M. 

(2005) A critical reassessment of penetratin translocation across lipid membranes. 

Biophys J 89, 2513-2521 

 

236 Esteve, E., Mabrouk, K., Dupuis, A., Smida-Rezgui, S., Altafaj, X., Grunwald, D., 

Platel, J. C., Andreotti, N., Marty, I., Sabatier, J. M., Ronjat, M. and De Waard, M. 

(2005) Transduction of the scorpion toxin maurocalcine into cells. Evidence that the 

toxin crosses the plasma membrane. J Biol Chem 280, 12833-12839 

 

237 Farrera-Sinfreu, J., Giralt, E., Castel, S., Albericio, F. and Royo, M. (2005) Cell-

penetrating cis-gamma-amino-l-proline-derived peptides. J Am Chem Soc 127, 9459-

9468 

 

238 Holm, T., Netzereab, S., Hansen, M., Langel, U. and Hallbrink, M. (2005) Uptake of 

cell-penetrating peptides in yeasts. FEBS Lett 579, 5217-5222 

 

239 Jones, S. W., Christison, R., Bundell, K., Voyce, C. J., Brockbank, S. M., Newham, P. 

and Lindsay, M. A. (2005) Characterisation of cell-penetrating peptide-mediated 

peptide delivery. Br J Pharmacol 145, 1093-1102 

 

240 Mae, M., Myrberg, H., Jiang, Y., Paves, H., Valkna, A. and Langel, U. (2005) 

Internalisation of cell-penetrating peptides into tobacco protoplasts. Biochim Biophys 

Acta 1669, 101-107 

 



Chapter 8.  Bibliography 
 
 

  243

241 Maiolo, J. R., Ferrer, M. and Ottinger, E. A. (2005) Effects of cargo molecules on the 

cellular uptake of arginine-rich cell-penetrating peptides. Biochim Biophys Acta 1712, 

161-172 

 

242 Mano, M., Teodosio, C., Paiva, A., Simoes, S. and Pedroso de Lima, M. C. (2005) On 

the mechanisms of the internalization of S4(13)-PV cell-penetrating peptide. Biochem J 

390, 603-612 

 

243 Parenteau, J., Klinck, R., Good, L., Langel, U., Wellinger, R. J. and Elela, S. A. (2005) 

Free uptake of cell-penetrating peptides by fission yeast. FEBS Lett 579, 4873-4878 

 

244 Rennert, R., Wespe, C., Beck-Sickinger, A. G. and Neundorf, I. (2006) Developing 

novel hCT derived cell-penetrating peptides with improved metabolic stability. Biochim 

Biophys Acta 1758, 347-354 

 

245 Veach, R. A., Liu, D., Yao, S., Chen, Y., Liu, X. Y., Downs, S. and Hawiger, J. (2004) 

Receptor/transporter-independent targeting of functional peptides across the plasma 

membrane. J Biol Chem 279, 11425-11431 

 

246 Bjorklund, J., Biverstahl, H., Graslund, A., Maler, L. and Brzezinski, P. (2006) Real-

time transmembrane translocation of penetratin driven by light-generated proton 

pumping. Biophys J 91, L29-31 

 

247 Bodor, N., Toth-Sarudy, E., Holm, T., Pallagi, I., Vass, E., Buchwald, P. and Langel, U. 

(2007) Novel, cell-penetrating molecular transporters with flexible backbones and 

permanently charged side-chains. J Pharm Pharmacol 59, 1065-1076 

 

248 Duchardt, F., Fotin-Mleczek, M., Schwarz, H., Fischer, R. and Brock, R. (2007) A 

comprehensive model for the cellular uptake of cationic cell-penetrating peptides. 

Traffic 8, 848-866 

 

249 D'Ursi, A. M., Giusti, L., Albrizio, S., Porchia, F., Esposito, C., Caliendo, G., Gargini, 

C., Novellino, E., Lucacchini, A., Rovero, P. and Mazzoni, M. R. (2006) A membrane-

permeable peptide containing the last 21 residues of the G alpha(s) carboxyl terminus 

inhibits G(s)-coupled receptor signaling in intact cells: correlations between peptide 

structure and biological activity. Mol Pharmacol 69, 727-736 



Bibliography  Chapter 8. 
 
