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ABSTRACT 
 

The study aims at investigating the relationship between climate variability and 

vegetation dynamics by combining meteorological and remote-sensed information. The 

vegetation response to both precipitation and temperature in two contrasting areas 

(Northeastern Europe and the Iberian Peninsula) of the European continent is analysed 

and special attention is devoted to the impact of the North Atlantic Oscillation (NAO) 

on the vegetative cycle in the two regions which is assessed taking into account the 

different land cover types and the respective responses to climate variability.  

An analysis is performed of the impact of climate variability on wheat yield in Portugal 

and. the role of NAO and of relevant meteorological variables (net solar radiation, 

temperature and precipitation) is investigated. Using spring NDVI and NAO in June as 

predictors, a simple regression model of wheat yield is built up that shows a general 

good agreement between observed and modelled wheat yield values. 

The severity of a given drought episode in Portugal is assessed by evaluating the 

cumulative impact over time of negative anomalies of NDVI. Special attention is 

devoted to the drought episodes of 1999, 2002 and 2005. While in the case of the 

drought episode of 1999 the scarcity of water in the soil persisted until spring, the 

deficit in greenness in 2005 was already apparent at the end of summer. Although the 

impact of dry periods on vegetation is clearly noticeable in both arable land and forest, 

the latter vegetation type shows a higher sensitivity to drought conditions. 

Persistence of negative anomalies of NDVI was also used to develop a procedure 

aiming to identify burned scars in Portugal and then assess vegetation recovery over 

areas stricken by large wildfires. The vulnerability of land cover to wildfire is assessed 

and a marked contrast is found between forest and shrubland vs. arable land and crops. 

Vegetation recovery reveals to strongly depend on meteorological conditions of the year 

following the fire event, being especially affected in case of a drought event. 

 

Keywords: Remote sensing, Vegetation dynamics, Wheat yield, Vegetation recovery, 

Burned areas, Climate Variability, North Atlantic Oscillation, Drought persistence. 
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RESUMO 
 

Os ecossistemas terrestres têm vindo a ser objecto de interesse crescente devido 

ao papel que desempenham no controlo e forçamento do sistema climático à escala 

global. Responsáveis pelo armazenamento e libertação de diversos gases com efeito de 

estufa, tais como o dióxido de carbono (CO2), o metano e o óxido nitroso, os 

ecossistemas terrestres encontram-se, por sua vez, sujeitos localmente à influência do 

clima. Tais interacções traduzem-se numa multiplicidade de mecanismos de feedback 

entre o ciclo do carbono e o clima, os quais podem ser atenuados ou amplificados pela 

variabilidade climática às escalas regional e global. Neste contexto, destaca-se o papel 

da vegetação, dada a quantidade elevadíssima de carbono que é armazenada na própria 

vegetação e na matéria orgânica. 

Recentemente, um número crescente de trabalhos tem vindo a pôr em evidência 

a resposta das componentes terrestres do ciclo do carbono às variações e tendências do 

sistema climático à escala global. Heimann e Reichstein (2008) mostraram que a forte 

variabilidade interanual da taxa global de crescimento médio de CO2 atmosférico está 

correlacionada fortemente com o índice El-Niño-Oscilação do Sul. Este controlo parece 

estar relacionado com o impacto de eventos extremos na vegetação da Amazónia 

ocidental e do sudeste da Ásia, conduzindo a uma perda do carbono pela floresta devido 

à diminuição da produtividade fotossintética e/ou ao aumento da respiração. 

Ao estudar o impacto do clima no balanço do carbono assume-se que a 

sequestração de CO2, pela fotossíntese, é estimulada pelo aumento de temperatura e 

pelo próprio aumento de CO2 (Davidson e Janssens, 2006), tendo-se que estes processos 

– que ocorrem essencialmente nas florestas da região boreal e das regiões temperadas – 

devem atingir a saturação para valores elevados da temperatura e da concentração de 

CO2. Acontece, porém, que a respiração responde de forma exponencial às variações da 

temperatura, mas não é sensível aos níveis do CO2. Assim, parece ser a própria biosfera 

que fornece um mecanismo de feedback negativo para o aumento da temperatura e do 

CO2, o qual permanecerá activo enquanto o efeito de estimulação da temperatura 

exceder o efeito de fertilização do CO2 (Denman et al., 2007). Por outro lado, numa 

terra aquecida, será de esperar um aumento da evaporação, conducente a um balanço 
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negativo da água, o qual será mitigado pela diminuição da perda da água nos estomas 

das plantas, característica de um mundo com excesso de CO2. Desta forma, o resultado 

líquido dependerá essencialmente da capacidade de armazenamento de água pelo solo, 

da distribuição vertical do carbono e das raízes no solo e da sensibilidade geral da 

vegetação às condições de stress hídrico (Heimann e Reichstein, 2008), tendo-se que as 

limitações em água podem até suprimir a resposta da respiração à temperatura. 

(Reichstein et al., 2007). Sob condições de seca severa, alguns cenários climáticos 

apontam para um aumento do sequestro do carbono através da supressão da respiração, 

bem como da redução da perda de carbono devido à diminuição da actividade 

fotossintética (Ciais et al., 2005; Saleska et al., 2003). 

Acontece que a biosfera não responde unicamente às variações das variáveis 

climáticas médias, mas também – e sobretudo – às flutuações e à variabilidade dessas 

variáveis, as quais, por sua vez, se encontram relacionadas com a ocorrência de eventos 

extremos. Um bom exemplo desta dependência foi a recente onda de calor que assolou a 

Europa durante o Verão de 2003; tendo-se que a acumulação de carbono durante os 

cinco anos precedentes, foi anulada em apenas alguns dias de condições atmosféricas 

extremas. Ciais et al. (2005) mostraram que a respiração, em vez de aumentar com a 

temperatura, diminuiu juntamente com a produtividade, tendo aqueles autores destacado 

ainda que as secas e as ondas de calor podem modificar a produtividade da vegetação e 

transformar, por curtos períodos, sumidouros em fontes, conduzindo, desta forma, a um 

mecanismo de feedback positivo do sistema climático. Os efeitos prejudiciais de tais 

eventos extremos podem mesmo ser amplificados por meio de impactos retardados, tais 

como aqueles associados à morte das árvores e à recuperação lenta da vegetação em 

caso de incêndios florestais (Heimann e Reichstein, 2008; Le Page et al., 2008). 

Nas latitudes elevadas, as variações na sazonalidade da temperatura têm vindo a 

induzir Invernos amenos e Primaveras antecipadas, conduzindo a um derretimento dos 

gelos e a um florescimento da vegetação prematuros e, portanto, a uma maior 

vulnerabilidade às geadas (Myneni et al., 1997; Zhou et al., 2001). Por outro lado, os 

aumentos de temperatura observados, na Primavera e no Outono das latitudes elevadas 

do Hemisfério Norte, conduzem a um aumento da extensão da estação de crescimento e 

a uma maior actividade fotossintética, a qual poderá afectar o ciclo sazonal do carbono. 

Enquanto que na Primavera a fotossíntese prevalece sobre a respiração, já no Outono 

acontece o oposto e, por conseguinte, será na Primavera que se espera a ocorrência do 

sequestro de CO2 (Piao et al., 2008). No futuro – e caso se verifique um aquecimento 
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mais acelerado no Outono – a capacidade de sequestro do carbono pelos ecossistemas 

do Norte poderá diminuir mais rapidamente do que se previa (Sitch et al., 2008). 

Por sua vez, as variações temporais na velocidade de vento, na temperatura do 

ar, no stress hídrico e na humidade podem induzir variações na frequência e na 

severidade dos fogos florestais e, consequentemente, originar a libertação para a 

atmosfera, em apenas alguns minutos, de enormes quantidades do carbono, que foram 

acumuladas no solo e na vegetação durante séculos (Shakesby et al., 2007; Michelsen et 

al., 2004). Acresce que fogos florestais mais frequentes e mais intensos reduzem a 

biomassa e a produtividade da camada superficial do solo, o que leva à erosão e à 

diminuição do biodiversidade e, em última análise, conduzirá à degradação dos solos. 

Por outro lado, em regiões áridas e semi-áridas, e durante períodos secos, as espécies 

herbáceas altamente combustíveis tendem a competir com a vegetação nativa, tornando 

estas áreas mais vulneráveis ao fogo, devido à acumulação de biomassa seca altamente 

inflamável. Por sua vez, a reincidência de incêndios pode induzir alterações na estrutura 

do coberto vegetal, convertendo a vegetação nativa em espaços florestais degradados. 

A detecção remota afigura-se presentemente como uma ferramenta muito útil 

para a monitorização, à escala global e a custo relativamente baixo, da dinâmica e do 

stress da vegetação, bem como da desflorestação e das alterações na utilização do solo. 

O aparecimento de novas plataformas, sensores e satélites tem vindo a suscitar um 

esforço notável com vista ao desenvolvimento de métodos mais sofisticados e de 

algoritmos mais aperfeiçoados com o objectivo de proceder a uma homogeneização das 

séries temporais e de integrar observações da natureza diferente. Um bom exemplo é 

dado pelo Global Inventory Monitoring and Modelling System (GIMMS), que 

proporciona actualmente à comunidade científica mais de vinte anos de dados com 8 km 

de resolução, baseados na informação proveniente dos satélites da série 

AVHRR/NOAA. A Europa, por sua vez, encetou uma iniciativa complementar, através 

do sistema VEGETATION que, desde o final de 1998, tem vindo a fornecer dados 

acerca das características da superfície do solo, com 1 km de resolução, baseada na 

informação proveniente do sensor VEGETATION a bordo dos satélites SPOT. De 

referir, ainda, o esforço adicional que tem vindo a ser efectuado no sentido de se 

proceder ao desenvolvimento de diversos índices da vegetação – de que merece 

destacar-se o NDVI – elaborados especificamente para quantificar diversos aspectos 

relacionados com as concentrações da vegetação verde e a identificação de locais onde a 

vegetação é saudável ou se encontra sujeita a stress térmico ou hídrico. 
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A presente tese tem por objectivo contribuir para uma melhor compreensão do 

impacto da variabilidade climática na dinâmica da vegetação à escala europeia, com 

especial ênfase nos aspectos particulares que ocorrem em Portugal continental e dando-

se especial atenção à análise da relação entre a actividade fotossintética e a Oscilação do 

Atlântico Norte (NAO) já que esta constitui o modo principal de variabilidade climática 

do Hemisfério Norte. Assim – e no seguimento de diversos estudos que abordaram 

alguns aspectos da relação da NAO com a dinâmica da vegetação à escala europeia 

(D’Odorico et al., 2002; Cook et al., 2004; Stöckli and Vidale, 2004; Vicente Serrano 

and Heredia Laclaustra, 2004) – procedeu-se a uma análise sistemática de duas regiões 

com comportamentos contrastantes, a saber a Península Ibérica e o Nordeste da Europa. 

A análise, que abarcou um período de 21 anos (1982-2002), foi efectuada a partir de 

compósitos mensais de NDVI e da temperatura do brilho da série de dados GIMMS, 

bem como da precipitação mensal disponibilizada pelo Global Precipitation 

Climatology Centre (GPCC). Para o referido período de 21 anos, procedeu-se a um 

estudo sistemático dos campos de correlação pontual entre os valores de Inverno da 

NAO e os correspondentes valores da Primavera e do Verão do NDVI, tendo-se ainda 

analisado, nas duas regiões referidas, a resposta da vegetação às condições de 

precipitação e de temperatura de Inverno. No caso da Península Ibérica, os resultados do 

estudo efectuado evidenciaram que valores (negativos) positivos da NAO de Inverno 

induzem (elevada) baixa actividade da vegetação na Primavera e no Verão seguintes, 

estando este comportamento associado ao impacto da NAO na precipitação do Inverno, 

conjuntamente com a forte dependência da vegetação da Primavera e do Verão da 

disponibilidade de água durante o Inverno precedente. Já no Nordeste da Europa se 

observou um comportamento diferente, com valores (negativos) positivos da NAO de 

Inverno a induzirem valores (baixos) elevados de NDVI na Primavera e valores 

(elevados) baixos de NDVI no Verão, comportamento este resultante principalmente do 

forte impacto da NAO na temperatura do Inverno, associado com a dependência do 

crescimento da vegetação do efeito combinado de condições amenas e da 

disponibilidade de água ocorridas no Inverno. Na Península Ibérica, observou-se ainda 

que o impacto da NAO é maior nas zonas não florestadas, já que estas respondem mais 

rapidamente às variações espaço-temporais da humidade do solo e da precipitação. No 

Nordeste da Europa, o impacto da NAO é especialmente notório durante os primeiros 

meses do ano, sugerindo que o crescimento da vegetação verde tende a ocorrer mais 
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cedo e intensamente nos anos de fase positiva da NAO, devido às condições 

relativamente mais amenas associadas a um derretimento prematuro do coberto de gelo. 

Os resultados obtidos – em particular aqueles que respeitam à relação entre a 

NAO de Inverno e o NDVI da Primavera e do Verão – representam um importante valor 

acrescentado, na medida em que proporcionam uma antevisão global do estado da 

vegetação, passível de diversas aplicações que incluem a formulação de previsões a 

curto prazo da produtividade de culturas e a previsão a longo prazo de risco de 

incêndios florestais. Neste contexto – e no seguimento de diversos estudos em que se 

procede ao estudo de relações entre o rendimento de culturas e a distribuição espaço-

temporal de variáveis meteorológicas relevantes (Maytelaube et al. 2004; Atkinson et 

al., 2005; Iglesias and Quiroga, 2007, Rodríguez-Puebla et al., 2007) – analisou-se a 

produtividade de trigo no Alentejo e suas relações com o regime meteorológico do ano 

agrícola. O estudo foi suscitado pelo facto de se terem encontrado no Alentejo, para o 

período 1982-1999, correlações fortemente negativas entre a produtividade do trigo e o 

NDVI da Primavera obtido a partir da base de dados GIMMS. O impacto dos factores 

meteorológicos na produtividade do trigo naquela região foi, por sua vez, avaliado 

através do cálculo de correlações mensais das anomalias da produtividade do trigo com 

a radiação solar, a temperatura e a precipitação, bem como com a NAO. Os resultados 

obtidos indicam que temperaturas frias durante o Inverno e uma Primavera antecipada, 

juntamente com a ocorrência de precipitação em Fevereiro e Março e a disponibilidade 

de radiação solar em Março, têm um impacto positivo durante a fase de crescimento, 

tendo-se ainda que um valor elevado do índice NAO em Junho é benéfico para o estádio 

de maturação do grão. Com base nas relações obtidas, procedeu-se à elaboração de um 

modelo simples (de regressão linear multivariada) da produção de trigo, utilizando 

como predictores os valores de NDVI da Primavera e da NAO de Junho. Os resultados 

da validação cruzada confirmaram o bom desempenho do modelo, que se antevê possa 

vir a ser melhorado quando estendido a um período mais alargado. 

Os campos de NDVI derivados do sensor VEGETATION foram, por sua vez, 

utilizados para monitorizar episódios de seca em Portugal continental, estudo este 

motivado pelo recente reconhecimento da existência de uma forte dependência da 

dinâmica da vegetação, na região do Mediterrâneo, da disponibilidade em água 

(Eagleson, 2002, Rodríguez-Iturbe and Porporato, 2004, Vicente-Serrano and Heredia-

Laclaustra, 2004, Vicente-Serrano, 2007). Nesta conformidade, a severidade de um 

dado episódio de seca foi avaliada através da persistência temporal das condições de 
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stress hídrico da vegetação – traduzida pelo número de meses em que se observa uma 

anomalia negativa do NDVI num determinado período de tempo – tendo-se dado 

atenção especial ao episódio de seca de 2005, bem como aos episódios ocorridos em 

1999 e em 2002. O impacto da humidade do solo na dinâmica da vegetação foi ainda 

avaliado através do estudo do ciclo anual do Soil Water Index (SWI) em função do 

NDVI, tendo-se observado que, no caso do ano de 1999, a escassez de água no solo 

persistiu até à Primavera, enquanto que, no episódio de 2005, o stress da vegetação já 

era visível no final do Verão. Igualmente se avaliou o impacto dos períodos secos nos 

diferentes tipos de coberto vegetal, tendo-se observado, em particular, que a terra arável 

apresenta maior sensibilidade do que a floresta. 

O problema da recuperação da vegetação após um episódio de fogo florestal tem 

vindo a ser objecto de um considerável número de estudos realizados para as regiões do 

Mediterrâneo e baseados em informação proveniente de detecção remota (Jakubauskas 

et al., 1990; Viedma et al., 1997; Díaz-Delgado et al., 1998; Henry and Hope, 1998; 

Ricotta et al., 1998). Seguindo o exemplo de alguns autores que têm utilizado o NDVI 

para proceder à monitorização da recuperação do coberto vegetal (Paltridge and Barber, 

1988; Viedma et al., 1997; Illera et al., 1996), novamente se recorreu à persistência das 

anomalias negativas de NDVI para simultaneamente desenvolver uma metodologia que 

permitisse a identificação de áreas queimadas e avaliasse a capacidade de recuperação 

da vegetação nas áreas ardidas. A metodologia desenvolvida revelou-se adequada para 

ambos os propósitos no caso de áreas afectadas por incêndios florestais de grandes 

dimensões, tendo os resultados obtidos apontado para uma muito maior vulnerabilidade 

ao fogo das zonas de floresta e de mato, em contraste com o observado nas zonas de 

terra arável e culturas. No que respeita à recuperação da vegetação nas áreas afectadas 

por fogos florestais, observou-se que a recuperação depende em larga medida das 

condições meteorológicas durante o ano que se segue ao fogo, em particular das 

condições de aridez. De facto, verificou-se que a recuperação da vegetação foi 

especialmente lenta em 2003, por causa da seca que se seguiu em 2004/2005, sobretudo 

nas áreas ardidas na região do Algarve onde os efeitos da seca foram mais severos. 

 

Palavras chave: Detecção Remota, Dinâmica da Vegetação, Produtividade do Trigo em 

Portugal, Recuperação da Vegetação, Áreas Ardidas, Variabilidade Climática, 

Oscilação do Atlântico Norte, Secas, Severidade, Persistência de Secas



 

 - xi -

TABLE OF CONTENTS 
 
 

 

Acknowledgements...........................................................................................................i 

Abstract...........................................................................................................................iii 

Resumo.............................................................................................................................v 

Table of Contents............................................................................................................xi 

List of Figures................................................................................................................xv 

List of Tables...............................................................................................................xxiii 

List of Acronyms..........................................................................................................xxv 

 

 
 
 
1. Introduction ........................................................................................................ xxv 

2. Fundamentals.......................................................................................................... 7 

2.1 Remote sensing................................................................................................. 7 

2.2 Radiometric concepts ....................................................................................... 8 

2.3 Image correction............................................................................................. 12 

2.3.1 Atmospheric correction .......................................................................... 12 

2.3.2 Radiometric correction ........................................................................... 14 

2.3.3 Geometric correction .............................................................................. 14 

2.3.3.1 Distortion models ............................................................................... 16 

2.3.3.2 Coordinate transformations ................................................................ 17 

2.4 Resampling ..................................................................................................... 22 

2.5 The SPOT and the NOAA systems ................................................................ 24 

2.5.1 The SPOT Program ................................................................................ 24 

2.5.2 The NOAA series ................................................................................... 31 

3. Basic Data and Pre-Processing............................................................................ 35 

3.1 Vegetation Indices .......................................................................................... 35 

3.1.1 Introduction ............................................................................................ 35 



 - xii -

3.1.2 Performance and limitations of empirical vegetation indices ................ 37 

3.1.3 NDVI from AVHRR/NOAA.................................................................. 40 

3.1.4 NDVI data fromVEGETATION/SPOT ................................................. 42 

3.2 Land Cover Maps ........................................................................................... 45 

3.2.1 Introduction ............................................................................................ 45 

3.2.2 The Global Land Cover 2000 Project..................................................... 45 

3.2.3 The Corine Land Cover 2000 project ..................................................... 47 

3.3 Climate data.................................................................................................... 53 

3.3.1 Meteorological Data ............................................................................... 53 

3.3.2 North Atlantic Oscillation ...................................................................... 54 

4. Climate Impact on Vegetation Dynamics........................................................... 57 

4.1 Introduction .................................................................................................... 57 

4.2 Methodology................................................................................................... 60 

4.3 NAO and Vegetation Greenness..................................................................... 62 

4.4 NAO and Climatic Activity............................................................................ 65 

4.5 The role NAO on the vegetative cycle ........................................................... 73 

4.6 Conclusions .................................................................................................... 75 

5. Interannual Variability of Wheat Yield in Portugal ......................................... 79 

5.1 Introduction .................................................................................................... 79 

5.2 Wheat and Climate ......................................................................................... 81 

5.3 Wheat in Portugal ........................................................................................... 82 

5.3.1 Production and Yield .............................................................................. 83 

5.3.2 Vegetative cycle ..................................................................................... 85 

5.3.3 Spatial distribution.................................................................................. 86 

5.3.4 Meteorological variables ........................................................................ 88 

5.4 A simple regression model for wheat yield .................................................... 93 

5.5 Final Remarks................................................................................................. 95 

6. Drought and Vegetation Stress Monitoring ....................................................... 97 

6.1 Introduction .................................................................................................... 97 

6.2 Vegetation stress............................................................................................. 99 

6.3 Drought assessment ...................................................................................... 101 

6.3.1 Annual cycle of NDVI.......................................................................... 101 

6.3.2 Annual cycle of soil moisture............................................................... 105 

6.4 Drought persistence ...................................................................................... 112 



 

 - xiii -

6.5 Final remarks ................................................................................................ 118 

7. Monitoring Burned Areas and Vegetation Recovery...................................... 123 

7.1 Introduction .................................................................................................. 123 

7.2 Rationale....................................................................................................... 124 

7.3 Vegetation recovery in burned areas ............................................................ 128 

Final remarks ............................................................................................................ 131 

8 Conclusions ......................................................................................................... 135 

REFERENCES ........................................................................................................... 139





 

 - xv -

LIST OF FIGURES 
 
Figure 2.1 Data collection by remote sensing (from http://www.cla.sc.edu/geog/cgisrs/).

.................................................................................................................................. 8 

Figure 2.2 Spatial and temporal resolution for selected remote sensing applications 

(from Jensen, 2007). ............................................................................................... 10 

Figure 2.3 Spectral reflectance of vegetation (from 

http://www.csc.noaa.gov/products/sccoasts/html/images/reflect2.gif ). ................ 11 

Figure 2.4 Spectral reflectance of vegetation, soil and water (from 

http://landsat.usgs.gov/resources/remote_sensing/remote_sensing_applications.php

)............................................................................................................................... 12 

Figure 2.5 Conventional definitions for the three attitude axes of a sensor platform 

(source: Schowengerdt, 1997) ................................................................................ 16 

Figure 2.6 Ellipsoid, geoid and topographic surfaces (source: 

http://www2.uefs.br/geotec/topografia/apostilas/topografia(1).htm ) .................... 19 

Figure 2.7 The UTM Zone 29 (source: www.isa.utl.pt/der/Topografia/cartografia2.ppt)

................................................................................................................................ 20 

Figure 2.8 Picture of the satellite SPOT 4. (from http://medias.obs-

mip.fr/www/Reseau/Lettre/11/en/systemes/vegetation.html). ............................... 25 

Figure 2.9 The cross-track direction operating mode of the two HRV sensors. (from 

http://www.spotimage.fr/html/_167_224_230_.php). ............................................ 27 

Figure 2.10 Repeated observation by SPOT. (from 

http://www.spotimage.fr/html/_167_224_230_.php). ............................................ 27 

Figure 2.11 The push broom principle (http://spot4.cnes.fr/spot4_gb/index.htm )........ 28 

Figure 2.12 SPOT’s Field of view. (from http://spot5.cnes.fr/gb/satellite/42.htm ) ...... 28 

Figure 2.13 The VEGETATION field of view. (from http://spot5.cnes.fr/gb/ .............. 29 

Figure 3.1 Reflectance from different wavelengths and different surfaces.................... 35 

Figure 3.2 Monthly anomalies of NDVI over Europe for August 2003. Anomalies were 

computed with respect to the base period 1999-2004 (excluding 2003)................ 39 

Figure 3.3 As in Figure 3.2 but respecting to FAPAR anomalies.  Anomalies were 

computed with respect to the base period 1998-2002. (from Gobron et al, 2005). 39 



 - xvi -

Figure 3.4 Monthly time-series of NDVI for the period 1999–2006 and respecting to 

four different land cover types; an arable land pixel located in South Alentejo (left 

top panel), an arable land pixel located in North Alentejo (right top panel), a 

coniferous forest pixel (left bottom panel) and a broad-leaved forest pixel (right 

bottom panel). Green dots and the solid curve respectively represent the time series 

of corrected and non-corrected NDVI monthly values. ......................................... 43 

Figure 3.5 Number of months between September 2001 and August 2002 that are 

characterised by NDVI anomaly values below -0.025, using non-corrected (left 

panel) and corrected (right panel) NDVI data. ....................................................... 44 

Figure 3.6 The Global Land Cover 2000 Project. .......................................................... 46 

Figure 3.7 The updated version of the GLC2000 map for the European Window. 

(http://www-gvm.jrc.it/glc200 ). ............................................................................ 47 

Figure 3.8 Landsat 7 imagery for the updating CLC, using the IMAGINE2000 software.  

(http://image2000.jrc.it/ )........................................................................................ 48 

Figure 3.9 Corine Land Cover 2000 map for Portugal, as developed by ISEGI and the 

adopted 44 class-nomenclature (http://terrestrial.eionet.europa.eu/CLC2000)...... 49 

Figure 3.10 Corine Land Cover 2000 map for Portugal; the original map at 250m 

resolution (left panel), the degraded map at 1000m resolution using the nearest 

neighbour technique (central panel), the degraded map at 1000m resolution using 

the majority rule (right panel)................................................................................. 50 

Figure 3.11 As in Figure 3.10 but respecting to a box centred in the Tagus estuary. .... 51 

Figure 3.12 Histogram of relative frequencies of pixels in the 250m original map (blue), 

and in the 1000m degraded maps as obtained using the nearest neighbour 

technique (green) and the majority rule (red). Labels in bars identify classes 

referred to in the text. ............................................................................................. 51 

Figure 3.13 Spatial distribution of relative presence for a set of five GLC2000 classes 

for the 1000m degraded maps using the majority rule, respectively urban areas 

(code 1.1.2), non irrigated arable land (code 2.1.1), broad-leaved forest (code 

3.1.1), water courses (code 5.1.1) and estuaries (code 5.2.2)................................. 52 

Figure 3.14 Patterns of simple correlation computed over the period 1982-2002 of three-

monthly averages of winter NAO (JFM) vs. winter precipitation (top panel) and 

surface air temperature (bottom panel)................................................................... 56 



 

 - xvii -

Figure 4.1 Interannual variability of late winter NAO index over the 21-year long 

period, from 1982 to 2002. Open (black) circles indicate years characterised by 

NAO indices above (below) the 3rd (1st) quartile. .................................................. 60 

Figure 4.2 Temporal averages of NDVISPR (left panel) and NDVISUM (right panel) over 

the period from 1982 to 2002. Gray pixels over land correspond to areas covered 

by snow and ice. ..................................................................................................... 61 

Figure 4.3 As in Figure 4.2 but for PNAO (left panel) and TNAO (right panel). ............... 62 

Figure 4.4 Point correlation fields of NAO vs. NDVISPR (left panel) and NAO vs. 

NDVISUM (right panel) over the period from 1982 to 2002. Black frames identify 

the Baltic region and the Iberian Peninsula. The colorbar identifies values of 

correlation and the two arrows indicate the ranges that are significant at 5% level.

................................................................................................................................ 63 

Figure 4.5 Boxplots of simple correlation between three months composite of North 

Atlantic Oscillation (NAO) and NDVI for the 2 selected areas (NE and IB). ....... 64 

Figure 4.6 Seasonal anomalies of NDVISPR for 1986 (NAO+), 1995 (NAO-) and for 

differences between 1995 and 1986 (upper, middle and lower panels, respectively) 

over IB and NE (left and right panels respectively). .............................................. 65 

Figure 4.7 Point correlation fields of NAO vs. TNAO (left panel) and NAO vs. PNAO 

(right panel) over the period from 1982 to 2002. The colorbar shows values of 

correlation and the two arrows indicate the ranges that are significant at 5% level.

