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Abstract 
 

Cognition relies on the integration of information processed in widely 

distributed brain regions.  Neuronal oscillations are thought to play an 

important role in the supporting local and global coordination of neuronal 

activity. This study aimed at investigating the dynamics of the ongoing 

healthy brain activity and early changes observed in patients with Alzheimer’s 

disease (AD). Electro- and magnetoencephalography (EEG/MEG) were used 

due to high temporal resolution of these techniques. In order to evaluate the 

functional connectivity in AD, a novel algorithm based on the concept of 

generalized synchronization was improved by defining the embedding 

parameters as a function of the frequency content of interest. The             

time-frequency synchronization likelihood (TF-SL) revealed a loss of     

fronto-temporal/parietal interactions in the lower alpha (8–10 Hz) oscillations 

measured by MEG that was not found with classical coherence.  Further, 

long-range temporal   (auto-) correlations (LRTC) in ongoing oscillations were 

assessed with detrended fluctuation analysis (DFA) on times scales from    

1–25 seconds. Significant auto-correlations indicate a dependence of the 

underlying dynamical processes at certain time scales of separation, which 

may be viewed as a form of "physiological memory". We tested whether the 

DFA index could be related to the decline in cognitive memory in AD. Indeed, 

a significant decrease in the DFA exponents was observed in the alpha band 

(6–13 Hz) over temporo-parietal regions in the patients compared with the 

age-matched healthy control subjects. Finally, the mean level of SL of EEG 

signals was found to be significantly decreased in the AD patients in the beta 

(13–30 Hz) and in the upper alpha (10–13 Hz) and the DFA exponents 

computed as a measure of the temporal structure of SL time series were 

larger for the patients than for subjects with subjective memory complaint. 

The results obtained indicate that the study of spatio-temporal dynamics of 

resting-state EEG/MEG brain activity provides valuable information about the 

vii 



AD pathophysiology, which potentially could be developed into clinically 

useful indices for assessing progression of AD or response to medication. 
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Sumário 
 

A doença de Alzheimer é uma doença neurodegenerativa 

responsável pela maioria dos casos de demência no mundo ocidental. O 

aumento da prevalência da doença e os avultados custos económicos 

associados ao acompanhamento dos doentes colocam como prioridades nas 

agendas científicas mundiais questões como: a identificação das causas 

desta patologia; a descoberta de biomarcadores para o diagnóstico precoce; 

a compreensão dos mecanismos afectados que levam às deficiências 

progressivas nas memórias episódica e de trabalho e diminuição de 

capacidades cognitivas observadas nos doentes e a procura de tratamentos 

eficazes.  

Mais de um século passou desde que o psiquiatra alemão Alois 

Alzheimer descobriu, através de autopsias a doentes seus, placas beta 

amilóide e tranças neurofibrilhares (resultantes de alterações na 

conformação da proteína tau no interior dos microtúbulos). Apesar de nos 

nossos dias se terem aprofundado conhecimentos relativos à epidemiologia, 

à sintomatologia clínica, ao prognóstico e às alterações a nível celular e 

molecular, a causa da doença de Alzheimer não foi ainda determinada e os 

medicamentos disponíveis limitam-se a actuar ao nível dos sintomas. As 

teorias actuais para as causas da doença são as hipóteses associadas à 

proteína amilóide e à proteína tau responsáveis respectivamente pelas 

placas e pelas tranças neurofibrilhares observados por Alois Alzheimer e a 

hipótese colinérgica que relaciona a patologia com uma diminuição do 

neurotransmissor acetilcolina.  

Com o avanço das técnicas de imagiologia e dos métodos de análise 

desenvolvidos esperam-se também progressos que permitirão o diagnóstico 

da doença em fases menos avançadas. Por exemplo, recorrendo a 

Tomografia por Emissão de Positrões é hoje possível mapear a deposição 

de amilóide; através de análises ao líquido encefaloraquidiano podem ser 
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quantificadas as concentrações de amilóide e tau; a diminuição do volume 

de regiões cerebrais pode ser medida em imagens de Ressonância 

Magnética e deficiências ao nível de fluxo sanguíneo associadas a 

diminuição de activação neural podem ser estudadas utilizando Ressonância 

Magnética funcional. As técnicas referidas anteriormente são apropriadas 

para a análise de alterações estruturais graças às suas resoluções 

espaciais. No entanto, é provável que as mudanças que ocorrem no início da 

doença sejam mais facilmente detectadas pelas alterações provocadas na 

dinâmica da actividade cerebral do que através de modificações estruturais 

características de um estado mais avançado da doença.  

As técnicas de Electro- e Magnetoencefalografia (EEG/MEG) são 

técnicas de electrofisiologia que medem de forma não invasiva os campos 

electromagnéticos criados pela actividade síncrona de redes neuronais 

distribuídas pelo córtex com uma resolução temporal na ordem dos 

milissegundos permitindo o estudo da dinâmica da actividade cerebral a uma 

escala macroscópica. A importância das oscilações observadas na 

actividade neuronal para o processamento de informação pelo cérebro tem 

vindo a ser empiricamente reforçada por uma série de estudos que 

estabelecem a correspondência entre actividade em determinadas regiões 

em certas bandas de frequência com diversas funções desempenhadas pelo 

cérebro. Estudos de EEG/MEG revelaram um abrandamento nos doentes de 

Alzheimer dos ritmos encontrados nos cérebros saudáveis, isto é, um 

aumento da amplitude das frequências mais baixas e uma diminuição da 

amplitude nas frequências mais elevadas. Entrando em mais detalhe, 

verifica-se aumento de amplitude na banda delta (2-4 Hz) nas zonas frontais 

e occipitais, aumento global na banda teta (4-7 Hz), diminuição na banda 

alfa (8-12 Hz) na zona occipital e parietal e diminuição da banda beta       

(12-30 Hz) na zona frontal. Este abrandamento foi correlacionado com 

diminuição do volume cerebral e com alterações genéticas e provavelmente 

está relacionado com alterações no sistema colinérgico. A dessincronização 

das oscilações está associada à libertação de acetilcolina. Nos cérebros dos 
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doentes de Alzheimer esta dessincronização é alterada constituindo a causa 

do aumento de amplitude nas bandas de frequência mais baixa.  

Processos cognitivos dependem da integração de processamentos 

que ocorrem simultaneamente em áreas cerebrais distintas e fenómenos 

oscilatórios representam um mecanismo essencial para esta integração, 

quer a nível local quer a nível global. Este mecanismo tem de ter capacidade 

de adaptação rápida para responder a estímulos e ao mesmo tempo manter 

um nível de referência a partir do qual é dada uma resposta. Este 

comportamento é observado em redes neuronais próximas de um chamado 

estado crítico caracterizadas por uma actividade muito diversa em termos 

espaciais e temporais. Através do desenvolvimento de novos métodos 

capazes de detectar estas interacções não lineares foi possível identificar 

informação contida na amplitude da actividade numa dada região, 

conectividade local entre bandas de frequências diferentes e interacções não 

lineares entre regiões cerebrais. Se bem que têm sido observadas 

alterações na actividade oscilatória em várias patologias, incluindo a doença 

de Alzheimer, não é ainda claro se os sintomas estão directamente 

relacionados com estas alterações ou se as alterações nas oscilações são 

um efeito secundário da verdadeira causa da patologia, não tendo portanto 

uma consequência directa nos défices cognitivos. A análise quantitativa da 

actividade oscilatória pode levar à descoberta de biomarcadores para 

monitorizar a progressão da doença e a resposta à administração de 

fármacos. 

Os objectivos desta tese são, por um lado, perceber como é que a 

dinâmica complexa das oscilações neuronais pode ser quantificada e, por 

outro, compreender como é que esta é alterada na doença, especialmente 

na doença de Alzheimer utilizando dados de EEG e MEG de doentes e 

sujeitos saudáveis de idade semelhante medidos no estado de repouso com 

os olhos fechados. O trabalho realizado foi divulgado em três publicações ao 

longo do doutoramento, estando a quarta publicação em processo de 

revisão. 
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Na primeira publicação foi desenvolvido um algoritmo baseado no 

conceito de sincronização generalizada denominado Time-Frequency 

Synchronization Likelihood (TF-SL) que permite detectar conectividade 

funcional entre regiões cerebrais envolvendo termos não lineares. O 

conceito de sincronização generalizada pressupõe a repetição síncrona de 

estados em duas regiões, isto é, sempre que uma determinada região repita 

um determinado estado, outra região que esteja sincronizada com esta 

repetirá um outro estado. Estes estados são representados por vectores que 

correspondem a padrões, sendo uma das vantagens deste método, 

comparativamente com outros métodos utilizados, como por exemplo a 

correlação, o facto de estes padrões poderem ser diferentes nas duas 

regiões. O desenvolvimento introduzido no algoritmo prende-se com a 

definição dos parâmetros utilizados para a construção dos vectores       

(time-delay embedding) em função das frequências mais baixa e mais alta 

que compõem os padrões de interesse. Testes realizados ao método de   

TF-SL com dados de EEG mostram que o algoritmo é mais adequado à 

detecção do início de uma crise epiléptica do que a coerência clássica, tem 

uma maior resolução temporal e permite seguir a sincronização entre sinais 

provenientes de duas zonas do cérebro apresentando padrões de actividade 

complexos e consideravelmente diferentes numa zona e noutra.  

Na segunda publicação quantificaram-se alterações na conectividade 

funcional em doentes de Alzheimer através da aplicação do método 

desenvolvido na primeira publicação e validado empiricamente na segunda 

publicação a dados de MEG obtidos com os sujeitos em estado de repouso 

de olhos fechados e compararam-se os resultados com os obtidos com 

coerência. Observou-se uma diminuição significativa da conectividade 

funcional entre as regiões do hemisfério esquerdo frontal e parietal, bem 

como frontal e temporal, na banda alfa mais baixa (8–10 Hz) que não foi 

encontrada para a coerência. As alterações verificadas sugerem uma 

associação com a perda de ligações entre diferentes regiões anatómicas, a 

redução de actividade colinérgica e o consequente declínio cognitivo.  
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Na terceira publicação testou-se a hipótese da memória fisiológica 

indexada pelas auto-correlações temporais na banda alfa estarem 

relacionadas com memória cognitiva e alteradas nos doentes de Alzheimer 

num subconjunto da mesma base de dados de MEG medidos com os 

sujeitos em repouso de olhos fechados da qual foram retirados os sujeitos 

para a segunda publicação. A análise de flutuações através de Detrended 

Fluctuation Analysis (DFA) dos dados revelou uma diminuição nas          

auto-correlações em escalas de tempo de 1 a 25 segundos em oscilações 

espontâneas na banda alfa definida no intervalo 6–13 Hz na zona parietal 

fortalecendo a hipótese da importância da memória fisiológica na memória 

cognitiva. A escolha de uma banda alfa mais ampla pretende anular as 

diferenças entre os grupos devidas ao desvio para frequências mais baixas 

do pico do espectro nos doentes de Alzheimer.  

Na quarta publicação avaliou-se se o expoente de DFA, como 

medida de complexidade de sincronização, poderia ser usado como 

biomarcador da doença de Alzheimer utilizando dados de EEG de sujeitos 

em estado de repouso e olhos fechados. Expoentes mais baixos foram 

obtidos para doentes de Alzheimer comparativamente aos obtidos para 

sujeitos com queixas de memória (subjective memory complaints) para a 

banda alfa mais baixa (8–10 Hz) e para a banda beta, mostrando que a 

complexidade da série temporal de sincronização pode discriminar os dois 

grupos. 

No entanto, de forma a obter uma discriminação individualizada e o 

diagnóstico precoce, estudos longitudinais incluindo grupos mais alargados 

de sujeitos são necessários para evitar que factores genéticos, isto é, 

valores diferentes para o biomarcador nos sujeitos saudáveis, sejam 

confundidos com alterações provocadas pela doença, assim como 

atenuações devidas à medicação administrada. Esta tese pretendeu 

contribuir para realçar o papel que estudos de EEG/MEG com sujeitos em 

repouso poderão ter na descoberta de biomarcadores, ao nível de sistemas, 

para a doença de Alzheimer, assim como ampliar o nosso conhecimento dos 
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mecanismos subjacentes a esta patologia através do desenvolvimento e 

aplicação de métodos que permitem a detecção de alterações ténues na 

dinâmica da actividade cerebral em fases iniciais da doença. 
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1. Introduction 
 

Synchronized neuronal activity is a prominent feature of cortical networks 

and gives rise to oscillatory electromagnetic fields, which can be non-invasively 

measured with electro- or magnetoencephalography (EEG/MEG). The EEG and 

MEG are particularly well suited for the study of temporal dynamics of large-scale 

brain activity, because of the high temporal resolution of these techniques                 

(~ millisecond). The importance of neuronal oscillations for information processing 

in the brain remains debated (Buzsaki and Draguhn, 2004); however, the past decade 

has witnessed an explosion in empirical evidence and theoretical arguments 

supporting a crucial role of oscillations in diverse brain functions (Buzsaki, 2006). In 

particular, it is increasingly acknowledged that cognition depends on integration of 

simultaneous processing in spatially distinct brain areas and that oscillations may 

provide an important mechanism for orchestrating this activity both locally and 

globally (Varela et al., 2001; Fries, 2005). 

If oscillations are to play a role in coordinating activity on different spatial 

scales, it seems that oscillations need to balance the needs to swiftly adapt to 

processing demands while also providing a stable reference for neuronal 

representations. In recent years, several authors have advanced the hypothesis that 

this balancing act is supported by neuronal networks operating near a so-called 

critical state, which is characterized by a large variability in spatio-temporal activity 

(Linkenkaer-Hansen et al., 2001; Chialvo, 2007; Plenz and Thiagarajan, 2007). 

Critical or "meta-stable" dynamics may also be important for the transient coupling 

and exchange of information in distributed neuronal populations (Friston, 1994; 

Tononi et al., 1998; Stam, 2000; Varela et al., 2001). Advances in algorithms that can 

 1



identify and quantify changes in "meta-stable" or nonlinear dynamics have made it 

evident that neuronal oscillations are neither stable sinusoidal waves nor a form of 

filtered noise; rather, oscillations carry information in their waxing and waning 

amplitude patterns (Linkenkaer-Hansen et al., 2007), exhibit cross-frequency 

coupling locally (Palva et al., 2005a) and nonlinear interactions across brain regions 

(Stam et al., 2003a). 

Brain-related disorders are commonly associated with aberrant oscillatory 

activity and much effort has been devoted to the characterization of the impact of 

pathology on neuronal oscillations. It remains a challenge, however, to understand 

whether symptoms are directly related to these changes or whether altered oscillatory 

activity is a side-effect of the underlying pathology without consequences for the 

cognitive impairments. Quantitative analysis of oscillatory activity may nevertheless 

lead to biomarkers for monitoring disease progression or responsiveness to 

therapeutic intervention (Frank and Hargreaves, 2003; Matthews et al., 2006). Much 

of the work in this thesis is aimed at understanding how the complex dynamics of 

neuronal oscillations may be quantified and how it is impaired in disease, especially 

Alzheimer's disease.  

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a 

progressive decline in episodic and working memories and cognition. Although 

much is known about the epidemiology, clinical presentation, prognosis and the 

pathology at the cellular and molecular level, the cause of AD has not been identified 

and available treatment is only symptomatic. Many techniques have been used to 

investigate how the brain is affected in AD. For example, magnetic resonance 

imaging (MRI) has revealed atrophy of the medial temporal lobe, including the 

hippocampus and entorhinal cortex (van der Flier and Scheltens, 2005); functional 

magnetic resonance imaging (fMRI) and positron emission tomography (PET) have 

pointed to deficits in blood flow and metabolism in the posterior cingulate gyrus and 

precuneus (Fox et al., 2001); analysis of CSF from AD patients showed a decrease in 

the concentration of amyloid Aβ42 and an increase of tau (Waldemar, 2000); and 

EEG/MEG studies have shown slowing of  spontaneous oscillations in AD with a 

suggested anterior displacement of the sources (Jeong, 2004; Osipova et al., 2005). 
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None of these  techniques, however, allow for individual discrimination and 

diagnosis in the early stages of the disease (Nestor et al., 2004). Nevertheless, it is 

hoped that by studying the disease with a multitude of techniques and experimental 

protocols as well as through continued progress in the development of signal 

processing algorithms, this situation may one-day change to the benefit of the 

patients and a better understanding of the pathophysiology underlying the cognitive 

deficits. As an important spin-off from these pre-clinical studies, we are likely to 

learn about the neural basis of cognitive functions in the healthy brain. 

 3
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2. Overview of the literature 
 

2.1 Electro- and Magnetoencephalography 

 

Electroencephalography (EEG) and magnetoencephalography (MEG) are 

non-invasive measures of the electric activity in the brain. EEG measures electric 

potential differences on the scalp and MEG records extracranial magnetic fields both 

generated by postsynaptic currents (Lopes da Silva and Van Rotterdam, 1999). These 

techniques require the summation of synchronous activity of thousands of pyramidal 

neurons that are oriented parallel to each other and perpendicular to the surface of the 

cortex. The EEG voltages are generated by extracellular compensatory currents, 

whereas the MEG measures intracellular activity located in the sulci where the 

pyramidal neurons are parallel to the surface of the head. 

The localisation of the sources producing the electrical potentials and the 

magnetic fields is called the inverse problem and has no unique solution as different 

distributions of sources can lead to the same measured EEG and MEG signals 

(Helmholtz, 1853). The derivation from Maxwell’s laws of the basic equations for 

solving the forward problem, i.e., computing the magnetic field created outside of the 

head by the distribution of currents within the brain, can be found in a review article 

(Hämäläinen et al., 1993). A comparison between different methods for source 

localisation has recently been reported (Liljeström et al., 2005).  

The conventional whole-head EEG electrode locations and names are 

specified by the 10-20 system, reflecting the distance between adjacent electrodes to 

be either 10% or 20% of the total front-back or right-left distances of the skull and 
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identifying the lobe and the hemisphere location. The voltage differences measured 

from the scalp typically range from 10 to 100 μV (much larger values can be found 

especially in young children during sleep, and in brain pathology). EEG always has 

to be measured against some reference. Different montages reflect different solutions 

to this problem: “bipolar” if the difference is computed between adjacent channels; 

“referential” if a reference electrode is subtracted from each channel; “average” if the 

average of all the channels is used as the reference; and “laplacian” if the reference 

used is a weighted average of the neighbouring channels. None of these montages is 

perfect since the reference is seldom neutral.  In contrast to EEG, MEG 

measurements are reference-free so that the problem with montages does not arise 

here. Perhaps due to the reference-free character MEG is more sensitive to nonlinear 

correlations and thus may be more suitable than EEG to assess functional 

connectivity (Stam et al., 2003a; Guevara et al., 2005). 

The detection of the weak magnetic fields created by the brain ranging from 

50 to 500 femtoTesla (up to a thousand femtoTesla in the case of epileptic spikes) is 

only possible using Superconducting Quantum Interference Devices (SQUIDs) and 

by attenuating environmental magnetic noise (e.g., from car traffic, power lines and 

the Earth’s field) by measuring inside magnetically shielded rooms.                     

Flux-transformers couple the magnetic flux to the SQUID and are required to be 

immerged in liquid Helium. The simplest flux transformer is a magnetometer, which 

measures the projection of the magnetic field along the normal of a single coil. When 

two magnetometers of opposite polarities are connected together and oriented along 

the radial (Fig. 1a), they form a 1st-order axial gradiometer (Vrba and Robinson, 

2001). If the two opposite coils are placed in the same plane tangential to the scalp 

they form a planar gradiometer and, unlike for axial gradiometers, the largest signal 

is obtained directly above a given neuronal source (Fig. 1b and 2).  
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Figure 1 – Axial (a) and planar (b) gradiometers placed where the measured signal is 

maximal: on the side and just above the source, respectively.  Simões (2002) adapted 

from Hari (1999).   

 

Virtual Planar Gradiometers 

 

The normal component of the magnetic field measured by axial gradiometers is 

considered a scalar field on a surface defined by the sensor array:  and may 

be transformed into virtual planar gradiometers by computing spatial derivatives 

(Fig. 2) for the two directions tangential to the scalp and orthogonal to each other: 

 and 

),( vuB

uB ∂∂ / vB ∂∂ /  using a 3D spline interpolation (Bastiaansen and Knösche, 

2000).  

 
Figure 2 –Topographic representations of the magnetic field measured by axial 

gradiometers (left) and the gradient field representing the spatial derivative (right). 

(Bastiaansen and Knösche, 2000) 

 

The decay of the gradient fields as a function of distance is more pronounced 

than the decay of electric fields, therefore MEG is more sensitive to superficial 

cortical activity and EEG detects more easily activity from deep sources than 

currents near the skull.  
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EEG and MEG share a temporal resolution of the order of milliseconds. EEG 

has a poorer spatial resolution than MEG due to smearing of the potentials caused by 

the different conductivities of the grey matter, cerebrospinal fluid, skull and scalp 

that do not affect the magnetic fields (i.e., volume conduction). However, EEG can 

be acquired simultaneously with functional magnetic resonance imaging (fMRI) 

taking advantage of the high spatial resolution of this technique. 

 

Artefact removal using Independent Component Analysis 

 

Since the first application of independent component analysis (ICA) to EEG 

(Makeig et al., 1996), the method is often used to detect and remove 

electrocardiographic (ECG), eye movements and muscular artefacts in EEG and 

MEG recordings (Jung et al., 2000). 

The signals measured x1(t), x2(t), …, xm(t) corresponded to a sum of the 

independent components s1(t), s2(t), …, sn(t), and can thus  be written as : 

xi = ai1s1 + ai2s2+ … + ainsn =  with i = 1, …., m. ∑
=

n

j
jijsa

1

 

 

The ICA model is given by x = A s, where A is the matrix of weights aij. It 

follows that s = W x, where W is the inverse of A. The components are assumed to be 

nongaussian, and are found by maximizing their nongaussianity. The outputs of the 

algorithm are time courses of the magnitude of each component and weights 

expressing the contribution of each channel signal to that component allowing a 

topographical representation (Fig. 3). 

8 



  

 
Figure 3 – Artefact removal by ICA. EEG time series (left), the corresponding ICA 

component activation (left middle), scalp maps of five of the components (right middle) 

and the EEG corrected for artefacts by removing the five selected components (right). 

(Jung et al., 2000) 

 

Several algorithms are developed for  computation of ICA, such as JADE 

(Cardoso et al., 1993) and the infomax (Bell and Sejnowski, 1995). Improved 

versions of the infomax, the so-called extended infomax (Amari et al., 1996; Makeig 

et al., 1997; Lee et al., 1999) and  fixed-point ICA (Hyvarinen and Oja, 2000), have 

been implemented in the EEGLAB open source toolbox (Delorme and Makeig, 

2004). 

 9



10 



  

2.2 Alzheimer’s Disease 

 

Three studies in this thesis have investigated large-scale neuronal activity in 

Alzheimer’s disease with the aim of identifying abnormal neurophysiological 

processes that could underlie parts of the cognitive dysfunction associated with 

Alzheimer’s disease (AD). By studying large-scale neuronal activities we hope to 

help bridge the gap between our understanding of disease changes at cellular and 

sub-cellular levels on one hand, and clinical behavioural levels on the other hand.  

 

Prominence and characteristics 

 

The essential feature of dementia has been defined by the American Academy of 

Neurology as “impairment in short- and long-term memory, associated with 

impairment in abstract thinking, impaired judgement, other disturbances of higher 

cortical function, or personality change (…) severe enough to interfere significantly 

with work or usual social activities” (American Psychiatric Association, 1987). 

The most important cause of dementia in the Western world was named after 

Alois Alzheimer, the German psychiatrist who discovered amyloid senile plaques 

and neurofibrillary tangles (formed by hyperphosphorylation of a             

microtubule-associated protein known as tau) in the atrophied brains of his patients 

while performing autopsies. Two competing theories  attribute the cause of the 

disease to these two proteins, and are known as the amyloid (Hardy and Allsop, 

1910) and the tau (Mudher and Lovestone, 2002) hypotheses. A third theory, the 

cholinergic hypothesis, associates AD with a decrease of the acetylcholine 

neurotransmitter (Shen, 2004). 

A certain diagnosis of Alzheimer's disease continues to require post-mortem 

analysis, although nowadays we can track changes due to a probable AD in vivo, 

e.g., using MRI to measure the brain atrophy (Karas et al., 2004); PET to map the 

amyloid deposition; analysis of CSF for quantifying the concentration of amyloid 
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and tau (Jeong, 2004; Waldemar et al., 2007), and EEG (Boerman et al., 1994; 

Jonkman, 1997; Jeong, 2004) and MEG (Berendse et al., 2000; Maestu et al., 2001; 

Fernandez et al., 2002; Osipova et al., 2005) to follow electrophysiological changes 

that will be addressed in more detail in this thesis. 

Early affected regions in AD are the medial temporal lobe, retrosplenial and 

posterior cingulate cortex. The retrosplenial cortex has dense reciprocal projections 

to the hippocampus and parahippocampal gyrus, where morphological changes occur 

in AD patients  (Hyman et al., 1984; Braak et al., 1993) and are likely to be the cause 

of the prominent memory deficits characterizing the disease. 

Posterior and frontal regions showing a consistent decrease of activity during 

attention demanding cognitive tasks have been identified in a PET study (Raichle et 

al., 2001), suggesting the existence of a default mode of brain function. The 

functional connectivity of these regions was addressed for the first time in a later 

study (Greicius et al., 2003) using fMRI. The same regions have shown metabolism 

differences (Fig. 4) and amyloid deposition (Fig. 5) in older adults with AD. 

 

 
Figure 4 – Precuneus activity correlates with successful recall of items in healthy 

subjects (left) and show reduced metabolism in AD (right). (Buckner, 2004)  

 

Decreased fMRI resting-state activity was also found with ICA in the 

posterior cingulate cortex and hippocampus of patients of AD, distinguishing them 

from healthy aging controls (Greicius et al., 2004).  The disrupted connectivity 

between these two regions is in agreement with the posterior cingulate cortex      

hypo-metabolism reported in PET studies.  
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Figure 5 – Amyloid deposition in AD in the posterior parietal (A) and fontal cortex (B). 

(Buckner, 2004) 

 

At later stages of the disease, distributed neocortical areas are affected 

(Braak et al., 1999)  giving rise to other cognitive dysfunctions. EEG (Jonkman, 

1997; Jeong, 2004) and MEG may allow the study of dynamical changes at early 

stages of AD (Stam, 2007). 

 

EEG and MEG studies of AD 

 

EEG dominant rhythms found in the healthy human brain (Berger, 1929) 

have been known for many years to be affected in AD (Weiner and Schuster, 1956; 

Letemendia and Pampiglione, 1958; Liddell, 1958; Gordon and Sim, 1967; Soininen 

et al., 1982; Coben et al., 1983; Penttila et al., 1985).  

EEG studies have shown a slowing of the dominant rhythms in AD, meaning 

that an increase of power was observed in the delta (2-4 Hz) and theta (4-7 Hz) 

frequencies, and a decrease was reported for the alpha (8-12 Hz) and beta (12-30 Hz) 

bands (Jeong, 2004). MEG studies have confirmed these findings (Fig. 6) and 

suggested an anterior displacement of the sources of these rhythms (Berendse et al., 

2000; Maestu et al., 2001; Fernandez et al., 2002; Fernandez et al., 2003; Maestu et 

al., 2003; Maestu et al., 2004; Maestú et al., 2005; Osipova et al., 2005; Fernandez et 

al., 2006).  
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Figure 6 – MEG slowing in AD. Grand averages of spectra for 20 AD patients 

and 20 controls for 117 MEG channels (van Walsum et al., 2003).  

 

AD patients showed an increase in delta power in the frontal and occipital 

regions; overall increase in theta power and decrease in beta power in the frontal 

region (Fig. 7). 