 

 244 

 

250 Fernandez-Carneado, J., Kogan, M. J., Van Mau, N., Pujals, S., Lopez-Iglesias, C., 

Heitz, F. and Giralt, E. (2005) Fatty acyl moieties: improving Pro-rich peptide uptake 

inside HeLa cells. J Pept Res 65, 580-590 

 

251 Fretz, M. M., Penning, N. A., Al-Taei, S., Futaki, S., Takeuchi, T., Nakase, I., Storm, G. 

and Jones, A. T. (2007) Temperature-, concentration- and cholesterol-dependent 

translocation of L- and D-octa-arginine across the plasma and nuclear membrane of 

CD34+ leukaemia cells. Biochem J 403, 335-342 

 

252 Mabrouk, K., Ram, N., Boisseau, S., Strappazzon, F., Rehaim, A., Sadoul, R., Darbon, 

H., Ronjat, M. and De Waard, M. (2007) Critical amino acid residues of maurocalcine 

involved in pharmacology, lipid interaction and cell penetration. Biochim Biophys Acta 

1768, 2528-2540 

 

253 Palm, C., Netzereab, S. and Hallbrink, M. (2006) Quantitatively determined uptake of 

cell-penetrating peptides in non-mammalian cells with an evaluation of degradation and 

antimicrobial effects. Peptides 27, 1710-1716 

 

254 Rhee, M. and Davis, P. (2006) Mechanism of uptake of C105Y, a novel cell-penetrating 

peptide. J Biol Chem 281, 1233-1240 

 

255 Wu, R. P., Youngblood, D. S., Hassinger, J. N., Lovejoy, C. E., Nelson, M. H., Iversen, 

P. L. and Moulton, H. M. (2007) Cell-penetrating peptides as transporters for 

morpholino oligomers: effects of amino acid composition on intracellular delivery and 

cytotoxicity. Nucleic Acids Res 35, 5182-5191 

 

256 Marinova, Z., Vukojevic, V., Surcheva, S., Yakovleva, T., Cebers, G., Pasikova, N., 

Usynin, I., Hugonin, L., Fang, W., Hallberg, M., Hirschberg, D., Bergman, T., Langel, 

U., Hauser, K. F., Pramanik, A., Aldrich, J. V., Graslund, A., Terenius, L. and Bakalkin, 

G. (2005) Translocation of dynorphin neuropeptides across the plasma membrane. A 

putative mechanism of signal transmission. J Biol Chem 280, 26360-26370 

 

257 Mano, M., Henriques, A., Paiva, A., Prieto, M., Gavilanes, F., Simoes, S. and Pedroso 

de Lima, M. C. (2006) Cellular uptake of S4(13)-PV peptide occurs upon 



Chapter 8.  Bibliography 
 
 

  245

conformational changes induced by peptide-membrane interactions. Biochim Biophys 

Acta 1758, 336-346 

 

258 Boisseau, S., Mabrouk, K., Ram, N., Garmy, N., Collin, V., Tadmouri, A., Mikati, M., 

Sabatier, J. M., Ronjat, M., Fantini, J. and De Waard, M. (2006) Cell penetration 

properties of maurocalcine, a natural venom peptide active on the intracellular 

ryanodine receptor. Biochim Biophys Acta 1758, 308-319 

 

259 Szeto, H. H., Schiller, P. W., Zhao, K. and Luo, G. (2005) Fluorescent dyes alter 

intracellular targeting and function of cell-penetrating tetrapeptides. Faseb J 19, 118-

120 

 

260 Haugland, R. P. (2002) Handbook of fliorescent probes and research products. 

Molecular Probes, Inc., Eugene 

 

261 Rink, T. J., Montecucco, C., Hesketh, T. R. and Tsien, R. Y. (1980) Lymphocyte 

membrane potential assessed with fluorescent probes. Biochim Biophys Acta 595, 15-

30 

 

262 Wan, C. P., Park, C. S. and Lau, B. H. (1993) A rapid and simple microfluorometric 

phagocytosis assay. J Immunol Methods 162, 1-7 

 

263 Schwartz, J. W., Blakely, R. D. and DeFelice, L. J. (2003) Binding and transport in 

norepinephrine transporters. Real-time, spatially resolved analysis in single cells using a 

fluorescent substrate. J Biol Chem 278, 9768-9777 

 

264 Wang, Z., Leisner, T. M. and Parise, L. V. (2003) Platelet alpha2beta1 integrin 

activation: contribution of ligand internalization and the alpha2-cytoplasmic domain. 

Blood 102, 1307-1315 

 

265 Rejman, J., Oberle, V., Zuhorn, I. S. and Hoekstra, D. (2004) Size-dependent 

internalization of particles via the pathways of clathrin- and caveolae-mediated 

endocytosis. Biochem J 377, 159-169 

 

266 Mosiman, V. L., Patterson, B. K., Canterero, L. and Goolsby, C. L. (1997) Reducing 

cellular autofluorescence in flow cytometry: an in situ method. Cytometry 30, 151-156 



Bibliography  Chapter 8. 
 
