
Universidade de Lisboa

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Mapper: An Efficient Data Transformation
Operator

Paulo Jorge Fernandes Carreira

DOUTORAMENTO EM INFORMÁTICA

ESPECIALIDADE ENGENHARIA INFORMÁTICA

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/12421853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.fc.ul.pt
http://www.di.fc.ul.pt
ThesisFigs/ullogo.eps
mailto:paulo.carreira@xldb.di.fc.ul.pt

Universidade de Lisboa

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Mapper: An Efficient Data Transformation
Operator

Paulo Jorge Fernandes Carreira

DOUTORAMENTO EM INFORMÁTICA

ESPECIALIDADE ENGENHARIA INFORMÁTICA

2007

Tese orientada pela Prof.a Doutora Helena Isabel de Jesus Galhardas

e pelo Prof. Doutor Mário Jorge Costa Gaspar da Silva

http://www.fc.ul.pt
http://www.di.fc.ul.pt
ThesisFigs/ullogo.eps
mailto:paulo.carreira@xldb.di.fc.ul.pt

Abstract

Data transformations are fundamental operations in legacy data mi-

gration, data integration, data cleaning, and data warehousing. These

operations are often implemented as relational queries that aim at

leveraging the optimization capabilities of most DBMSs. However, re-

lational query languages like SQL are not expressive enough to specify

one-to-many data transformations, an important class of data trans-

formations that produce several output tuples for a single input tuple.

These transformations are required for solving several types of data

heterogeneities, like those that occur when the source data represents

aggregations of the target data.

This thesis proposes a new relational operator, named data mapper,

as an extension to the relational algebra to address one-to-many data

transformations and focus on its optimization. It also provides alge-

braic rewriting rules and execution algorithms for the logical and phys-

ical optimization, respectively. As a result, queries may be expressed

as a combination of standard relational operators and mappers. The

proposed optimizations have been experimentally validated and the

key factors that influence the obtained performance gains identified.

Keywords: Relational Algebra, Data Transformation, Data Integra-

tion, Data Cleaning, Data Warehousing.

v

Sumário

As transformações de dados são operações fundamentais em proces-

sos de migração de dados de sistemas legados, integração de dados,

limpeza de dados e ao refrescamento de Data Warehouses. Usual-

mente, estas operações são implementadas através de interrogações

relacionais por forma a explorar as optimizações proporcionadas pela

maioria dos SGBDs. No entanto, as linguagens de interrogação rela-

cionais, como o SQL, não são suficientemente expressivas para especi-

ficar as transformações de dados do tipo um-para-muitos. Esta im-

portante classe de transformações é necessária para resolver de forma

adequada diversos tipos de heterogeneidades de dados tais como as

que decorrem de situações em que os dados do esquema origem repre-

sentam uma agregação dos dados do sistema destino.

Esta tese propõe a extensão da álgebra relacional com um novo opera-

dor relacional denominado data mapper, por forma a permitir a especi-

ficação e optimização de transformações de dados um-para-muitos. O

trabalho apresenta regras de reescrita algébrica juntamente com diver-

sos algoritmos de execução que proporcionam, respectivamente, a op-

timização lógica e física de transformações de dados um-para-muitos.

Como resultado, é possivel optimizar transformações de dados que

combinem operadores relacionais comuns com data mappers. As opti-

mizações propostas foram validadas experimentalmente e identificados

os factores que influênciam os seus respectivos ganhos.

Palavras Chave: Álgebra Relacional, Transformação de dados, In-

tegração de Dados, Limpeza de Dados, Data Warehousing.

vii

Resumo Alargado

A envolvente económica actual tornou frequente a evolução dos sistemas de infor-

mação. Esta evolução é desencadeada pela aquisição de novos pacotes de software

ou pela necessidade de integrar múltiplos sistemas heterogéneos num único sis-

tema.

Quando a evolução dos sistemas de informação é efectuada através da sua

substituição, torna-se necessário migrar os dados do sistema legado para o novo

sistema. Este processo é conhecido como migração de dados. A integração de

sistemas heterogéneos requer a integração de múltiplas fontes de dados numa

base de dados unificada (Halevy et al., 2005).

Uma outra actividade importante nos sistemas de informação é a prospecção

de informação, que consiste na exploração dos dados para deduzir conhecimento

para apoio à tomada de decisão. Esta actividade assenta em duas operações

fundamentais: a já mencionada integração de dados, que visa juntar os dados

provenientes de fontes distintas, e a limpeza de dados, cujo objectivo é assegurar

a qualidade dos dados.

Os processos de migração, de integração e de limpeza de dados, bem como de

refrescamento de Data Warehouses são constituídas por diversas etapas que em-

pregam transformações de dados como operações fundamentais (Rundensteiner,

1999). De uma forma geral, uma transformação de dados converte dados de uma

determinada representação, ou esquema origem, numa outra representação, ou

esquema destino.

Verifica-se na prática que os mesmos dados são representados de maneiras

diferentes em sistemas diferentes, especialmente se estes sistemas foram desen-

volvidos usando técnicas de análise distinctas ou por profissionais com formações

diversas. Estas discrepâncias de representação são conhecidas na literatura como

heterogeneidades dos dados e determinam a complexidade de transformações dos

dados: diferenças mais substanciais de representação requerem transformações

mais elaboradas (Kim et al., 2003; Rahm & Do, 2000).

Alguns tipos comuns de heterogeneidades são, por exemplo:

ix

i) a utilização de unidades de medida diferentes — por exemplo, a conversão

de dólares em euros;

ii) diferenças nas representações de dados compostos — por exemplo, a rep-

resentação de uma data utilizando atributos distintos para dia, mês e ano

por oposição a um único atributo do tipo date;

iii) representações distintas do mesmo domínio — por exemplo, diferentes rep-

resentações para Booleanos: {true, false} por oposição a {yes, no};

iv) representação dos dados segundo diferentes níveis de agregação — por exem-

plo, dados que representam eventos com frequência diária e que têm de ser

representados como eventos com frequência horária noutro esquema.

Os diferentes tipos de heterogeneidades de dados são resolvidos empregando

classes distintas de transformações de dados. De acordo com Galhardas (2001) e

Cui & Widom (2001), uma transformação de dados pode ser classificada de acordo

com o tipo de mapeamento que ela representa em termos da multiplicidade dos

tuplos de entrada e de saída.

As transformações um-para-um produzem exactamente um tuplo de saída

para cada tuplo da entrada. Esta classe de mapeamentos pode ser usada, por

exemplo, para resolver as heterogeneidades dos dados decorrentes da utilização

de diferentes unidades de medida. As transformações um-para-muitos produzem

diversos tuplos na saída para cada tuplo na entrada. Esta classe de transformação

de dados é empregue sempre que os dados de fonte representam uma agregação

dos dados do destino (por exemplo, dados agregados por ano na fonte e dados

mensais no destino). As transformações muitos-para-um são as que geram no

máximo um tuplo de saída para cada conjunto de tuplos da entrada. Esta classe

de transformações ocorre quando grupos de tuplos da fonte têm que ser consolida-

dos, por exemplo, através do comando GROUP BY do SQL, que pode ser aplicado,

por exemplo, para transformar os salários dos empregados nos montantes brutos

correspondentes. As transformações muitos-para-muitos caracterizam as trans-

formações de dados que geram conjuntos de tuplos a partir de conjuntos de tuplos,

tais como sejam as operações de ordenação e de normalização. Estas últimas,

x

são operações matemáticas que convertem um conjunto de tuplos num novo con-

junto com determinadas características, sendo utilizadas fundamentalmente em

contextos de limpeza de dados ou na preparação de dados para prospecção de

informação (Han & Kamber, 2001, Section 3.3.2).

Esta tese debruça-se sobre a problemática das transformações de dados um-

para-muitos, que, apesar da sua predominância no contexto da migração, inte-

gração e limpeza de dados, não foram até à data, estudadas de forma sistemática.

Descrição do problema

Tendo em vista a minimização do esforço de desenvolvimento e a maximização do

desempenho das transformações de dados, é altamente desejável que estas sejam

descritas recorrendo a um formalismo simultaneamente declarativo, expressivo, e

optimizável.

Os benefícios da utilização do paradigma declarativo para a especificação de

transformações dos dados são destacados por Rahm & Do (2000). Um aspecto

importante das linguagens declarativas é poderem ser equipadas com um con-

junto de construções específicas para um domínio (van Deursen et al., 2000). A

utilização de construções específicas de domínio nas transformações de dados,

torna-as mais fáceis de descrever e de compreender, uma vez que estas não são

poluídas com detalhes desnecessários.

De facto, o desacoplamento entre as especificações das transformações de da-

dos e a sua execução abre diversas oportunidades interessantes do ponto de vista

da optimização, uma vez que muitos aspectos complexos da execução podem ser

deduzidos automaticamente. Por exemplo, uma vez que nem todos os planos de

acesso têm o mesmo tempo de execução, os mais eficientes podem ser determina-

dos automaticamente.

Finalmente, as construções de linguagens declarativas atrás mencionadas po-

dem ser combinadas para expressar uma multiplicidade de transformações de

dados distintas. Entretanto, esta expressividade não surge gratuitamente: mais

expressividade significa também maior complexidade em termos de optimização.

O desenho de linguagens que maximizem a declaratividade, a expressividade e

a optimizabilidade constitui um problema de investigação complexo. No que diz

xi

respeito à especificação de dados um-para-muitos, nenhum formalismo foi pro-

posto até agora que seja simultaneamente, declarativo, expressivo e optimizável.

Limitações das soluções actuais

Actualmente, as transformações de dados um-para-muitos são desenvolvidas recor-

rendo a uma das seguintes alternativas:

i) elaboração de um programa de transformação de dados utilizando uma

linguagem de programação de âmbito geral, tal como o C (Kernighan &

Ritchie, 1988), o Java (Gosling et al., 2005) ou o Perl (Wall et al., 2000);

ii) modelação da transformação utilizando uma ferramenta de ETL;

iii) utilização de uma linguagem proprietária de base de dados, tal como, por

exemplo,PL/SQL do Oracle (Feuerstein & Pribyl, 2005);

iv) desenvolvendo uma interrogação, por exemplo, em SQL.

Cada uma destas alternativas apresenta um conjunto de inconvenientes. Con-

siderando as linguagens de âmbito geral, estas não fornecem, apesar da sua ex-

pressividade, uma separação clara entre a lógica da transformação e sua execução,

resultando daqui que as transformações de dados se tornam difíceis de compreen-

der e de manter. Adicionalmente, à parte das optimizações estáticas de código,

muitas optimizações significativas inerentes ao domínio das transformações dos

dados não são passíveis de identificação pelo compilador ou pelo interpretador

de uma linguagem de âmbito geral. Quando às ferramentas de ETL, embora

forneçam bibliotecas extensivas de operadores de transformação dos dados, a sua

composição não é optimizável (Simitsis et al., 2005). Além disso, em algumas

ferramentas de ETL, tais como o FileAid Express1, os operadores têm um poder

expressivo bastante limitado. Para superar as limitações de expressividade, é

necessário recorrer a scripts complexos utilizando linguagens proprietárias ou à

codificação de funções externas. Em alternativa, as transformações dos dados

executadas como extensões de um SGBD, tais como os Persistent Stored Modules

1http://www.compuware.com/products/fileaid/express.html

xii

(Garcia-Molina et al., 2002, Section 8.2), tanto na forma de stored procedures

como de function tables do SQL 2003 (Eisenberg et al., 2004), utilizam uma

combinação das construções procedimentais e declarativas que são extremamente

difíceis de optimizar.

As transformações dos dados podem também ser especificadas declarativa-

mente como interrogações (ou vistas) sobre os dados de origem. A linguagem

de escolha para expressar transformações dos dados é geralmente o SQL, que é

baseado na álgebra relacional (Codd, 1970). Uma vantagem de usar o SQL e a

álgebra relacional é a disponibilidade de um vasto corpo de conhecimento sobre

a sua optimização (Chaudhuri, 1998; Graefe, 1993). No entanto, muitas trans-

formações de dados pertinentes não podem ser descritas através de expressões

relacionais (Lakshmanan et al., 1996), devido ao limitado poder expressivo da

álgebra relacional (Aho & Ullman, 1979). Em particular, a álgebra relacional não

permite expressar a classe das transformações de dados um-para-muitos (facto

que é demonstrado formalmente nesta tese).

Solução proposta

A tese propõe a extensão da álgebra relacional com um novo operador unário,

denominado data mapper. Esta extensão supera as limitações de expressividade

da álgebra relacional tirando partido, simultaneamente, da sua estrutura declara-

tiva e do seu potencial de optimização. Como resultado, obtém-se um formalismo

que permite especificar transformações de dados um-para-muitos de uma forma

declarativa, expressiva e optimizável.

Informalmente, o operador data mapper, uma vez aplicado a uma relação

de entrada produz uma relação da saída. De uma forma semelhante a outras

extensões à álgebra relacional, tais como o operador generalizado de projecção ou

o operador de agregação (Klug, 1982), o operador mapper utiliza funções externas.

O mapper permite criar múltiplos tuplos de saída dinamicamente a partir da

avaliação dos conteúdos de cada tuplo de entrada. Este tipo da operação tem

aparecido implicitamente em sistemas de transformação de esquemas e de dados,

tais como os propostos por Amer-Yahia & Cluet (2004), por Cui & Widom (2001),

xiii

Cunningham et al. (2004), Galhardas et al. (2000), e Raman & Hellerstein (2001).

No entanto, não foi ainda estudado como um operador relacional.

As linguagens de interrogação de SGBD, bem como as linguagens subjacentes

a ferramentas de ETL e de limpeza de dados são baseadas na álgebra relacional

(Amer-Yahia & Cluet, 2004; Galhardas et al., 2000; Labio et al., 2000; Raman

& Hellerstein, 2001; Simitsis et al., 2005; Zhou et al., 1996). Neste contexto,

o objectivo de equipar a álgebra relacional com o operador mapper reveste-se

de um elevado interesse prático. Em primeiro lugar, porque dota as ferramen-

tas de transformação de dados baseadas na álgebra relacional com um operador

com maior poder expressivo. Em segundo lugar, porque aumenta a eficiência da

execução das transformações de dados um-para-muitos.

A tese propõe extensões para deduzir estratégias melhoradas da execução de

interrogações que combinam operadores relacionais com mappers, que estendem

as estratégias de optimização para interrogações relacionais já estudadas na lite-

ratura (Chaudhuri, 1998).

Contribuições

A tese propõe uma extensão à álgebra relacional para tratamento das trans-

formações um-para-muitos, propondo um novo operador relacional e respectivos

mecanismos para a sua optimização. Os mecanismos propostos consistem em re-

gras de optimização algébrica complementados por algoritmos de execução física

visando a optimização lógica e física, respectivamente. As propostas são vali-

dadas experimentalmente, sendo identificados os factores determinantes dos ga-

nhos obtidos. De uma forma mais detalhada, as principais contribuições deste

trabalho são as seguintes:

Um operador especializado para transformações um-para-muitos. Para

melhor compreender o operador mapper, foi desenvolvida a sua definição

formal e, a partir desta formalização, demonstradas diversas propriedades

importantes dos mappers. Entre as mais importantes destaca-se a demons-

tração de que a semântica do mapper pode ser simulada através do produto

cartesiano dos resultados das funções avaliadas, conduzindo a um algo-

ritmo físico de execução extremamente simples. Na sequência deste estudo,

xiv

o poder expressivo da álgebra relacional estendida com o operador mapper

é também estudado, demonstrando-se formalmente que a álgebra relacional

estendida é estritamente mais expressiva do que a álgebra relacional padrão.

É proposta também uma extensão directa à sintaxe da linguagem SQL que

possibilita a especificação, na forma de interrogações, de transformações

que combinam mappers com outros operadores relacionais.

Regras de optimização algébrica demonstradas formalmente. Propõe-se

um conjunto de regras de reescrita algébrica que são complementadas com

as correspondentes demonstrações formais de correcção. As regras apresen-

tadas visam a optimização lógica de expressões de transformações de dados

que combinam operadores relacionais com mappers, evitando avaliações re-

dundantes de funções. São propostos dois conjuntos de regras. O primeiro

conjunto consiste em regras para comutar selecções que visam filtrar à en-

trada tuplos desnecessários. O segundo conjunto consiste em regras para

comutar projecções que evitam a propagação de atributos irrelevantes para

avaliação de operadores subsequentes. Com base nestas regras é possível

gerar planos lógicos alternativos para a execução duma expressão relacional

envolvendo mappers.

Algoritmos físicos da execução. A optimização lógica do novo operador é

complementada com algoritmos físicos para execução do operador map-

per. Embora a semântica formal do operador mapper sugira a execução

tuplo-a-tuplo, designada como Algoritmo Naïve, esta, apesar de atractiva

devido à sua simplicidade, revela-se muito ineficiente em situações reais.

Os problemas de ineficiência são especialmente notórios sempre que um

mapper é composto por funções com custos de avaliação elevados, como as

utilizadas em contextos de limpeza de dados. Por esta razão, a pesquisa

de algoritmos eficientes para execução de mappers reveste-se da máxima

importância. Para superar esta dificuldade, a tese fornece dois algoritmos

de execução que tiram partido da presença de valores duplicados nos atri-

butos das relações. O princípio de operação de ambos assenta na redução

do custo total de avaliação do mapper, evitando avaliações supérfluas das

xv

funções. O primeiro algoritmo, designado por Algoritmo de Shortcircuit-

ing, tira proveito da semântica do mapper: sempre que o resultado de uma

função é o conjunto vazio, a avaliação das restantes funções é dispensável.

O segundo algoritmo, designado por Algoritmo Baseado em Cache, explora

a presença de valores duplicados na relação de entrada, recorrendo a uma

cache em memória actualizada com os resultados das funções do mapper.

Para superar as limitações de um mecanismo de cache em memória, são

consideradas políticas de substituição de cache. Inicialmente é considerada

uma variante do algoritmo baseado em cache, utilizando a política de sub-

stituição least recently used (LRU), frequentemente empregue na gestão de

caches de bases de dados e em sistemas operativos e duas novas políticas de

substituição específicas para a avaliação de mappers: least usefull replace-

ment (LUR) e relaxed least usefull replacement (XLUR). A política LUR,

baseia as suas decisões de substituição na maximização de uma função de

utilidade que tem como parâmetros o número das referências, a distância

inter-referências e o custo médio de avaliação da função. Uma vez que a

política de substituição LUR tem um custo de execução elevado, é proposta

uma nova política, designada XLUR, que minimiza uma aproximação da

função de utilidade.

Conclusões finais

A tese propõe um novo operador relacional para fazer face ao problema da es-

pecificação de transformações de dados um-para-muitos, explorando com sucesso

as oportunidades de optimização lógica e física. Em relação ao operador map-

per, demonstra-se formalmente a sua pertinência, dado que nenhuma expressão

relacional é suficientemente potente para exprimir a classe de transformações de

um-para-muitos. Logo, a extensão com um novo operador é não só desejável mas

necessária. Adicionalmente, valida-se o interesse prático do mapper através da

sua incorporação na ferramenta comercial de transformação de dados “Data Fu-

sion”, seleccionada para diversos projectos de grande relevância no sector bancário

ibérico e na administração pública portuguesa.

xvi

Contrastando o desempenho de transformações de dados um-para-muitos que

aplicam selecções aos mappers com as suas equivalentes algébricas optimizadas,

conclui-se que a introdução de optimizações algébricas se traduz em elevados

ganhos de desempenho. Relativamente aos novos algoritmos propostos para o

operador mapper concluiu-se que quer o Algoritmo de Shortcircuiting, quer o Al-

goritmo Baseado em Cache são vantajosos na redução do custo da avaliação do

mapper, produzindo importantes melhorias nos tempos de execução das trans-

formações um-para-muitos. A pesquisa desenvolvida nesta tese tem impacto na

tecnologia utilizada para executar transformações de dados, demonstrando que

mais uma classe de transformações dos dados pode ser exprimida e optimizada

utilizando as boas práticas da independência lógica e física dos SGBD. Tendo em

conta que hoje em dia os SGBD desempenham papéis cada vez mais complexos,

quer como motores de transformação, quer como gestores de áreas armazenamento

intermédio em diversas actividades da gestão de dados, este tese contribui para o

alargamento das suas aplicações. Na prática, a introdução do operador mapper

amplia a classe das transformações de dados que podem ser asseguradas de forma

eficaz. O operador mapper é também uma adição valiosa a uma ferramenta de

transformação de dados, explicitando transformações um-para-muitos embutidas

em scripts de transformação, tornando, dessa forma, mais fácil de compreender e

manter as transformações de dados.

xvii

Acknowledgements

Following the dissertations’ best practices, this is the place where I

voluteerly acknowledge those who, either by chance or misfortune,

were involved in my PhD.

I start acknowledging Prof. Mário J. Silva for calling me to pursue

my PhD.

It would have been impossible to carry out my research without the

support from the company where I always working in, Oblog. I

must acknowledge the management of Oblog for considering my post-

graduate programme relevant for the company and unconditionally

supporting me. I am also grateful to Julião Duartenn and Ana Fer-

rão who have also supported me on several occasions. A special word

goes out to the dream team that embarked with me in the Data Fusion

project: Alejandro Tamalet, Leonardo Bartocci, João Fitas, Fernando

Martins, Pedro Lopes and André Gonçalves.

After getting the support of the company, Prof. Helena Galhardas

accepted to advise me. Her patience, wisdom and support made it

possible.

Special thanks also go to Antónia Lopes and João Pereira for their

time in many discussions and proofreading. For their support in many

different occasions, my thanks go also to my colleagues at IST: Pavel

Calado, Carla Ferreira and Andreas Wichert, and to my colleagues at

FCUL: Marcírio Chaves, Daniel Gomes and Bruno Martins.

Finally, I have been blessed with a family that made my life much

richer during these last few years. I’ll be forever in debt to my wife

Susana and to my daughter Carolina to whom much of the time spent

in writing this thesis is owed.

xix

Aos pais fantásticos Celsino e Rosa por investirem tudo nos filhos.

À memória da avó Rosa pelo legado de tenacidade e trabalho árduo.

xxi

Contents

1 Introduction 1

1.1 One-to-Many Data Transformations 3

1.2 Problem Statement . 6

1.3 Overview of Existing Solutions . 6

1.4 Proposed Solution . 8

1.5 Contributions . 9

1.6 Organization of the Thesis . 11

2 Implementing One-to-many Transformations 13

2.1 Introduction . 13

2.2 Relational Algebra . 15

2.3 Extensions to Relational Algebra 17

2.3.1 Pivoting operations . 18

2.3.2 Recursive queries . 18

2.3.3 Persistent stored modules 20

2.4 Data Restructuring Languages . 23

2.4.1 Semi-structured data restructuring languages 23

2.4.2 XML data transformation languages 24

2.5 Schema Mapping Tools . 25

2.6 Data Integration Tools . 27

2.7 ETL and Data Cleaning tools . 28

2.8 Conclusions . 30

xxiii

CONTENTS

3 The Mapper Operator 33

3.1 Introduction . 33

3.2 Formalization . 34

3.2.1 Preliminaries . 34

3.2.2 Mapper functions . 35

3.2.3 Semantics of the mapper operator 37

3.3 Properties of Mappers . 39

3.4 Normal Forms . 41

3.5 Expressive Power of Mappers . 43

3.6 SQL Syntax for Mappers . 47

3.7 Related Work . 52

3.8 Conclusions . 53

4 Algebraic Optimization 55

4.1 Introduction . 55

4.2 Projections . 56

4.3 Selections . 58

4.3.1 Pushing selections to mapper functions 58

4.3.2 Pushing selections through mappers 60

4.4 Joins . 62

4.5 Other Binary Operators . 63

4.6 Cost of Expressions . 64

4.6.1 Cost of mappers . 65

4.6.2 Cost of a filter applied to a mapper 66

4.6.3 Cost of an expression optimized with rule 4.3 66

4.6.4 Cost of an expression optimized with rule 4.4 68

4.6.5 Selecting the best optimization 69

4.7 Related Work . 70

4.8 Conclusions . 71

xxiv

CONTENTS

5 Mapper Execution Algorithms 73

5.1 Introduction . 73

5.2 Naïve Evaluation Algorithm . 75

5.3 Shortcircuiting Evaluation Algorithm 76

5.4 Cache-based Evaluation Algorithm 80

5.5 LRU Caching Strategy for Mapper Functions 82

5.5.1 Limitations . 83

5.5.2 Enhancements . 85

5.6 LUR Caching Strategy for Mapper Functions 86

5.6.1 Utility metric for cache entries 87

5.6.2 Complexity . 89

5.7 XLUR Caching Strategy for Mapper Functions 91

5.8 Related Work . 95

5.9 Conclusions . 100

6 Experimental Validation 103

6.1 Introduction . 103

6.2 Performance of One-to-many Data Transformations 104

6.2.1 Setup . 106

6.2.2 Workload characterization 107

6.2.3 Throughput comparison 108

6.2.4 Influence of selectivity and fanout factors 111

6.2.5 Query optimization and execution issues 114

6.3 Algebraic Optimization . 117

6.3.1 Setup . 117

6.3.2 Real-world example . 118

6.3.3 Influence of the predicate selectivity factor 119

6.3.4 Influence of the function fanout factor 121

6.3.5 Influence of the function evaluation cost 122

6.4 Mapper Execution Algorithms . 124

6.4.1 Setup . 125

6.4.2 Performance of the Shortcircuiting algorithm 126

6.4.3 Performance of the Cache-based algorithm 128

xxv

CONTENTS

6.4.4 Performance of the cache replacement policies 129

6.5 Data Fusion . 133

6.5.1 Overview . 134

6.5.2 Architecture . 136

6.5.3 Real-world experience . 138

6.6 Conclusions . 138

7 Conclusions 141

7.1 Summary . 141

7.2 Limitations . 144

7.3 Future Work . 146

7.3.1 Further rewriting rules . 146

7.3.2 Cost-based optimizer for one-to-many transformations . . . 147

7.4 Closing Notes . 148

A Mathematical Proofs 151

A.1 Cost Formulas . 151

A.2 Binary Rank Ordering Lemma . 152

A.3 Optimality of the Ascending Rank Ordering 155

A.4 More Past References Imply Greater Utility 156

B Overview of Cache Replacement Strategies 157

C Overview of the Zipfian Distribution 159

References 161

xxvi

List of Figures

1.1 A bounded one-to-many data transformation 4

1.2 An unbounded data transformation 5

2.1 A bounded transformation expressed as an SQL union query . . . 17

2.2 A bounded transformation expressed using the unpivot operator . 18

2.3 An unbounded transformation expressed as a recursive query . . . 20

2.4 An unbounded data transformation expressed as a table function . 22

2.5 An unbounded transformation programmed in an ETL tool 29

3.1 Syntax diagram of a simplified version of the select statement . . 48

3.2 Syntax diagram of a mapper function specification 49

3.3 An unbounded data transformation expressed in the SQL syntax

extension for the mapper operator 50

3.4 A mapper query together with a-priori and a-posteri filters 51

4.1 Query plan of Figure 3.4 . 56

6.1 Hard-disk partitioning for the experiments 107

6.2 Throughput of data transformation implementations 108

6.3 Evolution of throughput as a function of relation size 109

6.4 Distribution of I/O load as a function of input relation size 110

6.5 Evolution of throughput as a function of selectivity 112

6.6 Evolution of throughput as a function of the fanout factor 113

6.7 Sensivity of data transformation implementations to optimization 115

6.8 Sensivity of data transformation implementations to cache size . . 116

xxvii

LIST OF FIGURES

6.9 Response time of the real-world example as a function of relation

size . 119

6.10 Response time for the original and optimized expressions as a func-

tion of predicate selectivity . 120

6.11 Response time as a function of mapper function cost in the presence

of expensive functions . 123

6.12 Response times of the Shortcircuiting and Naïve algorithms as a

function of mapper function selectivity 126

6.13 Response times of the Shortcircuiting and Naïve algorithms as a

function of mapper function cost 127

6.14 Throughput of Naïve and Cache-based mapper implementations

as a function of the number of duplicates 129

6.15 Response time and cache hit ratio as a function of cache size . . . 131

6.16 Cache hit ratio for transforming two versions of the CITEDATA re-

lation having different inter-reference intervals 132

6.17 An unbounded data transformation expressed as a DTL mapper

in Data Fusion . 134

6.18 Snapshot of the Data Fusion IDE 135

6.19 Architecture of Data Fusion . 137

C.1 Rank versus frequency plot of the CITEDATA relation 160

xxviii

List of Tables

1.1 Comparison of the different approaches for performing one-to-many

data transformations. 7

6.1 Mechanisms for implementing the one-to-many data transforma-

tions developed for the experiments 105

6.2 The mapper functions used for converting the CITEDATA relation . 125

6.3 Ratios of duplicate input values for each cached mapper function

and the corresponding cache hit ratios of the different cache re-

placement strategies . 128

xxix

List of Algorithms

1 Naïve mapper evaluation . 75

2 Shortcircuiting mapper evaluation 77

3 Cache-based mapper evaluation 81

4 Cache-based mapper evaluation with LRU replacement 83

5 Cache-based mapper evaluation with XLUR replacement 92

xxxi

Chapter 1

Introduction

Today’s business landscape is fast-changing. Since company mergers and joint-

ventures became common headlines, the information systems that support their

operation have been required to evolve at a similar pace. The evolution is achieved

either by simply replacing old systems by newer ones, or by integrating multiple

heterogeneous systems into a new single one.