 
 

Figure 7 – Mean relative power and standard errors in the delta (2–4 Hz), theta           

(4–7 Hz), alpha   (7–12 Hz), and beta (12–30 Hz) bands for 11 AD patients and 12 

controls in the 22 frontal (A),  38 left temporal (B), 32 central (C), 38 right temporal (D) 

and 32 occipital (E) channels. * p < 0.05;    ** p < 0.01. The mean relative power was 

obtained by dividing the mean band power by the total power at 2–30 Hz (Osipova et 

al., 2005).  
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The EEG and MEG slowing has been correlated with brain atrophy and the 

APOE genotype and is likely to be caused by the loss of cholinergic innervation of 

the cortex (Riekkinen et al., 1991; Lehtovirta et al., 1996). The desynchronization of 

spontaneous oscillations across various brain regions in the waking stage is 

associated with the release of acetylcholine (Celesia and Jasper, 1911; Kanai and 

Szerb, 1965). Pathological changes in the cholinergic system and the administration 

of pharmacological acetylcholine antagonists, by reducing the available 

acetylcholine, affect the desynchronization mechanisms and cause an increase of 

high amplitude slow-wave activity (Longo, 1966; Vanderwolf and Robinson, 1981).  

Transient cognitive deficits caused by the administration of cholinergic 

antagonists to healthy subjects are reflected by similar changes in EEG and MEG 

signals (Sannita et al., 1987; Neufeld et al., 1994; Osipova et al., 2003). 
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2.3 Analysis of resting-state EEG and MEG data 

 

The analysis of EEG and MEG data may be divided into stimulus-driven activity or 

intrinsically generated ongoing activity. Stimulus-driven activity leads to           

event-related potentials or fields and was not studied in this thesis. Here we focussed 

on the classical condition of eyes-closed rest, which is associated with prominent 

ongoing or spontaneous oscillations. Resting-state brain activity has also been 

studied intensively with metabolic techniques, e.g., PET and fMRI (Fox and Raichle, 

2007) or the combination of EEG and fMRI (Mantini et al., 2007). Only little is 

known about the functional role of brain activity during rest (Raichle and Mintun, 

2006), but the experimental condition has proven useful for clinical studies. The use 

of specific tasks aimed at activating brain regions assumed to be involved in AD 

might result in abnormally high as well as abnormally low task-related activation 

(Pijnenburg et al., 2004; Osipova et al., 2005).  

Despite the general acceptance of the notion that synchronous oscillations 

present an important mechanism for integrating information processing in the brain 

(Singer, 1999), they are only a partial explanation of the relation between brain 

dynamics and cognition. Several authors have pointed out that information 

processing requires a self-organized dynamical process, whereby synchronous cell 

assemblies are continuously being formed and destroyed (Friston, 2000; Breakspear, 

2002; Freeman and Rogers, 2002). Each synchronous cell assembly is hypothesized 

to be a fragile or "meta-stable" short-lived structure that may represent complex 

information; information processing required for cognition then consists of a 

succession of such short-lived synchronous cell assemblies exhibiting a scale-free 

spatial and temporal behaviour analogous to that of meta-stable patterns formed in 

equilibrium systems at the critical point of a phase transition (Beggs. 2007. Phil 

Trans R Soc. The criticality hypothesis; Chialvo DR (2007): The brain near the edge. 

Cooperative Behavior in Neural Systems: Ninth Granada Lectures. pp 1–12.). 

Analytical tools determining the level of synchronization with a high time resolution 

are required to study this ‘fragile binding’. Section 2.3.1 presents a brief explanation 
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of some methods for the evaluation of linear and nonlinear statistical dependencies 

that have been used in this thesis. A substantial part of this thesis consisted in the 

improvement of an algorithm based on generalized synchronization. 

Optimal brain function has been suggested to require a suitable balance 

between local specialization and global integration of brain activity (Tononi et al., 

1998). A large number of studies have aimed at identifying functional connectivity as 

defined by correlations between activity in different brain regions and interpreted this 

as a "functional coupling". Only little attention has been paid, however, to the 

potential importance of correlations over time, e.g., for ongoing mnemonic processes 

during resting-state periods. Spontaneous resting-state activity is characterized by 

amplitude modulation of ongoing oscillations in time-scales up to tens of seconds as 

indicated by long-range temporal auto-correlations (Linkenkaer-Hansen et al., 2001). 

The observed power-law form suggests existence of critical dynamics, supporting the 

theory of a critical state in the underlying neuronal network [see e.g. (Bak, 1997; 

Chialvo and Bak, 1999; Beggs and Plenz, 2003; Beggs and Plenz, 2004; Abbott and 

Rohrkemper, 2007; Mazzoni et al., 2007) (Kinouchi and Copelli, 2006; Levina et al., 

2007; Poil et al., 2008b)]. In fact, the phenomenon of so-called self-organized 

criticality has been found in many manifestations of nature. Section 2.3.2 presents 

the definitions of different measures that can be used to quantify long-range temporal 

correlations (LRTC) in time series. 

The measures used to quantify modulation of amplitude can also be used to 

follow temporal correlations of functional connectivity levels expressed by 

synchronization time series. It has been shown that the level of synchronization 

shows considerable fluctuations in healthy subjects (Gong et al., 2003), and that 

these fluctuations are affected by a working memory task (Stam et al., 2002a). 

Further support for the hypothesis of fluctuating synchronization levels comes from a 

study demonstrating nonlinear and non-stationary aspects of coupling in healthy 

subjects (Stam et al., 2003a). There seems to be increasing evidence that cognition 

depends not exclusively upon synchronization per se, but rather on the dynamics of 

synchronization. 
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Evaluation of functional coupling  

Review of methods detecting nonlinear statistical dependencies 

 

One key challenge in systems neuroscience is to develop tools to detect when, where, 

and how spatially distributed populations of neurons communicate. A large number 

of factors contribute to this challenge, e.g., the poor spatial resolution of non-invasive 

EEG/MEG data, an often low signal-to-noise ratio, and the fact that the function that 

governs the coupling of neuronal assemblies is not known a priori and may include 

nonlinear terms. Methods detecting linear statistical dependencies remain the most 

commonly used in studies on neuronal interactions; however, the nonlinear terms 

may reveal essential aspects of the coupling and require sensitive methods  (Fig. 8) 

for their detection and quantification (Pereda et al., 2005; Stam, 2005).  

 

 

 

Figure 8 – Methods to evaluate linear and nonlinear statistical dependencies across 

sensors.  Adapted with permission from Onderzoek naar “functionele connectiviteit” met 
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EEG en MEG, oral presentation by C.J. Stam at Medische Natuurwetenschappen, 6-6-

2005. 

Correlation is the oldest and most classical measure of interdependencies 

between two time series and remains one of the mostly used measures. The         

cross-correlation function,  between signals normalized to have zero mean and 

unit variance and  is given by: 
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where is the total number of samples and N τ the time lag between the signals. The 

introduction of the fast Fourier transform (FFT) turned frequency-based measures 

increasingly popular. The coherence function gives the linear correlation between 

two signals as a function of the frequency. Coherence is a measure of linear phase 

correlations in a sliding window. The data set is divided into segments of length 

equal to the time resolution wanted and the spectra are estimated by averaging the 

periodogram over these segments (Welch, 1967). Coherence spectrum is normally 

computed as: 
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where ⋅  denotes average over the segments, is the frequency,  is the 

periodogram and is the coherence. Coherence computation requires a large 

number of oscillation cycles to estimate the consistency of linear correlations 

between oscillations. The size of the sliding window gives the time resolution. 

f S

xyk

To detect statistical interdependencies that are not governed by simple linear 

functions methods able to detect nonlinear interdependencies are required. Phase 

synchronization in contrast to coherence is not dependent upon the amplitudes of the 

signals and can be computed using the Hilbert transform (Tass et al., 1998) or  

wavelet analysis (Lachaux et al., 1999). However, the concept of phase makes sense 
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only in oscillatory systems. Neurophysiological signals are often noisy and exhibit 

random phase slips, thus the phase-locking condition:  

≤−= πφφϕ 2mod)()()('
, tmtnt yxmn  constant (3) 

must be understood in a statistical sense, i.e., as the existence of a preferred value in 

the distribution of the relative phase (Rosenblum and Pikovsky, 2001). 

 

 

Generalized Synchronization 

 

Generalized synchronization is the most general form of interaction between two 

dynamical systems, where the state of a response system Y  is a function of the state 

of the driver system : X )(XFY =   (Rulkov et al., 1995).  Generalized 

synchronization extends the study of coupling between identical systems to systems 

with different dynamics. Several algorithms have been proposed to measure 

Generalized synchronization defined from a state-space representation of the signals. 

One approach is based on cross prediction, i.e., the improvement in the prediction of 

 knowing X Y (Schiff et al., 1996; Le Van Quyen et al., 1998). More reliable 

methods rely on the quantification of how embedding vectors that are close in the 

state space of one signal map on to vectors that are also close in the state space of the 

other signal, thus requiring the definition of a “critical distance”. The 

interdependency measure (S) is sensitive to signals having different amplitudes or 

different degrees of freedom (Arnhold et al., 1999; Pereda et al., 2001).  

 

Synchronization likelihood 

 

A novel method referred to as synchronization likelihood (SL) was developed to 

solve the dependence of generalized synchronization measures on local power (Stam 

and van Dijk, 2002). The lack of a rigorous definition of SL parameters based on the 

frequency content of the neurophysiological data and an incomplete understanding of 

the influence of the parameter choices on the estimation of the interdependency 
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between signals motivated the introduction of an SL algorithm with explicit        

time-frequency priors (Montez et al., 2006) and Publication P1 of this thesis.  

Signals are often bandpass filtered in a frequency band of interest: [LF, HF], 

before the computation of SL. The computation of SL can be divided into steps that 

will be explained in detail in this section: (i) state-space representation; (ii) detection 

of recurrences within each channel; (iii) computation of the likelihood of 

simultaneous recurrences in the two channels; and finally (iv) repetition of steps i–iii 

for different time points. 

 

I. From time series to state-space representations of data: time-delay embedding 

 

Patterns of activity  can be represented by vectors in the state space (Fig. 9) by    

time-delay embedding (Takens, 1981). The embedding vectors are defined by two 

parameters: the lag (the time interval between time-series samples used for the 

embedding vector); and the embedding dimension (the number of samples taken 

from the time series for every embedding vector). 

L
m

From the time series of channel , the state vector  is given by: ikx , k ikX ,

( ) );...;;( *1,*2,,,, LmikLikLikikik xxxxX −+++=  (4) 

Note that  represents the state of the system in a time interval of length 

, but for convenience we will refer to this interval as the state at time , 

i.e., the beginning of the interval. 

ikX ,

)1(* −mL i

Several definitions of the embedding parameters have been proposed 

(Cellucci et al., 2003). The embedding dimension must be sufficiently high (more 

than twice the dimension of the system's attractor) to preserve the dynamical 

properties of the system (Whitney, 1936). In the context of finite, noisy and non-

stationary signals, the lag can be chosen equal to the time interval after which the 

autocorrelation function (or the mutual information) of the time series drops to  

of its initial value, and repeat the analysis for increasing values of until the result 

of the analysis is stable. Other approaches can be found for the definition of the lag 

e/1

m
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(Rosenstein et al., 1994) and the embedding dimension (Kennel et al., 1992). It has 

also been suggested to define the embedding window to be equal to the time after 

which the autocorrelation function of the times series becomes zero (Albano and 

Rapp, 1993).  

 
Figure 9 – Schematic representation of time-delay embedding. Adapted with permission 

from Onderzoek naar “functionele connectiviteit” met EEG en MEG, oral presentation by 

C.J. Stam at Medische Natuurwetenschappen, 6-6-2005. 

 

Most of the previous studies did not deal with oscillatory processes. The 

choice of the embedding parameters will affect the frequency content of the patterns 

detected: the lag will determine the fastest oscillations sampled and the size of the 

embedding window, given by the product of the lag and )1( −m , will set the lowest 

limit. The awareness of these facts is crucial to the interpretation of the evaluation of 

functional connectivity in the brain using time-delay embedding methods.  
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II. Detection of recurrences of states in two potentially coupled systems 

 

We start by constructing a reference vector in channel A at time i, XA,i. Then we 

construct vectors XA,j along the time series at times j inside a time window  and 

outside a time window  (Fig. 10).  

2W

1W

 
Figure 10 - State vectors and SL parameters ( , , ,  and L m 1W 2W s ) with respect to the 

time series of channels A and B. (a) The reference vector of channel A, XA,i was obtained 

for m = 3 samples (small ticks) and L = 2 samples (dots). The state vectors (squares) are 

defined for times outside W1 and inside W2 and pairs for two time points XA,3 and XB,3 

,and XA,7 and XB,7 are marked. The time windows are centred at i. The time series of the 

channels are represented by solid horizontal lines and the range of the times of the state 

vectors is indicated with a dashed line. The vectors that are closer than the respective 

critical distances rA,i and rB,i are represented in white and the vectors that are not within 

the respective critical distance are represented in grey. The pair XA,3 and XB,3 is an 

example of a simultaneous recurrence. (b) A new reference vector is constructed for 

channel A at a time point with an increment s (arrow). The windows W1 and W2 are 

centred at  i + s and the state vectors close and distant from the reference vector are 

represented as in panel a (Montez et al., 2006).  
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1W  is defined in order to prevent autocorrelation effects. Finally, we compute the 

Euclidean distance to the reference vector. The criterion for considering vectors 

close, meaning that they represent recurrences, is defined by the parameter pref equal 

to the ratio between the number of vectors considered close and the total number of 

vectors. The same procedure is applied to channel B.  

The number of vectors considered close, referred to as recurrences, is the 

same for both channels and is given by: 

refrec pWWn *]1[ 12 +−=  (5) 

A vector XA,j is considered a recurrence of the reference vector XA,i if its 

distance to the reference vector given by jAiA XX ,, − is lower than the critical 

distance rA,i. The same is valid for a vector XB,j and the critical distance rB,i. The 

introduction of the parameter pref is the key improvement of SL when compared to 

the interdependency measure, because the critical distances are allowed to be 

different for each channel. 

 

III. Computation of the likelihood (SL) that states recur simultaneously in the 

two systems 

 

The times at which the recurrences occur in each channel are obtained and the 

number of simultaneous recurrences in both channels is determined:  
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(6) 

 

where θ  represents the Heaviside function which is equal to one if the argument is 

positive or zero and equal to zero if the argument is negative. 

A better understanding of the advantages of the introduction of the parameter 

pref on the computation of SL can be facilitated by a schematic representation of the 

formulas and the mapping of the state vectors from channel A into the state space of 

channel B (Fig. 11).  
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Figure 11 – Schematic representation of SL between two channels in terms of state 

vectors and critical distances. State vectors of channel A  closer to the reference vector 

XA,i  than the critical distances rA,i are shown inside white ellipses and connected by 

lines to state vectors of channel B, XB = F(XA), at the same time points. Two out of four 

recurrences of XA,i in channel A are associated with simultaneous recurrences of XB,i in 

channel B, whereas the others fall outside the respective critical distance and are 

represented inside grey ellipses. Pref is given by the ratio between the number of vectors 

close than the critical distance and the total number of state vectors. Pref is the same for 

both channels whereas the critical distances are usually different. SL between channel A 

and B at time i is given by the ratio between the number of simultaneous recurrences 

and the total number of recurrences within channels, which per definition is nrec. 

Adapted with permission (Posthuma et al., 2005) and included in P1 (Montez et al., 

2006). 

 

The parameter pref gives the ratio between the state space (strictly speaking 

the number of state-space vectors) that are defined by the critical distance to be 

closest to the reference vector, and the total state space (i.e., all state-space vectors). 

Generalized synchronization occurs when the state vectors at times j that are close to 

the reference vector in channel A are “mapped” into the state space of channel B, i.e., 

if recurrences of the references vector in channel A appear at the same times that 

recurrences of the reference vector of channel B appear in channel B (Fig. 10). SL is 

an index of the likelihood that recurrences of a reference state in channel A at certain 
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time points are associated with recurrences of a reference state in channel B at those 

same time points. 

SL is given by the ratio between the number of simultaneous recurrences and 

the total number of recurrences in each channel, which per definition is nrec.: 

rec

AB
i n

nSL =  
(7) 

Note once more that the value of SL for a time point i is a measure of the 

synchronization between the two channels based on the simultaneous repetition of 

states, represented by state vectors, within a time window of length W2. 

 

 

IV. Computation of SL for different time points 

 

In order to obtain an SL time series, new reference vectors are constructed along the 

time series of the channels and the previous steps are repeated. The sampling 

frequency of SL is given by the ratio between the sampling frequency of the raw data 

and the time increment s. It is important to acknowledge that the temporal resolution 

of SL is high in the sense that SL values can vary dramatically from one reference 

time point to another, but that the time resolution is low in the sense that each SL 

value refers to the temporal structure of the signals in a window of length W2, which 

is usually several orders of magnitude larger than the time increment s.  

A conservative definition of s equal to one sample will lead to longer 

computational processing time and possibly redundant information, because the same 

states might be represented by several reference vectors, though it is the 

recommended procedure as it is the safest choice.  

Boundary conditions must be taken into consideration, because it is not 

possible to fit a window W2/2 on both sides of reference vectors at the beginning and 

at the end of the time series of data. In Publication P1, we dealt with this issue in a 

very pragmatic way as described in section 4.3 of this thesis. 
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Temporal correlations as an index of memory 

 

In the previous section, we outlined recent developments for identifying correlations 

between neuronal signals obtained from different sensors or brain regions with the 

aim of revealing so-called "functional connectivity"—a coupling of activity that is 

thought to be crucial for parallel processing. Brain activity, however, may also be 

highly organized over time and it is therefore expected that a quantitative analysis of 

correlations in EEG/MEG signals on multiple time scales may reveal important 

information about the functional organization of the underlying neuronal  networks 

(Linkenkaer-Hansen et al., 2005). Indeed, it has been observed that the amplitude 

envelope of neural oscillations exhibits a slow power-law decay of autocorrelations 

up to several tens of seconds, indicating that these rhythms carry a memory of their 

own dynamics (Linkenkaer-Hansen et al., 2001; Nikulin and Brismar, 2004). Further, 

LRTC are stronger in the vicinity of epileptic zones (Parish et al., 2004; Monto et al., 

2007) and are influenced by genes (Linkenkaer-Hansen et al., 2007). Here we shall 

learn about the putative relevance of self-organized criticality for understanding the 

temporal correlation properties in ongoing oscillations.  

 

Self-Organized Criticality: An explanation of Noise f/1

 

The title of this chapter was taken from the paper introducing the self-organized 

criticality (SOC) theory (Bak et al., 1987). The authors used the dynamical response 

of a sandpile to small random perturbations to hypothesize about an explanation for 

the scale invariance observed in different manifestations of nature (Bak, 1997; 

Buchanan, 2000). The randomness of the perturbations introduced to the system, 

driving it to the critical state, reflects the feature of the ‘self-organization’ being an 

‘internal’ phenomenon. The ‘criticality’ is characterized by spatial and temporal 

correlations of a power-law form, meaning that the system is scale-free, i.e., that 

event sizes are broadly distributed. SOC has been proposed as an explanation for 
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fractal structures observed in systems as diverse as earthquakes (Bak et al., 2002; 

Turcotte and Malamud, 2004; Lippiello et al., 2005); forest fires (Malamud et al., 

1998; Turcotte and Malamud, 2004); financial markets (Mantegna and Stanley, 1995; 

Lux and Marchesi, 1999; Bartolozzi et al., 2005); avalanches in rice piles (Frette et 

al., 1996; Aegerter et al., 2003); epidemics (Rhodes and Anderson, 1996); evolution 

(Bak and Sneppen, 1993; Sneppen et al., 1995; Paczuski et al., 1996); solar flares 

(Charbonneau et al., 2001; Paczuski and Hughes, 2004); open source software 

evolution (Nakakoji et al., 2002; Wu, 2006) and, more important in the context of 

this thesis, also in neuronal activity  (Jung et al., 1998; Linkenkaer-Hansen et al., 

2001; Chialvo, 2004; de Arcangelis et al., 2006; Beggs, 2007; Plenz and Thiagarajan, 

2007). In the next section, methods for the evaluation of the presence of SOC will be 

described and the range of time scales at which the temporal correlations are 

estimated will be clarified.  

Assessment of long-range temporal correlations in time series 

 
If the autocorrelation function (ACF) of a stationary stochastic process in discrete 
time }{ kξ  with 0=kξ and 22 σξ =k , where  denotes ensemble average, given 

by: 
 

nkknC += ξξ)(  (8) 

scales with the lag as: n
γ−nnC ~)(  (9) 

 

for large , where n 10 << γ , then the process is long-range correlated (Beran, 
1994).  
 

The power spectrum is defined as (Chatfield, 1989): 
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For small  we get a power-law form: f

βf
fP 1)( =  

(12) 

 

where β  is the power spectrum density (PSD) exponent. 
 

In order to meaningfully apply detrended fluctuation analysis (DFA) to 
ongoing oscillations, we focus on their amplitude modulations. Thus, first we 
bandpass filter and extract the amplitude envelope, W , using the Hilbert transform 
(Fig. 13 B, thick line). 
The mean value of the amplitude envelope is then subtracted and the cumulative sum 
is computed: 
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The resulting vector is then divided into time windows of size y τ and in each 
window the local trend  computed by a least-square fit is subtracted (Fig. 12). 
Finally, the average fluctuation is evaluated as the average root-mean-square: 
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The DFA exponent (α ) is 0.5 for an uncorrelated signal; ranges from 0.5 

and 1 for power-law correlated signals; and if α  is above 1 the correlations are not 

ruled by power-scaling. For timescales larger than the period of repetition the DFA 

exponent will be zero, whereas anti-correlations are characterized by values between 

0 and 0.5 (Peng et al., 1995). 

 

The relationship between the DFA exponent (α), the PSD exponent (β), and 

the autocorrelation function exponent (γ) is given by (Rangarajan and Ding, 2000): 

2
2

2
1 γβα −

=
+

=  
(15) 

 

Whereas PSD analysis is particularly suited for identifying the presence of 

characteristic scales, DFA (Peng, et al. 1994) provides greater accuracy in estimating 

temporal (auto-)correlations when the amount of data available is limited (Gao, et al. 
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2006), which is particularly important at long time scales. Notice that DFA will give 

an incorrect estimation of correlations in the presence of sharp artefacts. 

 

 
Figure 12 – DFA computation steps. The mean value of the signal is subtracted (A). The 

cumulative sum is computed (B). A time window with a certain length is selected from 

the integrated signal, a least-square line is fitted (C) and the linear trend is subtracted 

(D). The average of the root-mean-square fluctuation of the entire integrated and 

detrended signal is computed for that time scale and plotted in double logarithmic 

coordinates (arrow in E). The procedure starting in C is repeated for several window 

sizes to obtain the other data points in the plot (E). The power-law exponent is given by 

the slope of the line fitted within the indicated (arrowheads) bounds             

(Linkenkaer-Hansen et al., 2001). 
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Branching processes and brain oscillations  

 

Critical networks may be simulated  by ensuring that the average ratio of current to 

past activity, as expressed by the so-called branching ratio (σ), is close to one 

(Chialvo, 2006). Networks with a branching ratio larger than one are termed      

super-critical, whereas a ratio smaller than one prevents activity to propagate far in a 

so-called sub-critical network. In model networks with probabilistic activity 

propagation, the branching ratio corresponds to the average number of units activated 

by each active unit per time step and it has been observed that values not far from 

one as 1.06 and 0.96 are sufficient to induce, respectively, super-critical and         

sub-critical dynamics (Poil et al., 2008a).  

The authors used MEG signals to introduce a novel method based on the 

definition of the duration or so-called ‘life-time’ of an oscillation burst as the time 

that the amplitude envelope after bandpass filtering and Hilbert transform remains 

above its median level (Fig. 13).  

 
Figure 13 – Definition of the life-time of an oscillation burst. The MEG signal (A) is 

band-pass filtered in the frequency band of interest (thin line, B) and the amplitude 

envelope of the oscillations (thick line, B) is extracted with the Hilbert transform. The 

life-times of the bursts (shadowed) are defined by the length of the time intervals the 

amplitude envelope stays above a threshold (horizontal dashed line, B) defined as the 

median amplitude. C) On larger times scales the signal exhibits an oscillatory burst 

structure (Poil et al., 2008a). 
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Probability distributions of life-times decaying in a power-law form on time 

scales of 153–893 ms were found in spontaneous alpha oscillations in all subjects 

considered in the study measured by representative parietal and right sensorimotor 

channels. The same approach was used in the Publication P3 of this thesis. 

The power-law exponents (slope in double-logarithmic coordinates) obtained 

for the life-times in the super-critical and sub-critical networks were significantly 

larger than for the critical network. Similar life-time exponents were found for the 

MEG channels in the sensorimotor and parietal regions and were not correlated with 

amplitude, indicating that the duration and amplitude of oscillations provide 

complementary indices of the underlying physiological process. Temporal 

correlations in time scales only up to the length of the longest avalanche were found 

in a model network with critical connectivity, whereas temporal correlations on time 

scales corresponding to several burst events could be observed in spontaneous alpha 

oscillations recorded with MEG. The authors speculate that temporal patterning on 

longer time scales are dependent also on mechanisms of sub-cortical modulation 

(Steriade 1990), or other mechanisms involved in slowly varying cortical excitability 

(Vanhatalo 2004), or activity-dependent plasticity (Marder and Goaillard 2006, van 

Ooyen 1994, Zhang and Linden 2003). Interestingly, there may be a relationship 

between the fractal temporal structure of oscillation amplitude and hemodynamic 

changes observed with fMRI (Bullmore 2004, Maxim 2005). Life-times, 

characterizing amplitude dynamics on short to intermediate time scales (< 1s), and 

DFA exponents, reflecting the temporal structure of tens of oscillations bursts, were 

significantly correlated in the sensorimotor region, but showed only a trend in 

parietal channels. The new life-time approach for the study of ongoing oscillations 

provides a more straightforward interpretation of changes in the temporal structure of 

oscillations than that of LRTC as indexed with the DFA algorithm. 

Dynamical systems exhibiting SOC or 1/f power spectra are often said to 

have "memory", because fluctuations on many time scales are exhibiting a degree of 

dependence. In Publication P3 we investigated the intriguing possibility that this 

"physiological memory" would be important for cognitive memory and impaired in 

AD patients. Several studies, however, have shown that a modulation of oscillation 
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amplitudes on time scales of seconds occurs during working memory tasks in several 

frequency bands and brain regions, which provides an additional rationale for 

implementing indices of oscillation life-time in the study of AD as we did in 

Publication P3. Some of these studies are summarized below. 
 

Oscillations are amplitude modulated on time scales of seconds in working-

memory tasks 

 

Modulation of the amplitude of oscillations during working memory tasks has been 

reported on several studies for several frequencies bands and brain regions. The 

amplitude of theta oscillations measured with EEG in the frontal midline increased 

with load in a ‘n-back’ working memory (WM) task, whereas alpha activity in the 

posterior region decreased (Gevins, 1997). In a ‘n-back’ task the subjects are 

presented with a continuous stream of items and have to indicate whether the probe 

matches the element presented n positions back. Measurements of intracranial EEG 

(iEEG) during a Sternberg working memory task revealed sustained theta activity 

during the entire duration of the trials, with an increase of power with the increase of 

the number of elements for a subdural electrode in the parietal cortex and a depth 

electrode in the left temporal lobe (Raghavachari et al., 2001). In a Sternberg task a 

series of items is presented; after a delay period a probe item is shown and subjects 

indicate if the probe was on the list. The main advantage of the Sternberg task over 

the ‘n-back’ task is the separation in time of the encoding, retention and retrieval. 

When consonants (meaningful linguistic units) are used as items the task is 

considered a verbal working memory task (Baddeley, 1986). Sustained  theta activity 

was also obtained in a MEG study using a similar WM task in a frontal brain region 

(Jensen et al., 2002). In addition an increase of the alpha amplitude was found with 

the increase of the number of items. 
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Temporal correlations of synchronization levels 

 

Synchronization likelihood time-series obtained from EEG recordings of 

spontaneous activity during resting-state show a complicated structure (Stam and de 

Bruin, 2004).  

