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Abstract

In this thesis, the global asymptotic stability of solutions of several functional
differential equations is addressed, with particular emphasis on the study of global
stability of equilibrium points of population dynamics and neural network models.

First, for scalar retarded functional differential equations, we use weaker ver-
sions of the usual Yorke and 3/2-type conditions, to prove the global attractivity
of the trivial solution. Afterwards, we establish new sufficient conditions for the
global attractivity of the positive equilibrium of a general scalar delayed popula-
tion model, and illustrate the situation applying these results to two food-limited
population models with delays.

Second, for n-dimensional Lotka-Volterra systems with distributed delays, the
local and global stability of a positive equilibrium, independently of the choice of
the delay functions, is addressed assuming that instantaneous negative feedbacks
are present.

Finally, we obtain the existence and global asymptotic stability of an equilib-
rium point of a general neural network model by imposing a condition of domi-
nance of the nondelayed terms. The generality of the model allows us to study,
as particular situations, the neural network models of Hopfield, Cohn-Grossberg,
bidirectional associative memory, and static with S-type distributed delays.

In our proofs, we do not use Lyapunov functionals and our method applies to
general delayed differential equations.

Keywords: Global asymptotic stability; local asymptotic stability; 3/2-type
condition; Yorke condition; delayed population model; delayed neural net-
work model.
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Sumário

Nesta tese estuda-se a estabilidade global assimptótica de soluções de equações
diferenciais funcionais que, pela generalidade com que são apresentadas, possuem
uma vasta aplicabilidade em modelos de dinâmica de populações e em modelos
de redes neuronais.

Numa primeira fase, para equações diferenciais funcionais escalares retar-
dadas, assumem-se novas versões das condições de Yorke e tipo 3/2 para provar
a atractividade global da solução nula. Seguidamente, aplicam-se os resulta-
dos obtidos a um modelo geral de dinâmica de populações escalar com atra-
sos, obtendo-se condições suficientes para a atractividade global de um ponto de
equiĺıbrio positivo, e ilustra-se a situação com o estudo de dois modelos conheci-
dos.

Numa segunda fase, para sistemas n-dimensionais de tipo Lotka-Volterra
com atrasos distribúıdos, estuda-se a estabilidade local e global de um ponto de
equiĺıbrio positivo (caso exista) assumindo condições de dominância dos termos
com atrasos pelos termos sem atrasos.

Por último, novamente assumindo condições de donimância, obtém-se a exis-
tência e estabilidade global assimptótica de um ponto de equiĺıbrio para um
modelo geral de redes neuronais com atrasos. A generalidade do modelo estudado
permite obter, como situações particulares, critérios de estabilidade global para
modelos de redes neuronais de Hopfield, de Cohn-Grossberg, modelos de memória
associativa bidireccional e modelos estáticos com atrasos distribúıdos tipo-S.

De referir que as demonstrações apresentadas não envolvem o uso de fun-
cionais de Lyapunov, o que permite obter critérios de estabilidade para equações
diferenciais funcionais bastante gerais.

Palavras-chave: Estabilidade global assimptótica; estabilidade local assimptó-
tica; condição tipo 3/2; condição de Yorke; modelo populacional com atra-
sos; modelo de redes neuronais com atrasos;
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Resumo

Nas diversas ciências, quer humanas quer exactas, cada vez mais as equações
diferenciais constituem uma ferramenta chave no processo de modelação de rea-
lidades a estudar. A construção de um modelo é uma tentativa de descrever uma
realidade que, na maioria das situações, não é mais do que uma aproximação para
essa mesma realidade. Consequentemente, a procura de modelos cada vez mais
realistas é uma constante preocupação em todas as ciências.

Em muitas aplicações, o processo de modelação é feito assumindo que o futuro
estado do sistema em consideração é determinado apenas pelo presente; contudo,
é reconhecido que em certas situações o desenvolvimento do sistema também
depende do seu estado passado, sendo portanto pertinente a sua inclusão no
modelo. Por exemplo, a construção de modelos para o crescimento populacional
de espécies biológicas é necessariamente mais realista se levar em linha de conta
o seu peŕıodo de maturação. Equações diferenciais ordinárias e a maioria das
equações diferenciais parciais não incorporam a sua dependência com o estado
passado, enquanto que as equações diferenciais funcionais retardadas incorporam
a seu estado passado, isto é, incluem atrasos.

O objectivo desta tese é o estudo da estabilidade global assimptótica de
soluções de equações diferenciais funcionais que, pela generalidade com que são
apresentadas, têm uma vasta aplicabilidade em modelos de dinâmica de po-
pulações e em modelos de redes neuronais. A tese está dividida em quatro
caṕıtulos: no Caṕıtulo 1 apresentam-se alguns resultados básicos sobre esta-
bilidade em equações diferenciais funcionais e efectua-se uma breve descrição
do estado da arte; no Caṕıtulo 2 o estudo centra-se na estabilidade global de
soluções de equações diferenciais funcionais escalares; no Caṕıtulo 3 estuda-se
a estabilidade local e global assimptótica do equiĺıbrio positivo (caso exista) de
um sistema n-dimensional com atrasos do tipo Lotka-Volterra; e no Caṕıtulo 4
obtêm-se condições suficientes para a existência, unicidade e estabilidade global
assimptótica de um equiĺıbrio para diversos modelos de redes neuronais com atra-
sos, quer distribúıdos quer discretos.

Seguidamente apresentam-se, separadamente, cada um dos caṕıtulos que cons-
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Resumo vi

tituem esta tese, salientando os principais pontos originais da investigação.
No primeiro caṕıtulo, sendo um caṕıtulo de preparação para a apresentação

do trabalho de investigação realizado, apresentam-se algumas definições e alguns
resultados básicos sobre estabilidade global de equações diferenciais funcionais.
Faz-se ainda uma apresentação dos modelos a estudar, bem como das respectivas
condições usadas no estudo da estabilidade presentes na literatura mais recente.

No Caṕıtulo 2, obtêm-se condições suficientes para a estabilidade global atrac-
tiva da solução nula de uma equação diferencial funcional escalar na forma geral

ẋ(t) = f(t, xt), t ≥ 0, (1)

onde f : [0,+∞) × C([−τ, 0]; R) → R é uma função cont́ınua, com C([−τ, 0]; R)
denotando o espaço das funções reais cont́ınuas definidas em [−τ, 0], τ > 0, com
a norma do supremo e xt(θ) = x(t+ θ), θ ∈ [−τ, 0]. Para tal, assumem-se novas
versões das condições de Yorke e tipo 3/2. As condições de tipo 3/2 impõem limi-
tes no tamanho do atraso τ > 0, por forma a que o comportamento assimptótico
das soluções de uma equação com atraso se assemelhe ao comportamento das
soluções de equações diferenciais ordinárias.

Em [66], Yorke provou a estabilidade assimptótica da solução nula da equação
escalar (1) introduzindo a conhecida condição de Yorke

− aM(ϕ) ≤ f(t, ϕ) ≤ aM(−ϕ), t ≥ 0, ϕ ∈ C([−τ, 0]; R), (2)

onde a > 0 e M(ϕ) := max{0, supθ∈[−τ,0] ϕ(θ)} é o funcional de Yorke, e assu-
mindo a condição aτ < 3/2. Posteriormente, em [64], a constante a foi subs-
titúıda, na condição (2), por uma função cont́ınua λ(t) ≥ 0, sendo a condição de
tipo 3/2 dada por supt≥τ

∫ t
t−τ λ(s)ds < 3/2. Em [34] introduziu-se uma função

racional r(x) = −x
1+bx , b ≥ 0, surgindo a condição

ar(M(ϕ)) ≤ f(t, ϕ) ≤ ar(−M(−ϕ)), t ≥ 0, ϕ ∈ C([−τ, 0]; R).

Dando seguimento ao trabalho desenvolvido em [14], nesta tese obtém-se a atrac-
tividade global da solução nula de (1) assumindo uma nova versão da condição de
Yorke com a introdução de duas funções não negativas seccionalmente cont́ınuas
λ1(t), λ2(t) ≥ 0 no lugar de a, isto é,

λ1(t)r(M(ϕ)) ≤ f(t, ϕ) ≤ λ2(t)r(−M(−ϕ)), t ≥ 0, ϕ ∈ C([−τ, 0]; R),

e uma nova condição de tipo 3/2 dada pela desigualdade

Γ(α1, α2) ≤ 1,
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onde αi := supt≥τ
∫ t
t−τ λi(s)ds, i = 1, 2, e

Γ(α1, α2) =



(α1 − 1/2)α2
2/2 if α1 > 5/2

(α1 − 1/2)(α2 − 1/2), if α1, α2 ≤ 5/2

(α2 − 1/2)α2
1/2, if α2 > 5/2

.

De notar que se α := α1 = α2, então Γ(α1, α2) ≤ 1 é equivalente a α ≤ 3/2.
Em biologia, diversos modelos escalares de dinâmica de populações têm a

forma ẏ(t) = y(t)g(t, yt). Para estes modelos, do resultado obtido deduz-se um
novo critério para a atractividade global de um ponto de equiĺıbrio positivo, no
conjunto de todas as soluções positivas uma vez que só essas têm significado
biológico. A finalizar o Caṕıtulo 2, ilustra-se a situação com o estudo de dois
modelos populacionais.

No Caṕıtulo 3, estuda-se a estabilidade local e global atractiva de um ponto
de equiĺıbrio positivo x∗ ∈ Rn (caso exista) do modelo n-dimensional de tipo
Lotka-Volterra com atrasos distribúıdos

ẋi(t) = ri(t)xi(t)

1− bixi(t)−
n∑
j=1

lij

∫ 0

−τ
xj(t+ θ)dηij(θ)

 , i = 1, . . . , n, (3)

onde bi > 0, lij ∈ R, τ > 0, ri(t) são funções cont́ınuas positivas e ηij : [−τ, 0]→
R são funções de variação limitada normalizadas, i.e. V ar[−τ,0]ηij = 1, i, j =
1, . . . , n.

Para o estudo destes sistemas não escalares, em vez de uma limitação no
tamanho dos atrasos assume-se antes uma hipótese de dominância dos termos
com atrasos pelos termos sem atrasos, isto é, assume-se que os sistemas possuem
termos sem atrasos, bixi(t), que, pelo seu “peso”, anulam o efeito dos termos com
atrasos.

Seguindo o trabalho de investigação [12] desenvolvido para a situação es-
calar, considera-se o sistema linearizado (depois de um escalamento) em torno do
equiĺıbrio x∗ de (3) para a situação autónoma, isto é ri(t) ≡ 1,

ẏi(t) = −

biyi(t) +
n∑
j=1

lij

∫ 0

−τ
yj(t+ θ)dηij(θ)

 , i = 1, . . . , n, (4)

cuja estabilidade determina a estabilidade local do equiĺıbrio x∗ de (3). Assim,
estudando as ráızes da equação caracteŕıstica de (4), obtém-se uma condição
necessária e suficiente para a estabilidade de (4), independentemente da escolha
de τ > 0 e das funções ηij , estendendo simultaneamente o resultado obtido
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em [12] para a situação não escalar e o resultado em [24] para a situação n-
dimensional com atrasos distribúıdos. Mais concretamente, prova-se que (4) é
exponencialmente assimptoticamente estável para qualquer τ > 0 e qualquer con-
junto de funções η = (ηij) de variação limitada em [−τ, 0], com V ar[−τ,0]ηij = 1,
i, j = 1, . . . , n, tais que detMη 6= 0, se e só se N̂ é uma M-matriz, onde
N̂ := diag(b1, . . . , bn)−[|lij |] e Mη := diag(b1, . . . , bn)+[aij ] com aij = lij(ηij(0)−
ηij(−τ)), i, j = 1, . . . , n. Seguidamente, assumindo condições um pouco mais res-
trictivas do que as obtidas para a situação linear, obtém-se a atractividade do
equiĺıbrio x∗ do sistema Lotka-Volterra (3).

No Caṕıtulo 4 começa-se por estudar a estabilidade global assimptótica de um
ponto de equiĺıbrio de um sistema n-dimensional geral de equações diferenciais
retardadas não autónomo, ẋi(t) = ri(t)fi(xt), impondo novamente condições de
dominância dos termos com atrasos pelos termos sem atrasos. Seguidamente,
surgindo como uma generalização de diversos modelos de redes neuronais com
atrasos, apresenta-se o modelo

ẋi(t) = −ri(t)ki(xi(t))[bi(xi(t)) + fi(xt)], t ≥ 0, i = 1, . . . , n, (5)

onde ri : [0,+∞)→ (0,+∞), ki : R→ (0,+∞), bi : R→ R e fi : C([−τ, 0]; Rn)→
R são funções cont́ınuas tais que, para cada i = 1, . . . , n, ri(t) é uniformemente
limitada e

∫ +∞
0 ri(t)dt = +∞, fi é uma função de Lipschitz com constante li e

existe βi > li tal que (bi(u)− bi(v))/(u− v) ≥ βi, u, v ∈ R, u 6= v. Prova-se que,
se βi > li para todo i = 1, . . . , n, então existe um único ponto de equiĺıbrio x∗ de
(5) que é globalmente assimptoticamente estável.

Dada a generalidade do modelo (5), este engloba, como subclasses, conheci-
dos modelos de redes neuronais de Hopfield, de Cohen-Grossberg, modelos de
memória associativa bidireccional e modelos estáticos com atrasos distribúıdos
do tipo-S presentes na literatura recente, o que permite melhorar critérios para
a existência e estabilidade global assimptótica de um equiĺıbrio para diversos
modelos.

Por último, é importante referir que, contrariamente ao que é usual na lite-
ratura, a demonstração dos resultados de estabilidade global aqui apresentados
não envolve o uso de funcionais de Lyapunov, o que permite obter resultados para
sistemas mais gerais e consequentemente de maior aplicabilidade.
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Introduction

Differential equations are essential modeling tools in many sciences. Although a
model is a representation of a real process, both natural and manmade, sometimes
the best one can get is a model of an approximation of that process. So, to look
for better realistic models is always a challenge in all sciences.

In many applications, the modeling is done assuming that the future state of
the system under consideration is determined solely by the present. But, in many
sciences, such as biology, chemistry, physics, engineering, economics, it is known
that many processes involve time delays, consequently it is often more realistic to
include in the model some of the past history of the system. For example, animals
must take time to digest their food before further activities and responses take
place, hence it is not realistic to ignore times delay. The same happens when we
formulate models for the growth of population species, since it is necessary to
take into account their maturation period.

When a model does not incorporate a dependence on its past history, it gener-
ally consists of an ordinary or partial differential equation. Models incorporating
past history, that is, that include delays, consist of delay differential equations,
or functional differential equations (FDE’s).

In the last decades, FDE’s have attracted the attention of an increasing num-
ber of scientists due to their potential application as models in population dy-
namics ecology, epidemiology, disease evolution, neural networks, etc.. In this
thesis, the research on global asymptotic stability of FDE’s is mainly motivated
by the extensive use of FDE’s in dynamic population models, such as delayed lo-
gistic equations and Lotka-Volterra systems, and neural network models such as
the Hopfield, Cohn-Grossberg, bidirectional associative memory, and static with
S-type distributed delays models.

The objective of this thesis is to study the asymptotic behavior and stability
of solutions of FDE’s. The main goal is to obtain new criteria for stability of
equilibrium points of FDE’s, and apply them to several dynamic population and
neural network models. The thesis is divided into four chapters: Chapter 1
contains basic stability results on FDE’s and the state of the art; Chapter 2

x
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focuses on the global stability of solutions of scalar FDE’s; Chapter 3 is dedicated
to the local and global stability analyses of multi-species Lotka-Volterra systems;
and in Chapter 4 a new method is proposed to study the global stability of the
steady state of several neural network models.

In 1837, Verhulst formulated the growth logistic law given by the scalar ordi-
nary differential equation (ODE)

ẏ(t) = ay(t)
(

1− 1
k
y(t)

)
, t ≥ 0, ẏ =

dy

dt
, (6)

where y(t) denotes the size of a population at time t and the constants a > 0
and k > 0 denote the growth rate and the carrying capacity of the ecosystem,
respectively. In 1948, Hutchinson considered the delayed logistic equation

ẏ(t) = ay(t)
(

1− 1
k
y(t− τ)

)
, t ≥ 0, (7)

as a single species growth model with time delay, where τ ≥ 0 represents the
maturation period of the species.

Nowadays, most of the scalar models in population dynamics have the form

ẏ(t) = y(t)g(t, yt), t ≥ 0, (8)

where g : [0,+∞)× C([−τ, 0]; R)→ R is the growth function, with C([−τ, 0]; R)
the space of continuous real functions defined on [−τ, 0] with supremum norm,
τ > 0, and yt(θ) := y(t+ θ), θ ∈ [−τ, 0]. See [19] and [28] to find a large number
of scalar models of the form (8).

After a first chapter, where we introduce some notations and definitions on
FDE’s and we give some preliminary stability results, in Chapter 2 we study the
global attractivity of the zero equilibrium of a general scalar FDE of the form,
ẋ(t) = f(t, xt), for which we assume some original refinements of the Yorke and
3/2-type conditions present in the literature. Particular emphasis is given to the
global stability of positive equilibria of differential equations with the form (8).
At the end of Chapter 2 we give several new criteria for the global attractivity of
two food-limited population models with delays.

The American biophysicist Alfred J. Lotka (1880-1949) and the Italian math-
ematician Vito Volterra (1860-1940) proposed, separately, an ecological model for
two species, a predator (y) and a prey (x),

ẋ(t) = x(t)(a− αy(t))

ẏ(t) = y(t)(−b+ βx(t))
, (9)

which describes their interaction. Here a, α, b, β are nonnegative constants, and
y(t) and x(t) denote, respectively, the size of the predator population and the
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prey population at the time t. Naturally, by using time-delays this Lotka-Volterra
model becomes more realistic. In 1928, Volterra investigated the following model
with delays

ẋ(t) = x(t)
(
a− cx(t)−

∫ 0

−τ
F1(θ)y(t+ θ)dθ

)

ẏ(t) = y(t)
(
−b+ dx(t) +

∫ 0

−τ
F2(θ)x(t+ θ)dθ

) , (10)

where all constants and functions are nonnegative. In biological terms, only
positive solutions of Lotka-Volterra models are meaningful and it is particularly
important to study the stability and attractivity of a positive equilibrium, if it
exists. Since Volterra’s work, many Lotka-Volterra type models with delays have
arisen and there is an extensive literature dealing with theirs local and global
stability - see e.g. the monographs of Gopalsamy [19], Kuang [28] and Smith
[47].

In Chapter 3, we consider a n-dimensional Lotka-Volterra system with dis-
tributed delays and suppose that there is a positive equilibrium. The local asymp-
totic stability of the equilibrium point of the Lotka-Volterra system is given by
the stability of linearized system. Assuming that instantaneous negative feed-
backs are present, we obtain necessary and sufficient conditions, independently
of the delays, for the asymptotic stability of the linearized system. Afterwards,
the global asymptotic stability of the equilibrium of the Lotka-Volterra system
with distributed delays is obtained assuming conditions of diagonal dominance of
the instantaneous negative feedbacks over the competition terms. We emphasize
that, in the literature, the usual approach to study the global stability of equilib-
ria of FDE’s relies on the use of Lyapunov functionals or Razumikhin methods.
In general, constructing a Lyapunov functional for a concrete n-dimensional FDE
is not an easy task. Frequently, a new Lyapunov functional for each model under
consideration is required. Similarly as in [12] and [13] for the scalar situation, our
techniques do not involve Lyapunov functionals. Our method applies to general
Lotka-Volterra system, or even to broader frameworks, such as to general neural
network models (NNM’s).

In the last chapter, Chapter 4, we use the same techniques to study the global
asymptotic stability of an equilibrium point of a general n-dimensional NNM with
distributed delays.

Neural network models possess good potential applications in areas such as
pattern recognition, signal and image processing, optimization (see [2], [7], [57],
[63], and references therein). In optimization applications, it is required that the
designed neural network converges to a unique and globally asymptotically stable
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equilibrium. Thus, it is important to establish sufficient conditions for systems
to possess these dynamics.

In 1983, Cohen and Grossberg [9] proposed and studied the artificial neural
network described by a system of ordinary differential equations

ẋi(t) = −ki(xi(t))

bi(xi(t))− n∑
j=1

aijfj(xj(t))

 , i = 1, . . . , n (11)

and, in 1984, Hopfield [25] studied the particular situation of (11) with ki ≡ 1,

ẋi(t) = −bixi(t) +
n∑
j=1

aijfj(xj(t)), i = 1, . . . , n. (12)

The finite switching speed of the amplifiers, communication time, and process of
moving images led to the use of time-delays in models (11) and (12). Since then,
several sufficient conditions have been obtained to ensure existence and global
asymptotic stability of an equilibrium point of different generalizations of models
(11) and (12) with delays.

Other NNM’s have been studied, such as the static neural network model [42],

ẋi(t) = −xi(t) + gi

 n∑
j=1

aijxj(t) + Ii

 , i = 1, . . . , n, (13)

also with delays [58], and the bidirectional associative memory neural network
[27], 

ẋi(t) = −xi(t) +
n∑
j=1

aijfj(yj(t)) + Ii

ẏi(t) = −yi(t) +
n∑
j=1

bijgj(xj(t)) + Ji

, i = 1, . . . , n (14)

as well as some other generalizations with delays (see e.g. [1], [4], [60], [61]).
In Chapter 4, we first obtain the global asymptotic stability of the zero solu-

tion of a general n-dimensional delayed differential equation, ẋi(t) = ri(t)fi(xt),
i = 1, · · · , n, by imposing a condition of dominance of the nondelayed terms which
cancels the delayed effect. Afterwards, using some properties of M-matrices, for
a general NNM with delays we obtain a sufficient conditions for the existence of
a unique equilibrium point, and for its global asymptotic stability. The results
are applied to several well-Known NNM’s such as all the above models (11), (12),
(13), and (14).
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The original results in this thesis, covered in Chapters 2 to 4, are taken from
the articles [15], [16] and [39].



Chapter 1

Preliminary Results

In this chapter, we introduce functional differential equations (FDE’s) and present
an overview of the basic results on existence, uniqueness, and continuation of
solutions for such equations. We also present the main results on stability of
linear autonomous functional differential equations.

Afterwards, we introduce a class of FDE’s which will be studied in Chapter
2, and give some important stability results found in recent literature.

Finally, we give some properties of M-matrices, which will be used for the
study of stability of n-dimensional FDE’s in Chapters 3 and 4.

1.1 Basic Results on Functional Differential Equations

The results in this section are taken from Chapter 2 of [23], where detailed proofs
are given.

For n ∈ N, Rn is the n-dimensional real space with a norm | · |, and for
a, b ∈ Rn, a < b, C([a, b]; Rn) is the Banach space of continuous functions from
[a, b] to Rn with the norm of ϕ ∈ C([a, b]; Rn) defined by ‖ϕ‖ = supθ∈[a,b] |ϕ(θ)|.
For τ > 0 fixed, we denote Cn := C([−τ, 0]; Rn). For t0 ∈ R, α ≥ 0, x ∈
C([t0 − τ, t0 + α]; Rn) and t ∈ [t0, t0 + α], we define xt ∈ Cn as

xt(θ) = x(t+ θ), θ ∈ [−τ, 0].

If D is a subset of R× Cn and f : D → Rn is a given function, then we define a
delay functional differential equation as the relation

ẋ(t) = f(t, xt), t ≥ 0, (1.1)

where “·” represents the right-hand derivative.

1
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Definition 1.1. Let t0 ∈ R and α > 0.
A function x ∈ C([t0 − τ, t0 + α); Rn) is said to be solution of (1.1) on [t0 −

τ, t0 + α) if (t, xt) ∈ D and x(t) satisfies (1.1) for all t ∈ [t0, t0 + α).

For given t0 ∈ R and ϕ ∈ Cn, we say that x(t) is a solution of (1.1) with initial
value ϕ at t0, or simply a solution through (t0, ϕ), if there is an α > 0 such that
x(t) is a solution of (1.1) on [t0−τ, t0+α) and xt0 = ϕ. If the solution x(t) of (1.1)
through (t0, ϕ) is unique, we write x(t) = x(t, t0, ϕ) and xt = xt(t0, ϕ). However,
we often suppose that (t0, ϕ) is fixed and we simply write x(t) for x(t, t0, ϕ).

A point x0 ∈ Rn is called an equilibrium point, or a steady state solution, of
(1.1) if f(t, x0) = 0 for all t ≥ 0, where x0 denotes the constant function in Cn,
x0(θ) = x0, θ ∈ [−τ, 0].

If x(t) is a solution of equation (1.1) on an interval [t0 − τ, α), α > t0, we say
that x̂(t) is a continuation of x(t) if there is a β > α such that x̂(t) is defined
on [t0− τ, β), coincides with x(t) on [t0− τ, α), and x̂(t) is a solution of equation
(1.1) on [t0 − τ, β). A solution x(t) is noncontinuable if no such continuation
exists.

Now, we give results on existence, uniqueness, and continuation of solutions
of (1.1).

Theorem 1.1. [23] Suppose D is an open subset in R×Cn, f ∈ C(D; Rn), and
(t0, ϕ) ∈ D.

Then there is a solution x(t) of (1.1) through (t0, ϕ), defined on [t0−τ, t0 +α)
for some α > 0.

If f(t, ϕ) is Lipschitizian in ϕ in each compact set in D, then the solution
x(t) = x(t, t0, ϕ) of (1.1) on [t0 − τ, t0 + α) is unique.

Theorem 1.2. [23] Suppose D ⊆ R× Cn is open and f ∈ C(D; Rn).
If x(t) is a noncontinuable solution of (1.1) on [t0− τ, b), b > t0, then, for all

compact sets W ⊆ D, there is tW ∈ (t0, b) such that

(t, xt) /∈W, t ∈ [tW , b).

The equation (1.1) is said to be autonomous if f(t, ϕ) ≡ f(ϕ) for all (t, ϕ) ∈ D,
otherwise it is said to be nonautonomous. The equation (1.1) is said to be linear
if f(t, ϕ) = L(t, ϕ) + h(t), where L(t, ϕ) is linear in ϕ, and it is said to be linear
autonomous if f(t, ϕ) = L(ϕ) with L ∈ L(Cn,Rn), where L(Cn,Rn) denotes
the space of bounded linear operators from Cn to Rn. Note that, by the Riesz
representation theorem, there is an n× n matrix valued function η on [−τ, 0] of
bounded variation such that

L(ϕ) =
∫ 0

−τ
ϕ(θ)dη(θ) :=

∫ 0

−τ
[dη(θ)]ϕ(θ). (1.2)



1.1 Basic Results on FDE’s 3

Now, we give special attention to linear autonomous retarded FDE’s

ẋ(t) = Lxt, (1.3)

where L is a bounded linear mapping from Cn to Rn. Thus, L has the form (1.2).
From Theorem 1.1, there is a unique solution of (1.3) with initial condition ϕ ∈

Cn at zero, x(ϕ) := x(t, 0, ϕ). A simple application of a Gronwall inequality and
Theorem 1.2 imply that solutions x(ϕ) are defined on [−τ,+∞). Consequently,
we can define the solution operator T (t) : Cn → Cn, t ≥ 0, by

T (t)ϕ = xt(ϕ).

Furthermore, (T (t))t≥0 is a C0-semigroup of linear operators, with T (t) compact
for t ≥ τ . Its infinitesimal generator A : D(A)→ Cn is given by

D(A) =
{
ϕ ∈ Cn : ϕ̇ ∈ Cn, ϕ̇(0) =

∫ 0

−τ
[dη(θ)]ϕ(θ)

}
and

Aϕ = ϕ̇. (1.4)

We have the following result:

Theorem 1.3. [23] If A is the infinitesimal generator of the C0-semigroup of the
solution operator (T (t))t≥0, then σ(A) = σP (A), and λ ∈ σ(A) if and only if λ
satisfies the characteristic equation

det ∆(λ) = 0, ∆(λ) := λI −
∫ 0

−τ
eλθ[dη(θ)] = λI − L(eλ·I). (1.5)

For any λ in σ(A), the generalized eigenspace Mλ(A) is finite dimensional and
there is an integer k such that Mλ(A) = N ((λI − A)k), and we have the direct
sum decomposition

Cn = N ((λI −A)k)⊕ Im((λI −A)k). (1.6)

Note that λ ∈ σ(A) if and only if there is b ∈ Cn, b 6= 0, such that ∆(λ)b = 0,
which is equivalent to saying that x(t) = eλtb is a solution on R of (1.3).

For λ ∈ σ(A), from the above theorem, we know that Mλ(A) has finite
dimension dλ. Let Φλ = (φλ1 , . . . , φ

λ
dλ

) be a basis for Mλ(A). Since AMλ(A) ⊆
Mλ(a), there is a dλ × dλ constant matrix Bλ such that

AΦλ = ΦλBλ. (1.7)
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By (1.4), we have Φ̇λ = ΦλBλ and then

Φλ(θ) = Φλ(0)eBλθ, θ ∈ [−τ, 0].