When the evolution of an information system consists of its replacement by

a newer one, the underlying data must be migrated into the new system. This

process is known as legacy-data migration. The alternative of integrating multiple

heterogeneous systems, nowadays referred as enterprise information integration,

often relies on data integration, which consists of integrating multiple sources of

data into one unified database (Halevy et al., 2005).

Data brought together from different systems must be explored to derive new

knowledge for decision making, which constitutes another important activity on

information systems known as business intelligence. Two well-known cornerstone

activities of business intelligence are: data integration, mentioned above, which

aims at bringing together data from distinct sources; and data-cleaning applica-

tions, whose goal is to ensure data quality.

Data management activities such as legacy-data migration, data-integration,

data-cleaning and the refreshment of data stored in a data warehouse are imple-

mented as sequences of steps that employ data transformations as fundamental

operations (Rundensteiner, 1999). Broadly speaking, a data transformation takes

1

1. INTRODUCTION

source data that obeys to a given representation and converts it into a distinct

target representation.

As a matter of fact, the same data is often represented in fundamentally differ-

ent ways in systems, in particular if these systems were developed using distinct

analysis techniques by different people. These differences in representation are

known in the literature as data heterogeneities and they determine the complexity

of data transformations: more substantial differences in representing data that

requires more elaborate data transformations (Kim et al., 2003; Rahm & Do,

2000). Several kinds of data heterogeneities have been identified, for instance:

i) the use of different units of measurement —e.g., the conversion from dollars

to euros;

ii) the use of different representations of compound data —e.g., multiple at-

tributes representing day, month and year information vs a single date at-

tribute;

iii) distinct representations of the same data domain —e.g., {true, false} vs

{yes, no} for Boolean values;

iv) the representation of data according to different aggregation levels —e.g.,

in one schema, some data represents an hourly measure, while the same

data represents daily measure in the other schema.

The various types of data heterogeneities can be resolved by employing dis-

tinct classes of data transformations. According to Galhardas (2001) and Cui

& Widom (2001), one way to classify a data transformation is to consider the

type of mapping it represents in terms of the multiplicity of its input and out-

put tuples. A one-to-one mapping produces exactly one output tuple for each

input tuple. This class of mappings can be used, for example, to solve the data

heterogeneities caused by the existence of different units of measurement. A

one-to-many mapping produces several output tuples for each input tuple. This

class of data transformations is employed, for example, when the source data

represents an aggregation of the target data (e.g., yearly aggregated data in the

source and monthly data in the target). A many-to-one mapping corresponds

2

1.1 One-to-Many Data Transformations

to data transformations that generate at most one output tuple from a set of

input tuples. This class of mapping takes place when groups of source tuples

have to be consolidated, for example, through an SQL group and aggregation,

e.g., transforming employees salaries into their corresponding total incomes. Fi-

nally, many-to-many mappings characterize data transformations that generate

sets of tuples from sets of tuples, like sorting and normalization operations. Nor-

malizations are mathematic transformations that take sets of input tuples and

produce new sets of tuples that meet specific requirements. An example of a

normalization operation, which is frequently required when preparing data for

data mining, consists of converting all input values proportionally, so that they

fall within specific upper and lower limits (Han & Kamber, 2001, Section 3.3.2).

This dissertation is particularly concerned with data transformations classified

as one-to-many mappings, henceforth designated as one-to-many data transfor-

mations.

1.1 One-to-Many Data Transformations

One-to-many data transformations will be introduced through two examples,

which are based on real-world data migration problems previously identified (Car-

reira & Galhardas, 2004a). These examples are presented here in a simplified form

for illustration purposes.

Example 1.1.1: Consider a relational table LOANEVT that, for each given loan,

keeps the events that occur since the establishment of a loan contract until it is

closed. A loan event consists of a loan number, a type and several columns with

amounts. For each loan and event, one or more event amounts may apply. The

field EVTYPE maintains the event type, which can be OPEN when the contract is

established, PAY meaning that a loan installment has been payed, EARLY when an

early payment has been made, FULL meaning that a full payment was made, or

CLOSED meaning that the loan contract has been closed. In the target table named

EVENTS, the same information is represented by adding one row per event with

the corresponding amount. An event row is added only if the amount is greater

than zero.

3

1. INTRODUCTION

Relation LOANEVT Relation EVENTS

LOANNO EVTYP CAPTL TAX EXPNS BONUS

1234 OPEN 0.0 0.19 0.28 0.1

1234 PAY 1000.0 0.28 0.0 0.0

1234 PAY 1250.0 0.30 0.0 0.0

1234 EARLY 550.0 0.0 0.0 0.0

1234 FULL 5000.0 1.1 5.0 3.0

1234 CLOSED 0.0 0.1 0.0 0.0

LOANNO EVTYPE AMTYP AMT

1234 OPEN TAX 0.19

1234 OPEN EXPNS 0.28

1234 OPEN BONUS 0.1

1234 PAY CAPTL 1000

1234 PAY TAX 0.28

1234 PAY CAPTL 1250

1234 PAY TAX 0.30

1234 EARLY CAPTL 550

1234 FULL CAPTL 5000

1234 FULL TAX 1.1

1234 FULL EXPNS 5.0

1234 FULL BONUS 3.0

1234 CLOSED EXPNS 0.1

Figure 1.1: A bounded one-to-many data transformation. The records of the
source relation LOANEVT concerning the loan number 1234 (on the left) and the
corresponding target relation EVENTS (on the right).

In the data transformation described in Example 1.1.1, each input row of

the LOANEVT table corresponds to several output rows in the EVENTS table, as

illustrated in Figure 1.1. For a given input row, the number of output rows

depends on whether the contents of the CAPTL, TAX, EXPNS, BONUS columns are

positive. Thus, each input row can result in at most four output rows. This means

that there is a known bound on the number of output rows produced for each

input row. We designate this type of data transformations as bounded one-to-

many data transformations. However, in other one-to-many data transformations,

such bound cannot always established a-priori, as shown in the following example:

Example 1.1.2 : Consider the source relation LOANS[ACCT, AM] (represented in

Figure 1.2) that stores the details of loans per account. Suppose LOANS data

must be transformed into PAYMENTS[ACCTNO, AMOUNT, SEQNO], the target relation,

according to the following requirements:

i) In the target relation, all the account numbers are left padded with zeroes.

Thus, the attribute ACCTNO is obtained by (left) concatenating zeroes to the

value of ACCT.

4

1.1 One-to-Many Data Transformations

Relation LOANS Relation PAYMENTS

ACCT AM

12 20.00

3456 140.00

901 250.00

ACCTNO AMOUNT SEQNO

0012 20.00 1

3456 100.00 1

3456 40.00 2

0901 100.00 1

0901 100.00 2

0901 50.00 3

Figure 1.2: An unbounded data transformation. The source relation LOANS for
loan number 1234 (on the left), and the corresponding target relation PAYMENTS

(on the right).

ii) The target system does not support payment amounts greater than 100. The

attribute AMOUNT is obtained by breaking down the value of AM into multiple

parcels with a maximum value of 100, in such a way that the sum of amounts

for the same ACCTNO is equal to the source amount for the same account.

Furthermore, the target field SEQNO is a sequence number for the parcel.

This sequence number starts at one for each sequence of parcels of a given

account.

The implementation of data transformations similar to those requested for

producing the target relation PAYMENTS of Example 1.1.2 is challenging, since the

number of output rows, for each input row, is determined by the value of the at-

tribute AM. Thus, unlike Example 1.1.1, the upper bound on the number of output

rows cannot be determined by the data transformation specification. We desig-

nate these data transformations as unbounded one-to-many data transformations.

Other sources of unbounded data transformations exist like, for example, when

converting collection-valued attributes of SQL:1999 covered by Melton & Simon

(2002), where each element of the collection is mapped to a new row in the target

table. A common data transformation in data-cleaning consists of converting a

variable length string attribute, that encodes a set of values with a varying num-

ber of elements, into rows. This data transformation is unbounded because the

exact number of output rows can only be determined by analyzing the string.

Despite their prominence in the context of data migration, integration and

cleaning, one-to-many data transformations have never been addressed in the

literature as a first-class relational operation.

5

1. INTRODUCTION

1.2 Problem Statement

To minimize the development effort and maximize their performance, data trans-

formations must be written in a language that is declarative, expressive, and

optimizable.

The benefits of using the declarative paradigm for specifying data transfor-

mations have been highlighted by Rahm & Do (2000). One important aspect

of declarative languages is that, since they are equipped with a set of high-level

domain-specific constructs, they encourage users to focus on the problem domain

(van Deursen et al., 2000). As a result, data transformations become easier to

write and to understand because the specifications are not cluttered by unneces-

sary details.

Decoupling data transformation specifications from their implementations also

opens many interesting optimization opportunities, because many complex imple-

mentation aspects can be derived automatically. For example, not all execution

plans have the same execution time and the most efficient ones can be better

determined automatically.

Finally, the above-mentioned constructs of declarative languages can be com-

bined to express a manifold of data transformations. However, this expressivity

is governed by a compromise with optimizability: greater expressivity also means

greater complexity on optimization.

The design of languages that maximize declarativeness, expressivity and opti-

mizability is an ongoing research problem. Nevertheless, up to now, no formalism

has been proposed, which is simultaneously, declarative, expressive and optimiz-

able, for addressing one-to-many data transformations.

1.3 Overview of Existing Solutions

Currently, to develop one-to-many data transformations, one has to resort to one

of the four alternatives:

i) implementing data transformation programs using a general purpose pro-

gramming language, such as C (Kernighan & Ritchie, 1988), Java (Gosling

et al., 2005) or Perl (Wall et al., 2000);

6

1.3 Overview of Existing Solutions

General Purpose ETL Tool RDBMS Relational
Language Extensions Algebra/SQL

Declarativeness – – +/– +
Optimizability – – +/– +
Expressivity + + + +/–

Table 1.1: Comparison of the different approaches for performing one-to-many
data transformations.

ii) developing data transformation workflows using a commercial ETL (Extract-

Transform-Load) tool;

iii) using some database server procedural language like Oracle PL/SQL (Feuer-

stein & Pribyl, 2005); or

iv) using an SQL query.

Each alternative poses a number of drawbacks (see Table 1.1). The use of gen-

eral purpose languages is hindered, despite their expressivity, by the lack of a clear

separation between the transformation logic and its implementation. This makes

data transformations difficult to understand and maintain. Moreover, apart from

static code optimizations, many significant optimizations inherent to the domain

of data transformations are not identified by the compiler or interpreter of a

general purpose language.

Although ETL tools provide an extensive library of data transformation op-

erators, their composition is not optimizable (Simitsis et al., 2005). Moreover,

in some tools, like FileAid Express1, the provided operators have limited ex-

pressive power. To overcome this situation, one has to resort either to writing

complex server scripts using proprietary languages or to coding external func-

tions. Data transformations implemented through RDBMS extensions, such as

Persistent Stored Modules (Garcia-Molina et al., 2002, Section 8.2), like stored

procedures or SQL 2003 table functions (Eisenberg et al., 2004), rely on a mix

of procedural and declarative constructs that are not amenable to optimization.

Data transformations can also be declaratively specified as queries (or views)

over the source data. The language of choice to express data transformations is

1http://www.compuware.com/products/fileaid/express.html

7

1. INTRODUCTION

usually SQL, which is based on Relational Algebra (RA) (Codd, 1970). A com-

pelling aspect of using SQL and RA is the availability of a vast body of knowledge

about its optimization (Chaudhuri, 1998; Graefe, 1993). However, many impor-

tant data transformations cannot be expressed in this way (Lakshmanan et al.,

1996). This is due to the limited expressive power of RA (Aho & Ullman, 1979).

In particular, RA cannot express the full class of one-to-many data transforma-

tions (this will be formally demonstrated in this thesis).

1.4 Proposed Solution

This thesis proposes to address one-to-many data transformations by extending

RA with a new unary operator, the data mapper. This extension addresses the

expressivity issue of RA concerning one-to-many data transformations, while tak-

ing advantage both of its well-founded declarative framework and its optimization

potential.

Informally, a data mapper, henceforth designated as mapper, is applied to

an input relation and produces an output relation. It iterates over each input

tuple and generates one or more output tuples by applying a set of domain-

specific functions. The mapper supports the dynamic creation of tuples based

on the evaluation of each source tuple contents. This kind of operation appears

implicitly in systems that implement schema and data transformations, like those

proposed by Amer-Yahia & Cluet (2004), Cui & Widom (2001), Cunningham

et al. (2004), Galhardas et al. (2000), and Raman & Hellerstein (2001). However,

it has never been handled as a relational operator. The introduction of such

relational operator opens interesting optimization opportunities, since expressions

that combine the mapper operator with standard relational algebra operators can

be optimized.

The query languages supported of RDBMSs as well as those offered by some

data cleaning and ETL tools are based on RA (Amer-Yahia & Cluet, 2004; Gal-

hardas et al., 2000; Labio et al., 2000; Raman & Hellerstein, 2001; Simitsis et al.,

2005; Zhou et al., 1996). Equipping RA with the mapper operator is of great

practical interest for two reasons. First, it endows data transformation applica-

tions based on RA with a more powerful transformation specification language.

8

1.5 Contributions

Second, it speeds up the execution of data transformations expressed as combi-

nations of standard relational operators with mappers, by proposing appropriate

extensions to the logical and physical optimization strategies for relational queries

already studied in literature (Chaudhuri, 1998).

1.5 Contributions

This thesis champions the extension of relational algebra for addressing one-to-

many data transformations. Such extension is achieved through the proposal of

a new relational operator named data mapper jointly with a framework for its

optimization. The optimization framework consists of a set of algebraic rewriting

rules and alternative execution algorithms that enable the logical and physical

optimization of data transformation operations, respectively. A more detailed

break-down of the contributions follows:

Validation of the relevance of one-to-many transformations. The useful-

ness of one-to-many data transformations was validated through an imple-

mentation of the mapper operator in a commercial tool named Data Fu-

sion, which was developed under the supervision of the author. Data Fusion

was used in the implementation of several large-scale database migration

projects (Carreira & Galhardas, 2004a). The most relevant aspects of this

data migration tool were published as a workshop paper in the Semantic

Integration Workshop (Carreira & Galhardas, 2003) and then as a demon-

stration paper at ACM SIGMOD’04 (Carreira & Galhardas, 2004a).

Evaluation of one-to-many transformations. The adoption of RDBMSs to

perform data transformations motivates an evaluation of how they handle

one-to-many data transformations. In this study, the main factors that

influence the performance of one-to-many data transformations are identi-

fied. As a further contribution, the potential benefits from the performance

side come from using a dedicated operator for handling one-to-many data

transformations are validated.

9

1. INTRODUCTION

The new data mapper operator. A detailed formalization of the mapper op-

erator as an extension to the relational algebra is developed building on an

initial proposal presented at the IQIS’04 ACM’s International Data Quality

Workshop (Carreira & Galhardas, 2004b). The formal definition of the op-

erator is given and several important properties are described. The thesis

compares the expressive power of the operator with the traditional rela-

tional algebra operators. Then, it is formally demonstrated that mappers

subsume the renaming, projection and selection relational operators. In the

sequel, the expressive power of relational algebra extended with the mapper

operator is considered. In this realm, it is formally demonstrated that rela-

tional algebra extended with the mapper operator is more expressive than

standard relational algebra. This contribution was presented at SBBD’05,

the Brazilian Symposium on Databases (Carreira et al., 2005b).

A set of provably correct algebraic optimization rules. A set of algebraic

rewriting rules that enable the logical optimization of data transformation

expressions, which combine relational operators with mappers, are supplied

with their corresponding formal proofs of correctness. The rules presented

aim at avoiding superfluous function evaluations. There are two sets of

rules. The first set consists of rules for pushing selections through mappers

that aim at filtering unnecessary input tuples. The second set of rules

aims at pushing projections through mappers, avoiding the propagation of

attributes that are not used by subsequent operators. The development of

the proposed rules was presented at SBBD’05, the Brazilian Symposium on

Databases (Carreira et al., 2005b) and their validation at DAWAK’05, the

International Conference on Data Warehousing and Knowledge Discovery

(Carreira et al., 2005a).

Distinct physical execution algorithms. The logical optimization is comple-

mented with different physical execution algorithms for the mapper oper-

ator. Although the formal semantics of the mapper operator suggests a

straightforward tuple-at-a-time execution semantics, this naïve execution

algorithm may be very inefficient in many real-world settings. Finding ef-

ficient algorithms to execute mappers becomes of utmost importance. The

10

1.6 Organization of the Thesis

thesis provides different execution algorithms that take advantage of the

existence of duplicates in the input data.

The proposed logical optimizations and physical execution algorithms were

validated on an number of experiments. Concerning logical optimizations, this

study contrasts the computation effort required to evaluate expressions involv-

ing the mapper operator and its optimized equivalents. It identifies the factors

that have greater influence on the performance gains obtained through the logical

optimizations. Concerning the physical algorithms, each of the conditions that

favor each variant of the proposed algorithm have been identified. Then, based

on the observations, a cost model was proposed that may enable a cost-based op-

timizer to select the most appropriate optimization rule and execution algorithm.

The accuracy of the cost model is also validated through experimentation. The

proposal and the validation of the cost model were published in the Data and

Knowledge Engineering Journal (DKE) (Carreira et al., 2007).

1.6 Organization of the Thesis

The remaining of the thesis is organized into six chapters. In Chapter 2, the

different possible approaches to address the problem of one-to-many data trans-

formations are analyzed. In Chapter 3, the formal details of the mapper operator

are developed. Chapter 4 presents the algebraic rewriting rules for logically op-

timizing queries involving mappers, together with their corresponding proofs of

correctness. Then, in Chapter 5, alternative physical algorithms to execute map-

pers are explored. Chapter 6 presents the experimental validations. Finally,

Chapter 7 summarizes and outlines directions for further research.

11

Chapter 2

Implementing One-to-many

Transformations

This chapter presents alternatives for implementing one-to-many data transfor-

mations. Since data often resides on relational database systems, these often

double as data transformation systems. Several implementations of one-to-many

data transformations that use relational databases are reviewed in detail. Then,

alternatives for implementing data transformations, like languages for restruc-

turing semi-structured and XML data are considered. Schema mapping, data

integration, data cleaning and ETL tools are also analyzed. The different al-

ternatives are contrasted, giving special attention to their declarativeness and

expressivity for specifying one-to-many data transformations.

2.1 Introduction

Several data management activities, like legacy-data migration, data-integration

and data-cleaning, require data transformations to support modifications in the

structure, representation or content of data (Rundensteiner, 1999). Since data

supporting different applications is encoded in fundamentally different ways, the

aforementioned data transformations are frequently quite complex. The above

mentioned data management activities are now detailed:

13

2. IMPLEMENTING ONE-TO-MANY TRANSFORMATIONS

Legacy-data migration. In this activity, projects are triggered by a common

pattern in which, proprietary applications are discontinued in favor of new

applicational packages. Organizations often buy applicational packages (like

SAP, for instance) that replace existing ones (e.g., supplier management).

This situation leads to data migration projects that must transform the data

model underlying old applications into a new data model that supports new

applications.

The data transformations presented in Example 1.1.1 and in Example 1.1.2

are examples of data transformations found in legacy data migration con-

texts where each tuple of the source relation has to be converted into po-

tentially many tuples in the target relation.

Data integration. Heterogeneous information systems operate as a single uni-

fied system, conveying the user the illusion of interacting with a larger

whole (Ziegler & Dittrich, 2004). Nowadays, such undertaking is essential

for organizations to take full advantage of their IT infrastructure when it is

deployed on multiple disparate systems. Data integration is implemented

through a virtual homogeneous system with a single integrated schema (Ba-

tini et al., 1986), also known as mediated schema, against which, queries are

evaluated.

Although the technique may vary, the processing of queries posed over the

virtual schema requires that data in the sources be combined and trans-

formed in order to be presented according to the virtual schema. One-to-

many data transformations are often required for mapping the tuples of

the fused source relations into the virtual schema. Consider, for example,

fusing two relations from disparate sources in which, records are organized

by year and then feeding the obtained fused relation to a virtual schema,

where the information is organized by month. Each tuple of the fused rela-

tion, corresponding to a year, is represented according to several tuples in

the virtual schema relation, each corresponding to a month.

Data cleaning. Data quality is a critical aspect of applications that support

business operations (Rahm & Do, 2000). Several tasks of the data cleaning

14

2.2 Relational Algebra

process comprise data transformations to produce clean data that apply a

set cleaning functions to tuples containing dirty data.

When performing data cleaning, one-to-many transformations arise for ex-

ample when data pertaining to multiple tuples have to be extracted from the

contents of one single attribute. Consider a cleaning transformation that

takes input tuples of a bug tracking system, where multiple detail lines

about the bug are kept on a text attribute named DETAILS, and produces

a relation with one tuple for each issue.

These activities are implemented with RDBMSs, or specialized tools and lan-

guages, which are all required to perform data one-to-many data transformations.

In the following sections the adequacy of the different solutions for expressing

one-to-many data transformations is analyzed in further detail. It is important

to distinguish between bounded and unbounded data transformations, as intro-

duced in Section 1.1. A bounded one-to-many data transformation admits an

upper bound k in the number of output tuples generated for each input tuple.

This upper bound is known before the execution of the data transformation. Con-

versely, unbounded one-to-many data transformations do not have such an upper

bound known a-priori.

The classification of data transformations into bounded and unbounded is

interesting, because it serves the purpose of classifying the alternative approaches

for implementing one-to-many data transformations. As it turns out, bounded

data transformations can be expressed as Relational Algebra (RA) expressions as

introduced by Codd (1970), while unbounded data transformations cannot (this

will be demonstrated later, in Section 3.5).

2.2 Relational Algebra

The normalization theory underlying the relational model imposes the division of

data among several relations in order to eliminate redundancy and inconsistency

of information. In the original model proposed by Codd (1970), new relations are

derived from the database by selecting, joining and unioning relations. Despite

the fact that RA expressions denote data transformations among relations, the

15

2. IMPLEMENTING ONE-TO-MANY TRANSFORMATIONS

notion that presided the design of RA, as noted by Aho & Ullman (1979), was

that of data retrieval. However, this notion, is insufficient for reconciling the

substantial differences in the representation of data that occur between fixed

source and target schemas (Miller, 1998).

Bounded one-to-many data transformations can be expressed as relational

expressions by combining projections, selections and unions at the expense of the

query length. Consider k to be the maximum number of tuples generated by a

one-to-many data transformation, and let the condition Ci encode the decision of

whether the ith tuple, where 1 ≤ i ≤ k, should be generated. In general, given a

source relation s with schema X1, ..., Xn, a one-to-many data transformation over

s that produces at most k tuples for each input tuple can be defined through the

expression

πX1,...,Xn

(

σC1
(r)

)

∪ ... ∪ πX1,...,Xn

(

σCk
(r)

)

In order to clarify the concept, Figure 2.1 presents the SQL implementation of the

bounded data transformation presented in Example 1.1.1 using multiple union

all statements (lines 5, 9 and 13). Each select statement (lines 2–4, 6–8, 10–

12 and 14–16) encodes a separate condition and potentially contributes with

an output tuple. The drawback of this solution is that the size of the query

grows proportionally to the maximum number of output tuples k that have to be

generated for each input tuple. If this bound value k is high, the query becomes

too big. Expressing one-to-many data transformations in this way has a lot of

repetition, especially if many columns are involved.

Despite this drawback, many useful data transformations can be appropri-

ately defined in terms of relational expressions, especially when considering re-

lational algebra equipped with a generalized projection operator (Silberschatz

et al., 2005, p. 104). In this case, the projection list may include expressions

that define the computations to be performed for each input tuple (for instance,

πID,NAME←FIRST ||’ ’||LAST).

However, this extension is still weak to express unbounded one-to-many data

transformations. The limited expressive power of relational algebra expressions

was addressed very early in the database literature (Paredaens, 1978). Later,

Aho & Ullman (1979) proposed extensions to overcome the limitations of RA.

16

2.3 Extensions to Relational Algebra

1: insert into EVENTS (LOANNO, EVTYP, AMTYP, AMT)

2: select LOANNO, EVTYP, ’CAPTL’ as AMTYP, CAPTL

3: from LOANEVT

4: where CAPTL > 0

5: union all

6: select LOANNO, EVTYP, ’TAX’ as AMTYP, TAX

7: from LOANEVT

8: where TAX > 0

9: union all

10: select LOANNO, EVTYP, ’EXPNS’ as AMTYP, EXPNS

11: from LOANEVT

12: where EXPNS > 0

13: union all

14: select LOANNO, EVTYP, ’BONUS’ as AMTYP, BONUS

15: from LOANEVT

16: where BONUS > 0;

Figure 2.1: Transformation of Example 1.1.1 using an SQL union query.

Atzeni & de Antonellis (1993) have shown that RA expressions are not capable

of generating new data items.

2.3 Extensions to Relational Algebra

To support the growing range of RDBMS applications, several extensions to RA

have been proposed since its inception. These extensions were introduced in the

form of new declarative operators and also through the introduction of language

extensions to be executed by the RDBMS. The most well known extensions in-

troduced to the original RA operators are perhaps grouping and the computation

of aggregates (Klug, 1982). However, this section addresses only those extensions

that are relevant for expressing one-to-many data transformations. The first

extension to be analyzed is the pivot operator introduced in SQL Server 2005

(Cunningham et al., 2004). Unfortunately, this operator only allows to express

bounded data transformations. Hence, alternatives to also express unbounded

data transformations like recursive queries and stored procedures, introduced by

SQL:1999 (ISO-ANSI, 1999) as well as the table functions of SQL-2003 (Eisenberg

et al., 2004) will be also be examined.

17

2. IMPLEMENTING ONE-TO-MANY TRANSFORMATIONS

1: select *
2: from (LOANEVT
3: unpivot AMT for

4: AMTYPE in (’LOANNO’, ’EVTYP’, ’TAX’, ’EXPNS’, BONUS’))
5: where AMT > 0

Figure 2.2: Transformation of Example 1.1.1 using the SQL Server 2005 unpivot

operator.

2.3.1 Pivoting operations

The pivot and unpivot operators constitute an important extension to RA, which

where first natively supported by SQL Server 2005. The pivot operation collapses

similar rows into a single wider row adding new columns on-the-fly (Cunningham

et al., 2004). In a sense, this operator collapses rows to columns. Thus, it can

be seen as expressing a many-to-one data transformation. Its dual, the unpivot

operator transposes columns into rows. Henceforth, the discussion focuses on the

unpivot operator, since this operator can be used for expressing bounded one-to-

many data transformations.

In what concerns expressiveness, the unpivot operator does not increase the

expressive power of RA, since, as Cunningham et al. (2004) admit, the unpivot

operator can be implemented with multiple unions. Its semantics can be emulated

by employing multiple union operations as proposed above for expressing bounded

one-to-many data transformations through RA (Section 2.2).

Nevertheless, expressing one-to-many data transformations using the unpivot

operator brings two main benefits comparatively to using multiple unions. First,

the syntax is more compact. Figure 2.2 shows how the unpivot operator can

be employed to express the bounded one-to-many data transformation of Exam-

ple 1.1.1. Second, data transformations expressed using the unpivot operator are

more readily optimizable using the logical and physical optimizations proposed

in Cunningham et al. (2004).

2.3.2 Recursive queries

The expressive power of RA can be considerably extended through the use of re-

cursion (Aho & Ullman, 1979). Although the resulting setting is powerful enough

18

2.3 Extensions to Relational Algebra

to express many useful one-to-many data transformations, this alternative has a

number of drawbacks. Recursive queries are not broadly supported by RDBMSs,

they are difficult to optimize and hard to understand.

Recursive processing was addressed early and gained much attention in the

study of logic query languages like LDL (Chimenti et al., 1989) and Datalog

(Ullman, 1988). Diverse aspects concerning the optimization of recursive queries

were studied by Valduriez & Boral (1986) and Shan & Neimat (1991). Several

proposals for extending SQL to handle particular forms of recursion can be found

in the works of Agrawal (1988) and Ahad & Yao (1993). Despite being relatively

well understood at the time, recursive query processing was not supported by

SQL-92 (ISO-ANSI, 1992). As a consequence, some of the leading RDBMSs

(e.g., Oracle, DB2 or POSTGRES) were in the process of supporting recursive

queries when the SQL:1999 standard was released (ISO-ANSI, 1999; Melton &

Simon, 2002). It turns out that these systems ended up by supporting different

subsets of recursive queries with different syntaxes. Presently, the broad support

of recursion constitutes a subject of debate (Pieciukiewicz et al., 2005).

As explained before, the semantics of a one-to-many data transformation can

be emulated by using a recursive query. Figure 2.3 presents a solution for Exam-

ple 1.1.2 written in SQL:1999. The recursive query is divided into three sections.

The first section is the base of the recursion that creates the initial result set

(lines 2–8). The second section, known as the step, is evaluated recursively on

the result set obtained so far (lines 10–18). The third section specifies the out-

put expression responsible for returning the final result as a query (lines 19–20).

In the base step, the first parcel of each loan is created and extended with the

column REMAMNT, whose purpose is to track the remaining amount. Then, at

each step the set of resulting rows is enlarged. All rows without REMAMNT already

constitute a valid parcel and are not expanded by recursion. Those rows with

REMAMNT > 0 (line 18) generate a new row with a new sequence number set to

SEQNO + 1 (line 14) and with the remaining amount decreased by 100 (line 16).

Finally, the PAYMENTS table is generated by projecting away the extra REMAMNT

column.