................................................................................................................................ 66 

Figure 4.8 Geographical distribution of sets of selected pixels over the IB (upper 

panels), based on the strong values of correlation of NDVISPR (upper left panel) 

and NDVISUM (upper right panel) with NAO. Red, green and blue pixels are 

respectively associated to forest and shrub, cultivated areas and other types of 

vegetation cover. Land cover type (low panel) as obtained from GLC2000) ........ 68 

Figure 4.9 As in Figure 4.8 but respecting to NHCP over NE. Red, green and blue 

pixels are respectively associated to needle-leaved, evergreen, cultivated and other 

types of vegetation cover........................................................................................ 69 

Figure 4.10 Dispersion diagrams of NDVISPR (upper panels) and NDVISUM (lower 

panels) vs. PNAO (left panels) and TNAO (right panels) for selected pixels over the 

IB. Each dot represents a pair of median values of a given set of selected 500 

pixels, for a given year of the considered period (1982-2002). Years that belong to 

the subset of NAO+ (NAO-) are marked in red (green) and the respective variability 



 - xviii -

is characterised by means of horizontal and vertical bars indicating the interquartile 

ranges...................................................................................................................... 71 

Figure 4.11 As in Figure 4.10, but respecting to NE...................................................... 72 

Figure 4.12 Annual cycles of monthly values of NDVI for NAO High Correlation 

Pixels (NHCP), for spring (upper panel) and summer (lower panel), over IB (left 

panel) and NE (right panel).  The annual cycles of average NDVI values for the 

entire period (1982-2002) are represented by thick solid lines, whereas the annual 

cycles of averages for the NAO- (NAO+) subsets are identified by the thin solid 

(dashed) curves. Vertical dashed curves delimit the season of the year................. 74 

Figure 4.13 As in Figure 4.12, but restricting to the annual cycles of NDVI for the 

individual years of 1986 (NAO−) and 1995 (NAO+), respectively represented by 

the dashed and the solid lines. ................................................................................ 74 

Figure 5.1 Comparison of AVHRR, SPOT and MODIS VIs over Southeastern, 

Australia, for February 2003 (Justice, 2005).......................................................... 80 

Figure 5.2 Time series of annual wheat yield in Portugal for the period from 1961 to 

2005: yield (solid line), general trend (dashed line) and anomalies for detrended 

time series (line with asterisks). ............................................................................. 84 

Figure 5.3 Contribution of different growing regions of Portugal to total wheat yield for 

the period from 1996 to 2003. ................................................................................ 84 

Figure 5.4 Percentage of Alentejo’s wheat yield for hard and soft wheat for the period 

from 1996 to 2003 .................................................................................................. 85 

Figure 5.5 Patterns of simple correlation between spring NDVI composites and wheat 

yield in Portugal, for the period of 1982-1999 (left panel); patterns of simple 

correlation that are significant at the 99% level (right panel). ............................... 86 

Figure 5.6 Pixels coded as “arable land not irrigated” according to Corine2000 for 

Portugal. (left panel). Relative frequency of correlation coefficient values between 

spring composite of NDVI and wheat yield in Portugal, for pixels coded as arable 

land (right panel). ................................................................................................... 87 

Figure 5.7 As in Figure 5.5 (left panel), but for the pixels with correlations that are 

significant at the 99% level. ................................................................................... 87 

Figure 5.8 Time series for the period 1982-1999 of detrended anomalies of wheat yield 

in Portugal (green curve) and of spring NDVI averaged over the “wheat-like” 

pixels (red curve). Values of wheat yield were normalized by subtracting the mean 

and dividing by the standard deviation................................................................... 88 



 

 - xix -

Figure 5.9 Patterns of simple correlation between wheat yield in Portugal and the three 

most relevant meteorological fields for the period of 1982-1999; top panel: net 

short wave radiation; middle panel: surface air temperature; bottom panel: 

precipitation. Boxes in the Southern sector delimit the area containing “wheat-like” 

pixels....................................................................................................................... 90 

Figure 5.10 Patterns of simple correlation, over the Iberian Peninsula, between NAO 

averaged for April, May and June and contemporaneous fields of radiation (left 

panel), temperature (central panel) and precipitation (right panel) for the 

considered period 1982-1999. ................................................................................ 91 

Figure 5.11Patterns of simple correlation between wheat yield in Portugal and the three 

most relevant meteorological fields for the period of 1982-1999; top panel: net 

long wave radiation; middle panel: surface air temperature; bottom panel: 

precipitation. ........................................................................................................... 92 

Figure 5.12 Time series (1982-1999) of observed (green curve) wheat yield in Portugal 

and of corresponding modeled values (red curve) when using a linear regression 

model based on spring NDVI and NAO in June (upper panel). Time series (1982-

1999) of residuals and respective 95% level confidence intervals (central panel); 

the single outlier (in 1998) is highlighted in red. Time series (1982-1999) of 

observed (green curve) wheat yield in Portugal and of corresponding modeled 

values (red curve) as obtained from the leave-one-out cross-validation procedure.

................................................................................................................................ 94 

Figure 6.1 Monthly time-series (1999–2006) of NDVI averaged over Continental 

Portugal for all pixels (black line), for pixels of non-irrigated arable land (red line) 

and of pixels of broad-leaved forest (green line). Black arrows indicate the drought 

episodes of 1999, 2002 and 2005. .......................................................................... 99 

Figure 6.2 Monthly means of NDVI (1999-2006) over Continental Portugal, covering 

the period from September to August................................................................... 100 

Figure 6.3 NDVI anomalies from September to August respecting to the year of 

1998/1999. ............................................................................................................ 102 

Figure 6.4 As in Figure 6.3 but respecting to the year of 2001/2002........................... 103 

Figure 6.5 As in Figure 6.3 but respecting to the year of 2004/2005........................... 104 

Figure 6.6 Monthly time-series (1992–2005) of SWI averaged over Continental 

Portugal. Values from January 2001 until August 2003 are missing. Black arrows 

indicate the drought episodes of 1999 and 2005. ................................................. 106 



 - xx -

Figure 6.7 Monthly means of SWI (1992-2005) over Continental Portugal, covering the 

period from September to August. ....................................................................... 107 

Figure 6.8 Climatological cycle of SWI vs. NDVI. Letters indicate months of the year.

.............................................................................................................................. 108 

Figure 6.9 SWI anomalies for January to August respecting to the year 1998/1999. .. 109 

Figure 6.10 As in Figure 6.9 but respecting to the year 2004/2005. ............................ 110 

Figure 6.11 Annual cycles (red curves) of SWI vs. NDVI for the drought episodes of 

1999 (left panel) and 2005 (right panel). The climatological cycle (black curves) is 

also presented for reference purposes................................................................... 111 

Figure 6.12 Annual cycles of spatially averaged NDVI for each year of the considered 

period (1999-2006) over non-irrigated arable land (top panel) and coniferous forest 

(bottom panel). The drought episodes of 1999 and 2005 are represented, 

respectively, by the curves with circles and asterisks. The line in bold refers to 

monthly means over the entire period. ................................................................. 112 

Figure 6.13 Percentage of continental Portugal with monthly NDVI anomalies lower 

than 0 (red bars) and lower than -0.025 (green bars), from September to August of 

2005. The black line represents the percentage of mainland affected by extreme 

drought, i.e., with PDSI ≈ -4. The 3-month delay of PDSI relatively to NDVI (as 

indicated by the two different horizontal time axes) is worth being noted. ......... 114 

Figure 6.14 Number of months between September and August that are characterised by 

NDVI anomaly values below -0.025, for each year of the considered period (1999-

2006)..................................................................................................................... 116 

Figure 6.15 As in Figure 6.14, but all pixels that are identify as burned areas are masked

.............................................................................................................................. 121 

Figure 7.1 Annual burned areas in Continental Portugal (right panel) for the fire season 

of 2003 (red pixels) using the criterion of at least 5 months of NDVI anomalies 

below -0.075 during the period from September to May of 2004; black pixels refer 

to burned scars for the previous fire season of 2002. Annual burned areas in 

Continental Portugal (central panel) for the period 2000-2004 as identified from 

Landsat imagery. The central panel was adapted from Pereira et al. (2006). ...... 125 

Figure 7.2 Annual burned areas in Continental Portugal (left panel) for the fire season of 

2004 (red pixels) using the criterion of at least 5 months of NDVI anomalies below 

-0.075 during the period from September to May of 2005; black pixels refer to 

burned scars for the previous fire season of 2003. Annual burned areas in 



 

 - xxi -

Continental Portugal (central panel) for the period 2000-2004 as identified from 

Landsat imagery. Annual burned areas in Continental Portugal (right panel) for the 

fire season of 2004 (red pixels) using the criterion of at least 7 months of NDVI 

anomalies below -0.075 during the period from January to August of 2005; black 

pixels refer to burned scars for the previous fire season of 2003. The central panel 

was adapted from Pereira et al. (2006). ................................................................ 126 

Figure 7.3 Annual burned areas in Continental Portugal (left panel) for the fire season of 

2005 (red pixels) using the criterion of at least 5 months of NDVI anomalies below 

-0.075 during the period from September to May of 2006; black pixels refer to 

burned scars for the previous fire season of 2004. Annual burned areas in 

Continental Portugal (central panel) for the year of 2005 as identified from Landsat 

imagery. Annual burned areas in Continental Portugal (right panel) for the fire 

season of 2005 (red pixels) using the criterion of at least 5 months of NDVI 

anomalies below -0.075 during the period from January to June of 2006; black 

pixels refer to burned scars for the previous fire season of 2004. The central panel 

is courtesy from J.M.C. Pereira. ........................................................................... 127 

Figure 7.4 Burned scars for each year of the period 1998-2005 as identified based on 

NDVI anomalies ................................................................................................... 129 

Figure 7.5 Time series of annual burned areas in Continental Portugal for the period 

1998-2005 as obtained from the developed methodology (solid line) and based on 

DGRF information (dotted curve). ....................................................................... 130 

Figure 7.6 Time series of NDVI for selected pixels in a set of eight large fire scars, each 

one corresponding to an event that has occurred in a given year of the 1998-2005. 

The location of the selected fire scars is given in the upper panel. ...................... 132 

Figure 7.7 Time series of averaged NDVI over three large fire scars, one of them 

associated to an event in 2001 and the remaining associated to two events in 2003. 

The location of the selected fire scars is given in the upper panel. ...................... 133 





 

 - xxiii -

LIST OF TABLES 
 
Table 2.1 Regions used in remote sensing. (adapted from 

http://www.esa.int/esaEO/SEMLFM2VQUD_index_1_m.html). ........................... 9 

Table 2.2 Table of Ellipsoids (Adapted from http://ltpwww.gsf.nasa.gov/ 

 IAS/handbook/hamdbook_htmls/chapter1/chapter1.html) .................................... 18 

Table 2.3 Projection plane equations for several common map projections (Moik, 1980). 

The latitude of a point on the Earth is ϕ  and its longitude is λ . The projected map 

coordinates, x and y, are called “easting” and “northing”, respectively. R is the 

equatorial radius of the Earth and ε  is the Earth’s eccentricity. The subscripted 

values of latitude and longitude pertain to the definition of a particular projection 

(source: Schowengerdt, 1997)................................................................................ 21 

Table 2.4 HRV Spectral Bands.(from 

http://www.spotimage.fr/html/_167_224_230_.php). ............................................ 25 

Table 2.5 HRVIR Spectral Bands 

(fromhttp://www.spotimage.fr/html/_167_224_230_.php).................................... 26 

Table 2.6 Orbit characteristics for SPOT 5. ................................................................... 30 

Table 2.7 SPOT 5 sensor characteristics. ....................................................................... 30 

Table 2.8 General time coverage by satellite. (from 

http://www.ngdc.noaa.gov/stp/NOAA/noaa_poes.html)........................................ 31 

Table 2.9 NOAA Satellites Orbital Characteristics. (Adapted from 

http://www.crisp.nus.edu.sg/~research/tutorial/noaa.htm ).................................... 32 

Table 2.10 AVHRR Sensor Characteristics. (from 

http://www.crisp.nus.edu.sg/~research/tutorial/noaa.htm)..................................... 33 

Table 4.1 Descriptive statistics of the distributions of NDVI anomalies for the sets of 

selected pixels associated to forest and shrub, and to cultivated areas, in the cases 

of spring and summer over the Iberian Peninsula and the Baltic region. P1, Q1, Q2, 

Q3 and P99 respectively denote percentile one, the first quartile, the median, the 

third quartile and percentile 99. Percent figures in parenthesis below the land cover 

types indicate the fraction of pixels of the considered set associated to that type. 70 



 - xxiv -

Table 5.1 Correlation values between spring NDVI and wheat yield and respective 95% 

confidence intervals and level of significance as obtained for 10,000 bootstrap 

samples. .................................................................................................................. 88 

Table 5.2 Correlation coefficient values between annual wheat yield and monthly net 

long wave radiation, air surface temperature and precipitation (from January to 

June) for the pixels coded as arable land not irrigated. Bold values are representing 

correlations values that are significant at 95% level and red value is presented the 

correlation value significant at 99% level. ............................................................. 89 

Table 5.3 As in table 5.1, but respecting to net short-wave radiation, temperature, 

precipitation in March and to NAO in June. .......................................................... 92 

Table 6.1 Percentage of mainland Portugal stricken by serious drought, i.e., with 

monthly NDVI anomalies below -0.025 in more than 9 months (out of 11). ...... 115 

Table 6.2 Total amounts and relative proportions of pixels affected by drought for 

different land cover types during the drought episodes of 1999, 2002 and 2005. 115 

Table 6.3 Cumulative effect of drought conditions for specific land cover types during 

the drought episodes of 1999, 2002 and 2005. ..................................................... 118 

Table 7.1 Percentage of burned pixels for pixels classified as non irrigated Arable Land, 

Forest, Transitional woodland-shrub and Shrubland (using Corine Land Cover 

Map 2000, CLC2000) for the fire seasons from the years 1998 to 2005. ............ 130 

 

 



 

   

LIST OF ACRONYMS 
 
 
 
AVHRR  Advanced Very High Resolution Radiometer 

CLC2000  Corine Land Cover 2000 

CNES   Centre National d'Etudes Spatiales 

CORINE  COoRdinate INformation on the Environment 

CRU   Climate Research Unit 

DFRF   Direcção Geral dos Recursos Florestais 

EEA   European Environment Agency 

EMD   Empirical Mode Decomposition 

ERS   European Remote Sensing 

FAO   Food and Agriculture Organization 

GAC   Global Area Coverage 

GEWEX  Global Energy and Water Cycle Experiment  

GIMMS  Global Inventory Monitoring and Modelling System 

GIS   Geographical Information System 

GLAM   Global Agriculture Monitoring 

GLC2000  Global Land Cover 2000 

GPCC   Global Precipitation Climatology Centre 

HRPT   High Resolution Picture Transmission 

HRV   High Resolution Visible 

HRVIR  High Resolution Visible and Infrared 

IB   IBerian peninsula 

IFOV   Instantaneous Field of View 

INE   Instituto Nacional de Estatística 

ISEGI   Instituto Superior de Estatística e Gestão da Informação 

JRC   Joint Research Center 

LAC   Local Area Coverage 

LST   Local Solar Time 

MAM   March, April and May 



 

 - xxvi -

MODIS  MODerate Resolution Imaging Spectroradiometer 

MS   MultiSpectral mode 

MSU   Microwave Sounding Unit 

MVC   Maximum Value Composite 

NASA   National Aeronautics and Space Administration 

NDVI   Normalised Difference Vegetation Index 

NDVISPR  SPRing NDVI  

NDVISUM  SUMmer NDVI 

NE   Northeastern Europe 

NHCP   NAO High Correlated Pixels 

NAO   North Atlantic Oscillation 

NIMA   United States National Imagery and Mapping Agency 

NIR   Near InfraRed 

NOAA   US National Oceanic and Atmospheric Administration 

PAN   PANchromatic mode  

PDSI   Palmer Drought Severity Index 

PNAO  Precipitation corresponding to the winter NAO index  

SPOT   Satellite Pour l’Observation de la Terre 

SWI   Soil Water Index 

SWIR   ShortWave InfraRed 

TIR   Thermal InfraRed  

TNAO Temperature corresponding to the winter NAO index  

TOVS   TIROS Operational Vertical Sounder 

USDA/FAS United States Department of Agriculture/Foreign Agricultural 

Service 

UTM   Universal Transverse Mercator 

VGT   VEGETATION 

VGT-NDVI  NDVI using VGT 

VGT-P   VGT Physical products 

VGT-S   VGT Synthesis products 

VI   Vegetation Index 

VIS   VISible 

WCRP   World Climate Research Program 

WMO   World Meteorological Organization 



 

   

 

1. INTRODUCTION 

Terrestrial ecosystems are of primary importance as they exert control and can 

partially drive the climate system at the global scale. Among other climate related 

impacts, terrestrial ecosystems are responsible for the storage and release of greenhouse 

gases, such as carbon dioxide (CO2), methane and nitrous oxide. However terrestrial 

ecosystems themselves are subject to the influence of local climate, leading to a 

multiplicity of feedback mechanisms between carbon cycle and climate, which may in 

turn be attenuated or intensified by regional and global climate variability. The role 

played by vegetation becomes decisive in this context because of the large quantities of 

carbon that are stored in vegetation and organic matter. When released into the 

atmosphere, in CO2 form, stored carbon may have strong impacts on global climate. 

Since carbon discharges, such as those resulting from the combustion of fossil fuel and 

in land-use changes, are mainly due to human activities, forest has become a major 

carbon source either in a direct or in an indirect way. 

As carbon changes are a major driver of climate change, it has become essential 

to understand in detail how terrestrial ecosystems may gain carbon through 

photosynthesis and lose it via autotrophic and heterotrophic respiration (as well as by 

volatile organic compounds, methane and dissolved carbon, in less but not neglected 

amounts). Quantifying and predicting the carbon cycle and modelling climate feedbacks 

is not an easy task, mainly because of the present limited knowledge about the 

geobiochemical processes that transform/recycle the carbon inside the climate system 

(Heimann and Reichstein, 2008). 

In recent years a growing number of works has provided strong evidence that the 

terrestrial components of the carbon cycle are responding to global climate changes and 

trends. Heimann and Reichstein (2008) have shown that the strong interannual 

variability of globally averaged growth rate of atmospheric CO2 is highly correlated 

with the El-Niño-Southern Oscillation index. This control appears be related with the 
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impact of extreme events on the health of vegetation of Western Amazonia and 

Southeastern Asia, leading to a loss of carbon by forest due to the decrease of 

photosynthetic productivity and/or increase in respiration. In this context, when 

studying the climate impact on carbon budget it is usually assumed that the CO2 uptake, 

by photosynthesis, is stimulated by the increases in both the CO2 itself and in 

temperature (Davidson and Janssens, 2006). These processes that essentially occur in 

boreal forests and temperate regions are expected to saturate at high values of CO2 

concentration and temperature. On the other hand, respiration responds exponentially to 

temperature changes, but is not sensitive to CO2 levels. This may indicate that the 

biosphere provides a negative feedback to the increase of temperature and CO2 until 

temperature is so high that the stimulation of respiration exceeds the fertilization effect 

of CO2. However the full process may be even more complex if we take into account 

the complex mechanisms that occur in soil layers. Furthermore, other climatic and 

environmental factors may modify the carbon balance (Denman et al, 2007). 

The primary productivity in the majority of the terrestrial ecosystems is limited 

by water availability, which means that significant changes in precipitation may have a 

strong impact on the dynamics of the carbon cycle. Changes in frequency and 

occurrence of precipitation (even without changes in the total annual amount) may be 

decisive to photosynthetic productivity because the precipitation regime determines 

when the water will be used and transpired by vegetation or just runoff and evaporate 

(Knapp et al., 2002). On other hand, in a warmer Earth, an increase of evaporation is 

expected, leading to a negative water balance, whereas the diminishing of loss of water 

by plant stomata in a world with a surplus of CO2 will mitigate the previous effect. As a 

consequence, the net result will mainly depend on the water holding capacity of the soil, 

as well as on the vertical distribution of carbon and roots in the soil and on the general 

sensitivity of vegetation to drought (Heimann and Reichstein, 2008). Water limitations 

may even suppress the response of respiration to temperature (Reichstein et al., 2007). 

Under drier conditions, some climate change scenarios give an indication of an 

increasing of carbon sequestration, by respiration suppression, as well as of a reducing 

of carbon loss due to the decrease of photosynthetic productivity (Ciais et al., 2005; 

Saleska et al., 2003). 

It is a well establish fact that the biosphere does not solely respond to changes in 

average climatic variables, but its changes are mainly associated to fluctuations and to 

variability of climatic variables, which in turn are related to the occurrence of extreme 
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events. A good example was the recent heat wave that stroke Europe during the summer 

of 2003; the carbon sequestration that occurred in the previous five years was 

annihilated in just a few days of extreme weather conditions. Ciais et al. (2005) have 

shown that, rather than accelerating with temperature rise, respiration has decreased 

together with productivity. These authors have highlighted that droughts and heat waves 

may modify the health and productivity of vegetation and transform, albeit for a short 

period, sinks into sources, leading to a short-term positive carbon-climate feedback. It 

may be noted that these mechanisms are related to the productivity rates of cultures, 

mainly in regions where artificial irrigation is not employed and for crops with 

vegetative cycles that do not coincide with the extreme heat. The negative effects of 

such extreme events may be even amplified by lagged impacts, such as those associated 

to tree death and the slow recovery of vegetation in case of wildfires (Holmgren et al., 

2006; Heimann and Reichstein, 2008, Le Page et al., 2008). 

Changes in temperature seasonality may have induced the occurrence of mild 

winters and early springs in high latitudes, leading to an early melting and flowering 

and, consequently, to a higher vulnerability to frost (Myneni et al., 1997; Zhou et al., 

2001). On the other hand, the observed increases of temperature in spring and autumn 

over high latitude regions of the Northern Hemisphere leads inevitably to larger 

growing seasons and to higher photosynthetic activity and therefore strongly affecting 

the carbon seasonal cycle. However the processes that take place in spring and in 

autumn have a different nature. Whereas in spring photosynthesis dominates respiration, 

the opposite takes place in autumn and therefore it is in spring that an increase in CO2 

sequestration is expected to occur (Piao et al., 2008). Accordingly, in the future and in 

case the autumn warming occurs faster than the spring warming, the ability of carbon 

sequestration by Northern ecosystems may decrease faster than previously suggested 

(Sitch et al., 2008). However, changes in the seasonality of temperature and 

precipitation may have distinct impacts, depending on local characteristics. 

Temporal changes in wind speed, air temperature, water stress and humidity 

may change the frequency and severity of wildfires with the consequent release, in a 

few minutes, of enormous quantities of carbon, into the atmosphere, that have been 

accumulated in soil and vegetation during centuries (Shakesby et al., 2007; Michelsen et 

al., 2004). More frequent and intense forest fires reduce biomass and productivity of the 

surface layer of soil, leading to erosion and decrease of biodiversity and finally to soil 

degradation. Recent observations in different regions have related fire severity to 
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summers drought; persistent droughts tend to intensify land degradation due to land use 

pressure, setting conditions, when rainfall starts, for the spreading and for a faster 

growing of highly flammable wild plants (Dube, 2007; Holmgren and Scheffer, 2001). 

In arid and semi-arid regions, and during dry periods, the highly flammable herbaceous 

species tend to compete with native vegetation. With the increase of meteorological fire 

risk, these areas tend to become more vulnerable to wildfires, due to the accumulation 

of highly flammable dry biomass. Repeated fires may in turn induce changes in 

vegetation structure, by converting the native vegetation into shrub-woodland 

vegetation (Brooks and Pyke, 2002; Sheuyange et al., 2005). 

A solid understanding of vegetation dynamics and climate variability becomes 

therefore crucial for the integration of the carbon cycle into the climate system and for 

the establishment of links between land use changes and extreme events, namely 

droughts and wildfires. In such a wide and complex context, remote sensing has become 

a very useful tool to monitor, at the global scale and relatively low cost, vegetation 

dynamics and stress, as well as deforestation and land use changes. The emergence of 

new satellite platforms and sensors, has prompted a strong effort to develop more 

sophisticated methods and algorithms to homogenise time series and to integrate 

observation of different nature. A good example is the one provided by the Global 

Inventory Monitoring and Modelling System (GIMMS) group, that has supplied the 

user community with more than twenty years of remote-sensed data at 8 km resolution, 

based on original information from the successive satellites of the AVHRR/NOAA 

series. Europe has built another complementary important initiative, the VEGETATION 

system that, since the end of 1998, has been supplying data on earth surface 

characteristics, at 1 km resolution, based on remote sensed information from 

VEGETATION instrument on board of the French SPOT satellites. An effort has also 

been put into the development of several vegetation indices, specifically design to 

quantify concentrations of green leaf vegetation and identify places where vegetation is 

either healthy or under stress.  

 

 

 

The aim of the present thesis is to further investigate the relationship between 

climate variability and vegetation dynamics in Europe by combining remote-sensed 

information and meteorological data. Special attention will be devoted to the Iberian 
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Peninsula and Portugal and the study will encompass different aspects of the problem, 

from the impact of NAO on the vegetative cycle to vegetation recovery after fire events. 

The thesis is organised into three main parts; a first one dedicated to 

fundamentals, data and methods; a second one dealing with the impact of climate 

variability on vegetation dynamics in Europe and crop production in southern Portugal; 

and a third focusing on the effects of extreme events on Portuguese vegetation health. 

The first part comprises Chapters 2 and 3. In Chapter 2 an overview is given on 

remote sensing and image correction techniques and a detailed description is provided 

about the major characteristics of NOAA and SPOT systems. Chapter 3 gives a 

thorough description of datasets used, namely remote-sensed (GIMMS, VITO, 

CLC2000, GLC2000) and meteorological (CRU, GPCC) data and presents an overview 

on the characteristics and the applicability of vegetation indices, namely on the 

Normalised Difference Vegetation Index (NDVI). 

The second part comprises Chapters 4 and 5 and the goal is to assess the impact 

of climate variability on vegetation dynamics and crop production. Chapter 4 is 

dedicated to the analysis of the relation between vegetation phenology and climate 

variability over Europe and to characterizing the response of vegetation to both 

precipitation and temperature in two contrasting areas of Europe, respectively 

Northeastern Europe and the Iberian Peninsula. The impact of the Northern Atlantic 

Oscillation (NAO) on the vegetative cycle in the two regions is assessed and related to 

the different land cover types and to the respective responses to climate variability. 

Results of this chapter have been published in Gouveia at al. (2008). Chapter 5 gives a 

brief description of the impact of climate variability on wheat production and yield that 

is mostly relevant in southern Portugal. The role of relevant meteorological variables is 

investigated, namely net solar radiation, temperature and precipitation and the impact of 

NAO is evaluated. A simple regression model of wheat yield is built up using as 

predictors spring NDVI and NAO in June that are related to meteorological conditions 

during the growing and maturation stages of wheat. Parts of these results have been 

published in Gouveia and Trigo (2008). 

The third part of the thesis which comprises Chapters 6 and 7 is related to the 

assessment of the impact of extreme events, such as drought episodes and wildfires, on 

vegetation health in Continental Portugal. Chapter 6 is dedicated to the spatial and 

temporal monitoring of heat and water stress of vegetation. The severity of a given 

episode is assessed and special attention is devoted to the drought episode of 2005, as 
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well as to those of 1999 and 2002. Parts of these results have been submitted in Gouveia 

et al.*, (2008). In Chapter 7 a simple methodology is presented that allows identifying 

burned areas based on the analysis of persistent negative anomalies of NDVI. The 

developed methodology allows evaluating the susceptibility to fire of different land 

cover types as well as assessing the distinct recovery profiles of vegetation after wildfire 

events. 

Finally an overview of results is given in Chapter 8 and a summary of the most 

important conclusions are presented on the work that was performed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Gouveia, C., DaCamara, C.C. Trigo; R.M., 2008: Drought and Vegetation Stress Monitoring 
in Portugal using Satellite Data, Natural Hazards and Earth System Sciences (Submitted). 
 



 

   

2. FUNDAMENTALS 

2.1 Remote sensing 

Following the American Society of Photogrammetry and Remote Sensing we will 

adopt a combined definition of photogrammetry and remote sensing (Colwell, 1997), 

that will be defined as 

“the art, science, and technology of obtaining reliable 

information about physical objects and the environment, through the 

process of recording, measuring and interpreting imagery and digital 

representations of energy patterns derived from noncontact sensor 

systems”. 

This is a complex and comprehensive sequence of processes involving the 

detection and measurement of electromagnetic radiation of different wavelengths 

reflected or emitted from distant objects or materials, with the aim of estimating their 

physical and biophysical properties and/or organising them in terms of class/type, 

substance, and spatial distribution. A device such as a camera or a scanner that is able to 

detect the electromagnetic radiation reflected or emitted from an object is called a 

"remote sensor" or "sensor". The vehicle, such as an aircraft or a satellite that carries the 

sensor is called a "platform".  