From (1.7) together with a property of C0-semigroups, we obtain d
dtT (t)Φλ =

AT (t)Φλ = T (t)AΦλ = T (t)ΦλBλ, and hence

T (t)Φλ = Φλe
Bλt, t ≥ 0,

which implies

[T (t)Φλ](θ) = Φλ(θ)eBλt = Φλ(0)eBλ(t+θ), θ ∈ [−τ, 0].

Clearly, the solution of (1.3) with initial condition Φλa (a ∈ Cdλ) at t0 = 0 is
given by x(t) = Φλ(0)eBλta, and is a solution of (1.3) on R. This allows us
to fully understand the behavior of the solutions of equation (1.3) with initial
conditions on Mλ(A), that is, with the identification Mλ(A) ≡ Cdλ , equation
(1.3) restricted toMλ(A) reads as the ODE ẋ = Bλx. By a repeated application
of the preceding process we obtain the following result:

Theorem 1.4. [23] Suppose Λ = {λ1, . . . , λp} is a finite subset of σ(A) and let
ΦΛ = (Φλ1 , . . . ,Φλp), BΛ = diag(Bλ1 , . . . , Bλp), where Φλj is a basis for Mλj (A)
and Bλj is the matrix defined by AΦλj = ΦλjBλj , j = 1, . . . , p.

Define N :=
∑p

i=1 dλi. Then the only eigenvalue of Bλj is λj and, for each
a ∈ CN , the solution T (t)ΦΛa, with initial condition ΦΛa at t0 = 0, is

xt(ΦΛa)(θ) = [T (t)ΦΛa](θ) = ΦΛ(0)eBΛ(t+θ)a, −τ ≤ θ ≤ 0, t ∈ R.

To obtain more information on the complementary space Im((λI − A)k) in
the decomposition (1.6), we define C∗n := C([0, τ ]; Rn∗), where Rn∗ is the n-
dimensional vector space of row vectors, and introduce the so-called formal ad-
joint equation

ẏ(r) = −
∫ 0

−τ
y(r − θ)[dη(θ)], r ≤ 0, (1.8)

with y(r) ∈ Rn∗ . Notice that (1.8) must be solved backward and existence and
uniqueness of solutions on (−∞, τ ] holds (letting t = −r in (1.8), it becomes
a retarded linear FDE). Consequently, we can also define the solution operator
T ∗(r) : C∗n → C∗n, r ≤ 0, by

T ∗(r)ψ = yr(ψ),

where yr(ψ)(ξ) = y(r+ξ)(ψ), ξ ∈ [0, τ ]. Letting S(r) = T ∗(−r), r ≥ 0, (S(r))r≥0

is a C0-semigroup of linear operators on C∗n and its infinitesimal generator A∗ :
D(A∗)→ C∗n is given by

A∗ψ = −ψ̇



1.1 Basic Results on FDE’s 5

with

D(A∗) =
{
ϕ ∈ C∗n : ψ̇ ∈ C∗n, ψ̇(0) = −

∫ 0

−τ
ψ(−θ)[dη(θ)]

}
.

From Theorem 1.3 applied to (S(r))r≥0, we conclude that σ(A∗) = σP (A∗)
and λ ∈ σ(A∗) if and only if y(t) = e−λtb is a solution of (1.8), where b is a
nonzero row vector satisfying b∆(λ) = 0. Therefore, λ ∈ σ(A∗) if and only if
λ is a root of the characteristic equation (1.5), hence σ(A∗) = σP (A∗) = σ(A).
For any λ ∈ σ(A∗), the generalized eigenspace Mλ(A∗) is finite dimensional,
in fact dim(Mλ(A∗)) = dim(Mλ(A)). Furthermore, defining the bilinear form
(·, ·) : C∗n × Cn → R by

(ψ,ϕ) := ψ(0)ϕ(0)−
∫ 0

−τ

∫ θ

0
ψ(ξ − θ)[dη(θ)]ϕ(ξ)dξ, ψ ∈ C∗n, ϕ ∈ Cn,

we have
(ψ,Aϕ) = (A∗ψ,ϕ), ψ ∈ C∗n, ϕ ∈ Cn,

so A∗ can be interpreted as a formal adjoint operator. The “alternative” theorem
relative to the formal duality (·, ·) works well in this setting.

Lemma 1.5. [23] Let λ ∈ σ(A), k ∈ N and ϕ ∈ Cn. Then

ϕ ∈ Im((λI −A)k) if and only if (ψ,ϕ) = 0 for all ψ ∈ N ((λI −A∗)k).

Now, fix λ ∈ σ(A). As dim(Mλ(A∗)) = dim(Mλ(A)) = dλ, let Ψλ =
col(ψλ1 , . . . , ψ

λ
dλ

) and Φλ = (φλ1 , . . . , φ
λ
dλ

) be bases forMλ(A∗) andMλ(A), respec-
tively, and let (Ψλ,Φλ) := [(ψλi , φ

λ
j )ij ]. Then (Ψλ,Φλ) is a nonsingular matrix and

thus may be taken as the identity by properly selecting ψλi or φλi , i = 1, . . . , dλ.
Consider the decomposition (1.6) written as

Cn = Pλ ⊕Qλ,

where Pλ = Mλ(A) and Qλ = Im((λI − A)k). Then, for any φ ∈ Cn we have
φ = φPλ + φQλ , φPλ ∈ Pλ, φQλ ∈ Qλ, and

Pλ =Mλ(A) = {φ ∈ Cn : φ = Φλb, b ∈ Cdλ},

Qλ = {φ ∈ Cn : (Ψλ, φ) = 0}

and
(Ψλ, φ) = (Ψλ, φ

Pλ) + (Ψλ, φ
Qλ)

= (Ψλ,Φλb)
= b,

so that
φPλ = Φλb = Φλ(Ψλ, φ).



1.2 Stability of FDE’s 6

For µ, λ ∈ σ(A) with µ 6= λ, we have (ψ, φ) = 0 for all ψ ∈ Mµ(A∗) and
φ ∈ Mµ(A), hence the above detailed decomposition can easily be extended to
Λ = {λ1, . . . , λp} ⊆ σ(A). Thus, we have the following result:

Theorem 1.6. [23] Let Λ = {λ1, . . . , λp} ⊆ σ(A), and consider

PΛ :=
p⊕
i=1

Mλi(A) and P ∗Λ :=
p⊕
i=1

Mλi(A
∗).

Let Φ, Ψ be bases for PΛ and P ∗Λ, respectively, such that (Ψ,Φ) = IN , where IN
is the N ×N identity matrix and N := dimPΛ = dimP ∗Λ. Then we have

Cn = PΛ ⊕QΛ, (1.9)

where
PΛ = {φ ∈ Cn : φ = Φb, b ∈ CN},

QΛ = {φ ∈ Cn : (Ψ, φ) = 0},

and, for any φ ∈ Cn, we have φ = φPΛ + φQΛ, φPΛ ∈ PΛ, φQΛ ∈ QΛ, with
φPΛ = Φ(Ψ, φ).

We shall refer to the decomposition (1.9) of Cn by saying that Cn is decom-
posed by Λ. From Theorem 1.4, on the generalized eigenspace PΛ the equation
(1.3) behaves as an ordinary differential equation. In particular, on PΛ T (t) is
defined for −∞ < t < +∞. Now, if we want to know the stability of a linear
system (1.3), we need to have an estimate for the solutions on the complementary
subspace QΛ.

1.2 Stability of Functional Differential Equations

In this section, we present some definitions and basic results on stability for
FDE’s.

First, we introduce several concepts of stability for solutions of equation (1.1).
Consider (1.1) with f : [α,+∞) × Cn → Rn, α ∈ R, continuous and satisfying
enough additional smoothness conditions to ensure the uniqueness of the solution
x(t, t0, ϕ) through (t0, ϕ) ∈ [α+ τ,+∞)× Cn and that it is defined on [t0,+∞).

Definition 1.2. Suppose f(t, 0) = 0 for all t ≥ α, α ∈ R. We say that the
solution x ≡ 0 of (1.1) is:

(i) stable if for any t0 ≥ α, ε > 0, there is a δ = δ(t0, ε) > 0 such that, for all
ϕ ∈ Cn,

‖ϕ‖ < δ ⇒ ‖xt(t0, ϕ)‖ < ε, for t ≥ t0;



1.2 Stability of FDE’s 7

(ii) uniformly stable if for any ε > 0, there is a δ = δ(ε) > 0 such that, for all
ϕ ∈ Cn,

‖ϕ‖ < δ ⇒ ‖xt(t0, ϕ)‖ < ε, for t ≥ t0 ≥ α;

(iii) (locally) asymptotically stable if it is stable and for any t0 ≥ α, there is
b = b(t0) > 0 such that, for all ϕ ∈ Cn,

‖ϕ‖ < b⇒ |x(t, t0, ϕ)| → 0 as t→ +∞;

(iv) (locally) uniformly asymptotically stable if it is uniformly stable and there
is b > 0 such that, for every η > 0, there is a T = T (η) > 0 such that, for
all ϕ ∈ Cn,

‖ϕ‖ < b⇒ ‖xt(t0, ϕ)‖ < η, for t0 ≥ α and t ≥ t0 + T ;

(v) (locally) exponentially asymptotically stable if there are b, k, ε > 0 such that,
for ϕ ∈ Cn,

‖ϕ‖ ≤ b⇒ |x(t, t0, ϕ)| ≤ ke−ε(t−t0), for t ≥ t0 ≥ α;

(vi) globally attractive if all solutions of (1.1) tend to zero as t→ +∞;

(vii) globally asymptotically stable if it is stable and globally attractive;

(viii) unstable if it is not stable.

If y(t) is a solution of (1.1), then y(t) is said to be stable if the solution z(t) = 0
of the equation

ż(t) = f(t, zt + yt)− f(t, yt)

is stable. The other types of stability are defined similarly.
We remark that some authors (e.g. [28], pag. 149) use the term globally

asymptotically stable to define a solution globally attractive.

Remark 1.1 If f(t, ϕ) is linear in ϕ, then any solution x(t) of (1.1) has the
same stability of the zero solution, thus we often refer to the stability of the
equation, instead of the stability of a solution.

Consider the linear autonomous system (1.3), the C0-semigroup of solution
operators (T (t))t≥0 and its infinitesimal generator A. Since the operators T (t) are
compact for t ≥ τ , then for any real number β, there are only a finite number of λ
in σ(A) such that Reλ ≥ β (see [23] for details). Then, consider Cn decomposed
by

Λ := Λ(β) = {λ ∈ σ(A) : Reλ ≥ β}.
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Theorem 1.7. [23] For any β ∈ R, let Λ = Λ(β). If Cn is decomposed by Λ as
Cn = PΛ ⊕QΛ, then there exist positive constants γ and k such that

‖T (t)φQΛ‖ ≤ ke(β−γ)t‖φQΛ‖, t ≥ 0, ∀φQΛ ∈ QΛ; (1.10)

‖T (t)φPΛ‖ ≤ ke(β−γ)t‖φPΛ‖, t ≤ 0,∀φPΛ ∈ PΛ. (1.11)

An important corollary is obtained when β = 0 and Λ(0) = ∅.

Corollary 1.8. If all of the roots of the characteristic equation (1.5) for (1.3)
have negative real parts, then there exist positive constants k and γ such that

‖T (t)φ‖ ≤ ke−γt‖φ‖, ∀t ≥ 0,∀φ ∈ Cn.

The above result says that, if all roots of characteristic equation of (1.3) have
negative real parts, then system (1.3) is exponentially asymptotically stable. The
reverse also holds, because of Theorem 1.4 and the known results about stability
for linear ordinary differential equations.

The last result in this section concerns the stability of the zero solution of a
perturbed autonomous FDE. Consider the FDE in Cn,

ẋ(t) = Lxt + f(xt), (1.12)

where L : Cn → Rn is a bounded linear operator and f : Cn → Rn is a C1

function with f(0) = 0 and Df(0) = 0. Thus, the linearization of (1.12) about
φ = 0 is

ẏ(t) = Lyt. (1.13)

The following result allows us to obtain the local exponential asymptotic stability
of the zero solution of (1.12) from the exponential asymptotic stability of system
(1.13).

Theorem 1.9. Consider (1.12) with f in C1, f(0) = 0 and Df(0) = 0. If
(1.13) is exponentially asymptotically stable, then the zero solution of (1.12) is
locally exponentially asymptotically stable. If Reλ > 0 for some λ satisfying the
characteristic equation of (1.13), then the zero solution of (1.12) is unstable.

Proof. See Theorem 2.4.2 in [28].

The above theorem allows us to deduce the local stability of a steady state
x0 of an autonomous FDE ẋ(t) = f(xt), with f ∈ C1, if the linear equation
ẏ(t) = Df(x0)yt is hyperbolic, i.e., if

{β ∈ R : det ∆(βi) = 0} = ∅.
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1.3 3/2-Type Conditions for Scalar Functional

Differential Equations

To study the behavior of solutions of delay differential equations, and in particular
the stability of equilibria, one approach is to give conditions on the size of the
delays and coefficients, such as the so-called 3/2-type conditions, so that the FDE
is expected to behave similarly to an ordinary differential equation if the delays
are sufficiently small. This is the setting initiated with the remarkable work of
Wright [62], who studied the delayed logistic equation (7) and established the
following global stability result:

Theorem 1.10. [62] If aτ ≤ 3/2, then any positive solution x(t) of the delayed
logistic equation (7) converge to the positive equilibrium k as t→ +∞.

By the change y(t) = −1 + x(t)
k , we transfer the positive equilibrium to the

origin and equation (7) can be written as

ẏ(t) = −(1 + y(t))ay(t− τ), t ≥ 0. (1.14)

The linearization of (1.14) about the trivial solution is the linear equation ẏ(t) =
−ay(t − τ), and its characteristic equation is λ + ae−λτ = 0. If aτ < π

2 then
all roots λ have negative real part. If aτ > π

2 then there exists a root of the
characteristic equation with positive real parte. Consequently, from Theorem 1.9,
the positive equilibrium x(t) ≡ k of (7) is locally exponentially asymptotically
stable if aτ < π

2 , and unstable if aτ > π
2 . Wright [62] formulated the well-known

Wright’s conjecture, claiming that the above theorem is true if we assume aτ < π
2 ,

instead of aτ ≤ 3
2 .

In 1970, Yorke [66] considered a general scalar FDE

ẋ(t) = f(t, xt), t ≥ 0, (1.15)

where f : [0,+∞)× Cβ → R is continuous with Cβ = {φ ∈ C([−τ, 0]; R) : ‖φ‖ <
β}, β > 0, and introduced the so-called Yorke condition

− aM(ϕ) ≤ f(t, ϕ) ≤ aM(−ϕ), t ≥ 0, ϕ ∈ C := C([−τ, 0]; R), (1.16)

where a > 0 and M(ϕ) is the Yorke functional

M(ϕ) := max

{
0, sup
θ∈[−τ,0]

ϕ(θ)

}
. (1.17)

Yorke also introduced the following condition:

for all sequences tn → +∞ and ϕn ∈ C, ‖ϕn‖ ≤ β,
if ϕn → c 6= 0, then f(tn, ϕn) does not converge to zero. (1.18)
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A solution x(t) of (1.15) defined on [−τ,+∞) is said to be oscillatory if it is
not eventually zero and it has arbitrary large zeros, otherwise x(t) is called non-
oscillatory. Yorke [66] used the hypothesis (1.16) together with the restriction
aτ < 3/2 to deduce that all oscillatory solutions x(t, ϕ) of (1.15) with sufficiently
small initial condition ϕ (i.e. ϕ ∈ Cβ such that ‖ϕ‖ ≤ 2β

5 ) tends to zero as
t→ +∞, while the additional condition (1.18) is needed to force non-oscillatory
solutions to converge to zero as t→ +∞.

Later, Yoneyama [64] generalized the work of Yorke, replacing in the Yorke
condition the constant a by a non-negative continuous function λ(t) such that

inf
t≥τ

∫ t

t−τ
λ(s)ds > 0,

and established similar stability results for (1.15) under

− λ(t)M(ϕ) ≤ f(t, ϕ) ≤ λ(t)M(−ϕ), t ≥ 0, ϕ ∈ C, (1.19)

and the new 3/2-type condition

sup
t≥τ

∫ t

t−τ
λ(s)ds <

3
2
. (1.20)

Yoneyama [64] also proved that, for (1.15) with a piecewise continuous function
f , the condition (1.20) is sharp, in the sense that there are functions f satisfying
(1.19) with supt≥τ

∫ t
t−τ λ(s)ds = 3/2, for which (1.15) has a nonzero periodic

solution.
Since the work of Wright [62], there has been an extensive literature on 3/2-

type conditions and on Yorke conditions, used to obtain several results about
stability of solutions of scalar FDE’s. For more discussions, we refer the reader
to the books of Gopalsamy [19] and Kuang [28].

Some recent generalizations of the Yorke condition in [11], [14], [34] and [67]
motivated our work presented in Chapter 2. In [14] we considered scalar FDE’s
of the form (1.15) with f : [0,+∞) × C → R continuous and C := C([−τ, 0]; R)
the space of continuous functions from [−τ, 0] to R, τ > 0, equipped with the sup
norm ‖ϕ‖ = maxθ∈[−τ,0] |ϕ(θ)|, and assumed the following hypotheses:

(h1) there exists a piecewise continuous function β : [0,∞) → [0,∞) with
supt≥τ

∫ t
t−τ β(s)ds < +∞, and such that for each q ∈ R there is η(q) ∈ R

such that for t ≥ 0 and ϕ ∈ C, ϕ ≥ q, then

f(t, ϕ) ≤ β(t)η(q);

(h2) if w : [−τ,+∞)→ R is continuous and wt → c 6= 0 in C as t→ +∞, then∫ +∞
0 f(s, ws)ds diverges;
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(h3) there are a piecewise continuous function λ : [0,+∞) → [0,+∞) and a
constant b ≥ 0 such that, for r(x) := −x

1+bx , x > −1/b, then

λ(t)r(M(ϕ)) ≤ f(t, ϕ) ≤ λ(t)r(−M(−ϕ)), t ≥ 0, (1.21)

where the first inequality holds for all ϕ ∈ C and the second one for ϕ ∈ C
such that ϕ > −1/b ∈ [−∞, 0), and M(ϕ) is the Yorke functional defined
in (1.17);

(h4) for λ(t) as in (h3), there is T ≥ τ such that, for

α := α(T ) = sup
t≥T

∫ t

t−τ
λ(s)ds, (1.22)

α ≤ 3/2 if b > 0, and α < 3/2 if b = 0.

We remark that, if b = 0 we have r(x) = −x and (1.21) coincide with the Yorke
condition (1.19) introduced by Yoneyama. Moreover, in this situation, it is clear
that (h3) and (h4) imply (h1).

Hypotheses (h1), (h3) are used to guarantee that all solutions of (1.15) are
bounded (see [34]), and (h2) is used to prove that non-oscillatory solutions of
(1.15) converge to zero as t → +∞, whereas (h3), (h4) are used to prove the
same for oscillatory solutions. In [14], the following result was proven:

Theorem 1.11. [14] Assume (h1)-(h4) and consider α := supt≥T
∫ t
t−τ λ(s)ds <

3/2, for some T ≥ τ . Then the zero solution of (1.15) is globally attractive.
If b > 0 and λ(t) > 0 for t large, the same result holds for α = 3/2.

The rational function r(x) in (1.21) was first introduced by Liz et al. [34],
with λ(t) ≡ a, and in [14] the situation of two different rational functions r1(x),
r2(x) in the Yorke condition was also considered, λ(t)r1(M(ϕ)) ≤ f(t, ϕ) ≤
λ(t)r2(−M(−ϕ)), however under a constraint stronger than the 3/2-condition
(h4). Also, instead of introducing a rational function in (1.21), for a particular
class of scalar FDE’s, Muroya [38] considered a strictly decreasing function h :
R→ R with h(0) = 0 and either h(−∞) or h(+∞) is finite. Recently, Zhang and
Yan [67] considered two functions λ1(t), λ2(t) in (1.19), −λ1(t)M(ϕ) ≤ f(t, ϕ) ≤
λ2(t)M(−ϕ), and the following 3/2-type condition

min{α1, α2}max{α2
1, α

2
2} < (3/2)3, (1.23)

where αi := supt≥T
∫ t
t−τ λi(s)ds, i = 1, 2, for some T ≥ τ , to prove that the zero

solution of (1.15) is globally asymptotically stable.
In Chapter 2, we unify several generalizations of the Yorke condition presented

in [14], [34], [38], and [67], considering two functions λ1(t), λ2(t) in (1.21) and, for



1.4 Nondelayed Diagonally Dominant Terms 12

the case b = 0, placing a function h : R→ R such that h(x)x < 0 and |h(x)| < |x|,
x 6= 0, instead of r(x) = −x. Thus we prove the global attractivity of the trivial
solution of (1.15) under a generalized Yorke condition and a 3/2-condition weaker
than (1.23).

In applications to biology, most of the scalar models in population dynamics
have the form ẏ(t) = y(t)g(t, yt). Due to the biological interpretation, only posi-
tive solutions are meaningful. From our results, we shall deduce a new criterion
for the global attractivity of the positive equilibrium (in the set of positive so-
lutions). To illustrate the situation, we shall study two food-limited population
models with delays, for which several criteria for the global attractivity of their
equilibrium points are given.

Recently, some authors, [54] and [55] have extended Wright’s study [62] to
n-dimensional delayed differential systems. Tang and Zou [55] considered Lotka-
Volterra systems with distributed delays of the form

ẋi(t) = ri(t)xi(t)
[
1−

∫ 0

−τii
xi(t+ θ)dηii(θ)

−
n∑
j 6=i

lij

∫ 0

−τij
xj(t+ θ)dηij(θ)

 , i = 1, . . . , n. (1.24)

where ri ∈ C([0,+∞); (0,+∞)), lij ≥ 0, τij ≥ 0 and ηij are non-decreasing
functions with variation 1, i.e. ηij(0)− ηij(−τ) = 1, i, j = 1, . . . , n, and obtained
several 3/2-type criteria for the global attractivity of the positive equilibrium of
(1.24) by using a technique which extends to systems Wright’s method [62] for
scalar equations.

1.4 Nondelayed Diagonally Dominant Terms

In this section, we present a different line of investigation for studying the global
stability of solutions of delayed differential equations.

In general, large delays induce instability of equilibria, oscillations and even
existence of unbounded solutions. If the delays are small enough, they are ex-
pected to be negligible, so that a FDE should behave mainly like an ordinary
differential equation. This is the line of investigation presented in last section,
which has been especially fruitful in case of scalar equations since the works of
Wright [62] and Yorke [66] with the so-called 3/2-type conditions and Yorke’s
condition.

However, in many situations, it is not realistic to assume that the delays
are very small. An alternative setting to study stability of a delayed differential
equation is to assume that it has non-delayed negative feedback terms which
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dominate, in some sense, the delay effect. This is the situation developed by
e.g. Faria [12], Faria and Liz [13], Gyori [22], Seifert [46] for scalar equations,
Campbell [3], Hofbauer and So [24], Kuang [29], [30], Kuang and Smith [31], Lu
and Wang [35], for n-dimensional systems, and followed here in Chapters 3 and
4.

In Chapter 3, we consider linear FDE’s in Rn with undelayed diagonal terms,
given by

ẋi(t) = −

bixi(t) +
n∑
j=1

lij

∫ 0

−τ
xj(t+ θ)dηij(θ)

 , i = 1, . . . , n, (1.25)

and multiple species Lotka-Volterra type models of the form

ẋi(t) = ri(t)xi(t)

1− bixi(t)−
n∑
j=1

lij

∫ 0

−τ
xj(t+ θ)dηij(θ)

 , i = 1, . . . , n,(1.26)

where bi, lij ∈ R, τ > 0, ri(t) are positive continuous functions and ηij : [−τ, 0]→
R are normalized bounded variation functions, i, j = 1, . . . , n. The main purpose
is to establish sufficient conditions of diagonal dominance of the instantaneous
negative feedbacks over the matrix of all the delayed terms, so that the stability
of a positive equilibrium of (1.26) follows independently of the choices of bounded
functions ηij .

In Chapter 4, we consider a general delayed differential system of the form

ẋi(t) = ri(t)fi(xt), t ≥ 0, i = 1, . . . , n, (1.27)

where ri : [0,+∞) → (0,+∞) and f = (f1, . . . , fn) : Cn → Rn are continuous
functions. The goal is to establish a general hypothesis over f , so that, indepen-
dently of the delay τ > 0, x(t) ≡ 0 is a globally asymptotically stable equilibrium.
These results are applied to the study of a general neural network model written
as

ẋi(t) = −ri(t)ki(xi(t))[bi(xi(t)) + fi(xt)], t ≥ 0, i = 1, . . . , n, (1.28)

where ri : [0,+∞)→ (0,+∞), ki : R→ (0,+∞), bi : R→ R and fi : Cn → R are
continuous functions, i = 1, . . . , n.

The work on Lotka-Volterra systems presented in Chapter 3 was strongly
motivated by Faria [12], where scalar equations (1.25) and (1.26) were studied,
and Hofbauer and So [24] and Campbell [3], who dealt with n-dimensional systems
with discrete delays.

In [12], the scalar delayed logistic equation

ẋ(t) = r(t)x(t)[1− b0x(t)− L0(xt)], t ≥ 0, (1.29)
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where r : [0,+∞) → (0,+∞) is a continuous function, b0 ∈ R, and L0 : C =
C([−τ, 0]; R) → R is a linear bounded operator, was considered. The follow-
ing criterion for the global asymptotic stability of its positive equilibrium was
established:

Theorem 1.12. [12] Consider equation (1.29), with b0 > 0, L0 : C → R a
bounded linear operator, and r(t) uniformly bounded on [0,+∞) and such that∫ +∞

0 r(t)dt = +∞. If

b0 + L0(1) > 0, b0 ≥ ‖L0‖, (1.30)

then the positive equilibrium x∗ = (b0 + L0(1))−1 of (1.29) is globally asymptoti-
cally stable (in the set of all positive solutions).

Note that the inequality b0 + L0(1) > 0 assures that equation (1.29) has a
unique positive equilibrium, and the inequality b0 ≥ ‖L0‖ says that the term
b0x(t) “dominates” the delayed term L0(xt).

Now, suppose that (1.29) is autonomous, i.e. r(t) ≡ 1. Then, its linearization
about x∗ has the form ẋ(t) = −[b0x(t) +L0(xt)], and the following necessary and
sufficient condition for the global stability of the linear equation was obtained in
[12].

Theorem 1.13. [12] Let L : C → R be a linear bounded operator. Then the
following conditions are equivalent:

(i) L(1) > 0 and L satisfies

for all ϕ ∈ C such that |ϕ(θ)| < ϕ(0) for θ ∈ [−τ, 0),

then L(ϕ) > 0; (1.31)

(ii) L has the form

L(ϕ) = b0ϕ(0) + l0

∫ 0

−τ
ϕ(θ)dη(θ), ϕ ∈ C, (1.32)

with b0 > 0, l0 ∈ R and η : [−τ, 0] → R a normalized bounded variation
function, b0 ≥ |l0| and L(1) > 0.

Under these conditions, the linear equation

ẋ(t) = −L(xt) (1.33)

is exponentially asymptotically stable.
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It was also proved that if L has the form (1.32) with b0 < |l0|, then the
characteristic equation for (1.33) has a root with positive real part. Consequently,
for the autonomous situation, the criterion established in Theorem 1.12 is sharp.

The study of the nonscalar situation is far more complicated. Lu and Wang
[35] studied the two-species Lotka-Volterra system without delayed intraspecific
competitions given by

ẋ1(t) = x1(t)[r1 − a11x1(t)− a12x2(t− τ12)]

ẋ2(t) = x2(t)[r2 − a21x1(t− τ21)− a22x2(t)]
, (1.34)

assuming that there is a unique positive equilibrium x∗ = (x∗1, x
∗
2). As usually,

only positive solutions were considered. They showed that x∗ is globally asymp-
totically stable for all the choices of τ12, τ21 ≥ 0 if and only if the interaction

matrix of the system M =

[
a11 a12

a21 a22

]
satisfies

a11 > 0, a22 > 0, − a12a21 ≤ a11a22, and a12a21 < a11a22,

which is equivalent to saying that detM 6= 0 and M̃ =

[
a11 −|a12|
−|a21| a22

]
is an

M-matrix (see Section 1.5 for details). Hofbauer and So [24] extended this result
to n ≥ 2, as described below.

Considering the autonomous n-dimensional Lotka-Volterra system with dis-
crete delays

ẋi(t) = xi(t)

ri − n∑
j=1

aijxj(t− τij)

 , i = 1, . . . , n, (1.35)

with ri > 0, aij ∈ R, τij ≥ 0 for 1 ≤ i, j ≤ n and τii = 0 for i = 1, . . . , n,
Hofbauer and So [24] obtained necessary and sufficient conditions for the global
asymptotic stability of a positive equilibrium x∗ (if it exists), for all the choices
of delays τij ≥ 0 i 6= j.

Theorem 1.14. [24] Suppose that there exists a positive equilibrium x∗ of (1.35).
Then x∗ is globally asymptotically stable (for initial conditions xi(0) > 0) for all
τij ≥ 0, i 6= j and τii = 0 if and only if aii > 0, detM 6= 0 and M̃ is an M-
matrix, where M = [aij ] and M̃ = [ãij ] with ãii = aii and ãij = −|aij |, i 6= j,
i, j = 1, . . . , n.

