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“The most fundamental and lasting objective of 

synthesis is not production of new compounds, 

                              but production of properties.”           
 

George S. Hammond, Norris Award Lecture, 1968
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AAbbssttrraacctt  
 
 

In the present work the potential of oxetane δ-amino acids as scaffolds was 

evaluated. While there is an ample precedence for the use of 6- and 5-membered 

carbohydrate-derived amino acids as scaffolds, there are no reports on oxetane-

based libraries. The oxetane ring is an interesting source of rigidity and well-defined 

exit vectors, and this unit is present in some important naturally occurring bioactive 

molecules, such as taxol, oxetanocin or oxetin. Nevertheless, the intrinsic chemical 

and pharmacological properties or inherent advantages of the oxetanes are far from 

clear. 

 

Oxetane δ-amino acids with the general structure i were synthesised using 

carbohydrates as starting materials in order to obtain different and well-defined 

stereochemistry. On a scaffold synthesis level, the oxetane moiety was decorated 

with different R groups such as hydroxyl, methoxyl or fluorine, and the resulting final 

scaffolds i exhibited D-lyxo, D-ribo, D-arabino and D-xylo configurations. 
 

Scaffold derivatisation was performed introducing valuable pharmacophores such as 

1,2,4-oxadiazoles or 1,2,3-triazoles to generate small libraries of compounds with 

general structures ii and iii, respectively. 1,2,4-Oxadiazoles were obtained by 

reaction of oxetane δ-amino acids i, with different hydroxyamidines via a basic 

activation followed by cyclodehydration. The scaffold was further derivatised so that 

the resulting compounds ii exhibited tert-butoxycarboxyl, hydrogen, acetyl or mesyl 

as group R1. 1,2,3-Triazoles were obtained by the so called “click reaction” of an 

oxetane δ-azido ester with different acetylenes catalysed by Cu(I). Oxetanes proved 

to be stable under the chosen derivatisation conditions with exception of the 3-

hydroxy derivatives which decomposed under basic conditions. 

 

Moreover, corresponding 1,2,4-oxadiazole libraries were synthesised on two 

diastreomeric bicyclic δ-amino acids leading to a new family of compounds with 

general structure iv. 
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The synthesised compounds were characterised by techniques such as NMR, MS, 

HRMS, optical rotation, elemental analysis and, for crystalline compounds, by X-Ray 

crystallography. 

 

Physicochemical and metabolic properties of the synthesised molecules were 

evaluated. Prediction of properties such as octanol/water partition coefficient, polar 

surface area, effective intestinal permeability, pKa, blood-brain barrier penetration 

and Andrew binding score was possible by the use of in silico tools. Moreover, some 

of the compounds experimental data on octanol/water partition coefficients, 

thermodynamic solubility, permeability and susceptibility towards metabolic 

degradation in human and mouse microsomes were obtained. All target compounds 

exhibited the physicochemical and metabolic properties desired in medicinal 

chemistry. 
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RReessuummoo  
 

 

No presente trabalho foi investigado o potencial de δ-aminoácidos derivados de 

anéis oxetano para a construção de bibliotecas de compostos. Enquanto que para 

aminoácidos derivados de carbo-hidratos com anéis de seis e cinco membros o 

estado da arte é bastante vasto, não existem na literatura referências a bibliotecas 

baseadas em anéis de quatro membros. Os oxetanos exibem grande estabilidade 

conformacional devido à sua rigidez, o que faz com que anéis oxetano sejam 

moléculas-base para derivatização com vectores de orientação bem definidos. 

 

Anéis oxetano estão presentes em alguns produtos naturais que exibem uma 

actividade biológica importante como é o caso do taxol, que é um dos 

medicamentos mais utilizados no tratamento do cancro da mama e do ovário, da 

oxetanocina, um nucleósido de adenina que é um antiviral de largo espectro ou da 

oxetina, que possui actividade antimicrobiana contra Bacillus subtilis e Pyricularia 

orysae. No entanto, as propriedades químicas e farmacológicas bem como as 

vantagens inerentes aos oxetanos estão longe de ser bem conhecidas. 

 

δ-Aminoácidos derivados de oxetano com a estrutura geral i foram sintetizados no 

trabalho apresentado, usando carbo-hidratos como compostos de partida, de forma 

a obter uma estereoquímica bem definida. A metodologia ulilizada envolve a síntese 

de triflatos de 1,4-lactonas de 5 membros, que são submetidas a tratamento com 

carbonato de potássio em metanol, dando origem à contracção do anel e à 

formação de oxetanos com configurações D-lyxo, D-ribo, D-arabino e D-xylo, 

dependendo da configuração da lactona inicial. Foram desenvolvidas estratégias de 

síntese de δ-aminoácidos de tipo i derivados de oxetano, de forma a preparar 

análogos com grupos R distintos nomeadamente hidroxilo, metoxilo e fluor. Estes 

compostos foram obtidos com rendimentos globais entre 12 a 28% a partir de vias 

de síntese que envolvem de 9 a 14 passos reaccionais. 
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Numa das vias de síntese levadas a cabo para a obtenção de δ-aminoácidos 

derivados de oxetano, procedeu-se à oxidação da D-xilose com bromo seguida do 

tratamento com benzaldeído de forma a obter a já conhecida 3,5-O-benzilideno-D-

xilono-1,4-lactona. No entanto, o ácido 2,4;3,5-di-O-benzilideno-D-xilónico foi 

identificado como produto secundário com rendimento de 37%, apesar de nunca ter 

sido descrito na literatura que descreve esta reacção. Para além disso, a completa 

caracterização completa deste composto foi levada a cabo pela primeira vez e 

estudos de RMN permitiram inferir a sua conformação. 

 

A derivatização dos δ-aminoácidos derivados de oxetano foi feita com base na 

introdução de farmacóforos de elevado interesse biológico tais como 1,2,4-

oxadiazoles ou 1,2,3-triazoles, gerando bibliotecas de compostos com estruturas de 

tipo ii e iii, respectivamente.  

 

1,2,4-Oxadiazoles foram sintetizados por meio da reacção dos δ-aminoácidos com 

diferentes hidroxiamidinas por activação em meio básico seguida de 

ciclodesidratação, levando este procedimento a compostos de tipo ii com diferentes 

grupos R2. Após a formação de 1,2,4-oxadiazoles, fazem-se modificações no grupo 

NHR1 de forma a obter compostos com R1 igual a terc-butoxicarbonilo, hidrogénio, 

acetilo ou mesilo. Aplicando esta metodologia aos diferentes δ-aminoácidos 

derivados de oxetano que foram sintetizados, obtiveram-se pequenas bibliotecas, 

geralmente de vinte compostos cada. 

 

1,2,3-Triazoles foram obtidos através de uma reacção designada “click reaction” 

devido à sua alta eficiência e simplicidade que consistiu, neste caso, na reacção de 

um δ-azidoéster derivado de oxetano com diferentes acetilenos catalisada por Cu(I). 

Esta biblioteca de compostos foi feita recorrendo a técnicas automatizadas de 

química e purificação em paralelo, dando origem a quinze novos 1,2,3-triazoles 

derivados de oxetano num período de tempo muito reduzido. 

 

Os δ-aminoácidos derivados de oxetano sintetizados ao longo deste trabalho 

provaram ser estáveis nas condições reaccionais levadas a cabo para a sua 
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derivatização, com excepção dos oxetanos que apresentam um hidroxilo livre no C-

3 do oxetano, que sofreram uma decomposição parcial ou total quando submetidos 

a condições básicas. 

 

Contidos na vasta colecção de compostos armazenados na F. Hoffmann – La 

Roche encontravam-se dois δ-aminoácidos estereoisómeros cuja base estrutural é 

um anel bicíclico. Estes compostos possuem também uma estrutura rígida e são, 

em princípio mais lipofílicos, o que suscitou o interesse pela comparação das suas 

propriedades com as dos derivados de anéis oxetano. Procedeu-se pois à síntese 

de compostos com estrutura geral iv seguindo a mesma metodologia usada para os 

derivados de oxetano, de forma a obter duas bibliotecas análogas de vinte 

compostos cada. 
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Todos os compostos sintetizados foram totalmente caracterizados recorrendo a 

técnicas como ressonância magnética nuclear mono- e bi-dimensional, 

espectrometria de massa, espectrometria de massa de alta resolução, rotação 

específica, análise elementar e, para compostos cristalinos, recorreu-se também à 

cristalografia por raio-X. 

 

Para além da confirmação conformacional dada pela cristalografia de raio-X, esta 

técnica permitiu a comparação de ângulos e distâncias efectivas entre farmacóforos. 

As distâncias obtidas entre o grupo amida e o 1,2,4-oxadiazole dos compostos 

submetidos a raio-X são da mesma ordem de grandeza quer para derivados de 

anéis oxetano ou de anéis bicíclicos. Estes dados são bastante relevantes para 

futuras avaliações no âmbito da actividade biológica, uma vez que estes compostos 

são bastante diversificados no que diz respeito à sua estrutura e propriedades 
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físico-químicas e metabólicas, mas exibem relações espaciais muito próximas entre 

os farmacóforos. 

 

Foram também investigadas as propriedades físico-químicas, bem como as 

metabólicas dos compostos sintetizados. Com recurso a técnicas computacionais foi 

possível calcular/prever propriedades como o coeficiente de partição octanol/água, 

a área polar superficial, a permeabilidade intestinal efectiva, a permeabilidade 

através da barreira sangue/cérebro, o factor de ligação de Andrew e a constante de 

dissociação. Estas técnicas constituem uma ajuda preciosa na previsão da lipofilia, 

permeabilidade e estado de carga das moléculas sintetizadas. Para os compostos 

estudados neste trabalho não foram gerados quaisquer alertas para infracção da 

intitulada regra dos cinco, indicando que todos eles possuem as propriedades 

desejadas para biodisponibilidade oral. No caso da permeabilidade intestinal 

efectiva, esta foi prevista a um nível médio a alto, no entanto o mesmo não se 

verificou para a permeabilidade da barreira sangue/cérebro, que foi prevista como 

sendo baixa, o que indica que estes compostos não poderão ser considerados para 

doenças ao nível do sistema nervoso central. 

 

No que diz respeito às propriedades físico-químicas ou metabólicas medidas 

experimentalmente, o coeficiente de partição octanol/água indicou que os vários 

compostos derivados de oxetano apresentam diferentes lipofilias dependendo da 

substituição em C-3. No entanto a estereoquímica não parece ser um factor 

determinante para esta propriedade. 

 

As constantes de dissociação foram medidas para algumas das aminas 

sintetizadas, tendo-se verificado que a estereoquímica provoca diferenças 

significativas nesta propriedade. As aminas derivadas de anéis bicíclicos são mais 

básicas que as suas correspondentes derivadas de anéis oxetano. A substituição 

em C-3 do anel 1,2,4-oxadiazole demonstrou não influenciar a basicidade das 

aminas. 

 

Ensaios de permeabilidade estão a ser realizados na F. Hoffmann – La Roche, Ltd. 

com recurso a uma técnica designada “ensaio de permeabilidade em membrana 
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artificial paralela” (PAMPA). Esta técnica é relativamente recente e de momento 

estão a ser desenvolvidas técnicas computacionais para a previsão dos resultados 

neste tipo de ensaios. Muitos dos compostos sintetizados foram previstos como 

exibindo baixa permeabilidade no PAMPA. No entanto, os resultados dos ensaios 

demonstram que todos os compostos apresentam uma permeabilidade média a 

elevada. Estes resultados são bastante importantes, uma vez que dizem respeito a 

derivados de anéis oxetano sobre os quais havia muito pouca informação 

disponível, de forma que serão muito úteis para a optimização dos programas de 

previsão do PAMPA desta empresa. 

 

A susceptibilidade dos compostos sintetizados à degradação via microssomas 

humanos e de ratos foi também testada e verificou-se que 1,2,4-oxadiazoles 

derivados de oxetano devem exibir biodisponibilidade média a alta, se 

considerarmos que o metabolismo hepático é o mais relevante. Por outro lado, os 

compostos bicíclicos são mais susceptíveis ao ataque microssomal. 

 

O trabalho aqui apresentado descreve pois a síntese de δ-aminoácidos derivados 

de oxetano, uma família de compostos muito pouco explorada, tendo sido 

confirmado o seu potencial como unidades básicas derivatizáveis. A introdução de 

diferentes farmacóforos nas três posições disponíveis do anel oxetano permitiu 

obter uma biblioteca que totaliza 101 compostos. Foram também derivatizados dois 

δ-aminoácidos de estrutura bicíclica, originando uma biblioteca de 40 compostos. As 

propriedades físico-químicas e metabólicas dos compostos sintetizados foram 

investigadas, tendo-se verificado que estes exibem as características desejadas em 

química medicinal. Pelo ponto de vista da química computacional, este trabalho 

contribuiu para o refinamento destas técnicas, uma vez que não existem na 

literatura referências a propriedades moleculares de oxetanos. Os compostos 

sintetizados foram depositados na colecção da F. Hoffmann – La Roche, Ltd. onde 

serão submetidos a testes de actividade biológica. 
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Oxetane δ-Amino Acids δ-Aminoácidos derivados de oxetano 
Carbohydrate Amino Acids Aminoácidos derivados de carbo-hidratos 
Ring contraction Contracção do anel 
Cyclodehydration Ciclodesidratação 
1,2,4-Oxadiazoles 1,2,4-Oxadiazoles 
Click Chemistry “Click Chemistry” 
1,2,3-Triazoles 1,2,3-Triazoles 
Compound libraries Bibliotecas de compostos 
Molecular Dynamic Optimisation Optimização de dinâmica molecular 
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LLiisstt  ooff  AAbbbbrreevviiaattiioonnss    
  
 

A(ABX) part A of an ABX system 
ADME(T) absorption, distribution, metabolism, elimination, (toxicity) 
ASTA solubility assay 
B(ABX) part B of an ABX system 
BB(B) blood-brain (barrier) 
Boc tert-butoxycarbonyl 
ca. circa, approximately 
CAA carbohydrate amino acid 
CD circular dichroism 
CDMT 2-chloro-4,6-dimethoxy-1,3,5-triazine 
CE capillary electrophoresis 
CLint intrinsic clearance 
ClogP calculated logarithm of octanol/water partition coefficient 
CMC critical micelar concentration 
CNS central nervous system 
COSY correlation spectroscopy 
CSA camphorsulfonic acid 
Cy-Hex cyclohexane 
d doublet 
DAST diethylaminosulfurtrifluoride 
DCM dichloromethane 
dd double doublet 
ddd double double doublet 
DIPEA di-propylethyl amine 
DMF dimethylformamide 
DMSO dimethylsulfoxide 
DOF degree of conformational freedom 
EDC 1-[3-(dimethylamino)propyl]-3-ethyl carbodiimide 
ELSD evaporative light-scattering detector 
Eq  equation 
eq equivalent(s) 
Gum glucosyl-uronic acid-methyl amine 
h hour(s) 

HATU O-(7-Azabenzotriazole-1-yl)-1,1,3,3-tetramethyluronium 
hexafluorophosphate 

HBA hydrogen bond acceptor 
HBD hydrogen bond donor 
HCMV Human cytomegalovirus 
HIV human immunodeficiency virus 
HMBC heteronuclear multiple-bond correlation 
HMQC heteronuclear multiple-quantum correlation 
HPLC high performance liquid chromatography 
HSQC heteronuclear single-quantum correlation 
HSV herpes simplex virus 
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HT high throughput 
HV high vacuum 
IC50 inhibitory concentration (50%) 
IR infra red 
LC liquid chromatography 
LYSA lyophilised solubility assay 
MadCAM-1 mucosal addressin cell adhesion molecule-1 
MDO multidimensional optimisation 
min minute(s) 
MS mass spectrometry 
NADPH nicotinamide adenine dinucleotide phosphate 
NMR nuclear magnetic ressonance 
NOESY nuclear overhauser effect spectroscopy 
PAMPA parallel artificial membrane permeability assay 
PDC pyridinium dichromate 
Pd/C palladium on charcoal 
Peff effective intestinal permeability 
pka dissociation constant 
PLE pig liver esterase 
PMB p-methoxy benzyl 
ppm parts per million 
PPTS pyridinium p-toluenesulfonate 
prep-HPLC preparative high performance liquid chromatography 
PSA polar surface area 
PVDF polyvinylidene 
q quartet 
QSAR quantitative structure activity relationship 
rt. room temperature 
sat soln saturated solution 
SLeX  sialyl lewisx 
T triplet 
T1/2 half-life time 

TATU O-(7-azabenzotriazole-1-yl)-1,1,3,3-tetramethyluronium 
tetrafluoroborate 

TBME tert-butylmethylether 

TBTU O-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 
hexafluoroborate 

TEMPO 2,2,6,6-tetramethylpiperidioxyl 
TFA trifluoroacetic acid 
THF tetrahydrofuran 
TLC thin layer chromatography 
UV ultraviolet 
VCAM-1 vascular cell adhesion molecule-1  
VZV varicella zoster virus 
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The search for new drugs is a very demanding field, and a pharmaceutical company 

may screen millions of molecules for biological activity per year in order to find a new 

product. Thousands of hits are found, and most of these molecules might not have 

the right physical, metabolic, and safety properties. Large pharmaceutical companies 

can cope with about 30 molecules taken into development each year. A good year 

sees three molecules reaching the product stage and some years see none! When 

considering all the efforts to bring out a drug- product, it may cost around a billion 

dollar.1 

 

Drugs and their targets are sparsely distributed through chemistry space. The 

combinatorial chemistry focuses on chemical libraries with a large number of 

compounds, and this tends to hide the fact that the majority of information on drug-

like properties is contained in a very small number of compounds. The chemistry 

space for reasonably sized molecules (up to molecular weight of 600), which contain 

the common atoms found in drugs, is estimated to be in the range of 1040 to 10100.2 

 

During the 1990s, the development of many compounds was terminated in the clinic 

due to unsatisfactory pharmacokinetics (PK). It became clear that medicinal 

chemists needed to address this parameter for lead optimization, and therefore tools 

were needed to assess the relationship between structure and PK properties.3,4  

  

 

 

 

 

 

 

 

                                                 
1  Avdeef, A; Absorption and Drug Development - Solubility, Permeability and Charge State. 1st Ed. 2003, 

John Wiley & Sons, Inc. New Jersey, USA. 
2  Lipinski, CA; J Pharm Tox Methods 2000, 44:235. 
3  Keller, TH; Pichota, A; Yin, Z; Curr Op Chem Bio 2006, 10:357. 
4  Aherne, GW; McDonald, E; Workman, P; Breast Cancer Res 2002, 4:148. 
 

Hit4 

Compounds that are good starting points to drug 
discovery. Medicinal chemists study the chemical 
structure of compounds that have been found to 
interact with the target protein and build up 
hypotheses to design related structures with 
improved properties. The testing on various 
biological assays takes to a hit-to-lead process 
where the potential value of the hit is evaluated. 

Lead4

A compound is designated “lead” when series of 
criteria, including potency, selectivity, synthetic 
access, ADME properties and potential for 
optimisation, are met. Structural changes 
associated with improved properties in the lead are 
then pursued vigorously until a compound is found 
that meets the stringent criteria required for a 
preclinical drug candidate. 
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The introduction of Lipinski’s ‘Rule of Five’ has initiated a profound change in the 

thinking paradigm of medicinal chemists. It states that poor absorption or 

permeability are related to clogP, molecular mass, and the number of hydrogen bond 

donors and acceptors (see chapter 1.5). Understanding the difference between 

biologically active small molecules and drugs became a priority in the drug discovery 

process.  

 

In order to rationalise what is responsible for compound attrition, some criteria were 

defined for compounds that successfully pass through the development process. 

Diversity analysis can be applied in programs such as compound acquisition, design 

of combinatorial libraries, and selection of compounds for screening. These 

techniques are mainly used in the early stage of the drug discovery process when 

little is known about the biological target or how to build a large compound library to 

be screened against different targets. The library to be screened should produce 

compounds with desirable absorption, distribution, metabolism, elimination and 

toxicity (ADMET) properties, the so called drug-like compounds.5 

 

It is of great value to explore chemical series outside those that have been 

considered previously for the development of novel chemical entities. This is 

particularly important for investigating unprotected regions of chemistry space in 

terms of intellectual property.6 

 

In recent years, the term scaffold has been used extensively to describe the core 

structure of a molecule. Taken literally, the core structure is the central component of 

a molecule: the substructure that contains the molecular material necessary to 

ensure that the functional groups are in a desired geometric arrangement.5  

 

A decade ago, Bemis and Murcko7 introduced a systematic approach grounded on 

the dissection of a molecule yielding molecular “frameworks”. According to this 

concept, a molecule can be segmented into four fundamental units: ring systems, 

                                                 
5  Gorse, A-D; Curr Opin Med Chem 2006, 6:3. 
6  Brown, N; Jacoby, E; Mini-Rev. Med Chem 2006, 6:1217. 
7  Bemis, YGW; Murcko, MA; J Med Chem 1996, 39:2887. 
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linkers, side chains and frameworks. In Scheme 1, the different structural units are 

shown for the anti-anxiety agent diazepam as an example. The framework can be 

defined as the molecular scaffold.8 

 

N

N

Cl

O

side-chains

framework

linker

ring systems

Diazepam

 
Dissection of a molecule according to Bemis and Murcko. Diazepam contains three  

sidechains and one framework with two ring systems and a zero-atom linker. 
 

Scheme 1 
 

Due to the huge number of possible drugs, methods to rationalise selection of 

compounds to be synthesised, with respect to scaffolds and side chains, or to 

choose the compounds to be screened, are required. Various computational 

disciplines, such as cheminformatics, ADME modelling, virtual screening or 

chemogenomics emerged in the past years as techniques for the efficient 

identification and optimization of novel molecules with a desired biological activity. 

For instance at Roche, computer-assisted molecular modelling resources are 

integrated in the medicinal chemistry organization, and there is a focus on lead 

generation support.9 

                                                 
8  Schneider, G; Schneider, P; Renner, S; QSAR Comb Sci 2006, 25(12):1162. 
9  Stahl, M; Guba, W; Kansy, M; Drug Discov Today 2006, 11(7/8):326. 
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In the work presented here a new class of scaffolds, oxetane δ-amino acids 

(Scheme 2), was explored. The synthesis of the scaffolds was performed using 

carbohydrates as starting materials with different and well defined absolute 

configurations. Derivatisation of the amino group and acid function, and the 

introduction of several R groups provided different pharmacophores, furnishing small 

libraries on the respective oxetane δ-amino acid scaffold. 

 

 
O O

R

BocHN

OH

 
Oxetane δ-Amino Acid Scaffold. 

 
Scheme 2 

1.1 Carbohydrate Amino Acids 
 

Amino acids and carbohydrates are two major building blocks used to generate 

diversity in Nature. Amino acids present the ability to form secondary structures in 

proteins and polypeptides as the basis of three-dimensional architecture. 

Carbohydrates are found in nucleotides, glycopeptides and glycolipids and 

communicate with their inter- and intra-cellular environment through a multitude of 

molecular interactions. Many of these recognition phenomena are involved in events 

such as metastasis, infection, and inflammation and have become a subject of 

intensive medical research. 

 

Carbohydrate amino acids (CAAs) are molecules that combine the structural 

features of amino acids with those of carbohydrates resulting in highly substituted 

polyfunctionalised building blocks. 

 

CAA cores are commonly found in Nature, and the most abundant example is sialic 

acid, often located peripherically on glycoproteins. So far, over 40 different naturally 
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occurring sialic acids have been identified.10 An example of an important sialic acid 

containing oligosaccharide is sialyl Lewisx (sLex) 1 (Scheme 3) which is found on the 

outer surface of glycolipids and glycoproteins and which is a key recognition element 

of the selectins, a group of cell surface proteins with carbohydrate recognition 

domains classified as E-, P-, and L-selectins, according to their occurrence on 

endothelial cells, platelets, and lymphocytes11. Selectin-carbohydrate interactions 

occur at an early stage of inflammatory reactions or metastasis, and the hope is that 

with sLex mimetics it will be possible to intervene in acute and chronic inflammatory 

diseases (asthma, arthritis, myocardial infarction, lung injury) and to find new 

anticancer agents.12,13 

 

Me O

OH

O

OHOOC

OH

O

HO

OH

O

OH

OH

O
O OR

NHAc

HO

OH

HO
AcHN

HO

OH

1  sLex

O
HO

HO
OH

HO

NH

O

O NH
HN

OHOH

HO
O

O

O
HO

NH2

HO2C
HO OH

NHHO
NHAc

CO2H
OH

2

3

4

5
 

Scheme 3 

 

Some carbohydrates are linked to proteins to form cysteine-linked glycoproteins or 

C-linked mannopyranosyl-L-tryptophan such as 2 in which a carbohydrate moiety is 

linked to an amino acid residue, but those will not be focused here. There are a few 

CAA-based peptidyl nucleosides with antibiotic activity such as polyoxim, sinefungin, 

and the nikkomycins and albamycins. Hydantoin derivative 3 also contains a CAA 

substructure and shows potent and selective antiherbal activity with no toxicity to 

                                                 
10 Schweizer, F; Angew Chem Int Ed 2002, 41:230. 
11 Unger, FM; Adv Carbohydr Chem Biochem 2001, 57:207. 
12 Sears, P; Wong, C-H; J Chem Soc Chem Commun 1998, 1161. 
13 Magnani, JL; Archives Biochem Biophys 2004, 426:122. 
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microorganisms and animals. Other antibiotics with a CAA moiety include 

chryscandin, amipurimycin, miharamycin, gougerotin, blatidin, bagougeramine and 

aezomycin. Siastatin B 4 is among the class of CAAs in which the nitrogen is located 

within the carbohydrate ring structure, and this inhibitor of both β-glucuronidase and 

N-acetylneuraminidase was isolated from Streptomyces cultures.14 

 

Also synthetic chemists explored CAAs as multivalent scaffolds or platforms leading 

to libraries of compounds with pharmacological interest, as well for the production of 

biomaterials for tissue engineering, and as molecular tools for the generation of 

nanostructures. Due to its rich stereochemistry and high degree of functionalisation, 

extensive work has been done and reviewed15,16,17,18 in the field of CAAs. 

 

Heyns and Paulsen,19 back in the 50s, were the firsts to synthesise a CAA, 

glucosaminuronic acid 5, in an effort to elucidate the structure of bacterial cell wall 

components and to synthesise analogues. The synthesis of CAAs usually starts from 

commercially available monosaccharides such as glucose, glucosamine, 1,2;5,6-di-

isopropylidene glucose or galactose. The amino group of the CAA can be introduced 

by reduction of an azide, cyanide or nitromethane equivalent. The carboxylic function 

is introduced by reaction with CO2, by a hydrolysable cyanide, via Wittig reaction and 

subsequent oxidation or by selective oxidation of a primary alcohol. 

 

CAAs are an attractive source of readily available, stereochemically defined 

scaffolds which may contain easily convertible substituents in the rigid oxetane (this 

class is further discussed on chapter 1.2) and pyran rings or the more flexible furan 

ring. Functional groups can thus be presented in a distinct arrangement. 

 

                                                 
14 Umezawa, H; Takeuchi, T; Komiyama, T; Morishima, H; Hamada, M; Takeuchi, T; J Antibiot 1974, 27:963. 
15 Wessel, HP; Lucas, SD; Oligossacharide mimetics. In Glycoscience: Chemistry and Chemical Biology; 

Fraser-Reid, B; Tatsuda, K; Thiem, J; Eds.; Springer Verlag: Heidelberg 2008, Part 9, 2079. 
16 Velter, I; La Ferla, B; Nicotra, F; J Carbohydr Chem 2006, 25:97. 
17 Chakraborty, TK; Ghosh, S; Jayaprakash, S; Curr Med Chem 2002,9:421. 
18 Gruner, SAW; Locardi, E; Lohof, E; Kessler, H; Chem Rev 2002, 102:491. 
19 Heyns, K; Paulsen, H; Chem Ber 1955, 88:188. 



Carbohydrate Amino Acids 

9 
 

Papageorgiou20 and Hirschmann21 were pioneers in the use of CAA skeletons 

preparing peptidomimetics of somastostatin. Based on molecular dynamics, a 

tetrasubstituted xylose derivative 6 (Scheme 4) was used as scaffold resulting in a 

promising IC50 of 16 µM. 

 

O O

OBn

OBnOH2N NH O
MeO

FmocHN

HO2C
HO

OMe

O
FmocHN

OAc

HO2C
HO OMe

O
HO

AcHN

BnO

O
CO2H

N3

6 7

98  
Scheme 4 

 
Sofia et al.22 reported the synthesis of encoded trifunctionalised saccharide scaffolds 

termed ‘universal pharmacophore-mapping libraries’. Building blocks such as 7 and 

8 which have a three-point attachment motif that consists of a carboxylic acid moiety, 

a free hydroxy group, and a protected amino group were used for the library 

construction. More recently, a 12000-compound library was achieved by using 9 as 

building block. 

 

Kessler’s group23 published the design, synthesis and biological evaluation of β-D-

mannose based non-peptidic mimetics of the vascular cell adhesion molecule-1 

(VCAM-1) and of the mucosal addressin cell adhesion molecule-1 (MadCAM-1), 

which are the natural ligands of α4β1 and α4β7 integrin receptors. One of these 

derivatives showed inhibitory activity toward integrin α4β1-mediated binding of Jurkat 

cell to VCAM-1. 

 
                                                 
20 Papageorgiou, C; Haltiner, R; Bruns, C; Petcher, TJ; Biorg Med Chem Lett 1992, 2:135. 
21 Hirschmann, R; Nicolaou, KC; Pietranico, S; Leahy, EM; Salvino, J; Arison, B; Cichy, MA; Spoors, PG; 

Shakespeare, WC; Sprengler, PA; Hamley, P; Smith III, AB; Reisine, T; Raynor, K; Maechler, L; 
Donaldson, C; Vale, W; Freidinger, RM; Cascieri, MR; Strader, CD; J Am Chem Soc 1993, 115:12550. 

22 Sofia, MJ; Hunter, R; Chan, TY; Vaughan, A; Dulina, R; Wang, H; Gange, D; J Org Chem 1998, 63:8387. 
23 Boer, J; Gottschling, D; Schuster, A; Holzmann, B; Kessler, H; Angew Chem 2001,40(20):3870. 
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6-Guanidinohexoses, which can be viewed as conformationally restricted arginine 

mimetics, were predicted to fit in the recognition pocket of thrombin and proved to 

display thrombin inhibitory activity.24 

 

CAA analogues have been successfully used as biopolymer building blocks to mimic 

oligo- and polysaccharide structures via amide bond linkages. First synthetic reports 

on amide-linked sugars stem from the mid-1970s. Fuchs and Lehmann25 prepared 

the amino-D-glycero-1-D-manno- and amino-D-glycero-D-gulo- heptonic acids and 

pointed out their potential for polymerisation. With an interest in oligosaccharide 

mimetics for pharmaceutical applications, Wessel and co-workers26 at Roche 

prepared the first amide-linked oligomers in a controlled fashion from suitably 

protected sugar amino acids to construct a tetramer in a [2+2] block synthesis. A 

standard peptide synthesis strategy in solution was applied in which 10 and 11 

(Scheme 5), both equipped with an acetic acid linker and prepared in five steps from 

readily available glucosamine, were coupled using a mixed anhydride. The tetramer 

12, with four-atom linkers, was obtained after activation of a dimer with CDMT. 

Notably, no protection of hydroxyl groups was required employing this approach. 

 

                                                 
24 Wessel, HP; Banner, D; Gubernator, K; Hilpert, K; Müller, K; Tschopp, T; Angew Chem Int Ed Eng 1997, 
36(7):751. 
25 Fuchs, E-F; Lehmann, J; Chem Ber 1975, 108:2254. 
26 Wessel, HP; Mitchel, C; Lobato, CM; Schmid, G; Angew Chem Int Ed Engl  1995, 34:2712. 
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Scheme 5 

 

 

The Fleet group has investigated various saccharide-peptide hybrids based on 

furanoid sugars; their tetramer 1327 can be seen as an analogue of (1→6)-linked 

hexofuranosides. An analogue of glycosidase inhibitors of the imino sugar family, the 

(1→6)-amide-linked pyrrolidine disaccharide mimetic 14, was also reported.28  

 

A mimetic of a (1→2)-linked glycoside was devised by Ichikawa’s group29 using a 3-

amino-2,6-anhydro-3-deoxy-heptonic acid building block to afford tetramer 15 

(Scheme 6). A two-atom linker replacing the interglycosidic oxygen also 

characterises this saccharide-peptide hybrid. A sulfated derivative of 15 blocked 

syncytium formation caused by HIV infection to CD4 cells at 50 µM concentration. 

 

                                                 
27 Smith, MD; Long, DD, Marquess, DG, Claridge, TDW; Fleet, GWJ; J Chem Soc Chem Commun 1998, 

2039. 
28 McCort, I; Duréault, A; Depezay, J-C; Tetrahedron Lett 1998, 39:4463. 
29 Suhara, Y; Hildreth, JEK; Ichikawa, Y; Tetrahedron Lett 1996, 37:1575. 
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Pioneered by the group of Kessler,30 pyranoid sugar amino acid templates were 

described to represent turn mimetics and model peptides31,17 including cyclic 

peptides.32,33 Cyclic homooligomers of CAAs were also devised, first using glucosyl-

uronic acid-methyl amine (Gum) as a monomeric unit thus creating three-atom 

linkers as in cyclic tetramer 16 (Scheme 6)34. Further examples of cyclodextrin 

analogues based on furanoid sugar amino acids with three-atom35 or four-atom 

                                                 
30 Graf von Roedern, E; Lohof, E; Hessler, G; Hoffmann, M; Kessler, H; J Am Chem Soc 1996, 118:10156. 
31 Kessler, H; Gratias, R; Hessler, G; Gurrath, M; Müller, G; Pure Appl Chem 1996, 68:1201. 
17 Chakraborty et al. Curr Med Chem 2006, 25:97.  
32 van Well, RM; Overkleeft, HS; Overhand, M; Carstenen, EV; van der Marel, GA; van Boom, JH; 

Tetrahedron Lett 2000, 41:9331 
33 Chakraborty, TK; Roy, S; Koley, D; Dutta, SK; Kunwar, AC; J Org Chem 2006, 71:6240, and references 

cited therein. 
34 Locardi, E; Stöckle, M; Gruner, S; Kessler, H; J Am Chem Soc 2001, 123:8189 
35 Chakraborty, TK; Srinivasu, P; Bikshapathy, E; Nagaray, R; Vairamani, M; Kumar, SK; Kunwar, AC; J Org 

Chem 2003, 68:6257 
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linkers36 as well as oxetane-based cyclic homooligomers with three-atom linker37 

were described. 

 

More recently, oligomers of open chain sugar amino acids were described such as 

galactonates 17 (Scheme 6) of which also cyclic analogues were prepared.38,39 This 

is an extension of the work directed to polymers of amide-linked open chain sugars 

as hydroxylated analogues of polyamides (nylon) aiming at increased 

biodegradability.40,41 Instead of starting from monomers, also amide-linked dimers 

such as 18 have been employed to arrive at well-defined, enantiomerically pure and 

stereoregular polyhydroxylated polymers.42 

 

Saccharide-peptide hybrids have attracted particular attention because of their 

conformational properties. Oligomers of CAAs have a tendency to adopt a compact 

conformation, a type of oligomer termed “foldamer” by Gellman.43 Kessler’s group30 

had already demonstrated that sugar amino acids may induce specific peptide 

conformations and thus may allow mimicking helices or sheets.  

 

Scheme 7 shows a CAA construction kit for pre-determined constrained local 

conformations in synthetic peptides containing series of CAAs. These units offer 

possibilities as mimetic structures for both amino acids and dipeptide isosters. CAAs 

21-25 induce β-turns independent of the substitution pattern of the sugar ring while 

CAA 26 mimics a γ-turn. 

 

 

 

                                                 
36 van Well, RM; Marinelli, L; Erkelens, K; van der Marel, GA; Lavecchia, A; Overkleeft, HS; van Boom, JH; 

Kessler, H; Overhand, M; Eur J Org Chem 2003, 2303. 
37 Fleet, GWJ; Johnson, SW; Jones, JH; J Peptide Sci 2006, 12:599. 
38 Hunter, DFA; Fleet, GWJ; Tetrahedron Asymm 2003, 14:3831. 
39 Mayes,  BA;  Stetz,  RJE;  Watterson,  MP;   Edwards,   AA;   Ansell,   CWG;   Tranter,   GE;   Fleet, GWJ; 

Tetrahedron Asymm 2004, 15:627. 
40 Mancera, M; Roffé, I; Rivas, M; Galbis, JA; Carbohydr Res 2003, 338:1115. 
41 de  Gracia  Garcia-Martin,  M;  Hernandez,  EB;  Pérez,  RR;   Alla,   A;   Munoz-Guerra,   S;   Galbis,   JA;   

Macromolecules 2004, 37:5550. 
42 Romero Zaliz, CL; Varela, O; Tetrahedron Asymm 2005, 16:97. 
43 Gellman, SH; Acc Chem Res 1998, 31:173. 
30 Graf von Roedern et al J Am Chem Soc 1996, 118:10156. 
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Scheme 7 
 

Combined 1H-NMR and circular dichroism (CD) spectroscopic evidence suggested 

that (1→5)-amide linked sialic acid oligomers in water adopt a defined secondary 

structure from the size of a tetramer on.44 Similarly, a β(1→2)-amide-linked pyranoid 

sugar, a decamer of compound 15 (Scheme 4), formed a right-handed helix.45 The 

acyl-protected furanoid oligomer 13 (Scheme 3) prepared by Fleet’s group46 was 

shown by calculation and 1H-NMR spectroscopy in organic solvents to exhibit a β-

turn secondary structure. The investigation of further analogues showed that most 

higher oligomers with a 2,5-cis stereochemistry across the tetrahydrofuran ring adopt 
                                                 
44 Szabo, L; Smith, BL; McReynolds, KD; Parrill, AL; Morris, ER; Gervay, J; J Org Chem 1998, 63:1074. 
45 Suhara, Y; Kurihara, M; Kittaka, A; Ichikawa, Y; Tetrahedron 2006, 62:8207. 
46 Smith, MD; Claridge, TDW; Tranter, GE; Sansom, MSP; Fleet, GWJ; J Chem Soc Chem Commun 1998, 

2041. 
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a right-handed helix conformation composed of repeating β-turns and with NHi-Oi-2 

hydrogen bonds.47,48 A secondary structure was however not found in the D-galacto 

configured analogues.49 

 

In the D-manno series, an unprotected octamer showed an ordered structure in 

solution based on circular dichroism,50 but not the lower unprotected or protected 

homooligomers.51 Initial X-ray and NMR evidence for a secondary structure was 

found in a new series of tetrafuran-based L-ribo configured γ-amino acids.52 The 

conformational investigation of oxetane-based oligomers revealed that a β-amino 

acid hexamer formed a left-handed helix,53 but δ-amino acid hexamers did not 

exhibit hydrogen bonded interactions but some regularity on steric grounds.54 

 

CAA’s are then a powerful class of compounds with promising biological importance 

at many levels. In particular, carbohydrate δ-amino acids have been investigated as 

valuable scaffolds and promising peptidomimetics (for example 5 and 7, page 7 and 

9). δ-CAA’s became also important building blocks for oligomerisation and 

conformational properties were studied as reported for compounds such as 10, 13 

and 16 (page 11). For the introduction of δ-CAA’s amine and acid functions various 

methodologies have been employed. For the synthesis of Gum, Kessler55 introduced 

the CH2NH2 equivalent at the anomeric position as CH2NO2 via nucleophilic aldol 

reaction and further hydrogenation led to the desired amine. The 6-hydroxymethyl 

group was selectively oxidised by TEMPO to yield the desired δ-amino acid. van 

Boom and co-

                                                 
47 Smith, MD; Claridge, TDW; Sansom, MSP; Fleet, GWJ; Org Biomol Chem 2003, 1:3647. 
48 Chakraborthy, TK; Srinivasu, P; Madhavendra, SS; Kumar, SK; Kunwar, AC; Tetrahedron Lett 2004, 

45:3573. 
49 Brittain, DEA; Waterson, MP; Claridge, TDW; Smith, MD; Fleet, GWJ; J Chem Soc Perkin Trans 2000, 

1:3655. 
50 Chakraborthy, TK; Jayaprakash, S; Srinivasu, P; Govardhana Chary, M; Diwan, PV; Nagaraj, R; Ravi 

Sankar, A; Kunwar, AC; Tetrahedron Lett 2000, 41:8167. 
51 Smith, MD; Long, DD; Marquess, DG; Claridge, TDW; Fleet, GWJ; Tetrahedron Lett 1999, 40:2191. 
52 Edwards, AA; Sanjayan, GJ; Hachisu, S; Tranter, GE; Fleet, GWJ; Tetrahedron 2006, 62:7718. 
53 Claridge, TDW; Goodman, JM; Moreno, A; Angus, D; Barker, SF; Taillefumier, C; Watterson, MP; Fleet, 

GWJ; Tetrahedron Lett 2001, 42:4251. 
54 Johnson, SW; Jenkinson, SF; Pérez-Victoria, I; Edwards, AA; Claridge, TDW; Tranter, GE; Fleet, GWJ; 

Jones, JH; J Peptide Sci 2005, 11:517. 
55 Graf von Roedern, E; Kessler, H; Angew Chem Int Ed Engl 1994, 33:667. 
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workers56 reported the synthesis of partially deoxygenated δ-CAA’s from fully 

acetylated D-glucal, in which the amine group was introduced via regioselective 

substitution of the primary alcohol with phthalimide under Mitsunobu conditions and 

the carboxylic group via hydrolysis of a cyanide. Moreover this type of compounds, 

when incorporated into polypeptide sequences, showed activity against the protein 

farnesyl tranferase and estabilised β-hairpin struture present in the native form. 

 

While there is ample precedence for pyranose and furanose CAAs, fewer reports 

were published on the synthesis and derivatisation of related oxetane amino acids 

and in particular of oxetane δ-amino acids,57,58,59 which are the subject of the present 

work. 

1.2 Oxetanes  

– Source of Rigidity and Directed Exit Vectors 
 

An oxetane is a rigid four-membered ring containing a polar oxygen atom. This unit 

was recently investigated at Roche60 in order to study the lipophilicity and metabolic 

liability of this scaffold. There are few synthetic methodologies of relevance to their 

incorporation and subsequent elaboration in compounds of pharmacological interest. 

Taxol 27, oxetanocin 29 and oxetin 30 (Scheme 8) are oxetane containing bioactive 

molecules, however, the intrinsic chemical and pharmacological properties of the 

oxetanes are far from clear. Meanwhile the world drug index registered 217 

structures containing an oxetane ring, among these, ca. 80% are taxol related and 

only two reached the marketing stage. 

 

                                                 
56 Aguilera, B; Siegal, G; Overkleeft, HS; Meeuwenoord, NJ; Rutjes, FP; van Hest, JC; Schoemaker, HE; 
van der Marel,GA; van Boom, JH; Overhand, M; Eur J Org Chem 2001, 1541. 
57 Johnson, SW; Jenkinson (née Barker), SF; Angus, D; Jones, JH; Watkin, DJ; Fleet, GWJ; Tetrahedron 

Asymm 2004, 15:3263. 
58 Lucas, SD; Iding, H; Alker, A; Wessel, HP; Rauter, AP; J Carbohydr Chem 2006, 25:187. 
59 Lucas, SD ; Rauter, AP; Wessel, HP; J Carbohydr Chem 2008, 27(3):172. 
60 Wuitschik, G; Rogers-Evans, M; Müller, K; Fisher, H; Wagner, B; Schuler, F; Polonchuk, L; Carreira, E 

Angew Chem Int Ed 2006, 45:7736. 



Oxetanes  

17 
 

O

OH
OR2O

OOHO

ONH

O

OH

H
AcO

PhOC
Ph

                          R1        R2

27  Taxol           Ph        Ac
28  Taxotere     t-OBu    H

R1

O

N

N N

N

NH2

OH

HO

O

H2N CO2H

29

30
Oxetin

Oxetanocin

 
Scheme 8 

 

Taxol 27 was isolated from the bark of Taxus brevifolia in the late 1960s,61 and its 

semisynthetic congener, Taxotere62 28 has become the drug of choice for the 

treatment of ovarian and breast cancer. Numerous structure-activity studies 

combining synthesis and bioassays have been performed for Taxol and its 

microtubule target, and it was shown that the oxetane ring is essential for biological 

activity. The four-membered ring may operate to rigidify the Taxol core and thereby 

enforce a favourable conformation of the side chains. On the other hand, the oxygen 

may exert an advantageous electrostatic force by participating in a hydrogen bond or 

an energy-lowering dipole-dipole interaction with the tubulin protein.63 

 

Oxetanocin-A 29 is a naturally occurring oxetane adenine nucleoside, which was 

isolated from the fermentation broth of Bacillus megaterium in 1986.64,65 This 

compound was found to exhibit a broad spectrum of antiviral activity, including 

herpes simplex virus 1 and 2 (HSV-1, HSV-2), varicella zoster virus (VZV), human 

cytomegalovirus (HCMV), and human immunodeficiency virus (HIV).66 Meanwhile, 

replacement of adenine for guanine (oxetanocin-G) or thymine (oxetanocin-T) also 

led to potent antiviral agents.67,68 These promising results prompted organic chemists 

                                                 
61 Wani, MC; Taylor, HL; Wall, ME; Coggon, P; McPhail, AT; J Am Chem Soc 1971, 93:2325. 
62 Bissery, M-C; Guénard, D; Guéritte-Voegelein, F; Lavelle, F; Cancer Res 1991, 51:4845. 
63 Minmin, W; Cornett, B; Nettles, J; Liotta, DC; Snyder, JP; J Org Chem 2000, 65:1059. 
64 Shimada, N; Hasegawa, S; Harada, T; Tomisawa, T; Fujii, A; Takita, T; J Antibiot 1986, 39:1623. 
65 Nakamura, H; Hasegawa, S; Shimada, N; Fujii, A; Takita, T; Iitaka, Y; J Antibiot 1986, 39:1636. 
66 Hoshino, H; Shimizu, N; Shimada, N; Takita, T; Takeuchi, T; J Antibiot 1987, 40:1077. 
67 Nagahata, T; Kitagawa, M; Matsubara, K; Antimicrob Agents Chemother 1994, 38:707. 
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to explore synthetic approaches to analogues of oxetanocin. Recently Rustullet et 

al.69 synthesised a cyclobutane analog of oxetanocin-A using a stereoselective route 

based on a [2+2] photocycloaddition to a chiral furanone. However, in preliminary 

tests this compound was inactive against HIV. 

 

Oxetin 30 is an oxetane derived β-amino acid and was isolated in 1984 from a 

fermentation broth of Streptomyces sp.70 This was the first report of a natural product 

containing an oxetane ring, which inhibited Bacillus subtilis and Pyricularia oryzae in 

minimal media, and exhibited herbicidal effect.  

 

Because enantiomers can display different pharmacological and toxicological 

properties, the synthesis of enantiomerically pure compounds is required to afford 

bioactive oxetane derivatives. For instance, only a few approaches were devised to 

provide optically active oxetanocins, including optical resolution and stereoselective 

synthesis, and the latter usually involves a large number of steps or presents 

moderate enantioselectivity, resulting in low overall yields. 71 

 
One century ago, back to 1909, Paternò and Chieffi72 obtained oxetanes from the 

photocycloaddition of ketones to olefins (Scheme 9), but the potential of this reaction 

was only recognized after the work of Büchi, already in the 1950s, and the reaction 

was then coined Paternò-Büchi reaction.73  

 

O O
+ hυ

 
Scheme 9 

 
Due to the vast amount of work in this field, several reviews were published since 

then. This methodology was applied in the synthesis of oxetanocin-A (Scheme 9),74 

                                                                                                                                                 
68 Alder, J; Mitten, M; Norbeck, D; March, K; Kern, ER; Clement, J; Antiviral Res 1994, 23:93. 
69 Rustullet, A; Alibés, R; March, P; Figueredo, M; Font, J; Org Lett 2007, 9(15):2877. 
70 Ömura, S; Murata, M; Imamura, N; Iwai, Y; Tanaka, H; J Antibiot 1984, 37:1324. 
71 Auria, MD; Emanuele, L; Racioppi, R; Romaniello, G; Curr Org Chem 2003, 7:1443 and references 

therein. 
72 Paternò, E; Chieffi, G; Gazz Chim Ital 1909, 39:431. 
73 Büchi, G; Inman, CG; Lipinsky, ES; J Am Chem Soc 1954, 76:4327. 
74 Hambalek, R; Just, G; Tetrahedron Lett 1990, 31(38):5445. 
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the photoaddition of 2-methylfuran to benzoyloxyacetaldehyde in benzene gave 33 

in 25-30% yield (45-50% yield based on recovered starting material). 
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Scheme 10 

 

Pioneered by Fleet group,75 the ring contraction of trifluoromethanesulfonates of α-

hydroxy-1,4-lactones to oxetane carboxylic esters could be accomplished by 

treatment with K2CO3 in methanol. Using 2-O-triflates of 3,5-di-O-benzyl-D-xylono-, 

D-ribono-, D-arabinono- and D-lyxono-1,4-lactones, ring contraction was afforded in 

good yields, although, in some cases a mixture of oxetane “anomers” was obtained. 

 

D-Xylono-lactone derivative 36 (Table 1) gave the D-lyxo-oxetane 40, and the 

contraction of the lactone 36 occurred with complete inversion of configuration at C-

2. By contrast, the triflate of L-lyxono-lactone 39 gave exclusively the L-lyxo-oxetane 

43. Thus ring contraction occurred with retention of configuration at C-2 of the 

lactone. Retention of configuration was also found in the major product 39 resulting 

from D-ribono-lactone triflate 37, although the arabino isomer 42 was also isolated in 

low yield. Ring contraction of the D-arabinono-lactone 38 gave the ribo-isomer 41 as 

major product indicating predominant inversion of configuration at C-2, and only a 

trace of the minor epimer 42 was formed. 

 

                                                 
75 Witty, DR; Fleet, GWJ; Vogt, K; Wilson, FX; Wang, Y; Storer, R; Myers, PL; Wallish, CJ; Tetrahedron Lett 

1990, 31(33):4787. 
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Table 1. Ring contraction of pento-1,4-lactones by treatment with K2CO3/MeOH. 
Product 

 
 

Starting 

O O

OBn

BnO

OMe

40 D-lyxo 

O O

OBn

BnO

OMe

 
41 D-ribo 

O O

OBn

BnO

OMe
 

42 D-arabino 

O O

OBn

BnO

OMe

43 L-lyxo 

O O

OTfBnO

BnO

 
36 D-xylono 

79%    

O O

OTfBnO

BnO

 
37 D-ribono 

 73% ~9%  

O O

OTfBnO

BnO

 
38 D-arabinono 

 70% trace  

O O

OTfBnO

BnO

 
39 L-lyxono 

   ~80% 

 

The major product of each ring contraction had a trans-relationship between the C-2 

and C-3 substituents of the oxetane. No incorporation of deuterium at C-2 of the 

methyl oxetane-2-carboxylates was observed when the oxetane methyl esters were 

stirred with potassium carbonate in d4-methanol. This result indicated that the 

stereochemical course of the reaction is not a consequence of equilibration of the 

product oxetane esters.  

 

As reported by the authors, it is apparent that open chain 4-hydroxy-2-O-

trifluoromethanesulphonate esters are intermediates; a plausible rationalisation of 

the stereochemistry of the ring contraction is that the ring closure is an SN2 

displacement of triflate during which considerably greater unfavourable interactions 

develop when the substituents at C-2 and C-3 of the incipient oxetane are cis rather 

than trans to each other. 
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Based on this ring contraction reaction, the Fleet group investigated the synthesis of 

several oxetane β- and δ-amino acids aiming at oxetin analogs or at their use as 

scaffolds for conformational studies as potential peptidomimetics.76,77,78,57 

 
From our point of view, this methodology is the most efficient for the synthesis of 

oxetane δ-amino acid scaffolds, with the advantage of generating the carboxylic 

function on the ring contraction step in reasonable to good yields. 

 

1.3 1,2,4-Oxadiazoles and 1,2,3-Triazoles  

– Promising Units in Medicinal Chemistry Approaches 
 

The peptide linkage is abundant in Nature and as such, the incorporation of groups 

which occupy the same physical space as a peptide bond in potential drug 

candidates is the aim of many laboratories. The successful replacement of the 

peptide linkage should improve drug candidates by giving them better stability, and 

absorption.79 

 
1,2,4-Oxadiazoles (Scheme 11) and 1,2,3-triazoles are five-membered heterocyclic 

compounds which contain 1 oxygen atom and 2 nitrogens, or 3 nitrogen atoms, 

respectively. Peptide linkages are planar due to the conjugation of the nitrogen 

electron lone pair, resulting in limited rotation around the peptide bond. 1,2,4-

Oxadiazoles and 1,2,3-triazoles, being planar cyclic rings, occupy the same space 

as a peptide linkage, leading to peptide isosteres. 

  

N
N

O

O

N
H

NN
N  

1,2,4-Oxadiazole         Peptide bond               1,2,3-Triazole 

Scheme 11 
                                                 
76 Barker, SF; Angus, D; Taillefumier, C; Probert, MR; Watkin, DJ; Watterson, MP; Claridge, TDW; 

Hungerford, NL; Fleet, GWJ. Tetrahedron Lett. 2001, 42, 4247. 
77 Jenkinson (née Barker), SF; Harris, T; Fleet, GWJ. Tetrahedron Asymm. 2004, 15, 2667. 
78 Johnson, SW; Jenkinson (née Barker), SF; Angus, D; Jones, JH; Fleet, GWJ; Taillefumier, C. Tetrahedron 

Asymm. 2004, 15, 2681. 
57 Johnson, SW et al. Tetrahedron Asymm 2004, 15:3263. 
79 Ashraf, B; Alexandratos, J; Lin, Y; Elder, J H; Olson, AJ; Wlodawer, A; Goodsell, D.S; Wong, C; 

ChemBioChem 2005, 6:1167. 
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It has been shown that 1,2,4-oxadiazoles possess a variety ofcentral nervous 

system (CNS) related activities. This class of heterocycles is present in muscarinic 

agonists,80 serotoninergic (5-HT3) antagonists81 and in dopamine (D4) ligands.82 

Some compounds have also shown affinities for dopamine, serotonin and 

norepinephrine transporters.83 The 1,2,4-oxadiazole ring system has also been used 

as an urea bioisoster in β3 adrenergic receptor agonists.84 Some articles have also 

reported the use of small heterocycles, among which 1,2,4-oxadiazoles, in the 

design of dipeptidomimetics.85 

 

In a preferred approach, the synthesis of 1,2,4-oxadiazoles involves first the O-

acylation step of an activated carboxylic acid derivative by an amidoxime, followed 

by cyclodehydration. Classically, the activated acid derivatives are esters, acid 

chlorides, symmetrical or unsymmetrical anhydrides and orthoesters. A synthesis on 

solid support using esters has also been published. More recently, the use of 

carbodiimides such as EDC, DCC and DIC for the in situ activation of carboxylic 

acids has been reported; however, carbodiimides are not so easy to handle and are 

susceptible to deactivation.86 Poulain et al.83 developed the use of 2-(1H-

benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) for the 

synthesis of 1,2,4-oxadiazoles. Uronium salts are known to be easy to handle, to 

have quite fast coupling kinetics and to display hardly any losses of configuration 

during coupling. They are also known to enable efficient coupling of sterically 

hindered acids and to be soluble in DMF. Thus, TBTU advantageously activates the 

carboxylic acid for the O-acylation step (Scheme 12). 
 

                                                 
80 Orlek, BS; Blaney, FE; Brown, F; Clark, MSG; Hadley, MS; Hatcher, J; Riley, GJ; Rosenberg, HE; 

Wadsorth, HJ; Wyman, P; J Med Chem 1991, 34:2726. 
81 Swain, CJ; Baker, R; Kneen, C; Moseley, J; Saunders, J; Seward, EM; Stevenson, G; Beer, M; Stanton, J; 

Watling, K; J Med Chem 1991, 34:140. 
82 Williams, JP; Lavrador, K; Comb Chem High Throughput Screen 2000, 3:43. 
83 Carroll, FI; Gray, JL; Abraham, P; Kuzemko, MA; Lewin, AH; Boja, JW; Kuhar, MJ; J Med Chem 1993, 

36:2886. 
84 Mathvink, RJ; Barritta, AM; Candelore, MR; Cascieri, MA; Deng, L; Tota, L; Strader, CD; Wyvratt, MJ; 

Fisher, MH; Weber, AE; Bioorg Med Chem Lett 1999, 9:1869. 
85 Borg, S; Vollinga, RC; Labarre, M; Payza, K; Terenius, L; Luthman, K; J Med Chem 1999, 42:4331. 
86 Poulain, RF; Tartar, AL; Déprez, BP; Tetrahedron Letters 2001, 42:1495 and references cited therein. 
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General mechanism for oxadiazole formation starting from an activated carboxylic acid and an amidoxime. 
 

Scheme12 
 

1,2,3-Triazoles are particularly promising as amide bond isosteres, given their 

favourable pharmacophoric properties and facile synthesis from readily available 
azide- and alkyne-functionalised derivatives of chiral amino acids. Recently, reports 

have surfaced describing the incorporation of 1,2,3-triazoles into peptide nanotubes, 

β-turn mimics, protease inhibitors, cyclopeptide analogues and peptide chain 

analogues.87  
 

1,2,3-Triazoles act as rigid linking units that place the carbon atoms, attached to the 

1,4-positions of the 1,2,3-triazole ring, at a distance of 5.0 Å (C-α distance in amides: 

3.8 Å). In contrast to amides, triazoles cannot be cleaved hydrolytically or otherwise, 

and unlike benzene derivatives and related aromatic heterocycles, they are almost 

impossible to oxidize or reduce. They possess a large dipole moment of ~5 Debye 

(by ab initio calculation, RHF/6–311G**; cf. N-methyl acetamide: 3.7 – 4.0 Debye), 

and nitrogen atoms two and three function as weak hydrogen bond acceptors.88 

 

 

                                                 
87 Bock, VD; Speijer, D; Hiemstra, H; van Maarseveen, JH; Org Biomol Chem 2007, 5:971 and references 

therein. 
88 Kolb, HC, Sharpless, KB; DDT 2003, 8(24): 1128. 
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The research on 1,2,3-triazoles has intensified after the 

optimisation of Huisgen’s regioselective Cu(I) catalysed 1,3-

dipolar cycloaddition of alkynes and azides in 2002.89 The 

Sharpless group discovered the dramatic rate acceleration of 

azide-alkyne coupling event under Cu(I) catalysis, and the 

beneficial effects of water. This connection process led to an 

almost ‘perfect’ reaction, giving birth to the first example of a 

click reaction.  

The authors report that a number of copper (I) sources can be used, however, the 

catalyst is better prepared in situ by reduction of Cu(II) salts (such as CuSO4·5H2O), 

which are less costly and often purer than Cu(I) salts. As reducing agent, ascorbic 

acid and/or sodium ascorbate proved to be excellent. 

 

The mechanistic proposal for the catalytic cycle is described in Scheme 13. It begins 

with formation of the copper (I) acetylide I followed by a stepwise, annealing 

sequence (B-1→B-2→B-3), which proceeds via the six-membered copper containing 

intermediate III. 

 
Mecanistic proposal for Cu(I) catalysed Huisgen’s 1,3-dipolar cycloaddition of alkynes and azides.86  

 
Scheme 13

                                                 
89 Rostovtsev, VV; Green, LG; Fokin, VV; Sharpless, KB; Angew Chem Int Ed 2002, 41(14):2596. 

 
Click Reaction85 
Wide scope reaction, 
giving consistently high 
yields with a variety of 
starting materials. It must 
be easy to perform, be 
insensitive to oxygen or 
water, and use only readly 
available reagents. 
 Reaction work-up and 
product isolation must be 
simple, without requiring 
chromatographic 
purification. 
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In the work described here, the first example of oxetane amino acid libraries is 

presented, based on the introduction of 1,2,4-oxadiazoles via activation of 

carboxyclic acid with an uronium salt and coupling with different amidoximes, 

followed by cyclodehydration. A small library of 1,2,3-triazoles was also performed 

by reaction of different alkynes with an oxetane δ-azido ester. 

 

1.4 Biocatalysis 
 
The tremendous potential of enzymes as catalysts in organic transformations is 

nowadays widely recognised. They became practical alternatives to “traditional” 

organic synthesis and convenient solutions to certain intractable synthetic problems. 