The fluctuations observed at short time scales are a result of the high 

temporal resolution of the SL reflected in the ability to detect sharp changes of 

coupling between nonlinear systems. Though each value of the SL time series 

represents the degree of simultaneous repetition of patterns in two channels over a 

considerable long time window, the adaptive nature of SL allows consecutive 

reference vectors to be completely different and represent distinct dynamical states. 

The algorithm of DFA can be used to quantify the extent to which the 

temporal structure of the SL time series differ from a random signal. This approach 

was pursued in Publication P4. 
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3. Aims of the study 
 

The aim of this thesis was to investigate the complex spatio-temporal dynamics of 

brain activity in patients with Alzheimer's disease and healthy control subjects, using 

whole-head electro- or magnetoencephalographic recordings and novel algorithms. 

The specific goals of each study were: 

 

P1: 

To develop and validate a "synchronization likelihood" algorithm for quantifying 

generalized synchronization, which is logically defined with respect to the time-

frequency information of the signals of interest. 

 

P2: 

To assess resting-state functional connectivity in AD with TF-SL and to compare the 

results obtained with this measure able to detect nonlinear dependencies with the 

ones obtained with coherence. 

 

P3: 

To test the hypothesis that physiological memory as indexed by temporal correlations 

in ongoing alpha oscillations is related to cognitive memory and, therefore, impaired 

in AD. 

 

P4: 

To evaluate if the DFA exponent, as a measure of the complex temporal structure of 

Synchronization Likelihood time series, could be used as a biomarker for AD. 
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4. Materials and Methods  

4.1 Subjects 

 

For P1 EEG data of an epileptic patient showing an absence seizure was 

used.  

The subjects studied in P2, P3 and P4 were chosen from databases of the 

Alzheimer Centre of the VU University Medical Center. Patients were diagnosed 

with probable AD according to the NINCDS-ADRDA criteria (McKhann, 1984). For 

P2, we selected 18 patients (mean age 72.1 ± SD 5.6 years; 11 males) and 18 healthy 

control subjects (69.1 ± 6.8 years; 7 males). In P3, we included 19 patients          

(73.9 ± 6.4 years; 11 males) and 16 healthy control subjects (70 ± 6.2 years;              

7 males). In P4, we studied 24 patients (76.3 ± 7.8 years; 9 males) and                     

19 non-demented subjects with subjective memory complaints (76.1 ± 6.7 years;       

9 males). 

 

4.2 Recordings 

 

During all the recordings the subjects sat comfortably, in sound attenuated 

and dimly lit environments, and were instructed to close their eyes. For P1, EEG data 

were acquired at 500 Hz with an OSG Brain Lab ® digital system with an common 

average reference electrode, involving all electrodes except Fp2 and Fp1. For P4, 

data was acquired at 200 Hz with a Nihon Kohden digital EEG apparatus (EEG 

2100) against C3-C4. For P1 and P4, the impedance of the electrodes at 10-20 
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positions was kept below 5 kΩ. For P2 and P3, signals were acquired inside a 

magnetically shielded room (Vacuumschmelze GmbH, Hanau, Germany) using a 

151-channel MEG system (CTF Systems Inc., Vancouver, Canada) at 625 Hz and 

band-pass filtered from 0.25 to 125 Hz. The head position relative to the coordinate 

system of the helmet was measured at the beginning and at the end of each recording 

by leading small alternating currents through three head position coils placed at left 

and right pre-auricular and nasion sites. Head position changes up to approximately 

1.5 cm were accepted. 

 

4.3 Data Analysis 

 

In P1, the EEG signals of channels F7 and F8 were down-sampled off-line to 

100 Hz and band-pass filtered with a 4th order Butterworth filter in the band 3-20 Hz. 

SL was computed with the set of parameters used in previous studies (L=10 samples, 

m=10 samples, W1=100 samples, W2/2=10% of the length of the data set and 

pref=0.01) and with embedding parameters  defined  with time-frequency priors (TF),  

the lag (L) as: 

HF
fsL

*3
=  

(16) 

where fs is the sampling frequency and HF the highest frequency; and the embedding 

dimension (m) as: 

1*3
+=

LF
HFm  

(17) 

 

where LF is the lowest frequency (giving: L=1/fs=0.01 s, m=21/fs=0.21 s and 

W1=40/fs=0.4 s).  

 The window W1 was defined as twice the length of the embedding vectors: 

)1(**21 −= mLW  (18) 

This definition of W1 was considered safe since it is well known that neuronal 

activity transients may emerge or fade away within one oscillation cycle (Palva et al., 

2005b). 
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The same pref was used and we chose W2=10 s in order to get 10 recurrences. 

A window W2/2 was discarded from the beginning and the end of the raw data. SL 

and TF-SL were computed for two distances between references vectors s=1/fs and 

s=20/fs.  

To study signals using coherence based on the Welch method, the windows 

are required to contain at least three periods of the lowest frequency and an overlap 

of half the size is advised; for a LF = 3 Hz (three periods ~ 1 s) the use of a window 

of 5 s = W2/2 was appropriate. The time-frequency coherence was averaged in the    

3–20 Hz frequency band and compared to TF-SL. 

Unidirectionally coupled Hénon system time series were computer-generated 

with a total length of 4000 samples and different values of the coupling parameter 

(C) in a window between samples 1500 and 2500 (C was zero elsewhere). The power 

spectrum of the simulated data was computed to determine the frequencies of interest 

(9–16 Hz) and the TF embedding parameters (L=2/fs, m=7/fs, fs=100 Hz). SL and 

TF-SL were computed for all the time series and the mean value within the window 

where the signals were coupled was determined for each of the coupling strength. 

In P2, the MEG data were down-sampled off-line to 312.5 Hz and zero-phase 

lag filtered for the frequency bands: delta (0.5–4 Hz), theta (4–8 Hz), alpha1           

(8–10 Hz), alpha2 (10–13 Hz), beta (13–30 Hz) and gamma (30–45 Hz). SL was 

computed with TF parameters for all pair-wise combinations of the channels and 

averaged over three artefact-free visually selected epochs of 13,083 s for each subject 

and over groups of channels representing long distance intra- and inter-hemispheric 

and short distance connections. Similar analysis was performed with complex 

coherency. The cross-correlation was computed for the beta band.  

In P3, the MEG signals were down-sampled off-line to 125 Hz, high-passed 

filtered at 1 Hz and low-pass filtered at 45 Hz using finite impulse response (FIR) 

filters. Non-periodic artefacts were visually selected and removed from the data. 

Independent components analysis was performed with EEGLAB (Delorme and 

Makeig, 2004) and components representing ECG, eye movements or muscular 

artefacts were removed. Bad channels were replaced by the average of their 

neighbours and planar synthetic gradiometers were computed using Fieldtrip 
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(Bastiaansen and Knösche, 2000). Bandpass FIR filters (with a Hamming window 

and filter order 28) at 6–13 Hz and the Hilbert transform were used to extract the 

amplitude envelope of the signal. Detrended fluctuation analysis accurately estimates 

the decay of LRTC in time scales of at least 10% of the total length of the signal; for 

the 4 min signals, we extracted scaling exponents of the time range of 1–25 s. 

Oscillation life- and waiting-times were defined as the length of the intervals where 

the amplitude envelope remains above or below the median value and probability 

distributions were computed using equidistant binning on logarithmic axis with       

10 bins per decade. Visual inspection of probability distributions for parietal 

channels determined the least-square fitting time range (119–538 ms) for the 

computation of the power-law exponents. 

In P4, epochs of 20.475 s were selected by visual inspection to avoid 

artefacts, such as eye-blinks, slow eye-movements, excess muscle activity and ECG, 

and SL was computed for delta, theta, alpha1, alpha2, beta (defined in the same way 

as in P2) and gamma (30–48 Hz) bands with the parameters used in previous studies 

(before the introduction of the TF definitions) and a distance s between the reference 

vectors of 16 samples / 200 Hz = 0.08 s. DFA was applied to the SL time series and 

exponents were computed for times scales of 0.32–10.48 s.  
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5. Results  
 

This chapter summarizes the main results obtained in the four Publications 

that constitute the core of this thesis. 

 

5.1 Time-delay embedding based on the frequency 
content of interest. 

 

Complex and widely different patterns corresponding to spike wave 

discharges and their recurrences were identified by the TF-SL method in EEG data of 

an epileptic seizure on two channels: F7 and F8 (Fig. 14). The times of recurrences in 

channel F8 were similar to those expected on the basis of visual inspection. 

 
Figure 14 – State vectors obtained with TF parameters (black dots) and the parameters 

used in previous studies (white circles) for i = 15.6 s (a) and i = 15.8 s (b). A shift of 0.2 s 

corresponds to a window W1/2 and translates in the tracking of completely different 

patterns by the TF parameters (Montez et al., 2006).  
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For channel F7, the reference patterns were different from those in channel 

F8, but its recurrences occasionally appeared at the same times as the recurrences in 

channel F8. At the onset of the seizure, when the channels visually seem to be 

synchronized, the TF-SL value increases reflecting the fact that the recurrences are 

occurring simultaneously in both channels and drops back at the end of the seizure to 

the baseline value it had before the seizure. We have shown that TF-SL is insensitive 

to the distance in time between consecutive reference vectors. This study thus gave 

empirical evidence for the advantage of TF-SL in tracking the onset and end of an 

epileptic seizure on EEG recordings compared to classical coherence.  

The time-frequency coherence plot reflects the wide frequency content of the 

epileptic activity (Fig. 15).  

 
Figure 15 – Comparison between the classical coherence and TF-SL in the 3–20 Hz 

band.  (a)  The time-frequency coherence plot shows peaks for lower frequencies         

(5–10 Hz) around 10 s, higher frequencies (8–14 Hz) around 15 s and for frequencies 

above 15 Hz around 12 s. (b) Though the mean value of the classical coherence averaged 

in the 3–20 Hz is higher than the TF-SL values; classical coherence do not have a stable 

plateau during the seizure (10–20 seconds). The TF-SL increases on the onset of the 

seizure until a lower mean value compared to classical coherence and drops back at the 

end of the seizure to the baseline value it had before the seizure (Montez et al., 2006).  
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Classical coherence averaged in the same frequency band does not show 

stability during the seizure as the TF-SL. 

 

Application to simulated data with manipulated coupling showed that the   

TF-SL based choice of the embedding parameters tracks the change of coupling 

strength between two unidirectionally coupled Hénon systems. 
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5.2 SL revealed loss of long distance intra-hemispheric 
interactions in the alpha band resting-state oscillations 
of AD patients measured by MEG. 

   

Alzheimer patients showed a loss of long distance intra-hemispheric 

interactions in the alpha1 (8–10 Hz) and beta (13–30 Hz) bands with a focus on left 

fronto-temporal/parietal connections as revealed by significant SL group differences 

(Figs. 16 e 17). These changes may reflect loss of anatomical connections and/or 

reduced cholinergic activity.  

 

 
Figure 16 – Significantly lower SL in AD patients compared with healthy age-matched 

controls in the 8–10 Hz band for long (A) and short (B) distances. Lines correspond to 

significant changes of average SL between two regions and squares to significant 

changes of local SL. T-tests determined significant changes involving pairs of channels 

(arrows) in the left fronto-temporal (p = 0.009), left fronto-parietal (p = 0.012) and the 

right fronto-temporal (p = 0.015) regions. A significant (p < 0.01) local decrease of SL 

was observed for combinations of right frontal vectors (blue square). (Stam et al., 2006)  

 

Positive correlations were found between mini-mental state exam score 

referred to as MMSE score (Folstein et al., 1975) and averaged inter-hemispheric SL 

in the alpha1 band (R = 0.727; P = 0.002) and in the beta band (R = 0.688; P = 0.005) 
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indicating that the decreased functional connectivity could underlie the cognitive 

impairment.  

Coherence was significantly lower between the left fronto-temporal regions, 

but only in the beta band (Fig. 17). 

 

 

 
Figure 17 – Significant lower (blue) and higher (red) SL (up) and coherence (down) in 

AD patients compared with healthy age-matched controls in the 13-30 Hz band. The 

structure is the same as in the previous figure (thin line/light square: p < 0.05; thick 

line/dark square: p < 0.01). Both SL and coherence are significantly lower between the 

left fronto-temporal regions and significantly higher between the left parieto-occipital 

and right parieto-occipital regions with a local decrease in the left temporal region and 

local increase in the right parietal regions. SL is also significantly lower between the left 

fronto-parietal and coherence is locally increased in the left parietal region.   

 

This study showed that both short distance interactions that might underlie 

specialization and long distance interactions that might be associated with global 
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integration (Tononi et al., 1998; van Walsum et al., 2003) are impaired in AD. This 

may reflect that the necessary balance between local specialization and global 

integration is compromised. Further, the study shows that short recordings             

(13 seconds of data) of resting-state activity are sufficient to detect AD-associated 

changes in large-scale brain networks. 
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5.3 Impaired temporal correlations in temporo-parietal 
oscillations in early-stage Alzheimer’s disease. 

 

A significant decrease in long-range temporal correlations was observed in 

AD patients in the alpha band (6–13 Hz) over temporo-parietal regions on time 

scales of 1–25 seconds as indexed by the DFA exponents obtained: 0.66 ± 0.01 for 

the AD patients and 0.71 ± 0.01 for the controls (Fig. 18). No significant group effect 

was found for the amplitude. 

 

 
 

Figure 18 – Impaired LRTC in temporo-parietal oscillations in AD for the 6–13 Hz 

band. Grand-average plot of a parietal channel for AD patients (red diamonds), control 

subjects (blue circles) and an empty-room recording (black dots). (B) The individual 

DFA exponents averaged over the 33 channels marked in C with white circles are 

significantly lower for AD patients (p < 0.005). Mean ± SEM are represented in the 

middle. Grand-average topographies of the DFA exponents (C) and the amplitude (F) 

for the AD patients (left), control subjects (middle) and controls minus patients (right). 

White circles denote channels with p < 0.05 (open) and p < 0.01 (filled). (D) The 

individual peak frequencies in a parietal channel were significantly (p < 0.05) lower for 

patients. (E) Individual amplitudes averaged over the 12 channels showing the largest 

group difference.  
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Significantly reduced probability for the occurrence of bursts in alpha 

oscillations with long life- or waiting-times on shorter time scales (< 1 second) was 

found for the AD patients in the same temporo-parietal regions, as indicated by the 

respective power-law exponents obtained: life-times exponents of 1.91 ± 0.06 for the 

AD patients and 1.68 ± 0.04 for the controls; and waiting-times exponents of        

1.77 ± 0.04 for the AD patients and 1.60 ± 0.04 for the controls (Fig. 19). 

 

 
 

Figure 19 – Altered life- and waiting-times of temporal-parietal oscillations in AD. The 

colour coding and structure are the same as in the previous figure. (A) Grand-average 

probability distribution function (PDF) of oscillation life-times. (B) The individual life-

time exponents averaged over the 25 channels marked with white circles in C are 

significantly (p < 0.005) higher for AD patients. Grand-average topographies of the   

life-time exponents (C), the cumulative life-times at the 95%-percentile (F) and the 

waiting-times (I). (D) Cumulative probability distribution function (CDF) of oscillation 

life-times. (E) The individual cumulative life-time averaged over the 45 channels 
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marked with white circles in F. (G) Grand-average probability distribution of     

waiting-times for channels with a significant group difference. (H) The individual 

waiting-times averaged over the 18 channels marked with white circles in I.  

 

 The cumulative probability distribution of life-times showed significant 

differences at percentiles around 88–100%. The 95%-percentile, e.g., was              

383 ± 11 ms for the AD patients and 439 ± 12 ms for the controls. This decrease 

reflects the impaired generation of long-lasting oscillations by the disease. 

 

The DFA, life- and waiting-time exponents were not significantly correlated 

(data not shown). Thus, the three methods provide complementary indices of 

abnormalities in the temporal structure of ongoing oscillations. 

 53



54 



  

5.4 Disturbed fluctuations of resting state EEG 
synchronization in Alzheimer’s disease.  

 
Alzheimer’s patients showed a significant decrease in the mean levels of 

EEG synchronization for the upper alpha (10–13 Hz) and beta (13–30 Hz) frequency 

bands (Fig. 20). These results are in agreement with the results of earlier EEG and 

MEG studies (Stam et al., 2002b; Stam et al., 2003b; Babiloni et al., 2004; 

Pijnenburg et al., 2004). 

 

 
 

Figure 20 – Mean SL of AD patients and subjects with subjective memory complaints 

for different frequency bands. Error bars denote standard deviation and p-values 

correspond to two-tailed t-test (Stam et al., 2005). 

 
Besides the decreased level of mean synchronization, the impaired functional 

connectivity was also indexed by disturbed fluctuations of the synchronization levels, 

extending the results obtained for healthy subjects in a previous study to longer time 

scales  (Stam and de Bruin, 2004).  

The study revealed trends for the lower (8–10 Hz) alpha (p = 0.085) and the 

beta (p = 0.059) bands in the direction of a smaller DFA exponent in the AD group 

compared to the group of subjects with subjective memory complaints (Fig. 21).  
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Figure 21 – Grand-average DFA plots for the AD patients and subjects with subjective 

memory complaints for the lower alpha band. For comparison, control white noise 

epochs were subjected to the same analysis (filtering, SL computation and DFA).  The 

exponents obtained had a trend (p < 0.10) in the direction of smaller DFA exponents  for 

the AD patients than  for the subjects with subjective memory complaints (Stam et al., 

2005). 
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6. Discussion 
 

In this thesis, the SL algorithm was improved in P1 in order to account for 

the time-frequency content of the recurring patterns in the quantification of 

generalized synchronization and validated by tracking recurrences in EEG data of an 

epileptic seizure corresponding to those expected by visual inspection. The method 

was further applied in P2 to MEG data of AD patients and a decrease of left fronto-

temporal and fronto-parietal resting-state functional connectivity was found in the 

lower alpha (8–10 Hz) band, whereas no significant differences were found in this 

band with coherence. DFA of MEG data from AD patients (P3) revealed a decrease 

in LRTC on time scales of 1–25 seconds in ongoing alpha oscillations (6–13 Hz), 

corroborating the hypothesis that physiological memory may be important for 

cognitive memory. Finally, DFA of SL time series obtained from resting-state EEG 

data (P4) resulted in trends towards smaller exponents for the AD patients than for 

subjects with subjective memory complaints for the lower alpha (8–10 Hz) and beta 

bands showing that the complexity of SL time series may capture differences in the 

spatio-temporal dynamics of oscillatory activity in these two groups. 

 

6.1 Physiology of recurrent patterns in neuronal activity 

 

Synchronization likelihood may become an important tool in cognitive 

research due to the ability to detect linear and nonlinear interactions between brain 

regions. SL may be used to study ongoing data since it automatically detects 

recurrences without a priori assumptions regarding the times of interactions. SL may 
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be a valuable algorithm for testing whether generalized synchronization is an 

important phenomenon in the human brain. Since the existence of recurrences is the 

assumption for studying generalized synchronization, it is recommended that special 

attention is paid to the visual inspection of patterns picked up by the algorithm as 

well as the temporal distribution of the occurrence of recurrences. SL is based on the 

search for a constant number of most similar patterns that represent the system at the 

same state in different time intervals. In some situations the method might pick up 

only random noise or recurrences representing the stability of the system in a certain 

state as opposed to the situation when the system comes back to a certain state after 

being in a different one. 

Very similar patterns in neighbouring channels might be the result of volume 

conduction effects rather than synchronization. Strategies to avoid this situation 

should be considered in the decision of a SL analysis framework, though classical 

correlation analysis based on coherence suffers from the same problem. An option 

might be the use of source modelling, having the advantage of decreasing the 

computational time. It is in my opinion, a better option to look in more detail into 

pair-wise combination of sources, rather than computing SL for a large number of 

sensors and average the obtained time series over brain regions. Besides sparing time 

spent with redundant computations, i.e., computing SL for pairs of channels that 

reflect the same brain sources, the source approach would allow for visual inspection 

of the recurrent patterns and their temporal distribution as suggested above, which 

may reduce the probability of averaging out differences between groups of healthy 

controls and patients at specific channel combinations [that's what you mean?] and 

would bring advantages for the comparison between results obtained using MEG 

systems with axial or planar gradiometers. A deeper knowledge of the recurrent 

patterns possibly present in ongoing brain data would strengthen the interpretation of 

SL results and is likely to motivate a wider application of the algorithm. 
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6.2 The role of alpha oscillations  

 

Several decades after the discovery of the so-called alpha activity there is 

still no consensus on the functional role of these oscillations and little is known about 

their mechanism of generation (Steriade, 2000). The initial idea that alpha 

oscillations were important for the maintenance of an ‘idling’ state of the brain 

(Adrian 1934) was based on attenuation by eye opening, visual stimuli and by 

increased attentiveness. An inhibition theory suggesting that alpha activity prevents 

flow of information into other active areas has become increasingly popular 

(Klimesch et al., 2007). A competing hypothesis is that not only alpha but 

simultaneous alpha, beta and gamma oscillations are directly involved in the 

selection and maintenance of neuronal object representation during working memory, 

perception and consciousness (Palva and Palva, 2007). In fact alpha 

desynchronization has been found to be accompanied by beta desynchronization and 

alpha synchronization by beta synchronization (Pfurtscheller and Klimesch, 1992). 

 

Definition of “lower” and “upper” alpha and AD slowing 

 

The definition of a lower alpha defined in the frequency band                                    

8–10 Hz and an upper alpha of 10–13 Hz, used in Publications P2 and P4 of this 

thesis, was based on the definition by Klimesch that associated the lower alpha to 

attention and upper alpha (10–12 Hz) to stimulus encoding and long term memory 

processes (Klimesch, 1996). Differential reactivity of lower and upper alpha band 

may, however, also reflect differential involvement of alpha from different 

anatomical locations, because alpha activity from posterior sites tends to have a 

higher frequency than that of anterior sites (Hari and Salmelin, 1997; Klimesch et al., 

2000). For P3, the alpha band was defined as a broad band from 6 to 13 Hz in order 

to include the peaks of the AD patients that were shifted to lower frequencies and 

thus avoid amplitude confounds on the DFA analysis. 
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6.3 Conclusion and Outlook 

 

Longitudinal studies may give an important contribution to the evaluation of 

candidate Alzheimer’s disease biomarkers, because they allow for tracking the 

evolution of the biomarker from a healthy value for that individual to normal aging 

or disease value and, thus, are not confounded by genetic variability. Genetic 

variance is presumably a leading cause for why several candidate biomarkers, e.g., 

based on blood tests, MRI or EEG, have not yet achieved a sensitivity that allows for 

diagnostic use. Another interesting avenue to explore in future studies is the power of 

the presented biomarkers to track the effects of medication, which should also be 

done in a longitudinal fashion by comparing biomarker values of the same patients 

before treatment started.  
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Cognitive processing requires integration of information processed
simultaneously in spatially distinct areas of the brain. The influence
that two brain areas exert on each others activity is usually governed
by an unknown function, which is likely to have nonlinear terms. If the
functional relationship between activities in different areas is domi-
nated by the nonlinear terms, linear measures of correlation may not
detect the statistical interdependency satisfactorily. Therefore, algo-
rithms for detecting nonlinear dependencies may prove invaluable for
characterizing the functional coupling in certain neuronal systems,
conditions or pathologies. Synchronization likelihood (SL) is a method
based on the concept of generalized synchronization and detects
nonlinear and linear dependencies between two signals (Stam, C.J.,
van Dijk, B.W., 2002. Synchronization likelihood: An unbiased
measure of generalized synchronization in multivariate data sets.
Physica D, 163: 236–241.). SL relies on the detection of simultaneously
occurring patterns, which can be complex and widely different in the
two signals. Clinical studies applying SL to electro- or magnetoence-
phalography (EEG/MEG) signals have shown promising results. In
previous implementations of the algorithm, however, a number of
parameters have lacked a rigorous definition with respect to the time-
frequency characteristics of the underlying physiological processes.
Here we introduce a rationale for choosing these parameters as a
function of the time-frequency content of the patterns of interest. The
number of parameters that can be arbitrarily chosen by the user of the
SL algorithm is thereby decreased from six to two. Empirical evidence
for the advantages of our proposal is given by an application to EEG
data of an epileptic seizure and simulations of two unidirectionally
coupled Hénon systems.
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Introduction

Cognition depends on coordinated neuronal activity in
spatially distinct areas of the brain (Varela et al., 2001). Two
central issues in cognitive neuroscience are to detect the brain
areas that interact during various tasks and to reveal the nature of
their interaction. It is natural to assume that the coordination of
activity or exchange of information between brain areas gives rise
to a statistical interdependence between the activities in these
areas. In other words, we may reveal the spatial functional
connectivity underlying cognitive processing by mapping the
statistical interdependencies between time series of neuronal data
recorded from different anatomical locations (Lee et al., 2003).
The evidence suggests that functional interactions are mediated by
synchronization of oscillations and that the frequency content of
these oscillations has some specificity to the function that they
serve (Sarnthein et al., 1998; von Stein and Sarnthein, 2000;
Varela et al., 2001). Nevertheless, neuronal activity patterns may
be related through nonlinear functions including strongly transient
or cross-frequency phase locking (Friston, 2000; Stam et al.,
2003; Palva et al., 2005a). To detect statistical interdependencies
that are not governed by simple linear functions, so-called
“nonlinear methods” are required.

Many coupling measures for detecting linear and nonlinear
interdependencies have been proposed (for a review, see Stam,
2005). Currently, there is no consensus on how to best detect non-
linear interdependencies in neurophysiological data (Quiroga et al.,
2002; David et al., 2004). In fact, different algorithms have been
shown to detect nonlinear interactions between brain regions (Stam
et al., 2003). The most general form of interaction between two
dynamical systems is generalized synchronization, where the state of
a response system Y is a function of the state of the driver system X:
Y=F(X) (Rulkov et al., 1995). For neural systems, this implies that if
a given area generates a specific pattern of activity (X) at different
times, the functionally connected brain areas are likely to generate
specific patterns of activity F(X) at those same points in time. Note
that the patterns in the different areas may be widely different
because of the potentially nonlinear coupling that governs the
functional relationships (in other words, F may be a nonlinear
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function). Moreover, one may be interested in the coupling between
organs that produce qualitatively different signals, e.g., heart-rate
variability and sleep EEG (Dumont et al., 2004).

A natural way to investigate generalized synchronization is to
represent the state of dynamic systems in a given time window by
vectors in the so-called state space formed by time-delay embedding
(Takens, 1981;Ott, 1993). The problem of detecting similar dynamic
states then translates into finding embedding vectors that are close in
state space. This approach was used in the interdependency measure
of generalized synchronization between two time series (Arnhold et
al., 1999). However, as pointed out previously, the interdependency
measure is sensitive to signals having different amplitudes or
different degrees of freedom (Arnhold et al., 1999; Pereda et al.,
2001). To solve this problem, Stam and van Dijk (2002) introduced a
measure of generalized synchronization termed synchronization
likelihood. In synchronization likelihood, the critical distances
determining whether state vectors are close or not are defined
separately for the two systems. The interdependency measure (S)
and the synchronization likelihood (SL) share the problem, however,
of having six parameters to be chosen by the user of the algorithms
and little is known about their influence on the estimation of
interdependency between coupled systems.

Here we argue that when choosing the values of the time-delay
parameters, the SL algorithm is implicitly biased towards detecting
patterns in certain frequency bands. Thus, we introduce lower or
upper bounds for the values of SL parameters on the basis of the
frequency range of interest and the sampling frequency of the signals.
Moreover, we show for the first time examples of recurrent patterns
detected by the SL algorithm and how these patterns are distributed in
the time series. Finally, we explain the importance of having a lower
bound for the number of recurrences and in what sense the temporal
resolution of the SL algorithm is surprisingly good.

Methods

Time-frequency synchronization likelihood

Here we describe the synchronization likelihood method with
explicit time-frequency priors. The differences between the
present and the previous version of SL are addressed in the
discussion.