For the linear system

ẋi(t) = −
n∑
j=1

aijxj(t− τij), i = 1, ·, n, (1.36)
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Hofbauer and So [24] showed the exponential asymptotic stability, independently
of the choices of the delays with the same conditions.

Theorem 1.15. [24] The linear system (1.36) is exponentially asymptotically
stable for all choices of the delays τij ≥ 0, i 6= j, τii = 0, i, j = 1, . . . , n, if and
only if aii > 0, detM 6= 0 and M̃ is an M-matrix.

Later on, Campbell [3] proved the above theorem without the restriction
τii = 0.

In Chapter 3, the goal is to extend both the results in [12] to n-dimensional
equations, and the results in [24] to a general situation with distributed delays.
First, for the linear system (1.25), we obtain necessary and sufficient conditions,
independently of the choices of ηij , i, j = 1, . . . , n, for its exponential asymptotic
stability. Afterwards, under conditions slightly stronger than the ones required
for the linear stability, we prove the global asymptotic stability of the positive
equilibrium x∗ (if it exists) of (1.26).

1.5 M-Matrices

In some recent literature on global stability for n-dimensional systems of delayed
differential equations, such as Lotka-Volterra and neural network models, the
concept of M-matrix and its properties arise as an important tool (see e.g. [1],
[3], [4], [7], [24], [53], [58]). Thus, in this section we give some concepts and
results from matrix analysis, which are important for the investigation carried
out in Chapter 3 and 4. For a complete study of M-matrices, we refer the reader
to [17], Chapter 5.

A matrix A = [aij ] is said to be non-negative, A ≥ 0, respectively positive,
A > 0, if aij ≥ 0, respectively aij > 0, for all i, j. If A and B are real matrices
of equal dimension, then A ≥ B and A > B mean A − B ≥ 0 and A − B > 0,
respectively. We also define |A| := [|aij |]. Similarly, for x = (x1, . . . , xn) ∈ Rn, we
say that x > 0 if xi > 0 for i = 1, . . . , n, and that x ≥ 0 if xi ≥ 0 for i = 1, . . . , n.
For x = (x1, . . . , xn) > 0, x−1 is the vector given by x−1 = (x−1

1 , . . . , x−1
n ).

A square matrix A is said to be reducible if it has the form(
A1 B

0 A2

)
, (1.37)

where A1 and A2 are square matrices of order at least 1 or if A can be transformed
into the form (1.37) by a simultaneous permutation of rows and columns. A
square matrix is said to be irreducible if it is not reducible.
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For n ∈ N, we denote by Zn the set of all real square matrices of order n
whose off-diagonal entries are all non-positive, i.e.,

Zn = {A = [aij ] : aij ≤ 0 for all i 6= j and i, j = 1, . . . , n}.

Definition 1.3. For n ∈ N, let A ∈ Zn.
The matrix A is said to be an M-matrix if all eigenvalues of A have non-

negative real part.
The matrix A is said to be a non-singular M-matrix if all eigenvalues of A

have positive real part.

Clearly, a non-singular M-matrix is an M-matrix.
The above definition agrees with the notation in [3] and [49]. Some authors

(e.g. [38]) use the term “M-matrix” to denote a “non-singular M-matrix” as above
defined, a situation the reader should be aware of, in order to avoid conceptual
misunderstandings.

The following result is a fundamental theorem on non-singular M-matrices. It
gives a list of properties which are important in the present work. For a complete
list see [17].

Theorem 1.16. [17] Let A = [aij ] be a matrix from Zn. Then the following
properties are equivalent:

(i) Every eigenvalue of A has a positive real part;

(ii) All principal minors of A are positive;

(iii) There exists a positive diagonal matrix D = diag(d1, . . . , dn) such that
AD = [aijdj ] satisfies the condition

aiidi >
∑
j 6=i
|aij |dj , for i = 1, . . . , n;

(iv) There exists a vector x > 0 such that Ax > 0;

(v) A is non-singular and A−1 ≥ 0.

For M-matrices, we have the following important theorem:

Theorem 1.17. [17] Let A = [aij ] be a matrix from Zn. Then the following
properties are equivalent:

(i) Every eigenvalue of the matrix A has a non-negative real part;

(ii) All principal minors of A are non-negative;
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(iii) A+ εI is a non-singular M-matrix for any ε > 0.

From the above theorems, we conclude that an M-matrix A is a non-singular
M-matrix if and only if detA 6= 0.

Now we present some properties which will be used later. The next two
theorems are a direct consequence of Theorems 1.16 and 1.17.

Theorem 1.18. [17] If A is a non-singular M-matrix, B ∈ Zn, and B ≥ A, then
B is a non-singular M-matrix. If A is an M-matrix, B ∈ Zn, and B ≥ A, then
B is an M-matrix.

Theorem 1.19. [17] Let A ∈ Zn. If there exists a positive vector x such that
Ax ≥ 0, then A is an M-matrix.

In general, the reverse of Theorem 1.19 is not true for n ≥ 2. For example,

the matrix D =

(
0 −1
0 1

)
is an M-matrix but there is no d = (d1, d2) > 0 such

that Dd ≥ 0. However, we have the following result:

Theorem 1.20. [17] Let A be an M-matrix. If A is irreducible, then there is a
vector x > 0 such that Ax ≥ 0.

We now introduce a further concept. A square real matrix A = [aij ] of order
n is said to be diagonally dominant if there exists d = (d1, . . . , dn) > 0 such that

|aii|di >
∑
j 6=i
|aij |dj , for i = 1, . . . , n.

Note that this is the definition given in [17]. Usually in the literature, the def-
inition of diagonally dominant matrix is presented in a different form. From
Theorem 1.16, if A ∈ Zn is a non-singular M-matrix, then A is diagonally domi-
nant. As last, we have the following result:

Theorem 1.21. [17] If A is a diagonally dominant matrix, then A is non-
singular.



Chapter 2

Global Attractivity for Scalar

Functional Differential

Equations

In this chapter we study the global attractivity of the trivial solution of a scalar
functional differential equations of the general form ẋ(t) = f(t, xt) by refining
the method of Yorke and the well-known 3/2-type conditions. The results are
applied to establish sufficient conditions for the global attractivity of the positive
equilibrium of scalar delayed population models of the form ẋ(t) = x(t)f(t, xt),
and illustrated with the study of two food-limited population models with delay,
for which several criteria for their global attractivity are given.

2.1 Notation and Definitions

Suppose τ > 0 and let C := C([−τ, 0]; R) be the space of continuous functions
from [−τ, 0] to R, equipped with the sup norm ‖ϕ‖ = max−τ≤θ≤0 |ϕ(θ)|.

For c ∈ R, we use c also to denote the constant function ϕ(θ) = c, θ ∈ [−τ, 0],
in C. The set C is supposed to be partially ordered with

ϕ ≥ ψ if and only if ϕ(θ) ≥ ψ(θ), θ ∈ [−τ, 0].

Particularly, for ϕ ∈ C and c ∈ R, we say that ϕ ≥ c (respectively ϕ ≤ c) if and
only if ϕ(θ) ≥ c (respectively ϕ(θ) ≤ c) for all θ ∈ [−τ, 0].

A function x : [a,+∞) → R, a ∈ R, is said to be oscillatory if it is not
eventually zero and it has arbitrarily large zeros, otherwise x(t) is called non-
oscillatory.

In this chapter, we consider the scalar FDE

ẋ(t) = f(t, xt), t ≥ 0, (2.1)

19



2.2 Asymptotic Stability 20

where f : [0,+∞) × C → R is a continuous function. As usual, for each t ≥ 0,
xt denotes the function in C defined by xt(θ) = x(t + θ), −τ ≤ θ ≤ 0. An
equilibrium point E∗ of (2.1) is said to be globally attractive if all solutions of
equation (2.1) tend to E∗, as t→ +∞.

2.2 Asymptotic Stability

In this section, we prove a main result on asymptotic stability of equilibrium
points of general scalar FDE’s (2.1). For f as in (2.1), we consider the next
hypotheses:

(H1) there is a piecewise continuous function β : [0,+∞)→ [0,+∞) with

sup
t≥τ

∫ t

t−τ
β(s)ds < +∞,

and such that for each q ∈ R there is η(q) ∈ R such that for t ≥ 0 and
ϕ ∈ C, ϕ ≥ q, then

f(t, ϕ) ≤ β(t)η(q);

(H2) if w : [−τ,+∞)→ R is continuous and wt → c 6= 0 in C as t→ +∞, then∫∞
0 f(s, ws)ds diverges;

(H3) there exist piecewise continuous functions λ1, λ2 : [0,+∞)→ [0,+∞) and
a constant b ≥ 0 such that, for r(x) := −x

1+bx , x > −1/b, then

λ1(t)r(M(ϕ)) ≤ f(t, ϕ) ≤ λ2(t)r(−M(−ϕ)), t ≥ 0, (2.2)

where the first inequality holds for all ϕ ∈ C and the second one for ϕ ∈ C
such that ϕ > −1/b ∈ [−∞, 0), and M(ϕ) := max{0, supθ∈[−τ,0] ϕ(θ)} is
the Yorke’s functional;

(H4) there is T ≥ τ such that, for

αi := αi(T ) = sup
t≥T

∫ t

t−τ
λi(s)ds, i = 1, 2, (2.3)

we have

Γ(α1, α2) ≤ 1, (2.4)

where Γ : (0,+∞)× (0, 5/2) ∪ (0, 5/2)× (0,+∞)→ R is defined by

Γ(α1, α2) =



(α1 − 1/2)α2
2/2 if α1 > 5/2

(α1 − 1/2)(α2 − 1/2), if α1, α2 ≤ 5/2

(α2 − 1/2)α2
1/2, if α2 > 5/2

. (2.5)



2.2 Asymptotic Stability 21

�
�

�
�

� �

� � � �	�
� ���  ��

� �
�

�
�

� �

� ��� � 
�
�

�

For t ≥ 0, ϕ ∈ C, note that (H3) implies that f(t, ϕ) ≤ 0 if ϕ ≥ 0 and f(t, ϕ) ≥
0 if ϕ ≤ 0, and, together with (H2), we conclude that x = 0 is the unique
equilibrium of (1.1). It is also important to note that, if b = 0, then r(x) = −x
and taking β(t) = λ2(t) and η(q) = |q| we conclude that (H3) and (H4) imply
(H1).

In comparison with the previous work [14], the major novelty here consists of
considering two different functions λ1(t), λ2(t) in hypothesis (H3). Consequently
a new 3/2-type condition arises in hypothesis (H4). In fact, (H4) is a general-
ization of (h4) since, for λ1(t) ≡ λ2(t), we have α1 = α2 := α and Γ(α1, α2) ≤ 1
reduces to α ≤ 3/2. Actually, the particular case of (2.2) with b = 0 was con-
sidered in [67], under the assumption (1.23), which is more restrictive than (2.4).
We also remark that, as we shall see, Γ(α1, α2) ≤ 1 is satisfied if

α1α2 ≤ 9/4.

The goal here is to improve Theorem 1.11 by assuming the more general Yorke
condition (H3) and 3/2-type condition (H4). To achieve this, we deal separately
with the cases of a rational function r(x) in (H3) with b = 0 and b > 0. Fur-
thermore, for the case b = 0, instead of (H3) we shall also consider a weaker
hypothesis (see (H3’) below), and generalize results in [11] and [36].

First, we take b = 0 in (H3), so that r(x) = −x for all x ∈ R. For this
situation, we replace the Yorke condition (2.2) by the following weaker condition:

(H3’) there are piecewise continuous functions λ1, λ2 : [0,+∞) → [0,+∞) and
h : R→ R, with h satisfying

h(x)x < 0 and |h(x)| < |x| for x 6= 0, (2.6)

such that

λ1(t)h(M(ϕ)) ≤ f(t, ϕ) ≤ λ2(t)h(−M(−ϕ)), for t ≥ 0, ϕ ∈ C. (2.7)



2.2 Asymptotic Stability 22

Now we want to show the global attractivity of the zero solution of (2.1) under
(H2), (H3’), and (H4). Next lemma shows that all non-oscillatory solutions
tend to the equilibrium.

Lemma 2.1. Assume (H3’) and that supt≥τ
∫ t
t−τ λi(s)ds, i = 1, 2 are finite.

Then, all solutions of (2.1) are defined and bounded on [0,+∞). Moreover, if
(H2) holds and x(t) is a non-oscillatory solution of (2.1), then x(t) → 0 as
t→ +∞.

Proof. The first statement follows from the techniques in [65]. Assume now
(H2), and consider a non-oscillatory solution x(t) of (2.1). If x(t) > 0 for t ≥ t1,
for some t1 ≥ 0, then from (H3’) we have f(t, xt) ≤ 0 for t ≥ t1, hence x(t)
is non-increasing on [t1,+∞). Consequently, there is c ≥ 0 such that x(t) → c

as t → +∞. From the integral representation of solutions of (2.1) we have
x(t) = x(t1) +

∫ t
t1
f(s, xs)ds, t ≥ t1, and from (H2) we conclude that c = 0. The

case x(t) < 0 for t ≥ t2, with t2 large, is treated in a similar way.

To deal with the oscillatory solutions, we need the following lemma.

Lemma 2.2. Assume (H3’) and that supt≥τ
∫ t
t−τ λi(s)ds, i = 1, 2 are finite.

Assume also that the function h in (H3’) is non-increasing. Let x(t) be an
oscillatory solution of (2.1) and u, v ≥ 0 be defined as

u := lim sup
t→+∞

x(t), −v := lim inf
t→+∞

x(t). (2.8)

Then, for any T ≥ τ and αi := αi(T ) = supt≥T
∫ t
t−τ λi(s)ds, i = 1, 2, we have

u ≤ h(−v) max{1/2, α2 − 1/2}, u ≤ h(−v)α2
2/2 (2.9)

and

− v ≥ h(u) max{1/2, α1 − 1/2}, −v ≥ h(u)α2
1/2. (2.10)

Proof. Let x(t) an oscillatory solution of (2.1). From Lemma 2.1, consider
u, v ≥ 0 defined by (2.8).

Fix T ≥ τ and ε > 0. Then, there is T0 ≥ T such that

−vε := −(v + ε) ≤ xt ≤ u+ ε := uε, for t ≥ T0.

If u = 0, clearly (2.9) holds. Otherwise, there is a sequence (x(tn))n∈N of local
maxima such that x(tn) > 0, tn → +∞, tn−2τ ≥ T0, and x(tn)→ u as n→ +∞.
We may assume that x(t) < x(tn) for tn−t > 0 small, for all n ∈ N. As in Lemma
3.2 of [11], we deduce that, for each n ∈ N, there is ξn ∈ [tn − τ, tn) such that
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x(ξn) = 0 and x(t) > 0 for t ∈ (ξn, tn]. Assume (H3’), with h non-increasing.
Then, for t ≥ T0, we have −xt ≤ vε, hence

ẋ(t) = f(t, xt) ≤ λ2(t)h(−M(−xt)) ≤ λ2(t)h(−vε), (2.11)

and, for each n ∈ N, we get

−x(t) ≤ h(−vε)
∫ ξn

t
λ2(s)ds, t ∈ [T0, ξn].

Consequently, for t ∈ [ξn, tn] and θ ∈ [−τ, 0] we have x(t + θ) > 0 if t + θ ∈
(ξn, tn], and x(t+ θ) ≥ −h(−vε)

∫ ξn
t−τ λ2(s)ds if t+ θ ≤ ξn. Therefore, M(−xt) ≤

h(−vε)
∫ ξn
t−τ λ2(s)ds and (H3’) yields

ẋ(t) ≤ λ2(t)h
(
−h(−vε)

∫ ξn

t−τ
λ2(s)ds

)
≤ λ2(t)h(−vε)

∫ ξn

t−τ
λ2(s)ds, (2.12)

for ξn ≤ t ≤ tn. From (2.11) and (2.12) we have

ẋ(t) ≤ h(−vε) min
{
λ2(t), λ2(t)

∫ ξn

t−τ
λ2(s)ds

}
, ξn ≤ t ≤ tn. (2.13)

Let Λn :=
∫ tn

ξn

λ2(s)ds. From (2.12),

x(tn) =
∫ tn

ξn

ẋ(t)dt ≤ h(−vε)
∫ tn

ξn

λ2(t)
(∫ ξn

t−τ
λ2(s)ds

)
dt

= h(−vε)
∫ tn

ξn

λ2(t)
[∫ t

t−τ
λ2(s)ds−

∫ t

ξn

λ2(s)ds
]
dt

≤ h(−vε)
(
α2

∫ tn

ξn

λ2(t)dt−
∫ tn

ξn

λ2(t)
∫ t

ξn

λ2(s)dsdt
)

≤ h(−vε)[α2Λn − Λ2
n/2]. (2.14)

Since Λn ≤ α2 and the function x 7→ α2x − x2/2 is increasing on (−∞, α2], we
obtain

x(tn) ≤ h(−vε)α2
2/2.

By letting n→ +∞ and ε→ 0+, the above estimate leads to

u ≤ h(−v)α2
2/2. (2.15)

We now consider separately the cases Λn ≤ 1 and Λn > 1, and adjust the
arguments in [52].
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If Λn ≤ 1, then Λn ≤ max(1, α2) and since α2x−x2/2 ≤ max(1, α2)x−x2/2 ≤
max(1, α2)− 1/2 for x ∈ (0, 1], from (2.14) we obtain

x(tn) ≤ h(−vε)(max(1, α2)− 1/2) = h(−vε) max{1/2, α2 − 1/2}. (2.16)

If Λn > 1, then there is ηn ∈ (ξn, tn) such that
∫ tn
ηn
λ2(s)ds = 1. From (2.13)

we have

x(tn) ≤ h(−vε)
{∫ ηn

ξn

λ2(t)dt+
∫ tn

ηn

λ2(t)
(∫ ξn

t−τ
λ2(s)ds

)
dt

}

= h(−vε)
{∫ ηn

ξn

λ2(t)dt+
∫ tn

ηn

λ2(t)
(∫ ηn

t−τ
λ2(s)ds−

∫ ηn

ξn

λ2(s)ds
)
dt

}

= h(−vε)
∫ tn

ηn

λ2(t)
(∫ ηn

t−τ
λ2(s)ds

)
dt

= h(−vε)
∫ tn

ηn

λ2(t)
(∫ t

t−τ
λ2(s)ds−

∫ t

ηn

λ2(s)ds
)
dt

≤ h(−vε)

[
α2 −

1
2

(∫ tn

ηn

λ2(s)ds
)2
]

= h(−vε)
(
α2 −

1
2

)
. (2.17)

From (2.16) and (2.17), by letting n→ +∞ and ε→ 0+, we conclude

u ≤ h(−v) max{1/2, α2 − 1/2}. (2.18)

Thus, from (2.15) and (2.18) we obtain (2.9).
The proof of the estimates in (2.10) follows using arguments similar to the

ones above for the proof of (2.9), by considering a sequence (x(sn))n∈N of local
minima of x(t), and is omitted.

Theorem 2.3. Assume (H2), (H3’) and (H4). Then the zero solution of (2.1)
is globally attractive.

Proof. From Lemma 2.1, it is sufficient to consider the case of an oscillatory
solution x(t) of (2.1).

Let x(t) be an oscillatory solution of (2.1). From Lemma 2.1, x(t) is defined
and bounded on [−τ,+∞), so that we can define u, v ∈ [0,+∞) as in (2.8).
Suppose that u ≥ v (the case v ≥ u is analogous). We have to show that
u = v = 0.

For h as in (H3’), we define ĥ : R → R by ĥ(x) = maxy∈[x,0] h(y) if x < 0,
ĥ(0) = 0 and ĥ(x) = miny∈[0,x] h(y) if x > 0. Clearly, ĥ is non-increasing, and
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(2.6) and (2.7) are satisfied with h replaced by ĥ. Without loss of generality, in
what follows we can assume that the function h in (H3’) is non-increasing.

The first inequality in (2.10) and the fact that h is a non-increasing function
satisfying (2.6), imply h(−v) ≤ −h(u) max{1/2, α1 − 1/2} and from the first
inequality in (2.9) we conclude that u ≤ −h(u)M(α1, α2), where

M(α1, α2) := max{1/2, α1 − 1/2}max{1/2, α2 − 1/2}. (2.19)

Assume that α1, α2 ≤ 5/2. If α1 ≤ 1 or α2 ≤ 1, then M(α1, α2) ≤ 1, and
if 1 ≤ α1, α2 ≤ 5/2, then M(α1, α2) = Γ(α1, α2) ≤ 1. Hence we conclude that
u ≤ −h(u). If u > 0, from (2.6) we have u < u, which is a contradiction, therefore
u = 0.

We now assume α1 > 5/2 (the situation α2 > 5/2 is analogous). From the
second inequality in (2.9), the first in (2.10), and (2.6) we obtain

u ≤ −h(u)(α1 − 1/2)α2
2/2 = −h(u)Γ(α1, α2) ≤ −h(u),

and again we conclude that u = 0.
Since u = 0 and 0 ≤ v ≤ u, thus also v = 0, and finally we conclude that

x(t)→ 0 as t→ +∞.

As a first corollary we have:

Corollary 2.4. Assume (H2), (H3’), and that for some T ≥ τ and αi :=
supt≥T

∫ t
t−τ λi(s)ds, i = 1, 2, we have either

max{1/2, α1 − 1/2}max{1/2, α2 − 1/2} ≤ 1, (2.20)

or

α1α2 ≤ 9/4. (2.21)

Then the zero solution of (2.1) is globally attractive.

Proof. From the above theorem, it is sufficient to prove that Γ(α1, α2) ≤ 1 if
either (2.20) or (2.21) holds.

Assuming (2.20), then α1, α2 ≤ 5/2, and consequently Γ(α1, α2) ≤M(α1, α2) ≤
1, for M(α1, α2) as in (2.19). Now assume that α1α2 ≤ 9/4. For α1, α2 ≤ 5/2,
then necessarily (2.20) holds and we get Γ(α1, α2) ≤ 1. In fact, if α1, α2 ≤ 3/2
then M(α1, α2) ≤ 1, so we may consider, e.g., the case α1 > 3/2 and α2 < 3/2.
For α1 ∈ (3/2, 5/2] and α2 ≤ 1, we obtain M(α1, α2) = (α1 − 1/2)/2 ≤ 1. If
α1 ∈ (3/2, 5/2] and α2 > 1, then α2 ∈ (1, 9/(4α1)], and we get

M(α1, α2) =
(
α1 −

1
2

)(
α2 −

1
2

)

≤ (2α1 − 1)(9− 2α1)
8α1

= −(2α1 − 3)2

8α1
+ 1 < 1.
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Now, for α1α2 ≤ 9/4 with α1 > 5/2, we have α2 ≤ 9/(4α1) and

Γ(α1, α2)− 1 =
(
α1 −

1
2

)
α2

2

2
− 1 ≤ 1

64α2
1

(−64α2
1 + 162α1 − 81) < 0.

Similarly, if α1α2 ≤ 9/4 with α2 > 5/2, we obtain Γ(α1, α2) = (α2 −
1/2)α2

1/2 < 1.

From the above proofs, it is clear that Theorem 2.3 holds if in (H3’) one
replaces |h(x)| < |x| for x 6= 0 by |h(x)| ≤ |x|, provided that Γ(α1, α2) < 1.
Hence, with h(x) = −x in (2.7), a generalization of Yoneyama’s classical result
[65] is obtained as follows:

Corollary 2.5. Assume (H2) and

(H3*) there are piecewise continuous functions λ1, λ2 : [0,+∞)→ [0,+∞) such
that

−λ1(t)M(ϕ) ≤ f(t, ϕ) ≤ λ2(t)M(−ϕ), for t ≥ 0, ϕ ∈ C.

If in addition (H4) holds with Γ(α1, α2) < 1, then the zero solution of (2.1) is
globally attractive. In particular, this is the case if α1α2 ≤ 9/4, with (α1, α2) 6=
(3/2, 3/2).

Proof. For α1, α2 > 0 with (α1, α2) 6= (3/2, 3/2), then α1α2 ≤ 9/4 implies
Γ(α1, α2) < 1, proving the last statement of the corollary.

Remark 2.1 We remark that hypothesis (H3*) reads as (H3) for the case
b = 0. We also note that, if α1α2 ≤ 9/4, it is necessary to impose the restriction
(α1, α2) 6= (3/2, 3/2). In fact, as already remarked, even for λ1(t) ≡ λ2(t) ≡ α,
with α > 0, there are counter-examples for which ατ = 3/2 and the trivial so-
lution is not globally attractive, showing that condition ατ < 3/2 is sharp (see,
e.g. [64]).

In comparison with results in recent literature, we emphasize that Corollary
2.5 was obtained in [67] under the 3/2-type condition

min{α1, α2}max{α2
1, α

2
2} < (3/2)3,

which is clearly stronger than α1α2 < 9/4.
For the case of a scalar FDE with one discrete delay

ẋ(t) = f(t, x(t− τ)), t ≥ 0, (2.22)
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the next criterion generalizes the result by Matsunaga et al. [37], where only the
particular case of equation (2.1) with f(t, x) = λ(t)h(x) was considered. In fact,
for the particular equation ẋ(t) = λ(t)h(x(t)), with λ : [0,+∞) → [0,+∞) and
h : R→ R continuous functions and h non-increasing, in [37] the authors showed
the global attractivity of its zero solution under assumption (2.6) and the usual
3/2-type condition, supt≥τ

∫ t
t−τ λ(s)ds ≤ 3/2.

Corollary 2.6. Let f : [0,+∞)×R→ R be a continuous function, and suppose
that there are piecewise continuous functions λ1, λ2 : [0,+∞) → [0,+∞) and a
continuous function h : R→ R, with h satisfying (2.6) and

λ1(t) min{0, h(x)} ≤ f(t, x) ≤ λ2(t) max{0, h(x)}, t ≥ 0, x ∈ R. (2.23)

If in addition (H2) and (H4) are satisfied, then the zero solution of (2.22) is
globally attractive.

In section 2.3, we shall apply these results to some scalar delayed differential
equations used in population dynamics. Nevertheless, a simple illustration of
Corollary 2.5 is shown by the following example.

Let a, b : [0,+∞)→ [0,+∞) be continuous functions with
∫ +∞

0 a(t)dt = +∞
or
∫ +∞

0 b(t)dt = +∞, and consider the equation

ẋ(t) = −max{a(t)x(t), b(t)x(t− τ)}, t ≥ 0. (2.24)

Defining f(t, ϕ) = −max{a(t)ϕ(0), b(t)ϕ(−τ)}, it is clear that (H3*) is satisfied
with λ1(t) = max{a(t), b(t)} and λ2(t) = min{a(t), b(t)}. Let αi = αi(T ) be as
in (H4). If Γ(α1, α2) < 1, from Corollary 2.5 we conclude that x = 0 is a global
attractor of all solutions of (2.24).

Now, we consider the case of the rational function r(x) in (H3) with b > 0.
By the time scaling t 7→ τt in (2.1), we may assume that the time delay is

τ = 1. Also, the scaling x 7→ bx allows us to reduce this situation to the case
b = 1. Hence, without loss of generality, in the following lemmas we take τ = 1
and b = 1, so that C = C([−1, 0]; R) and

r(x) = − x

1 + x
, x > −1.

We know that r is a decreasing function with lim
x→−1+

r(x) = +∞ and lim
x→+∞

r(x) =

−1.
In the case b > 0, the restriction α1 ≤ α2 in (H4) will be imposed to deduce

the global attractivity of the zero solution of (2.1). By the change of variables x 7→
y = −x, we may as well consider a function f(t, ϕ) for which g(t, ϕ) := −f(t,−ϕ)
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satisfies (H1)-(H4). Clearly, in this situation one should take the restriction
α2 ≤ α1 in (H4). In some sense, the need for a restriction on the relative sizes
of α1, α2 is natural, since the two different functions λ1(t), λ2(t), together with
r(x), are taken to impose a boundedness condition on f , with different types of
bounds on the left- and right-hand sides of zero.

The following lemma assures the boundedness of solutions of (2.1) and shows
that all non-oscillatory solutions tend to zero.

Lemma 2.7. [14] Assume (H1), (H3) and that supt≥1

∫ t
t−1 λ1(s)ds < +∞.

Then, all solutions of (2.1) are defined and bounded on [0,+∞). Moreover, if
(H2) holds and x(t) is a non-oscillatory solution of (2.1), then x(t) → 0 as
t→ +∞.

Proof. The result was proven in Lemma 2.1 in [14].

Consequently, to get the global attractivity of the zero solution of (2.1), we
only need to study the oscillatory solutions of (2.1).

Following the work in [34], we define some auxiliary functions. For given 0 <
α1 ≤ α2, we define the real functions Ai : (−1,+∞)→ R and Bi(− 1

αi+1 ,+∞)→
R, i = 1, 2, by

Ai(x) = x+ αir(x) +
1

r(x)

∫ 0

x
r(t)dt, if x 6= 0, x > −1, Ai(0) = 0,

Bi(x) =
1

r(x)

∫ 0

−αir(x)
r(t)dt, if x 6= 0, x > − 1

αi + 1
, Bi(0) = 0.