Clearly, when using recursive queries to express data transformations, the logic

of the data transformation becomes hard to grasp, especially if several functions

19

2. IMPLEMENTING ONE-TO-MANY TRANSFORMATIONS

1: with recpayments(digits(ACCTNO), AMOUNT, SEQNO, REMAMNT) as

2: (select ACCT,

3: case when base.AM < 100 then base.AM

4: else 100 end,

5: 1,

6: case when base.AM < 100 then 0

7: else base.AM - 100 end

8: from LOANS as base

9: union all

10: select ACCTNO,

11: case when step.REMAMNT < 100 then

12: step.REMAMNT

13: else 100 end,

14: SEQNO + 1,

15: case when step.REMAMNT < 100 then 0

16: else step.REMAMNT - 100 end,

17: from recpayments as step

18: where step.REMAMNT > 0)

19: select ACCTNO, SEQNO, AMOUNT

20: from recpayments as PAYMENTS

Figure 2.3: Transformation of Example 1.1.2 using an SQL:1999 recursive query.

are used. Even in simple examples, like Example 1.1.2, it becomes difficult to

understand how the cardinality of the output tuples depends on each input tuple.

Furthermore, a great deal of ingenuity is often needed for developing recursive

queries.

2.3.3 Persistent stored modules

Several RDBMSs support some form of procedural construct for specifying com-

plex computations. This feature is primarily intended for storing business logic in

the RDBMS for performance reasons or to perform operations on data that can-

not be handled by SQL. Several database systems support their own procedural

languages, like SQL-PL in the case of DB2 (Janmohamed et al., 2005), Trans-

actSQL in the case of Microsoft SQL Server and Sybase (Kline et al., 1999), or

PL/SQL in the case of Oracle (Feuerstein & Pribyl, 2005). These extensions, des-

ignated as Persistent Stored Modules (PSMs), were introduced in the SQL:1999

standard (Garcia-Molina et al., 2002, Section 8.2). A module of a PSM can be,

20

2.3 Extensions to Relational Algebra

among others, a procedure, usually known as stored procedure (SP), or a function,

known as a user defined function (UDF).

Table functions extend the expressive power of SQL because they may return

a relation. Table functions allow recursion1 and make it feasible to generate sev-

eral output tuples for each input tuple. The advantages are mainly enhanced

performance and re-use (Rahm & Do, 2000). Moreover, complex data transfor-

mations can be expressed by nesting UDFs within SQL statements (Rahm & Do,

2000). However, table functions are often implemented using procedural con-

structs that hamper the possibilities of undergoing the dynamic optimizations

familiar to relational queries.

Besides table functions, other kinds of UDFS exist, like user defined scalar

functions (UDSFs), and user defined aggregate functions (UDAFs) (Jaedicke &

Mitschang, 1998). Still, SQL extended with UDSFs and UDAFs may not be

enough for expressing one-to-many data transformations. First, calls to UDSFs

need to be embedded in an extended projection operator, which, as discussed in

Section 2.2, is not powerful enough for expressing one-to-many transformations.

Second, UDAFs must be embedded in aggregation operations, which can only

represent many-to-one data transformations.

An interesting aspect of PSMs is that they are powerful enough to specify

bounded as well as unbounded data transformations. Figure 2.4 presents the

implementation of the data transformation introduced in Example 1.1.2 as a

user defined table function (TF), as proposed by the SQL 2003 (Eisenberg et al.,

2004). The table function implementation written in PL/SQL has two sections:

a declaration section and a body section. The first one defines the set of working

variables that are used in the procedure body and the cursor CLOANS (lines 6–7),

which will be used for iterating through the LOANS table. The body section starts

by opening the cursor. Then, a loop and a fetch statement are used for iterating

over CLOANS (lines 10–11). The loop cycles until the fetch statement fails to

retrieve more tuples from CLOANS. The value contained in ACCTVALUE is loaded

into the working variable REMAMNT (line 12). The value of this variable will be

later decreased in parcels of 100 (line 19). The number of parcels is controlled

by the guarding condition REMAMNT>0 (lines 14 and 22). An inner loop is used

1Recursive calls of table functions are constrained in some RDBMSs, like DB2.

21

2. IMPLEMENTING ONE-TO-MANY TRANSFORMATIONS

1: create function LOANSTOPAYMENTS return PAYMENTS_TABLE_TYPE pipelined is

2: ACCTVALUE LOANS.ACCT%TYPE;

3: AMVALUE LOANS.AM%TYPE;

4: REMAMNT INT;

5: SEQNUM INT;

6: cursor CLOANS is

7: select * from LOANS;

8: begin

9: open CLOANS;

10: loop

11: fetch CLOANS into ACCTVALUE, AMVALUE;

12: REMAMNT := AMVALUE;

13: SEQNUM := 1;

14: while REMAMNT > 100

15: loop

16: pipe row(PAYMENTS_ROW_TYPE(

17: LPAD(ACCTVALUE, 4, ’0’), 100.00, SEQNUM));

19: REMAMNT := REMAMNT - 100;

20: SEQNUM := SEQNUM + 1;

21: end loop

22: if REMAMNT > 0 then

23: pipe row(PAYMENTS_ROW_TYPE(

24: values (LPAD(ACCTVALUE, 4, ’0’), REMAMNT, SEQNUM));

25: end if

26: end loop

27: end LOANSTOPAYMENTS

Figure 2.4: Transformation of Example 1.1.2 using an Oracle PL/SQL table
function.

to form the parcels based on the value of REMAMNT (lines 14–21). A new parcel

row is inserted in the target table PAYMENTS for each iteration of the inner loop.

The tuple is generated through a pipe row statement that is also responsible

for padding the value of ACCTVALUE with zeroes (lines 16–17 and 23–24). When

the inner loop ends, a last pipe row statement is issued to insert the parcel that

contains the remainder. The details concerning the creation of the row and table

types PAYMENTS_ROW_TYPE and PAYMENTS_TABLE_TYPE are not presented.

The main drawback of PSMs is that they use a number of procedural con-

structs that are not amenable to optimization. Moreover, there are no elegant

solutions for expressing the dynamic creation of tuples using PSMs. One needs

22

2.4 Data Restructuring Languages

to resort to intricate loop and pipe row statements (or insert into statements

in the case of a stored procedure) as shown in Figure 2.4. From the description

of Example 1.1.2, it is clear that a separate logic is used to compute each of

the attributes. Nevertheless, in the PL/SQL code, the computation of ACCTNO is

coupled with the computation of AMOUNT. Thus, the logic to calculate ACCTNO is

duplicated in the code. This makes the code maintenance difficult and the code

itself hard to optimize.

2.4 Data Restructuring Languages

The increasing adoption of semi-structured data spurred new languages that

address the problem of querying, integrating and transforming semi-structured

data (Suciu, 1998). In the last years, the Web has been promoting data exchange

and storage using XML, a language that can be used to represent semi-structured

data.

Semi-structured data objects are mapped into labeled trees to represent both

data and schema, like the object exchange model (OEM), an intermediate model

championed by the TSIMMIS data integration system (Papakonstantinou et al.,

1996). Data transformations in these languages consist of translating the spe-

cific source trees into appropriate target trees. A transformation specification is

constituted of a set of rules, each representing a part of the translation. A rule

consists of a head and a body. The rule body includes a pattern and a Boolean

predicate that, together, encode a query over the nodes of the intermediate model.

The pattern collects instances and the predicate filters them. The head of the rule

usually encodes a translation function that specifies how the instances matched

by the body are to be restructured.

2.4.1 Semi-structured data restructuring languages

Several languages that have been proposed for querying semi-structured data

can be envisioned as RA extensions for handling objects represented as trees or

graphs. Lorel is a query language for semi-structured data that takes the form

of an extension of SQL with path expressions (Abiteboul et al., 1997). UnQL

23

2. IMPLEMENTING ONE-TO-MANY TRANSFORMATIONS

has an expressive power similar to RA, with the particularity that queries are

evaluated over edge-labeled graph structures than can be cyclic (Buneman et al.,

1996). UnQL queries may return unions of graphs simulating bounded one-to-

many transformations. However, unbounded data transformations are not pos-

sible to express, since it is not possible to return a graph whose size depends

dynamically on data contained in the edges.

YATL is a language for specifying the integration and transformation of semi-

structured data represented as lists of trees (forests) in the YAT prototype (Cluet

et al., 1998). In YATL, the generation of new object identifiers is restrained

through the concept of safe recursive specifications to avoid potentially danger-

ous computations (Cluet & Siméon, 1997). Since certain classes of recursive

specifications, in particular those involving recursive oid generation, are limited,

the language is not powerful enough for expressing the dynamic creation of data

instances required by unbounded one-to-many data transformations.

Strudel is a system for specifying and generating data-intensive Web sites

(Fernandez et al., 1998). This system comprises two languages: (i) StruQL,

a declarative rule-based query and transformation language for semi-structured

data and (ii) a template language for specifying the HTML output. A query

comprises two identifiable sections, one that is responsible for integrating multi-

ple data sources and another that performs the transformations. Recursion is in-

troduced sparingly in StruQL through an operator for computing the transitive

closure (Fernandez et al., 1998). It can be argued that unbounded one-to-many

transformations cannot be expressed, since there is no way of creating a web page

with a number of linked pages determined by the value of a source attribute.

2.4.2 XML data transformation languages

Within the W3C XSL recommendations initiative, several languages have been

proposed for transforming XML documents. Perhaps the most noteworthy is

XQuery (W3C, 2006), which has become the standard for querying XML docu-

ments. XQuery is declarative language that can be used to specify transforma-

tions of data represented as XML documents. One-to-many data transformations

can be represented in XQuery since the language is Turing complete.

24

2.5 Schema Mapping Tools

Other two functional languages XPath have been proposed (Clark & DeRose,

1999) and XSLT (Clark, 1999). These aim at querying and transforming XML

documents, respectively. XPath evaluates a regular path expression over a docu-

ment tree and returns a forest as the result. Chamberlin noted that XPath can

only select existing nodes (Chamberlin, 2002, p. 604). Hence, XPath can only

return nodes that already exist in the document. An extension of XPath named

XQL (J. Robie, 1998) was proposed as a natural extension of XPath pattern

syntax for joining elements of XML documents. Its deep return operator ‘??’ is

used to flatten a node. Nevertheless, it is not possible to express transformations

that generate new nodes whose quantity is based on the contents of a source

node. XSLT employs sets of rules for transforming elements obtained through

XPath queries into new XML documents or other output formats. Concerning

its expressive power, one distinguishing feature of XSLT is that, since it allows

recursion, it becomes Turing complete.

Many languages for querying XML, benefited from advances of semi-structured

data querying. XML-QL is a language for querying, transforming and integrat-

ing XML data (Deutsch et al., 1998, 1999). This language is based on UnQL

graph patterns. However, it is not possible to create output trees dynamically

since the construct clause is evaluated once for each tree element returned by the

where clause. The Quilt language aims at querying and integrating heterogeneous

information sources (Chamberlin et al., 2000). This language incorporates con-

cepts of Lorel (Abiteboul et al., 1997), YATL (Cluet & Siméon, 1997) as well as

XPath and XQL. New nodes can be generated through an element constructor

expression. However, the number of output nodes generated is bounded by the

number of nodes of the source model and by the size of the query. Quilt can be

envisioned as the precursor of the XQuery language.

2.5 Schema Mapping Tools

In order to perform data transformation or data integration, it is necessary to es-

tablish a set of schema mappings, describing the relationships among the elements

of the different schemas (Madhavan et al., 2002). In data transformations, schema

25

2. IMPLEMENTING ONE-TO-MANY TRANSFORMATIONS

mappings describe how elements of one schema are mapped to the other, while

in data integration they describe how elements of source schemas are combined.

Establishing such schema mappings is often a laborious and complex task ex-

acerbated by the frequent lack of documentation. Over the years several research

tools like, Clio (Miller et al., 2001), COMA (Madhavan et al., 2001), Cupid (Do &

Rahm, 2002), GLUE (Doan et al., 2002), MOMIS (Castano & Antonellis, 1999)

and TranScm (Milo & Zhoar, 1998), have been proposed that automate to some

degree the discovery of schema mappings.

Schema mappings take the form of inter-schema constraints. Since they are

geared toward mapping structure (i.e., schema), they are not powerful enough

for deriving many useful data (i.e., instance) transformations. As noted by Koch

(2001), since the semantics of data can be considerably different in two mod-

els, bridging them may involve complex data transformations that cannot be

expressed or derived from schema mappings. Coarsely speaking, schemas do not

describe in detail how data instances are represented. Thus, mappings established

between a source and a target schema are not powerful enough to represent com-

plex instance transformations. Consider, for example, the problem of mapping

between salaries relations where each source tuple represents one year and the tar-

get uses one tuple for each month. This transformation cannot be expressed by a

schema mapping alone, since neither the source nor the target schema represents

how data is aggregated.

TransScm is a schema matching and transformation system (Milo & Zhoar,

1998). It is based on the idea that schema matching can be used to perform data

translation. More specifically, it assumes that both source and target schemas

are given as input, and suggests data translation to be based on matching rules

specified among the two schemas. Although TransScm rules may specify data

translations, the limits in the use of recursion do not allow the creation of new

objects based on an attribute’s value and, consequently, one-to-many instance

transformations cannot be expressed.

Notably, in Clio schema mappings are expressive enough to induce select-

project-join queries (Miller et al., 2001). These queries are compiled to perform

data transformations from schema mappings. Recent work on Clio proposed to

perform the transformation of data instances from a source schema into a target

26

2.6 Data Integration Tools

schema based on source-to-target schema dependencies (Fagin et al., 2003). How-

ever, their semantics of universal solutions is not powerful enough to entail the

class of one-to-many transformations we propose to tackle. COMA (Madhavan

et al., 2001), GLUE (Doan et al., 2002) and TranScm (Milo & Zhoar, 1998) rep-

resent mappings through simple assertions established among schema elements.

These assertions must extended by the user before being used in data transforma-

tions. For example, TransScm leaves to the user the specification of non-standard

transformations.

Building on similar ideas, Rifaieh & Benharkat (2002) propose deriving data

transformations queries automatically from schema mappings. They aim at using

RDBMSs as transformation engines for data warehousing. However, the mapping

language they propose can only represent conjunctive queries. Data transforma-

tions that consist of aggregations or one-to-many data transformations cannot be

expressed.

2.6 Data Integration Tools

Data integration is realized through a virtual homogeneous system with a single

integrated schema , also known as mediated schema, against which, queries are

evaluated (Batini et al., 1986). Evaluating a query against an integrated schema

involves locating the data sources, possibly using different query languages, and

then combining the results.

The main approaches to solve the problem of efficiently answering queries over

multiple heterogeneous data sources are federated databases (Sheth & Larson,

1990) and mediators (Wiederhold, 1992). Currently, all the leading RDBMS

vendors are suppling data integration solutions through federation, see, e.g. (Haas

et al., 2002). Concerning mediators, an initial upsurge of research prototypes,

like Information Manifold (Kirk et al., 1995), Squirrel (Zhou et al., 1996) and

TSIMMIS (Garcia-Molina et al., 1997), provided the concepts that allowed the

emergence of commercial data integration tools, such as Business Objects Data

Integrator1 or BEA Liquid Data2.

1http://www.businessobjects.com/products/dataintegration
2http://www.bea.com

27

2. IMPLEMENTING ONE-TO-MANY TRANSFORMATIONS

In those RDBMSs that support federation, the data sources can be trans-

formed through RA queries and the RDBMS extensions discussed in Section 2.3.

Hence, these systems support bounded and unbounded one-to-many transforma-

tions. The languages of mediator systems have an expressive power similar to

RA with extensions that are not powerful enough to represented unbounded one-

to-many data transformations. Squirrel’s ISL allows view definitions that have

a similar power to relational algebra extended with aggregation and user sup-

plied algorithms are provided for addressing object fusion. The TSIMMIS MSL

language has an expressive power comparable to Datalog without recursion.

2.7 ETL and Data Cleaning tools

Data cleaning and ETL are two intimately tied activities (Lomet & Sarawagi,

2000). ETL often requires data cleaning operations to enhance the quality of data

loaded into data warehouses; and the implementation of data cleaning transfor-

mations requires data to be extracted and loaded into a temporary repository.

This relationship is underscored by the large number of tools that handle both

ETL and Data Cleaning (Barateiro & Galhardas, 2005).

Although the importance of ETL has raised in recent years (Kimball & Caserta,

2004), the Express prototype of Shu et al. (1977), can be considered the first ETL

tool. The architecture of Express is akin to that of an ETL tool where the file

layouts are compiled into file reader and loader programs for extraction and load.

The data transformations are specified through data restructuring queries that

are compiled into PL/1 programs. The data transformation language used by Ex-

press resembles SQL augmented with specific operators to work with hierarchical

data (Shu et al., 1975). The expressivity of the data transformation language is

similar to that of relational query languages. Therefore, unbounded one-to-many

data transformations cannot be expressed.

References to ETL as a research subject are relatively recent. Ajax (Galhardas

et al., 2000), Potter’s Wheel (Raman & Hellerstein, 2001) and ARTKOS (Vas-

siliadis et al., 2000) are the the first research systems to explicitly address ETL.

The former two are data cleaning tools, an activity that is intimately blended

with ETL.

28

2.7 ETL and Data Cleaning tools

1: data PAYMENTS(keep=ACCTNO AMOUNT SEQNO)

2: set LOANS(rename=(ACCT=ACCTNO))

3: SEQNO = 1;

4: REMAMNT = AM;

5: do while (REMAMT > 0);

6: if (REMAMNT > 100) then

7: AMOUNT = 100;

8: else

9: AMOUNT = REMAMNT;

10: REMAMNT = REAMNT - 100;

11: output;

12: SEQNO + 1;

13: end

Figure 2.5: Transformation of Example 1.1.2 using an SAS Data Step, showing
the use of an ETL tool for performing one-to-many data transformations.

Both Potter’s Wheel and Ajax (Galhardas et al., 2001) have proposed opera-

tors for expressing one-to-many data transformations for data cleaning purposes.

Potter’s Wheel (Raman & Hellerstein, 2001) is a tool for discrepancy detection

that allows the user to successively apply simple schema and data transforma-

tions. The authors acknowledge that one-to-many data transformations can be

encoded using the fold operator. However, this operator can only express bounded

one-to-many data transformations, since there has to be a bound k on the number

of output tuples known a-priori (Raman & Hellerstein, 2000). Ajax proposes the

map operator to express bounded and unbounded one-to-many data transforma-

tions (Galhardas, 2001).

The work of Amer-Yahia & Cluet (2004) uses a specialized middleware to per-

form data transformations of object-oriented database though an object-oriented

extension to RA that features a specialized map operator for data transformations.

However, their language is not powerful enough to express data transformations

that produce a number of tuples determined by the value of an input object’s

attribute. Cui & Widom (2001) identify many-to-one data transformations, like

aggregations, together with one-to-many data transformations to be the main

classes of data transformations in ETL scenarios for Data Warehousing.

Many commercial ETL tools do not use declarative formalisms, relying in-

stead on procedural scripting languages that lack a formal foundation. To better

29

2. IMPLEMENTING ONE-TO-MANY TRANSFORMATIONS

understand the issue, consider the code shown in Figure 2.5, that presents an

implementation of Example 1.1.2. This implementation uses the component of

the SAS system which is responsible for data warehouse construction (Refaat,

2006). In SAS, iterating on the input table LOANS and materializing the results

are implicit operations. The assignment of the account number is performed by

renaming ACCT as ACCTNO (line 2). Then, two auxiliary variables used for pop-

ulating each new target tuple are declared and initialized (lines 3–4). The do

while loop is used to produce the output rows (lines 5–13). The output val-

ues are loaded into the corresponding attributes (lines 6–10) and a new parcel

is generated through the output statement (line 11). However, such procedural

specification hampers the introduction of even simple optimizations. For example

the push of simple projection over a defined transformation cannot be expressed

through algebraic rewriting.

The languages used by many ETL tools either provide a very large number of

operators —e.g., Sagent1—, for transforming data or only a small set of operators

—e.g., FileAid/Express2. The first group of tools is not easy to use, given the

large number of abstractions that a programmer must handle. In the second group

of tools, complex transformation logics must be developed as external ad-hoc

functions through programming interfaces. As a result, programs that handle rich

transformation semantics become complex and difficult to debug. This situation

often arises when one-to-many data transformations are required.

2.8 Conclusions

This chapter analyzed several alternatives for implementing one-to-many data

transformations. First, the discussion was organized around the two sub-classes

of one-to-many data transformations, bounded and unbounded data transforma-

tions. This arrangement is interesting, since it uses the expressivity of RA as

a boundary. Second, the different alternatives for expressing one-to-many data

transformations were studied. A starting conclusion is that RA is only capa-

ble of expressing bounded one-to-many data transformations. The extensions to

1http://www.sagent.com
2http://www.compuware.com/products/fileaid/express.htm

30

2.8 Conclusions

RA supported by RDBMSs are not general enough to support one-to-many data

transformations. Although bounded data transformations can be expressed by

combining unions and selections, unbounded data transformations require more

advanced constructs, such as SQL:1999 recursive queries and table functions in-

troduced in the SQL 2003 standard. However, these are not yet supported by

many RDBMSs.

Third, several languages for querying, integrating and transforming semi-

structured data were reviewed. Some of these languages provide some form of

structural recursion to unwind the input elements represented as trees (or graphs).

These features can be seen as a form of unbounded one-to-many data transfor-

mations, since the number of output elements can be determined by the depth of

the input element and not by the size of the query. Nevertheless, besides XSLT

and XQuery, none of these languages is powerful enough to specify a one-to-many

data transformation on which the number of output elements is determined by

the value of an attribute of an input element. In fact, the expressivity of some

languages, like YATL, is restricted to avoid potentially dangerous specifications

(that may result in diverging computations).

Several tools that support data transformations were also considered. The

data transformations that can be expressed through schema mappings are less

expressive than RA, being limited to bounded queries. The languages of data

integration tools are geared toward expressing views over multiple data sources,

mostly based on RA and Datalog without recursion. None of the covered tools

supports unbounded one-to-many data transformations despite its usefulness. Re-

search ETL tools support both bounded and unbounded one-to-many transfor-

mations and acknowledge the need for powerful data transformation operators.

Commercial systems usually support natively bounded one-to-many data trans-

formations, but unbounded transformations are often developed through exter-

nal functions or proprietary procedural scripts that hamper optimization. The

languages supported by these tools are often not powerful enough to represent

complex data transformations. Typically, complex transformations are handled

by ad-hoc programs coded outside the tools.

Another way of encoding data transformations consists of using a general

purpose language, like writing a Java program that connects to the RDBMS

31

2. IMPLEMENTING ONE-TO-MANY TRANSFORMATIONS

through JDBC or writing a Perl script. The use of a general purpose language

is hindered by two factors. First, these languages have a procedural nature that

contrasts with the declarative nature of query languages. This characteristic turns

data transformations difficult to understand and maintain.

Thus, it can be concluded that there is no general solution for expressing one-

to-many data transformations. None is declarative, optimizable and at the same

time expressive enough to represent one-to-many data transformations. Most

data transformation solutions are simply not expressive enough for representing

one-to-many data transformations. They are either based on a procedural formal-

ism, which difficults optimization, or require one-to-many data transformations

to be entangled as external programs.

Such hindrances can be coarsely minimized by supporting one-to-many data

transformations concisely through a specialized operator. This thesis proposes

one such operator, the data mapper, which extends RA for expressing one-to-

many data transformations. Since data transformations are often performed by

RDBMSs, or by tools and languages that are also to based on RA to various

extents, the new operator is a general solution to express one-to-many data trans-

formations in these systems. Another advantage is that it can be embedded in

expressions having standard relational operators and be logically and physically

optimized.

32

Chapter 3

The Mapper Operator

This chapter presents the mapper operator. First, the formal definition of the

operator is given and then several important properties are studied. Then, the

expressive power of the mapper operator and traditional relational algebra op-

erators are compared. It is formally demonstrated that mappers subsume the

rename, projection and selection unary relational operators. In the sequel, the

expressive power of relational algebra extended with the mapper operator is con-

sidered. Finally, a straightforward extension to the SQL select block to handle

mappers is proposed.

3.1 Introduction

Currently, the frameworks used for data transformation tasks do not provide

adequate support for expressing one-to-many data transformations. In most of

them, one-to-many data transformations are either tedious to write or impossi-

ble to express directly. The root cause seems to lie in that one-to-many data

transformations were not accounted as first class citizens.

The difficulties in handling one-to-many data transformations can be ad-

dressed by means of a specialized operator. Herein, one such operator, named

data mapper, is proposed as an extension to Relational Algebra (RA). The mapper

enables the concise expression of bounded and unbounded data transformations.

A mapper µF is defined as a unary operator, that takes a relation instance of a

33

3. THE MAPPER OPERATOR

given relation schema as input (source schema) and produces a relation instance

of another relation schema as output (target schema)1.

Like generalized projection and aggregation, the mapper operator relies on

arbitrary external functions. It is parameterized by a list of functions. Each

function, designated as a mapper function, expresses part of the intended data

transformation by producing a specific part of the result. When applied to a tuple,

mapper functions may produce several values as output. The output values are

then combined to produce multiple output tuples.

3.2 Formalization

This section, starts by introducing some preliminary notation used throughout

the thesis following Atzeni & de Antonellis (1993) and Abiteboul et al. (1995).

Then, mapper functions are discussed in detail and the semantics of the mapper

operator is presented. Examples of how mappers can be used express one-to-many

data transformations are supplied.

3.2.1 Preliminaries

A domain D is a set of atomic values. A set D of domains, a set A of attribute

names, together with a function Dom : A → D that associates domains to

attributes are assumed. The natural extension of this function to lists of attribute

names: Dom(A1, ..., An) = Dom(A1)×...×Dom(An) will be represented as Dom.

A relation schema R consists of a list A = A1, ..., An of distinct attribute

names represented by R(A1, ..., An), or simply R(A). The quantity n is known

as the degree of the relation schema. Its domain is defined by Dom(A). A

relation instance (or relation, for short) with schema R(A1, ..., An) is a finite set

r ⊆ Dom(A1)× ...×Dom(An); represented as r(A1, ..., An), or simply r(A). Each

element t of r is called a tuple or r-tuple and can be regarded as a function that

associates a value of Dom(Ai) with each Ai; this value is denoted by t[Ai]. Given

1The symbol µ was also used to represent the nest operator of Nested Relational Algebra

(Jaeschke & Schek, 1982; Thomas & Fischer, 1986); the mapper operator is not related to nest.

34

3.2 Formalization

a list B = B1, ..., Bm of distinct attributes in A1, ..., An, t[B] denotes the tuple

〈t[B1], ..., t[Bm]〉 in Dom(B).

The relational algebra as introduced by Codd (1970) will be used. The basic

operations considered are union, difference, Cartesian product, projection (πX ,

where X is a list of attributes), selection (σC , where C is the selection condition)

and renaming (ρA→B, where A and B are lists of attributes).

3.2.2 Mapper functions

A mapper function enables the expression of part of the data transformation

focused on one or more attributes of the target schema. Although the idea is to

apply mapper functions to the tuples of a source relation, it may happen that

some of the attributes of the source schema are irrelevant for the envisaged data

transformation. The explicit identification of the attributes that are relevant is

then an important part of a mapper function. Mapper functions are formally

defined as follows:

Definition 3.1: A mapper function fA is a triple 〈A, B, f〉 where A, a non-

empty list of distinct attributes, defines the output attributes, B, also a list

of distinct attributes, identifies the relevant input attributes, and the function

f :Dom(B)→P(Dom(A)) is a computable function (if B is empty, then f is just

a set). The function fA is said to be an A−mapper function. Let t be a tuple of a

relation instance s(X1, ..., Xn) s.t. all the attributes in B are also in X1, ..., Xn.

The notation fA(t) will be used to represent the application of the underlying

function f to the tuple t, i.e., f(t[B]).

In this way, a mapper function describes how a specific part of the target data

can be obtained from the source data, simultaneously defining part of the target

schema. The intuition is that each mapper function establishes how the values

of a group of attributes of the target schema can be obtained from the attributes

of the source schema. The key point is that, when applied to a tuple, a mapper

function produces a set of values, rather than a single value.

The function fA shall be used freely use to denote both a mapper function

〈A, B, f〉 and the function f itself, omitting the list B whenever its definition

35

3. THE MAPPER OPERATOR

is clear from the context. Moreover, Dom(fA) will be used to refer to list B.

This list should be regarded as the list of the source attributes declared to be

relevant for the part of the data transformation encoded by the mapper function.

Notice, however, that even if fA is a constant function, it may be defined as

being dependent on all the attributes of the source schema. The relevance of the

explicit identification of these attributes will be later clarified, when the algebraic

optimization rules for projections are presented (see Section 4.2).

Certain classes of mapper functions enjoy properties that enable the opti-

mizations of algebraic expressions containing mappers (see Section 4.1). Mapper

functions can be classified according to:

i) the number of output tuples they may produce;

ii) the number of output attributes.

Mapper functions that produce singleton sets, i.e., ∀(t ∈ Dom(X)) |fA(t)| = 1,

are designated single-valued mapper functions. In contrast, mapper functions that

produce multiple elements are said to be multi-valued mapper functions. Concern-

ing the number of output attributes, mapper functions with one output attribute

are called single-attribute, whereas functions with many output attributes are

called multi-attribute.

The single-valued mapper functions 〈A, A, f〉 s.t. f(t) = {t} are designated

as identity mapper functions. Also interesting is the class of the single-valued

mapper functions 〈A, B, f〉 s.t. Dom(B) = Dom(A) and f(t) = {t}. These are

called renaming mapper functions, given that they only establish a transformation

of the schema. Finally, a constant mapper function is a mapper function 〈A, [], f〉

s.t. f(t) = c, for every t ∈ Dom(B) and some c ∈ P(Dom(A)).