More than 3000 enzymes have been identified so far, and this number is expected to 

increase with the ongoing genomic and proteomic research, being estimated that 

there are about 25000 enzymes in Nature.90,91 

 

Enzymes have been classified into six categories according to the type of reaction 

they can catalyse (Table 1).The presented utility indicates the percentage of 

research performed with enzymes for a given class for the 1987-1996 period, the 

hydrolases being the most commonly used class of enzymes.88 

 
Table 2. Classification of enzymes. 

Enzyme class Reaction type Utility 

Oxidoreductases Oxidation-reduction: oxygenation of C-H, C-C, C=C bonds, 
or overall removal or addition of hydrogen atom equivalents 25 % 

Transferases Transfer of groups: ketonic, formyl, acyl, sugar, phosphoryl 
or methyl < 5 % 

Hydrolases Hydrolysis of esters, amides, lactones, lactams, epoxides, 
nitriles, anhydrides, glycosides 65 % 

Lyases Addition-elimination of small molecules on 
 C=C, C=N, C=O bonds < 5 % 

Isomerases Isomerization such as racemization, epimerization < 1 % 

Ligases Formation-cleavage of C-O, C-S, C-N, C-C bonds with 
concomitant triphosphate cleavage < 1 % 

 

                                                 
90 Koeller, KM; Wong, C-H; Nature 2001, 409:232. 
91 Faber, K; Biotransformations in Organic Chemistry 1997, 3rd Ed., Springer-Verlag, Berlin, Germany.  
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Typically, the rates of enzyme-mediated processes are accelerated compared to 

those of non-enzymatic reactions by a factor of 108 -1010. Moreover, enzymes are 

environmentally acceptable and act under mild conditions - typically in a range of pH 

= 5-8 and within temperatures of 20-40 °C. They are compatible with each other 

allowing multi-enzyme systems and some of them exhibit an unexpectedly high 

substrate tolerance accepting a large variety of unnatural substances, and display 

chemo-, regio- and enantioselectivity.  

 

Enzymes are provided by Nature in only one enantiomeric form, and it is impossible 

to invert the chiral induction of a given enzymatic reaction. This limitation has 

encouraged genomic research focusing on non-natural chiral enzymes. The control 

of an enzymatic reaction requires the use of narrow operation conditions, so that if 

the reaction proceeds slowly under certain pH and temperature ranges. The scope 

for changes is very small.  

 

Enzymes show the highest catalytic power in their natural aqueous environment, 

which becomes problematic for reactions with substrates not soluble in water. In 

addition, water frequently gives rise to side reactions and degrades common organic 

reagents. The thermodynamic equilibria of many processes are also unfavourable in 

water, and product recovery is sometimes difficult from this medium.92  

 

The technological utility of enzymes can be greatly enhanced by using them in 

organic solvents rather than in water. Studies over the past years revealed that this 

change in solvent is feasible. In general, the catalytic activity displayed by enzymes 

in neat organic solvents is much lower than in aqueous media. The addition of small 

quantities of water to enzyme suspensions in anhydrous solvents may increase the 

enzymatic activity by several orders of magnitude. This activating effect of water can 

be mimicked to a certain extent by other solvents capable of forming multiple 

hydrogen bonds, such as glycerol and ethylene glycol.89  

 

                                                 
92 Klibanov, AM; Nature 2001, 409:241. 
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The most used hydrolases in synthetic organic chemistry are the lipases,93 and in 

Nature they are responsible for the hydrolysis of triglycerides into fatty acids and 

glycerol. A characteristic feature of triacylglycerol lipases is their activation over the 

critical micelle concentration (CMC) of the substrate in contrast to the Michaelis-

Menten behaviour of esterases. This is due to a mobile lid covering the catalytic site 

in the absence of an aqueous/lipid interface. When the enzyme contacts the 

interface of a biphasic system, a conformational change seems to occur in which the 

lid moves to uncover the active site, and the activity is maximised when the CMC of 

the substrate is reached. However, when the influence of substrate concentration on 

hydrolytic activity of lipase L2 from Candida Antarctica was studied, this enzyme did 

not display any interfacial activation and behaved more like an esterase. Although its 

residues follow the sequential order characteristic of lipases, the structure of 

Candida Antarctica lipase L2 seems to be in an “open” conformation. 94,95,96 

 

The X-ray structure of this enzyme shows the existence of a Ser-His-Asp catalytic 

triad suggesting the same reaction mechanism as other lipases, involving the 

formation of an acyl-enzyme intermediate, which reacts then with nucleophiles such 

as water, alcohols or amines (Scheme 14). 

 

R1 OR2

O

Asp His
Ser

O
HN NH

O O

O

OR1

O

Asp His
Ser

N N
O O

H
H

Acyl-enzyme 
intermediate

Nu:

R2OH

R1 Nu

O

Step I

Step II

 
General reaction mechanism of lipases.  

Scheme 14
                                                 
93 Reetz, MT; Curr Opin Chem Biol 2002, 6:145. 
94 Uppenberg, J; Hansen, MT; Patkar, S; Jones, TA; Structure 1994, 2:293. 
95 Martinelle, M; Holmquist, M; Hult, K;. Biochim Biophys Acta 1995, 1258:272. 
96 Martinelle, M; Hult, K; Biochim Biophys Acta 1995, 1251:191. 
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In the present work, different chemical treatments of an oxetane derived methyl ester 

attempting its hydrolysis were found too harsh leading to decomposition. The ester 

was hydrolyzed by means of pig liver esterase (PLE) in aqueous media, although 

isolation of the desired product was difficult leading to poor yields. In contrast, the 

use of Lipase L2 from Candida antarctica in micro-aqueous systems – organic 

solvents containing small water contents– allowed the efficient hydrolysis and 

isolation of the desired carboxylic acid.  

 

1.5 Physicochemical and Metabolic Properties 
 
Modern drug-discovery chemistry is based on a multidimensional optimisation 

(MDO) approach, in which the optimisation of physicochemical properties, aspects of 

ADME, and safety of a lead compound have to be considered. This process benefits 

from the empirical knowledge of individual companies together with their databases 

available. With the establishment of high-throughput analytical methodologies, the 

amount of physicochemical data is growing rapidly, as hundreds of compounds can 

be measured each day. The availability of large datasets covering a sufficiently 

broad structural diversity increases the chances for the development of reasonably 

successful prediction tools. Both databases and chemoinformatics aim at enhancing 

the capacity of medicinal chemists to design compounds with desired 

physicochemical and pharmacological properties.97 

 

The current work is the first report on libraries that use oxetane δ-amino acids as 

scaffolds. Hence it seemed crucial to investigate some of the physicochemical and 

phamacological properties of these molecules. It follows an overview of the studied 

properties that allow setting a profile for this new class of compounds. 

 

 

 

                                                 
97 Morgenthaler, M; Schweizer, E; Hoffmann-Röder, A; Benini, F; Martin, RE; Jaeschke, G; Wagner, B; 

Fischer, H; Bendels, S; Zimmerli, D; Scheider, J; Diederich, F; Kansy, M; Müller, K; Chem Med Chem 
2007, 2:1100. 
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1.5.1 “The Rule of Five”  
 

Christopher A. Lipinski and his colleagues98,99 at Pfizer were the firsts to point out 

that drugs typically have physicochemical and structural parameters within certain 

ranges. The revolutionary rule-of-five predicts that poor absorption or permeation is 

more likely when there are more than 5 hydrogen-bond donors, 10 hydrogen-bond 

acceptors, the molecular weight is greater than 500 and the calculated log P (clogP) 

is greater than 5.  

 

The original rule-of-five deals with orally active compounds and defines four simple 

physicochemical parameter ranges associated with 90% of orally active drugs that 

have achieved phase II clinical status. Many clinical candidates failed during 

development, and the reasons are now much better understood. The rule-of-five is 

now a widely used filter for drug-like properties, and references to its original 

publication in 1997 have exceeded 1000 citations. 

 

1.5.2 Octanol/Water Partition Coefficient 

 

The octanol/water partition coefficient (P) is the ratio of a compound’s concentration 

in octanol to its concentration in water when the phases are at equilibrium (Scheme 

15). Since partition coefficient values can range over many orders of magnitude, 

they are normally expressed in logarithmic form (log P).100 

 

                                                 
98 Lipinski, CA; Lombardo, F; Dominy, BW; Feeney, P; J Adv Drug Deliv Rev 1997, 23:3. 
99 Lipinski, CA; Drug Discov Today Technol 2004, 1:337. 
100 Machatha, SG; Yalkowsky, SH; Int J Pharm 2005, 294:185. 
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Scheme 15. Octanol/ water tetrad equilibria; log PI and log PN are used to  
distinguish partition coefficients of neutral species from ionized species.101 

 

 

In the presence of ionizable molecules the parameter used is the distribution 

coefficient D (Eq. 1) that refers to all the present species depending on the pH, 

otherwise, D and P are the same. 

 

                                               logP = logDpH + log(1+10(pKa-pH))                                   Eq. 1 
 

LogP values or logD at a given pH (usually pH 7.4) usually express lipophilicity of 

drug molecules and have been widely used as parameters to estimate numerous 

properties such as membrane transport and water solubility. Large logP databases 

are available emerging from the importance of this parameter.1 For instance non 

lipophilic drugs are not easily absorbed by passive transport. On the other hand 

drugs with high lipophilicity may be easily absorbed, but also get trapped inside 

                                                 
101 Avdeef, A; Curr Top Med Chem 2001, 1:277. 
1   Avdeef, A; Absorption and Drug Development - Solubility, Permeability and Carge State 2003. 
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membranes or exhibit poor aqueous solubility requiring a complex formulation. Later 

on, drug metabolites need to be quite hydrophilic to be excreted effectively. LogP/D 

values therefore provide important clues about a molecule's likely interaction with 

body membranes. 

For experimental measurements of logD, the compound of interest is distributed 

between water and octanol. The distribution coefficient is then calculated from the 

difference in concentration in the aqueous phase before and after partitioning and 

the ratio of the two phases. In the present work logD values were measured using a 

HT assay, which is derived from the conventional 'shake flask' method, in order to 

increase speed and throughput of the logD measurement using a commercial 

automated HPLC system from Sirius Analytical Instruments Ltd (GLpKa). With this 

technology 100 to 200 compounds were measured in one run. 

Computational tools to predict logP were created and programs such as clogP® 

(bioByte Corp.), ACD/logPdb® (Advanced Chemistry Development Inc.) and 

KowWin® (Syracuse Research Corporation) have been widely used. 

These programs are described as substructure approaches where the final log P is 

determined by summing the single-atom or fragment contributions and were 

designed to determine the partition coefficient of the non-ionized form of a 

compound. Machatha et al.97 concluded that ClogP® is a more accurate predictor of 

the octanol/water partition coefficient than ACD/logPdb® and KowWin® when they 

compared these tools using an independent experimental data set. Nevertheless, all 

three programs are similar in many respects, and they all have user friendly 

interfaces. 

1.5.3 pKa 
 

The acid dissociation constant (pKa) describes the extent of ionisation in 

dependence of the hydroxonium ion concentration:  
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BH+  B + H+     Ka =  
[ ][ ]
[ ]+

+

BH
HB

 (B: base)     Eq. 2 

HA  A- + H+     Ka = 
[ ][ ]

[ ]HA
HA +−

 (A: acid)       Eq.  3 

 

Some parameters such as lipophilicity, permeability and aqueous solubility, are pKa-

dependent and are important in the understanding of drug absorption and transport 

processes. For example, the neutral form of an ionisable compound is less water 

soluble, more lipophilic, and possesses higher membrane permeability than the 

ionized form. Experimental knowledge of pKa values provides the precise 

information about the compound charge across the pH range of pharmaceutical 

relevance. This knowledge is highly beneficial for predicting compound ADME 

properties. 

 

1.5.4 Polar Surface Area  
 

The polar surface area (PSA) is defined as the sum of surface contributions of all 

polar atoms in a molecule, including attached hydrogens. The PSA has been shown 

to be useful in modeling intestinal absorption, and as a direct estimate of lipophilicity, 

is widely acknowledged as an important factor in transport across membranes. It 

also affords a predictive model for blood-brain barrier penetration. When compared 

to PSA, parameters such as molecular weight, molecular volume, or non-polar 

surface area do not seem to correlate strongly enough with lipophilicity to be useful 

for modeling absorption properties.102,103 

 

1.5.5 Effective Intestinal Permeability 
 

Effective intestinal permeability (Peff)104 is a fundamental parameter describing both 

rate and extent of intestinal drug absorption. Due to experimental difficulties, very 

few correlation studies have been performed using direct measurements of in vivo 
                                                 
102 Clark, DE; J Pharm Sci 1999, 88:807. 
103 Clark, DE; J Pharm Sci 1999, 88:815. 
104 Winiwarter, S; Bonham, NM; Ax, F; Hallberg, A; Lennernäs, H; Karlén, A; J Med Chem 1998, 41:4939. 
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permeability of drugs and nutrients in the human intestine. Nevertheless, 

determination of Peff in humans has become more readily accessible experimentally 

through the development of a jejunal perfusion system. This experimentally validated 

approach gives a direct in vivo estimation of the local absorption rate Peff (in cm/s) 

across the intestinal barrier. Winiwarter et al. have determined an equation (Eq. 4) 

based on relevant physicochemical descriptors (PSA and H-bond donors, HBD) that 

allows the prediction of absorption of drugs in the human intestine. 

 

log Peff = -2.546 - 0.011 PSA – 0.278 HBD                        Eq. 4 

 

Based on this equation the compounds are classified as low (log Peff < -5), medium   

(-5 < log Peff < -4) or high (log Peff > -4) absorption drugs. 

 

1.5.6 Parallel Artificial Membrane Permeability Assay 

 

The human absorption of an orally administrated drug depends on different 

physicochemical parameters (e.g. solubility, dissolution rate, permeability). A high 

solubility combined with a high permeability normally leads to a high human 

absorption. Drugs with low solubility and low permeability usually show a low human 

absorption. Therefore permeability measurements can help to predict the human 

absorption of drugs. 

 

 

 

The idea behind the Parallel Artificial Membrane Permeability Assay 

(PAMPA)105,106,107,108 developed at Roche is to predict the human intestinal 

permeability. pION Inc. commercialized the PSR4p assay that allows to determine 

                                                 
105 Kansy, M; Senner, F; Gubernator, K; J Med Chem 1998, 41:1007. 
106 Kansy, M; Fischer, H; Kratzat, K; Senner, F; Wagner, B; Parrilla, I; Helv Chimica Acta 2000, 447. 
107 Fischer,H; Kansy, M; Avdeef, A; Senner, F; Eur J Pharm Sci 2007, 31:32. 
108 Avdeef, A; Bendels, S; Di, L; Faller, B; Kansy, M; Sugano, K; Yamauchi, Y; J Pharm Sci 2007, 

96(11):2893.  
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permeation constants by a one-point kinetic measurement. Permeation constants 

are used for in silico prediction of human absorption. 

 

Among the three possible pathways through a membrane (paracellular, transcellular 

and active transport), 80%-90% of all drugs display transcellular permeation. In the 

PAMPA assay, it is based on passive diffusion, driven by a concentration gradient 

between donor and acceptor. 

 

The small intestine (duodenum, jejunum and ileum) is the major absorption site with 

the largest absorption area. Therefore the PAMPA PSR4p assay mimics these 

absorption conditions using an artificial phospholipid membrane (59% 

phosphatidylcholine, 6% phosphatidylethanolamine, 3% lyso-phosphatidyl-choline, 

4% other phospholipids, 18% triglycerides, 8% cholesterol and 2% water). The 

assay conditions are usually set to pH = 6.5, which is the mean pH value of the small 

intestine. Furthermore, 0.5% w/v glycocholic acid is added to the donor side in order 

to improve the solubility of lipophilic drugs. Glycocholic acid is a member of the bile 

acid family. It is synthesised in the liver and stored in the gallbladder. Bile acids are 

secreted into the duodenum during food digestion and are almost fully reabsorbed in 

the ileum. 

 

In the PAMPA, a “sandwich” is formed from a 96-well fillter plate and a 96-well 

Roche in-house made teflon plate (Fig 1), such that each well is divided into two 

chambers: donor at the bottom and acceptor at the top, separated by microfilter with 

a pore size of 0.45 µm polyvinylidene fluoride (PVDF) from Millipore (Billerica, MA), 

coated with a 10% (w/v) egg-phosphatidylcholine and 0.5% (w/v) cholesterol 

dissolved in dodecane.  
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Fig 1. PAMPA PSR4p sandwich. Donor: Roche made teflon plate filled with drug/buffer solution; Membrane: 
filter of filterplate (hydrophobic PVDF) coated with phospholipids;  

Acceptor: top of filterplate filled with buffer solution. 
 

1.5.7 Blood-Brain Barrier Penetration 

 

The blood-brain barrier (BBB)103 is a complex cellular system the role of which is to 

maintain the homeostasis of the CNS by separating the brain from the systemic 

blood circulation. In drug discovery, it is important to determine whether a drug 

candidate molecule is capable of penetrating the BBB. For drugs targeted at the 

CNS, BBB penetration is demanding (unless invasive or intranasal delivery routes 

are being considered), whereas for drugs aimed at other sites, passage through the 

BBB may lead to side effects. 

 

A common measure of the degree of BBB penetration is the ratio of the steady-state 

concentrations of the drug molecule in the brain and in the blood, usually expressed 

as log (cbrain/cblood), or abbreviated, log BB. Experimental values of log BB cover the 

range about -2 to +1. Within this range, compounds with log BB >0.3 cross the 

membrane readily, while compounds with log BB < -1 are only poorly distributed to 

the brain. 

 

 

 

103 Clark, DE; J Pharm Sci 1999, 88:815. 
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David E. Clark investigated the possibility of using PSA values to derive a generally 

applicable QSAR for log BB and concluded that using both PSA and ClogP 

descriptors, a successful model could be generated, based on Eq. 5. 

 
log BB = -0.0148 PSA + 0.152 ClogP + 0.139                        Eq. 5 

 
 
1.5.8 Andrew Binding Score 
 
P. R. Andrews and co-workers109 have calculated the average binding energies of 10 

common functional groups based on the binding constants and structural 

components of 200 drugs and enzyme inhibitors. It was shown that, as expected, 

charged groups bind more strongly than polar groups, which in turn bind more tightly 

than non-polar groups.  

 
The derived intrinsinc binding energies obtained in kcal/mol are given in Table 3: 

 
Table 3. Binding energies [kcal/mol). 

CO2
- 8.2 

PO4
2- 10.0 charged groups 

N+ 11.5 
N 1.2 

OH 2.5 
C=O 3.4 

O/S ethers 1.1 
polar groups 

halogens 1.3 
C(sp2) 0.7 non polar groups C(sp3) 0.8 

 

These values may be used to determine the fit of a drug to its receptor. The average 

binding energy can then be calculated by summing the intrinsic binding energies of 

the component groups and then subtracting two entropy related terms (14 kcal/mol 

for the loss of overall rotational and translational entropy and 0.7 kcal/mol for each 

degree of conformational freedom, DOF) (Eq. 6): 

 
∆G = -14 - 0.7 nDOF + 0.7 nC(sp2) + 0.8 nC(sp3) + 11.5 nN+ + 1.2 nN + 8.2 nCO2- +  

        + 10.0 nPO4 2- + 2.5 nOH + 3.4 nC=O + 1.1 nO,S + 1.3 nhal            Eq. 6 

                                                 
109 Andrews, PR; Craik, DJ; Martin, JL; J Med Chem 1984, 27:1648. 
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However, the magnitude of the deviations to the observed values in 200 compounds 

studied did not allow the use of this equation in a predictive sense. They reflect the 

expected binding energy of an average drug, based on its pharmacophore units 

assuming that they will all take part in binding. 

 

If the observed binding of a molecule is significantly stronger than the calculated 

average binding energy, we may deduce that most functional groups in the drug 

molecule are interacting favorably with the receptor and that the drug probably acts 

in a low energy conformation. Such a molecule should therefore provide a useful 

starting point in drug design. If, on the other hand, the observed binding of a drug is 

weaker than the calculated average binding energy, we may conclude either that the 

functional groups in the drug are not all interacting with the receptor or that the drug 

is acting in a relatively high-energy conformation. This situation would therefore 

demand the synthesis of rigid analogues and/or the progressive deletion of 

functional groups to determine which are actually involved in binding. 

 

1.5.9 Solubility 

 

Experimental determination of drug solubility110 is not a single event but is performed 

multiple times along the drug discovery and development process, the assays and 

their focus can differ with the phase. Among the five key physicochemical screens in 

early compound screening, pKa, solubility, permeability, stability and lipophilicity, 

poor solubility tops the list of undesirable compound properties. Compounds with 

insufficient solubility carry a higher risk of failure during discovery and development 

since insufficient solubility may compromise other property assays, mask additional 

undesirable properties, influence both pharmacokinetic and pharmacodynamic 

properties of the compound, and finally may affect the developability of the 

compound. Ideally solubility liabilities should be known prior to any functional 

evaluations. 

 

                                                 
110 Alsenz, J; Kansy, M; Adv Drug Delivery Rev 2007, 59:546 and references cited therein. 
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In a broad sense, solubility may be defined as the amount of a substance that 

dissolves in a given volume of solvent at a specified temperature. More specifically, 

compound solubility can be defined as unbuffered, buffered, and intrinsic solubility. 

Unbuffered solubility, usually in water, means solubility at saturation of the 

compound at the final pH of the solution. Buffered solubility, also termed apparent 

solubility, refers to solubility at a given pH, measured in a defined pH-buffered 

system and usually neglects the influence of salt formation with counter ions of the 

buffering system on the measured solubility value. Intrinsic solubility means the 

solubility of the neutral form of an ionizable compound. For neutral (non-ionizable) 

compounds all three definitions coincide.  

 

Depending on the experimental set-up, solubility measurements determine either the 

kinetic or the thermodynamic solubility of compounds. In most cases, kinetic 

solubility measurements start from dissolved compound and represent the maximum 

(kinetic) solubility of the fastest precipitating species of a compound. Kinetic solubility 

values are strongly time dependent and due to the degree of supersaturation that 

may occur, values are likely to overpredict the thermodynamic solubility and are not 

expected to be reproducible between different kinetic methods. 

 

Solubility assays in the majority of discovery set-ups determine kinetic solubility; 

however, equilibrium measurement principles are being introduced more and more 

into early discovery compound profiling. In contrast to kinetic solubility 

measurements, thermodynamic solubility assays are performed by dispensing a 

solid compound in a liquid. Thermodynamic (equilibrium) solubility represents the 

saturation solubility of a compound in equilibrium with an excess of undissolved 

substance at the end of the dissolution process. Thermodynamic solubility is often 

regarded as being the ‘true’ solubility of a compound and as the ‘gold standard’ for 

development needs.  

 

 

 

 



Physicochemical and Metabolic Properties 

 39

Alsenz and Kansy110 have developed the LYophilized Solubility Assay (LYSA) which 

is the HT-solubility measurement included in Roche MDO system. They report that 

solubility determinations based on direct UV measurements usually deliver 

acceptable results, with some restrictions regarding solid state properties and 

impurities. The sample throughput is 360-500 samples per week in duplicate. 

 
  
1.5.10 Rat and Human Liver Microsomal Metabolism Intrinsic 
Clearance CLint 

 

The first demonstration of the correlation between in vivo clearance values and 

clearance values calculated from rat liver microsomal metabolism intrinsic clearance 

data was made by Rane et al.111  

 
One of the simplest methods described to predict human clearance is the use of 

human hepatic microsomal lability data, termed the in vitro half-life, T1/2, approach. It 

measures the first-order rate constant for consumption of substrate at one 

concentration in the presence of human/rat liver microsomes. The intrinsic clearance 

is calculated by Eq. 6 and overall accuracy reported as average fold error is for basic 

compounds 1.37, for neutral compounds 1.99, for acidic compounds 5.05, and for all 

compounds 2.28:112 

 

esmgmicrosom
onmLincubati

invitroT
CL ⋅=

2
1

693.0
int     Eq. 6 

 
The use of hepatic microsomes in the prediction of clearance requires acceptance of 

several assumptions and caveats: 1) metabolic clearance is the major mechanism of 

clearance (i.e., CLmetabolism >> CLrenal + CLbiliary + CLother); 2) the liver is the major 

organ of clearance (i.e., Clhepatic >> ΣCLall other organs); 3) oxidative metabolism 

predominates over other metabolic routes such as direct conjugative metabolism, 

                                                 
110 Alsenz, J; Kansy, M; Adv Drug Delivery Rev 2007, 59:546. 
111 Rane, A; Wilkinson, GR; Shand, DG; J Pharmacol Exp Ther 1977, 200:420. 
112 Obach, RS; Drug Metab Disp 1999, 27:1350. 
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reduction, hydrolysis, etc.; 4) rates of metabolism and enzyme activities in vitro are 

truly reflective of those that exist in vivo. 

 
 

At Roche the reference values are in agreement with Table 4. For drugs that are 

foreseen for oral chronic treatment CL’int (microsomes) should be low. For other 

treatments, we have to consider that lower CLint (microsomes) is reflected in lower 

doses. 

 
 

                   Table 4. Reference values for CLint (microsomes) 

 CLint 
µL/min/mg prot clearance Expected 

metabolic stability 
Expected 

bioavailability (%)* 
< 15 Low High >70 

>15 to <90 Medium Medium  Rat 
>90 high low <30 
<6.5 Low High >70 

>6.5 to <35 Medium Medium  Human 
>35 high low <30 

*only true if Phase I hepatic metabolic clearance is the major mechanism of clearance. 
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The synthesis of oxetane δ-amino acids, which is the class of targeted scaffolds, will 

be discussed herein. These compounds were derivatised to afford small libraries of 

1,2,4-oxadiazoles and 1,2,3-triazoles. Moreover, two bicyclic scaffolds with a δ-

amino acid function, available at Roche in-house collection, were derivatised with the 

same methodology to give the corresponding 1,2,4-oxadiazole libraries for 

comparison with the previous class of compounds. Furthermore, discussion on the 

structure elucidation of the studied compounds, in particular when their 

stereochemical assignment needed to be clarified, is presented. Finally the results 

obtained for the physicochemical and metabolic properties of the individual 

compounds of the achieved libraries will be discussed. 

 

2.1 Scaffold Synthesis 

 
The syntheses of oxetane δ-amino acids which contain hydroxy, methoxy or fluoride 

as substituents at C-3 were successfully accomplished. Readily available 

carbohydrates such as D-xylose or 1,2-isopropylidene-D-xylose were used as 

starting materials. Regio- and stereoselective reactions were explored for the 

preparation of new oxetane δ-amino acids.  

 

2.1.1 Chemoenzymatic Synthesis of 2,4-Anhydro-5-N-(tert-
butoxycarbonyl)amino-5-deoxy-D-lyxonic Acid  

 
Starting from commercial 1,2-isopropylidene-D-xylose 44, the first oxetane δ-amino 

acid synthesised was 2,4-anhydro-5-N-(tert-butoxycarbonyl)amino-5-deoxy-D-lyxonic 

acid 53 (Scheme 16).58 

 

By means of the well-established benzylation/de-isopropylidenation sequence, a 

mixture of α/β isomers 46a,b was obtained (α/β ratio1:4 by 1H-NMR integration). For 

the acetal cleavage the use of 30 % acetic acid gave the best results, conditions that 

had been employed in the arabino series.113  

                                                 
58  Lucas et al. J Carbohydr Chem 2006, 25:187. 
113 Ning, J; Kong, F; Carbohydr Res 1997, 300(4):355. 
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i) a. NaH, DMF, rt, 2.5 h, b. BnBr, rt, 2.5 h, 100%; ii) AcOH 30%, reflux, 3 h, 88%; iii) Br2, BaCO3, 
H2O/dioxane 2:1, rt, 4 h, 73%; iv) Tf2O, DCM, pyridine, -17 °C, 40 min; v) K2CO3, MeOH, -12 °C, 30 min, 
90% (2 steps); vi) H2, Pd/C, MeOH/dioxane 1:1, rt, 40 min, 85%; vii) 1N LiOH, THF, 0-5 °C, 30 min, 
quantitative; viii) Tf2O, Et2O/DCM 5:1, 4 Å molecular sieves, -15 °C, 50 min; ix) LiN3, acetone, rt, 30 min, 
65% (2 steps); x) H2, Pd/C, EtOAc, Boc2O, rt, 2 h, 88%; xi) L2- Candida antarctica, TBME/H2O, 45°C, 3 d, 
quantitative. 

Scheme 16 
 

Oxidation of 46a,b with bromine furnished the known 3,5-di-O-benzyl-D-xylono-γ-

lactone 47.75 It was important to carry out this reaction in the dark to avoid radical-

mediated debenzylation. By optimising the water/dioxane ratio the yield could be 

improved to reach 73%.  

 

Triflation of 47 furnished lactone 34, which was subjected to treatment with 

potassium carbonate in methanol leading to ring contraction and formation of the 

oxetane carboxylic acid ester 38 as described by the Fleet group.75 At this stage we 

tested the feasibility of the ester cleavage. Indeed, treatment of 38 with lithium 

hydroxide gave the free carboxylic acid 49114 in a clean reaction and in excellent 

yield. 

 

Palladium catalysed hydrogenation of 38 yielded the debenzylated oxetane 

derivative 48. For this central intermediate an alternative approach via 3,5-di-O-
                                                                                                                                                 
75  Witty et al. Tetrahedron Lett 1990, 31(33):4787. 
114 Saksena, AK; Ganguly, AK; Girijavallabhan, VM; Pike, RE; Chen, Y-T; Puar, MS; Tetrahedron Lett 1992, 

33(50):7721. 
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benzylidene-D-xylono-γ-lactone was already described.75 For the activation of the 

primary hydroxyl group, 48 was reacted with triflic anhydride in diethyl ether/ 

dichloromethane in the presence of dry molecular sieves. This methodology115 

allows facile triflation under non-basic reaction conditions and mild work-up. The 

best results were obtained when the reaction mixture was concentrated in the 

presence of molecular sieves. The triflate 50 was the single product formed as 

judged by TLC, and the residue was reacted without further purification, with lithium 

azide in acetone, to furnish azide 51 in 65% yield over the two steps. 

 

The azide 51 was reduced by hydrogenolysis in the presence of tert-butoxycarbonyl 

anhydride to afford the protected amine 52 in a very good yield (88%). Surprisingly, 

and in contrast to our experience with the conversion of the ester 38 to the acid 49, 

the transesterification of 52 under basic conditions was not successful in our hands. 

As interference of the amino group might be expected, the transesterification of 

azide 51 under basic conditions was investigated, but led to complex mixtures which 

could not be characterized by NMR. 

 

Readily available pig liver esterase (PLE) is a standard esterase and was used as 

the first enzymatic approach to hydrolyse methyl 2,4-anhydro-5-N-(tert-

butoxycarbonyl)amino-D-lyxonate 52. The reaction was performed in aqueous media 

under pH control (phosphate buffer, pH 7-7.2). After 1 day complete conversion was 

observed (HPLC). However, acidification to pH 3 with diluted H2SO4 led to 

decomposition of the target compound. Moreover, when isolation was tried without 

acidification, either by lyophilisation followed by organic solvent wash or by reversed 

phase chromatography with RP-18 of the aqueous solution, the results were not 

satisfactory. The isolation of the product from the buffer salts was not efficient, 

leading to low yields. 

 

The hydrophilic character of the product was then an effective problem for its 

isolation from aqueous solutions. The use of an organic solvent for the enzymatic 

reaction seemed to be a reasonable alternative, since product isolation from micro 
                                                 
75  Witty et al. Tetrahedron Lett 1990, 31(33):4787. 
115 Wessel, HP; Ruiz, N; J Carbohydr  Chem 1991, 10:901. 
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aqueous reaction systems can be achieved by simply filtering off the enzyme and 

evaporation of the organic solvent. Therefore, an enzyme screening for the ester 

hydrolysis of 52 in micro aqueous systems was carried out. Several lipases from 

different microorganisms such as Candida antarctica, Candida rugosa, Arthobacter 

ureafaciens, Rhizomucor miehei, Burkholderia cepacia, Thermomyces lanuginose or 

Aspergillus oryzae and the polyethylene glycol co-lyophilized esterases from pig liver 

and Mucor miehei displayed hydrolytic activity on this substrate. The highest activity 

was shown by lipase L2 from Candida antarctica. The enzymatic activity depends 

upon the organic solvent and water contents, and the screening of solvents and 

water amount for the activity of lipase L2 from Candida antarctica is presented in 

Table 4. TBME saturated with water gave the highest activity, while acetonitrile and 

the commonly used diisopropyl ether and diethyl ether also led to a good activity. 

 
Table 4. Screening of organic solvents with different water content for 
lipase L2 from Candida antarctica activity on the hydrolysis of 52 at rt. 

Medium Conversion after 2 h Conversion after 1 d 
Solvent [H2O] Substrate % Product % Substrate % Product % 
Nonane 0.008 - - 55.3 44.7 
Heptane 0.01 - - 73.3 26.7 
Cy-Hex 0.01 - - 65.2 34.8 
Pentane 0.012 - - 79.1 20.9 
Toluene 0.033 100 0 66.1 33.9 
Chloroform 0.008 100 0 66.6 33.4 
DCM 0.072 100 0 26.5 73.5 
Dichloroethane 0.15 100 0 63.4 36.6 
DCM 0.2 100 0 47.0 53.0 
Diisopropyl ether 0.2 79.8 20.2 24.3 75.7 
Diethyl ether 0.2 100 0 51.3 48.7 
TBME 0.2 66.3 33.7 28.5 71.5 
Diisopropyl ether 0.62 41.9 58.1 17.1 82.9 
Diethyl ether 1.3 65.6 34.4 8.2 91.8 
TBME 1.4 14.5 85.5 5.7 94.3 
Dioxane 1.4 87.5 12.5 43.1 56.9 
THF 1.4 100 0 60.9 39.1 
MeCN 1.4 86.3 13.7 14.8 85.2 
Dioxane 5 80.1 19.9 31.0 69.0 
THF 5 91.8 8.2 45.2 54.8 
MeCN 5 83.5 16.5 17.2 82.8 
Heptane* 0.01 100 0 100 0 

* blank 

Mild cleavage of the methyl ester 52 was then achieved with immobilised lipase L2 

from Candida antarctica in TBME saturated with water, and on a gram scale the free 

acid 53 was isolated in quantitative yield as a hygroscopic white foam, containing ca. 
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3-4% of the ester 52 and ca. 5% TBME. Moreover, the increase of temperature to 45 

°C and reaction time to 3 days did not allow the complete conversion of the ester to 

the corresponding acid as monitored by HPLC, suggesting the existence of an 

equilibrium when ca. 95% of conversion is reached. Thus, this chemoenzymatic 

approach allowed the successful synthesis of 2,4-anhydro-5-N-(tert-

butoxycarbonyl)amino-5-deoxy-D-lyxonic acid 53. 

 

For the synthesis of the 3-methoxyoxetane δ-amino acid scaffolds (2.1.2 and 2.1.3) 

the chosen synthetic route took advantage of the stability of a primary azide function 

early introduced in order to avoid protection/deprotection steps over the synthetic 

pathway.59 

 

2.1.2 Synthesis of 2,4-Anhydro-5-N-(tert-butoxycarbonyl)amino-
5-deoxy-3-O-methyl-D-lyxonic Acid 

 

Treatment of 1,2-O-isopropylidene-α-D-xylofuranose 44 with triflic anhydride followed 

by displacement with sodium azide furnished the over-triflated by-product 54, 
isolated in 23% yield, together with the desired primary azide 55 in 63% yield 

(Scheme 17). These results compete favourably with syntheses via a 

tosylate116,117,118 or introduction of the azide from 1 via a zinc salt mediated 

Mitsunobu reaction.119  

 
Treatment of the triflate 54 with MeONa/MeOH at rt for 24 h aiming at nucleophilic 

substitution by the methoxide failed and quantitatively yielded the D-xylo-azide 55 

instead. Methylation of 55 by a standard procedure using iodomethane and sodium 

hydride in THF gave 56116 in quantitative yield.  

 

Hydrolysis of the isopropylidene group was achieved with 30% aqueous acetic acid 

to give a 2:1 α/β-anomeric mixture of 5-azido-3-O-methyl-α,β-D-xylofuranose in 88% 
                                                 
59  Lucas et al. J Carbohydr Chem 2008, 27(3):172. 
116 Tulshian, DB; Fundes, AF; Czarniecki, M; Bioorg Med Chem Lett 1992, 2(6):515. 
117 Yamashita, M; Takahashi, C; Seo, K; Heterocycles 1993, 36(4):651. 
118 Kefurt, K; Kefurtova, Z; Markova, V; Slivova, K; Collect Czech Chem Commun 1996, 61:1027. 
119 Moravcová, J; Spilová, L; Capková, J; Chéry, F; Rollin, P. Collect Czech Chem Commun 2000, 65:1745. 
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yield. Selective anomeric oxidation with bromine was performed employing the 

conditions previously optimised to give the lactone 58 in 76% yield. Using the 

already mentioned methodology for the ring contraction of pentano-1,4-lactones to 

oxetane carboxylic esters we obtained the oxetane 59 in 67% yield. Hydrogenolysis 

of the azide in the presence of tert-butoxycarbonyl anhydride gave the protected 

amine 60 in 83% yield. 
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i) Tf2O, DCM, Py, -12 ºC, 30 min; ii) NaN3, acetone, rt, overnight, 23%(54), 62%(55); iii) MeONa/MeOH, rt, 
24 h, quantitative; iv) MeI, NaH, DMF, 1 h, quantitative; v) AcOH 30%, reflux, 2 h, 88%; vi) Br2, BaCO3, 
H2O/dioxane 2:1, rt, 4 h, 76%; vii) Tf2O, DCM, Py, -12 ºC, 15 min; viii) K2CO3, MeOH, -12 ºC to 0ºC, 1h, 
67%; ix) H2, Pd/C, EtOAc, Boc2O, rt, 2 h, 83%; x) LiOH 1N, 0-5 ºC, 30 min, 89%. 

 
Scheme 17 

 

Saponification with lithium hydroxide allowed the synthesis of the oxetane δ-amino 

acid 61 in a very good yield (89%). When compared to the previous work on the 

synthesis of 2,4-anhydro-5-N-(tert-butoxycarbonyl)amino-D-lyxonic acid (2.1.1), 

where basic saponification led to complete degradation (Table 5), these results 

suggest that the free hydroxyl group was indeed responsible for the previous failure 

of this reaction, rather than the presence of the amino function, probably due to 

deprotonation and further intra- or intermolecular reactions resulting in the 

decomposition of the material.  
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Table 5. Oxetane δ-amino ester substrates and corresponding saponification yield.  

 
O

OBn

OBnO

OMe

38  

O

OH

ON3

OMe

51  

O

OH

OBocHN

OMe
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O

OMe

OBocHN

OMe

60  

yield Quantitative Decomposition Decomposition 89% 
 

 

2.1.3 Synthesis of 2,4-Anhydro-5-N-(tert-butoxycarbonyl)amino-
5-deoxy-3-O-methyl-D-ribonic and D-arabinonic acids 

 
For the synthesis of 2,4-anhydro-5-N-(tert-butoxycarbonyl)amino-5-deoxy-3-O-

methyl-D-ribonic acid (71) starting from the azide 55 (Scheme 18), we made use of a 

well established oxidation/reduction sequence.120 Oxidation with pyridinium 

dichromate (PDC) of 55 under reflux conditions led to the keto sugar 62 in 89% yield. 

The use of PDC at room temperature was previously reported to give 62 in 80% 

yield,121 while ruthenium dioxide–sodium periodate oxidizing conditions gave 71% of 

62. This keto sugar was reduced to the D-ribo-derivative 63 with sodium borohydride 

in 92% yield. Attempted inversion of configuration via triflate 54 using sodium 

trifluoroacetate led to a poor 10% yield of 63. 

 

Methylation of 5-azido-5-deoxy-1,2-O-isopropylidene-α-D-ribofuranose 63 gave the 

fully protected derivative 64116 in quantitative yield. Isopropylidene hydrolysis with 

30% aqueous acetic acid afforded the free furanose in 85% yield as a 1:1 mixture of 

α/β-anomers, 65a,b. Selective anomeric oxidation by bromine gave the 

ribonolactone 66 in 67% yield. The ring contraction reaction led to a mixture of 

isomeric D-ribo- and D-arabino-oxetanes 67 and 68 isolated in 53 and 7% yield, 

                                                 
120 Baker, DC; Horton, D; Tindall, CG; Carbohydr Res 1972, 24(1): 192. 
121 Ewing, DF; Goethals, G; Mackenzie, G; Martin, P; Ronco, G; Vanbaelinghem, L; Villa, P; Carbohydr Res 

1999, 321:190–196. 
116 Tulshian et al. Bioorg Med Chem Lett 1992, 2(6):515. 
75  Witty et al. Tetrahedron Lett 1990, 31(33):4787. 
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respectively. These results are in agreement with those obtained by Witty et al.75 for 

the ring contraction of a different ribono-1,4-lactone. 
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Scheme 18: i) PDC, Ac2O, DCM, reflux, 3 h, 89%; ii) CF3COONa, butanone, rt, overnight, 10%; iii) NaBH4, 
EtOH/H2O 6:1, rt, overnight, 94%; iv)MeI, NaH, DMF, 30 min, quantitative; v) AcOH 30%, reflux, 1 h, 86%; 
vi) Br2, BaCO3, H2O/dioxane 2:1, rt, 1.5 h, 67%; vii) Tf2O, DCM, Py, -12 ºC, 15 min; viii) K2CO3, MeOH, -12 
ºC to 0 ºC, 1 h, 53%(67), 7%(68); ix) H2, Pd/C, EtOAc, Boc2O, rt, 2h, 81%(69), 85%(70); x) LiOH 1N, HCl 
1N, 0-5 ºC, 30 min, 89%(71), 92%(72). 
 

Hydrogenolysis of the azide 67 in the presence of Boc2O gave the protected amine 

69 in 81% yield. The same procedure was used to transform 68 to 70 in 85% yield. 

Lithium hydroxide was again very efficient for the saponification of 69 and 70, which 
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occurred in 89% and 92% yield, to give the final oxetane δ-amino acids 71 and 72, 

respectively. 

 

The stability of the 5-azide function along the chosen approach to 3-methoxyoxetane 

δ-amino acids (2.1.2 and 2.1.3) allowed a straightforward synthesis of the three new 

methoxyoxetane δ-amino acids 61, 71 and 72 differing in stereochemistry and with 

well defined exit vectors particularly interesting for further derivatisation. 

 

2.1.4 Synthesis of 2,4-Anhydro-5-N-(tert-butoxycarbonyl)amino-
5-deoxy-3-fluoro-D-arabinonic acid 

 

It has been well recognised that the presence of fluorine can induce favourable 

properties in bioactive compounds, becoming highly important in medicinal chemistry 

approaches. Quite often, fluorine is introduced to improve the metabolic stability by 

blocking metabolically labile sites. Fluorine can also be used to modulate 

physicochemical properties, such as lipophilicity or basicity. It may exert a 

substantial effect on the conformation of a molecule, and is being used to enhance 

the binding affinity to target proteins.122,123  

 

For the introduction of a C-F bond in an oxetane δ-amino acid scaffold the chosen 

approach was based on the use of DAST as fluorination agent on the azide 51 
(Scheme 20). Moreover an alternative synthesis of 51 was also employed. 

 

Starting from readily available D-xylose we made use of a straightforward anomeric 

oxidation and benzylidene protection previously reported by Fleet’s group77 to 

achieve the 1,4-xylonolactone 74 (Scheme 19). Although the yields were reported to 

be in the range of 50%, we could only reach 39%. However, we were able to identify 

a previously not reported by-product formed in considerable amount (37%). MS, 1H-

NMR and IR spectroscopy allowed the structural assignment of this compound as 
                                                 
122 Böhm, H-J; Banner, D; Bendels, S; Kansy, M; Kuhn, B; Müller, K; Obst-Sander, U; Stahl, M; Chem Bio 

Chem 2004, 5:637. 
123 Müller, K; Faeh, C; Diederich, F; Science 2007, 317:1881.  
77  Jenkinson (née Barker) et al. Tetrahedron Asymm. 2004, 15, 2667. 
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the known 2,4;3,5-dibenzylidene xylonic acid 75 (for the structural elucidation see 

chapter 2.5.5). Its melting point and specific rotation were in agreement with those 

reported in the literature124 and confirmed the proposed structure. 
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Scheme 19. One-pot anomeric oxidation and benzylidene protection of D-xylose. 

 
Ring contraction of the 1,4-lactone 74 using the previously mentioned triflation 

followed by treatment with potassium carbonate led to the benzylidene protected 

oxetane 76 in 65% yield (Scheme 20). Deprotection was accomplished by catalytic 

hydrogenation affording the known diol 4859,78 in 87% yield. This compound was 

reacted further as explained in section 2.1.1 using a non-basic triflation, followed by 

selective introduction of a primary azide by means of sodium azide to furnish the 

intermediate 51. 

 

The oxetane derivative 51 containing a free hydroxyl group was then the key 

intermediate for the fluoride introduction at C-3. The first attempt to direct 

substitution of the hydroxyl by fluoride made use of the standard reaction with 

diethylaminosulfur trifluoride (DAST) in DCM. However, reaction either at rt or under 

reflux conditions gave the desired fluoroderivative 77 in poor yield. Theoretical 

studies on fluorination reaction by DAST125 indicate that the formation of fluoride ions 

is very endoenergetic when the reaction takes place in solvents with low dielectric 

constant as DCM. In addition, fluoride ion formation may be induced by the presence 

of pyridine. Since adding pyridine did not lead to any improvement in the yield of 77, 

the reaction was then tried using MeCN as solvent, and the reaction conditions were 

optimised as follows: DAST was added at –20 ºC, and the mixture was warmed up to 

reach reflux conditions to afford the fluoroderivative 77 with the yield of 75%.  

                                                 
124 Zinner, H; Voigt H; Voigt, J; Carbohyd Res 1968, 7:38. 
59 Lucas et al. J Carbohydr Chem 2008, 27(3):172. 
78 Johnson, et al. Tetrahedron Asymm. 2004, 15, 2681. 
125 Baptista, L; Bauerfeldt, GF; Arbilla, G; Silva, EC; J Mol Struct:THEOCHEM  2006, 761:73-81.  
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i) Tf2O, DCM, Py, -30 ºC, 1 h; ii) K2CO3, MeOH, -12 ºC, 4 h, 65% (2 steps); iii) H2, Pd/C, MeOH/dioxane 1:1, 
rt, 2 h, 87%; iv) Tf2O, Et2O/DCM 5:1, 4 Å molecular sieves, -15 ºC, 50 min.; v) NaN3, acetone, rt, 2h, 72% (2 
steps); vi) DAST, MeCN, -20 ºC to reflux, 1h, 75%; vii) H2, Pd/C, EtOAc, Boc2O, rt, 2h, 85%; viii) LiOH 1N, 
HCl 1N, 0-5 ºC, 1h, 97%. 

Scheme 20 
 

One-pot reduction of azide 77 in the presence of tert-butoxycarbonyl anhydride 

furnished the protected amine 78 in a good yield. Once again, in the absence of a 

hydroxyl substituent at C-3, the saponification by means of LiOH was a very clean 

reaction giving the desired oxetane δ-amino acid 79 in 97% yield. 

 

2.1.5 Synthesis of 2,4-Anhydro-5-N-(tert-butoxycarbonyl)amino-
5-deoxy-3-fluoro-D-xylonic acid 

 
With a view to the synthesis of benzyl protected D-ribono-1,4-lactone 85 (Scheme 

21), we made use of  a selective benzoyl protection of 1,2-O-isopropylidene-α-D-

xylofuranose 44 at the primary alcohol, so that the well established PDC oxidation 

followed by NaBH4 procedure led to the necessary inversion of configuration at C-3 

together with benzoyl cleavage to afford 1,2-O-isopropylidene-α-D-ribofuranose 82 in 

good yield. Benzylation of the diol 82 and further isopropylidene hydrolysis led, in 
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this case, to the β-anomer 84, that was further oxidised with bromine to give the 

desired α-hydroxy lactone 85 in 79% yield. 
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Scheme 21 

 

For the synthesis of the oxetane δ-azido ester 88, the best yields were obtained 

when no intermediary purification was made after the synthesis of lactone 85. Ring 

contraction was achieved by triflation and treatment with K2CO3 in methanol. The 

resulting crude 86 was hydrogenated but triflation of the diol 87 was not possible 

using the non-basic procedure due to the low solubility of the diol 87 in DCM. Hence 

triflation was performed with triflic anhydride in DCM and in the presence of pyridine. 

After reaction with sodium azide in acetone the desired compound 88 was obtained 

in a 53% overall yield from the lactone 85. An alternative synthesis of 87 using a 
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longer synthetic scheme starting from diacetone glucose was previously reported.126 

Azide 88 also proved to be very interesting as starting material for the first approach 

towards click chemistry in oxetane scaffolds (see chapter 2.4). 

 

The attempt to synthesise the fluoro derivative 89, that exhibits all the subtituents 

pointing to the same side of the oxetane ring, was made reacting the azide 88 with 

DAST in MeCN. Although 2 h after the addition of DAST and stirring at -20 ºC we 

could identify a single new spot by TLC, after work up and flash chromatography the 

MS of the fractions suggested the presence of the intermediate 92 (Scheme 22) in 

agreement with Tewson and Welch’s127 proposal for other DAST reactions. 

However, after solvent evaporation decomposition was observed and no more 

analytical data were obtained. 
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Fluorination of 88 by DAST reagent. 

 
Scheme 22 

 

Azide 88 was then submitted to treatment with DAST, and after the formation of the 

intermediate 92 the mixture was heated at 50 ºC to afford the desired product 89. In 

this case it was shown that addition of 1 eq of pyridine improved the reaction rate. 

Compound 89 is volatile, and the best results were obtained when no purification 

was performed, so that after DAST reaction and work-up the crude 89 was further 

hydrogenated in the presence of tert-butoxycarbonyl anhydride to achieve the 

protected amine 90 (Scheme 21) in 52% yield over the two steps. In agreement with 

the results for the saponification of the fluoro derivative 78, treatment of 90 with 1 N 

LiOH led to the δ-amino acid 91 in the excellent yield of 97%. 

                                                 
126 Wang, Y; Fleet, GWJ; Wilson, FX; Storer, R; Myers, PL; Wallis, CJ; Doherty, O; Watkin, DJ; Vogt, K.; 

Witty, DR; Peach, JM; Tetrahedron Lett 1991, 23(13):1675. 
127 Tewman, TJ; Welch, MJ; J Org Chem 1978, 43(6):1090. 



Results and Discussion 

56 
 

The synthesis of oxetane δ-amino acid scaffolds 53, 61, 71, 72, 79 and 92 (Scheme 

23) was thus successfully accomplished in the present work. Strategically, we 

targeted the free carboxylic acid to allow the coupling of these units with 

hydroxyamidines in order to afford different oxadiazoles on oxetane scaffolds by the 

already mentioned cyclodehydration mechanism (see chapter 1.3). 
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2.2 Library Construction on Oxetane δ- Amino Acid 

Scaffolds 

 

Being 1,2,4-oxadiazoles valuable pharmacophores (see chapter 1.3) we made use 

of the reaction of the carboxylic acid on the oxetane scaffold with different 

hydroxyamidines (Scheme 24) to generate libraries of compounds. This procedure 

takes us to the targeted 1,2,4-oxadiazoles with a lipophilic Boc protected amine unit 

on the opposite side of the oxadiazole. Hence, the Boc cleavage by means of TFA 

leads to the hydrophilic free amine III. In a midway of lipophilicity will then be the 

corresponding N-acetyl amines with general structure IV, and the N-mesyl amines 

with general structure V.  
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Scheme 24 

 

2.2.1 Library using 2,4-Anhydro-5-N-(tert-butoxycarbonyl)amino-
5-deoxy-D-lyxonic Acid (53) as Scaffold 

 

The first attempt to prepare oxadiazoles starting from an oxetane δ-amino acid was 

made using 2,4-anhydro-5-N-(tert-butoxycarbonyl)amino-5-deoxy-D-lyxonic acid (53) 
(Scheme 25) as scaffold. Its coupling to benzamidoxime 93 was performed in the 

presence of HATU and DIPEA in DMF, and further heating at 80 ºC led to complete 

cyclisation as indicated by TLC. Nevertheless, isolation of the desired product 94 

was only possible up to a maximum yield of 30%. The use of other coupling agents, 

such as 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) or 2-(7-aza-benzotriazole-1-

yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (TATU) did not improve the 

reaction yield. 
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Rationalising in terms of scaffold stability under basic conditions, we had the finding 

from previous reactions (see chapter 2.1.2) that the free -OH group at C-3 of the 

oxetane ring can confer some instability to these molecules. Thus the protection of 

the hydroxyl group seemed the logical way to proceed. The protective group chosen 

was the p-methoxybenzyl (PMB) group so that it could be introduced under mild 

acidic conditions, be stable under basic conditions and be easily removed by TFA, if 

possible together with the cleavage of the Boc group. 

 

To avoid the conventional alkylations under strongly basic conditions, Wessel et 

al.,128 back in the 1980’s, reported the use of trichloroacetimidates to accomplish 

alkylations under mild acidic conditions using catalytic triflic acid (TfOH). As a test 

reaction, the protection of the azide 51 (Scheme 26) with PMB trichloroacetimidate 

was attempted. It was found that the use of 10% TfOH as catalyst led to 

decomposition. When the concentration of the same catalyst was reduced to 0.3%, 

no reaction occurred. Using 10% pyridinium p-toluenesulfonate (PPTS) as catalyst 

no reaction was observed. Finally, when the catalyst was camphorsulfonic acid 

(CSA) (10%), the desired protected compound 94 was obtained in a 78% yield. 
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Scheme 26 

 

CSA was then used as catalyst for the protection of the ester 52 (Scheme 27), and 

p-methoxybenzyl trichloroacetimidate as protecting agent. However, a mixture of the 

desired product 95 and compound 96, resulting from the p-methoxybenzylation on 

the secondary amine, was obtained. The separation of these two compounds was 

possible but tedious due to the similar chromatographic behaviour of both 95 and 96. 

 

                                                 
128 Wessel, HP; Iversen, T; Bundle, DR; J Chem Soc Perkin Trans I 1985, 2247.  
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Subsequent to the protection of 52, ester hydrolysis of 95 was accomplished in 

quantitative yield by treatment with aqueous LiOH, and the result encouraged us to 

move towards the library construction on this scaffold according to Scheme 28. 
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General approach to library construction on scaffold 97. 

Scheme 28 

 

The hydroxyamidines chosen for library formation were aromatic compounds leading 

to different R groups (Scheme 29) such as a phenyl group as in 93, also a p-

methoxyphenyl and a p-chlorophenyl group were chosen presenting electron-

withdrawing substituents on the phenyl ring. Hydroxyamidine 100 has p-

methylphenyl as R group and displays an electron-donating effect of the CH3 

substituent on the ring. A p-pyridinyl was selected as R group in order to afford a 

heteroaromatic substituent. 
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The results obtained for the synthesis of each individual compound of this first 

oxetane-based library are presented in Table 6. Reaction of carboxylic acid 97 with 

different hydroxyamidines (93, 98-101) led to oxadiazoles in reasonable yields. The 

use of TFA for Boc cleavage furnished the desired free hydroxyl group at C-3 in 53 

to 98% yield. 

 
Table 6. Results obtained for the library based on scaffold 97. 

O

R3

O N

N R2R1

 
R1 R2 R3 

Starting 
Material Product Yield  

(%) 

NHBoc  Ph  OPMB 97 102 43 
NHBoc p-OMePh OPMB 97 103 65 
NHBoc p-ClPh  OPMB 97 104 59 
NHBoc p-MePh  OPMB 97 105 79 
NHBoc p-Py OPMB 97 106 50 

NH2  Ph  OH 102 107 74 
NH2 p-OMePh OH 103 108 98 
NH2 p-ClPh OH 104 109 97 
NH2 p-MePh OH 105 110 53 
NH2 p-Py OH 106 111 89 

NHAc Ph  OH 107 112 50 
NHAc p-OMePh OH 108 113 53 
NHAc p-ClPh OH 109 114 47 
NHAc p-MePh OH 110 115 48 
NHAc p-Py OH 111 116 39 
NHMs Ph  OH 107 117 29 
NHMs p-OMePh OH 108 118 23 
NHMs p-ClPh OH 109 119 32 
NHMs p-MePh OH 110 120 31 
NHMs Py OH 111 121 24 
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However, the yields obtained for acetylation and mesylation of the free amines 107-

111 were very poor for this type of reaction. As these reactions were performed 

under basic conditions, this indicates again the instability conferred by the free 

hydroxyl group in C-3. In fact, the chemical stability of compounds 104, 109, 114 and 

118 was tested using the ASTA stability assay (Table 7), in which the compounds 

were stirred at five different pH values at 37 ºC for two hours. After that time the 

stability was determined by UV peak integration.  

 
       Table 7. ASTA results for compounds 104, 109, 114 and 118. 

 pH t0 
area 

t2h 
area 

Recovery 
(%) Result 

1 587 530 90.3 Probable instability: 
 growing peak (UV)  

4 595 569 95.6 Stable 

6 581 574 98.8 Stable 

8 580 571 98.4 Stable 

O

OPMB
O N

NBocHN

Cl

104  10 570 559 98.1 Stable 

1 278 262 94.2 Stable 

4 261 249 95.4 Stable 

6 237 207 87.3 Instable 

8 18 9 50.0 Instable 

O

OH
O N

NTFA.H2N

Cl

109  10 0 0  0 Instable 

1 315 304 96.5 Stable 

4 315 311 98.7 Stable 

6 166 150 90.4 Instable 

8 0 0  0 Instable 

O

OH
O N

NAcHN

Cl

114  10 0 0  0 Instable 

1 374 373 99.7 Stable 
4 374 371 99.2 Stable 

6 361 383 106.1 Probable instability: 
growing shoulder 

8 43 36 83.7 Instable 

O

OH
O N

NMsHN

OMe

118  10 0 0  0 Instable 
 

 

The ASTA results confirm that the free hydroxyl group at C-3 leads to instability of 

these oxetane derived compounds, while the corresponding PMB ether 104 was 

stable at least until pH 10. The stability issues explain the poor yields of the 
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acetylation and mesylation reactions, in which the free hydroxyl derivatives 107-111 

are reacted in the presence of pyridine or triethylamine, respectively. Compound 53 

would then only be appealing as scaffold to afford libraries in which the synthesis 

involves non-basic approaches. 

 

2.2.2 Library using  2,4-Anhydro-5-N-(tert-butoxycarbonyl) 
amino-5-deoxy-3-O-methyl-D-lyxonic Acid  (61) as Scaffold 

 

The use of 2,4-anhydro-5-N-(tert-butoxycarbonyl)amino-5-deoxy-3-O-methyl-D-

lyxonic acid 61 was foreseen to be less problematic due to the absence of the free 

hydroxyl at C-3. Hence, the proposed approach to 3-methoxyoxetane followed the 

steps previously mentioned in Scheme 24. When the acid 61 was reacted with 

hydroxyamidines 93, 98, 99, 100, 101, the corresponding oxadiazoles were obtained 

in 55 to 72% yield (Table 8).  

 
Table 8. Results obtained for the library based on scaffold 61. 

OR1

OMe
O N

N R2

R1 R2 

Starting 
Material Product Yield 

(%) 

NHBoc  Ph  61 122 69 
NHBoc p-OmePh  61 123 68 
NHBoc p-ClPh  61 124 72 
NHBoc p-MePh  61 125 55 
NHBoc p-Py 61 126 59 

NH2  Ph  122 127 86 
NH2 p-OmePh 123 128 82 
NH2 p-ClPh 124 129 87 
NH2 p-MePh 125 130 87 
NH2 p-Py 126 131 59 

NHAc Ph  127 132 90 
NHAc p-OmePh 128 133 95 
NHAc p-ClPh 129 134 99 
NHAc p-MePh 130 135 88 
NHAc p-Py 131 136 90 
NHMs Ph  127 137 93 
NHMs p-OMePh 128 138 72 
NHMs p-ClPh 129 139 95 
NHMs p-MePh 130 140 74 
NHMs Py 131 141 59 
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Boc cleavage was accomplished by treatment with TFA in good yields, except for the 

pyridinyl substituted oxadiazole, with which the corresponding free amine was only 

isolated in 59% yield.  