Note that for x 6= 0 in domain of Ai, Bi, then

Ai(x) = −1 + αir(x)− 1
r(x)

log(1 + x),

Bi(x) = −αi −
1

r(x)
log(1− αir(x)).

(2.25)
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The following properties can be easily checked and were given in [34]:

Lemma 2.8. The functions Ai, Bi are differentiable, with B′i(x) < 0 for all
x > − 1

αi+1 and A′i(x) < 0 for −1 < x < αi − 1, i = 1, 2. Moreover, Ai(αi − 1) =
Bi(αi − 1), A′i(0) = 1

2 − αi and A′′i (0) = 2αi − 1
3 .

From the above lemma, we conclude that Bi is decreasing on its domain and
Ai is decreasing on (−1, αi − 1), i = 1, 2.

For αi > 1/2, we consider also the auxiliary rational function

Ri(x) = A′i(0)
x

1− x
νi

, x > νi, (2.26)

where νi := 2A′i(0)
A′′i (0)

= −6αi−3
6αi−1 < 0. Note that ν1 ≥ ν2 for α1 ≤ α2.

Lemma 2.9. For αi > 1, then Ai(x) < Ri(x) for x ∈ (νi, 0) and Ai(x) > Ri(x)
for x ∈ (0, αi − 1), i = 1, 2.

Proof. See Lemma 3 in [34].

Lemma 2.10. For 1 < α1 ≤ α2 such that Γ(α1, α2) ≤ 1, where Γ is defined by
(2.5), then R2(A1(x)) ≤ x for 0 ≤ x < α1 − 1.

Proof. We have R1(α1 − 1) ≥ ν1 if and only if (α1 − 3/2)(α1 − 1) ≤ −ν1. In
particular, R1(α1−1) ≥ ν1 for 1 < α1 ≤ 3/2. From Lemma 2.9, and since R1, R2

are decreasing, we obtain

A1(x) ≥ R1(x) > ν1 ≥ ν2, 0 ≤ x < α1 − 1,

thus also R2(A1(x)) ≤ R2(R1(x)). Defining, for 0 ≤ x < α1 − 1,

R(x) := R2(R1(x)) =
−A′2(0)(A′1(0))2x

−A′1(0) +
[
A′′1 (0)

2 + A′′2 (0)(A′1(0))2

2A′2(0)

]
x
,

we have R(x) = ax
β+γx , with a = A′1(0)A′2(0)ν1ν2 > 0, β = ν1ν2 > 0, and

γ = −(A′1(0)ν1 + ν2) > 0. Since

R′(x) ≤ R′(0) = A′1(0)A′2(0) = Γ(α1, α2) ≤ 1, x ≥ 0,

we conclude that R2(A1(x)) ≤ R(x) ≤ x, 0 ≤ x < α1 − 1.

In the proof of the next lemma, we omit some trivial but long computations of
derivatives of some polynomial functions, which are needed to study theirs signs
on some interval. In any case, such computations can be easily checked with the
help of a mathematical software.
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Lemma 2.11. For 0 < α1 ≤ α2 such that Γ(α1, α2) = 1, then

B1(x) > ν2 (2.27)

and

R2(B1(x)) ≤ x for x ≥ max{0, α1 − 1}. (2.28)

Proof. Fix α1 ∈ (0, 3/2]. For α2 = α2(α1) > 0 such that Γ(α1, α2) = 1, then
ν2 = ν2(α1) = − 6

6+α2
1

if 0 < α1 ≤ 1, and ν2 = ν2(α1) = − 6
2α1+5 if 1 < α1 ≤ 3/2.

On the other hand, since B1 is decreasing, we have B1(x) > B1(∞) = −α1 +
log(α1 + 1) for x > − 1

α1+1 . Since the function α1 7→ −α1 + log(α1 + 1)− ν2(α1)
is decreasing on (0, 3/2] and positive at α1 = 3/2, we conclude that B1(x) > ν2

for all x > − 1
α1+1 and 0 < α1 ≤ 3/2.

We now prove (2.28).
From Lemma 2.8 and 2.10, we have A1(α1−1) = B1(α1−1) and we conclude

that R2(B1(α1 − 1)) ≤ α1 − 1 if α1 − 1 ≥ 0, thus the estimate (2.28) holds for
x = max{0, α1 − 1}. By using the definitions in (2.25) and (2.26), it is easy to
see that R2(B1(x)) ≤ x if and only if F (x, α1) ≤ 0, for F defined by

F (x, α1) =

(
1 +

x

α1(1
2 − α2 + x

ν2
)

)
α1x

1 + x
−log

(
1 +

α1x

1 + x

)
, x ≥ max{0, α1−1},

where α2 = α2(α1) and ν2 = ν2(α1) as above. Hence, to conclude (2.28), it is
sufficient to show that ∂F

∂x (x, α1) ≤ 0 for x ≥ max{0, α1 − 1}. We have

∂F

∂x
(x, α1) =

(ax2 + bx+ c)x
4(1 + x)2(1

2 − α2 + x
ν2

)2(1 + (1 + α1)x)
,

where

a = a(α1) = (2− 4α2 + 4/ν2)(1 + α1) + 4(α1/ν2)2,

b = b(α1) = (2− 4α2)(3 + 2α1) + 4(1 + α2
1 − 2α2

1α2)/ν2,

c = c(α1) = 4(1− 2α2) + α2
1(1− 4α2) + 4α2

1α
2
2.

Case 1: 0 < α1 ≤ 1. We have c = 0, a = P1(α1)
9α2

1
and b = 2P2(α1)

α2
1

, where

P1(y) = y6
(
y2 + 12

)
+ 6y4(−y + 5)− 36

(
y2 + 2

)
(y + 1),

P2(y) = y2
(
y2 + 6

)
− 4(2y + 3).
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By studying the signs of the derivatives of P1(y), P2(y), we can show that P1(y) <
0, P2(y) < 0 for y ∈ (0, 1), hence a < 0, b < 0, and consequently ∂F

∂x (x, α1) ≤ 0
for x ≥ 0.

Case 2: 1 < α1 ≤ 3/2. In this case, we have a = P3(α1)
9(2α1−1) , b = 2P4(α1)

3(2α1−1) and

c = (4(α1−1)
2α1−1 )2 > 0, where

P3(y) = 8y5 + 36y4 + 6y3 − 97y2 − 90y − 42, P4(y) = 8y3 + 16y2 − 32y − 31.

Again, by studying the derivatives of P3(y), P4(y), we see that a < 0 and b <

0. To conclude that ∂F
∂x (x, α1) ≤ 0 for all x > α1 − 1, we need to show that

α1 − 1 ≥ z+(α1), where z+(α1) = b+
√
b2−4ac
2|a| is the positive root of ax2 + bx+ c.

But α1 − 1 ≥ z+(α1) is equivalent to P5(α1) ≤ 0, where

P5(y) = 16y4(y + 3)− 8y2(11y + 10) + 261y − 391.

By studying the sign of the derivatives of P5(y) and the position of its roots, one
can see that P5(y) < 0 for all y ∈ (1, 3/2]. This completes the proof.

Still following the ideas in [34], we now define D1 : [0,+∞)→ R by

D1(x) =


A1(x), 0 ≤ x < α1 − 1

B1(x), x ≥ max{0, α1 − 1}
,

so that D1 = B1|[0,+∞) in the case α1 ≤ 1. For x ≥ 0, note that x < α1 − 1 is
equivalent to α1r(x) < −x. Since log x ≥ x− 1 for x > 0, from (2.25) we have

A1(x)−B1(x) ≥ α1 − 1 + α1r(x) +
1

r(x)

[
1− α1r(x)

1 + x
− 1
]

= 0, x > 0, (2.29)

where the equality holds only if x = α1−1. For 0 < α1 ≤ α2 such that Γ(α1, α2) =
1, we therefore conclude that D1 is continuous, decreasing and, from Lemmas 2.10
and 2.11,

R2(D1(x)) ≤ x, x ≥ 0. (2.30)

A last preliminary lemma is established below.

Lemma 2.12. Assume (H1),(H3) with b > 0, and (H4). Let x(t) be an oscil-
latory solution of (2.1), and u, v ≥ 0 be defined as

u = lim sup
t→+∞

x(t), −v = lim inf
t→+∞

x(t). (2.31)

Then we have

− v ≥ B1(u). (2.32)
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Moreover, if λi(t) > 0 for t large and αi > 1, i = 1, 2, then

− v ≥ A1(u) for u < α1 − 1, u ≤ A2(−v) for v < 1. (2.33)

Proof. From Lemma 2.7 x(t) is bounded, hence we have 0 ≤ u, v < +∞. Fix
ε > 0, and for T as in (H4) choose T0 ≥ T such that

− vε := −(v + ε) ≤ x(t) ≤ u+ ε =: uε, t ≥ T0 − 2. (2.34)

Now, consider a sequence (x(sn))n∈N of local minima x(sn) < 0, sn → +∞,
sn − 2 ≥ T0, and x(sn) → −v as n → +∞. We may assume that sn are
chosen such that, for each n ∈ N, x(t) > x(sn) for sn − t > 0 small. As in the
proof of Lemma 2.2 (see [11],[34]), for each n ∈ N, we conclude that there exists
ηn ∈ [sn − 1, sn) such that x(ηn) = 0 and x(t) < 0 for t ∈ (ηn, sn].

Define λ̂(t) = α−1
1 λ1(t). From (2.34) we have M(xt) ≤ uε for t ≥ T0 − 1,

whereM is the Yorke’s functional. Proceeding as in the proof of Theorem 2.7 of
[14], using twice the first inequality in (2.2), we conclude that

x(sn) ≥ − 1
r(uε)

∫ ψ(ηn)

ψ(sn)
r(s)ds,

where ψ(t) = −α1r(uε)[1−
∫ t
ηn
λ̂(s)ds]. Since ψ(ηn) = −α1r(uε), ψ(sn) ≥ 0, and

r is negative on (0,+∞), then

x(sn) ≥ − 1
r(uε)

∫ −α1r(uε)

0
r(s)ds = B1(uε).

By letting n→ +∞ and ε→ 0+, we obtain the estimate (2.32).
Now, suppose that there exists t0 ≥ T such that λ1(t) > 0 for t ≥ t0. Arguing

as in [14] and [34], consider the function s1 : [t0,+∞)→ [s1(t0),+∞) defined by

s1(t) =
1
α1

∫ t

0
λ1(s)ds, t ≥ t0.

The function s1(t) is one-to-one and onto. Denoting by t1 = t1(s) its inverse,
we effect the change of variables y(s) = x(t1(s)), s ≥ s1(t0). Equation (2.1) is
transformed into an equation of the form

ẏ(s) = g1(s, ys), s ≥ s1(t0), (2.35)

where g1 satisfies the estimate (see [14], [34])

g1(s, ϕ) ≥ α1r(M(ϕ)), s ≥ s1(t0), ϕ ∈ C.

For 0 ≤ u < α1−1, then α1r(u) < −u, and the estimate −v ≥ A1(u) follows now
from Lemma 4 of [34] applied to equation (2.35). Analogously, we consider the



2.2 Asymptotic Stability 33

change y(s) = x(t2(s)), where t2 = t2(s) is the inverse of s2(t) = 1
α2

∫ t
0 λ2(s)ds

for s large, leading to the equation ẏ(s) = g2(s, ys), where g2 satisfies

g2(s, ϕ) ≤ α2r(−M(−ϕ)),

for s large and ϕ ∈ C such that ϕ > −1. Note that r(x) and A2(x) are defined
only for x > −1 and we have α2r(−v) > v if α2 > 1 and v < 1. The proof of
u ≤ A2(−v) is done in a similar way (see [14], [34] for more details)

Now we prove the main result for the situation b > 0 in (2.2).

Theorem 2.13. Assume (H1)-(H4), with b > 0 and λi(t) > 0 for t large,
i = 1, 2. If α1 ≤ α2, then all solutions x(t) of (2.1) are defined and bounded for
t ≥ 0 and satisfy x(t)→ 0 as t→ +∞.

Proof. As mentioned before, without loss of generality we can take τ = 1 and
b = 1. From Lemma 2.7, all non-oscillatory solutions tend to zero as t → +∞.
Let x(t) be an oscillatory solution of (2.1) and define u, v ∈ R+

0 as in (2.31).
Replacing in (H3) α2 by a constant α̂2 > α2 if necessary, we may assume that
Γ(α1, α2) = 1.

By the definition of D1, if u < α1−1 then D1(u) = A1(u), otherwise D1(u) =
B1(u), hence from (2.32) and (2.33) we have −v ≥ D1(u). From (2.27) and (2.29)
we get −v ≥ D1(u) > ν2 > −1. Since R2 is decreasing, from (2.30) we now obtain

R2(−v) ≤ R2(D1(u)) ≤ u. (2.36)

If v > 0, then (2.33), (2.36), and Lemma 2.9 imply that

u ≤ A2(−v) < R2(−v) ≤ u,

which is a contradiction. Hence v = 0 and from (2.33) also u = 0. The proof is
complete.

Corollary 2.14. Assume (H1)-(H4), with b > 0. If α1 ≤ α2 and Γ(α1, α2) < 1,
then all solutions x(t) of (2.1) are defined and bounded for t ≥ 0 and satisfy
x(t)→ 0 as t→ +∞.

Proof. If α1 ≤ α2 and Γ(α1, α2) < 1, we can find ε > 0 such that (H3)
and (H4) are fulfilled with λi(t) replaced by λ̂i(t) := λi(t) + ε, and the result is
immediate from Theorem 2.13.

From Theorem 2.13 and Corollaries 2.5 and 2.14, we summarize the main
results of this section as follows:
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Theorem 2.15. Assume (H1)-(H2), with Γ(α1, α2) < 1 for Γ as in (2.5). If
b > 0, assume also that α1 ≤ α2. Then the zero solution of (2.1) is globally
attractive. If b > 0 and λi(t) > 0 for t large, i = 1, 2, the same result holds for
Γ(α1, α2) = 1.

We recall that, as shown in proof of Corollary 2.4, we have Γ(α1, α2) ≤ 1 if
either (2.20) or (2.21) holds; and that Γ(α1, α2) < 1 if (2.21) is satisfied with
(α1, α2) 6= (3/2, 3/2).

Remark 2.2 The present setting can be applied to equation (2.1) with time-
dependent bounded discrete delays, ẋ(t) = f0(t, x(t − τ1(t)), . . . , x(t − τn(t))),
where τi : [0,+∞) → (0,+∞) are continuous, τi(t) ≤ τ . In fact, for f(t, ϕ) =
f0(t, ϕ(−τ1(t)), . . . , ϕ(−τ1(t)) and τ(t) = max{τi(t) : 1 ≤ i ≤ n}, t ≥ 0, ϕ ∈ C,
the results in this section are valid if we replace

∫ t
t−τ λi(s)ds by

∫ t
t−τ(t) λi(s)ds,

i = 1, 2, in hypothesis (H4).

2.3 Scalar Population Models

Delayed functional differential equations are very useful in population dynamics
modeling. Clearly, for single species, scalar equations are used. Consider the
general scalar delayed population model of the form

ẏ(t) = y(t)f(t, yt), t ≥ 0, (2.37)

where f : [0,+∞) × C → R is a continuous function. Due to the biological
interpretation of model (2.37), only positive solutions are of interest. Hence, we
take admissible initial conditions

y0 = ϕ, with ϕ ∈ C0, (2.38)

where Cα denotes the set

Cα := {ϕ ∈ C : ϕ(θ) ≥ α for θ ∈ [−τ, 0) and ϕ(0) > α}, (α ∈ R). (2.39)

Since y(t, 0, ϕ) = ϕ(0) exp
(∫ t

0 f(s, ys)ds
)
> 0, the solutions of initial value prob-

lems (2.37)-(2.38) are positive for t > 0 whenever they are defined.
Let u(t) be a positive solution of (2.37) on [−τ,+∞) whose stability we want

to investigate (u(t) could be a steady state or a periodic solution). The change
x(t) = y(t)/u(t)− 1 transforms (2.37) into

ẋ(t) = (1 + x(t))F (t, xt), t ≥ 0, (2.40)

where F (t, ϕ) = f(t, ut(1 + ϕ)) − f(t, ut), for which the set of admissible initial
conditions is C−1.
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The goal is to apply the study in Section 2.2 to equations written in the form
(2.40), improving recent stability results in the literature (see, e.g. [11], [14], [33],
[34], [41], [51]).

For a given function F : [0,+∞)×C−1 → R continuous, we assume hypotheses
(H1)-(H4) restricted to C−1, i.e., we suppose that (H1)-(H4) hold with ϕ ∈ C
replaced by ϕ ∈ C−1. We note that if (H3) holds for ϕ ∈ C−1 with b < 1, then
F (t, ϕ) ≤ λ2(t)r(−1) for t ≥ 0, ϕ ∈ C−1, and consequently (H1) is fulfilled with
β(t) = λ2(t) and η(q) ≡ r(−1), q ∈ R.

The following result gives us a global stability criterion for the zero solution
of (2.40).

Theorem 2.16. For F : [0,+∞)×C−1 → R continuous, assume that hypotheses
(H1)-(H4) with ϕ restricted to C−1 are satisfied. If b 6= 1/2, assume in addition
that λi(t) > 0 for t large, i = 1, 2, and either

(i) b > 1/2 and α1 ≤ α2; or

(ii) b < 1/2 and α2 ≤ α1.

Then, all solutions x(t) of (2.40) with initial conditions in C−1 are defined
for t ≥ 0 and satisfy x(t)→ 0 as t→ +∞.

Proof. We first suppose that b ≥ 1/2. As in [14], the change of variables
y(t) = log(1 + x(t)), t ≥ 0, transforms (2.40) into

ẏ(t) = f(t, yt), t ≥ 0, (2.41)

where f(t, ϕ) = F (t, eϕ − 1). For ϕ ∈ C, then ψ = eϕ − 1 > −1, i.e. ψ ∈ C−1.
Since F satisfies (H3) in the space C−1, we have

f(t, ϕ) ≥ λ1(t)r(M(eϕ − 1)) = λ1(t)r(eM(ϕ) − 1), t ≥ 0, ϕ ∈ C;

f(t, ϕ) ≤ λ2(t)r(−M(−eϕ + 1)) = λ2(t)r(e−M(−ϕ) − 1),
t ≥ 0, ϕ ∈ C with eϕ − 1 > −1/b.

(2.42)

Case b = 1/2.
Define h(x) = r(ex − 1) = −2

(
1− 2

ex+1

)
, x ∈ R. Then h satisfies (2.6) and

λ1(t)h(M(ϕ)) ≤ f(t, ϕ) ≤ λ2(t)h(−M(−ϕ)), t ≥ 0, ϕ ∈ C.

From Theorem 2.3, we conclude that the solutions y(t) of (2.41) satisfy y(t)→ 0
as t→ +∞.

Case b > 1/2.
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Define r1(x) = −x
1+(b−1/2)x . We can prove that

r(ex − 1) ≥ r1(x) for all x ≥ 0, (2.43)

r(ex − 1) ≤ r1(x) for all x ∈ (−1/(b− 1/2), 0]. (2.44)

In fact, (2.43) is equivalent to the inequality w(x) := 1 + 1
2x + ex(1

2x − 1) ≥ 0,
x ≥ 0, which can be proven easily by studying the signs of w′(x) and w′′(x). We
can prove (2.44) analogously. Moreover, if b > 1, condition x > −1/(b − 1/2)
implies ex− 1 > −1/b. Hence, from (2.42), (2.43), and (2.44) we conclude that f
satisfies (H3) with r(x) replaced by r1(x). On the other hand, since F satisfies
(H1) and (H2) for ϕ ∈ C−1, it is clear that f satisfies (H1) and (H2) for ϕ ∈ C.
Thus, for α1 ≤ α2 in (H4), from Theorem 2.13 we conclude that the zero solution
is a global attractor of all solutions of (2.41).

Case 0 ≤ b < 1/2.
Again as in [14], the change of variables z(t) = − log(1 + x(t)), t ≥ 0, trans-

forms the equation (2.40) into

ż(t) = g(t, zt), t ≥ 0, (2.45)

where g(t, ϕ) = −F (t, e−ϕ − 1). We obtain

g(t, ϕ) ≤ λ1(t)[−r(M(e−ϕ − 1))] = −λ1(t)r(eM(−ϕ) − 1), t ≥ 0, ϕ ∈ C;

g(t, ϕ) ≥ λ2(t)[−r(−M(−e−ϕ + 1))] = −λ2(t)r(e−M(ϕ) − 1), t ≥ 0, ϕ ∈ C.
(2.46)

Let r2(x) = −x
1+(1/2−b)x . We now have −r(e−x − 1) ≥ r2(x) for x ≥ 0 and

−r(e−x − 1) ≤ r2(x) for −1/(1/2− b) < x ≤ 0, hence g satisfies (H3) restricted
to C−1, where (2.2) reads as

λ2(t)r2(M(ϕ)) ≤ g(t, ϕ) ≤ λ1(t)r2(−M(−ϕ)).

For α2 ≤ α1 in (H4), taking into account Theorem 2.13, we conclude that all
solutions z(t) of (2.45) satisfy z(t)→ 0 as t→ +∞.

Remark 2.3 If b 6= 1/2 and there are arbitrarily large zeros of λ1(t), λ2(t),
from Theorem 2.14 we conclude that the statement in Theorem 2.16 is still valid
if we further impose Γ(α1, α2) < 1.

Remark 2.4 Even in the situation λ(t) := λ1(t) = λ2(t), t ≥ 0, Theorem 2.16
slightly improves Theorem 3.2 in [14], where it was required the strict inequality
α := α1 = α2 < 3/2 if b = 1/2, instead of α ≤ 3/2. Therefore, all the criteria
established in [14] for several population models can be improved at least for the
case b = 1/2.
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2.4 Examples

In this section, we apply the stability criterion given by Theorem 2.16 to two
food-limited population models with delays. For each one, with different choices
of functions λ1(t), λ2(t), and r(x) in (H3) we can obtain different stability criteria.

Example 2.1 We study the asymptotical behavior of positive solutions of the
delay differential equation

Ṅ(t) = ρ(t)N(t)
K −

∑n
i=1 aiN

p(t− τi(t))
K +

∑n
i=1 si(t)Np(t− τi(t))

, t ≥ 0, (2.47)

where n ∈ N, ai > 0, K > 0, p ≥ 1, and ρ(t), si(t), τi(t) are continuous functions
with 0 ≤ τi(t) ≤ τ , and ρ(t), si(t) > 0 for t ≥ 0, i = 1, . . . , n. Equation (2.47)
(with n = 1 or n > 1) has been studied by several authors (see [11], [14], [19],
[21], [41], [50]).

We follow here the approach in [11]. For a :=
∑n

i=1 ai, let 1 + x(t) =
(N(t)/N∗)p, where

N∗ =
(
K

a

)1/p

,

is the unique positive equilibrium of (2.47), so that (2.47) becomes

ẋ(t) = −pρ(t)(1 + x(t))
∑n

i=1 aix(t− τi(t))
a+

∑n
i=1 si(t)[1 + x(t− τi(t))]

, t ≥ 0. (2.48)

This equation has the form (2.40), for F defined by

F (t, ϕ) = pρ(t)f(t, ϕ(−τ1(t)), . . . , ϕ(−τn(t))), t ≥ 0, ϕ ∈ C−1, (2.49)

with f : [0,+∞)× [−1,+∞)n → R given by

f(t, x1, . . . , xn) =
−
∑n

i=1 aixi
a+

∑n
i=1 si(t)(1 + xi)

.

As a first criterion for the global attractivity of N∗, we have the following
result:

Theorem 2.17. Assume∫ +∞

0

ρ(t)
1 +

∑n
i=1 si(t)

dt = +∞, (2.50)

and that Γ(α1, α2) ≤ 1, where α1, α2 are defined by

α1 =
p

2
sup
t≥T

∫ t

t−τ(t)

ρ(s)
σ(s)

ds, α2 = p sup
t≥T

∫ t

t−τ(t)

ρ(s)
1 + σ(s)

ds (2.51)
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for some T > 0 large, with

σ(t) = min{1, σ(t)} for σ(t) = min
1≤i≤n

(si(t)/ai),

and τ(t) = max1≤i≤n τi(t) for t ≥ 0.
Then, all solutions of (2.47) with initial conditions in C0 tend to the positive

equilibrium N∗ as t→ +∞. In particular, this result holds if in addition to (2.50)
we have

p2

(∫ t

t−τ(t)

ρ(s)
σ(s)

ds

)(∫ t

t−τ(t)

ρ(s)
1 + σ(s)

ds

)
≤ 9/2 for large t ≥ 0. (2.52)

Proof. From (2.50), it follows that F satisfies (H2) restricted to C−1 (see
[11], [14]). Set

r(x) =
−x

1 + 1
2x
, x ≥ −1.

For given t ≥ 0 and ϕ ∈ C−1, denote xi := ϕ(−τi(t)) e y := a−1
∑n

i=1 aixi. Note
that y ≥ −1.

If M(−ϕ) = 0 or
∑n

i=1 aixi ≥ 0, clearly F (t, ϕ) ≤ 0. Now, let M(−ϕ) > 0
and

∑n
i=1 aixi < 0. Then

f(t, x1, . . . , xn) ≤ −y
1 + a−1σ(t)[a+

∑n
i=1 aixi]

=
−y

1 + σ(t)(1 + y)
≤ r(y)

1 + σ(t)
.

Since y ≥ −M(−ϕ) and r is decreasing, we get

f(t, x1, . . . , xn) ≤ (1 + σ(t))−1r(−M(−ϕ)),

and hence the estimate

F (t, ϕ) ≤ (1 + σ(t))−1pρ(t)r(−M(−ϕ)). (2.53)

IfM(ϕ) = 0 or
∑n

i=1 aixi ≤ 0, then F (t, ϕ) ≥ 0. Suppose now thatM(ϕ) > 0
and

∑n
i=1 aixi > 0. Then, we have

f(t, x1, . . . , xn) ≥ −y
1 + a−1σ(t)[a+

∑n
i=1 aixi]

=
−y

1 + σ(t)(1 + y)
≥ r(y)

2σ(t)

with y ≤M(ϕ), hence

F (t, ϕ) ≥ (2σ(t))−1pρ(t)r(M(ϕ)). (2.54)

From (2.53) and (2.54), we conclude that F : [0,+∞)× C−1 → R satisfies (H3)
restricted to C−1 with r(x) as above and λ1(t) = (2σ(t))−1pρ(t), λ2(t) = (1 +
σ(t))−1pρ(t). Since the coefficient b in the rational function r(x) is b = 1/2 < 1,
then (H3) implies (H1). For α1, α2 as in (2.51), hypothesis (H4) is satisfied.
The conclusion follows from Theorem 2.16.

Other criteria for the global attractivity of N∗ are given below.
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Theorem 2.18. Assume (2.50) and

p

1 + σ0

∫ t

t−τ(t)
ρ(s)ds ≤ 3

2
for large t ≥ 0, (2.55)

where σ0 := inft≥0 min1≤i≤n(si(t)/ai) and τ(t) = max1≤i≤n τi(t) for t ≥ 0. Then
all admissible solutions N(t) of (2.47) satisfy N(t)→ N∗ as t→ +∞.

Proof. For σ0 as above, set

r(x) =
−x

1 + bx
, where b =

σ0

1 + σ0
.

Again, for given t ≥ 0 and ϕ ∈ C−1, we consider xi := ϕ(−τi(t)) and y :=
a−1

∑n
i=1 aixi.

As in the above proof, only the cases M(−ϕ) > 0 and
∑n

i=1 aixi < 0, or
M(ϕ) > 0 and

∑n
i=1 aixi > 0 have to be addressed, since otherwise (2.2) is

trivially satisfied.
Let M(−ϕ) > 0 and

∑n
i=1 aixi < 0. Then

f(t, x1, . . . , xn) ≤ −y
1 + a−1σ0[a+

∑n
i=1 aixi]

=
r(y)

1 + σ0
.

Since y ≥ −M(−ϕ) and r is decreasing, we get

f(t, x1, . . . , xn) ≤ (1 + σ0)−1r(−M(−ϕ)),

and hence the estimate

F (t, ϕ) ≤ (1 + σ0)−1pρ(t)r(−M(−ϕ)). (2.56)

If M(ϕ) > 0 and
∑n

i=1 aixi > 0, then we have

f(t, x1, . . . , xn) ≥ −y
1 + a−1σ0[a+

∑n
i=1 aixi]

=
r(y)

1 + σ0
,

with y ≤M(ϕ), hence

F (t, ϕ) ≥ (1 + σ0)−1pρ(t)r(M(ϕ)). (2.57)

From (2.56) and (2.57), we conclude that F : [0,+∞)×C−1 → R satisfies (H3),
restricted to C−1, with r(x) as above and λ1(t) = λ2(t) = (1 + σ0)−1pρ(t). Since
b < 1, then (H3) implies (H1), and Theorem 2.16 yields the conclusion.