Remote sensing aims therefore at identifying and describing objects and/or 

environmental conditions by analysing the respective signatures on the reflected and 

emitted spectra of electromagnetic radiation (Figure 2.1). Because of the unique view it 

provides of the Earth, remote sensing has come to be a very important method to 

analyse the environment. In this sense, remote sensing is an exploratory science, as it 

provides images of areas in a fast and cost efficient way, and attempts to uncover the 

properties of the observed elements. 
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Figure 2.1 Data collection by remote sensing (from http://www.cla.sc.edu/ 
geog/cgisrs/). 

 

2.2 Radiometric concepts 

All matter reflects, absorbs and emits electromagnetic radiation in a unique way. 

For example, the reason why a leaf looks green is that the chlorophyll absorbs blue and 

red and reflects green radiation. Such unique characteristics of matter are usually called 

spectral characteristics. 

The flux of electromagnetic radiation is usually characterised by the so-called 

radiance, L, which is defined as the flux per unit projected area (at the specific location 

in the plane of interest) per unit solid angle (in the direction specified relative to the 

reference plane). The SI units of radiance are therefore Wm-2sr-1. 

In general, we may consider that: 

 

where: 

L is the radiance recorded within the Instantaneous Field of View (IFOV) of the 

considered optical remote sensing system, i.e., the area from which radiation impinges 

on the detector (e.g. a picture element or pixel in a digital image) 

( )Ω= ,,,,, ,, PtsfL zyx θλ
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and where: 

λ denotes wavelength (i.e. the spectral response measured in various bands or at specific 

frequencies); 

sx,y,z denotes the size of the picture element (or pixel) whose location is at (x,y,z); 

t refers to temporal information (i.e., when and how often the information is acquired); 

θ denotes the set of angles that describe the geometric relationships among the radiation 

sources (e.g., the Sun), the target of interest (e.g., a corn field), and the remote sensing 

system (e.g., a satellite platform); 

P denotes the polarization of back-scattered energy recorded by the sensor; 

Ω denotes the radiometric resolution (precision) at which the data (e.g., reflected, 

emitted, or back-scattered radiation) are recorded by the remote sensing system. 

 

As shown in Table 2.1, the electromagnetic radiation regions used in remote 

sensing are the near ultra-violet (0.3-0.4 μm), the visible (0.4-0.7 μm), the reflective 

infrared (0.7-3.0 μm), the thermal infrared (3.0-14 μm) and the microwave (1 mm-1 m). 

The spectral range of reflective infrared is more influenced by solar reflection than by 

the emission from the ground surface. The reflective infrared is usually subdivided into 

the near infrared (0.7-0.9 μm) and the shortwave infrared (0.9-3.0 μm). In the thermal 

infrared region, emission from the surface dominates the radiant energy with little 

influence from solar reflection. 

 

Table 2.1 Regions used in remote sensing. (adapted from 
http://www.esa.int/esaEO/SEMLFM2VQUD_index_1_m.html). 

Ultra-violet Visible Infrared Microwave

0.30-0.40μm Near ultra-violet 0.40-0.45 μm Violet 0.7-3.0 μm Reflective Infrared 1mm-1m 

  0.45-0.50 μm Blue 3.0-14 μm Thermal Infrared  

  0.50-0.55 μm Green 14.0- 1000 μm Far Infrared  

  0.55-0.60 μm Yellow    

  0.60-0.65 μm Orange    

  0.65-0.70 μm Red    
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Meteorological, agricultural and environmental remote sensing in general is 

commonly performed in the visible (VIS), the near-infrared (NIR), the shortwave 

infrared (SWIR) and thermal infrared (TIR) portions of the spectrum. 

Resolution is generally defined as the ability of an entire remote-sensing system to 

render a sharply defined image. Resolution involves the following specific types (Figure 

2.2) 

• Spatial resolution, defined as the size of the field-of-view (FOV), e.g., 10 

× 10 m; 

• Spectral resolution, defined as the number and size of spectral regions the 

sensor records data, e.g. blue (B), green (G), red (R), NIR, TIR, 

microwave; 

• Temporal resolution which is related to how often the sensor acquires data, 

e.g. every 30 days; 

• Radiometric resolution, defined as the sensitivity of detectors to small 

differences in electromagnetic energy. 

 

 

  
Figure 2.2 Spatial and temporal resolution for selected remote sensing 
applications (from Jensen, 2007). 
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It may be noted that the resolution determines how many pixels are available in 

measurement, but more importantly, higher resolutions are more informative, giving 

more data about more points. However, more resolution occasionally yields less data. 

For example, in thematic mapping to study plant health, imaging individual leaves of 

plants is actually counterproductive. Also, large amounts of high-resolution data can 

clog a storage or transmission system with useless data, when a few low-resolution 

images might be a better use. 

Reflectance is defined as the ratio of incident flux on a sample surface to reflected 

flux from the surface and ranges between 0 and 1. Reflectance with respect to 

wavelength is called spectral reflectance. Figure 2.3 shows an example of spectral 

reflectance for vegetation. Spectral reflectance is assumed to be different with respect to 

the type of land cover. This feature in many cases allows the identification of different 

land covers types with remote sensing by observing the spectral reflectance or spectral 

radiance from the surface. Figure 2.4 shows three curves of spectral reflectance for 

typical land covers; vegetation, soil and water. As seen in the figure, vegetation has a 

very high reflectance in the near infrared region, though there are three low minima due 

to absorption. 

 

 

 

Figure 2.3 Spectral reflectance of vegetation (from http://www.csc.noaa.gov/ 
products/sccoasts/html/images/reflect2.gif ). 
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Figure 2.4 Spectral reflectance of vegetation, soil and water (from 
http://landsat.usgs.gov/resources/remote_sensing/remote_sensing_applicati
ons.php). 

 

Soil has rather higher values for almost all spectral regions. Water has almost no 

reflectance in the infrared region. Chlorophyll, contained in a leaf, has strong absorption 

at B (0.45 μm) and R (0.67 μm), and high reflectance at NIR (0.7-0.9 μm). This 

characteristic reflects in the small peak at G (0.5-0.6 μm), which makes vegetation 

green to the human observer. NIR is very useful for vegetation surveys and mapping 

because such a steep gradient at 0.7-0.9 μm is produced only by vegetation. Because of 

the water content in a leaf, there are two absorption bands at about 1.5 μm and 1.9 μm. 

This is also used for surveying vegetation greenness. 

 

2.3 Image correction 

2.3.1 Atmospheric correction 

Radiation from the Earth's surface undergoes significant interaction with the 

atmosphere before it reaches the satellite sensor. This interaction with the atmosphere 

can be severe, as in the case of cloud contamination, or minor, as in the case when the 

FOV is essentially a clear sky (Schott and Henderson-Sellers, 1984). Regardless of the 
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type of analysis that is performed on the remotely sensed data, it is important to 

understand the effects of the atmosphere upon the radiance response. 

The propagation of electromagnetic radiation through the atmosphere is affected 

by two essential processes; absorption and scattering. Absorption occurs when a 

fraction of energy passing through the atmosphere is absorbed by some of the 

atmospheric constituents and is then re-emitted at different wavelengths. Scattering 

occurs when a fraction of energy passing through the atmosphere has its direction 

altered through a diffusion of radiation by small particles in the atmosphere. The type 

and significance of the scattering depends upon the size of the scattering element 

compared to the wavelength of the radiation (Schott and Henderson-Sellers, 1984; 

Drury, 1987). 

At the shorter wavelengths, attenuation occurs by scattering due to clouds and 

other atmospheric constituents, as well as by reflection. The effect of scattering on the 

visible wavelengths is significant and must be compensated for when developing 

empirical relationships through time. The most significant interaction that thermal 

infrared radiation undergoes, as it passes through the atmosphere, is by absorption, 

primarily due to ozone and water vapour particles in the atmosphere. 

The objective of atmospheric correction is to retrieve the surface reflectance 

(that characterizes the surface properties) from remotely sensed imagery by removing 

the atmospheric effects. Since atmospheric correction has been shown to significantly 

improve the accuracy of image classification, the problem has received considerable 

attention from researchers in remote sensing who have devised a number of approaches 

to its solution (Crippen, 1987). Most of them are sophisticated approaches (based on 

e.g. correlation with ground-based measurements, ground truth methods, in-scene 

methods, multiple view angle, multiple altitude techniques, atmospheric propagation 

models) but they are computationally challenging and have only been validated on a 

very small scale. Simplified approaches (e.g. use of a constant correction factor for each 

channel of the dataset) have also been adopted, especially in cases of operational 

applications over large areas. Atmospheric correction is beyond the scope of this work 

and an overview of methods is given e.g. in Chapter 6 of Schott (1997). 
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2.3.2 Radiometric correction 

When the emitted or reflected electromagnetic energy is received by a sensor, 

the observed energy does not coincide with the energy emitted or reflected from the 

same object observed from a short distance. This is due to several factors which include 

the sun's azimuth and elevation, the topography, the atmospheric conditions (e.g. fog or 

aerosols) and the sensor response. All such factors influence the observed energy and 

radiometric correction is a pre-processing technique that aims at reconstructing the 

signal and getting physically-calibrated values. In such context, radiometric errors and 

inconsistencies are frequently referred to as noise, which may be defined as any 

undesirable spatial or temporal variations in image brightness not associated with 

variations in the imaged surface. 

There are several others techniques aiming at minimizing the effects of the 

above-mentioned factors. One of the most common consists of adjusting the average 

and the standard deviation of recorded data. Another one is performing a conversion of 

data to a normalized index, e.g. the Normalized Difference Vegetation Index (NDVI), 

which will be described in detail in Chapter 3. Other techniques include the least square 

method and the histogram matching, i.e. histograms per band and/or per sensor are 

calculated and the cumulative histogram with cut-offs at 1% and 99% is then relatively 

adjusted to the reference histogram. 

2.3.3 Geometric correction 

Geometric distortions refer to errors between the actual image coordinates and 

the ideal image coordinates, which would be projected theoretically with an ideal sensor 

and under ideal conditions. Geometric distortions are classified into internal distortions 

that result from the geometry of the sensor (e.g. lens distortion, misarrangement of 

detectors, variations of sampling rate), and external distortions that arise from the 

position and the attitude of the sensor as well as from the shape of the object, the earth 

curvature, and the topographic relief. Geometric correction is therefore achieved by 
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establishing the relationship between the image coordinate system and the geographic 

coordinate system. 

According to Schowengerdt (1997) various terms may be used to describe 

specific aspects related to the geometric correction of imagery: 

• Registration, that is defined as the alignment of one image to another 

image of the same area such that two pixels at the same location in both 

images represent two samples at the same point on the Earth; 

• Rectification or georeferencing, that is defined as the alignment of an 

image to a map so that the image is planimetric, just like the map; 

• Geocoding, a special case of rectification, that includes scaling to a 

uniform, standard pixel, therefore allowing the “layering” of images from 

different sensors and maps in a Geographical Information System (GIS). 

 

The correction of spatial distortions due to an incorrect positioning of the sensor 

requires adequate sensor and orbital models. The satellite position and velocity may be 

computed by means of complex numerical models or most commonly by simple 

analytical orbit extrapolation models that ingest a set of orbital elements that usually 

include the position-velocity of the satellite at a given instant in time as well as the 

elliptical parameters of the satellite orbit and ephemeris data, i.e., the times of various 

events (e.g. ascending and descending nodes, start and end of data acquisition). 

Once positional distortions have been corrected, deviations due to spacecraft 

attitude have to be considered. Errors in the platform attitude are expressed by means of 

three angles (Figure 2.5) that define the platform rotation; the roll, the pitch and the 

yaw, which may be corrected by using distortion models, followed by an adequate 

coordinate transformation and a resampling process. These processes are briefly 

described below. 
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Figure 2.5 Conventional definitions for the three attitude axes of a sensor 
platform (source: Schowengerdt, 1997). 

 

2.3.3.1 Distortion models 

Polynomial models are the most common among mathematical distortion model. 

A polynomial model of order N relates the coordinates ( )yx,  in the distorted image to 

those in the reference image or map ( )refref yx , , i.e. 
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In general a quadratic polynomial (N=2) is adequate, i.e. 

( ) ( )202
2

2011011000 refrefrefrefrefref yaxayxayaxaax +++++=  

( ) ( )202
2

2011011000 refrefrefrefrefref ybxbyxbybxbby +++++=  

00a  and 00b  are shifts in x and y, respectively; 10a  and 01b  are scales in x and y, 

respectively; 01a  and 10b  are shears in x and y, respectively; 11a  and 11b  are a y-

dependent scale in x and an x-dependent scale in y, respectively; and 20a  and 02b  are 

non-linear scales in x and y, respectively. 



Fundamentals  Chapter 2 
 

 - 17 -

In case the image has been processed accurately for systematic distortions, a linear 

polynomial usually gives satisfactory results 

refref yaxaax 011000 ++=  

refref ybxbby 011000 ++=  

This linear transformation is known as an affine transformation (Wolf, 1983) and 

includes six kinds of distortion, i.e. a translation (or shift) in x, a translation in y, a scale 

change in x, a scale change in y, a skew and a rotation.  

Coefficients of the polynomial models are usually determined by means of 

Ground Control Points (GCPs). Examples of GCPs include natural features (e.g. along 

coastlines and rivers), small islands and man-made features (e.g. dams and road 

intersections). Once a suitable set of GCPs has been found then coefficients of the 

polynomial model may be retrieved by the least-squares technique. However it should 

be noted that the goodness-of-fit of the solution does not indicate the validity of the 

polynomial model as a model for the physical distortion (Schowengerdt, 1997). 

Accordingly, a number of GCPs should be kept for validation but this procedure is 

seldom used. 

2.3.3.2 Coordinate transformations 

Unlike local scale analyses, which treat the Earth as a plane, the precise 

determination of the position of points over a broad area must take into account the 

actual shape of the Earth that may be approximated by an ellipsoid of revolution or 

spheroid, i.e. the geometric figure defined by an ellipse rotated round its minor axis. 

The ellipsoid is very important to GIS because heights are measured with respect to the 

ellipsoid. 

National mapping agencies in different countries around the world use different 

ellipsoids, adjusting the lengths of the polar and equatorial radii to get the best fit within 

their region of interest (Table 2.2). However recent work based on satellite data has seen 

the development of ellipsoids that are used worldwide (e.g. GRS80). 

Horizontal and vertical measurements made on the earth are made in the earth's 

gravitational field, which can distort those measurements. In fact, the gravity field is 
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dependent on the distribution of the earth mass and some parts of the earth are more 

massive than others. If there is a dense mass to one side, “up” will be deflected in the 

direction of the mass and “down” will not necessarily be directed toward the centre of 

the earth with enough precision for intercontinental distance measurements. Elevation 

with respect to mean sea level is therefore measured in respect to the geoid, which is 

defined as an equipotential surface derived from the earth's gravity field and the 

outward centrifugal force of the earth's rotation. Gravity is accordingly perpendicular to 

the geoid at every point. Generally, the geoid is higher over continents and lower over 

the oceans (Figure 2.6). Because the geoid is dependent on the irregular distribution of 

masses in the earth, the shape of the geoid can not be calculated, only measured. 

 

Table 2.2 Table of Ellipsoids (Adapted from http://ltpwww.gsf.nasa.gov/ 
IAS/handbook/hamdbook_htmls/chapter1/chapter1.html). 
Name Date Semi-major 

Axis(a) 
Semi-minor 

Axis(b) 
Use 

Airy 1830 6377563.396 6356256.91 Great Britain 
Bessel 1841 6377397.155 6356078.963 Chile, most parts of  

Central Europe, and 
Indonesia 

Clarke 1866 6378206.4 6356583.8 North America and 
Philippines 

Clarke 1880 6378249.145 6356514.87 France, and most 
of Africa 

Everest 1956 6377301.243 6356100.228 India and Nepal 
Everest 1969 6377295.664 6356094.668  
Hayford 1909 6378388 6356911.946  
Helmert 1906 6378200 6356818.17 Egypt 
Hough  6378270 6356794.343  

Modified 
Everest 

1948 6377304.063 6356103.039 W. Malaysia  
and Singapore 

Sphere  6370997 6370997  
Walbeck  6376896 6355834.847  
WGS66 1966 6378145 6356759.769  
WGS72 1972 6378135 6356750.52 World wide 
WGS84 1984 6378137 6356752.31 World wide 

 

The process of converting image coordinates (e.g. lines and columns of pixels) 

into positions on Earth requires the adoption of a Coordinate Reference System which 

consists of a Coordinate System (i.e. a set of mathematical rules for specifying how 

coordinates are to be assigned to points) together with a Datum (EPSG, 2002) that 

relates the Coordinate System to the Earth. 
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Figure 2.6 Ellipsoid, geoid and topographic surfaces (source: 
http://www2.uefs.br/geotec/topografia/apostilas/topografia(1).htm). 

 

 

 

Among the different Coordinate Systems, map projections are worth mentioning 

since they constitute the framework for analysis of remote-sensing imagery 

(Schowengerdt, 1997). There is a very wide variety of projection schemes that 

constitute trade-offs between different types of distortions (e.g. Gilbert, 1974; Snyder, 

1987). Examples of several commonly used map projections are given in Table 2.3 and 

an extensive survey on currently used map projections may be found e.g. in EPSG 

(2002). 

In most maps meridians of longitude and parallels of latitude appear as curved 

lines and, to avoid the inconvenience of pinpointing locations on curved reference lines, 

cartographers superimpose on the map a rectangular grid consisting of two sets of 

straight, parallel lines, uniformly spaced, each set perpendicular to the other. This grid is 

designed so that any point on the map can be designated by its latitude and longitude or 

by its grid coordinates. Such grids are usually identified by the name of the particular 

projection for which they are designed. 

The United States National Imagery and Mapping Agency (NIMA) adopted a 

special grid for military use throughout the world called the Universal Transverse 

Mercator (UTM) grid (USGS, 2001). In this grid, the world is divided into 60 north-

south zones (Figure 2.7), each covering a strip 6° wide in longitude. 
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Figure 2.7 The UTM Zone 29 (source: www.isa.utl.pt/der/Topografia 
/cartografia2.ppt). 

 

 

These zones are numbered consecutively beginning with Zone 1, between 180° 

and 174° west longitude, and progressing eastward to Zone 60, between 174° and 180° 

east longitude. In each zone, coordinates are measured north and east in meters. The 

northing values are measured continuously from zero at the Equator, in a northerly 

direction. To avoid negative numbers for locations south of the Equator, NIMA's 

cartographers assigned the Equator an arbitrary false northing value of 10,000,000 

meters. A central meridian through the middle of each 6° zone is assigned an easting 

value of 500,000 meters. Grid values to the west (east) of this central meridian are less 

(more) than 500,000. 
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Table 2.3 Projection plane equations for several common map projections 
(Moik, 1980). The latitude of a point on the Earth is ϕ  and its longitude is λ . 
The projected map coordinates, x and y, are called “easting” and “northing”, 
respectively. R is the equatorial radius of the Earth and ε  is the Earth’s 
eccentricity. The subscripted values of latitude and longitude pertain to the 
definition of a particular projection (source: Schowengerdt, 1997). 
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2.4 Resampling 

Once the coordinate transformation from ( )refref y,x  to ( )y,x  has been 

determined then the transformation is applied by stepping through the reference 

coordinates and computing the corresponding distorted coordinates ( )y,x . Computed 

values of ( )y,x  will not usually match the values of the pixels of the image and 

therefore there is the need to proceed to the interpolation of the “new” pixels between 

the existing pixels in the image. This procedure is usually referred to as resampling. 

There are several interpolation schemes to compute the value of a resampled 

pixel; these include:  

• the nearest neighbour method; 

• the bilinear interpolation method; 

• the cubic convolution method. 

 
A) Nearest neighbour method 

In this method, also called zero-order interpolation, each new pixel at ( )refref y,x  

gets the value of the original pixel whose location ( )y,x  is the nearest to it. 

The nearest neighbour method (e.g. Cracknell, 1998) does not require any 

computations and therefore has the advantage of being very fast to use. Besides, it does 

not lead to any loss of information due to smoothing and no new values are introduced 

in the statistical distribution. However, the “round-off” property that is inherent to the 

method may cause geometric discontinuities of the order of ± ½ pixel, which may be the 

cause of spurious effects (e.g. omission or repetition of pixels). 

 
B) Bilinear interpolation method 

In this method, also called first-order interpolation, the estimate of the value of the 

output pixel located at ( )refref y,x  is based on the values of the four surrounding input 

pixels located in the original space ( )yx, . The method consists in performing two linear 
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interpolations, one along the lines (x direction) that creates a new resampled column (y 

direction), the final value at ( )y,x  being again obtained by linear interpolation. 

Bilinear resampling is computationally much more expensive and produces a 

much smoother interpolating surface than the nearest-neighbour method. This 

smoothing effect is especially conspicuous in sharp boundaries that become blurred 

after bilinear interpolation. 

 

C) Cubic convolution method 

The cubic convolution method, also called bicubic or third-order interpolation, 

avoids the excessive smoothing of bilinear resampling. The method involves fitting 

third-degree polynomials using the 16 nearest pixels located in the original space ( )y,x  

that surround the output pixel ( )refref y,x . However, unlike bilinear resampling, the 

method may create values outside the original range. 

 

In the case of thematic maps (e.g. land cover maps) resampling is usually 

performed by using either the already described nearest neighbour method or the so-

called majority rule, where the output pixel ( )refref y,x  is assigned to the most frequent 

class as observed in a given window of pixels in the original space ( )y,x . The majority 

rule will be described in detail in section 3.2.3. 
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2.5 The SPOT and the NOAA systems 

2.5.1 The SPOT Program 

The SPOT (Satellite Pour l’Observation de la Terre) program consists of a series 

of optical remote sensing satellites with the primary mission of obtaining Earth imagery 

for land use, agriculture, forestry, geology, cartography, regional planning, water 

resources and GIS applications. The program is committed to commercial remote 

sensing on an international scale and has established a global network of control 

centres, receiving stations, processing centres and data distributors. SPOT satellites are 

operated by the French Space Agency, the Centre National d'Etudes Spatiales (CNES). 

SPOT 1 was first launched in February, 1986, with successors following every 

three or four years. SPOT 2 was launched in January, 1990 and SPOT 3 was launched 

in September 1993; SPOT 4 was launched on March 1998 and SOPT 5 followed on 

May 2002. The orbit of SPOT 1 was lowered in 2003 and the satellite will gradually 

loose its altitude and break up on the atmosphere. The recorders on-board SPOT 2 are 

not working but the satellite is still able to provide imagery. SPOT 3 is not working 

anymore but SPOT 4 and SPOT 5 are fully functional. 

All satellites are in sun-synchronous, near-polar orbits at altitudes of about 830 

km above the Earth, and have orbit repetitions of 26 days. The SPOT system provides 

global coverage between the latitudes of 87ºN and 87ºS. The loads of SPOT 1, SPOT 2 

and SPOT 3 were the same, each satellite carrying two identical High Resolution 

Visible (HRV) imaging instruments. As shown in Table 2.4, the HRV instrument is able 

to operate in two modes; the panchromatic (PAN) mode and the multispectral (MS) 

mode. In PAN, imaging is performed in a single spectral band that covers the visible 

part of the electromagnetic spectrum. In MS, imaging is performed in three spectral 

bands, green, red and NIR. 
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Table 2.4 HRV Spectral Bands. (from http://www.spotimage.fr/html/ 
_167_224_230_.php). 

Mode Band Wavelength (µm) Resolution (m) 

Multispectral XS1 0.50 - 0.59 (Green) 20 

Multispectral XS2 0.61 - 0.68 (Red) 20 

multispectral XS3 0.79 - 0.89 (Near IR) 20 

Panchromatic P  0.51 - 0.73 (Visible) 10 

 

In the case of SPOT 4 (Figure 2.8) the two imaging instruments were upgraded, 

becoming the High Resolution Visible and Infrared (HRVIR) instrument. As shown in 

Table 2.5 the HRVIR is similar to the HRV, except that HRVIR has an additional SWIR 

band, and the wavelength bandwidth of the panchromatic mode is narrower than that for 

HRV. 

 

Figure 2.8 Picture of the satellite SPOT 4. (from http://medias.obs-
mip.fr/www/Reseau/Lettre/11/en/systemes/vegetation.html). 

 

In the field of environment and agriculture, the sensitivity of the SWIR band to 

variations in canopy or soil water content produces a high contrast between soil and 

vegetation reflectances, leading to an easier detection of variations in the canopy 

structure. The SWIR band is therefore especially interesting for the discrimination of 

wet areas, the identification of water stress in plants, the classification of some crops 

and vegetation areas. In particular, the SWIR enables to obtain a better characterisation 

of arid and semi-arid areas and reveals to be also useful to study forest areas. In 
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particular, it provides increased precision for the mapping of forests types, with special 

interest for areas poorly mapped (e.g. tropical environment), as well as for the 

estimation of cover rate and the relative humidity of plant communities. 

 
Table 2.5 HRVIR Spectral Bands (from http://www.spotimage.fr/html/ 
_167_224_230_.php). 

Mode Band Wavelength (µm) Resolution (m) 

Multispectral XI1 0.50 - 0.59 (Green) 20 

Multispectral XI2  0.61 - 0.68 (Red) 20 

Multispectral XI3  0.79 - 0.89 (Near IR) 20 

Multispectral XI4  1.53 - 1.75 (SWIR) 20 

Monospectral M  0.61 - 0.68 (Red) 10 

 

As shown in Figure 2.9, the two HRV (or HRVIR) sensors operate in a cross-track 

direction. The position of each HRV (or HRVIR) entrance mirror can be commanded by 

ground control to observe a region of interest not necessarily vertically beneath the 

satellite. Thus, each HRV (or HRVIR) offers an oblique viewing capability, the viewing 

angle being adjustable through ±27º relative to the vertical. This off-nadir viewing 

enables the acquisition of stereoscopic imagery and provides a short revisit interval of 1 

to 3 days (Figure 2.10). Moreover, due to the parallax thus created, the oblique viewing 

capacity of SPOT makes it possible to produce “stereopairs” by combining two images 

of the same area acquired on different dates and at different angles, due to the parallax 

thus created. 
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Figure 2.9 The cross-track direction operating mode of the two HRV sensors. 
(from http://www.spotimage.fr/html/_167_224_230_.php) 

 

 

Figure 2.10 Repeated observation by SPOT. (from http://www.spotimage.fr/ 
html/_167_224_230_.php) 

 

Both the HRV and the HRVIR instruments were constructed with multilinear 

array detectors. In particular, the HRVIR instrument was designed to acquire, 

instantaneously, one complete line of pixels at a time covering the entire field of view. 

This is attained using a charged-couple device (CCD) linear array. The CCD linear 

arrays operate in the so-called "push-broom" mode (Figure 2.11). A wide-angle 

telescope forms an instantaneous image of adjacent "ground patch areas" on a row of 

detectors in the instrument's focal plane. Column-wise scanning is a direct result of the 
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satellite's motion along its orbit. The signals generated by the detectors (photodiodes) 

are read out sequentially at a predetermined clock rate. Thus, although the linear arrays 

do not "scan" in the line-wise direction to gather light, the detectors are scanned 

electronically to generate the output signal. The telescope has a field of view of 4°, 

corresponding to 60 km on the ground covered instantaneously by a line of 6000 

detectors. Each HRVIR is thus said to offer a "strip width" of 60 km (Figure 2.12). 

 

 

Figure 2.11 The push broom principle (http://spot4.cnes.fr/spot4_gb/ 
index.htm). 

 

 

Figure 2.12 SPOT’s Field of view. (from http://spot5.cnes.fr/gb/satellite/ 
42.htm) 

 

As a complement to the two HRVIR instruments, SPOT 4 takes on board the 

VEGETATION instrument that is part of the so-called VEGETATION system. 
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The VEGETATION system is the result of a co-operation between the European 

Union, France, Sweden, Belgium and Italy. It aims at ensuring a regional and global 

continuous monitoring of the continental biosphere and of crops. It observes the Earth at 

a resolution of 1.15 km, quite invariable in the swath width of nearly 2250 km (Figure 

2.13). This gives almost daily access to any point on the earth surface. Taking into 

account the measurements which have to be discarded due to cloud coverage or bad 

atmospheric conditions, this feature minimises the probability to get one useful 

measurement per ten-day periods, the multitemporal spatial resolution being of about 1 

km. These characteristics allow the observation and study of seasonal evolutions in the 

biosphere and its processes. Moreover, SPOT enables to lead these studies and 

observations in a multi-scale context, as the spectral bands and geometrical references 

of the VEGETATION instrument are the same for the two HRVIR instruments, the 

three instruments being inter-calibrated. 