The basic assumption of the method is that the state of the
system at any given moment may be represented by an embedding
vector, and thus that recurrent states are represented by similar
embedding vectors (Takens, 1981). The computation of SL
between two time series can be divided into the following five
steps: (1) definition of the frequency band of interest and band-pass
filtering; (2) construction of time-delay embedding vectors that
represent dynamical states of the neural systems; (3) localization of
the times of recurrent dynamical states in both systems; (4)
computation of the likelihood (SL) that the recurrence of a state in
one system is accompanied also by a recurrent state in the other
system; and (5) repetition of steps 2–4 at different times in order to
obtain a time series of SL values.

Definition of the frequency band of interest and band-pass
filtering

Before applying the SL algorithm, one has to decide for the
frequency band of interest, i.e., the lower and upper bounds of the
frequency content of the patterns. Note that this does not imply that
the patterns cannot have complex shapes, although this would
usually require a broad range of frequencies. The signals are then
filtered with a suitable band-pass filter.

Representation of the dynamical state of the neural systems with
time-delay embedding vectors

Following the decision on the frequency range of interest, we use
time-delay embedding to form a state-space representation of the
system dynamics. The rationale in the present study is that the state
vector must sample the signal at sufficiently short intervals to pick
up the fastest oscillation and also to be long enough to sample the
slowest oscillation. From the time series xk,i of channel k, the state
vector Xk,i representing the state of the system at time i is given by:

Xk;i ¼ ðxk;i; xk;iþL; xk;iþ2*L; N ;xk;iþðm�1Þ*LÞ ð1Þ

Here, L is the lag and m is the dimension of the embedding vector in
state space. Note that Xk,i represents the state of the system in a time
interval of length L*(m−1), but for convenience we will refer to this
interval as the state at time i, i.e., the beginning of the interval.

The SL method assumes that in a given period of time a pattern
of activity will closely repeat itself a number of times in one signal
and in the case of generalized synchronization between two signals
another pattern tends to repeat itself in the other signal at those
same times. The likelihood of repetition in the second signal may
depend, e.g., on the strength of coupling between the two systems
or on the signal-to-noise ratio of the data. The highest frequency in
the patterns was defined above (step 1) and the embedding lag is
chosen so as to sample the fastest oscillations. According to the
Nyquist sampling theorem, a dynamical process must be sampled
at minimum twice the highest frequency (HF) of its fluctuations in
order for the discrete signal to adequately represent the dynamics
of the underlying system. In practice, however, a factor of three is
commonly used (Smith, 1999):

L ¼ fs
3*HF

ð2Þ

where fs is the sampling frequency in Hz.
The lowest frequency (LF) has the longest period and thus

determines the length of the state vector:

L* m� 1ð Þ ¼ fs
LF

fm ¼ 3*HF
LF
þ 1 ð3Þ

Detection of recurrences of states in two potentially coupled
systems

Having the dynamical states of a system A represented in state
space, a criterion for when to consider states at different times
similar or “recurrent” is needed. We construct a reference vector in
channel A at time i, XA,i, and vectors XA,j at times j, ranging from
i−W2/2 to i−W1/2 and from i+W1/2 to i+W2/2 in steps of 1/fs
(Fig. 1a). The time windows W1 and W2 are defined later in this
section. The Euclidean distance between the state vectors XA,j and
the reference vector is computed (other distance measures such as
the maximum norm may also be used). The pref is now introduced
to denote the percentage of vectors XA,j that are considered close
enough to XA,i to represent the same state of the system (Fig. 2),
which leads to the definition of a critical Euclidean distance, rA,
for which: |XA,i−XA,j|<rA. A pref =0.05 means that five percent of
the vectors XA,j will be considered recurrences of XA,i. The same
procedure is applied to channel B at the same time point. The pref
is generally associated with different critical distances (rA and rB)



Fig. 2. Schematic representation of SL between two channels in terms of
state vectors and critical distances (adapted with permission from Posthuma
et al., 2005). XA,i and XB,i are the reference vectors of channels A and B,
respectively. State vectors that are closer than the critical distance are shown
inside white ellipses, whereas those that are not within the critical distance
are represented inside grey ellipses. The lines connect pairs of state vectors at
the same time point in both channels, i.e., state vectors XB=F(XA). There are
two simultaneous recurrences out of four possible. SL of channel A and B at
time i is the ratio between the number of simultaneous recurrences and the
total number of recurrences within channels. In order words, SL is an index
of the likelihood that a recurrence of a reference state in channel A is
associated also with a recurrence of a reference state in channel B. pref is the
ratio between the number of vectors closer than the critical distance and the
total number of state vectors. Note that pref is the same for A and B, while the
critical distance for A and B is usually different.

Fig. 1. Illustration of state vectors and synchronization likelihood parameters
(L, m, W1, W2 and s) with respect to the time series of channels A and B. (a)
The reference vector of channel A is denoted XA,i (thick line square) here
chosen to have embedding dimension m=3 samples (small ticks) and lag
L=2 samples (dots). The reference vector is compared with state vectors
(squares) XA,j (j=±1,2 … n) within a window ofW2. State vectors starting at
times j in the time interval outside the windowW1 and within the windowW2

(windows centered at time i) are compared with the reference vector. The
time series is indicated with a solid horizontal line and the time intervals
where the state vectors are constructed are indicated with a dashed line. The
vectors XA,j closer to the reference vector XA,i than the critical distance, rA
(see also Fig. 2) are represented in white, whereas the vectors that are not
within the critical distance are represented in grey. The white squares are
termed recurrences. Similarly for channel B, a reference vector XB,i is
compared with all state vectors XB,j (j=1,2 … n). If the vectors are closer to
XB,i than rB they are represented in white, otherwise in grey. Synchronization
likelihood is the number of simultaneous recurrences in channels A and B
(e.g., at j=3) divided by the total number of recurrences within channels (b)
In order to obtain a SL time series, a new reference vector is constructed at
time point i+ s (the arrow represents the s increment), and the procedure in
panel a is repeated with respect to the new time point (the windows W1

and W2 are now centered at i+ s).
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in the two channels, but the number of vectors within the critical
distance is determined by pref and therefore the same for the two
channels. The definition of critical distances separately for the two
channels is a crucial difference between the SL algorithm and the
nonlinear interdependency measure (Arnhold et al., 1999). Also
note that the critical distance may as well differ at different time
intervals, as it is determined for each XA,i.

To prevent the inclusion of states that are similar because of
autocorrelation effects, i.e., because states vary slowly relative to the
sampling frequency, we define a window W1 around time i, where
state vectors are not compared for their possible similarity. The
vectors starting inside the W1 window are likely to not represent a
recurrence of the reference state but the state itself (Theiler, 1986). If
W1 is twice the length of the embedding vectors, the overlap between
the first vector XA,j and the reference vector is only one sample, i.e.,
W1/2 is larger than the period of the lowest frequency in the signal
after the filtering (cf. step 1):

W1 ¼ 2*L*ðm� 1Þ ð4Þ
This definition of W1 represent a physiologically conservative

lower bound as it is well known that neuronal activity transients
may emerge or fade away within one oscillation cycle (Palva et al.,
2005b).

The windowW2 defines the time interval where the similarity of
any given state vector is compared with the reference vector. W2

has to be large enough to allocate a sufficient number of vectors in
order to make sense to take pref of them as recurrences. The
relationship betweenW2, pref and the number of recurrences (nrec) is

nrec ¼ ½W2 �W1 þ 1�*pref : ð5Þ
We consider nrec=10 a lower bound for pref=0.01 and emphasize

that it is safe to have amuch higher value of nrec because the selection
of recurrences XA,j and XB,j that do not resemble the reference
patterns XA,i and XB,i, respectively, are unlikely to be coincident.
Computation of the likelihood (SL) that states recur simultaneously
in the two systems

Having introduced a rational choice of the parameters L and m,
we can now formulate the SL at time i as:

SLi ¼ nAB
½W2 �W1 þ 1�*pref ð6Þ

where nAB is the number of simultaneous repetitions in channels A
and B given by:

nAB ¼
Xi�w1=2

j¼i�w2=2

nþ
Xiþw2=2

j¼iþw1=2

n

n ¼ h rA;i � jXA;i � XA; jj
� �

h rB;i � jXB;i � XB; jj
� �

ð7Þ
θ is the Heaviside function, which attains the value of one if the
argument is positive or zero, and the value of zero if the argument is
negative.

Having pref constant means that the number of recurrences is
fixed, whether they exist or not. It is possible that the SL algorithm



Fig. 3. An epileptic seizure filtered at 3−20 Hz, for channels F8 and F7 in an
EEG average montage. (a) The signals represented for the time interval from
5 to 25 s. Note the clear onset of the seizure around 10 s, lasting until around
20 s shown in both channels. (b) Visualization of recurrences of a reference
pattern occurring in EEG signals during an epileptic seizure. The reference
vectors (thick-line boxes) are located at time 15.6 s and have the duration of
0.2 s. The number of state vectors considered close to the reference vector in
each channel (thin-line boxes) is determined by pref (here nrec=10, see also
Eq. (5)). The state vectors comprise complex patterns with multiple
frequencies content. The vertical arrows indicate the simultaneous
recurrences. SL at time 15.6 s is the ratio between the number of
simultaneous recurrences and the number of vectors closer than the critical
distance, i.e., SL=5/10=0.5.
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considers a random pattern a recurrence because of its state vector
coincidentally being close to that of the reference pattern.
Nevertheless, the probability that such chance inclusion of random
patterns as recurrences occur at identical times in the two time
series is small (inversely proportional to the square of the number
of state vectors considered) and only simultaneous recurrences
contribute to higher values of SL. Therefore, using a higher pref
will increase the number of possible values of SL without
introducing spurious high values. Note, in the case of no coupling,
the mean SL value over time will be equal to pref.

Computation of SL for different time points
To obtain a time series of SL values, a new reference vector,XA,i+s,

is chosen and steps (2) to (4) repeated, etc. (Fig. 1b). Choosing an
increment, s, of one sample is safe; however, this is computationally
demanding and provides redundant information. Empirical testing
suggests that one may gain from s smaller than W1 in the sense that
reference patterns and SL values can vary radically on time scales
smaller than W1 (see Fig. 4). The sampling frequency of SL is the
ratio between the sampling frequency of the raw data and s.

Reference vectors at the beginning and at the end of the data set
lack data points to fit a window W2 /2 on both sides. Necessarily,
the algorithm must pay attention to these boundary conditions. In
this paper, we solved the problem by not computing the SL within
a window W2 /2 from the beginning and the end of the time series.
Another solution is to define periodic boundary conditions, i.e., to
use the points in the end of the data set to fill the missing points in
the beginning and vice versa.

In summary, the parameters necessary for computing the SL at
time i can be classified in two groups. The first group includes the
parameters related to the time-delay embedding (L and m), which
are defined as a function of the frequency band of interest and
sampling frequency. The second group includes the W1, W2 and
pref, which are related to the process of finding recurrent states
within a suitably defined window.

EEG data

EEG data of an absence seizure was acquired at 500 Hz with a
OSG Brain Lab (R) digital system at the 10–20 positions. Electrode
impedance was kept below 5 kΩ and an average reference electrode
was used, involving all electrodes except Fp2 and Fp1. EEGs were
recorded in a sound attenuated, dimly lit room while patients sat in a
slightly reclined chair. The signals were down sampled offline to
100 Hz and band-pass filtered with a 4th order Butterworth filter.
The data in EEG channels F8 and F7 were chosen for the present
study and are displayed in Fig. 3a for the pass band: 3–20 Hz.

Simulated data

To test the performance of SL in data with controlled coupling a
model of two unidirectionally coupled Hénon systems (Schiff et al.,
1996) was used:

xiþ1 ¼ 1:4� x21 þ 0:3ui
uiþ1 ¼ xi
yiþ1 ¼ 1:4� ðCxi þ ð1� CÞyiÞyi þ Bvi
viþ1 ¼ yi

8>><
>>:

ð7Þ

The state of the driver system X is given by xi and the state of
the response system Y is represented by yi. For B=0.3 the systems
are identical. The coupling parameter C gives the strength of the
coupling, ranging from zero if the systems are uncoupled system to
one if the coupling is complete.

Time series xi and yi of 4000 samples were simulated. C was
equal to zero except for the time interval between 1500 and 2500
where different values were used. For each value of C, the first
5000 iterations were discarded. We averaged over 10 realizations
considering random numbers between 0 and 1 for the initial values
of x, u, y and v.
Results

Using EEG recordings of an epileptic seizure, we compare the
performance of SL as implemented previously (Stam et al., 2003,
2005, Stam and de Bruin, 2004) and synchronization likelihood
with explicit time-frequency (TF) priors as explained in the
previous section. Previous studies used L=10 samples, m=10
samples,W1=100 samples,W2/2=10% of the length of the data set,
pref =0.01 or pref =0.05 and different sampling frequencies (200,
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250, 313 and 500 Hz). These parameter values are henceforth
referred to as “previous parameters” as opposed to “TF parameters”.

From recurrences of patterns of interest to SL

For the priors in the frequency band of 3–20 Hz and
fs=100 Hz, the TF parameters follow from Eqs. (2), (3) and (4):
L=1/fs=0.01 s, m=21/fs=0.21 s, W1=40/fs=0.4 s, W2=10 s and
pref =0.01 corresponding to nrec=10. A reference pattern and the
corresponding recurrences as detected by the SL algorithm with TF
priors are indicated in Fig. 3b. The times of recurrences in channel
F8 were similar to those expected on the basis of visual inspection.
For channel F7, the pattern at the reference time point is different
from that in channel F8, but its recurrences occasionally appear at
the same times as the recurrences in channel F8. SL is given by the
ratio between the number of recurrences that occur simultaneously
in both channels and the total number of recurrences considered in
each channel.

SL depends on the choice of the time-delay embedding parameters:
L and m

Fig. 4 shows a short segment of data and how different choices
of L and m leads to the sampling of different patterns. At 15.6 s, the
vector obtained with the TF parameters (samples represented with
black dots) tracks the pattern of interest in channel F8, while the
previous parameters do not (white circles), picking up points from
three potential occurrences of the pattern of interest. The TF
parameters also track the pattern well in the absence of high-
frequency components as seen at 15.8 s, which is just a window
Fig. 4. The reference vectors of SL with TF priors track the patterns of
interest. State vectors from Fig. 3b shown at a shorter time scale, at 15.6 s (a)
and 15.8 s (b) for channel F8. White circles represent the samples that are
selected for the reconstruction of the state vectors for the parameters used in
previous studies (L=10 samples and m=10 samples) and black circles mark
the samples of the state vectors based on time-frequency priors (L=1/fs and
m=21/fs, fs=100 Hz). The TF parameters pick up the pattern at 15.6 s with
high frequency components, as well as the pattern at 15.8 s mostly
comprising a low frequency component indicating the adaptive ability of the
SL algorithm. Note that the shift of 0.2 s corresponds to a window W1/2
with the TF parameters. Note that the previous parameters lead to under
sampling and alias-type of problems in the context of sampling theorem and
Nyquist- frequency.

Fig. 5. Stability of the SL time series computed with the parameters based on
the TF priors (L=1/fs and m=21/fs, fs=100 Hz) and the ones used in
previous studies (L=10 samples and m=10 samples). SL time series for a
sampling frequency of 100 Hz and s=1/fs for the TF parameters (a) and for
the previous parameters (b) and for s=20/fs for both sets of parameters (c).
The TF-SL for s=1/fs shows the onset and end of the seizure and when s is
increased to 20/fs, i.e., when the SL time series is re-sampled by a factor of
20, a mean value of 0.3 is maintained during the entire seizure. This means
that the TF parameters are robust to changes in the spacing of consecutive
reference vectors, i.e., the TF-SL is stable. The SL time series for the
previous parameters and s=1/fs increases from zero up to 0.6 in 0.02 s and is
unstable, e.g., it is difficult to see where the middle of the seizure is. When
the s is increased to 20/fs (0.2 s), previous SL mean value drops to 0.1 in the
middle of the seizure and there is a peak around 22 s after the seizure.
W1/2 away and thereby also pointing to a high temporal resolution
and ability to adapt to changing patterns.
SL with TF priors is insensitive to the spacing of consecutive
reference vectors

Fig. 5a shows the results obtained with the TF parameters for
s=1/fs. The SL time series shows an increase at around 10 s, which
lasts until around 18 s and then a brief increase around 20 s. Fig. 5b
shows the results with the previous parameters. The SL time
series is very unstable with large fluctuations on time scales



Fig. 6. Comparison between the classical coherence and the SL with TF
priors for the signal filtered at 3−20 Hz. Time-frequency coherence plot (a)
and classical coherence and TF-SL computed for the prior frequency bands of
3−20Hz (b). The patterns in the time-frequency plot seem to be similar for the
different frequencies. Peaks are found for lower frequencies (5−10 Hz)
around 10 s and higher frequencies (8−14 Hz) around 15 s, also a peak in
response for frequencies >15 Hz is seen around 12 s. The classical coherence
averaged in the 3−20 Hz has a higher mean value than the TF-SL; however,
coherence does not show stability during the seizure. The TF-SL increases on
the onset of the seizure around 10 s until a lower mean value compared to
classical coherence and drops back at the end of the seizure to the baseline
value it had before the seizure.
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down to 2/fs=0.02 s. Fig. 5c shows the SL time series obtained
with the TF and the previous parameters for s=20. The results
with the previous parameters are not robust to a change of s. The
SL time series only shows a small increase around 10 s that ends
before 15 s when the spacing of consecutive reference vectors
increases. The highest values occur at around 18 and 22 s, times
far after the onset of the seizure. At the latency of 15.6 s, the
difference between the two SL time series is 0.6. The channels
seem, by visual inspection of the signals, to be synchronized.
Thereby, the TF parameters are sensitive to the onset of the
seizure, while the previous parameters do not.

Comparison of SL with TF priors and classical coherence

The performance of SL with TF priors in tracing the emergence
of a complex pattern of synchronized activity – as exemplified with
an epileptic seizure – is compared with classical coherence, which is
a measure of linear phase correlations in a sliding window (Welch,
1967). For this technical note, we consider it more important to
contrast the performance of SL and a classical method than proving
the presence of nonlinear dependencies per se with surrogate data
tests (Theiler et al., 1992; Prichard and Theiler, 1994).

It should be emphasized that SL provides a statistical estimate
of functional coupling and therefore is only applicable under the
assumption that certain patterns are detected repeatedly in different
sensors. This is completely analogous to coherence or phase-
locking factors, which only provide useful indices of neuronal
communication if a large number of oscillation cycles/trials are
available to estimate the consistency of linear phase relations
between oscillations.

The coherence method is based on dividing the data set into
pieces of length equal to the time resolution wanted for the
coherence method. In the present study, we were interested in
frequencies with a lower bound of 3 Hz. To get averages for the
application of the Welch method, windows with at least three
periods (1 s), and overlapping at least half of the size, are shifted
along time within the window determining the time resolution. For
our data set 5 s is appropriate. Note that 5 s is W2/2. Fig. 6a
displays the time-frequency coherence of the signal band-pass
filtered at 3–20 Hz and showing prominent coherence at all times
and in all frequency bands.

To better compare coherence and synchronization likelihood
performance in detecting the complex patterns and coupling in the
frequency range of 3–20 Hz, we averaged the time-frequency
coherence over the same frequencies (Fig. 6b). The coherence for the
3- to 20-Hz band is characterized by values between 0.5 and 0.7 s
even outside the seizure period whereas the SL time series reaches
values between 0.0 and 0.2, due to the better time resolution. The SL
time series obtained for the signal filtered at 3–20 Hz with TF priors
of the same range shows the onset of the epileptic seizure at around
10 s, lasting until around 20 s.

Application of SL to simulated data

Finally, the algorithm was applied to simulated data where the
coupling has been manipulated in a time window (Stam and van
Dijk, 2002). TF-SL increases rapidly with the sudden change of the
coupling strength from zero to 0.5 achieving peaks of high value of
synchronization (0.5), decreases in the same way when the
coupling drops from 0.5 back to zero and fluctuates around pref
when there is no coupling (Fig. 7a). The SL computed with the
previous parameters never reaches values above 0.2 and has peaks of
that amplitude outside the window where the systems are coupled.

When the value of the coupling strength used in the time
window increases, both the mean values obtained for that window
with TF-SL and SL computed with the previous parameters
increase (Fig. 7b). TF-SL increases slowly until C=0.5 and
abruptly reaches higher values for C= 0.7. SL computed with the
previous parameters gave mean values close to pref for values of
coupling strength up to 0.6.

Applying SL to a signal with a frequency content higher or lower
than specified by the frequency priors inevitably renders the
physiological interpretation of the results difficult and pre-process-
ing the data by band-pass filtering in the frequency range of interest
is therefore a crucial step when using the SL algorithm. The present
paper has focused on defining parameters for short patterns, but we
are aware that one may wish to let the SL algorithm search for
patterns that are longer than one cycle of the lowest frequency. This
is naturally achieved by a correspondingly higher value of m. The
method is suited for the analysis of the dynamics of systems with
complex patterns with broad frequency content.

Discussion

We have introduced a time-frequency approach to the
synchronization likelihood algorithm, in order to investigate linear
and nonlinear dependencies in physiological signals with only two



Fig. 7. TF-SL tracks the change of coupling strength between systems more accurately than previous SL. (a) The signals are coupled in a window between times
i=1500 and 2500 with coupling parameter equal to 0.5. The frequencies of interest: 9–16 Hz (giving embedding parameters: l=2/fs and m=7/fs, fs=100 Hz)
were chosen after analysis of the power spectrum of the simulated time series (not shown). We usedW2=1000 samples and pref=0.05. (b) Mean values, between
times i=1500 and 2500, of SL as a function of the value of the coupling strength. The results obtained with TF-SL are always larger than the ones obtained with
the previous parameter for all values of coupling strength.

1123T. Montez et al. / NeuroImage 33 (2006) 1117–1125
free parameters: W2 and pref. We have shown that the method is
robust to changes in the sampling frequency of the data and tracks
recurrences of complex patterns with broad frequency content.
Finally, our results indicate that SL is adaptive, i.e., the patterns
may change radically as the reference window is moved through
the time series, making SL a potentially powerful algorithm for the
study of linear and nonlinear coupling between dynamical systems.

A rational choice of the embedding parameters: L and m

In previous applications of SL (Stam et al., 2003, 2005, Stam
and de Bruin, 2004), the parameters L and m were fixed both to 10
samples (despite different studies using different sampling
frequencies). Here, we have shown that this is not a suitable
choice for low sampling frequencies because the L is then too large
to sample the higher frequencies. Dumont et al. (2004) computed
the embedding parameters: L was one-fourth of the time it takes for
the normalized autocorrelation function to drop to 1/e. L may then
be different for each channel and, consequently, the state vectors
will sample different higher frequencies. Our definition of the
embedding parameters is based on the frequency range of interest.
Considering a too low dimension may lead to “unfolding” of the
state space and the existence of false neighbors, i.e., points that
appear to be nearest neighbors because the embedded space is too
small (Kennel et al., 1992). Theoretically, attractors are unfolded
with an embedding dimension higher than twice the dimension of
the attractor (Takens, 1981). In the case of the epileptic seizure, the
TF approach leads to a higher m (21/fs) than the previous
parameters (10/fs); in the case of the simulated data, m is equal to
7/fs. A too high dimension makes the method more sensitive to
influence of noise.

Parameters related to finding recurrent states: W1, W2 and pref

SL is not very sensitive to the choice of W1, as long as W1 is as
long as it takes the system to change state and thereby prevent
trivial recurrences caused by the reference state being sampled
multiple times. The window W1 is not applied around the other
embedded vectors. If we get in one channel consecutive vectors for
times j and (j+1/fs) as recurrences they represent the same
recurrence. However, if in the other channel we only get the vector
embedded at time (j+1/fs) as a recurrence, we would miss the
simultaneous recurrence if W1 was defined around time j.

We did not propose a strict definition of W2 and pref because it
depends on the data. W2 has to be large enough to allocate a
sufficient number of state vectors as potential recurrent states.
From these vectors, a fraction pref is taken and considered to be
recurrences (see also Eq. (5)). Choosing W2 to be the entire data
interval with periodic boundary conditions reduces the free
parameters only to pref, with the only drawback of an increase
of the computation time. Higher pref for the same W2 implies a
larger number of recurrences. We have shown that some
recurrences are tracked more than once (at adjacent samples), so
this might mean picking up the same number of recurrences, but
each one more than once. This happens because, in some cases,
the time increment (1/fs) is not enough for the system to change
its state. It is naturally interesting to know how recurrences are
clustering; suggesting that in future applications of SL the
important patterns and the dynamics of their appearance should be
explicitly studied, e.g., in pathologic subjects or different stages of
sleep.

Physiology of recurrent patterns in neuronal activity

Recurrent patterns in neuronal activity have been recognized in
neocortical circuits of rats in vitro (Beggs and Plenz, 2004;
Rosanova and Ulrich, 2005); in primary visual cortex in vivo
(Ikegaya et al., 2004, Kenet et al., 2003), cerebellum and red
nucleus (Kalużny and Tarnecki, 1993) and in primary somatosen-
sory cortex (Rosanova and Ulrich, 2005) of anesthetized cats, as
well as in hippocampus of rats (Nádasdy et al., 1999). Altogether,
these studies suggest that recurrent patterns are common in
neuronal systems. SL and other algorithms that aim at quantifying
generalized synchronization assume that when a given activity
pattern is repeated in a certain area, functionally connected areas
also tend to exhibit repetitions of a certain activity pattern.
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Generally speaking, SL may detect spatiotemporally distributed
processing that involves not only linear interactions between
neuronal populations – such as coherence in distinct frequency
bands (Fries, 2005) – but also nonlinear interactions. A nonlinear
interaction between two brain regions may show up as radically
different temporal activation patterns in recordings from these
regions. This is a well-known phenomenon in the study of event-
related fields, where the time-frequency profile of activations
recorded over sensory and association cortices may differ
significantly, although clearly a result of uni- or bi-directional
neuronal communication. One advantage of SL, in addition to its
potential of also detecting nonlinear interactions, is the absence of
a priori assumptions regarding the times of interactions: recurrent
patterns within channels and across channels are detected
automatically and may therefore equally well be studied in
ongoing data without well-defined stimulus- or task-induced
activations. Nonlinear transient patterns are thought to mediate
adaptive perceptual synthesis and sensorimotor integration (Fris-
ton, 2000) and the SL algorithm may therefore become an
important tool in cognitive research.

The adaptive nature of SL

We showed that the SL method is better than classical
coherence at tracking the onset of an epileptic seizure. It has a
higher temporal resolution and is able to follow the synchroniza-
tion between two channels with complex activity patterns. This is
an advantage when compared to the computation of coherence as a
function of time and frequency. We have shown that the TF-SL is
able to pick up completely different patterns at a distance of W1/2,
some patterns with high frequency components, others with low
and also other patterns with a combination of high and low
frequencies within the frequency band of interest. The results of the
tests with the simulated data showed that the temporal resolution of
the TF-SL allows the detection of sharp changes of coupling
between nonlinear systems and the mean value reflects the strength
of the coupling.

Nonlinear methods are needed for studying neuronal activity
patterns related through nonlinear functions (Friston, 2000; Stam
et al., 2003; Palva et al., 2005a). The complexity of the problem –

to detect and quantify functional relationships of an arbitrary form
in noisy signals from stochastic systems with nonlinear coupling –

is probably so great that no single algorithm with a fixed set of
parameters will ever suffice. Each method extracts different
information from the data and the use of different measures might
be an interesting approach in some cases. Phase synchronization,
e.g., discloses correlations between the phases of systems
independently from amplitude relationships (for a review, see
Pereda et al., 2005). To discuss effects of amplitude on SL, two
situations have to be considered: differences in amplitude within
the same channel and between the channels. Within the channel,
the sliding window might miss patterns with different amplitudes
as recurrences at one time point, but at another time point those
patterns will be used as the reference, and the comparison with the
paired channel will be done again. Thus, if the channels continue
to be synchronized, SL will not be affected. Differences in
amplitudes between channels only cause problems with a constant
critical distance and not with a fixed pref. Every analysis has
assumptions concerning the relevant time scales of the dynamics.
The present paper defines the synchronization likelihood para-
meters with explicit time-frequency priors, which clarifies the
assumptions of the algorithm and facilitates future applications
and interpretation of results.
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Statistical interdependencies between magnetoencephalographic sig-

nals recorded over different brain regions may reflect the functional

connectivity of the resting-state networks. We investigated topograph-

ic characteristics of disturbed resting-state networks in Alzheimer’s

disease patients in different frequency bands. Whole-head 151-

channel MEG was recorded in 18 Alzheimer patients (mean age

72.1 years, SD 5.6; 11 males) and 18 healthy controls (mean age 69.1

years, SD 6.8; 7 males) during a no-task eyes-closed resting state.