Under additional conditions, different choices of λ1(t), λ2(t) in (H3) are pos-
sible, leading to better criteria.
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Theorem 2.19. Let σ(t) := min1≤i≤n(si(t)/ai) and τ(t) := max1≤i≤n τi(t) for
t ≥ 0. In addition to (2.50), assume that one of the following conditions holds:

(i) σ0 := supt≥0 σ(t) ≤ 1 and there is T ≥ τ such that Γ(α1, α2) ≤ 1, where

α1 =
pσ0

1 + σ0
sup
t≥T

∫ t

t−τ(t)

ρ(s)
σ(s)

ds, α2 = p sup
t≥T

∫ t

t−τ(t)

ρ(s)
1 + σ(s)

ds;

(ii) σ0 := inft≥0 σ(t) ≥ 1 and there is T ≥ τ such that Γ(α1, α2) ≤ 1, where

α1 = p sup
t≥T

∫ t

t−τ(t)

ρ(s)
1 + σ(s)

ds, α2 =
p

1 + σ0
sup
t≥T

∫ t

t−τ(t)
ρ(s)ds.

Then, all positive solutions of (2.47) tend to the positive equilibrium N∗ as
t → +∞. In particular, in both situations (i) and (ii), this conclusion holds if
(2.50) and α1α2 ≤ 9/4.

Proof. For 0 < b < 1, set

rb(x) =
−x

1 + bx
, θb(t, x) =

1 + bx

1 + σ(t)(1 + x)
, t ≥ 0, x ≥ −1.

Fix ϕ ∈ C−1, t ≥ 0, and denote xi := ϕ(−τi(t)), y := a−1
∑n

i=1 aixi. For
M(−ϕ) > 0 and

∑n
i=1 aixi < 0, we have −1 ≤ y ≤ 0, and

f(t, x1, . . . , xn) ≤ −y
1 + σ(t)(1 + y)

= rb(y)θb(t, y). (2.58)

If M(ϕ) > 0 and
∑n

i=1 aixi > 0, then y ≥ 0 and

f(t, x1, . . . , xn) ≥ −y
1 + σ(t)(1 + y)

= rb(y)θb(t, y). (2.59)

Note that σ0 ≤ 1 if and only if σ0/(1 + σ0) ≤ 1/2, and σ0 ≥ 1 if and only
if σ0/(1 + σ0) ≥ 1/2. On the other hand, supt≥0 σ(t)/(1 + σ(t)) ≤ b implies
that y 7→ θb(t, y) is non-decreasing for all t ≥ 0, and inft≥0 σ(t)/(1 + σ(t)) ≥ b

implies that y 7→ θb(t, y) is non-increasing for all t ≥ 0. For σ0 ≤ 1, we choose
b = σ0/(1 + σ0), and from (2.58) and (2.59) we therefore obtain

λ1(t)rb(M(ϕ)) ≤ F (t, ϕ) ≤ λ2(t)rb(−M(−ϕ)), for t ≥ 0, ϕ ∈ C−1, (2.60)

with λ1(t) = pρ(t)θb(t,+∞) and λ2(t) = pρ(t)θb(t, 0), i.e.,

λ1(t) =
pσ0ρ(t)

(1 + σ0)σ(t)
, λ2(t) =

pρ(t)
1 + σ(t)

, t ≥ 0.
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In this case, b ≤ 1/2 and λ1(t) ≥ λ2(t) for t ≥ 0. For σ0 ≥ 1, choose b =
σ0/(1 + σ0). Hence, (2.58) and (2.59) lead to (2.60), with

λ1(t) =
pρ(t)

1 + σ(t)
, λ2(t) =

pρ(t)
1 + σ0

, t ≥ 0.

For this situation, b ≥ 1/2 and λ1(t) ≤ λ2(t) for t ≥ 0. Invoking Theorem 2.16,
the proof of the theorem is complete.

We now related these results with known criteria established in the literature.
In [11], Theorem 2.18 was proven with (2.55) replaced by p

∫ t
t−τ(t) ρ(s)ds ≤ 3

2

for large t. The more general case of equation (2.47) with possible unbounded
delays was studied by Qian [41], who proved the global asymptotic stability of
N∗ assuming (2.50) and

p

1 + a−1S0
sup
t≥τ(t)

∫ t

t−τ(t)
ρ(s)ds ≤ 1,

where S0 := inft≥0
∑n

i=1 si(t). Clearly, a−1S(t) ≥ σ(t). However, the above
condition is stronger than (2.55) if

1 + a−1S0

1 + σ0
<

3
2
.

The case n = 1 of (2.47) reads as

Ṅ(t) = ρ(t)N(t)
K − aNp(t− τ(t))
K + S(t)Np(t− τ(t))

, t ≥ 0, (2.61)

with K > 0, p ≥ 1, and ρ(t), S(t), τ(t) are continuous and positive functions with
τ(t) ≤ τ . It has been studied by many authors (see [19], [21], [50] and references
therein), since it has been proposed as an alternative to the delayed logistic
equation (case S(t) ≡ 0 and p = 1) for a food-limited single population model.
For (2.61), we have σ(t) = a−1S(t) and σ0 = a−1 inft≥0 S(t) = a−1S0. With
a = 1 and a single constant discrete delay τ(t) ≡ τ , So and Yu [50] established
the uniform and asymptotic stability (but not the global attractivity) of the
positive equilibrium N∗ of (2.61) assuming (2.50) and

p sup
t≥τ

∫ t

t−τ

ρ(s)
1 + S(s)

ds <
3
2
,

a condition less restrictive than (2.55). For (2.61), Theorem 2.18 was proven in
[14] and [34], but the strict inequality was required in (2.55) if S0 := inft≥0 S(t) =
a, i.e., if σ0 = 1.
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Example 2.2 Consider the scalar FDE with one discrete delay proposed by
Gopalsamy [19] and studied in [10] and [33],

Ṅ(t) = ρ(t)N(t)
[
K − aN(t− τ)
K + λ(t)N(t− τ)

]α
, t ≥ 0, (2.62)

where ρ, λ : [0,+∞) → (0,+∞) are continuous, a,K, τ > 0 and α ≥ 1 is the
ratio of two odd integers. Note that for α = 1 and p = 1, equations (2.61) and
(2.62) coincide. As before, we only consider positive solutions, corresponding to
initial conditions ϕ ∈ C0. The unique positive equilibrium of (2.62) is N∗ =
K/a. As another illustration of Theorem 2.16, sufficient conditions for its global
attractivity are established here, by arguing along the lines above for the study
of the previous model (2.47).

Theorem 2.20. Assume∫ +∞

0

ρ(s)
(1 + λ(s))α

ds = +∞, (2.63)

and that there is T ≥ τ such that Γ(α1, α2) ≤ 1, where

α1 =
aα

2
sup
t≥T

∫ t

t−τ

ρ(s)
λ(s)α

ds, α2 = sup
t≥T

∫ t

t−τ

ρ(s)
1 + a−1λ(s)

ds,

with λ(t) := min{a, λ(t)}, t ≥ 0. Then N∗ = K/a is globally attractive (in the set
of all positive solutions of (2.62)). In particular, this is the case if in addition to
(2.63) we suppose that

aα
(∫ t

t−τ

ρ(s)
λ(s)α

ds

)(∫ t

t−τ

ρ(s)
1 + a−1λ(s)

ds

)
≤ 9

2
, for large t ≥ 0.

Proof. Clearly, in (2.62) one may consider a = 1 by replacing K, λ(t) by K/a,
σ(t) := λ(t)/a, respectively. On the other hand, considering separately the cases
a ≥ 1 and 0 < a < 1, one sees that (2.63) holds if and only if∫ +∞

0

ρ(s)
(1 + a−1λ(s))α

ds = +∞.

By replacing λ(t) := min{a, λ(t)} by σ(t) = a−1λ(t) = min{1, σ(t)}, the study is
therefore reduced to the case a = 1.

Let a = 1. After the change of variables x(t) = N(t)
K − 1, (2.62) becomes

ẋ(t) = −ρ(t)(1 + x(t))
[

x(t− τ)
1 + σ(t)(1 + x(t− τ))

]α
, t ≥ 0. (2.64)
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This equation has the form (2.40), with F (t, ϕ) = g(t, ϕ(−τ)), t ≥ 0, ϕ ∈ C−1,
and g given by

g(t, x) = −ρ(t)
[

x

1 + σ(t)(1 + x)

]α
, t ≥ 0, x ≥ −1. (2.65)

Condition (2.63) implies that F satisfies hypothesis (H2) restricted to C−1. Now,
define

r(x) =
−x

1 + 1
2x
, x ≥ −1. (2.66)

For t ≥ 0 and x ≥ 0, and since −1 < r(x)/2 ≤ 0, we get

g(t, x) ≥ ρ(t)
[

−x
1 + σ(t)(1 + x)

]α
≥ ρ(t)
σ(t)α

(
−x

2 + x

)α

=
ρ(t)
σ(t)α

[
r(x)

2

]α
≥ ρ(t)

2σ(t)α
r(x).

For t ≥ 0 and −1 ≤ x < 0, and since 1 + σ(t)(1 + x) ≥ 1 ≥ −x, we obtain

g(t, x) ≤ ρ(t)
[

−x
1 + σ(t)(1 + x)

]α
≤ ρ(t)

−x
1 + σ(t)(1 + x)

≤ ρ(t)
1 + σ(t)

r(x).

Thus, F satisfies (H3) restricted to ϕ ∈ C−1 with r(x) as in (2.66), λ1(t) = ρ(t)
2σ(t)α ,

and λ2(t) = ρ(t)
1+σ(t) .

Remark 2.5 Liu [33] considered (2.62) with K = a = 1, and either 0 < λ(t) ≤ 1
for all t ≥ 0, or λ(t) ≥ 1 for all t ≥ 0. With the notation above, these cases cor-
respond to λ(t) ≡ λ(t), λ(t) ≡ a respectively. Liu proved the global attractivity
of N∗ assuming (2.63) and (for K = a = 1)

lim sup
t→+∞

∫ t

t−τ

ρ(s)
λ(s)α

ds ≤ 3, lim sup
t→+∞

∫ t

t−τ
ρ(s)ds ≤ 3

if supt≥0 λ(t) ≤ 1, inft≥0 λ(t) ≥ 1, respectively. In this latter situation, Theo-
rem 2.20 recovers the criterion in [33], whereas it improves it in the first case.
The general situation, where λ(t) has values smaller and greater than a (not ad-
dressed in [33]), was studied in [10] by effecting the change of variables x(t) =
(N(t)/N∗)α − 1, so that (2.62) becomes (2.40) with

F (t, ϕ) = αρ(t)

[
1− (1 + ϕ(−τ))1/α

1 + λ(t)(1 + ϕ(−τ))1/α

]α
, t ≥ 0, ϕ ∈ C−1. (2.67)
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In [10], the global attractivity of N∗ was established under (2.63) and

α

∫ t

t−τ
ρ(s)ds ≤ 3/2, for large t.

This result follows easily from our setting, since F defined by (2.67) satisfies (H3)
in C−1, with r(x) = −x and λ1(t) = λ2(t) = ρ(t), t ≥ 0.

Other criteria for the global attractivity of N∗ of (2.62) are given below.

Theorem 2.21. Assume (2.63), and suppose that there is T ≥ τ such that
Γ(α1, α2) ≤ 1, where

α1 =
1

(σ0)α−1(1 + σ0)
sup
t≥T

∫ t

t−τ
ρ(s)ds, α2 =

1
(1 + σ0)

sup
t≥T

∫ t

t−τ
ρ(s)ds,

and σ0 := a−1 inft≥0 λ(t). Then N∗ = K/a is globally atractive (in the set of all
positive solutions of (2.62)). In particular, this is the case if in addition to (2.63)
we suppose that∫ t

t−τ
ρ(s)ds ≤ 3

2
(σ0)(α−1)/2(1 + σ0), for large t ≥ 0.

Proof. Arguing as above, in a similar way one proves that

g(t, x) ≥ λ1(t)rb(x), t ≥ 0, x ≥ 0,

g(t, x) ≤ λ2(t)rb(x), t ≥ 0,−1 ≤ x ≤ 0,

where
λ1(t) =

ρ(t)
(σ0)α−1(1 + σ0)

, λ2(t) =
ρ(t)

1 + σ0
for t ≥ 0,

and
rb(x) =

−x
1 + bx

, with b =
σ0

1 + σ0
.

If σ0 ≤ 1, then b ≤ 1/2 and λ1(t) ≥ λ2(t), hence also α1 ≥ α2; if σ0 ≥ 1, then
b ≥ 1/2 and λ1(t) ≤ λ2(t), thus α1 ≤ α2. In both cases, Theorem 2.16 provides
the conclusion.

By using arguments similar to the ones used to prove Theorem 2.19, the above
sufficient conditions for the global attractivity of N∗ can still be weakened if either
0 < λ(t) ≤ a for all t ≥ 0, or λ(t) ≥ a for all t ≥ 0. Clearly, the following result
improves the work in [33], in both situations.

Theorem 2.22. Assume (2.63). In addition, suppose that one of the following
conditions holds:
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(i) λ(t) ≥ a for all t ≥ 0, and Γ(α1, α2) ≤ 1, where, for some T ≥ τ and
σ0 := a−1 inft≥0 λ(t), α1, α2 are given by

α1 = aα−1 sup
t≥T

∫ t

t−τ

ρ(s)
(1 + a−1λ(s))λ(s)α−1

ds,

α2 =
1

1 + σ0
sup
t≥T

∫ t

t−τ
ρ(s)ds;

(2.68)

(ii) λ(t) ≤ a for all t ≥ 0, and Γ(α1, α2) ≤ 1, where, for some T ≥ τ and
σ0 := a−1 supt≥0 λ(t), α1, α2 are given by

α1 = aα
σ0

1 + σ0
sup
t≥T

∫ t

t−τ

ρ(s)
λ(s)α

ds, α2 = sup
t≥T

∫ t

t−τ

ρ(s)
1 + a−1λ(s)

ds. (2.69)

Then N∗ = K/a is globally attractive (in the set of all positive solutions of (2.62)).
In particular, for both situations (i) and (ii), this statement holds if (2.63) and
α1α2 ≤ 9/4.

Proof. Again we consider equation (2.64) obtained after scaling and transla-
tion of N∗ to the origin, and reduce our study to the case a = 1 by considering
σ(t) := a−1λ(t) instead of λ(t). Let F (t, ϕ) = g(t, ϕ(−τ)), t ≥ 0, ϕ ∈ C−1 for g
as in (2.65).

Case 1: σ(t) ≥ 1 for all t ≥ 0. We have

g(t, x) =
ρ(t)
σ(t)α

(
−x

(1 + σ(t))σ(t)−1 + x

)α
≥ ρ(t)
σ(t)α

(
−x

(1 + σ(t))σ(t)−1 + x

)

≥ ρ(t)
(1 + σ(t))σ(t)α−1

−x
1 + σ0

1+σ0
x
, t ≥ 0, x ≥ 0.

For t ≥ 0 and −1 ≤ x ≤ 0, clearly 0 ≤ −x ≤ 1 + σ(t)(1 + x), hence

g(t, x) ≤ ρ(t)
−x

1 + σ(t)(1 + x)
≤ ρ(t)

1 + σ0

−x
1 + σ0

1+σ0
x
, t ≥ 0,−1 ≤ x ≤ 0.

We therefore conclude that F satisfies (H3) restricted to C−1, where

λ1(t) =
ρ(t)

(1 + σ(t))σ(t)α−1
, λ2(t) =

ρ(t)
1 + σ0

, t ≥ 0,

and r(x) = − x
1+bx , x ≥ −1, with

b :=
σ0

1 + σ0
≥ 1

2
.
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In this situation, λ1(t) ≤ λ2(t), thus α1 ≤ α2 for α1, α2 as in (2.68), and the
conclusion follows from Theorem 2.16.

Case 2: σ(t) ≤ 1 for all t ≥ 0. For t ≥ 0 and x ≥ 0, we have

g(t, x) =
ρ(t)
σ(t)α

(
−x

σ(t)−1 + (1 + x)

)α
≥ ρ(t)
σ(t)α

(
−x

(σ0)−1 + (1 + x)

)α

≥ ρ(t)
σ(t)α

−x
(σ0)−1 + (1 + x)

=
ρ(t)
σ(t)α

σ0

1 + σ0

−x
1 + σ0

1+σ0x
.

Let t ≥ 0 and −1 ≤ x ≤ 0. Since α ≥ 1 and 1 + σ(t)(1 + x) ≥ 1 ≥ −x, we have

g(t, x) ≤ ρ(t)
−x

1 + σ(t)(1 + x)
≤ ρ(t)

1 + σ(t)
−x

1 + σ0

1+σ0x
.

This implies that F satisfies (H3) restricted to C−1, where

λ1(t) =
σ0

1 + σ0

ρ(t)
σ(t)α

, λ2(t) =
ρ(t)

1 + σ(t)
, t ≥ 0,

and r(x) = − x
1+bx , x ≥ −1, with

b :=
σ0

1 + σ0
≤ 1

2
.

For α1, α2 as in (2.69), note that α2 ≤ α1. The result follows again by Theorem
2.16.



Chapter 3

Stability for Lotka-Volterra

Systems

In this chapter, we study the local and global stability of n-dimensional Lotka-
Volterra systems with distributed delays and instantaneous negative feedbacks.
For an introduction to such systems, see Section 1.4.

First, we obtain necessary and sufficient conditions, independent of the choice
of the delays, for the exponential stability of an autonomous linear system of
functional differential equations of the form ẋi = −[bixi(t) +Li(xt)], i = 1, . . . , n.
It turns out that this system is the linearization about a positive equilibrium (if
it exists) of a multiple species Lotka-Volterra type model. Afterwards, assuming
there exists a positive equilibrium, we establish its global asymptotic stability
under conditions slightly stronger than the ones required for the linear situation.

In Chapter 2, the global stability criteria were obtained by imposing con-
straints of the size of the delay, such as 3/2-type conditions. Here, to study the
stability of n-dimensional systems, we assume that the so-called intraspecific com-
petitions without delay bixi(t) dominate, in some sense, the delayed intraspecific
competitions and interspecific interactions.

3.1 Notation and Definitions

For x = (x1, . . . , xn) ∈ Rn, we denote by |x|∞ or simply |x| its supremum norm
in Rn, |x|∞ = max{|xi| : i = 1, . . . , n}. If d = (d1, . . . , dn) > 0, we also consider
the norm in Rn given by |x|d = max{di|xi| : i = 1, . . . , n}. We use ‖ · ‖∞
(or simply ‖ · ‖), respectively ‖ · ‖d, to denote the supremum norm in Cn :=
C([−τ, 0]; Rn), τ > 0, relative to the norm | · |∞, respectively | · |d, in Rn, that
is, ‖ϕ‖∞ = max−τ≤θ≤0 |ϕ(θ)|∞ and ‖ϕ‖d = max−τ≤θ≤0 |ϕ(θ)|d. For a bounded
linear functional L : Cn → R, where Cn is equipped with the norm ‖ · ‖∞,

47
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respectively ‖ · ‖d, we denote the usual operator norm by ‖ · ‖, respectively ‖ · ‖d.
For c ∈ Rn (n ≥ 1), we use c to denote both the real vector and the constant

function ϕ(θ) = c in Cn. For ϕ = (ϕ1, . . . , ϕn) ∈ Cn and a = (a1, . . . , an) ∈ Rn,
we denote by a.ϕ the element in Cn, a.ϕ := (a1ϕ1, . . . , anϕn). Cn is supposed to
be partially ordered with

ϕ ≥ ψ if and only if ϕi(θ) ≥ ψi(θ), θ ∈ [−τ, 0], i = 1, . . . , n.

In this chapter, we study the stability of a positive equilibrium of a multiple
species Lotka-Volterra type model of the form

ẋi(t) = ri(t)xi(t)

1− bixi(t)−
n∑
j=1

lij

∫ 0

−τ
xj(t+ θ)dηij(θ)

 , i = 1, . . . , n, (3.1)

where bi, lij ∈ R, ri(t) are positive continuous functions and ηij : [−τ, 0] → R
are normalized bounded variation functions. In biological terms, only positive
solutions of the Lotka-Volterra system (3.1) are meaningful. Therefore, we only
consider solutions with initial conditions in C0̂ ⊆ Cn, where

C0̂ := {(ϕ1, . . . , ϕn) ∈ Cn : ϕi(θ) ≥ 0, for θ ∈ [−τ, 0), ϕi(0) > 0, i = 1, . . . , n}.

A positive equilibrium point x∗ of (3.1) is said to be globally asymptotically stable
(in the set of all positive solutions) if it is stable and is a global attractor of all
positive solutions of (3.1).

A bounded linear operator L : C1 → R given by

L(ϕ) = l

∫ 0

−τ
ϕ(θ)dµ(θ), ϕ ∈ C1,

for some l ∈ R and µ : [−τ, 0]→ R normalized bounded variation function, is said
to be monotone (relative to the order in C1 above defined) if µ is a non-decreasing
function. If l ≥ 0, respectively l ≤ 0, then L is said to be positive, respectively
negative; this means that L(ϕ) ≥ 0 for all ϕ ≥ 0, respectively ϕ ≤ 0.

A real function x : [0,+∞) → R is said to be eventually monotone if there
exists t0 > 0 such that x(t) is monotone on [t0,+∞), otherwise it is said to be
not eventually monotone.

3.2 Asymptotic Stability for Linear Functional

Differential Equations

Let Cn := C([−τ, 0]; Rn) be equipped with the supremum norm ‖ · ‖∞ or any
equivalent norm. In the phase space Cn, consider an autonomous system of
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linear FDE’s of the form

ẋi(t) = −[bixi(t) + Li(xt)], i = 1, . . . , n, (3.2)

where bi ∈ R, Li : Cn → R are linear bounded operators, i = 1, . . . , n, and, as
usual, xt denotes the function in Cn defined by xt(θ) = x(t + θ), −τ ≤ θ ≤ 0.
Equivalently, one can write Li as

Li(ϕ) =
n∑
j=1

Lij(ϕj), Lij(ϕj) = lij

∫ 0

−τ
ϕj(θ)dηij(θ), (3.3)

for ϕ = (ϕ1, . . . , ϕn) ∈ Cn, for some lij ∈ R and some normalized functions of
bounded variation ηij , ηij ∈ BV ([−τ, 0]; R) with V ar[−τ,0]ηij = 1, so that (3.2)
reads as

ẋi(t) = −

bixi(t) +
n∑
j=1

lij

∫ 0

−τ
xj(t+ θ)dηij(θ)

 , i = 1, . . . , n. (3.4)

Set aij := Lij(1). From (3.3), we have aij = lij(ηij(0) − ηij(−τ)) and |lij | =
‖Lij‖. Let B = diag(b1, . . . , bn), A = [aij ], and C = [lij ], and define the matrices
M = B +A and N = B + C. In the sequel, consider also the matrices

M̃ = B + Ã, N̂ = B + Ĉ,

where Ã = [ãij ], Ĉ = [l̂ij ], with ãii = aii, ãij = −|aij | for j 6= i, and l̂ij = −|lij |
for i, j = 1, . . . , n:

M̃ =

 b1 + a11 −|a12| · · · −|a1n|
· · ·

−|an1| −|an2| · · · bn + ann

 ,

(3.5)

N̂ =

 b1 − |l11| −|l12| · · · −|l1n|
· · ·

−|ln1| −|ln2| · · · bn − |lnn|

 .

Note that all the off-diagonal entries of M̃ and N̂ are non-positive, i.e. M̃, N̂ ∈ Zn
(see Section 1.5).

For studying the stability of (3.2), we first translate an algebraic property of
the matrix N̂ into an analytical condition on the linear operators Li.

Lemma 3.1. For d = (d1, . . . , dn) > 0, then

N̂d ≥ 0 if and only if ‖Li‖d−1 ≤ dibi, i = 1, . . . , n.
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Proof. Let d = (d1, . . . , n) > 0. On the one hand, N̂d ≥ 0 is equivalent to

n∑
j=1

dj |lij | ≤ dibi, i = 1, . . . , n. (3.6)

On the other hand, for Li, Lij as in (3.3), we have ‖Lij‖ = |lij | and

‖Li‖d−1 =
n∑
j=1

dj |lij |.

Lemma 3.2. Let τ > 0, bi ∈ R and Li : Cn → R be linear bounded operators,
i = 1, . . . , n, such that

(L1) there is d = (d1, . . . , dn) > 0 such that ‖Li‖d−1 ≤ dibi, i = 1, . . . , n.

Then, all the characteristic roots λ of (3.2) have negative real parts, with the
possible exception of λ = 0. If in addition detM 6= 0, then (3.2) is exponentially
asymptotically stable.

Proof. Write Li as Li(ϕ) =
∑n

j=1 Lij(ϕj), for ϕ = (ϕ1, . . . , ϕn) ∈ Cn, with
Lij : C1 → R bounded linear operators, i, j = 1, . . . , n. The characteristic equa-
tion for (3.2) is

det ∆(λ) = 0, for ∆(λ) = λI +B + [(Lij(eλ·))ni,j=1]. (3.7)

Let λ = α+ βi 6= 0 be a root of (3.7), and consider v ∈ Cn, v 6= 0, such that
∆(λ)v = 0. For d > 0 as in (L1), let k ∈ {1, . . . , n} be such |v|d−1 = d−1

k |vk|. We
may suppose vk ∈ R, vk > 0. We have

(α+ bk)vk = −ReLk(eλ·v), βvk = −ImLk(eλ·v). (3.8)

Suppose now that α ≥ 0. Since ‖Lk‖d−1 ≤ dkbk, then

|Lk(eλ·v)| ≤ dkbk‖eλ·v‖d−1 ≤ dkbk|v|d−1 = bkvk,

hence

(ReLk(eλ·v))2 + (ImLk(eλ·v))2 ≤ b2kv2
k. (3.9)

If ImLk(eλ·v) = 0, from (3.8) we have β = 0 and λ = α, with

(α+ bk)vk = −Lk(eα·v) ≤ bkvk,
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implying that α ≤ 0, and therefore λ = α = 0.
If ImLk(eλ·v) 6= 0, from (3.8) and (3.9) we obtain

(α+ bk)vk = −ReLk(eλ·v) < |Lk(eλ·v)| ≤ bkvk,

and we conclude that α < 0, a contradiction. Thus, all the roots of (3.7) have
negative real parts, with the possible exception of zero.

Finally, note that ∆(0) = B+A = M . If detM 6= 0, then λ = 0 is not a root
of the characteristic equation (3.7).

Theorem 3.3. Let τ > 0, bi, lij ∈ R and ηij ∈ BV ([−τ, 0]; R) with V ar[−τ,0]ηij =
1, i, j = 1, . . . , n be given. With the previous notation, suppose that detM 6=
0 and N̂ is an M-matrix. Then, (3.4) is exponentially asymptotically stable.
Moreover, bi + aii > 0, i = 1, . . . , n.

Proof. Let Li(ϕ) =
∑n

j=1 Lij(ϕj) be as in (3.3). We consider separately the
cases of N̂ irreducible and reducible.

Case 1.
If N̂ is irreducible, then, from Theorem 1.20, there is d = (d1, . . . , dn) > 0

such that N̂d ≥ 0. In consequence of Lemma 3.1, hypothesis (L1) is satisfied,
and the asymptotic stability of (3.4) follows from Lemma 3.2. From (3.6), we also
have bi+aii ≥ bi−|lii| ≥ 0, i = 1, . . . , n, and if bi+aii = 0 for some i ∈ {1, . . . , n},
then 0 = di(bi − |lii|) =

∑
j 6=i dj |lij |, thus lij = aij = 0 for 1 ≤ j ≤ n, j 6= i. This

together with bi + aii = 0 implies that the ith row of M is zero, which is not
possible since detM 6= 0.

Case 2.
If N̂ is reducible, after a simultaneous permutation of rows and columns,

which amounts to a permutation of the variables x1, . . . , xn in (3.4), we may
suppose that

N̂ =

 N̂11 · · · N̂1l

. . .
0 · · · N̂ll

 , (3.10)

where N̂km are nk × nm matrices, with N̂kk irreducible or zero nk × nk blocks,∑l
k=1 nk = n. Accordingly to (3.10), we have

lij = 0, for n1 + · · ·+ nk + 1 ≤ i ≤ n1 + · · ·+ nk+1,

1 ≤ j ≤ n1 + · · ·+ nk, 1 ≤ k ≤ l − 1. (3.11)

From (3.3) and (3.11), it follows that [(Lij(eλ·))ni,j=1] as well as the characteristic
matrix ∆(λ) in (3.7) are also upper block triangular matrices. With the obvious
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notation, we write

∆(λ) = λI + diag(B1, . . . , Bl) +

 L11(λ) · · · L1l(λ)
. . .

0 · · · Lll(λ)

 ,

where Bk = diag(b1+N(k), . . . , bN(k+1)) for N(k) =
∑k−1

m=1 nm and Lkm(λ) are
nk × nm blocks.

Let λ = α+ iβ be a root of the characteristic equation (3.7). This means that
det ∆(λ) = 0, or equivalently, det(λInk +Bk+Lkk(λ)) = 0 for some k ∈ {1, . . . , l}
(where Ink is the identity matrix of dimension nk).