As mentioned before, a mapper operator is parameterized by a list of mapper

functions.

Definition 3.2: A list F = fA1
, ..., fAm

of mapper functions is said to be proper

for transforming the data of a relation s(X1, ..., Xn) iff, for 1 ≤ j ≤ m, the

attributes included in the Aj lists are all distinct.

36

3.2 Formalization

In other words, F is proper if it specifies, in a unique way, how the values of

the schema Y = A1 · ... · Am —the target schema— are produced (‘·’ denotes

polymorphic concatenation). The informal idea is that a set of mapper functions

is proper for transforming the data from the source to the target schemas if it

specifies unambiguously how the values of every attribute of the target schema

are produced.

3.2.3 Semantics of the mapper operator

The mapper operator µF puts together the data transformations of the input

relation defined by the mapper functions in F . Given a tuple s of the input

relation, µF (s) consists of the tuples t of Dom(Y) that, for each list of attributes

Ai, associate values in fAi
(s). Formally, the mapper operator is defined as follows:

Definition 3.3: Given a relation s(X1, ..., Xn) and a proper list of mapper func-

tions F = fA1
, ..., fAm

, the mapper of s with respect to F , denoted by µF (s), is

the relation instance with schema Y = A1 · ... ·Am and the set of tuples defined by

µF (s)
def
= {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ m t[Ai] ∈ fAi

(u)}

As mentioned before, this new operator relies on the use of arbitrary com-

putable functions that are external to the resulting extension of the relational

algebra. In this sense, the mapper operator resembles the extension to RA pro-

posed by Klug (1982) for the computation of aggregates. The mapper may be

also be defined in terms of partial functions, i.e., the underlying functions do not

have to be defined for all values of their source set. It follows from Definition 3.3

that if fAi
(t) is undefined for some fAi

∈ F and t ∈ s, then so is µF (s).

The set of admissible functions can be further constrained, if required. As

it will be later explained in Section 3.4, for some specific classes of admissible

functions, the integration of the mapper operator with existing query execution

processors is easier.

In order to illustrate this new operator, Example 1.1.2 is revisited.

Example 3.2.1: The requirements presented in Example 1.1.2 can be described

by the mapper µacct,amt, where acct is an [ACCTNO]-mapper function with domain

37

3. THE MAPPER OPERATOR

ACCT that returns a singleton with the account number ACCT properly left padded

with zeroes and amt is the [AMOUNT,SEQNO]-mapper function with domain AM s.t.,

amt(am) is given by

{(100, i) | 1 ≤ i ≤ (am/100)} ∪ {(am%100, (am/100) + 1) | am%100 6= 0}

where / and % have been used to represent the integer division and modulus

operations, respectively.

For instance, if t is the source tuple (901, 250.00), the result of evaluating

amt(t) is the set {(100, 1), (100, 2), (50, 3)}. Given a source relation s including

t, the result of the expression µacct,amt(s) is a relation that contains the set of

tuples {〈’0901’, 100, 1〉, 〈’0901’, 100, 2〉, 〈’0901’, 50, 3〉}.

Example 3.2.2 describes a real world application of the mapper operator that

encodes a cleaning step of a data cleaning transformations used to clean CiteSeer

input data with the Ajax tool (Galhardas et al., 2000).

Example 3.2.2: Consider the a source relation containing dirty data about sci-

entific articles CITEDATA[AUTHORS, TITLE, EVENTNAME, LOCATION, PUBDATE] taken

from the CiteSeer database. This information needs to be transformed into the re-

lation EVENTS[NAME, TITLE, EVENT, COUNTRY, CITY, YEAR] that contains data about

be used to support the generation of different types of reports. The attributes are

mapped as follows:

1) The target attribute NAME is the author name. Each author’s name is ob-

tained after normalizing the source attribute AUTHORS that consists of a

string with author names in different formats (e.g. with and without ab-

breviations, with and without salutation, using different types of separators,

etc.).

2) The target attribute TITLE is obtained by normalizing the source attribute

TITLE by performing adequate capitalization taking into account punctuation

and adjusting spacing.

3) Attribute EVENT is obtained by normalizing the attribute EVENTNAME. The

associated transformation is responsible for performing several common ab-

38

3.3 Properties of Mappers

breviation expansions (e.g. “Int’l” to “International” or “Proc” to “Proceed-

ings”), detecting the different spellings for the same event (e.g. “SIGMOD”

and “International Conference on Management of Data”) and removing su-

perfluous punctuation.

4) The attributes CITY and COUNTRY are both mapped from the attribute LOCATION.

Some locations are only given the city name and that the order of appearance

of the the city and the the country can be different.

5) The attribute YEAR is derived from the source attribute DATE containing

dates in a variety of formats.

The transformation specified in Example 3.2.2 can be implemented by means

of a mapper µname,title,event,loctn,year, where the authorsNAME is a one-to-many map-

per function that produces the different author names from the character string

denoted by the attribute NAME. The mapper function loctnCITY,COUNTRY is a single-

valued and multi-attribute function. Finally, the functions titleCITY, eventEVENTNAME

and yearYEAR are single-valued functions that map the attributes TITLE, EVENTNAME,

and YEAR, respectively.

3.3 Properties of Mappers

Notice that the mapper operator admits a more intuitive definition in terms of

the Cartesian product of the sets of tuples obtained by applying the underly-

ing mapper functions to each tuple of the input relation. More concretely, the

following proposition holds:

Proposition 3.1: Given a relation s(X1, ..., Xn) and a proper list of mapper

functions F = fA1
, ..., fAm

,

µF (s) =
⋃

u∈s

fA1
(u)× ...× fAm

(u).

39

3. THE MAPPER OPERATOR

Proof

µF (s) = {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ m t[Ai] ∈ fAi
(u)}

=
⋃

u∈s

{t ∈ Dom(Y) | ∀1 ≤ i ≤ m t[Ai] ∈ fAi
(u)}

=
⋃

u∈s

fA1
(u)× ...× fAm

(u)

This alternative way of defining µF (s) is also important because of its oper-

ational flavor, equipping the mapper operator with a tuple-at-a-time semantics.

When integrating the mapper operator with existing query execution processors,

this property plays an important role, because it means the mapper operator ad-

mits physical execution algorithms that favor pipelined execution (Graefe, 1993).

The algorithm that computes the data transformations through mappers just

needs to compute the Cartesian product in Proposition 3.1. Obviously, this algo-

rithm relies on the computability of the underlying mapper functions and builds

on concrete algorithms for computing them. Furthermore, the fact that the calcu-

lation of µF (s) can be carried out tuple by tuple clearly entails the monotonicity

of the mapper operator.

Proposition 3.2: The mapper operator is monotonic, i.e., for every pair of

relations s1(X) and s2(X) if s1 ⊆ s2, then µF (s1) ⊆ µF (s2).

Proof

µF (s1) = {t ∈ Dom(Y) | ∃u ∈ s1 ∀1 ≤ i ≤ m s.t. t[Ai] ∈ fAi
(u)}

by hypothesis s1 ⊆ s2

⊆ {t ∈ Dom(Y) | ∃u ∈ s2 ∀1 ≤ i ≤ m s.t. t[Ai] ∈ fAi
(u)}

⊆ µF (s2)

Mapper operators whose mapper functions are all single-valued admit an

equivalent mapper with only one mapper function. Applying one mapper func-

tion to each input element mimics the behavior of the map operator of functional

programming languages.

40

3.4 Normal Forms

Proposition 3.3: Given a set F = {fA1
, ..., fAm

} of single-valued mapper func-

tions proper for transforming S(X) into T (Y). For every mapper µF , there exists

an equivalent mapper with only one Y−mapper function gY , s.t., µF = µ{gY }.

Proof It suffices to show how to obtain gY . Consider the mapper function

gY [Yi] = fAi
, for every 1 ≤ i ≤ m. The result is obtained by juxtaposition of the

values produced by each function fAi
∈ F .

This proposition states that a mapper comprising only single-valued functions

can be compiled to a mapper using only one single function. This definition is

interesting because in can serve as the basis for simple implementations of the

mapper operator.

3.4 Normal Forms

As defined in Definition 3.2, a list of mapper functions F is proper for transform-

ing the data of a given relation only if the subsets of attributes produced by any

two different mapper functions in F do not overlap.

In general, a data transformation can be achieved through different lists of

functions. Consider, for instance, the [ACCTNO,AMOUNT,SEQNO]-mapper function

named payments with domain [ACCT,AM] that yields installment amounts jointly

with the transformed account numbers. Clearly, the list of proper mapper func-

tions F = acct, amt defined in Example 3.2.1 is equivalent to the single element

list G = payments, with respect to the data transformation they specify. How-

ever, algebraic expressions containing µF offer more opportunities for optimiza-

tion than expressions containing µG. Compared to G, the list F can be regarded

as being reduced compared to G. In a similar way, mapper functions may use

dispensable input attributes. Consider acct′ to be a mapper function with do-

main [ACCT,AM]. Then, the list of functions F can be compared with the list of

functions H = acct′, amt where acct′ only differs from acct in the domain. Given

that H includes one mapper function with a domain larger than it is required, F

can be regarded as being in a more reduced form than H .

In fact, the list F is what will be henceforth designated a normal form, because

it cannot be reduced in a sense that is made precise below.

41

3. THE MAPPER OPERATOR

Definition 3.4: Let S(X1, ..., Xn) be a fixed relation schema. The reduction

relationship between lists of mapper functions proper for transforming the data of

relations with schema S(X1, ..., Xn), represented as −→, is the greatest transitive

relationship satisfying the following constraints:

1) if [f1, ..., 〈A, Bf , f〉, ..., fm] −→ [f1, ..., 〈A, Bg, g〉, ..., fm] then the list of at-

tributes Bg is strictly a sublist of Bf and f(t) = g(t), for every t ∈ Dom(X).

2) if [f1, ..., 〈A, B, f〉, ..., fm] −→ [f1, ..., 〈A1, B1, g1〉, 〈A2, B2, g2〉, ..., fm] then

B1 and B2 are sublists of B, and a permutation ε exists such that A =

ε(A1 · A2) and f(t) = ε(g1(t)× g2(t)), for every tuple t ∈ Dom(X).

Intuitively, a list of mapper functions can be reduced if one of its mapper

functions either includes superfluous attributes in its domain or defines a trans-

formation of data that can be decomposed, that is, expressed as a Cartesian

product of two functions:

Definition 3.5: A mapper µF is in normal form if there does not exist a list of

mapper functions G s.t. F −→ G, i.e., if F cannot be reduced.

From a practical point of view, a mapper that is not in the normal form

presents a number of limitations. To begin with, the co-existence of multiple

independent functions (that produce distinct target attributes) nested within the

same mapper function, limits the choice of physical execution algorithms. For

instance, consider using caching for the most expensive functions. If an expensive

function is implemented together with an inexpensive one in one single function,

it may not be possible to apply this algorithm, as it may not be feasible to decide

at compile time which is the expensive function. Another important aspect is

the number of optimization opportunities that may arise in expressions involving

mappers: the opportunities for applying optimizations in Section 4.1 increase as

the mapper operators involved are closer to normal forms.

From a software engineering point of view, trying to maintain an implemen-

tation where the logic of several functions is bundled into fewer functions is also

undesirable. It violates a desirable property of software artifacts which is high

cohesion. The notion of normal form characterizes a principled way to verify

42

3.5 Expressive Power of Mappers

whether the specification of a mapper together with its functions has this prop-

erty.

3.5 Expressive Power of Mappers

Concerning the expressive power of the mapper operator, two important questions

are addressed. First, the expressive power of relational algebra (RA) is compared

with its extension by the set of mapper operators, henceforth designated as M-

relational algebra, or simply MRA. Second, the simulation of standard relational

operators by a mapper operator is investigated.

MRA is more expressive than standard RA. The expressive power of mapper

operators comes from being allowed to use arbitrary computable functions. In

fact, the class of mapper operators of the form µf , where f is a single-valued

function, is computationally complete. This implies that MRA is computationally

complete and, hence, MRA is not a query language like standard RA.

The question that naturally arises is whether MRA is more expressive than the

relational algebra with a generalized projection operator πL where the projection

list L has elements of the form Yi ← f(A), where A is a list of attributes in

X1, ..., Xn and f is a function involving arithmetic operations only (Silberschatz

et al., 2005).

With generalized projection, it becomes possible to define arithmetic compu-

tations to derive the values of new attributes. Still, there are MRA-expressions

whose effect is not expressible in when extended with the generalized projection

operator, even when considering any computable function. The latter shall be

designated as RA-gp.

The additional expressive power results from mapper operators using functions

that map values into sets of values, becoming able to produce a set of tuples from

a single tuple. For some multi-valued functions, the number of tuples that are

produced depends on the specific data values of the source tuples and does not

even admit an upper-bound.

Consider, for instance, a database schema with relation schemas S(NUM) and

T(NUM, IND), s.t. the domain of NUM and IND is the set of natural numbers. Let s

43

3. THE MAPPER OPERATOR

be a relation with schema S. The cardinality of µ[f](s), where f is a [NUM,IND]-

mapper function s.t. f(n) = {〈n, i〉 : 1 ≤ i ≤ n}, does not (strictly) depend on

the cardinality of s. Instead, it depends on the values of the concrete s−tuples.

For instance, if s is a relation with a single tuple {〈x〉}, the cardinality of µ[f](s)

depends on the value of x and does not have an upper bound.

This situation is particularly interesting because it cannot happen in RA-gp.

Proposition 3.4: For every expression E of the relational algebra RA-gp, the

cardinality of the set of tuples denoted by E admits an upper bound defined simply

in terms of the cardinality of the atomic sub-expressions of E.

Proof This can be proved in a straightforward way by structural induction in

the structure of relational algebra expressions. Given a relational algebra expres-

sion E, let |E| denote the cardinality of E. For every non-atomic expression:

|E1 ∪ E2| ≤ |E1| + |E2|; |E1 − E2| ≤ |E1|; |E1 × E2| ≤ |E1| × |E2|; |πL(E)| ≤

|E|; |σC(E)| ≤ |E|; |ρX1,...,Xn→Y1,...,Yn
(E)| ≤ |E|.

Hence, it follows that:

Proposition 3.5: There are expressions of the M-relational algebra that are

not expressible by the relational algebra RA-gp on the same database schema.

Another aspect of the expressive power of mappers is the ability of mappers

for simulating other relational operators. It will be shown below that projection,

renaming and selection operators can be seen as special cases of mappers. That

is to say, there exist three classes of mappers that are equivalent, respectively,

to projection, renaming and selection. From this it can be concluded that the

restriction of MRA to the operators mapper, union, difference and Cartesian

product is as expressive as MRA.

Projection can be obtained through mapper operators over identity mapper

functions. One identity mapper function is included for each project attribute.

The project attribute has to be an attribute of the source schema.

Rule 3.1: Let S(X1, ..., Xn) be a relation schema and Y1, ..., Yp a list of differ-

ent attributes in X1, ..., Xn. For every relation instance s(X1, ..., Xn), the term

44

3.5 Expressive Power of Mappers

πY1,...,Yp
(s) is equivalent to µF (s), where F = fY1

, ..., fYp
and fYi

is the identity

mapper function, for every 1 ≤ i ≤ m.

Proof

πY1,...,Yp
(s) = {t[Y1, ..., Yp] | t ∈ s}

= {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ m s.t. u[Yi] = t[Yi]}

= {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ m s.t. t[Yi] ∈ {u[Yi]}}

because fYi
(t) = {t}, for every t ∈ Dom(Yi)

= {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ m s.t. t[Yi] ∈ fYi
(u)}

= µfY1
,...,fYp

(s)

Strictly speaking, a renaming ren is a bijective function among sets of at-

tributes X and Y s.t. Dom(Xi) = Dom(Yi) and ren(Xi) 6= Xi, for every

Xi ∈ X. This function is usually represented as X1, ..., Xn → Y1, ..., Yn. The

relational renaming operator is a unary relational operator parameterized by a

renaming function (Abiteboul et al., 1995; Atzeni & de Antonellis, 1993). Re-

naming can also be expressed by a mapper parameterized by renaming mapper

functions. One renaming function is included for mapping each source attribute

to the corresponding target attribute.

Rule 3.2: Let S(X1, ..., Xn) and T (Y1, ..., Yn) be two relation schemas, such that,

Dom(X) = Dom(Y). For every relation instance s(X1, ..., Xn), the expression

ρX1,...,Xn→Y1,...,Yn
(s) is equivalent to µF (s) where F = fY1

, ..., fYn
and, for every

1 ≤ i ≤ n, fYi
is the renaming mapper function 〈Yi, Xi, idDom(Yi)〉.

45

3. THE MAPPER OPERATOR

Proof

ρX1,...,Xn→Y1,...,Yn
(s)

= {t[Y1, ..., Yp] | t ∈ s}

= {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ m s.t. u[Yi] = t[Yi]}

= {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ m s.t. t[Yi] ∈ {u[Yi]}}

because fYi
(t) = {t}, for every t ∈ Dom(Yi)

= {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ m s.t. t[Yi] ∈ fYi
(u)}

= µfY1
,...,fYp

(s)

Since mapper functions may map input tuples into empty sets (i.e., no output

values are created), they may act as filtering conditions which enable the mapper

to behave not only as a tuple producer but also as a filter. In order to illus-

trate this property of mappers, Example 3.5.1 presents an example of selective

transformation of data.

Example 3.5.1 : Consider the conversion of yearly salary data into quarterly

salary data. Let EMPSAL[ESSN, ECAT, EYRSAL] be the source relation that contains

yearly salary information about employees. Suppose a target relation has to be

generated with schema EMPDATA[ENUM, QTNUM, QTSAL], which maintains the quar-

terly salary for the employees with long-term contracts. In the source schema, the

attribute EYRSAL maintains the yearly net salary. Furthermore, consider that the

attribute ECAT holds the employee category and that code ’S’ specifies a short-term

contract whereas ’L’ specifies a long-term contract.

This transformation can be specified through the mapper µempnum,sal, where

empnum is a [ENUM]-mapper function with domain [ESSN,ECAT,EYRSAL] that

makes up new employee numbers (i.e., a Skolem function (Hull & Yoshikawa,

1990)), and sal is the [QTNUM,QTSAL]-mapper function

salQTNUM, QTSAL(ecat, eyrsal)

with domain [ECAT,EYRAL] that generates quarterly salary data, defined as:

46

3.6 SQL Syntax for Mappers

sal(ecat, eyrsal) =

{

{(i, eyrsal
4) | 1 ≤ i ≤ 4} if ecat = ’L’

∅ if ecat = ’S’

As it turns out, mappers are sufficiently expressive for encoding relational

selections, as formalized by the following rule:

Rule 3.3: Let S(X1, ..., Xn) be a relation schema, C a condition over the at-

tributes of this schema. There exists a set F of proper mapper functions for

transforming S(X) s.t., for every relation instance s(X1, ..., Xn), the term σC(s)

is equivalent to µF (s).

Proof It suffices to show how F can be constructed from C and prove the

equivalence of σC and µF . Let F = fX1
, ..., fXn

where each mapper function fXi

is the mapper function with domain Xi s.t.

fXi
(t) =

{

{t[Xi]} if C(t)

∅ if ¬C(t)

Thus,

µF (s) = {t ∈ Dom(X) | ∃u ∈ s ∀1 ≤ i ≤ n t[Xi] ∈ fXi
(u)}

by the definition of fXi

= {t ∈ Dom(X) | ∃u ∈ s s.t. (∀1 ≤ i ≤ n t[Xi] ∈ {u[Xi]}) and C(u)}

= {t ∈ Dom(X) | ∃u ∈ s s.t. (∀1 ≤ i ≤ n t[Xi] = u[Xi]) and C(u)}

= {t ∈ Dom(X) | ∃u ∈ s s.t. t = u and C(u)}

= {t ∈ Dom(X) | t ∈ s and C(t)}

= σC(s)

3.6 SQL Syntax for Mappers

The mapper operator can be easily embedded into the SQL syntax by incorpo-

rating mapper functions as expressions into the select block. The main change

consists of replacing the standard list of columns and expressions that follow the

select keyword by a list of mapper functions as illustrated in Figure 3.1. The

47

3. THE MAPPER OPERATOR

select

select
�
�

�
� mapperfunc�

� ,
�
�

�
�

�

�
from

�
�

�
�table �

�where
�
�

�
�cond

�

�

Figure 3.1: Syntax diagram of a simplified version of the select statement.

relation to be used as input to the mapper operator is defined through the table

expression that comes after the from keyword. Coarsely speaking, such expres-

sion denotes a relation and consists of relation names and sub-select statements

combined through relational operators such as joins, unions, among others, ap-

plied to table names or sub-selects. Optionally, a filtering condition cond can

be specified after the where keyword. The input schema of the mapper is the

schema of the relation denoted by the table expression. The resulting schema

of the mapper is obtained by concatenating the columns of the mapper func-

tions. For clarity of presentation, aspects such as sorting, controlling duplicates,

or grouping and aggregation are not considered.

As illustrated in Figure 3.2, a mapper function can be a column name, an

expression, a function call or an inline mapper function definition. The name of

a column of the input schema denotes an identity mapper function that maps the

same column onto the output schema. Alternatively, the name of the column in

the output schema can be specified. In this case, the function is specified out-

side the select statement using a more appropriate programming language. This

usage of mapper functions is aligned with the SQL syntax for the computation

of aggregates in the sense that aggregate functions like COUNT or SUM are imple-

mented elsewhere and then embedded in the select statement as parameters of

the aggregation operator. An expression defines a single-valued mapper function

that produces one output column. A mapper function call is identified by the

map keyword followed by the function name. These mapper functions must have

been previously declared. In order to avoid clashing of the output column names

of the mapper function with the ones produced by other functions, the mapper

function call can be followed by the specification of new column names. Another

48

3.6 SQL Syntax for Mappers

mapperfunc

colname �

�as
�
�

�
�colname

�

�

�

�expr as
�
�

�
�colname

�map
�
�

�
�func (

�
�

�
� colname�

� ,
�
�

�
�

�

�
)

�
�

�
��

�as
�
�

�
�outputcols

�

�

�map
�
�

�
�outputcols begin

�
�

�
�body end

�
�

�
�

�

�

�

�

outputcols

col�

� (
�
�

�
� col�

� ,
�
�

�
�

�

�
)

�
�

�
�

�

�

Figure 3.2: Syntax diagram of a mapper function specification.

way to define a mapper function consists of specifying inline an anonymous func-

tion. This function is specified through the map keyword with the output column

names that will contribute to the output schema, followed by an inline specifi-

cation of the function body within the begin...end block. In the case of inline

function specifications, the input columns do not need to be specified. Instead,

they are implicitly defined when the function implementation body accesses the

columns of the input relation.

The solution for Example 1.1.2 using the proposed SQL syntax for the mapper

operator is illustrated in Figure 3.3. The first mapper function, lpad, produces

only one output value for each input value (line 2). It is implemented as the

expression that pads zeroes on the left of the source column ACCT to form the

column ACCTNO. The second mapper function is specified inline and generates mul-

tiple output values (lines 3–16). In this function, an auxiliary variable rem_amnt

49

3. THE MAPPER OPERATOR

1: select
2: lpad(tostr(ACCT), 4, ’0’) as ACCTNO,
3: map AMOUNT, SEQNO

4: begin

5: var rem_amnt: numeric

6: var seq_no: integer = 0

7: rem_amnt = AMT

8: loop while rem_amnt > 100 do

9: rem_amnt = rem_amnt - 100

10: seq_no = seq_no + 1

11: insert rem_amnt, seq_no
12: end loop

13: if rem_amnt > 0 then

14: insert rem_amnt, seq_no + 1

15: end if

16: end

17: from LOANS

Figure 3.3: Transformation of Example 1.1.2 using inline mapper functions and
the proposed syntax of the mapper operator.

is initialized with the AMT value and is used to partition the total amount into

parcels of 100. The dynamic creation of output values is achieved by nesting an

insert statement (line 11) into a while loop. Each time an insert is executed, a

new output value, with two components, one for AMOUNT and another for SEQNO,

is added to the set of values to be returned by the mapper function. When both

functions are executed for an input tuple, the values stored in the sets of values

are combined through a Cartesian product to produce the output values.

The distinguishing feature illustrated by this example is that mappers confine

the mapping logic used to populate target fields in separate mapper functions.

For example, by comparison with the table function implementation illustrated

in Figure 2.4, the logic used to load the field ACCTNO in this example is kept

outside the loop. In practice, this turns data transformations implemented using

a mapper easier to read. This is especially true when dealing with target tables

with tens of columns, which are common in real-world problems. Nesting all rules

within the loop, like in stored procedures and table functions, compromises their

readability (see Section 2.3).

50

3.6 SQL Syntax for Mappers

1: select map acct(ACCT) as ACCTNO,
2: map amt(AM) as AMOUNT

3: from LOANS, ACCOUNTS

4: where ACCOUNTS.ACCTN = LOANS.ACCT

5: and ACCOUNTS.STATUS = ’O’

6: and AMOUNT < 50

Figure 3.4: A query that selects small payments of open accounts by implementing
a mapper together with a-priori and a-posteri filters.

Mapper functions used in mapper function calls can be built-in, like the aggre-

gation functions of SQL, or defined by the user. In the current proposed syntax

of the mapper operator, no syntax is supplied for declaring user defined mapper

functions. User defined mapper functions can be defined in mostly any language

as long as it provides some mechanism for returning multiple values. One ex-

ample of such mechanism is the pipe row statement of PL/SQL (Feuerstein &

Pribyl, 2005).

Specifying filters in mapper queries

Filters are specified using the cond block of the where clause. Two kinds of filters

can be specified:

i) a-priori filters, which apply to each tuple of the input relation defined by

the table and are evaluated before the mapper; and

ii) a-posteriori filters, which are evaluated over the output of the mapper and

are used to limit the mapper results.

Although cond consists of only one Boolean expression, these different kinds of

filters are identified by sub-expressions defined over particular sets of columns.

Sub-expressions that are defined over the columns of the input schema expression

define a-priori filters while sub-expressions that are defined over columns of the

output schema define a-posteriori filters. In the query presented in Figure 3.4,

the sub-expression ACCOUNTS.STATUS = ’O’ defines an a-priori filter while the sub-

expression AMOUNT < 50 defines an a-posteriori filter.

51

3. THE MAPPER OPERATOR

In some situations it is not possible to clearly separate these two kinds of

filters. For example, if the condition is dependent both on the input and output

columns of the mapper like AMOUNT < ACCOUNTS.WDRAWLIMIT, the predicate can only

be evaluated after the mapper, i.e., a-posteriori. The specification of a-posteriori

filters in the where clause opens an interesting possibility of defining the condi-

tion using mapper functions. Since mapper functions return sets of values, their

results can be tested with set operators like in or exists. Consider, for example,

a condition for testing if an article is contained in a list of names extracted from a

text description expressed as ARTICLE_NAME in cleannames(ARTICLE_DESCRIPTION),

where the cleannames is a function that returns multiple values.

3.7 Related Work

To support the growing range of applications of RDBMSs, extensions to RA have

been proposed since its inception. The most widely used extension is possibly

the aggregation operator, proposed by Klug (1982) for data consolidation, which

relies on a set of supplied aggregation functions.

Applications requiring data transformations bring a new requirement to RA.

Their focus is no longer limited to the initial idea of deriving information as sug-

gested by Paredaens (1978) and Aho & Ullman (1979). Transformations also in-

volve the production of new data items. Up to now some operators have been pro-

posed for addressing the problem of expressing one to many data-transformations

(Amer-Yahia & Cluet, 2004; Cunningham et al., 2004; Galhardas et al., 2001;

Raman & Hellerstein, 2001). Although these operators show similarities with

mappers, most of them are only capable of expressing bounded one to many

transformations.

The unpivot operator of SQL Server 2005 transposes columns into rows and

can be used for expressing one-to-many data transformations (Cunningham et al.,

2004). However, this operator can only be used to express bounded transforma-

tions.

Potter’s Wheel fold operator is capable of producing several output tuples for

each input tuple, which the authors identify as one-to-many transforms (Raman

& Hellerstein, 2001). The main difference with respect to the mapper operator

52

3.8 Conclusions

lies in the number of output tuples generated. In the case of the fold operator,

the number of output tuples is bound by number of columns of the input relation,

while the mapper operator may generate an arbitrary number of output tuples.

The semantics of the Ajax map operator represents exactly a one-to-many data

transformation (Galhardas et al., 2001). Unlike our data mapper, the Ajax map

operator allows the specification of a selection condition applied to each input

tuple. Abstracting from the issue of generating rejected records, the semantics

of Ajax map can be obtained by composing the mapper operator presented here

with other relational algebra operators.

The work of Amer-Yahia & Cluet (2004) addresses the problem of efficiently

extracting and loading data. They propose that data transformations can be

expressed through RA operations extended with a grouping operator and a map

operator. Likewise, this thesis defends that data transformations should be based

on an extended RA featuring the mapper operator. However, unlike the mapper

operator, the map operator does not perform one-to-many tuple transformations.

Nevertheless, its presence validates the need for a powerful data transformation

operator.

Functional programming languages like, for example, ML (Paulson, 1996)

and Scheme (Abelson et al., 1985), have a map function that can be regarded

as an operator that applies one function to a set of elements, producing a set of

transformed elements. However, there is a fundamental difference in the semantics

of the functional map and the mapper operator: the map function operator only

applies one function to the input elements. It can be argued that the different

functions that compose a mapper can be compiled into one (for example using

Proposition 3.3). However, as explained in Section 3.4, mapper operators with

many different functions are preferable, since the exposition of more functions

enables more optimization opportunities.