 

 

As expected, the acetylation and mesylation of the amines 127 to 131 under basic 

conditions led to the desired products in good to excellent yields. These results 

confirmed the stability of a 3-methoxyoxetane derivative, in contrast to the previous 

results in which the scaffold exhibited the same stereochemistry but a free hydroxyl 

group rather than a methoxyl in C-3. 

 

 

2.2.3 Library using 2,4-Anhydro-5-N-(tert-butoxycarbonyl) 
amino-5-deoxy-3-O-methyl-D-ribonic Acid (71) as Scaffold 

 
 
The previously described methodology was applied to generate the corresponding 

20-compound library on the 3-methoxyoxetane 71 that presents a D-ribo 

configuration. Once again the results were good (Table 9) when compared to those 

obtained with the free hydroxyl oxetane derivative and, with some exceptions, quite 

comparable to the previous library on a D-lyxo 3-methoxyoxetane. Therefore it can 

be deduced that stereochemical effects are not significant for the reactions 

presented herein. 
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Table 9. Results obtained for the library based on scaffold 71. 

OR1

OMe
O N

N R2

R1 R2 

Starting 
Material Product Yield 

(%) 

NHBoc  Ph  71 142 60 
NHBoc p-OMePh 71 143 46 
NHBoc p-ClPh  71 144 75 
NHBoc p-MePh  71 145 84 
NHBoc p-Py 71 146 83 

NH2  Ph  142 147 80 
NH2 p-OMePh 143 148 98 
NH2 p-ClPh 144 149 85 
NH2 p-MePh 145 150 90 
NH2 p-Py 146 151 94 

NHAc Ph  147 152 91 
NHAc p-OMePh 148 153 82 
NHAc p-ClPh 149 154 92 
NHAc p-MePh 150 155 83 
NHAc p-Py 151 156 92 
NHMs Ph  147 157 83 
NHMs p-OMePh 148 158 76 
NHMs p-ClPh 149 159 99 
NHMs p-MePh 150 160 79 
NHMs Py 151 161 85 

 

 

2.2.4 Library using 2,4-Anhydro-5-N-(tert-butoxycarbonyl) 
amino-5-deoxy-3-fluoro-D-arabinonic Acid (79) as Scaffold 

 

With a fluoride substituent at C-3 and a stereochemistry different from the previously 

reported scaffolds, 79 was reacted with the hydroxyamidines 93, 98, 99, 100 and 

101 (Table 10). After cyclodehydration, the corresponding oxadiazoles 162 to 166 

were obtained in yields between 55 and 84%. Boc cleavage was accomplished by 

treatment with TFA to give the free amines 167-171, which were further reacted with 

acetic anhydride or mesyl chloride in basic media to afford the corresponding 

acetylated and mesylated derivatives in good yields. Hence, the synthesised scaffold 

79 and subsequent derivatives were stable under acidic (TFA) and basic (Py, ET3N) 

conditions. 
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Table 10. Results obtained for the library based on scaffold 79. 
OR1

F
O N

N R2

R1 R2 

Starting 
Material Product Yield 

(%) 

NHBoc  Ph  79 162 81 
NHBoc p-OMePh  79 163 83 
NHBoc p-ClPh  79 164 84 
NHBoc p-MePh  79 165 71 
NHBoc p-Py 79 166 55 

NH2  Ph  162 167 94 
NH2 p-OMePh 163 168 63 
NH2 p-ClPh 164 169 75 
NH2 p-MePh 165 170 76 
NH2 p-Py 166 171 88 

NHAc Ph  167 172 71 
NHAc p-OMePh 168 173 98 
NHAc p-ClPh 169 174 88 
NHAc p-MePh 170 175 90 
NHAc p-Py 171 176 98 
NHMs Ph  167 177 74 
NHMs p-OMePh 168 178 96 
NHMs p-ClPh 169 179 83 
NHMs p-MePh 170 180 55 
NHMs Py 171 181 72 

 

 

2.2.5 Derivatisation of 2,4-Anhydro-5-N-(tert-butoxycarbonyl) 
amino-5-deoxy-3-fluoro-D-xylonic Acid (91)  

 

To furnish some comparative examples of related oxadiazoles on a 3-fluorooxetane 

with a different stereochemistry than those reported above, 2,4-anhydro-5-N-(tert-

butoxycarbonyl)-amino-5-deoxy-3-fluoro-D-xylonic acid 91 was reacted with p-

chlorophenyl hydroxyamidine 99 to afford the oxadiazole 182 in 79% yield (Scheme 

30). Boc cleavage was accomplished by treatment with TFA in 90% yield. 

Acetylation and mesylation of 183 were achieved in 82% and 84% yield, 

respectively. 
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Scheme 30 

 

In conclusion, the syntheses of small libraries based on oxetane δ-amino acid 

scaffolds were successfully accomplished. While 2,4-anhydro-5-N-(tert-

butoxycarbonyl)amino-5-deoxy-D-lyxonic acid (53) proved to be unstable under the 

basic conditions for derivatisation, the methodology chosen proved to be efficient 

and not dependent on stereochemistry with 3-methoxy or 3-fluoro-oxetane δ-amino 

acids. 

 

2.3 Library Construction on Bicyclic δ- Amino Acid 

Scaffolds 

 
Amongst the vast Roche in-house collection of compounds, the racemic bicyclic δ-

amino acids 186 and 187 seemed interesting for comparison with the oxetane based 

analogs. The bicyclic system confers rigidity to the scaffold, which is more lipophilic 

than the oxetane. Hence, the corresponding 20-compound libraries were efficiently 

prepared using the already described methodology. 
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To afford the oxadiazoles 188-192 (Table 11), 186 was submitted to coupling with 

the hydroxyamidines 93, 98, 99, 100 and 101 in the presence of DIPEA and using 

HATU as coupling agent. Heating the reaction mixture allowed the already 

mentioned cyclodehydration, and the target products were obtained in 38% to 57% 

yield. It was observed that for complete cyclodehydration these reactions needed 

higher temperature when compared to the corresponding reactions on oxetane δ-

amino acid scaffolds (100 ºC instead of 80 ºC). Even after the increase in 

temperature, the time for completion was also longer (usually overnight), the yields 

were lower than for the corresponding reactions with oxetane δ-amino acid scaffolds, 

when the scaffold 186 was reacted.  

 
Table 11. Results obtained for the library based on scaffold 186. 

R1
H

H O N

N R2

R1 R2 

Starting 
Material Product Yield 

(%) 

NHBoc  Ph  186 188 53 
NHBoc p-OMePh 186 189 66 
NHBoc p-ClPh  186 190 38 
NHBoc p-MePh  186 191 57 
NHBoc p-Py 186 192 57 

NH2  Ph  188 193 62 
NH2 p-OMePh 189 194 89 
NH2 p-ClPh 190 195 98 
NH2 p-MePh 191 196 77 
NH2 p-Py 192 197 90 

NHAc Ph  193 198 99 
NHAc p-OMePh 194 199 99 
NHAc p-ClPh 195 200 96 
NHAc p-MePh 196 201 99 
NHAc p-Py 197 202 98 
NHMs Ph  193 203 96 
NHMs p-OMePh 194 204 97 
NHMs p-ClPh 195 205 89 
NHMs p-MePh 196 206 99 
NHMs Py 197 207 79 
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Boc cleavage was accomplished by treatment with TFA to give the free amines 193-

197 in yields between 62% and 98%. These compounds were further reacted with 

acetic anhydride or mesyl chloride in basic medium to afford the corresponding 

acetylated and mesylated derivatives in very good yield. Thus, compound 186 

showed to be a feasible scaffold for the targeted libraries. 

 

Once again, the use of the bicyclic δ-amino acid 187 for oxadiazole synthesis 

showed the requirement of higher temperature for cyclodehydration. After heating at 

100 ºC, the desired oxadiazoles 208-212 (Table 12) were obtained in reasonable 

yields. Reaction of 208-212 with TFA led to the free amines 213-217 with yields in 

the range of 71 to 97%. Treatment of 213-217 with acetic anhydride or mesyl 

chloride gave the corresponding N-acetyl and N-mesyl derivatives in good yields. 
 

Table 12. Results obtained for the library based on scaffold 187. 
R1

H

H O N

N R2

R1 R2 

Starting 
Material Product Yield 

(%) 

NHBoc  Ph  187 208 48 
NHBoc p-OMePh  187 209 67 
NHBoc p-ClPh  187 210 64 
NHBoc p-MePh  187 211 52 
NHBoc p-Py 187 212 41 

NH2  Ph  208 213 97 
NH2 p-OMePh 209 214 81 
NH2 p-ClPh 210 215 84 
NH2 p-MePh 211 216 71 
NH2 p-Py 212 217 84 

NHAc Ph  213 218 63 
NHAc p-OMePh 214 219 97 
NHAc p-ClPh 215 220 98 
NHAc p-MePh 216 221 68 
NHAc p-Py 217 222 99 
NHMs Ph  213 223 71 
NHMs p-OMePh 214 224 64 
NHMs p-ClPh 215 225 93 
NHMs p-MePh 216 226 80 
NHMs Py 217 227 63 
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2.4 Triazole library starting from an Oxetane δ-Azido 

Ester Scaffold 

 

Click reactions (see chapter 1.3) are very attractive for medicinal chemistry 

purposes. Efficiency and practical simplicity are crucial qualities for synthesis in an 

industrial environment. As 1,2,3-triazoles are promising pharmacophores (see 

chapter 1.3), an approach towards their synthesis on an oxetane scaffold was tried 

using the click Huisgen’s 1,3-dipolar cycloaddition of alkynes to the oxetane δ-azido 

ester 88 (Scheme 32), catalysed by copper (I).  

 

 

 

O
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Scheme 32 

 

Libraries can be built up manually and sequentially as demonstrated above, and this 

methodology was particularly taken in account in the current work. Nevertheless, the 

efficiency can be increased using automated parallel chemistry. 

 

The use of a click reaction to form a library in one single scaffold opened the way to 

the synthesis in a parallel fashion. In fact, the workflow for compound production in a 

pharmaceutical company has to be based on simple procedures, so that automated 

production can be feasible. This process is exemplified in Fig. 3 and usually starts 

with the selection of a core/scaffold. Then the appropriate chemistry will be 

established and a new library designed based on the available building blocks (either 

commercial or synthesised in-house).  
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Following the building block retrieval, the scaffold is reacted in parallel with different 

building blocks. The reaction mixtures are analysed by LC-MS and the collected 

crude products go to a HT purification laboratory. After preparative HPLC (prep-

HPLC) purification, the fractions are analysed again, the solvents used during 

purification process are then removed and the products usually obtained as 

lyophilised powders. Once the fractions are collected in pre-tared propylene vials, 

the yield is then obtained by automated weight measurement of the fractions that 

contain the pure products. The new compounds are then transfered to standard pre-

tared glass vials with bar code identification and registered in the company 

database. The compounds are then delivered to the logistic department, where 

screening plates are prepared and compounds are stored. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Typical workflow for library production using automated medicinal chemistry techniques.  

 

In our approach to automated synthesis of 1,2,3-triazoles with an oxetane scaffold 

we decided to use DMF as reaction solvent so that the reaction mixture could be 

directly injected on the prep-HPLC with no further work-up. After the injection onto a 
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reverse phase column and using acidic (10% TfOH) or basic (10% Et3N) 

water/acetonitrile gradient, the residual salts from the catalyst could be removed with 

the water flow, allowing the easy recovery of the desired products after the increase 

of acetonitrile. 

 
As a test reactions solid copper sulphate and sodium ascorbate were added to a 

DMF solution of 88 and phenylacetylene. After stirring at rt for 3h, the corresponding 

phenyl substituted triazole 228 (Table 12) was obtained in 77% yield. Some reports 

have been made on the use of microwave to accelerate this type of reaction.129 

Thus, after adding the same reaction components in a sealed flask, the mixture was 

sunmitted to microwave irradiation at 80 ºC for 2 min leading to the desired product 

228 in 73% yield. 

 
To further improve the yields phenylacetylene was reacted with ethyl azidoacetate 

(229) as a test azide. In DMF (Scheme 33) and after addition of solid sodium 

ascorbate and copper sulphate, the corresponding 1,2,3-triazole 231 was obtained in 

76% yield after stirring at rt for 2h. When the same catalytic system was added as an 

1M aqueous solution of both sodium ascorbate and copper sulphate, the yield was 

reduced to 72%. Nevertheless the reaction was completed after 1.5 h. When the 

reaction was performed adding two separated 1M aqueous solutions of sodium 

acetate and copper sulphate, it was complete after 45 min and the yield was 

increased to 99%. Hence, this was the procedure selected for the addition of 

acetylenes to the oxetane δ-azido ester 88. Moreover, it was decided not to use the 

microwave conditions because the microwave apparatus does not allow parallel 

reactions and between each sample, time for heating and cooling is required.  

O

O
N3 +

O

O
N

N
N

sodium ascorbate
CuSO4.5H2O

DMF

229 230 231  
Testing reaction with the azide 229  

Scheme 33 

                                                 
129 Khanetskyy, B; Dallinger, D; Kappe, CO; J  Comb  Chem  2004, 6:884. 
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A final test to all the process was made by reacting scaffold 88 with cyclohexyl 

acetylene in DMF, with addition of two separate 1 M aqueous solutions of sodium 

ascorbate and copper sulphate. After stirring for 1 h the reaction was complete (LC-

MS), and the reaction mixture was injected directly onto the preparative HPLC 

column. As the UV response for detection was not ideal, the ELSD (Evaporative 

Light Scattering Detection) was chosen as detection method. However, the product 

retrieved after purification led only to a reasonable yield of 62 % yield for 232 (Table 

13). In fact, prep-HPLC often leads to a non-quantitative recovery in parallel 

synthesis. The purification process is not optimised for each individual compound 

because the goal is to purify the largest number of compounds that may display 

different responses to the chosen purification method.  
 

Table 13. Results obtained for the library based on scaffold 88. 

O
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The aim in the synthesis and purification of a library in a pharmaceutical company is 

usually to obtain enough material for biological testing. The reactions must be clean 

and straightforward, but the recovery yield will be only an issue when a compound 

becomes a potential product. Therefore we continued with the parallel synthesis of a 

15-compound library to give compounds 233-247 (Table 13) using the reaction 

conditions worked out thus far. 

 

The parallel Huisgen’s 1,3-dipolar cycloaddition of alkynes to the oxetane δ-azido 

ester 88 catalysed by copper(I) was complete after 1 h as seen by LC-MS. All 

reactions were clean and led to complete conversion of the starting materials to the 

desired products, as exemplified by the chromatogram shown in Fig. 4 for the 

reaction of 88 with p-methylphenyl acetylene. 

 

 
Fig. 4. LC-MS chromatogram of the crude reaction of 88 with p-methylphenyl acetylene. 

 

Once a low response to UV or scatter detection was obtained for some of the 

products, the MS detection seemed the more efficient detection method for the prep-

HPLC purification.  

 

In order to evaluate the efficiency of this click reaction, the crude 235 was flash 

chromatographed and an excellent yield was obtained (95%). Moreover the LC-MS 

chromatogram of the crude 240, showed a low intensity peak with the available 

detection methods, and it was also flash chromatographed to give an excellent 98% 

yield of pure 240. 
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Compounds 241, 246 and 247 proved to be very basic for standard acidic 

purification (10% of TfOH) according to their evaluation by LC-MS, and the 

separation from the copper salts would not be efficient. Thus, 241 and 246 were 

purified on the basic mode of prep-HPLC (10% of Et3N), and 247 was flash 

chromatographed on a basic amine column since it showed very low response to the 

available detection methods by LC-MS. However, it seemed that some 247 was 

retained in the column leading only to a 58% yield of the pure product. 

 

In conclusion, the 1,2,3-triazole synthesis showed to be a quantitative 

transformation, and any lowered yields are related to the purification process. The 

lower yields presented in Table 12 were obtained for the compounds that displayed 

a lower response for MS detection. In any case, the amounts obtained for each 

compound were sufficient for testing and for storage in the Roche compound 

depository. 

 

2.5 Structural Assignments 

 

The following chapter will focus on the structural assignment of the compounds 

synthesised. Based on analytical data (MS, IR, 1D NMR and 2D NMR) it was 

possible to clarify stereochemical questions and assign the structure of the by-

product 2,4,3,5-di-O-benzylidene-D-xylonic acid. 

 

 

2.5.1 D-lyxo Configured Oxetanes 
 

The ring contraction reaction of 1,4-lactones was reported by Fleet’s group to give 

oxetanes with well-defined stereochemistry. In this work (chapter 2.1.1), the 

synthesis of D-lyxo configured oxetanes such as 38, 49 and 51 (Scheme 34) was 

described. The 1H NMR data obtained for  the  known  38  were  in  agreement  with 
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those reported in the literature.75 However, no coupling constants were available for 

comparison. 
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Scheme 34 

 

 

The observation of long range coupling constants in the resulting derivatives 38 (J2,4 

= 0.4 Hz) and 49 (J2,4 = 0.8 Hz) did not seem to be in keeping with the D-lyxo 

configuration postulated75 as 4J coupling constants in sterically fixed systems are 

usually indicative of a W-configuration.130 Thus, with the observation of a 4J2,4 long 

range coupling, both protons H-2 and H-4 might be expected to be on the same side 

of the oxetane ring. Therefore, the crystalline azide 51 was subjected to X-ray 

crystallographic investigation which clearly showed the D-lyxo configuration with the 

protons H-2 and H-4 on opposite faces of the oxetane ring (Fig. 5). The oxetane ring 

has a relative high pucker angle of 13.2° but it can not account for a W-configuration. 

Thus, in this case the “W-rule” for 1H NMR long range couplings does not apply.  

 

 
Fig. 5. Ortep plot of azide 51. 

 

                                                 
75   Witty et al. Tetrahedron Lett 1990, 31(33):4787. 
130 a) Günther, H. NMR-Spektroskopie, Georg Thieme Verlag: Stuttgart 1973; 122. b) Atta-ur-Rahman. 

Nuclear Magnetic Resonance-Basic Principles, Springer-Verlag: New York 1986; 85. 



Results and Discussion 

76 
 

X-ray structures of related non-annelated oxetane derivatives prepared by Paternò-

Büchi131 or ring contraction reactions132,77 have also been reported. 
 

The D-lyxo configuration was then unequivocally assigned. The construction of 

libraries on D-lyxo oxetanes gave access to a great number of NMR data. It was 

observed that H-2 and H-3, which are trans-oriented vicinal protons, exhibit a 

coupling constant in the range of 3.7 to 5.7 Hz (average 4.7 Hz) and for the cis-

oriented H-3 and H-4, the obtained coupling constant was in the range of 5.7 to 7.1 

Hz (average 6.8 Hz). 

 

The synthesis of 3-methoxy oxetanes with D-lyxo configuration was achieved in the 

present work by means of ring contraction of the 3-methoxyxylono-1,4-lactone 58 
(Scheme 35). For this 3-methoxy oxetane and its derivatives, the coupling constants 

for both cis- and trans-related vicinal protons were in the above mentioned range.  

 

O

OH

O

MeO

N3

58 59

N3

OMe

O O

OMe

 
Scheme 35 

 
The 1H NMR and COSY spectra for the D-lyxo oxetane 59 is depicted in Fig. 6 to 

exemplify the 1H NMR pattern for this configuration. The corresponding signal for H-

2 is a doublet (d) at δ 5.05 ppm with a J2,3 of 4.8 Hz followed by a quartet (q) at δ 

4.92 ppm assigned to H-4, indicating that J3,4 ≈ J4,5a ≈ J4,5b ≈ 6.3 Hz. At δ 4.44 ppm a 

double doublet (dd) is obtained for H-3, which exhibits the expected J2,3 and J3,4 of 

4.8 and 6.6 Hz, respectively. The singlet at δ 3.86 ppm integrates 3H and appears in 

the typical region of the methyl esters. At δ 3.69 ppm the signal of H-5a is observed 

presenting the typical part A pattern of the ABX system to which it belongs, while 

part B corresponds to H-5b at δ 3.64 ppm. The observed J5a,5b = 13.2 Hz is in 

agreement with the expected geminal coupling constant. The assignments were 
                                                 
131 a) Bach, T; Jödicke, K; Kather, K; Hecht, J; Angew Chem Int Ed 1995, 34:2271. b) Kotila, S; Jäntti, A; 

Penttinen, S; Bach, T; Acta Cryst 1996, C52:1722. c) Bach, T; Jödicke, K; Kather, K; Fröhlich, R; J Am 
Chem Soc 1997, 119:2437. 

132 a) Suzuki, M; Tomooka, K; Synlett 2004, 4:651.  
77 Jenkinson (née Barker) et al. Tetrahedron Asymm 2004, 15, 2667. 
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confirmed by a 2D COSY experiment (Fig. 7) where H-2 exhibits only one cross 

peak with H-3, and H-3 shows a second coupling with H-4. In addition H-4 shows 

cross peaks with H-3 and with H-5a and H-5b. 

 
Moreover, the stereochemistry was confirmed by X-ray crystallography after 

derivatisation of the corresponding 3-methoxy oxetane δ-amino acid. X-ray of 

compounds 125 and 130 (Fig. 8) clearly showed the D-lyxo configuration with the 

oxadiazole ring oriented below the oxetane moiety, while the methoxy and the amino 

groups were on the upper side of the oxetane ring, well establishing that no 

configurational changes had resulted from the oxadiazole formation. 
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Fig. 6. 1H NMR spectrum of 59 in CDCl3 at 400 MHz.  
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Fig. 7. 2D-COSY spectrum of 59 in CDCl3 at 400 MHz.  

 
 

       
Fig. 8. Ortep plot for compounds 125 and 130. 

 

2.5.2 D-ribo Configured Oxetanes 
 
Ring contraction of D-ribono-1,4-lactones was reported to yield D-ribo configured 

oxetanes as major products.59,75
 This was confirmed by the expected triplet for H-3 at 

δ 4.27 ppm in the 1H NMR spectrum of 67 (Fig. 9). Once H-3 has a trans-relationship 

with both H-2 and H-4, J2,3 is the same as J3,4 with a value of 5.0 Hz, characteristic 

for trans-related vicinal protons in similar oxetane systems as mentioned above. 

 

125 130 

59 Lucas et al. J Carbohydr Chem 2008, 27(3):172.
75 Witty et al  Tetrahedron Lett 1990, 31(33):4787. 
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Fig. 9. 1H NMR spectrum of 67 in CDCl3 at 400 MHz.  

 
 

 
A 2D NOESY experiment for the NHBoc derivative 69 (Fig. 10) showed a cross peak 

between H-2 and H-4 and between the H-2 and the 3-methoxy protons reinforcing 

the assigned stereochemistry. Moreover, the corresponding cross peaks were not 

detected for the D-arabino derivative 70. 

 

 
 

 

 

 
Fig. 10. Long-range correlations observed by 2D-NOESY in CDCl3  

at 400 MHz that differentiate compounds 69 and 70. 
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2.5.3 D-arabino Configured Oxetanes 
 
As an example in the D-arabino series, the 1H NMR spectrum of the fluoro derivative 

77 is presented in Fig. 11. Here the characteristic couplings of the fluorine atom with 

the geminal and vicinal protons are also observed. The H-3 signal is a ddd at δ 5.53 

ppm with a characteristic J3,F of 56.1 Hz. Moreover, the signals for H-2 and H-4 

exhibit coupling constants with the fluorine of 15.2 Hz and 19.1 Hz, respectively. 
 
Coupling constants of D-arabino configured oxetanes are no exception to the 

previous mentioned characteristic values for trans- and cis-oriented vicinal protons 

on the oxetane ring, and the average of J2,3 and J3,4 for the D-arabino 3-fluoro 

oxetane library is 6.5 ± 0.4 Hz and 5.0 ± 0.3 Hz, respectively. 
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Fig. 11. 1H NMR spectrum of 77 in CDCl3 at 400 MHz.  
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2.5.4 D-xylo Configured Oxetanes 
 
D-Xylo configured oxetane derivatives were obtained by fluorination with DAST of 

the corresponding the D-ribo 3-hydroxy oxetane 88 (see chapter 2.1.5) with inversion 

of configuration at C-3. The seven D-xylo fluorinated oxetanes synthesised show the 

expected dt for the H-3 signal as shown on the 1H NMR spectrum of compound 90 

depicted in Fig. 12. Nevertheless, the exhibited J2,3 and J3,4 (J2,3≈J3,4) values are 

between 6.0 and 5.6 Hz with an average of 5.8 Hz, falling into the border line 

between the values characteristic for cis- or trans-oriented vicinal protons on the 

studied oxetane systems. Fortunately, it was possible to have X-ray crystallographic 

data for the oxadiazole derivative 183, confirming unequivocally the D-xylo 

configuration, with all the substituents on the same side of the oxetane ring (Fig. 13). 
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Fig. 12. 1H NMR spectrum of 90 in CDCl3 at 400 MHz.  
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Fig. 13. Ortep plot of compound 183. 

 

 

2.5.5 Structural Assignment of 2,4;3,5-Di-O-benzylidene-D-
xylonic Acid 

 
For the known 2,4;3,5-di-O-benzylidene-D-xylonic acid 75 (see chapter 2.1.4) NMR 

data were not available in the literature, and the 1H NMR spectrum (Fig. 14) did not 

allow by itself the clear identification of the by-product 75. Nevertheless, melting 

point and specific rotation were in agreement with those reported in the literature.124 

An IR spectrum showed the carbonyl band at 1738 cm-1 and a band at 2580-2620 

cm-1 for the hydroxyl group indicative of the carboxylic acid function. 

 

O

O
O

O

Ph

Ph

O OH
75  

 
With this evidence on the identity of the by-product, the 1H NMR signals were easily 

assigned from 1D 1H NMR and 2D COSY experiments, with the exception of protons 

H-6 and H-7, which could not be distinguished from each other. The assignment of 

H-6 and H-7 was possible by 2D HMBC (Fig. 15), in which a long- range coupling 

between C-7 and H-5a/H-5b was observed, which was not detected for C-6. Then, 

by 2D HSQC (Fig. 16) correlations C-6/H-6 and C-7/H-7 were observed, 

respectively. From a 2D NOESY experiment (Fig. 17), a cross peak between H-4 

and H-6 was observed, which suggested the correct conformation of 75 as the 

double chair depicted in Fig. 17. All 3J proton-proton couplings were small and thus 

in keeping with this conformational assignment. 

 
124 Zinner et al  Carbohydr Res 1968, 7:38. 
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 Fig. 14. 1H NMR spectrum of compound 75 in DMSO at 400 MHz. 

 
  

 
Fig. 15. 2D HMBC spectrum of compound 75 in DMSO at 100 MHz. 
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Fig. 16. 2D HSQC spectrum of compound 75 in DMSO at 100 MHz. 

 

     

  

 
Fig. 17. 2D NOESY spectrum of compound 75 in DMSO at 100 MHz. 
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2.5.6 Structural Assignment of the Bicyclic Compounds Studied 
 
The racemic bicyclic δ-amino acids 186 and 187, available in the Roche collection of 

compounds, were used to generate 20-compound libraries with the same 

methodology for oxadiazole formation as applied to the oxetane scaffolds (see 

section 2.3). The spectra pattern for the resulting compounds is quite different from 

that of the corresponding oxetane derivatives, as expected.  

 
NHBoc

H

H

O

OH

NHBoc
H

H

O

OH
186 187  

 

NMR assignments were made based on 1H NMR, 2D COSY and 2D HMQC 

experiments. As an example, the 1H NMR 2D COSY and 2D HSQC spectra of 

compound 204 are depicted in Figs. 18-20. Coupling between H-2 and H-3b and 

between H-3a,b and H-4a,b were detected in 2D COSY. Both H-3a and H-3b 

showed a 2D HSQC cross peak with a single carbon allowing the confirmation of 

these two protons as geminal protons. Assignment of H-6 and H-4a,b was based on 

the observed 2D HSQC cross peaks between the multiplet at δ 2.04-1.97 ppm and 

the carbon signal at δ 16.3 ppm for C-6, characteristic of isocyclopropyl carbons, and 

that of C-4 at δ 24.8 ppm. 
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Fig. 18. 1H NMR spectrum of compound 204 in CDCl3 at 400 MHz. 

 
 

 
Fig. 19. 2D COSY spectrum of compound 204 in CDCl3 at 400 MHz. 
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Fig. 20. 2D HSQC spectrum of compound 204 in CDCl3 at 400 MHz/ 100 MHz. 

 

 

The 1H NMR of compound 226 is given as an example of the characteristic pattern 

for the 20-compound library on scaffold 187 (Fig. 21). Peak assignments were also 

based on 2D COSY and 2D HSQC experiments. 
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Fig. 21. 1H NMR spectrum of compound 226 in CDCl3 at 400 MHz. 

 

 

2.5.7 X-Ray Crystallography 
 

As previously mentioned, crystalline compounds were submitted to X-ray 

crystallography. Besides the great importance of this technique to confirm the 

stereochemistry of the synthesised compounds, data as distances and angles 

between the main functionalities as well the torsion and puckering angles for the so 

far little studied oxetane scaffolds are of great value and may give some clues 

related to the biological activity, which should be studied on the extension of the 

work here presented. Table 14 shows some crystallographic data obtained for 

compounds 51,125,130,183,188 and 189. 
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Table 14. Crystallographic data for compounds 51, 125, 130, 183, 188 and 189. 

Distance 
N6 to C1=O 5.8 Å 

Angle 
C5N6N7 vs C2C1=O 64.7º 

Ring puckering 13.2º 

 51

OH

O O

OMe
1

234
5

N
N+

–N

6

7
8

 
Ring torsion 9.3º 

Distance 
N6’ to O1 6.4 Å 

Angle 
C5’N6’C7’ vs O1C5N4 45.5º 

Ring puckering 6.3º 
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NNH
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2
1

4
5
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 Ring torsion 4.5º 

Distance 
N6’ to O1 5.8 Å 

Angle 
C4’C5’N6’ vs O1C5N4 46.1º 

Ring puckering 6.9º 
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 Ring torsion 5.0º 

Distance 
N6’ to O1 4.3 Å 

Angle 
C4’C5’N6’ vs O1C5N4 53.7º 

Ring puckering 1.7º 
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 Ring torsion 1.2º 

Distance 
N7 to O1’  6.0 Å 

Angle 
C2N7N8 vs O1’N4’C5’ 31.4º 
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Angle 
C1C5C6 vs C1C4C5 

 
77.5º 

Distance 
N7 to O1’  6.0 Å 

Angle 
C2N7N8 vs O1’N4’C5’ 28.2º 
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Angle 
C1C5C6 vs C1C4C5 

 
77.7º 
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Compounds 51, 125 and 130, have all D-lyxo configuration, 51 exhibits the higher 

angle between the azide and the ester when compared to the angles between the 

amide group and oxadiazole ring on 125 and 130. It is also interesting to notice that 

for 51, in which the substituents in the oxetane ring are smaller, the puckering and 

torsion angles are almost the double of those for the oxadiazole substituted D-lyxo 

oxetanes. 

 

All substituents of 183 are on the same side of the oxetane ring and this leads to a 

lower distance between the amino function and the oxadiazole and to an almost flat 

oxetane ring with puckering and torsion angles of 1.7º and 1.2º, respectively. 

 

The bicyclic compounds 188 and 189 exhibit lower angles between the planes that 

contain the amide group and the oxadiazole ring, probably resulting from the angle 

between the two rings of the bicyclic scaffold of 77.5º and 77.7º for 188 and 189, 

respectively. Moreover, the effective distance between the amide group and the 

oxadiazole is in the same order of magnitude as that observed for the D-lyxo 

configured oxetanes. 

 

2.6 Evaluation of Physicochemical and Metabolic 

Properties  
 
Multidimensional optimisation (MDO) is nowadays a key step for drug-discovery. A 

new drug is much more than its biological activity; the more potent molecule for any 

given biological target will not be a drug if it does not display the right ADME 

properties. 

 

Chemical and pharmacological properties of oxetanes are far from clear and besides 

the work published by Roche researchers60 there is no report of oxetane-containing 

ADME databases. The oxetane scaffolds synthesised in the present work proved to 

be stable and are particularly interesting as  they  can  accommodate  three  different  

 60 Wuitschik et al. Angew Chem Int Ed  2006, 45:7736.
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functions well-oriented in space. The oxetane scaffolds have been synthesised in 

various diastereomeric forms using carbohydrates as starting materials. The value of 

the oxetane scaffolds was, in our point of view, enlarged by the introduction of 1,2,4-

oxadiazole or 1,2,3-triazole units, well-known in medicinal chemistry for their function 

as peptide isosteres and for a wide range of biological activities. 

 

The derivatisation at the three possible sites of the oxetanes led to a set of small 

libraries with 101 compounds overall. Moreover, the synthesis of related 20-

compound libraries on two bicyclic scaffolds with different stereochemistries was 

found interesting for the comparison of physicochemical and metabolic properties. 

 

 

2.6.1 In Silico Tools 
 

To evaluate the physicochemical and metabolic properties of the synthesised 

compounds, the first step was the use some of the in silico predictive tools available 

at F. Hoffmann- La Roche Ltd. These techniques allow the creation of flags based 

for instance on the Rule Of Five (ROF) and a fast access to properties such as polar 

surface area (PSA), pKa, intestinal permeability (Peff), blood-brain barrier (BBB) 

penetration and an estimation for binding based on Andrew binding score. Equations 

given in the introduction of this work for the calculations of above mentioned 

parameters, more specifically the correlation factors between them, were optimised 

at Roche taking in account the in-house collection of compounds and their 

properties. 

 

The all set of synthesised compounds, with oxetane and bicyclic scaffolds generate 

no ROF alerts (see Tables A-7 to A-15 in the Appendix) indicating that all the 

compounds exhibit properties in the range of desired absorption and permeation.  

 

For the prediction of the lipophylic character the clogP values were calculated, the 

decadic logarithm of the octanol/water partition coefficients. The results for the 

oxadiazole libraries either in oxetane or bicyclic scaffolds were as expected: the 
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NHBoc derivatives were predicted to be the more lipophilic compounds, while the 

free amine, acetyl and mesyl derivatives exhibited very similar clogP ranges, and for 

the most part of the individual libraries the compounds that contained the acetyl 

moiety were the more lipophobic followed by the free amine and the mesylates. For 

the oxadiazole substituents the order of lipophilicity was p-ClPh>p-MePh>p-

OMePh>Ph>p-Py with p-OMe and Ph being almost equivalent. 

 

For the triazole library on an oxetane scaffold the order of lipophilicity is given below 

(Scheme 36), depending on the triazole substituent. The p-CF3OPh substituent 

conferred the highest lipophilicity, the p-Py substituent the lowest. The substitution 

pattern on the aromatic ring is also an important factor. The introduction of a basic 

center as triazole substituent decreased, as expected, the lipophilicity, and also the 

position of the nitrogen atom on the pyridinyl substituents had an influence .  
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The bicyclic scaffolds were, as expected, more lipophilic than the oxetanes, with the 

exception of those cases in which the position 3 of the oxetane was protected with 

the PMB group. The different oxetane scaffolds showed different lipophylicities 

depending on the substitution at C-3, the fluoride derivatives were more lipophilic 

than the 3-methoxy and 3-hydroxy oxetanes. 

 

The PSA is the sum of surface contributions of all polar atoms in a molecule, and 

these calculated values showed that libraries based on the bicyclic scaffolds 

exhibited the lowest PSA values. Compared to oxetane scaffolds, the free hydroxyl 

derivatives showed higher PSA values than the 3-methoxy ones, and those were 

higher than the obtained PSA values for libraries in which the oxetane had a fluorine 

atom as substituent at C-3. The stereochemistry had a small influence on the PSA 

values. Comparing the 3-methoxy derivatives, the D-ribo configured showed slightly 

higher values than the corresponding D-lyxo configured derivatives. In the same way 

the fluoride containing with D-xylo configuration showed slightly higher values than 

the corresponding compounds with D-arabino configuration. Both bicyclic derived 

libraries had very similar PSA values, and in this case the stereochemistry did not 

lead to changes in these calculated values. 

 

Predicted log Peff lower than -5 indicate a low intestinal permeability with high 

probability. For all compounds synthesised this predicted value was higher than -5 

with the only two exceptions compounds 111 and 121 which belong to the 3-hydroxyl 

oxetane family. In fact, the oxetane scaffold containing a free hydroxyl group at C-3 

led to compounds with logPeff values more close to -5 than any other scaffold, either 

oxetane or bicyclic. 

 

In terms of blood-brain barrier penetration expressed as log (Cbrain/Cblood) - log BB - 

the values obtained are usually in the range of -2 to +1, and when log BB>0.3 the 

compounds cross the membrane readily, on the other hand if log BB<-1 compounds 

are only poorly distributed to the brain. In general, the predicted values of log BB 

obtained for all the libraries synthesised in the present work indicate that these 

compounds will be badly or poorly distributed to the brain with the log BB in the 
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range of -2.20 to -0.11. This may be favourable taking in account the undesired BBB 

penetration for drugs that are not targeted to the CNS. 

 

As explained in the introduction of the present work, Andrew binding scores are not 

used in a predictive sence of binding. It is calculated by summing the intrinsic 

binding energies of the component groups, and consequently in our set of 

compounds, the mesyl derivatives exhibited higher Andrew binding scores, followed 

by the Boc and acetyl devivatives, and in the end of the table we find the free 

amines. The values obtained are important for future comparison with experimental 

bindings to a given target, when it will give to medicinal chemists clues about the 

participation of all pharmacophores in binding. 

 

pKa prediction was also performed, for the D-lyxo oxetane derivatives containing a 

free hydroxyl at C-3 the results obtained reflected the free amine basicities but very 

importantly refleted also the acidic character of the free hydroxyl compounds.  

 

The pKa of the synthesised free amines origin was predicted to be in the range in 

the range of 8.7-9.0 for the oxetane family, and the calculated pKa for the bicyclic 

derivatives was 10.7. The stereochemistry of the scaffold or the substituents on the 

oxadiazole (far away from the basic center) did not affect the pKa values of the 

corresponding amines. On the other hand, a slight difference was observed for 

similar compounds exhibiting different substituents at C-3 of the oxetane; the amines 

on the free 3-hydroxyl derivatives were predicted to be more basic than the 3-

methoxy ones, and those were more basic that the 3-fluoro derivatives, even though 

the difference was very small. 

 

Triazoles acidity leads to predicted pKa’s in the range of 12.5 to 12.7, and the 

different substituents in the triazole ring seem not to be an important feature for this 

acidity. Oxetane-derived triazoles that contained basic centers such as 246 and 247 

exhibited predicted pKa values (BASE) of 10.3 and 9.3, respectively. 
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2.6.2 Experimental Physicochemical and Metabolic Properties 
 

After the in silico predictions, experimental measurements of key properties take 

place in the MDO process. In the current work, some of the compounds synthesised 

were submitted to measure octanol/water partition coefficients and solubility, as well 

as the artificial membrane permeability to evaluate human intestinal permeability. 

The susceptibility of the synthesised compounds towards degradation in human and 

mouse microsomes was also evaluated. These results are summarised in Tables A-

16 to A-18 in the Appendix.  

 
In agreement with the results predicted for clogP, the measured high-throughput 

logD (HTlogD) indicated, as expected, that Boc containing compounds were the 

more lipophilic compounds of each individual library. On the other hand, a change in 

the order of lipophylicity of the free amines, acetates and mesylates was observed. 

In fact, the measurement of this property under physiological conditions (usually at 

pH 7.4) was enough to cause small changes, especially when the predicted values 

of clogP for these three different functions were quite close to each other. Table 15 

presents a comparison of clogP and HTlogD values for some of the measured 

compounds. Experimental values indicate that after the N-Boc containing 

compounds the more lipophilic are the N-acetyl derivatives and the mesylates, being 

the more hydrophilic the free amines. Bicyclic libraries showed slightly higher 

lipophilicities than the oxetane-based ones. 

 
Table15. Comparison of ClogP and HTlogD values 

 

 
 

OR1

OMe
O N

N R2

 

               R2   
   R1   Ph p-ClPh 

 ClogP HTlogD ClogP HTlogD 

NHBoc 2.2 3.3 2.9 4.0 
NH2 0.4 0.4 1.1 1.1 

NHAc 0.2 1.6 0.9 2.3 
NHMs 0.4 1.8 1.1 2.2 
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The LYSA assay results are closely related to lipophylicity. Thermodynamic solubility 

is higher for more hydrophilic compounds. As expected, the less lipophilic Boc 

containing compounds are less soluble, and the more hydrophilic free amines 

present higher solubilities, the acetylates and mesylates present intermediate values 

of solubility. For the 3-fluoro oxetanes with D-lyxo configuration the mesylate and the 

acetate tested exhibited much lower solubility than the corresponding amine, and for 

the bicyclic compounds the mesylates exhibit much lower solubility when compared 

to the corresponding free amines and N-acetyl amines. 

 

The pKa values of several amines were mesured by Capillary Electrophoresis. While 

the predicted pKa’s did not distinguish between diferent stereochemistries, the CE 

mesurements indicate that for 3-methoxy oxetanes, the amines with D-lyxo 

configuration were more basic than the ones with D-ribo configuration (Fig 22). 

Bicyclic-derived amines exhibited, as predicted by insilico tools, higher basicity. For 

the measured compounds, ubstituents at C-3 of 1,2,4-oxadiazole unit did not 

interfere, as expected, with amine basicity since they are too far away from this 

function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 22. CEpKa values for oxetane- and bicyclic-based amines.  
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At F. Hoffmann-La Roche Ltd. the value of PAMPA is being fully explored for the 

prediction of human intestinal permeability since several years. Meanwhile a 

predictive in silico tool to predict PAMPA results is also being optimised. As a 

consequence, all compounds predicted to exhibit medium to high (M2H) permeability 

are no longer tested with the PAMPA assay. On the other hand, all compounds that 

are predicted to be borderline or of low permeability are being tested. 

 
In the set of compounds synthesised in this work and that were submitted for 

PAMPA, some of the compounds predicted with M2H permeability were tested 

confirming the in silico results, but all compounds predicted to be borderline or of low 

permeability lead to M2H permeability in the PAMPA assay. These results led to a 

high percentage of error for the predictive tool which might be explained by the lack 

of knowledge concerning oxetane scaffolds. The error on bicyclic compounds was 

lower, reinforcing the importance of the present work. Moreover, the experimental 

PAMPA was in agreement with the predicted in silico Peff values (chapter 2.6.1). 

 
As mentioned above the susceptibility of the synthesised compounds towards 

degradation in human and mouse microsomes was evaluated. The intrinsic 

clearance (CLint) is the rate constant of the first-order decay of a given compound, 

normalised for the protein concentration in the incubation. A medium (M) clearance 

leads to an expected bioavailability to be higher than 30% and a low (L) clearance 

lower than 30%, if the hepatic clearance is the major mechanism of clearance. The 

resulsts for intrinsic clearance rates mesured in human (hCLint) and mouse (mCLint) 

liver microsomes are also presented in Tables A-16 to A-18 in the Appendix. All 

oxadiazole libraries on oxetane scaffolds displayed medium to low clearance either 

in human or mouse microsomes. The only triazole containing compound tested 

showed as expected a high susceptibility to microsomal atack, due to the presence 

of an ester group. This library was clearly not targeted as drug-like library but as 

interesting intermediates to be further derivatised. 

 
The oxadiazole libraries based on the bicyclic scaffolds showed to be more 

susceptible to microsomal attack than the corresponding oxetane based libraries, 

especially true for mouse microsomes, in which some of the compounds showed 

high (H) clearance rates. 
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The synthesis of new oxetane δ-amino acid scaffolds with D-lyxo (53), D-ribo (61), D-

arabino (72, 79) and D-xylo (92) configuration was accomplished in the present work 

starting from D-xylose or 1,2-O-isopropylidene-α-D-xylofuranose in overall yields in 

the range of 12% to 28%, over 9 to 14 steps. Compound 53 contains a free hydroxyl 

group at C-3, and the synthesis was achieved via a chemoenzymatic approach. A 

straightforward synthesis of 61 and 72 was worked out relying on the stability of a 

primary azide function along the chosen strategy. The 3-fluoro derivatives 79 and 92 

were obtained by reaction of a free hydroxyl group at C-3 of an oxetane with DAST 

leading to inversion of configuration.  

 

Selective bromine oxidation of D-xylose followed by treatment with benzaldehyde 

was previously reported to afford the 3,5-O-benzylidene protected xylono-1,4-lactone 

74 without any reference to the formation of by-products. We were able to isolate the 

by-product 2,4;3,5-di-O-benzylidene-D-xylonic acid (75) in 37% yield. For the first 

time an NMR characterisation of 75 was performed, and its conformation was 

derived. 

 

Synthesis of the 3-hydroxy oxetane δ-amino acid 53 was only possible by means of 

an enzymatic reaction to achieve methyl ester hydrolysis in the very last step of the 

synthetic scheme. In contrast, the hydrolysis of the 3-methoxy and 3-deoxy-3-fluoro 

carboxylic ester precursors of the acids 61, 71, 72, 79 and 92 was easily performed 

by standard LiOH treatment in very good to quantitative yields. The full 

characterisation of this type of compound with a free carboxylic acid was 

accomplished. 

 

The free carboxylic acid function was strategically targeted to allow the coupling of 

the scaffolds with hydroxyamidines to form 1,2,4-oxadiazoles while the N-tert-

butoxycarbonylamino group was envisaged for cleavage after oxadiazole formation 

to give the corresponding free amines. Further acetylation and mesylation led to 

small libraries (usually 20-compound libraries) of new oxetane-based compounds in 

good yields. The same methodology was applied using the bicyclic δ-amino acid 

scaffolds 186 and 187 to give corresponding 20-compound libraries. Bicyclic derived 
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1,2,4-oxadiazoles were obtained in lower yields than those synthesised from the 

oxetane scaffolds suggesting that structural restraints may be an issue in the 

cyclodehydration.  

 
The oxetane δ-azido ester 88 was submitted to click chemistry by treatment of the 

azide with 15 different acetylenes under Cu(I) catalysis to give the corresponding 

1,2,3-triazoles in an automated fashion. Other than in the single synthesis approach, 

the automated purification did not allow the quantitative recovery of products. 

 
All scaffolds synthesised proved to be stable under the reaction conditions chosen to 

afford the desired libraries with the exception of the 3-hydroxy scaffold 53 that led to 

poor results. The chemical stability of derivatives based on scaffold 53 was 

evaluated, and it was shown that the oxetane-derived compounds with a free 

hydroxy at C-3 decomposed under basic conditions. 

 
X-Ray crystallography confirmed the structural assigments of oxetane- and bicyclic-

based compounds. It was shown that bicyclic compounds exhibit lower angles 

between the plane that contains the amide group and the one that contains the 

1,2,4-oxadiazole ring. Moreover, the effective distance between the amide group and 

the 1,2,4-oxadiazole in the bicyclic compounds was of the same order of magnitude 

as that observed for the D-lyxo configured oxetanes. These results are interesting in 

terms of future evaluation of biological activities, since the oxetane- and the bicyclic-

derived compounds are structurally diverse and exhibit different physicochemical 

and metabolic properties, but they display close spatial relations between the 

pharmacophores. 

 
The evaluation of the physicochemical and metabolic properties of the compounds 

synthesised made use of in silico tools for the prediction of several properties such 

as clogP, PSA, Peff, log BB, Andrew binding scores and pKa. These tools give a 

valuable help in predicting lipophilicity, intestinal permeability and state of charge. No 

alerting flags were created for ROF indicating that the properties of these molecules 

are in the desired range for oral bioavailability. Intestinal effective permeability was 

predicted to be medium to high. The blood-brain barrier penetration was predicted to 

be low indicating that those compounds will be safe with respect to CNS side effects.  



Conclusions 

103 
 

 

The various oxetane derivatives displayed different lipophylicities depending on the 

substitution at C-3. The 3-deoxy-3-fluoro derivatives were the most lipophilic 

compounds followed by the 3-methoxy oxetanes and then by the 3-hydroxy 

derivatives. 1,2,4-Oxadiazoles with the bicyclic core showed to be more lypophilic 

than the oxetane-based compounds. 

 

From CEpKa measurements it could be concluded that the amines with D-lyxo 

configured scaffold were more basic than the ones on a D-ribo oxetane. Amines 

linked to bicyclic cores exhibited, as predicted by in silico tools, higher basicity. For 

the measured compounds, substituents at position 3 of the 1,2,4-oxadiazole ring did 

not interfere with amine basicity. 

 

PAMPA results showed that the libraries synthesised would exhibit medium to high 

intestinal permeation. Evaluation of the microsomal susceptibility towards 

degradation in human and mouse microsomes showed that all oxetane-derived 

1,2,4-oxadiazole compounds, were expected to exhibit medium to high biovailability 

when assuming that hepatic clearance were the major path of clearance,. On the 

other hand, the bicyclic compounds were more susceptible to microsomal attack. 

 
In summary, the present work describes the synthesis of the unexplored oxetane δ-

amino acids family and their feasability as scaffolds was investigated. Six oxetane 

scaffolds were then derivatised, so that different pharmacophores were introduced 

on the three available positions of the oxetane rings affording a 101-compound 

oxetane-based library. Moreover, two bicyclic δ-amino acids were also derivatised 

using similar methodology to afford a 40-compound library. The physicochemical 

and metabolic properties were evaluated, and the compounds synthesised exhibited 

the desired properties for medicinal chemistry purposes. From the in silico point of 

view, this work brings valuable information for prediction tools refinement as there 

are no previous reports on comparable molecular properties of oxetanes. The 

compounds obtained will remain in the Roche collection where they are submitted to 

HT screening for biological activity. 
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4.1  General Methods 

 

Solvents and reagents were bought from Fluka, Merck, Aldrich or Acros Organics 

(Acros Organics showed to have the most pure DAST reagent). Lipase L2 from 

Candida antarctica was purchased from Boehringer Mannheim as lyophilisate 

(Chirazyme L-2, lyo., BM; 1836021) and in an immobilized form (Chirazyme L2, c.-f. 

C2, lyo.; 1816969).  

 

Solutions were concentrated below 50 °C in vacuo on Büchi rotary evaporators. 

 

Qualitative TLC was performed on precoated Silica Gel 60F-254 plates (Merck); 

compounds were detected by UV light (254 nm) and spraying with a 10% solution of 

conc. sulfuric acid in methanol or with a cerium sulfate aqueous solution, followed by 

heating. Column chromatography was carried out on Silica Gel (63-200, 60 Å) from 

Chemie Brunschwig or 60G (0.040-0.063 mm) from Merck. Flash chromatography 

was made using a Combi Flash Companion device from Isco with RediSep normal-

phase silica flash columns or when necessary RediSep Rf amine columns.  

 

Melting points were determined with Electrothermal 9100, Büchi C-540 or Büchi 510 

capillary apparatus and are uncorrected.  

 

Optical rotations were measured on Perkin Elmer 241 spectrometer in a 1 dm cell at 

given temperatures, either at Faculdade de Ciências da Faculdade de Ciências da 

Universidade de Lisboa (FCUL) or at F. Hoffmann- La Roche Ltd.  

 

NMR spectra were recorded on Bruker spectrometers: Avance 300 (300 MHz for 1H-

NMR) or AM 400 (400 MHz for 1H-NMR and 100 MHz for 13C-NMR) at F. Hoffmann- 

La Roche Ltd., and Avance 400 (400 MHz for 1H-NMR and 100 MHz for 13C-NMR) at 

FCUL. Chemical shifts are given in ppm relative to tetramethylsilane.  

 

Mass spectra were recorded on API III Sciex, Perkin Elmer for negative (ISN) and 

positive (ISP) electrospray ionization. High resolution mass spectra were recorded 
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on a Finnigan LTQ FT from Thermo for positive (ESI) and negative (NSI) 

electrospray ionization at F. Hoffmann- La Roche Ltd. 

 

Elemental analyses were performed by Solvias AG, Basel, Switzerland. 

 

For crystal structure analysis of compounds 51, 125, 130, 188 and 189, a single 

crystal was mounted in a loop and cooled to 150 K in a nitrogen stream; data were 

collected on a STOE Imaging Plate Diffraction System (STOE, Darmstadt) with Mo-

radiation (0.71 Å) and data processed with STOE IPDS-software; the crystal 

structure was solved and refined with ShelXTL (Bruker AXS, Karlsruhe), at F. 

Hoffmann- La Roche Ltd. For crystal structure analysis of compound 183, data were 

collected on a Gemini R Ultra diffractometer (Oxford Diffraction, Abingdon, UK) 

by 100K using Cu-K-alpha-radiation (1.54184Å) and processed with the Crysalis-

package. Structure solution and refinement was performed using the ShelX133 

software. 

 

HPLC-MS was composed of the pump, the vacuum degasser and  the UV detector 

all from Agilent 1100, the ELSD detector was from Sedere, the MS detector a single 

mass detector from Thermo, the liquid handler was a 215 from Gilson, and the 

column used was from Phenomenex :Gemini:3u C18 110A  30x3.00 mm. 

  

The prep-HPLC pump was an SD-1 from Varian, the UV detector a UVD340U from 

Dionex, the ELSD detector was from Sedere, the liquid handler was a 215 from 

Gilson, and the column used is from Penomenex: Gemini 5u C18 110A  50x21.2 

mm. 

 

For ASTA measurements the buffers used were pH 1 (Merck Titrisol buffer - 2 mM 

Glycin/120 mM HCl/3 mM NaCl), pH 4 (Merck Titrisol buffer - 56 mM Citrate/44 mM 

HCl/110 mM NaOH), pH 6 (Merck Titrisol buffer - 60 mM Citrate/160 mM NaOH), pH 

8 (Merck Titrisol buffer - 110 mM Borate/56 mM NaOH/44 mMHCl) and pH 10 

(Merck Titrisol buffer - 50 mM Boric acid/44 mM NaOH/50 mM HCl). 

                                                 
133 Sheldrick, GM; Acta Cryst 2008, A64:112. 
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For CEpKa measurements only small amounts of sample were required. A medium-

throughput pKa screening assay using CE (pKa Analyzer ProTM) was developed by 

Advanced Analytical and installed at Roche in Basel providing a rapid, parallel, 

automated approach for the measurement of compound pKa values by capillary 

electrophoresis. 96 Fused-silica capillaries in parallel allowed analyzing 

simultaneously 96 different sample solutions within 14 minutes (Fig. 23). The 

capillaries, with an inner diameter of 75 µm and 55 cm in total length were filled with 

dilute aqueous buffer solutions (ionic strength 0.05 M). About 10 nL of each sample 

solution (0.2 mM) was gathered at one end of the capillary by vacuum-assisted 

injection, and a 3.5 kV potential was applied between the ends of the capillaries. 96 

capillaries were arranged in parallel for direct injection from 96-well sample plates; 

capillary outlets were bundled to a common reservoir enabling vacuum-assisted 

separation. Samples were separated by the application of a high voltage with 

vacuum flow and detected by UV light at 214 nm passing through the detection 

window. 
 

 
Fig. 23. Ilustration of CEpKa device 

 

The effective mobility of ionizable compounds was dependent on the fraction of the 

compound in the charged form. The plot of the effective mobility versus pH had a 

sigmoidal shape the inflection point of which defined the pKa value. 
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For PAMPA, compounds were introduced as 10mM DMSO stock solutions in a 96-

well microtitre plate. An automated liquid handling system drew an aliquot of the 

DMSO stock solution and mixed it into a buffer solution (0.05M MOPSO with 0.5% 

(w/v) glycocholic acid at pH 6.5), so that the final sample concentration was 150 µM 

and the DMSO concentration was 1.5% (v/v). A part of the sample solution was 

filtered, using a 96-well PVDF filter plate from Corning (Corning, NY) and added to 

the donor compartments. In the acceptor compartment the same buffer system at 

the same pH as in the donor compartment was used but devoid of glycocholic acid. 

After 18 hours the sandwich plates were separated, and both the donor and acceptor 

compartments were measured for the amount of material present by comparison 

with the UV spectra (250–500 nm) obtained from reference standards. Mass balance 

was used to determine the amount of material remaining in the membrane barrier. 

All measurements were run in triplicate, and the reproducibility was ±4%. Effective 

permeability values (Peff) were calculated as described by Avdeef et al..134 The 

PAMPA Evolution Software v2.2 from pION Inc. was then used for Peff calculations.  

 
Solubilities presented in the current work were determined by LYSA, and for this 

assay, 0.02 mL of a 10 mM compound stock solution in DMSO was evaporated 

under low pressure (Genevac), and the obtained solid material (usually a film) was 

handled as in standard equilibrium measurements (Fig. 2). Rigorous stirring of the 

sample was maintained for 12 h at room temperature. The use of vertical stirring 

equipment is highly recommended in order to get good results. For calibration 

measurements, aliquots of DMSO stock solutions were transferred to microtitre 

plates and diluted with buffer to a final concentration of 25% to keep the compound 

in solution. Caution had to be taken for low molecular weight compounds (<250), 

which may be lost during DMSO evaporation. 

 

                                                 
134 Avdeef, A; Strafford, M; Block, E; Balogh, MP; Chambliss, W; Khan, I; Eur J Pharm Sci 2001 14:271. 
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Fig. 24. Standard setup for the Roche in house LYophilisation Solubility Assay (LYSA). A DMSO stock 
solution (10 mM) is used for the preparation of the samples. Solid samples were prepared by evaporation 
using a Genevac HT-4 series II (full vacuum for 60 min at 35 °C and 500 G). Similar to standard equilibrium 
experiments, samples are stirred for 1 h, shaken for 2 h, and left in contact with undissolved sample for an 
additional 16 h. After filtration the concentration is determined by direct UV or HPLC. Calibration solutions 
were prepared in parallel from the DMSO stock solutions. 
 
 

For hCLint and mCLint determination the first-order rate constant for consumption of 

substrate at one concentration (1-10mM) in the presence of human/mouse liver 

microsomes (0.5-1.0 mg prot/mL; normally pooled from 10 subjects and kept frozen 

at – 80 ºC; commercial source: GENTEST) was measured in the presence of the 

cofactor NADPH. The reaction was carried out at 37 °C in 0.1 M phosphate buffer 

pH 7.4 for 30 min while aliquots were taken for at least 5 time points. The samples 

were analysed by LC-MS.  
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4.2 Synthesis of Oxetane δ-Amino Acid Scaffolds  

4.2.1 General Procedures (GP’s) 
 

4.2.1.1 Benzylation 
 

A 1 M solution of the starting diol in absolute DMF was added dropwise at rt to a 1.3 

M suspension of sodium hydride (60% in mineral oil, 2.3 eq,) in absolute DMF. After 

stirring the mixture until release of H2 stopped it was cooled to 10 ºC, and benzyl 

bromide (2.5 eq) was added dropwise. The reaction mixture was allowed to reach rt 

and was stirred until protection was complete, then the reaction was quenched by 

careful addition of isopropanol (3% v/v). DMF was evaporated under HV. After 

addition of water and brine (1:1) the product was extracted twice with EtOAc, and the 

combined organic layers were washed with brine, dried over MgSO4, filtered and 

concentrated. 

4.2.1.2 Isopropylidene Cleavage 
 

A 0.08 M solution of the starting isopropylidene derivative in aqueous acetic acid 

(30%) was stirred under reflux conditions (≈ 112 °C) until deprotection was complete 

according to TLC. The solvents were evaporated under HV. 

 

4.2.1.3 Selective Anomeric Oxidation 
 

To a 0.03 M solution of the free diol in dioxane/water (1:2) was added barium 

carbonate (1.4 eq). After cooling the solution to 0 ºC, bromine (8 eq) was added 

dropwise. The reaction mixture was stirred in the dark until oxidation was complete. 

The reaction mixture was then cooled to +10 °C, and sodium carbonate was added 

until neutralization. In order to destroy the bromine residues, sodium thiosulfate was 

added until a white precipitate appeared, and the reaction mixture was filtered over 

Celite. The solvents were evaporated under HV, and after the addition of water the 
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product was extracted with EtOAc. The organic phases were washed with brine, 

dried with MgSO4, filtered and concentrated. 

 

4.2.1.4 Triflation under basic conditions 
 

To a 0.2 M solution of the starting free alcohol in DCM was added pyridine (1.8 eq). 

To the solution cooled to -12 ºC trifluoromethanesulfonic anhydride (1.2 eq) was 

added dropwise. When the triflation was complete the reaction mixture was diluted 

with DCM and washed with sat soln of NaHCO3 and then with 1N HCl solution. After 

drying with MgSO4, filtration and evaporation of the solvent, the product was 

immediately used for the next reaction step without further purification. 

 

4.2.1.5 Ring Contraction 
 

To a 0.12 M solution of triflated lactone in absolute MeOH at -12 °C was added 

potassium carbonate (1eq). The resulting suspension was stirred until ring 

contraction was complete, and the reaction mixture was filtered over Celite. The 

filtrate was concentrated. 