If the block N̂kk is irreducible, from Case 1 we conclude that α = Reλ < 0.
Now, suppose that N̂kk = 0 and α ≥ 0. Without loss of generality, we may
assume that k = 1, so that

bi = |lii|, 1 ≤ i ≤ n1 and lij = 0, 1 ≤ i, j ≤ n1, i 6= j.

The corresponding block λIn1 + B1 + L11(λ) of ∆(λ) is a diagonal matrix, with
diagonal entries λ+ |lii|+ Lii(eλ·), 1 ≤ i ≤ n1. Recall that

|Lii(eλ·)| = |lii
∫ 0

−τ
eλθdηii(θ)| ≤ |lii|.

If det(λIn1 + B1 + L11(λ)) = 0, then λ + |lii| + Lii(eλ·) = 0 for some i ∈
{1, . . . , n1}, and in particular we get α ≤ 0. If α = 0, then |lii|+ReLii(eλ·) = 0,
implying that β = −ImLii(eλ·) = 0, which is a contradiction, since ∆(0) = M

and detM 6= 0 imply that λ 6= 0. We therefore conclude that (3.4) is exponen-
tially asymptotically stable.

We show now that bi + aii > 0, i = 1, . . . , n, for a reducible matrix N̂ . Up
to a permutation, N̂ has the form (3.10). For irreducible diagonal blocks N̂kk,
from Case 1 we derive that the diagonal entries bi + aii of M are positive. If
the block N̂kk is zero, then, for 1 + N(k) ≤ i ≤ N(k + 1), we have bi = |lii| and
the corresponding block Mkk of M is a diagonal matrix with bi + aii as diagonal
entries. On the other hand, these diagonal entries bi+aii are non-zero, otherwise
detM = 0, hence they are positive.

We have also shown that:

Corollary 3.4. Let τ > 0, bi, lij ∈ R and ηij ∈ BV ([−τ, 0]; R) with V ar[−τ,0]ηij =
1, i, j = 1, . . . , n be given.

If N̂ is an M-matrix, then all the roots λ of the characteristic equation (3.7)
have negative real parts with the possible exception of λ = 0.
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Remark 3.1 If N̂ is an M-matrix, then bi − |lii| ≥ 0, i = 1, . . . , n. For N̂
an irreducible M-matrix, one can even conclude that bi − |lii| > 0, i = 1, . . . , n.
In fact, under these assumptions, from Theorem 1.20 and Lemma 3.1 N̂ satisfies
(L1); as in the proof of Theorem 3.3, bi − |lii| = 0 implies now lij = 0 for
j = 1, . . . , n, j 6= i, meaning that the ith-row of N̂ is zero, which is not possible
for an irreducible matrix.

Lemma 3.5. Let bi > 0, lij ∈ R, i, j = 1, . . . , n be given, and define N and N̂ as
above. If detN 6= 0 and N̂ is not an M-matriz, then there exist τij ≥ 0 such that,
for ηij defined as the Heaviside functions ηij(θ) = 0 for θ ∈ [−τ,−τij ], ηij(θ) = 1
for θ ∈ (−τij , 0] and τ := max{τij : i, j = 1, . . . , n}, the characteristic equation
for (3.4) has a root λ with Reλ > 0.

Proof. The proof is given in Lemas 2.4 and 2.5 of [3] (see also [24]), and is
omitted.

Theorem 3.6. Let bi > 0, lij ∈ R, i, j = 1, . . . , n, be given. Then, equation
(3.4) is exponentially asymptotically stable for all the choices of τ > 0 and sets
of functions η = (ηij) ⊆ BV ([−τ, 0]; R) with V ar[−τ,0]ηij = 1, i, j = 1, . . . , n, and
such that detMη 6= 0, if and only if N̂ is an M-matrix. Here, Mη is defined by
Mη := B + [aij ] for aij = lij(ηij(0)− ηij(−τ)).

Proof. For a given η = (ηij) ⊆ BV ([−τ, 0]; R) with V ar[−τ,0]ηij = 1, then
Mη = ∆(0), where det ∆(λ) = 0 is the characteristic equation (3.7), and hence
detMη 6= 0 if and only if λ = 0 is not a root of (3.7). Also, for η = (ηij) with
ηij as in the statement of Lemma 3.5, we have Mη = N . Now, the sufficiency is
given by Theorem 3.3 and the necessity condition by Lemma 3.5.

In applications, (3.2) often takes the form (3.4) with non-decreasing normal-
ized bounded variation functions ηij , i.e., Lij are monotone operators. Clearly,
in this case∫ 0

−τ
dηij(θ) = 1, ‖Lij‖ = |lij |, aij = lij , i, j = 1, . . . , n,

and in particular M = N . In this situation, the above theorem translates as:

Corollary 3.7. Let bi > 0, lij ∈ R, i, j = 1, . . . , n, be given. Then, (3.4) is
exponentially asymptotically stable for all the choices of τ > 0 and non-decreasing
functions ηij : [−τ, 0] → R with

∫ 0
−τ dηij(θ) = 1, i, j = 1, . . . , n, if and only if

detM 6= 0 and M̂ is an M-matrix. In particular, if detM 6= 0 and M̂ is an
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M-matrix, then the equation

ẋi(t) = −

bixi(t) +
n∑
j=1

lijxj(t− τij)

 , i = 1, . . . , n (3.12)

is exponentially asymptotically stable for all choices of discrete delays τij ≥ 0,
i, j = 1, . . . , n.

Remark 3.2 Equation (3.12) was studied in [24] with the restriction τii = 0,
and later in [3] without such constraint. With our notation, for (3.12) we have
M = N , and M̃ = M̂ if all the diagonal delays are zero. In terms of the linear
asymptotic stability, our Theorems 3.3 and 3.6 generalize the results in [3] and
[24] to the situation with distributed delays. In fact, for (3.12) with τii = 0
Hofbauer and So [24] proved its asymptotic stability independently of the choices
of delays τij ≥ 0 if and only if lii > 0 (1 ≤ i ≤ n), detM 6= 0 and M̂ is
an M-matrix, while Campbell [3] proved the same result without the constraint
τii = 0. We further note that So et al. [48] considered (3.12) for the “pure-delay-
type” situation, i.e., with all bi = 0. They established the asymptotic stability of

(3.12) with bi = 0 by imposing that [l̃ij ], where l̃ij = −1+ 1
9
liiτii(3+2aiiτii)

1− 1
9
liiτii(3+2aiiτii)

|lij | for

j 6= i, l̃ii = lii, is a non-singular M-matrix, together with the 3/2-type condition
liiτii < 3/2, i = 1, . . . , n. For generalization of [48] to non-autonomous linear
systems ẋi(t) = −

∑n
j=1 lij(t)xj(t− τij(t)), i = 1, . . . , n, see [49].

Example 3.1 Consider a scalar linear FDE on C1 = C([−τ, 0]; R) of the form

ẋ(t) = −[b0x(t) + L0(xt)],

where b0 ∈ R and L0 : C1 → R is a linear bounded operator. We write L0(ϕ) =
l0
∫ 0
−τ ϕ(θ)dη(θ), for |l0| = ‖L0‖ and some normalized bounded variation function

η : [−τ, 0]→ R. From Theorem 3.6, the following result is derived:

Corollary 3.8. Let b0, l0 ∈ R be given. Then, the scalar linear FDE

ẋ(t) = −
[
b0x(t) + l0

∫ 0

−τ
x(t+ θ)dη(θ)

]
(3.13)

is exponentially asymptotically stable for all choices of τ > 0 and η ∈ BV ([−τ, 0]; R)
with V ar[−τ,0]η = 1 and b0 + l0

∫ 0
−τ dη(θ) 6= 0 if and only if b0 ≥ |l0|.

Remark 3.3 The above result was established in [12], where the general
case of a linear scalar FDE ẋ(t) = −L(xt), with L : C1 → R a linear bounded
operator, was studied. Moreover, it was proven in [12] that if L(1) > 0 and L

satisfies the hypothesis
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(L1∗) for all ϕ ∈ C1 such that |ϕ(θ)| < ϕ(0) for θ ∈ [−τ, 0), then L(ϕ) > 0,

then L has the form

L(ϕ) = b0ϕ(0) + L0(ϕ), ϕ ∈ C1, (3.14)

for some b0 > 0 and (non-atomic at zero) linear bounded operator L0 : C1 → R,
for which b0 ≥ ‖L0‖ and b0 + L0(1) > 0. The reverse is also true, see Theorem
1.13. In the next section, the relevance of assumption (L1∗), translated to the
general framework of n-dimensional FDE’s ẋ(t) = f(t, xt), will become clear.

Example 3.2 In biological models with two species, we have the situation n = 2.
Assuming that ηij : [−τ, 0] → R are non-decreasing normalized functions, the
equation (3.4) has the form

ẋ1(t) = −
[
b1x1(t) + a11

∫ 0

−τ
x1(t+ θ)dη11(θ) + a12

∫ 0

−τ
x2(t+ θ)dη12(θ)

]
(3.15)

ẋ2(t) = −
[
b2x2(t) + a21

∫ 0

−τ
x1(t+ θ)dη21(θ) + a22

∫ 0

−τ
x2(t+ θ)dη22(θ)

]
,

with M = N and

M =

(
b1 + a11 a12

a21 b2 + a22

)
, M̂ =

(
b1 − |a11| −|a12|
−|a21| b2 − |a22|

)
. (3.16)

From Lemma 3.1, hypothesis (L1) is equivalent to saying that there is d =
(d1, d2) > 0 such that M̂d ≥ 0. With some additional conditions, (L1) is equiv-
alent to saying that M̂ is an M-matrix.

Lemma 3.9. Consider M , M̂ as in (3.16), with bi 6= |aii|, i = 1, 2. If detM 6= 0
and M̂ is an M-matrix, then there is d = (d1, d2) > 0 such that M̂d ≥ 0.
Conversely, if there is d = (d1, d2) > 0 such that M̂d ≥ 0, then M̂ is an M-
matrix.

Proof. If M̂ is irreducible, the result follows from Theorem 1.20. If M̂ is re-
ducible, then either a12 = 0 or a21 = 0, and hence det M̂ = (b1−|a11|)(b2−|a22|) 6=
0. Consequently, M̂ is a non-singular M-matrix, thus there is d = (d1, d2) > 0
such that M̂d > 0. The last statement follows from Theorem 1.19.

Since bi + aii > 0 from Theorem 3.3, we note that in particular we have
bi 6= |aii| if aii ≤ 0, i = 1, 2. As a consequence of Corollary 3.7 and Lemma 3.9
we conclude the following:
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Corollary 3.10. Consider bi > 0, aij ∈ R with bi 6= |aii|, i, j = 1, 2. Then the
system (3.15) is exponentially asymptotically stable for all choices of delays τ > 0
and non-decreasing functions ηij : [−τ, 0] → R with

∫ 0
−τ dηij(θ) = 1, i = 1, 2, if

and only if detM 6= 0 and there is d = (d1, d2) > 0 such that M̂d ≥ 0, for M , M̂
as in (3.16).

Example 3.3 Consider the following model for a ring of neurons with dis-
tributed delays

u̇i(t) = −biui(t) + αiigi(ut,i) + αi,i−1gi−1(ut,i−1), i = 1, . . . , n, (3.17)

with the convention i− 1 = n for i = 1, where gi : C([−τ, 0]; R)→ R are smooth
functions with gi(0) = 0 and rescaled so that g′i(0)(1) = 1, i = 1, . . . , n. The
particular case of (3.17) with discrete delays,

u̇i(t) = −biui(t) + αiigi(ui(t− τi)) + αi,i−1gi−1(ui−1(t− τi−1)), i = 1, . . . , n,

with gi : R→ R, was studied in [3].
Next result generalizes Theorem 4.1 of [3] to the situation with distributed

delays.

Theorem 3.11. Suppose that gi : C1 → R are C1-functions such that gi(0) = 0
and g′i(0)(1) = 1. For γi = ‖g′i(0)‖, if

n∏
i=1

(bi + αii) >
n∏
i=1

αi,i−1 (3.18)

and

|αii|γi ≤ bi, i = 1, . . . , n,

∣∣∣∣∣
n∏
i=1

αi,i−1γi−1

∣∣∣∣∣ ≤
n∏
i=1

(bi − |αii|γi) (3.19)

then the trivial equilibrium of (3.17) is locally asymptotically stable.

Proof. The linearized equation about zero has the form (3.2), with Lii =
αiig

′
i(0), Li,i−1 = αi,i−1g

′
i−1(0) and Lij = 0 for j 6= i, j 6= i − 1. From Theorem

3.3, detM 6= 0 and N̂ is an M-matrix imply the local asymptotic stability of
the trivial solution of (3.17). Here, M = B + A, for B = diag(b1, . . . , bn) and
A = [aij ], where aij = −αij for j = i, i − 1 and aij = 0 for j 6= i, j 6= i − 1; and
N̂ = B− |C|, for C = [cij ], with cij = −αijγj for j = i, i− 1, and zero otherwise.
It is easy to check that (3.19) is equivalent to saying that N̂ is an M-matrix.
Together with (3.19), (3.18) means that detM 6= 0.
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3.3 Global Stability for Lotka-Volterra Systems

The results in this section concern global stability for n species delayed Lotka-
Volterra models.

We consider autonomous systems given by

ẋi(t) = rixi(t)[1− bixi(t)− Li(xt)], i = 1, . . . , n, (3.20)

where bi ∈ R, ri > 0 and Li : Cn → R are linear bounded operators. More
generally, we shall also consider non-autonomous systems of FDE’s of the form

ẋi(t) = ri(t)xi(t)[αi − bixi(t)− Li(xt)], i = 1, . . . , n,

where bi, Li are as in (3.20), αi ∈ R, and ri : [0,+∞)→ (0,+∞) are continuous
functions. For the sake of simplicity, we take αi = 1, i = 1, . . . , n, and write

ẋi(t) = ri(t)xi(t)[1− bixi(t)− Li(xt)], i = 1, . . . , n, (3.21)

As in Section 3.2, we write Li as (3.3), for some lij ∈ R and ηij ∈ BV ([−τ, 0]; R)
with V ar[−τ,0]ηij = 1, and denote aij = Lij(1), i, j = 1, . . . , n. Again, B =
diag(b1, . . . , bn), M = B + [aij ], N = B + [lij ] and M̃ , N̂ are as in (3.5).

In the sequel, for (3.21) the following hypotheses will be considered:

(L1) There is d = (d1, . . . , dn) > 0 such that ‖Li‖d−1 ≤ dibi, i = 1, . . . , n;

(L2) det M̃ 6= 0;

(L3) there is a vector x∗ = (x∗1, . . . , x
∗
n) > 0 such that Mx∗ = [1, . . . , 1]T , i.e., x∗

is a positive equilibrium of (3.21);

(L4) ri(t) is uniformly bounded on [0,+∞) and
∫ +∞

0 ri(t)dt = +∞, i = 1, . . . , n.

If x∗ = (x∗1, . . . , x
∗
n) is a positive equilibrium of (3.21), for yi(t) = xi(t) − x∗i

system (3.21) becomes

ẏi(t) = −ri(t)(yi(t) + x∗i )[biyi(t) + Li(yt)], i = 1, . . . , n. (3.22)

By biological reasons, we restrict our attention to positive solutions of (3.21).
Therefore, we consider solutions with initial conditions

xt0 = ϕ, ϕ ∈ C0̂, (3.23)

for some t0 ≥ 0. Since a solution x(t, t0, ϕ) with initial condition in C0̂ at t0 ≥ 0

satisfies xi(t, t0, ϕ) = xi(t0)exp
(∫ t

t0
ri(s)[1− bixi(s)− Li(xs)]ds

)
> 0, then it is

an admissible solution, in the sense that xt(t0, ϕ) ∈ C0̂, whenever it is defined.
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Accordingly, if (L3) holds, the set of admissible initial conditions for (3.22) is
the set C−x∗ = C0̂ − x∗,

C−x∗ = {ϕ ∈ Cn : ϕi(θ) ≥ −x∗i , for θ ∈ [−τ, 0), ϕi(0) > −x∗i , i = 1, . . . , n},

and the solutions y(t, t0, ϕ) of (3.22) with initial conditions yt0 = ϕ, ϕ ∈ C−x∗ ,
are admissible solutions.

In this section, we study the global asymptotic stability of the positive equi-
librium x∗ of (3.20), or (3.21), if it exists. If in addition detM 6= 0, then the
positive equilibrium of (3.21) is unique. For (3.20), its local stability is deduced
from Theorem 3.3:

Theorem 3.12. Suppose that x∗ is a positive equilibrium of the autonomous sys-
tem (3.20). If detM 6= 0 and N̂ is an M-matrix, then x∗ is locally asymptotically
stable.

Next, we prove some auxiliary results, for which it is convenient to write
(L1) in a more suitable form. From Lemma 3.1, (L1) is equivalent to saying
that there is d = (d1, . . . , dn) > 0 such that N̂d ≥ 0. Consequently, (L1) implies
the inequalities

di(bi + aii) ≥
∑
j 6=i

dj |aij |, i = 1, . . . , n. (3.24)

From Theorem 1.19, (L1) also implies that N̂ is an M-matrix. As we saw in
Section 1.5, in general the reverse is not true for n ≥ 2. On the other hand, since
M̃ ≥ N̂ , if N̂ is an M-matrix, the same happens to M̃ ; together with det M̃ 6= 0,
this means that M̃ is a non-singular M-matrix, thus there is c = (c1, . . . , cn) > 0
such that M̃c > 0 (see Theorem 1.16). However, if (L1) and (L2) hold, one
cannot conclude that M̃d > 0, for the same vector d > 0 as in (L1). Also, from
Theorem 1.21, if M̃ is a non-singular M-matrix, then detM 6= 0; conversely, for
any n ≥ 2, we might have detM 6= 0 and M̃ a singular M-matrix. In particular,
we observe that, under (L1)-(L3), x∗ is the unique positive equilibrium of (3.20),
or (3.21).

By effecting the change zi(t) = d−1
i yi(t), i = 1, . . . , n, where d1, . . . , dn > 0

are as in (L1), (3.22) becomes

żi(t) = −ri(t)(zi(t) + d−1
i x∗i )[b̂izi(t) + L̂i(zt)], i = 1, . . . , n, (3.25)

with b̂i = bidi, âij = aijdj , and L̂i(ϕ) = Li((djϕj)nj=1) =
∑n

j=1 djLij(ϕj) for
ϕ = (ϕ1, . . . , ϕn) ∈ Cn.

With the previous notation, we get ‖L̂i‖ = ‖Li‖d−1 . Consequently, if hypoth-
esis (L1) holds for system (3.22), then for (3.25) we have

‖L̂i‖ ≤ b̂i.



3.3 Global Stability for Lotka-Volterra Systems 59

Assuming (L1), one may therefore assume without loss of generality that
translating x∗ to the origin and a scaling of the variables, (3.21) is transformed
into (3.22), with ‖Li‖ ≤ bi, i = 1, . . . , n.

A first lemma is stated in the more general framework of Rn with a norm
| · |d, for some d ∈ Rn, d > 0. Naturally, for FDE’s in Rn for which a set
S ⊆ Cn = C([−τ, 0]; Rn) is chosen as the set of admissible initial conditions, a
solution y(t) with initial condition yt0 = ϕ ∈ S is said to be admissible if yt ∈ S
for t > t0 whenever yt is defined.

Lemma 3.13. Choose a set S ⊆ Cn as the set of admissible initial conditions
for

ẏ(t) = f(t, yt), t ≥ t0, (3.26)

where f : [t0,+∞) × S → Rn continuous, f = (f1, . . . , fn). Let Rn be equipped
with a norm | · |d, for some d = (d1, . . . , dn) > 0, and assume that f satisfies the
hypothesis

(L1∗) for all t ≥ t0 and ϕ ∈ S such that |ϕ(θ)|d < |ϕ(0)|d for θ ∈ [−τ, 0), then
ϕi(0)fi(t, ϕ) < 0, for some i ∈ {1, . . . , n} such that |ϕ(0)|d = di|ϕi(0)|.

Then, all admissible solutions of (3.26) are defined and bounded for t ≥ t0.
Moreover, if y(t) = y(t, t0, ϕ) (ϕ ∈ S) is an admissible solution of (3.26) and
|y(t)|d ≤ K for t ∈ [t0 − τ, t0], then |y(t)|d ≤ K for t ≥ t0.

Proof. Let y(t) be an admissible solution of (3.26) on [t0 − τ, a) for some
a > t0, with |y(t)|d ≤ K for t ∈ [t0 − τ, t0]. Suppose that there is t1 > t0 such
that |y(t1)|d > K, and define

T = min
{
t ∈ [t0, t1] : max

s∈[t0,t1]
|y(s)|d = |y(t)|d

}
.

We have |y(T )|d > K and

|y(t)|d < |y(T )|d for t ∈ [t0, T ).

Hence |yT (θ)|d = |y(T + θ)|d < |y(T )|d for −τ ≤ θ < 0. By (L1∗), there
is i ∈ {1, . . . , n} such that |y(T )|d = di|yi(T )| and yi(T )fi(t, yT ) < 0 for all
t ≥ t0. Suppose that yi(T ) > 0 (the situation yi(T ) < 0 is analogous). Since
diyi(t) ≤ |y(t)|d < diyi(T ) for t0 − τ ≤ t < T , then ẏi(T ) ≥ 0. On the other
hand, from (L1∗) and (3.26) we have ẏi(T ) = fi(T, yT ) < 0, a contradiction.
This proves that y(t) is extensible to [t0 − τ,+∞), and we have |y(t)|d ≤ K for
all t > t0.
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Theorem 3.14. Let x∗i > 0, ri(t) > 0 for t ≥ 0, i = 1, . . . , n, and S = C−x∗. If
detM 6= 0 and (L1) holds, then (3.22) satisfies (L1∗) on [0,+∞). In particular,
all (admissible) solutions of (3.21) are defined and bounded on [0,+∞).

Proof. As observed above, we may assume that equation (3.22) satisfies the
condition ‖Li‖ ≤ bi, i = 1, . . . , n. Equation (3.22) reads as (3.26), for fi(t, ϕ) =
−ri(t)(ϕi(0) + x∗i )(biϕi(0) + Li(ϕ)), i = 1, . . . , n. Let t ≥ 0, ϕ ∈ S = C−x∗

and suppose |ϕ(θ)|∞ < |ϕ(0)|∞ for θ ∈ [−τ, 0). Set K = |ϕ(0)|∞. Consider the
partition I = I1 ∪ I2 ∪ I3 of I := {1, . . . , n}, where

I1 = {i ∈ I : ϕi(0) = K}, I2 = {i ∈ I : ϕi(0) = −K}, I3 = {i ∈ I : |ϕi(0)| < K}.

Define
−γ1 := min

i∈I1
min

θ∈[−τ,0]
ϕi(θ) > −K,

γ2 := max
i∈I2

max
θ∈[−τ,0]

ϕi(θ) < K,

γ3 := max
i∈I3

max
θ∈[−τ,0]

|ϕi(θ)| < K,

and ε0 = min1≤k≤3(K − γk)/2. Consider

ε = (ε1, . . . , εn) ∈ Rn, with εi =


ε0, i ∈ I1

−ε0, i ∈ I2

0, i ∈ I3

.

For #Ik = nk, k = 1, 2, 3, we may suppose that I is ordered in such a way that

I1 = {1, . . . , n1}, I2 = {n1 + 1, . . . , n1 + n2}, I3 = {n1 + n2 + 1, . . . , n},

so that ε reads as ε = ε0(1, . . . , 1,−1, . . . ,−1, 0 . . . , 0), with the obvious notation
for dots.

From the definition of ε0, it is easy to check that |ϕi(θ)− εi| ≤ K − ε0 for all
i ∈ I, hence ‖ϕ− ε‖∞ ≤ K − ε0 and |Li(ϕ− ε)| ≤ bi(K − ε0), 1 ≤ i ≤ n.

For i ∈ I1, from (L1) we have

biϕi(0) + Li(ϕ) = ε0bi + (ϕi(0)− ε0)bi + Li(ϕ− ε) + Li(ε)
≥ ε0bi + Li(ε)

= ε0

(bi + aii) +
∑

j∈I1,j 6=i
aij −

∑
j∈I2

aij

 . (3.27)

Analogously, for i ∈ I2 we obtain

biϕi(0) + Li(ϕ) = −ε0bi + (ϕi(0) + ε0)bi + Li(ϕ− ε) + Li(ε)
≤ −ε0bi + Li(ε)

= ε0

−(bi + aii) +
∑
j∈I1

aij −
∑

j∈I2,j 6=i
aij

 . (3.28)
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From (3.24), (3.27) and (3.28), we conclude that

ϕi(0)(biϕi(0) + Li(ϕ)) ≥ 0, i ∈ I1 ∪ I2.

If there is i ∈ I1 ∪ I2 such that ϕi(0)(biϕi(0) + Li(ϕ)) > 0, then (L1∗) holds. If
ϕi(0)(biϕi(0) + Li(ϕ)) = 0 for all i ∈ I1 ∪ I2, from (3.24), (3.27) and (3.28) we
deduce that ∑

j∈I3

|aij | = 0, i ∈ I1 ∪ I2,

i.e., aij = 0 for all i ∈ I1 ∪ I2, j ∈ I3. (Note that this includes the case I3 = ∅;
however, I1 ∪ I2 6= ∅.) Hence, one can write

M =

 M11 M12 M13

M21 M22 M23

M31 M32 M33

 (3.29)

with Mij matrices of dimensions ni × nj , i, j = 1, 2, 3, and M13 = 0, M23 = 0.
Again from (3.24), (3.27), (3.28), and the definition of the vector ε, we have(

M11 M12

M21 M22

)
η = 0,

where ε = (η, 0) and η is a (n1 + n2)× 1 vector. But this is a contradiction since
detM 6= 0, and M13 = 0, M23 = 0 in (3.29) imply that

det

(
M11 M12

M21 M22

)
6= 0.

After having established the boundedness of positive solutions of (3.21), we
are in a position to prove the main result in this chapter, on the global attractivity
of x∗.

Theorem 3.15. Assume (L1)-(L4). Then the positive equilibrium of (3.21) is
globally asymptotically stable (in the set of all positive solutions).

Proof. By translating x∗ to the origin, (3.21) becomes (3.22). As already
noticed, (L1) and (L2) imply that detM 6= 0. From Theorem 3.14, all admis-
sible solutions of (3.22) are defined and bounded on [−τ,+∞), and the trivial
equilibrium of (3.22) is uniformly stable (in the set S = C−x∗ of all admissible
solutions). It remains to prove that zero is globally attractive in S.

As in the proof of Theorem 3.14, after a scaling we may assume (L1) with
d = (1, . . . , 1), i.e.,

‖Li‖ ≤ bi, i ∈ I := {1, . . . , n}.
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Let y(t) = (yi(t))ni=1 be an admissible solution to (3.22). Since y(t) is defined and
bounded for t ≥ 0, set

−vi = lim inf
t→+∞

yi(t), ui = lim sup
t→+∞

yi(t), i ∈ I,

and
v = max

1≤i≤n
{vi}, u = max

1≤i≤n
ui.

with u, v ∈ R satisfying −x∗i ≤ −vi ≤ ui < +∞, i ∈ I.
It is sufficient to prove that max(u, v) = 0. Assume e.g. that |v| ≤ u, so that

max(u, v) = u. (The situation is analogous for |u| ≤ v.)
Consider the decomposition of I, I = I1 ∪ I2 ∪ I3, where

I1 = {i ∈ I : ui = u}, I2 = {i ∈ I : vi = u, ui < u},

I3 = {i ∈ I : −u < −vi ≤ ui < u}.

Since |v| ≤ u, then I1 6= ∅. Observe that the situation where one or both sets
I2, I3 are empty is included in our setting. The proof is divided in several steps.

Claim 1. For each i ∈ I1 ∪ I2, there is a sequence (tik)k∈N with tik ↗ +∞,
biyi(tik)+Li(ytik)→ 0, and yi(tik)→ u if i ∈ I1, yi(tik)→ −u if i ∈ I2, as k → +∞.

To prove claim 1, for each i ∈ I1 ∪ I2 we shall consider separately the cases of
yi(t) eventually monotone and not eventually monotone.

Case 1. Assume that yi(t) is not eventually monotone.
Let i ∈ I1, and consider (tik)k∈N with tik ↗ +∞ as k → +∞, a sequence of local

maximum points so that yi(tik)→ ui = u. Clearly, ẏi(tik) = 0 = biyi(tik) +Li(ytik).
For i ∈ I2, the claim follows by considering a sequence of local minimum points
(tik)k∈N with tik ↗ +∞, yi(tik)→ −vi = −u as k → +∞.

Case 2. Assume that yi(t) is eventually monotone.
Let i ∈ I1 ∪ I2. In this case, we have

lim
t→+∞

yi(t) = u if i ∈ I1 and lim
t→+∞

yi(t) = −u if i ∈ I2, (3.30)

and for t large, either ẏi(t) ≤ 0 or ẏi(t) ≥ 0.
If ẏi(t) ≥ 0 for t large, then biyi(t) + Li(yt) ≤ 0, hence

lim sup
t→+∞

(biyi(t) + Li(yt)) := c ≤ 0.