3.8 Conclusions

This chapter presented a specialized mapper operator for expressing one-to-many

data transformations that extends Relational Algebra. Similarly, to other exten-

sions to the basic RA, like generalized projection and aggregation, the mapper

53

3. THE MAPPER OPERATOR

operator relies on the use of external functions. These functions express part of

the envisioned data transformation by producing a subset set of the the output

attributes and are capable of producing multiple output values.

The study of the mapper operator proceeded by defining its formal semantics

and analyzing some of its properties. A commencing result consisted of deriving

an alternative semantics in terms of a Cartesian product of the function outputs.

This result is important, since it endows an intuitive iterator-based physical ex-

ecution algorithm for the mapper operator. It is well known that iterator-based

physical operators lend themselves to simpler implementations (Graefe, 1993).

Concerning the expressive power of mappers, it has been shown that RA extended

with the new operator becomes more expressive than standard RA. Moreover, it

was also demonstrated that mappers subsume unary relational operators, like

projection, renaming and selection.

One driving concept of mappers consists of promoting the enclosing the logic

to populate distinct attributes into separate functions. Since mapper functions

may be user-defined, the idea of separation is undermined if the mapping logic is

coupled to a few functions. To establish the desired form of a mapper, a formal

definition of a mapper normal form was introduced. This definition can be used

to decide from equivalent mappers which one is preferable. The low coupling

promoted by normal forms, besides enhancing readability, is beneficial form the

point of view of performance, because mapper functions can be explored for both

logical and physical optimizations.

Finally, a seamless extension to the SQL syntax for representing mapper op-

erations was proposed and then used to express some examples.

54

Chapter 4

Algebraic Optimization

This chapter addresses the rewriting of expressions containing standard relational

operators and mappers. It presents a set of algebraic rewriting rules that enable

the logical optimization of data transformation expressions combining relational

operators with mappers. These rules are given with their formal proofs of correct-

ness. This chapter also introduces a cost model for deciding which rules should

be applied in query optimizations. The proposed cost model is illustrated in an

example with rules for pushing selections.

4.1 Introduction

Algebraic rewriting rules are equations that specify the equivalence of two al-

gebraic terms. Queries presented as relational expressions can be transformed,

through algebraic rewriting rules, which are then evaluated more efficiently.

Consider the data transformation presented in Figure 3.4. This data trans-

formation applies a filter to the result of a mapper operator. This mapper

operator, in turn, is evaluated over the relation that results from applying a

filter to the input relation denoted by a join operation. The query plan for

this query is depicted in Figure 4.1. Therein, the filter σAMOUNT < 50 is applied

to the mapper µacct,amt, which takes as input the tuples of the input relation

ACCOUNTS1ACCOUNTS.ACCTN=LOANS.ACCTLOANS that are not filtered by σACCOUNT.STATUS = ’O’.

The plans of one-to-many data transformations may undergo two kinds of

rewritings. First, the rewritings common to RA queries can be applied (Chaud-

55

4. ALGEBRAIC OPTIMIZATION

σAMOUNT < 50

µacct,amt

σACCOUNTS.STATUS = ’O’

1ACCOUNTS.ACCTN=LOANS.ACCT

ACCOUNTS LOANS

Figure 4.1: Query plan for the query presented in Figure 3.4.

huri, 1998; Ullman, 1988). For example, when the input relation is defined

through join operations, some selections can be pushed through the join oper-

ators. Second, a set of rewritings specific to the proposed mappers can be intro-

duced. In the example of Figure 4.1, the condition AMMOUNT < 50 can be pushed

down the amt mapper function using an optimization rule to be presented in this

chapter (Rule 4.3).

One rewriting heuristic consists of deriving an equivalent algebraic expression

that minimizes the amount of information transferred from operator to operator.

In this spirit, two classes of algebraic rewriting rules are adapted to the mapper

operator. First, rules for pushing selections, which attempt to reduce the car-

dinality of the source relations to be evaluated as early as possible. Secondly,

the rules for pushing projections, which avoid propagating attributes that are not

used by subsequent operators are presented.

4.2 Projections

A projection applied to a mapper is an expression of the form πZ(µF (s)). If

F = fA1
, ..., fAm

is a list of mapper functions, proper for transforming S(X), then

an attribute Yi in Y = A1 · ... ·Am such that Yi 6∈ Z, (i.e., not projected by πZ) is

said to be projected away. Attributes that are projected away offer optimization

opportunities. Since they are not required for subsequent operations, the mapper

56

4.2 Projections

functions that generate them do not need to be evaluated. Rule 4.1 makes this

idea precise.

Rule 4.1: Let F = fA1
, ..., fAm

be a list of mapper functions, proper for trans-

forming S(X) and Y = A1 · ... ·Am. Let Z and Z ′ be lists of attributes in Y . For

every relation instance s of S(X), πZ(µF (s)) = πZ(µF ′(s)), where F ′ = {fAi
∈

F | Ai contains at least one attribute in Z}.

Proof In what follows, Ai∩Z 6= ∅ is used to represent that at least one attribute

of Ai is in the list Z. Thus,

πZ(µF (s)) = {t[Z] | t ∈ Dom(Y) and t ∈ µF (s)}

= {t[Z] | t ∈ Dom(Y) and ∃u ∈ s ∀fAi
∈ F s.t. t[Ai] ∈ fAi

(u)}

because only attributes in Ai ∩ Z are projected

and, by hypothesis, Ai ∩ Z 6= ∅ ⇔ fAi
∈ F ′

= {t[Z] | t ∈ Dom(Y) and ∃u ∈ s ∀fAi
∈ F ′ s.t. t[Ai] ∈ fAi

(u)}

= πZ(µF ′(s))

Concerning Rule 4.1, it should be noted that if Z = A1 · ... · Am (i.e, all

attributes are projected), then F ′ = F (i.e., no mapper function can be forgotten).

Example 4.2.1: Consider the mapper µacct,amt defined in Example 3.2.1. The

expression πAMOUNT(µacct,amt(LOANS)) is equivalent to πAMOUNT(µamt(LOANS)). The

acct mapper function is forgotten because the ACCOUNT attribute was projected

away. Conversely, neither of the mapper functions can be forgotten in the expres-

sion πACCTNO,SEQNO(µacct,amt(LOANS)).

Attributes that are not used as input of any mapper function do not need to

be retrieved from the mapper input relation. Thus, a projection that retrieves

only those attributes that are relevant for the functions in F ′ can be introduced.

Rule 4.2: Let F = fA1
, ..., fAm

be a list of mapper functions, proper for trans-

forming S(X) and Y = A1 · ... · Am. For every relation instance s of S(X),

µF (s) = µF (πN (s)), where N is a list of attributes in X, that includes only the

attributes in Dom(fAi
), for every mapper function fAi

in F .

57

4. ALGEBRAIC OPTIMIZATION

Proof

µF (s) = {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ m s.t. t[Ai] ∈ fAi
(u)}

by the definition of mapper function,

fAi
(u) = fAi

(u[B]) = fAi
(u[N])

= {t ∈ Dom(Y) | ∃u ∈ s ∀1 ≤ i ≤ m s.t. t[Ai] ∈ fAi
(u[N])}

= {t ∈ Dom(Y) | ∃u ∈ πN (s) ∀1 ≤ i ≤ m s.t. t[Ai] ∈ fAi
(u)}

= µF (πN(s))

Example 4.2.2: Consider the relation LOANS[ACCT, AM] of Example 1.1.2. The

attribute AM is an input attribute of the mapper function amt defined in Example

3.2.1. Thus, the expression µamt(LOANS) is equivalent to µamt(πAM(LOANS)).

4.3 Selections

Two algebraic rewriting rules for optimizing expressions that combine filters ex-

pressed as relational selection operators with mappers are now presented. The

first rule alleviates the cost of performing the Cartesian product operations that

are used to implement the mapper operator. The second rule avoids superfluous

function evaluations by pushing selections to the sources, and thus reducing the

number of tuples fed to the mapper as early as possible.

4.3.1 Pushing selections to mapper functions

When applying a selection to a mapper, one can take advantage of the mapper

semantics to introduce an important optimization. Given a selection σCAi
applied

to a mapper µfA1
,...,fAm

, this optimization consists of pushing the selection σCAi
,

where CAi
is a condition on the attributes produced by some mapper function fAi

,

directly to the output of the mapper function. Rule 4.3 formalizes this notion.

Rule 4.3: Let F = fA1
, ..., fAm

be a list of multi-valued mapper functions, proper

for transforming relations with schema S(X). Consider a condition CAi
depen-

dent of a set of attributes Ai for some 1 ≤ i ≤ m. Then, for every relation

58

4.3 Selections

instance s(X),

σCAi
(µF (s)) = µF\{fAi

}∪{σCAi
◦fAi

}(s)

where

(σCAi
◦ fAi

)(t) =







fAi
(t) if C(t)

∅ if ¬C(t)

Proof Let Y = A1 · ... · Am.

σCAi
(µF (s)) = {t ∈ Dom(Y) | t ∈ µF (s) and CAi

(t[Ai])}

= {t ∈ Dom(Y) | ∃u ∈ s

∀1 ≤ j ≤ m s.t. t[Aj] ∈ fAj
(u) and CAi

(t[Ai])}

= {t ∈ Dom(Y) | ∃u ∈ s

∀1 ≤ j ≤ m, j 6= i s.t. t[Aj] ∈ fAj
(u) and

t[Ai] ∈ fAi
(u) and CAi

(t[Ai])}

= {t ∈ Dom(Y) | ∃u ∈ s

∀1 ≤ j ≤ m, j 6= i s.t. t[Aj] ∈ fAj
(u) and

t[Ai] ∈ σCAi
(fAi

(u)}

= µF\{fAi
}∪{σCAi

◦fAi
}(s)

The benefits of Rule 4.3 are easier to understand when considering the al-

ternative definition for the mapper semantics in terms of a Cartesian product

presented in Section 3.3. Intuitively, if at least one of the mapper functions is

multi-valued, it follows from Proposition 3.1, that the Cartesian product expan-

sion generated by fA1
(u)× ...× fAm

(u) can produce duplicate values for some set

of attributes Ai, 1 ≤ i ≤ m. To see how, please refer to Example 3.2.1. Hence,

by pushing the condition CAi
to the mapper function fAi

, the condition will be

evaluated fewer times, i.e., only once for each output value of fAi
(t) as opposed

to once for each output tuple of µF (t). This is particularly important for ex-

pensive predicates, e.g., those involving expensive functions or sub-queries (e.g.,

evaluating the SQL exists operator). See, e.g., Hellerstein (1998) for details on

optimization of queries with expensive predicates.

59

4. ALGEBRAIC OPTIMIZATION

Furthermore, note that when CAi
(t) does not hold, the evaluation of (σCAi

◦

fAi
)(t) returns the empty set. Considering the Cartesian product semantics of

the mapper operator presented in Proposition 3.1, once a function returns the

empty set, no output tuples will be generated. Thus, the evaluation of all map-

per functions fAj
, such that j 6= i can be skipped. Physical execution algorithms

for the mapper operator, like the Shortcircuiting algorithm to presented in Sec-

tion 5.3, can take advantage of this optimization by evaluating fAi
before any

other mapper function.

This optimization can be employed even in situations in which neither expen-

sive functions nor expensive predicates are present, as it alleviates the average

cost of the Cartesian product, which depends on the cardinalities of the sets of

values produced by the mapper functions.

Example 4.3.1: Consider the relation SMALLPAYMENTS[ACCTNO, AMOUNT, SEQNO]

formed by all payments whose amount is smaller than 5. This relation can be ob-

tained from the relation PAYMENTS presented in Example 1.1.2 by composing a se-

lection with a mapper. According to Example 3.2.1, µacct,amt(LOANS) corresponds

to the relation PAYMENTS. Then, the expression σAMOUNT<5(µacct,amt(LOANS)) de-

notes the relation SMALLPAYMENTS. By applying Rule 4.3 to the above expression,

the expression µacct,σAMOUNT<5◦amt(LOANS), which is likely to be faster to evaluate, is

obtained.

4.3.2 Pushing selections through mappers

An alternative way of rewriting expressions of the form σC(µF (s)) consists of

replacing the attributes that occur in the condition C by the mapper functions

that compute them. Suppose that, in the selection condition C, an attribute A

is produced by the mapper function fA. By replacing the attribute A with the

mapper function fA in condition C, an equivalent condition is obtained.

In order to formalize this notion, some further notation is required. Let F =

fA1
, ..., fAm

be a list of mapper functions proper for transforming S(X) and Y =

A1 · ... · Am. The function resulting from the restriction of fAi
to an attribute

Yj ∈ Ai is denoted by fAi
|Yj

. Moreover, given an attribute Yj ∈ Y , F |Yj
represents

60

4.3 Selections

the function fAi
|Yj

s.t. Yj ∈ Ai. Note that, because F is a proper list of mapper

functions, the function F |Yj
exists and is unique.

Rule 4.4: Let F = fA1
, ..., fAm

be a list of mapper functions, proper for trans-

forming S(X), Y = A1 · ... · Am and B = B1, ..., Bp be a list of attributes in Y .

If H = F |B1
, ..., F |Bp

is a list of single-valued functions then, for every relation

instance s of S(X),

σCB
(µF (s)) = µF (σC[B1,...,Bp←F |B1

,...,F |Bp](s))

where CB means that C depends on the attributes of B, and the condition that

results from replacing every occurrence of each Bi by Ei is represented by the

expression C[B1, ..., Bp ← E1, ..., Ep].

This rule replaces each attribute Bi in the condition C by the expression that

describes how its values are obtained. In practice, this rule is of broad application

as the attributes used in the condition of a selection are often generated either

by single-valued functions like:

i) identity mapper functions;

ii) constant mapper functions;

iii) arithmetic expressions.

Cases (i) and (ii) draw from attribute renaming and value assignments. Consider,

for example the condition C to be A < B. The expression σA<B(µX→A,2→B,fC
(s))

can be re-written as µX→A,2→B,fC
(σX<2(s)). Concerning case (iii), a new con-

dition is produced by expanding attributes with arithmetic expressions. In this

case, although the expression is evaluated twice —once in the condition and once

in the mapper—, the number of tuples that have to be handled by the mapper

operator can be drastically reduced. These tradeoffs are analyzed in detail in

Section 4.6.

Proof Rule 4.4 can be demonstrated by proceeding in two steps. First, by

expanding both expressions into their corresponding sets of tuples. Second, the

61

4. ALGEBRAIC OPTIMIZATION

equivalence of these sets is established. So, on the one hand,

σCB
(µF (s)) = {t ∈ Dom(Y) | t ∈ µF (s) and CB(t)}

= {t ∈ Dom(Y) | ∃u ∈ s s.t. t[Ai] ∈ fAi
(u) and CB(t),

∀1 ≤ i ≤ m}

(4.1)

On the other hand,

µF (σC[B1,...,Bp←F |B1
,...,F |Bp](s))

= {t ∈ Dom(Y) | ∃u ∈ σC[B1,...,Bp←F |B1
,...,F |Bp] s.t. t[Ai] ∈ fAi

(u),

∀1 ≤ i ≤ m}

=
{

t ∈ Dom(Y) | ∃u ∈ {v ∈ Dom(X) | v ∈ s and

C[B1, ..., Bp ← F |B1
, ..., F |Bp

](v)} s.t. t[Ai] ∈ fAi
(u), ∀1 ≤ i ≤ m

}

= {t ∈ Dom(Y) | ∃u ∈ s s.t. t[Ai] ∈ fAi
(u)

and C[B1, ..., Bp ← F |B1
, ..., F |Bp

](u), ∀1 ≤ i ≤ m}

(4.2)

It now remains to prove that, if t[Ai] ∈ fAi
(u), for every 1 ≤ i ≤ m, then

C[B1, ..., Bp ← F |B1
, ..., F |Bp

](u) iff CB(t)

This trivially follows from the definition of F |Bi
, considering that all functions in

H are single-valued.

4.4 Joins

Another important binary operation is the join, represented as ./C (see e.g.,

Ullman (1988) or Garcia-Molina et al. (2002)). Join operators can be obtained

as a combination of a selection with a Cartesian product1 (Mishra & Eich, 1992).

Concretely, r ./C s = σC(r×s). Using this equivalence, it can be easily seen that

the mapper operator can be distributed over the join in two steps. First, pushing

the mapper over the selection σC and second, distributing the mapper over the

1To be precise, the renaming operator should also be employed when the schemas of r and
s share attributes. For simplicity of presentation, disjointness of the schemas is assumed. This
assumption does not interfere with the results drawn.

62

4.5 Other Binary Operators

Cartesian product r × s. For the first step, Rule 4.4 can be used. However, the

second step is hindered by the fact that the set F appropriate for transforming

data with the relation schema of r × s does not necessarily contain sets FR and

FS for transforming data with the relation schema of r and s. However, if F

can be partitioned into two disjoint subsets FR and FS, then the equivalence

µF (s× r) = µFS
(s)× µFR

(r) holds. This notion is formalized in Rule 4.5.

Rule 4.5: Let F = {fA1
, ..., fAm

} be a set of mapper functions proper for trans-

forming SR(X, Y) into T (Z). Let s and r be relation instances with schemas

S(X) and R(Y) respectively. If there exist ZR and ZS, such that, ZR · ZS = Z,

and two disjoint subsets FR ⊆ F and FS ⊆ F of mapper functions, proper

for transforming, respectively, S(X) into TR(ZR) and R(Y) into TS(ZS) then

µF (s× r) = µFS
(s)× µFR

(r).

Proof

µF (r × s) = {t ∈ Dom(Z) | ∃u ∈ (r × s) s.t. t[Ak] ∈ fAk
(u), ∀fAk

∈ F}

= {t ∈ Dom(Z) | ∃u ∈ (r × s) s.t. t[Ai] ∈ fAi
(u), ∀fAi

∈ FR

and t[Aj] ∈ fAj
(u), ∀fAj

∈ FS}

since for every fAi
∈ FS, Dom(fAi

) is in X,

and for every fAj
∈ FR, Dom(fAj

) is in Y ,

=
{

t ∈ Dom(Z) | ∃u ∈ (r × s) s.t.
(

t[Ai] ∈ fAi
(u[X]), ∀fAi

∈ FR

and t[Aj] ∈ fAj
(u[Y]), ∀fAj

∈ FS

)}

because {u | u ∈ r × s} = {u | u[R] ∈ r and u[S] ∈ s},

= {t ∈ Dom(Z) | ∃v ∈ r s.t. t[Ai] ∈ fAi
(v), ∀fAi

∈ FR

and ∃w ∈ s s.t. t[Aj] ∈ fAj
(w), ∀fAj

∈ FS}

= µFR
(r)× µFS

(s)

4.5 Other Binary Operators

Unary operators of relational algebra enjoy useful distribution laws over binary

operators. The mapper operator is a unary operator and it allows the following

straightforward equivalence to be established:

63

4. ALGEBRAIC OPTIMIZATION

Rule 4.6: Let F = {fA1
, ..., fAm

} be a set of mapper functions, proper for trans-

forming S(X) into T (Y). Let r and s be relation instances with schema S(X).

Then, µF (r ∪ s) = µF (r) ∪ µF (s)

Proof

µF (r ∪ s) = {t ∈ Dom(Y) | ∃u ∈ (r ∪ s) s.t. t[Ai] ∈ fAi
(u), ∀1 ≤ i ≤ m}

= {t ∈ Dom(Y) | ∃u ∈ s s.t. t[Ai] ∈ fAi
(u) or ∃v ∈ s s.t.

t[Ai] ∈ fAi
(v), ∀1 ≤ i ≤ m}

= µF (r) ∪ µF (s)

However, the mapper operator does not distribute over intersection and differ-

ence, since these operators are not monotonic. For example, consider a mapper

function f such that f(a) = 0 and f(x) = 1 if x 6= a. Let A = {a, b} and

B = {a, c}. In this case, µf(A ∩ B) = {0}, but this result is different from

µf(A) ∩ µf(B) = {0, 1}.

4.6 Cost of Expressions

This section presents the cost estimation framework for expressions that combine

selections and mappers. First, the cost of applying a selection to a mapper is

estimated. Second, the cost estimates for optimized expressions obtained by

applying Rule 4.3 and Rule 4.4 are developed, giving particular attention to the

gains obtained with the proposed optimizations.

The primary factors affecting the gain obtained when applying the proposed

optimizations are predicate selectivity (Selinger et al., 1979), the mapper func-

tion fanout and the mapper function evaluation cost. Similarly to Chaudhuri &

Shim (1993), the average cardinality of the output values produced by a mapper

function is designated as the function fanout. Analogously, the mapper fanout is

defined as the average number of tuples produced by the mapper for each input

tuple.

64

4.6 Cost of Expressions

4.6.1 Cost of mappers

Since the evaluation of a mapper can be performed on a tuple by tuple basis,

the cost of evaluating the mapper operator expression µF (r) can be estimated by

adding up the per-tuple cost of transforming each tuple of the input relation r.

For each tuple t ∈ r, the cost of producing the output tuples can be defined as

the sum of the costs of evaluating all mapper functions and the cost of performing

the Cartesian product of the function outputs.

The notion of cost introduced above can be formalized as follows. Consider

Cf to be the estimated cost per-tuple of a mapper function f . Then, CF is the

estimated cost per-tuple of evaluating all the mapper functions f ∈ F , given

by CF =
∑

f∈F Cf . Furthermore, note that the cost of computing a Cartesian

product is linear in the size of its inputs, i.e., given two sets of elements, A and

B, the Cartesian product A× B can be computed in time linear to |A| · |B|.

For a given tuple t, when evaluating an expression of the form µF (t), the input

of the Cartesian product consists of the sets returned by the mapper functions in

F . In this way, if F = fA1
, ..., fAm

, the cost of computing the Cartesian product

algorithm, is k · |fA1
(t)| · ... · |fAm

(t)| + m · k0, where k is an adjustment factor1,

m is the number of functions in F , and the constant k0 represents the overhead

incurred by the algorithm for checking the emptiness of the input sets. In practice,

when |fAi
(t)| = 0, the cost of the Cartesian product algorithm is not zero but a

small amount captured by m · k0.

Since the exact number of elements produced by f(t) can only be determined

after evaluating the functions, an estimate for |f(t)| for every f ∈ F is necessary.

The estimated value of |f(t)| is given by the expected fanout of a mapper function

f , designated by Of .

The mapper fanout is represented as OF . Assuming that the function outputs

are not correlated, the value of OF can be approximated by
∏

f∈F Of . There-

fore, if F has m mapper functions, the estimated per-tuple cost of executing the

Cartesian product is Cprd = k ·OF + m · k0.

1It is assumed that implementations of the Cartesian product handle attribute values by
reference and not by value. As an effect, k is independent of the size of the inputs.

65

4. ALGEBRAIC OPTIMIZATION

Finally, for an input relation r with cardinality n, the estimated cost of µF (r)

is:

CµF
= n · (Cprd + CF) = n · (k ·

∏

f∈F

Of + m · k0 +
∑

f∈F

Cf) (4.3)

4.6.2 Cost of a filter applied to a mapper

The cost of the expression σCA
(µF (r)) can be estimated as the cost of evaluating

the mapper plus the cost of evaluating the selection condition on each tuple

produced by the mapper. In the sequel, this expression will be referred to as the

non-optimized expression.

Consider Csel to be the average per-tuple cost of evaluating the selection

condition CA and let α be its corresponding selectivity, with 0 ≤ α ≤ 1. The cost

of the non-optimized expression is:

Cnonopt = CµF
+ n ·OF · Csel (4.4)

Multiplying n by the fanout of the mapper OF , results in the expected number of

output tuples for the mapper operator. Since the selection condition is evaluated

once for each tuple returned by the mapper, n ·OF ·Csel represents the total cost

of evaluating the selection condition.

4.6.3 Cost of an expression optimized with rule 4.3

The optimized expression obtained through Rule 4.3 is µF\gAj
∪{σCAj

◦gAj
}(r). As-

suming that gAj
∈ F is the mapper function onto which the condition is pushed,

the cost corresponds to the costs of the list of mapper functions where the function

σCAj
◦ gAj

replaces gAj
.

The estimated per-tuple cost of evaluating σCAj
◦ gAj

is CgAj
+ OgAj

· Csel, i.e.,

the cost of evaluating the mapper function gAj
plus the cost of evaluating the

selection condition CAj
for each element produced by the function.

Obviously, the cost of the Cartesian product for the optimized expression is not

the same as the cost of the Cartesian product for the non-optimized expression,

since σCAj
◦ gAj

and gAj
have different fanouts. More precisely, since α represents

the probability that CAj
holds, the fanout of σCAj

◦ gAj
is given by α · OgAj

.

66

4.6 Cost of Expressions

This means that the cost of the Cartesian product for the optimized expression,

represented as Cprd′ is given by k ·OF\gAj
·α ·OgAj

+ m · k0, which is equivalent to

k · α ·OF + m · k0.

The estimated cost of the mapper corresponding to the optimized expression

is:

n · (Cprd′ + CF\gAj
+ CgAj

+ OgAj
· Csel) (4.5)

which corresponds to the cost of the Cartesian product plus the cost of computing

all functions except gAj
, plus the cost of computing σCAj

◦ gAj
. This can be

simplified to

n · (Cprd′ + CF + OgAj
· Csel) (4.6)

The expected gain for this optimization, ∆4.3, is now computed as the differ-

ence between (4.4) and (4.6), which becomes:

∆4.3 = n · (Cprd + CF) + n ·OF · Csel − n · (Cprd′ + CF + OgAj
· Csel) (4.7)

Since Cprd′ = k · α · OF + m · k0, developing and simplifying (4.7) yields (see

Appendix A.1):

∆4.3 = n · k ·OF · (1− α) + n · Csel · (OF − OgAj
) (4.8)

Notably, high gains are obtained for small selectivities. In contrast, as the selec-

tivity α approaches 100%, the factor n ·k ·OF · (1−α) in (4.8) tends to zero, thus

decreasing the gain. Concerning the influence of the mapper function fanout OgAj
,

it can be concluded from (4.8) that the larger is the difference between OF and

OgAj
, the higher is the gain. It is interesting to observe that if OgAj

> OF , when

the selectivity is near 100%, ∆4.3 will be negative. However, for this to be possi-

ble, since gAj
∈ F , some other function in F should have a fanout much smaller

than 1. If the fanout OgAj
is smaller than the mapper fanout, i.e., OgAj

< OF ,

the gain will always be positive. In this situation, the higher is the value of Csel,

the higher is the gain ∆4.3 obtained.

67

4. ALGEBRAIC OPTIMIZATION

4.6.4 Cost of an expression optimized with rule 4.4

As presented in Section 4.3.2, the optimized expression obtained by applying

Rule 4.4 takes the form µF (σC[B1,...,Bl←F |B1
,...,F |Bl

](s)), where H = F |B1
, ..., F |Bl

is

the set of mapper functions that are propagated into the selection condition.

The cost of the optimized expression is given by summing (i) the cost of

evaluating the new selection condition C[B1, ..., Bl ← F |B1
, ..., F |Bl

], with (ii)

the cost of evaluating the mapper µF for every tuple that is not filtered by the

condition. Since the new condition is obtained by inlining the mapper functions

of H in the condition C, the estimated per-tuple cost of evaluating the new

condition is Csel + CH . This corresponds to the cost of evaluating the initial

selection plus the cost of evaluating the propagated functions. Therefore, when

applying this rule, the Cartesian product and the rest of the mapper functions

are only evaluated when σC[B1,...,Bl←F |B1
,...,F |Bl

] holds. Thus, the estimated cost of

the optimized expression is:

n · (Csel + CH) + n · α · (Cprd + CF) (4.9)

where n · (Csel + CH) represents the cost of evaluating the condition and n · α ·

(Cprd + CF) represents the cost of evaluating the mapper for the tuples that are

not filtered by the condition. Note that, since only single-valued functions can be

pushed into the condition, the mapper functions in H have fanout equal to one.

The gain of this optimization is obtained as the difference between (4.4) and

(4.9). Hence,

∆4.4 = n · (Cprd + CF) + n ·OF ·Csel− n · (Csel + CH)− n ·α · (Cprd + CF) (4.10)

which becomes:

∆4.4 = n · (1− α) · (Cprd + CF) + n · Csel · (OF − 1)− n · CH (4.11)

The formula (4.11) above indicates that smaller selectivities α result in higher

gains. The gain ∆4.4 increases with the fanout of the mapper OF , with the

evaluation cost of the selection condition Csel and with the evaluation cost of

68

4.6 Cost of Expressions

all mapper functions CF . Pushing fewer functions or cheaper functions to the

selection condition means lower values of CH , which also results in higher gains.

4.6.5 Selecting the best optimization

In some situations, only one of the rewriting rules applies. Rule 4.4 can only be

applied when the attributes of the condition are produced by single-valued func-

tions, while Rule 4.3 can be employed when optimizing selections whose conditions

involve attributes mapped by multi-valued or single-valued functions. Addition-

ally, Rule 4.3 can only be applied when the attributes of the selection condition

are produced by only one function, while Rule 4.4 can be applied when conditions

involve multiple attributes that are produced by multiple functions.