 

4.2.1.6 Catalytic Hydrogenation 
 

To a 0.07 M solution of starting material in MeOH/dioxane 1:1 was added Pd/C (10% 

m/m). The reaction mixture was stirred at rt under hydrogen atmosphere until 

deprotection was complete. The catalyst was then removed by filtration, and the 

filtrate was concentrated to dryness. 

 

4.2.1.7 Ester Hydrolysis by LiOH 
 

To a 0.06 M solution of ester derivative in THF was added 1N aqueous LiOH (3 eq) 

at 0-5 ºC, and the mixture was stirred until complete consumption of starting 

material. Then, maintaining the temperature range, 1N HCl (3 eq) was added, and 

the mixture was stirred for 30 min. Brine was added, and the product was extracted 
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3 times with TBME. The organic layers were combined, dried over MgSO4, filtered, 

and the solvent was evaporated. 

 

4.2.1.8 Triflate displacement by sodium azide 
 

To a 0.1 M acetone solution of a crude triflate (considering quantitative triflation) was 

added sodium azide (6eq). After stirring overnight at rt the reaction mixture was 

concentrated. Iced water was added, and the product was extracted with TBME. The 

combined organic layers were washed with brine, dried with MgSO4, filtered, and 

concentrated. 

 

4.2.1.9 One-Pot Azide Reduction and Boc Protection 
 

To a 0.12 M solution of the starting azide in EtOAc was added Pd/C (10% m/m), and 

the suspension was stirred vigorously for 30 min. under hydrogen atmosphere. A 

0.12 M solution of Boc2O in EtOAc (1.05 eq) was then added, and the reaction 

mixture was stirred at rt under H2 atmosphere until the reaction was complete. The 

catalyst was removed by filtration, and the solvent was evaporated. 

 

4.2.1.10 Methylation 
 

To a 0.15 M THF solution of a free alcohol was added sodium hydride (60% 

dispersion in mineral oil, 2.2 eq), and the suspension was stirred at rt until release of 

H2 stopped. Methyl iodide (2 eq) was then added, and the mixture was further stirred 

at rt until methylation was complete. After quenching excess of NaH with MeOH, the 

reaction mixture was diluted with EtOAc, washed with water and brine, dried over 

MgSO4, filtered, and concentrated. 
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4.2.2 Chemoenzymatic Synthesis of 2,4-Anhydro-5-N-(t-
butoxycarbonyl)amino-D-lyxonic Acid (83)  

 

O

O

O

BnO

BnO

45
 

 

3,5-Di-O-benzyl-1,2-O-isopropylidene-α-D-xylofuranose (45)135,113. Starting with 

1,2-O-isopropylidene-α-D-xylofuranose (104 g, 0.55 mol) and using GP 4.2.1.1 

(reaction time 2.5 h) the obtained residue was chromatographed (EtOAc/Cy-Hex 1:2) 

to give the pure desired product as colourless oil (126 g, 0.34 mol, 62 %). Impure 

fractions were rechromatographed using the same solvent system to yield more pure 

compound (76g, 0.21 mol, 38 %; total yield 100%). MS: m/z 371.3 [M+H]+; 388.2 [M+ 

NH4]+, 393.2 [M+Na]+. 1H NMR (CDCl3): δ 7.26-7.36 (m, 10H, 2Ph), 5.93 (d, 1H, J1,2 

= 3.8 Hz, H-1), 4.62 (dd, 1H, J2,3 = 3.0 Hz, H-2), 4.52,4.61 (AB, 2H, 1H, Ja,b = 11.8 

Hz, OCH2Ph), 4.51,4.68 (AB, 2H, 1H, Ja’,b’ = 12.2 Hz, OCH2’Ph), 4.40 (ddd, 1H, J4,5b 

= 3.0 Hz, H-4), 3.97 (dd≈d, 1H, J3,4 = 6.1 Hz, H-3), 3.78 (A(ABX), 1H, J4,5a = 3.0 Hz, 

H-5a), 3.73 (B(ABX), 1H, J5b,5a 6.1 Hz, H-5b), 1.31,1.48 (2s, 3H, 3H, 2Me (i-prop)). 

 

O

OH

OH
BnO

BnO

46a,b  
 

3,5-Di-O-benzyl-α,β-D-xylofuranose (46a,b). Starting with 3,5-di-O-benzyl-1,2-O-

isopropylidene-α-D-xylofuranose (43.9 g, 0.12 mol) and using GP 4.2.1.2 (reaction 

time 3 h), 46a,b was obtained after chromatography with EtOAc/Cy-Hex (1:2, 1:1, 

3:2) as a mixture of isomers (34.63 g, 0.10 mol, 88 %, α/β ca. 4:1 by NMR 

                                                 
135 Matsuda, F; Terashima, S; Tetrahedron 1988, 44(15):4721. 
113 Ning, J; Kong, F; Carbohydr Res 1997, 300(4):355. 
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integration). 1H NMR, COSY (400 MHz, CDCl3) δ 7.38-7.26 (m, 12.5H, 2Ph (α+β)), 

5.50 (t, 1H, J1α,2α ≈ J1α,OH ≈ 4.8 Hz, H-1α), 5.10 (d, 0.25H, J1β,OH1β =11.5 Hz, J1β,2β ≈ 0 

Hz, H-1β), 4.71-4.47 (m, 5.25H, 2OCH2Ph (α+β), H-4β), 4.42 (q, 1H, H-4α), 4.26 (dd 

, 0.25H, J2β,3β = 2.4 Hz, J3β,4β = 5.0 Hz, H-2β), 4.22 (br ddd, 1H, J2α,3α = 2.4 Hz, H-

2α), 4.02 (dd, 0.25H, J3β,4β = 5.0 Hz, H-3β), 4.00 (dd ≈ t, 1H, J3α,4α = 5.0 Hz, H-3α), 

3.86 (d, 0.25H, OH-1β), 3.78 (A(ABX), 1H, J4α,5aα = 5.0 Hz, J5aα,5bα = 9.8 Hz, H-5aα), 

3.73 (B(ABX), 1H, J4α,5bα = 4.8 Hz, H-5bα), 3.68 (A(ABX), 0.25H, J4β,5aβ = 5.5 Hz, 

J5aβ,5bβ = 7.0 Hz, H-5aβ), 3.67 (B(ABX), 0.25H, J4β,5bβ = 3.8 Hz, H-5bβ), 3.63 (d, 1H, 

OH-1α), 2.80 (d, 1H, J2α, 2α-OH = 6.0 Hz, OH-2α), 2.13 (d, 0.25H, J2β, OH-2β = 6.0 Hz, 

OH-2β). 

 

O

OH

BnO

BnO

O

47  
 

3,5-Di-O-benzyl-D-xylono-1,4-lactone (47). Starting from 46a,b (57.3 g, 0.17 mol) 

and after using GP 4.2.1.3 (reaction time 4h) the product was crystallised from a 

mixture of ether and n-hexane to give colourless crystals of 47 (41.5 g, 0.13, 73 %). 

m.p. 64 - 65 °C, lit.75 m.p. 70 °C. [ ]20
Dα  +54° (c 0.5, CHCl3), lit.75: [ ]20

Dα  +40.0° (c 

1.00, CHCl3). MS (ionspray): m/z 346.1 [M+ NH4]+, 351.3 [M+Na]+. 1H NMR, COSY 

(400 MHz, CDCl3): δ 7.39-7.29 (m, 10H, 2Ph), 4.83;4.66 (AB, 2H, Ja,b = 12.0 Hz, 

OCH2Ph), 4.81 (dd, 1H, J2,3 = 8.0 Hz, H-2), 4.58 (ddd≈dt, 1H, J4,5a = 2.2 Hz, H-4), 

4.58;4.52 (2d, 2H, Ja’,b’ = 12.0 Hz, OCH2’Ph), 4.37 (t, 1H, J3,4 = 8.0 Hz, H-3), 3.79 

(A(ABX), 1H, J5a,5b = 11.0 Hz, H-5a), 3.71 (B(ABX), 1H, J4,5b = 2.8 Hz, H-5b). 

 

 

 

 

 

 
75 Witty et al  Tetrahedron Lett 1990, 31(33):4787. 
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O

OTf

BnO

BnO

O

34  
 

3,5-Di-O-benzyl-2-O-trifluoromethansulfonyl-D-xylono-1,4-lactone (34). Starting 

with 47 (27 g, 82.2 mmol) and using GP 4.2.1.4 (reaction time 40 min) crude 

compound 34 was obtained. MS (ionspray): m/z 478.1 [M+ NH4]+, 483.3 [M+Na]+. 1H 

NMR (300 MHz, CDCl3): δ 7.43 - 7.26 (m, 10H, Ph), 5.89 (d, 1H, J2,3 = 7.9 Hz, H-2), 

4.79, 4.59 (2d, 2H, Ja,b = 11.8 Hz, OCH2Ph), 4.59, 4.52 (2d, 2H, Ja’,b’ = 11.8 Hz, 

CH2’Ph), 4.56 (t, 1H, J3,4 = 7.9 Hz, H-3), 4.51 (ddd, 1H, J4,5a = 1.2 Hz, H-4), 3.74 

(A(ABX), 1H, J5a,5b = 11.0 Hz, H-5a), 3.66 (B(ABX), 1H, J 4,5b =2.4 Hz, H-5b). 

 

O

OBn

OBnO

OMe

38  
 

Methyl 2,4-Anhydro-3,5-di-O-benzyl-D-lyxonate (38). Starting from triflate 34 

(considered 82.2 mmol) and after GP 4.2.1.5 (reaction time 30 min) a residue was 

obtained which was chromatographed (EtOAc/Cy-Hex 1:2) to give the title 

compound as colourless oil (25.4 g, 74.2 mmol, 90 % from 47). [ ]20
Dα  -18° (c 0.5, 

CHCl3) [lit.75: [ ]20
Dα  -17.9 º (c 1.0, CHCl3)]. MS (ionspray): m/z 360.1 [M+ NH4]+, 365.3 

[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 7.32-7.27 (m, 10H, Ph), 5.06 (dd, 1H, J2,3 = 

5.1 Hz, J2,4 = 0.4 Hz, H-2), 5.00 (dddd≈dq, 1H, J4,5a = 5.6 Hz, H-4), 4.62 (dd, 1H, J3,4 

= 6.6 Hz, H-3), 4.61,4.60 (AB, 2H, Ja,b = 12.0 Hz, OCH2Ph), 4.60, 4.53 (AB, 2H, Ja’,b’ 

= 11.7 Hz, OCH2’Ph), 4.42 (A(ABX), 1H, J5a,5b = 10.9 Hz, H-5a), 3.94 (B(ABX), 1H, 

J4,5b = 6.0 Hz, H-5b), 3.81 (s, 3H, OMe).  

 

 

 

 
75 Witty et al  Tetrahedron Lett 1990, 31(33):4787. 
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O

OH

OHO

OMe

48  
 

Methyl 2,4-Anhydro-D-lyxonate (48). Procedure A: From benzyl derivative 38 (13.0 

g, 38.0 mmol) using GP 4.2.1.6 (reaction time 40 min) and after chromatography 

over silica gel (EtOAc) the desired product was obtained as a colourless oil (5.24 g, 

32.3 mmol, 85 %);  

Procedure B: Starting from the benzylidene derivative 76 (9.4 g, 37.6 mmol) applying 

GP 4.2.1.6 (reaction time 2 h) and after chromatography over silica gel (EtOAc), the 

desired product was obtained as colourless solid (5.54 g, 34.2 mmol, 91%).  

Data: [ ]20
Dα  -18 ° (c 0.5 , CHCl3) [lit.139: crystalline solid, [ ]24

Dα  -27.1 º (c 0.92, CHCl3)]. 

MS: (ionspray) m/z 180.1 [M+ NH4]+, 185.3 [M+Na]+.The 1H NMR data were in full 

agreement with reported values.114 

 

O

OBn

OBnO

OH

49  
 

2,4-Anhydro-3,5-di-O-benzyl-D-lyxonic acid (49). From methyl ester 38 (100 mg, 

0.292 mmol) and using GP 4.2.1.7 (reaction time 30 min) the desired compound was 

obtained as a colourless foam (95 mg, quantitative), [ ]20
Dα  -10.6° (c 1.0, CHCl3). MS: 

(ionspray) m/z 346.4 [M+NH4]+, 351.3 [M+Na]+, 674.4 [2M+ NH4]+. 1H NMR (300 

MHz, CDCl3): δ 7.28-7.38 (m, 10H, Ph), 5.10 (dd, 1H, J2,3 = 5.1 Hz, J2,4 = 0.8 Hz, H-

2), 5.03 (dddd≈dq, 1H, H-4), 4.64 (dd, 1H, J3,4 = 6.5 Hz, H-3), 4.62;4.56 (AB, 2H, Ja,b 

= 11.6 Hz, CH2Ph), 4.65;4.50 (AB, 2H, Ja’,b’ = 12.0 Hz, CH2’Ph), 3.96 (A(ABX), 1H, 

J4,5a = 5.7 Hz, J5a,5b = 11.0 Hz, H-5a), 3.92 (B(ABX), 1H, J4,5b = 6.1 Hz, H-5b). Anal. 

Calcd. for C19H20O5 (328.37): C, 69.50; H, 6.14. Found: C, 69.39; H, 6.16. 

 

 
114 Saksena et al. Tetrahedron Lett. 1992, 33(50):7724.
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O

OH

ON3

OMe

51  
 

Methyl 2,4-Anhydro-5-azido-5-deoxy-D-lyxonate (51). To a suspension of diol 48 

(1.014 g, 6.24 mmol) and molecular sieves (4Å, ca. 1g) in dry DCM and dry ether 

(175 mL, 1:5) at -15 °C was added dropwise a solution of trifluoromethanesulphonic  

anhydride (1.03 mL, 6.55 mmol) in dry ether (175 mL). After stirring for 50 min the 

mixture was concentrated at rt, and the resulting triflate 50 was reacted immediately 

without further purification. MS: m/z 312.0 [M+ NH4]+, 606.4 [2M+ NH4]+. 

 

To the crude triflate 50 (1.836 g) in acetone (300 mL), still in the presence of 4Å 

molecular sieves, was added lithium azide (3.06 g; 62.4 mmol). After stirring for 30 

min the reaction mixture was concentrated and then washed with 100 mL of iced 

water. The organic layer was then extracted five times with TBME, washed with 

brine, dried over MgSO4, filtered, and the filtrate was concentrated. Chromatography 

of the residue over silica gel (EtOAc/Cy-Hex 1:1) furnished the pure product 51 (766 

mg, 65 %) as colourless crystals, m.p. 67-70 ºC. 1H NMR (300 MHz, CDCl3): δ 5.08 

(d, 1H, J2,3 = 5.3 Hz, H-2), 4.95 (ddd, 1H, J4,5a = 4.3 Hz, H-4), 4.87 (dd, 1H, J3,4 = 7.0 

Hz, H-3), 3.85 (A(ABX), 1H, J5a,5b = 13.6 Hz, H-5a), 3.83 (s, 3H, OMe), 3.62 (B(ABX), 

1H, J4,5b = 3.3 Hz, H-5b).  

 

O

OH

OBocHN

OMe

52  
 

Methyl 2,4-Anhydro-5-N-(t-butoxycarbonyl)amino-5-deoxy-D-lyxonate (52). 
Starting from azide 51 (510.2 mg, 2.73 mmol), using GP 4.2.1.9 (reaction time 2 h) 

and after chromatography of the residue over silica gel (EtOAc/Cy-Hex 1:2) the pure 

product 52 (624.8 mg, 2.39 mmol, 88 %) was obtained as a colourless solid. m.p. 
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93-96 ºC. MS: (ionspray) m/z 262.0 [M+H]+; 279.1 [M+ NH4]+, 280.3 [M+Na]+. 1H 

NMR (300 MHz, CDCl3): δ 5.01 (br t, 1H, NH), 4.81 (d, 1H, J2,3 = 3.8 Hz, H-2), 4.79 

(ddd, 1H, J4,5b = 6.2 Hz, H-4), 4.76 (ddd≈dd, 1H, J3,4 = 3.2 Hz, H-3), 3.81 (s, 3H, 

OMe), 3.78 (ddd≈dd, 1H, J 4,5a = 7.1 Hz, H-5a), 3.30 (ddd≈dd, 1H, J5a,5b = 13.4 Hz, 

H-5b), 1.44 (s, 9H, Boc). Anal. Calcd. for C11H19NO6 (261.28): C, 50.57; H, 7.33; N, 

5.36. Found: C, 50.48; H, 7.36; N, 5.33. 

 

O

OH

OBocHN

OH

53  
 

2,4-Anhydro-5-N-(t-butoxycarbonyl)amino-5-deoxy-D-lyxonic Acid (53). To a 

solution of carboxylic ester 52 (1.0 g; 3.65 mmol) in TBME saturated with water (330 

mL) was added commercial lipase L2-Candida antarctica (500 mg) at 45 °C. The 

reaction mixture was stirred for 3 days. After filtration of the immobilized enzyme the 

concentration of filtrate gave the crude product 53 as a colourless foam (941 mg, 

3.81 mmol, 105 %) containing 4.3% ester 52 and 5% TBME. [ ]20
Dα  -4.7° (c 1.1, 

MeOH) MS (ionspray neg.): m/z 246.3 [M-H]-, 493.3 [2M-H]-, 515.3 [2M-H+Na]-. 1H 

NMR (300 MHz, MeOD): δ 4.78 (d, 1H, H-2), 4.64 (br dd, 1H, J2,3 = 5.7 Hz, J3,4 = 6.9 

Hz, H-3), 4.61 (ddd, 1H, H-4), 3.44 (A(ABX), 1H, J 4,5a = 4.9 Hz, J5a,5b = 14.5 Hz, H-

5a), 3.36 (B(ABX), 1H, J4,5b = 6.2 Hz, H-5b), 1.34 (s, 9H, Boc). Anal. Calcd. for 

C10H17NO6 (247.25): C, 48.58; H, 6.93; N, 5.67. Found: C, 49.12; H, 6.92; N, 5.32 

(an analytical sample was chromatographed with EtOAc/MeOH/H2O 85:10:5). 
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4.2.3 Synthesis of 2,4-Anhydro-5-N-(tert-
butoxycarbonyl)amino-5-deoxy-3-O-methyl-D-lyxonic 
acid (61) 

 

O

O

O

TfO

N3

54          

O

O

O

HO

N3

55  
 

5-Azido-5-deoxy-1,2-O-isopropylidene-3-O-trifluoromethanesulfonyl–α-D-

xylofuranose (54) and 5-azido-5-deoxy-1,2-O-isopropylidene-α-D-xylofuranose 

(55). 1,2-O-isopropylidene-D-xylofuranose (5.0 g, 26.3 mmol) was reacted according 

to GP 4.2.1.4 (reaction time 30 min), and the obtained crude triflate was reacted 

using GP 4.2.1.8 (overnight). Chromatography (EtOAc/Cy-Hex 1:2) of the residue 

obtained furnished compound 54 as a colourless oil (2.09 g, 6.0 mmol, 23%) 

followed by the pure desired product 55 as a colourless solid (3.51 g, 16.3 mmol, 62 

%). 

To a solution of triflate 54 in MeOH (100 mL) at ca. 0 ºC was added metallic sodium 

until pH≈ 9, then the mixture was stirred at rt overnight and neutralised with 

Amberlite IR-120. After filtration of the resin and solvent evaporation the obtained 

residue was chromatographed (EtOAc/Cy-Hex 1:1) to give 55 in quantitative yield. 

Physical data of 54: 1H NMR (400 MHz, CDCl3): δ 6.02 (d, 1H, J1,2 = 3.6 Hz, H-1), 

5.18 (d, 1H, J3,4 = 1.8 Hz, H-3), 4.76 (d, 1H, J2,3 ≈ 0 Hz, H-2), 4.43 (ddd≈td, 1H, H-4), 

3.72 (A(ABX), 1H, J4,5a = 7.0 Hz, J5a,5b = 12.6 Hz, H-5a), 3.50 (B(ABX), 1H, J4,5b = 6.1 

Hz, H-5b), 1.53 (s, 3H, i-prop), 1.35 (s, 3H, i-prop); 13C NMR (100MHz, CDCl3): δ 

120.1 (CF3), 113.4 (Cq i-prop), 104.7 (C-1), 87.9 (C-3), 83.2 (C-2), 77.3 (C-4), 48.6 

(C-5), 26.6 (Me i-prop), 26.4 (Me i-prop). 
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Physical data of 55: m.p. 59.8-60.2 ºC (lit.118 m.p. 60 ºC, lit.136 m.p. 64 ºC). [ ]20
Dα -36º 

(c 1.0, CHCl3) [lit.136: [ ]25
Dα  -36.3º (c 1.0, CHCl3)]. 1H and 13C NMR were in agreement 

with literature data. 118,136 Anal. Calcd. for C8H13N3O4 (215.21): C, 44.65; H, 6.09; N, 

19.53. Found: C, 44.48; H, 5.92; N, 19.33.  

 

O

O

O

MeO

N3

56  
 

5-Azido-5-deoxy-1,2-O-isopropylidene-3-O-methyl-α-D-xylofuranose (56). 

Starting from 5-azido-5-deoxy-1,2-O-isopropylidene-D-xylofuranose 55 (3 g, 13.8 

mmol) and proceeding as described in GP 4.2.1.10 (reaction time 1 h) was obtained  

 

 

the crude product which after column chromatography (EtOAc/Cy-Hex 1:3) gave 

compound 56116 as colourless oil in quantitative yield (3.16 g, 13.8 mmol). [ ]20
Dα  -37º 

(c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3): δ 5.90 (d, 1H, J1,2 = 3.8 Hz, H-1), 4.60 (d, 

1H, J2,3 ≈ 0 Hz, H-2), 4.30 (ddd≈dt, 1H, H-4), 3.73 (d, 1H, J3,4  = 3.1 Hz, H-3), 3.53 

(A(ABX), 1H, J4,5a = 6.8 Hz, J5a,5b = 12.4, H-5a), 3.49 (B(ABX), 1H, J4,5b = 6.3 Hz, H-

5b), 3.43 (s, 3H, OMe), 1.51 (s, 3H, i-prop), 1.33 (s, 3H, i-prop); 13C NMR (100 MHz, 

CDCl3): δ 112.0 (Cq i-prop), 105.2 (C-1), 83.9 (C-3), 81.5 (C-2), 78.8 (C-4), 57.8 

(OMe), 49.0 (C-5), 26.9 (Me i-prop), 26.4 (Me i-prop). Anal. Calcd. for C9H15N3O4 

(229.24): C, 47.16; H, 6.60; N, 18.33. Found: C, 47.27; H, 6.51; N, 18.31. 

 

 

                                                 
118 Kefurt, K; Kefurtova, Z; Markova, V; Slivova, K; Collect Czech Chem Commun 1996, 61:1027. 
136 Ewing, DF; Goethals, G; Mackenzie, G; Martin, P; Ronco, G; Vanbaelinghem, L.; Villa, P J; Carbohydr 

Chem 1999, 18:441. 
116  Tulshian et al. Bioorg Med Chem Lett 1992, 2:515. 
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O

OH

OH

MeO

N3

57a,b  
 

5-Azido-5-deoxy-3-O-methyl-α,β-D-xylofuranose (57a,b). From xylofuranose 56 

(3.0 g, 13.1 mmol) and proceeding as described in GP 4.2.1.2 (reaction time 2 h) 

and chromatographing with EtOAc/Cy-Hex 1:1 the desired product 57a,b was 

obtained as a mixture of anomers (2.18 g, 88 %, α/β ca. 1:0.4 by NMR integration) 

as a colourless oil; 1H NMR (400 MHz, CDCl3): δ 5.50 (d, 1H, J1α,2α = 4.0 Hz, H-1α), 

5.10 (d, 0.4H, J1β,2β= 9.6 Hz, H-1β), 4.46-4.38 (m, 1.4H, H-4α, H-4β), 4.31 (br s, 

0.4H, H-2β), 4.22 (br t, 1H, H-2α), 3.83 (dd, 1H J2α,3α = 3.1 Hz, J3α,4α = 5.1 Hz, H-

31α), 3.79 (d, 0.4H J3β,4β = 4.4 Hz, H-3β), 3.57-3.38 (m, 3.2H, H-5aα, H-5bα,  H-5aβ, 

H-5bβ, OH-1β), 3.50 (s, 1.2H, OMeβ), 3.46 (s, 3H, OMeα); 13C NMR (100 MHz, 

CDCl3): δ 103.4 (C-1β), 96.1 (C-1α), 85.4, 84.6 (C-3α, C-3β), 80.8, 77.4 (C-4α, C-4β, 

C-2β), 75.4 (C-2α), 58.6, 58.0, 50.7, 50.4 (C-5aα, C-5bα, C-5aβ, C-5bβ, OMeα, 

OMeβ). Anal. Calcd. for C6H11N3O4 (189.17): C, 38.10; H, 5.86; N, 22.21. Found: C, 

38.07; H, 5.58; N, 22.32. 

 

O

OH

O

MeO

N3

58  
 

5-Azido-5-deoxy-3-O-methyl-D-xylono-1,4-lactone (58). Starting with 57a,b (2.0 g, 

10.56 mmol) and using GP 4.2.1.3 (reaction time 4 h) a residue was obtained that 

after chromatography with EtOAc/Cy-Hex 1:1 gave the desired product 58 (1.50 g, 

8.0 mmol, 76%) as a colourless oil. [ ]20
Dα + 47º (c 1.0, CHCl3). 1H NMR (400 MHz, 

CDCl3; COSY): δ 4.73 (ddd≈td, 1H, J4,3 = 7.6 Hz, J4,5a ≈ J4,5b ≈ 3.7 Hz, H-4), 4.66 (d, 

1H, J2,3 = 7.6 Hz, H-2), 4.20 (t, 1H, J3,4 ≈ J2,3, H-3), 3.66-3.64 (m, 2H, H-5a, H-5b), 

3.56 (s, 3H, OMe), 2.97 (br s, 1H, OH-2); 13C NMR (100 MHz, CDCl3): δ 174.9 
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(C=O), 81.6 (C-3), 76.8 (C-4), 71.9 (C-2), 58.6 (OMe), 50.0 (C-5). Anal. Calcd. for 

C6H9N3O4 (187.16): C, 38.51; H, 4.85; N, 22.45. Found: C, 38.53; H, 4.77; N, 22.49. 

 

59

N3

OMe

O O

OMe

 
 
Methyl 2,4-anhydro-5-azido-5-deoxy-3-O-methyl-D-lyxonate (59). From the γ-

lactone 58 (1.0 g, 5.34 mmol) and proceeding as described in GP 4.2.1.4 (reaction 

time 1h) was obtained the crude 5-azido-3-O-methyl-2-O-trifluoromethanesulfonyl-D-

xylono-1,4-lactone which was submitted to GP 4.2.1.5 (reaction time 4h) to give the 

crude 59 that was chromatographed (EtOAc/Cy-Hex 1:2) furnishing the desired 

oxetane as a colourless oil (720 mg, 3.58 mmol, 67% yield). [ ]20
Dα -51º (c 1.0, CHCl3); 

1H NMR (400 MHz, CDCl3): δ 5.05 (d, 1H, J2,3 = 4.8 Hz, H-2), 4.44 (dd, 1H, J3,4 = 6.6 

Hz, H-3),  4.92 (q, 1H, H-4, J3,4 ≈ J4,5a ≈ J4,5a ≈ 6.3), 3.86 (s, 3H, OMe), 3.69 (A(ABX), 

1H, J4,5a = 6.1 Hz, J5a,5b = 13.2 Hz, H-5a), 3.64 (B(ABX), 1H, J4,5b = 6.3 Hz, H-5b), 

3.43 (s, 3H, OMe); 13C NMR (100 MHz, CDCl3): δ 170.7 (C-1), 84.0 (C-2), 82.5 (C-4), 

77.1 (C-3), 57.5 (OMe), 52.6 (COOMe), 50.4 (C-5). Anal. Calcd. for C7H11N3O4 

(201.18): C, 41.79; H, 5.51; N, 20.89. Found: C, 42.05; H, 5.32; N, 20.58. 

 

60

BocHN

OMe

O O

OMe

 
 

Methyl 2,4-Anhydro-5-N-(tert-butoxycarbonyl)amino-5-deoxy-3-O-methyl-D-
lyxonate (60). Using GP 4.2.1.9 (reaction time 2h) and azide 59 as starting material 

(766 mg, 3.8 mmol) the product 30 was obtained after chromatography over silica 

gel eluting with EtOAc/ Cy-Hex 1:2, as a colourless oil (871 mg, 3.16 mmol, 83 %). 

[ ]20
Dα  -35º (c 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ 4.99 (d, 1H, J2,3 = 4.9 Hz, H-
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2), 4.96-4.76 (m, 2H, H-4, NH), 4.39 (dd, 1H, J3,4 = 6.5 Hz, H-3), 3.83 (s, 3H, OMe), 

3.61 (ddd, 1H, J5a,5b = 12.8 Hz, J5a,NH ≈ J4,5a ≈ 6.8 Hz, H-5a), 3.56-3.49 (m, 4H, H-5b, 

OMe), 1.44 (s, 9H, Boc); 13C NMR (100 MHz, CDCl3): δ 170.8 (C=O COOMe), 155.9 

(C=O Boc), 83.7 (C-2), 82.4 (C-4), 77.4 (C-3), 57.6 (COOMe), 52.5 (OMe), 40.5 (C-

5), 28.4 (3Me t-Bu). Anal. Calcd. for C12H21NO6 (275.30): C, 52.35; H, 7.69; N, 5.09. 

Found: C, 51.86; H, 7.31; N, 5.31. 

 

BocHN

OMe

O

61

O

OH

 
 

2,4-Anhydro-5-N-(tert-butoxycarbonyl)amino-5-deoxy-3-O-methyl-D-lyxonic 
acid (61). Hydrolysis of the methyl ester 60 (501.7 mg, 1.82 mmol) was achieved 

employing GP 4.2.1.7 (reaction time 30 min) to give the product 61 as a colourless 

hygroscopic foam (424 mg, 1.62 mmol, 89%). 1H NMR (400 MHz, acetone-d6): δ 

5.82 (br s, 1H, NH), 4.93 (d, 1H, J2,3 = 4.7 Hz, H-2),  4.79 (q, 1H, J3,4 ≈ J4,5a ≈ J4,5b ≈ 

6.5 Hz, H-4), 4.46 (dd, 1H, J3,4 = 6.3 Hz, H-3), 3.56-3.40 (m, 2H, H-5a, H-5b), 3.39 

(OMe), 1.40 (s, 9H, Boc); 13C NMR (100 MHz, acetone-d6): δ 170.2 (COOH), 156.7 

(C=O Boc), 83.7 (C-2), 82.2 (C-4), 77.9 (C-3), 78.8 (Cq Boc), 57.3 (OMe), 40.9 (C-

5), 28.3 (3Me t-Bu). HRMS (NSI) m/z 260.11397 [M-H]-, calcd. 260.11396 for 

C11H18NO6. 

 
4.2.4 Synthesis of 2,4-Anhydro-5-N-(tert-

butoxycarbonyl)amino-5-deoxy-3-O-methyl-D-ribonic and 
D-arabinonic Acids 

 
O

O

O

O

N3

62  
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5-Azido-5-deoxy-1,2-O-isopropylidene-α-D-erythro-pentofuranos-3-ulose (62). 

Starting from 5-azido-5-deoxy-1,2-O-isopropylidene-α-D-xylofuranose 55 (2.71 g, 

12.6 mmol) in anhydrous DCM (45 mL) was added PDC (3.32 g, 8.8 mmol) and 

Ac2O (3.6 mL, 38.1 mmol), and the mixture was stirred for 3h under reflux. Diethyl 

ether was added (100 mL), and the brown suspension was filtered over a Florisil 

column (Supelco/Sigma-Aldrich, 100-200 mesh) eluting with diethyl ether. The 

product was crystallised from DCM/Cy-Hex to give a colourless solid (2.392 g, 11.2 

mmol, 89% yield). m.p. 54.2-55.0 ºC. [ ]25
Dα  +187º (c 1.0, CHCl3), (lit.121 [ ]25

Dα  +185.2º 

(c 1.1,CHCl3)). NMR data were in full agreement with the literature.121 

 

O

O

O

HO

N3

63  
 

5-Azido-5-deoxy-1,2-O-isopropylidene-α-D-ribofuranose (63). Treatment of the 

ulose 62 with NaBH4 in EtOH/H2O118 gave the desired product 63 as colourless oil in 

94% yield. [ ]25
Dα  +63º (c 1.0, CHCl3), (lit.118 [ ]20

Dα  +65.5º (c 0.5, CHCl3)). NMR data 

were in full agreement with the literature.118  
 

 

 

 

 

 

 

 

 

 

 

 

121 Ewing et al. Carbohydr Res 1999, 321:190. 
118 Kefurt et al. Collect Czech Chem Commun 1996, 61:1027. 
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O

O

O

MeO

N3

64  
 

5-Azido-5-deoxy-1,2-O-isopropylidene-3-O-methyl-α-D-ribofuranose (64). 

Starting from 5-azido-5-deoxy-1,2-O-isopropylidene-α-D-ribofuranose 63 (1.98 g, 9.2 

mmol) and proceeding as described in GP 4.2.1.10 (reaction time 30 min) the known 

product 64117 was obtained as colourless oil (2.13 g, 9.3 mmol, quantitative) after 

chromatography (EtOAc/Cy-Hex 1:4 to 1:2). [ ]25
Dα  +161º (c 1.0, CHCl3). 1H NMR 

(400 MHz, CDCl3): δ 5.80 (d, 1H, J1,2 = 3.6 Hz, H-1), 4.71 (t, 1H, H-2), 4.14 (ddd≈dt, 

1H, H-4), 3.72 (A(ABX), 1H, J4,5a = 2.5 Hz, J5a,5b = 13.5 Hz, H-5a), 3.65 (dd, 1H, J2,3 

4.1 Hz, J3,4 = 8.0 Hz, H-3), 3.50 (s, 3H, OMe), 3.32 (B(ABX), 1H, J4,5b = 3.8 Hz, H-

5b), 1.59 (s, 3H, i-prop), 1.38 (s, 3H, i-prop). 13C NMR (100 MHz, CDCl3): δ 113.4 

(Cq i-prop), 104.1 (C-1), 80.6 (C-3), 77.4 (C-4), 77.0 (C-2), 58.6 (OMe), 50.7 (C-5), 

26.9 (Me i-prop), 26.5 (Me i-prop). Anal. Calcd. for C9H15N3O4 (229.24): C, 47.16; H, 

6.60; N, 18.33. Found: C, 47.17; H, 6.52; N, 18.46. 

 

O

OH

OH

MeO

N3

65a,b  
 

5-Azido-5-deoxy-3-O-methyl-α,β-D-ribofuranose (65a,b). Submitting 5-azido-5-

deoxy-1,2-O-isopropylidene-3-O-methyl-α-D-ribofuranose 64, (2.0 g, 8.7 mmol) to 

GP 4.2.1.2 (reaction time 1 h) and after chromatography (EtOAc/Cy-Hex 1:1) the 

desired product 65a,b was obtained as a colourless oil (1.42 g, 7.5 mmol, 86% yield, 

α/β 1:1). 1H NMR (400 MHz, CDCl3): δ 5.37-5.32 (m, 2H, H-1α, H-1β), 4.21 (ddd≈q, 

1H, H-4α), 4.18 (br t, 1H, J1α,2α ≈ J2α,3α ≈ 4.5 Hz, H-2α), 4.15-4.11 (m, 2H, H-2β, H-

4β),  4.00  (dd, 1H, J2β,3β = 4.6 Hz, J3β,4β =  6.9 Hz,  H-3β),  3.70  (dd≈t, 1H J2α,3α = 5.0 

 
117 Yamashita, M.; Takahashi, C.; Seo, K. Heterocycles 1993, 36(4), 651-654.
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 Hz, J3α,4α = 5.5 Hz, H-3α), 3.61 (A(ABX), 1H, J4β,5aβ = 3.7 Hz, H-5aβ), 3.56 (A(ABX), 

1H, J4α,5aα = 4.0 Hz, H-5aα),  3.49 (s, 3H, OMeα), 3.46 (s, 3H, OMeβ), 3.39 (B(ABX), 

1H, J4β,5bβ = 5.2 Hz, J5aβ,5bβ = 13.1 Hz, H-5bβ), 3.32 (B(ABX), 1H, J4α,5bα = 3.9 Hz, 

J5aα,5bα = 13.2 Hz, H-5bα); 13C NMR (100 MHz, CDCl3): δ 102.3 (C-1β), 97.1 (C-1α), 

81.1 (C-3β), 80.4 (C-3α), 80.0 (C-4β), 79.1 (C-4α), 73.2 (C-2β), 70.1 (C-2α), 58.9 

(OMeα), 58.6 (OMeβ), 53.3 (C-5β), 52.2 (C-5α). HRMS (ESI) m/z 248.08925 

[M+OAc]+, calcd. 248.08881 for C8H14N3O6. Anal. Calcd. for C6H11N3O4 (189.17): C, 

38.10; H, 5.86; N, 22.21. Found: C, 38.10; H, 5.78; N, 21.99. 

 

O

OH

O

MeO

N3

66  
 

5-Azido-5-deoxy-3-O-methyl-D-ribono-1,4-lactone (66). Starting from 65a,b (1.33 

g, 7.0 mmol) and applying GP 4.2.1.3 (reaction time 1.5 h), the desired product 66 

was obtained as a colourless oil (880 mg, 4.70 mmol, 67%) after chromatography 

(EtOAc/Cy-Hex 1:1). [ ]25
Dα  +60º (c 1.0, CHCl3).  1H-NMR (400 MHz, CDCl3): δ 4.63 

(d, 1H, J2,3 = 5.9 Hz, H-2) 4.55 (dd≈t, 1H, H-4), 3.90 (d, 1H, J3,4 ≈ 0 Hz, H-3), 3.74 

(A(ABX), 1H, J4,5a = 4.3 Hz, J5a,5b = 13.4 Hz, H-5a), 3.65 (B(ABX), 1H, J4,5b = 3.7 Hz, 

H-5b), 3.52 (s, 3H, OMe); 13C NMR (100 MHz, CDCl3): δ 174.50 (C=O), 79.35 (C-4), 

77.96 (C-3), 68.14 (C-2), 58.45 (OMe), 51.91 (C-5). HRMS (ESI) m/z 246.07358 

[M+OAc]+, calcd. 246.07316 for C8H12N3O6. Anal. Calcd. for C6H9N3O4 (187.16): C, 

38.51; H, 4.85; N, 22.45. Found: C, 38.46; H, 4.89; N, 22.07. 

 

67

N3

OMe

O O

OMe

     68

N3

OMe

O O

OMe

 
 

Methyl 2,4-anhydro-5-azido-5-deoxy-3-O-methyl-D-ribonate (67) and Methyl 2,4-
anhydro-5-azido-5-deoxy-3-O-methyl-D-arabinonate (68). Applying GP 4.2.1.4 to 
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lactone 66 (812 mg, 4.34 mmol, reaction time 15 min) furnished the crude 5-azido-3-

O-methyl-2-O-trifluoromethanesulfonyl-D-xylono-1,4-lactone (assumed 4.34 mmol) 

that was then submitted to GP 4.2.1.5 and chromatographed (EtOAc/Cy-Hex 1:3) to 

give compound 67 (465.5 mg, 2.31 mmol, 53%) followed by compound 68 (61.0 mg, 

0.3 mmol, 7%). 

Data for compound 67: Colourless oil, [ ]25
Dα  +140º (c 1.0, CHCl3),1H NMR (400 MHz, 

CDCl3): δ 4.95 (d, 1H, J2,3 = 5.1 Hz, H-2) 4.72 (bq, 1H, H-4), 4.27 (t, 1H, J2,3 ≈ J3,4 ≈ 

5.0 Hz, H-3), 3.84 (s, 3H, COOMe), 3.61 (A(ABX), 1H, J4,5a = 4.0 Hz, J5a,5b = 13.8 

Hz, H-5a), 3.44 (B(ABX), 1H, J4,5b = 4.0 Hz, H-5b), 3.40 (s, 3H, OMe); 13C NMR (100 

MHz, CDCl3): δ 170.2 (C=O), 84.2 (C-4), 81.7 (C-2), 78.4 (C-3), 57.1 (OMe), 52.7 (C-

5), 52.5 (COOMe). HRMS (ESI) m/z 219.10882 [M+NH4]+, calcd. 219.10878 for 

C7H15N4O4. Anal. Calcd. for C7H11N3O4 (201.18): C, 41.79; H, 5.51; N, 20.89. Found: 

C, 41.44; H, 5.42; N, 20.87. 

Data for compound 68: Colourless oil, [ ]25
Dα  +68º (c 1.0, CHCl3), 1H NMR (400 MHz, 

CDCl3): δ 5.17 (d, 1H, J2,3 = 6.9 Hz, H-2) 4.95 (br ddd, 1H, H-4), 4.51(dd, 1H, J3,4 = 

5.5 Hz, H-3), 3.86 (s, 3H, COOMe), 3.65 (A(ABX), 1H, J4,5a = 3.7 Hz, J5a,5b = 13.9 

Hz, H-5a), 3.39 (B(ABX), 1H, J4,5b = 3.4 Hz, H-5b), 3.35 (s, 3H, OMe); 13C NMR (100 

Hz, CDCl3): δ 169.8 (C=O), 87.5 (C-4), 81.4 (C-2), 75.9 (C-3), 58.4 (OMe), 52.8 (C-

5), 52.4 (COOMe). HRMS (ESI) m/z 219.10884 [M+NH4]+, calc. 219.10878 for 

C7H15N4O4. Anal. Calcd. for C7H11N3O4 (201.18): C, 41.79; H, 5.51; N, 20.89. Found: 

C, 41.65; H, 5.72; N, 20.74. 

 

69

BocHN

OMe

O O

OMe

 
 

Methyl 2,4-anhydro-5-N-(tert-butoxycarbonyl)amino-5-deoxy-3-O-methyl-D-
ribonate (69). Starting from the azide 67 (330 mg, 1.64 mmol) and using GP 4.2.1.9 

(reaction time 2 h), gave a crude product that was chromatographed (EtOAc/Cy-Hex 

1:2) to yield the pure product 69 (390 mg; 1.41 mmol, 81 %) as a colourless oil. [ ]25
Dα  
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+3º (c 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ 5.31(br s, 1H, NH), 4.93 (d, 1H, J2,3 

5.0 Hz, H-2), 4.70 (br q, 1H, J ≈ 4.9 Hz, H-4), 4.13 (t, 1H, J2,3 ≈ J3,4 ≈ 4.8 Hz, H-3), 

3.84 (s, 3H, COOMe), 3.52 (br ddd, 1H, H-5a), 3.37 (s, 3H, OMe), 3.33 (dt, 1H, J4,5b 

≈ J5b,NH ≈ 3.9 Hz, J5a,5b = 15.1, H-5b), 1.45 (s, 9H, Boc); 13C NMR (100 MHz, CDCl3): 

δ 170.1 (C=O), 155.8 (C=O Boc), 85.7 (C-4), 81.6 (C-2), 79.1 (Cq Boc), 78.7 (C-3), 

57.3 (OMe), 52.6 (COOMe), 42.8 (C-5), 27.9 (3Me-Boc). HRMS (ESI) m/z 

293.17071 [M+NH4]+, calcd. 293.17071 for C12H25N2O6. Anal. Calcd. for C12H21NO6 

(275.30): C, 52.35; H, 7.69; N, 5.09. Found: C, 52.09; H, 7.41; N, 5.30. 

 

70

BocHN

OMe

O O

OMe

 
 

Methyl 2,4-anhydro-5-N-(tert-butoxycarbonyl)amino-5-deoxy-3-O-methyl-D-
arabinonate (70). Starting from the azide 68 (125 mg, 0.62 mmol) and using GP 

4.2.1.9 (reaction time 2 h), gave a crude product that was chromatographed 

(EtOAc/Cy-Hex 1:2) to yield the pure product 70 (147 mg, 0.53, 85 %) as a 

colourless oil. [ ]25
Dα  +112º (c 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ 5.09 (d, 1H, 

J2,3 = 7.2 Hz, H-2), 4.93 (br s, 1H, NH), 4.85 (br q, J = 4.7 Hz, H-4), 4.36 (dd, 1H, J3,4 

= 5.9 Hz, H-3), 3.85 (s, 3H, COOMe), 3.50 (ddd, 1H, J5a,5b = 15.0 Hz, J5a,NH = 7.0 Hz, 

J4,5a = 4.5 Hz, H-5a), 3.39 (dt, 1H, J4,5b ≈ J5b,NH ≈ 4.5 Hz, H-5b), 3.33 (s, 3H, OMe), 

1.46 (s, 9H, Boc); 13C NMR (100 MHz, CDCl3): δ 169.9 (C=O COOMe), 156.1 (C=O 

Boc), 88.2 (C-4), 81.0 (C-2), 79.8 (Cq Boc), 75.8 (C-3), 58.0 (OMe), 52.2 (COOMe), 

42.8 (C-5), 28.3 (3Me-Boc). HRMS (ESI) m/z 293.17060 [M+NH4]+, calcd. 293.17071 

for C12H25N2O6. Anal. Calcd. for C12H21NO6 (275.30): C, 52.35; H, 7.69; N, 5.09. 

Found: C, 51.86; H, 7.31; N, 5.31. 
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71

BocHN

OMe

O O

OH

 
 
2,4-Anhydro-5-N-(tert-butoxycarbonyl)amino-5-deoxy-3-O-methyl-D-ribonic 
acid (71). Hydrolysis of the methyl ester 69 (60 mg; 0.22 mmol) was achieved using 

GP 4.2.1.7 (reaction time 30 min) to give product 71 as a colourless waxy solid (50.6 

mg, 89%). 1H NMR (400 MHz, acetone-d6): δ 6.96 (br s, 1H, NH), 5.59 (d, 1H, J2,3 = 

4.7 Hz, H-2), 5.31 (q, 1H, J3,4 ≈ J4,5a ≈ J4,5b ≈ 4.9 Hz, H-4), 4.92 (t, 1H, H-3), 3.21-4.04 

(m, 5H, H-5a, H-5b, OMe), 1.42 (s, 9H, Boc); 13C NMR (100 Hz, acetone-d6): δ 171.5 

(COOH), 157.1 (C=O Boc), 85.6 (C-4), 81.6 (C-2), 80.2 (C-3), 79.1 (Cq Boc), 56.6 

(OMe), 43.3 (C-5), 28.4 (3Me t-Bu). HRMS (NSI) m/z 260.11406 [M-H]-, calcd. 

260.11396 for C11H18NO6. 

 

72

BocHN

OMe

O O

OH

 
 

2,4-Anhydro-5-N-(tert-butoxycarbonyl)amino-5-deoxy-3-O-methyl-D-arabinonic 
Acid (72). Hydrolysis of the methyl ester 70 (60 mg; 0.22 mmol) was achieved 

employing GP 4.2.1.7 (reaction time 30 min) to give the product 72 as a colourless 

hygroscopic foam (52.3 mg, 92%). 1H NMR (400 MHz, acetone-d6): δ 5.18 (d, 1H, 

J2,3 = 7.3 Hz, H-2), 4.81 (q, 1H, J3,4 ≈ J4,5a ≈ J4,5b ≈ 5.3 Hz, H-4), 4.54 (dd, 1H, H-3), 

3.47 (d, 2H, H-5b, J4,5a = J4,5b = 5.0 Hz, H-5a), 3.41 (s, 3H, OMe), 1.39 (s, 9H, Boc); 
13C NMR (acetone-d6): δ 171.5 (COOH), 157.1 (C=O Boc), 85.6 (C-4), 81.6 (C-2), 

80.2 (C-3), 79.1 (Cq Boc), 56.8 (OMe), 43.3 (C-5), 28.4 (3Me t-Bu). HRMS (NSI) m/z 

260.11403 [M-H]-, calcd. 260.11396 for C11H18NO6. 
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4.2.5 Synthesis of 2,4-Anhydro-5-N-(tert-
butoxycarbonyl)amino-5-deoxy-3-fluor-D-arabinonic Acid  

 

O

O
O

O

Ph

Ph
COOH

75      

O

OPh

O
O

OH

74  
 

2,4;3,5-Di-O-benzylidene-D-xylonic Acid (75) and 3,5-O-Benzylidene-D-xylono-
1,4-lactone (74). A solution of D-xylose (20.0 g, 0.13 mol) in water (54 mL) was 

cooled in an ice water bath. Potassium carbonate (22.6 g, 0.16 mol) was then added 

in portions while keeping the temperature below 20 ºC. The mixture was cooled to 5 

ºC, and bromine (8 mL, 0.15 mol) added dropwise over 45 min while keeping the 

temperature below 10 ºC. The resulting orange solution was stirred at 10 ºC for 30 

min and then at rt overnight, when one major product was observed. The reaction 

was quenched by careful addition of 88% formic acid (1.66 mL) until the solution 

become colourless. The solution was concentrated at 50 ºC in vacuo, and acetic acid 

(13.4 mL) was added. The reaction mixture was concentrated at 50 ºC to remove 

any residual water. The crude xylono-1,4-lactone was used without purification. 

To a solution of the crude lactone (assumed 19.7 g, 0.13 mol) in benzaldehyde (200 

mL) was added HCL conc. (15 mL). The reaction was stirred at room temperature 

overnight to give two different products identified by TLC (EtOAc/Cy-Hexane 1:1). 

The mixture was concentrated under HV to a quarter volume. Diethylether (80 mL) 

was added, and a precipitate formed. The mixture was filtered, and the residue was 

washed with ether. The filtrate was concentrated in vacuo, and chromatographed 

(1:3 EtOAc/Cy-Hex) to give the desired benzylidene protected lactone 74 as a 

colourless solid (12.0 g, 51 mmol, 39%). The solid residue of the filtration was then 

washed with acetone to separate the by-product from the residual salts. The filtrate 

was concentrated in vacuo, and the by-product recrystallised from acetone/n-hexane 

to give compound 75 as a colourless solid (16.5 g, 48 mmol, 37%).  

Data for 74: [ ]20
Dα  +11.2 (c, 1.0, CH2Cl2). 1H NMR, COSY (400 MHz, CDCl3): δ 7.46-

7.44 (m, 2H, Ph),7.38-7.36 (m, 3H, Ph) 5.54 (s, 1H, CHPh), 4.59-4.53 (m, 3H, H-2, 



Synthesis of Oxetane δ-Amino Acid Scaffolds 
 

133 
 

H-4, H-5a), 4.32 (br s, 1H, H-3), 4.19 (B(ABX), 1H, J4,5b = 1.8 Hz, J5a,5b = 13.5 Hz, H-

5b), 3.41 (br s, 1H, OH). 

Data for 75: [ ]20
Dα  -18.6 (c, 1.00, DMF), Lit.124 [ ]20

Dα  -21.13 (c, 1.05, DMF). m.p. 

202.2-203.0 ºC, Lit.124 198.5-200.0 ºC. MS(ionspray): 343.1 [M+H]+, 360.4 [M+NH4]+, 

365.1 [M+Na]+. 1H NMR, COSY, NOESY (400 MHz, DMSO): δ 12.90 (s, 1H, COOH), 

7.52-7.50 (m, 2H, Ph), 7.44-7.35 (m, 8H, Ph), 5.75 (s, 1H, CHaHbPh), 5.69 (s, 1H, 

CHaHbPh), 4.78 (d, 1H, J2,3 = 2.1 Hz, H-2), 4.37 (br t, 1H, J2,3 ≈ J3,4 ≈ 1.8 Hz, H-3), 

4.21 (A(ABX), 1H, J4,5a = 1.8 Hz, J5a,5b = 12.8 Hz, H-5a), 4.16 (B(ABX), 1H, J4,5b = 1.3 

Hz, H-5b), 4.04 (br q, 1H, H-4). 13C NMR, HSQC, HMBC (100 MHz, DMSO): δ 

169.28 (COOH), 138.78 (Ph), 138.43 (Ph), 129.37 (Ph), 129.21 (Ph), 128.50 (Ph), 

128.47 (Ph), 126.92 (Ph), 126.58 (Ph), 99.5 (CHaPh), 99.9 (CHbPh), 76.63 (C-2), 

70.55 (C-3), 69.87 (C-4), 69.51 (C-5). IR (cm-1): 2580-2620 (COOH), 1738 

(C=O(COOH)), 1608+1498 (aromatic), 1097 (COC), 763+700 (Ph, monosubstituted). 

 

O

O

O

CO2MePh

76
 

 

Methyl 2,4-anhydro-3,5-O-benzylidene-D-lyxonate (76). From 3,5-O-benzylidene-

D-xylono-1,4-lactone 75 (11.9 g, 50.4 mmol) and proceeding as described in GP 

4.2.1.4 (temperature ≈ -30 ºC, reaction time 1h) was obtained crude 3,5-O-

benzylidene-2-O-trifluoromethanesulfonyl-D-xylono-1,4-lactone which was submitted  

to GP 4.2.1.5 (reaction time 4 h) to give the crude oxetane that was 

chromatographed (EtOAc/Cy-Hex 1:3) to furnish pure oxetane 76 (8.17 g, 32.7 

mmol, 65% yield) as a colourless solid. [ ]20
Dα = -3.2 (c, 1.0 in DCM). 1H NMR (400 

MHz, CDCl3): δ 7.48-7.29 (m, 5H, Ph), 5.42 (s, 1H, CHPh), 4.99 (d, 1H, J2,3 2.2 Hz, 

H-2), 4.92 (dd, 1H, J3,4 5.1 Hz, H-3),  4.89 (dd, 1H, J4,5a 0 Hz, J4,5b 2.5 Hz, H-4), 4.30 

(d, 1H, J5a,5b 14.0 Hz, H-5a), 3.99 (dd, 1H, H-5b), 3.94 (s, 3H, OMe).  

 124 Zinner et al  Carbohydr Res 1968, 7:38. 
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O

F

ON3

OMe

77  
 

Methyl 2,4-Anhydro-5-azido-5-deoxy-3-fluoro-D-arabinonate (77). To a solution 

of 51 (500 mg, 2.7 mmol) in acetonitrile (40 mL) at –20 ºC was added DAST (8.1 

mmol, 1.0 mL), and the mixture was stirred for 20 min. The temperature was then 

raised to reflux temperature over 1 h. After concentration, the mixture was dissolved 

in DCM (50 mL) and washed with a sat. soln. of NaHCO3 (30 mL). After drying over 

MgSO4, filtration and concentration the residue obtained was chromatographed 

(EtOAc/Cy-Hex 1:4) to yield the desired fluoro derivative as colourless oil (383 mg, 

2.02 mmol, 75%). MS: m/z 190.3 [M+H]+, 212.1 [M+Na]+. 1H NMR (300 MHz, 

CDCl3): δ 5.53 (ddd, 1H, J2,3 6.7 Hz, J3,4 4.5 Hz, J3,F 56.1 Hz, H-3), 5.23 (ddd, 1H, J2,4 

1.1 Hz, J2,F 15.2 Hz, H-2), 5.14 (dddd, 1H, J4,5a 3.4 Hz, J4,5b 3.0 Hz, J4,F 19.1 Hz, H-

4), 3.89 (s, 3H, OMe), 3.72 (A(ABX), 1H, J5a,5b 14.2 Hz, H-5a) 3.48 (B(ABX), 1H, H-

5b). Anal. Calcd. for C6H8FN3O3 (189.15): C, 38.10; H, 4.26; N, 22.22. Found: C, 

38.38; H, 4.32; N, 21.98.  

 

O

F

OBocHN

OMe

78  
 
Methyl 2,4-Anhydro-5-N-(t-butoxycarbonyl)amino-5-deoxy-3-fluoro-D-
arabinonate (78). Submitting azide 77 (1.14 g, 6.0 mmol) to GP 4.2.1.9 (reaction 

time 2h) followed by chromatography (EtOAc/ Cy-Hex 1:2) of the obtained residue 

gave the pure product 78  (1.35 g, 5.1 mmol, 85 %) as a colourless oil. 1H NMR (400 

MHz, CDCl3): δ 5.37 (ddd, 1H, J2,3 6.8 Hz, J3,4 4.8 Hz, J3,F 56.0 Hz, H-3), 5.13 (ddd, 

1H, J2,F 14.8 Hz, H-2), 5.03 (dddd, 2H, J4,5a 3.4 Hz, J4,5b 3.0 Hz, J4,F 19.1 Hz, H-4), 

4.93 (br s, 1H, NH), 3.86 (s, 3H, OMe), 3.58 (dd, 1H, J4,5a 4.4 Hz, J5a,5b 14.8 Hz, 

J5a,NH 7.2 Hz, H-5a), 3.41 (ddd, 1H, J5b,NH 4.7 Hz, J5a,5b 14.8 Hz, H-5b), 1.46 (s, 9H, 
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Boc). Anal. Calcd. for C11H18FNO5 (263.27): C, 50.19; H, 6.89; N, 5.32. Found: C, 

49.96; H, 6.74; N, 5.35. 

 

O

F

OBocHN

OH

79  
 
2,4-Anhydro-5-N-(t-butoxycarbonyl)amino-5-deoxy-3-fluoro-D-arabinonic Acid 
(79). Hydrolysis of the methyl ester 78 (1.5 g, 5.7 mmol) was achieved using GP 

4.2.1.7 (reaction time 1 h) to give the product 79 as a colourless hygroscopic foam 

(1.38 g, 5.54 mmol, 97%). MS (ionspray neg.): m/z 248.3 [M-H]-. 1H NMR (300 MHz, 

acetone-d6): ): δ 5.41 (ddd, 1H, J2,3 6.7 Hz, J3,4 4.7 Hz, J3,F 55.7 Hz, H-3), 5.18 (dd, 

1H, J2,F 15.3 Hz, H-2), 5.03 (br dq, 1H, J4,5a ≈ J4,5b ≈ 4.3 Hz, J4,F 19.5 Hz, H-4), 3.54-

3.39 (m, 2H, H-5a, H-5b), 1.47 (s, 9H, Boc). HRMS (pNSI) m/z 272.09052 [M+Na]+, 

calcd. 272.09047 for C10H16FNO5Na. 

 

4.2.6 Synthesis of 2,4-Anhydro-5-N-(tert-
butoxycarbonyl)amino-5-deoxy3-fluoro-D-xylonic Acid 

 

O

O

O

HO

BzO

80  
 

 5-O-Benzoyl-1,2-O-isopropylidene-α-D-xylofuranose (80). To a solution of 1,2-O-

isopropylidene-α-D-xylofuranose (50.02 g; 0.26 mol) in DCM (1 L) in an ice bath was 

added Et3N (108 mL, 0.78 mol). Benzoyl chloride (33.2 mL, 0.29 mol) was added 

dropwise during 30 min. The mixture was stirred for 1.5 h at 0-5 °C, and the reaction 

was quenched by the addition of water (50 mL). The organic phase was washed 

twice with a sat. soln. of NaHCO3 (250 mL), dried with MgSO4, filtered, and the 
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solvents were evaporated. Column chromatography (EtOAc/Cy-Hex 1:3, 2:3, 1:1) of 

the residue gave the desired product as a colourless solid (68.9g, 0.23 mol, 90%). 

MS (ionspray): m/z 295.2 [M+H]+, 312.2 [M+NH4]+. 1H NMR (300 MHz, CDCl3): δ 

7.46-8.04 (m, 5H, Ph), 5.96 (d, 1H, J1,2 = 3.6 Hz, H-1), 4.81 (A(ABX), 1H, J4,5a = 9.4 

Hz, J5a,5b = 12.7 Hz, H-5a), 4.60 (d, 1H, J2,3 ≈ 0 Hz, H-2), 4.38 (B(ABX), 1H, H-5b), 

4.37 (ddd, H, J4,5b = 4.5 Hz, H-4), 4.17 (br dd, 1H, J3,4 = 2.2 Hz, H-3), 3.23 (d, 1H, 

J3,OH = 4.0 Hz, OH), 1.51 (s, 3H, Me(i-prop)), 1.33 (s, 3H, Me(i-prop)). 

 

O

O

O

O

BzO

81  
 

5-O-Benzoyl-1,2-O-isopropylidene-α-D-erythro-pent-3-ulofuranose (81). A 

solution of 5-O-benzoyl-1,2-O-isopropylidene-α-D-xylofuranose (20.03 g, 0.068 mol) 

in DCM (200 mL) was treated with pyridinium dichromate (13.08 g, 0,035 mol) and 

acetic anhydride (19.3 mL, 0.204 mol) over 2.5 h at reflux. The reaction mixture was 

diluted with ether (50 mL) and filtered through a silica gel column (300g, ether/DCM 

1:4, then 2:3). After evaporation of solvents, the residue was chromatographed over 

silica gel (EtOAc/Cy-Hex, 1:3, 2:3, 1:1) to afford a colourless solid (16.44 g, 83%). 