Pair-wise interdependencies of MEG signals were computed in six

frequency bands (delta, theta, alpha1, alpha2, beta and gamma) with

the synchronization likelihood (a nonlinear measure) and coherence

and grouped into long distance (intra- and interhemispheric) and

short distance interactions. In the alpha1 and beta band, Alzheimer

patients showed a loss of long distance intrahemispheric interactions,

with a focus on left fronto-temporal/parietal connections. Functional

connectivity was increased in Alzheimer patients locally in the theta

band (centro-parietal regions) and the beta and gamma band

(occipito-parietal regions). In the Alzheimer group, positive correla-

tions were found between alpha1, alpha2 and beta band synchroni-

zation likelihood and MMSE score. Resting-state functional

connectivity in Alzheimer’s disease is characterized by specific

changes of long and short distance interactions in the theta, alpha1,

beta and gamma bands. These changes may reflect loss of anatomical

connections and/or reduced central cholinergic activity and could

underlie part of the cognitive impairment.
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Introduction

The neurophysiological mechanisms that underlie cognitive and

behavioral dysfunction in Alzheimer’s disease (AD) are still

incompletely understood. Despite an enormous increase in knowl-

edge about the cellular, molecular, vascular (chronical cerebral

hypoperfusion) and genetic processes involved in AD pathology,

the relationship between these fundamental changes and abnormal

functioning of large scale brain networks remains unclear.

One approach to this problem has concentrated on the idea that

AD pathology at the cellular and molecular level could give rise to

impaired activation of specific brain regions or a slowing down of

local electrophysiological oscillatory activity. Evidence for such

local abnormalities has been found with fMRI studies showing

impaired activation, in particular, of the hippocampus and related

areas during memory tasks (Rombouts et al., 2000). Neurophysio-

logical techniques such as EEG and more recently MEG have also

been used to identify local physiological abnormalities (for a

review, see Jeong, 2004). EEG studies have demonstrated a

slowing of the dominant rhythms, in particular, over the posterior

temporal parietal and occipital brain areas (Boerman et al., 1994;

Jeong, 2004; Jonkman, 1997). This EEG slowing has been

correlated with brain atrophy, APOE genotype and low central

cholinergic activity (Lehtovirta et al., 1996; Riekkinen et al.,

1991). MEG studies have confirmed the notion of a slowing of

brain rhythms and have also suggested an anterior displacement of

the sources of these rhythms (Berendse et al., 2000; Fernandez et

al., 2002, 2003, 2006; Maestu et al., 2001, 2003, 2004, 2005;

Osipova et al., 2005). However, a limitation of these approaches is

that it is unclear how these local abnormalities influence the

functioning of the brain as an integrated system.

A promising alternative approach focuses on connections rather

than on local dysfunction. A central problem in cognitive

neuroscience is the question how different, widely distributed
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and specialized brain areas integrate their activity. It is widely

believed that such large scale functional integration is crucial for

higher cognitive and behavioral functioning (Fuster, 2003;

Mesulam, 1990, 1998; Tononi et al., 1998). One candidate

mechanism for large scale functional integration is the phenome-

non of synchronization or temporal correlations between neural

activity in different brain regions (Le van Quyen, 2003; Varela et

al., 2001). Synchronization of brain regions can be studied by

measuring statistical interdependencies (functional connectivity)

between physiological signals such as fMRI BOLD, EEG or MEG

from different brain regions either during a resting state or during a

task (Lee et al., 2003; Fingelkurts et al., 2005; Pereda et al., 2005;

Stam, 2005). Studies of functional connectivity have revealed the

existence of synchronized neural networks in different frequency

bands and involving different brain regions. For instance, working

memory is associated with long distance interactions in the theta

band, while gamma synchronization may be related to perception

and consciousness (Rodriguez et al., 1999; Sarnthein et al., 1998;

Stam et al., 2002a; Micheloyannis et al., 2005). Large scale low

frequency synchronization has been associated with a context of

cognition, while smaller scale high frequency synchronization

might be related to content (Palva et al., 2005).

This raises the question whether AD is perhaps better character-

ized by abnormalities at the network level in addition to, or instead

of, the well-known local disturbances. Disturbed functional con-

nectivity would support a Fdisconnection hypothesis_ of cognitive
dysfunction in AD (Delbeuck et al., 2003). Several EEG studies

have demonstrated a lower coherence, a linear measure of functional

connectivity, of EEG, especially in the alpha band, in AD (Adler et

al., 2003; Babiloni et al., 2004a; Besthorn et al., 1994; Dunkin et al.,

1994; Hogan et al., 2003; Jelic et al., 1996; Jiang, 2005; Koenig et

al., 2005; Knott et al., 2000; Leuchter et al., 1992; Locatelli et al.,

1998; Pogarell et al., 2005; Stevens et al., 2001). Changes in

coherence outside the alpha band have been reported less frequently,

and controversy exists about the question whether delta and theta

band coherence are decreased or increased in AD.

Use of nonlinear measures has also suggested a loss of

functional connectivity in AD, especially in the alpha and beta

bands (Babiloni et al., 2004a,b; Jeong et al., 2001; Pijnenburg et

al., 2004; Stam et al., 2003a). MEG may be more suitable than

EEG to assess functional connectivity since MEG does not require

the use of a reference and is more sensitive to nonlinear

correlations (Stam et al., 2003b). In a pilot study, Berendse et al.

showed a lower coherence in all frequency bands in AD patients

(Berendse et al., 2000). More recently, we used the synchronization

likelihood, a measure of generalized synchronization, to study

functional connectivity in a larger group of AD subjects and

controls (Stam and van Dijk, 2002; Stam et al., 2002b). This study

revealed a lower level of synchronization in the upper alpha band,

the beta and the gamma band in AD (Stam et al., 2002b). However,

lower levels of functional connectivity per se may not yet explain

why the large scale brain networks are functioning abnormally.

Recently, we found that in AD abnormal topographic organization

of large scale brain networks was present, with loss of so called

Fsmall-world_ features which correlated with MMSE scores (Stam

et al., 2006). This points to the possibility that in AD a specific loss

of certain long or short distance connections occurs, involving

brain regions at risk in AD.

The present study was undertaken to study in more detail

resting-state functional connectivity changes in AD. In particular,

we addressed the question whether AD might be associated with a
specific loss of either long distance or short distance interactions in

particular regions and frequency bands. To this end, MEG was

recorded during an eyes-closed no-task state in 18 AD patients and

18 healthy controls. The synchronization likelihood and coherence

were computed between all pairs of sensors for signal filtered in

delta, theta, alpha1, alpha2, beta and gamma bands. SL and

coherence values were averaged for long distance (intra- and

interhemispheric) and short distance local sensor pairs.
Methods

Subjects

The study involved 18 patients (mean age 72.1 years, SD 5.6;

11 males; mean MMSE 19.2, range: 13–25) with a diagnosis of

probable AD according to the NINCDS-ADRDA criteria

(McKhann et al., 1984) and 18 healthy control subjects (mean

age 69.1 years, SD 6.8; 7 males; mean MMSE 29, range: 27–30),

mostly spouses of the patients. Patients and control subjects were

recruited from the Alzheimer Center of the VU University Medical

Center. Subjects were assessed according to a clinical protocol,

which involved history taking, physical and neurological exami-

nation, blood tests, MMSE (Folstein et al., 1975) neuropsycho-

logical work up (administration of a battery of neuropsychological

tests), MRI of the brain according to a standard protocol and

routine EEG. The final diagnosis was based upon a consensus

meeting where all the available clinical data and the results of the

ancillary investigations were considered. The study was approved

by the Local Research Ethics Committee, and all patients or their

caregivers had given written informed consent.

MEG recording

Magnetic fields were recorded while subjects were seated inside

a magnetically shielded room (Vacuumschmelze GmbH, Hanau,

Germany) using a 151-channel whole-head MEG system (CTF

Systems Inc., Port Coquitlam, BC, Canada). Average distance

between sensors in this system is 3.1 cm. A third-order software

gradient (Vrba et al., 1999) was used with a recording pass band of

0.25 to 125 Hz. Sample frequency was 625 Hz. Fields were

measured during a no-task eyes-closed condition. At the beginning

and at the end of each recording, the head position relative to the

coordinate system of the helmet was recorded by leading small

alternating currents through three head position coils attached to

the left and right pre-auricular points and the nasion on the

subject’s head. Head position changes during the recording up to

approximately 1.5 cm were accepted. During the MEG recording,

patients were instructed to close their eyes to reduce artefact

signals due to eye movements.

For further off-line processing, the recordings were converted

to ASCII files and down-sampled to 312.5 Hz. For each subject,

three artefact-free epochs of 4096 samples (13,083 s) were

selected by two of the investigators (BFJ and IM). Visual

inspection and selection of epochs were done with the

DIGEEGXP software (CS).

Nonlinear data analysis

Nonlinear correlations between all pair-wise combinations of

MEG channels were computed with the synchronization



Fig. 2. Mean theta band SL (error bars indicate standard deviation) of

Alzheimer patients and healthy controls for ten local regions (L = left; R =

right hemisphere. cen = central; fron = frontal; occ = occipital; par =

parietal; tem = temporal). For each region, the mean SL values obtained for

all possible pairs of sensors within that region were averaged. SL was

higher in Alzheimer patients at left and right central and parietal regions; in

the other regions, SL in the patients was lower than or equal to that of the

control subjects.
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likelihood (Stam and van Dijk, 2002). Mathematical details can

be found in Appendix A; here, we give a brief description. The

synchronization likelihood (SL) is a general measure of the

correlation or synchronization between two time series which is

sensitive to linear as well as nonlinear interdependencies. The

SL fluctuates around Pref (a small positive number) in case of

independent time series and reaches the value of 1 in case of

maximally synchronous signals. Pref is a parameter which has

to be chosen; in the present study, Pref was set at 0.01. The

basic principle of the SL is to divide each time series into a

series of Fpatterns_ (roughly, brief time intervals containing a

few cycles of the dominant frequency) and to search for a

recurrence of these patterns. The SL then is the chance that

pattern recurrences in time series X coincide with pattern

recurrences in time series Y; Pref is the small but non-zero

likelihood of coincident pattern recurrence in the case of

independent time series. The end result of computing the SL

for all pair-wise combinations of channels is an N � N matrix

with N equal to 149 (sensor 150 and 151 were not used),

where each entry Ni ,j contains the value of the SL for the

channels i and j.

SL was computed for the following frequency bands: delta

(0.5–4 Hz), theta (4–8 Hz), alpha1 (8–10 Hz), alpha2 (10–

13 Hz), beta (13–30 Hz) and gamma (30–45 Hz). Digital,

zero-phase lag filtering was done off-line. Results for the three

epochs were averaged. Further averaging was done to obtain

long distance intra- and interhemispheric and short distance

local measures. For this, MEG channels were grouped into

(left and right) central, frontal, occipital, parietal and temporal

regions (based upon the naming of the CTF sensors). Long

distances (8 intrahemispheric: fronto-temporal, fronto-parietal,

parieto-occipital, occipito-temporal; 5 interhemispheric: central,

frontal, occipital, parietal and temporal) involved correlations

between two different regions (within one hemisphere and

homologue regions of two hemispheres), and short distances

involved correlations within one region. Midline sensors were

not used. The procedure is illustrated in Fig. 1.
Fig. 1. Illustration of the allocation of sensor pairs to short and long

distances. The figure shows the sensor positions of the CTF MEG system

projected onto a two-dimensional surface. Sensors are grouped into frontal

(red), central (purple), parietal (yellow), occipital (blue) and temporal

(green) regions for both hemispheres. The short distance SL was computed

as the average SL between all sensor pairs within one region (two such pairs

are shown for the left frontal region). Long distance SL was computed from

sensor pairs where one sensor was in one region, and the other sensor was

in another region. This is illustrated for right occipito-temporal long

distance SL and for temporal interhemispheric long distance SL.
Linear analysis

Linear correlations between all pair-wise combinations of MEG

channels were computed with coherence analysis (Nunez et al.,

1997; Nolte et al., 2004).The complex coherency between two time

series can be defined as the cross spectrum divided by the product

of the two power spectra. As described by Nolte et al. (2004), its

mean overall frequencies can alternatively be computed via the

mean over time of the corresponding analytical signals like:

c ¼ bA1A2e
iDf�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bA2
1�bA

2
2�

p ð1Þ

Here, A1 and A2 are the amplitudes of the two time series, and

D/ is the instantaneous phase difference between (the Hilbert

transforms of) the two time series. The absolute value of coherency

is coherence bounded between 0 and 1. Coherence was computed

all for pairs of channels, for the six frequency bands described

above. Results were averaged for long distance intra- and

interhemispheric and short distance channel pairs as described

for the synchronization likelihood. For the beta band, we also

computed the crosscorrelation (correlation coefficient between the

two time series) to check whether any significant effects detected

by this basic measure would also be picked up by the coherence

and SL analysis.

Statistical analysis

Statistical analysis was done with SPSS for Windows (version

10.0.7). For each frequency band, three separate repeated-

measures ANOVAs were done, using Greenhouse–Geisser

corrected degrees of freedom to correct for lack of sphericity.

In some cases (when the ANOVA showed significant main effects

or interactions), t test was used for detailed analysis. For the long

distance intrahemispheric data, the repeated-measures factor had

8 levels (left and right fronto-temporal, fronto-parietal, parieto-

occipital, occipito-temporal); for the long distance data, the

repeated-measures factor had 5 levels (central, frontal, occipital,

parietal and temporal) and for the short distance data the



Fig. 3. Schematic illustration of SL (SL) results for the alpha1 band. A.

Long distances. Decrease of bilateral fronto-temporal and left fronto-

parietal SL in Alzheimer patients. B. Short distances. Local decrease of SL

in right frontal region. Lines correspond to significant changes of average

SL between two regions and squares to significant changes of local SL (thin

line/light square: P < 0.05; thick line/dark square: P < 0.01; blue:

Alzheimer lower than controls; red: Alzheimer higher than controls;

significance is based upon two-tailed t tests and intended for illustration;

formal testing was based upon a repeated-measures ANOVA).

Fig. 5. Correlation between MMSE (15 Alzheimer patients for whom a

score was available) score and averaged interhemispheric SL in the alpha1

band. R = 0.727; P = 0.002.
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repeated-measures factor had 10 levels (left and right central,

frontal, occipital, parietal and temporal). The group factor had

two levels (Alzheimer/control). Age was not used as a covariate

since the age difference between the groups was not significant.

A significance level of P < 0.05 was used.
Results

Nonlinear analysis

The delta band showed no significant effects involving the

factor Group. In the theta band, a significant Group � Region

interaction (F[9,306] = 2.604; P = 0.029) was found for short

distances. This interaction effect is illustrated in Fig. 2. Inspection

of Fig. 2 shows that the SL was higher in AD patients compared to

controls in the right and left parietal and to a lesser extent central

regions. This difference was significant for the right parietal region
Fig. 4. Schematic illustration of SL (SL) results for the beta band. A. Long

distances. Decrease of left fronto-temporal and fronto-parietal SL and

increase in bilateral occipito-parietal SL in Alzheimer patients. B. Short

distances. Local increase of SL in right parietal region and local decrease of

SL in left temporal region. Lines correspond to significant changes of

average SL between two regions and squares to significant changes of local

SL (thin line/light square: P < 0.05; thick line/dark square: P < 0.01; blue:

Alzheimer lower than controls; red: Alzheimer higher than controls;

significance is based upon two-tailed t tests and intended for illustration;

formal testing was based upon a repeated-measures ANOVA).
(two-sided t test, P = 0.037) In the other regions, SL was slightly

lower in the AD group or comparable between the two groups. The

interaction thus reflects a selective increase of SL in the central

parietal areas in the AD patients.

In the alpha1 band, a significant main effect of Group was

found (F[1,34] = 5.745; P = 0.022) for long distance intrahemi-

spheric connections. This Group effect is illustrated schematically

in Fig. 3. SL was lower in the AD group compared to the control

group; the most significant changes involved the left fronto-

temporal (t test: P = 0.009), left fronto-parietal (t test: P = 0.012)

an the right fronto-temporal (t test: P = 0.015) connections.

The alpha2 band showed no significant effects involving the

factor Group. In the beta band, two significant interactions were

present: the first involved a significant Group � Region interaction

(F[7,238] = 4.042; P = 0.023) for long distance intrahemispheric

connections, and the second one a significant Group � Region

interaction (F[9,306] = 3.610; P = 0.006) for short distance

connections. These interaction effects are illustrated schematically

in Fig. 4.

For all the frequency bands, correlations between SL measures

and MMSE scores were computed. The correlations were

computed for the AD subjects only. For the delta, theta and

gamma bands, no significant correlations were found. For the

alpha1 band, significant positive correlations were found between
Fig. 6. Correlation between MMSE (15 Alzheimer patients for whom a

score was available) score and averaged interhemispheric SL in the beta

band. R = 0.688; P = 0.005.



C.J. Stam et al. / NeuroImage 32 (2006) 1335–1344 1339
the MMSE score and average interhemispheric SL (R = 0.727; P =

0.002), interhemispheric temporal SL (R = 0.632; P = 0.011), left

frontal (R = 0.673; P = 0.006) and right frontal SL (R = 0.551; P =

0.033). The correlation between MMSE and average interhemi-

spheric SL is shown in Fig. 5.

For the alpha2 band, significant positive correlations between

SL and MMSE were found for interhemispheric connections (R =

0.690; P = 0.005), temporal interhemispheric connections (R =

0.578; P = 0.024), left frontal local connections (R = 0.532; P =

0.041) and left temporal local connections (R = 0.526; P = 0.044).

In the beta band, significant positive correlations between SL and

MMSE were found for right temporo-occipital connections (R =

0.599; P = 0.018), average interhemispheric SL (R = 0.688; P =

0.005) and interhemispheric temporal SL (R = 0.619; P = 0.014).

The correlation between MMSE and average interhemispheric SL

is shown in Fig. 6.

Linear analysis

Coherence showed no significant effects of Group or Group �
Region interactions for the delta, theta and alpha1 bands. In the

alpha2 band, there was a significant Group � Region interaction

for short distances (F[9,306] = 2.372; P = 0.033). Post hoc t tests

only showed a higher coherence in AD patients at the right parietal

region (t test: P = 0.026). In the beta band, there was a significant

Group � Region interaction for long intrahemispheric distances

(F[7,238] = 4.044; P = 0.012) and for short distances (F[9,306] =

4.700; P = 0.001). These interactions are illustrated in Fig. 7. AD

patients had a lower left fronto-temporal coherence (t test: P =

0.010) and a higher left (t test: P = 0.038) and right (t test: P =

0.004) parietal coherence. Short distance coherence was lower in

the AD group in the left temporal region (t test: P = 0.044) and

higher in left (t test: P = 0.016) and right (t test: P = 0.001) parietal

regions. In the gamma band, there was a significant main effect of

Group for long distances (F[1,34] = 4.755; P = 0.036). AD

patients had higher left (t test, P = 0.023) and right (t test, P =

0.003) parieto-occipital coherence.
Fig. 7. Schematic illustration of coherence results for the beta band. A.

Long distances. Decrease of left fronto-temporal coherence and increase in

bilateral occipito-parietal coherence in Alzheimer patients. B. Short

distances. Local increase of coherence in right and left parietal regions

and local decrease of SL in left temporal region. Lines correspond to

significant changes of average coherence between two regions and squares

to significant changes of local coherence (thin line/light square: P < 0.05;

thick line/dark square: P < 0.01; blue: Alzheimer lower than controls; red:

Alzheimer higher than controls; significance is based upon two-tailed t tests

and intended for illustration; formal testing was based upon a repeated-

measures ANOVA).
For the beta band, results were checked with a crosscorrelation

analysis. For long distance intrahemispheric crosscorrelations,

there was a significant Group � Region interaction (F[7,238] =

4.013; P = 0.005). t tests showed a lower correlation in the AD

group for left fronto-temporal connections (t test: P = 0.006) and

higher correlations in the AD group for left (t test: P = 0.010) and

right (t test: P = 0.023) parieto-occipital connections. For long

distance, interhemispheric correlations no significant effects were

found. For short distances, a significant Group � Region

interaction was found (F[9,306] = 4.009; P = 0.003). The

correlation was lower in the AD group at left temporal (t test: P =

0.017) and right frontal (t test: P = 0.038) locations; it was higher

in the AD group at left (t test: P = 0.012) and right (t test: P =

0.001) parietal regions.
Discussion

This study demonstrated a specific pattern of changes in

resting-state functional connectivity in AD patients. SL was

increased in the theta band over the central and parietal areas

and in the beta band over the parietal and occipital areas.

Coherence showed a similar pattern of parieto-occipital increase

in AD in alpha2, beta and gamma bands. In contrast, SL was

decreased in the alpha1 band for long distance intrahemispheric

sensor pairs, and both SL and coherence (and crosscorrelation)

were decreased in the beta band for long distance frontal temporal/

parietal and short distance left temporal sensor pairs. Lower SL,

especially for temporal interhemispheric connections correlated

with disease severity as expressed by a lower MMSE score.

In studies of this kind, it is always important to consider the

question whether correlations between signals recorded at different

sensors can be interpreted in terms of physiological interactions

between different brain regions. In the case of EEG, an active

reference electrode can cause spurious correlations between signals

recorded at different electrodes (Guevara et al., 2005; Nunez et al.,

1997). MEG does not require the use of a reference electrode and

thus may be more suitable for estimating functional connectivity

than EEG (Guevara et al., 2005). However, even with MEG

correlations between signals from nearby sensors could be due to

common sources rather than true interactions. Furthermore, the

location of the sources giving rise to the signal recorded at the

sensors is generally not known. This is the well-known problem of

volume conduction that may give rise to spurious correlations in

sensor space.

One possible solution is to estimate correlations between

signals from reconstructed sources (Fsource space_) rather than

the actually recorded signal (Fsignal space_) (David et al., 2002;

Gross et al., 2001; Hadjipapas et al., 2005). However, no unique

way exists to reconstruct the sources, and the source reconstruction

algorithm used could influence the interdependencies between the

sources (Hadjipapas et al., 2005). A possible alternative is the use

of the imaginary component of the coherency, which is not

sensitive to a linear mixing of independent sources (Nolte et al.,

2004). However, even this approach may not always be effective

(Wheaton et al., 2005). In the present study, we adopted a

pragmatic approach, restricting the analysis to signal space, and

grouping the sensor pairs in long and short distances. While SL and

coherence estimated in this way will be influenced by volume

conduction, it is less likely that volume conduction can explain

group differences in SL between AD patients and controls.
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Furthermore, several of our main results involve changes in long

distance interactions which are less likely to be due to volume

conduction. Note that changes observed in regions of the signal

space cannot be interpreted as reflecting physiological changes in

the brain regions underlying the sensors. Even so, we should stress

that MEG is especially sensitive to superficial cortical sources. The

changes over parietal regions we describe are supported by MRI

findings with voxel-based morphometry (Karas et al., 2004).

Theoretically, estimates of statistical interdependencies be-

tween different channels could also be influenced by differences

in signal power. Assuming a constant level of measurement/

background noise, signals with lower power could be expected

to have a lower signal-to-noise ration. A lower SNR ration might

produce biased lower values of functional connectivity. However,

we consider it unlikely that the main results of the present study

can be explained in this way. The absolute signal power in the

beta band in the AD group was either comparable to or lower

than the power in the control group (Fig. 8). All three measures

(SL, coherence and crosscorrelation) showed an increase of

parieto-occipital connectivity in the AD group, while the power

in the AD group was significantly lower in the parietal and

occipital regions. Furthermore, the significant loss of connectiv-

ity in left fronto-temporal regions in the AD group was not

associated with significant power changes at all. Thus, the

assessment of functional connectivity provides information that is

independent from signal power and is more likely related to

functional interactions between brain regions.

Another methodological consideration concerns the use of

drugs that influence the cholinergic system. In theory, such drugs

could influence the EEG and the MEG, most likely by reverting the

slowing and loss of connectivity due to the AD pathology (Adler

and Brassen, 2001; Osipova et al., 2003). In our study, 6 of the 18

patients used cholinesterase inhibitors. To determine the possible

influence of drug use on our results, we compared the SL

(averaged over all possible pairs of sensors) in the theta, alpha1

and beta band between AD patients who did and who did not use

cholinesterase inhibitors. No significant differences were found

which suggests that our results are unlikely to be strongly

influenced by medication effects.
Fig. 8. Mean beta band absolute power (error bars indicate standard

deviation) of Alzheimer patients and healthy controls for ten local regions

(L = left; R = right hemisphere. cen = central; fron = frontal; occ = occipital;

par = parietal; tem = temporal). For each region, the mean power values

obtained for all sensors within that region were averaged. Power was

significantly lower in Alzheimer patients at left and right parietal and

occipital regions. *t test: P < 0.05 **t test: P < 0.01.
Our study was conducted during an eyes-closed no-task

condition. One might ask whether such a Fresting state_ is the

most effective condition for demonstrating abnormalities of

functional connectivity in AD. For instance, a recent EEG study

using spectral analysis and cognitive tasks has suggested that task-

induced EEG changes might increase the discrimination between

controls and MCI subjects (van der Hiele et al., 2006). However, a

number of recent fMRI studies have shown that the resting state is

a far more stable and active condition than has often been assumed

(Gusnard and Raichle, 2001). The resting state is characterized by

the activation of a Fdefault_ network, which consists of frontal,

posterior cingulate, parietal and medial temporal areas (Laufs et al.,

2003). Abnormalities of this resting-state network have been

demonstrated in AD (Lustig et al., 2003). Although the use of

specific tasks, aimed at activating brain areas assumed to be

involved in AD, might be expected to be more sensitive in

demonstrating abnormalities, this is often not the case. One reason

may be that the pathology may be associated with abnormally high

as well as abnormally low task-related activation, which seriously

complicates interpretation of the results (Osipova et al., 2005;

Pijnenburg et al., 2004). Furthermore, the present study confirms

that a simple resting-state condition is sufficient to demonstrate

widespread changes in functional connectivity in AD. The

relevance of resting-state SL for cognition is further supported

by the fact that alpha1 and beta band SL, especially involving

interhemispheric temporal connections, were positively correlated

to MMSE scores.

The pattern of functional connectivity changes in the present

study shows similarities as well as differences with previous EEG

and MEG work. A lower level of synchronization in alpha band

and beta band has been reported by most earlier EEG and MEG

studies (Adler et al., 2003; Babiloni et al., 2004a; Besthorn et al.,

1994; Dunkin et al., 1994; Hogan et al., 2003; Jelic et al., 1996;

Jiang, 2005; Koenig et al., 2005; Knott et al., 2000; Leuchter et al.,

1992; Locatelli et al., 1998; Pogarell et al., 2005; Stevens et al.,

2001). In contrast to our previous MEG study (Stam et al., 2002b),

we found a loss of lower instead of upper alpha band synchroni-

zation. Two factors may be involved in the differences between the

present and previous MEG study: (i) the different way in which the

embedding parameters L and M were chosen; (ii) the different

choice of frequency bands.