If c < 0, then there is t1 > 0 such that biyi(t) + Li(yt) < c/2 for t ≥ t1, implying
that ẏi(t) ≥ −cri(t)(yi(t) + x∗i )/2 and

yi(t) + x∗i ≥ (yi(t1) + x∗i ) exp
(
− c

2

∫ t

t1

ri(s)ds
)
, t ≥ t1.
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From (L4) and the above inequality, we obtain yi(t) → +∞ as t → +∞, which
is not possible. Thus c = 0, which proves the claim.

If ẏi(t) ≤ 0 for t large, in a similar way we get

lim inf
t→+∞

(biyi(t) + Li(yt)) := d ≥ 0.

Suppose that d > 0. For any ε > 0, there is t2 such that for t ≥ t2 we have
biyi(t) + Li(yt) > d/2 and ‖yt‖ ≤ u+ ε. Then, for t ≥ t2

0 < yi(t) + x∗i ≤ (yi(t2) + x∗i ) exp
(
−d

2

∫ t

t2

ri(s)ds
)
→ 0, as t→ +∞.

We therefore conclude that

lim
t→+∞

yi(t) = −x∗i . (3.31)

Since we have assumed u ≥ 0, (3.30) and (3.31) imply that i /∈ I1; and for i ∈ I2,
then u = x∗i . But, for t ≥ t2,

0 < d/2 ≤ biyi(t) + Li(yt) ≤ biyi(t) + bi(u+ ε)→ biε, t→ +∞.

Since ε > 0 is arbitrary, this is a contradiction. Hence d = 0, and claim 1 is
proven.

Claim 2. For i ∈ I1 ∪ I2, there is a sequence (tik)k∈N, tik ↗ +∞, such that
ytik
→ ϕi = (ϕi1, . . . , ϕ

i
n) ∈ Cn as k → +∞, with

ϕii(0) + Li(ϕi) = 0, ϕii(0) =

{
u if i ∈ I1

−u if i ∈ I2

and
−vj ≤ ϕij(θ) ≤ uj , 1 ≤ j ≤ n,−τ ≤ θ ≤ 0.

Suppose that i ∈ I1 (the situation i ∈ I2 is treated in an analogous way).
From Claim 1, let (tik)k∈N be a sequence with tik ↗ +∞, biyi(tik) + Li(ytik) → 0
and yi(tik) → u as k → +∞. Consider {ytik : k ∈ N} ⊆ Cn, and fix ε > 0.
Clearly {ytik : k ∈ N} is uniformly bounded with ‖ytik‖ ≤ u + ε for k ≥ k0. On
the other hand, from (3.22) and (L4) it follows that ẏ(t) is uniformly bounded
on [0,+∞), thus {ytik : k ∈ N} ⊆ Cn is bounded and equicontinuous. By Ascoli-
Arzelà theorem, for a subsequence, still denoted by (ytik), we have ytik → ϕi for
some ϕi = (ϕi1, . . . , ϕ

i
n) ∈ Cn. By letting k → +∞ and ε→ 0+, we conclude that

ϕi satisfies all the requeriments in Claim 2.
In the remaining proof, sequences (tik)k∈N as in Claim 2 are supposed to be

fixed, and ϕi denotes the limit in Cn of (ytik).
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Observe that for i ∈ I1 ∪ I2 and j ∈ I2 ∪ I3, we have maxθ∈[−τ,0] ϕ
i
j(θ) < u.

Now, define

J i = {j ∈ I1 : min
θ∈[−τ,0]

ϕij(θ) = −u, max
θ∈[−τ,0]

ϕij(θ) = u}, i ∈ I1 ∪ I2.

Claim 3. If u > 0, then J i = ∅ for all i ∈ I1 ∪ I2.
Let u > 0, and consider i ∈ I1 and j ∈ J i. Let θ1, θ2 ∈ [−τ, 0] be such

u = ϕij(θ1) = lim
k
yj(tik + θ1), −u = ϕij(θ2) = lim

k
yj(tik + θ2).

Case 1. θ2 < θ1

Fix ε > 0 small. For some t0, we have ‖yt‖ ≤ uε := u+ ε for t ≥ t0, and from
(L1) we obtain

ẏj(t) ≤ bjrj(t)(yj(t) + x∗j )(uε − yj(t)).

By integrating over an interval [s, t] ⊆ [t0,+∞), we obtain

(yj(t) + x∗j )(uε − yj(s)) ≤

≤ (yj(s) + x∗j )(uε − yj(t)) exp
(

(x∗j + uε)bj
∫ t

s
rj(σ)dσ

)
, t ≥ s ≥ t0.(3.32)

From (L4), there is β > 0 such that ri(t) ≤ β, t ≥ 0. For t = tik + θ1, s = tik + θ2

in (3.32), by letting k → +∞ we conclude that

(u+ x∗j )(uε + u) ≤ (−u+ x∗j )(uε − u) exp((x∗j + uε)bjβτ).

Since ε > 0 is arbitrarily small, we conclude that u = 0, which contradicts our
assumption.

Case 2. θ1 < θ2

For this situation, we first prove that u < x∗j . Fix ε > 0 small. Then,
|bjyj(t) + Lj(yt)| ≤ 2bjuε, for t large, and

ẏj(t) ≥ −2bjuεrj(t)(yj(t) + x∗j ),

leading to

(yj(t) + x∗j ) ≥ (yj(s) + x∗j ) exp
(
−2bjuε

∫ t

s
rj(σ)dσ

)
, t ≥ s ≥ t0, (3.33)

for some t0 large. With t = tik + θ2, s = tik + θ1 in (3.33), by letting k → +∞ and
ε→ 0+, we get

(−u+ x∗j ) ≥ (u+ x∗j ) exp(−2bjuβτ) > 0,

and hence u < x∗j .
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Now, let ε > 0 be small so that uε < x∗j . For t ≥ t0, we have

ẏj(t) ≥ −bjrj(t)(yj(t) + x∗j )(uε + yj(t)),

and integration over an interval [s, t] ⊆ [t0,+∞) yields

(yj(t) + uε)(yj(s) + x∗j ) ≥
≥ (yj(s) + uε)(yj(t) + x∗j ) exp(−(x∗j − uε)bjβ(t− s)), t ≥ s ≥ t0. (3.34)

From (3.34), with t = tik + θ2, s = tik + θ1, by letting k → +∞ and ε → 0+, we
obtain

0 ≥ 2u(x∗j − u) exp(−bj(x∗j − u)βτ),

and therefore conclude that u = 0, which is a contradiction.
For i ∈ I2, the proof of J i = ∅ is similar.
Claim 4. y(t)→ 0 as t→ +∞.
Recall that we are considering the case |v| ≤ u. For the sake of contradiction,

assume that u > 0.
Fix i ∈ I1 ∪ I2, and choose ϕi ∈ Cn as in Claim 2. Since J i = ∅ from Claim

3, the definition of Ij , j = 1, 2, 3, leads to

either min
θ∈[−τ,0]

ϕij(θ) > −u or max
θ∈[−τ,0]

ϕij(θ) < u, j ∈ I.

Consider now the partition of I

I = Ii1 ∪ Ii2 ∪ I3,

where I3 is as above and

Ii1 = {j ∈ I1 ∪ I2 : min
θ∈[−τ,0]

ϕij(θ) > −u}, Ii2 = {j ∈ I1 ∪ I2 : min
θ∈[−τ,0]

ϕij(θ) = −u}.

Note that the set I3 does not depend on i; also, i ∈ Ii1 if i ∈ I1 and i ∈ Ii2 if
i ∈ I2.

We now adapt the procedure followed in the proof of Theorem 3.14. For
i ∈ I1 ∪ I2, define

−γi1 = min
j∈Ii1

min
−τ≤θ≤0

ϕij(θ) > −u,

γi2 = max
j∈Ii2

max
−τ≤θ≤0

ϕij(θ) < u,

γi3 = max
j∈I3

max
−τ≤θ≤0

|ϕij(θ)| < u,

and εi0 = min1≤k≤3(u− γik)/2. Consider

ei = (ei1, . . . , e
i
n) ∈ Rn, with eij =


εi0, j ∈ Ii1
−εi0, j ∈ Ii2

0, j ∈ I3

.
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From the definition of εi0, we have ‖ϕi−ei‖∞ ≤ u−εi0. For i ∈ I1, from ‖Li‖ ≤ bi,
and Claim 2, we get

0 = biϕ
i
i(0) + Li(ϕi) = εi0bi + (ϕii(0)− εi0)bi + Li(ϕi − ei) + Li(ei)

≥ εi0bi + Li(ei)

= εi0

bi + aii +
∑

j∈Ii1,j 6=i

aij −
∑
j∈Ii2

aij

 . (3.35)

Analogously, for i ∈ I2 we obtain

0 = biϕ
i
i(0) + Li(ϕi) ≤ εi0

−(bi + aii) +
∑
j∈Ii1

aij −
∑

j∈Ii2,j 6=i

aij

 . (3.36)

Now, from (3.6) (with d1 = . . . = dn = 1), (3.35) and (3.36) we conclude that∑
j∈I3

|aij | =
∑
j∈I3

|lij | = 0, i ∈ I1 ∪ I2,

or, equivalently,

aij = lij = 0 for i ∈ I1 ∪ I2, j ∈ I3, (3.37)

and

bi =
∑
j∈I
|aij | =

∑
i∈I
|lij |, i ∈ I1 ∪ I2. (3.38)

At this stage, after a permutation of I, we may suppose that I is ordered in
such way that

I1 = {1, . . . , n1}, I2 = {n1 + 1, . . . , n1 + n2},

I3 = {n1 + n2 + 1, . . . , n1 + n2 + n3},

with n1+n2+n3 = n. Recall that n2, n3 may be zero. According to this ordering,
N̂ has the form

N̂ =
(

(N̂ij)3
i,j=1

)
where N̂ij are ni × nj matrices, i, j = 1, 2, 3. If I3 6= ∅, from (3.37) we have
N̂j3 = 0 for j = 1, 2. Now, from (3.37)-(3.38) one writes M in the form (3.29)
with M13 = M23 = 0, and concludes that

M̃0η = 0, where M̃0 =

(
M̃11 −|M12|
−|M21| M̃22

)
,
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where M̃ii are ni × ni matrices, i = 1, 2, and η = (1, . . . , 1) is a (n1 + n2)-vector.
This is not possible however, since det M̃ 6= 0 and M13 = M23 = 0 imply that
det M̃0 6= 0.

The above arguments show that u = 0, hence v = 0 as well. This ends the
proof of the theorem.

Remark 3.4 We remark that Tang and Zou [55] gave stability results for Lotka-
Volterra systems of the form

ẋi(t) = ri(t)xi(t)
[
1−

∫ 0

−τii
xi(t+ θ)dηii(θ)

−
n∑
j 6=i

lij

∫ 0

−τij
xj(t+ θ)dηij(θ)

 , i = 1, . . . , n, (3.39)

where ri(t) satisfy (L4), ηij are non-decreasing bounded normalized functions,
and the constants lij are non-negative. In particular, in (3.39) all the opera-
tors Lij are positive. In [55], the authors are primarily interested in the situation
τii > 0, i = 1, . . . , n, where instantaneous negative feedbacks are absent, although
the situation of zero diagonal delays is included in their setting. Several criteria
for the global attractivity of the positive equilibrium of (3.39) (if it exists) are
established, by imposing 3/2-type constraints on the diagonal delays τii, and M-
matrix-type conditions. Namely, for M = [lij ], where lij , j 6= i, are as in (3.39)
and lii = 1, the following conditions are assumed in [55]: either (DD1) M satisfies
1 >

∑
j 6=i lij , i = 1, . . . , n, or (DD2) M̂ is a non-singular M-matrix.

Remark 3.5 In [47] pp 94-98, Smith considered the autonomous Lotka-Volterra
competition system,

ẋi(t) = rixi(t)

1− bixi(t)−
n∑
j=1

lij

∫ 0

−τ
xj(t+ θ)dηij(θ)

 , i = 1, . . . , n, (3.40)

where ri > 0, bi > 0, and with all lij ≥ 0 and ηij normalized non-decreasing
bounded variation functions - or, in other words, system (3.20) with all operators
Lij being positive, i, j = 1, . . . , n. For this situation, under the condition

n∑
j=1

lijb
−1
j < 1, i = 1, . . . , n, (3.41)

Smith proved the existence of a global attractive positive equilibrium of (3.40)
(in the set of all positive solutions).
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Since lij ≥ 0, (3.41) implies that N̂d > 0, for d = (b−1
1 , . . . , b−1

n ), and, from
Lemma 3.1, (L1) holds. In particular, N̂ is a non-singular M-matrix and since
M̃ ≥ N̂ , M̃ is also a non-singular M-matrix, so that det M̃ 6= 0. Therefore,
Theorem 3.15 generalizes the criterion in [47].

In what follows, we give some consequences of the Theorem 3.15.

Corollary 3.16. Assume (L2), (L3), (L4) and that N̂ is an irreducible M-
matrix. Then, the equilibrium x∗ of (3.21) is globally asymptotically stable (in
the set of all positive solutions).

Proof. From Theorem 1.20 and Lemma 3.1, if N̂ is irreducible, then N̂ is an
M-matrix if and only if (L1) holds.

Corollary 3.17. Assume (L3), (L4) and that N̂ is a non-singular M-matrix.
Then, x∗ is globally asymptotically stable (in the set of all positive solutions of
(3.21)).

Proof. If N̂ is a non-singular M-matrix, then there is d = (d1, . . . , dn) > 0
such that N̂d > 0, so (L1) holds. Since M̃ ≥ N̂ , then M̃ is a non-singular
M-matrix as well (see Theorem 1.18).

Corollary 3.18. Assume (L1), (L3), (L4) and that aii > 0 for i = 1, . . . , n.
Then x∗ is globally asymptotically stable (in the set of all positive solutions of
(3.21)).

Proof. For d = (d1, . . . , dn) > 0 as in (L1), we have

dibi ≥
n∑
j=1

dj |aij |, i = 1, . . . , n,

hence M̃d ≥ 2diag(a11, . . . , ann)d > 0. From Theorem 1.16, M̃ is a non-singular
M-matrix.

Corollary 3.19. Consider equation (3.21), where Li is written as in (3.3), and
suppose that the operators Lij are all negative, i, j = 1, . . . , n.

Assume (L4) and that M is a non-singular M-matrix. Then there exists a
positive equilibrium of (3.21), which is globally asymptotically stable (in the set
of all positive solutions).
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Proof. The operators Lij are all negative, thus they are given by (3.3), for
non-decreasing functions ηij : [−τ, 0]→ R with ηij(0)− ηij(−τ) = 1 and lij ≤ 0,
i, j = 1, . . . , n. Consequently, we have Lij(1) = aij = lij and

M = N = M̃ = N̂ = diag(b1, . . . , bn) + [aij ].

Since M is a non-singular M-matrix, hypotheses (L1) and (L2) are satisfied;
moreover, by Theorem 1.16, M−1 ≥ 0. Let x∗ = (x∗1, . . . , x

∗
n) be the solution of

Mx = [1, . . . , 1]T . Since M−1 ≥ 0, then x∗ ≥ 0; and x∗i = 0 if and only if all
the entries of the ith-row of M−1 are zero, which is not possible. The conclusion
follows now from Theorem 3.15.

Observe that hypothesis (L1), which for n ≥ 2 is strictly stronger than having
N̂ an M-matrix, was used throughout the proof of Theorem 3.15. Also (L1) was
essential to conclude that admissible solutions of (3.21) are bounded. For system
(3.21), written as

ẋi(t) = ri(t)xi(t)

1− bixi(t)−
n∑
j=1

lij

∫ 0

−τ
xj(t+ θ)dηij(θ)

 , (3.42)

for i = 1, . . . , n, it is interesting to investigate situations for which the criterion
for the global asymptotic stability of the positive equilibrium x∗ is sharp, in the
sense that it coincides with the necessary and sufficient conditions, established
in Section 3.2 for the situation ri(t) ≡ ri > 0, for the local asymptotic stability
independently of τ and ηij in (3.42). This is in general an open problem (in [16]
a partial answer for the particular case of autonomous system was given). For
the situation n = 2, we have

ẋ1(t) = x1(t)
[
r1 − b1x1(t)− a11

∫ 0

−τ
x1(t+ θ)dη11(θ)

−a12

∫ 0

−τ
x2(t+ θ)dη12(θ)

]
(3.43)

ẋ2(t) = x2(t)
[
r2 − b2x2(t)− a21

∫ 0

−τ
x1(t+ θ)dη21(θ)

−a22

∫ 0

−τ
x2(t+ θ)dη22(θ)

]
.

where aij ∈ R, ri, bi > 0 and ηij : [−τ, 0] → R are non-decreasing normalized
functions, i = 1, 2, with bi 6= |aii|. Then, with the previous notation, lij = aij
and M = N . On one hand, from Lemmas 3.1 and 3.9, if detM 6= 0, we conclude
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that M̂ is an M-matrix if and only if (L1) holds. On the other hand, if M̂ is an
M-matrix, then M̃ is an M-matrix as well and, in this situation, if det M̃ 6= 0 then
detM 6= 0. Consequently, from Theorems 1.14 and 3.15 we have the following
result:

Corollary 3.20. Consider n = 2, ri, bi > 0, aij ∈ R with bi 6= |aii|, i = 1, 2.
Assume (L2) and (L3).

Then x∗ is globally asymptotically stable (in the set of positive solutions) for
all τ > 0 and ηij non-decreasing normalized functions if and only if M̂ is an
M-matrix.

We finalize this chapter with some applications.

Example 3.4 Consider the scalar delayed logistic equation

ẋ(t) = r(t)x(t)[1− b0x(t)− L0(xt)], t ≥ 0, (3.44)

where b0 ∈ R, r : [0,+∞) → (0,+∞) is continuous and L0 : C1 → R is a linear
bounded operator. Note that for (3.44), (L1)-(L3) translate as

b0 + L0(1) > 0, b0 ≥ ‖L0‖. (3.45)

Theorem 3.15 applied to the particular case n = 1 gives the following result:

Corollary 3.21. For (3.44), suppose that (L4) and (3.45) are satisfied. Then
the positive equilibrium x∗ = (b0 + L0(1))−1 of (3.44) is globally asymptotically
stable (in the set of all admissible solutions).

The above criterion was already established in [12]. Note that (3.45) is ex-
actly the necessary and sufficient condition for the asymptotic stability of (3.13)
in the statement of Corollary 3.8.

Example 3.5 Consider the following Lotka-Volterra system with distributed
delays and symmetry:

ẋ1(t) = x1(t)
[
r1 − ax1(t) + α

∫ 0

−τ
x1(t+ θ)dη11(θ)

+b12

∫ 0

−τ
x2(t+ θ)dη12(θ)

]
(3.46)

ẋ2(t) = x2(t)
[
r2 − ax2(t) + b21

∫ 0

−τ
x1(t+ θ)dη21(θ)

+α
∫ 0

−τ
x2(t+ θ)dη22(θ)

]
.
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Here, τ, r1, r2, a, α, b12, b21 are constants, τ, r1, r2, a > 0, and ηij : [−τ, 0]→ R are
non-decreasing functions with ηij(0)− ηij(−τ) = 1, i, j = 1, 2, and

either b21 = −b12 or b21 = b12.

The first situation models a predator-prey system (cf. [43], [44]), while the second
one is used to describe a cooperative or competition model (cf. [45]).

Theorem 3.22. Consider the predator-prey system with symmetry (3.46), where
b21 = −b12 := β. If

max
(
r2β

r1
,−r1β

r2

)
< a− α, (3.47)

then there exists a positive equilibrium x∗ = (x∗1, x
∗
2). Additionally, if

|β| < a− α and |β| ≤ a+ α, (3.48)

then x(t)→ x∗ as t→ +∞ for every admissible solution x(t) of (3.46).

Proof. With b21 = −b12 := β, (3.47) is equivalent to saying that the equilib-
rium x∗ = (x∗1, x

∗
2),

x∗1 =
r1(a− α)− r2β

(a− α)2 + β2
, x∗2 =

r2(a− α) + r1β

(a− α)2 + β2
,

is positive. Here M = N =

(
(a− α)/r1 β/r1

−β/r2 (a− α)/r2

)
. With the previous

notation, M̂ is an M-matrix if and only if |α| + |β| ≤ a; for this situation, this
is equivalent to (L1). And det M̃ 6= 0 means that |β| 6= |a − α|. Under these
circumstances, (L1)-(L2) translate as (3.48).

We observe that the predator-prey situation b21 = −b12 := β with discrete
and distributed delays in (3.46) was addressed in [44] and [43], respectively, where
the authors proved the global asymptotic stability of x∗ (assuming its existence)
under the weaker requirement √

α2 + β2 ≤ a.

However, in both papers, the following restrictive assumption in the symmetry
was imposed:

η11 = η21 := µ, η12 = η22 := ν. (3.49)
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To be more precise, [44] studied the equation with discrete delays

ẋ1(t) = x1(t)[r1 − ax1(t) + αx1(t− τ1)− βx2(t− τ2)]

ẋ2(t) = x2(t)[r2 − ax2(t) + βx1(t− τ1) + αx2(t− τ2)],

whereas [43] dealt with the distributed delays situation

ẋ1(t) = x1(t)
[
r1 − ax1(t) + α

∫ 0

−τ
x1(t+ θ)dµ(θ)− β

∫ 0

−τ
x2(t+ θ)dν(θ)

]
ẋ2(t) = x2(t)

[
r2 − ax2(t) + β

∫ 0

−τ
x1(t+ θ)dµ(θ) + α

∫ 0

−τ
x2(t+ θ)dν(θ)

]
,

For a cooperative or competition model with symmetry, in a similar way we
deduce:

Theorem 3.23. Consider (3.46) with b21 = b12 := β, suppose that

a− α > max
(
−r2β

r1
,−r1β

r2

)
,

and condition (3.48) is satisfied. Then, there exists a positive equilibrium x∗ =
(x∗1, x

∗
2), which is globally asymptotically stable.

Theorem 3.23 was already obtained by Saito and Takeuchi [45], by using
Lyapunov functionals. Here, we have used models (3.46) to illustrate the advan-
tage of our approach, which enables us to obtain the global stability of general
Lotka-Volterra type models (3.20), without having to construct specific Lyapunov
functionals to each model under consideration, normally a rather difficult task.
For the particular case of (3.46) with b12 = ±b21, from Theorems 3.7 and 3.15,
one easily checks that the local and global stability of x∗, independently of the
choices of the delay functions ηij , coincide.



Chapter 4

Global Stability for Neural

Network Models

In this chapter, our focus is the global asymptotic stability of steady states in
various neural network models (NNM’s). First, using the same techniques as
in Chapter 3, we obtain the global asymptotic stability of the zero solution
of n-dimensional delayed differential systems of the form ẋ(t) = ri(t)fi(xt),
i = 1, . . . , n, by imposing a general condition of negative feedback effect, sim-
ilar to the hypothesis (L1∗) in Lemma 3.13. Afterwards, we establish sufficient
conditions for the existence, uniqueness, and global asymptotic stability of an
equilibrium point of the delayed system ẋi(t) = −ri(t)ki(xi(t))[bi(xi(t)) + fi(xt)],
i = 1, . . . , n, which is a generalization of the well known NNM’s of Hopfield, Cohn-
Grossberg, bidirectional associative memory, and static with S-type distributed
delays. Finally, we use our results to improve several criteria for the existence
and global attractivity of the equilibrium point of different types of NNM’s.

4.1 Global Asymptotic Stability

Let Cn := C([−τ, 0]; Rn) be equipped with the supremum norm ‖·‖ relative to the
norm | · | in Rn, where |x| = max1≤i≤n |xi| for x = (x1, . . . , xn) ∈ Rn. In the phase
space Cn, consider a nonautonomous system of delayed differential equations of
the form

ẋi(t) = ri(t)fi(xt), t ≥ 0, i = 1, . . . , n, (4.1)

where ri : [0,+∞) → (0,+∞) and fi : Cn → R are continuous functions, i =
1, . . . , n.

For (4.1) the following hypotheses will be considered:

(N1) (i) fi is bounded on bounded sets of Cn, i = 1, . . . , n;

73
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(ii) for all ϕ ∈ Cn such that ‖ϕ‖ = |ϕ(0)| > 0, then ϕi(0)fi(ϕ) < 0 for all
i ∈ {1, . . . , n} such that |ϕi(0)| = ‖ϕ‖;

(N2) ri(t) is uniformly bounded on [0,+∞) and
∫ +∞

0 ri(t)dt = +∞, i = 1, . . . , n.

Note that hypothesis (N1)(ii) is stronger than (L1∗) in Lemma 3.13. If it
holds, we deduce that all solutions of (4.1) are defined and bounded on [0,+∞).
Moreover, (N1)(ii) implies that x = 0 is the unique equilibrium point of (4.1).
Its global asymptotic stability is proved in the following result. We remark that
the arguments used in the proof are similar to the ones in the proof of Theorem
3.15.

Theorem 4.1. Assume (N1)-(N2). Then the equilibrium x = 0 of (4.1) is
globally asymptotically stable.

Proof. Let x(t) = (xi(t))ni=1 be a solution to (4.1). From Lemma 3.13, the
zero solution is stable and x(t) is defined and bounded on [0,+∞) and we set

−vi = lim inf
t→+∞

xi(t), ui = lim sup
t→+∞

xi(t), i ∈ I := {1, . . . , n},

and
v = max

i∈I
{vi}, u = max

i∈I
{ui}.

Note that u, v ∈ R and −v ≤ u.
It is sufficient to prove that max(u, v) = 0. Assume e.g. that |v| ≤ u, so that

max(u, v) = u. (The situation is analogous for |u| ≤ v.)
Let i ∈ I such that ui = u and fix ε > 0. There is T = T (ε) > 0 such that

‖xt‖ < uε := u+ ε for t ≥ T .
As in the proof of Theorem 3.15, first we prove that there is a sequence (tk)k∈N

with

tk ↗ +∞, xi(tk)→ u, and fi(xtk)→ 0, as k → +∞. (4.2)

Case 1. Assume that xi(t) is eventually monotone. In this case, lim
t→+∞

xi(t) =

u and, for t large, either ẋi(t) ≤ 0 or ẋi(t) ≥ 0. Assume e.g. that ẋi(t) ≤ 0 for t
large (the situation ẋi(t) ≥ 0 is analogous). Then fi(xt) ≤ 0 for t large, hence

lim sup
t→+∞

fi(xt) = c ≤ 0.

If c < 0, then there is t0 > 0 such that fi(xt) < c/2 for t ≥ t0, implying that

xi(t) ≤ xi(t0) +
c

2

∫ t

t0

ri(s)ds.
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From (N2) and the above inequality, we obtain xi(t)→ −∞ as t→ +∞, which
is not possible. Thus c = 0, which proves (4.2).

Case 2. Assume that xi(t) is not eventually monotone. In this case there is
a sequence (tk)k∈N such that tk ↗ +∞, ẋi(tk) = 0 and xi(tk)→ u, as k → +∞.
Then fi(xtk) = 0 for all k ∈ N, and (4.2) holds.

Now we have to show that u = 0, hence v = 0 as well.
For t ≥ T , we have ‖xt‖ < uε and from (N1) and (N2) we conclude that

there is K > 0 such that |ẋj(t)| = |rj(t)fj(xt)| < K, t ≥ T, j ∈ I. It follows
that x(t) and ẋ(t) are uniformly bounded on [0,+∞), thus {xtk : k ∈ N} ⊆ Cn is
bounded and equicontinuous. By Ascoli-Arzelà theorem, for a subsequence, still
denoted by (xtk), we have xtk → ϕ for some ϕ ∈ Cn. Since ‖xtk‖ ≤ uε and ε > 0
is arbitrary, then ‖ϕ‖ ≤ u. From (4.2), we get ϕi(0) = u and fi(ϕ) = 0. Clearly
‖ϕ‖ = |ϕi(0)| = u and from hypothesis (N1)(ii) we conclude that u = 0, and
the theorem is proven.

In applications, NNM’s often take the form

ẋi(t) = −ri(t)ki(xi(t))[bi(xi(t)) + fi(xt)], t ≥ 0, i = 1, . . . , n, (4.3)

where ri : [0,+∞)→ (0,+∞), ki : R→ (0,+∞), bi : R→ R and fi : Cn → R are
continuous functions, i = 1, . . . , n.

In the sequel, for (4.3) the following hypotheses will be considered:

(A1) for each i ∈ {1, . . . , n}, there is βi > 0 such that

(bi(u)− bi(v))/(u− v) ≥ βi, ∀u, v ∈ R, u 6= v;

(A2) fi : Cn → R is a Lipschitz function with constant li, i = 1, . . . , n.

Here, we give sufficient conditions for the existence, uniqueness and global
asymptotic stability of an equilibrium point for system (4.3). To prove the ex-
istence and uniqueness of such equilibrium, we make use of arguments in recent
literature [4], [7], [40] and [53]. First, we state the following lemma.

Lemma 4.2. [18] If H : Rn → Rn is a continuous and injective function such
that

lim
|x|→+∞

|H(x)| = +∞,

then H is a homeomorphism of Rn.

Lemma 4.3. Assume (A1), (A2) and βi > li for i = 1, . . . , n. Then system
(4.3) has a unique equilibrium point x∗ = (x∗1, . . . , x

∗
n) ∈ Rn.
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Proof. Define the continuous map

H : Rn → Rn

x 7→ (b1(x1) + f1(x), . . . , bn(xn) + fn(x)), x = (x1, . . . , xn).