 

Figure 2.13 The VEGETATION field of view. (from http://spot5.cnes.fr/gb/ 
satellite/42.htm) 

 

The new SPOT 5 satellite is designed to ensure SPOT data users with continuity 

of service, enhanced image quality and improved services. Derived from the HRVIR 

instruments on SPOT 4, the two new HRG instruments offer higher resolution: 2.5 

metres to 5 metres in panchromatic mode and 10 metres in multispectral mode. Imagery 

at a resolution of 2.5 metres is generated using a new sampling concept dubbed 

"Supermode". SPOT 5 features a new HRS imaging instrument operating in 

panchromatic mode. SPOT 5 is also carrying the recurrent VEGETATION 2 

instrument. Tables 2.6 and 2.7 respectively show the orbit characteristics for SPOT 5 

and the VEGETATION characteristics, for the four multi-spectral bands. 
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Table 2.6 Orbit characteristics for SPOT 5. 

Repeat coverage interval: 26 days nominally but 4 - 5 days  

Orbit  Polar Sun-synchronous 

Altitude: 832 km  

Inclination: 98.7 degrees 

Equatorial crossing: 10.30 a.m. 

Launch date: May 2002 

 

Table 2.7 SPOT 5 sensor characteristics. 
Name Band Type Wavelength (µm) Resolution (m) 

BO Multispectral 0.430 - 0.470 (Blue) 1165 

B1 Multispectral 0.61 - 0.68 (Red) 1165 

B2 Multispectral 0.78 - 0.89 (Near IR) 1165 

SWIR Multispectral 1.58 - 1.75 (SWIR) 1165 

 
 

Finally, it is worth mentioning that the VEGETATION central system supplies 

two levels of enhanced products, namely the so-called physical products (VGT-P) and 

the so-called synthesis products (VGT-S). All VGT-P and VGT-S products are provided 

according to map projections previously defined, preserving the 1 km raw data 

resolution and corresponding to the existing needs of potential users. 

VGT-P products are mostly directed to physicists for methodological 

development that may be embedded into applications using VEGETATION data. 

Accordingly, VGT-P products correspond to images of viewing segments without 

atmospheric correction (radiometry and geometry), which enable to compute the 

reflectance at the top of the atmosphere. 

VGT-S, on the contrary, are products where some synthesis is applied on the 

“Core Archive” data with the aim of providing users with ground reflectances as well as 

with some simply derived parameters. Mostly intended for operational projects, VGT-S 

are geocoded products with atmospheric correction, and for which daily syntheses (S1) 

or 10-day syntheses (S10) are established. For instance, the normalised difference 

vegetation index (NDVI) is systematically included in these products and synthesis has 

been performed through selection of the best measurement acquired during one day or 
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one decade. As described in the next chapter, such selection is based on the Maximum 

Value Composite (MVC) technique where the retained measurement simply 

corresponds to the highest NDVI value computed on top of atmosphere reflectances. 

2.5.2 The NOAA series 

Starting with TIROS-1 in 1960, the first and the second generations of the US 

National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites 

reached the third generation of meteorological satellites with the launch of TIROS-N in 

1978. The first generation was the TIROS series (1960-1965), while the second 

generation was ITOS series (1970-1976). TIROS-N has been followed by NOAA-6 

through NOAA-18 (Table 2.8). 

 

Table 2.8 General time coverage by satellite. (from http://www.ngdc.noaa.gov/ 
stp/NOAA/noaa_poes.html) 

TIROS-N  1978 - 1981 

NOAA-6  1979 - 1986 

NOAA-7  1981 - 1985 

NOAA-8  1983 - 1985 

NOAA-10  1986 - 1991 

NOAA-12  1991 - 2002 

NOAA-14  1994 - 2004 

NOAA-15    1998 - present 

NOAA-16    2001 - present 

NOAA-17  2002 - present 

NOAA-18  2005 - present 

 

NOAA satellites operate at an altitude of approximately 850 km with slight 

inclined orbits of approximately 98.8º and an orbital period of about 101.5 min (i.e. 14.2 

orbits per day). Since the number of daily orbits is not an integer, the sub-orbital tracks 

do not repeat on a daily basis, although the Local Solar Time (LST) of the satellite’s 

passage is essentially unchanged for any latitude. However, the satellite’s orbit drifts 

over time, causing a systematic change of illumination conditions and local time of 
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observation, which is the major source of non-uniformity in multi-annual satellite time 

series. 

NOAA has two types of satellites operating in complementary orbits, one crossing 

the Equator around 0730 and 1930 LST and the other one around 0230 and 1430 LST. 

For reasons of convention, even satellites cover the “morning orbit” (0730), while the 

odd ones cover the “afternoon orbit” (1430). Table 2.9 shows the orbit characteristics 

for several NOAA satellites covering the “afternoon orbit”. 

 

Table 2.9 NOAA Satellites Orbital Characteristics. (Adapted from 
http://www.crisp.nus.edu.sg/~research/tutorial/noaa.htm) 

  NOAA-12 NOAA-14 NOAA-16 NOAA-18 
Launch date 14 May 1991 30 Dec 1994 21 Sep 2000 20 May 

2005 

Date operations began 17 Sep 1991 10 Apr 1995 20 Mar 2001 30 Oct 
2005 

Orbit inclination 98.5 99.1 98.8 98.8 

Mean altitude (km) 808 847 851 833 

Equator crossing time  
(A: Northbound, B: 
Southbound) 

16:49A, 
04:49D 

17:52A, 
05:52D 

13:54A, 
01:54D 

 

Period (min.) 101.2 101.9 102.1 101.35 

 

One of the main instruments carried on-board the NOAA satellites is the 

Advanced Very High Resolution Radiometer (AVHRR) with a 1.1 km instantaneous 

field of view (IFOV) for a swath of 2,800 km in the visible and infrared wavelength 

regions. The earlier AVHRR instrument on-board NOAA 9, 10, 11, 12 had 5 bands, 

respectively in the visible (band 1), NIR (band 2), MIR (band 3) and TIR (bands 4, 5) 

regions. Starting from NOAA-14, the newer AVHRR instrument (AVHRR/2) has an 

extra band in the SWIR. This band shares the same transmission channel with the 

MWIR band which is designated Band 3A, while the SWIR band is Band 3B. Only one 

of the 3A or 3B bands is activated at any instant. Table 2.10 presents the AVHRR 

Sensor Characteristics of each band. 
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Table 2.10 AVHRR Sensor characteristics. (from http://www.crisp.nus. 
edu.sg/~research/tutorial/noaa.htm) 

 Band Wavelength 
(µm) 

Applications 

Visible 1 0.58-0.68 cloud, snow and ice monitoring 

Near IR 2 0.725-1.10 water, vegetation and agriculture surveys 

Short Wave IR 3A 1.58-1.64 snow, ice and cloud discrimination 

Medium Wave 
IR 

3B 3.55-3.93 sea surface temperature, volcano, forest 
fire activity 

Thermal IR 4 10.3-11.3 sea surface temperature, soil moisture 

Thermal IR 5 11.3-12.5 sea surface temperature, soil moisture 

 

There is another important sensor on-board NOAA satellites, namely the TIROS 

Operational Vertical Sounder (TOVS) which consists of three units; the High 

Resolution Infrared Sounder; model 2 (HIRS/2) with 20 km IFOV, for a 2,200 km 

swath, the Stratospheric Sounding Unit (SSU) with 147 km IFOV, for a 736 km swath 

and the Microwave Sounding Unit (MSU) with 110 km IFOV, for a 2,347 km swath. 

AVHRR data are acquired in three formats: High Resolution Picture Transmission 

(HRPT), Local Area Coverage (LAC) and Global Area Coverage (GAC). HRPT data 

are full resolution image data which are transmitted to a local ground station as they are 

being collected. Many weather stations around the world operate ground stations that 

routinely receive real-time HRPT data. LAC data are also full resolution, but they are 

recorded in an on-board tape for subsequent transmission during a station overpass. 

Since the on-board tape facility is limited, only a number of scenes are archived. GAC 

data are subsampled on-board to about 4-km pixel separation at nadir and provide daily 

global coverage. GAC data are also recorded on tape and then transmitted to a ground 

station. LAC and GAC data are available from NOAA's Satellite Active Archive (SAA) 

through the world-wide web (http://www.saa.noaa.gov). 





 

   

3. BASIC DATA AND PRE-PROCESSING 

3.1 Vegetation Indices 

3.1.1 Introduction 

Changes in vegetation have a strong impact on human activities around the globe. 

For instance, over the last 50 years deforestation in South America has left vast areas 

uncultivated and has destroyed many species. One of the major advantages of remote 

sensing data is its capability of detecting and quantifying green vegetation. Satellite data 

may for instance be used to detect vegetative changes from one growing season to the 

next, from year to year, or from decade to decade. 

The principle behind the detection of green vegetation is connected with the use 

of blue and red radiation as energy sources for actively photosynthesizing plants. On the 

other hand, and as already pointed out in the previous chapter, near-infrared radiation is 

highly reflected by vegetation (Figure 3.1). Several algorithms have been developed 

which combine the measured radiances reflected by land surface in different spectral 

bands of the atmospheric window in order to obtain the so-called "Vegetation Indices" 

(VIs), that are able to discriminate green vegetation. 

 

 

Figure 3.1 Reflectance from different wavelengths and different surfaces. 
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A VI may therefore be used to quantify concentrations of green leaf vegetation 

and identify those places where vegetation is either green or under stress due to the 

absence of water. In fact, several authors have shown that VIs are well correlated with 

vegetation amount, unstressed vegetation and photosynthetic capacity (Tucker, 1979; 

Sellers et al., 1992) as well as with other parameters, such as the Leaf Area Index (LAI) 

and the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), that 

quantify biomass and physiological functioning. For instance, LAI may be derived 

based on a regression model derived from a vegetation index and ground measurements 

of the considered type of vegetation (Holben et al. 1980; Li et al. 1993; Chen and 

Cihlar, 1996). 

Other models based on indices have been designed to both detect sparse green 

vegetation and minimize the effects of soil background brightness, topographical 

distortion and atmospheric “noise”. 

In general terms, VIs may be divided into two main groups, referred to as 

Empirical Vegetation Indices and Optimised Vegetation Indices. The most commonly 

used VI, the so-called Normalized Difference Vegetation Index (NDVI), belongs to the 

first group. NDVI was introduced by Rouse et al. (1974) and is defined as: 
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NDVI ranges between –1.0 and +1.0 and assumes positive values for areas with 

vegetation. Very low values of NDVI (0.1 and below) are characteristic of barren areas 

of rock, sand, or snow. Moderate values are associated to shrub and grassland (0.2 to 

0.3), while high values indicate temperate and tropical rainforests (0.6 to 0.8). As 

already pointed out, healthy green leaves commonly have larger reflectances in the near 

infrared than in the visible range. As the leaves come under water stress, become 

diseased or die back, they become more yellow and reflect significantly less in the near 

infrared range. Additionally, unhealthy or sparse vegetation reflects more visible light 

and less near-infrared light (Figure 3.1). 
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Clouds, water, and snow have larger reflectances in the visible than in the near 

infrared whereas the difference is almost zero for rock and bare soil. However, actual 

vegetation status cannot be observed under cloudy sky conditions. Tropical areas, for 

instance, are often covered with clouds, becoming very hard to obtain cloud-free data at 

once for entire areas. In order to overcome this difficulty, NDVI data with little 

influence of cloud are usually produced by extracting the maximum value of NDVI 

from data series covering a long enough period, e.g. one month at each grid point. 

However, values of NDVI may still be low when cloud or ice covers the vegetation for 

the whole considered period. In the case of water bodies, such class of pixels is usually 

masked by assigning a conventional value (e.g. zero). 

3.1.2 Performance and limitations of empirical vegetation indices 

Vegetation indices were introduced over more than 25 years ago as a simple 

remote sensing tool. Still largely used today, their usage requires however a good 

understanding of their respective advantages and drawbacks when analysing remote 

sensing data. For instance, and in what respects to NDVI, it is important to understand 

that NDVI holds only a fraction of the information available in the original spectral 

reflectance data. Users of NDVI have in fact tended to estimate a large number of 

vegetation properties (e.g., LAI, FAPAR, chlorophyll concentration in leaves, plant 

productivity, fractional vegetation cover and accumulated rainfall). However, if 

correctly used, an appropriate VI may be converted into a useful product and is also an 

important tool to estimate the likelihood that vegetation is actively growing at a 

particular location. The correct usage and interpretation of an index generally depends 

on how it was designed, but there is no single and definite meaning. 

It is worth stressing that NDVI turns out to be sensitive to a number of perturbing 

factors induced by clouds, atmospheric conditions and soil type. NDVI is also sensitive 

to anisotropic and spectral effects. Accordingly, in the case of quantitative applications 

that require a given level of accuracy, the perturbing factors may lead to errors or 

uncertainties of the same order of magnitude of the quantities to be evaluated. In such 

cases, special care must be taken to remove perturbations from the data and this may 

require extensive processing based on ancillary data and other sources of information. 
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Optimized vegetation indices represent an alternative to the use of empirical VIs. 

Such indices are ‘optimized’ in the sense that they are specifically designed to 

physically estimate a given geophysical or biological variable. During the last decades, 

a new generation of spectral indices has been developed in order to estimate a specific 

environmental variable on the basis of data from a specific instrument. The rationale 

behind the design of optimized vegetation indices is described e.g. in Verstraete and 

Pinty (1996) and Govaerts et al. (1999). This approach has been developed and applied 

in the context of a wide range of sensors, including SeaWiFS, VEGETATION, MIRS 

and MERIS (Gobron et al.; 2000; 2001; 2002). The design of optimized vegetation 

indices is based on exploiting combinations of spectral bands that have a maximal 

sensitivity to the presence and to changes in the properties of healthy green vegetation. 

In addition indices should have a minimal sensitivity to atmospheric scattering and 

absorption effects, to soil color and brightness changes, and to temporal and spatial 

variations in the geometry of illumination and observation. 

Besides the simplicity and low computational cost, NDVI presents the advantage 

of the availability and continuity of the datasets (25 years of AVHRR NDVI), which 

represents an invaluable feature for climatic studies. In fact, when the aim is to study the 

status of vegetation due to climate variability, namely droughts and extreme events (e.g. 

heat waves), results based on the analysis of NDVI time series have brought some 

satisfactory insights. An example is shown in Figures 3.2 and 3.3 that present the results 

obtained during the extreme heat wave that has stricken Europe in August 2003. Results 

shown in Figure 3.2 were obtained using NDVI data as obtained from the 

VEGETATION instrument on board SPOT4, whereas those in Figure 3.3 are based on 

FAPAR as derived from the MERIS instrument on board ENVISAT platform. It may be 

noted that FAPAR is a physically-based quantity, defined as the fraction of 

photosynthetically active radiation (400 -700 nm) absorbed by vegetation canopies. 

Figure 3.2 presents monthly anomalies of NDVI during August 2003 and the anomaly 

was calculated with respect to a base period as obtained for the years 1999-2004 

(excluding 2003). Negative (positive) anomalies correspond to lower (higher) than 

average NDVI. Figure 3.3 presents monthly FAPAR anomalies for August 2003 over 

Europe (Gobron et al., 2005). The anomaly is calculated with respect to a base period 

taken over the years of 1998 to 2002. In both cases the base period does not include the 

year of 2003 and it may be noted that anomaly fields of NDVI and FAPAR are 
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remarkably similar, a feature that points out that, despite its simplicity, NDVI is still 

useful to characterise the spatial and temporal variability of vegetation status, dynamics 

and behaviour. 

 

 

 
Figure 3.2 Monthly anomalies of NDVI over Europe for August 2003. 
Anomalies were computed with respect to the base period 1999-2004 
(excluding 2003). 

 
 

 

 
Figure 3.3 As in Figure 3.2 but respecting to FAPAR anomalies. Anomalies 
were computed with respect to the base period 1998-2002. (from Gobron et al, 
2005) 
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In the present work we will use, for climatological purposes, two datasets of 

NDVI, respectively derived from VEGETATION/SPOT and NOAA/AVHRR. The two 

databases will be described in the following two sections. 

3.1.3 NDVI from AVHRR/NOAA 

The NDVI database as derived from AVHRR/NOAA has been widely used in 

studying vegetation and ecosystems, especially in semi-arid environments where 

vegetation cover is less than 30% (Huete and Tucker, 1991; Karnieli et al., 1996). In 

particular, NOAA-AVHRR derived NDVI and other related indices have been 

successfully used to identify and monitor areas affected by drought at the regional and 

the local scales (Malingreau, 1986; Bayarjargal et al., 2006, Vicente-Serrano, 2007). 

Relationships have also been found between NDVI and other vegetation indicators such 

as Leaf Area Index (LAI) (Myneni and Williams, 1994) and green biomass production, 

as well as with rainfall or soil moisture in semi-arid environments (Schmidt and 

Karnieli, 2000). 

In our study we have used monthly values of NDVI and of channel 4 brightness 

temperature, at 8-km resolution, from the Advanced Very High Resolution Radiometers 

(AVHRR), as provided by the Global Inventory Monitoring and Modelling System 

(GIMMS) group (Pinzon et al., 2005; Tucker et al., 2005). The GIMMS NDVI datasets 

were generated with the aim of providing a 22-year satellite record (1982-2003) of 

monthly changes in terrestrial vegetation. Such long-term series of NDVI may be used 

in climate and biogeochemical models to calculate photosynthesis, the exchange of CO2 

between the atmosphere and the land surface, the land-surface evapotranspiration and 

the absorption and release of energy by the land surface (Tucker et al., 2005). 

It is worth emphasizing that several factors have to be taken into account when 

building up a long-term time series of NDVI. For instance, band calibrations have 

changed substantially during considered 22 years (five NOAA/AVHRR instruments). 

Natural variability in atmospheric aerosols and column water vapour has also affected 

the NDVI record. Over the acquisition period there were two major volcanic eruptions, 

El Chichon in May-July 1982 and Mount Pinatubo in July-September 1991, which 

injected large quantities of aerosols into the Earth’s stratosphere. These aerosols, along 
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with smoke from biomass burning and dust from soil erosion and other sources, may 

have introduced significant variability in the AVHRR/NDVI dataset. 

The pre-processing of satellite data involved cloud screening and calibration for 

sensor degradation and inter-sensor variations (Los, 1998). Cloud screening was 

provided by a channel 5 thermal mask of 0ºC for all continents except Africa, where a 

cloud mask of 10ºC was used. In addition, the bimonthly composites significantly 

reduced cloud contamination. The data from April 1982 to December 1984 and from 

June 1991 to December 1993 were corrected to remove the effects of stratospheric 

aerosol from El Chichon and Mount Pinatubo eruptions (Tanré et al., 1992), as well as 

NOAA-9 descending node data from September 1994 to January 1995 (Los, 1998). In 

fact, in 1992, NOAA-13 has failed to achieve orbit and NOAA-11 continued to supply 

global afternoon/early morning AVHRR data. From September 1994, the GIMMS 

group began to use NOAA-9 descending node AVHRR data for the global NDVI data 

set and continued using these data until NOAA-14 became operational in late January 

1995. This feature constitutes a fundamental difference between the GIMMS NDVI and 

other AVHRR NDVI datasets, such as the Pathfinder AVHRR Land (PAL) data and the 

Global Vegetation Index (GVI) datasets. In the case of GIMMS the gap of data from 

September 1994 to January 1995 was filled using the NOAA-9 data while the other 

datasets present missing data (Pettorelli at al., 2005). 

NDVI is also sensitive to the periodic variations in solar illumination angle and to 

sensor viewing angles induced by the NOAA orbits. The polar, sun-synchronous orbits 

of the NOAA series allow daily coverage of each point on earth, although at time-

varying viewing and illumination geometry. The GIMMS NDVI dataset has a satellite 

overpass time drift correction that largely eliminates the variation of NDVI due to 

changes in solar zenith angle. 

The GIMMS group uses the so-called Empirical Mode Decomposition (EMD) to 

identify and remove parts of the NDVI signal that are most related to the satellite drift 

(Pinzon 2002; Pinzon et al. 2004). The EMD is empirical, intuitive, direct, a posteriori, 

and adaptive, with the decomposition functions based on and derived from the data 

(Huang et al. 1998; Huang et al. 1999). Pinzon et al. (2001) showed that EMD was 

applicable to NDVI time series from the AVHRR sensor to isolate orbital drift effects 

from the NDVI signal. Further details on the quality of the AVHRR dataset may be 

found in Kaufmann et al. (2000) and Zhou et al. (2001). 
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The GIMMS data set is originally defined on an Alberts Conical Equal-area 

projection, using the Clarke ellipsoid. Data used in our study respects to a window 

covering the Eurasian and the North Atlantic regions, from 30º W to 60º E and from 30º 

to 75º N, over the 21-year long period, from 1982 to 2002. This dataset will be used in 

Chapters 4 and 5 and it is worth mentioning that NDVI values were re-projected to 

geographic coordinates, using a nearest neighbour scheme (Chapter 2). 

3.1.4 NDVI data fromVEGETATION/SPOT 

As pointed out in Chapter 2, VEGETATION on board SPOT 4 and SPOT 5 is an 

optical multi-spectral instrument that performs an almost complete cover of the Earth 

surface in four spectral bands (Hagolle et al., 2005), on a daily basis. NDVI data were 

extracted from the S10 products of the VITO database (http://free.vgt.vito.be), which 

are supplied at the resolution of 0.008928º (i.e., about 1 km2 resolution at equator) in 

geographic coordinates (Lat/Lon), using the WGS84 ellipsoid It may be noted that 

supplied values of NDVI were derived from atmospherically corrected and 

geometrically calibrated data and that we have restricted to the period from September 

1998 to July 2006 over the region extending from 37º N to 42º N and from 9º W to 6º E. 

NDVI fields are given on a 10-day basis as derived using the Maximum Value 

Composite method (MVC, Holben, 1986), which simply consists in selecting, for each 

pixel, the date of maximum NDVI among 10 consecutive daily images. Despite some 

problems, time series of MVC-NDVI composites have proven to be a source of valuable 

information for monitoring surface vegetation dynamics at the global and the regional 

scales (Zhou et al., 2001; Lucht et al., 2002; Nemani et al., 2003). Remaining problems 

are related with contamination by clouds, shadows and snow, with sun/view directional 

dependence of the spectral response as well as with the dependence of phenological 

changes both on time of observation and on geographical location. 

In order to create a consistent dataset of vegetation phenology, the yearly time-

series of VGT-NDVI were analysed and corrected, following the method proposed by 

Stockli and Vidale (2004) that has been successfully applied to the Pathfinder NDVI 

data in order to create a continuous European vegetation phenology dataset of 10-day 

temporal and 0.1º spatial resolution. The approach involves two steps in the spatio-

temporal interpolation process; i) a replacement of no-data values in the dataset by 
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spatial interpolation and ii) an adjustment of the NDVI time-series by using a temporal 

interpolation procedure. 

The methodology relies on the application of an adjustment algorithm based on a 

weighted second-order Fourier analysis of the data, as previously described by Sellers et 

al. (1996) and Los (1998). This approach uses different correction procedures for the 

growing and the non-growing season and therefore requires a precise definition of the 

growing season, which in Portugal usually starts with the hydrological year, i.e. year N 

starts in the second decade of August of year N-1 and ends in the first decade of August 

of year N). 

The correction method was applied to VGT-NDVI 10-day composites with 1 km 

spatial resolution for the period from September of 1998 to July 2006. Figure 3.4 shows 

four representative examples of corrected (red line) and non-corrected (green dots) 

monthly time-series of NDVI for different land cover types.  

 

Figure 3.4 Monthly time-series of NDVI for the period 1999–2006 and 
respecting to four different land cover types; an arable land pixel located in 
South Alentejo (left top panel), an arable land pixel located in North Alentejo 
(right top panel), a coniferous forest pixel (left bottom panel) and a broad-
leaved forest pixel (right bottom panel). Green dots and the solid curve 
respectively represent the time series of corrected and non-corrected NDVI 
monthly values. 

 

With the exception of the coniferous type, the years of 1999 and 2005 are 

conspicuous in the time series because of the low photosynthetic activity. This is 

especially apparent in the case of the pixels associated to arable land (Figure 3.4, top 

panels). In particular, in the case of the arable land pixel located in South Alentejo (top 
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left panel) the years of 1999 and 2005 reveal marked signs of stress in the vegetation, 

which presents shorter vegetation cycles together with lower values of NDVI. In the 

case of forest pixels (low panels), the coniferous forest, as expected, presents a high 

photosynthetic activity along the year (high NDVI values) together with low interannual 

variability, while the broad-leaved type presents a pronounced year cycle of NDVI. 

Figure 3.5 shows the results that were obtained when applying to non-corrected 

(left panel) and to corrected (right panel) NDVI pixels a technique aiming to detect 

years affected by drought conditions. The technique that will be described in Chapter 6, 

is based on the number of months characterised by negative anomalies below a given 

threshold. In the case of 2002, results are dramatically different when applied to non-

corrected and to corrected NDVI. In the first case, pixels associated to a high number of 

months with strong negative anomalies present a rather noisy spatial structure and the 

year would not be classified as stricken by drought. However when corrected pixels are 

used, a large region of strong negative anomalies is well apparent in the Northeast of 

Portugal, indicating that the area was in fact under drought conditions, in good 

agreement with climatological records. 

        

Figure 3.5 Number of months between September 2001 and August 2002 that 
are characterised by NDVI anomaly values below -0.025, using non-corrected 
(left panel) and corrected (right panel) NDVI data. 
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3.2 Land Cover Maps 

3.2.1 Introduction 

Land cover and land use mapping based on remote sensing data are becoming 

more and more important at both national and continental scales. In fact, the continuous 

monitoring of crop fields, paddy fields and deforested areas require land cover and land 

use data providing an extensive coverage with relatively high accuracy. Land cover 

relates to the physical condition of the surface (e.g. forest, grassland, water), whereas 

land use reflects human activities (e.g. industries, urban areas, agricultural fields). Land 

cover maps are always associated to a given land cover classification system, which is 

usually defined in terms of levels and classes. Land use may not necessarily coincide 

with land cover and may even be composed of several land cover classes. 

3.2.2 The Global Land Cover 2000 Project 

The Global Land Cover 2000 (GLC2000) project was designed to provide 

information to the International Conventions on Climate Change, the Convention to 

Combat Desertification, the Ramsar Convention and the Kyoto Protocol. The GLC2000 

land cover database has also been chosen as a core dataset for the Millennium 

Ecosystems Assessment playing, in such context, a key role to define the boundaries of 

the different ecosystems, e.g. forest, grassland, and cultivated areas. In fact, reliable 

information about land cover is becoming essential in a wide range of fields, from an 

accurate specification of boundary conditions in climate and land surface process 

models, to the assessment of the impact and effectiveness of management actions 

associated with sustainable development policies. 

In contrast to former global mapping initiatives, the GLC2000 project is a 

bottom up approach to global mapping (Figure 3.6), where more than 30 research teams 

have been involved, contributing to 19 regional windows. The fact that the mapping was 

carried out by regional experts has several benefits. First, as regional experts have a 

high level of knowledge about their particular region, a certain level of quality can be 

guaranteed. Second, each partner has the freedom to apply their own methods of 
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mapping and define their own regional legend, which allows them to apply the 

classification techniques they find as most appropriate for land cover mapping in their 

respective region. Third, the regional mapping approach ensures that access could be 

gained to reference material. However in order to guarantee the necessary consistency, 

the two following conditions had to be fulfilled by the regional experts; i) the data had 

to be based on SPOT-4 VEGETATION VEGA2000 dataset, which was made freely 

available by CNES, ii) the partners had to use the Land Cover Classification System 

which was adopted by FAO (Di Gregorio and Jansen, 2000). 

 

Figure 3.6 The Global Land Cover 2000 Project. 

 

The Central European window was mapped by the Department of 

Environmental Sciences and Land Use Planning, at Catholic University of Louvain 

(Universite Catholique de Louvain, UCL), Belgium. In the classification process, fifteen 

land cover classes have been determined and labelled using a combination of reference 

information from the CORINE landcover database (see next sub-section), the 

interpretation of high resolution satellite imagery (Landsat TM) and the knowledge of 

the local experts. In 2006 the European window classification was updated and the 

result is presented in Figure 3.7. 
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Figure 3.7 The updated version of the GLC2000 map for the European 
Window. (http://www-gvm.jrc.it/glc2000) 

 
 

3.2.3 The Corine Land Cover 2000 project 

The Corine Land Cover 2000 (CLC2000) project is based on the interpretation of 

satellite images and aims at providing comparable digital maps of land cover for most 

countries of Europe. The first CLC database was finalised in the early 1990s as part of 

the European Commission programme to COoRdinate INformation on the Environment 

(CORINE). It provides consistent information on land cover changes during the past 

decade across Europe. CLC has revealed to be particularly useful for environmental 

analysis and comparisons as well as for policy making and assessment. No other land 

cover information programme in the world covers such a wide geographical area in such 
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detail. CLC is recognised by decision-makers as a fundamental thematic reference data 

set for spatial and territorial analyses. 