 

 246 

 

267 Zuhorn, I. S., Kalicharan, R. and Hoekstra, D. (2002) Lipoplex-mediated transfection of 

mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway 

of endocytosis. J Biol Chem 277, 18021-18028 

 

268 Henriques, S. T. and Castanho, M. A. (2007) Translocation or membrane disintegration? 

Implication of peptide-membrane interactions in pep-1 activity. J Pept Sci In press 

 

269 Henriques, S. T., Quintas, A., Bagatolli, L. A., Homble, F. and Castanho, M. A. (2007) 

Energy-independent translocation of cell-penetrating peptides occurs without formation 

of pores. A biophysical study with pep-1. Mol Membr Biol 24, 282-293 

 

270 Weller, K., Lauber, S., Lerch, M., Renaud, A., Merkle, H. P. and Zerbe, O. (2005) 

Biophysical and biological studies of end-group-modified derivatives of Pep-1. 

Biochemistry 44, 15799-15811 

 

271 Zhu, W. L., Lan, H., Park, I. S., Kim, J. I., Jin, H. Z., Hahm, K. S. and Shin, S. Y. (2006) 

Design and mechanism of action of a novel bacteria-selective antimicrobial peptide 

from the cell-penetrating peptide Pep-1. Biochem Biophys Res Commun 349, 769-774 

 

272 Deshayes, S., Plenat, T., Charnet, P., Divita, G., Molle, G. and Heitz, F. (2006) 

Formation of transmembrane ionic channels of primary amphipathic cell-penetrating 

peptides. Consequences on the mechanism of cell penetration. Biochim Biophys Acta 

1758, 1846-1851 

 

273 Killian, J. A. and von Heijne, G. (2000) How proteins adapt to a membrane-water 

interface. Trends Biochem Sci 25, 429-434 

 

274 Yau, W. M., Wimley, W. C., Gawrisch, K. and White, S. H. (1998) The preference of 

tryptophan for membrane interfaces. Biochemistry 37, 14713-14718 

 

275 Vives, E., Richard, J. P., Rispal, C. and Lebleu, B. (2003) TAT peptide internalization: 

seeking the mechanism of entry. Curr Protein Pept Sci 4, 125-132 

 



Chapter 8.  Bibliography 
 
 

  247

276 Henriques, S. T., Costa, J. and Castanho, M. A. (2005) Re-evaluating the role of 

strongly charged sequences in amphipathic cell-penetrating peptides: a fluorescence 

study using Pep-1. FEBS Lett 579, 4498-4502 

 

277 Henriques, S. T., Melo, M. N. and Castanho, M. A. (2006) Cell-penetrating peptides 

and antimicrobial peptides: how different are they? Biochem J 399, 1-7 

 

278 Christiaens, B., Symoens, S., Verheyden, S., Engelborghs, Y., Joliot, A., Prochiantz, A., 

Vandekerckhove, J., Rosseneu, M. and Vanloo, B. (2002) Tryptophan fluorescence 

study of the interaction of penetratin peptides with model membranes. Eur J Biochem 

269, 2918-2926 

 

279 Magzoub, M., Kilk, K., Eriksson, L. E., Langel, U. and Graslund, A. (2001) Interaction 

and structure induction of cell-penetrating peptides in the presence of phospholipid 

vesicles. Biochim Biophys Acta 1512, 77-89 

 

280 Thoren, P. E., Persson, D., Lincoln, P. and Norden, B. (2005) Membrane destabilizing 

properties of cell-penetrating peptides. Biophys Chem 114, 169-179 

 

281 Ziegler, A., Nervi, P., Durrenberger, M. and Seelig, J. (2005) The cationic cell-

penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT is rapidly 

transported into living fibroblasts: optical, biophysical, and metabolic evidence. 

Biochemistry 44, 138-148 

 

282 Tunnemann, G., Martin, R. M., Haupt, S., Patsch, C., Edenhofer, F. and Cardoso, M. C. 

(2006) Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins 

and peptides in living cells. Faseb J 20, 1775-1784 

 

283 Mano, M., Henriques, A., Paiva, A., Prieto, M., Gavilanes, F., Simoes, S. and de Lima, 

M. C. (2007) Interaction of S413-PV cell penetrating peptide with model membranes: 

relevance to peptide translocation across biological membranes. J Pept Sci 13, 301-313 

 

284 Hallbrink, M., Oehlke, J., Papsdorf, G. and Bienert, M. (2004) Uptake of cell-

penetrating peptides is dependent on peptide-to-cell ratio rather than on peptide 

concentration. Biochim Biophys Acta 1667, 222-228 

 



Bibliography  Chapter 8. 
 
 

 248 

285 Binder, H. and Lindblom, G. (2003) Charge-dependent translocation of the Trojan 

peptide penetratin across lipid membranes. Biophys J 85, 982-995 

 

286 Henriques, S. T., Melo, M. N. and Castanho, M. A. (2007) How to address CPP and 

AMP translocation? Methods to detect and quantify peptide internalization in vitro and 

in vivo (Review). Mol Membr Biol 24, 173-184 

 

 

 