In the 2002 study, the choice of L and M for the computation of

the SL was still fairly arbitrary. Recently, it has been shown that an

incorrect choice of L and M can result in unexpected frequency

content of the patterns considered by the SL algorithm and that a

proper choice of L and M should take into account the low and

high frequency filters settings (Montez et al., submitted for

publication). In the present study, we used a different approach

to the choice of L and M based explicitly on the frequency content

of the data (Montez et al., submitted for publication). There was

also a different definition of the two alpha bands in the two studies:

in the previous 2002 study, alpha1 was defined as 6–10 Hz and

alpha2 as 10–14. Hz. Failure to find an effect in the lower alpha

band in the 2002 study could be due to the fact that this band

incorporated part of the theta band, where, as shown in the present

study, changes are in the opposite direction. The significant effect

in the upper alpha band in the 2002 study might be caused by

incorporating part of the beta band, which showed a significant

effect in both studies, as well as in EEG studies of SL (Stam et al.,

2003a; Pijnenburg et al., 2004). In a similar way, the significant

gamma band effects of the 2002 study partly overlap the beta band
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results of the present study. With SL, we could not demonstrate

significant effects in a higher gamma band of 30–45 Hz. In an

EEG study, Babiloni et al. demonstrated a lower SL in a wide range

of frequencies in AD patients (Babiloni et al., 2004b). This could

be due to the much larger group size of this study, although the

larger age difference between controls and patients might also have

influenced the results. In the present study, no significant age

effects were present between patients and controls.

The principal aim of the present study was to determine the

relative contribution of long distance and short distance inter-

actions in different frequency bands to impaired functional

connectivity in AD. Short and long distance interactions might

underlie local specialization and global integration of brain

dynamics, which have to be balanced to ensure optimal

information processing (Tononi et al., 1998; Van Cappellen van

Walsum et al., 2003). We used the SL as well as the more

commonly used coherence to study the contribution of short and

long distance interactions. We expected SL to be sensitive to both

nonlinear as well as linear aspects of a correlation, i.e. detects

interdependencies between complex patterns that can be different

in each channel and would not be detected by classical measures.

In the present study, SL showed group differences in the theta and

alpha1 that were not detected by coherence. In the beta band, both

SL and coherence (as well as the crosscorrelation analysis)

detected a similar pattern of fronto-temporal decrease and

parieto-occipital increase in AD. In the alpha2 and gamma band,

coherence revealed changes that were not picked up by SL. We

have previously shown that SL may be more sensitive than

coherence in detecting subtle differences between controls and AD

patients (Stam et al., 2002b). Furthermore, SL can detect weak

nonlinear coupling which has been demonstrated in MEG record-

ings (Stam et al., 2003b). The results of the present study show a

more complex picture which might be due to the fact that we have

now taken into account the spatial details of connectivity: in some

cases, linear and nonlinear measures perform equally well, in other

cases, one of the two approached may reveal information not

picked up by the other approach.

Lower SL in the alpha1 band was restricted to long distance,

intrahemispheric fronto-temporal and fronto-parietal interactions.

This might reflect loss of long distance association fibers

connecting frontal, temporal, parietal and occipital areas. The

beta band also showed a loss of long distance intrahemispheric

linear and nonlinear connectivity, involving especially left

frontal, temporal and parietal connections. Although interhemi-

spheric correlations were not significantly lower in AD subjects,

the SL did show a strong correlation with lower MMSE scores.

Of interest, lower interhemispheric coherence in AD has been

shown to be correlated with atrophy of the corpus callosum

(Pogarell et al., 2005). This further supports the concept that

lower long distance synchronization might reflect loss of

anatomical connections. Two studies suggest that the relationship

between long distance anatomical connections and functional

connectivity could be partly genetically determined. In a large

study in twins, it was shown that alpha band SL was strongly

inherited (Posthuma et al., 2005). Lower EEG coherence in AD

has been associated with the e4 allele of the APOE genotype

(Jelic et al., 1997).

Short distance linear and nonlinear interactions in the beta band

were mainly impaired in the left temporal region. The activity

recorded by the MEG sensors mainly originates in the superficial

neocortical temporal areas. Activity from the medial hippocampal
and entorhinal cortex will have a much smaller amplitude at the

scalp surface. However, both areas are strongly connected and

abnormal temporal connectivity may reflect the primary pathology

of the medial temporal lobe. Other MEG studies in AD have also

stressed the importance of the (left) temporal region (Maestu et al.,

2004, 2005). Left temporal disturbances have been associated with

a higher chance of conversion to MCI (Maestu et al., 2006).

A surprising finding in the present study was the increase in

SL and coherence of occipito-parietal connections and the right

parietal region in the beta band and for coherence also in the

alpha2 and gamma band. These regions may be relatively spared

in the early stages of AD. Thus, it seems unlikely that this local

increase in connectivity is due to loss of association fibers or

lower acetylcholine levels. A possible, but at this stage highly

speculative explanation could be that the parieto-occipital

connectivity reflects a compensation mechanism in a relatively

healthy part of the network. That the functional architecture of

widespread brain networks can be influenced even at sites far

away from local pathology has recently been demonstrated in

patients with brain tumors (Bartolomei et al., 2006). Future

studies will have to confirm the existence of the compensation

mechanism and the possible influence of treatment on this

phenomenon. More generally, it would be of interest to back up

the correlations between impaired functional connectivity de-

scribed in the present study by a more causal approach. The

hypothesis is that the extent to which treatment with cholines-

terase inhibitors or even rTMS restores normal functional

connectivity would predict their favorable impact on cognitive

functioning in AD.
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Appendix A. Mathematical background of synchronization

likelihood

The synchronization likelihood (SL) is a measure of the

generalized synchronization between two dynamical systems X

and Y (Stam and van Dijk, 2002). Generalized synchronization

(Rulkov et al., 1995) exists between X and Y of the state of the

response system is a function of the driver system: Y = F(X). The

first step in the computation of the SL is to convert the time series Xi

and Yi recorded from X and Y as a series of state space vectors using

the method of time delay embedding (Takens, 1982):

Xi ¼ Xi;XiþL;Xiþ2�L;Xiþ3�L N ;Xiþ m�1ð Þ�L
� � ð1Þ

where L is the time lag andm the embedding dimension. From a time

series of N samples, N�(m � L) vectors can be reconstructed. State

space vectors Yi are reconstructed in the same way.

SL is defined as the conditional likelihood that the distance

between Yi and Yj will be smaller than a cutoff distance ry, given

that the distance between Xi and Xj is smaller than a cutoff distance

rx. In the case of maximal synchronization, this likelihood is 1; in

the case of independent systems, it is a small, but nonzero number,

namely Pref. This small number is the likelihood that two randomly
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chosen vectors Y (or X) will be closer than the cut-off distance r. In

practice, the cut-off distance is chosen such that the likelihood of

random vectors being close is fixed at Pref, which is chosen the

same for X and for Y. To understand how Pref is used to fix rx and

ry, we first consider the correlation integral:

Cr ¼ 2

N N � wð Þ
XN
i ¼ 1

XN�w
j ¼ iþw

h r � jXi � Xjj
� � ð2Þ

Here, the correlation integral Cr is the likelihood that two

randomly chosen vectors X will be closer than r. The vertical bars

represent the Euclidian distance between the vectors. N is the

number of vectors, w is the Theiler correction for autocorrelation

(Theiler, 1986), and h is the Heaviside function: h(X) = 0 if X � 0

and h(X) = 1 if X < 0. Now, rx is chosen such that Crx = Pref and ry
is chosen such that Cry = Pref. The SL between X and Y can now be

formally defined as:

SL ¼ 2

N N � wð ÞPref

�
XN
i ¼ 1

XN�w
j ¼ iþw

h rxjXi � Xjj
� �

h ry � jYi � Yjj
� � ð3Þ

SL is a symmetric measure of the strength of synchronization

between X and Y (SLXY = SLYX). In Eq. (3), the averaging is done

over all i and j; by doing the averaging only over j, SL can be

computed as a function of time i. From Eq. (3), it can be seen that

in the case of complete synchronization SL = 1; in the case of

complete independence, SL = Pref. In the case of intermediate

levels of synchronization, Pref < SL < 1.

In the present paper, the choice of the two most important

embedding parameters L and m was based upon the frequency

content of the time series (Montez et al., submitted for

publication). L is chosen small enough to over-sample the

highest frequencies present in the signal, and the embedding

window L � m long enough to capture the period of the slowest

frequency. For a given sample frequency in Hz and low

frequency (LF) and high frequency (HF) filters in Hz, L

(expressed in samples) is chosen such that L = sample frequency

/ (HF � 4). The embedding dimension m (expressed in samples)

follows from: m = sample frequency / (LF � L). The Theiler

correction w was chosen equal to the embedding window L � m

and Pref = 0.01.

References

Adler, G., Brassen, S., 2001. Short-term rivastigmine treatment reduces

EEG slow-wave power in Alzheimer patients. Neuropsychobiology 43,

273–276.

Adler, G., Brassen, S., Jajcevic, A., 2003. EEG coherence in Alzheimer’s

dementia. J. Neural Transm. 110, 1051–1058.

Babiloni, C., Miniussi, C., Moretti, D.V., Vecchio, F., Salinari, S., Rossini,

P.M., 2004a. Cortical networks generating movement-related EEG

rhythms in Alzheimer’s disease: an EEG coherence study. Behav.

Neurosci. 118, 698–706.

Babiloni, C., Ferri, F., Moretti, D.V., Strambi, A., Binetti, G., Dal Forno, G.,

Ferreri, F., Lanuzza, B., Bonato, C., Nobili, F., Rodriguez, G., Salinari,

S., Passero, S., Rocchi, R., Stam, C.J., Rossini, P.M., 2004b. Abnormal

fronto-parietal coupling of brain rhythms in mild Alzheimer’s disease: a

multicentric EEG study. Eur. J. Neurosci. 19, 1–9.

Bartolomei, F., Bosma, I., Klein, M., Baayen, J.C., Reijneveld, J.C.,

Postma, T.J., Heimans, J.J., van Dijk, B.W., de Munck, J.C., de Jongh,
A., Cover, K.S., Stam, C.J., 2006. How do brain tumors alter functional

connectivity? A magnetoencephalography study. Ann. Neurol. 59,

128–138.

Berendse, H.W., Verbunt, J.P.A., Scheltens, Ph., van Dijk, B.W., Jonk-

man, E.J., 2000. Magnetoencephalographic analysis of cortical

activity in Alzheimer’s disease. A pilot study. Clin. Neurophysiol.

111, 604–612.

Besthorn, C., Forstl, H., Geiger-Kabisch, C., Sattel, H., Gasser, T.,

Schreiter-Gasser, U., 1994. EEG coherence in Alzheimer disease.

Electroencephalogr. Clin. Neurophysiol. 90, 242–245.

Boerman, R.H., Scheltens, P., Weinstein, H.C., 1994. Clinical neurophys-

iology in the diagnosis of Alzheimer’s disease. Clin. Neurol. Neurosurg.

96, 111–118.

David, O., Garnero, L., Cosmelli, D., Varela, F.J., 2002. Estimation of

neural dynamics from MEG/EEG cortical current density maps:

application to the reconstruction of large-scale cortical synchrony. IEEE

Trans. Biomed. Eng. 49, 975–987.

Delbeuck, X., Van der Linder, M., Colette, F., 2003. Alzheimer’s disease as

a disconnection syndrome? Neuropyschol. Rev. 13, 79–92.

Dunkin, J.J., Leuchter, A.F., Newton, T.F., Cook, I.A., 1994. Reduced

EEG coherence in dementia: state or trait marker? Biol. Psychiatry 35,

870–879.

Fernandez, A., Maestu, F., Amo, C., Gil, P., Fehr, Th., Wienbruch, Ch.,

Rockstroh, B., Elbert, Th., Ortiz, T., 2002. Focal temporoparietal slow

activity in Alzheimer’s disease revealed by magnetoencephalography.

Biol. Psychiatry 52, 764–770.

Fernandez, A., Arazzola, J., Maestu, F., Amo, C., Gil-Gregorio, P.,

Wienbruch, C., Ortiz, T., 2003. Correlations of hippocampal atrophy

and focal low-frequency magnetic activity in Alzheimer disease:

volumetric MR imaging–magnetoencephalographic study. Am. J.

Neuroradiol. 24, 481–487.

Fernandez, A., Hornero, R., Mayo, A., Poza, J., Gil-Gregorio, Ortiz, T.,

2006. MEG spectral profile in Alzheimer’s disease and mild cognitive

impairment. Clin. Neurophysiol. 117, 306–314.

Fingelkurts, A.A., Fingelkurts, A.A., Kahkonen, S., 2005. Functional

connectivity in the brain—Is it a elusive concept? Neurosci. Biobehav.

Rev. 28, 827–836.

Folstein, M.F., Folstein, S.E., McHugh, P.R., 1975. ‘‘Mini-mental state’’. A

practical method for grading the cognitive state of patients for the

clinician. J. Psychiatr. Res. 12, 189–198.

Fuster, J.M., 2003. Cortex and Mind. Unifying Cognition. Oxford Univ.

Press, New York.

Gross, J., Kujala, J., Hamalainen, M., Timmermann, L., Schnitzler, A.,

Salmelin, R., 2001. Dynamic imaging of coherent sources: studying

neural interactions in the human brain. Proc. Natl. Acad. Sci. 98,

694–699.

Guevara, R., Velazguez, J.L.P., Nenadovic, V., Wennberg, R., Senjanovic,

G., Dominguez, L.G., 2005. Phase synchronization measurements using

electroencephalographic recordings. What can we really say about

neuronal synchrony?. Neuroinformatics 3, 301–314.

Gusnard, D.A., Raichle, M.E., 2001. Searching for a baseline: functional

imaging and the resting brain. Nat. Rev., Neurosci. 2, 685–694.

Hadjipapas, A., Hillebrand, A., Holliday, I.E., Singh, K., Barnes, G., 2005.

Assessing interactions of linear and nonlinear neuronal sources using

MEG beamformers: a proof of concept. Clin. Neurophysiol. 116,

1300–1313.

Hogan, M.J., Swanwick, G.R.J., Kaiser, J., Rowan, M., Lawlor, B., 2003.

Memory-related EEG power and coherence reductions in mild

Alzheimer’s disease. Int. J. Psychophysiol. 49, 147–163.

Jelic, V., Shigeta, M., Julin, P., Almkvist, O., Winblad, B., Wahlung,

W.O., 1996. Quantitative electroencephalography power and coher-

ence in Alzheimer’s disease and mild cognitive impairment. Dementia

7, 314–323.

Jelic, V., Julin, P., Shigeta, M., Lannfelt, A., Winblad, L., Wahlund, B.,

1997. Apolipoprotein E e4 allele decreases functional connectivity in

Alzheimer’s disease as measured by EEG coherence. J. Neurol.

Neurosurg. Psychiatry 63, 59–65.



C.J. Stam et al. / NeuroImage 32 (2006) 1335–1344 1343
Jeong, J., 2004. EEG dynamics in patients with Alzheimer’s disease. Clin.

Neurophysiol. 115, 1490–1505.

Jeong, J., Gore, J.C., Peterson, B.S., 2001. Mutual information analysis of

the EEG in patients with Alzheimer’s disease. Clin. Neurophysiol. 112,

827–835.

Jiang, Z.Y., 2005. Abnormal cortical functional connections in Alzheim-

er’s disease: analysis of inter- and intra-hemispheric EEG coherence.

J. Zhejiang Univ. Sci., B 6, 259–264.

Jonkman, E.J., 1997. The role of the electroencephalogram in the diagnosis

of dementia of the Alzheimer type: an attempt at technology

assessment. Neurophysiol. Clin. 27, 211–219.

Karas, G.B., Scheltens, P., Rombouts, S.A., Visser, P.J., van Schijndel,

R.A., Fox, N.C., Barkhof, F., 2004. Global and local gray matter loss in

mild cognitive impairment and Alzheimer’s disease. NeuroImage 23,

708–716.

Knott, V., Mohr, E., Mahoney, C., Ilivitsky, V., 2000. Electroencephalo-

graphic coherence in Alzheimer’s disease: comparisons with a control

group and population norms. J. Geriatr. Psychiatry Neurol. 13, 1–8.

Koenig, T., Prichep, L., Dierks, T., Hubl, D., Wahlund, L.O., John,

E.R., Jelic, V., 2005. Decreased EEG synchronization in Alzheim-

er’s disease and mild cognitive impairment. Neurobiol. Aging 26,

165–171.

Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Salek-Haddadi, A.,

Kleinschmidt, A., 2003. Electroencephalographic signatures of atten-

tional and cognitive default modes in spontaneous brain activity

fluctuations at rest. Proc. Natl. Acad. Sci. 100, 11053–11058.

Lee, L., Harrison, L.M., Mechelli, A., 2003. A report of the functional

connectivity workshop, Dusseldorf 2002. NeuroImage 19, 457–465.

Le van Quyen, M., 2003. Disentangling the dynamic core: a research

program for a neurodynamics at the large scale. Biol. Res. 36, 67–88.

Lehtovirta, M., Partanen, J., Kononen, M., Soininen, H., Helisalmi, S.,

Mannermaa, A., Ryynanen, M., Hartikainen, P., Riekkinen Sr., P., 1996.

Spectral analysis of EEG in Alzheimer’s disease: relation to Apolipo-

protein E polymorphism. Neurobiol. Aging 4, 523–526.

Leuchter, A.F., Newton, T.F., Cook, A.A., Walter, D.O., 1992. Changes in

brain functional connectivity in Alzheimer-type and multi-infarct

dementia. Brain 115, 1543–1561.

Locatelli, T., Cursi, M., Liberati, D., Francheschi, M., Comi, G., 1998. EEG

coherence in Alzheimer’s disease. Electroencephalogr. Clin. Neuro-

physiol. 106, 229–237.

Lustig, C., Snyder, A.Z., Bhakta, M., O_Brien, K.C., AcAvoy, M., Raichle,

M.E., Morris, J.C., Buckner, R.L., 2003. Functional deactivations:

change with age and dementia of the Alzheimer type. Proc. Natl. Acad.

Sci. 100, 14504–14509.

Maestu, F., Fernandez, A., Simos, P.G., Gil-Gregorio, P., Amo, C.,

Rodriguez, R., Arrazola, J., Ortiz, T., 2001. Spatio-temporal patterns

of brain magnetic activity during a memory task in Alzheimer’s disease.

NeuroReport 12, 3917–3922.

Maestu, F., Arrazola, J., Fernandez, A., Simos, P.G., Amo, C., Gil-

Gregorio, P., Fernandez, S., 2003. Do cognitive patterns of brain

magnetic activity correlate with hippocampal atrophy in Alzheimer’s

disease? J. Neurol. Neurosurg. Psychiatry 74, 208–212.

Maestu, F., Fernandez, A., Simos, P.G., Lopez-Ibor, M.I., Campo, P.,

Criado, J., Rodriguez-Palancas, A., Ferre, F., Amo, C., Ortiz, T.,

2004. Profiles of brain magnetic activity during a memory task in

patients with Alzheimer’s disease and in non-demented elderly

subjects, with or without depression. J. Neurol. Neurosurg. Psychiatry

75, 1160–1162.

Maestu, F., Garcia-Segura, J., Ortiz, T., Montoya, J., Fernandez, A., Gil-

Gregorio, P., Campo, P., Fernandez, S., Viano, J., Portera, A., 2005.

Evidence of biochemical and biomagnetic interactions in Alzheimer’s

disease: an MEG and MR spectroscopic study. Dement. Geriatr. Cogn.

Disord. 20, 145–152.

Maestu, F., Campo, P., Gil-Gregorio, P., Fernandez, S., Fernandez, A.,

Ortiz, T., 2006. Medial temporal lobe neuromagnetic hypoactivation

and risk for developing cognitive decline in elderly population: a 2-year

follow-up study. Neurobiol. Aging 27, 32–37.
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan,

E.M., 1984. Clinical diagnosis of Alzheimer’s disease: report of the

NINCDS-ADRDA Work Group under the auspices of Department of

Health and Human Services Task Force on Alzheimer’s Disease.

Neurology 34, 939–944.

Mesulam, M.M., 1990. Large-scale neurocognitive networks and distribut-

ed processing for attention, language, and memory. Ann. Neurol. 28,

597–613.

Mesulam, M.M., 1998. From sensation to cognition. Brain 121, 1013–1052.

Micheloyannis, S., Sakkalis, V., Vourkas, M., Stam, C.J., Simos, P.G., 2005.

Neural networks involved in mathematical thinking: evidence for linear

and non-linear analysis of electroencephalographic activity. Neurosci.

Lett. 373, 212–217.

Montez, T., Linkenkaer-Hansen, K., van Dijk, B.W., Stam, C.J., submitted

for publication. Synchronization likelihood with explicit time–

frequency priors (revised manuscript).

Nolte, G., Wheaton, O.B.L., Mari, Z., Vorbach, S., Hallett, M., 2004.

Identifying true brain interaction from EEG data using the imaginary

part of coherency. Clin. Neurophysiol. 115, 2292–2307.

Nunez, P.L., Srinivasan, R., Westdorp, A.F., Wijesinghe, R.S., Tucker,

D.M., Silberstein, R.B., Cadusch, P.J., 1997. EEG coherency I:

statistics, reference electrode, volume conduction, Laplacians, cortical

imaging, and interpretation at multiple scales. Electroencephalogr. Clin.

Neurophysiol. 103, 499–515.

Osipova, D., Ahveninen, J., Kaakkola, S., Jaaskelainen, I.P., Huttunen, J.,

Pekkonen, E., 2003. Effects of scopolamine on MEG spectral power

and coherence in elderly subjects. Clin. Neurophysiol. 114, 1902–1907.

Osipova, D., Ahveninen, J., Jensen, O., Ylikoski, A., Pekkonen, E., 2005.

Altered generation of spontaneous oscillations in Alzheimer’s disease.

NeuroImage 27, 835–841.

Palva, J.M., Palva, S., Kaila, K., 2005. Phase synchrony among neuronal

oscillations in the human cortex. J. Neurosci. 25, 3962–3972.

Pereda, E., Quian Quiroga, R., Bhattacharya, J., 2005. Nonlinear

multivariate analysis of neurophysiological signals. Prog. Neurobiol.

77, 1–37.

Pijnenburg, Y.A.L., van de Made, Y., van Cappellen van Walsum,

A.M., Knol, D.L., Scheltens, Ph., Stam, C.J., 2004. EEG synchro-

nization likelihood in mild cognitive impairment and Alzheimer’s

disease during a working memory task. Clin. Neurophysiol. 115,

1332–1339.

Pogarell, O., Teipel, S.J., Juckel, G., Gootjes, L., Moller, T., Burger, K.,

Leinsinger, G., Moller, H.J., Hegerl, U., Hampel, H., 2005. EEG

coherence reflects regional corpus callosum area in Alzheimer’s disease.

J. Neurol. Neurosurg. Psychiatry 76, 109–111.

Posthuma, D., de Geus, E.J.C., Mulder, E.J.C.M., Smit, D.J.A., Boomsma,

D.I., Stam, C.J., 2005. Genetic components of functional connectivity in

the brain: the heritability of synchronization likelihood. Hum. Brain

Mapp. 26, 191–198.

Riekkinen, P., Buzsaki, G., Riekkinen Jr., P., Soininen, H., Partanen, J.,

1991. The cholinergic system and EEG slow waves. Electroencepha-

logr. Clin. Neurophysiol. 78, 89–96.

Rodriguez, E., George, N., Lachauz, J.P., Martinerie, J., Renault, B., Varela,

F.J., 1999. Perception’s shadow: long distance synchronization of

human brain activity. Nature 397, 430–433.

Rombouts, S.A.R.B., Barkhof, F., Veltman, D.J., Machielsen, W.C.M.,

Witter, M.P., Bierlaagh, M.A., Lazeron, R.H.C., Valk, J., Scheltens, P.,

2000. Functional MR imaging in Alzheimer’s disease during memory

encoding. Am. J. Neuroradiol. 21, 1869–1875.

Rulkov, N.F., Sushchik, M.M., Ysimring, L.S., Abarbanel, H.D.I., 1995.

Generalized synchronization of chaos in directionally coupled chaotic

systems. Phys. Rev., E 51, 980–994.

Sarnthein, J., Petsche, H., Rappelsberger, P., Shaw, G.L., von Stein, A.,

1998. Synchronization between prefrontal and posterior association

cortex during human working memory. Proc. Natl. Acad. Sci. 95,

7092–7096.

Stam, C.J., 2005. Nonlinear dynamical analysis of EEG and MEG: review

of an emerging field. Clin. Neurophysiol. 116, 2266–2301.



C.J. Stam et al. / NeuroImage 32 (2006) 1335–13441344
Stam, C.J., van Dijk, B.W., 2002. Synchronization likelihood: an unbiased

measure of generalized synchronization in multivariate data sets.

Physica, D 163, 236–241.

Stam, C.J., van Cappellen van Walsum, A.M., Micheloyannis, S., 2002a.

Variability of EEG synchronization during a working memory task in

healthy subjects. Int. J. Psychophysiol. 46, 53–66.

Stam, C.J., van Cappellen van Walsum, A.M., Pijnenburg, Y.A.L.,

Berendse, H.W., de Munck, J.C., Scheltens, Ph., van Dijk, B.W.,

2002b. Generalized synchronization of MEG recordings in Alzheimer’s

disease: evidence for involvement of the gamma band. J. Clin.

Neurophysiol. 19, 562–574.

Stam, C.J., van der Made, Y., Pijnenburg, Y.A.L., Scheltens, Ph., 2003a.

EEG synchronization in mild cognitive impairment and Alzheimer’s

disease. Acta Neurol. Scand. 108, 90–96.

Stam, C.J., Breakspear, M., van Cappellen van Walsum, A.M., van Dijk,

B.W., 2003b. Nonlinear synchronization in EEG and whole-head MEG

recordings of healthy subjects. Hum. Brain Mapp. 19, 63–78.

Stam, C.J., Jones, B.F., Nolte, G., Breakspear, M., Scheltens, Ph., 2006.

Small-world networks and functional connectivity in Alzheimer’s

disease. Cerebral Cortex. doi:10.1093/cercor/bhj127. [electronic publi-

cation ahead of print].

Stevens, A., Kircher, T., Nickola, M., Bartels, M., Rosellen, N., Wormstall,

H., 2001. Dynamic regulation of EEG power and coherence is lost early

and globally in probable DAT. Eur. Arch. Psychiatry Clin. Neurosci.

251, 199–204.
Takens, F., 1982. Detecting strange attractors in turbulence. Lect. Notes

Math. 898, 366–381.

Theiler, J., 1986. Spurious dimension from correlation algorithms applied to

limited time-series data. Phys. Rev., A 34, 2427–2432.

Tononi, G., Edelman, G.M., Sporns, O., 1998. Complexity and coherency:

integrating information in the brain. TICS 2, 474–484.

Van Cappellen van Walsum, A.-M., Pijnenburg, Y.A.L., Berendse, H.W.,

van Dijk, B.W., Knol, D.L., Scheltens, Ph., Stam, C.J., 2003. A neural

complexity measure applied to MEG data in Alzheimer’s disease. Clin.

Neurophysiol. 114, 1034–1040.

van der Hiele, K., Vein, A.A., Kramer, C.G., Reijntjes, R.H., van Buchem,

M.A., Westendorp, R.G., Bollen, E.L., van Dijk, J.G., Middelkoop,

H.A., 2006. Memory activation enhances EEG abnormality in mild

cognitive impairment. Neurobiol. Aging ([electronic publication ahead

of print] PMID: 16406153).

Varela, F., Lachaux, J.-P., Rodriguez, E., Martinerie, J., 2001. The

brainweb: phase synchronization and large-scale integration. Nat.

Rev., Neurosci. 2, 229–239.

Vrba, J., Anderson, G., Betts, K., et al., 1999. 151-Channel whole-cortex

MEG system for seated or supine positions. In: Yoshimoto, T., Kotani,

M., Kuriki, S., et al., (Eds.), Recent Advances in Biomagnetism.

Tohoku Univ. Press, Sendai, Japan, pp. 93–96.