At the end of the 1990s several users at national and European levels expressed a 

need for its update. The European Environment Agency (EEA) and the Joint Research 

Center (JRC) launched the IMAGE2000 and CLC2000 projects, which consisted in the 

update of the Corine Land Cover 90 database. Image2000 is a related project to Corine 

Land Cover 2000 that provided the necessary Landsat 7 imagery (Figure 3.8) for the 

updating of the European Land Use/ Land Cover database. 

 

 
Figure 3.8 Landsat 7 imagery for the updating CLC, using the IMAGINE2000 
software. (http://image2000.jrc.it/) 

 

CLC is therefore a key database for integrated environmental assessment studies, 

namely those related with agricultural issues, and provides a pan-European inventory of 

biophysical land cover, using a 44 class-nomenclature. In Portugal, the development of 

this thematic map was made under the responsibility of Instituto Superior de Estatística 

e Gestão da Informação (ISEGI). This Corine Land Cover 2000 for Portugal (Figure 

3.9) is originally provided on a 250m by 250m grid, using a Transverse Mercator 

projection with the Hayford spheroid. However, the majority of remote sensing imagery 

used in this work is defined on geographic coordinates, with 1000m at resolution. 

Therefore, in order to enable comparisons of images which had different spatial 

resolutions, it was necessary to resample the CLC2000 map to the coarser resolution of 

1000m. 
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Figure 3.9 Corine Land Cover 2000 map for Portugal, as developed by ISEGI 
and the adopted 44 class-nomenclature (http://terrestrial.eionet.europa.eu/ 
CLC2000). 

 

We started by using the nearest neighbour re-sampling technique because of the 

expected good results for less populated classes (Schowengerdt, 1997). Results obtained 

for Portugal and for a box centred on the Tagus estuary are shown respectively in 

Figures 3.10 and 3.11. When comparing the original maps (left panels of Figures 3.10 

and 3.11) with the ones obtained using the nearest neighbour technique (central panels), 

it may be observed that some of the classes, e.g. water courses (code 5.1.1) are correctly 

resampled, whereas some other classes, e.g. urban areas (codes from 1.1.1 up to 1.4.2) 

are less correctly represented. 
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Figure 3.10 Corine Land Cover 2000 map for Portugal; the original map at 
250m resolution (left panel), the degraded map at 1000m resolution using the 
nearest neighbour technique (central panel), the degraded map at 1000m 
resolution using the majority rule (right panel). 

 
 

We have also tested a degradation procedure based on the majority rule that is 

commonly applied when degrading thematic maps, namely land cover maps (Turner et 

al., 1989; Benson and Mackenzie, 1995; Wu et al., 2002; Saura, 2004). The underlying 

assumption is that when applying the majority rule (i.e. the degraded image pixels are 

assigned to the most frequent class) similar patterns are produced at coarser resolutions. 

Majority rules assign to the degraded image the most frequent class in windows of F×F 

pixels, where F, the aggregation factor represents the relation between the length of a 

pixel in the degraded and in the original image. When applying this criterion to the 

CLC2000 map for Portugal at 250m of resolution in order to obtain a degraded map at 

1000m resolution, the procedure involves degradation by a scale factor of 4 in each 

direction. The obtained maps, for Continental Portugal and for the box centred in the 

Tagus estuary are also shown in Figures 3.10 and 3.11 (right panels). In general, and 

independently of the aggregation method used, there is an under representation of the 

less frequent classes in the original map. In the case of water courses (code 5.1.1), the 

results obtained when using the majority rule were slightly worse than when using the 

nearest neighbour technique. However, other equally less frequent classes, e.g. the 

urban areas (codes from 1.1.1 up to 1.4.2) present higher spatial consistency when the 

majority rule is used. 
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Figure 3.11 As in Figure 3.10 but respecting to a box centred in the Tagus 
estuary. 

 

Figure 3.12 presents an histogram of relative frequencies of pixels over Portugal 

that belong to each CLC2000 class as obtained from the original map (blue bars) and 

from the two independently degraded maps using the nearest neighbour technique 

(green bars) and the majority rule (red bars). It may be noted that, when using the 

nearest neighbour technique there is an overall agreement between relative frequencies 

of original and degraded classes. In the case of the majority rule, homogeneously 

distributed classes, e.g., non irrigated arable land (code 2.1.1) and forest (codes 3.1.1 

and 3.1.2) are overestimated, whereas scattered classes, e.g., land occupied by 

agriculture (code 2.4.3) and transitional woodland-shrubland (code 3.2.4) tend to be 

underestimated. 

 
Figure 3.12 Histogram of relative frequencies of pixels in the 250m original 
map (blue), and in the 1000m degraded maps as obtained using the nearest 
neighbour technique (green) and the majority rule (red). Labels in bars 
identify classes referred to in the text. 
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The majority rule has however the advantage of assessing the relative presence of 

the most frequent class within the 4×4 pixel windows. In fact, when there is the need to 

assign pixels to a given class, specific thresholds (e.g. 50%, 75% or 90%) may be 

defined in such a way that a pixel is considered as representative of that class when the 

relative presence of that class is above the specified threshold. This procedure has the 

advantage of providing predefined levels of confidence for each class label, while 

maintaining a sufficiently large sample in each class (Lotsch et al., 2003). 

Figure 3.13 presents several examples of the obtained spatial distribution of 

relative presence for a set of five GLC2000 classes, respectively urban areas (code 

1.1.2), non irrigated arable land (code 2.1.1), broad-leaved forest (code 3.1.1), water 

courses (code 5.1.1) and estuaries (code 5.2.2). For instance, if there is the need to mask 

pixels contaminated by the presence of urban areas or water courses, a low threshold, 

e.g. 20%, has to be chosen in order to assure that contamination is adequately 

prevented. On the other hand, if the aim is to identify pixels associated to arable land or 

to forest a moderate threshold, e.g. 50%, may be appropriate. Finally a high threshold, 

e.g. 90% may be chosen if the aim is to study very specific areas, such as estuaries. 

 

1.1.2 2.1.1 3.1.1 5.1.1 5.2.2 

  

 
 

Figure 3.13 Spatial distribution of relative presence for a set of five GLC2000 
classes for the 1000m degraded maps using the majority rule, respectively 
urban areas (code 1.1.2), non irrigated arable land (code 2.1.1), broad-leaved 
forest (code 3.1.1), water courses (code 5.1.1) and estuaries (code 5.2.2). 
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In the present work, the majority rule was used to degrade CLC2000 to 1000m 

resolution in order to identify land cover classes that were affected by drought (Chapter 

6) and by wildfires (Chapter 7). In Chapter 5 we have defined a threshold of 50% to 

produce a 8000 m degraded map of non irrigated arable land (code 2.2.1) in order to 

identify areas with wheat crops and monitor the vegetation cycle using GIMMS-NDVI 

at 8 km resolution. 

3.3 Climate data 

3.3.1 Meteorological Data 

Meteorological data used in this study are large-scale gridded data as retrieved 

from the Climate Research Unit (CRU) datasets, for the period 1982-1999. A complete 

description of the methodology used to derive this monthly high-resolution (10’ 

resolution) climatic database may be found in Mitchell and Jones (2005). This high 

resolution dataset replaces the coarser resolution CRU dataset (0.5º x 0.5º) widely used 

in many climatic variability studies over Europe (e.g. Trigo et al., 2004; Paredes et al., 

2006). This dataset was built based on an optimum interpolation method that takes into 

account latitude, longitude, and elevation using thin-plate splines (New et al., 1999; 

2000). The accuracy of the obtained interpolations is assessed using cross validation as 

well as through objective comparisons with other climatologies. The higher resolution 

database was checked for inhomogeneities in the station records, by means of an 

automated procedure that refines previous methods using incomplete and partially 

overlapping records and through the detection of inhomogeneities with opposite signs in 

different seasons (Mitchell and Jones, 2005). 

Monthly values of cloud cover, temperature and precipitation, were extracted 

from the CRU database for the window 35ºN-45ºN, 10ºW-0ºE. Under the scope of the 

Portuguese funded (FCT/ESA) project CARBERIAN (Terrestrial Vegetation Carbon 

Trends in the Iberian Peninsula), the CRU TS 1.2 10’ climate datasets were interpolated 

to the GIMMS NDVI coordinates grid with a recently developed non-linear method 

(Zhao et al., 2005). The cloud cover time series were then converted to net solar 

radiation fields using the Soil and Water Assessment Tool, a method developed by 
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Neitsch et al. (2002). This procedure yielded monthly climate fields geographically 

compatible with GIMMS NDVI. 

 

The Global Precipitation Climatology Project (GPCP) is an element of the Global 

Energy and Water Cycle Experiment (GEWEX) of the World Climate Research 

program (WCRP). It was established by the WCRP in 1986 with the major aim of 

providing monthly mean precipitation data on a 2.5°×2.5° latitude/longitude grid. 

Monthly mean precipitation estimates are being produced continuously since 1979. In 

this dataset infrared and microwave satellite estimates of precipitation were merged 

with rain gauge data from more than 6,000 stations. Infrared precipitation estimates are 

obtained from GOES (United States), GMS (Japan) and Meteosat (European 

Community) geostationary satellites as well as from the National Oceanic and 

Atmospheric Administration (NOAA) operational polar orbiting satellites. Microwave 

estimates are obtained from the U.S. Defense Meteorological Satellite Program (DMSP) 

satellites using the Special Sensor Microwave Imager (SSM/I). These data sets will be 

used to validate general circulation and climate models, to study the global hydrological 

cycle and to diagnose the variability of the global climate system. 

In recent years the data sets have been updated and enlarged, to that besides the 

monthly mean product available, the GPCP has now a 2.5°×2.5° degree pentad data set 

since 1979, a 1°×1° daily data set since 1997 and (on request) the 0.5º×0.5º grid 

monthly data. Here we have used monthly precipitation data from the GPCC (Rudolf 

and Schneider, 2005) with the highest resolution (0.5º latitude by 0.5º longitude grid), 

covering the period 1982-2002 for the European window. 

3.3.2 North Atlantic Oscillation 

The North Atlantic Oscillation (NAO) has been recognized for more than 70 

years as one of the major patterns of atmospheric variability in the Northern 

Hemisphere (Walker, 1924). The NAO refers to a meridional oscillation of the 

atmospheric mass with centers of action located near Iceland and over the subtropical 

Atlantic from the Azores across the Iberian Peninsula. When NAO is in its positive 

phase, low pressure anomalies over the Icelandic region and throughout the Arctic 

combine with high-pressure anomalies across the subtropical Atlantic to produce 
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stronger than average westerlies across the midlatitudes. Therefore, this phase of the 

oscillation is associated with cold conditions over the northwest Atlantic and warm 

weather over Europe, together with wet conditions from Iceland through Scandinavia 

and dry conditions over southern Europe. 

However, only in recent years has this important atmospheric circulation mode 

become the subject of a wider interest (e.g. van Loon and Rogers, 1978; Rogers, 1984; 

Barnston and Livezey, 1987). More recently, the study by Hurrell (1995) had significant 

impact on the climatological community and has been followed by an increasing 

number of studies. It is within this context, that several studies have established links 

between the NAO index and winter season precipitation in Western Europe and, in 

particular, over the Mediterranean basin (Hurrell 1995; Qian et al., 2000; Trigo et al., 

2004). This control exerted by NAO on the precipitation field over Europe is likely 

related to corresponding changes in the associated activity of North Atlantic storm 

tracks (Serreze et al., 1997; Osborn et al., 1999). In fact, this strong NAO-precipitation 

link has been used to develop rainfall forecast models that predict precipitation in Iberia 

several months in advance (e.g. Gámiz-Fortis et al, 2002; Rodriguez-Fonseca and 

Castro, 2002). The output of these models may provide useful seasonal forecasting tools 

for water resource managers and risk assessment teams (Trigo et al., 2004). 

The NAO index used in this study is based on the one developed by the Climatic 

Research Unit (University of East Anglia, UK) which was originally defined, on a 

monthly basis, as the difference between the normalized surface pressure at Gibraltar, in 

the southern tip of the Iberian Peninsula and Stykkisholmur, in Iceland (Jones et al., 

1997). For each year covering the 21-year long period from 1982 to 2002, we have 

derived a late winter NAO index, defined as the average of the monthly values of 

January, February and March of the corresponding year. In this work we will use the 

term NAO to refer to the three-monthly averaged as well as to any averaged quantity 

over January, February and March (e.g, PNAO for averaged precipitation). It may be 

finally noted that the original time series of winter monthly values of the NAO index 

presents a positive trend over the last 30 years and therefore its distribution is 

dominated by positive values, leading to late winter averages above zero (Jones et al., 

1997). As a representative example, Figure 3.14 shows the patterns of simple 

correlation computed over the period 1982-2002 the three monthly averages of winter 



Chapter 3  Basic Data and Pre-Processing 
 

 - 56 -

NAO (JFM) vs. winter precipitation (top panel) and surface air temperature (bottom 

panel). 

 

 
 

  
Figure 3.14 Patterns of simple correlation computed over the period 1982-
2002 of three-monthly averages of winter NAO (JFM) vs. winter precipitation 
(top panel) and surface air temperature (bottom panel). 

 
 
 



 

   

4. CLIMATE IMPACT ON VEGETATION DYNAMICS 

4.1 Introduction 

Over the last two decades, the continuous monitoring of vegetation from space 

has prompted new studies aiming to relate the observed major global changes in 

vegetation (e.g. trends, variability and extremes) with changes of surface climatic 

variables, such as temperature and precipitation (Myneni et al., 1997, Hansen et al., 

1999, Zhou et al., 2001). In particular, several groups have shown that the recorded rise 

of temperature in the northern latitudes by 0.8ºC in the last 25 years has been 

accompanied by a significant reduction in annual snow cover as induced by an early 

melting of snow in spring (Groisman et al., 1994, Vinnikov et al., 1999). A longer 

active growing season has also been observed as a result of an early spring and delayed 

autumn (Bogaert et al., 2002, Shabanov et al., 2002). This change in the annual cycle is 

associated with an increase in photosynthetic activity of vegetation (Zhou et al., 2001), 

as detected from observed changes in the Normalised Difference Vegetation Index 

(NDVI). 

Although no evidence has been given that such changes in NDVI are related to the 

positive trend in atmospheric concentration of CO2 (Kaufmann et al., 2002), the global 

carbon cycle has been certainly affected (Keeling et al., 1996) and there is a strong need 

for long-term and large-scale studies aiming to assess the impact of atmospheric 

circulation variability on surface climate and related vegetation activity. In this respect 

special attention has been devoted to investigating relationships between vegetation 

dynamics and the North Atlantic Oscillation (NAO), which (as shown in Chapter 3) is 

the major pattern of atmospheric variability in the Northern Hemisphere (Hurrell, 1995). 

A number of studies have naturally addressed the question of the relationship between 

NDVI and meteorological fields, namely temperature and precipitation. Vicente-Serrano 

and Heredia-Laclaustra (2004) have adopted the climatological viewpoint and focused 

their attention on the Iberian Peninsula where the influence of winter NAO on the 
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precipitation regime is especially prominent in the south-west region (Rodriguez-Puebla 

et al., 1998). They have shown the existence of a positive trend in annual vegetation 

productivity where the NAO influence is weaker, in strong contrast to the stable or 

negative trends that were detected in the areas located in the south of Iberia, where 

precipitation is mostly determined by NAO. However the authors pointed out the need 

for further studies, at finer temporal scales, namely at the monthly and seasonal ones. 

Stöckli and Vidale (2004) have found that spring plant phenology over Europe is 

well correlated with the winter NAO index. Their study has focused on several 

geographical sub-domains of Europe that neither reflect any bio-geographical 

stratification nor any particular sensitivity to the NAO index. The Mediterranean and, in 

particular, the Iberian Peninsula was not included in the study because their analysis 

procedure required a large seasonal amplitude in the phenology. The aim of the present 

chapter is to fill the gap between the assessment made by land cover experts and by 

researchers that have looked at the problem from a climatological viewpoint. We will 

search for relationships between NAO and vegetation activity at the month and seasonal 

levels over Europe and look for regions where such activity presents a clear dependence 

on NAO both in spring and summer. We will then investigate how such dependence 

may be explained in terms of the impact of NAO on relevant surface climate variables, 

namely temperature and precipitation. We will pay special attention to the Iberian 

Peninsula and Northeastern Europe because of the distinctive vegetation response to 

precipitation and temperature. Finally, we will identify which of the variables have a 

determinant role on vegetation activity of different regions and make an assessment on 

the role played by the variables in the annual cycle of vegetation activity. 

Accordingly, the main goals of this chapter are the following: 

• To study the relation between vegetation phenology and NAO over Europe. 

• To characterise the vegetation response to precipitation and temperature in two 

contrasting areas of Europe, respectively Northeastern Europe and the Iberian 

Peninsula. 

• To assess the impact of NAO on the vegetative cycle in the two areas, and relate it 

to the different land cover types and their response to surface climate variability. 
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Relationships between NAO and diverse aspects of European vegetation 

dynamics have been addressed by various authors. D’Odorico et al. (2002) showed that 

spring phenology in the British Isles is influenced by NAO. Dates of leaf unfolding for 

a mean of nine plant species vary over a 40-day range, from approximately the spring 

equinox to the end of April. The Julian date of leaf unfolding is inversely correlated 

with the NAO phase, i.e. leaf unfolding occurs earlier under positive, and later under 

negative phases of NAO. Similar patterns are reported for Poland, Norway and Sardinia. 

D’Odorico et al. (2002) also found a strong NAO influence on the timing of the pollen 

season in Europe. 

Cook et al. (2004) modelled the NAO-dependence of phenological variability in 

Europe, mediated by the NAO influence on synoptic scale winter temperature 

variability, and successfully reproduced observed patterns of growing degree-days over 

Europe. A projection of NAO trends 50 years into the future, based on climate change 

scenarios, indicated a sustained advance of the growing season start. 

Stöckli and Vidale (2004) used AVHRR Pathfinder NDVI data, and found that 

spring phenology correlates well with anomalies in winter temperature and winter NAO 

index. They established the existence of trends towards an earlier onset and longer 

duration of the spring vegetation growing period, especially significant over Central 

Europe. 

Vicente-Serrano and Heredia-Laclaustra (2004) analysed the relationship between 

the NAO index and vegetation productivity (represented by the annual integral of 

monthly AVHRR Pathfinder NDVI values) trends, for the Iberian Peninsula. Areas of 

stable or decreasing vegetation productivity were located in southern Iberia, where the 

NAO influence is stronger. Significant positive productivity trends occur in the north of 

the Peninsula, where the NAO influence on vegetation dynamics is weaker. 

We will rely on AVHRR NDVI data from the Global Inventory Modelling and 

Mapping Studies – GIMMS group (see Chapter 3), which incorporate more thorough 

and accurate corrections of orbital drift, radiometric degradation, and volcanic aerosol 

effects than those previously applied to the Pathfinder AVHRR Land (PAL) product, 

used in earlier works. 
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4.2 Methodology 

As pointed out in the introduction, we will look for relations involving large-scale 

atmospheric variability, vegetation greenness and surface climate. Accordingly the main 

sources of information consist of time-series of the NAO index, NDVI and, for surface 

climate, precipitation (P) and brightness temperature (T), which may be taken as a 

proxy of land surface temperature. 

It may be noted that the time-series of NAO indices (see Chapter 3) was 

normalized over the 21-year period and therefore our three-monthly averages have zero 

mean and unit standard deviation between 1982 and 2002 (Figure 4.1). Accordingly, we 

have derived a late winter NAO index, defined as the average of the monthly values of 

January, February and March of the corresponding year. From now on we will use the 

term NAO to refer to the three-monthly averaged index and any averaged quantity over 

January, February and March will be also identified by the subscript NAO (e.g. PNAO 

and TNAO). 

 

 

Figure 4.1 Interannual variability of late winter NAO index over the 21-year 
long period, from 1982 to 2002. Open (black) circles indicate years 
characterised by NAO indices above (below) the 3rd (1st) quartile. 

 

We have also used monthly precipitation data from the Global Precipitation 

Climatology Centre (GPCC) (Rudolf and Schneider, 2005). Selected data are defined on 

a 0.5º latitude by 0.5º longitude grid and cover the same period and window as the 

satellite data (see Chapter 3). 
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Finally, we have used monthly values of NDVI and channel 4 brightness 

temperature, at 8-km resolution, from the Advanced Very High Resolution Radiometers 

(AVHRR), as provided by the Global Inventory Monitoring and Modelling System 

(GIMMS) group (see Chapter 3). Selected data are defined on a window covering the 

Eurasian and North Atlantic regions, from 30º W to 60º E and from 30º N to 75º (Figure 

4.2). For each grid point we have computed spring and summer values of NDVI, T and 

P, respectively defined as the average of March, April and May and of June, July and 

August. Spring and summer values of a given quantity will be respectively denoted by 

the subscripts SPR and SUM. The results were then re-projected to Geographic 

Coordinates, based on the nearest neighbour scheme (Chapter 2). Figure 4.2 presents the 

spatial distribution of the temporal averages of NDVISPR (left panel) and NDVISUM 

(right panel) for the considered period (1982-2002). As expected, very low values of 

NDVISPR may be observed over Iceland and the Scandinavian Peninsula along the 

borders of the areas covered by snow and ice. Low values of NDVISPR cover south-

western Iberian and south Scandinavia, whereas the highest values are located over 

central and western Europe. A strong increase in vegetation activity may be also 

observed during summer for the entire European window, with the exception of the 

Iberian Peninsula. 

 

    
Figure 4.2 Temporal averages of NDVISPR (left panel) and NDVISUM (right 
panel) over the period from 1982 to 2002. Gray pixels over land correspond to 
areas covered by snow and ice. 

 

Figure 4.3 shows the spatial distribution of the temporal averages of TNAO and 

PNAO. In the case of TNAO the lower values may be found in Northern Sweden, Iceland 

and the Alps, and the lower values spread over the south of the Iberian Peninsula. On 
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the other hand, the highest values of PNAO may be found for western Sweden and Britain 

and high values may be also found in North-western Iberia. 

 
Figure 4.3 As in Figure 4.2 but for PNAO (left panel) and TNAO (right panel). 

 

4.3 NAO and Vegetation Greenness 

Figure 4.4 displays the spatial patterns, over the selected European window, of 

point correlation values of NAO vs. NDVISPR and NAO vs. NDVISUM for the considered 

21-year period. Results show a positive correlation region over Central Europe for 

spring (left panel), the highest values (between 0.6 and 0.8) spreading around the north-

eastern region. The largest negative correlation regions are located over the Iberian 

Peninsula and Iceland, some values reaching as low as -0.8. It may be noted that 

obtained patterns are consistent with the recent findings by other authors, at both the 

global (Buermann et al., 2003) and the regional (e.g. Vicente-Serrano and Heredia-

Laclaustra, 2004) scales. However, it is worth stressing that we have based our analysis 

on a much finer spatial resolution than Buermann et al. (2003) and, despite the overall 

consistency, some differences do exist, namely the higher values of correlation that we 

obtained over the north-eastern sector. 

In the case of summer (Figure 4.4, right panel) the correlation field presents 

negative values over almost all Central-Eastern Europe. This pattern is also consistent 

with the findings of Buermann et al (2003), but their maximum core is located towards 

the northern Black Sea area, whereas ours is confined to the upper Danube region. 
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Figure 4.4 Point correlation fields of NAO vs. NDVISPR (left panel) and NAO 
vs. NDVISUM (right panel) over the period from 1982 to 2002. Black frames 
identify the Baltic region and the Iberian Peninsula. The colorbar identifies 
values of correlation and the two arrows indicate the ranges that are 
significant at 5% level. 

 

The contrasting behaviour of north-eastern and south-western regions of Europe is 

worth being further investigated. For this purpose we have selected two regions, namely 

Northeastern Europe (hereafter NE) and the Iberian Peninsula (hereafter IB). These two 

regions are identified by black frames in Figure 4.4 and it may be noted that selection 

was made in such a way to obtain an amount of land pixels of the same order in the two 

regions, respectively 9639 over NE and 9080 over IB. Both NE and IB show fairly 

coherent values of correlation of NAO vs. NDVI for both spring and summer. It is also 

apparent that over IB, NAO is anti-correlated with vegetation greenness both in spring 

and summer, whereas over NE the correlation is positive in spring and predominantly 

negative in summer. During spring, the distribution of correlation values over NE 

presents a median value about 0.5, whereas the distribution over IB has a median of -0.2 

and spans a wide range of negative values, reaching as low as -0.7 (Figure 4.5). During 

summer, both areas exhibit distributions with similar medians about -0.2, but the lower 

dispersion is now observed over IB. 
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Figure 4.5 Box plots of simple correlation between three months composite of 
North Atlantic Oscillation (NAO) and NDVI for the 2 selected areas (NE and 
IB). 

 

The observed distinctive behaviour between the Iberian Peninsula and 

Northeastern Europe is to be expected and reflects, on the one hand, the different 

response of the annual variability of meteorological parameters of the two areas to 

large-scale atmospheric variability associated to the NAO mode; on the other hand, it 

reflects the different responses of vegetation to atmospheric variability, in particular 

changes induced by temperature and precipitation in the annual cycle of heat and 

moisture. For instance in the case of wheat that is grown in both regions, water is the 

main limiting factor for growth in IB (Gouveia and Trigo 2008), whereas it is 

temperature that limits its growth in NE.  

It may be noted at this point that climate conditions are not the only factor that 

acts on vegetation dynamics; the nature and quality of the plant substrate, the over-use 

of agriculture land and the employment of irrigation are important factors linked to the 

human influence that may disturb the relationship between atmospheric parameters and 

vegetation activity. With the aim of isolating the effect of natural atmospheric 

variability, as represented by the NAO, on vegetation dynamics from factors related to 

the human influence, we have compared the NDVI fields over IB and NE for two years 

associated to extreme NAO indices. Figure 4.6 shows a comparison of NDVISPR for the 

two chosen years, i.e. 1986 (NAO-) and 1995 (NAO+). In the case of IB, anomalies of 

NDVISPR present well defined quasi-meridional dipoles of opposite signs in 1986 (upper 

left panel) and 1995 (middle left panel). The southern anomaly centre is particularly 

intense, positive (negative) anomalies being observed in spring 1986 (1995). The 

dipolar structure is especially apparent when differences are computed between 1995 

and 1986 (lower left panel). In the case of NE (right panels) large patterns of negative 
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(positive) anomalies of NDVISPR may be observed in 1986 (1995). Observed anomalies 

are particularly intense in 1986 (NAO-) and this feature is well apparent when analysing 

differences between 1995 and 1986 (lower right panel). 

 

 
Figure 4.6 Seasonal anomalies of NDVISPR for 1986 (NAO+), 1995 (NAO-) and 
for differences between 1995 and 1986 (upper, middle and lower panels, 
respectively) over IB and NE (left and right panels respectively). 

 

4.4 NAO and Climatic Activity 

Taking into account the results of the previous section, we will now pay attention 

to the influence of the NAO mode over two atmospheric parameters relevant to 

vegetation activity, namely surface temperature and precipitation. The analysis will 
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focus on the Iberian Peninsula and Northeastern Europe and the different roles played 

by temperature and precipitation in the two sub-areas will be emphasized. 

Figure 4.7 shows spatial patterns over the selected European window of point 

correlation fields between the NAO index and the contemporaneous late winter means 

of surface temperature and precipitation, i.e. NAO vs. TNAO and NAO vs. PNAO. 

Obtained patterns display the well known response to the NAO signal, of temperature 

and precipitation over Europe (Hurrell, 1995; Trigo et al., 2002). In the case of 

temperature, a region of positive values over Central and Eastern Europe is well 

apparent (Trigo et al., 2002). Albeit less intense, negative values of correlation may also 

be identified over the Iberian Peninsula. For precipitation, a well developed meridional 

dipolar structure is conspicuous over Europe, delimiting two well defined zonal bands 

of positive and negative correlation values, which spread over Northern Europe and 

along the Mediterranean regions, respectively. These results are in good agreement with 

those obtained by several authors (e.g. Sáenz et al., 2001; Castro-Díez et al., 2002) who 

have pointed out that the connection between NAO and Iberian temperature is not as 

clear-cut as in the case of precipitation. Finally, the intense east-west precipitation 

gradients observed in southern Norway/Sweden as well as over Ireland and England is 

worth being point out. These strong precipitation gradients over such short distances are 

associated with the mountain ranges located in the western sector of these three regions 

and highlight the lee effect. 