MS (ionspray): m/z 310,1 [M+NH4]+, 315,3 [M+Na]+. 1H NMR (300 MHz, CDCl3): δ 

7.44-7.95 (m, 5H, Ph), 6.14 (d, 1H, J1,2 = 4.4 Hz, H-1), 4.71 (A(ABX), 1H, J4,5a = 2.8 

Hz, H-5a), 4.69 (dd≈br s, 1H, H-4), 4.47 (B(ABX), 1H, J4,5b = 4.7 Hz, J5a,5b = 13.4 Hz, 

H-5b), 4.44 (d, 1H, H-2), 1.52 (s, 3H, Me(i-prop)), 1.44 (s, 3H, Me(i-prop)). 

 

O

O

O

HO

HO

82  
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1,2-O-Isopropylidene-α-D-ribofuranose (82). To a solution of the keto sugar 81 

(15.34 g, 52 mmol) in EtOH/H2O 7:1 cooled in an ice-bath was added sodium 

borohydride (2.38 g, 63 mmol) under stirring. The reaction mixture was allowed to 

reach rt, and stirring was continued overnight (16.5 h). The reaction mixture was 

passed through Amberlite columns (IRC-50, 120g followed by IRA-400, 120 g, 

washing with EtOH). After concentration, the residue was chromatographed over 

silica gel (450 g) with EtOAc/MeOH/H2O (93:5:2) to give the desired product 82 (8.9 

g, 46.8 mmol, 89%). MS (ionspray): m/z 208.1 [M+NH4]+, 213.3 [M+Na]+. 1H NMR 

(300 MHz, CDCl3): δ 5.83 (d, 1H, J1,2 = 3.9 Hz, H-1), 4.59 (dd≈t, 1H, J2,3 = 5.1 Hz, H-

2), 4.01 (ddd≈dt, 1H, H-3), 3.97 (ddd, 1H, J4,5a = 2.4 Hz, H-5a), 3.84 (br ddd, 1H, J3,4 

= 9.0 Hz, J4,5b = 3.6 Hz, H-4), 3.76 (ddd, 1H, J5a,5b = 12.0 Hz, H-5b), 2.38 (d, 1H, 

J3,OH-3 = 10.5 Hz, OH-3), 2.05 (br s, 1H, OH-5), 1.58 (s, 3H, Me(i-prop)), 1.38 (s, 3H, 

Me(i-prop)). 

 

O

O

O

BnO

BnO

83  
  

3,5-Di-O-benzyl-1,2-O-isopropylidene-α-D-ribofuranose (83). Starting from 1,2-

isopropylidene-α-D-ribofuranose 82 (8.9g, 46.8 mmol) and using GP 4.2.1.1 (reaction 

time 2 h) the residue obtained was chromatographed (EtOAc/Cy-Hex 1:9, 3:7) to 

give the desired product as colourless oil (15.6 g, 90%). MS (ionspray): m/z 371.4 

[M+H]+, 388.3 [M+ NH4]+, 393.3 [M+Na]+. 1H NMR (300 MHz, CDCl3): δ 7.36-7.26 (m, 

10H, 2Ph), 5.76 (d, 1H, J1,2 = 3.8 Hz, H-1), 5.54 (A(AB), 1H, Ja,b = 11.9 Hz, 

OCHaHbPh), 4.73 (B(AB), 1H, OCHaHbPh), 4.57 (A(AB), 1H, Ja’,b’ = 12.2 Hz, 

OCHa’Hb’Ph), 4.56 (dd≈t, 1H, H-2), 4.49 (B(AB), 1H, OCHa’Hb’Ph), 4.18 (ddd, 1H, 

J4,5a = 2.2 Hz, J4,5b = 3.8 Hz, H-4), 3.86 (dd, 1H,  J2,3 = 4.3 Hz, J3,4 = 8.9 Hz, H-3), 

3.76 (A(ABX), 1H, J5a,5b = 11.3 Hz, H-5a), 3.57 (B(ABX), 1H, H-5b), 1.59 (s, 3H, i-

prop), 1.36 (s, 3H, i-prop). 
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OH

BnO

BnO

84  
 

3,5-Di-O-benzyl-β-D-ribofuranose (84). Starting with 3,5-di-O-benzyl-1,2-O-

isopropylidene-α-D-ribofuranose (89.3 g; 0.24 mol) and using GP 4.2.1.2 (reaction 

time 2 h), the reaction mixture was cooled in an ice-bath over 1 h, and precipitation 

of the product was observed. Then the colourless solid was filtered and dried to yield 

the title compound 84 (60.6 g, 0.18 mol, 76%). The filtrates were concentrated, and 

the residue was chromatographed (EtOAc/Cy-Hex 1:1) to obtain more of the desired 

substance (11.54 g, 0.035 mol, 15%, total yield 72.14 g, 0.22 mol, 91%). MS: m/z 

348.3 [M+ NH4]+, 353.4 [M+Na]+. 1H NMR (300 MHz, CDCl3): δ 7.39-7.26 (m, 10H, 

Ph), 5.23 (d, 1H, J1,2 = 7.4 Hz, H-1), 4.61 (A(AB), 1H, Ja,b = 8.3 Hz, OCHaHbPh), 

4.56 (B(AB), 1H, OCHaHbPh), 4.51 (A(AB), 1H, Ja’,b’ 5.6 Hz OCHa’Hb’Ph,), 4.48 

(B(AB), 1H, OCHa’Hb’Ph), 4.28 (dd, 1H, J3,4 = 5.9 Hz, H-3), 4.21 (ddd, 1H, J4,5a = 3.0 

Hz, J4,5b = 2.9 Hz, H-4), 4.03 (dd, 1H, J2,3 = 4.7 Hz, H-2), 3.64 (A(ABX), 1H, J5a,5b = 

10.3 Hz, H-5a), 3.55 (B(ABX), 1H, H-5b), 3.36 (br s, 1H, OH-1), 2.69 (d, 1H, OH-2). 

Obs: The 1H NMR shows a small amount of the α isomer (≈5%) 

 

O

OH

O

BnO

BnO

85  
 

3,5-Di-O-benzyl-D-ribono-1,4-lactone (85). From 3,5-di-O-benzyl-β-D-ribofuranose  

(17.8 g, 53.8 mmol) and using GP 4.2.1.3 (reaction time 3 h) a crude product was 

obtained which was chromatographed over silica gel (EtOAc/Cy-Hex 1:2) to give the 

desired lactone (14.02 g, 42.7 mmol, 79%) as a colourless oil. 1H NMR (300 MHz, 

CDCl3): δ 7.38-7.22 (m, 10H, Ph), 4.72-4.64 (AB, 2H, Ja,b = 12.0 Hz, OCH2Ph), 4.67 

(dd, 1H, J2,3 = 5.9 Hz, H-2), 4.55-4.23 (AB, 2H, Ja’,b’ = 11.9 Hz, OCH2’Ph), 4.50 (dd≈t, 
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1H, H-4), 4.19 (d, 1H, J3,4 ≈ 0 Hz, H-3), 3.67 (A(ABX), 1H, J4,5a = 3.0 Hz, J5a,5b = 10.9 

Hz, H-5a), 3.56 (B(ABX), 1H, J4,5b = 2.5 Hz, H-5b), 2.82 (d, 1H, J2,OH-2 = 9.5 Hz, OH-

2). 

 

O

OBn
OMe

OBnO

86  
 

Methyl 2,4-Anhydro-3,5-di-O-benzyl-D-ribonate (86). Starting from 3,5-di-O-

benzyl-D-ribono-1,4-lactone 20 (4.3 g, 13.1 mmol) and proceeding as in GP 4.2.1.4 

was obtained the crude 3,5-O-benzyl-2-O-trifluoromethanesulfonyl-D-xylono-1,4-

lactone which was submitted to GP 2.1.5 to give a crude 21. This was filtrated over a 

silica gel column (aplied with DCM and eluted with EtOAc) in order to remove the 

triflate salts and the obtained residue (3.93 g) was used for the following reaction 

with no further purification. 1H NMR (300 MHz, CDCl3): δ 7.36-7.28 (m, 10H, 2Ph), 

5.01 (d, 1H, J2,3 = 5.2 Hz, H-2), 4.76 (ddd, 1H, J3,4 ≈ 4.9 Hz, H-4), 4.67-4.60 (AB, 2H, 

Ja,b = 8.7 Hz, OCH2Ph), 4.54-4.48 (AB, 2H, Ja’,b’ = 5.4 Hz, OCH2’Ph), 4.52 (dd≈t, 1H, 

H-3), 3.61 (A(ABX), 1H, J4,5a = 3.7 Hz, J5a,5b = 11.5 Hz, H-5a), 3.55 (B(ABX), 1H, J4,5b 

= 4.0 Hz, H-5b), 3.25 (s, 3H, OMe). 

 

O

OH
OMe

OHO

87  
 

Methyl 2,4-Anhydro-D-ribonate (22). The obtained residue of methyl 2,4-anhydro-

3,5-di-O-benzyl-D-ribonate 21 (3.93 g, assumed 11.5 mmol) was submitted to GP 

2.1.6 (reaction time 3 h) and after filtration of the catalyst, the obtained crude product 

(colourless oil) was reacted without further purification (1.62 g). 1H NMR (300 MHz, 

CDCl3): δ 4.95 (d, 1H, J2,3 = 4.9 Hz, H-2), 4.74 (t, 1H, H-3),  4.71 (ddd, 1H, J3,4 = 5.1 
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Hz, H-4), 3.84 (A(ABX), 1H, J4,5a = 2.5 Hz, J5a,5b = 13.4 Hz, H-5a), 3.80 (s, 3H, OMe), 

3.65 (B(ABX), 1H, J4,5b = 2.0 Hz, H-5b). 

 

O

OH
OMe

ON3

88  
 

Methyl 2,4-Anhydro-5-azido-5-deoxy-D-ribonate (23). Methyl 2,4-anhydro-D-

ribonate (1.62 g, assumed 10.0 mmol) was reacted according to GP 2.1.4 (but using 

only 1 eq of Py and keeping the temperature bellow -30 ºC), and the obtained crude 

triflate was reacted using GP 2.1.8, and the residue obtained was chromatographed 

(EtOAc/Cy-Hex 1:4) to furnish compound 23 as a colourless oil (1.29 g, 6.9 mmol, 

53% from lactone 20). 1H NMR (300 MHz, CDCl3): δ 4.95 (d, 1H, J2,3 = 4.8 Hz, H-2), 

4.76-4.69 (m, 2H, H-3, H-4), 3.84 (s, 3H, OMe), 3.63 (A(ABX), 1H, J4,5a = 3.0 Hz, 

J5a,5b = 13.7 Hz, H-5a), 3.44 (B(ABX), 1H, J4,5b = 3.3 Hz, H-5b), 3.26 (br d, 1H, OH). 
 

O

F

ON3

OMe

89  
 
Methyl 2,4-Anhydro-5-azido-5-deoxy-3-fluoro-D-xylonate (50). To a solution of 

azide 23 (263.4 mg, 1.41 mmol) in acetonitrile (10 mL) at –20 ºC was added DAST 

(0.36 mL, 2.75 mmol), and the mixture was stirred until conversion into the 

intermediate (1.5 h, see scheme 22). The solution was then allowed to reach rt, and 

pyridine (0.11 mL, 1.4 mmol) was added while the temperature was increased to 50 

ºC. After 3 h complete consumption of the intermediate was observed, and the 

brown solution was cooled, diluted with diethylether and washed with sat. soln. of 

NaHCO3. The aqueous layer was washed with diethylether and the organic phases 

were combined, dried and concentrated. The evaporation of diethyl ether was 

monitored so that evaporation of the product could be avoided. The crude compound 
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89 was reacted without further purification. H1 NMR (300 MHz, CDCl3): δ 5.65 (dt, 

1H, J2,3 ≈ J3,4 ≈ 5.8 Hz, J3,F = 56.2 Hz, H-3), 5.30 (dd, 1H, J2,F = 18.4 Hz, H-2), 5.02-

4.91 (m, 1H, J4,F = 15.5 Hz, H-4), 3.86 (s, 3H, OMe), 3.80 (A(ABX), 1H, J4,5a = 1.7 

Hz, H-5a), 3.67 (B(ABX), 1H, J5a,5b = 13.0 Hz, H-5b). 

 

O

F

OBocHN
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90  
 

Methyl 2,4-Anhydro5-N-(t-butoxycarbonyl)amino-5-deoxy-3-fluoro-D-xylonate 
(90). Submitting the crude azide 89 (considered 1.41 mmol) to GP 4.2.1.9 (reaction 

time 1.5 h) followed by chromatography of the residue obtained (EtOAc/heptane 1:4 

to 1:1) yielded the pure product 90 as a colourless oil (193 mg, 0.73 mmol, 52 %). 

[ ]20
Dα  40.98 (c, 0.891, CHCl3). H1 NMR (300 MHz, CDCl3): δ 5.60 (dt, 1H, J2,3 ≈ J3,4 ≈ 

5.6 Hz, J3,F = 56.6 Hz, H-3), 5.28 (dd, 1H, J2,F = 18.9 Hz, H-2), 5.04-4.91 (m, 2H, H-

4, NH), 3.84 (s, 3H, OMe), 3.69-3.54 (m, 2H, H-5a, H-5b), 1.44 (s, 9H, Boc). HRMS 

(pNSI) m/z 264.12418 [M+H]+, calcd. 264.12418 for C11H18FNO5.  

 

O

F

OBocHN

OH
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2,4-Anhydro-5-N-(t-butoxycarbonyl)amino-5-deoxy-3-fluoro-D-arabinonic Acid 
(91). Hydrolysis of the methyl ester 90 (97.8 mg, 0.38 mmol) was achieved using GP 

4.2.1.7 (reaction time 30 min) to give the product 91 as a colourless hygroscopic 

foam (91.7 mg, 0.37 mmol, 97%). MS (ionspray neg.): m/z 248.3 [M-H]-. H1 NMR 

(300 MHz, CDCl3): δ 5.64 (dt, 1H, J2,3 ≈ J3,4 ≈ 6.0 Hz, J3,F = 56.1 Hz, H-3), 5.29 (dd, 

1H, J2,F = 17.8 Hz, H-2), 5.01-4.86 (m, 2H, H-4, NH), 4.08-3.95 (m, 1H, H-5a), 3.29-

3.19 (m, 1H, H-5b), 1.46 (s, 9H, Boc). HRMS (pNSI) m/z 272.09057 [M+Na]+, calcd. 

272.09047 for C10H16FNO5Na. 
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4.2.7 Protection of 52 and Chemical Hydrolysis 
 

O

PMBO

OBocHN

OMe

95           

O

OH

ON

OMe

96

PMB
Boc

  
 

Methyl 2,4-Anhydro-5-N-(tert-butoxycarbonyl)amino-5-deoxy-3-O-p-
methoxybenzyl-D-lyxonate (95) and Methyl 2,4-Anhydro-5-N-(tert-
butoxycarbonyl)amino-5-O-p-methoxybenzyl-5-deoxy-D-lyxonate (96). To a 

solution of methyl 2,4-anhydro-5-N-(t-butoxycarbonyl)amino-D-lyxonate 52 (0.8 g, 3 

mmol) in DCM (30 mL) was added p-metoxybenzyl trichloroacetimidate (2.57 mL, 12 

mmol) and (+)-camphorsulfonic acid (0.08 g, 0.3 mmol). The mixture was stirred 

overnight at rt, and pyridine was added (0.2 mL). The mixture was then diluted in 

DCM and washed with water. After drying, filtration and concentration, DCM/n-

hexane was added in order to eliminate by filtration solid undesired residues of the 

reaction. Flash chromatography of the filtrate using heptane/EtOAc gradient gave 

the title compound 95 as a colourless oil (0.74 g, 1.9 mmol, 63%) and the by-product 

methyl 2,4-anhydro-5-N-(tert-butoxycarbonyl,p-methoxybenzyl)amino-D-lyxonate 96 

as a colourless oil (0.22, 0.6 mmol, 19%). 

Data for 95: [ ]20
Dα  = -23.79° (c 0.8, CHCl3). 1H NMR, COSY (400 MHz, CDCl3): δ 

7.24 (br d, 2H, Ph), 6.99 (br d, 2H, Ph), 5.04 (d, 1H, J2,3 = 4.9 Hz, H-2), 4.89-4.78 (m, 

2H, H-4, NH), 4.58 (A(AB), 1H, Ja,b = 11.5 Hz, OCHaHbPh), 4.57 (dd, 1H, J3,4 = 6.7 

Hz, H-3), 4.42 (B(AB), 1H, OCHaHbPh), 3.81 (s, 6H, OMe, OMe(Ph)), 3.73-3.62 (m, 

1H, H-5a), 3.57-3.49 (m, 1H, H-5b), 1.43 (s, 9H, Boc). HRMS (ESI) m/z 404.16776 

[M+Na]+, calcd. 404.16797 for C19H27NO7Na. 

Data for 96: [ ]20
Dα  = -28.62° (c 0.8, CHCl3). MS: (ionspray) m/z 382.3 [M+H]+, 404.3 

[M+Na]+.  1H-NMR, COSY (400 MHz, CDCl3): δ 7.14 (br d, 2H, Ph), 6.87(br d, 2H, 

Ph), 5.82 (br s, 1H, OH), 4.85-4.80 (m, 2H, H-2, H-4), 4.70 (br td, 1H, J2,3 = 4.5 Hz, 

J3,4  ≈ J3,OH ≈ 5.7 Hz, H-3), 4.50 (A(AB), 1H, Ja,b = 15.4 Hz, OCHaHbPh), 4.30 (B(AB), 
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1H, OCHaHbPh), 4.00 (br dd, 1H, H-5a), 3.80 (s, 6H, OMe, OMe(Ph)), 3.10 (d, 1H, 

J5a,5b = 14.9 Hz, H-5b), 1.48 (s 9H, Boc). 

 

O

PMBO

OBocHN

OH

97  
 

2,4-Anhydro-5-N-(tert-butoxycarbonyl)amino-5-deoxy-3-O-p-methoxybenzyl-D-
lyxonic Acid (97). Starting with methyl ester 95 (0.66 g, 1.7 mmol) and using GP 

4.2.1.7 (reaction time 25 min) the product 97 was obtained as colourless foam (0.59 

g, 1.6 mmol, 93 %). MS: (ionspray, neg) m/z 366.3 [M-H]-. 1H-NMR (300 MHz, 

MeOD) δ 7.31 (br d, 2H, Ph), 6.93 (br d, 2H, Ph), 5.03 (d, 1H, J2,3 = 5.0 Hz, H-2), 

4.78 (q, 1H, J3,4 ≈J4,5a ≈J4,5b ≈ 6.4 Hz, H-4), 4.64-4.69 (m, 2H, H-3, OCHaHbPh), 4.46 

(B(AB), 1H, Ja,b = 11.5 Hz, OCHaHbPh), 3.81 (s, 3H, OMe(Ph)), 3.50 (d, 2H, H-5a, H-

5b), 1.45 (s 9H, Boc). HRMS (ESI) m/z 390.15219 [M+Na]+, calcd. 390.15232 for 

C18H25NO7Na. 

 
 

4.3  Library Construction  
 

4.3.1 General Procedures 
 

4.3.1.1 Oxadiazole formation from carboxylic acids 
 

To a 0.1 M solution of the starting carboxylic acid in DMF at rt was added of DIPEA 

(1.2 eq) and of HATU (1.2 eq). The mixture was stirred for 15 min in order to activate 

the acid and after this the hydroxyamidine (1.2 eq) was added and the mixture was 

stirred for 15 min more in order to provide the coupling. The solution was heated at 

80 °C (for libraries on oxetane scaffolds) or at 100 ºC (for libraries on bicyclic 

scaffolds) until cyclisation was complete. After cooling to rt, diethyl ether was added 

and the mixture was washed with H2O, the aqueous layer was extracted twice with 
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diethyl ether, the organic layers were combined, dried over MgSO4, filtered and the 

solvent evaporated. 

 

4.3.1.2 N-tert-Butoxycarbonyl cleavage 
 

To a 0.03 M solution of the starting Boc protected amine in DCM cooled in an ice 

bath was added TFA (10 eq or 15 eq in cases that removal of PMB group is made 

on the same reaction step). The temperature was allowed to warm up to rt and the 

mixture was stirred until deprotection was complete. The reaction mixture was 

concentrated in vacuum and DCM was added twice in order to co-evaporate the TFA 

excess. 

 

4.3.1.3 Acetylation 
 

To a 0.05 M solution of the starting free amine in pyridine at rt was added acetic 

anhydride (1.3 eq) and the mixture was stirred until acetylation was complete. 

Pyridine was co-evaporated with toluene. 

 

4.3.1.4 Mesylation  
 

To a 0.02 M solution of the starting amine in DCM was added triethylamine (1.25 eq) 

and the solution was cooled with an ice bath. Methanesulfonyl chloride was then 

added (1.5 eq) and the mixture was allowed to reach rt and stirred until the reaction 

was finished. The mixture was then diluted in DCM and washed once with 1M HCl 

and once with sat soln of NaHCO3 (in cases in which the oxadiazole substituent is a 

pyridinyl the reaction mixture was washed twice with H2O). The aqueous layers were 

extracted once with DCM, the organic layers were combined, dried over MgSO4, 

filtered and the solvent evaporated. 

 

4.3.1.5 Triazole Synthesis  
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To a solution of azide 23 (0.14 mmol, 27 mg) and acetylene (0.16 mmol, 1.1 eq) in 

DMF (0.6ml) was added an aqueous 0.1M solution of CuSO4 (0.1 ml) and an 

aqueous 0.1M solution of sodium ascorbate (0.1 ml) and the mixture shaken for 1h 

at rt. The reaction mixture was injected directly on preparative HPLC. The obtained 

fractions were centrifuged under HV to give the corresponding products as 

lyophilised powders. 

 

4.3.2 Library Construction on Oxetane δ-Amino Acid Scaffolds  

 

4.3.2.1 Library on 2,4-Anhydro-5-N-(tert-butoxycarbonyl)amino-3-O-p-
methoxybenzyl-D-lyxonic Acid (97). 

 

O
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NNH
O

O

102
 

 
5-[(2S,3S,4R)-5-N-(tert-Butoxycarbonyl)amino-3-O-p-methoxybenzyl-oxetan-2-
yl]-3-phenyl-1,2,4-oxadiazole (102). Starting with 97 (204.2 mg, 0.556 mmol) using 

general procedure 4.3.1.1 (cyclisation time 3 h), and after flash chromatography 

using heptane/EtOAc gradient, the title compound was obtained as a colourless oil 

(112.1 mg, 0.240 mmol, 43%). [ ] 0.20
Dα -10.16 (c 0.729, CHCl3). MS: (ionspray) m/z 

412.2 [M-tBu+H]+, 468.2 [M+H]+, 490.2 [M+Na]+. H1 NMR (300 MHz, CDCl3): δ 8.11-

8.08 (m, 2H, Ph), 7.54-7.46 (m, 3H, Ph), 7.19 (d, 2H, J = 8.6 Hz, PMB), 6.80 (d, 2H, 

PMB), 5.63 (d, 1H, J2,3 = 5.2 Hz, H-2), 5.06-4.89 (m, 2H, H-4, NH), 4.88 (dd, 1H, J3,4 

= 7.0 Hz, H-3), 4.57;4.49 (AB, 2H, Ja,b = 11.7 Hz, CH2(PMB)), 3.81-3.59 (m, 5H, H-

5a, H-5b, OMe), 1.46 (s, 9H, Boc).  
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103  
 

5-[(2S,3S,4R)-5-N-(tert-Butoxycarbonyl)amino-3-O-p-methoxybenzyl-oxetan-2-
yl]-3-p-methoxyphenyl-1,2,4-oxadiazole (103). Starting with 97 (362.3 mg, 0.986 

mmol) using general procedure 4.3.1.1 (cyclisation time 3.5 h), and after flash 

chromatography using heptane/EtOAc gradient, the title compound was obtained as 

a light brown oil (316.6 mg, 0.636 mmol, 65%). [ ] 0.20
Dα -8.423 (c 0.772, CHCl3). MS: 

(ionspray) m/z 442.2 [M-tBu+H]+, 498.2 [M+H]+, 520.2 [M+Na]+. H1 NMR (300 MHz, 

CDCl3): δ 8.03 (br d, 2H, J = 8.9 Hz, Ph), 7.19 (br d, 2H, J = 8.7 Hz, PMB), 7.00 (br 

d, 2H, Ph), 6.81 (br d, 2H, PMB), 5.62 (d, 1H, J2,3 = 5.1 Hz, H-2), 5.05-4.89 (m, 2H, 

H-4, NH), 4.86 (dd, 1H, J3,4 = 7.0 Hz, H-3), 4.55;4.49 (AB, 2H, Ja,b = 11.6 Hz, 

CH2(PMB)), 3.88 (s, 3H, OMe(Ph)), 3.80-3.58 (m, 5H, H-5a, H-5b, OMe(PMB)), 1.46 

(s, 9H, Boc).  

 

O
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O
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104  
 

5-[(2S,3S,4R)-5-N-(tert-Butoxycarbonyl)amino-3-O-p-methoxybenzyl-oxetan-2-
yl]-3-p-chlorophenyl-1,2,4-oxadiazole (104). Starting with 97 (210.3 mg, 0.512 

mmol) using general procedure 4.3.1.1 (cyclisation time 3 h), and after flash 

chromatography using heptane/EtOAc gradient, the title compound was obtained as 

a light yellow oil (169.4 mg, 0.337 mmol, 59%). [ ] 0.20
Dα -4.984 (c 0.682, CHCl3). MS: 

(ionspray) m/z 446.1 [M-tBu+H]+, 502.2 [M+H]+, 524.3 [M+Na]+. H1 NMR (300 MHz, 
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CDCl3): δ 8.04 (br d, 2H, J = 8.6 Hz, Ph), 7.48 (br d, 2H, Ph), 7.19 (br d, 2H, J = 8.7 

Hz, PMB), 6.80 (br d, 2H, PMB), 5.62 (d, 1H, J2,3 = 5.1 Hz, H-2), 5.02 (br q, 1H, H-4), 

4.92 (br s, 1H, NH), 4.86 (dd, 1H, J3,4 = 7.0 Hz, H-3), 4.56;4.49 (AB, 2H, Ja,b = 11.6 

Hz, CH2(PMB)), 3.81-3.58 (m, 5H, H-5a, H-5b, OMe(PMB)), 1.46 (s, 9H, Boc). 

HRMS (ESI) m/z 502.17395 [M+H]+, calcd. 502.17394 for C25H29ClN3O6. 

 

O

OPMB
O N

NNH
O

O

105  
 

5-[(2S,3S,4R)-5-N-(tert-Butoxycarbonyl)amino-3-O-p-methoxybenzyl-oxetan-2-
yl]-3-p-methylphenyl-1,2,4-oxadiazole (105). Starting with 97 (230.0 mg, 0.626 

mmol) using general procedure 4.3.1.1 (cyclisation time 3 h), and after flash 

chromatography using heptane/EtOAc gradient, the title compound was obtained as 

a colourless oil (239.0 mg, 0.496 mmol, 79%). [ ] 0.20
Dα -6.748 (c 0.762, CHCl3). MS: 

(ionspray) m/z 426.0 [M-tBu+H]+, 482.4 [M+H]+, 504.3 [M+Na]+. H1 NMR (300 MHz, 

CDCl3): δ 7.98 (br d, 2H, J = 8.1 Hz, Ph), 7.30 (br d, 2H, Ph), 7.19 (br d, 2H, J = 8.7 

Hz, PMB), 6.80 (br d, 2H, PMB), 5.63 (d, 1H, J2,3 = 5.1 Hz, H-2), 5.05-4.91 (m, 2H, 

H-4, NH), 4.87 (dd, 1H, J3,4 = 7.0 Hz, H-3), 4.55;4.50 (AB, 2H, Ja,b = 11.6 Hz, 

CH2(PMB)), 3.81-3.58 (m, 5H, H-5a, H-5b, OMe(PMB)), 2.43 (s, 3H, Me(Ph)), 1.46 

(s, 9H, Boc).  
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5-[(2S,3S,4R)-5-N-(tert-Butoxycarbonyl)amino-3-O-p-methoxybenzyl-oxetan-2-
yl]-3-p-methylphenyl-1,2,4-oxadiazole (106). Starting with 97 (217.0 mg, 0.591 

mmol) using general procedure 4.3.1.1 (cyclisation time 5 h), and after flash 

chromatography using heptane/EtOAc gradient, the title compound was obtained as 

a light yellow oil (137.8 mg, 0.294 mmol, 50%). [ ] 0.20
Dα -3.297 (c 0.579, CHCl3). MS: 

(ionspray) m/z 469.3 [M+H]+, 490.9 [M+Na]+. H1 NMR (300 MHz, CDCl3): δ 8.82-8.78 

(m, 2H, Py), 8.01-7.99 (m, 2H, Py), 7.23 (br d, 2H, J = 8.6 Hz, PMB), 6.82 (br d, 2H, 

PMB), 5.64 (d, 1H, J2,3 = 5.0 Hz, H-2), 5.04-4.90 (m, 2H, H-4, NH), 4.90 (dd, 1H, J3,4 

= 6.9 Hz, H-3), 4.54;4.50 (AB, 2H, Ja,b = 11.6 Hz, CH2(PMB)), 3.81-3.57 (m, 5H, H-

5a, H-5b, OMe(PMB)), 1.44 (s, 9H, Boc).  
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5-[(2S,3S,4R)-5-Amonium-3-hydroxy-oxetan-2-yl]-3-phenyl-1,2,4-oxadiazole 
Trifluoroacetate (107). Starting with 102 (98.3 mg, 0.210 mmol) using general 

procedure 4.3.1.2 (reaction time 8 h), flash chromatography using EtOAc/MeOH 

gradient, the title compound was obtained as a light red waxy solid (56.3 mg, 0.156 

mmol, 74%). [ ] 0.20
Dα -7.654 (c 0.927, MeOH). MS: (ionspray) m/z 248.1 [M-TFA+H]+. 

1H NMR (300 MHz, MeOD): δ 8.14-8.10 (m, 2H, Ph), 7.62-7.53 (m, 3H, Ph), 5.82 (d, 

1H, J2,3 = 4.1 Hz, H-2), 5.26-5.18 (m, 2H, H-3, H-4), 3.56 (A(ABX), 1H, J4,5a = 6.0 Hz, 

J5a,5b = 13.9 Hz, H-5a), 3.38 (B(ABX), 1H, J4,5b = 3.8 Hz, H-5b). 
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5-[(2S,3S,4R)-5-Amonium-3-hydroxy-oxetan-2-yl]-3-p-methoxyphenyl-1,2,4-
oxadiazole Trifluoroacetate (108). Starting with 103 (203.6 mg, 0.409 mmol) using 

general procedure 4.3.1.2 (reaction time 7 h), flash chromatography using 

EtOAc/MeOH gradient, the title compound was obtained as a light yellow waxy solid 

(158.3 mg, 0.405 mmol, 99%). [ ] 0.20
Dα -5.885 (c 1.020, MeOH). MS: (ionspray) m/z 

278.2 [M-TFA+H]+. 1H NMR (300 MHz, MeOD): δ 8.04 (br d, 2H, J = 9.0 Hz, Ph), 

7.10 (br d, 2H, Ph), 5.80 (d, 1H, J2,3 = 4.6 Hz, H-2), 5.24 (ddd, 1H, H-4), 5.19 (dd, 

1H, J3,4 = 6.7 Hz, H-3), 3.90 (s, 3H, OMe), 3.60 (A(ABX), 1H, J4,5a = 6.1 Hz, J5a,5b = 

13.9 Hz, H-5a), 3.39 (B(ABX), 1H, J4,5b = 3.9 Hz, H-5b). 
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5-[(2S,3S,4R)-5-Amonium-3-hydroxy-oxetan-2-yl]-3-p-chlorophenyl-1,2,4-
oxadiazole Trifluoroacetate (109). Starting with 104 (108.6 mg, 0.216 mmol) using 

general procedure 4.3.1.2 (reaction time 6 h), flash chromatography using 

EtOAc/MeOH gradient, the title compound was obtained as a viscous colourless oil 

(83.2 mg, 0.210 mmol, 97%). [ ] 0.20
Dα -7.191 (c 1.015, MeOH). 1H NMR (300 MHz, 

MeOD): δ 7.98 (d, 2H, J = 8.5 Hz, Ph), 7.46 (d, 2H, Ph), 5.67 (d, 1H, J2,3 = 4.0 Hz, H-

2), 5.06-4.99 (m, 2H, H-3, H-4), 3.31 (A(ABX), 1H, J4,5a = 5.6 Hz, J5a,5b = 14.0 Hz, H-
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5a), 3.22-3.16 (m, B(ABX), 1H, H-5b+MeOH). HRMS (ESI) m/z 282.06387 [M+H]+, 

calcd. 282.06400 for C12H13ClN3O3. 
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5-[(2S,3S,4R)-5-Amonium-3-hydroxy-oxetan-2-yl]-3-p-methylphenyl-1,2,4-
oxadiazole Trifluoroacetate (110). Starting with 105 (189.0 mg, 0.392 mmol) using 

general procedure 4.3.1.2 (reaction time 5 h), flash chromatography using 

EtOAc/MeOH gradient, the title compound was obtained as a brown waxy solid (71.3 

mg, 0.190 mmol, 48%). [ ] 0.20
Dα -7.235 (c 0.897, MeOH). MS: (ionspray) m/z 262.3 [M-

TFA+H]+. 1H NMR (300 MHz, MeOD): δ 7.99 (br d, 2H, J = 8.2 Hz, Ph), 7.38 (br d, 

2H, Ph), 5.81 (d, 1H, J2,3 = 4.4 Hz, H-2), 5.24 (ddd, 1H, H-4), 5.20 (dd, 1H, J3,4 = 6.7 

Hz, H-3), 3.60 (A(ABX), 1H, J4,5a = 6.0 Hz, J5a,5b = 13.8 Hz, H-5a), 3.39 (B(ABX), 1H, 

J4.5b = 3.6 Hz, H-5b), 2.45 (s, 3H, Me(Ph). 

 

O

OH
O N

N

N

N

O

O

F
F

F

111  
 

5-[(2S,3S,4R)-5-Amonium-3-hydroxy-oxetan-2-yl]-3-p-pyridinylphenyl-1,2,4-
oxadiazole Trifluoroacetate (111). Starting with 106 (118.2 mg, 0.252 mmol) using 

general procedure 4.3.1.2 (reaction time 5 h), flash chromatography using 

EtOAc/MeOH gradient, the title compound was obtained as a brown waxy solid (81.4 

mg, 0.225 mmol, 89%). [ ] 0.20
Dα -6.383 (c 0.875, MeOH). MS: (ionspray) m/z 249.1 [M-
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TFA+H]+. 1H NMR (300 MHz, MeOD): δ 8.72-8.59 (m, 2H, Py), 8.06-8.03 (m, 2H, 

Ph), 5.79 (d, 1H, J2,3 = 4.6 Hz, H-2), 5.26 (ddd, 1H, H-4), 5.20 (dd, 1H, J3,4 = 6.6 Hz, 

H-3), 3.61 (A(ABX), 1H, J4,5a = 6.1 Hz, J5a,5b = 13.8 Hz, H-5a), 3.37 (B(ABX), 1H, J4.5b 

= 3.8 Hz, H-5b). 
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5-[(2S,3S,4R)-5-N-Acetyl-amino-3-hydroxy-oxetan-2-yl]-3-phenyl-1,2,4-
oxadiazole (112)  Starting with 107 (23.6 mg, 0.065 mmol) using general procedure 

4.3.1.3 (reaction time 3h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as colourless waxy solid (9.4 mg, 0.032 

mmol, 50%). [ ] 0.20
Dα -2.231 (c 1.022, CHCl3). MS: (ionspray) m/z 290.0 [M+H]+, 312.1 

[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.10-8.07 (m, 2H, Ph), 7.52-7.45 (m, 3H, Ph), 

6.60 (br t, 1H, NH), 5.65 (d, 1H, J2,3 = 4.1 Hz, H-2), 5.10-5.01 (m, 2H, H-3, H-4), 4.01 

(quintet, 1H, J4,5a ≈ J5a,NH ≈ 7.1 Hz, H-5a), 3.53 (ddd, 1H, J4,5b = 3.5 Hz, J5b,NH = 6.3 

Hz, J5a,5b = 14.6 Hz, H-5b), 2.08 (s, 3H, Me(Ac)). 
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5-[(2S,3S,4R)-5-N-Acetyl-amino-3-hydroxy-oxetan-2-yl]-3-p-methoxyphenyl-
1,2,4-oxadiazole (113)  Starting with 108 (40.5 mg, 0.103 mmol) using general 

procedure 4.3.1.3 (reaction time 2h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as colourless viscous oil 
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(17.6 mg, 0.055 mmol, 53%). [ ] 0.20
Dα -3.028 (c 0.985, CHCl3). MS: (ionspray) m/z 

320.1 [M+H]+, 342.1 [M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.04 (br d, 2H, J = 8.6 

Hz, Ph), 6.99 (br d, 2H, Ph), 6.15 (br t, 1H, NH), 5.61 (d, 1H, J2,3 = 3.8 Hz, H-2), 

5.07-4.99 (m, 2H, H-3, H-4), 4.03 (quintet, 1H, J4,5a ≈ J5a,NH ≈ 7.3 Hz, H-5a), 3.87 (s, 

3H, OMe(Ph)), 3.46 (ddd, 1H, J4,5b = 3.0 Hz, J5b,NH = 6.4 Hz, J5a,5b = 14.7 Hz, H-5b), 

2.08 (s, 3H, Me(Ac)). HRMS (ESI) m/z 342.10590 [M+Na]+, calcd. 342.10604 for 

C15H15N3O5Na. 
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5-[(2S,3S,4R)-5-N-Acetyl-amino-3-hydroxy-oxetan-2-yl]-3-p-chlorophenyl-1,2,4-
oxadiazole (114)  Starting with 109 (25.3 mg, 0.049 mmol) using general procedure 

4.3.1.3 (reaction time 2h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as colourless viscous oil (10.6 mg, 0.033 

mmol, 67%). [ ] 0.20
Dα -1.531 (c 0.457, MeOH). 1H NMR (300 MHz, CDCl3): δ 8.05 (br d, 

2H, J = 8.6 Hz, Ph), 7.47 (br d, 2H, Ph), 6.04 (br t, 1H, NH), 5.60 (d, 1H, J2,3 = 3.7 

Hz, H-2), 5.05-5.00 (m, 2H, H-3, H-4), 4.05 (quintet, 1H, J4,5a ≈ J5a,NH ≈ 7.2 Hz, H-5a), 

3.42 (ddd, 1H, J4,5b = 2.5 Hz, J5b,NH = 6.6 Hz, J5a,5b = 15.0 Hz, H-5b), 2.08 (s, 3H, 

Me(Ac)). HRMS (ESI) m/z 324.07446 [M+H]+, calcd. 324.07446 for C14H15ClN3O4. 
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5-[(2S,3S,4R)-5-N-Acetyl-amino-3-hydroxy-oxetan-2-yl]-3-p-methylphenyl-1,2,4-
oxadiazole (115)  Starting with 110 (28.8 mg, 0.077 mmol) using general procedure 

4.3.1.3 (reaction time 3h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as colourless viscous oil (11.2 mg, 0.037 

mmol, 48%). [ ] 0.20
Dα -2.385 (c 0.838, MeOH). MS: (ionspray) m/z 304.0 [M+H]+, 326.1 

[M+Na]+.1H NMR (300 MHz, MeOD): δ 7.98 (br d, 2H, J = 8.2 Hz, Ph), 7.36 (br d, 2H, 

Ph), 5.71 (d, 1H, J2,3 = 4.8 Hz, H-2), 5.08 (dd, 1H, J3,4 =6.8 Hz, H-3), 5.01 (m, 1H, H-

4), 3.83-3.66 (m, 2H, H-5a, H-5b), 2.44 (s, 3H, Me(Ph)), 2.01 (s, 3H, Me(Ac)). 
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5-[(2S,3S,4R)-5-N-Acetyl-amino-3-hydroxy-oxetan-2-yl]-3-p-pyridinyl-1,2,4-
oxadiazole (116)  Starting with 111 (28.7 mg, 0.079 mmol) using general procedure 

4.3.1.3 (reaction time 3h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as colourless waxy solid (9.0 mg, 0.031 

mmol, 39%). [ ] 0.20
Dα -2.639 (c 0.906, MeOH). 1H NMR (300 MHz, MeOD): δ 8.81-8.79 

(m, 2H, Py), 8.13-8.10 (m, 2H, Ph), 5.69 (d, 1H, J2,3 = 5.0 Hz, H-2), 4.97 (dd, 1H, J3,4 

=6.8 Hz, H-3), 4.95.4.93 (m, 1H, H-4), 3.82-3.67 (m, 2H, H-5a, H-5b), 2.03 (s, 3H, 

Me(Ac)). 
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5-[(2S,3S,4R)-5-N-Mesyl-amino-3-hydroxy-oxetan-2-yl]-3-phenyl-1,2,4-
oxadiazole (117). Starting with 107 (22.3 mg, 0.062 mmol) using general procedure 

4.4.3.1.4 (reaction time 3 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as a colourless viscous oil (5.8 mg, 0.018 

mmol, 29%). [ ] 0.20
Dα -1.342 (c 0.527, MeOH). MS: (ionspray) m/z 326.1 [M+H]+, 348.1 

[M+Na]+. 1H NMR (300 MHz, MeOD): δ 8.14-8.10 (m, 2H, Ph), 7.60-7.52 (m, 3H, Ph), 

5.57 (d, 1H, J2,3 = 4.9 Hz, H-2), 5.13 (dd, 1H, J3,4 = 6.8 Hz, H-3), 5.09-5.02 (m, 1H, H-

4), 3.70 (A(ABX), 1H, J4,5a = 6.8 Hz, J5a,5b = 14.3 Hz, H-5a), 3.63 (B(ABX), 1H, J4,5b = 

5.0 Hz, H-5b), 3.05 (s, 3H, Me(Ms)).  
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5-[(2S,3S,4R)-5-N-Mesyl-amino-3-hydroxy-oxetan-2-yl]-3-p-methoxyphenyl-
1,2,4-oxadiazole (118). Starting with 108 (43.2 mg, 0.110 mmol) using general 

procedure 4.4.3.1.4 (reaction time 2 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a colourless waxy solid 

(9.2 mg, 0.026 mmol, 23%). [ ] 0.20
Dα -1.289 (c 0.698, MeOH). MS: (ionspray) m/z 356.0 

[M+H]+, 378.1 [M+Na]+. 1H NMR (300 MHz, MeOD): δ 8.07-8.02 (m, 2H, Ph), 7.12-

7.07 (m, 2H, Ph), 5.74 (d, 1H, J2,3 = 4.8 Hz, H-2), 5.11 (dd, 1H, J3,4 = 6.8 Hz, H-3), 

5.07-5.01 (m, 1H, H-4), 3.90 (s, 3H, OMe(Ph)), 3.70 (A(ABX), 1H, J4,5a = 6.7 Hz, 

J5a,5b = 14.4 Hz, H-5a), 3.62 (B(ABX), 1H, J4,5b = 4.9 Hz, H-5b), 3.04 (s, 3H, Me(Ms)).  
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5-[(2S,3S,4R)-5-N-Mesyl-amino-3-hydroxy-oxetan-2-yl]-3-p-chlorophenyl-1,2,4-
oxadiazole (119). Starting with 109 (25.2 mg, 0.064 mmol) using general procedure 

4.4.3.1.4 (reaction time 2 h), and after flash chromatography using EtOAc, the title 

compound was obtained as a colourless solid (7.4 mg, 0.021 mmol, 32%). [ ] 0.20
Dα -

1.764 (c 0.893, MeOH). MS: (ionspray) m/z 360.1 [M+H]+, 382.1 [M+Na]+. 1H NMR 

(300 MHz, MeOD): δ 8.13-8.08 (m, 2H, Ph), 7.61-7.56 (m, 2H, Ph), 5.77 (d, 1H, J2,3 = 

4.9 Hz, H-2), 5.12 (dd, 1H, J3,4 = 6.7 Hz, H-3), 5.08-5.02 (m, 1H, H-4), 3.70 (A(ABX), 

1H, J4,5a = 6.8 Hz, J5a,5b = 14.4 Hz, H-5a), 3.62 (B(ABX), 1H, J4,5b = 4.9 Hz, H-5b), 

3.04 (s, 3H, Me(Ms)).  
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5-[(2S,3S,4R)-5-N-Mesyl-amino-3-hydroxy-oxetan-2-yl]-3-p-methylphenyl-1,2,4-
oxadiazole (120). Starting with 110 (29.0 mg, 0.077 mmol) using general procedure 

4.3.1.4 (reaction time 2.5 h), and after flash chromatography using EtOAc, the title 

compound was obtained as a colourless waxy solid (8.1 mg, 0.024 mmol, 31%). 

[ ] 0.20
Dα -2.074 (c 0.997, MeOH). MS: (ionspray) m/z 340.1 [M+H]+, 362.1 [M+Na]+. 1H 

NMR (300 MHz, MeOD): δ 7.99 (br d, 2H, J = 8.2 Hz, Ph), 7.37 (br d, 2H, Ph), 5.75 

(d, 1H, J2,3 = 4.9 Hz, H-2), 5.12 (dd, 1H, J3,4 = 6.8 Hz, H-3), 5.08-5.02 (m, 1H, H-4), 

3.70 (A(ABX), 1H, J4,5a = 6.8 Hz, J5a,5b = 14.5 Hz, H-5a), 3.62 (B(ABX), 1H, J4,5b = 4.9 

Hz, H-5b), 3.05 (s, 3H, Me(Ms)), 2.44 (s, 3H, Me(Ph)).  
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5-[(2S,3S,4R)-5-N-Mesyl-amino-3-hydroxy-oxetan-2-yl]-3-p-pyridinyl-1,2,4-
oxadiazole (121). Starting with 111 (32.4 mg, 0.089 mmol) using general procedure 

4.3.1.4 (reaction time 3.5 h), and after flash chromatography using EtOAc/MeOH 

gradient, the title compound was obtained as a colourless viscous oil (6.9 mg, 0.021 

mmol, 24%). [ ] 0.20
Dα -1.586 (c 0.828, MeOH). MS: (ionspray) m/z 327.1 [M+H]+, 349.1 

[M+Na]+. 1H NMR (300 MHz, MeOD): δ 8.81-8.79(m, 2H, Py), 8.12-8.09 (m, 2H, Ph), 

5.73 (d, 1H, J2,3 = 5.0 Hz, H-2), 5.10 (dd, 1H, J3,4 = 6.8 Hz, H-3), 5.07-5.02 (m, 1H, H-

4), 3.69 (A(ABX), 1H, J4,5a = 6.7 Hz, J5a,5b = 14.6 Hz, H-5a), 3.62 (B(ABX), 1H, J4,5b = 

4.9 Hz, H-5b), 3.06 (s, 3H, Me(Ms)).  

 

4.3.2.2 Library on 2,4-Anhydro-5-N-(tert-butoxycarbonyl)amino-3-O-
methyl-D-lyxonic acid (61) 

 

O

O
O N

NNH
O

O

122  
 

5-[(2S,3S,4R)-5-N-(tert-Butoxycarbonyl)amino-3-methoxy-oxetan-2-yl]-3-
phenyl-1,2,4-oxadiazole (122). Starting with 61 (45.0 mg, 0.17 mmol) using general 

procedure 4.3.1.1 (cyclisation time 1.5 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a light yellow oil (43.0 

mg, 0.12 mmol, 69%). [ ] 0.20
Dα -32.84 (c 0.776, CHCl3). MS: (ionspray) m/z 262.0 [M-
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Boc+H]+, 306.3 [M-t-Bu+H]+, 362.4 [M+H]+, 379.4 [M+NH4]+, 384.1 [M+Na]+. 1H NMR 

(300 MHz, CDCl3): δ 8.14-8.10 (m, 2H, Ph), 7.55-7.46 (m, 3H, Ph), 5.75 (d, 1H, J2,3 = 

4.9 Hz, H-2), 5.06 (ddd≈q, 1H, H-4), 4.68 (dd, 1H, J3,4 = 6.6 Hz, H-3),  3.75 (br dd, 

1H, J4,5a = 5.3 Hz, J5a,5b = 14.4 Hz, H-5a), 3.63 (br dd, 1H, J4,5b = 5.9 Hz, H-5b), 3.42 

(s, 3H, OMe), 1.46 (s, 9H, Boc). 
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5-[(2S,3S,4R)-5-N-(tert-Butoxycarbonyl)amino-3-methoxy-oxetan-2-yl]-3-p-
methoxyphenyl-1,2,4-oxadiazole (123). Starting with 61 (50.0 mg, 0.19 mmol) 

using general procedure 4.3.1.1 (cyclisation time 2 h), and after flash 

chromatography using heptane/EtOAc gradient, the title compound was obtained as 

colourless viscous oil that after recrystallisation with EtOAc/n-Hex gave the title 

compound as colourless crystals (51.0 mg, 0.13 mmol, 68%). m.p. 172.1-172.6 ºC. 

[ ] 8.19
Dα -40.72 (c 0.818, CHCl3). MS: (ionspray) m/z 292.1 [M-Boc+H]+, 336.3 [M-t-

Bu+H]+, 392.4 [M+H]+, 409.4 [M+NH4]+, 414.1[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 

8.05 (br d, J = 8.7 Hz, 2H, Ph), 6.99 (br d, 2H, Ph), 5.73 (d, 1H, J2,3 = 4.9 Hz, H-2), 

5.06 (ddd≈q, 1H, H-4), 4.94 (br t, 1H, NH), 4.67 (dd, 1H, J3,4 = 6.7 Hz, H-3), 3.87 (s, 

3H, Ph-OMe), 3.79-3.71 (m, 1H, H-5a), 3.67-3.58 (m, 1H, H-5b), 3.42 (s, 3H, OMe), 

1.46 (s, 9H, Boc). 
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5-[(2S,3S,4R)-5-N-(tert-Butoxycarbonyl)amino-3-methoxy-oxetan-2-yl]-3-p-
chlorophenyl-1,2,4-oxadiazole (124). Starting with 61 (50.0 mg, 0.19 mmol) using 

general procedure 4.3.1.1 (cyclisation time 3 h), and after flash chromatography 

using heptane/EtOAc gradient, the title compound was obtained as a light yellow 

viscous oil (54.4 mg, 0.14 mmol, 72%). [ ] 8.19
Dα -42.38 (c 0.748, CHCl3). MS: (ionspray) 

m/z 296.3 [M-Boc+H]+, 340.0 [M-t-Bu+H]+, 396.3 [M+H]+, 418.3[M+Na]+. 1H NMR 

(300 MHz, CDCl3): δ 8.06 (br d, J = 8.6 Hz, 2H, Ph), 7.48 (m, 2H, Ph), 5.74 (d, 1H, 

J2,3 = 4.9 Hz, H-2), 5.06 (ddd≈q, 1H, H-4), 4.91 (br t, 1H, NH), 4.68 (dd, 1H, J3,4 = 6.8 

Hz, H-3),  3.80-3.71 (m, 1H, H-5a), 3.67-3.58 (m, 1H, H-5b), 3.42 (s, 3H, OMe), 1.46 

(s, 9H, Boc). 
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5-[(2S,3S,4R)-5-N-(tert-Butoxycarbonyl)amino-3-methoxy-oxetan-2-yl]-3-p-
methylphenyl-1,2,4-oxadiazole (125). Starting with 61 (200.0 mg, 0.76 mmol) using 

general procedure 4.3.1.1 (cyclisation time 3 h), and after flash chromatography 

using heptane/EtOAc gradient, the title compound was obtained as colourless 

crystals (158.0 mg, 0.42 mmol, 55%). m.p. 78.4-78.8 ºC. [ ] 9.19
Dα -45.62 (c 0.752, 

CHCl3). MS: (ionspray) m/z 276.4 [M-Boc+H]+, 320.1 [M-t-Bu+H]+, 376.4 [M+H]+, 

398.1[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.00 (br d, J = 8.2 Hz,  2H, Ph), 7.29 (br 

d, 2H, Ph), 5.74 (d, 1H, J2,3 = 4.7 Hz, H-2), 5.06 (ddd≈q, 1H, H-4), 4.92 (br t, 1H, 

NH), 4.67 (dd, 1H, J3,4 = 6.8 Hz, H-3),  3.80-3.71 (m, 1H, H-5a), 3.67-3.58 (m, 1H, H-

5b), 3.42 (s, 3H, OMe), 2.42 (s, 3H, Me), 1.46 (s, 9H, Boc). 
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5-[(2S,3S,4R)-5-N-(tert-Butoxycarbonyl)amino-3-methoxy-oxetan-2-yl]-3-
pyridinyl-1,2,4-oxadiazole (126). Starting with 61 (50.2 mg, 0.19 mmol) using 

general procedure 4.3.1.1 (cyclisation time 3 h), and after flash chromatography 

using heptane/EtOAc gradient, the title compound was obtained as colourless 

viscous oil (41.4 mg, 0.11 mmol, 59%). [ ] 0.20
Dα -34.97 (c 0.643, CHCl3). MS: (ionspray) 

m/z 263.1 [M-Boc+H]+, 307.1 [M-t-Bu+H]+, 363.4 [M+H]+, 385.3 [M+Na]+. 1H NMR 

(300 MHz, CDCl3): δ 8.81-8.79 (m, 2H, Ph), 7.99-7.97 (m, 2H, Ph), 5.77 (d, 1H, J2,3 = 

4.9 Hz, H-2), 5.07 (ddd≈q, 1H, H-4), 4.94 (br t, 1H, NH), 4.68 (dd, 1H, J3,4 = 6.6 Hz, 

H-3),  3.80-3.72 (m, 1H, H-5a), 3.68-3.59 (m, 1H, H-5b), 3.43 (s, 3H, OMe), 1.46 (s, 

9H, Boc). 
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127  
 

5-[(2S,3S,4R)-5’-Amonium-3’-methoxy-oxetan-2’-yl]-3-phenyl-1,2,4-oxadiazole 
Trifluoroacetate (127). Starting with 122 (90.0 mg, 0.25 mmol) using general 

procedure 4.3.1.2 (reaction time 1.5 h), and after crystallisation with EtOAc/n-Hex, 

the title compound was obtained as colourless crystals (80.1 mg, 0.21 mmol, 86%). 

[ ] 8.19
Dα -38.31 (c 0.666, MeOH). MS: (ionspray) m/z 262.2 [M-TFA+H]+, 284.1 [M-

TFA+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.06-8.03 (m, 2H, Ph), 7.51-7.44 (m, 3H, 

Ph), 5.78 (d, 1H, J2,3 = 4.3 Hz, H-2), 5.36 (br td, 1H, H-4), 4.70 (dd, 1H, J3,4 = 6.3 Hz, 
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H-3),  3.60 (A(ABX), 1H, J4,5a = 6.6 Hz, J5a,5b = 14.1 Hz, H-5a), 3.45 (br B(ABX), 1H, 

H-5b), 3.40 (s, 3H, OMe). 
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5-[(2S,3S,4R)-5-Amonium-3-methoxy-oxetan-2-yl]-3-p-methoxyphenyl-1,2,4-
oxadiazole Trifluoroacetate (128). Starting with 123 (120.0 mg, 0.31 mmol) using 

general procedure 4.3.1.2 (reaction time 2 h), and after recrystallisation with 

EtOAc/n-Hex, the title compound was obtained as colourless crystals (102.0 mg, 

0.25 mmol, 82%). m.p. 157.5-158.0 ºC. [ ] 9.19
Dα -33.96 (c 0.716, MeOH). MS: 

(ionspray) m/z 292.2 [M-TFA+H]+, 314.2 [M-TFA+Na]+. 1H NMR (300 MHz, MeOD): δ 

7.93 (br d, J = 8.9 Hz, 2H, Ph), 6.98 (br d, 2H, Ph), 5.78 (dd, 1H, J2,3 = 4.4 Hz, J2,4 = 

0.7 Hz, H-2), 5.17 (dtd, 1H, J3,4 = 6.4 Hz, H-4), 4.78-4.74 (m, 1H+H2O, H-3), 3.78 (s, 

3H, OMe(Ph)), 3.45 (A(ABX), 1H, J4,5a = 6.8 Hz, J5a,5b = 13.9, H-5a), 3.26 (B(ABX), 

1H, J4,5b = 4.2, H-5b), 3.37 (s, 3H, OMe). 
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5-[(2S,3S,4R)-5-Amonium-3-methoxy-oxetan-2-yl]-3-p-chlorophenyl-1,2,4-
oxadiazole Trifluoroacetate (129). Starting with 124 (112.2 mg, 0.28 mmol) using 

general procedure 4.3.1.2 (reaction time 2 h), and after recrystallisation with 

EtOAc/n-Hex, the title compound was obtained as colourless solid (101.4 mg, 0.25 
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mmol, 87%). [ ] 0.20
Dα -35.35 (c 0.775, MeOH). MS: (ionspray) m/z 296.2 [M-TFA+H]+, 

318.0 [M-TFA+Na]+. 1H NMR (300 MHz, MeOD): δ 8.10 (d, J = 8.5 Hz, 2H, Ph), 7.59 

(d, 2H, Ph), 5.93 (d, 1H, J2,3 = 4.2 Hz, H-2), 5.30 (td, 1H, J3,4 = 6.6 Hz, H-4), 4.97-

4.81 (m, 1H+H2O, H-3), 3.58 (A(ABX), 1H, J4,5a = 6.7 Hz, J5a,5b = 13.9, H-5a), 3.38 

(B(ABX), 1H, J4,5b = 4.2, H-5b), 3.33 (s, 3H, OMe). Anal. Calcd. for C15H15ClF3N3O5 

(409.75): C, 43.97; H, 3.69; N, 10.26. Found: C, 43.70; H, 3.63; N, 10.04. 
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5-[(2S,3S,4R)-5-Amonium-3-methoxy-oxetan-2-yl]-3-p-methylphenyl-1,2,4-
oxadiazole Trifluoroacetate (130). Starting with 125 (139.0 mg, 0.37 mmol) using 

general procedure 4.3.1.2 (reaction time 2 h), and after recrystallisation with 

EtOAc/n-Hex, the title compound was obtained as colourless crystals (124.9 mg, 

0.32 mmol, 87%). m.p. 125.9-126.3 ºC. [ ] 0.20
Dα -37.67 (c 0.775, MeOH). MS: 

(ionspray) m/z 276.2 [M-TFA+H]+, 298.2 [M-TFA+Na]+. 1H NMR (300 MHz, MeOD): δ 

7.88 (d, J = 8.2 Hz, 2H, Ph), 7.26 (d, 2H, Ph), 5.80 (d, 1H, J2,3 = 4.4 Hz, H-2), 5.18 

(br td, 1H, H-4), 4.82-4.73 (m, 1H+H2O, H-3), 3.45 (A(ABX), 1H, J4,5a = 6.7 Hz, J5a,5b 

= 13.9, H-5a), 3.33 (s, 3H, OMe), 3.26 (B(ABX), 1H, J4,5b = 4.2, H-5b), 2.33 (s, 3H, 

Me(Ph)). Anal. Calcd. for C16H18F3N3O5 (389.33): C, 49.36; H, 4.66; N, 10.79. Found: 

C, 49.35; H, 4.57; N, 10.76.  
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5-[(2S,3S,4R)-5-Amonium-3-methoxy-oxetan-2-yl]-3-pyridinyl-1,2,4-oxadiazole 
Trifluoroacetate (131). Starting with 126 (96.0 mg, 0.27 mmol) using general 

procedure 4.3.1.2 (reaction time 2 h), and after recrystallisation with EtOAc/n-Hex, 

the title compound was obtained as a light brown solid (83.0 mg, 0.22 mmol, 83%). 