If the attributes of the selection condition are produced by only one mapper

function and, furthermore, if this mapper function is single-valued, then both

rules can be applied. In this case, the rule that brings the highest gain has to be

identified. This is determined by comparing the gains obtained by both rules. It

is more advantageous to use Rule 4.3 instead of Rule 4.4 when ∆4.3 − ∆4.4 > 0,

which is the same as:

n · CH + n · Csel · (OgAj
− 1)− n · (1− α) · (CF + m · k0) > 0 (4.12)

Appendix A.1 gives details on deriving the expression of ∆4.3 − ∆4.4. Equa-

tion (4.12) is developed under the assumption that, since gAj
is single-valued, the

fanout OgAj
is 1. This yields:

CH > (1− α) · (CF + m · k0) (4.13)

As the selectivity α approaches 100%, (1−α) · (CF +m · k0) gets smaller. For

higher selectivities, Rule 4.4 is more likely to perform better than Rule 4.3. Since

CH and CF are fixed, there is always a selectivity α0 for which Rule 4.4 is better

than Rule 4.3. Moreover, α0 decreases as the difference between the CF and CH

increases.

69

4. ALGEBRAIC OPTIMIZATION

4.7 Related Work

Several extensions to RA have been proposed in the form of new operators ac-

companied by the corresponding logical optimizations (Bleiholder & Naumann,

2005; Börzsönyi et al., 2001; Gray et al., 1997; Li et al., 2005).

The unpivot operator proposed by Cunningham et al. (2004) also addresses

one-to-many data transformations. The rewriting rules proposed for the unpivot

operator only consider pushing projections and selections and are not as compre-

hensive as the ones proposed here for mapper operator.

One-to-many data transformations can be expressed as extensions to relational

queries (that can be represented as trees). In the view of Shu et al. (1977),

rewriting rules for optimizing expressions denoting data transformations should

aim at maximizing parallelism. However, this is not the primary concern of the

rewriting rules proposed for the mapper.

Few of the existing Commercial ETL tools perform logical optimization of

the data transformation specifications (Simitsis et al., 2005). As recognized by

Galhardas et al. (2000), the origin of this limitation lies in the lack of a clear

separation between the logical and physical levels. Since ETL programs usually

run for a very long time, measured in hours or even days, devoting more com-

putational effort to their optimization is highly beneficial. More comprehensive

rewriting strategies are feasible. Several important advances have been made in

this direction. The problem of the logical optimization of an ETL process de-

fined as a workflow of data transformation activities is addressed in Simitsis et al.

(2005). The authors model the ETL optimization problem as a global state-space

search problem using three classes of re-writings. This solution is useful only for

logical optimization. The algebraic rewriting rules proposed for the mapper op-

erator could be integrated into the optimization algorithm proposed.

In a parallel line of research, Amer-Yahia & Cluet (2004) address the problem

of efficiently extracting and loading data. In their setting, data transformations

are expressed through RA operations extended with a grouping operator and a

map operator. A set of optimization rules and a cost model are developed for

optimizing such algebraic representations. Their cost model is geared toward

optimizing the loading of the relations obtained in the target database, while the

70

4.8 Conclusions

one proposed here tries, in a sense, to minimize the effort required to compute the

relations. The contribution of Amer-Yahia & Cluet (2004) validates the usefulness

of algebraic optimization in the context of data transformations.

4.8 Conclusions

This chapter presented rewriting rules for performing the logical optimization of

algebraic expressions that combine mappers with standard relational operators.

The rules consist of a set algebraic rewritings, which were given together with

their proofs of correctness. They describe how to commute mappers with other

unary operators, like projections and selections, and to how to distribute mappers

over binary operators, like unions and Cartesian products.

The proposed rewriting rules lead to expressions that are faster to evaluate,

because there will be less mapper function evaluations and less I/O. The expres-

sions obtained through the rules for pushing projections reduce the number of

mapper functions. By pushing selections, the number of tuples fed to the mapper

is reduced, causing a decrease on the number of function evaluations. There are

two reasons for I/O reduction. First, by pushing projections less columns are

required. Secondly, by pushing selections less tuples are read from the input rela-

tions. The rules for pushing mappers over binary operators become advantageous

whenever mappers act as filters, since pushing the mapper to the input relation

reduces the total number of tuples processed by the binary operator.

A cost model was proposed to equip a query optimizer with means to decide

which rewriting rules should be applied. The decisions are based on cost estimates

computed based on the standard predicate selectivity estimates and also estimates

for mapper function cost and fanout. The proposed cost model is demonstrated

for rewriting rules that apply selections to mappers. The cost estimates for the

remaining optimization rules are likely to be simpler than those presented here.

71

Chapter 5

Mapper Execution Algorithms

This chapter discusses the physical execution of the mapper operator. Although

the semantics of the mapper operator suggest a one-tuple-at-a time processing

algorithm, this naïve execution approach is often inefficient in practice. Two

alternative execution algorithms that alleviate the computation effort of mappers

by sidestepping unneeded function evaluations are proposed. The first explores

the idea of shortcircuiting computation by taking advantage of the semantics of

the mapper operator, while the second explores the presence of duplicate values

in the input relation through in-memory caching. This chapter also introduces

a new cache replacement strategy, which is suited for mapper evaluations with

duplicates and expensive functions.

5.1 Introduction

The formal semantics of the mapper operator presented in Section 3.3 suggests

the following straightforward evaluation algorithm: for each tuple of the input

relation, perform the Cartesian product of the result of evaluating all mapper

functions. The output relation is obtained by unioning the obtained tuples.

However, this naïve execution algorithm can become very inefficient in many

real-world settings. First, the computation of mapper functions can be expen-

sive. In data cleaning applications this is frequently the case. Examples of com-

mon expensive mapper functions include check-digit computations, string pattern

73

5. MAPPER EXECUTION ALGORITHMS

matching and manipulations, and BLOB/CLOB object treatment. Second, map-

pers often produce many columns. In legacy data migrations, like those reported

by Carreira & Galhardas (2004a), mappers are required to produce several hun-

dreds of columns. Third, data transformations are often applied to very large

relations, containing millions of tuples. Hence, finding efficient algorithms to

execute mappers is of utmost importance.

This chapter focuses on algorithms that alleviate the computation effort (by

contrast with I/O effort) required to evaluate a mapper by avoiding superfluous

function evaluations. These algorithms explore two common situations:

Mapper functions that return empty sets. One possible outcome of a map-

per function is the empty set for some input tuple t (as in Example 3.5.1).

In this case, this function is acting as a filter and, as a consequence, t will

not be reflected in the output. Different situations can cause a mapper

function to return an empty set. First, the function may not be able to

correctly process some ill-formed inputs. Is this case, an empty set is re-

turned after the occurrence of an exception, like a division by zero. Second,

the function itself encodes a constraint on the input data, resulting in an

explicit rejection, which is also encoded as an empty set. In a sense, the

function is encoding a predicate, stating that only a subset of the input set

is processed. Third, the empty set result may follow from the definition of

the function itself. Consider, for instance, a function returning restaurant

addresses corresponding to a zip code: this function will return an empty

set, if it is invoked with a zip code corresponding, say, to a government

building. As soon as one mapper returns an empty set the evaluation of the

remaining functions can be skipped because no tuple is to be generated.

Input relations that have duplicate values. Another common situation is

input relations with duplicates in some columns. Duplicates in a relation

can come either directly from the stored relation or arise indirectly during

query evaluation, for example, as the result of theta joins or outer joins.

These observations motivate the research of hash-based algorithms for the

mapper operator evaluation based on an in-memory cache of function results.

74

5.2 Naïve Evaluation Algorithm

Algorithm 1 Naïve mapper evaluation
Input: r : the input relation

fA1
, ..., fAm

: the mapper functions
Output: s : the output relation
Variables: t : an input tuple from s

1: s← ∅;
2: for all t ∈ r do

3: s← s ∪ (fA1
(t)× ...× fAm

(t))
4: end for

Each time a mapper function is evaluated, the cache is checked by hashing the

input value to find a previously computed result. If it is found, an evaluation of the

function is saved. To be useful, the hash method requires a large amount of main

memory. A compromise to make it useful in practice consists on managing the

available memory by replacing the entries that are less likely of being requested

again, making room for those that are more expensive to compute and requested

more often.

5.2 Naïve Evaluation Algorithm

The mapper operator could be evaluated in a simple tuple-at-a-time manner as

illustrated in Algorithm 1, which repeats the following steps for each input tuple

t: (i) fetch t from the input relation; (ii) apply each mapper function to t;

(iii) combine all mapper function results, through a Cartesian product, adding

the produced tuples so obtained to the output relation.

The unpivot operator is implemented in a similar fashion, as described by

Cunningham et al. (2004). It iterates over the input relation once and generates

multiple output rows for each input row. However, unlike the Naïve evaluation

algorithm, no Cartesian product operations are performed because the unpivot

operator does not use functions.

Intuitively, the cost of evaluating the mapper operator expression µF (r) us-

ing the Naïve algorithm can be estimated by adding up the per-tuple cost of

transforming each tuple of the input relation r. For each tuple t ∈ r, the cost of

producing the output tuples can be defined as the sum of the cost of evaluating

75

5. MAPPER EXECUTION ALGORITHMS

all mapper functions and the cost of performing the Cartesian product of the

function outputs.

As explained in Section 4.6.1, the cost of evaluating the mapper operator

using the Naïve algorithm can be estimated by considering the estimated per-

tuple cost of evaluating all the mapper functions f ∈ F , represented as CF , and

the estimated mapper fanout represented as OF . The cost of evaluating a mapper

µf1,...,fm
over an input relation r with n tuples is estimated as:

n · (k ·OF + m · k0 + CF) (5.1)

where k is a small adjustment factor for the cost of performing the Cartesian

product, and k0 represents the overhead incurred by the algorithm for checking

the emptiness of the input sets.

5.3 Shortcircuiting Evaluation Algorithm

The naïve evaluation algorithm first evaluates all the mapper functions and per-

forms, thereafter, the Cartesian product. An interesting observation is that when-

ever the result of a mapper function is an empty set, the Cartesian product of the

function outputs will also be an empty set. This observation motivates the devel-

opment of the shortcircuiting evaluation algorithm. This algorithm is inspired in

the shortircuiting semantics of expression evaluation in programming languages

like C or Java, and reduces the expected overall function evaluation costs. It

works as follows: For a given tuple t ∈ r, instead of evaluating all the mapper

functions, whenever a fAi
(t) returns ∅, the remaining functions are not evaluated,

since fA1
(t) × ...× fAm

(t) = ∅ if ∃1 ≤ i ≤ m s.t. fAi
= ∅. This algorithm relies

on the evaluation of the mapper functions according to a predefined evaluation

sequence:

Definition 5.1: Let F be a set with m mapper functions, a list ω = fA1
· ... ·fAm

where each fAi
∈ F and 1 ≤ i ≤ m is called an evaluation sequence of F. The

set of all evaluation sequences of the set F will be represented by Ω(F).

76

5.3 Shortcircuiting Evaluation Algorithm

Algorithm 2 Shortcircuiting mapper evaluation
Input: r : the input relation

ω = fA1
· ... · fAm

: a sequence of mapper functions
Output: s : the output relation
Variables: t : an input tuple from s

i : index of the current mapper function
oi : output of ω[i](t)
shortcircuit : flag that indicates that an empty set was returned

1: s← ∅;
2: for all t ∈ r do

3: shortcircuit← false

4: for all ω[i] where 1 ≤ i ≤ m do

5: oi ← ω[i](t);
6: if oi = ∅ then

7: shortcircuit← true;
8: exit for

9: end if

10: end for

11: if ¬shortcircuit then

12: s← s ∪ (o1 × ...× om)
13: end if

14: end for

Given an evaluation sequence ω, ω[i] represents the ith function in the se-

quence. In addition, a mapper function ω[i] is said to precede the evaluation of

a mapper function ω[j] in the sequence ω if i < j. Whenever i = j − 1, the

evaluation of the function ω[i] is immediately followed by the evaluation of ω[j].

A sequence ω that meets such criteria is indicated by the notation ωi≺j.

One possible implementation of the Shortcircuiting evaluation algorithm is

presented in Algorithm 2. Given an input tuple t, each mapper function ω[i] is first

evaluated over t individually and then, if no empty result is found, the Cartesian

product is performed. During the function evaluation, the result of each function

is checked for emptiness. If an empty result is found, the shortcircuit flag is

set and the function evaluation loop is immediately abandoned. The Cartesian

product is computed only if shortcircuit is not set, otherwise the current tuple

is discarded and the next tuple is fetched from the input relation.

The Shortcircuiting algorithm reduces the evaluation cost because some func-

tions will not be evaluated. Additionally, the Cartesian product operation is

evaluated only when no function returns an empty set. To determine the ex-

77

5. MAPPER EXECUTION ALGORITHMS

pected overall cost of evaluating a mapper using this algorithm, the probability

of evaluating each mapper function has to be estimated first.

The selectivity factor αi can be seen as the probability that the function de-

noted by ω[i] produces an empty set. In a sequence ω, a function ω[i] is evaluated

if none of its predecessors returns an empty set, i.e., if ∀1 ≤ l < i, w[l](t) 6= ∅.

Since selectivities of the mapper functions are independent variables, the proba-

bility of evaluating the ith function, on an evaluation sequence ω = fA1
· ... · fAm

,

represented by P ω(fAi
) is defined as:

P ω(fAi
) =

{

1 if i = 1
∏

1≤j<i(1− αj) if 1 < i ≤ m

The expected per-tuple cost of a mapper function for a given evaluation se-

quence is defined as Cω
fAi

= P ω(fAi
) · CfAi

. The Cartesian product is performed

only if the last function fAm
is evaluated and its result is not empty. Hence, the

expected cost of the Cartesian product is P ω(fAm
) · Cprd. Let Cω

F represent the

expected cost of evaluating all functions of F according to the sequence ω. Given

an input relation r with cardinality n, the estimate of the cost of µF (r) using the

Shortcircuiting evaluation algorithm is:

n ·
(

P ω(fAm
) · Cprd + Cω

F

)

(5.2)

which expands to

n ·
(

P ω(fAm
) · k ·

∏

f∈F

Of + m · k0 +
∑

f∈F

Cω
f

)

(5.3)

Determining the cheapest evaluation sequence

The Shortcircuiting algorithm presented above applies the mapper functions using

a fixed sequence given a-priori. However, since different evaluation orders may

imply different per-tuple costs, computing the most favorable evaluation order can

have a dramatic impact in performance. Thus, it is important to determine the

optimal evaluation sequence of a set of mapper functions, defined as the evaluation

sequence that minimizes the total function evaluation cost, while executing the

78

5.3 Shortcircuiting Evaluation Algorithm

mapper operator using the Shortcircuiting algorithm. The notion of optimal

evaluation sequence is formalized below:

Definition 5.2: An evaluation sequence ω of a set of mapper functions F is said

to be optimal iff no evaluation sequence ω′ is cheaper than ω1. In other words, ω

is optimal iff, ∀ω′ ∈ Ω(F), Cω
F ≤ Cω′

F .

The criterion supplied in Definition 5.2 is useful for deciding whether an eval-

uation sequence is optimal, but it does not provide a way to compute it. In order

to construct an optimal sequence, mapper functions can be ordered according

to a metric adapted from the notion of rank order (Hellerstein & Stonebraker,

1993). This metric is presented in Definition 5.3 and enjoys the desired prop-

erty of rendering an optimal sequence for evaluating mapper functions when the

provided average function costs and selectivity estimates are accurate.

Definition 5.3: The rank of a mapper function f ∈ F represented as rank(f)

is defined as rank(f) = Cf/(1− αf), where Cf and αf are the cost and selectivity

of the function f , respectively. Furthermore, two functions f, g ∈ F are said to

be rank ordered if rank(f) ≤ rank(g).

The idea behind such rank ordering metric is that the most selective functions

that are at the same time cheaper should be evaluated first. Before proceeding to

the main result, we establish that evaluation sequences where mapper functions

are rank ordered are cheaper than those where functions are not rank ordered.

Lemma 5.1: The cheapest ordering of two mapper functions in an evaluation

sequence corresponds to the ascending rank order. Formally, for any sequence

ωj≺i ∈ Ω(F) we have C
ωi≺j

F ≤ C
ωj≺i

F iff rank(ω[i]) ≤ rank(ω[j]).

Proof See Appendix A.2

Using Lemma 5.1, we establish that any evaluation sequence ω that corre-

sponds to the ascending rank order of the mapper functions is optimal for the

Shortcircuiting algorithm.

1Given two evaluation sequences ω1 ∈ Ω(F) and ω2 ∈ Ω(F), if Cω1

F < Cω2

F , then evaluating
of the Shortcircuiting algorithm with the sequence ω1 is said to be cheaper than using ω2.

79

5. MAPPER EXECUTION ALGORITHMS

Theorem 5.1: Given a set of mapper functions F , every evaluation sequence ω ∈

Ω(F), which corresponds to an ascending rank ordering of the mapper functions

is optimal for the Shortcircuiting algorithm.

Proof See Appendix A.3

This theorem provides a principled way to determine, beforehand, the cheap-

est evaluation order of the mapper functions for the Shortcircuiting algorithm.

5.4 Cache-based Evaluation Algorithm

Mappers are evaluated against input relations that usually contain duplicate val-

ues in certain columns. When evaluating a mapper, this characteristic of the

source relation can be explored through caching of mapper function results.

Whenever a duplicate input value is presented to a mapper function, the re-

sult that has been previously stored in the cache is returned. As a consequence,

superfluous function evaluations are bypassed.

The implementation of the mapper operator can take advantage of caching

as given in Algorithm 3. Each time a function fAi
(t) needs to be evaluated, a

cache C is checked for a previously stored result. Each element e ∈ C is known

as a cache entry and takes the form of 〈t[Dom(fAi
)], fAi

(t)〉1. A cache is usually

encoded through a hash table (Cormen et al., 2001) and is accessed through lookup

operations using t[Dom(fAi
)] as the key. Since mapper functions can have the

same input domain, the function name, fAi
, must also be supplied to the lookup

operation (line 4). The result of the lookup is then stored in the variable ri

(line 4). A lookup operation that succeeds in finding a previously stored result is

designated as a cache hit, otherwise it is designated as a cache miss (line 5). In

the latter case, fAi
(t) must be evaluated (line 6). If the cache buffer is not full

yet, a new entry is added to the buffer (line 8).

For performance reasons, the cache buffer is maintained in main memory and

has a limited size. Hence, the amount of memory devoted to caching the results

of each function is limited. This will be specially true if the mapper operator is

1t[Dom(fAi
)] represents the input of a mapper function fAi

. See Chapter 3.

80

5.4 Cache-based Evaluation Algorithm

Algorithm 3 Cache-based mapper evaluation
Input: r : the input relation

fA1
, ..., fAm

: the mapper functions
Output: s : the output relation
Variables: t : an input tuple from s

i : index of the current mapper function
ri : the result of evaluating fAi

(t)

1: s← ∅;
2: for all t ∈ r do

3: for all 1 ≤ i ≤ m do

4: ri ← lookup(fAi
, t[Dom(fAi

)])
5: if ri = ⊥ then

6: ri ← fAi
(t)

7: if ¬isfull() then

8: insert(fAi
, t, ri)

9: else

10: replace(fAi
, t, ri)

11: end if

12: end if

13: end for

14: s← s ∪ (r1 × ...× rk)
15: end for

plugged in the query processor of an RDBMS, since the memory space available

for caching mappers has to be shared with other operators. As a result, the

number of entries that have to be stored outgrows the buffer cache size. When

the cache becomes full, existing cache entries are discarded and replaced by new

ones (line 10). In order to perform such replacement operation, the entry to be

replaced (known as the victim) has to be identified (see Appendix B).

The cache algorithm assumes that the function results stored in the cache

will be requested in the future, thus reducing the number of function evaluations.

The algorithm can be easily extended to support multiple replacement strategies

by substituting the implementation of the replace procedure (line 10).

The performance of the Cache-based algorithm is also influenced by the cost

of each mapper function and by the number of duplicates of its input attributes.

In order to be subject to caching, a mapper function must meet two criteria:

i) It must not be to cheap —the average cost of storage and lookup c0, may

not exceed the average cost c of computation.

81

5. MAPPER EXECUTION ALGORITHMS

ii) Its input must contain a minimum of duplicate values —the savings pro-

duced, by eliminating the associated computations must offset the caching

overhead.

Clearly, a constant mapper function is not a good candidate for caching. Mapper

functions converting attributes that constitute the key of a relation are clearly

not good candidates for caching, since all input values are distinct. Moreover, the

caching of this function would jeopardize the caching of the remaining functions,

since it would be competing for the same cache space without providing any

advantage.

Although Algorithm 3 considers that all mapper functions are cached, it can

be extended to consider caching a subset of the supplied mapper functions. How-

ever, to simplify its presentation as well as the presentation of the forthcoming

algorithms, it is assumed that all the functions are cached.

In the following sections, three cache replacement strategies studied for Algo-

rithm 3 are discussed in detail.

5.5 LRU Caching Strategy for Mapper Functions

The LRU (Least Recently Used) strategy explores temporal locality: it as-

sumes that the least used entry is the least likely to be requested in the near

future. The strategy of replacing the least recently used entry can be imple-

mented very efficiently by linking the nodes of the hash table as a stack. New

entries are added to the top of the stack. When the cache becomes full, the entry

at the bottom of the stack is discarded to make room for the new entry. Each

time an entry is referenced, it is also moved to the top of the stack. This way,

the most recently used entries are maintained nearer the top of the stack, while

those that have been not referenced fall to the bottom. The resulting algorithm

has complexity O(1).

One important property of the LRU stack is that the depth of an entry in

the stack implicitly encodes the time-to-last reference to that entry. By replacing

the entry at the bottom of the stack, LRU replaces the entry with the greatest

time-to-last reference. In formal terms, let tl represent the instant of the last

82

5.5 LRU Caching Strategy for Mapper Functions

Algorithm 4 Cache-based mapper evaluation with LRU replacement
Input: r : the input relation

fA1
, ..., fAm

: the mapper functions
Output: s : the output relation
Variables: t : an input tuple from s

i : index of the current mapper function
ri : the result of evaluating fAi

(t)

1: s← ∅;
2: for all t ∈ r do

3: for all 1 ≤ i ≤ m do

4: ri ← lookup(fAi
, t[Dom(fAi

)])
5: if ri 6= ⊥ then

6: pull(ri)
7: else

8: ri ← fAi
(t)

9: if isfull() then

10: pop()
11: end if

12: end if

13: push(fAi
, t, ri)

14: end for

15: s← s ∪ (r1 × ...× rk)
16: end for

reference to some cache entry e ∈ C. At each instant t0 where t0 > tl, the LRU

replacement strategy minimizes the time-to-last of the reference of the entries in

stored the cache by replacing the entry with greater t0 − tl.

Algorithm 4 gives the cache based evaluation algorithm that incorporates the

LRU replacement strategy. Each time the lookup operation results in a cache hit,

the entry is taken out of the stack trough the pull operation (line 6). Otherwise,

it is a cache miss, and therefore the result of fAi
(t) is computed (line 8). If

the cache is full, the bottom entry is discarded by the pop operation (line 10).

Finally, the entry is pushed to the top of the stack by the push operation (line 13).

Pushing an entry that was previously pulled corresponds to the move operation

of an entry to the top of the stack.

5.5.1 Limitations

The LRU replacement strategy is prevalent in caches of operating systems and

database systems. For decades, is has been empirically shown that LRU achieves

83

5. MAPPER EXECUTION ALGORITHMS

a very good performance by replacing the entry with the greatest time-to-last

reference. However, this strategy performs badly in the following two situations:

it is vulnerable to cache pollution and it does not cope with the variability of

cache entry cost (Casey & Osman, 1974).

Vulnerability to cache pollution. Since LRU cannot discriminate well be-

tween frequent and infrequent entries (Lee et al., 1999), its behavior is

affected by two forms of pollution: singleton references and burstiness. Sin-

gleton references are entries that are referenced only once, when they are

added to the cache. Due to the limited size of the cache, these entries

will cause other entries that are frequently referenced to be flushed (O’Neil

et al., 1993; Rizzo & Vicisano, 2000) out. Bursty workloads are character-

ized by short intervals where a large number of hits are directed toward

a limited number of entries (O’Neil et al., 1993). It is often the case that

very frequently accessed entries stay dead (without being referenced) in the

cache for a long time. LRU moves a recently accessed entry to the top of the

stack because it assumes that the references to an entry are correlated in

time and hence that the entry will be reused often in the near future (Jiang

& Zhuang, 2002). However, this correlation is application dependent. For

example it does not apply to in the case of RDBMS page caches (Robinson

& Devarakonda, 1990). Until the entry is purged, it remains occupying

cache space and contributing for artificially lowering the available cache

space. LRU is unable to detect and remove entries that are not likely to be

referenced in the future.

Uniform cost assumption. LRU does not take into account the cost of com-

puting an entry. In fact, it considers that the costs of all entries are ho-

mogeneous. As result, expensive entries are often replaced to the benefit of

cheaper entries.

The above mentioned insufficiencies of LRU are particularly acute in the context

of the mapper operator, where the cache is required to handle several functions

simultaneously. The presence of multiple functions presents workloads with dif-

ferent characteristics competing for the same cache space. It has been recognized

84

5.5 LRU Caching Strategy for Mapper Functions

that in real databases it is often the case that some values for a given attribute

occur more frequently than others (Lowe, 1968). Furthermore, the distribution

of values often follows the Zipfian power-law distribution. In these situations,

many input values are referenced only once and a few values are reference many

times (Zipf, 1949). Informally, this translates to a few cache entries being very

often referenced while the majority of the cache entries are seldom referenced.

Additionally, the cost of mapper functions is variable. The cost of evaluating a

mapper function over distinct input values can also vary significantly. Replacing

an entry without taking into account the cost of materializing it in the cache

often results in the replacement of expensive entries that will be needed in the

future (Casey & Osman, 1974).

5.5.2 Enhancements

LRU can be enhanced to minimize cache pollution and distinguish between cheap

and expensive entries by using the following approaches:

Forcing entries to age at different speeds. Those entries which enjoyed pe-

riods of high frequency caused by bursts of references tend to stay resident

in the cache for too long. One interesting mechanism used to minimize

this effect is to consider as indistinguishable the bursts of references that

occur in tiny intervals and treat them as one reference (O’Neil et al., 1993).

The problem with this approach is that the size of the interval is domain

dependent and cannot be determined on-the-fly. An alternative approach

consists of forcing entries referenced within small intervals to age faster than

entries accessed during large periods. Since cache accesses usually represent

a Zipfian distribution, there are more entries with low frequency access pat-

terns than high frequency access patterns. Hence, given two cache entries

with different average access frequencies, after some time, the most frequent

one should be considered the less useful, because it has less probability of

being seen again in the future. Both Lee et al. (1999) and Robinson & De-

varakonda (1990) proposed enhancements to LRU that also take frequency

into account, and result in more powerful replacement strategies.

85

5. MAPPER EXECUTION ALGORITHMS

Replacing entries with the least expected cost. In order to overcome the

problem of replacing expensive entries by inexpensive entries, the cost of

evaluating the mapper function must also be taken into account by the re-

placement strategy. A straightforward extension consists of replacing the

entry with the least expected cost (LEC), which is determined by multiply-

ing the average access frequency by the cost of materializing the entry in

cache (Casey & Osman, 1974). Despite the fact that LEC is superior to

LRU and LFU in contexts involving cost variation, this strategy does not

try to minimize pollution.

As it turns out, any replacement strategy that optimizes a single parameter like

time-to-last, frequency or cost is inherently limited. Hence, the replacement

strategy for a cache that handles mapper function entries must consider all these

parameters when deciding which entry to replace.

5.6 LUR Caching Strategy for Mapper Functions

As discussed, the LRU replacement strategy is limited due to performing replace-

ment decisions based on the time-to-last reference only. As a consequence, the

entries selected for replacement are frequently inadequate choices when aiming

at reducing the total computation cost. Herein, this issue is addressed through

a more sophisticated cache replacement strategy that maximizes the expected

utility of the entries residing in the cache. The utility of a cache entry is defined

as a function that takes as input the time-to-last reference together with the

number of accesses, the access frequency and the cost of evaluating the mapper

function to obtain each entry. This new strategy is designated as Least Useful

Replacement (LUR), since it replaces the entry that is estimated to be the least

useful according to the proposed metric of utility. The use of utility functions

for driving cache replacement decisions has been addressed in literature related

to Web proxy caching (Cao & Irani, 1997).

86

5.6 LUR Caching Strategy for Mapper Functions

5.6.1 Utility metric for cache entries

The utility of a cache entry is computed from a record of its past reference infor-

mation. However, saving comprehensive past reference information is demanding

in terms of space and, more importantly, computation effort. Thus, only a sum-

mary of the past reference history is maintained in the cache entries. Each cache

entry takes the form
〈

t, fAi
(t)〉h, where h = 〈ta, tl, nh, c〉 is a reference history

data structure. The instant of the first reference to the entry (time of arrival), is

recorded in the component ta. The instant of the last reference to the entry (time

of last reference) is recorded in tl, where tl > ta. The number of references to

the entry within the interval [ta, tl], is kept in nh. Finally, the cost of evaluating

fAi
(t) is represented by c. Like in LRU, time is measured as a discrete event

count, but in this case it is associated with the number of tuples processed so far.

For a given cache entry e in a cache C, at some instant t0, its utility, repre-

sented as ut0(e), is computed taking as input:

i) tl – the time of the last access.

ii) θ – the average access frequency of the entry;

iii) nh – the number of observed past references (i.e., hits) to the entry;

iv) c – the cost of evaluating the function;

These parameters can be combined to produce an utility metric that corre-

sponds to the expected benefit of keeping an entry in cache. This metric aims at

minimizing the cache pollution and overcoming cost heterogeneity, i.e., managing

entries with different costs, by considering as the most useful those entries that

are more likely to be referenced in the future and are simultaneously are more

expensive to compute.