    
 
 
 
 

Figure 4.7 Point correlation fields of NAO vs. TNAO (left panel) and NAO vs. 
PNAO (right panel) over the period from 1982 to 2002. The colorbar shows 
values of correlation and the two arrows indicate the ranges that are 
significant at 5% level. 
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Although it is known that the impact of NAO on temperature and precipitation 

described above is especially prominent in winter (e.g. Vicente-Serrano and Heredia-

Laclaustra, 2004, Trigo et al., 2004), such behaviour contrasts with that obtained for 

vegetation activity (Figure 4.4), where the impact of NAO is clearly apparent both in 

spring and summer (i.e. NAO vs. NDVISPR and NAO vs. NDVISUM). This gives a strong 

indication that special attention must be devoted to the relationship between late winter 

temperature and late winter precipitation, with vegetation greenness in the following 

spring and summer seasons. 

Since we are particularly interested in pixels characterised by the strong influence 

of NAO on vegetation activity, we will restrict our analysis to IB and NE (as identified 

in Figure 4.4), and will focus on those pixels that exhibit the highest (lowest) values of 

positive (negative) correlations of NDVISPR and NDVISUM with NAO. Henceforth, they 

will be called NAO High Correlation Pixels (NHCP). 

As pointed out in the previous section, vegetation greenness over the IB is 

negatively correlated with NAO, both in spring and summer. Accordingly, we selected, 

for each one of the two seasons, the 500 highest NHCP. In the case of NE, NHCP were 

predominantly correlated with NDVI in spring and anti-correlated in summer. Therefore 

we selected the 500 pixels with the highest (lowest) values of positive (negative) 

correlation in spring (summer). Figures 4.8 and 4.9 show the geographical distribution 

of the NHCP for spring and summer, respectively over IB and NE. Information about 

the land cover type associated to each pixel is also provided, as obtained from the 

Global Land Cover 2000 (GLC2000) database (Chapter 3). Table 4.1 shows descriptive 

statistics of the NHCP associated with the two most common types of vegetation 

namely in what respects to the distribution of NDVI anomalies for two classes of years, 

characterised by extreme NAO indices, i.e. the NAO+ and NAO-, as described in section 

3. NDVI anomalies in a given pixel are defined as differences from the respective 21-

year mean (1982-2002) and the two considered classes of years. For each area and 

season the statistical distributions of NDVI anomaly values for the two classes of years 

(NAO+ and NAO-) and the two types of vegetation cover are characterised by means of 

the respective median (Q2), first and third quartiles (Q1 and Q3), and percentiles 1 and 

99 (P1 and P99). 
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As expected, there are marked differences in the obtained distributions of NDVI 

anomalies for NAO+ and NAO- classes for a given type of vegetation, in a given season, 

over a given region. For instance, it is worth noting that there is no class overlap when 

restricting to median values between P1 and P99. This feature was taken into account in 

Figures 4.8 and 4.9, where a given year is characterised by its median value. 

 

 

 
 

 

 
 

Figure 4.8 Geographical distribution of sets of selected pixels over the IB 
(upper panels), based on the strong values of correlation of NDVISPR (upper 
left panel) and NDVISUM (upper right panel) with NAO. Red, green and blue 
pixels are respectively associated to forest and shrub, cultivated areas and 
other types of vegetation cover. Land cover type (low panel) as obtained from 
GLC2000). 
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Figure 4.9 As in Figure 4.8 but respecting to NHCP over NE. Red, green and 
blue pixels are respectively associated to needle-leaved, evergreen, cultivated 
and other types of vegetation cover. 

 

 

Differences in the distribution of types of vegetation are also conspicuous for the 

two regions and the two seasons. In the case of the Iberian Peninsula, almost two thirds 

(64%) of the NHCP correspond to areas of spring crops and about one sixth (17%) are 

forests and shrublands. The relative proportion of the two types undergoes a significant 

change in summer, when a strong decrease may be observed in the difference between 

the fraction of NHCP belonging to the two types (29% to forest and shrubland, and 47% 

to cultivated areas). In the case of NE, there is a dramatic change from spring to summer 

between the distributions of NHCP of the two types of vegetation; the predominance in 

spring of forest and shrubland (47%) over cultivated areas (25%) gives way, during the 

summer, to a predominance of NHCP representing agricultural crops (63%), over those 

representing forests and shrublands (27%). 
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Table 4.1 Descriptive statistics of the distributions of NDVI anomalies for 
NAO High Correlation Pixels (NHCP) associated to the two most important 
vegetation types as found in the cases of spring and summer over IB and NE. 
P1, Q1, Q2, Q3 and P99 respectively denote percentile one, the first quartile, 
the median, the third quartile and percentile 99. Percent figures in parenthesis 
below the types of vegetation indicate the fraction of pixels of the considered 
NHCP associated to that type. 

IB 
Spring 

 Forest & shrubland  
(17%) * 

Cultivated 
(64%) 

 P1 Q1 Q2 Q3 P99 P1 Q1 Q2 Q3 P99 
NAO+ -0,049 -0,030 -0,021 -0,013 0,002 -0,080 -0,041 -0,031 -0,022 -0,004
NAO- 0,004 0,015 0,024 0,033 0,066 0,003 0,019 0,027 0,038 0,071

Summer 
 Forest & shrubland  

(29%) ** 
Cultivated 

(47%) 
 P1 Q1 Q2 Q3 P99 P1 Q1 Q2 Q3 P99 

NAO+ -0,053 -0,031 -0,023 -0,017 0,005 -0,066 -0,036 -0,026 -0,014 0,000 
NAO- -0,001 0,011 0,016 0,022 0,039 0,003 0,012 0,018 0,025 0,054 

 
NE 

Spring 
 Needle-leaved Evergreen 

 (47%)# 
Cultivated 

(25%) 
 P1 Q1 Q2 Q3 P99 P1 Q1 Q2 Q3 P99 
NAO+ 0,011 0,027 0,033 0,041 0,071 0,009 0,026 0,033 0,044 0,060
NAO- -0,084 -0,054 -0,043 -0,035 -0,014 -0,072 -0,055 -0,045 -0,037 -0,010

Summer 
 Needle-leaved Evergreen 

(27%)## 
Cultivated 

(63%) 
 P1 Q1 Q2 Q3 P99 P1 Q1 Q2 Q3 P99 
NAO+ -0,059 -0,037 -0,028 -0,021 -0,008 -0,068 -0,039 -0,030 -0,022 -0,005
NAO- 0,006 0,020 0,025 0,032 0,056 0,009 0,022 0,027 0,034 0,052

* Includes 14% of Needle-leaved Evergreen, 26% of Broadleaved deciduous and 60% of Shrubland. 
** Includes 31% of Needle-leaved Evergreen, 25% of Broadleaved deciduous and 44% of Shrubland 
 
# Includes 12% of Needle-leaved Evergreen and 88% de Broadleaved deciduous 
## Includes 35% of Needle-leaved Evergreen and 65% de Broadleaved deciduous  

 

 

The above results may be viewed in terms of the distinct responses of the various 

vegetation types to moisture and heat conditions prevailing during the previous winter. 

These conditions, in turn, are determined by the nature of the relationships between the 

surface annual variability of atmospheric parameters, PNAO and TNAO, and the different 

phases (NAO+ and NAO-) of the NAO atmospheric mode. Figures 4.10 and 4.11 show 

scatterplots, for IB and NE, respectively, of spring and summer anomalies of vegetation 
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greenness against winter anomalies of temperature and precipitation. Each dot 

represents a pair of median values of a given set of selected 500 NHCP, for a given year 

of the considered period (1982-2002), of winter anomalies of PNAO (left panels) and 

TNAO (right panels) vs. anomalies of NDVISPR (upper panels) and NDVISUM (lower 

panels). Years belonging to the subset of NAO+ (NAO-) are marked in red (green) and 

the variability of the NHCP is characterised by means of horizontal and vertical bars 

indicating the respective interquartile ranges. 

 

 

 
 

 
 
Figure 4.10 Dispersion diagrams of NDVISPR (upper panels) and NDVISUM 
(lower panels) vs. PNAO (left panels) and TNAO (right panels) for selected pixels 
over the IB. Each dot represents a pair of median values of a given set of 
selected 500 pixels, for a given year of the considered period (1982-2002). 
Years that belong to the subset of NAO+ (NAO-) are marked in red (green) 
and the respective variability is characterised by means of horizontal and 
vertical bars indicating the interquartile ranges. 

 



Chapter 4  Climate Impact on Vegetation Dynamics 
 

 - 72 -

 
 

Figure 4.11 As in Figure 4.10, but respecting to NE. 
 

As shown in Figure 4.10, IB region presents a similar spring and summer 

vegetation response to precipitation, i.e. an increase (decrease) of vegetation greenness 

for NAO- (NAO+) years. In both seasons there is less variability of precipitation in the 

set of NAO+ NHCP, in comparison with NAO-, especially in spring. A slight 

dependence of vegetation greenness on temperature is also apparent in the case of 

spring, with NVDISPR median values showing a tendency to decrease from NAO- to 

NAO+. It may be noted that the obtained stronger dependence of vegetation on 

precipitation than on temperature is consistent with the already pointed out fact that 

over the Iberian Peninsula the influence of NAO is particularly strong on the 

precipitation regime whereas the relationship between NAO and temperature is less 

clear. In the case of NE (Figure 4.11) there is a marked dependence of vegetation 

greenness on winter temperature, but the nature of such dependence is reversed from 

spring to summer. In the first case, NDVISPR shows a strong increase from NAO- to 

NAO+, whereas a sharp decrease is observed for summer. The lower variability of 

temperature in the set NHCP for NAO+ is again evident, when compared with the 
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corresponding set for NAO-. Concerning winter precipitation, no effects are apparent on 

vegetation greenness for both spring and summer. Finally, the differences in magnitude 

of the impacts of NAO on precipitation and temperature in IB and NE is worth being 

emphasised; the impact on precipitation (temperature) is three times larger over IB (NE) 

than the corresponding impact over NE (IB), a feature that is in good agreement with 

the found dependences of NDVI on precipitation (temperature) over IB (NE). This is to 

be expected, since vegetation growth is much more water-limited in IB than in NE. 

4.5 The role NAO on the vegetative cycle 

The striking differences that were obtained in the response of vegetation to 

moisture and heat conditions and to anomalies in PNAO and TNAO associated to the NAO 

atmospheric mode, warrant further analysis of the NDVI annual cycle for the NHCP 

over IB and NE. Figure 4.12 presents the annual cycles of NDVI monthly values for the 

NHCP, for spring (upper panels) and summer (lower panels), over IB (left panels) and 

NE (right panels). The annual cycles of mean NDVI for the entire period (1982-2002) 

are represented by thick solid black lines, whereas the annual cycles of averages for the 

NAO- (NAO+) subsets are identified by the thin solid (dashed) curves. 

In the case of IB the most interesting feature for both spring and summer (Figure 

4.12, left panels) is that the highest impact of NAO is observed to occur during the 

periods of the year characterised by more intense vegetation activity (Ji and Peters, 

2003), i.e. around April (June) in the case of the NHCP for spring (summer). During 

spring, two thirds of the NHCP (Table 4.1) correspond to cultivated areas that mainly 

consist of crops adapted to the relatively dry Iberian conditions. Due to the generally 

observed high temperatures, vegetation has a short growth cycle that starts as soon as 

water is available, a situation that is especially favoured by NAO-. This is especially 

apparent in Figure 4.13 (left panel) where the annual cycles of NDVI are compared for 

the years of 1986 (NAO-) and 1995 (NAO+) that were chosen because of being 

associated to extreme NAO indices. In the case of summer the vegetation that is most 

affected by NAO initiates its growing period late in the year and therefore the response 

to precipitation tends to extend late in the year. 
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Figure 4.12 Annual cycles of monthly values of NDVI for NAO High 
Correlation Pixels (NHCP), for spring (upper panel) and summer (lower 
panel), over IB (left panel) and NE (right panel).  The annual cycles of average 
NDVI values for the entire period (1982-2002) are represented by thick solid 
lines, whereas the annual cycles of averages for the NAO- (NAO+) subsets are 
identified by the thin solid (dashed) curves. Vertical dashed curves delimit the 
season of the year. 

 

 

Figure 4.13As in Figure 4.12, but restricting to the annual cycles of NDVI for 
the individual years of 1986 (NAO−) and 1995 (NAO+), respectively 
represented by the dashed and the solid lines. 
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In the case of NE (Figure 4.13, right panels) the annual cycles present 

characteristics that are very different from those observed over IB. The impact of NAO 

is especially conspicuous during the first months of the year, suggesting that green 

vegetation growth tends to occur early and intensively, due to the combined effect of 

warm conditions, especially of the former, since water availability is seldom a problem 

in NE. This contrast in the response of vegetation during the early months is also well 

apparent in Figure 4.13 (right panel) where the years of 1986 (NAO-) and 1995 (NAO+) 

are compared. The distinct behaviour of vegetation in spring (Figure 4.12, upper panel) 

and summer (lower panel) is also worth pointing out. In the case of the spring, the NAO 

impact is almost negligible, whereas in the case of the summer the growth of vegetation 

is enhanced under NAO- conditions. This is to be expected, since snow melt is expected 

to occur later in the year, due to the lower winter temperature. Accordingly, vegetation 

growth will be reduced in spring, getting delayed until summer, when solar radiation 

availability increases (Blenckner and Hillebrand, 2002; Menzel 2003; Wang and You, 

2004). 

4.6 Conclusions  

We analysed the relationship between the NAO atmospheric mode and vegetation 

activity (NDVI) over the two contrasting regions of Iberia and Northeastern Europe. As 

expected the behaviour of vegetation reflects the different response of surface climate to 

large-scale atmospheric variability associated to the NAO mode. A systematic analysis 

was performed over two contrasting regions of Europe, namely IB and NE. Over IB 

there is strong evidence that positive (negative) values of winter NAO induce low (high) 

vegetation activity in the following spring and summer seasons. This feature is mainly 

associated with the impact of NAO on winter precipitation, together with the strong 

dependence of spring and summer NDVI on contemporary water availability. NE shows 

a different behaviour, with positive (negative) values of winter NAO inducing high 

(low) values of NDVI in spring, but low (high) values of NDVI in summer. This 

behaviour mainly results from the strong impact of NAO on winter temperature 

associated with the critical dependence of vegetation growth on the combined effect of 

warm conditions and water availability during the winter season. (D’Odorico et al., 

2002). 
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In both spring and summer NHCP over the Iberian Peninsula there is less 

precipitation variability under NAO+ than under NAO-, especially in the spring. This 

feature may be associated with the strong impact of climate variability in semi-arid 

areas, namely regarding effects of drought conditions on vegetation activity (Vicente-

Serrano and Heredia-Laclaustra, 2004), in particular during the intense spring 

vegetation growth period. A weak dependence of vegetation greenness on temperature 

is also visible in spring, with median values of spring NVDI tending to decrease from 

NAO- to NAO+ conditions. In the case of NHCP over NE there is a marked dependence 

of vegetation greenness on winter temperature, but the nature of such dependence is 

reversed from spring to summer. In spring there is a strong increase of NDVI from 

NAO- to NAO+, whereas a sharp decrease is observed for summer. Again the lower 

variability of temperature in the set of NHCP for NAO+, when compared with the 

corresponding one for NAO-, is evident. 

Finally, the NAO impact on vegetation dynamics over the two regions was 

evaluated by studying the corresponding annual cycles of NDVI and comparing their 

behaviour for years associated with opposite NAO phases. In Iberia the NAO impact is 

greater on non-forest vegetation which responds rapidly to spatio-temporal variations in 

precipitation and soil moisture. During the summer, forests and other dense vegetation 

areas display the highest sensitivity to NAO dynamics. This vegetation shows slower 

response to precipitation, and the NAO impacts are delayed until late in the year. Over 

NE, the NAO impact is especially apparent during the first months of the year, 

suggesting that green vegetation growth tends to occur early and intensely in NAO+ 

years due to the relatively warmer conditions associated to the absence of ice cover and 

early melting. NAO has a strong effect on temperature which, in turn, impacts 

vegetation activity. The latter impact is well depicted when comparing monthly values 

of NDVI for the first months of the year, under NAO+ and NAO- (Figure 4.12). 

The magnitude of the NAO-precipitation relationship in Iberia has been well 

documented in the literature over the last decade (e.g. Rodó et al., 1997; Trigo et al. 

2002; 2004). However, only recently have such connections started to be taken into 

account when developing precipitation forecast models and predicting precipitation over 

the Iberian Peninsula with several months in advance (e.g. Gámiz-Fortis et al., 2002, 

Rodríguez-Fonseca and Castro, 2002). It is highly desirable that such models are 

implemented at the operational level because of their capacity of providing important 
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seasonal forecasting information to be used by water resources and agricultural 

managers. However, it should be stressed that our lagged relationships between winter 

NAO and NDVI values for spring and summer already represent an added value since 

they allow formulating, by the end of March, simple outlooks of vegetation greenness 

for certain land cover types over the European region that may provide useful 

information in a wide range of application encompassing; crop forecasts, long-lead 

wildfire risk assessment and early warning for public health issues, such as pollen-

induced allergies. 

 





 

   

5. INTERANNUAL VARIABILITY OF WHEAT YIELD 

IN PORTUGAL 

5.1 Introduction 

Crop assessment at the large or even the global scale fulfils at least two important 

roles. On the one hand, the identification of drought conditions and of associated 

shortages that are likely to follow is a major concern for government officials and to 

those that are responsible for international response programmes and relief efforts. On 

the other hand, subsidies that are becoming more and more available to agro-industries 

have prompted the development of sophisticated modelling techniques aiming to 

maximise the effectiveness of grants. It may be noted that whereas the first role is 

especially important in underdeveloped and developing countries, the second one is of 

particular value for developed ones. 

In such a global context, usage of remote sensing techniques for data gathering, 

together with Geographic Information Systems (GIS) for data referencing provides 

powerful means of data processing and allows data to be combined with information 

collected using traditional field techniques. Remotely sensed data also allow a suitable 

preparation of base terrain evaluation, land use classification and land degradation 

maps. Finally, and taking into account that agriculture and associated vegetative 

phenomena are dynamic both in time and space, remote sensing techniques allow for a 

correct assessment of conditions at any time and place and are the only operational way 

for a continuous and global monitoring of trends and patterns in land cover as well as 

for assessing both processes and yields. 

An example of the above-described procedures is the one provided by the Global 

Agriculture Monitoring (GLAM) Project that aims to enhance the capability of the 

USDA Foreign Agricultural Service (USDA/FAS) to both perform agricultural 

monitoring and to estimate crop production, using NASA's moderate resolution satellite 

data. The primary mission of GLAM is to supply agricultural information for global 

food security through regular assessments of global agricultural production and the 
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conditions affecting it (Justice, 2005). For such purpose both satellite data and post-

processing tools are used to monitor agriculture and to locate and keep track of the 

climatic factors that impair agricultural productivity, e.g. short and long-term droughts, 

floods and persistent snow cover. Monitoring of crop conditions for target agricultural 

regions worldwide is based on multiple remotely sensed products as derived from 

moderate resolution sensors. Performed activities include providing USDA crop 

analysts with a sophisticated web interface for analyzing MODIS temporal composites 

of vegetation indices (VIs), at the 250-meter resolution. An evaluation is performed on 

the evolution of the growing season and annual comparisons are made of seasonal 

dynamics either between individual years or using as reference long-term mean 

conditions. Such inter-annual comparisons yield anomaly images and plots which 

emphasize regions that are less productive than previous years e.g. due to drought and 

heat stress conditions, as well as regions that are more productive having experienced 

favourable climatic conditions (Figure 5.1). For instance, the year of 2005 was 

characterised by a severe drought in eastern Africa, leaving millions in need of food aid. 

Using VI time series and web analysis tools, FAS specialists tracked this 

 

 

Figure 5.1 Comparison of AVHRR, SPOT and MODIS VIs over Southeastern, 
Australia, for February 2003 (Justice, 2005). 
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5.2 Wheat and Climate 

During the last decades, the study of weather conditions and of their connection 

to plant growth and crop yield has been very important in agricultural research. At the 

same time, remote sensing technology has been developing steadily and its products 

may provide a large number of applications in agriculture, namely in the cases of crop 

identification, crop growth monitoring and yield prediction.  

Wheat production and quality are associated with several factors that include 

seed variety, soil type and fertilization techniques with the latter being taken as virtually 

unvariable over the European Union due to the strict regulations imposed by the 

European Community. Nevertheless, climate is still one of the major factors which 

influence the spatio-temporal distribution of most agricultural systems, which are 

vulnerable to inter-annual climate variability and, in particular, to extreme events and 

trends in traditional patterns of regional climate (Hoogenboom, 2000). 

Winter atmospheric circulation affects the regional distributions of temperature 

and precipitation in Europe and relations have been found between them and wheat 

yield for the European countries (Maytelaube et al, 2004); however sensitivity to winter 

variability seems to be at the local scale and there is the need to perform a regional 

analysis with the aim of clarifying the relationship between winter variability and crops. 

Other studies have shown that a high North Atlantic Oscillation (NAO) index in winter 

is associated with better quality of the UK wheat crop (Atkinson et al., 2005) and with 

better wheat, rye, oat and citrus yields in the Iberian Peninsula (Gimeno et al, 2002). 

Estimations of the effects of climate variability on the final crop yields has also been 

evaluated at five sites in Spain (Iglesias and Quiroga, 2007) and wheat and barley yields 

were predicted in the Ebro valley using drought indices and remote-sensed data 

(Vicente-Serrano et al., 2006). 

Rodríguez-Puebla et al. (2007) have derived a model able to integrate effects of 

climate variables on winter cereals productivity in Spain. The model integrates the 

effects of abundant precipitation together with dynamic aspects of the air masses, during 

the maturation. The positive effects of warm winters at the beginning of the cereal 

growing season were also considered. Several authors have tried to integrate crop 
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simulation models with remotely sensed data through data-assimilation methods. This 

approach has the advantage of improving initialization of model parameters with 

remotely sensed observations to improve model performance (Fang et al., 2008; De 

Melo et al., 2008). 

The most important meteorological variables associated with agriculture 

production are air temperature (daily maximum and minimum values), solar radiation 

and precipitation. In particular, solar radiation provides the energy for the processes that 

drive photosynthesis (Hoogenboom, 2000) and it has been shown that wheat yields in 

Canadian Prairies may be satisfactorily predicted by combining meteorological and 

remote sensing data (Boken and Shaykewich, 2002). 

5.3 Wheat in Portugal 

The majority of wheat in Portugal is sown in October and November and 

harvested in June and July of the following year, leading to a small production due to 

the existence of a very short vegetative cycle. A comprehensive assessment on the 

Portuguese wheat vegetative cycle and the corresponding relationship with climate 

variables is given by Sampaio (1990) and Feio (1991). 

According to the Köppen’s climate classification, continental Portugal belongs 

to the so-called Csa and Csb groups, which are characterized by a typical Mediterranean 

climate, with mild and relatively wet winters and dry summers. This situation may be 

further worsened by bad drainage of soils. The wheat yield in Portugal is therefore 

considerably smaller than the corresponding wheat yield in the North-western European 

countries, with cold (but not too wet) winters and relatively wet summers. During the 

grain filling until the complete grain ripening phase, the Mediterranean conditions may 

even get worse, due to the short period of time between frost episodes and relatively 

high temperatures at the end of spring (May/June). Another adverse situation, especially 

when compared with the same period for North-western European countries, consists in 

the low photoperiod (number of sun hours) and the high temperatures which may occur 

at the end of the maturation phase. During this phase large values of potential 

evapotranspiration may lead to weak photosynthetic activity, since the plant mostly 

spends this activity in the transpiration process in order to fight against the warm season 
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effects instead of producing dry matter. An excess of evapotranspiration may therefore 

lead to a decrease of wheat quality. On the other hand, and as already pointed out, there 

is also a strong dependence of wheat yield and quality on temperature, precipitation and 

radiation. We will shortly describe the impact of these three meteorological factors on 

the vegetative cycle of wheat. 

Temperature. Wheat requires low temperature during winter (January/ 

February), while too high temperature at the end of the cycle may lead to bad 

productions. Low temperature and frosts during spring may also cause damages, as 

wheat spikes in this season are growing; they are especially sensitive to frost in this 

period. 

Precipitation. Rainfall is the driving factor of soil moisture, a variable that is 

indispensable for the appropriate development of most cultures in Portugal. A good year 

for wheat production in Portugal is usually characterized by reasonable precipitation in 

late September and early October (in way to prepare the soil to catch-crop), followed by 

low precipitation in late autumn and early winter. Moderate precipitation in late winter 

and early spring is also beneficial, namely in April, and May. June should be dry, but 

not too dry in order to allow for a slow and complete maturation that promotes the 

emergence of filled and well formed grains. However intense rain in late June could 

favor the development of pests and consequently a decrease on wheat quality. It may be 

noted that, in the case of precipitation, the most important issue is the seasonal 

distribution throughout the year, not the total annual amount of rainfall. In Portugal this 

aspect is generally problematic, due to the irregularity and unpredictability of 

precipitation distribution that is typical in Mediterranean climates (Trigo et al., 2004). 

Photoperiod (number of sun hours). Radiation has a distinct impact from 

temperature in wheat growing. Since solar radiation provides the energy needed to 

promote photosynthesis, the number of sunny hours is very important to induce 

flowering. 

5.3.1 Production and Yield  

Wheat yield data for Portugal were extracted from the Food and Agriculture 

Organization (FAO) database for the period 1961-2005. Annual averages of wheat yield 

in Portugal for the considered period may be observed in Figure 5.2. It may be noticed 
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that the yield time series has two components: a trend, due essentially to improvements 

in farm management practices and a weather-related yield interannual variability 

(Maytelaube et al., 2004). Since our aim is to assess the effects of climate related 

variability on crop yield, the “technologically driven” trend was removed from the raw 

time series, i.e. we will restrict to annual yield anomalies. 

 

 
Figure 5.2 Time series of annual wheat yield in Portugal for the period from 
1961 to 2005: yield (solid line), general trend (dashed line) and anomalies for 
detrended time series (line with asterisks). 

 

Data of wheat yield for different regions in Portugal was provided by the 

Portuguese Instituto Nacional de Estatísitica (INE) and covers a shorter period from 

1996 to 2003; however these data are available for both hard and soft yield wheat. The 

main wheat growing area is Alentejo, a region that is located in the southern sector of 

Portugal (Figure 5.3). Alentejo contributes with more than 80% of the total wheat 

production, and concentrates more than 95% of the total of hard wheat production 

(Figure 5.4). It worth stressing that this type of wheat is less sensitive to technological 

improvements 

 

 
 

Figure 5.3 Contribution of different growing regions of Portugal to total wheat 
yield for the period from 1996 to 2003. 
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Figure 5.4 Percentage of Alentejo’s wheat yield for hard and soft wheat for the 
period from 1996 to 2003. 

 
 

5.3.2 Vegetative cycle 

We have used the monthly NDVI dataset, at 8-km resolution, as obtained from 

the Advanced Very High Resolution Radiometers (AVHRR), provided by the Global 

Inventory Monitoring and Modeling System (GIMMS) group (Kaufmann et al., 2000). 

The data for the Iberian Peninsula covers the area between 10º W to 0º E and 35º N to 

45º N and respects to the 18-year long period that spans between 1982 and 1999 (see 

Chapter 3). 

Monthly and seasonal composites of NDVI were computed for spring (March, 

April and May, hereafter MAM). Figure 5.5 (left panel) shows obtained grid point 

correlations between spring NDVI composites and wheat yield considering the 18 year 

period between 1982 and 1999. Pixels over the Atlantic Ocean and Spain were naturally 

masked and, therefore, the figure is restricted to the correlation pattern over Portugal. It 

is worth noting that the highest positive and significant correlations (at the 99% level) 

are found over the southern region of Alentejo (Figure 5.5, right panel). 
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Figure 5.5 Patterns of simple correlation between spring NDVI composites 
and wheat yield in Portugal, for the period of 1982-1999 (left panel); patterns 
of simple correlation that are significant at the 99% level (right panel). 