[ ] 8.19
Dα -41.48 (c 0.728, MeOH). MS: (ionspray) m/z 263.1 [M-TFA+H]+. 1H NMR (300 

MHz, MeOD): δ 8.69-8.66 (m, 2H, Ph), 8.00-7.98 (m, 2H, Ph), 5.85 (dd, 1H, J2,3 = 4.4 

Hz, J2,4 = 0.6 Hz, H-2), 5.19 (br td, 1H, H-4), 4.80 (dd, 1H, J3,4 = 6.7 Hz, H-3), 3.47 

(A(ABX), 1H, J4,5a = 6.7 Hz, J5a,5b = 13.9, H-5a), 3.32 (s, 3H, OMe), 3.27 (B(ABX), 

1H, J4,5b = 4.1, H-5b). 
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5-[(2S,3S,4R)-5-N-Acetyl-amino-3-methoxy-oxetan-2-yl]-3-phenyl-1,2,4-
oxadiazole (132). Starting with 127 (29.0 mg, 0.08 mmol) using general procedure 

4.3.1.3 (reaction time overnight), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as colourless viscous oil 

(21.0 mg, 0.07 mmol, 90%). [ ] 0.20
Dα -30.08 (c 1.227, CHCl3). MS: (ionspray) m/z 304.2 

[M+H]+, 326.2 [M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.13-8.10 (m, 2H, Ph), 7.53-

7.46 (m, 3H, Ph), 5.93 (br t, 1H, NH), 5.75 (d, 1H, J2,3 = 4.8 Hz, H-2), 5.09 (br q, 1H, 

H-4), 4.69 (dd, 1H, J3,4 = 6.7 Hz, H-3),  3.96 (ddd, 1H, J4,5a = 7.1 Hz, J5a,5b = 14.3 Hz, 

J5a,NH = 5.0 Hz, H-5a), 3.69 (ddd, 1H, J4,5b = 7.5 Hz, J5b,NH = 5.1 Hz, H-5b), 3.43 (s, 

3H, OMe), 2.02 (s, 3H, Me(Ac)). 
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5-[(2S,3S,4R)-5-N-Acetyl-amino-3-methoxy-oxetan-2-yl]-3-p-methoxyphenyl-
1,2,4-oxadiazole (133). Starting with 128 (120.0 mg, 0.31 mmol) using general 

procedure 4.3.1.3 (reaction time 3 h), and after recrystallisation with EtOAc/n-

Hexane, the title compound was obtained as colourless solid (102.0 mg, 0.25 mmol, 

82%). [ ] 0.20
Dα -26.31 (c 0.844, CHCl3). MS: (ionspray) m/z  334.1 [M+H]+, 356.3 

[M+Na]+. 1H NMR (300 MHz, CDCl3) δ 8.15 (br d, J = 8.8 Hz, 2H, Ph), 7.26 (br d, 2H, 

Ph), 5.85 (br s, 1H, NH), 5.73 (d, 1H, J2,3 = 4.7 Hz, H-2), 5.08 (q, 1H, J3,4 ≈ J4,5a ≈ 

J4,5b ≈ 7.0 Hz, H-4), 4.68 (br dd, 1H, H-3),  4.00-3.88 (m, 4 H, H-5a, OMe (Ph)), 3.69 

(ddd, 1H, J4,5b = 7.0 Hz, J5b,NH = 5.4 Hz, J5a,5b = 13.8 Hz, H-5b), 3.43 (s, 3H, OMe), 

2.02 (s, 3H, Me(Ac)). 
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5-[(2S,3S,4R)-5-N-Acetyl-amino-3-methoxy-oxetan-2-yl]-3-p-chlorophenyl-1,2,4-
oxadiazole (134). Starting with 129 (35.0 mg, 0.09 mmol) using general procedure 

4.3.1.3 (reaction time 2 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as colourless solid (28.8 mg, 0.09 mmol, 

100%). [ ] 0.20
Dα -28.96 (c 0.729, CHCl3). MS: (ionspray) m/z 338.2 [M+H]+, 360.1 

[M+Na]+. 1H NMR (300 MHz, CDCl3) δ 8.06 (br d, J = 8.6 Hz, 2H, Ph), 7.47 (br d, 2H, 

Ph), 5.84 (br s , 1H, NH), 5.74 (d, 1H, J2,3 = 4.8 Hz, H-2), 5.09 (br q, 1H, H-4), 4.67 

(dd, 1H, J3,4 = 6.7 Hz, H-3),  3.96 (ddd, 1H, J4,5a = 7.3 Hz, J5a,5b = 14.4 Hz, J5a,NH = 
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5.0 Hz, H-5a), 3.69 (ddd, 1H, J4,5b = 7.6 Hz, J5b,NH = 5.0 Hz, H-5b), 3.44 (s, 3H, 

OMe), 2.02 (s, 3H, Me(Ac)). 
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5-[(2S,3S,4R)-5-N-Acetyl-amino-3-methoxy-oxetan-2-yl]-3-p-methylphenyl-1,2,4-
oxadiazole (135). Starting with 130 (40.0 mg, 0.10 mmol) using general procedure 

4.3.1.3 (reaction time 3 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as white waxy solid (28.6 mg, 0.09 mmol, 

98%). [ ] 0.20
Dα -32.45 (c 0.672, CHCl3). MS: (ionspray) m/z 318.1 [M+H]+, 340.1 

[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.00 (br d, J = 8.1 Hz, 2H, Ph), 7.30 (br d, 

2H, Ph), 5.83 (br s , 1H, NH), 5.73 (d, 1H, J2,3 = 4.9 Hz, H-2), 5.08 (br q, 1H, H-4), 

4.68 (dd, 1H, J3,4 = 6.7 Hz, H-3),  3.96 (ddd, 1H, J4,5a = 7.4 Hz, J5a,5b = 14.5 Hz, J5a,NH 

= 5.0 Hz, H-5a), 3.69 (ddd, 1H, J4,5b = 7.5 Hz, J5b,NH = 4.9 Hz, H-5b), 3.43 (s, 3H, 

OMe), 2.43 (s, 3H, Me(Ph), 2.02 (s, 3H, Me(Ac)). 

 

O
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N
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O

136
 

 

5-[(2S,3S,4R)-5-N-Acetyl-amino-3-methoxy-oxetan-2-yl]-3-pyridinyl-1,2,4-
oxadiazole (136). Starting with 131 (41.2 mg, 0.11 mmol) using general procedure 

4.3.1.3 (reaction time 3 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as light brown solid (30.1 mg, 0.10 mmol, 

90%). [ ] 0.20
Dα -29.2 (c 0.823, CHCl3). MS: (ionspray) m/z 305.2 [M+H]+, 327.2 
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[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.91-8.89 (m, 2H, Ph), 8.28-8.26 (m, 2H, Ph), 

6.00 (br t, 1H, NH), 5.79 (d, 1H, J2,3 = 4.8 Hz, H-2), 5.12 (br q, 1H, H-4), 4.69 (dd, 

1H, J3,4 = 6.7 Hz, H-3), 3.97 (ddd, 1H, J4,5a = 7.1 Hz, J5a,NH = 5.0 Hz,  J5a,5b = 14.5 Hz, 

H-5a), 3.71 (ddd, 1H, J4,5b = 7.4 Hz, J5b,NH = 5.2 Hz, H-5b), 3.45 (s, 3H, OMe), 2.05 

(s, 3H, Me(Ac)). 

 

O
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137
 

 
5-[(2S,3S,4R)-5-N-Mesyl-amino-3-methoxy-oxetan-2-yl]-3-phenyl-1,2,4-
oxadiazole (137). Starting with 127 (50.0 mg, 0.13mmol) using general procedure 

4.3.1.4 (reaction time 2 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as a colourless viscous oil (42.0 mg, 0.12 

mmol, 93%). [ ] 0.20
Dα -51.94 (c 0.617, CHCl3). MS: (ionspray) m/z 340.1 [M+H]+, 362.2 

[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.14-8.09 (m, 2H, Ph), 7.57-7.46 (m, 3H, Ph), 

5.79 (d, 1H, J2,3 = 4.8 Hz, H-2), 5.15 (br q, 1H, J3,4 ≈ J4,5a ≈ J4,5b ≈ 6.5 Hz, H-4), 5.03 

(t, 1H, J5a,NH ≈ J5b,NH ≈ 6.6 Hz, NH), 4.74 (dd, 1H, J3,4 = 6.8 Hz, H-3), 3.77-3.60 (m, 

2H, H-5a, H-5b), 3.44 (s, 3H, OMe), 3.06 (s, 3H, Me(Ms)). 
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O

 
 
5-[(2S,3S,4R)-5-N-Mesyl-amino-3-methoxy-oxetan-2-yl]-3-p-methoxyphenyl-
1,2,4-oxadiazole (138). Starting with 128 (35.0 mg, 0.09 mmol) using general 

procedure 4.3.1.4 (reaction time 1.5 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a colourless viscous oil 
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(23.0 mg, 0.06 mmol, 72%). [ ] 0.20
Dα -45.26 (c 0.875, CHCl3). MS: (ionspray) m/z 370.1 

[M+H]+, 392.2 [M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.05 (br d, J = 8.7 Hz, 2H, Ph), 

7.00 (br d, 2H, Ph), 5.77 (d, 1H, J2,3 = 4.8 Hz, H-2), 5.15 (br q, 1H, J3,4 ≈ J4,5a ≈ J4,5b ≈ 

6.5 Hz, H-4), 4.92 (t, 1H, J5a,NH ≈ J5b,NH ≈ 6.6 Hz, NH), 4.73 (dd, 1H, J3,4 = 6.8 Hz, H-

3), 3.88 (s, 3H, OMe(Ph)), 3.77-3.60 (m, 2H, H-5a, H-5b), 3.44 (s, 3H, OMe), 3.06 (s, 

3H, Me(Ms)). 
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5-[(2S,3S,4R)-5-N-Mesyl-amino-3-methoxy-oxetan-2-yl]-3-p-chlorophenyl-1,2,4-
oxadiazole (139). Starting with 129 (35.0 mg, 0.09 mmol) using general procedure 

4.3.1.4 (reaction time 1.5 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as a colourless oil (30.3 mg, 0.08 mmol, 

95%). [ ] 0.20
Dα -47.37 (c 0.758, CHCl3). MS: (ionspray) m/z 374.2 [M+H]+, 396.1 

[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.05 (br d, J = 8.6 Hz, 2H, Ph), 7.58 (br d, 

2H, Ph), 5.78 (d, 1H, J2,3 = 4.8 Hz, H-2), 5.15 (br q, 1H, J3,4 ≈ J4,5a ≈ J4,5b ≈ 6.5 Hz, H-

4), 4.95 (t, 1H, J5a,NH ≈ J5b,NH ≈ 6.5 Hz, NH), 4.73 (dd, 1H, J3,4 = 6.9 Hz, H-3), 3.77-

3.60 (m, 2H, H-5a, H-5b), 3.44 (s, 3H, OMe), 3.06 (s, 3H, Me(Ms)). 
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140  
 
5-[(2S,3S,4R)-5-N-Mesyl-amino-3-methoxy-oxetan-2-yl]-3-p-methylphenyl-1,2,4-
oxadiazole (140). Starting with 130 (40.0 mg, 0.10 mmol) using general procedure 



Library Construction 
 

 
 

167

4.3.1.4 (reaction time 1.5 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as a colourless oil (26.9 mg, 0.08 mmol, 

74%). [ ] 0.20
Dα -46.22 (c 0.738, CHCl3). MS: (ionspray) m/z 354.2 [M+H]+, 376.3 

[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.00 (br d, J = 8.1Hz, 2H, Ph), 7.30 (br d, 2H, 

Ph), 5.78 (d, 1H, J2,3 4.8 Hz, H-2), 5.15 (br q, 1H, J3,4 ≈ J4,5a ≈ J4,5b ≈ 6.5 Hz, H-4), 

4.94 (t, 1H, J5a,NH ≈ J5b,NH ≈ 6.7 Hz, NH), 4.73 (dd, 1H, J3,4 6.8 Hz, H-3), 3.77-3.60 (m, 

2H, H-5a, H-5b), 3.44 (s, 3H, OMe), 3.06 (s, 3H, Me(Ms)), 2.43 (s, 3H, Me(Ph)). 
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141  
 
 5-[(2S,3S,4R)-5-N-Mesyl-amino-3-methoxy-oxetan-2-yl]-3-pyridinyl-1,2,4-
oxadiazole (141). Starting with 131 (128.2 mg, 0.34 mmol) using general procedure 

4.3.1.4 (reaction time 2.5 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as a white solid (70.7 mg, 0.21 mmol, 

59%). [ ] 0.20
Dα -34.25 (c 0.687, CHCl3) . 1H NMR (300 MHz, CDCl3) δ 8.82-8.80 (m, 2H, 

Ph), 7.99-7.97 (m, 2H, Ph), 6.85 (br s, 1H, NH), 5.77 (d, 1H, J2,3 4.7 Hz, H-2), 5.18 

(br q, 1H, H-4), 4.76 (dd, 1H, J3,4 6.8 Hz, H-3), 4.07 (ddd, 1H, J5a,NH = 5.0 Hz, J4,5a = 

7.1Hz, J5a,5b = 14.4 Hz, H-5a), 3.81 (dt, 1H, J4,5b ≈ J5b,NH ≈ 5.6 Hz, H-5b), 3.48 (s, 3H, 

OMe), 3.04 (s, 3H, Me(Ms)). 
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4.3.2.3 Library on 2,4-Anhydro-5-N-(tert-butoxycarbonyl)amino-3-O-
methyl-D-ribonic acid (71) 

 

O

O
O N

NNH
O

O

142  
 

5-[(2R,3R,4R)-5-N-(tert-Butoxycarbonyl)amino-3-methoxy-oxetan-2-yl]-3-
phenyl-1,2,4-oxadiazole (142). Starting with 71 (150.0 mg, 0.57 mmol) using 

general procedure 4.3.1.1 (cyclisation time 3 h), and after flash chromatography 

using heptane/EtOAc gradient, the title compound was obtained as a brown oil 

(124.0 mg, 0.34 mmol, 60%). [ ] 0.20
Dα -51.85 (c 0.791, CHCl3). MS: (ionspray) m/z 

262.1 [M-Boc+H]+, 306.1 [M-t-Bu+H]+, 362.3 [M+H]+, 384.2 [M+Na]+. 1H NMR (300 

MHz, CDCl3): δ 8.17-8.13 (m, 2H, Ph), 7.52-7.49 (m, 3H, Ph), 5.68 (br d, 2H, J2,3 = 

4.9 Hz, H-2, NH), 4.90 (br ddd, 1H, H-4), 4.42 (t, 1H, J3,4 ≈ J2,3 ≈ 4.9 Hz, H-3),  3.70 

(ddd, 1H, J4,5a = 8.1 Hz, J5a,NH = 3.2 Hz, J5a,5b = 15.0 Hz, H-5a), 3.44 (ddd, 1H, J4,5b ≈ 

J5b,NH ≈ 3.3 Hz, H-5b), 3.39 (s, 3H, OMe), 1.40 (s, 9H, Boc). 
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143  
 
5-[(2R,3R,4R)-5-N-(tert-Butoxycarbonyl)amino-3-methoxy-oxetan-2-yl]-3-p-
methoxyphenyl-1,2,4-oxadiazole (143). Starting with 71 (55.0 mg, 0.211 mmol) 

using general procedure 4.3.1.1 (cyclisation time 3 h), and after flash 

chromatography using heptane/EtOAc gradient, the title compound was obtained as 
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a light yellow oil (38.2 mg, 0.098 mmol, 46%). [ ] 0.20
Dα -61.03 (c 1.039, CHCl3). MS: 

(ionspray) m/z 292.1 [M-Boc+H]+, 336.2 [M-t-Bu+H]+, 392.2 [M+H]+, 414.3 [M+Na]+. 

1H NMR (300 MHz, CDCl3), δ 8.08 (br d, J = 8.8 Hz, 2H, Ph), 6.99 (br d, 2H, Ph), 

5.70 (br d, 1 H, NH), 5.65 (d, 1H, J2,3 = 5.0 Hz, H-2), 4.89 (br ddd, 1H, H-4), 4.40 (t, 

1H, J2,3 ≈ J3,4 ≈ 5.0 Hz, H-3), 3.88 (s, 3H, Ph-OMe), 3.69 (ddd, 1H, J4,5a = 8.1 Hz, 

J5a,NH = 2.9 Hz, J5a,5b = 15.1 Hz, H-5a), 3.43 (ddd, 1H, J4,5b ≈ J5b,NH ≈ 3.3 Hz, H-5b), 

3.39 (s, 3H, OMe), 1.41 (s, 9H, Boc). 

 

O
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144  
 
5-[(2R,3R,4R)-5-N-(tert-Butoxycarbonyl)amino-3-methoxy-oxetan-2-yl]-3-p-
chlorophenyl-1,2,4-oxadiazole (144). Starting with 71 (193.0 mg, 0.739 mmol) 

using general procedure 4.3.1.1 (cyclisation time 3 h), and after flash 

chromatography using heptane/EtOAc gradient, the title compound was obtained as 

a colourless oil (218.0 mg, 0.551 mmol, 75%). [ ] 0.20
Dα -62.60 (c 0.791, CHCl3). MS: 

(ionspray) m/z 296.2 [M-Boc+H]+, 340.0 [M-t-Bu+H]+, 396.1 [M+H]+, 418.2 [M+Na]+. 

1H NMR (300 MHz, CDCl3): δ 8.09 (br d, J = 8.5 Hz, 2H, Ph), 7.47 (br d, 2H, Ph), 

5.67 (d, 1H, J2,3 = 5.0 Hz, H-2), 5.62 (br d, 1 H, NH), 4.89 (br ddd, 1H, H-4), 4.41 (t, 

1H, J2,3 ≈ J3,4 ≈ 5.0 Hz, H-3), 3.69 (ddd, 1H, J4,5a = 8.1 Hz, J5a,NH = 2.7 Hz, J5a,5b = 

15.0 Hz, H-5a), 3.43 (ddd, 1H, J4,5b ≈ J5b,NH ≈ 3.5 Hz, H-5b), 3.40 (s, 3H, OMe), 1.41 

(s, 9H, Boc). HRMS (ESI) m/z 396.13218 [M+H]+, calcd. 396.13207 for 

C18H23ClN3O5. 
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145  
 
5-[(2R,3R,4R)-5-N-(tert-Butoxycarbonyl)amino-3-methoxy-oxetan-2-yl]-3-p-
methylphenyl-1,2,4-oxadiazole (145). Starting with 71 (175.0 mg, 0.670 mmol) 

using general procedure 4.3.1.1 (cyclisation time 3 h), and after flash 

chromatography with heptane/EtOAc gradient, the title compound was obtained as a 

yellow oil (212.4 mg, 0.566 mmol, 84%). [ ] 0.20
Dα -45.62 (c 0.752, CHCl3). MS: 

(ionspray) m/z 276.1 [M-Boc+H]+, 320.1 [M-t-Bu+H]+, 376.4 [M+H]+, 398.2 [M+Na]+. 

1H NMR (300 MHz, CDCl3): δ 8.03 (br d, J = 8.1 Hz, 2H, Ph), 7.29 (br d, 2H, Ph), 

5.69 (br s, 1 H, NH), 5.66 (d, 1H, J2,3 = 5.0 Hz, H-2), 4.89 (br ddd, 1H, H-4), 4.41 (t, 

1H, J2,3 ≈ J3,4 ≈ 5.0 Hz, H-3), 3.69 (ddd, 1H, J4,5a = 8.1 Hz, J5a,NH = 2.9 Hz, J5a,5b = 

15.0 Hz, H-5a), 3.43 (ddd, 1H, J4,5b ≈ J5b,NH ≈ 3.4 Hz, H-5b), 3.39 (s, 3H, OMe), 2.43 

(s, 3H, Me), 1.41 (s, 9H, Boc). 
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146  
 
5-[(2R,3R,4R)-5-N-(tert-Butoxycarbonyl)amino-3-methoxy-oxetan-2-yl]-3-
pyridinyl-1,2,4-oxadiazole (146). Starting with 71 (107.5 mg, 0.411 mmol) using 

general procedure 4.3.1.1 (cyclisation time 4 h), and after flash chromatography 

using heptane/EtOAc gradient, the title compound was obtained as a colourless oil 

(124.2 mg, 0.343 mmol, 83%). [ ] 0.20
Dα -60.47 (c 0.744, CHCl3). MS: (ionspray) m/z 

263.1 [M-Boc+H]+, 307.2 [M-t-Bu+H]+, 363.2 [M+H]+, 385.2 [M+Na]+. 1H NMR (300 
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MHz, CDCl3): δ 8.81-8.79 (m, 2H, Ph), 8.02-8.00 (m, 2H, Ph), 5.70 (d, 1H, J2,3 = 5.0 

Hz, H-2), 5.67 (br s, 1H, NH), 4.90 (br ddd, 1H, H-4), 4.43 (t, 1H, J2,3 ≈ J3,4 ≈ 5.0 Hz, 

H-3),  3.69 (ddd, 1H, J4,5a = 8.3 Hz, J5a,NH = 2.9 Hz, J5a,5b = 15.1 Hz, H-5a), 3.45 (ddd, 

1H, J4,5a ≈ J5a,NH ≈ 3.7 Hz, H-5b), 3.41 (s, 3H, OMe), 1.41 (s, 9H, Boc). 
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5-[(2R,3R,4R)-5-Amonium-3-methoxy-oxetan-2-yl]-3-phenyl-1,2,4-oxadiazole 
Trifluoroacetate (147). Starting with 142 (124.0 mg, 0.343 mmol) using general 

procedure 4.3.1.2 (reaction time 4 h), and after flash chromatography with 

EtOAc/MeOH gradient, the title compound was obtained as a light brown viscous oil 

(103.0 mg, 0.274 mmol, 80%). [ ] 0.20
Dα 41.93 (c 0.854, MeOH). MS: (ionspray) m/z 

262.1 [M-TFA+H]+, 284.0 [M-TFA+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.14-8.11 (m, 

2H, Ph), 7.60-7.57 (m, 3H, Ph), 5.86 (d, 1H, J2,3 = 4.9 Hz, H-2), 5.00 (ddd, 1H, J3,4 = 

5.0 Hz, H-4), 4.63 (t, 1H, H-3), 3.51 (A(ABX), 1H, J4,5a = 7.4 Hz, J5a,5b = 13.8 Hz, H-

5a), 3.47 (s, 3H, OMe), 3.43 (B(ABX), 1H, J4,5b = 3.9 Hz, H-5b). 
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5-[(2R,3R,4R)-5-Amonium-3-methoxy-oxetan-2-yl]-3-p-methoxyphenyl-1,2,4-
oxadiazole Trifluoroacetate (148). Starting with 143 (120.0 mg, 0.307 mmol) using 

general procedure 4.3.1.2 (reaction time 4 h), and after recrystallisation with 
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MeOH/DCM/n-Hex, the title compound was obtained as colourless crystals (122.0 

mg, 0.301 mmol, 98%). m.p. 156.0-156.5 ºC. [ ] 0.20
Dα 38.43 (c 0.752, MeOH). MS: 

(ionspray) m/z 292.1 [M-TFA+H]+. 1H NMR (300 MHz, MeOD): δ 7.94 (br d, J = 8.9 

Hz, 2H, Ph), 6.97 (br d, 2H, Ph), 5.71 (d, 1H, J2,3 = 4.9 Hz, H-2), 4.86 (ddd, 1H, J3,4 = 

5.0 Hz, H-4), 4.48 (t, 1H, H-3), 3.37 (A(ABX), 1H, J4,5a = 7.3 Hz, J5a,5b = 13.8 Hz, H-

5a), 3.34 (s, 3H, OMe), 3.29 (B(ABX), 1H, J4,5b 3.9 Hz, H-5b). 
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5-[(2R,3R,4R)-5-Amonium-3-methoxy-oxetan-2-yl]-3-p-chlorophenyl-1,2,4-
oxadiazole Trifluoroacetate (149). Starting with 144 (178.0 mg, 0.450 mmol) using 

general procedure 4.3.1.2 (reaction time 4 h), and after recrystallisation with 

MeOH/DCM/n-Hex, the title compound was obtained as a white solid (157.0 mg, 

0.383 mmol, 85%). [ ] 0.20
Dα 41.53 (c 0.884, MeOH). MS: (ionspray) m/z 296.2 [M-

TFA+H]+, 318.0 [M-TFA+Na]+. 1H NMR (300 MHz, MeOD) δ 8.12 (br d, J = 8.6 Hz, 

2H, Ph), 7.60 (br d, 2H, Ph), 5.86 (d, 1H, J2,3 = 4.9 Hz, H-2), 5.99 (ddd, 1H, J3,4 = 5.0 

Hz, H-4), 4.99 (t, 1H, H-3), 3.50 (A(ABX), 1H, J4,5a = 7.4 Hz, J5a,5b = 13.8, H-5a), 3.47 

(s, 3H, OMe), 3.42 (B(ABX), 1H, J4,5b = 3.9, H-5b). HRMS (ESI) m/z 296.07959 [M-

TFA+H]+, calcd. 296.07965 for C13H15ClN3O3. 
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5-[(2R,3R,4R)-5-Amonium-3-methoxy-oxetan-2-yl]-3-p-methylphenyl-1,2,4-
oxadiazole Trifluoroacetate (150). Starting with 145 (137.9 mg, 0.367 mmol) using 

general procedure 4.3.1.2 (reaction time 4 h), and after flash chromatography with 

EtOAc/MeOH, the title compound was obtained as a light yellow oil (128.6 mg, 0.330 

mmol, 90%). [ ] 0.20
Dα 37.67 (c 0.725, MeOH). MS: (ionspray) m/z 276.1 [M-TFA+H]+, 

298.2 [M-TFA+Na]+. 1H NMR (300 MHz, MeOD): δ 7.88 (br d, J = 8.2 Hz, 2H, Ph), 

7.27 (br d, 2H, Ph), 5.72 (d, 1H, J2,3 = 4.9 Hz, H-2), 4.86 (ddd, 1H, J3,4 = 5.0 Hz, H-

4), 4.49 (t, 1H, H-3), 3.37 (A(ABX), 1H, J4,5a = 7.4 Hz, J5a,5b = 13.8, H-5a), 3.34 (s, 

3H, OMe), 3.30 (B(ABX), 1H, J4,5b = 4.0, H-5b), 2.33 (s, 3H, Me(Ph)). 
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151  
 

5-[(2R,3R,4R)-5-Amonium-3-methoxy-oxetan-2-yl]-3-pyridinyl-1,2,4-oxadiazole 
Trifluoroacetate (151). Starting with 146 (101.2 mg, 0.279 mmol) using general 

procedure 4.3.1.2 (reaction time 4 h), and after recrystallisation with MeOH/DCM/n-

Hex, the title compound was obtained as a white solid (98.7 mg, 0.262 mmol, 94%). 

[ ] 0.20
Dα 41.48 (c 0.921, MeOH). MS: (ionspray) m/z 263.1 [M-TFA+H]+. 1H NMR (300 

MHz, MeOD): δ 8.73-8.71 (m, 2H, Py), 8.08-8.06 (m, 2H, Py), 5.79 (d, 1H, J2,3 = 4.9 

Hz, H-2), 4.89 (ddd, 1H, J3,4 = 5.0 Hz, H-4), 4.52 (t, 1H, , H-3), 3.38 (A(ABX), 1H, 

J4,5a = 7.4 Hz, J5a,5b = 13.9 Hz, H-5a), 3.35 (s, 3H, OMe), 3.31 (B(ABX), 1H, J4,5b = 

4.0 Hz, H-5b). 
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5-[(2R,3R,4R)-5-N-Acetyl-amino-3-methoxy-oxetan-2-yl]-3-phenyl-1,2,4-
oxadiazole (152). Starting with 147 (50.0 mg, 0.133 mmol) using general procedure 

4.3.1.3 (reaction time 4 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as colourless solid (36.6 mg, 0.121 mmol, 

91%). [ ] 0.20
Dα -105.0 (c 0.923, CHCl3). MS: (ionspray) m/z 304.1 [M+H]+, 326.1 

[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.14-8.07 (m, 2H, Ph), 7.59-7.47 (m, 3H, Ph), 

6.61 (br s, 1H, NH), 5.71 (d, 1H, J2,3 = 5.0 Hz, H-2),  4.94 (dt, 1H, H-4), 4.36 (t, 1H, 

J3,4 = 5.0 Hz, H-3),  4.01 (ddd, 1H, J4,5a = 2.8 Hz, J5a,5b = 15.3 Hz, J5a,NH = 8.5 Hz, H-

5a), 3.39 (ddd, 1H, J4,5b ≈ J5b,NH ≈ 3.2 Hz, H-5b), 3.39 (s, 3H, OMe), 2.04 (s, 3H, 

Me(Ac)). 
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5-[(2R,3R,4R)-5-N-Acetyl-amino-3-methoxy-oxetan-2-yl]-3-p-methoxyphenyl-
1,2,4-oxadiazole (153). Starting with 148 (45.0 mg, 0.111 mmol) using general 

procedure 4.3.1.3 (reaction time 4 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a white solid (30.5 mg, 

0.091 mmol, 82%). [ ] 0.20
Dα -102.9 (c 0.922, CHCl3). MS: (ionspray) m/z 334.2 [M+H]+, 

356.1[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.04 (br d, J = 8.8 Hz, 2H, Ph), 7.01 (br 

d, 2H, Ph), 6.68 (br s, 1H, NH), 5.68 (d, 1H, J2,3 = 4.9 Hz, H-2), 4.93 (br s, 1H, H-4), 

4.34 (t, 1H, J3,4 = 4.9 Hz, H-3),  4.00 (ddd, 1H, J4,5a = 2.3 Hz, J5a,5b = 15.2 Hz, J5a,NH = 

8.4 Hz, H-5a), 3.88 (s, 3H, OMe(Ph)), 3.43-3.34 (m, 4H, H-5b, OMe), 2.03 (s, 3H, 

Me(Ac)). 
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5-[(2R,3R,4R)-5-N-Acetyl-amino-3-methoxy-oxetan-2-yl]-3-p-chlorophenyl-1,2,4-
oxadiazole (154). Starting with 149 (45.0 mg, 0.110 mmol) using general procedure 

4.3.1.3 (reaction time 2 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as a white solid (34.2 mg, 0.101 mmol, 

92%). [ ] 0.20
Dα -62.14 (c 0.917, CHCl3). MS: (ionspray) m/z 338.1 [M+H]+, 360.1 

[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.04 (br d, J = 8.5 Hz, 2H, Ph), 7.49 (br d, 

2H, Ph), 6.51 (br s , 1H, NH), 5.70 (d, 1H, J2,3 = 5.1 Hz, H-2), 4.93 (dt, 1H, H-4), 4.35 

(t, 1H, J3,4 = 5.1 Hz, H-3),  3.99 (ddd, 1H, J4,5a = 3.0 Hz, J5a,5b = 15.3 Hz, J5a,NH = 8.4 

Hz, H-5a), 3.40 (ddd, 1H, J4,5b ≈ J5b,NH ≈ 3.3 Hz, H-5b), 3.39 (s, 3H, OMe), 2.03 (s, 

3H, Me(Ac)). HRMS (ESI) m/z 338.09018 [M+H]+, calcd. 338.09021 for 

C15H17ClN3O4. 
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155  
 

5-[(2R,3R,4R)-5-N-Acetyl-amino-3-methoxy-oxetan-2-yl]-3-p-methylphenyl-
1,2,4-oxadiazole (155). Starting with 150 (30.4 mg, 0.078 mmol) using general 

procedure 4.3.1.3 (reaction time 3 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a colourless oil (20.6 

mg, 0.065 mmol, 83%). [ ] 0.20
Dα -68.44 (c 0.698, CHCl3). MS: (ionspray) m/z 318.1 

[M+H]+, 340.1 [M+Na]+. 1H NMR (300 MHz, CDCl3): δ 7.99 (br d, J = 8.1 Hz, 2H, Ph), 

7.25 (br d, 2H, Ph), 6.67 (br s , 1H, NH), 5.70 (d, 1H, J2,3 = 5.0 Hz, H-2), 4.93 (dt, 1H, 
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H-4), 4.35 (t, 1H, J3,4 = 5.0 Hz, H-3),  4.01 (ddd, 1H, J4,5a = 2.7 Hz, J5a,5b = 15.3 Hz, 

J5a,NH = 8.5 Hz, H-5a), 3.39 (s, 3H, OMe), 3.38 (ddd, 1H, J4,5b ≈ J5b,NH ≈ 3.0 Hz, H-

5b), 2.43 (s, 3H, Me(Ph)), 2.03 (s, 3H, Me(Ac)). 
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156  
 
5-[(2R,3R,4R)-5-N-Acetyl-amino-3-methoxy-oxetan-2-yl]-3-pyridinyl-1,2,4-
oxadiazole (156). Starting with 151 (40.0 mg, 0.106 mmol) using general procedure 

4.3.1.3 (reaction time 3 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as a colourless oil (29.7 mg, 0.098 mmol, 

92%). [ ] 0.20
Dα -62.23 (c 0.739, CHCl3). MS: (ionspray) m/z 305.2 [M+H]+, 327.2 

[M+Na]+. 1H NMR (300 MHz, CDCl3) δ 8.88-8.77 (m, 2H, Py), 8.13-8.11 (m, 2H, Py), 

5.75 (d, 1H, J2,3 = 5.1 Hz, H-2), 4.83 (q, 1H, H-4), 4.51 (t, 1H, J3,4 = 5.1 Hz, H-3), 3.70 

(ddd, 1H, J4,5a ≈ J5a,NH ≈ 4.6 Hz,  J5a,5b = 15.0 Hz, H-5a), 3.53 (ddd, 1H, J4,5b ≈ J5b,NH ≈ 

4.1 Hz, H-5b), 3.42 (s, 3H, OMe), 2.00 (s, 3H, Me(Ac)). 
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5-[(2R,3R,4R)-5-N-Mesyl-amino-3-methoxy-oxetan-2-yl]-3-phenyl-1,2,4-
oxadiazole (157). Starting with 147 (30.0 mg, 0.080 mmol) using general procedure 

4.3.1.4 (reaction time 2 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as a colourless viscous oil (22.4 mg, 

0.066 mmol, 83%). [ ] 0.20
Dα 5.75 (c 0.695, CHCl3). MS: (ionspray) m/z 340.0 [M+H]+, 

362.2 [M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.18-8.12 (m, 2H, Ph), 7.57-7.47 (m, 
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3H, Ph), 5.94 (t, 1H, J5a,NH ≈ J5b,NH ≈ 5.7 Hz, NH), 5.70 (d, 1H, J2,3 = 4.9 Hz, H-2), 

4.97 (dt, 1H, J4,5a ≈ J4,5b ≈ 5.7 Hz, H-4), 4.63 (t, 1H, J3,4 = 4.9 Hz, H-3), 3.59-3.54 (m, 

2H, H-5a, H-5b), 3.42 (s, 3H, OMe), 3.04 (s, 3H, Me(Ms)). 
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5-[(2R,3R,4R)-5-N-Mesyl-amino-3-methoxy-oxetan-2-yl]-3-p-methoxyphenyl-
1,2,4-oxadiazole (158). Starting with 148 (45.0 mg, 0.111 mmol) using general 

procedure 4.3.1.4 (reaction time 2 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a light brown oil (31.2 

mg, 0.084 mmol, 76%). [ ] 0.20
Dα -0.771 (c 0.648, CHCl3). MS: (ionspray) m/z 370.1 

[M+H]+, 392.2 [M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.09 (br d, J = 8.9 Hz, 2H, Ph), 

7.02 (br d, 2H, Ph), 6.06 (t, 1H, J5a,NH ≈ J5b,NH ≈ 5.2 Hz, NH), 5.68 (d, 1H, J2,3 = 5.2 

Hz, H-2), 4.96 (br dt, 1H, H-4), 4.62 (t, 1H, J3,4 = 4.8 Hz, H-3), 3.87 (s, 3H, OMe(Ph)), 

3.57-3.54 (m, 2H, H-5a, H-5b), 3.41 (s, 3H, OMe), 3.04 (s, 3H, Me(Ms)). 
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5-[(2R,3R,4R)-5-N-Mesyl-amino-3-methoxy-oxetan-2-yl]-3-p-chlorophenyl-1,2,4-
oxadiazole (159). Starting with 149 (45.0 mg, 0.110 mmol) using general procedure 

4.3.1.4 (reaction time 2 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as a colourless viscous oil (40.6 mg, 
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0.109 mmol, 99%). [ ] 0.20
Dα -0.610 (c 0.820, CHCl3). MS: (ionspray) m/z 374.4 [M+H]+, 

396.3 [M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.10 (d, 2H, J = 8.4 Hz, Ph), 7.49 (d, 

2H, Ph), 5.95 (t, 1H, J5a,NH ≈ J5b,NH ≈ 5.8 Hz, NH), 5.70 (d, 1H, J2,3 = 4.8 Hz, H-2), 

4.97 (br dt, 1H, H-4), 4.63 (t, 1H, J3,4 = 4.9 Hz, H-3), 3.57-3.54 (m, 2H, H-5a, H-5b), 

3.41 (s, 3H, OMe), 3.03 (s, 3H, Me(Ms)). HRMS (ESI) m/z 374.05708 [M+H]+, calcd. 

3374.05720 for C14H17ClN3O5S. 

 

O

O
O N

NNHS
O

O

160  
 

5-[(2R,3R,4R)-5-N-Mesyl-amino-3-methoxy-oxetan-2-yl]-3-p-methylphenyl-1,2,4-
oxadiazole (160). Starting with 150 (32.0 mg, 0.082 mmol) using general procedure 

4.3.1.4 (reaction time 2 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as a colourless oil (21.4 mg, 0.061 mmol, 

74%). [ ] 0.20
Dα -0.573 (c 0.782, CHCl3). MS: (ionspray) m/z 354.1 [M+H]+, 376.2 

[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.04 (d, 2H, J = 8.0 Hz, Ph), 7.31 (d, 2H, Ph), 

6.00 (t, 1H, J5a,NH ≈ J5b,NH ≈ 5.5 Hz, NH), 5.69 (d, 1H, J2,3 = 4.8 Hz, H-2), 4.97 (br dt, 

1H, H-4), 4.63 (t, 1H, J3,4 = 4.9 Hz, H-3), 3.58-3.55 (m, 2H, H-5a, H-5b), 3.41 (s, 3H, 

OMe), 3.03 (s, 3H, Me(Ms)), 2.42 (s, 3H, Me(Ph)). 
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5-[(2R,3R,4R)-5-N-Mesyl-amino-3-methoxy-oxetan-2-yl]-3-p-pyridinyl-1,2,4-
oxadiazole (161). Starting with 151 (40.0 mg, 0.106 mmol) using general procedure 
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4.3.1.4 (reaction time 2 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as a colourless viscous oil (30.8 mg, 

0.090 mmol, 85%). [ ] 0.20
Dα -0.633 (c 0.832, CHCl3). MS: (ionspray) m/z 341.1 [M+H]+, 

363.2 [M+Na]+. 1H NMR (300 MHz, MeOD): δ 8.79 ( br d, 2H, J = 6.1 Hz, Py), 8.14-

8.10 (m, 2H, Py), 5.76 (t, 1H, J5a,NH ≈ J5b,NH ≈ 5.5 Hz, NH), 4.91-4.88 (m, H-2+H2O), 

4.80 (br dt, 1H, H-4), 4.54 (t, 1H, J3,4 = 5.2 Hz, H-3), 3.75-3.71 (m, 1H, H-5a), 3.51-

3.43 (m, 4H, H-5b, OMe), 3.34-3.32 (m, Me(Ms)+MeOH). 

 

4.3.2.4 Library on 2,4-Anhydro-5-N-(tert-butoxycarbonyl)amino-3-fluoro-
D-arabinonic acid (79) 
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5-[(2S,3R,4R)-5-N-(tert-Butoxycarbonyl)amino-3-fluoro-oxetan-2-yl]-3-phenyl-
1,2,4-oxadiazole (162). Starting with 79 (134.1 mg, 0.54 mmol) using general 

procedure 4.3.1.1 (cyclisation time 3 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a light yellow viscous 

oil (152.2 mg, 0.44 mmol, 81%). [ ] 0.20
Dα -54.03 (c 0.602, CHCl3). MS: (ionspray) m/z 

250.1 [M-Boc+H]+, 294.1 [M-tBu+H]+, 350.3 [M+H]+, 367.2 [M+NH4]+, 372.2[M+Na]+. 

1H NMR (300 MHz, CDCl3): δ 8.15-8.11 (m, 2H, Ph), 7.54-7.45 (m, 3H, Ph), 5.95 

(ddd, 1H, J2,F = 11.8 Hz, J2,3 = 6.6 Hz, J2,4 = 0.8 Hz, H-2), 5.56 (ddd, J3,F = 54.8 Hz, 

J3,4 = 5.1 Hz, H-3), 5.35 (dqd, 1H, J4,F = 18.0 Hz, H-4),  4.96 (br s, 1H, NH), 3.74-

3.66 (m, 1H, H-5a), 3.50 (dt, 1H, J4,5b ≈ J5b,NH ≈ 4.7 Hz, J5a,5b
 = 15.2 Hz, H-5b), 1.46 

(s, 9H, Boc). 

 



Experimental 
 

 
 
180 

O

F
O N

NNH
O

O
O

163  
 

5-[(2S,3R,4R)-5-N-(tert-Butoxycarbonyl)amino-3-fluoro-oxetan-2-yl]-3-p-
methoxyphenyl-1,2,4-oxadiazole (163). Starting with 79 (175.0 mg, 0.70 mmol) 

using general procedure 4.3.1.1 (cyclisation time 3 h), and after flash 

chromatography using heptane/EtOAc gradient, the title compound was obtained as 

a light yellow viscous oil (222.1 mg, 0.58 mmol, 83%). [ ] 0.20
Dα -56.45 (c 0.953, CHCl3). 

MS: (ionspray) m/z 324.3 [M-t-Bu+H]+, 380.2 [M+H]+, 397.3 [M+NH4]+, 402.4 

[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.08-8.03 (m, 2H, Ph), 7.02-6.97 (m, 2H, Ph), 

5.92 (ddd, 1H, J2,F = 11.8 Hz, J2,3 = 6.5 Hz, J2,4 = 1.0 Hz, H-2), 5.56 (ddd, J3,F = 54.9 

Hz, J3,4 = 4.9 Hz, H-3), 5.34 (dqd, 1H, J4,F = 18.0 Hz, H-4),  4.97 (br s, 1H, NH), 3.87 

(s, 3H, OMe(Ph)) 3.74-3.65 (m, 1H, H-5a), 3.49 (dt, 1H, J4,5b ≈ J5b,NH ≈ 4.8 Hz, J5a,5b
 = 

15.4 Hz, H-5b), 1.49 (s, 9H, Boc). 

 

O

F
O N

NNH
O

O

Cl

164  
 

5-[(2S,3R,4R)-5-N-(tert-Butoxycarbonyl)amino-3-fluoro-oxetan-2-yl]-3-p-
chlorophenyl-1,2,4-oxadiazole (164). Starting with 79 (200.0 mg, 0.80 mmol) using 

general procedure 4.3.1.1 (cyclisation time 4 h), and after flash chromatography 

using heptane/EtOAc gradient, the title compound was obtained as a light yellow 

viscous oil (260.0 mg, 0.67 mmol, 84%). [ ] 0.20
Dα -58.04 (c 0.789, CHCl3). MS: 

(ionspray) m/z 328.2 [M-tBu+H]+, 384.3 [M+H]+, 401.3 [M+NH4]+, 406.3 [M+Na]+. 1H 
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NMR (300 MHz, CDCl3): δ 8.07 (br d, J = 8.6 Hz, 2H, Ph), 7.47 (br d, 2H, Ph), 5.94 

(ddd, 1H, J2,F = 11.6 Hz, J2,3 = 6.5 Hz, J2,4 = 0.7 Hz, H-2), 5.57 (ddd, J3,F = 54.9 Hz, 

J3,4 = 4.9 Hz, H-3), 5.34 (dqd, 1H, J4,F = 18.0 Hz, H-4),  4.96 (br s, 1H, NH), 3.74-

3.65 (m, 1H, H-5a), 3.49 (dt, 1H, J4,5b ≈ J5b,NH ≈ 4.6 Hz, J5a,5b
 = 15.2 Hz, H-5b), 1.49 

(s, 9H, Boc). Anal. Calcd. for C17H19ClFN3O4 (383.81): C, 53.20; H, 4.99; N, 10.95. 

Found: C, 53.09; H, 4.80; N, 10.88.  
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5-[(2S,3R,4R)-5-N-(tert-Butoxycarbonyl)amino-3-fluoro-oxetan-2-yl]-3-p-
methylphenyl-1,2,4-oxadiazole (165). Starting with 79 (200.0 mg, 0.80 mmol) using 

general procedure 4.3.1.1 (cyclisation time 4 h), and after flash chromatography 

using heptane/EtOAc gradient, the title compound was obtained as a yellow oil 

(208.2 mg, 0.57 mmol, 71%). [ ] 0.20
Dα -54.55 (c 0.836, CHCl3). MS: (ionspray) m/z 

308.2 [M-tBu+H]+, 364.3 [M+H]+, 381.3 [M+NH4]+, 386.2 [M+Na]+. 1H NMR (300 MHz, 

CDCl3): δ 8.01 (br d, J = 8.2 Hz, 2H, Ph), 7.30 (br d, 2H, Ph), 5.93 (dd, 1H, J2,F = 

11.8 Hz, J2,3 = 6.5 Hz, H-2), 5.55 (ddd, J3,F = 54.9 Hz, J3,4 = 5.0 Hz, H-3), 5.34 (dqd, 

1H, J4,F = 18.0 Hz, J2,4 = 0.9 Hz, H-4),  4.96 (br s, 1H, NH), 3.74-3.65 (m, 1H, H-5a), 

3.49 (dt, 1H, J4,5b ≈ J5b,NH ≈ 4.6 Hz, J5a,5b
 = 15.3 Hz, H-5b), 2.42 (s, 3H, Me(Ph)), 1.49 

(s, 9H, Boc). 
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5-[(2S,3R,4R)-5-N-(tert-Butoxycarbonyl)amino-3-fluoro-oxetan-2-yl]-3-pyridinyl-
1,2,4-oxadiazole (166). Starting with 79 (204.2 mg, 0.82 mmol) using general 

procedure 4.3.1.1 (cyclisation time 5 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a light yellow foam 

(159.4 mg, 0.46 mmol, 56%). [ ] 0.20
Dα -68.23 (c 0.922, CHCl3). MS: (ionspray) m/z 

351.3 [M+H]+, 373.3 [M+Na]+. 1H NMR (300 MHz, CDCl3) δ 8.80 (br d, J = 6.0 Hz, 

2H, Ph), 7.99 (br d, 2H, Ph), 5.97 (dd, 1H, J2,F = 11.8 Hz, J2,3 = 6.4 Hz, H-2), 5.58 

(ddd, J3,F = 54.8 Hz, J3,4 = 5.0 Hz, H-3), 5.35 (dq, 1H, J4,F = 18.1 Hz, H-4),  4.98 (br s, 

1H, NH), 3.75-3.66 (m, 1H, H-5a), 3.50 (dt, 1H, J4,5b ≈ J5b,NH ≈ 4.7 Hz, J5a,5b
 = 15.3 

Hz, H-5b), 1.49 (s, 9H, Boc). 
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5-[(2S,3R,4R)-5-Amonium-3-fluoro-oxetan-2-yl]-3-phenyl-1,2,4-oxadiazole 
Trifluoroacetate (167). Starting with 162 (144.6 mg, 0.41 mmol) using general 

procedure 4.3.1.2 (reaction time 5 h), and after recrystallisation with MeOH/DCM/n-

Hex, the title compound was obtained as a colourless solid (141.4 mg, 0.39 mmol, 

94%). [ ] 8.19
Dα -37.48 (c 0.984, MeOH). MS: (ionspray) m/z 250.1 [M-TFA+H]+, 272.4 

[M-TFA+Na]+. 1H NMR (300 MHz, MeOD): δ 8.02-7.98 (m, 2H, Ph), 7.49-7.42 (m, 

3H, Ph), 6.08 (ddd, 1H, J2,3 = 6.5 Hz, J2,4 = 1.0 Hz, J2,F = 12.2 Hz, H-2), 5.53 (ddd, 

1H, J3,4 = 5.0 Hz, J3,F  = 54.3 Hz, H-3), 5.36 (dqd, 1H, J3,4 ≈ J4,5a ≈ J4,5b ≈ 5.0 Hz, J4,F = 

18.3 Hz, H-4), 3.40-3.37 (m, 2H, H-5a, H-5b). 
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5-[(2S,3R,4R)-5-Amonium-3-fluoro-oxetan-2-yl]-3-p-methoxyphenyl-1,2,4-
oxadiazole Trifluoroacetate (168). Starting with 163 (165.2 mg, 0.43 mmol) using 

general procedure 4.3.1.2 (reaction time 5 h), and after recrystallisation with 

MeOH/DCM/n-Hex, the title compound was obtained as colourless solid (107.7 mg, 

0.27 mmol, 63%). [ ] 0.20
Dα -47.62 (c 0.754, MeOH). MS: (ionspray) m/z 280.3 [M-

TFA+H]+, 302.4 [M-TFA+Na]+. 1H NMR (300 MHz, MeOD): δ 7.93 (br d, J = 8.9 Hz, 

2H, Ph), 6.98 (br d, 2H, Ph), 6.05 (ddd, 1H, J2,3 = 6.5 Hz, J2,4 = 1.0 Hz, J2,F = 12.1 

Hz, H-2), 5.63 (ddd, 1H, J3,4 = 5.0 Hz, J3,F  = 54.3 Hz, H-3), 5.35 (dqd, 1H, J3,4 ≈ J4,5a 

≈ J4,5b ≈ 5.0 Hz, J4,F = 18.2 Hz, H-4), 3.78 (s, 3H, OMe), 3.39-3.37 (m, 2H, H-5a, H-

5b). 
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5-[(2S,3R,4R)-5-Amonium-3-fluoro-oxetan-2-yl]-3-p-chlorophenyl-1,2,4-
oxadiazole Trifluoroacetate (169). Starting with 164 (200.3 mg, 0.52 mmol) using 

general procedure 4.3.1.2 (reaction time 5 h), and after recrystallisation with 

MeOH/DCM/n-Hex, the title compound was obtained as colourless solid (155.1 mg, 

0.39 mmol, 75%). [ ] 0.20
Dα -43.95 (c 0.876, MeOH). MS: (ionspray) m/z 284.0 [M-

TFA+H]+, 306.0 [M-TFA+Na]+. 1H NMR (300 MHz, MeOD): δ 7.99 (br d, J = 8.6 Hz, 

2H, Ph), 7.48 (br d, 2H, Ph), 6.08 (ddd, 1H, J2,3 = 6.4 Hz, J2,4 = 0.6 Hz, J2,F = 12.2 
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Hz, H-2), 5.64 (ddd, 1H, J3,4 = 5.1 Hz, J3,F  = 54.3 Hz, H-3), 5.35 (dqd, 1H, J3,4 ≈ J4,5a 

≈ J4,5b ≈ 5.1 Hz, J4,F = 18.5 Hz, H-4), 3.39-3.37 (m, 2H, H-5a, H-5b). Anal. Calcd. for 

C14H12ClF4N3O4 (397.71): C, 42.28; H, 3.04; N, 10.57. Found: C, 42.05; H, 3.00; N, 

10.57.  
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5-[(2S,3R,4R)-5-Amonium-3-fluoro-oxetan-2-yl]-3-p-methylphenyl-1,2,4-
oxadiazole Trifluoroacetate (170). Starting with 165 (158.0 mg, 0.43 mmol) using 

general procedure 4.3.1.2 (reaction time 5 h), and after recrystallisation with 

MeOH/DCM/n-Hex, the title compound was obtained as colourless solid (125.1 mg, 

0.33 mmol, 76%). [ ] 0.20
Dα -48.59 (c 0.792, MeOH). MS: (ionspray) m/z 264.3 [M-

TFA+H]+, 286.1 [M-TFA+Na]+. 1H NMR (300 MHz, MeOD) δ 7.88 (br d, J = 8.3 Hz, 

2H, Ph), 7.27 (br d, 2H, Ph), 6.06 (ddd, 1H, J2,3 = 6.5 Hz, J2,4 = 0.9 Hz, J2,F = 12.2 

Hz, H-2), 5.63 (ddd, 1H, J3,4 = 5.0 Hz, J3,F  = 54.3 Hz, H-3), 5.35 (dqd, 1H, J3,4 ≈ J4,5a 

≈ J4,5b ≈ 5.0 Hz, J4,F = 18.2 Hz, H-4), 3.39-3.37 (m, 2H, H-5a, H-5b), 2.33 (s, 3H, 

Me(Ph)). 
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5-[(2S,3R,4R)-5-Amonium-3-fluoro-oxetan-2-yl]-3-pyridinyl-1,2,4-oxadiazole 
Trifluoroacetate (171). Starting with 166 (120.0 mg, 0.34 mmol) using general 
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procedure 4.3.1.2 (reaction time 5 h), and after recrystallisation with MeOH/DCM/n-

Hex, the title compound was obtained as a light yellow solid (110.6 mg, 0.30 mmol, 

89%). [ ] 0.20
Dα -38.04 (c 0.831, MeOH). MS: (ionspray) m/z 251.1 [M-TFA+H]+. 1H NMR 

(300 MHz, MeOD): δ 8.69-8.67 (m, 2H, Ph), 8.00-7.98 (m, 2H, Ph), 6.12 (ddd, 1H, 

J2,3 = 6.5 Hz, J2,4 = 0.9 Hz, J2,F = 12.2 Hz, H-2), 5.66 (ddd, 1H, J3,4 = 5.0 Hz, J3,F = 

54.2 Hz, H-3), 5.36 (dqd, 1H, J3,4 ≈ J4,5a ≈ J4,5b ≈ 5.0 Hz, J4,F = 18.4 Hz, H-4), 3.39-

3.37 (m, 2H, H-5a, H-5b). 
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5-[(2S,3R,4R)-5-N-Acetyl-amino-3-fluoro-oxetan-2-yl]-3-phenyl-1,2,4-oxadiazole 
(172). Starting with 167 (57.2 mg, 0.16 mmol) using general procedure 4.3.1.3 

(reaction time overnight), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as colourless solid (32.7 mg, 0.112 mmol, 

71%). [ ] 0.20
Dα -92.46 (c 0.787, CHCl3). MS: (ionspray) m/z 292.1 [M+H]+, 314.0 

[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.13-8.10 (m, 2H, Ph), 7.52-7.49 (m, 3H, Ph), 

5.94 (br dd, 2H, J2,3 = 6.1 Hz, J2,F = 11.6 Hz, H-2, NH), 5.51 (br dt, 1H, J3,4 ≈ 5.7 Hz, 

J3,F = 54.9 Hz, H-3), 5.37 (br dq, 1H, H-4), 3.84 (ddd, 1H, J4,5a = 4.5 Hz, J5a,NH = 6.1 

Hz, J5a,5b
 = 14.9 Hz, H-5a), 3.64 (dt, 1H, J4,5b ≈ J5b,NH ≈ 4.6 Hz, H-5b), 2.09 (s, 3H, 

Me(Ac)). Anal. Calcd. for C14H14FN3O3 (291.28): C, 57.73; H, 4.84; N, 14.43. Found: 

C, 57.52; H, 4.78; N, 14.11.  
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5-[(2S,3R,4R)-5-N-Acetyl-amino-3-fluoro-oxetan-2-yl]-3-p-methoxyphenyl-1,2,4-
oxadiazole (173). Starting with 168 (40.0 mg, 0.102 mmol) using general procedure 

4.3.1.3 (reaction time 3 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as colourless solid (32.1 mg, 0.100 mmol, 

98%). [ ] 0.20
Dα -76.42 (c 0.781, CHCl3). MS: (ionspray) m/z 322.2 [M+H]+, 

344.1[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.06 (br d, J = 8.7 Hz, 2H, Ph), 7.00 (br 

d, 2H, Ph), 5.92 (br dd, 2H, J2,3 = 5.9 Hz, J2,F = 11.5 Hz, H-2, NH), 5.51 (br dt, 1H, 

J3,4 = 5.9 Hz, J3,F = 54.9 Hz, H-3), 5.36 (br dq, 1H, H-4), 3.88-3.80 (m, 4H, H-5a, 

OMe), 3.64 (dt, 1H, J4,5b ≈ J5b,NH ≈ 4.6 Hz, J5a,5b = 15.0 Hz, H-5b), 2.09 (s, 3H, 

Me(Ac)). 
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5-[(2S,3R,4R)-5-N-Acetyl-amino-3-fluoro-oxetan-2-yl]-3-p-chlorophenyl-1,2,4-
oxadiazole (174). Starting with 169 (49.6 mg, 0.124 mmol) using general procedure 

4.3.1.3 (reaction time 3 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as colourless solid (40.0 mg, 0.123 mmol, 

98%). [ ] 0.20
Dα -77.85 (c 0.787, CHCl3). MS: (ionspray) m/z 326.1[M+H]+, 

348.2[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.07 (br d, J = 8.6 Hz, 2H, Ph), 7.48 (br 

d, 2H, Ph), 5.93 (br dd, 2H, J2,3 = 6.5 Hz, J2,F = 11.6 Hz, H-2, NH), 5.52 (br dt, 1H, 

J3,4 = 5.0 Hz, J3,F = 54.6 Hz, H-3), 5.36 (br dq, 1H, J4,F = 17.8 Hz, H-4), 3.84 (ddd, 

1H, 1H, J4,5a = 4.8 Hz, J5a,NH = 6.7 Hz, J5a,5b
 = 15.0 Hz, H-5a), 3.64 (dt, 1H, J4,5b ≈ 

J5b,NH ≈ 4.8 Hz, H-5b), 2.09 (s, 3H, Me(Ac)). Anal. Calcd. for C14H13ClFN3O3 

(325.73): C, 51.62; H, 4.02; N, 12.90. Found: C, 51.74; H, 4.03; N, 12.30.  
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5-[(2S,3R,4R)-5-N-Acetyl-amino-3-fluoro-oxetan-2-yl]-3-p-methylphenyl-1,2,4-
oxadiazole (175). Starting with 170 (32.1 mg, 0.085 mmol) using general procedure 

4.3.1.3 (reaction time 3 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as a light yellow solid (23.5 mg, 0.077 

mmol, 91%). [ ] 0.20
Dα -81.55 (c 0.820, CHCl3). MS: (ionspray) m/z 306.2 [M+H]+, 328.2 

[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.00 (br d, J = 8.2 Hz, 2H, Ph), 7.30 (br d, 

2H, Ph), 6.14 (br t , 1H, NH), 5.93 (ddd, 1H, J2,3 = 6.6 Hz, J2,4 = 0.8 Hz, J2,F = 11.8 

Hz, H-2), 5.51 (ddd, 1H, J3,4 = 5.0 Hz, J3,F = 54.7 Hz, H-3), 5.35 (br dq, 1H, J4,F = 

18.0 Hz, H-4), 3.82 (ddd, 1H, 1H, J4,5a = 5.0 Hz, J5a,NH = 6.7 Hz, J5a,5b
 = 15.0 Hz, H-

5a), 3.63 (ddd≈dt, 1H, J4,5b ≈ J5b,NH ≈ 5.0 Hz, H-5b), 2.42 (s, 3H, Me(Ph)), 2.08 (s, 

3H, Me(Ac)). 
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5-[(2S,3R,4R)-5-N-Acetyl-amino-3-fluoro-oxetan-2-yl]-3-pyridinyl-1,2,4-
oxadiazole (176). Starting with 171 (37.0 mg, 0.102 mmol) using general procedure 

4.3.1.3 (reaction time 3 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as a white solid (29.3 mg, 0.101 mmol, 

99%). [ ] 0.20
Dα -79.23 (c 0.746, CHCl3). MS: (ionspray) m/z 293.1 [M+H]+, 315.0 

[M+Na]+. 1H NMR (300 MHz, MeOD): δ 8.68-8.66 (m, 2H, Ph), 8.00-7.98 (m, 2H, Ph), 

6.01 (ddd, 1H, J2,3 = 6.5 Hz, J2,4 = 0.9 Hz, J2,F = 12.4 Hz, H-2), 5.50 (ddd, 1H, J3,4 = 
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5.0 Hz, J3,F = 55.0 Hz, H-3), 5.15 (br dq, 1H, J4,F = 19.0 Hz, H-4), 3.62 (A(ABX), 1H, 

1H, J4,5a = 5.0 Hz, J5a,5b
 = 14.7 Hz, H-5a), 3.46 (B(ABX), 1H, J4,5b = 5.0 Hz, H-5b), 

1.93 (s, 3H, Me(Ac)). 

 

O

F
O N

NNHS
O

O

177
 

 

5-[(2S,3R,4R)-5-N-Mesyl-amino-3-fluoro-oxetan-2-yl]-3-phenyl-1,2,4-oxadiazole 
(177). Starting with 167 (43.1 mg, 0.119 mmol) using general procedure 4.3.1.4 

(reaction time 1.5 h), and after flash chromatography using heptane/EtOAc gradient, 

the title compound was obtained as a white solid (28.8 mg, 0.088 mmol, 74%). 