The frequency of an entry e, represented as θ, is computed as the number of

references to the entry divided by the length of the interval [ta, tl]. Since all the

references to the entry (nh in total), occur within the interval [ta, tl], the access

frequency of the entry is defined as θ = nh/(tl − ta), when nh ≥ 2. The average

inter-reference interval of e, represented by p, is 1/θ (Coffman Jr. & Denning,

1973, Section 7.3.1).

87

5. MAPPER EXECUTION ALGORITHMS

The expected future usage of an entry can be estimated using statistical in-

ference. Let e be an entry with average access frequency θ. According to the

literature in statistics, the variable K that models the number of cache accesses

(experiments) before the next hit to e (a success) is modeled through a Geometric

distribution G(θ). Such Geometric distribution is accurate under the indepen-

dent reference model (IRM) commonly used in the analysis of cache replacement

strategies (Coffman Jr. & Denning, 1973, pg. 268). This model assumes that the

probabilities to reference different cache entries are independent and identically

distributed random variables.

Given an entry e whose instant of the last reference is tl, the number K of

cache accesses after tl before the next hit to e, has probability function P (K = k)

defined as (1 − θ)k−1 · θ for k > 01. The probability function P (K = k) defines

the probability that the entry e is referenced in the last of a sequence of k cache

accesses and its average is 1/θ, which also represents the average inter-reference

interval of the entry e. The probability that the next reference to the entry e

takes place in the future, after k accesses to the cache, can also be computed.

This amounts to determining the probability of an hit on e after tl + k cache

accesses, which is given by P (K ≥ k). In the case of a Geometric distribution

with parameter θ, it equates to (1− θ)k. The probability of future reference, can

be combined with the amount of past references and the cost of the entry into an

utility metric as follows:

Definition 5.4: Let e be a cache entry with average access frequency θ, instant

of last reference tl, cost c and nh recorded references within the interval [ta, tl].

The utility of an entry e, at instant t0 > tl, denoted by ut0(e), is defined as

nh · c · (1− θ)k, where k = t0 − tl represents the time to last reference.

Besides considering the entries with the highest probability of being referenced

in the future to be the most useful, this utility metric addresses cache pollution

and cost heterogeneity by considering entries with bursty accesses patterns that

1Consider a sequence of cache accesses that reference the cache entry e with probability θ.
Since, 1−θ represents the probability of not accessing e, (1−θ)k−1 ·θ represents the probability
referencing the entry e in the last of a sequence of k cache accesses.

88

5.6 LUR Caching Strategy for Mapper Functions

are cheaper to be less useful than entries with uniform access patterns that are

expensive.

Definition 5.4 penalizes entries with high access frequencies confined in short

periods, which are bursty, in favor of entries that exhibit more uniform access

patterns in two ways. First, it considers highest frequency entries to be less

useful since the utility of the entries decreases toward zero with the increase of

the frequency1. The more intense the burst is, the faster the utility of the entry

drops. Second, burstiness is penalized by considering as most useful the entries

that have been in cache for a longer period. Definition 5.4 considers as more useful

those entries with a greater number of past references nh (this is demonstrated

analytically in Appendix A.4). This definition captures the intuition that, given

two entries with the same frequency, the entry that has been in the cache for the

longest time is the less likely to be a burst.

Definition 5.4 addresses cost heterogeneity by selecting the cheapest entries

for replacement and favoring the maintenance of the most expensive entries in

the cache. It considers the the cost c incurred in evaluating the mapper function

to create the cache entry. As a result, the most expensive entries (those with

greatest values of c) are considered the most useful.

5.6.2 Complexity

At each instant t0, the LUR strategy tries to maximize the overall cache utility

by replacing the entry e ∈ C with the smallest utility ut0(e), and thus maximizing

the expected utility of the whole cache. The algorithm always chooses as victim

the cache entry with the smallest utility.

The cost of evaluating an entry is c, on the first time that it is referenced. Each

subsequent reference to the entry saves c− c0, where c0 is a small constant access

cost that represents the overhead of performing a cache lookup. In general, c

is much higher than c0. Otherwise, if c ∼ c0, the overhead of caching cancels its

benefit. Thus, an implementation of the LUR algorithm must choose between

one of the following approaches:

1Note that limθ→1 (1− θ)k = 0.

89

5. MAPPER EXECUTION ALGORITHMS

i) Paying an overhead for each cache access to maintain the entries ordered

by utility —as a result, the least useful entry can be quickly identified.

ii) Not paying an overhead for each cache access and not maintaining any

ordering of the entries —each time a victim needs to be chosen, a direct

search for the least useful cache entry is performed.

The first alternative, which consists of maintaining the m cache entries per-

manently ordered has been addressed in literature by implementing a priority

queue such as e.g. Greedy Dual (Cao & Irani, 1997), resulting in a complexity of

at least O(log(m)). In the case of LUR, the complexity of maintaining the entries

ordered by priority is at least O(m). According to the utility metric proposed

in Definition 5.4, the ordering of entries e1 and e2 may change even if none of

them is accessed. For some t0, it can be the case that ut0(e1) < ut0(e2), but

ut0+1(e1) > ut0+1(e2), because the utility of the entries changes as time elapses

since the distance of t0 to the corresponding instants of last reference tl increases.

Thus, virtually, for each cache access, the entire set of entries needs to be re-

ordered, implying a cost per reference of O(m · log(m)). Even if some smart

strategy could be devised to keep the entries that are not accessed ordered, the

complexity would at least be proportional to log(m). The second alternative, not

maintaining any ordering, means that each time a cache miss occurs the least

useful entry must be found. This represents a complexity of O(1) to handle a

cache hit, but implies a complexity of O(m) to handle a cache miss, since the

least useful entry has to be found via direct search.

As discussed, the complexity of the LUR replacement strategy is at least

O(log(m)). This complexity can be acceptable for managing disk pages and Web

documents. Replacement strategies for disk caches, like LFU or LRU-K (O’Neil

et al., 1993), as well as many replacement strategies for web proxy cache manage-

ment run proportionally to log(m). However, in the case of a cache for mapper

functions, a complexity of O(log(m)) can be too high for practical applications.

The first argument is that, to be useful, a cache replacement strategy for mapper

functions has to be lighter in terms of computation than a cache management

policy for disk pages or web documents. In fact, the cost of a mapper function

cache entry is often smaller than the cost of transferring a disk page, —because

90

5.7 XLUR Caching Strategy for Mapper Functions

evaluating a mapper function is cheaper than transferring a page from secondary

storage. Moreover, in the context of the mapper operator, the same amount of

memory holds many more cache entries than a disk page cache or a document

cache of a Web proxy, because cache entries of mapper functions occupy less

space than disk pages. As an illustration, consider an entry for caching a typical

mapper function used for cleaning names that takes as input a string with 50

characters and produces 50 characters as output. Each entry occupies around

100 bytes, which is 40 times smaller than an entry comprising a 4K page. A

similar reasoning applies when comparing the mapper cache performance that of

Web proxy caches, where documents occupy several Kilobytes.

5.7 XLUR Caching Strategy for Mapper Func-

tions

As explained before, determining the entry which has the absolute minimum util-

ity has a very high computational cost. Hence, LUR is only feasible for caching

mapper functions that are relatively expensive. Herein, a new replacement strat-

egy is proposed which improves on LUR by replacing entries whose utility is an

approximation of the entry with absolute minimum utility. Its goal is to replace

entries with low utility and low runtime overhead. The new strategy, henceforth

designated as Relaxed LUR (XLUR), has a complexity O(1) since it relies on

maintaining multiple LRU queues.

Because a complexity of O(log(m)) can be unacceptable in terms of perfor-

mance, several authors have considered improving LRU in order to make smarter

replacement decisions, maintaining the O(1) complexity. The improvements are

built on two basic ideas. The first consists of avoiding the insertion of low fre-

quency items at the top of the stack. The second, consists of removing entries

before they get to the bottom of the stack, as soon as it is known that they were

used for the last time. These ideas are implemented through a mechanism that

actively separates entries that are frequently accessed (hot entries) from those

that are seldom accessed (cold entries) by promoting and demoting entries be-

91

5. MAPPER EXECUTION ALGORITHMS

Algorithm 5 Cache-based mapper evaluation with XLUR replacement
Input: r : the input relation

fA1
, ..., fAm

: the mapper functions
L = {l1, ..., lq} of lru stacks

Output: s : the output relation
Variables: t0 : the current instant

t : an input tuple from s

i : index of the current mapper function
ri〈ta, tl, n, l〉 : entry information for the function fAi

representing a result ri,
with time of arrival ta, time of last tl, number of accesses n and stack l.

lnew : index of the new stack of an updated entry
lvictim : index of the stack with the less useful LRU entry

1: s← ∅
2: t0 ← 0
3: for all t ∈ S do

4: for all 1 ≤ i ≤ m do

5: ri〈ta, tl, n, l〉 ← lookup(fAi
, t[Dom(fAi

)])
6: if ri〈ta, tl, n, l〉 6= ⊥ then {update an already existing entry}
7: pull

(

ri〈ta, tl, n, l〉
)

8: lnew = min
{

log2

(

⌊

t0−ta

n+1

⌋

)

, lq

}

9: push
(

fAi
, t, ri〈ta, t0, n + 1, lnew〉

)

10: else {insert a new entry}
11: if isfull() then

12: lvictim = l ∈ L such that ut0

(

lru(l)
)

= min
l′∈L

{

ut0(e) | e = lru(l′)
}

13: pop(lvictim)
14: end if

15: ri ← fAi
(t)

16: push(fAi
, t, ri〈t0, t0 − |L|, 1, lq〉)

17: end if

18: end for

19: t0 ← t0 + 1
20: s← s ∪ (r1 × ...× rk)
21: end for

tween LRU queues and auxiliary data structures (like other LRU stacks or FIFO

queues).

The driving idea of the XLUR replacement strategy proposed here is to man-

age cache entries through multiple LRU stacks, where each stack contains entries

with different frequencies. Since the stack is a data structure that does not allow

direct access, entries cannot be inserted or removed from arbitrary positions in

the stack. The usage of multiple LRU stacks endows a virtual LRU stack parti-

tioned according to access frequencies. The stacks L = {l1, ..., lq} are designated

as frequency clusters since they contain entries with approximately the same ac-

92

5.7 XLUR Caching Strategy for Mapper Functions

cess frequency. The stack l1 contains entries with highest frequencies while lq

contains the lowest frequency entries.

This replacement strategy is given in Algorithm 5 and works as follows: Each

time a function needs to be evaluated, the algorithm checks if a value for that

function has already been computed. On a cache hit, the entry is pulled from its

current stack l and pushed onto the top of a new stack lnew that better reflects the

new frequency of the entry θ = (n + 1)/(t0− ta) (lines 7–9). The computation of

the new stack is performed by taking log2(θ
−1) where θ−1 represents the average

inter-reference interval of the entry (line 8). The function log2 was chosen, because

it can be very efficiently implemented over an integer input value through bitwise

operations.

On a cache miss, the entry with the least utility (from the bottom of all the

stacks) is selected as the victim to throw away. The new entry is inserted into the

last stack (lines 11–16). The new entry is placed at the top of the last stack lq

with tl set to the current instant t0 and ta set to t0−|L| where |L| represents the

current size of the cache measured in number of entries. The newly installed entry

is awaiting to be referenced again in the near future. The rational for placing it

in the last stack is as to do with the fact that when an entry is referenced for the

first time, no information about its frequency is available. Hence, it is placed in

the stack lq, which serves as a quarantine area for this entry: either the entry is

referenced again, and as a result of having its frequency updated, it is moved into

another stack, or reaches the end of stack and eventually gets selected as victim.

Analysis of the XLUR replacement strategy

The XLUR strategy continuously adapts the number of entries contained in each

stack by moving referenced entries to stacks that better reflect their frequency or

by selecting them as victims for replacement.

By arranging entries according to log2 of their average access frequency, the

stack li will tend to have 2i entries. Each of the entries in li is referenced in

average one out of 2i times, otherwise the strategy will eventually move it to

another stack or evict it. As it turns out, if i > j then the stack li will hold,

in average, more entries than lj . Another way to look at it is to realize that

93

5. MAPPER EXECUTION ALGORITHMS

higher frequency stacks (those with smaller values of i) tend to have less entries.

Moreover, the inter-reference interval p of the entries in the stack li is such that

2i−1 < p ≤ 2i. Thus, the entries in the stack l3, for instance, are expected to be

accessed one out of every 22 + 1 to 23 cache references. The next stack, l4 will

hold more entries, 16, and so on.

This mechanism addresses the problems of cache pollution and cost hetero-

geneity due to the following characteristics:

i) It prefers least recently used entries of each stack for victims, since the

victim for replacement is always selected from a set consisting of the least

recently used entry of each stack. The victim that will be chosen by LRU

is always in the set of victims considered, i.e., the entry with the absolute

greatest time to last reference. XLUR performs a better choice in terms of

utility.

ii) It is more aggressive for high frequency entries, since XLUR checks the

various stacks to determine the entry to replace. Hence, in relative terms,

the entries of the highest frequency stacks are considered for replacement

more often. This feature detects burstiness by guaranteeing that higher

frequency entries are removed more aggressively.

iii) It prefers cheaper entries for replacement, because it takes cost into account

when comparing the utilities of the bottom entries of the distinct LRU stacks

with one another.

The appropriate number of stacks q should be the largest integer such that

q
∑

i=0

2i ≤ m (5.4)

For a cache that holds a total of m entries, q will be
⌊

log2(m + 1)
⌋

− 1. For a

large cache, the number of stacks can be selected by considering log4 or log8. This

results in less stacks. A smaller number of stacks means less comparisons when

selecting a victim. Nevertheless, as it will be shown in the next chapter, eight

stacks are often enough in practice to achieve good results.

94

5.8 Related Work

5.8 Related Work

The mapper execution algorithms proposed require different subjects to be dis-

cussed in terms of related work. First, since mappers deal with expensive func-

tions, the literature related to enhancing a query processor for handling expensive

functions needs to be addressed. Second, the usage of caching to speed up query

evaluation also needs to considered, since a cache-based evaluation algorithm is

proposed for the mapper. Finally, since two new cache replacement strategies

(LUR and XLUR) are proposed, other cache replacement strategies presented in

literature have to be reviewed.

Query evaluation with expensive functions

The traditional System/R query optimization algorithm described by Selinger

et al. (1979) is built on the simplifying assumption that the predicate evaluation

cost is neglectable when compared with the I/O cost of the join algorithm. Hence,

predicates that are estimated to be the most selective are evaluated as soon as

possible in an attempt to reduce the number of tuples early on.

The work of Hellerstein & Stonebraker (1993) generalizes the criterion of pred-

icate selectivity with that of predicate rank, where rank is a metric derived from

the expected evaluation cost and selectivity. The authors prove that ordering

expensive predicates on the join tree according to their rank result in an over-

all reduction of the evaluation cost. Informally, queries whose predicates are

rank-ordered discard tuples earlier and at a lower average cost. The Shortcircuit-

ing algorithm proposed in Section 5.3 draws on ideas similar to those described

by Hellerstein & Stonebraker (1993): if mapper functions are rank-ordered, the

tuples are discarded at a lower average cost because those functions that are

cheaper and more selective are evaluated first. The Shortcircuiting algorithm

also builds on the idea proposed by Hanani (1977) of ordering the Boolean fac-

tors in a conjunctive normal form according to their estimated selectivity, and

take advantage of Boolean simplification laws to minimize the query evaluation

time. Since the most selective predicates are evaluated first, even if their cost

per tuple is very high, this approach fails to correctly optimize queries involving

expensive predicates (Boolean expressions with expensive functions).

95

5. MAPPER EXECUTION ALGORITHMS

The work of Porto et al. (2003) takes the idea of Boolean simplification further.

They propose to use an abstraction of the input relation modeled as hyper-graphs

that guide the query processor, allowing it to adapt on-the-fly the query process-

ing order and to skip unnecessary predicate evaluations. Optimization of queries

with expensive predicates is studied in further detail in Hellerstein (1998) and

Chaudhuri & Shim (1999).

Another approach for optimizing of queries involving expensive function calls

consists of modeling expensive function calls as joins. This approach was initially

proposed for extending the LDL system (Chimenti et al., 1989). In LDL, the

evaluation of an external predicate over a relation is processed as a join with

an infinite virtual relation induced by the predicate. Expensive functions calls

are modeled by Chaudhuri & Shim (1993) as joins with expensive foreign tables,

which represent functions. This idea is extended by Mayr & Seshadri (1999) to

handle client-side expensive functions in the context of distributed query exe-

cution (Kossmann, 2000). Their approach adapts the semi-joins of Bernstein &

Chiu (1981) with external tables that represent functions to handle expensive

function calls.

An important issue when modeling external functions as virtual relations is

the fact that some the attributes must be bound to values prior to obtaining the

actual relation tuples. This constraint turns invalid certain query plans. The

requirement of binding the attributes prior to a function invocation was captured

for the first time by the idea of safety constraints by Chaudhuri & Shim (1993). In

the context of data integration, Florescu et al. (1999) proposed binding patterns

and directional joins to address the issues of plan generation in the presence of

the aforementioned constraints. Hergula & Härder (2001) propose several query

rewriting strategies for accessing foreign functions.

Caching of function results was adapted to the context of query optimiza-

tion of expensive functions in the predicate migration algorithm of Hellerstein &

Stonebraker (1993). After pulling up a predicate to above the join, in order to

guarantee the duplicates produced do not result in extra predicate evaluations,

the algorithm relies on caching the results of expensive functions.

The idea of avoiding redundant calls to functions was taken one step further

in the context of ORDBMSs by Hellerstein & Naughton (1996). However, the au-

96

5.8 Related Work

thors do not consider cache replacement. They optimize the evaluation of a single

expensive function by staging the input tuples to disk when the cache memory

becomes full. Instead, the Cache-based algorithm proposed in this chapter relies

on performing replacing cache entries once the cache becomes full. One diffi-

culty of the proposal of Hellerstein & Naughton (1996) when applied to mappers,

is that there is no clear way to extend the presented hybrid-hash algorithm to

handle more than one expensive function.

Caching on RDBMSs

Literature on database caching focuses essentially page caching (Chou & DeWitt,

1985; Effelsberg & Haerder, 1984; Johnson & Shasha, 1994; O’Neil et al., 1993).

Some approaches to RDBMS buffer management like those presented by Chou

& DeWitt (1985) and Sacco & Schkolnick (1986) propose to use separate sets of

cache entries. Similarly to XLUR, each set of cache entries is managed separately

as an LRU or MRU stack. These buffer management strategies explore the fact

that the sequences of references to cache entries (pages) on an RDBMS can be

predicted taking from the request pattern of the physical operators. This tech-

nique cannot be directly applied to mapper evaluation, since the mapper operator

does not endow any specific cache access pattern. The cache access pattern of a

mapper is determined by the sequence of values read from the input relation, and

there is no simple a way to foretell which input values will be fed to the mapper

functions, unless the input relation is analyzed first.

Database buffer cache management explores an access pattern known as spa-

tial locality. Spatial locality means that, when an object is referenced, others

nearby are also referenced. For example, if a page of a table is needed, other

pages nearby, which contain related tuples, are also likely to be needed. Spa-

tial locality is explored through prefetching (Smith, 1978). Prefetching can be

used for evaluating mappers: whenever the tuples contained on a page are being

transformed, tuples contained in contiguous pages are likely to be requested to

be transformed.

The evaluation of queries involving expensive functions can be enhanced by

auxiliary data structures. One such data structure is the function index, which

97

5. MAPPER EXECUTION ALGORITHMS

can be regarded as a pre-computed function or as a cache materialized in sec-

ondary storage. Function indexes have been proposed for extending RDBMS with

user defined operators and abstract data types (Lynch & Stonebraker, 1988), and

for supporting queries on Object Oriented DBMSs with method calls (Hwang,

1995; Maier & Stein, 1986).

Cache replacement strategies

Several enhancements have been proposed to LRU that try to overcome the cache

pollution problem by actively separating frequently used entries from entries that

are seldom used. Strategies like FBR (Robinson & Devarakonda, 1990), 2Q (John-

son & Shasha, 1994), LIRS (Jiang & Zhuang, 2002), MQ (Zhou et al., 2001) and

ARC (Megiddo & Modha, 2004) are based on this concept. These replacement

techniques maintain O(1) complexity and have been shown to outperform LRU

in a number of situations. Broadly speaking, these replacement strategies parti-

tion the LRU stack into multiple regions (a quantity q) according to recency or

frequency.

The XLUR strategy proposed in this chapter uses multiple LRU stacks. When

the number of stacks q is one, the XLUR replacement strategy behaves like LRU.

If, instead, q is a small number like two or three it can be compared to the above

strategies FBR, 2Q, LIRS, and ARC. The FBR strategy can be implemented using

three LRU stacks, ARC uses two LRU stacks, while 2Q and LIRS use an LRU

stack and a FIFO queue. In a sense, these strategies make a discrete distinction

between hot and cold entries by keeping them in in distinct data structures: hot

entries in an LRU stack and cold entries either in a second LRU stack or in

a FIFO. For small values of q, these strategies are likely to be more effective at

distinguishing hot from cold entries based on the time-to-last-reference and on the

access frequency. Hence, if the cost variation is small, they are likely to achieve

a better performance than XLUR. However, as q increases, XLUR is presumably

better, since it considers more victim candidates when performing a replacement

decision instead of only two (one of each data structure).

When q is three or more, XLUR can be compared with the MQ strategy. Like

the XLUR, on each cache hit, the MQ strategy adjusts the entries according to

98

5.8 Related Work

log2(θ) where θ is the access frequency. However, unlike XLUR, in MQ, entries

at the bottom of a queue are demoted to the next queue as their frequency drops.

Instead, XLUR never demotes entries: the bottom entries are only considered for

replacement. The demotion mechanism has two problems:

i) Increases the per-reference overhead of MQ. Each time the cache is accessed

all the queues have to be adjusted incurring in on a complexity O(q) even on

a cache hit. In contrast, XLUR performs no demotion and has complexity

O(1) on a cache hit.

ii) Contributes to cache pollution. Each time a frequent entry is demoted, it

enters the top of the next LRU stack. Hence, it will only be considered

for replacement after traversing to the bottom of the next stack, which has

more entries. In contrast, XLUR does not demote it. Either the entry

is referenced again, deserving to live in the current frequency stack, or is

replaced.

The behavior of MQ also differs from XLUR on a cache miss: In MQ, the entry

to be replaced is the last entry of the first non-empty stack. Hence, on a cache

miss, a number of queues, at least one and at most q− 1, have to be checked and

each of the LRU stacks has to be adjusted afterwards. In XLUR, all non-empty

queues, at most q, have to be checked. However, unlike MQ, no adjustments to

LRU stacks take place in XLUR. Finally, XLUR considers the cost of evaluating

the mapper functions, which is not taken into account by MQ.

However, unlike the LUR and XLUR strategies, the strategies considered

above do not take the cost of computing an entry into account. The idea of

exploring an utility function, like the one proposed for the LUR and XLUR algo-

rithms, to perform cache replacement has been widely employed in cache replace-

ment strategies for Web Proxies. In fact, these caches have to deal with similar

problems to those involved in caching mapper functions. The requests handled

by Web proxy caches are Zipfian distributed (Breslau et al., 1999), and the size

and cost of the document caches is variable (Wang, 1999). Several replacement

strategies for Web Proxy caching that have been proposed achieve results bet-

ter than traditional replacement strategies. Notably, Greedy Dual (Cao & Irani,

99

5. MAPPER EXECUTION ALGORITHMS

1997), Hybrid (Wooster & Abrams, 1997), LNC (Scheuermann et al., 1997) and

LRV (Rizzo & Vicisano, 2000) employ utility functions defined over several pa-

rameters.

5.9 Conclusions

This chapter proposed several execution algorithms for the mapper operator. The

first was the Naïve algorithm induced by the formal semantics of the mapper op-

erator. Then, alternative algorithms were explored, aiming at reducing the overall

computation cost of the mapper operator. The proposed algorithms are built on

the idea of avoiding superfluous mapper function evaluations by exploring the

selectivity of mapper functions and the existence of duplicate values in attributes

of the input relation.

The Naïve algorithm should be used when very few duplicates are present

and when the functions are not likely to return empty sets. The Shortcircuiting

algorithm is to be used when we have costly mapper functions mixed with func-

tions that may return empty sets. Finally, cache based algorithms should be used

when expensive functions that operate over inputs with duplicates are present.

The performance of the Shortcircuiting Algorithm is influenced by the order

by which mapper functions are evaluated. It is possible to compute the optimal

evaluation order based on statistics of the cost and selectivity of mapper functions.

One limitation is that the algorithm does not react to skewed data. However, the

algorithm can be enhanced to adjust on-line the function evaluation sequence in

order to react to changes of statistics of cost and selectivity. The enhancement

consists of keeping the list of functions ordered according to rank by moving a

function that returns an empty set to the head of the function evaluation list.

Although this strategy does not result in an optimally rank-ordered list, it consists

of an approximation that can be implemented with a small computation effort.

To take advantage of duplicates, this chapter proposed a Cache-based algo-

rithm that hashes the results of mapper functions using the function input as

key. However, evaluating a mapper using this technique requires disproportion-

ate amounts of main memory. Thus, cache entries that are not likely to be used

are replaced to provide room for the newer ones. The entry replacement policy

100

5.9 Conclusions

has a major impact on the performance of the cache based evaluation algorithms.

Thus, the study of the Cache-based algorithm proceeded by analyzing different

possibilities to perform entry replacement.

The first cache replacement strategy considered was the least recently used

(LRU). This strategy bases its replacement decisions solely on the time to last

reference. Unfortunately, when duplicates have a high variation, as it is the case of

Zipfian distributed data (of database relations), or when the cost of materializing

the entries is not uniform, this strategy performs very poorly. Hence, the reference

frequency and the cost of computing an entry also have to be taken into account.

This chapter presents two new cache replacement strategies, that attempt

to circumvent the shortcomings of LRU, designated as LUR (Least Useful Re-

placement) and XLUR (relaXed Least Useful Replacement). The LUR strategy

replaces the least useful entry and is built on a generalized notion of utility metric,

which accounts not only for the time to last reference, but also for computation

cost and access frequency. To perform replacements based on utility, the LUR

algorithm requires the ordering of entries to be maintained using a priority queue.

Thus, this algorithm has a complexity of at least O(log(m)) per-reference, where

m is the number of cache entries. Since m is very high in the case of mapper func-

tions, it is unlikely that this algorithm can be useful in practice, except perhaps

in the cases where the mapper functions are expensive. XLUR, a modification to

the LUR strategy, was proposed to overcome this problem. XLUR uses multiple

LRU stacks to organize entries according to their access frequencies. Contrarily

to LUR, this replacement strategy is scalable: as the cache size grows, it main-

tains a complexity of O(1) for every cache hit and a complexity O(q) for cache

misses, where q is the number of LRU stacks of the algorithm.

101

Chapter 6

Experimental Validation

This chapter reports on a number of experiments aimed at validating the feasibil-

ity of the mapper operator, including the logic optimizations and physical execu-

tion algorithms proposed. First, the adequacy of RDBMSs to execute and opti-

mize one-to-many data transformations is studied and compared with a mapper

implementation. Second, the logical optimizations are validated by contrasting

the response time required to evaluate expressions involving the mapper operator

with its optimized equivalents. Finally, this chapter presents the improvements

obtained by the Shortcircuiting and Cache-based algorithms introduced in the

previous chapter.

6.1 Introduction

The first part of the thesis studies the problem of expressing one-to-many data

transformations, starting by comparing several alternatives for implementing one-

to-many data transformations (Chapter 2), and then proposing the mapper oper-

ator (Chapter 3). It became clear that none of the alternatives studied is at the

same time declarative and sufficiently expressive for tackling one-to-many data

transformations. In addition, these alternatives are not the most adequate in

terms of performance when executing one-to-many transformations.

The second part of the thesis handled the problem of executing one-to-many

data transformations efficiently. This issue was addressed by proposing a set of

algebraic re-writing rules (Chapter 4), together with different physical execution

103

6. EXPERIMENTAL VALIDATION

algorithms for executing the mapper operator (Chapter 5). These proposals en-

able the logical and physical optimization of expressions that combine mappers

with standard relational operators to express one-to-many transformations.

The claim that the current solutions for implementing data transformations

have difficulties in handling one-to-many data transformations is validated by

comparing the performance of different RDBMS implementations of one-to-many

data transformations. Additionally, these implementations are also compared

with an implementation of the mapper operator to validate its usefulness from a

performance standpoint. These experiments are presented in Section 6.2.

The logical optimization rules are compared by contrasting the original ex-

pressions with their optimized equivalents. The results obtained are described

in Section 6.3. The usefulness of the different physical algorithms is validated

through a set of experiments that compare their performance in different situa-

tions, described in Section 6.4. Both sets of experiments present the factors that

influence the execution performance and optimization gains.

Finally, Section 6.5 reports on the usefulness of the implementation of the

mapper operator in Data Fusion, a commercial product that has been selected

for several real-word legacy data migration projects.

6.2 Performance of One-to-many Data Transfor-

mations

This section studies the performance of alternative implementations of one-to-

many data transformations. The factors that influence the performance of one-

to-many data transformations are identified and the optimization opportunities

of each solution are examined.

The performance study is based on implementations of the one-to-many data

transformations that correspond to Examples 1.1.1 and 1.1.2 developed using

RDBMS solutions, namely relational queries, recursive queries, table functions,

stored procedures and also using the mapper operator. For conciseness, this

chapter uses the acronyms and abbreviation B for bounded, U for unbounded, TF

for table function, SP for stored procedure, and Rec for recursive query.