 

5.3.3 Spatial distribution 

The Corine Land Cover Map (CLC2000), originally on a 250m by 250m grid, 

was re-projected to the scale of 8 km by 8km (i.e. the same as in the NDVI database), 

using the methodology described in Chapter 3. We have restricted the analysis to the set 

of pixels that were coded as non irrigated arable land (Figure 5.6, left panel) and have 

then characterized the statistical distribution of correlation coefficient values between 

wheat yield and spring NDVI (Figure 5.6, right panel). It is worth noting that the three 

higher correlation classes (i.e. those centered at 0.5, 0.7 and 0.9) represent more than 

90% of pixels coded as non-irrigated arable land. We have then selected for further 

analysis the subset of pixels where correlation values are statistically significant at the 

1% level. The subset of selected pixels is shown in Figure 5.7 and it may be noted that 

they present a rather homogenous distribution over the south of Alentejo that 

corresponds to areas of extensive cultivation of wheat. The considered subset of pixels 

will hereafter be referred to as “wheat-like” pixels. We will therefore assess the 

statistical significance of the relationship between spring NDVI and wheat yield by 

evaluating the correlation between detrended anomalies of wheat yield and averaged 

spring NDVI over the selected subset of “wheat-like” pixels. 
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Figure 5.6 Pixels coded as “arable land not irrigated” according to Corine2000 
for Portugal. (left panel). Relative frequency of correlation coefficient values 
between spring composite of NDVI and wheat yield in Portugal, for pixels 
coded as arable land (right panel). 

 
 

 
Figure 5.7 As in Figure 5.5 (left panel), but for the pixels with correlations that 
are significant at the 99% level. 
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Figure 5.8 Time series for the period 1982-1999 of detrended anomalies of 
wheat yield in Portugal (green curve) and of spring NDVI averaged over the 
“wheat-like” pixels (red curve). Values of wheat yield were normalized by 
subtracting the mean and dividing by the standard deviation. 

 
 
 
 

Table 5.1 Correlation values between spring NDVI and wheat yield and 
respective 95% confidence intervals and level of significance as obtained for 
10,000 bootstrap samples. 

 NDVI (MAM)

Correlation 0.75 

[P5 P95] [0.59    0.92] 

Significance level 0.002 
 

5.3.4 Meteorological variables 

As previously pointed out, net short-wave radiation, temperature and 

precipitation are especially relevant meteorological parameters for the vegetative cycle 

of wheat. On the other hand, as already discussed in Chapter 4, the NAO phase has a 

strong impact on vegetation dynamics over the Iberian Peninsula. We have therefore 

focused our study on NAO as well as on the above mentioned meteorological variables. 

 Net short-wave radiation, temperature and precipitation were based on 

gridded data from the Climate Research Unit (CRU) datasets, covering the period 1982-

1999. The NAO index is also the one derived at CRU and already adopted in Chapter 4. 

Details about all these datasets may be found in Chapter 3. The three meteorological 

parameters were detrended by means of a linear regression and the NAO index was 

normalized, having zero mean and unit standard deviation. It may be noted that the 
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study was restricted to the first six months of the year because the vegetative cycle of 

wheat ends in late June (or early July). 

The impact of meteorological factors on wheat yield was assessed by computing 

monthly correlations between the detrended anomalies of yield and averaged values 

(over the “wheat-like” pixels) of net short-wave radiation, temperature and precipitation 

as well as with NAO. Obtained results are summarized in Table 5.2 and it is worth 

pointing out that they are in good agreement with the empirical findings about the roles 

(and timings) of the different meteorological factors along the different stages of the 

wheat vegetative cycle. 

 
 
 

Table 5.2 Correlation coefficient values between annual wheat yield and 
monthly net long wave radiation, air surface temperature and precipitation 
(from January to June) for the pixels coded as arable land not irrigated. Bold 
values are representing correlations values that are significant at 95% level 
and red value is presented the correlation value significant at 99% level. 

 

 JAN FEB MAR APR MAY JUN 

Radiation 0.13 -0.09 -0.73 -0.12 0.31 0.12 

Temperature -0.37 -0.50 -0.49 -0.25 -0.07 0.16 

Precipitation 0.06 0.35 0.54 -0.17 -0.06 -0.27 

NAO 0.09 -0.28 -0.21 0.48 0.07 0.53 
 

For instance, the positive impact on wheat yield of cold temperature during 

winter and early spring is well illustrated by the persistent negative values of 

correlation, the ones obtained for February and March being statistically significant at 

the 5% level, for both months. The positive impact of precipitation in February and 

March is in turn supported by the respective positive values of correlation, the one for 

March, being statistically significant at the 5% level. The crucial role of solar radiation 

of March in the photosynthetic process is reflected by the conspicuously high negative 

correlation that is significant at the 1% level. Another interesting feature relates to the 

different roles played by the meteorological variables during the vegetative cycle and in 

this respect, the contrasts between late winter/early spring and late spring/early summer 

is worth being noted. Correlations involving temperature are persistently negative from 

January to April and become weak in May and Jun. Correlations involving precipitation 

are positive from January till March and become negative from April till June. 
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Correlations involving radiation are negative from February until April and become 

positive in May and June. Finally, it is worth noting that obtained results are in good 

agreement with the recent findings by Rodríguez-Puebla et al. (2007) for Spain. 

The described impact of meteorological variables along the vegetative cycle of 

wheat is well apparent in Figure 5.9 that presents the monthly patterns of simple 

correlations, from January to June, between detrended anomalies of wheat yield and the 

three considered meteorological variables. 

 
 

JAN FEB MAR APR MAY JUN 

 

 

 

 
 

 
 
Figure 5.9 Patterns of simple correlation between wheat yield in Portugal and 
the three most relevant meteorological fields for the period of 1982-1999; top 
panel: net short wave radiation; middle panel: surface air temperature; 
bottom panel: precipitation. Boxes in the Southern sector delimit the area 
containing “wheat-like” pixels. 

 
 

Obtained values of correlation between NAO and wheat yield also reflect the 

different role played by NAO along the vegetative cycle of wheat. In fact, the contrast 

between late winter/early spring and late spring/early summer is well apparent, with 

negative correlations between NAO and yield in February and March and positive 

correlations in April and June, both statically significant at  the 5% level. This behavior 

may be viewed as reflecting the integrated impact on radiation, temperature and 
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precipitation fields of the large scale atmospheric circulation patterns associated to the 

different phases of NAO (see Chapter 4). The impact of NAO averaged for April, May 

and June on contemporaneous fields of radiation, temperature and precipitation is 

illustrated in Figure 5.10. 

The key role played in March by meteorological is worth being stressed, taking 

into account that correlations of radiation, temperature and precipitation are all 

statistically significant at least at the 5% level. The role of NAO in June is also worth 

being mentioned, taking into account the need of warm temperatures during the 

maturation phase of wheat. 

 
 

 
 

Figure 5.10 Patterns of simple correlation, over the Iberian Peninsula, 
between NAO averaged for April, May and June and contemporaneous fields 
of radiation (left panel), temperature (central panel) and precipitation (right 
panel) for the considered period 1982-1999. 

 
 

Figure 5.11 presents, for the considered period 1982-1999, time series of 

detrended anomalies of wheat yield together with four selected meteorological factors, 

i.e., March monthly anomalies of net short-wave radiation, temperature and 

precipitation averaged over “wheat like” pixels and NAO in June. Table 5.3 presents the 

obtained values of correlation, together with the respective 95% confidence intervals 

and significance levels as estimated based on 10,000 bootstraps samples. 
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Figure 5.11 Patterns of simple correlation between wheat yield in Portugal 
and the three most relevant meteorological fields for the period of 1982-1999; 
top panel: net long wave radiation; middle panel: surface air temperature; 
bottom panel: precipitation. 

 
 

Table 5.3 As in Table 5.1, but respecting to net short-wave radiation, 
temperature, precipitation in March and to NAO in June. 

 Radiation 

(MAR) 

Temperature

(MAR) 

Precipitation 

(MAR) 

NAO 

(JUN) 

Correlation -0.73 -0.49 0.54 0.53 

[P5 P95] [-0.88   -0.52] [-0.78   -0.13] [0.18    0.80] [0.23  0.78]

Significance level  0.0006 0.04 0.02 0.03 
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5.4 A simple regression model for wheat yield 

Results obtained in the previous section suggest using spring NDVI together 

with meteorological variables to build up a simple model of wheat yield in Portugal for 

the period 1982-1999. We have accordingly tried several regression models that used as 

predictors spring NDVI combined with the meteorological factors shown in Table 5.3. 

Statistical models developed with relatively short time series are particularly prone to 

overfitting problems (Wilks, 1995), to solve this caveat it is advisable to apply cross 

validation techniques, i.e to split the available time series in a calibration and validation 

periods. Evaluation of model performance and prevention of overfitting was done by 

means of leave-one-out cross validation technique i.e., by using a single observation 

from the original sample as the validation data, and the remaining observations as the 

training data 

Best results were obtained when using as predictors spring NDVI together with 

the NAO for June. The best performance of this model may be viewed as reflecting the 

fact that chosen predictors grasp the relevant information during two crucial stages for 

wheat; the growing and the mature stages. Spring NDVI is an indicator of the 

healthiness of wheat during the growing stage which in turn reflects the meteorological 

conditions in terms of radiation, temperature and precipitation regimes. On the other 

hand NAO for June is an indicator of the large-scale circulation affecting Portugal 

which in turn is related to regional conditions in terms of radiation, temperature and 

precipitation that have an important role in the process of maturation of wheat. 

Figure 5.12 (upper panel) presents, for the considered period 1982-1999, the 

time series of observed and modeled wheat yield. The overall agreement is worth being 

noted, the two time-series presenting a correlation of 0.83. 

Figure 5.12 (central panel) shows the time series of residuals, defined as 

departures of observed values from modeled ones. The 95% confidence intervals 

relative to these residuals (Chatterjee and Hadi, 1986) are plotted as error bars and it 

may be noted that 1998 represents the single outlier since its error bar does not cross the 

zero reference line. 
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Figure 5.12 Time series (1982-1999) of observed (green curve) wheat yield in 
Portugal and of corresponding modelled values (red curve) when using a 
linear regression model based on spring NDVI and NAO in June (upper 
panel). Time series (1982-1999) of residuals and respective 95% level 
confidence intervals (central panel); the single outlier (in 1998) is highlighted 
in red. Time series (1982-1999) of observed (green curve) wheat yield in 
Portugal and of corresponding modelled values (red curve) as obtained from 
the leave-one-out cross-validation procedure. 

 

 

Figure 5.12 (lower panel) presents the results obtained from the leave-one-out 

cross validation. The good agreement between the modelled time series by the 

regression model (upper panel) and the one obtained by the cross validation indicate 

that the developed model seems to be robust. This fact is further supported by the slight 

decrease (from 0.83 to 0.78) of the correlation between original and modelled time 
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series. However results of the model should be regarded with some caution, given the 

short length of the analyzed time series (18 years). 

5.5 Final Remarks 

We have computed point correlations between spring NDVI over Portugal and 

wheat yield during the period 1982-1999. We have found strongly negative correlations 

(statistically significant at the 1% level) over Southern Portugal (Alentejo), a region 

where more than 80% of wheat is produced and more than 95% of the total of hard 

wheat production is concentrated. We have then selected the so-called subset of “wheat-

like” pixels, i.e. pixels coded as non-irrigated arable land associated to correlation 

values that are statistically significant at the 1% level. 

The impact of meteorological factors on wheat yield was assessed by computing 

monthly correlations of the detrended anomalies of yield with averaged values (over the 

“wheat-like” pixels) of net short-wave radiation, temperature and precipitation as well 

as with NAO. Obtained results are in good agreement with the empirical findings about 

the roles (and timings) of the different meteorological factors along the different stages 

of the wheat vegetative cycle. In particular, cold temperatures during winter and early 

spring, precipitation in February and March and solar radiation in March have a positive 

impact during the growing stage, whereas a larger NAO index in July is beneficial for 

the maturation stage. 

A regression model was finally built up using as predictors spring NDVI and 

NAO in June. Performance of the model was quite satisfactory, with a generally good 

agreement between observed and modelled wheat yield. Although results may still be 

considered as preliminary, given the short length of the analyzed series (18 years), the 

model is expected to be useful to for wheat yield monitoring. The model is also 

expected to be improved when extending it to an enlarged GIMMS dataset (1982-2006). 





 

   

6. DROUGHT AND VEGETATION STRESS 

MONITORING 

6.1 Introduction 

The Iberian Peninsula is recurrently affected by drought episodes and by the 

adverse effects associated that range from severe water shortages to economic losses 

and related social impacts. For instance, during the hydrological year of 2004/2005, the 

Iberian Peninsula was hit by one of the two worst drought episodes that were recorded 

in the last six decades (Garcia-Herrera et al., 2007), reinforcing the need for a 

continuous monitoring of vegetation stress and for reliable estimates of the drought 

impacts. In this respect it is worth mentioning that more than 280 M€ were spent in 

order to compensate for the damage associated with the 2005 drought in continental 

Portugal (MADRP, 2005). 

The strong dependence of vegetation dynamics on water availability has been for 

long recognized in the Mediterranean and other semi-arid regions (Eagleson, 2002, 

Rodríguez-Iturbe and Porporato, 2004, Vicente-Serrano and Heredia-Laclaustra, 2004, 

Vicente-Serrano, 2007). A combined effect of lack of precipitation over a certain period 

with other climatic anomalies, such as high temperature, high wind and low relative 

humidity over a particular area may result in reduced green vegetation cover. When 

drought conditions end, recover of vegetation may follow (Nicholson et al., 1998) but 

the process may last for longer periods of time (Diouf and Lambin, 2001). 

Traditional methods of drought assessment and monitoring depend heavily on 

rainfall data as recorded in meteorological and hydrological networks. However the 

availability of reliable satellite imagery covering wide regions over long periods of time 

has progressively strengthen the role of remote sensing in environmental studies, in 

particular in those related to drought episodes (Kogan, 1995, 1997, 2000, Kogan et al., 

2004, McVicar and Jupp, 1998, 1999, 2002). Drought early warning and monitoring are 
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crucial components of drought awareness and mitigation plans (Wilhite, 1993) and it is 

worth stressing, that with the help from environmental satellites, drought can be 

detected 4-6 weeks earlier than before and delineated more accurately (Kogan, 2000). 

In recent years there has been a considerable amount of drought studies dealing 

with different regions of Europe as well as covering the entire European continent 

(Briffa et al., 1994; Gibb et al., 1978; Marsh and Lees, 1985; Phillips and McGregor, 

1998; Bussay et al., 1999; Estrela et al., 2000; Lana et al., 2001; Lloyd-Hughes and 

Saunders, 2002). Summer droughts are the most important in terms of human 

perception, but water shortages during the other seasons may also have significant 

socio-economic impacts (EEA, 2001). Several authors have examined the special case 

of the Iberian Peninsula (Garcia-Herrera et al., 2007, Vicente-Serrano, 2006) and it may 

be noted that, even though the recent 2005 drought has been ranked among the strongest 

ones of the last century in Portugal, the episodes of 1945, 1981, 1983, 1992 and 1999 

were also major events (Feio and Henriques, 1986; Godinho et al., 1992). In addition, a 

slight downward trend has been found in the annual precipitation recorded over 

Portugal (Zhang et al., 1997, Miranda et al., 2006) that is particularly noticeable in early 

spring (Trigo and DaCamara, 2000, Garcia-Herrera et al., 2007). However, less 

attention has been paid to the impacts of drought in vegetation activity as well as to the 

sensitivity of the photosynthetic mechanisms to water stress. 

The aim of the present chapter is therefore to make use of remote-sensed 

information in order to monitor the spatial and temporal distribution of heat and water 

stress of vegetation in Continental Portugal. The severity of a given drought episode 

will then be assessed by evaluating the cumulative impact over time of heat and water 

stress conditions on vegetation in a certain region. Special attention will be devoted to 

the above mentioned extreme drought episode of 2005, as well as to those of 1999 and 

2002. It may be noted that the latter episode has mainly affected Northeastern Portugal 

in strong contrast with the other two episodes that have struck hardest Southern 

Portugal. 
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6.2 Vegetation stress 

The response of vegetation to heat and water stress was assessed based on fields 

of NDVI as derived from the VEGETATION instrument on-board SPOT5. As 

discussed in Chapter 3, any vegetation monitoring based on NDVI requires a previous 

correction of the time-series, in order to distinguish real changes in the annual cycles of 

vegetation greenness from those due other factors, e.g. contamination by clouds, 

shadows and snow and sun/view directional dependence of spectral response. Figure 6.1 

presents monthly values of NDVI that were spatially averaged over Continental 

Portugal. The years of 1999, 2002 and 2005 are conspicuous because of the occurrence 

of low values of vegetation greenness, especially during the growing season, i.e., during 

the period of high photosynthetic activity. In the case of the droughts of 1999 and 2005, 

this is especially apparent when the spatial averages are performed over non-irrigated 

arable land, a feature that is in contrast with the case of 2002 where the lower values are 

well visible over broad-leaved forest. The delay of the growing season of arable land 

together with the observed relative insensitivity in the case of broad-leaved forest is 

another interesting feature that suggests drought conditions to be responsible for both 

delaying and shortening the growing season. 

 

Figure 6.1 Monthly time-series (1999–2006) of NDVI averaged over 
Continental Portugal for all pixels (black line), for pixels of non-irrigated 
arable land (red line) and of pixels of broad-leaved forest (green line). Black 
arrows indicate the drought episodes of 1999, 2002 and 2005.  
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Figure 6.2 Monthly means of NDVI (1999-2006) over Continental Portugal, 
covering the period from September to August. 
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Figure 6.2 presents the monthly mean fields of NDVI from September to August, 

over Continental Portugal and covering the period 1999-2006. As expected, larger 

values of NDVI associated with an increase in photosynthetic activity, and therefore in 

vegetation greenness, may be found in winter and spring over Southern Portugal. 

During summer and autumn this region presents low values, a feature that is coherent 

with the vegetation types of a semi-arid environment. In contrast, Northwestern 

Portugal presents high values of vegetation greenness as expected from the presence of 

forest, the predominant vegetation cover. 

 

6.3 Drought assessment 

6.3.1 Annual cycle of NDVI 

Figures 6.3 to 6.5 show monthly anomaly fields of NDVI from September to 

August, respectively for the years 1998/1999, 2001/2002 and 2004/2005. It may be 

noted that monthly anomalies of a given month are defined as departures from the 

median of that month (computed over the considered period 1999-2006). Usage of the 

median (instead of the mean) was made in order to avoid the lever effect by the 

extremely low NDVI values that were attained in the droughts years, taking into 

account the small length of the sample (8 years). 

As already discussed, the three chosen drought years are characterised by low 

vegetation greenness activity associated to low values of NDVI (Figure 6.1). In the case 

of 1999 (Figure 6.3) the highest negative anomalies (around -0.30) present an early start 

in November and persistently remain until April. The most affected regions are located 

in Southern Portugal and it may be noted that the impact of the drought is apparent until 

May. A strong contrast in the spatial distribution may be observed in the case of 2002 

(Figure 6.4) the highest negative anomalies being mainly located over Northeastern 

Portugal where negative values (around -0.10) may be found extending from November 

to February. During 2005 (Figure 6.5), the highest negative anomalies (around -0.30) 

may be observed, over Southern Portugal, between February and June.  
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Figure 6.3 NDVI anomalies from September to August respecting to the year 
of 1998/1999.  
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Figure 6.4 As in Figure 6.3 but respecting to the year of 2001/2002.  
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Figure 6.5 As in Figure 6.3 but respecting to the year of 2004/2005. 



Drought and Vegetation Stress Monitoring  Chapter 6 
 

 - 105 -

It is worth emphasising that, in the cases of the 1999 and 2005 drought episodes, 

the area of stressed vegetation is located in the south of Portugal, a region that is 

generally covered by non-irrigated arable land (Figure 3.9) with semi-arid 

characteristics and presenting a strong desertification risk. It may be further noted that 

the location of stressed pixels is also in good agreement with the results of Vicente-

Serrano (2006) who has shown that the impact of climate variability and associated 

extreme events (such as drought) on vegetation activity is most pronounced over most 

arid areas. Finally, in the case of the 2005 drought episode, it is worth stressing that the 

observed negative anomalies are contemporaneous with the period of high 

photosynthetic activity (i.e., high NDVI values in Figure 6.2), leading to a further 

amplification of the negative impact on vegetation dynamics and therefore to an even 

larger drought impact. 

 

6.3.2 Annual cycle of soil moisture  

Since a quick response of vegetation to spatio-temporal variations in soil moisture 

is generally observed in semi-arid regions (Bonifacio et al., 1993; Sannier and Taylor, 

1998), the impact of soil moisture on vegetation dynamics is worth being analysed. We 

have relied on the Global Soil Moisture Archive (http://www.ipf.tuwien.ac.at/radar/ers-

scat/home.htm) for the period 1992-2005 (Scipal, 2002) and have extracted the so-

called Soil Water Index (SWI) which is based on the method developed by Wagner et 

al. (1999a, b). The archive is based on information from the European Remote Sensing 

(ERS) Scatterometer instrument on-board ERS-1 and ERS-2 satellites, operated by the 

European Space Agency (ESA), which achieve global coverage within 3 to 4 days with 

a 25 km grid spacing. SWI fields were interpolated to a 0.25º latitude-longitude grid 

covering the same window that was defined for NDVI (see Chapter 3). 

Figure 6.6 presents spatially averaged values over Portugal of SWI and it is well 

apparent that the drought episodes of 1999 and 2005 are characterised by an annual 

cycle reaching values well below the remaining years. Figure 6.7 presents the monthly 

mean fields of SWI from September to August, over Continental Portugal and covering 

the same period. The annual cycle of soil moisture is well apparent and the contrast 
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between the regions North and South of the Tagus valley is worth being noted in the 

transition seasons. 

 

 

 

 

Figure 6.6 Monthly time-series (1992–2005) of SWI averaged over Continental 
Portugal. Values from January 2001 until August 2003 are missing. Black 
arrows indicate the drought episodes of 1999 and 2005. 

 

 

 

 

The response of vegetation to soil moisture is well illustrated in Figure 6.8 that 

presents the annual cycle of SWI vs. NDVI as obtained from averaging the periods of 

study. The initial linear relationship between NDVI and SWI from August to December 

translates the contemporaneous response of vegetation to soil moisture that leads to a 

maximum of greenness in January. However, the following period presents a non linear 

behaviour. The strong decrease in SWI between January and April corresponds to a 

slight decrease of NDVI, suggesting that vegetation greenness is sustained by the 

cumulated soil water during winter time. A contemporaneous response of NDVI to SWI 

is again observed from April to August, closing the vegetation cycle. 
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Figure 6.7 Monthly means of SWI (1992-2005) over Continental Portugal, 
covering the period from September to August. 
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Figure 6.8 Climatological cycle of SWI vs. NDVI. Letters indicate months of 
the year. 

 

 

 

Figures 6.9 and 6.10 present the spatial distribution over Continental Portugal of 

monthly anomalies of SWI for the drought episodes of 1999 and 2005. The drought 

episode of 2002 was not considered because of the unavailability of SWI data for the 

year 2001/2002. SWI anomalies are defined as departures from the mean of the 

respective month over the considered 14-year period (1992-2005) and as opposed to the 

drought episode of 2005, where the occurrence of negative anomaly values of SWI only 

begin in spring, drought conditions start to occur in the beginning of winter 1998/1999. 
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Figure 6.9 SWI anomalies for January to August respecting to the year 
1998/1999. 
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Figure 6.10 As in Figure 6.9 but respecting to the year 2004/2005. 
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The different impact of the soil moisture cycle on vegetation greenness in the 

cases of the 1999 and 2005 episodes is well apparent in Figure 6.11 that presents the 

respective annual cycles of SWI vs. NDVI. Results point out the role of soil moisture in 

winter and early spring in the green-up of vegetation over semi-arid regions, where 

there is a high level dependence of the vegetation cover on water availability (Nicholson 

et al., 1990, 1998; Nicholson and Farrar, 1994; Vicente Serrano, 2006). In the case of 

1999 (Figure 6.11, left panel) there is a persistent shortage of soil moisture from 

November until May, with dramatics effects on vegetation greenness that are well 

apparent in the SWI vs. NDVI cycle that is contained within the respective 

climatological cycle. A different behaviour may be observed in the case of the drought 

episode of 2005 where a deficit in greenness is already apparent at the beginning of 

September. The superavit of SWI is reflected on a slight recovery of vegetation 

greenness but the severe shortage of soil water from December up to May has 

devastating effects on vegetation activity. 

 

 

Figure 6.11 Annual cycles (red curves) of SWI vs. NDVI for the drought 
episodes of 1999 (left panel) and 2005 (right panel). The climatological cycle 
(black curves) is also presented for reference purposes. 

 

The sensitivity of the different land cover types to the available soil moisture is 

illustrated in Figure 6.12 that presents annual cycles of spatially averaged NDVI for 

each year of the considered period (1999-2006) over non-irrigated arable land (top 

panel) and coniferous forest (bottom panel). The two drought episodes of 1999 and 

2005 are enhanced and the impact of dry periods is clearly observed in the case of 

arable land, with minimum values occurring in winter for the case of 1999 and in spring 



Chapter 6  Drought and Vegetation Stress Monitoring 
 

 - 112 -

for the case of 2005. However, over coniferous forests, lower than average values of 

NDVI may still be observed during the beginning of winter in the case of 1999 and 

during spring in the case of 2005. 

 

 
 

Figure 6.12 Annual cycles of spatially averaged NDVI for each year of the 
considered period (1999-2006) over non-irrigated arable land (top panel) and 
coniferous forest (bottom panel). The drought episodes of 1999 and 2005 are 
represented, respectively, by the curves with circles and asterisks. The line in 
bold refers to monthly means over the entire period. 

 

6.4 Drought persistence 

The severity of a given drought episode is often assessed by means of the so 

called Palmer Drought Severity Index (PDSI) that is based on a supply-and-demand 

model of soil moisture (Palmer, 1965). The aim of PDSI is to provide standardized 

measurements of moisture conditions so that comparisons can be made between 

locations and between months. 

Based on the concept of water balance, PDSI is mainly a meteorological index 

which responds to weather conditions that have been unusually dry or unusually wet. 
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Details on the evaluation of PDSI, as well as about its usefulness and limitations, may 

be found e.g., in Alley (1984). The index is usually computed on a monthly basis and 

has proven as especially adequate to characterise long-term droughts. Values of PDSI, 

which roughly vary between -6.0 and +6.0 are derived from the following relationship  

10.897
3

i
i i

ZX X −= +       (6.1) 

where Xi and Zi respectively denote the monthly values for month i of PDSI and the so-

called moisture anomaly index which takes into account the difference between the 

actual precipitation in month i and the amount of precipitation that is “climatologically 

appropriate” for the existing conditions, weighted by a “climate characteristic”, K 

(Palmer, 1965). Since the first term of the equation (6.1) introduces an autoregressive 

process, PDSI has a certain length of memory (Karl, 1986). 

Drought episodes are associated to negative values of PDSI and are usually 

grouped into the so-called drought severity classes which are defined as follows; 

moderate drought (PDSI  ≈ -2), severe drought (PDSI  ≈ -3) and extreme drought (PDSI  

≈ -4). 

Figure 6.13 presents, for the year of 2004/2005, the evolution on a monthly basis 

(black curve) of the percentage of continental Portugal that is under extreme drought 

conditions according to WMO (2006). The respective evolution of the percentage of the 

territory with stressed (red bars) and very stressed (green bars) vegetation is also shown 

in the figure. It may be noted that the area of stressed (very stressed) vegetation was 

estimated based on the fraction of pixels with anomalies lower than 0 (lower than -

0.025). The severity of the drought episode of 2005 is well apparent taking for instance 

into account that, in May, almost 90% of continental Portugal is covered by pixels with 

NDVI anomalies lower than 0. 

 Figure 6.13 also shows the existence of a delay of about three months of PDSI 

relatively to NDVI. This delay, that is especially visible for very stressed vegetation, 

translates the above mentioned memory of PDSI. Moreover, the observed good 

agreement, for the 2005 drought episode, between the percentage of territory affected by 

extreme drought and associated to very stressed vegetation suggests adopting a 

threshold of -0.025 to identify pixels affected by drought conditions in the remaining 

years of the study period. 



Chapter 6  Drought and Vegetation Stress Monitoring 
 

 - 114 -

 

Figure 6.13 Percentage of continental Portugal with monthly NDVI anomalies 
lower than 0 (red bars) and lower than -0.025 (green bars), from September to 
August of 2005. The black line represents the percentage of mainland affected 
by extreme drought, i.e., with PDSI ≈ -4. The 3-month delay of PDSI relatively 
to NDVI (as indicated by the two different horizontal time axes) is worth being 
noted. 

 

As mentioned above, an important aspect to be considered when assessing 

drought severity respects to the persistence of dry conditions for a given location. 