Wheaton, L.A., Nolte, G., Bohlhalter, S., Fridman, E., 2005. Synchroniza-

tion of parietal and premotor areas during preparation an execution of

praxis hand movement. Clin. Neurophysiol. 116, 1382–1390.

 doi:10.1093\cercor\bhj127 


 

 

 

P1 ……

P2 ……

P3 ……

P4  ……

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Impaired temporal correlations in temporo-parietal oscillations in early-stage 
Alzheimer's disease 

Teresa Montez a,b, Simon-Shlomo Poile, Bethany F. Jonesb, Ilonka Manshandenb, Jeroen 
P. A. Verbuntb,d , Bob W. van Dijkb,d, Arjen B Brussaarde, Arjen van Ooyene, Cornelis 
J. Stamb, Philip Scheltensc, Klaus Linkenkaer-Hansene¶

a Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the 
University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal. 

b Department of Clinical Neurophysiology and MEG Centre, VU University Medical 
Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands. 

c Alzheimer Center and Department of Neurology, VU University Medical Center, PO 
Box 7057, 1007 MB Amsterdam, The Netherlands 

d Department of Physics and Medical Technology, VU University Medical Center, De 
Boelelaan 1117, 1081 HV Amsterdam, The Netherlands. 

e Department of Experimental Neurophysiology, Center for Neurogenomics and 
Cognitive search (CNCR), VU University Amsterdam, De Boelelaan 1085, 1081 HV 
Amsterdam, The Netherlands. 

Corresponding author: 
Klaus Linkenkaer-Hansen, Dr.  
Department of Experimental Neurophysiology 
Center for Neurogenomics and Cognitive Research (CNCR) 
VU University Amsterdam 
De Boelelaan 1085 
1081 HV Amsterdam, The Netherlands 
Phone (office): +31 20 5986479 
Fax: +31 20 5987112 
E-mail: klaus.linkenkaer@cncr.vu.nl 

Classification: Biological sciences

Text pages   23 
Figures   4 
Tables   0 
Abstract word count   229 
Character count (including character equivalents of figures) 48981 

Author contributions:
B.J. and Ph.S. were involved in patient recruitment. 
I.M., J.P.A.V, and B.W.v.D helped with acquisition and pre-processing of the data. 
T.M., S.-S.P., and K.L.-H. analyzed data. 
C.J.S.,  Ph.S., A.B.B., A.v.O., and K.L.-H. designed research and supervised the project. 
K.L.-H. wrote the first draft of the MS. All authors commented on the manuscript. 



Abstract

Encoding and retention of information in memory modulate the amplitude of neuronal 

oscillations up to several seconds. Interestingly, during resting-state conditions, which 

are known to be associated with prominent mnemonic activity, ongoing oscillations also 

exhibit amplitude modulations on multiple time scales, as indicated by long-range 

temporal correlations (LRTC) up to tens of seconds. We reasoned that correlations in 

oscillations over time might be important for memory and could therefore be abnormal 

in Alzheimer's disease (AD). To test this hypothesis, we measured 

magnetoencephalography (MEG) during eyes-closed rest in 19 patients diagnosed with 

early-stage AD and 16 age-matched control subjects and characterized temporal 

correlations in ongoing oscillations using detrended fluctuation analysis and a novel 

"avalanche analysis" that quantifies the life- and waiting-time probability distributions 

of oscillation bursts. We found that Alzheimer’s patients had markedly weaker long-

range temporal correlations in the alpha band (6-13 Hz) over temporo-parietal regions 

on time scales of 1–25 seconds. On shorter time scales (< 1 second), abnormal 

dynamics of alpha oscillations in AD patients were expressed as a strongly reduced 

probability for the occurrence of oscillation bursts with long life- or waiting-times in the 

temporo-parietal regions. These regions have been associated with mnemonic functions 

in healthy subjects and show metabolic and structural deficits in AD, suggesting that the 

tendency for ongoing alpha oscillations to carry a memory of their own amplitude 

dynamics is important for cognition.  



Introduction

Psychological and neuroimaging data suggest that the brain performs many important 

functions during rest, such as retrieval and manipulation of information in short-term 

memory, and problem solving and planning (1, 2). These resting-state functions may 

represent an essential aspect of human self-awareness and are susceptible to impairment 

in brain-related disorders including dementia, depression, and schizophrenia (3). 

Neuroimaging has identified anatomical patterns of activity that are remarkably 

consistent across resting-state experiments, most notably in the precuneus, lateral 

parietal and medial prefrontal cortices (4, 5). The existence of such a "resting-state 

network" may suggest that the brain has a "default mode" of operation in the absence of 

goal-directed behavior (6). Connectivity analysis has aimed at understanding the 

integrity of the distributed resting-state network using metabolic, hemodynamic or 

electrophysiological techniques. This has revealed disturbances in the resting-state 

networks in Alzheimer's disease (7-9) and other pathologies (4, 10). 

Functional connectivity has traditionally been considered a phenomenon in the 

spatial domain (11-13), and it is widely accepted that correlations between neuronal 

activities in anatomically distributed networks are important for cognition (14-16). 

Correlations over time, however, may be equally important for brain function; e.g., 

cognitive functions typically involve a series of operations requiring temporal 

coordination of neuronal activity across many time scales (17, 18). This is true 

particularly during rest where thoughts unfold on time scales of several seconds and, 

thus, require ongoing mnemonic activity and "binding" in the temporal domain to 

ensure continuity and integrity of conscious experiences (3). In experiments where the 

timing of such mnemonic operations is explicitly known, a sustained increase in the 

oscillation amplitude has been observed for several seconds in multiple brain areas and 



frequency bands during information encoding and retention (19-21). These results 

suggest that oscillations related to ongoing mnemonic operations during rest are 

amplitude modulated on long time scales and that a slow modulation of oscillatory 

activity may serve a "binding" function in the temporal domain. 

We and others have recently shown that ongoing oscillations during rest are 

modulated in amplitude on multiple time scales, as reflected in the slow power-law 

decay of autocorrelations of up to several tens of seconds, also known as "long-range 

temporal correlations" (LRTC) (22-25). This indicates that oscillations may carry a 

"memory" of their own dynamics. It remains unknown, however, whether this 

physiological memory is related to cognitive memory. If this were the case, one would 

expect a memory disease like Alzheimer's to show abnormally weak temporal 

correlations in oscillations that have been implicated with mnemonic operations (19-

21). To test this we measured ongoing activity with whole-scalp 

magnetoencephalography (MEG) in patients diagnosed with early-stage Alzheimer's 

disease (AD) and in age-matched control subjects. We have identified four 

complementary biomarkers of temporal correlations in ongoing oscillations that point to 

an impaired physiological memory of alpha oscillations over temporo-parietal cortices 

in AD. 

Results 

Spectral analysis revealed prominent oscillations in the alpha-frequency band in the 

occipito-parietal region in all subjects, albeit that the AD patients had peak frequencies 

in the range of 6.3–10.0 Hz, which is lower than the age-matched control subjects (7.1–

10.7 Hz, p < 0.05, two-tailed t-test, Fig. 1 A and 2 D). This is in agreement with the 

well-known slowing of the alpha rhythm in AD (26-28). Thus, to avoid confounding 



frequency and amplitude effects, we defined the alpha-frequency band to be 6–13 Hz. 

Alpha oscillations in both groups exhibited erratic fluctuations in amplitude (Fig. 1 D

and E) and a high signal-to-noise ration relative to the background noise in the MEG 

recording room (Fig. 1 F), which is important for an accurate estimation of temporal 

correlations (29). We used three complementary methods to test whether the temporal 

correlations of these fluctuations carry functionally relevant information about the state 

of the underlying networks. 

On long time scales (1–25 s), we used detrended fluctuation analysis (DFA) 

(Fig. 1 G), which has previously been shown to robustly estimate the strength of long-

range temporal correlations of a power-law form (22, 29). The DFA analysis identified 

a highly significant drop in LRTC in several channels over temporo-parietal regions 

(Fig. 2 A–C, DFA exponents 0.66 ± 0.01 in AD and 0.71 ± 0.01 in the control group, p

< 0.005 for the mean DFA exponent across 33 channels, two-tailed t-test, see Methods). 

This is particularly interesting in view of the lack of a group effect on oscillation 

amplitudes (Fig. 2 E). Note that the MEG data were transformed to planar synthetic 

gradiometers, which are maximally sensitive to neuronal currents immediately below 

the sensor (see Methods).  

 The DFA exponent being larger than 0.5 on time scales of 1–25 seconds clearly 

indicates that the oscillations do not wax and wane randomly. The DFA analysis, 

however, is not suitable for quantifying the dynamics on time scales shorter than 1 

second (see Methods). Hence, to further understand the meta-stable dynamics of the 

oscillations on short to intermediate time scales, we therefore adopted an "avalanche 

analysis" from the study of critical phenomena (30, 31). We quantified the time periods 

that oscillation amplitudes stayed above or below the median level in individual 

channels (Fig. 1 B, see Methods). These periods are termed "oscillation life- and 



waiting-times", respectively, and their probability distributions decayed as power-laws 

(Fig. 1 H and I). The corresponding power-law exponents,  and w, therefore provide a 

convenient index of the variation in oscillation-burst life-times: the less likely the 

occurrence of a long-lasting oscillation, the larger the life-time exponent. A random 

signal that is filtered and analyzed identically to the MEG signal is characterized by 

rapidly decreasing life- and waiting-time distributions (Fig. 1 H and I). Interestingly, 

and in line with the analysis of LRTC, group differences in life-time exponents were 

identified in the temporo-parietal regions (Fig. 3 C), with life-time exponents 1.91 ± 

0.06 in AD and 1.68 ± 0.04 in the control group (Fig. 3 B; p < 0.005). A different way 

of illustrating the lower capacity of AD patients to generate long-lasting oscillations is 

to compute the cumulative probability distribution of life-times, which showed 

significant differences at percentiles around 88–100%. The 95%-percentile, e.g., was 

383 ± 11 ms in AD and 439 ± 12 ms in controls (Fig. 3 D and E; p < 0.005). 

Surprisingly, also the waiting times were highly affected with waiting-time exponents 

1.77 ± 0.04 in AD and 1.60 ± 0.04 in the control group (Fig. 3 G and H; p < 0.005), 

which further supports the conclusion that oscillatory dynamics is considerably more 

random in Alzheimer's patients than in age-matched control subjects. 

Finally, we correlated the exponents from the analysis of LRTC and oscillation 

life- and waiting-times. The group effect for both DFA, life- and waiting-time 

exponents may lead to the impression that these exponents are correlated; however, the 

Pearson correlation analysis did not indicate a significant linear correlation in any of the 

groups for any of the measures (r in the range of –0.42 to –0.32 with p > 0.05, Fig. 4). 

This reflects the different time scales that the methods are sensitive to, and suggest that 

Alzheimer's patients have abnormal temporal structure of oscillations both within and 

across multiple bursts. 



Discussion 

Resting-state alpha oscillations carry a memory of their own amplitude dynamics for 

tens of seconds, as reflected by long-range temporal correlations (LRTC) (22, 29). We 

investigated whether this physiological memory may be impaired in a disease of 

cognitive memory. Here, we report that patients with early-stage Alzheimer's disease 

(AD) have impaired temporal correlations in temporo-parietal alpha oscillations. These 

brain regions have been implicated with mnemonic operations in normal subjects and 

exhibit structural, metabolic, and blood-flow deficits in AD. Taken together with 

previous electrophysiological data from working memory tasks (19-21), our results 

suggest that the capacity to modulate neuronal oscillations on multiple time scales may 

be important for memory. 

Biomarkers of pathology derived from amplitude dynamics of oscillations 

The DFA analysis of LRTC in ongoing oscillations has previously been shown to 

identify pathophysiological states with spectral and anatomical specificity. In major 

depressive disorder, temporal correlations were selectively attenuated in the theta band 

(17), whereas abnormally strong correlations were found near the seizure zone in 

epilepsy patients primarily in the beta band (32, 33). Here, we identified a pattern of 

weaker LRTC in alpha oscillations in AD extending from the parietal region and 

bilaterally towards the temporal lobes. This is particularly interesting in view of the 

insignificant effect of AD on oscillation amplitude at 6–13 Hz and in line with a recent 

study in twins showing that power and LRTC convey complementary information (29). 

The analysis of oscillation life-times complemented the DFA in identifying impaired 



temporal correlation properties of temporo-parietal oscillations in AD. This topography 

agrees remarkably well with previously identified anatomical regions expressing 

Alzheimer's associated pathologies based on reductions in blood flow and metabolism 

during rest (34, 35), cortical atrophy (36), or amyloid deposition (34). 

Together, these findings suggest that the amplitude modulation of temporo-

parietal alpha oscillations on both short to intermediate (< ~1 s) and long (1–25 s) time 

scales represents a physiological memory that is important for cognitive memory. 

Further, the lack of an amplitude effect suggests that temporal correlations may be more 

important for mnemonic operations than the capacity to generate large-amplitude 

oscillations. This highlights the importance of quantifying the amplitude dynamics of 

oscillations in fundamental and clinical research on ongoing oscillations. 

Mnemonic processing and temporal correlation properties of oscillations  

Electrophysiological studies using intracranial electrode recordings, EEG, or MEG have 

identified a sustained increase in parietal alpha activity as a hallmark of mnemonic 

activity in humans (19-21). We have previously proposed that the amplitude modulation 

of oscillations and their temporal correlations on time scales of seconds to tens of 

seconds may provide a temporal dimension to functional connectivity that is important 

for the temporal integrity of working-memory (17). In other words, higher cognitive 

functions, such as maintaining continuity of thoughts during rest, require integrity of 

neuronal processing over time to make sense (18) and this may require correlated 

activity on multiple time scales. Interestingly, psychological and fMRI studies have 

pointed to prominent mnemonic activity during rest (1), and brain regions involved in 

mnemonic tasks (34, 37) overlap considerably with those showing high activity during 

rest (4). Thus, converging functional and anatomical evidence suggests that one indeed 



would expect impaired amplitude dynamics of temporo-parietal alpha oscillations as we 

have reported here.  

Functional connectivity and temporal correlation properties of oscillations 

Memory is believed to depend on the functional connectivity between different brain 

areas, and the cognitive symptoms of AD have therefore been proposed to reflect a 

"disconnection syndrome" (38). Indeed, there is considerable evidence pointing to 

deficits in the functional connectivity of resting-state networks in AD, especially a 

reduced involvement of parietal cortices as revealed by functional magnetic resonance 

imaging (7, 8, 39). In electrophysiological recordings, linear (40) and non-linear 

measures of synchronization (41-43) have been used to identify reduced interregional 

correlations, in particular between frontal and parietal regions. Impaired functional 

connections in AD may be related to structural atrophy (34), but most likely also 

include deficits in cholinergic or other neurotransmitter systems (27, 38, 44, 45). 

Failures in any of the components of a large-scale circuit are expected to disrupt 

its reverberating activity (14, 46) and to affect the temporal dynamics of activity also 

locally. It is therefore plausible that the abnormally weak correlations in alpha 

oscillations on time scales up to 25 seconds are in part caused by a "disconnection" in a 

large-scale network. It is increasingly being recognized that resting-state activity in 

neurocognitive networks have a multi-scale spatio-temporal structure (47); however, 

only few studies have explicitly addressed the time-scale dependence of functional 

connectivity (48, 49). 

Summary and outlook 



We have shown that temporal correlations in alpha oscillations, as characterized by 

LRTC, life- and waiting-time statistics, are abnormal in temporo-parietal regions in AD. 

These brain regions have been implicated with mnemonic processing and exhibit 

deficits in blood-flow and metabolism in Alzheimer's patients during rest. To our 

knowledge, this is the first study to identify an electrophysiological memory that 

operates on time scales up to tens of seconds and that is impaired in a disease of 

cognitive memory. We propose that non-invasive mapping of LRTC and other indices 

of temporal correlations may provide important biological markers in pre-clinical trials 

aimed at investigating the progression and treatment response of patients with AD or 

other memory disorders (50).  

Methods

Subjects 

The study involved 19 patients (73.9 ± 6.4 years (mean ± standard deviation); 11 males) 

with a diagnosis of probable AD according to the NINCDS-ADRDA criteria (51) and 

16 healthy control subjects (70 ± 6.2 years; 7 males), mostly spouses of the patients. 

Patients and control subjects were recruited from the Alzheimer Center at the VU 

University Medical Center. Subjects were assessed according to a clinical protocol, 

which involved history taking, physical and neurological examination, blood tests, mini-

mental state examination (MMSE) (52), several neuropsychological tests, and routine 

EEG. The final diagnosis was based upon a consensus meeting where all the available 

clinical data and the results of the ancillary investigations were considered. Mean 

MMSE of patients was 21.3 (range: 14–28) and five controls were tested with MMSE 

(mean score 29, range: 26–30). Ten patients were taking cholinesterase inhibitors: seven 



were taking 24 mg/d of galantamine and three were taking 12 mg/d of rivastigmine. The 

same patients and MEG recordings were used in the study of Stam et al. (43). The study 

was approved by the Local Research Ethics Committee, and all patients or their 

caregivers had given written informed consent. 

MEG recording 

Four minutes of data were acquired in a 151-channel MEG system (CTF Systems Inc., 

Vancouver, Canada) at 625 Hz and band-pass filtered from 0.25 to 125 Hz. The subjects 

were comfortably seated and were instructed to close their eyes. The same acquisition 

settings were used for an empty-room recording without a subject in the MEG device to 

estimate the background noise of the laboratory. 

Data analysis 

The recordings were down-sampled off-line to 125 Hz, high-pass filtered at 1 Hz and 

low-pass filtered at 45 Hz using finite impulse response filters. The broadband data 

were visually inspected in segments of 5 seconds in the EEGLAB (53) data scroll 

viewer and segments containing non-periodic artifacts were marked and omitted from 

the analysis. Independent component analysis was performed with EEGLAB and 

components representing ECG, eye movements or muscular artifacts were removed. 

Bad channels were repaired by replacing them with the average of their neighbors, and 

planar synthetic gradiometers (for two orthogonal directions giving 300 synthetic 

sensors) were computed using the Fieldtrip toolbox 

(http://www.ru.nl/fcdonders/fieldtrip/) and the method described in (54). The planar 

gradient fields are typically largest in magnitude directly above a given source (21, 54) 

and, therefore, provide an interpretation of topographic distributions that is analogous to 



projections of statistical maps onto the surface of the brain in PET and fMRI. The 

amplitude envelope in the alpha-frequency band was extracted using bandpass filters at 

6–13 Hz (finite impulse response filters with a Hamming window and filter order 28) 

and the Hilbert transform (Fig. 1C). In this study, we focus on alpha oscillations 

because of their known amplitude modulation in mnemonic tasks (19-21) and the 

importance of a high signal-to-noise ratio for a robust estimation of temporal 

correlations (29). 

Analysis of oscillation power and long-range temporal correlations. The decay of 

temporal (auto-)correlations in the time range of 1–25 s was estimated with detrended 

fluctuation analysis (DFA). The DFA was introduced as a method to quantify 

correlations in complex data with less strict assumptions about the stationarity of the 

signal than the classical auto-correlation function or power spectral density (55). An 

additional advantage of DFA is the greater accuracy in the estimates of correlations, 

which facilitates a reliable analysis of LRTC up to time scales of at least 10% of the 

duration of the signal (56). The main steps from the broadband MEG signal to the 

quantification of LRTC using DFA have been explained in detail elsewhere (22-24). In 

brief, the DFA measures the scaling of the root-mean-square fluctuation of the 

integrated and linearly detrended signals, F(t), as a function of time window size, t (Fig. 

1G). For signals that are uncorrelated or have persistent power-law correlations, the 

average fluctuation <F(t)> is of the form <F(t)> = t , where  is the DFA scaling 

exponent. If 0.5  1.0, this indicates power-law scaling behavior and the presence of 

temporal correlations, whereas 0.5 indicates the ideal case of an uncorrelated signal. 

The amplitude of oscillations was computed as the mean amplitude envelope after 

bandpass filtering and Hilbert transform. 



Analysis of oscillation life- and waiting times. For each synthetic sensor and subject, we 

computed the median amplitude and used this as the threshold for defining the 

beginning and end of an oscillation burst. The periods of the amplitude envelope 

remaining above and below this median level were termed life- and waiting-times, 

respectively (Fig. 1B). Probability distributions of oscillation life- and waiting-times 

were computed using equidistant binning on a logarithmic axis with 10 bins per decade. 

Based on visual inspection of probability distributions from MEG channels in the 

parietal region, which have a high signal-to-noise ratio, it was found that all subjects 

had probability distributions that decayed as a power-law in the range of 119–538 ms 

(Fig. 3A). The power-law exponents that characterize the life- and waiting-time 

distributions are denoted  and w, respectively. The exponents were computed using 

least-square fitting of the 8 bins corresponding to the time range 119–538 ms in all 

synthetic sensors and subjects. The average R2 was 0.97 across the n = 10500 channels. 

Further details on this method and its theoretical basis will be published elsewhere (Poil 

S.-S., van Ooyen A., Linkenkaer-Hansen K., unpublished data). 

Statistical analysis. The biomarker value in each channel was computed as the average 

across the two orthogonal synthetic sensors. Two-tailed t-tests between patient and 

control groups were performed; p-values below 0.05 and 0.01 are indicated on 

topographic plots. A correction for multiple comparisons was not necessary, because the 

number of channels with p-values below 0.05 ranged from 18 and 45 channels and the 

likelihood of having this many channels out of 150 channels by chance is less than 

0.0006 (cf. binomial distribution). Furthermore, the channels were anatomically 

clustered in topographic plots (Figs. 2 and 3). Biomarker values of patient and control 



groups are reported as mean ± standard error of mean (SEM) based on the average 

values across channels with p < 0.05 in the initial two-tailed t-test. Group differences in 

these cross-channel means were computed using two-tailed t-test.
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Figure 1. Three power-law scaling exponents for characterizing the amplitude 

dynamics of alpha-band oscillations.  

The grand-average amplitude spectra of a mid-parietal planar synthetic gradiometer 

exhibit a clear shift towards lower frequencies in AD patients (thick red line) compared 

to control subjects (thin blue line) (A). To characterize the amplitude dynamics of alpha 

oscillations, the MEG signals were band-pass filtered from 6–13 Hz (thin green line)

and the amplitude envelope of the oscillations (thick blue line) extracted with the 

Hilbert transform (B, C). Non-random fluctuations are qualitatively identified as a 

tendency for oscillations to exhibit amplitude modulations on multiple time scales, as 

seen in the control subject (D), as opposed to rapidly changing amplitude levels even on 

short time scales, as seen in the AD patient (E) and the MEG recording without a 

subject in the device (F). The DFA exponent, , provides a quantitative measure of the 

temporal structure on long time scales (1–25 s): the stronger correlations in the control 

subject (G, blue circles) compared with the AD patient (G, red diamonds) is reflected in 

a value of  closer to 1 (0.81 vs. 0.58). The lack of temporal correlations in (F) is 

reflected in the DFA exponent having the value of ~0.5, which is characteristic of an 

uncorrelated random process (G, black dots). To quantify differences in oscillatory 

dynamics on short to intermediate time scales (< 1 s), we introduced a threshold at the 

median amplitude (horizontal dashed line in B) and defined the start and end of an 

oscillation burst as the time points of crossing this threshold. The probability 

distributions of oscillation-burst "life-times" and "waiting-times" decayed as power-

laws with exponents  and w, respectively (H, I). All data were taken from a parietal 

channel. 



Figure 2. Impaired long-range temporal correlations in temporo-parietal oscillations in 

Alzheimer's disease. 

(A) Grand-average DFA plot of a parietal channel for AD (red diamonds), control group 

(blue circles), and a recording without a subject in the MEG device (black dots). Data 

were band-pass filtered 6–13 Hz and the amplitude envelope extracted with the Hilbert 

transform. (B) Individual-subject values and mean ± SEM of DFA exponents (p < 

0.005) averaged over the 33 channels marked with white circles in (C). (C) Topography 

of DFA exponents in the alpha-frequency band for patients (left column), controls 

(middle column), and controls minus patients (right column). White circles denote 

channels with p < 0.05 (open), and p < 0.01 (filled). (D) Individual peak frequencies in 

the broad alpha band (6–13 Hz) in a parietal channel for patients (red diamonds) and 

control subjects (blue circles), and their mean ± SEM (p < 0.05). (E) Individual 

amplitudes averaged over the 12 channels showing the largest group difference and 

mean ± SEM of the two groups. (F) Topography of mean amplitude in the alpha-

frequency band for AD patients (left column), controls (middle column), and controls 

minus patients (right column).

Figure 3. Altered life- and waiting-times of temporo-parietal oscillations in Alzheimer's 

disease. 

(A) Grand-average probability distribution function (PDF) of oscillation life-times for 

AD patients (red diamonds), control group (blue circles), and an empty-room recording 

(black dots). (B) Individual-subject values and mean ± SEM of the life-time exponents 

(p < 0.005) averaged over the 25 channels marked with white circles in (C)  (C) Grand 

average topographies of  for AD patients (left column), controls (middle column), and 

controls minus patients (right column). White circles denote channels with p < 0.05 



(open), and p < 0.01 (filled) in all topographic plots. (D) Cumulative probability 

distribution function (CDF) of oscillation life-times for AD (red line) and control group 

(blue line). The grand-average 95%-percentiles are marked with vertical lines. (E) 

Individual values and means ± SEM of cumulative life-times averaged over the 45 

channels marked with white circles in (F) (p < 0.005). (F) Grand average topographies 

of cumulative life-times at the 95%-percentile for AD patients (left column), controls 

(middle column), and controls minus patients (right column). (G) Grand-average 

probability distribution of waiting-times for channels with a significant group difference 

for AD (red diamonds), control group (blue circles), and the empty-room recording 

(black dots). (H) Individual values and means ± SEM of w averaged over the 18 

channels marked with white circles in (I) (p < 0.005). (I) Grand-average topography of 

waiting-times for AD patients (left column), controls (middle column), and controls 

minus patients (right column).

Figure 4. Temporal correlation properties of alpha oscillations are different on short 

and long time scales. 

Scatter plots showing insignificant correlations between DFA exponents and power-law 

exponents of oscillation life-times (A) and waiting-times (B) for AD patients (red 

diamonds) and control group (blue circles).
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Abstract

Objective: We examined the hypothesis that cognitive dysfunction in Alzheimer’s disease is associated with abnormal spontaneous

fluctuations of EEG synchronization levels during an eyes-closed resting state.

Methods: EEGs were recorded during an eyes-closed resting state in Alzheimer patients (NZ24; 9 males; mean age 76.3 years; SD 7.8;

range 59–86) and non-demented subjects with subjective memory complaints (NZ19; 9 males; mean age 76.1 years; SD 6.7; range: 67–89).

The mean level of synchronization was determined in different frequency bands with the synchronization likelihood and fluctuations of the

synchronization level were analysed with detrended fluctuation analysis (DFA).

Results: The mean level of EEG synchronization was lower in Alzheimer patients in the upper alpha (10–13 Hz) and beta (13–30 Hz)

band. Spontaneous fluctuations of synchronization were diminished in Alzheimer patients in the lower alpha (8–10 Hz) and beta bands.

In patients as well as controls the synchronization fluctuations showed a scale-free pattern.

Conclusions: Alzheimer’s disease is characterized both by a lower mean level of functional connectivity as well as by diminished

fluctuations in the level of synchronization. The dynamics of these fluctuations in patients and controls was scale-free which might point to

self-organized criticality of neural networks in the brain.

Significance: Impaired functional connectivity can manifest itself not only in decreased levels of synchronization but also in disturbed

fluctuations of synchronization levels.

q 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

Keywords: Alzheimer’s disease; EEG synchronization; Detrended fluctuation analysis; Functional connectivity; Resting state; Self-organized criticality
1. Introduction

The exact nature of the neurophysiological processes

underlying cognitive dysfunction in Alzheimer’s disease is

still incompletely understood. Many EEG studies have

shown a slowing of the dominant rhythms in Alzheimer’s

disease (for a recent review see Jeong, 2004). This EEG

slowing is usually interpreted as an indication of impaired

activity of neural networks, possibly due to a lack of
1388-2457/$30.00 q 2004 International Federation of Clinical Neurophysiology.

doi:10.1016/j.clinph.2004.09.022
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the excitatory neurotransmitter acetylcholine (Francis et al.,

1999). Studies with functional MRI also point in the

direction of impaired activity, especially during tasks

that involve the medial temporal lobe memory systems

(Rombouts et al., 2000). However, a simple relation

between EEG slowing/impaired activity and cognitive

dysfunction does not exist. For instance, there is no

correlation between the frequency of the dominant alpha

rhythm and intelligence (Posthuma et al., 2001).