[ ] 0.20
Dα -85.01 (c 0.775, CHCl3). MS: (ionspray) m/z 328.2 [M+H]+, 345.0 [M+NH4]+. 1H 

NMR (300 MHz, CDCl3): δ 8.13-8.11 (m, 2H, Ph), 7.51-7.49 (m, 3H, Ph), 5.99 (dd, 

1H, J2,3 = 6.4 Hz, J2,F = 11.6 Hz, H-2), 5.75 (br dt, 1H, J3,4 ≈ 5.0 Hz, J3,F = 54.8 Hz, H-

3), 5.42 (br dd, 1H, J4,F = 17.5 Hz, H-4), 5.04 (br t, 1H, NH), 3.64-3.54 (m, 2H, H-5a, 

H-5b), 3.07 (s, 3H, Me(Ms)). Anal. Calcd. for C13H14FN3O4 (327.34): C, 47.70; H, 

4.31; N, 12.84. Found: C, 47.73; H, 4.31; N, 12.53.  
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5-[(2S,3R,4R)-5-N-Mesyl-amino-3-fluoro-oxetan-2-yl]-3-p-methoxyphenyl-1,2,4-
oxadiazole (178). Starting with 168 (40.0 mg, 0.102 mmol) using general procedure 

4.3.1.4 (reaction time 2 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as a colourless solid (34.8 mg, 0.097 

mmol, 96%). [ ] 0.20
Dα -72.32 (c 0.781, CHCl3). MS: (ionspray) m/z 358.3 [M+H]+, 380.1 
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[M+Na]+. 1H NMR (300 MHz, CDCl3) δ 8.06 (br d, J = 8.6 Hz, 2H, Ph), 7.00 (br d, 2H, 

Ph), 5.96 (dd, 1H, J2,3 = 6.6 Hz, J2,F = 11.6 Hz, H-2), 5.75 (ddd, 1H, J3,4 = 5.1 Hz, J3,F 

= 54.8 Hz, H-3), 5.42 (dq, 1H, J4,F = 17.3 Hz, H-4), 4.88 (br t, 1H, NH), 3.87 (s, 3H, 

OMe), 3.67-3.52 (m, 2H, H-5a, H-5b), 3.07 (s, 3H, Me(Ms)). 
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5-[(2S,3R,4R)-5-N-Mesyl-amino-3-fluoro-oxetan-2-yl]-3-p-chlorophenyl-1,2,4-
oxadiazole (179). Starting with 169 (50.0 mg, 0.126 mmol) using general procedure 

4.3.1.4 (reaction time 2 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as a colourless solid (38.0 mg, 0.105 

mmol, 84%). [ ] 0.20
Dα -68.37 (c 0.775, CHCl3). MS: (ionspray) m/z 362.1 [M+H]+, 384.1 

[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.07 (br d, J = 8.5 Hz, 2H, Ph), 7.48 (br d, 

2H, Ph), 5.98 (ddd, 1H, J2,3 = 6.5 Hz, J2,4 = 0.7 Hz, J2,F = 11.6 Hz, H-2), 5.77 (ddd, 

1H, J3,4 = 5.0 Hz, J3,F = 54.8 Hz, H-3), 5.42 (br dq, 1H, J4,F = 17.4 Hz, H-4), 4.92 (br t, 

1H, NH), 3.67-3.53 (m, 2H, H-5a, H-5b), 3.08 (s, 3H, Me(Ms)). Anal. Calcd. for 

C13H13ClFN3O4S (361.78): C, 43.16; H, 3.62; N, 11.61. Found: C, 42.89; H, 3.69; N, 

11.31.  
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5-[(2S,3R,4R)-5-N-Mesyl-amino-3-fluoro-oxetan-2-yl]-3-p-methylphenyl-1,2,4-
oxadiazole (180). Starting with 170 (35.9 mg, 0.095 mmol) using general procedure 

4.3.1.4 (reaction time 2 h), and after flash chromatography using heptane/EtOAc 
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gradient, the title compound was obtained as a white solid (17.7 mg, 0.052 mmol, 

55%). [ ] 0.20
Dα -69.25 (c 0.742, CHCl3). MS: (ionspray) m/z 342.1 [M+H]+, 364.1 

[M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.00 (br d, J = 8.1 Hz, 2H, Ph), 7.30 (br d, 2H, 

Ph), 5.98 (dd, 1H, J2,3 = 6.5 Hz, J2,F = 11.8 Hz, H-2), 5.74 (ddd, 1H, J3,4 = 5.0 Hz, J3,F 

= 54.7 Hz, H-3), 5.41 (br dq, 1H, J4,F = 17.6 Hz, H-4), 5.14 (t, 1H, J5a,NH ≈ J5b,NH ≈ 6.2 

Hz, NH), 3.60-3.56 (m, 2H, H-5a, H-5b), 3.07 (s, 3H, Me(Ms)), 2.42 (s, 3H, Me(Ph)). 

 

O

F
O N

N

N

NHS
O

O

181  
 

5-[(2S,3R,4R)-5-N-Mesyl-amino-3-fluoro-oxetan-2-yl]-3-p-pyridinyl-1,2,4-
oxadiazole (181). Starting with 171 (23.8 mg, 0.065 mmol) using general procedure 

3.1.5. (reaction time 3 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as a colourless solid (15.4 mg, 0.047 

mmol, 72%). [ ] 0.20
Dα -71.34 (c 0.758, CHCl3). MS: (ionspray) m/z 329.2 [M+H]+. 1H 

NMR (300 MHz, CDCl3): 8.80 (d, 2H, J = 5.9 Hz, Py), 8.13 (br d, 2H, Py), 6.02 (dd, 

1H, J2,3 = 6.3 Hz, J2,F = 11.6 Hz, H-2), 5.73 (ddd, 1H, J3,4 = 5.0 Hz, J3,F = 54.5 Hz, H-

3), 5.43 (br dq, 1H, J4,F = 17.6 Hz, H-4), 5.17 (t, 1H, J5a,NH ≈ J5b,NH ≈ 6.1 Hz, NH), 

3.62-3.57 (m, 2H, H-5a, H-5b), 3.06 (s, 3H, Me(Ms)). 

4.3.2.5 Derivatisation of 2,4-Anhydro-5-N-(tert-butoxycarbonyl)amino-3-
fluoro-D-xylonic acid (91) 
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5-[(2R,3S,4R)-5-N-(tert-Butoxycarbonyl)amino-3-fluoro-oxetan-2-yl]-3-p-
chlorophenyl-1,2,4-oxadiazole (182). Starting with 91 (81.3 mg, 0.326 mmol) using 

general procedure 4.3.1.1 (cyclisation time 4 h), and after flash chromatography 

using heptane/EtOAc gradient, the title compound was obtained as a colourless solid 

(98.1 mg, 0.256 mmol, 79%). [ ] 0.20
Dα 57.04 (c 0.569, CHCl3). MS: (ionspray) m/z 328.1 

[M-tBu+H]+, 384.1 [M+H]+, 406.2 [M+Na]+. H1 NMR (300 MHz, CDCl3): δ 8.07 (d, 2H, 

J = 8.4 Hz, Ph), 7.48 (d, 2H, Ph), 6.11 (dd, 1H, J2,3 = 5.9 Hz, J2,F = 16.0 Hz, H-2), 

5.78 (dt, 1H, J2,3 ≈ J3,4 ≈ 5.9 Hz, J3,F = 55.9 Hz, H-3), 5.23-5.08 (m, 2H, H-4, NH), 

3.89-3.72 (m, 2H, H-5a, H-5b), 1.43 (s, 9H, Boc). HRMS (NSI) m/z 384.11195 

[M+H]+, calcd. 384.11209 for C17H20ClFN3O4. 
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5-[(2R,3S,4R)-5-Amonium-3-fluoro-oxetan-2-yl]-3-p-chlorophenyl-1,2,4-
oxadiazole Trifluoroacetate (183). Starting with 182 (79.2 mg, 0.206 mmol) using 

general procedure 4.3.1.2 (reaction time 7 h), and after recrystallisation with 

MeOH/Et2O/n-Hex, the title compound was obtained as colourless crystals (74.2 mg, 

0.187 mmol, 90%). m.p. 165.3-165.7 ºC. [ ] 0.20
Dα 58.20 (c 0.667, MeOH). 1H NMR (300 

MHz, MeOD): δ 8.12 (dt, 2H, J = 8.7 Hz, J = 2.2 Hz, Ph), 7.60 (dt, 2H, Ph), 6.38 

(ddd, 1H, J2,3 = 5.8 Hz, J2,F = 16.3 Hz, H-2), 6.01 (dt, 1H, J2,3 ≈ J3,4 ≈ 5.7 Hz, J3,F  = 

55.5 Hz, H-3), 5.35 (dddd, 1H, J4,F = 16.1 Hz, H-4), 3.77 (A(ABX), 1H, J4,5a = 8.5 Hz, 

J5a,5b = 13.8 Hz, H-5a), 3.46 (B(ABX), 1H, J4,5b = 4.2 Hz, H-5b). HRMS (NSI) m/z 

284.05949 [M-TFA+H]+, calcd. 284.05966 for C12H12ClFN3O4. 
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5-[(2R,3S,4R)-5-N-Acetyl-amino-3-fluoro-oxetan-2-yl]-3-p-chlorophenyl-1,2,4-
oxadiazole (184). Starting with 183 (25.8 mg, 0.065 mmol) using general procedure 

4.3.1.3 (reaction time 2 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as colourless solid (17.4 mg, 0.053 mmol, 

82%). [ ] 0.20
Dα  67.27 (c 0.837, CHCl3). 1H NMR (300 MHz, CDCl3): δ 8.05 (br d, 2H, J 

=8.8 Hz, Ph), 7.49 (br d, 2H, Ph), 6.13 (br dd, 2H, J2,3 = 5.8 Hz, J2,F = 16.0 Hz, H-2, 

NH), 5.79 (dt, 1H, J2,3 ≈ J3,4 ≈ 5.8 Hz, J3,F = 55.9 Hz, H-3), 5.21 (br dq, 1H, J4,5a ≈ J4,5b 

≈ 5.8 Hz, J4,F = 17.0 Hz, H-4), 3.99-3.85 (m, 2H, H-5a, H-5b), 2.05 (s, 3H, Me(Ac)). 

HRMS (NSI) m/z 326.07007 [M+H]+, calcd. 326.07022 for C14H14ClFN3O3. 
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5-[(2R,3S,4R)-5-N-Mesyl-amino-3-fluoro-oxetan-2-yl]-3-p-chlorophenyl-1,2,4-
oxadiazole (185). Starting with 183 (28.4 mg, 0.071 mmol) using general procedure 

4.3.1.4 (reaction time 2 h), and after flash chromatography using heptane/EtOAc 

gradient, the title compound was obtained as a colourless solid (21.7 mg, 0.060 

mmol, 84%). [ ] 0.20
Dα 62.57 (c 0.674, MeOH). 1H NMR (300 MHz, CDCl3): δ 8.09 (d, 

2H, J = 8.0 Hz, Ph), 7.49 (d, 2H, Ph), 6.15 (dd, 1H, J2,3 = 5.9 Hz, J2,F = 15.7 Hz, H-2), 

5.84 (dt, 1H, J2,3 ≈ J3,4 ≈ 5.9 Hz, J3,F = 55.2 Hz, H-3), 5.30-5.10 (M, 2H, H-4, NH), 

3.90-3.73 (m, 2H, H-5a, H-5b), 3.05 (s, 3H, Me(Ms)). HRMS (NSI) m/z 362.03702 

[M+H]+, calcd. 362.03721 for C13H14ClFN3O4S. 
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4.3.3 Library Construction on Bicyclic δ-Amino Acid Scaffolds  

 

4.3.3.1 Library on rac-(1S,2R,5R,6S)-2-(tert-Butoxycarbonyl)amino-6-
carboxylic acid-bicyclo[3.1.0]hexane (186) 
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rac-(1S,2R,5R,6S)-2-(tert-Butoxycarbonyl)amino-6-(3-phenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (188). Starting with 186 (150.0 mg, 0.62 mmol) using 

general procedure 4.3.1.1 (cyclisation time overnight), and after flash 

chromatography using heptane/EtOAc gradient, the title compound was obtained as 

a colourless crystals (113.3 mg, 0.33 mmol, 53%). m.p. 126.3-126.7 ºC. MS: 

(ionspray) m/z 286.1 [M-t-Bu+H]+, 342.2 [M+H]+, 364.2 [M+Na]+. 1H NMR (300 MHz, 

CDCl3): δ 8.04-8.01 (m, 2H, Ph), 7.50-7.43 (m, 3H, Ph), 4.62 (br s, 1 H, NH), 4.26 (br 

s, 1H, H-2), 2.24 (br s, 2H, H-1, H-5), 2.06-1.98 (m, 3H, H-6, H-4a, H-4b), 1.71-1.55 

(m, 2H, H-3a, H-3b), 1.46 (s, 9H, Boc). 
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rac-(1S,2R,5R,6S)-2-(tert-Butoxycarbonyl)amino-6-(3-p-methoxyphenyl-1,2,4-
oxadiazol-5-yl)bicyclo[3.1.0]hexane (189). Starting with 186 (50.0 mg, 0.21 mmol) 
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using general procedure 4.3.1.1 (cyclisation time overnight), and after flash 

chromatography using heptane/EtOAc gradient, the title compound was obtained as 

a colourless crystals (51.1 mg, 0.14 mmol, 66%). m.p. 128.8-129.3 ºC. MS: 

(ionspray) m/z 316.2 [M-t-Bu+H]+, 372.3 [M+H]+, 394.2 [M+Na]+. 1H NMR, COSY, 

HMQC (300 MHz, CDCl3): δ 7.96 (br d, J = 8.9 Hz, 2H, Ph), 6.96 (br d, 2H, Ph), 4.62 

(br s, 1 H, NH), 4.25 (br s, 1H, H-2), 3.86 (s, 3H, OCH3), 2.22 (br s, 2H, H-1, H-5), 

2.04-1.97 (m, 3H, H-6, H-4a, H-4b), 1.70-1.54 (m, 2H, H-3a, H-3b), 1.46 (s, 9H, 

Boc). 
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rac-(1S,2R,5R,6S)-2-(tert-Butoxycarbonyl)amino-6-(3-p-chlorophenyl-1,2,4-
oxadiazol-5-yl)bicyclo[3.1.0]hexane (190). Starting with 186 (200.0 mg, 0.83 

mmol) using general procedure 4.3.1.1 (cyclisation time overnight), and after flash 

chromatography using heptane/EtOAc gradient, the title compound was obtained as 

a colourless solid (116.8 mg, 0.31 mmol, 38%). MS: (ionspray) m/z 320.1 [M-t-

Bu+H]+, 376.4 [M+H]+, 393.3 [M+NH4]+, 398.3 [M+Na]+. 1H NMR (300 MHz, CDCl3): δ 

7.95 (br d, J = 8.7 Hz, 2H, Ph), 7.44 (br d, 2H, Ph), 4.62 (br s, 1 H, NH), 4.26 (br s, 

1H, H-2), 2.23 (br s, 2H, H-1, H-5), 2.05-1.94 (m, 3H, H-6, H-4a, H-4b), 1.71-1.56 

(m, 2H, H-3a, H-3b), 1.46 (s, 9H, Boc). Anal. Calcd. for C19H22ClN3O3 (375.85): C, 

60.72; H, 5.90; N, 11.18. Found: C, 60.44; H, 5.91; N, 11.19. 
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191  
 

rac-(1S,2R,5R,6S)-2-(tert-Butoxycarbonyl)amino-6-(3-p-methylphenyl-1,2,4-
oxadiazol-5-yl)bicyclo[3.1.0]hexane (191). Starting with 186 (250.0 mg, 1.04 

mmol) using general procedure 4.3.1.1 (cyclisation time overnight), and after flash 

chromatography using heptane/EtOAc gradient, the title compound was obtained as 

a colourless solid (209.4 mg, 0.59 mmol, 57%). MS: (ionspray) m/z 300.1 [M-t-

Bu+H]+, 356.2 [M+H]+, 378.3 [M+Na]+. 1H NMR (300 MHz, CDCl3): δ 7.91 (d, J = 8.2 

Hz, 2H, Ph), 7.26 (d, 2H, Ph), 4.62 (br s, 1 H, NH), 4.26 (br s, 1H, H-2), 2.40 (s, 3H, 

Me(Ph)), 2.23 (br s, 2H, H-1, H-5), 2.05-1.93 (m, 3H, H-6, H-4a, H-4b), 1.68-1.55 (m, 

2H, H-3a, H-3b), 1.46 (s, 9H, Boc). 
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192  
 

rac-(1S,2R,5R,6S)-2-(tert-Butoxycarbonyl)amino-6-(3-pyridinyl-1,2,4-oxadiazol-
5-yl)bicyclo[3.1.0]hexane (192). Starting with 186 (250.0 mg, 1.04 mmol) using 

general procedure 4.3.1.1 (cyclisation time overnight), and after flash 

chromatography using heptane/EtOAc gradient, the title compound was obtained as 

a colourless solid (203.1 mg, 0.59 mmol, 57%). MS: (ionspray) m/z 287.1 [M-t-

Bu+H]+, 343.2 [M+H]+, 365.3 [M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.77-8.75 (m, 

2H, Ph), 7.90-7.88 (m, 2H, Ph), 4.65 (br s, 1H, NH), 4.27 (br s, 1H, H-2), 2.26 (br s, 
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2H, H-1, H-5), 2.10-1.96 (m, 3H, H-6, H-4a, H-4b), 1.72-1.56 (m, 2H, H-3a, H-3b), 

1.46 (s, 9H, Boc). 
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193  
 
rac-(1S,2R,5R,6S)-2-Amonium-6-(3-phenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane Trifluoroacetate (193). Starting with 188 (113.3 mg, 0.33 

mmol) using general procedure 4.3.1.2 (reaction time 6 h), and after crystallization 

with DCM/n-Hex the title compound was obtained as a white solid (72.8 mg, 0.20 

mmol, 62%). MS: (ionspray) m/z 242.3 [M-TFA+H]+. 1H NMR (300 MHz, CDCl3): δ 

8.04-8.01 (m, 2H, Ph), 7.57-7.50 (m, 3H, Ph), 3.94-3.91 (m, 1H, H-2), 2.44-2.33 (m, 

3H, H-1, H-5, H-6), 2.31-2.09 (m, 2H, H-4a, H-4b), 1.94-1.83 (m, 2H, H-3a, H-3b). 
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rac-(1S,2R,5R,6S)-2-Amonium-6-(3-p-methoxyphenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane Trifluoroacetate  (194). Starting with 189 (128.0 mg, 0.38 

mmol) using general procedure 4.3.1.2 (reaction time 6 h), and after recrystallisation 

with DCM/ n-Hex the title compound was obtained as a colourless solid (129.1 mg, 

0.33 mmol, 89%). MS: (ionspray) m/z 272.1 [M-TFA+H]+. 1H NMR (300 MHz, 

CDCl3): δ 7.84 (br d, J = 8.8 Hz, 2H, Ph), 6.94 (br d, 2H, Ph), 3.80-3.76 (m, 4H, H-2, 
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OMe), 2.28-2.20 (m, 3H, H-1, H-5, H-6), 2.16-1.94 (m, 2H, H-4a, H-4b), 1.79-1.71 

(m, 2H, H-3a, H-3b). 
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rac-(1S,2R,5R,6S)-2-Amonium-6-(3-p-chlorophenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane Trifluoroacetate  (195). Starting with 190 (110.0 mg, 0.293 

mmol) using general procedure 4.3.1.2 (reaction time 5 h), and after recrystallisation 

with DCM/n-Hex the title compound was obtained as a colourless solid (112.3 mg, 

0.288 mmol, 98%). MS: (ionspray) m/z 276.1 [M-TFA+H]+. 1H NMR (300 MHz, 

CDCl3): δ 7.90 (br d, J = 8.5 Hz, 2H, Ph), 7.43 (br d, 3H, Ph), 3.80 (br d, 1H, H-2), 

2.30-2.22 (m, 2H, H-1, H-5), 2.18-1.96 (m, 3H, H-6, H-4a, H-4b), 1.79-1.74 (m, 2H, 

H-3a, H-3b). Anal. Calcd. for C16H15ClF3N3O3 (389.76): C, 49.31; H, 3.88; N, 10.78. 

Found: C, 49.11; H, 3.90; N, 10.71. 
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196  
 
rac-(1S,2R,5R,6S)-2-Amonium-6-(3-p-methylphenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane Trifluoroacetate  (196). Starting with 191 (165.0 mg, 0.46 

mmol) using general procedure 4.3.1.2 (reaction time 5 h), and after recrystallisation 

with DCM/n-Hex the title compound was obtained as colourless crystals (131.2 mg, 
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0.36 mmol, 77%). m.p. 218.9-219.4 ºC. MS: (ionspray) m/z 256.4 [M-TFA+H]+. 1H 

NMR (300 MHz, CDCl3): δ 7.91 (br d, J = 8.2 Hz, 2H, Ph), 7.34 (br d, 2H, Ph), 3.92 

(br d, 1H, H-2), 2.45-2.32 (m, 6H, H-1, H-5, H-6, Me(Ph)), 2.28-2.06 (m, 2H, H-4a, H-

4b), 1.93-1.82 (m, 2H, H-3a, H-3b). 
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197  
 

rac-(1S,2R,5R,6S)-2-Amonium-6-(3-pyridinyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane Trifluoroacetate  (197). Starting with 192 (125.0 mg, 0.365 

mmol) using general procedure 4.3.1.2 (reaction time 5 h), and after recrystallisation 

with EtOAc/n-Hex the title compound was obtained as a colourless solid (117.2 mg, 

0.329 mmol, 90%). MS: (ionspray) m/z 243.1 [M-TFA+H]+. 1H NMR (300 MHz, 

CDCl3): δ 8.65-8.63 (m, 2H, Py), 7.94-7.92 (m, 2H, Py), 3.81 (br d, 1H, H-2), 2.36 (t, 

1H, J1,6 ≈ J5,6 ≈ 3.2 Hz, H-6), 2.33-2.24 (m, 2H, H-1, H-5), 2.20-1.97 (m, 2H, H-4a, H-

4b), 1.81-1.73 (m, 2H, H-3a, H-3b). 
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198  
 
rac-(1S,2R,5R,6S)-2-N-Acetyl-amino-6-(3-p-methoxyphenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (198). Starting with 193 (35.0 mg, 0.099 mmol) using 

general procedure 4.3.1.3 (reaction time 2 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a white solid (27.9 mg, 
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0.098 mmol, 99%). MS: (ionspray) m/z 284.1 [M+H]+. 1H NMR (300 MHz, CDCl3): δ 

8.06-7.97 (m, 2H, Ph), 7.53-7.41 (m, 3H, Ph), 5.70 (br s, 1 H, NH), 4.52 (t, 1H, J2,3 = 

6.3 Hz, H-2), 2.25 (br s, 2H, H-1, H-5), 2.12-1.95 (m, 6H, H-4a, H-4b, H-6, CH3 (Ac)), 

1.73-1.57 (m, 2H, H-3a, H-3b). 
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rac-(1S,2R,5R,6S)-2-N-Acetyl-amino-6-(3-p-methoxyphenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (199). Starting with 194 (40.0 mg, 0.104 mmol) using 

general procedure 4.3.1.3 (reaction time 2 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a white waxy solid 

(32.3 mg, 0.103 mmol, 99%). MS: (ionspray) m/z 314.0 [M+H]+, 336.3 [M+Na]+. 1H 

NMR, COSY, HMQC (300 MHz, CDCl3): δ 7.96 (br d, J = 8.9 Hz, 2H, Ph), 6.98-6.95 

(m, 2H, Ph), 5.57 (br d, 1 H, J2,NH = 6.8 Hz, NH), 4.52 (t, 1H, J2,3 = 6.7 Hz, H-2), 3.86 

(s, 3H, OCH3), 2.23-2.20 (m, 2H, H-1, H-5), 2.06 (t, 1H, J5,6 ≈ J1,6 ≈ 2.7 Hz), 2.04-

2.00 (m, 5H, H-4a, H-4b, CH3 (Ac)), 1.73-1.53 (m, 2H, H-3a, H-3b). 
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rac-(1S,2R,5R,6S)-2-N-Acetyl-amino-6-(3-p-chlorophenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (200). Starting with 195 (40.0 mg, 0.103 mmol) using 

general procedure 4.3.1.3 (reaction time 2 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a colourless solid (31.3 
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mg, 0.099 mmol, 96%). MS: (ionspray) m/z 318.1 [M+H]+. 1H NMR (300 MHz, 

CDCl3): δ 7.95 (br d, J = 8.6 Hz, 2H, Ph), 7.44 (br d, 2H, Ph), 5.58 (br s, 1 H, NH), 

4.52 (t, 1H, J2,3 = 6.2 Hz, H-2), 2.24 (br s, 2H, H-1, H-5), 2.08-1.99 (m, 6H, H-4a, H-

4b, H-6, Me(Ac)), 1.81-1.56 (m, 2H, H-3a, H-3b). 
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201  
 

rac-(1S,2R,5R,6S)-2-N-Acetyl-amino-6-(3-p-methylphenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (201). Starting with 196 (40.0 mg, 0.108 mmol) using 

general procedure 4.3.1.3 (reaction time 3 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a colourless solid (32.1 

mg, 0.108 mmol, 100%). MS: (ionspray) m/z 298.2 [M+H]+. 1H NMR (300 MHz, 

CDCl3): δ 7.95 (br d, J = 8.1 Hz, 2H, Ph), 7.27 (br d, 2H, Ph), 5.70 (br s, 1 H, NH), 

4.52 (t, 1H, J2,3a = 6.3 Hz, H-2), 2.44-2.38 (m, 4H, H-1, Me(Ph)), 2.24 (br s, 2H, H-1, 

H-5), 2.08-1.96 (m, 6H, H-4a, H-4b, H-6, Me(Ac)), 1.76-1.57 (m, 2H, H-3a, H-3b). 
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202  
 

rac-(1S,2R,5R,6S)-2-N-Acetyl-amino-6-(3-pyridinyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (202). Starting with 197 (40.0 mg, 0.112 mmol) using 

general procedure 4.3.1.3 (reaction time 3 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a colourless solid (31.4 

mg, 0.110 mmol, 98%). MS: (ionspray) m/z 285.1 [M+H]+. 1H NMR (300 MHz, 
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CDCl3): δ 8.80 (br d, J = 5.5 Hz, 2H, Ph), 8.00 (br d, 2H, Ph), 5.54 (br s, 1 H, NH), 

4.54 (t, 1H, J2,3a = 6.2 Hz, H-2), 2.29 (br s, 2H, H-1, H-5), 2.11 (t, 1H, J5,6 ≈ J1,6 ≈ 3.1, 

H-6), 2.08-2.01 (m, 5H, H-4a, H-4b, Me (Ac)), 1.73-1.62 (m, 2H, H-3a, H-3b). 
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203  
 

rac-(1S,2R,5R,6S)-2-N-Mesyl-amino-6-(3-phenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (203). Starting with 193 (35.0 mg, 0.099 mmol) using 

general procedure 4.3.1.4 (reaction time 2 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a colourless solid (30.2 

mg, 0.095 mmol, 96%). MS: (ionspray) m/z 320.1 [M+H]+. 1H NMR (300 MHz, 

CDCl3): δ 8.05-8.00 (m, 2H, Ph), 7.50-7.43 (m, 3H, Ph), 4.50 (d, 1 H, J2,NH = 8.2 Hz, 

NH), 4.13 (dd, 1H, J2,3b = 6.4 Hz, H-2), 3.04 (s, 3H, Me(Ms)), 2.35-2.28 (m, 2H, H-1, 

H-5), 2.10-2.03 (m, 3H, H-4a, H-4b, H-6), 1.85 (dd, 1H, J3,4 = 7.0, J3a,3b = 14.8 Hz, H-

3a), 1.70-1.60 (m, 1H, H-3b). 
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rac-(1S,2R,5R,6S)-2-N-Mesyl-amino-6-(3-p-methoxyphenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (204). Starting with 194 (40.0 mg, 0.104 mmol) using 

general procedure 4.3.1.4 (reaction time 2 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a colourless solid (35.1 

mg, 0.101 mmol, 97%). MS: (ionspray) m/z 350.3 [M+H]+. 1H NMR, COSY, HSQC 
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(400 MHz, CDCl3): δ 7.96 (br d, 2H, J = 9.0 Hz, Ph), 6.97 (br d, 2H, Ph), 4.49 (d, 1 H, 

J2,NH = 8.4 Hz, NH), 4.13 (dd, 1H, J2,3b = 6.3 Hz, H-2), 3.86 (s, 3H, OMe), 3.04 (s, 3H, 

Me(Ms)), 2.32-2.27 (m, 2H, H-1, H-5), 2.11-1.99 (m, 3H, H-4a, H-4b, H-6), 1.85 (dd, 

1H, J3,4 = 6.8, J3a,3b = 15.0 Hz, H-3a), 1.70-1.60 (m, 1H, H-3b). 
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rac-(1S,2R,5R,6S)-2-N-Mesyl-amino-6-(3-p-chlorophenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (205). Starting with 195 (40.0 mg, 0.103 mmol) using 

general procedure 4.3.1.4 (reaction time 2 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a colourless solid (32.4 

mg, 0.092 mmol, 89%). MS: (ionspray) m/z 354.2 [M+H]+. 1H NMR (300 MHz, 

CDCl3): δ 7.96 (d, 2H, J = 8.4 Hz, Ph), 7.44 (br d, 2H, Ph), 4.48 (d, 1 H, J2,NH = 8.2 

Hz, NH), 4.13 (dd, 1H, J2,3b = 6.3 Hz, H-2), 3.04 (s, 3H, Me(Ms)), 2.32-2.29 (m, 2H, 

H-1, H-5), 2.08-2,02 (m, 3H, H-4a, H-4b, H-6), 1.85 (dd, 1H, J3,4 = 6.5, J3a,3b = 14.7 

Hz, H-3a), 1.73-1.61 (m, 1H, H-3b). 

 

NH
S

O

H

H

O

O N

N

206  
 

rac-(1S,2R,5R,6S)-2-N-Mesyl-amino-6-(3-p-methylphenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (206). Starting with 196 (40.0 mg, 0.108 mmol) using 

general procedure 4.3.1.4 (reaction time 2 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a colourless solid (35.6 
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mg, 0.107 mmol, 99%). MS: (ionspray) m/z 334.2 [M+H]+. 1H NMR (300 MHz, 

CDCl3): δ 7.91 (d, 2H, J = 8.1 Hz, Ph), 7.27 (br d, 2H, Ph), 4.51 (d, 1 H, J2,NH = 8.1 

Hz, NH), 4.12 (dd, 1H, J2,3b = 6.4 Hz, H-2), 3.04 (s, 3H, Me(Ms)), 2.41 (s, 3H, 

Me(Ph)), 2.32-2.27 (m, 2H, H-1, H-5), 2.08-2,01 (m, 3H, H-4a, H-4b, H-6), 1.85 (dd, 

1H, J3,4 = 6.6, J3a,3b = 14.3 Hz, H-3a), 1.72-1.58 (m, 1H, H-3b). 
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207  
 

rac-(1S,2R,5R,6S)-2-N-Mesyl-amino-6-(3-p-pyridinyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (207). Starting with 197 (10.3 mg, 0.029 mmol) using 

general procedure 4.3.1.4 (reaction time 2 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a colourless solid (7.3 

mg, 0.0.023 mmol, 79%). MS: (ionspray) m/z 321.1 [M+H]+. 1H NMR (300 MHz, 

CDCl3): δ 8.72-8.69 (m, 2H, Py), 8.02-7.98 (m, 2H, Ph), 4.53 (d, 1 H, J2,NH = 8.3 Hz, 

NH), 4.12 (dd, 1H, J2,3b = 6.4 Hz, H-2), 3.03 (s, 3H, Me(Ms)), 2.31-2.25 (m, 2H, H-1, 

H-5), 2.06-2.02 (m, 3H, H-4a, H-4b, H-6), 1.85 (dd, 1H, J3,4 = 6.6, J3a,3b = 14.3 Hz, H-

3a), 1.71-1.58 (m, 1H, H-3b). 

4.3.3.2 Library on rac-(1S,2S,5R,6S)-2-(tert-Butoxycarbonyl)amino-6-
carboxylic acid-bicyclo[3.1.0]hexane (187) 
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rac-(1S,2S,5R,6S)-2-(tert-Butoxycarbonyl)amino-6-(3-phenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (208). Starting with 187 (210.0 mg, 0.87 mmol) using 

general procedure 4.3.1.1 (cyclisation: overnight at 100 ºC), and after flash 

chromatography using heptane/EtOAc gradient, the title compound was obtained as 

light yellow crystals (141.9 mg, 0.42 mmol, 48%). m.p. 148.2-148.5 ºC. MS: 

(ionspray) m/z 286.0 [M-t-Bu+H]+, 342.1 [M+H]+, 364.4 [M+Na]+. 1H NMR (300 MHz, 

CDCl3): δ 8.04-8.01 (m, 2H, Ph), 7.48-7.45 (m, 3H, Ph), 4.62 (br s, 1 H, NH), 4.45 (br 

s, 1H, H-2), 2.41 (ddd, 1H, J1,2 = 6.9 Hz, J1,6 ≈ J1,5 ≈ 3.4 Hz, H-1), 2.28 (t, 1H, J1,6 ≈ 

J5,6 ≈ 3.1 Hz, H-6), 2.20-1.92 (m, 4H, H-3a, H-4a, H-4b, H-5), 1.44 (s, 9H, Boc), 1.08-

0.93 (m, 1H, H-3b). 
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rac-(1S,2S,5R,6S)-2-(tert-Butoxycarbonyl)amino-6-(3-p-methoxyphenyl-1,2,4-
oxadiazol-5-yl)bicyclo[3.1.0]hexane (209). Starting with 187(250.0 mg, 1.04 mmol) 

using general procedure 4.3.1.1 (cyclisation: 5 h at 100 ºC), and after flash 

chromatography using heptane/EtOAc gradient, the title compound was obtained as 

a colourless solid (258.4 mg, 0.70 mmol, 67%). MS: (ionspray) m/z 316.3 [M-t-

Bu+H]+, 372.4 [M+H]+, 394.3 [M+Na]+. 1H NMR (300 MHz, CDCl3): δ 7.96 (br d, J = 

8.9, 2H, Ph), 6.97 (br d, 2H, Ph), 4.63 (br s, 1H, NH), 4.44 (br s, 1H, H-2), 2.39 (ddd, 

1H, J1,2 = 6.9 Hz, J1,6 ≈ J1,5 ≈ 3.3 Hz, H-1), 2.26 (t, 1H, J1,6 ≈ J5,6 ≈ 3.1 Hz, H-6), 2.19-

1.91 (m, 4H, H-3a, H-4a, H-4b, H-5), 1.44 (s, 9H, Boc), 1.07-0.93 (m, 1H, H-3b). 
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rac-(1S,2S,5R,6S)-2-(tert-Butoxycarbonyl)amino-6-(3-p-chlorophenyl-1,2,4-
oxadiazol-5-yl)bicyclo[3.1.0]hexane (210). Starting with 187 (250.0 mg, 1.04 

mmol) using general procedure 4.3.1.1 (cyclisation: 5 h at 100 ºC), and after flash 

chromatography using heptane/EtOAc gradient, the title compound was obtained as 

colourless crystals (248.4 mg, 0.66 mmol, 64%). MS: (ionspray) m/z 320.3 [M-t-

Bu+H]+, 376.5 [M+H]+, 398.1 [M+Na]+. 1H NMR (300 MHz, CDCl3): δ 7.97 (br d, J = 

8.6 Hz, 2H, Ph), 7.44 (br d, 2H, Ph), 4.62 (br s, 1 H, NH), 4.44 (br s, 1H, H-2), 2.41 

(ddd, 1H, J1,2 = 6.9 Hz, J1,6 ≈ J1,5 ≈ 3.3 Hz, H-1), 2.26 (t, 1H, J1,6 ≈ J5,6 ≈ 3.1 Hz, H-6), 

2.19-1.92 (m, 4H, H-3a, H-4a, H-4b, H-5), 1.44 (s, 9H, Boc), 1.07-0.93 (m, 1H, H-

3b). 
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211  
 

rac-(1S,2S,5R,6S)-2-(tert-Butoxycarbonyl)amino-6-(3-p-methylphenyl-1,2,4-
oxadiazol-5-yl)bicyclo[3.1.0]hexane (211). Starting with 187 (250.0 mg, 1.04 

mmol) using general procedure 4.3.1.1 (cyclisation: 7 h at 100 ºC), and after flash 

chromatography using heptane/EtOAc gradient, the title compound was obtained as 

colourless solid (190.2 mg, 0.54 mmol, 52%). MS: (ionspray) m/z 300.4 [M-t-Bu+H]+, 

356.3 [M+H]+, 378.3 [M+Na]+. 1H NMR, COSY, HSQC (400 MHz, CDCl3): δ 7.91 (br 
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d, J = 8.1 Hz, 2H, Ph), 7.27 (br d, 2H, Ph), 4.63 (br s, 1 H, NH), 4.44 (br s, 1H, H-2), 

2.42-2.37 (m, 4H, H-1, Me(Ph)), 2.27 (t, 1H, J1,6 ≈ J5,6 ≈ 2.8 Hz, H-6), 2.19-1.94 (m, 

4H, H-3a, H-4a, H-4b, H-5), 1.44 (s, 9H, Boc), 1.07-0.93 (m, 1H, H-3b). Anal. Calcd. 

for C20H25N3O3 (355.44): C, 67.58; H, 7.09; N, 11.82. Found: C, 67.26; H, 6.86; N, 

11.78. 
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rac-(1S,2S,5R,6S)-2-(tert-Butoxycarbonyl)amino-6-(3-pyridinyl-1,2,4-oxadiazol-
5-yl)bicyclo[3.1.0]hexane (212). Starting with 187 (200.0 mg, 0.83 mmol) using 

general procedure 4.3.1.1 (cyclisation: overnight at 100 ºC), and after flash 

chromatography using heptane/EtOAc gradient, the title compound was obtained as 

colourless solid (114.6 mg, 0.33 mmol, 40%). MS: (ionspray) m/z 287.0 [M-t-Bu+H]+, 

343.3 [M+H]+, 365.3 [M+Na]+. 1H NMR (300 MHz, CDCl3): δ 8.77-8.75 (m, 2H, Ph), 

7.91-7.88 (m, 2H, Ph), 4.65 (d, 1 H, J2,NH = 7.6 Hz, NH), 4.45 (br s, 1H, H-2), 2.44 

(ddd, 1H, J1,2 = 6.8 Hz, J1,6 ≈ J1,5 ≈ 3.4 Hz, H-1), 2.29 (t, 1H, J1,6 ≈ J5,6 ≈ 3.1 Hz, H-6), 

2.22-1.92 (m, 4H, H-3a, H-4a, H-4b, H-5), 1.44 (s, 9H, Boc), 1.09-0.94 (m, 1H, H-

3b). 
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rac-(1S,2S,5R,6S)-2-Amonium-6-(3-phenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane Trifluoroacetate  (213). Starting with 208 (100.0 mg, 0.29 

mmol) using general procedure 4.3.1.2 (reaction time 5 h), and after flash 

chromatography eluting with EtOAc/MeOH gradient the title compound was obtained 

as light yellow solid (101.2 mg, 0.28 mmol, 97%). MS: (ionspray) m/z 242.3 [M-

TFA+H]+. 1H NMR (300 MHz, MeOD): δ 8.04-8.01 (m, 2H, Ph), 7.56-7.50 (m, 3H, 

Ph), 4.11-4.04 (m, 1H, H-2), 2.68 (t, 1H, J1,6 ≈ J5,6 ≈ 3.2 Hz, H-3), 2.47 (ddd, 1H, J1,5 

= 4.2 Hz, J1,2 = 6.7 Hz, H-1), 2.39-2.34 (m, 1H, H-5), 2.23-2.13 (m, 3H, H-3a, H-4a, 

H-4b), 1.49-1.33 (m, 1H, H-3b). 
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rac-(1S,2S,5R,6S)-2-Amonium-6-(3-p-methoxyphenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane Trifluoroacetate  (214). Starting with 209 (120.1 mg, 0.32 

mmol) using general procedure 4.3.1.2 (reaction time 5 h), and after flash 

chromatography using EtOAc/MeOH gradient, the title compound was obtained as a 

yellow oil (101.3 mg, 0.26 mmol, 81%). MS: (ionspray) m/z 272.2 [M-TFA+H]+. 1H 

NMR (300 MHz, MeOD): δ 7.98-7.93 (m, 2H, Ph), 7.08-7.03 (m, 2H, Ph), 4.12-4.00 

(m, 1H, H-2), 2.66 (t, 1H, J1,6 ≈ J5,6 ≈ 3.1 Hz, H-6), 2.45 (ddd, 1H, J1,5 = 4.0 Hz, J1,2 = 

6.7 Hz, H-1),2.36-2.31 (m, 1H, H-5), 2.23-2.13 (m, 3H, H-3a, H-4a, H-4b), 1.47-1.31 

(m, 1H, H-3b). 
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rac-(1S,2S,5R,6S)-2-Amonium-6-(3-p-chlorophenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane Trifluoroacetate (215). Starting with 210 (204.6 mg, 0.54 

mmol) using general procedure 4.3.1.2 (reaction time 5 h), and after recrystallisation 

with DCM/n-Hex the title compound was obtained as a colourless solid (177.4 mg, 

0.46 mmol, 84%). MS: (ionspray) m/z 276.1 [M-TFA+H]+. 1H NMR (300 MHz, 

MeOD): δ 8.01 (br d, 2H, J = 8.5 Hz, Ph), 7.54 (br d, 2H, Ph), 4.10-4.03 (m, 1H, H-2), 

2.68 (br t, 1H, J1,6 ≈ J5,6 ≈ 3.0 Hz, H-6), 2.47-2.43 (m, 1H, H-1), 2.37-2.32 (m, 1H, H-

5), 2.21-2.12 (m, 3H, H-3a, H-4a, H-4b), 1.46-1.31 (m, 1H, H-3b). 
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rac-(1S,2S,5R,6S)-2-Amonium-6-(3-p-methylphenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane Trifluoroacetate  (216). Starting with 211 (150.0 mg, 0.42 

mmol) using general procedure 4.3.1.2 (reaction time 5 h), and after flash 

chromatography using EtOAc/MeOH gradient, the title compound was obtained as 

light yellow solid (111.1 mg, 0.30 mmol, 71%). MS: (ionspray) m/z 256.4 [M-

TFA+H]+. 1H NMR, COSY, HMSQ (400 MHz, MeOD): δ 7.90 (br d, J = 8.2 Hz, 2H, 

Ph), 7.34 (br d, 2H, Ph), 4.09-4.02 (m, 1H, H-2), 2.66 (t, 1H, J1,6 ≈ J5,6 ≈ 3.2 Hz, H-6), 
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2.47-2.41 (m, 4H, H-1, Me(Ph)), 2.36-2.30 (m, 1H, H-5), 2.22-2.11 (m, 3H, H-3a, H-

4a, H-4b), 1.46-1.30 (m, 1H, H-3b). 
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rac-(1S,2S,5R,6S)-2-Amonium-6-(3-piridinyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane Trifluoroacetate (217). Starting with 212 (188.8 mg, 0.55 

mmol) using general procedure 4.3.1.2 (reaction time 5 h), and after flash 

chromatography using EtOAc/MeOH gradient, the title compound was obtained as 

light yellow viscous oil (166.2 mg, 0.47 mmol, 84%). MS: (ionspray) m/z 243.2 [M-

TFA+H]+. 1H NMR (300 MHz, MeOD) δ 8.69-8.66 (m, 2H, Py), 7.99-7.97 (m, 2H, Py), 

4.08-4.02 (m, 1H, H-2), 2.65 (t, 1H, J1,6 ~ J5,6 ~ 3.3 Hz, H-6), 2.47-2.42 (m, 4H, H-1, 

Me(Ph)), 2.36-2.30 (m, 1H, H-5), 2.22-2.11 (m, 3H, H-3a, H-4a, H-4b), 1.47-1.32 (m, 

1H, H-3b). 
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rac-(1S,2S,5R,6S)-2-N-Acetyl-amino-6-(3-phenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane. (218). Starting with 213 (35.0 mg, 0.099 mmol) using 

general procedure 4.3.1.3 (reaction time 2 h), and after flash chromatography using 

EtOAc/MeOH gradient, the title compound was obtained as colourless crystals (17.5 

mg, 0.062 mmol, 63%). m.p. 158.9-159.4 ºC. MS: (ionspray) m/z 284.1 [M+H]+. 1H 
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NMR (300 MHz, CDCl3): δ 8.04-8.01 (m, 2H, Ph), 7.50-7.44 (m, 3H, Ph), 5.63 (br s, 1 

H, NH), 4.75-4.65 (m, 1H, H-2), 2.45-2.39 (m, 1H, H-1), 2.30 (t, 1H, J1,6 ≈ J5,6 ≈ 3.0 

Hz, H-6), 2.23-2.10 (m, 2H, H5, H3a), 2.06-1.98 (m, 5H, H-4a, H-4b, Me (Ac)), 1.07-

0.93 (m, 1H, H-3b). 
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rac-(1S,2S,5R,6S)-2-N-Acetyl-amino-6-(3-p-methoxyphenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane. (219). Starting with 214 (45.5 mg, 0.118 mmol) using 

general procedure 4.3.1.3 (reaction time 2 h), and after flash chromatography using 

EtOAc/MeOH gradient, the title compound was obtained as a light brown oil (35.8 

mg, 0.114 mmol, 97%). MS: (ionspray) m/z 314.0 [M+H]+. 1H NMR (300 MHz, 

CDCl3): δ 7.96 (br d, 2H, J = 8.9 Hz, Ph), 6.97 (br d, 2H, Ph),  5.63 (br s, 1 H, NH), 

4.74-4.65 (m, 1H, H-2), 3.86 (s, 3H, OMe(Ph)), 2.43-2.38 (m, 1H, H-1), 2.28 (t, 1H, 

J1,6 ≈ J5,6 ≈ 3.0 Hz, H-6), 2.22-2.09 (m, 2H, H5, H3a), 2.05-1.96 (m, 5H, H-4a, H-4b, 

Me (Ac)), 1.07-0.92 (m, 1H, H-3b). 
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rac-(1S,2S,5R,6S)-2-N-Acetyl-amino-6-(3-p-chlorophenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (220). Starting with 215 (37.3 mg, 0.096 mmol) using 

general procedure 4.3.1.3 (reaction time 2 h), and after flash chromatography using 
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EtOAc/MeOH gradient, the title compound was obtained as a colourless solid (29.7 

mg, 0.093 mmol, 98%). MS: (ionspray) m/z 318.1 [M+H]+. 1H NMR (300 MHz, 

CDCl3): δ 7.96 (br d, 2H, J = 8.6 Hz, Ph), 7.44 (br d, 2H, Ph), 5.70 (br d, 1 H, NH), 

4.75-4.65 (m, 1H, H-2), 2.45-2.40 (m, 1H, H-1), 2.29 (t, 1H, J1,6 ≈ J5,6 ≈ 3.0 Hz, H-6), 

2.22-2.09 (m, 2H, H5, H3a), 2.05-1.98 (m, 5H, H-4a, H-4b, Me (Ac)), 1.08-0.94 (m, 

1H, H-3b).  
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rac-(1S,2S,5R,6S)-2-N-Acetyl-amino-6-(3-p-methylphenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (221). Starting with 216 (32.8 mg, 0.089 mmol) using 

general procedure 4.3.1.3 (reaction time 2 h), and after flash chromatography using 

EtOAc/MeOH gradient, the title compound was obtained as a colourless solid (17.9 

mg, 0.060 mmol, 68%). MS: (ionspray) m/z 298.2 [M+H]+. 1H NMR (300 MHz, 

CDCl3): δ 7.91 (br d, 2H, J = 8.1 Hz, Ph), 7.27 (br d, 2H, Ph), 5.60 (br s, 1 H, NH), 

4.75-4.65 (m, 1H, H-2), 2.43-2.39 (m, 1H, H-1, Me(Ph)), 2.29 (t, 1H, J1,6 ≈ J5,6 ≈ 3.0 

Hz, H-6), 2.22-2.09 (m, 2H, H5, H3a), 2.06-1.96 (m, 5H, H-4a, H-4b, Me (Ac)), 1.07-

0.92 (m, 1H, H-3b). Anal. Calcd. for C17H19N3O2 (297.36): C, 68.67; H, 6.44; N, 

14.13. Found: C, 68.22; H, 6.38; N, 13.46. 
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rac-(1S,2S,5R,6S)-2-N-Acetyl-amino-6-(3-p-pyridinyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (222). Starting with 217 (45.6 mg, 0.128 mmol) using 
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general procedure 4.3.1.3 (reaction time 2 h), and after flash chromatography using 

EtOAc/MeOH gradient, the title compound was obtained as a light yellow viscous oil 

(36.2 mg, 0.127 mmol, 99%). MS: (ionspray) m/z 285.0 [M+H]+. 1H NMR (300 MHz, 

MeOD): δ 8.74 (br d, 2H, J = 5.9 Hz, Py), 8.02 (br d, 2H, Py), 4.66-4.58 (m, 1H, H-2), 

2.52 (t, 1H, J1,6 ≈ J5,6 ≈ 3.0 Hz, H-6), 2.44-2.40 (m, 1H, H-1), 2.23-2.19 (m, 1H, H-5), 

2.13-1.97 (m, 6H, H-3a, H-4a, H-4b, Me (Ac)), 1.30-1.14 (m, 1H, H-3b).  
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223  
 

rac-(1S,2S,5R,6S)-2-N-Mesyl-amino-6-(3-phenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (223). Starting with 213 (31.4 mg, 0.088 mmol) using 

general procedure 4.3.1.4 (reaction time 2 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a colourless solid (20.0 

mg, 0.063 mmol, 71%). MS: (ionspray) m/z 320.1 [M+H]+. 1H NMR (300 MHz, 

CDCl3): δ 8.04-8.00 (m, 2H, Ph), 7.52-7.43 (m, 3H, Ph), 4.63 (d, 1H, J2,NH = 7.3 Hz, 

NH), 4.35-4.25 (m, 1H, H-2), 3.00 (s, 3H, Me(Ms)), 2.48-2.43 (m, 1H, H-1), 2.36 (t, 

1H, J1,6 ≈ J5,6 ≈ 3.1 Hz, H-6), 2.26-1.94 (m, 4H, H-3a, H-4a, H-4b, H-5), 1.28-1.11 (m, 

1H, H-3b). 
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rac-(1S,2S,5R,6S)-2-N-Mesyl-amino-6-(3-p-methoxyphenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (224). Starting with 214 (45.5 mg, 0.118 mmol) using 
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general procedure 4.3.1.4 (reaction time 2 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a light yellow waxy 

solid (26.3 mg, 0.075 mmol, 64%). MS: (ionspray) m/z 350.4 [M+H]+. 1H NMR (300 

MHz, CDCl3): δ 7.96 (d, 2H, J = 8.9 Hz, Ph), 6.97 (d, 2H, Ph), 4.58 (br s, 1H, NH), 

4.34-4.25 (m, 1H, H-2), 3.86 (s, 3H, OMe), 3.00 (s, 3H, Me(Ms)), 2.47-2.42 (m, 1H, 

H-1), 2.34 (t, 1H, J1,6 ≈ J5,6 ≈ 3.0 Hz, H-6), 2.24-1.98 (m, 4H, H-3a, H-4a, H-4b, H-5), 

1.29-1.10 (m, 1H, H-3b). 
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rac-(1S,2S,5R,6S)-2-N-Mesyl-amino-6-(3-p-chlorophenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane. (225). Starting with 115 (93.1 mg, 0.239 mmol) using 

general procedure 4.3.1.4 (reaction time 2 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as light brown crystals 

(78.6 mg, 0.222 mmol, 93%). m.p. 159.8-160.4 ºC. MS: (ionspray) m/z 354.2 [M+H]+. 

1H NMR (300 MHz, CDCl3): δ 7.96 (d, 2H, J = 8.6 Hz, Ph), 7.44 (d, 2H, Ph), 4.67 (d, 

1H, J2,NH = 7.5 Hz, NH), 4.34-4.24 (m, 1H, H-2), 3.00 (s, 3H, Me(Ms)), 2.47-2.43 (m, 

1H, H-1), 2.36 (t, 1H, J1,6 ≈ J5,6 ≈ 3.0 Hz, H-6), 2.25-1.94 (m, 4H, H-3a, H-4a, H-4b, 

H-5), 1.25-1.11 (m, 1H, H-3b). 
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rac-(1S,2S,5R,6S)-2-N-Mesyl-amino-6-(3-p-methylphenyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (226). Starting with 216 (35.0 mg, 0.095 mmol) using 

general procedure 4.3.1.4 (reaction time 2 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a colourless solid (25.3 

mg, 0.076 mmol, 80%). MS: (ionspray) m/z 334.2 [M+H]+. 1H NMR (400 MHz, CDCl3, 

COSY, HSQC): δ 7.91 (d, 2H, J = 8.1 Hz, Ph), 7.27 (br d, 2H, Ph), 4.52 (d, 1H, J2,NH 

= 7.4 Hz, NH), 4.34-4.26 (m, 1H, H-2), 3.00 (s, 3H, Me(Ms)), 2.46-2.40 (m, 4H, H-1, 

Me(Ph)), 2.34 (t, 1H, J1,6 ≈ J5,6 ≈ 3.1 Hz, H-6), 2.25-1.96 (m, 4H, H-3a, H-4a, H-4b, 

H-5), 1.28-1.12 (m, 1H, H-3b). 
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227  
 

rac-(1S,2S,5R,6S)-2-N-Mesyl-amino-6-(3-p-pyridinyl-1,2,4-oxadiazol-5-
yl)bicyclo[3.1.0]hexane (227). Starting with 217 (10.9 mg, 0.031 mmol) using 

general procedure 4.3.1.4 (reaction time 3 h), and after flash chromatography using 

heptane/EtOAc gradient, the title compound was obtained as a colourless solid (6.2 

mg, 0.019 mmol, 63%). MS: (ionspray) m/z 321.2 [M+H]+. 1H NMR (400 MHz, 

CDCl3): δ 8.73-8.61 (m, 2H, Py), 8.08-8.06 (m, 2H, Py), 4.51 (d, 1H, J2,NH = 7.5 Hz, 

NH), 4.34-4.25 (m, 1H, H-2), 3.02 (s, 3H, Me(Ms)), 2.47-2.41 (m, 1H, H-1), 2.34 (t, 

1H, J1,6 ≈ J5,6 ≈ 3.3 Hz, H-6), 2.26-1.96 (m, 4H, H-3a, H-4a, H-4b, H-5), 1.28-1.11 (m, 

1H, H-3b). 
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4.3.4 Triazole Library on Methyl 2,4-Anhydro-5-azido-5-deoxy-D-
ribonate (88) 
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Methyl [(2R,3R,4R)-3-hydroxy-4-{[4-(phenyl)-triazol-1-yl]methyl}oxetan-2-
yl]carboxylate (228). Procedure A: To a solution of 88 (20.0 mg, 0.107 mmol) in 

DMF (0.6 mL) was added phenylacetylene (13.0 mL, 0.118 mmol), sodium 

ascorbate (0.5 mg, 0.002 mmol) and CuSO4.5H2O (0.5 mg, 0.003 mmol) and the 

mixture was stirred at rt for 3h. Water was added and the product was extracted with 

3x diethyl ether. The organic layers were combined, dried over MgSO4, filtered and 

concentrated. The product was purified by recrystallisation with diethylether/n-Hex to 

afford the desired compound as a colourless solid (23.9 mg, 0.082 mmol, 77%). 

Procedure B: To a solution of methyl ester 88 (24.6 mg, 0.13 mmol) in DMF (0.6 mL) 

was added phenylacetylene (16.1 mL, 0.15 mmol), sodium ascorbate (0.6 mg, 0.002 

mmol) and CuSO4.5H2O (0.6 mg, 0.003 mmol) and the mixture was microwaved at 

80 °C for 2 min. Water was added and the product was extracted with 3x diethyl 

ether. The organic layers were combined, dried over MgSO4, filtered and 

concentrated. The product was purified by crystallization with ether/n-Hex to afford 

the desired compound as a colourless solid (27.7 mg, 0.096 mmol, 73%). 