Accordingly, we have evaluated drought persistence by simply counting, for each pixel, 

the number of months with NDVI anomalies lower than -0.025. Results are shown in 

Figure 6.14 and the years of 1999, 2002 and 2005 are particularly striking due to the 

large areas affected by persistent drought. In the cases of the drought episodes of 1999 

and 2005, pixels located over the south of Portugal reveal up to nine months (out of 

eleven) of persistently stressed vegetation. In the case of the drought episode of 2002 a 

considerable vast area over Noutheastern Portugal presents more than eight months (out 

of eleven) of stressed vegetation. 

Table 6.1 presents the percentage of mainland Portugal stricken by serious 

drought, i.e., with monthly NDVI anomalies below -0.025 in more than 9 months (out 

of 11). The exceptionality of 2005 is again conspicuous, with more than one third of 

Portugal with more than 9 months in vegetation stress, an area that is twice the one 

observed in 1999. The amount of 11% of mainland affected in the case of 2002 is still 

contrasting with the remaining years of the considered period. 
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Table 6.1 Percentage of mainland Portugal stricken by serious drought, i.e., 
with monthly NDVI anomalies below -0.025 in more than 9 months (out of 11). 

Years 1999 2000 2001 2002 2003 2004 2005 2006 

% mainland  

severe drought 

 

18 

 

1 

 

3 

 

11 

 

1 

 

4 

 

36 

 

9 

 

In the cases of the drought episodes of 1999 and 2005, it is worth reinforcing that 

the region affected is located in southern Portugal, more precisely in the province of 

Alentejo, an area that is responsible for more than 80% of the total of wheat production 

in Portugal (Gouveia and Trigo, 2007). Drought analysis in this area is especially 

important not only because droughts may cause significant economic losses (Morales et 

al., 2000; Iglesias et al., 2003) but also due to the fact that there is a strong dependence 

of the economy and society on agriculture yields (Vicente-Serrano, 2006). 

We have also compared the vegetation response to water stress of different land 

cover types, for the three drought episodes of 1999, 2002 and 2005. As shown in Table 

6.2, in all three episodes, non-irrigated arable land, forest and shrubland represent more 

than 55% of pixels characterised by at least six months (out of eleven) of monthly 

NDVI below -0.025. 

 

Table 6.2 Total amounts and relative proportions of pixels affected by drought 
for different land cover types during the drought episodes of 1999, 2002 and 
2005. 

Year 
Non-irrigated

Arable land 
Forest Shrubland Other Total 

1999
 

10498 
(25%) 

 

 
9375 
(23%) 

 

 
4310 
(10%) 

 

 
17206
(42%) 

 

 
41389 
(100%) 

 

2002
2542 
(9%) 

 

5125 
(19%) 

 

8035 
(30%) 

 

11094
(42%) 

 

26796 
(100%) 

 

2005
11722 
(25%) 

 

11841
(23%) 

 

5974 
(10%) 

 

23032
(44%) 

 

52569 
(100%) 

 

 



 

   

 

 

Figure 6.14 Number of months between September and August that are characterised by NDVI anomaly values below -0.025, for each 
year of the considered period (1999-2006). 
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As expected the episode of 2005 ranks first in what respects to the total amount of 

affected pixels (52569), followed by 1999 (41389) and 2002 (26796). However there 

are interesting differences when comparing the drought episodes of 1999 and 2005 

versus the episode of 2002 in what respects to the proportion of affected vegetation 

types. Arable land was especially affected during the 1999 and 2005 episodes, whereas 

shrubland was the most affected land cover type during the 2002 episode. Forest was 

affected in similar proportions during the three drought episodes and the remaining 

types of vegetation do not show as well noticeable differences among episodes. 

The cumulative effect of drought conditions on the three considered types of 

vegetation was further investigated by analysing the relative proportions of pixels that 

remained with monthly anomalies of NDVI below -0.025 for 7, 8 and 9 months. Results 

are presented in Table 6.3 and conspicuous differences may be found among the three 

drought episodes. The exceptional strength of the drought episode of 2005 is well 

illustrated by the percentage of affected pixels of all vegetation types (including forest), 

with more than half of the pixels being affected for more than 9 months. In the case of 

the drought episode of 1999 non-irrigated arable land was the main vegetation type 

affected, with a total amount of almost one third of the pixels being affected for more 

than 9 months. Finally, in the case of the episode of 2002, shrubland was the most 

affected vegetation type with slightly more than one third being affected for at least 9 

months. 
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Table 6.3 Cumulative effect of drought conditions for specific land cover types 
during the drought episodes of 1999, 2002 and 2005. 

Nº Months 
Non-irrigated 

Arable land 
Forest Shrubland 

1999 

≥ 6 100 100 100 

≥ 7  87 76 74 

≥ 8 64 47 43 

≥ 9 31 17 18 

2002 

≥ 6 100 100 100 

≥ 7  72 66 74 

≥ 8 48 43 53 

≥ 9 29 26 34 

2005 

≥ 6 100 100 100 

≥ 7  93 85 83 

≥ 8 83 71 66 

≥ 9 65 54 50 

 

6.5 Final remarks 

An assessment was made on the potential usage of environmental satellites for the 

detection and monitoring of drought events in Continental Portugal. For this purpose, 

annual cycles of vegetation greenness were analysed by examining, for each year, the 

monthly anomalies of NDVI. Special attention was devoted to the years of 1999, 2002 

and 2005 because of the occurrence of low values of vegetation greenness during the 

growing season. In the case of the drought episodes of 1999 and 2005, southern 

Portugal was mostly affected, whereas in the case of 2002 the highest negative 

anomalies were mostly located in Northern Portugal. 
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The impact of soil moisture on vegetation dynamics was also assessed by studying 

the annual cycle of SWI vs. NDVI and by analysing monthly anomalies of SWI. 

Obtained results pointed out the different impact of the soil moisture cycle on 

vegetation greenness; while in 1999 shortage of water in the soil persisted from 

November until May, in the episode of 2005 the deficit in greenness was already 

apparent at the beginning of September. The sensitivity of the different land cover types 

to the available soil moisture was also studied. The impact of dry periods was clearly 

observed in both cases of arable land and forest, the former vegetation type presenting a 

higher sensitivity than the latter. 

The relationship between PDSI and NDVI was also studied for the year of 2005. 

In the case of NDVI anomalies below -0.025, the existence of a delay of about three 

months of PDSI relatively to NDVI suggested using this threshold to identify pixels 

associated to stress vegetation. Drought persistence was therefore assessed by counting, 

for each pixel, the number of months with NDVI anomalies lower than -0.025. As 

expected, the years of 1999, 2002 and 2005 were particularly striking because of the 

large areas affected by persistent drought. The exceptionality of 2005 was again 

conspicuous not only because more than one third of Portugal was covered by pixels 

with more than 9 months in vegetation stress, but also because the most relevant 

vegetation types (non irrigated arable land, forest and shrubland) were all affected. In 

the cases of the episodes of 1999 and 2005, persistent drought especially affected arable 

land, in particular over the province of Alentejo, an area that is responsible for more 

than 80% of the total of wheat production in Portugal. In the case of 2002, pixels under 

persistent stress are mainly located in Northern Portugal and shrubland was the mostly 

affected vegetation type. 

 

The main results obtained in the present chapter are summarised in Figure 6.14 

that gives, for each year of the considered period 1999-2006, the location of pixels 

affected by persistent drought conditions. In this respect, the drought episodes of 1999, 

2002 and 2005 are prominent and the specific characteristics of each episode, both in 

terms of spatial distribution and time persistence, may be readily identified. The years 

of 2000, 2003 and 2004 present opposite characteristics, the whole territory being 

characterised by unstressed vegetation. 
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However a closer look to the year of 2004 reveals an unexpected behaviour. In 

fact two well defined regions, respectively, located in Central Portugal and in the 

Southwest, show a deep contrast with the background, the pixels presenting monthly 

anomalies below -0.025 for 9 to up 11 months. Such a behaviour is not compatible with 

the one associated to drought conditions. In fact, a comparison with a map of fire scars 

respecting to the summer season of 2003 could immediately lead to the identification of 

the two areas as representing the signature of wildfires that occurred in the previous 

year. 

This feature is especially interesting because it raises the possibility of adapting 

the developed technique to identify burned areas and to assess the recovery of 

vegetation over areas stricken by fire. Figure 6.15 is an updated version of Figure 6.14, 

where we have masked all pixels that were identifying as burned areas using the 

procedure described in Chapter 7, that is dedicated to the problem of burned area 

monitoring and vegetation recovery. 



 

   

 

Figure 6.15 As in Figure 6.14, but all pixels that are identify as burned areas are masked 





 

 

7. MONITORING BURNED AREAS AND VEGETATION 

RECOVERY 

7.1 Introduction 

The number of fires and the extent of the burned surface in Mediterranean Europe 

have strongly increased during the last decades. This may be due either to land-use 

changes (e.g. land abandonment and fuel accumulation) or to climatic changes (e.g. 

reduction of fuel humidity) that increase fire risk and fire spread (Pausas and Vallejo, 

1999). As in the Mediterranean ecosystems, fires in Portugal have an intricate effect on 

vegetation regeneration due to the complexity of landscape structures as well as to the 

different responses of vegetation to the variety of fire regimes (Wittenberg et al., 2006). 

Vegetation cover has, in turn, a key role on soil erosion and land degradation processes 

(Shakesby et al., 1993). For instance, the destruction of vegetation by wildfires 

generally leads to an intensification of runoff and erosive processes (Inbar et al., 1997; 

1998). Thornes (1990) has suggested that a minimum of 30% in vegetation cover is 

required to protect the soils against water erosion. Studies performed at various spatial 

scales and under different ecological conditions indicate that the majority of loss of 

sediments occurs during the first year after fire occurrence (DeBano et al., 1998, Inbar 

et al., 1998 and Cerda and Doerr, 2005) and that the risk of post-fire soil erosion 

increases with the time required for vegetation to reach the minimal threshold cover 

(Shakesby et al., 1993; Inbar et al., 1998; Cerda, 1998a; Cerda, 1998b). A thorough 

evaluation of vegetation recovery after fire events becomes therefore crucial in land 

management (Wittenberg et al., 2006). 

In the above mentioned context remote sensing plays an important role because it 

has revealed to be particularly useful to estimate post-fire vegetation dynamics. A 
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considerable number of fire recovery studies based on remote sensing have been 

conducted in regions characterised by Mediterranean climates (Jakubauskas et al., 1990; 

Marchetti et al., 1995; Viedma et al., 1997; Díaz-Delgado et al., 1998; Henry and Hope, 

1998; Ricotta et al., 1998). Several authors have also tested the use of NDVI to monitor 

plant regeneration after fire (Malingreau et al., 1985; Paltridge and Barber, 1988; 

Viedma et al., 1997; Illera et al., 1996). It may be noted, however, that satellite data are 

not adequate to accurately detect high resolution changes in the structure of vegetation. 

Several studies have shown that rapid regeneration occurs within the first 2 years 

after the fire occurrences (Trabaud, 1981; Kutiel, 1994; Inbar et al., 1998), with distinct 

recovery rates at the north and the south facing slopes (Cerda and Doerr, 2005). Pausas 

and Vallejo (1999) have shown that, in the Iberian Peninsula, one year after a single fire 

event vegetation cover reached 52% on the north facing slope and 32% on the south 

facing slope. Similar trends were found at the Mt. Carmel region, Israel, after the 1988 

fire event (Kutiel, 1994; Inbar et al., 1998). Díaz-Delgado et al. (2002) have observed 

lower NDVI values after the second of two successive fires occurring within an 11-year 

interval, i.e. the green biomass diminishes significantly when disturbances occur within 

short time intervals. They concluded that increased fire frequency might reduce 

ecosystem resilience, i.e. the ability of the system to recover to a pre-disturbance state. 

We will present a methodology that allows identifying large fire scars in Portugal 

using monthly values of NDVI at the 1km×1km spatial scale. We will then show how 

the developed procedure may be applied to assess vegetation recovery after a fire event. 

7.2 Rationale 

As pointed out at the end of Chapter 6, the year of 2004 presents several areas 

characterized by persistent negative anomalies of NDVI which are associated to burned 

scars resulting from wildfire events that occurred in the summer of the previous year. A 

close inspection of burned scars revealed that, besides their persistence, pixels 

belonging to scars were characterized by extremely low negative anomalies of NDVI. 

This behaviour suggests identifying pixels belonging to burned areas resulting from 

fires of year Y-1 as those associated to NDVI anomalies in year Y that are below a 
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sufficiently low threshold T and last for at least M months of a specified long enough 

period. 

As shown in Figure 7.1, choice of T = -0.075 and M = 5 during the period from 

September to May leads to the identification of burned areas with shape and spatial 

distribution that closely resemble those that were identified by Direcção Geral dos 

Recursos Florestais (DGRF) based on information (with 30 m resolution) from Landsat 

imagery. 

 

Figure 7.1 Annual burned areas in Continental Portugal (right panel) for the 
fire season of 2003 (red pixels) using the criterion of at least 5 months of NDVI 
anomalies below -0.075 during the period from September to May of 2004; 
black pixels refer to burned scars for the previous fire season of 2002. Annual 
burned areas in Continental Portugal (central panel) for the period 2000-2004 
as identified from Landsat imagery. The central panel was adapted from 
Pereira et al. (2006). 

 

Figure 7.2 (left panel) shows results that are obtained when applying the above 

described criterion to the year of 2005 in order to identify burned areas associated to 

wildfire events of 2004. When comparing obtained results from those of DGRF (Figure 

5.2, central panel), a large number of erroneously identified burned pixels is well 

apparent in Southern Portugal leading to an overestimation of the burned area by almost 

a factor of 9.5This behaviour is due to the fact that, as discussed in Chapter 6, the year 

of 2005 was affected by severe drought. Accordingly, pixels associated to drought were 
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mistakenly identified as burned areas. In order to circumvent this problem the criterion 

was modified by introducing a larger number of months (M =7) during an enlarged 

period (from January to August). Figure 7.2 (right panel) shows the obtained results 

with the new criterion and it may be observed that a large number of false alarms have 

indeed been eliminated. 

 

Figure 7.2 Annual burned areas in Continental Portugal (left panel) for the 
fire season of 2004 (red pixels) using the criterion of at least 5 months of NDVI 
anomalies below -0.075 during the period from September to May of 2005; 
black pixels refer to burned scars for the previous fire season of 2003. Annual 
burned areas in Continental Portugal (central panel) for the period 2000-2004 
as identified from Landsat imagery. Annual burned areas in Continental 
Portugal (right panel) for the fire season of 2004 (red pixels) using the 
criterion of at least 7 months of NDVI anomalies below -0.075 during the 
period from January to August of 2005; black pixels refer to burned scars for 
the previous fire season of 2003. The central panel was adapted from Pereira 
et al. (2006). 

 

Figure 7.3 (left panel) shows a third example, namely results obtained when 

applying the first criterion to the year of 2006 in order to identify burned areas 

associated to wildfire events of 2005. Again there is the problem of false alarms that 

spread all over the country, leading to an overestimation of burned area by a factor of 

1.9. The problem is related to the fact that the year of 2006 had a late starting of the 

vegetative cycle because of the effects of the previous drought episode of 2005. The 

criterion was again adapted by delaying the five month period, now defined from 
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January to August. The improvement in identification of burned areas using the new 

criterion (Figure 7.3, right panel) is well apparent when results are compared with those 

obtained by DGRF (central panel). 

 

 

Figure 7.3 Annual burned areas in Continental Portugal (left panel) for the 
fire season of 2005 (red pixels) using the criterion of at least 5 months of NDVI 
anomalies below -0.075 during the period from September to May of 2006; 
black pixels refer to burned scars for the previous fire season of 2004. Annual 
burned areas in Continental Portugal (central panel) for the year of 2005 as 
identified from Landsat imagery. Annual burned areas in Continental 
Portugal (right panel) for the fire season of 2005 (red pixels) using the 
criterion of at least 5 months of NDVI anomalies below -0.075 during the 
period from January to June of 2006; black pixels refer to burned scars for 
the previous fire season of 2004. The central panel is courtesy from J.M.C. 
Pereira. 

 

Obtained results suggest adopting the following criteria to identify burned areas in 

Portugal during the period 1998-2004: 

• for extreme drought years (1999, 2002 and 2005) burned pixels (by fires of the 

previous year) are those characterised by more than 7 months with monthly NDVI 

anomalies below -0.075 in the period from January to August; 

• for years that follow extreme drought years (2000, 2003 and 2006) burned pixels 

(by fires of the previous year) are those characterised by 5 months with monthly 

NDVI anomalies below -0.075 in the period from January to August; 
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• for years not affected by drought (2001 and 2004) burned pixels (by fires of the 

previous year) are those characterised by 5 months with monthly NDVI anomalies 

below -0.075 in the period from September to May. 

7.3 Vegetation recovery in burned areas 

Figure 7.4 presents on a yearly basis the burned scars that were identified, 

during the period 1998-2004, by applying the methodology described in the previous 

section. A visual comparison of obtained results with the ones based on Landsat 

imagery for the years 2000-2004 (Figure 7.2, central panel) and 2005 (Figure 7.3, 

central panel) reveals that a good agreement may be found for years affected by severe 

wildfires that caused large burned scars. This is the case of 2003 in Central Portugal, of 

2004 in South Portugal and in the Southeast, and 2005 in Central Portugal and in the 

Northwest. Results for 2000, 2001 and 2002 are quite poor because burned areas in 

these years are of a much smaller extent. This is not surprising taking into account that 

NDVI data have a resolution of 1km×1km whereas Landsat data have a 30m×30m 

resolution and are represented on a map with a scale of 1:100,000. 

The total amount of burned area for each year as obtained with the developed 

methodology was also compared with the corresponding total amounts as obtained by 

accumulating burned areas (of more than 100 ha) for all recorded events in the DGRF 

database. Results are shown in Figure 7.5 and despite the high correlation value (that 

reaches 0.97) between the two time series, which reflects the overall agreement in inter-

annual variability, there is a systematic underestimation by the method based on NDVI 

(2004 being the unique exception). As expected, the underestimation is particularly 

severe in the years of low fire activity (1998, 1999, 2001 and 2002). 

Table 7.1 shows on a yearly basis the distribution among different CLC2000 land 

cover types of pixels that were classified as burned using the developed methodology. 

The deep contrast in vulnerability to fire conditions between forest and shrubland vs. 

arable land and crops is well apparent. The prevalence in 1998 and 1999 of the 

transitional woodland-shrub class over the forest and the non-irrigated arable land 

classes is also conspicuous, especially when comparing with the opposite behaviour that



 

 

 

Figure 7.4 Burned scars for each year of the period 1998-2005 as identified based on NDVI anomalies 
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Figure 7.5 Time series of annual burned areas in Continental Portugal for the 
period 1998-2005 as obtained from the developed methodology (solid line) and 
based on DGRF information (dotted curve). 

 

 

 
Table 7.1 Percentage of burned pixels for pixels classified as non irrigated 
Arable Land, Forest, Transitional woodland-shrub and Shrubland (using 
Corine Land Cover Map 2000, CLC2000) for the fire seasons from the years 
1998 to 2005. 

Years 
Non 

irrigated 

arable land 

Annual crops/

permanent 

crops 

 

Forest

Transitional

woodland- 

-shrub 

 

Shrubland 
Others 

1998 11 1 21 38 4 19 

1999 2 1 22 58 3 14 

2000 16 4 23 18 9 30 

2001 2 1 44 17 29 7 

2002 0 0 76 16 3 5 

2003 1 1 69 14 7 8 

2004 4 1 55 8 9 23 

2005 1 2 51 28 9 9 
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may be observed from 2000 onwards. However, this may be explained by the fact that 

burned areas in 1998 and 1999 (i.e. in years immediately prior to 2000) were naturally 

classified as transitional woodland-shrub according to CLC2000, meaning that 

vegetation was still in the process of recovering from fire events. In the same context, 

the sudden increase in 2005 of the percentage of burned pixels associated to transitional 

woodland-shrub is also worth being noted. Such increase is due to the recurrence in 

2005 of fires in regions that had burned prior to 2000. 

Figure 7.6 shows, for selected pixels in a set of eight large fire scars, the 

respective time series of NDVI, each one corresponding to an event that has occurred in 

a given year of the considered 8-year period (1998-2005). The behaviour of the annual 

cycles of NDVI, that display always a sharp decrease in the year of the fire event and a 

steady increase in the following years, is a strong indication about the adequacy of the 

adopted methodology. Results obtained further suggest using the procedure to assess 

vegetation recovery after a large scale fire event.  

An example of how vegetation recover assessment may be performed based on 

the developed methodology is given in Figure 7.7. The figure presents the time series of 

NDVI averaged over three large scars, two of them located in Central Portugal and 

respecting to events in 2001 and 2003, and the third one located in Algarve and 

respecting to an event in 2003. Differences in vegetation recovery are well apparent 

between the two years and the two locations. In the case of the fire scars located in 

Central Portugal it may be observed that the recovery is much faster in 2001 than in 

2003, a feature that is explained by the fact that 2003 was followed by an extreme 

drought event that started in 2004 and reached a peak in 2005. In the case of the event 

of Algarve, the recovery is much slower than in the case of the event of the same year 

that took place in Central Portugal. Again this may be partly explained by the fact that 

drought conditions of 2004/2005 were particularly severe in the southern part of 

Portugal (see Chapter 6). 

Final remarks 

We present a methodology aiming to identify large fire scars using monthly 

values of NDVI at the 1km×1km spatial scale. The procedure is based on the analysis of 
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Figure 7.6 Time series of NDVI for selected pixels in a set of eight large fire 
scars, each one corresponding to an event that has occurred in a given year of 
the 1998-2005. The location of the selected fire scars is given in the upper 
panel.  
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Figure 7.7 Time series of averaged NDVI over three large fire scars, one of 
them associated to an event in 2001 and the remaining associated to two events 
in 2003. The location of the selected fire scars is given in the upper panel.  

 

(a) 

(b) 

(c) 
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strongly negative anomalies of NDVI that persist during the vegetative cycle of the year 

that follows the fire event. 

Obtained results respecting to burned scars from fire events that have occurred in 

the period 1998-2005 reveal that the developed methodology leads to an adequate 

identification of burned areas for years affected by severe wildfires that caused large 

burned scars. When comparing yearly amounts of burned area by the proposed method 

with the corresponding ones from the official DGRF database, a systematic 

underestimation is found, in particular in the case of years of low fire activity. However 

the methodology based on NDVI anomalies allows monitoring the vegetation recovery 

in areas affected by large fires. 

A case study was performed involving two large burned areas in Central Portugal 

associated to fire events that took place in 2001 and 2003 and a third one in Algarve 

associated to a wildfire in 2003. Differences in vegetation recovery are well apparent 

between the two years and the two locations, which were found to be mainly associated  

to the meteorological conditions of the following year. In particular it was found that 

vegetation recovery was slower for the two 2003 burned areas because of the prolonged 

following drought of 2004/2005, especially in the case of Algarve where the effects of 

drought were more severe. 

 

 



 

 

8 CONCLUSIONS 

Vegetation plays a crucial role in the global carbon balance because of the large 

amounts of carbon stored in green vegetation. Over the last two decades, continuous 

monitoring of vegetation from space has prompted new studies aiming to relate 

observed major global changes in vegetation (e.g. trends, variability and extremes) with 

changes in surface climatic variables, such as temperature and precipitation. Despite the 

global nature of the problem, studies at the regional and local scales are especially 

relevant in these contexts due to the socio-economical impacts in land management. 

The primary motivation of our work was to contribute to a better understanding 

of the impact of climate variability on vegetation status and dynamics at the European 

scale, but in particular at the scale of Continental Portugal. We began by assessing the 

relationship between vegetation greenness and the NAO index. The study covered the 

21-year period of available homogeneous datasets from 1982 to 2002, and was based on 

monthly composites of NDVI and Brightness Temperature from GIMMS dataset as well 

as on monthly precipitation from GPCC. A systematic analysis was initially performed 

of point correlation fields over the 21-year period between the winter NAO index and 

the spring and summer NDVI. An assessment was then performed on the vegetation 

response to precipitation and temperature conditions in winter, over two contrasting 

regions, namely the Iberian Peninsula and Northeastern Europe. The impact of NAO on 

vegetation dynamics over the two considered regions was finally evaluated by studying 

the corresponding annual cycles of NDVI and then comparing their behaviour for years 

associated with opposite NAO phases. 

There is strong evidence that positive (negative) values of winter NAO induce 

low (high) vegetation activity, over the Iberian Peninsula, in the following spring and 

summer seasons. This feature is mainly associated with the impact of NAO on winter 

precipitation, together with the strong dependence of spring and summer vegetation on 

water availability during the previous winter. In Iberia, the NAO impact is larger on 

non-forested vegetation, which responds quickly to spatio-temporal variations in 

precipitation and soil moisture. During summer, forests and other dense vegetation areas 
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display the highest sensitivity to NAO dynamics, as well as a slower response to 

precipitation, the NAO impacts being delayed until late in the year. Obtained results, in 

particular those related to the relationships found between winter NAO and NDVI for 

spring and summer represent an added value since they allow formulating simple 

outlooks of vegetation greenness that may provide useful information for a wide range 

of application, such as crop forecasting and long-lead wild fire assessment. 

In this context, we have further investigated how variations in vegetation 

greenness over Continental Portugal might be related with NDVI as derived from the 

GIMMS database. We have focused on wheat yield for the period 1982-1999 and 

strongly negative correlations were found between wheat yield and spring NDVI over 

the wheat production area located in Southern Portugal (Alentejo). The impact of 

meteorological factors on wheat yield over this region was also assessed by computing 

monthly correlations of detrended anomalies of yield with net short-wave radiation, 

temperature and precipitation as well as with NAO. Results obtained indicate that cold 

temperatures during winter and early spring, precipitation in February and March and 

solar radiation in March have a positive impact during the growing stage, whereas a 

larger NAO index in June is beneficial for the maturation stage. Therefore, a simple 

multi-linear regression model was built up using, as predictors, the values of spring 

NDVI and NAO in June. Simple and cross-validation have confirmed that the 

performance of such a straightforward model can be quite satisfactory, with a general 

agreement between observed and modelled wheat yield. 

NDVI fields as derived from the VEGETATION instrument were also used to 

monitor drought episodes. The severity of a given drought episode was assessed by 

evaluating the cumulative impact over time of drought conditions on vegetation. Special 

attention was given to the drought episode of 2005, as well as to those that took place in 

1999 and 2002. The impact of soil moisture on vegetation dynamics was also evaluated 

by studying the annual cycle of SWI vs. NDVI and by analysing monthly anomalies of 

SWI. While in the case of the drought episode of 1999 the scarcity of water in the soil 

persisted until spring, in the recent episode of 2005 the deficit in greenness was already 

apparent at the end of summer. The impact of dry periods on vegetation was clearly 

observed in both arable land and forest, and it was found that arable land presented a 

higher sensitivity. 
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Persistence of negative anomalies of NDVI was also used to develop a procedure 

aiming to identify burned scars and assess vegetation recovery over areas stricken by 

wildfires. Obtained results indicated that the developed methodology is adequate to 

identify large burned areas. The vulnerability of land cover to wildfire was also assessed 

and a strong contrast was found between forest and shrubland vs. arable land and crops. 

The high percentage of burned pixels that were found to belong to the transitional 

woodland-shrub class may provide and indication of the repeated occurrence of 

wildfires, which may accelerate the switch of forest into shrub-woodland vegetation, 

with important consequences in a country where transitional woodland-shrub vegetation 

is the third more frequent land cover. The developed methodology based on persistent 

NDVI anomalies also allowed monitoring vegetation recovery in areas affected by large 

fires. Evidence was found that vegetation recovery may strongly depend on the 

meteorological conditions of the following year. In fact, vegetation recovery was 

especially slow in 2003 because of the following drought of 2004/2005, in particular in 

the case of Algarve where the effects of drought were more severe. 

The main conclusions from our study may be summarized as follows: 

• the impact of climate variability on vegetation dynamics, as response to 

precipitation and temperature conditions in winter, is well apparent in Iberian 

Peninsula and Northeastern Europe; 

• there is strong evidence that positive (negative) values of winter NAO induce low 

(high) vegetation activity, over the Iberian Peninsula,  in the following spring and 

summer seasons; 

• the lagged relation between winter NAO and spring and summer NDVI may be 

used to build-up models of crop forecasting and long-lead fire assessment; 

• the impact of  climate variability on wheat yield in Portugal may be used to 

build-up models of wheat yield;  

• drought conditions in Portugal may be adequately monitored using remote sensed 

information and drought severity may be assessed based on the persistence of 

NDVI anomalies; 

• persistent anomalies of NDVI may be also used to identify burned areas and to 

assess vegetation recovery after large wildfires. 
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