First, we prove that H is injective. By way of contradiction, assume that
there exist x, y ∈ Rn, with x 6= y, such that H(x) = H(y). It follows that
bi(xi) + fi(x) = bi(yi) + fi(y) for i = 1, . . . , n, hence

|bi(xi)− bi(yi)| = |fi(x)− fi(y)|, i = 1, . . . , n,

and from the hypotheses we have

βi|xi − yi| ≤ li|x− y| < βi|x− y|, i = 1, . . . , n,

which is a contradiction.
Now we prove that lim|x|→+∞ |H(x)| = +∞. Let γ := min1≤i≤n(βi − li) > 0.

For x ∈ Rn and i0 ∈ {1, . . . , n} such that |xi0 | = |x|, we have

|H(x)| ≥ |bi0(xi0) + fi0(x)|

= |(bi0(xi0)− bi0(0)) + (fi0(x)− fi0(0)) + (bi0(0) + fi0(0))|

≥ (βi0 − li0)|xi0 | − |bi0(0) + fi0(0)|

≥ γ|x| − |bi0(0) + fi0(0)|,

then |H(x)| → +∞, as |x| → +∞.
From the above lemma we conclude that H is a homeomorphism, hence there

is a unique x∗ ∈ Rn such that H(x∗) = 0, i.e., x∗ is the unique equilibrium point
of (4.3).

Lemma 4.4. Assume (A1), (A2) and βi > li for i = 1, . . . , n. Suppose that
x∗ = 0 is the equilibrium of (4.3). Then the function g = (g1, . . . , gn) : Cn → Rn

defined by gi(ϕ) = −ki(ϕi(0))[bi(ϕi(0)) + fi(ϕ)], satisfies (N1).

Proof. Clearly g satisfies (N1)(i).
Let ϕ ∈ Cn be such that ‖ϕ‖ = |ϕ(0)| > 0 and consider i ∈ {1, . . . , n} such

that |ϕi(0)| = ‖ϕ‖.
Since x∗ = 0 is the equilibrium, then bj(0) + fj(0) = 0 for j = 1, . . . , n. If

ϕi(0) > 0, then ‖ϕ‖ = ϕi(0) and from the hypotheses we conclude that

ki(ϕi(0))(bi(ϕi(0)) + fi(ϕ)) = ki(ϕi(0))[(bi(ϕi(0))− bi(0)) + (fi(ϕ)− fi(0))]

≥ ki(ϕi(0))(βi − li)‖ϕ‖ > 0.
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For the situation ϕi(0) < 0, analogously we conclude that ϕi(0)gi(ϕ) < 0.

Assume that x∗ = (x∗1, . . . , x
∗
n) ∈ Rn is the equilibrium point of (4.3). By

translating it to the origin by the change x̄(t) = x(t)− x∗, (4.3) becomes

˙̄xi(t) = −ri(t)k̄i(x̄i(t))[b̄i(x̄i(t)) + f̄i(x̄t)], t ≥ 0, i = 1, . . . , n, (4.4)

with k̄i(u) = ki(u+x∗i ), b̄i(u) = bi(u+x∗i )−bi(x∗i ) and f̄i(ϕ) = fi(x∗+ϕ)−fi(x∗).
Clearly bi and fi satisfy (A1) and (A2) if and only if b̄i and f̄i satisfy (A1),
(A2). From Lemmas 4.3 and 4.4, and Theorem 4.1, we have the following result:

Theorem 4.5. Assume (A1), (A2), and (N2). If βi > li for all i ∈ {1, . . . , n},
then system (4.3) has a unique equilibrium point which is globally asymptotically
stable.

4.2 Neural Network Models with Distributed Delays

In this section, we shall apply the study in the previous section to two different
types of neural network models with distributed delays, improving recent stability
results in the literature (see examples below).

4.2.1 Cohen-Grossberg Neural Network Models

Consider the following generalization of the Cohen-Grossberg model (11),

ẋi(t) = −ki(xi(t))

bi(xi(t)) +
n∑
j=1

fij(xj,t)

 , i = 1, . . . , n, (4.5)

where ki : R → (0,+∞), bi : R → R and fij : C1 → R are continuous functions,
i, j = 1, . . . , n.

Remark 4.1 Model (4.5) generalizes several neural network models, which have
been studied in [1], [3], [6], [20], [26], [32], [57] and [60].

For system (4.5), we assume (A1) and

(A3) fij : C1 → R is a Lipschitz function with constant lij , i, j = 1, . . . , n.

Define the square real matrices,

B = diag(β1, . . . , βn), A = [lij ] and N = B −A, (4.6)

where β1, . . . , βn are as in (A1).
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Theorem 4.6. Assume (A1) and (A3). If N is a non-singular M-matrix, then
there is a unique equilibrium point of (4.5), which is globally asymptotically stable.

Proof. If N is a non-singular M-matrix, then (see Theorem 1.16) there is
d = (d1, . . . , dn) > 0 such that Nd > 0, i.e.,

βidi >
n∑
j=1

lijdj , i = 1, . . . , n. (4.7)

The change yi(t) = d−1
i xi(t) transforms (4.5) into

ẏi(t) = −ki(diyi(t))d−1
i

bi(diyi(t)) +
n∑
j=1

fij(djyj,t)

 , i = 1, . . . , n. (4.8)

Defining, for each i ∈ {1, . . . , n},

f̄i(ϕ) = d−1
i

n∑
j=1

fij(djϕj), ϕ = (ϕ1, . . . , ϕn) ∈ Cn,

b̄i(u) = d−1
i bi(diu), k̄i = ki(diu), u ∈ R,

system (4.8) has the form

ẏi(t) = −k̄i(yi(t))[b̄i(yi(t)) + f̄i(yt)], t ≥ 0, i ∈ {1, . . . , n}. (4.9)

For ϕ,ψ ∈ Cn and i ∈ {1, . . . , n}, we have

|f̄i(ϕ)− f̄i(ψ)| = d−1
i

∣∣∣∣∣∣
n∑
j=1

fij(djϕj)−
n∑
j=1

fij(djψj)

∣∣∣∣∣∣ ≤
d−1

i

n∑
j=1

lijdj

 ‖ϕ− ψ‖,
thus f̄i is a Lipschitz function with constant li := d−1

i

∑n
j=1 lijdj , i = 1, . . . , n.

Moreover, b̄i satisfies (A1) with β̄i = βi, and from (4.7) we have βi > li,
i = 1, . . . , n. The conclusion follows now from Theorem 4.5.

A particular situation of the model (4.5) is the class of n-neuron Hopfield
network with discrete delays

u̇i(t) = −biui(t) +
n∑
j=1

aijfj(uj(t− τij)), t ≥ 0, i = 1, . . . , n, (4.10)

where τij ≥ 0, bi > 0, aij ∈ R and fj : R → R are C1 such that fj(0) = 0,
limu→±∞ fj(u) = ±1, f ′j(u) > 0, and supu∈R f

′
j(u) = f ′j(0) = 1, i, j = 1, . . . , n

(see [3], [56]). These conditions imply that, for each j ∈ {1, . . . , n}, fj is a
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Lipschitz function with Lipschitz constant 1. The function fj(u) = tanh(u),
which is commonly used in the model (4.10), satisfies the above conditions.

Campbell [3] proved that (4.10) has a unique equilibrium which is global
asymptotic stable if M̂ = diag(b1, . . . , bn) − [|aij |] is a non-singular M-matrix.
We emphasize however that Theorem 4.6 deals with the situation of distributed
delays.
Example 4.1 Consider the Cohen-Grossberg NNM with discrete delays

ẋi(t) = −ki(xi(t))

bi(xi(t))− n∑
j=1

P∑
p=1

a
(p)
ij fj(xj(t− τ

(p)
ij )) + Ji

 , (4.11)

for i = 1, . . . , n, where P ∈ N, Ji, a
(p)
ij ∈ R, τ (p)

ij ≥ 0, and ki : R → (0,+∞),
bi, fi : R → R are continuous functions, i, j = 1, . . . , n, p = 1, . . . , P , recently
studied in [7] and [59]. Let τ = max{τ (p)

ij : i, j = 1, . . . , n, p = 1, . . . , P}.
System (4.11) has the form (4.5) for fij(ϕ) = −

∑P
p=1 a

(p)
ij fj(ϕ(−τ (p)

ij )), ϕ ∈
C1 = C([−τ, 0],R). Since fi : R → R are Lipschitz functions with constants li,
fij is also a Lipschitz function, with Lipschitz constant lij =

∑P
p=1 |a

(p)
ij |lj , for

i, j = 1, . . . , n. Theorem 4.6 applied to system (4.11) gives the following result:

Corollary 4.7. Assume (A1) and that fi : R → R is a Lipschitz function with
constant li, i = 1, . . . , n. If N := B − A, where B = diag(β1, . . . , βn) and
A = [lij ] with lij =

∑P
p=1 |a

(p)
ij |lj, is a non-singular M-matrix, then there is a

unique equilibrium point of (4.11), which is globally asymptotically stable.

Remark 4.2 For system (4.11), the existence, uniqueness and global stability
of an equilibrium point was already obtained by Y. Chen [7], but he assumed the
following additional hypotheses:

(i) For each i ∈ {1, . . . , n}, there exist ki, ki > 0 such that

0 < ki ≤ ki(u) ≤ ki, ∀u ∈ R;

(ii) N := BK − AK is a non-singular M-matrix, where K = diag(k1, . . . , kn)
and K = diag(k1, . . . , kn).

Note that, if (i) holds, then N is a non-singular M-matrix which implies that N
is a non-singular M-matrix. However the reverse is not true. The above Corollary
4.7 improves strongly the criterion in [7].
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4.2.2 Static Neural Network Models with S-Type Distributed

Delays

Consider the following generalization of the static model (13),

ẋi(t) = −ki(xi(t))

bi(xi(t)) + fi

 n∑
j=1

ωij

∫ 0

−τ
xj(t+ θ)dηij(θ) + Ji

 , (4.12)

for i = 1, . . . , n, where Ji, ωij ∈ R, ki : R → (0,+∞), bi, fi : R → R are
continuous functions and ηij : [−τ, 0] → R are normalized bounded variation
functions, i.e., ηij ∈ BV ([−τ, 0]; R) with V ar[−τ,0]ηij = 1, i, j = 1, . . . , n. Assume
the hypothesis:

(A4) fi : R→ R is a Lipschitz function with constant li, i = 1, . . . , n.

For each i ∈ {1, . . . , n}, the function defined by

f̄i(ϕ) = fi

 n∑
j=1

ωij

∫ 0

−τ
ϕj(θ)dηij(θ) + Ji

 , ϕ = (ϕ1, . . . , ϕn) ∈ Cn

is a Lipschitz function with constant li
∑n

j=1 |ωij |. Define the following square
real matrices:

B = diag(β1, . . . , βn) and M = B − [li|ωij |]. (4.13)

We have the following result:

Theorem 4.8. Assume (A1) and (A4). If M is a non-singular M-matrix, then
there is a unique equilibrium point of (4.12), which is globally asymptotically
stable.

Proof. The proof is analogous to the proof of Theorem 4.6, so it is omitted.

Example 4.2 Consider the static neural network model with S-type distributed
delay studied in [58]

ẋi(t) = −bi(λ)xi(t) + fi

 n∑
j=1

ωij(λ)
∫ 0

−τ(λ)
xj(t+ θ)dηij(λ, θ) + Ji(λ)

 , (4.14)

i = 1, . . . , n, where λ ∈ Λ ⊆ R is a real parameter, fi : R → R are continuous
functions, bi, τ : Λ → [0,+∞) and Ji, ωij : Λ → R are real functions with
0 ≤ τ(λ) ≤ τ for some τ > 0, and, for each λ ∈ Λ, θ 7→ ηij(λ, θ) are normalized
bounded variation functions on [−τ(λ), 0], i, j = 1, . . . , n.
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Suppose that, for each i, j = 1, . . . , n, there exist bi, ωij > 0 such that,

0 < bi ≤ bi(λ), and |ωij(λ)| ≤ ωij , for all λ ∈ Λ.

Assume that the functions fi satisfy (A4), and define the following square
real matrices:

B(λ) = diag(b1(λ), . . . , bn(λ)), M(λ) = B(λ)− [li|ωij(λ)|], λ ∈ Λ,

B = diag(b1, . . . , bn) and M = B − [liωij ].

Definition 4.1. System (4.14) is said to be globally asymptotically robust stable
on Λ if, for each λ ∈ Λ, there is an equilibrium point of (4.14) which is globally
asymptotically stable.

The next result is an immediate consequence of Theorem 4.8.

Corollary 4.9. Assume (A4). If M is a non-singular M-matrix, then system
(4.14) is globally asymptotically robust stable on Λ.

Proof. Let λ0 ∈ Λ. Since M ≤ M(λ0) and M is a non-singular M-matrix,
then M(λ0) is a non-singular M-matrix as well (see Theorem 1.18), thus we have
the result from Theorem 4.8.

Remark 4.3 Besides the assumptions in Corollary 4.9, Wang and Wang [58]
assumed that the maps λ 7→ bi(λ) were bounded and that, for each λ ∈ Λ,
θ 7→ ηij(λ, θ) were non-decreasing normalized functions on [−τ(λ), 0]. Thus the
last result improves the main result in [58].

Remark 4.4 The results in this section also hold for non-autonomous models of
the form (4.3), if the functions ri(t) satisfy (N2).

4.3 Neural Network Models with Discrete

Time-Varing Delays

Consider the following neural network model:

ẋi(t) = −ki(xi(t))

bi(xi(t)) +
n∑
j=1

P∑
p=1

h
(p)
ij (xj(t− τ (p)

ij (t)))

 , (4.15)

for i = 1, . . . , n, where ki : R → (0,+∞), bi, h
(p)
ij : R → R and τ

(p)
ij : [0,+∞) →

[0,+∞) are continuous functions, h(p)
ij are Lipschitz functions with constants l(p)ij ,

τ
(p)
ij are bounded and (A1) holds for bi, i, j = 1, . . . , n, p = 1, . . . , P .
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System (4.15) is a generalization of several neural network models with dis-
crete time-varying delays [4], [5], [8]. It is important to note that the general
setting of (4.15) allows us to consider as subclasses the bidirectional associative
memory neural network models in [4] and [61].

Let τ ≥ 0 be such that 0 ≤ τ
(p)
ij (t) ≤ τ for all t ≥ 0, i, j ∈ {1, . . . , n} and

p ∈ {1, . . . , P}, and define the square real matrices

B = diag(β1, . . . , βn) and N := B − [lij ],

where β1, . . . , βn are as in (A1) and lij =
∑P

p=1 l
(p)
ij .

Theorem 4.10. Assume (A1), 0 ≤ τ (p)
ij (t) ≤ τ and h(p)

ij are Lipschitz functions

with constants l(p)ij , i, j ∈ {1, . . . , n}, p ∈ {1, . . . , P}.
If N is a non-singular M-matrix, then there is a unique equilibrium point of

(4.15), which is globally asymptotically stable.

Proof. Since N is a non-singular M-matrix, then (see Theorem 1.16) there is
d = (d1, . . . , dn) > 0 such that Nd > 0, i.e.,

βi > d−1
i

 n∑
j=1

lijdj

 , i ∈ I := {1, . . . , n}. (4.16)

The change zi(t) = d−1
i xi(t) transforms (4.15) into

żi(t) = −k̄i(zi(t))[b̄i(zi(t)) + hi(t, zt)], i ∈ I, t ≥ 0, (4.17)

where

hi(t, ϕ) = d−1
i

[∑n
j=1

∑P
p=1 h

(p)
ij (djϕj(−τ (p)

ij (t)))
]
, t ≥ 0, ϕ ∈ Cn, i ∈ I,

k̄i(u) = ki(diu), b̄i(u) = d−1
i bi(diu), u ∈ R, i ∈ I.

Note that (b̄i(u)− b̄i(v))/(u− v) ≥ βi for u, v ∈ R, u 6= v, i.e., condition (A1) is
satisfied by the functions b̄i(u), i ∈ I. For ϕ,ψ ∈ Cn and t ≥ 0 we have

|hi(t, ϕ)− hi(t, ψ)| ≤

d−1
i

n∑
j=1

lijdj

 ‖ϕ− ψ‖, i ∈ I,

that is, hi(t, ·) is a uniform Lipschitz function on Cn for all t ≥ 0, with Lipschitz
constant li := d−1

i

∑n
j=1 lijdj < βi.

Observe that system (4.17) has an equilibrium point y∗ = (y∗1, . . . , y
∗
n) ∈ Rn

if and only if H(y∗) = 0, where

H(y) =

b̄i(yi) + d−1
i

n∑
j=1

P∑
p=1

h
(p)
ij (djyj)

n

i=1

, y = (y1, . . . , yn) ∈ Rn.
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Arguing as in the proof of Lemma 4.3, we conclude that there is a unique point
y∗ = (y∗1, . . . , y

∗
n) such that H(y∗) = 0.

By translating the equilibrium to the origin by the change yi(t) = zi(t)− y∗i ,
(4.17) becomes

ẏi(t) = gi(t, yt), t ≥ 0, i ∈ I, (4.18)

where g = (g1, . . . , gn) : [0,+∞)× Cn → Rn is defined by

gi(t, ϕ) = −k̄i(ϕi(0) + y∗i )[b̄i(ϕi(0) + y∗i ) + hi(t, ϕ+ y∗)], ϕ ∈ Cn, t ≥ 0, i ∈ I.

Arguing as in the proof of Lemma 4.4, we conclude that g satisfies (L1∗), thus
from Lemma 3.13 all solutions of (4.18) are defined and bounded on [0,+∞).

Let y(t) = (yi(t))ni=1 be a solution of (4.18). Set

−vi = lim inf
t→+∞

yi(t), ui = lim sup
t→+∞

yi(t), i ∈ I,

and
v = max

i∈I
{vi}, u = max

i∈I
{ui}.

Note that u, v ∈ R and −v ≤ u.
It is sufficient to prove that max(u, v) = 0. Assume e.g. that |v| ≤ u, so that

max(u, v) = u. (The situation |u| ≤ v is analogous).
Fix ε > 0 and let T = T (ε) > 0 be such that ‖yt‖ < uε := u + ε for t ≥ T .

Let i ∈ I such that ui = u.
Arguing as in the proof of Theorem 4.1, we conclude that there is a sequence

(tk)k∈N such that

tk ↗ +∞, yi(tk)→ u and gi(tk, ytk)→ 0, as k → +∞. (4.19)

From our hypotheses, clearly we have g bounded on [0,+∞) × K for all
bounded sets K ⊆ Cn. Since ‖yt‖ < uε for t ≥ T , we have (ẏj(t))nj=1 bounded
on [0,+∞). Hence y(t) and ẏ(t) are uniformly bounded on [0,+∞), thus {ytk :
k ∈ N} ⊆ Cn is bounded and equicontinuous. By Ascoli-Arzelà theorem, for a
subsequence, still denoted by (ytk), we have ytk → ϕ for some ϕ ∈ Cn. Since
‖ytk‖ ≤ uε and ε > 0 is arbitrary, then ‖ϕ‖ ≤ u. Moreover, from (4.19) we get
ϕi(0) = u.

Since the sequence
((
τ

(p)
ij (tk)

))
k∈N

in RPn2
is bounded, there is a subsequence

of (tk), still denoted by (tk), which converges to a point (τ (p)∗
ij ) ∈ [0, τ ]Pn

2
. Thus

gi(tk, ytk)→ ci as k → +∞,

with
ci := −k̄i(ϕi(0) + y∗i )[b̄i(ϕi(0) + y∗i ) + h̄i(ϕ)],
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where

h̄i(ϕ) := d−1
i

 n∑
j=1

P∑
p=1

h
(p)
ij (dj(ϕj(−τ (p)∗

ij ) + y∗j ))

 .
Since y∗ is the equilibrium point of (4.17), we have b̄j(y∗j ) + h̄j(0) = 0 for all
j ∈ I.

If ϕi(0) = u > 0, then

b̄i(ϕi(0) + y∗i ) + h̄i(ϕ) = b̄i(ϕi(0) + y∗i )− b̄i(y∗i ) + h̄i(ϕ)− h̄i(0)

≥ βiϕi(0)− d−1
i

n∑
j=1

lijdj‖ϕ‖ =

βi − d−1
i

n∑
j=1

lijdj

u > 0.

Since k̄i(u + y∗i ) > 0, we have ci 6= 0, which contradicts (4.19). Hence u = 0
and then all solutions y(t) of (4.18) verify y(t) → 0 as t → +∞, that is, the
equilibrium point of (4.15) is globally asymptotically stable.

Example 4.3 Consider the Cohen-Grossberg neural network model studied in
[8]

ẋi(t) = −ki(xi(t))

bi(xi(t))− n∑
j=1

cijgj(xj(t))

−
n∑
j=1

aijfj(xj(t− τij(t))) + Ji

 , (4.20)

i = 1, . . . , n, where aij , cij , Ji ∈ R and τij : [0,+∞)→ [0,+∞), ki : R→ (0,+∞),
bi, fi, gi : R→ R are continuous functions, i, j = 1, . . . , n, with τij bounded.

Assume that the functions bi satisfy (A1) and fi, gi : R → R are Lipschitz
functions with constants θi and γi, i = 1, . . . , n. Define the square real matrices

B = diag(β1, . . . , βn) and N = B − [|cij |γj ]− [|aij |θj ],

where β1, . . . , βn are as in (A1).
Clearly, (4.20) is a particular situation of (4.15). From Theorem 4.10 we have

the following result:

Corollary 4.11. Assume (A1) and that fi, gi : R → R are Lipschitz functions
with constants θi and γi, i = 1, . . . , n.

If N is a non-singular M-matrix, then there is an equilibrium point of (4.20),
which is globally asymptotically stable.
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Remark 4.5 Model (4.20) was studied in [8] and [53]. Chen and Rong [8]
proved that all solutions of (4.20) converge exponentially to the equilibrium point
with the additional hypotheses:

(i) τij(t) are continuously differentiable functions with τ ′ij(t) ≤ 1 for all t ≥ 0,
i, j = 1, . . . , n;

(ii) There are ki, ki > 0 such that

0 < ki ≤ ki(u) ≤ ki, u ∈ R, i = 1, . . . , n.

Without condition (i) and assuming that there is ki > 0 such that ki ≤ ki(u) for
all u ∈ R, i = 1, . . . , n, instead of (ii), Song and Cao [53] proved the exponential
stability of (4.20). In a forthcoming paper, the exponential stability of the equi-
librium of general models (4.5) and (4.15) will be addressed.

Example 4.4 Consider the Hopfield neural network model

ẋi(t) = −di(λ)xi(t) +
n∑
j=1

cij(λ)gj(xj(t)) +
n∑
j=1

aij(λ)fj(xj(t− τij(t)))+

+Ji(λ), i = 1, . . . , n, (4.21)

where λ ∈ Λ ⊆ R is a real parameter, τij : [0,+∞) → [0,+∞) are bounded
continuous functions, aij , cij , di, Ji : Λ → R are real functions and fi, gi : R → R
are Lipschitz functions with constants θi, γi for i, j = 1, . . . , n.

Note that, for each λ ∈ Λ, (4.21) looks like (4.20) when ki(u) ≡ 1 and
bi(u) = di(λ)u for u ∈ R, i = 1, . . . , n.

Assume that there are square real matrices Ā = [āij ] ≥ 0, C̄ = [c̄ij ] ≥ 0 and
D = diag(d1, . . . , dn), with di > 0 for all i ∈ {1, . . . , n}, such that, for each λ ∈ Λ,

|aij(λ)| ≤ āij , |cij(λ)| ≤ c̄ij , and 0 < di ≤ di(λ), i, j = 1, . . . , n.

For each λ ∈ Λ, define

D(λ) = diag(d1(λ), . . . , dn(λ)), M(λ) = D(λ)− [|aij(λ)|θj ]− [|cij(λ)|γj ] and

M = D − [āijθj ]− [c̄ijγj ].

From Theorem 4.10 we have the following result:

Corollary 4.12. If M is a non-singular M-matrix, then system (4.21) is globally
asymptotically robust stable on Λ.
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Proof. Let λ0 ∈ Λ. Since M ≤ M(λ0) and M is a non-singular M-matrix,
then (see Theorem 1.18) M(λ0) is also a non-singular M-matrix and the result
follows from Theorem 4.10.

Remark 4.6 In [26], the global asymptotic robust stability of the Hopfield model
(4.21) with discrete independent delays τij(t) ≡ τij was proved. Hence, our Corol-
lary 4.12 is a generalization of the main result in [26].

It is important to note that the general setting of (4.15) allows us to consider
as a subclass the bidirectional associative memory NNM with delays.

Example 4.5 Consider the following model:

ẋi(t) = −ki(xi(t))

bi(xi(t)) +
P∑
p=1

g
(p)
i (xi(t− ω(p)

i (t)))

−
m∑
j=1

P∑
p=1

f
(p)
ij (yj(t− τ (p)

ij (t)))

 , i = 1, . . . , n,

ẏj(t) = −hj(yj(t))

aj(yj(t)) +
P∑
p=1

f
(p)
j (yj(t− ρ(p)

j (t)))

−
n∑
i=1

P∑
p=1

g
(p)
ji (xi(t− σ(p)

ji (t)))

 , j = 1, . . . ,m,

(4.22)

for t ≥ 0 and n,m,P ∈ N, where ki, hj : R→ (0,+∞), bi, aj , g
(p)
i , f

(p)
j , g

(p)
ji , f

(p)
ij :

R→ R are continuous functions and ω
(p)
i , ρ

(p)
j , τ

(p)
ij , σ

(p)
ji : [0,+∞)→ [0,+∞) are

bounded continuous functions, i = 1, . . . , n, j = 1, . . . ,m e p = 1, . . . , P .
Arik [1] and Wang and Zou [60] studied the bidirectional associative memory

neural network model with discrete delays described by

ẋi(t) = −xi(t) +
n∑
j=1

aijfj(yj(t− τij)) + Ii

ẏi(t) = −yi(t) +
n∑
j=1

bijgj(xj(t− σij)) + Ji

, i = 1, . . . , n. (4.23)

Wang and Zou [61] incorporated inhibitory self-connections terms into model
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(4.23), and considered the following system

ẋi(t) = −xi(t) + ciigi(xi(t− dii)) +
n∑
j=1

aijfj(yj(t− τij)) + Ii

ẏi(t) = −yi(t) + liifi(yi(t−mii)) +
n∑
j=1

bijgj(xj(t− σij)) + Ji

(4.24)

i = 1, . . . , n. Recently, the following bidirectional associative memory neural
network model with time-varying delays was considered in [4]:

ẋi(t) = −ki(xi(t))

bi(xi(t))− m∑
j=1

cijfj(λjyj(t− τij(t))) + Ii

 ,
i = 1, . . . , n,

ẏj(t) = −hj(yj(t))

[
aj(yj(t))−

n∑
i=1

djigi(µixi(t− σji(t))) + Jj

]
,

j = 1, . . . ,m,

. (4.25)

Model (4.22), here considered for the first time (as far as we know), arises as a
generalization of all these models. Since (4.22) is a particular situation of (4.15),
from Theorem 4.10 we have the following result:

Corollary 4.13. Suppose that: aj and bi satisfy (A1) with constants αj and
βi, respectively; ki(u) > 0 and hj(u) > 0 for all u ∈ R; f

(p)
j , g

(p)
i , f

(p)
ij , g

(p)
ji

are Lipschitz functions with Lipschitz constants θ
(p)
j , γ

(p)
i , θ

(p)
ij , γ

(p)
ji respectively;

and ω
(p)
i , ρ

(p)
j , τ

(p)
ij , σ

(p)
ji are bounded continuous functions, for i = 1, . . . , n, j =

1, . . . ,m and p = 1, . . . , P .
Define

N :=

 B −Gd −F

−G A− Fd


(n+m)×(n+m)

,

where
B = diag(β1, . . . , βn), A = diag(α1, . . . , αm)

Gd = diag

 P∑
p=1

γ
(p)
1 , . . . ,

P∑
p=1

γ(p)
n

 , Fd = diag

 P∑
p=1

θ
(p)
1 , . . . ,

P∑
p=1

θ(p)
m

 ,

G =

 P∑
p=1

γ
(p)
ji


m×n

, F =

 P∑
p=1

θ
(p)
ij


n×m

.
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If N is a non-singular M-matrix, then there is a unique equilibrium point of
(4.22), which is globally asymptotically stable.

Remark 4.7 As remarked, (4.22) is a generalization of models (4.23), (4.24)
and (4.25). With the same hypotheses of Corollary 4.13, the exponential stability
of (4.23) and (4.24) was obtained in [1] and [61]. In [4], the same stability was
obtained for system (4.25) with the additional hypotheses ki(u) ≥ ki > 0 and
hi(u) ≥ hi > 0, u ∈ R, i = 1, . . . , n. As mentioned in Remark 4.5, the question of
the exponential asymptotic stability for delayed neural networks will be addressed
in the future, for the general framework of systems of the form (4.5) and (4.15).
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