Another approach focuses on the notion that higher brain

functions invariably require cooperation of widely distri-

buted specialized brain regions. According to this view,
Clinical Neurophysiology 116 (2005) 708–715
www.elsevier.com/locate/clinph
Published by Elsevier Ireland Ltd. All rights reserved.
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cognitive dysfunction in Alzheimer’s disease might be due to

a disturbance of these functional interactions between

different brain regions. The idea that Alzheimer’s disease is

a disconnection syndrome is supported by neuropsychologi-

cal, neuroanatomical and neurophysiological data

(Delbeuck et al., 2003). Because of their high temporal

resolution, EEG and MEG (magneto encephalography) are

particularly suited for studying functional interactions

between brain regions, although interpretation of such

studies is complicated by the influence of volume conduction

(Nolte et al., 2004). Abnormalities in coherence, which is a

linear measure of the frequency dependent correlation

between different EEG channels, support the notion of a

disconnection syndrome in Alzheimer’s disease (Adler et al.,

2003; Berendse et al., 2000; Besthorn et al., 1994; Dunkin

et al., 1994; Knott et al., 2000; Leuchter et al., 1987, 1992;

Locatelli et al., 1998). Recently, these results have been

confirmed with nonlinear measures of correlation between

EEG and MEG signals such as the mutual information (Jeong

et al., 2001) and the synchronization likelihood (Pijnenburg

et al., 2004; Stam et al., 2002b, 2003b).

However, a decrease in the mean level of functional

interactions between different brain regions may reflect only

part of the abnormalities in Alzheimer’s disease. There is

increasing support for the notion that cognition is essentially a

dynamic process which requires the constant creation and

destruction of different synchronized neural networks

(Breakspear and Terry, 2002; Freeman and Rogers, 2002;

Friston, 2000; Rodriguez et al., 1999). This process of

formation and destruction of synchronous networks is

reflected in spontaneous fluctuations in the mean level of

synchronization. A promising method to characterize these

spontaneous fluctuations in the mean level of synchronization

is detrended fluctuation analysis (Peng et al., 1992, 1995).

This method characterizes the relation between the variance

of some measure (after correction for the local linear trend) as

a function of time scale. In complex dynamical systems this

relation often obeys a power law. Consequently, in this case,

the logarithm of the fluctuations is a simple linear function of

the logarithm of the time scale and can be characterized

completely by its slope (DFA exponent) and its intercept with

the Y-axis. Systems that display this kind of behaviour are said

to be ‘scale free’. Such systems do not have one characteristic

time scale, but show similar statistical properties on all

timescales. Several studies have applied detrended fluctu-

ation analysis to single channel EEG analysis and have found

indications for scale free fluctuations (Linkenkaer-Hansen

et al., 2001; Worrell et al., 2002). Recently, we have shown

that spontaneous fluctuations of synchronization between

EEG channels in healthy subjects also display scale free

characteristics (Stam and de Bruin, 2004).

The present study was undertaken to examine the

hypothesis that Alzheimer’s disease is characterized not

only by a decrease in the mean level of synchronization, but

also by abnormalities in the spontaneous fluctuations of the

synchronization level. For this purpose we examined resting
state EEG recordings of 24 patients with Alzheimer’s

disease and 19 non-demented subjects with subjective

memory complaints. Global levels of EEG synchronization

in different frequency bands were quantified with the

synchronization likelihood (Stam and van Dijk, 2002).

Time series of spontaneous fluctuations in the synchroniza-

tion likelihood level were examined with detrended

fluctuation analysis.
2. Methods and materials

2.1. Subjects

The study involved consecutive subjects referred to the

Alzheimer Centre at the VU university medical centre (Y.P.;

P.S.). All subjects were studied according to a protocol

which involved history taking, physical and neurological

examination, blood tests (ESR, hemoglobin, white cell

count, serum electrolytes, glucose, BUN, creatinine, liver

function tests, TSH and free thyroid hormone, vitamin B1

and B6 levels, syphilis serology), MMSE, neuropsycholo-

gical examination, MRI of the brain and a quantitative EEG.

The final diagnosis was based upon a consensus meeting

where all the available clinical data and the results of the

ancillary investigations were considered. A diagnosis of

probable Alzheimer’s disease was based upon the McKhann

criteria (McKhann et al., 1984).

The present study concerns 43 subjects, 24 with a

diagnosis of probable Alzheimer’s disease (9 males; mean

age 76.3 years; SD 7.8; range 59–86); and 19 control

subjects with only subjective memory complaints (‘SC’; 9

males; mean age 76.1 years; SD 6.7; range: 67–89). Mean

MMSE score of the Alzheimer patients was 18.8 (SD 3.8;

range 10–26); mean MMSE score of the SC subjects was

27.6 (SD 2.5; range 22–30).

2.2. EEG recording

EEGs were recorded in all subjects as part of the

examination protocol. EEGs were recorded (against C3–C4)

with a Nihon Kohden digital EEG apparatus (EEG 2100) at

the following positions of the 10–20 system: Fp2, Fp1, F8,

F7, F4, F3, A2, A1, T4, T3, C4, C3, T6, T5, P4, P3, O2, O1,

Fz, Cz, Pz. ECG was recorded in a separate channel.

Electrode impedance was below 5 kOhm. Initial filter

settings were: time constant, 1 s; low pass filter, 70 Hz.

Sample frequency was 200 Hz and A–D precision 12 bit.

EEGs were recorded in a sound attenuated, dimly lit room

while patients sat in a slightly reclined chair. Care was taken

by the EEG technicians to keep the patients awake during

the whole recording. For the present analysis artefact-free

epochs (containing no eye-blinks, slow eye-movements,

excess muscle activity, ECG artefacts etc.) of 4096 samples

(20.475 s) were selected off-line. These epochs were re-

referenced to an average reference electrode, involving all
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electrodes except Fp2 and Fp1. Computation of the

synchronization likelihood and detrended fluctuation anal-

ysis were done with the DIGEEGXP software written by

one of the authors (CS). The synchronization likelihood

time series was determined and the detrended fluctuation

analysis was done on this time series. All analyses were

done separately for the following frequency bands: delta

(0.5–4 Hz); theta (4–8) Hz, lower alpha or alpha1

(8–10 Hz), upper alpha or alpha 2 (10–13 Hz), beta (13–

30 Hz) and gamma (30–48 Hz).
Fig. 1. Mean synchronization likelihood (error bars denote standard

deviations) of Alzheimer patients (AD; NZ24) and subjects with subjective

memory complaints (SC; NZ19) for different frequency bands. Alzheimer

patients had a significantly lower synchronization in the upper alpha and

beta band. P values in plot correspond to two-tailed t-test.
2.3. Synchronization likelihood

The synchronization likelihood (SL) is a measure of the

statistical interdependencies between two time series, for

instance two EEG channels. The synchronization likelihood

takes on values between Pref (a small number close to 0) in the

case of independent time series and one in the case of fully

synchronized time series. The synchronization likelihood is

sensitive to linear as well as non-linear interdependencies

and can be computed for each time sample, making it suitable

for tracking time-dependent changes in the synchronization

level. For a technical description of the method and its

properties we refer to Stam and van Dijk (2002). Here we

explain the general principles.

Assume we have two time series xi and yi, where the

index i denotes discrete time. From each of these time series

and for each time i we construct m dimensional vectors Xi

and Yi in state space with the method of time-delay

embedding (Takens, 1981) as follows:

Xi Z ðxi; xiCL; xiC2L; xiC3L;.; xiCðmK1ÞLÞ (1)

where L is the time lag, and m the embedding dimension.

These m-dimensional vectors Xi (Yi is defined similarly) can

be thought of as representing the ‘state’ of the system

underlying the time series at a moment in time. Synchroni-

zation likelihood is now defined as the conditional likelihood

that Yi and Yj will be very close together (‘close together’

means that the distance between Yi and Yj in state space is

smaller than the critical cut-off distance), given that Xi and Xj

are very close together. In other words, the synchronization

likelihood is the likelihood that if system X is (almost) in the

same state at two different times i and j, that system Y will

also be (almost) in the same state at i and j. In the case of

maximal synchronization this chance is 1; in the case of

independent systems, it is a small, but non-zero number,

namely Pref. This small number is the likelihood that two

randomly chosen vectors Y (or X) will be closer than the cut-

off distance. In practice, the cut-off distance is chosen such

that the likelihood of random vectors being close is fixed at

Pref, which is chosen the same for X and for Y.

In the computation of distances between the vectors Xi,

Xj and Yi, Yj, further restrictions are involved: only those

vectors are used where the time indices fall in a range

determined by two windows: (w1!jiKjj!w2) (jj denotes
absolute values). The first window w1, also termed Theiler

correction, excludes vector pairs from the calculations that

are close together simply due to autocorrelation properties

of the time series (Theiler, 1986). The second window w2

increases the time resolution of the SL computation by

excluding vector pairs that are too far away in time. In the

present study w1Z100 and w2 was 1/10 of the length of the

EEG time series. The other parameters were set as follows:

log LZ10; embedding dimension mZ10; PrefZ0.01. With

the exception of Pref, these choices were the same as in a

number of previous studies (Stam et al., 2002a,b, 2003a,b).

In the present study we computed the synchronization

likelihood averaged over all possible pairs of channels

(19!18/2) for each 16th time sample of the EEG time

series. This resulted in a ‘time series’ of SL values with a

length of 4096/16Z256 samples (the length of the EEG

time series was 4096 samples). This time series of

synchronization values was subjected to detrended fluctu-

ation analysis.
2.4. Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) is a technique used

to characterize the correlation structure of non-stationary

time series. DFA studies investigate how the variance in a

time series depends upon the timescale used to determine

this variance; this dependence is characterized by the

exponent of a linear fit through a double logarithmic plot of

variance as a function of timescale. It was initially

introduced to characterize long-range correlations between

nucleotide sequences (Peng et al., 1992). Here we closely

follow the description of the method as given by Peng et al.

(1995). A schematic representation is shown in Fig. 1 of

Stam and de Bruin (2004).

The analysis is applied to a discrete time series x(i),

iZ{1.N}, which in the present study represents
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the synchronization likelihood averaged over all pairs of

channels for each time sample (NZ4096/16Z256). In the

first step, the mean is subtracted from this time series and

the time series is integrated

yðkÞ Z
Xk

iZ1

½xðiÞK hxi� (2)

where hxi is the average of the synchronization likelihood

time series. Next, the de-meaned, integrated time series y(k)

is divided in a number of segments with length n (n

represents the time scale of observation). In this study we

used the following segment lengths: 4, 8, 16, 32, 64 and 128

samples. For each of these segments, the local least-squares

linear fit is determined. The ensuing piece-wise linear fit is

designated yn(k). Then, the integrated time series y(k) is

detrended by subtracting the local linear fit yn(k) for each

segment. The root mean square fluctuation of this integrated

and detrended time series is given by:

FðnÞ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

kZ1

½yðkÞKynðkÞ�
2

vuut (3)

Subsequently, this determination of F(n) is repeated for a

range of different scales n (in the present study n ranged

from 4 samples to 128 samples). In a final step, the

logarithm of F(n) is plotted as a function of the logarithm of

the time scale n (we used logarithms with a base of 2). If the

time series x(i) has self-similar, scale-free (fractal) proper-

ties, this plot will display a linear scaling region with a

certain scaling exponent. The exponent of the plot of

Log2(F(n))/Log2(n) is called the scaling or self-similarity

coefficient. This exponent is 0.5 if x(i) is uncorrelated white

noise; it is 1.5 if x(i) is Brownian noise (which is highly

correlated), and it is 1 if x(i) is 1/f noise.

However, it cannot be excluded that the exponent will be

influenced by such factors as finite data length, filtering and

computation of the synchronization likelihood (which

involves several windows). To determine the extent to
Table 1

Mean results (SD in brackets) of the detrended fluctuation analysis of the synchr

Measure Group Frequency band

0.5–4 Hz 4–8 Hz 8

Exponent AD 0.841* (0.092) 0.900* (0.117) 0

SC 0.838* (0.087) 0.959* (0.139) 1

Noise 0.673 (0.083) 0.710 (0.061)

Intercept AD K8.493 (0.192) K8.814 (0.262) K

SC K8.528 (0.272) K8.852 (0.339) K

Noise K9.232 (0.213) K9.652 (0.131) K

R2 AD 0.990$ (0.007) 0.984 (0.011)

SC 0.989 (0.011) 0.988 (0.010)

Noise 0.984 (0.011) 0.980 (0.015)

‘Exponent’, exponent of the linear fit through the DFA plot; ‘Intercept’, intercep

goodness of fit; AD, Alzheimer patients (NZ24); SC, subjects with subjective m

*P!0.001 (significant difference compared with noise); $P!0.05 (significant d
&P!0.10 (trend AD–SC).
which this is the case, and to allow a statistical test of the

hypothesis that the DFA exponentOexponent of noise, 20

control data sets were generated. These data sets had the

same dimensions (data length; number of channels) as the

EEG data, but all channels were filled with white noise, and

there were no correlations between the channels. These 20

data sets were analysed in the same way as the EEG data.

In the present study the linear fit was determined from 6

points of the DFA plot. From this fit the exponent, the

intercept with the Y-axis and the goodness of fit (expressed

as the squared correlation coefficient R2) were determined.
2.5. Statistical analysis

Statistical analysis was done with SPSS for Windows,

version 10.0.7. Differences in group means were tested with

independent samples t-tests. Correlations between MMSE

scores and EEG measures (mean synchronization, DFA

exponent, intercept and R2 for all frequency bands) were

determined with Pearson correlation coefficients. The

significance level was set at P!0.05.
3. Results

The mean synchronization likelihood (averaged over all

pair-wise combinations of channels and all time points) for

both groups and all frequency bands is shown in Fig. 1.

Differences between Alzheimer patients and subjects with

subjective complaints were tested with independent samples

t-tests (equal variances not assumed) for each frequency

band. Mean synchronization was significantly lower in the

Alzheimer group in the alpha 2 band (t[41]ZK2.362; PZ
0.024) and in the beta band (t[41]ZK2.630; PZ0.013).

Group differences in the other frequency bands were not

significant.

The mean results of the DFA analysis are shown in

Table 1. In all frequency bands the 3 DFA measures

(exponent, intercept and goodness of fit) were compared
onization likelihood time series in different frequency bands

–10 Hz 10–13 Hz 13–30 Hz 30–48 Hz

.970*& (0.134) 0.842*# (0.104) 0.690* (0.091) 0.618* (0.070)

.031*& (0.093) 0.786*# (0.077) 0.707* (0.091) 0.639* (0.092)

0.716 (0.074) 0.681 (0.076) 0.580 (0.058) 0.551 (0.068)

9.096 (0.432) K9.312# (0.180) K9.361& (0.241) K9.410 (0.254)

8.920 (0.481) K9.085# (0.218) K9.180& (0.342) K9.470 (0.219)

9.900 (0.198) K9.875 (0.178) K10.044 (0.151) K9.98 (0.166)

0.994 (0.005) 0.992 (0.0112) 0.988 (0.008) 0.988 (0.112)

0.996$ (0.004) 0.987 (0.014) 0.987 (0.014) 0.992$ (0.006)

0.990 (0.012) 0.987 (0.015) 0.987 (0.013) 0.981 (0.019)

t of the linear fit; ‘R2’, squared correlation coefficient as a measure of the

emory complaints (NZ19); Noise, uncorrelated noise data sets (NZ20).

ifference compared with noise); #P!0.05 (significant difference AD–SC);



Fig. 2. Mean DFA plots (error bars denote standard deviations) of

Alzheimer patients (AD; NZ24) and subjects with subjective memory

complaints (SC; NZ19) for the lower alpha band (8–10 Hz). The plot

shows the LOG2 of the detrended fluctuation FN as a function of time scale

N (s). For comparison the results of a control data set of 20 white noise

epochs subjected to the same analysis (filtering, SL computation and DFA

analysis of the SL time series) as the EEG data are shown.
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between AD patients, subjects with subjective complaints

and noise control data (however, for the noise control data

the intercep was not considered in the statistical analysis

since it is arbitrary). Although the exponent for the noise

data was higher than 0.5, the exponent of the EEG data

(both AD and SC) was significantly larger compared to the

exponent of the noise data in all frequency bands (P!
0.001 for all comparisons). The goodness of fit for the

noise data was close to 1 in all frequency bands, but it was

significantly smaller (implying a worse linear fit) compared

to the fit for the AD group in the delta band, and compared

to the fit for the SC group in the lower alpha and the

gamma band.

In the lower alpha band there was a trend in the

direction of a smaller DFA exponent for the AD group

compared to the SC group (PZ0.085); in the upper alpha

band the DFA exponent was significantly larger in the

AD group compared to the SC group (PZ0.048). The

DFA intercept was smaller in the AD group compared to

the SC group in the upper alpha band, (PZ0.008) and

there was a trend in the same direction in the beta band

(PZ0.059). Detailed results for the lower alpha band are

shown in Fig. 2, for the upper alpha band in Fig. 3 and

for the beta band in Fig. 4. In the theta band there was a

positive correlation between the DFA exponent and the

MMSE score.

In the upper alpha band a significant negative correlation

was found between DFA exponent, goodness of fit and the

MMSE score.
4. Discussion

The most important finding of the present study is that

Alzheimer’s disease is characterized not only by a
decrease in mean levels of EEG synchronization, but

also by changes in the spontaneous fluctuations of EEG

synchronization. Mean levels of synchronization were

decreased in Alzheimer patients in the upper alpha band

and the beta band. Spontaneous fluctuations of the

synchronization level were diminished in Alzheimer

patients in the upper alpha band and to a lesser extent

in the beta band. In the upper alpha band, the DFA

exponent was larger in the Alzheimer group for the

upper alpha band. Finally, both mean synchronization

level as well as DFA parameters showed correlations

with the MMSE score.

The changes in mean synchronization level in the

present study are largely in agreement with the results of

earlier studies using synchronization likelihood to charac-

terize statistical interdependencies between EEG or MEG

signals in early and mild Alzheimer’s disease (Stam et al.,

2002b, 2003b; Pijnenburg et al., 2004). The general pattern

in these studies in early and mild Alzheimer patients was a

preferential involvement of the upper alpha and especially

the beta band. Loss of synchronization in the gamma band

could only be shown in the MEG study, and this might be

due to the higher sensitivity of MEG compared to EEG for

subtle, possibly nonlinear coupling at higher frequencies

(Stam et al., 2002b; 2003a). Another recent study that used

synchronization likelihood reported a lower synchroniza-

tion in Alzheimer patients in the delta, theta, alpha and beta

bands (Babiloni et al., 2004). The involvement of lower

frequency bands in this study could be due to the fact that

the control subjects were healthy subjects without memory

complaints, whereas the other studies as well as the present

one used non-demented subjects with subjective memory

complaints as controls. Furthermore, in the Babiloni et al.

study the control subjects were significantly younger than

the patients, requiring a statistical correction for age

effects. Finally, in contrast to the other studies in which

an average reference was used, Babiloni et al. used a

source montage (determined from the local average of the

surrounding electrodes) which will result in different and

lower synchronization values (Babiloni et al., 2004; Stam

and de Bruin, 2004). In the present study Alzheimer

patients and subjects with subjective memory complaints

were carefully matched for age (AD, mean age 76.3 year;

SD 7.8; range 59–86; SC, mean age 76.1 year; SD 6.7;

range, 67–89). Consequently, the synchronization loss in

the upper alpha and beta band may well represent the first

change in Alzheimer’s disease.

Other studies using different nonlinear measures (Jeong

et al., 2001) or the more usual coherence analysis have also

reported loss of functional connectivity in Alzheimer’s

disease in different frequency bands (Adler et al., 2003;

Berendse et al., 2000; Besthorn et al., 1994; Dunkin et al.,

1994; Knott et al., 2000; Leuchter et al., 1987, 1992;

Locatelli et al., 1998). Although these studies vary greatly in

terms of characteristics of patient and control groups, choice

of electrode pairs and montage, and choice of frequency



Fig. 3. Mean DFA plots (error bars denote standard deviations) of

Alzheimer patients (AD; NZ24) and subjects with subjective memory

complaints (SC; NZ19) for the upper alpha band (10–12 Hz). The plot

shows the LOG2 of the detrended fluctuation FN as a function of time scale

N (s). For comparison the results of a control data set of 20 white noise

epochs subjected to the same analysis (filtering, SL computation and DFA

analysis of the SL time series) as the EEG data are shown.
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bands, the general pattern of loss of synchronization in

Alzheimer’s disease seems consistent and the alpha band is

nearly always involved. The present study is in agreement

with these findings but stresses the importance of dis-

tinguishing between lower and upper alpha band processes.

Although there seems to be widespread agreement in the

literature that linear and nonlinear measures reflect lower

levels of statistical interdepence between EEG and MEG

time series in Alzheimer’s patients, any interpretation of

such findings in terms of true loss of functional connectivity

in the underlying networks can only be tentative. Volume

conduction strongly affects EEG recordings, and may

produce spurious correlations, especially between nearby

channels. To avoid this problem one could consider

correlations between time series of reconstructed sources,

but this approach presents its own problems, since there is

no unique solution to the inverse problem. One promising

solution is to consider the imaginary component of the

coherence, which is insensitive to contributions from

volume conduction (Nolte et al., 2004). Future studies

should consider approaches along these lines to determine

whether lower levels of statistical interdependencies in

Alzheimer’s disease reflect true loss of functional

connectivity.
Table 2

Correlations between MMSE score, synchronization, and DFA parameters (expo

Frequency band

0.5–4 Hz 4–8 Hz 8–10 Hz

Synchronization K0.313* 0.310* 0.271

Exponent K0.165 0.386* 0.238

Intercept K0.024 0.104 K0.260

R2 K0.097 0.215 K0.152

*P!0.05; **P!0.01 (two-tailed).
The main goal of the present study was the character-

ization of spontaneous fluctuations in the global level of

synchronization in Alzheimer patients and non-demented

control subjects. Detrended fluctuation analysis of synchro-

nization time series always showed a good to perfect linear

relation between the strength of the fluctuations and the time

scale on a double logarithmic plot. The squared correlation

coefficient of this linear fit was very high in all frequency

bands, and in both groups (Table 1). This finding, in

combination with the DFA exponents (see below), is an

indication that the spontaneous fluctuations of the synchro-

nization in different frequency bands has a scale-free

character, at least on the time scales studied, that is from

0.32 to 10.24 s. Also, the goodness of fit was similar in

Alzheimer patients and subjects with subjective memory

complaints in all frequency bands. The scale-free fluctu-

ations of synchronization in the present study are in

agreement with the findings of a previous study in young,

healthy subjects, and extend these observations to longer

time scales (Stam and de Bruin, 2004).

The slope of the linear fit through the DFA plots (the

DFA exponent) was similar in both groups and all frequency

bands, with the exception of the upper alpha band where the

slope was larger in the AD group (Table 1). The values of

the DFA exponent for the delta, theta and alpha band were

all very close to 1. The values of the exponent for higher

frequency bands were somewhat lower, and decreased from

the upper alpha band to the gamma band. However, in all

frequency bands the exponent was larger than the slope of a

set of random control data subjected to the same filtering,

SL computation and DFA analysis, which suggests the

existence of significant long range correlations in the global

level of synchronization. The DFA also showed a significant

difference between the two groups. In the upper alpha and

the beta band the intercept was smaller in the Alzheimer

group (Table 1). A smaller intercept indicates that the

fluctuations of EEG synchronization in the upper alpha and

the beta band are smaller in the Alzheimer group. In other

words, the DFA plot in Alzheimer patients is shifted as a

whole to a lower level (see Fig. 4).

Scale-free fluctuations, like those detected for spon-

taneous fluctuations of EEG synchronization levels in the

present study, can be found in many types of complex

systems (Bak and Paczuski, 1995). Despite its ubiquity, a

generally accepted universal explanation of scale-free

dynamics does not yet exist. The most ambitious attempt to
nent, intercept and R2)

10–13 Hz 13–30 Hz 30–48 Hz

0.175 0.358* K0.150

K0.443** K0.077 0.038

0.050 0.272 K0.229

K0.419** K0.080 0.297



Fig. 4. Mean DFA plots (error bars denote standard deviations) of

Alzheimer patients (AD; NZ24) and subjects with subjective memory

complaints (SC; NZ19) for the beta band (13–30 Hz). The plot shows the

LOG2 of the detrended fluctuation FN as a function of time scale N (s). For

comparison the results of a control data set of 20 white noise epochs

subjected to the same analysis (filtering, SL computation and DFA analysis

of the SL time series) as the EEG data are shown.
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provide a general explanation is the theory of self-organized

criticality (SOC) introduced by Per Bak (Bak et al., 1987,

1988). Self-organized criticality refers to large systems with

local non-linear interactions in which a slow build-up of

some energy value is alternated with brief bursts (‘ava-

avalanches’) of energy redistribution. Such systems evolve

to a critical state without tuning, which is characterized by

spatial and temporal power laws and scale-free dynamics.

The critical state of this type of system is very robust (it is a

powerful attractor of the dynamics), and is associated with an

optimal response to outside disturbances.

Several models have been proposed for self-organized

criticality (Turcotte, 1999). Neurons can be modelled as

integrate-and-fire oscillators, where the integration (slow

changes in the membrane potential) corresponds with the

slow build-up of energy, and the firing (action potential)

corresponds with the fast energy redistribution. Conse-

quently, large networks of interconnected neurons are likely

candidates for self-organized criticality. Evidence for SOC

has been found in models of neural networks as well as in

neural networks cultured in vitro (Beggs and Plens, 2003;

Corral et al., 1995). Several studies of EEG and MEG provide

further support for the hypothesis that the neural networks of

the brain also display SOC at a macroscopic level

(Linkenkaer-Hansen et al., 2001; Nikulin and Brismar,

2004; Stam and de Bruin, 2004; Worrell et al., 2002).

The present study suggests that self-organized criticality

might explain normal as well as abnormal brain dynamics,

since scale-free dynamics was equally clear in control

subjects and Alzheimer patients. Apparently, the self-

organized state is very robust, and persists even in the case

of neural loss and changes in levels of neurotransmitters.

This resistance of the SOC against small parameter
changes was also reported for cultured neural networks

(Beggs and Plens, 2003). However, even though the

general pattern of SOC may persist in Alzheimer’s disease,

we could show that its specific parameters are changed,

and that the magnitude of synchronization fluctuations is

shifted to a lower level in patients in the upper alpha and to

a lesser extent in the beta band, at least on the time scales

studied. A possible interpretation of this finding is that

larger fluctuations of EEG synchronization reflect stronger

and more rapid creation and destruction of subsequent

synchronous neural networks. Disruption of this process

might be associated with a loss of cognitive flexibility and

processing speed in Alzheimer’s disease, and may manifest

itself in the ‘downward shift’ of the DFA plot, at least in

the upper alpha and beta band. This interpretation is

supported by the finding that the strongest correlation

between any EEG measure and an estimate of cognition

was that between a higher upper alpha band DFA intercept

(implying stronger synchronization fluctuations) and the

MMSE score (Table 2, Fig. 3).

In this context it is important to stress that the ‘eyes-

closed, resting state’ we studied is more closely related to

cognition than is often appreciated. Using fMRI Greicius

et al. showed that during such a resting state a complex

network involving the posterior cingulate gyrus, bilateral

inferior parietal cortex, left inferolateral temporal cortex,

and ventral anterior cingulated cortex, is active (Greicius et

al., 2003). In a recent study the same group showed that this

resting state network is disrupted in Alzheimer’s disease

(Greicius et al., 2004). This supports an interpretation of the

synchronization and DFA findings of the present study in

terms of a disrupted ‘default network’. Functional MRI and

EEG are complementary in demonstrating spatial and time

dependent characteristics of the default network and its

abnormalities in Alzheimer’s disease. Integrated EEG/fMRI

will become available soon and may enable further

exploring the pathophysiology of neural networks involved

in cognitive dysfunction in Alzheimer’s disease.
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