Analytical data: [ ] 0.20
Dα 139.3 (c 0.352, CHCl3. MS: (ionspray) m/z 290.1 [M+H]+, 312.1 

[M+Na]+.). 1H NMR (300 MHz, CDCl3): δ 8.22 (s, 1H, CH(triazole)), 7.82 (d, 2H, J = 

7.8 Hz, Ph), 7.45-7.31 (m, 3H, Ph), 5.54 (d, 1H, J3,OH = 5.4 Hz, OH-3), 5.07 (dt, 1H, 

J3,4 = 5.5 Hz, J4,5a ≈ J4,5b ≈ 3.3 Hz, H-4), 5.02 (d, 1H, J2,3 = 5.9 Hz, H-2), 4.98 

(A(ABX), 1H, H-5a), 4.61 (B(ABX), 1H, J5a,5b = 15.1 Hz, H-5b), 4.39 (q, 1H, H-3),  

3.52 (s, 3H, OMe). 
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Methyl [(2R,3R,4R)-4-{[4-(cyclohexyl)-triazol-1-yl]-3-hydroxymethyl}oxetan-2-
yl]carboxylate (232). To a solution of the azide 88 (20.9 mg, 0.112 mmol) and 1-

ethynylcyclohexane (16.19 µL, 0.124 mmol) in DMF (0.5 mL) at rt was added a aq 

soln of sodium ascorbate (0.1 M, 0.1 mL) and CuSO4.5H20 (0.1 M, 0.1 mL). A 

suspension was formed and the mixture was stirred for 1 h while it became a clear 

solution. The mixture was injected directly on preparative HPLC and after fraction 

evaporation the title compound was obtained as colourless oil (20.4 mg, 0.069 mmol, 

62%). MS: (ionspray) m/z 296.1 [M+H]+, 318.1 [M+Na]+. 1H NMR (300 MHz, CDCl3): 

δ 7.64 (s, 1H, CH(triazole)), 5.02-4.97 (m, 2H, H-2, H-4), 4.86 (A(ABX), 1H, J4,5a = 

3.8 Hz, J5a,5b = 15.0 Hz, H-5a), 4.53 (B(ABX), 1H, H-5b), 4.32 (t, 1H, J2,3 ≈ J3,4 ≈  5.9 

Hz, H-3),  3.69 (s, 3H, OMe), 2.70 (br s, 1H, CH(cyclohexyl)), 2.02-1.70 (m, 5H, 

CH2(cyclohexyl)), 1.45-1.22 (m, 5H, CH2(cyclohexyl)). 
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233  
 

Methyl [(2R,3R,4R)-3-hydroxy-4-{[4-(4-methylphenyl)-triazol-1-
yl]methyl}oxetan-2-yl]carboxylate (233). Using GP 4.3.1.5 with 4-ethynyltoluene 
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the desired compound was obtained in 77% yield. [ ] 0.20
Dα 130.3 (c 0.344, CHCl3). MS 

(HPLC-MS): m/z 304.1 [M+H]+, 367.1 [M+Na+MeCN]+. 1H NMR (300 MHz, CDCl3): δ 

8.09 (s, 1H, CH(triazole)), 7.72 (d, 2H, J = 5.8 Hz, Ph), 7.24 (d, 2H, Ph), 5.03-4.97 

(m, 2H, H-2, H-4), 4.89 (A(ABX), 1H, J4,5a = 3.5 Hz, J5a,5b = 15.0 Hz, H-5a), 4.60 

(B(ABX), 1H, J4,5a = 3.6 Hz, H-5b), 4.42 (t, 1H, J2,3 ≈ J3,4 ≈  5.4 Hz, H-3),  3.56 (s, 3H, 

OMe), 2.38 (s, 3H, Me(Ph)). 
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234  
 

Methyl [(2R,3R,4R)-3-hydroxy-4-{[4-(2,5-dimethylphenyl)-triazol-1-
yl]methyl}oxetan-2-yl]carboxylate (234). Using GP 4.3.1.5 with 1-ethynyl-2,4-

dimethylbenzene the desired compound was obtained in 40% yield. [ ] 0.20
Dα 62.64 (c 

0.698, CHCl3). MS (HPLC-MS): m/z 318.1 [M+H]+, 381.1 [M+Na+MeCN]+. 1H NMR 

(300 MHz, CDCl3): δ 7.98 (s, 1H, CH(triazole)), 7.57 ( br s, 1H, Ph), 7.16;7.08 (AB, 

2H, Ja,b = 7.7 Hz, H-3’, H-4’, Ph), 5.06-5.01 (m, 1H, H-4), 4.99 (d, 1H, J2,3 = 5.9 Hz, 

H-2), 4.91 (A(ABX), 1H, J4,5a = 3.6 Hz, J5a,5b = 15.0 Hz, H-5a), 4.63 (B(ABX), 1H, J4,5b 

= 3.6 Hz, H-5b), 4.49 (t, 1H, J2,3 ≈ J3,4 ≈  5.7 Hz, H-3),  3.58 (s, 3H, OMe), 2.43 (s, 

3H, Me(Ph)), 2.36 (s, 3H, Me(Ph)). 
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Methyl [(2R,3R,4R)-3-hydroxy-4-{[4-(3-methoxyphenyl)-triazol-1-
yl]methyl}oxetan-2-yl]carboxylate (235). Using GP 4.3.1.5 with 1-ethynyl-3-

methoxybenzene but proceeding to purification by flash chromatography 

(heptane/EtOAc gradient), the desired compound was obtained in 95% yield as 

colourless oil. [ ] 0.20
Dα 142.01 (c 0.607, CHCl3). MS (HPLC-MS): m/z 320.1 [M+H]+, 

383.1 [M+Na+MeCN]+. 1H NMR (300 MHz, CDCl3): δ 8.24 (s, 1H, CH(triazole)), 7.38-

7.32 (m, 3H, Ph), 6.90-6.86 (m, 1H, Ph), 5.10-5.06 (m, 1H, H-4), 5.02 (d, 1H, J2,3 = 

6.0 Hz, H-2), 4.97 (A(ABX), 1H, J4,5a = 3.4 Hz, J5a,5b = 15.0 Hz, H-5a), 4.59 (B(ABX), 

1H, J4,5b = 3.0 Hz, H-5b), 4.36 (t, 1H, J2,3 ≈ J3,4 ≈  5.9 Hz, H-3), 3.86 (s, 3H, 

OMe(Ph)), 3.50 (s, 3H, OMe). 
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O

O

 
 

Methyl [(2R,3R,4R)-3-hydroxy-4-{[4-(2,4-dimethoxyphenyl)-triazol-1-
yl]methyl}oxetan-2-yl]carboxylate (236). Using GP 4.3.1.5 with 1-ethynyl-

2,4dimethoxybenzene the desired compound was obtained in 86% yield. [ ] 0.20
Dα 80.97 

(c 0.504, CHCl3). MS (HPLC-MS): m/z 350.1 [M+H]+, 413.1 [M+Na+MeCN]+. 1H 

NMR (300 MHz, CDCl3): δ 8.16 (s, 1H, CH(triazole)), 7.43 (d, 1H, J5’,6’ = 1.9 Hz, H-

6’), 7.34 (dd, 1H, J3’,5’ = 8.3 Hz, H-5’), 6.92 (d, 1H, H-3’), 5.07-5.03 (m, 1H, H-4), 5.00 

(d, 1H, J2,3 = 5.9 Hz, H-2), 4.94 (A(ABX), 1H, J4,5a = 3.3 Hz, J5a,5b = 15.1 Hz, H-5a), 

4.59 (B(ABX), 1H, J4,5b = 3.2 Hz, H-5b), 4.35 (t, 1H, J2,3 ≈ J3,4 ≈  5.7 Hz, H-3), 3.97 (s, 

3H, OMe(Ph)), 3.91 (s, 3H, OMe(Ph)), 3.54 (s, 3H, OMe). 
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Methyl [(2R,3R,4R)-4-{[4-(4-fluorophenyl)-triazol-1-yl]methyl}-3-hydroxyoxetan-
2-yl]carboxylate (237). Using GP 4.3.1.5 with 1-ethynyl-4-fluorobenzene the 

desired compound was obtained in 70% yield. [ ] 0.20
Dα 94.91 (c 0.543, CHCl3). MS 

(HPLC-MS): m/z 308.1 [M+H]+, 371.0 [M+Na+MeCN]+. 1H NMR (300 MHz, CDCl3): δ 

8.18 (s, 1H, CH(triazole)), 7.80 (dd, 2H, J2’,3’ ≈ J5’,6’ ≈ 8.5 Hz, J2’,F ≈ J6’,F ≈ 5.4 Hz, H-

2’, H-6’), 7.12 (t, 2H, J3’,F ≈ J5’,F ≈ 8.5 Hz, H-3’, H-5’), 5.22 (br s, 1H, OH), 5.07-5.03 

(m, 1H, H-4), 5.01 (d, 1H, J2,3 = 5.9 Hz, H-2), 4.97 (A(ABX), 1H, J4,5a = 3.4 Hz, H-5a), 

4.60 (B(ABX), 1H, J4,5b = 3.1 Hz, J5a,5b = 15.1 Hz, H-5b), 4.36 (t, 1H, J2,3 ≈ J3,4 ≈ 5.8 

Hz, H-3), 3.54 (s, 3H, OMe). 
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Methyl [(2R,3R,4R)-4-{[4-(4-trifluoromethoxyphenyl)-triazol-1-yl]methyl}-3-
hydroxyoxetan-2-yl]carboxylate (238). Using GP 4.3.1.5 with 1-ethynyl-4-
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trifluoromethoxybenzene the desired compound was obtained in 34% yield. 

[ ] 0.20
Dα 75.93 (c 0.461, CHCl3). MS (HPLC-MS): m/z 374.1 [M+H]+, 437.1 

[M+Na+MeCN]+. 1H NMR (300 MHz, CDCl3): δ 8.23 (s, 1H, CH(triazole)), 7.86 (br d, 

2H, J2’,3’ ≈ J5’,6’ ≈ 8.8 Hz, H-2’, H-6’), 7.28 (d, 2H, H-3’, H-5’), 5.07-4.99 (m, 3H, H-2, 

H-4, OH), 4.96 (A(ABX), 1H, J4,5a = 3.5 Hz, H-5a), 4.61 (B(ABX), 1H, J4,5b = 3.1 Hz, 

J5a,5b = 15.1 Hz, H-5b), 4.35 (br q, 1H, H-3), 3.54 (s, 3H, OMe). 
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Methyl [(2R,3R,4R)-4-{[4-(4-chlorophenyl)-triazol-1-yl]methyl}-3-hydroxyoxetan-
2-yl]carboxylate (239). Using GP 4.3.1.5 with 1-ethynyl-4-chlorobenzene the 

desired compound was obtained in 41% yield. [ ] 0.20
Dα 83.37 (c 0.623, CHCl3). MS 

(HPLC-MS): m/z 324.0 [M+H]+, 387.0 [M+Na+MeCN]+. 1H NMR (300 MHz, CDCl3): δ 

8.20 (s, 1H, CH(triazole)), 7.77 (d, 2H, J2’,3’ ≈ J5’,6’ ≈ 8.4 Hz, H-2’, H-6’), 7.40 (d, 2H, 

H-3’, H-5’), 5.06-5.02 (m, 1H, H-4), 5.00 (d, 1H, J2,3 = 6.0 Hz, H-2), 4.95 (A(ABX), 

1H, J4,5a = 3.3 Hz, H-5a), 4.61 (B(ABX), 1H, J4,5b = 3.1 Hz, J5a,5b = 15.1 Hz, H-5b), 

4.35 (t, 1H, J2,3 ≈ J3,4 ≈ 5.6 Hz, H-3), 3.54 (s, 3H, OMe). 
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Methyl [(2R,3R,4R)-4-{[4-(4-cyanophenyl)-triazol-1-yl]methyl}-3-hydroxyoxetan-
2-yl]carboxylate (240). Using GP 4.3.1.5 with 4-ethynylbenzonitrile but proceeding 

to flash chromatography (heptane/EtOAc gradient), the desired compound was 

obtained in 98% yield as colourless oil. [ ] 0.20
Dα 106.2 (c 0.769, CHCl3). MS (HPLC-

MS): m/z 315.1 [M+H]+, 356.1 [M+H+MeCN]+. 1H NMR (300 MHz, CDCl3): δ 8.33 (s, 

1H, CH(triazole)), 7.96 (d, 2H, J2’,3’ ≈ J5’,6’ ≈ 8.6 Hz, H-2’, H-6’), 7.73 (d, 2H, H-3’, H-

5’), 5.07-5.00 (m, 1H, H-4), 5.00 (d, 1H, J2,3 = 6.0 Hz, H-2), 4.96 (A(ABX), 1H, J4,5a = 

3.6 Hz, H-5a), 4.64 (B(ABX), 1H, J4,5b = 3.1 Hz, J5a,5b = 15.1 Hz, H-5b), 4.44 (d, 1H, 

J3,OH = 5.6 Hz, OH), 4.35 (q, 1H, J2,3 ≈ J3,4 ≈ J3,OH ≈ 5.6 Hz, H-3), 3.56 (s, 3H, OMe). 
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241  
 

Methyl [(2R,3R,4R)-3-hydroxy-4-{[4-(pyridi-4-yl)-triazol-1-yl]methyl}oxetan-2-
yl]carboxylate (241). Using GP 4.3.1.5 with 4-ethynylpyridine but proceeding to 

prep-HPLC on basic mode, the desired compound was obtained in 71% yield. 
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[ ] 0.20
Dα 100.6 (c 0.617, MeOH). MS (HPLC-MS): m/z 391.3 [M+H]+, 354.3 

[M+Na+MeCN]+. 1H NMR (300 MHz, CDCl3): δ 8.66 (br d, 2H, J2’,3’ ≈ J5’,6’ ≈ 6.1 Hz, 

H-2’, H-6’), 8.31 (s, 1H, CH(triazole)), 7.75 (br d, 2H, H-3’, H-5’), 5.05-5.01 (m, 1H, 

H-4), 4.98 (d, 1H, J2,3 = 5.9 Hz, H-2), 4.91 (A(ABX), 1H, J4,5a = 3.8 Hz, J5a,5b = 15.0 

Hz, H-5a), 4.65 (B(ABX), 1H, J4,5b = 3.5 Hz, H-5b), 4.36 (t, 1H, J2,3 ≈ J3,4 ≈ 5.9 Hz, H-

3), 3.58 (s, 3H, OMe). 
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Methyl [(2R,3R,4R)-3-hydroxy-4-{[4-(pyridi-2-yl)-triazol-1-yl]methyl}oxetan-2-
yl]carboxylate (242). Using GP 4.3.1.5 with 2-ethynylpyridine the desired 

compound was obtained in 59% yield. [ ] 0.20
Dα 107.8 (c 0.589, MeOH). MS (HPLC-

MS): m/z 291.1 [M+H]+, 354.0 [M+Na+MeCN]+. 1H NMR (300 MHz, CDCl3): δ 8.58 

(br s, 1H, Py), 8.39 (s, 1H, CH(triazole)), 8.07 (d, 1H, J = 7.6 Hz, Py), 7.78 (t, 1H, J = 

7.6 Hz, Py), 7.28-7.22 (m, CDCl3+1H, Py), 5.05-5.01 (m, 1H, H-4), 4.99 (d, 1H, J2,3 = 

5.5 Hz, H-2), 4.87 (A(ABX), 1H, J4,5a = 4.1 Hz, J5a,5b = 14.9 Hz, H-5a), 4.68 (B(ABX), 

1H, J4,5b = 4.2 Hz, H-5b), 4.56 (t, 1H, J2,3 ≈ J3,4 ≈ 5.6 Hz, H-3), 3.60 (s, 3H, OMe). 
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Methyl [(2R,3R,4R)-4-{[4-(benzyl)-triazol-1-yl]-3-hydroxymethyl}oxetan-2-
yl]carboxylate (243). Using GP 4.3.1.5 with 3-phenyl-1-propyne the desired 

compound was obtained in 72% yield. [ ] 0.20
Dα 89.21 (c 0.703, MeOH).  MS (HPLC-

MS): m/z 304.1 [M+H]+, 367.0 [M+Na+MeCN]+. 1H NMR (300 MHz, CDCl3): δ 7.53 

(s, 1H, CH(triazole)), 7.32-7.19 (m, 5H, Ph+CHCl3), 4.95-4.91 (m, 2H, H-2, H-4), 

4.72 (A(ABX), 1H, J4,5a = 4.2 Hz, J5a,5b = 14.9 Hz, H-5a), 4.49 (B(ABX), 1H, J4,5b = 4.1 

Hz, H-5b), 4.39 (t, 1H, J2,3 ≈ J3,4 ≈ 5.7 Hz, H-3), 4.05 (br s, 2H, CH2Ph), 3.65 (s, 3H, 

OMe). 
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244  
 

Methyl [(2R,3R,4R)-3-hydroxy-4-{[4-(isopropyl)-triazol-1-yl]methyl}oxetan-2-
yl]carboxylate (244). Using GP 4.3.1.5 with 3-methyl-1-butyne the desired 

compound was obtained in 78% yield. [ ] 0.20
Dα 62.07 (c 0.628, CDCl3). MS (HPLC-MS): 

m/z 256.1 [M+H]+, 319.0 [M+Na+MeCN]+. 1H NMR (300 MHz, CDCl3): δ 7.63 (s, 1H, 

CH(triazole)), 5.01-4.95 (m, 2H, H-2, H-4), 4.94 (A(ABX), 1H, J4,5a = 3.8 Hz, J5a,5b = 

15.0 Hz, H-5a), 4.52 (B(ABX), 1H, J4,5b = 3.3 Hz, H-5b), 4.32 (t, 1H, J2,3 ≈ J3,4 ≈ 5.8 

Hz, H-3), 3.69 (s, 3H, OMe), 3.11-2.97 (m, 1H, CH(i-prop)), 1.30 (br s, 3H, Me(i-

prop)), 1.28 (br s, 3H, Me(i-prop)). 
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245  
 

Methyl [(2R,3R,4R)-3-hydroxy-4-{[4-(isobutyl)-triazol-1-yl]methyl}oxetan-2-
yl]carboxylate (244). Using GP 4.3.1.5 with 4-methyl-1-pentyne the desired 

compound was obtained in 66% yield. [ ] 0.20
Dα 62.07 (c 0.628, CDCl3). MS (HPLC-MS): 

m/z 270.3 [M+H]+, 333.1 [M+Na+MeCN]+. 1H NMR (300 MHz, CDCl3): δ 7.65 (s, 1H, 

CH(triazole)), 5.01-4.97 (m, 2H, H-2, H-4), 4.85 (A(ABX), 1H, J4,5a = 3.7 Hz, J5a,5b = 

15.1 Hz, H-5a), 4.53 (B(ABX), 1H, J4,5b = 3.3 Hz, H-5b), 4.31 (t, 1H, J2,3 ≈ J3,4 ≈ 5.8 

Hz, H-3), 3.69 (s, 3H, OMe), 2.56;2.53 (2s, 2H, CH2(i-but)), 2.00-1.87 (m, 1H, CH(i-

but)), 1.70 (br s, 1H, OH), 0.92-0.89 (m, 6H, 2Me(i-but)). 
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Methyl [(2R,3R,4R)-4-({4-[(diethylamino)methyl]-triazol-1-yl} methyl)-3-hydroxy 
oxetan-2-yl]carboxylate (246). Using GP 4.3.1.5 with N,N-diethylpropargylamine 

the desired compound was obtained in 66% yield. [ ] 0.20
Dα 83.42 (c 0.547, CHCl3).  MS 

(HPLC-MS): m/z 299.1 [M+H]+, 362.1 [M+Na+MeCN]+. 1H NMR (300 MHz, MeOD): δ 

8.07 (s, 1H, CH(triazole)), 5.05-4.99 (m, 2H, H-2, H-4), 4.88-4.85 (A(ABX), 1H+H2O, 

H-5a), 4.68 (B(ABX), 1H, J4,5b = 3.0 Hz, H-5b), 3.96 (t, 1H, J2,3 ≈ J3,4 ≈ 5.5 Hz, H-3), 

3.78 (br s, 2H, CH2N), 3.70 (s, 3H, OMe), 2.79 (q, 4H, J = 7.2 Hz, CH2(Et)), 1.35 (t, 

6H, Me(Et)). 
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Methyl [(2R,3R,4R)-4-({4-[(R)-deprenyl]-triazol-1-yl}methyl)-3-hydroxyoxetan-2-
yl]carboxylate (247). Using GP 4.3.1.5 with R-(-)-deprenyl hydrochloride but using a 

amine basic flash chromatography the desired compound was obtained in 58% yield. 

[ ] 0.20
Dα -24.52 (c 0.461, CHCl3). MS: (ionspray) m/z 375.3 [M+H]+. 1H NMR (300 MHz, 

CDCl3): δ 7.49 (s, 1H, CH(triazole)), 7.30-7.14 (m, 5H, Ph+CHCl3), 4.97-4.90 (m, 2H, 

H-2, H-4), 4.70 (A(ABX), 1H, J4,5a = 4.4 Hz, J5a,5b = 14.7 Hz, H-5a), 4.55 (B(ABX), 

1H, J4,5b = 4.6 Hz, H-5b), 4.47 (t, 1H, J2,3 ≈ J3,4 ≈ 5.7 Hz, H-3), 3.75 (br s, 2H, CH2N), 

3.69 (s, 3H, OMe), 3.02-2.91 (m, 2H, CHN+CHaHbPh), 2.47 (B(ABX), 1H, JCH,CHb = 

10.4Hz, Ja,b = 14.6 Hz, CHaHbPh), 2.30 (s, 3H, MeN), 1.01 (d, 3H, JCH,Me = 6.5 Hz, 

Me). 
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Table A1- NMR data for compounds 34,38, 45-47,49 and 51. 

O

OH

OH
BnO

BnO

46  

O

O

O

BnO

BnO

45

 
a b 

O

OH

BnO

BnO

O

47  

O

OTf

BnO

BnO

O

34  

O

OBn

OBnO

OMe

38

 
O

OBn

OBnO

OH

49

O

OH

ON3

OMe

51  

 

CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 
H-1 5.93 d 5.50 t 5.10 d - - -   
H-2 4.62 d 4.22 brddd 4.26 dd 4.81 d 5.89 d 5.06 dd 5.10 dd 5.08 d 
H-3 3.97 brdd 4.00 dd 4.02 dd 4.37 t 4.52 t 4.62 dd 4.64 dd 4.87 dd 
H-4 4.40 ddd 4.42 q 4.71-4.47 m 4.58 dt 4.51 ddd 5.00 dddd 5.03 dq 4.05 ddd 
H-5a 3.78 A(ABX) 3.78 dd 3.68 dd 3.79 dd 3.74 dd 4.42 A(ABX) 3.96 A(ABX) 3.85 A(ABX) 
H-5b 3.73 B(ABX) 3.73 dd 3.67 dd 3.71 dd 3.66 dd 3.94 B(ABX) 3.92 B(ABX) 3.62 b(ABX) 

CH2 
4.52/4.61 
4.51/4.68 4.71-4.47 m 4.83, 4.66, 

4.58, 4.52  4d 
4.79, 4.59, 

4.59, 4.52  4d 4.60-4.53 4d 4.62,4.56 2d 
4.65,4.50 2d  

Ph 7.26-7.36  
 m 2xPh 7.38-7.26 m 2xPh 7.39-7.29 m 

2xPh 
7.43-7.26 m 

2xPh 7.32-7.27  m 2xPh 7.28-7.38 m 
2x Ph  

NH  - - - - -   

OH  3.63(1) 
2.80(2) 

3.86 (1) 
2.13 (2) - - -   

others 1.31 s (i-prop) 
1.48 s (i-prop)   - - 3.81 s OMe  3.83 s OMe 

J1,2 3.8 4.8 0 - - - - - 
J2,3 3.0 2.4 2.4 8.0 7.9 5.1 5.1 5.3 
J2,4 - - - - - 0.4 0.8 - 
J3,4 6.1 5.0 5.0 8.0 7.9 6.6 6.5 7.0 
J4,5a 3.0 5.0 5.5 2.2 1.2 5.6 5.7 4.3 
J4,5b 3.0 4.8 3.8 2.8 2.4 6.0 6.1 3.3 
J5a,5b 6.1 9.8 7.0 11.0 11.0 10.9 11.0 13.6 

 
Ja,b 11.8 Hz 
Jb’,a’ 12.2 Hz 
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Table A2- NMR data for compounds 52, 53, 95-97. 
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PMBO

OBocHN

OH
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CDCl3 MeOD CDCl3 CDCl3 MeOD 
H-1 - - - - - 
H-2 4.81 d 4.78 d 5.04 d 4.85-4.80 m 5.03 d 
H-3 4.76 dd 4.64 br dd 4.57 dd 4.70 br td 4.57 dd 
H-4 4.79 ddd 4.61 ddd 4.89-4.78 m 4.85-4.80 m 4.64-4.69 m 
H-5a 3.78 ddd~dd 3.44 A(ABX) 3.73-3.62 m 4.00 br dd 
H-5b 3.30 ddd~dd 3.36 B(ABX) 3.57-3.49 m 3.10 d  

3.50 d (2H) 

CH2   4.58 A(AB) 
4.42 B(AB) 

4.50 A(AB) 
4.30 B(AB) 

4.64-4.69 m  
4.46 B(AB) 

NH br t NH  4.89-4.78 m  4.89-4.78 m 
OH    5.82 br s  

 3.83 s OMe  7.24 br d 2H(Ph) 
6.99 br d 2H(Ph) 

7.14 br d 2H(Ph) 
6.87 br d 2H(Ph) 

7.31 br d 2H(Ph) 
6.93 br d 2H(Ph) 

   3.81 s 2xOMe 3.80 s 2xOMe 3.81 s 6H 2xOMe 
 1.44 s Boc 1.34 s Boc 1.43 s Boc 1.48 s Boc  

J1,2 - - -   
J2,3 3.8 5.7 4.9 4.5 5.0 
J2,4 - - - - - 
J3,4 3.2 6.9 6.7 5.7  
J4,5a 7.1 4.9   6.4 
J4,5b 6.2 6.2  0 6.4 
J5a,5b 13.4 14.5  14.9  

   Ja’,b’ = 11.5 J3,OH = 5.7 
Ja,b = 15.4 Ja,b = 11.5 
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Table A3- NMR data for compounds 54-61. 
O

OH

OH

MeO

N3

57  

O

O

O

TfO

N3

54  

O

O

O

HO

N3

55  

O

O

O

MeO

N3

56  a b 

O

OH

O

MeO

N3

58  59

N3

OMe

O O

OMe

 60

BocHN

OMe

O O

OMe

 

BocHN

OMe

O

61

O

OH

 

 

CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 COC2D6 
H-1 6.02 d 5.95 d 5.90 d 5.50 d 5.10 d - - - - 
H-2 4.76 d 4.53 d 4.60 d 4.22 brt 4.31 brs 4.66 d 5.05 dd 4.99 d 4.93 d 
H-3 5.18 d 3.73 d 3.83 dd 3.79 d 4.20 t 4.44 dd 4.39 dd 4.46 dd 
H-4 4.43 dt 

4.31 – 4.25  m 
4.30 dt 4.46-4.38 m 4.73 dt 4.92 ddd 4.96- 4.76 m 4.79 q 

H-5a 3.72 A(ABX) 3.65 A(ABX) 3.53 A(ABX) 3.69 A(ABX) 3.61 ddd 
H-5b 3.50 B(ABX) 3.61 B(ABX) 3.49 B(ABX) 

3.57- 3.38 
m 

3.66-3.64 
m 3.64 B(ABX) 

3.56-3.40 
m 

OMe - - 3.43 s 3.46 s 3.50 s 3.56 s 3.43 s, 3.86 s 
3.56-3.49 

m 3.39 
Isop 1.53; 1.35 1.51; 1.33 1.51; 1.33 - - - - 3.83 COOMe - 
NH - - - - - - - 4.96- 4.76 m 5.82 brs 
OH - 2.25 s - - m 2.97 s - - - 
Boc - - - - - - - 1.44 1.40 
J1,2 3.6 3.7 3.8 4.0 0 - - - - 
J2,3 0 0 0 3.1 0 7.6 4.8 4.9 4.7 
J3,4 1.8 2.8 3.1 5.1 4.4 7.6 6.6 6.5 6.3 
J4,5a 7.0 6.1 6.8 - - 3.7 6.1 6.8 6.5 
J4,5b 6.1 5.7 6.3 - - 3.7 6.3 - 6.5 
J5a,5b 12.6 12.8 12.4 - - - 13.2 12.8 - 
C-1 104.7 104.9 105.2 96.1 103.4 174.9 170.7 170.8 170.2 
C-2 83.2 85.5 81.5 75.4 80.8, 77.4 71.9 84.0 83.7 83.7 
C-3 87.9 75.6 83.9 85.4, 84.6 81.6 77.1 77.4 77.9 
C-4 77.3 78.3 78.8 80.8, 77.4 76.8 82.5 82.4 82.2 
C-5 48.6 49.4 49.0 50.7, 50.4 50.0 50.4 40.5 40.9 
OMe - - 57.8 58.6, 58.0 58.6 57.5 52.5 57.3 

 113.41 Cq-isop 
120.10 CF3 

112.2 Cq-isop 112.0 Cq-isop     
155.83 C=O Boc 

79.5 Cq Boc, 28.4 Me 
57.6 COOMe  

156.7 
78.8 

28.3 Me t-Bu 
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Table A4- NMR data for compounds 64-72. 
O

OH

OH

MeO

N3

65  
 

O

O

O

MeO

N3

64  
a b 

O

OH

O

MeO

N3

66 67

N3

OMe

O O

OMe

68

N3

OMe

O O

OMe

69

BocHN

OMe

O O

OMe

70

BocHN

OMe

O O

OMe

 71

BocHN

OMe

O O

OH

72

BocHN

OMe

O O

OH

 
 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 COC2D6 COC2D6 

H-1 5.80 d 5.37-5.32 m - - - - - - - 
H-2 4.71 t 4.18 brt m 4.63 d 4.95 d 5.17 d 4.93 d 5.09 d 5.59 d 5.18 d 
H-3 3.65 dd 3.70 t 4.0 dd 3.90 d 4.27 t 4.51 dd 4.13 t 4.36 dd 4.92 t 4.54 dd 
H-4 4.14 dt 4.21 q m 4.55 dd ≈ t 4.72 brq 4.95 brddd 4.7 brq 4.85 brq 5.31 q 4.81 q 

H-5a 3.72 A(ABX) 3.56A(ABX) 3.61A(ABX) 3.74 A(ABX) 3.61 A(ABX) 3.65 A(ABX) 3.52 brddd 3.5 ddd 
H-5b 3.32 B(ABX) 3.32B(ABX) 3.39B(ABX) 3.65 B(ABX) 3.44 B(ABX) 3.39 B(ABX) 3.33 dt 3.39 dt 
OMe 3.50 3.49 3.46 3.52 3.84; 3.40 3.86; 3.35 3.84; 3.37 3.85;3.33 

3.21-4.04 m 
5H 

3.47 d 
 2H 

Isop 1.59; 1.38 - - - - - - -  3.41 
NH - - - - - - 5.31 brs 4.93 brs 6.96 brs ---- 
OH - - - - - - - - - - 
Boc - - - - - - 1.45 1.46 s 1.42 1.39 
J1,2 3.6 4.5 0 - - - - - - - 
J2,3 4.1 4.5 4.6 5.9 5.1 6.9 5.0 7.2 4.7 7.3 
J3,4 8.0 5.5 6.9 0 5.0 5.5 4.9 5.9 4.9 5.0 
J4,5a 2.5 4.0 3.7 4.3 4.0 3.7 --- 4.5 4.9 5.0 
J4,5b 3.8 3.9 5.2 3.7 4.0 3.4 3.9 4.5 4.9 5.0 
J5a,5b 13.5 13.2 13.1 13.4 13.8 13.9 15.1 15.0 --- - 

       J5b,NH 3.9 J5a,NH 7.0,  
J5b,NH 4.5   

C-1 104.1 97.1 102.3 174.5 170.2 169.8 170.1 169.9 171.5 171.5 
C-2 77.0 70.1 73.2 68.1 81.7 81.4 81.6 81.0 81.6 81.6 
C-3 80.6 80.4 81.1 78.0 78.4 75.9 78.7 75.8 80.2 80.2 
C-4 77.4 79.1 80.0 79.4 84.2 87.5 85.7 88.6 85.6 85.6 
C-5 50.7 52.2 53.3 51.91 52.7 52.8 42.8 42.8 43.3 43.3 

OMe 58.6 59.0 58.6 58.5 57.1;52.5 58.4; 52.4 57.3; 52.6 58.0; 52.2 56.6 56.8 

 
113.4 Cq isop 

26.9; 26.6 isop      
155.8 C=O Boc 

79.1 Cq Boc 
27.9 Me t-Bu 

156.1 C=O Boc 
79.8 Cq Boc 
28.3 Me t-Bu 

157.1 C=O Boc 
79.1 Cq Boc 
28.4 Me t-Bu 

157.1 C=O Boc 
79.1 Cq Boc 
28.4 Me t-Bu 
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Table A5- NMR data for compounds 80-88. 

 

O

O

O

HO

BzO

80  

O

O

O

O

BzO

81  

O

O

O

HO

HO

82  

O

O

O

BnO

BnO

83  

O

OH

OH

BnO

BnO

84  

O

OH

O

BnO

BnO

85  

O

OBn
OMe

OBnO

86

O

OH
OMe

OHO

87  

O

OH
OMe

ON3

88  

 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 CDCl3 
H-1 5.96 d 6.14 d 5.83 d 5.76 d 5.23 d - - - - 
H-2 4.60 d 4.44 d 4.59 t 4.56 t 4.03 t 4.67 dd 5.01 dd 4.95 d 4.95 d 
H-3 4.17 br dd - 4.01 dt 3.86 dd 4.28 t 4.19 d 4.52 t 4.74 t 4.76-4.69 m 
H-4 4.37 ddd 4.69 br s 3.84 br ddd 4.18 ddd 4.21 ddd 4.50 t 4.76 ddd 4.71 ddd 4.76-4.69 m 

H-5a 4.81 A(ABX) 4.71 A(ABX) 3.97 ddd 3.76 A(ABX) 3.64 A(ABX) 3.67 A(ABX) 3.61 A(ABX) 3.84 A(ABX) 3.63 A(ABX) 
H-5b 4.38 B(ABX) 4.47 B(ABX) 3.76 ddd 3.57 B(ABX) 3.55 B(ABX) 3.56 B(ABX) 3.55 B(ABX) 3.65 B(ABX) 3.44 B(ABX) 

O 
t 
h 
e 
r 
s 

7.46-8.04 m Ph 

  3.23 d OH 

 1.51; 1.33 2s  
Isop  

 7.44-7.95 m 
Ph 

 

1.52; 1.44 2s 
Isop 

2.38 d OH-3 

2.05 br s OH-5 

1.58; 1.38 2s  
Isop 

7.36-7.26 m Ph 

4.73 A(AB) Ha 

4.54 B(AB) Hb 

4.57 A(AB) Ha’ 

4.49 B(AB) Hb’ 

1.59; 1.36 2s  
Isop 

7.39-7.26 m Ph 

4.61 A(AB) Ha 

4.56 B(AB) Hb 

4.51 A(AB) Ha’ 

4.48 B(AB) Hb’ 

3.36 d OH-1 

2.69 s OH-2 

7.38-7.22 m Ph 

4.72-4.64 AB 

 Ha, Hb 

4.55-4.23 AB 

Ha’, Hb’ 

2.82 d OH-2 

7.36-7.28 m Ph 

4.67 – 4.60 AB 
Ha, Hb  

 4.67 – 4.60 AB 

Ha’, Hb’  

3.25 s OMe 

3.80 s OMe 
3.84 s OMe 

3.26 br d OH 

J1,2 3.6 4.4 3.9 3.8 ~ 0 - - - - 
J2,3 0 - 5.1 4.3 4.7 5.9 5.2 4.9 4.8 
J3,4 2.2 - 9.0 8.9 5.9 ~ 0 4.9 5.1  
J4,5a 9.4 2.8 2.4 2.2 3.0 3.0 3.7 2.5 3.0 
J4,5b 4.5 4.7 3.6 3.8 2.9 2.5 4.0 2.0 3.3 
J5a,5b 12.7 13.4 12.0 11.3 10.3 10.9 11.5 13.4 13.7 

 J3,OH3 4.0  J3,OH3 10.5 Ja’,b’ 12.2 
Ja,b 11.9 

Ja’,b’ 8.3 
Ja,b 5.6 

J1,OH1 7.4 

Ja’,b’ 12.0 
Ja,b 11.9 
J2,OH2 9.5 

Ja’,b’ 11.6 
Ja,b 11.6   
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Table A6- NMR data for compounds 74-79, 89-91. 

O

O
O

O

Ph

Ph
COOH

75  

O

OPh

O
O

OH

74  

O

O

O

CO2MePh

76

O

F

ON3

OMe

77  

O

F

OBocHN

OMe

78

O

F

OBocHN

OH

79

O

F

ON3

OMe

89  

O

F

OBocHN

OMe

90

O

F

OBocHN

OH

91  

 

DMSO  CDCl3 CDCl3 CDCl3 CDCl3 COC2D6 CDCl3 CDCl3 CDCl3 
H-2 4.78 d 4.59-4.53 m 4.99 d 5.23 dd 5.13 dd 5.18 dd 5.30 dd 5.28 dd 5.29 dd 
H-3 4.37 br t 4.32 br s 4.92 dd 5.53 ddd 5.37 ddd 5.41 ddd 5.65 dt 5.60 dt 5.64 dt 
H-4 4.04 br q 4.89 dd 5.14 dddd 5.03 dddd 5.03 br dq 5.02-4.91 m 5.04-4.91 m 5.01-4.86 m 
H-5a 4.21 A(ABX) 

4.59-4.53 m 
4.30 d 3.72 A(ABX) 3.58 ddd 3.80 A(ABX) 4.08-3.95 m 

H-5b 4.16 A(ABX) 4.19 B(ABX) 3.99 dd 3.48 B(ABX) 3.41 ddd  
3.54-3.39 m 

3.67 B(ABX) 
3.59-3.54 m 

3.29-3.19 m 

Ph 7.52-7.50 m 2H 
7.44-7.35 m 8H 

7.46-7.44 m 2H 
7.38-7.36 m 3H 7.48-7.29 m - -  - - - 

CHPh 5.75 s, 5.69 s 5.54 s 5.42 s - -  - - - 
NH - - - - 4.93 br s  - 5.04-4.91 m 5.01-4.86 m 
OH 12.90 3.41 br s - - -  - - - 

OMe - - - 3.87 s 3.86 s  3.86 s 3.84 s - 
Boc - - - - 1.46 s 1.47 s - 1.44 s 1.46 s 
J2,3 2.1 - 2.2 6.7 6.8 6.7 5.8 5.6 6.0 
J2,F - - - 15.2 14.8 15.3 18.4 18.9 17.8 
J3,4 1.8 - 5.1 4.5 4.8 4.7 5.8 5.6 6.0 
J3,F - - - 56.1 56.0 55.7 56.2 56.6 56.1 
J4,F - - - 19.1 19.1 19.5 15.5 - - 
J4,5a 1.8 - 0 3.4 3.4 4.3 1.7 - - 
J4,5b 1.3 1.8 2.5 3.0 3.0 4.3  - - 
J5a,5b 12.8 13.5 14.0 14.2 14.8  13.0 - - 
J5a,NH - - - - 7.2   - - 
J5b,NH - - - - 4.7   - - 
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Table A7- In silico results for compounds 102-121. 

OR1

R3
O N

N R2

 
 R1 R2 R3 

MW ClogP ROF 
alerts HBD HBA RotB PSA Peff logBB Andrew 

Binding 
PKa 
ACID 

PKa 
BASE 

102 NHBoc Ph OPMB 467.52 3.94 0 1 9 8 92.62 -3.91 -0.86 8.61 * * 

103 NHBoc p-OMePh OPMB 497.55 4.0 0 1 10 9 101.04 -4.00 -0.99 9.81 * * 

104 NHBoc p-ClPh OPMB 501.97 4.7 0 1 9 8 92.62 -3.83 -0.75 9.91 * * 

105 NHBoc p-MePh OPMB 481.55 4.4 0 1 9 8 92.62 -3.84 -0.77 9.41 * * 

106 NHBoc Py OPMB 468.51 2.5 0 1 10 8 103.59 -4.19 -1.25 9.11 * * 

107 NH2 Ph OH 361.28 0.3 0 3 6 2 82.77 -4.84 -1.46 -0.46 13.48 9.03 

108 NH2 p-OMePh OH 391.30 0.4 0 3 7 3 91.17 -4.93 -1.59 0.87 13.51 9.03 

109 NH2 p-ClPh OH 395.72 1.1 0 3 6 2 82.79 -4.76 -1.35 0.96 13.45 9.03 

110 NH2 p-MePh OH 375.30 0.8 0 3 6 2 82.77 -4.77 -1.37 0.46 13.52 9.03 

111 NH2 Py OH 362.26 -1.1 0 3 7 2 93.75 -5.13 -1.85 0.16 13.34 9.03 

112 NHAc Ph OH 289.29 0.4 0 2 7 3 87.11 -4.67 -1.54 3.17 13.53 * 

113 NHAc p-OMePh OH 319.32 0.5 0 2 8 4 95.6 -4.76 -1.67 4.38 13.56 * 

114 NHAc p-ClPh OH 323.74 1.2 0 2 7 3 87.11 -4.58 -1.43 4.47 13.50 * 

115 NHAc p-MePh OH 303.32 0.9 0 2 7 3 87.11 -4.60 -1.45 3.97 13.56 * 

116 NHAc Py OH 290.28 -1.0 0 2 8 3 98.09 -4.95 -1.94 3.67 13.38 * 

117 NHMs Ph OH 325.34 0.6 0 2 8 4 103.72 -4.85 -1.81 13.07 10.91 * 

118 NHMs p-OMePh OH 355.36 0.6 0 2 9 5 112.91 -4.95 -1.95 14.28 10.91 * 

119 NHMs p-ClPh OH 359.78 1.3 0 2 8 4 103.68 -4.77 -1.70 14.37 10.91 * 

120 NHMs p-MePh OH 339.37 1.1 0 2 8 4 103.72 -4.78 -1.72 13.87 10.91 * 

121 NHMs Py OH 326.33 -0.9 0 2 9 4 114.7 -5.13 -2.20 13.57 10.91 * 
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Table A8- In silico results for compounds 122-141. 
 

OR1

OMe
O N

N R2

 
 R1 R2 

MW ClogP ROF 
alerts HBD HBA RotB PSA Peff logBB Andrew 

Binding 
PKa 
ACID 

PKa 
BASE 

122 NHBoc Ph 361.40 2.2 0 1 8 5 84.49 -4.05 -1.03 4.69 * * 

123 NHBoc p-OMePh 391.42 2.2 0 1 9 6 92.82 -4.13 -1.16 5.90 * * 

124 NHBoc p-ClPh 395.84 2.9 0 1 8 5 84.4 -3.96 -0.92 5.99 * * 

125 NHBoc p-MePh 375.42 2.7 0 1 8 5 84.42 -3.97 -0.94 5.49 * * 

126 NHBoc Py 362.38 0.8 0 1 9 5 95.35 -4.33 -1.42 5.19 * * 

127 NH2 Ph 375.30 0.4 0 2 6 3 74.72 -4.42 -1.20 -1.06 * 8.94 

128 NH2 p-OMePh 405.33 0.4 0 2 7 4 83.17 -4.51 -1.33 0.27 * 8.94 

129 NH2 p-ClPh 409.75 1.1 0 2 6 3 74.67 -4.34 -1.09 0.36 * 8.94 

130 NH2 p-MePh 389.33 0.9 0 2 6 3 74.7 -4.35 -1.11 -0.26 * 8.94 

131 NH2 Py 376.29 -1.0 0 2 7 3 85.65 -4.70 -1.59 -0.56 * 8.94 

132 NHAc Ph 303.32 0.2 0 1 7 4 78.97 -4.24 -1.28 2.57 * * 

133 NHAc p-OMePh 333.34 0.3 0 1 8 5 87.5 -4.33 -1.42 3.78 * * 

134 NHAc p-ClPh 337.76 0.9 0 1 7 4 79.04 -4.16 -1.17 3.87 * * 

135 NHAc p-MePh 317.34 0.7 0 1 7 4 79.04 -4.17 -1.19 3.37 * * 

136 NHAc Py 304.30 -1.2 0 1 8 4 89.94 -4.53 -1.68 3.07 * * 

137 NHMs Ph 339.37 0.4 0 1 8 5 95.25 -4.42 -1.55 12.47 10.86 * 

138 NHMs p-OMePh 369.39 0.4 0 1 9 6 103.68 -4.51 -1.68 13.68 10.86 * 

139 NHMs p-ClPh 373.81 1.1 0 1 8 5 95.21 -4.34 -1.43 13.77 10.86 * 

140 NHMs p-MePh 353.39 0.9 0 1 8 5 95.21 -4.35 -1.45 13.27 10.86 * 

141 NHMs Py 340.35 -1.0 0 1 9 5 106.16 -4.71 -1.94 12.97 10.86 * 
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Table A9- In silico results for compounds 142-161. 

OR1

OMe
O N

N R2

 
 R1 R2 

MW ClogP ROF 
alerts HBD HBA RotB PSA Peff logBB Andrew 

Binding 
PKa 
ACID 

PKa 
BASE 

142 NHBoc Ph 361.40 2.2 0 1 8 5 85.47 -4.06 -1.05 4.69 * * 

143 NHBoc p-OMePh 391.42 2.2 0 1 9 6 93.93 -4.15 -1.18 5.90 * * 

144 NHBoc p-ClPh 395.84 2.9 0 1 8 5 85.49 -3.97 -0.94 5.99 * * 

145 NHBoc p-MePh 375.42 2.7 0 1 8 5 85.47 -3.99 -0.95 5.49 * * 

146 NHBoc Py 362.38 0.8 0 1 9 5 96.44 -4.34 -1.44 5.19 * * 

147 NH2 Ph 375.30 0.4 0 2 6 3 75.65 -4.43 -1.22 -1.06 * 8.94 

148 NH2 p-OMePh 405.33 0.4 0 2 7 4 84.35 -4.52 -1.35 0.27 * 8.94 

149 NH2 p-ClPh 409.75 1.1 0 2 6 3 75.67 -4.35 -1.11 0.36 * 8.94 

150 NH2 p-MePh 389.33 0.9 0 2 6 3 75.65 -4.36 -1.12 -0.26 * 8.94 

151 NH2 Py 376.29 -1.0 0 2 7 3 86.62 -4.72 -1.61 -0.56 * 8.94 

152 NHAc Ph 303.32 0.2 0 1 7 4 80.24 -4.26 -1.31 2.57 * * 

153 NHAc p-OMePh 333.34 0.3 0 1 8 5 88.73 -4.35 -1.44 3.78 * * 

154 NHAc p-ClPh 337.76 0.9 0 1 7 4 80.26 -4.17 -1.20 3.87 * * 

155 NHAc p-MePh 317.34 0.7 0 1 7 4 80.24 -4.19 -1.21 3.37 * * 

156 NHAc Py 304.30 -1.2 0 1 8 4 91.24 -4.54 -1.70 3.07 * * 

157 NHMs Ph 339.37 0.4 0 1 8 5 96.46 -4.44 -1.57 12.47 10.86 * 

158 NHMs p-OMePh 369.39 0.4 0 1 9 6 104.95 -4.53 -1.70 13.68 10.86 * 

159 NHMs p-ClPh 373.81 1.1 0 1 8 5 96.46 -4.35 -1.46 13.77 10.86 * 

160 NHMs p-MePh 353.39 0.9 0 1 8 5 96.46 -4.37 -1.47 13.27 10.86 * 

161 NHMs Py 340.35 -1.0 0 1 9 5 107.45 -4.72 -1.96 12.97 10.86 * 
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Table A10- In silico results for compounds 162-181. 

OR1

F
O N

N R2

 
 R1 R2 

MW ClogP ROF 
alerts HBD HBA RotB PSA Peff logBB Andrew 

Binding 
PKa 
ACID 

PKa 
BASE 

162 NHBoc Ph 349.36 2.5 0 1 7 4 76.40 -3.86 -0.77 4.78 * * 

163 NHBoc p-OMePh 379.39 2.5 0 1 8 5 84.77 -3.95 -0.90 5.99 * * 

164 NHBoc p-ClPh 383.81 3.2 0 1 7 4 76.40 -3.78 -0.66 6.08 * * 

165 NHBoc p-MePh 363.39 3.0 0 1 7 4 76.40 -3.79 -0.68 5.58 * * 

166 NHBoc Py 350.35 1.1 0 1 8 4 87.35 -4.14 -1.16 5.28 * * 

167 NH2 Ph 363.27 0.7 0 2 5 2 66.97 -4.24 -0.95 -0.95 * 8.66 

168 NH2 p-OMePh 393.29 0.7 0 2 6 3 75.02 -4.32 -1.07 0.36 * 8.66 

169 NH2 p-ClPh 397.71 1.4 0 2 5 2 66.60 -4.15 -0.83 0.45 * 8.66 

170 NH2 p-MePh 377.29 1.2 0 2 5 2 66.60 -4.16 -0.85 -0.15 * 8.66 

171 NH2 Py 364.26 -0.7 0 2 6 2 77.55 -4.52 -1.33 -0.45 * 8.66 

172 NHAc Ph 291.28 0.5 0 1 6 3 70.94 -4.06 -1.03 2.66 * * 

173 NHAc p-OMePh 321.31 0.6 0 1 7 4 79.38 -4.15 -1.16 3.87 * * 

174 NHAc p-ClPh 325.73 1.3 0 1 6 3 70.94 -3.97 -0.92 3.96 * * 

175 NHAc p-MePh 305.31 1.0 0 1 6 3 70.89 -3.98 -0.93 3.46 * * 

176 NHAc Py 292.27 -0.9 0 1 7 3 81.91 -4.34 -1.42 3.16 * * 

177 NHMs Ph 327.33 0.7 0 1 7 4 87.18 -4.24 -1.29 12.56 10.73 * 

178 NHMs p-OMePh 357.36 0.7 0 1 8 5 95.65 -4.33 -1.42 13.77 10.73 * 

179 NHMs p-ClPh 361.77 1.4 0 1 7 4 87.18 -4.15 -1.18 13.86 10.73 * 

180 NHMs p-MePh 341.36 1.2 0 1 7 4 87.18 -4.17 -1.19 13.36 10.73 * 

181 NHMs Py 328.32 -0.7 0 1 8 4 98.48 -4.52 -1.68 13.06 10.73 * 
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Table A11- In silico results for compounds 182-185. 

OR1

F
O N

N R2

 
 R1 R2 

MW ClogP ROF 
alerts HBD HBA RotB PSA Peff logBB Andrew 

Binding 
PKa 
ACID 

PKa 
BASE 

182 NHBoc p-ClPh 383.81 3.2 0 1 7 4 76.51 -3.78 -0.66 6.08 * * 

183 NH2 p-ClPh 397.71 1.4 0 2 5 2 66.92 -4.15 -0.84 0.45 * 8.66 

184 NHAc p-ClPh 325.73 1.3 0 1 6 3 71.26 -3.98 -0.92 3.96 * * 

185 NHMs p-ClPh 361.77 1.4 0 1 7 4 87.46 -4.16 -1.18 13.86 10.73 * 
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Table A12- In silico results for compounds 188-207. 

R1
H

H O N

N R2

 
 R1 R2 

MW ClogP ROF 
alerts HBD HBA RotB PSA Peff logBB Andrew 

Binding 
PKa 
ACID 

PKa 
BASE 

188 NHBoc Ph 341.41 2.9 0 1 6 3 65.50 -3.46 -0.22 4.67 * * 

189 NHBoc p-OMePh 371.44 3.0 0 1 7 4 73.95 -3.55 -0.35 5.88 * * 

190 NHBoc p-ClPh 375.85 3.7 0 1 6 3 65.50 -3.37 -0.11 5.97 * * 

191 NHBoc p-MePh 355.44 3.4 0 1 6 3 65.50 -3.39 -0.13 5.47 * * 

192 NHBoc Py 342.40 1.5 0 1 7 3 76.48 -3.74 -0.61 5.17 * * 

193 NH2 Ph 355.32 1.2 0 2 4 1 55.75 -3.83 -0.39 -1.04 * 10.72 

194 NH2 p-OMePh 385.34 1.2 0 2 5 2 64.20 -3.92 -0.52 0.25 * 10.72 

195 NH2 p-ClPh 389.76 1.9 0 2 4 1 55.75 -3.75 -0.28 0.34 * 10.72 

196 NH2 p-MePh 369.34 1.7 0 2 4 1 55.75 -3.76 -0.30 -0.24 * 10.72 

197 NH2 Py 356.30 -0.2 0 2 5 1 66.73 -4.12 -0.79 -0.54 * 10.72 

198 NHAc Ph 283.33 2.4 0 1 5 2 60.02 -3.65 -0.48 2.55 * * 

199 NHAc p-OMePh 313.36 2.5 0 1 6 3 68.47 -3.74 -0.61 3.76 * * 

200 NHAc p-ClPh 317.77 3.1 0 1 5 2 60.02 -3.57 -0.37 3.85 * * 

201 NHAc p-MePh 297.36 3.0 0 1 5 2 60.02 -3.58 -0.38 3.35 * * 

202 NHAc Py 284.32 1.3 0 1 6 2 71.00 -3.94 -0.87 3.05 * * 

203 NHMs Ph 319.38 2.5 0 1 6 3 76.21 -3.83 -0.74 12.45 11.71 * 

204 NHMs p-OMePh 349.40 2.6 0 1 7 4 84.66 -3.92 -0.87 13.66 11.71 * 

205 NHMs p-ClPh 353.82 3.2 0 1 6 3 76.21 -3.75 -0.63 13.75 11.71 * 

206 NHMs p-MePh 333.40 3.1 0 1 6 3 76.21 -3.76 -0.64 13.25 11.71 * 

207 NHMs Py 320.37 -0.4 0 1 7 3 87.19 -4.12 -1.13 12.95 11.71 * 
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Table A13- In silico results for compounds 208-227. 

R1
H

H O N

N R2

 
 R1 R2 

MW ClogP ROF 
alerts HBD HBA RotB PSA Peff logBB Andrew 

Binding 
PKa 
ACID 

PKa 
BASE 

208 NHBoc Ph 341.41 2.9 0 1 6 3 65.50 -3.46 -0.22 4.66 * * 

209 NHBoc p-OMePh 371.44 3.0 0 1 7 4 73.95 -3.55 -0.35 5.88 * * 

210 NHBoc p-ClPh 375.85 3.7 0 1 6 3 65.50 -3.37 -0.11 5.97 * * 

211 NHBoc p-MePh 355.44 3.4 0 1 6 3 65.50 -3.39 -0.13 5.47 * * 

212 NHBoc Py 342.40 1.5 0 1 7 3 76.48 -3.74 -0.61 5.17 * * 

213 NH2 Ph 355.32 1.2 0 2 4 1 55.75 -3.83 -0.39 -1.04 * 10.72 

214 NH2 p-OMePh 385.34 1.2 0 2 5 2 63.19 -3.91 -0.51 0.25 * 10.72 

215 NH2 p-ClPh 389.76 1.9 0 2 4 1 55.75 -3.75 -0.28 0.34 * 10.72 

216 NH2 p-MePh 369.34 1.7 0 2 4 1 54.74 -3.75 -0.28 -0.24 * 10.72 

217 NH2 Py 356.30 -0.2 0 2 5 1 65.71 -4.10 -0.77 -0.54 * 10.72 

218 NHAc Ph 283.33 0.8 0 1 5 2 60.04 -3.65 -0.48 2.55 * * 

219 NHAc p-OMePh 313.36 0.8 0 1 6 3 68.49 -3.74 -0.61 3.76 * * 

220 NHAc p-ClPh 317.77 1.5 0 1 5 2 60.04 -3.57 -0.37 3.85 * * 

221 NHAc p-MePh 297.36 1.3 0 1 5 2 60.04 -3.58 -0.38 3.35 * * 

222 NHAc Py 284.32 -0.6 0 1 6 2 71.00 -3.94 -0.87 3.05 * * 

223 NHMs Ph 319.38 1.0 0 1 6 3 76.15 -3.83 -0.74 12.45 11.71 * 

224 NHMs p-OMePh 349.40 1.0 0 1 7 4 84.59 -3.92 -0.86 13.66 11.71 * 

225 NHMs p-ClPh 353.82 1.7 0 1 6 3 76.15 -3.75 -0.62 13.75 11.71 * 

226 NHMs p-MePh 333.40 1.5 0 1 6 3 76.15 -3.76 -0.64 13.25 11.71 * 

227 NHMs Py 320.37 -0.4 0 1 7 3 87.12 -4.12 -1.13 12.95 11.71 * 
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Table A14- In silico results for compounds 233-247. 

O

OH
OMe

ON

N
N

R

 
                     R 

MW ClogP ROF 
alerts HBD HBA RotB PSA Peff logBB Andrew 

Binding 
PKa 
ACID 

PKa 
BASE 

233 
 

303.32 1.2 0 1 7 3 80.13 -4.05 -1.03 3.97 12.61 * 

234 

 

317.34 1.4 0 1 7 3 77.65 -3.95 -0.89 4.77 12.61 * 

235 
O  

319.32 0.6 0 1 8 4 88.62 -4.21 -1.25 4.38 12.59 * 

236 
O

O

 

349.34 0.3 0 1 9 5 97.09 -4.36 -1.47 5.59 12.61 * 

237 F
 

307.28 0.8 0 1 7 3 80.13 -4.09 -1.09 4.47 12.59 * 

238 
O

FF
F

 

373.29 1.7 0 1 8 5 88.62 -4.08 -1.09 7.59 12.59 * 

239 Cl
 

323.74 1.4 0 1 7 3 80.11 -4.03 -1.01 4.47 12.58 * 
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O

OH
OMe

ON

N
N

R

 
                     R 

MW ClogP ROF 
alerts HBD HBA RotB PSA Peff logBB Andrew 

Binding 
PKa 
ACID 

PKa 
BASE 

240 N
 

314.30 0.2 0 1 8 3 100.84 -4.42 -1.55 3.68 12.59 * 

241 N
 

290.28 -0.7 0 1 8 3 91.08 -4.40 -1.51 3.67 12.54 * 

242 
N  

290.28 -0.5 0 1 8 3 90.44 -4.39 -1.50 3.67 12.49 * 

243 
 

303.32 0.4 0 1 7 5 80.31 -4.06 -1.04 3.28 12.64 * 

244 
 

255.27 -0.3 0 1 7 4 80.57 -4.16 -1.18 0.67 12.68 * 

245 
 

269.30 0.3 0 1 7 5 78.54 -4.08 -1.06 1.47 12.66 * 

246 N
 

298.34 -0.6 0 1 8 7 84.26 -4.35 -1.43 2.09 12.62 10.27 

247 
N

 

374.44 0.8 0 1 8 8 85.18 -4.17 -1.20 5.51 12.62 9.25 

 



 

XVI 
 

Table A15- MDO assays for oxetane derived 1,2,4-oxadiazole libraries. 

OR1

R3
O N

N R2

 
  R1                  R2                   R3        Stereochem. 

CEpKa logD lysa Pampa 
 predicted 

Pampa 
measured hCLint mCLint 

104 NHBoc p-ClPh OPMB D-lyxo  4.0 1 M2H - - - 

109 NH2 p-ClPh OH D-lyxo 8.3 2.1 375 L M2H 12(M) 10(L) 

114 NHAc p-ClPh OH D-lyxo  2.0 479 L M2H 18(M) 23(M) 

119 NHMs p-ClPh OH D-lyxo  1.9 325 L M2H 42(H) 53(M) 

122 NHBoc Ph OMe D-lyxo  3.3 47 M2H M2H 19 (M) 27 (L) 

124 NHBoc p-ClPh OMe D-lyxo  4.0 1 M2H M2H 0 (L) 6 (L) 

127 NH2 Ph OMe D-lyxo 8.5 0.4 375 L M2H - - 

129 NH2 p-ClPh OMe D-lyxo 8.5 1.1 455 L M2H - - 

132 NHAc Ph OMe D-lyxo  1.6 360 borderline M2H 6 (L) 9 (L) 

134 NHAc p-ClPh OMe D-lyxo  2.3 385 borderline M2H 11 (M) 11 (L) 

137 NHMs Ph OMe D-lyxo  1.8 365 L M2H 5(L) 12(L) 

139 NHMs p-ClPh OMe D-lyxo  2.2 200 L M2H 0 (L) 0 (L) 

144 NHBoc p-ClPh OMe D-ribo  >3 1 M2H M2H - - 

146 NHBoc p-Py OMe D-ribo  2.1 400 borderline M2H - - 

149 NH2 p-ClPh OMe D-ribo 7.8 1.5 525 L M2H 0 (L) 11(L) 

151 NH2 p-Py OMe D-ribo  - 435 L M2H 18(M) 54(M) 

154 NHAc p-ClPh OMe D-ribo  2.2 340 borderline M2H 20(M) 0(L) 

156 NHAc p-Py OMe D-ribo  0.2 295 L M2H 13(M) 21(M) 

159 NHMs p-ClPh OMe D-ribo  - 205 L M2H 22(M) 27(M) 

161 NHMs p-Py OMe D-ribo  0.5 355 L M2H 7(M) 27(M) 

162 NHBoc Ph F D-arabino  3.0 41 M2H - - - 

163 NHBoc p-OMePh F D-arabino  3.2 17 M2H - - - 

167 NH2 Ph F D-arabino  1.0 370 L M2H 3(L) 14(M) 

168 NH2 p-OMePh F D-arabino 7.6 1.0 385 L M2H 24(M) 14(M) 

172 NHAc Ph F D-arabino  1.6 290 M2H - 27(M) 44(M) 

173 NHAc p-OMePh F D-arabino  1.7 170 borderline M2H 5(L) 43(M) 

177 NHMs Ph F D-arabino  1.5 355 borderline M2H 1(L) 12(L) 

178 NHMs p-OMePh F D-arabino  1.6 17 borderline M2H 0(L) 7(L) 

182 NHBoc p-ClPh F D-xylo  3.7 1 M2H - - - 

183 NH2 p-ClPh F D-xylo  1.2 395 L M2H - - 

184 NHAc p-ClPh F D-xylo  2.2 71 M2H - 15(M) 20(M) 

185 NHMs p-ClPh F D-xylo  2.1 23 M2H - 6(L) 0(L) 
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Table A16- MDO assays for bicyclic 1,2,4-oxadiazole libraries. 

R1
H

H O N

N R2

 
                       R1                                 R2           

CEpKa logD lysa Pampa 
 predicted 

Pampa 
mesured hCLint mCLint 

104 NHBoc up Ph  >3 1 M2H - - - 

109 NH2 up Ph  0.6 395 L M2H 4.90(L) 73.41(H) 

114 NHAc up Ph  2.4 275 M2H - 0.00(L) 5.28(L) 

119 NHMs up Ph  2.2 20 M2H - 5.03(L) 20.88(M)

122 NHBoc down Ph  >3 1 M2H - - - 

124 NHBoc down p-MePh  >3 1 M2H - - - 

127 NH2 down Ph 9.2 0.5 390 L M2H 6.01(L) 66.63(M)

129 NH2 down p-MePh 9.2 1.1 380 L M2H 15.24(M) 34.26(M)

132 NHAc down Ph  2.5 295 M2H - 3.90(L) 178.82(H)

134 NHAc down p-MePh  2.9 260 M2H - 4.14(L) 123.16(H)

137 NHMs down Ph  2.2 43 M2H - 0.00(L) 32.03(M)

139 NHMs down p-MePh  2.7 1 M2H - 14.24(M) 157.18(H)
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Table A17- MDO assays for oxetane 1,2,3-triazole library. 

O

OH
OMe

ON

N
N

R

 
           R                           

logD Lysa Pampa 
 predicted 

Pampa 
measured hCLint mCLint 

233 
 

0.6 270 M2H - 1946 (H) 3873(H) 

237 F
 

- 275 M2H - - - 

238 
O

FF
F

 

1.6 27 M2H - - - 

241 N
 

-0.8 - L M2H - - 

242 
N  

-0.6 240 L M2H - - 

245 
 

- 245 M2H - - - 

246 N
 

- - L no UV 
detection - - 

247 
N

 

- 260 L M2H - - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