104

6.2 Performance of One-to-many Data Transformations

Mechanisms for implementing one-to-many data transformations

Bounded Unbounded
Union Table Stored Mapper Recursive Stored Table Mapper

Function Procedure Query Procedure Function

DBX yes no yes no yes yes no no
OEX yes yes yes no no yes yes no
XXL no no no yes no no no yes

Table 6.1: Mechanisms for implementing the one-to-many data transformations
performed for the experiments.

Table 6.1 shows the entire set of implementations that were considered. The

experiments compare the results of RDBMS solutions with the results obtained

with the implementation of the mapper operator. RDBMS implementations are

executed on top of two industry leading commercial systems henceforth desig-

nated as DBX and OEX1. The mapper operator is implemented as a relational

operator, using the Naïve algorithm presented in Chapter 5, on top of the XXL

library which provides database query processing and optimization functionalities

(van den Bercken et al., 2000, 2001).

Due to the limitations of the RDBMSs used, some of the mechanisms avail-

able to implement one-to-many data transformations could not be used. Table

functions are not available in DBX. Furthermore, unbounded data transforma-

tions cannot be expressed as recursive queries in OEX, since the class of recursive

queries supported by OEX is not powerful enough to represent an unbounded

data transformation. Pivoting operations are not considered, since they are not

supported by any of the RDBMS systems considered.

The performance of data transformations is expressed in terms of throughput,

i.e., the number of source records transformed per second. Throughput is com-

puted by dividing the number of tuples of the input relation by the response time

needed to transform the entire input relation. The response time is measured

as the time interval that mediates the submission of the data transformation

implementation from the command line prompt and its conclusion. All time

1Due to the restrictions imposed by DBMS licensing agreements, the actual names of the
systems used for this evaluation will not be revealed.

105

6. EXPERIMENTAL VALIDATION

measurements were obtained using the Unix time command. The interval that

mediates the submission of the request and the execution by the system, known

as reaction time, is considered neglectable.

6.2.1 Setup

The experiments were conducted on a computer with an Intel Pentium IV CPU

at 3.4 GHz, 1GB of RAM, and a Samsung SP1614C hard disk with 160GB and

16MB of cache. The operating system installed is Linux (kernel version 2.4.2). A

number of configuration parameters of the different systems were carefully aligned

to ensure the fairness of the experiments. The main aspects of this configuration

are discussed below.

I/O conditions. An important aspect regarding I/O is that all experiments use

the same region of the hard-disk. To induce the use of the same area of the

disk, I/O was forced through raw devices. The hard-disk is partitioned in

cylinder boundaries as illustrated in Figure 6.1. The first partition is a pri-

mary partition formatted with Ext3 file system and journaling enabled and

is used for the operating system and RDBMS installations as well as for the

database control files. The second partition is used as swap space. The re-

maining partitions are the logical partitions accessed as raw devices. These

partitions handle data and log files. Each RDBMS accesses tablespaces cre-

ated in distinct raw devices. The first logical partition (/dev/hda5) handles

the tablespace named RAWSRC for input data; the second logical partition

(/dev/hda6) handles the tablespace named RAWTGT for output data. The

partition (/dev/hda7) is used for raw logging. Finally, (/dev/hda8) is used

as the temporary tablespace. The implementation of the mapper accesses

only RAWSRC and RAWTGT raw devices. To minimize the I/O overhead, both

input and output tables were created with PCTFREE set to 0.

Buffers. To improve performance, RDBMSs cache frequently accessed pages in

independent memory areas. One such area is the buffer pool, which caches

disk pages (Effelsberg & Haerder, 1984). The configuration of buffer pools

in DBX differs from that of the OEX system. For the purpose of the

106

6.2 Performance of One-to-many Data Transformations

OS swap raw raw raw raw

hda1 hda2 hda5 hda6 hda7 hda8

58GB 2GB 25GB 25GB 25GB 25GB

Figure 6.1: Hard-disk partitioning for the experiment.

experiments, the main difference lies in the fact that, in DBX, individual

buffer pools can be assigned to each tablespace, while OEX uses one global

buffer pool for all tablespaces. Except for the experiments that vary the

size of the cache buffer, DBX assigns a buffer pool of 4MB to the RAWSRC

tablespace, which contains the source data; the cache size of OEX is set to

4MB. The implementation of the mapper operator is not influenced by the

buffer size.

Logging. Both DBX and OEX use write-ahead logging mechanisms that produce

undo and redo log (Gray et al., 1981; Mohan & Levine, 1992). Mappers do

not generate a log, since the implementation of the operator, for the time

being, does not deal with concurrency or recovery issues1. Logging activity

is disabled on both DBX and OEX. However, logging cannot be disabled

in the case of stored procedures, because insert into statements executed

within stored procedures always append data to the log.

6.2.2 Workload characterization

The tests were executed on synthetic versions of the input relations used in Ex-

amples 1.1.1 and 1.1.2, respectively for bounded and unbounded data transfor-

mations.

Since the representation of data types is not the same across all RDBMS, the

record length was equalized. A dummy column was added to the input table

table LOANS. The size of this column was chosen so that each record matches the

record size of the table LOANEVT. The record length of both LOANS and LOANEVT

was monitored to be approximately 29 bytes for every experiment.

1It is assumed that while performing data transformations, the target table can be entirely
reconstructed from the source table in case of a crash.

107

6. EXPERIMENTAL VALIDATION

 0

 10 K

 20 K

 30 K

 40 K

 50 K

 60 K

 70 K

 80 K

 90 K

T
ro

u
g
h
p
u
t
[i
n
 i
n
p
u
t
tu

p
le

s
/s

e
c
]

B
-M

a
p
p
e
r/

X
X

L

B
-T

F
/O

E
X

B
-U

n
io

n
/D

B
X

B
-U

n
io

n
/O

E
X

B
-S

P
/D

B
X

B
-S

P
/O

E
X

U
-M

a
p
p
e
r/

X
X

L

U
-T

F
/O

E
X

U
-R

e
c
/D

B
X

U
-S

P
/D

B
X

U
-S

P
/O

E
X

Figure 6.2: Throughput of data transformation implementations for the studied
mechanisms. The results reflect the average of several runs of each implementa-
tion over input relations with different sizes. Fanout is fixed to 2.0, selectivity
fixed to 0.5, and cache size set to 4MB.

6.2.3 Throughput comparison

To compare the throughput of the evaluated alternatives, their implementations

are executed over input relations with increasing sizes. The average throughput

results are shown in Figure 6.2. The throughput of the mapper implementation

is in average better than any alternative RDBMS implementation. In addition,

table functions are more efficient than unions and recursive queries. Finally,

stored procedures are the least performing alternative. As shown in Figure 6.3,

the throughput is mostly constant with the increase of the input relation size.

The average results presented in Figure 6.2 have a small standard deviation.

To gain further insight on the results presented above, the I/O activity of

each solution was analyzed considering the amounts of read operations, write and

logging activity. Figure 6.4 depicts the distribution of I/O activity in terms of

the input relation size for the alternatives considered. An interesting observation

is that bounded data transformations implemented as unions read an amount of

108

ThesisFigs/performance-comparison.eps

6.2 Performance of One-to-many Data Transformations

 0

 20000

 40000

 60000

 80000

 100000

 0 1 2 3 4 5

T
hr

ou
gh

pu
t [

in
pu

t t
up

le
s/

se
c]

Input relation size [millions of tuples]

B-Mapper/XXL
B-Union/DBX

B-SP/DBX
B-Union/OEX

B-TF/OEX
B-SP/OEX

(a) Bounded transformations

 0

 20000

 40000

 60000

 80000

 100000

 0 1 2 3 4 5

T
hr

ou
gh

pu
t [

in
pu

t t
up

le
s/

se
c]

Input relation size [millions of tuples]

U-Mapper/XXL
U-Rec/DBX
U-TF/OEX
U-SP/DBX
U-SP/OEX

(b) Unbounded transformations

Figure 6.3: Throughput as a function of relation sizes for bounded (a) and un-
bounded (b) data transformations. Fanout is fixed to 2.0, selectivity fixed to 0.5,
and cache size set to 4MB.

109

ThesisFigs/throughput_input_bounded.ps
ThesisFigs/throughput_input_unbounded.ps

6. EXPERIMENTAL VALIDATION

Logging
Writes
Reads

 0 x

 2 x

 4 x

 6 x

 8 x

 10 x

 12 x

 14 x

I/
O

 l
o
a
d
 v

e
rs

u
s
 i
n
p
u
t
re

l.
s
iz

e

21 x

B
-M

a
p
p
e
r/

X
X

L

B
-U

n
io

n
/D

B
X

B
-U

n
io

n
/O

E
X

B
-T

F
/O

E
X

B
-S

P
/D

B
X

B
-S

P
/O

E
X

U
-M

a
p
p
e
r/

X
X

L

U
-T

F
/O

E
X

U
-R

e
c
/D

B
X

U
-S

P
/D

B
X

U
-S

P
/O

E
X

Figure 6.4: Distribution of I/O load for bounded and unbounded data transfor-
mation implementations as a function of input relation size. Fanout is fixed to
2.0, selectivity fixed to 0.5, and cache size set to 4MB. I/O is reported as the
number of transferred bytes normalized by the input relation size.

data that corresponds to 4 times the size of the input relation. The analysis of

the query plans of union queries, shows clearly that union queries scan the input

relation multiple times. In contrast, the remaining implementations only scan the

input relation once. The differences in the write activity are mainly due to the

record sizes of the output relations being bigger than the record size of the input

relation. Furthermore, recursive queries perform multiple joins with intermediate

relations. This may imply writes to temporary tables.

The low throughput observed in stored procedures by comparison with the

other solutions is due to the huge amount of logging activity incurred during their

execution. Logging cannot be disabled for stored procedures. In the experiments,

the logging overhead monitored for stored procedures experiments is ≈ 118.9

blocks per second in the case of DBX and ≈ 189.2 blocks per second in the case

of OEX. Taking into account the measured log overhead, stored procedures with

logging disabled would execute with a performance comparable to that of table

functions.

110

ThesisFigs/io-activity.eps

6.2 Performance of One-to-many Data Transformations

6.2.4 Influence of selectivity and fanout factors

The I/O activity depends directly on two important factors: the selectivity and

the fanout of data transformations. To help understand the impact of these

factors on the performance of data transformations, a set of experiments varying

selectivity and fanout factors was put into place.

Concerning selectivity, Figure 6.5 shows that higher throughputs are obtained

for smaller selectivities. This stems from having less output tuples created when

the selectivity is smaller. Union-based implementations perform several table

scans independently of the selectivity of the data transformation. Thus, smaller

selectivities produce minor performance improvements by comparison with the

mapper operator. In contrast, stored procedures (for DBX) show an interesting

performance for small selectivities, because less tuples are generated and therefore

less log records are written. The throughput of the mapper operator also decreases

with the selectivity, since higher selectivities imply more output tuples, which

increase the cost of materializing the result and computing the Cartesian product.

To observe the impact of the fanout factor, the throughput of one-to-many

data transformations was analyzed increasing the fanout factor from 1 to 32. Fig-

ure 6.6 illustrates the evolution of the throughput with increasing fanout factors.

A degradation is observed when the fanout is increased. This situation is ex-

plained by the generation of more output tuples for higher fanouts. In the case of

RDBMSs implementations, increasing the fanout factor also implies extra costs

besides materializing more output tuples. As explained in Section 2.2, in the

case of bounded transformations implemented as SQL queries, the query length

increases with the fanout. Hence, longer queries are required for expressing data

transformations with greater fanouts, which translates into performing more ta-

ble scans. In the case of recursive queries, more I/O is incurred because higher

fanouts increase the size of the intermediate relation. Finally, for stored proce-

dures, the more tuples are written, the more log data is generated. The mapper

operator performs better than other implementations but its throughput also de-

creases with the increase of the fanout factor mainly due to two factors: (i) the

cost of computing the Cartesian product for producing the output tuples and (ii)

the cost of materializing the output tuples. Since neither the implementation of

111

6. EXPERIMENTAL VALIDATION

 0

 50000

 100000

 150000

 200000

 250000

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t [

in
pu

t t
up

le
s/

se
co

nd
]

Selectivity [in %]

B-Mapper/XXL
B-Union/DBX
B-Union/OEX

B-TF/OEX
B-SP/DBX
B-SP/OEX

(a) Bounded transformations

 0

 50000

 100000

 150000

 200000

 250000

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t [

in
pu

t t
up

le
s/

se
co

nd
]

Selectivity [in %]

U-Mapper/XXL
U-Rec/DBX
B-TF/OEX
U-SP/DBX
U-SP/OEX

(b) Unbounded transformations

Figure 6.5: Throughput of bounded (a) and unbounded (b) data transformations
with varying selectivities. Experiments conducted with an input relation of 1M
tuples with fanout set to 2.0 and a cache with 4MB.

112

ThesisFigs/throughput_selectivity_bounded.ps
ThesisFigs/throughput_selectivity_unbounded.ps

6.2 Performance of One-to-many Data Transformations

 0

 20000

 40000

 60000

 80000

 100000

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t [

in
pu

t t
up

le
s/

se
co

nd
]

Fanout

B-Mapper/XXL
B-Union/DBX
B-Union/OEX

B-TF/OEX
B-SP/DBX
B-SP/OEX

(a) Bounded transformations

 0

 20000

 40000

 60000

 80000

 100000

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t [

in
pu

t t
up

le
s/

se
co

nd
]

Fanout

U-Mapper/XXL
U-Rec/DBX
U-TF/OEX
U-SP/DBX
U-SP/OEX

(b) Unbounded transformations

Figure 6.6: Throughput of bounded (a) and unbounded (b) data transformations
implementations with varying fanout factors. Experiments conducted with an
input relation with 1M tuples with selectivity set to 0.5 and 4MB of cache.

113

ThesisFigs/throughput_fanout_bounded.ps
ThesisFigs/throughput_fanout_unbounded.ps

6. EXPERIMENTAL VALIDATION

the Cartesian product used by the mapper not its I/O operations were optimized,

the performance of the mapper drops quickly. In the case of bounded transfor-

mations, the performance of the mapper operator eventually becomes worse than

the performance of table functions (see Figure 6.6a).

6.2.5 Query optimization and execution issues

The analysis of the query plans shows that the systems used in this evaluation are

not always capable of optimizing queries involving one-to-many data transforma-

tions. To validate this hypothesis, the execution of a simple selection applied to

a one-to-many data transformation, represented as σACCTNO>p(T (s)), is contrasted

with its corresponding optimized equivalent T (σACCT>p(s)). T represents the data

transformation specified in Example 1.1.2, except that the column LOANS is di-

rectly mapped, and p is a constant used only to induce a specific selectivity.

The optimized versions of the several implementations are obtained manually, by

pushing down the selection condition.

Figure 6.7 presents the response times of the original and optimized versions

implemented as table functions, recursive queries, and mappers. Clearly, the

RDBMS optimized versions are considerably more efficient than their correspond-

ing non-optimized versions. The improvement observed in the case of the mapper

operator is small because most of the time necessary to complete the transfor-

mation is spent on I/O. Section 4.6 explained how selections applied to mappers

can be advantageously optimized.

The insufficiencies of RDBMSs to optimize one-to-many data transformations

are presumably a consequence of the intrinsic difficulties of optimizing queries

using recursive functions and table functions, as explained in Section 2.3.2. In

turn, table functions are implemented using procedural constructs that hamper

optimizability. Once the table function makes use of procedural constructs, it is

not possible to perform the kind of optimizations that relational queries undergo.

Manual optimization is not necessary in the case of a union, since applying a

filter to a union is readily optimized. The examination of the query plans showed

that one-to-many data transformations implemented through a union statement

114

6.2 Performance of One-to-many Data Transformations

 Original
 Manually optimized

 0 s

 5 s

 10 s

 15 s

 20 s

 25 s

 30 s

 35 s

 40 s

U
-T

F
/O

E
X

U
-R

e
c
/D

B
X

U
-M

a
p
p
e
r/

X
X

L

R
e
s
p
o
n
s
e
 t
im

e
 [
in

 s
e
c
o
n
d
s
]

Figure 6.7: Sensivity of data transformation implementations to optimization.
1M tuples. Fanout is fixed to 2.0, selectivity of the predicate ACCTNO > p is fixed
to 0.5, the input relation has 1M tuples and cache size is set to 4MB.

take advantage of RDBMS built-in logical optimizations. The response times of

the RDBMS-optimized version of a selection applied to a union is ≈ 35 seconds.

Another type of optimization that RDBMSs can apply for one-to-many data

transformations is the use of a cache. A cache is important to optimize the

execution of queries that use multiple union statements and therefore need to scan

the input relation multiple times. Likewise, recursive queries perform multiple

joins with intermediate relations. This happens because the physical execution

of a recursive query involves performing one full select to seed the recursion and

then a series of successive union and join operations to unfold the recursion. As

a result, these operations are likely to be influenced by the buffer cache size.

To evaluate the impact of the buffer pool cache size on one-to-many trans-

115

ThesisFigs/selectivity-opt.eps

6. EXPERIMENTAL VALIDATION

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100 120 140 160

T
hr

ou
gh

pu
t [

in
pu

t t
up

le
s/

se
co

nd
]

Cache size [as % of input relation]

B-Union/DBX
B-Union/OEX

B-TF/OEX
B-SP/DBX
B-SP/OEX

U-Rec/DBX

Figure 6.8: Sensivity of data transformation implementations to cache size (buffer
pool) variations. The input relation has 1M tuples, selectivity is fixed to 0.5 and
fanout set to 2.0.

formations, a set of experiments varying the buffer pool size were executed. The

results, depicted in Figure 6.8, show that a larger buffer pool cache is most bene-

ficial for bounded data transformations implemented as unions. This is explained

because larger buffer pool caches reduce the number of physical reads that are

required when scanning the input relations multiple times. A distinct behavior of

the RDBMSs used in the evaluation as the cache size increases is to be remarked:

the throughput in OEX increases smoothly, while in DBX there is a sharp in-

crease. This has to do with the differences in the cache replacement strategies

used by these systems while performing table scans (Effelsberg & Haerder, 1984).

To select the next page to be replaced, DBX uses a variant of the least recently

used (LRU) strategy (O’Neil et al., 1993). In contrast, according to its documen-

tation, the OEX system, uses a most recently used (MRU) replacement strategy

(Denning, 1968). The LRU replacement strategy is affected by the problem of

sequential flooding (Jiang & Zhuang, 2002; O’Neil et al., 1993; Rizzo & Vicisano,

2000). When the size of the cache buffer is smaller than the size of the input re-

116

ThesisFigs/throughput_cache_size.ps

6.3 Algebraic Optimization

lation, full table scans purge all entries out of the cache. As a result, queries that

scan the input relation multiple times perform quite poorly (Smaragdakis et al.,

1999). On the contrary, when input tables are small enough to fit in the cache

buffer, using multiple unions is the most advantageous alternative for bounded

data transformations. However, in the presence of large input relations, table

functions are the best alternative since they are insensitive to cache size. This

is due to the fact that the input relation is being scanned only once. Stored

procedure implementations also scan the input relation only once, but are less

performant due to logging. The same argument applies to the mapper operator.

Finally, it is worth noting that the best relational implementation is still worse

than the mapper implementation (80K tuples/sec for this configuration), even

with a cache size equal to the input relation.

6.3 Algebraic Optimization

To validate the logical optimizations for the mapper operator developed in Chap-

ter 4, together with the cost formulas proposed for expressions involving selec-

tions, a number of experiments were conducted. The experiments compared ex-

pressions combining selections with mappers to their optimized equivalents based

on a physical implementation of the mapper operator using the Naïve algorithm

(see Section 5.2). The experiments address the influence of predicate selectivity,

the mapper function fanout and the mapper function cost on the optimizations,

as proposed in Rule 4.3 and in Rule 4.4.

6.3.1 Setup

To ensure the same conditions for both rules, the setup was as follows. The expres-

sion σpi
(µf1,f2,f3,f4

(r)) was compared with the optimized variants µf1,σpi
◦f2,f3,f4

(r)

for Rule 4.3, and µf1,f2,f3,f4
(σpi[f2](r)) for Rule 4.4. The mapper function f1, un-

less otherwise stated, has a fanout of 2.0, f2 always has a fanout of 1.0 and the

remaining functions, f3 and f4, have a fanout of 2.0. The input relation r is

an input relation with synthetic data. The predicate pi corresponds to a con-

dition with a predefined selectivity. Furthermore, the predicate pi[f2] represents

117

6. EXPERIMENTAL VALIDATION

a new predicate that results from expanding the function f2 in the condition

corresponding to pi, as presented in Section 4.3.2.

For the sake of accuracy, the predicates applied were tuned to guarantee pre-

defined selectivity values. Likewise, when varying the fanout or the cost factors

of a function, functions specifically tuned to guarantee predefined fanout factors

and per-tuple costs were used. Each experiment measured the response time cor-

responding to the sum of the time taken to read the input tuples, plus the time

taken to compute the output tuples, plus the time taken to write them.

To ascertain that the differences in performance were caused by improvements

brought by one optimized expression over the original, the amount of I/O per-

formed on both expressions was verified to be the same and, furthermore, that

it was performed on the same regions of the disk. To that end, raw devices were

used instead of regular files.

6.3.2 Real-world example

This experiment simulated a real-world scenario that consists of populating the

relation SMALLPAYMENTS[ACCTNO, AMOUNT, SEQNO] formed by all payments whose

amount is smaller than 50. This relation can be obtained from the relation

PAYMENTS presented in Example 1.1.2. According to Example 3.2.1, since the

expression µacct,amt(LOANS) corresponds to the relation PAYMENTS, the expression

σAMOUNT<50(µacct,amt(LOANS)) denotes the relation SMALLPAYMENTS.

The original expression σAMOUNT<50(µacct,amt(LOANS)) and its equivalent opti-

mized expression µacct,σAMOUNT<50◦amt(LOANS), obtained via Rule 4.3 were evaluated

over input relations with sizes varying from 1K to 10M tuples. The results, pre-

sented in Figure 6.9, show a remarkable improvement on the response time of the

original expression over the optimized expression. On this first experiment, it can

be observed that the optimized expression is evaluated more than 5 times faster

than the original expression. The average selectivity of the predicate AMOUNT < 50

was 0.0049, and the observed fanout factor for the amt function was 101.6.

118

6.3 Algebraic Optimization

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+006 1e+007

R
es

po
ns

e
T

im
e

[in
 s

ec
on

ds
]

Input relation size [in number of tuples]

original expression
optimized expression

Figure 6.9: Response time for producing the SMALLPAYMENTS relation as a function
of the number of tuples.

6.3.3 Influence of the predicate selectivity factor

Seeking to validate the effect of the predicate selectivity, a set of experiments was

carried out using a different pi predicate with selectivities ranging from 0.1% to

100%. The tests were executed over an input relation with 1 million input tuples.

Figure 6.10a shows the evolution of the response time for different selectivities,

using cheap functions with their default fanouts.

As expected, for both rules, the highest gains brought by the optimization were

obtained for small selectivities. For Rule 4.3, more concretely, for a selectivity of

0.1%, the optimized expression was 2.7 times faster than the original one. For

Rule 4.4, with the same selectivity, the optimized expression was 5.5 times faster.

With respect to Rule 4.3, as the selectivity decreases, more results are filtered

out from function f2 by the predicate pi and, therefore, the cost of computing the

Cartesian product involved in the mapper is smaller. As the selectivity approaches

100%, the gain drops since the number of tuples filtered out from f2 tend to

zero. These results validate the gain formula (4.8). This rule also reduces the

number of times the condition is evaluated. Even for a selectivity of 100%, the

non-optimized expression evaluates the condition more often that the optimized

119

ThesisFigs/total-cost-smallpayments.ps

6. EXPERIMENTAL VALIDATION

 10

 100

 0.1 1 10 100

R
es

po
ns

e
T

im
e

[in
 s

ec
on

ds
]

Predicate selectivity factor [in %]

original expression
expression optimized with Rule 4
expression optimized with Rule 5

(a) Influence of selectivity

 10

 100

 1000

 0.01 0.1 1 10 100

R
es

po
ns

e
T

im
e

[in
 s

ec
on

ds
]

Fanout factor

original expression
expression optimized with Rule 4
expression optimized with Rule 5

(b) Influence of fanout

Figure 6.10: Response time for the original and optimized expressions as a func-
tion of selectivity and fanout. The figure shows the effect of applying predicates
pi with increasing selectivities (a), and the effect of increasing the fanout of the
mapper function f1, maintaining the predicate selectivity fixed to 2.5% (b).

120

ThesisFigs/4mapper-selectivity-3.ps
ThesisFigs/4mapper-fanout-3.ps

6.3 Algebraic Optimization

expression. However, since in these experiments the predicate evaluation is very

cheap, the small gain obtained is not visible in the figure.

With respect to Rule 4.4, the mapper is evaluated over fewer tuples, as a direct

effect of pushing the condition through the mapper. As a result, many Cartesian

product computations and function evaluations are saved. As the selectivity of

the condition approaches 100%, the number of tuples fed into the mapper grows.

Therefore, the cost of the non-optimized expression is approximately the same as

the cost of the optimized expression.

6.3.4 Influence of the function fanout factor

In order to experimentally check how the function fanout affects the proposed

optimizations, the evolution of response time for the original and optimized ex-

pressions when the fanout factor varies was observed. Function f1 was replaced

by a function that guarantees a predefined fanout factor ranging from 0.01 (un-

usually small) to 100. To isolate the effect of the fanout, the selectivity of the

predicate was kept constant at 2.5%. The results are depicted in Figure 6.10b.

For small values of the fanout, Rule 4.3 presents a slight degradation of ≈ 1%

in performance with respect to the performance of the original expression, while

Rule 4.4, displays an improvement of ≈ 35%. The modest improvement brought

by Rule 4.4 is explained by the fact that, for small values of the fanout, the

Cartesian product is rarely performed, so no gain is introduced. Additionally,

in the case of Rule 4.3, for small values of the mapper fanout, the expression

OF − OgAj
is negative. As a consequence, by formula (4.8), the gain is also

negative.

As explained in Section 4.6.1, the cost of the Cartesian product increases with

the fanout, since the higher the fanout, the more tuples have to be produced by

the Cartesian product for each input tuple. For high values of fanout, the cost of

performing the Cartesian product becomes the dominant factor. Thus, the gain

obtained by both rules increases with the fanout since both optimizations reduce

the cost of the Cartesian product. For a fanout of 100, it can be observed that

Rule 4.3 was 2.7 times faster than the original and Rule 4.4 was 2.95 times faster

(see Figure 6.10a and Figure 6.10b).

121

6. EXPERIMENTAL VALIDATION

In this experiment, Rule 4.4 is consistently cheaper than Rule 4.3. Since the

selectivity for this experiment is 2.5%, according to (4.13), Rule 4.4 is cheaper

than Rule 4.3 whenever Cf2
< 97.5% · (CF + m · k0). Trivially, this inequality

holds because the cost of all functions in F is the same.

6.3.5 Influence of the function evaluation cost

To validate how the function cost influences the optimization gains, two sets of

experiments were put in place. The first experiments increased the cost of an

expensive function, while the second experiments varied the selectivity of the

condition in the presence of expensive functions. The function f3 was selected

to be the expensive mapper function. In the first set of experiments, shown in

Figure 6.11a, the cost of f3 varied from 1ms per call to 100ms per call. In the

second set of experiments, shown in Figure 6.11b, the cost of f3 was fixed to

25ms. In both sets of experiments the function being optimized, which is f2, had

a fixed cost of 10ms per call.

captionResponse time of the mapper expression in the presence of expensive

functions for the original and optimized expressions.

In Section 4.6.3, it has been remarked that the gain for Rule 4.3 is independent

of the mapper function cost. Although there is a gain resulting from savings in

the Cartesian product computation, as show by formula (4.8), this gain is very

small in comparison with the mapper execution cost in the presence of expensive

functions. The outcome of the experiments is aligned with the cost estimates.

Notice that in Figure 6.11a and Figure 6.11b, the line plots of the optimized

expressions for Rule 4.3 overlap the line for the original expression.

With respect to Rule 4.4, it can be observed that both the cost of the mapper

functions and the predicate selectivity directly influence the gain. These obser-

vations validate the gain formula (4.11), in that small selectivities and a high

function cost result in high gains.

In Figure 6.11a, the cost of the optimized expression for Rule 4.4 is initially

higher than the cost of the original expression. This happens because for lower

function costs, the mapper function f2, which is the only function pushed into

the selection condition, is more expensive than the function f3. This means that,

122

6.3 Algebraic Optimization

 1000

 10000

 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
T

im
e

[in
 s

ec
on

ds
]

Function cost [in ms]

original expression
expression optimized with Rule 4
expression optimized with Rule 5

(a) Influence of the cost of f3

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 10 100

R
es

po
ns

e
T

im
e

[in
 s

ec
on

ds
]

Selectivity [in %]

original expression
expression optimized with Rule 4
expression optimized with Rule 5

(b) Influence of the selectivity of pi

Figure 6.11: Evolution of response time for the original and optimized expressions
in the presence of expensive functions. The effect of increasing the cost of f3

with a constant selectivity factor of 2.5% for pi (a). The effect of increasing the
selectivity factor of pi, maintaining the cost of f3 constant at 25ms per call (b).
The experiments process 100K tuples with the cost of f2 set to 10ms per call.

123

ThesisFigs/total-cost-incremental.ps
ThesisFigs/total-cost-selectivity.ps

6. EXPERIMENTAL VALIDATION

in the gain formula (4.11), n ·CH is higher than the other factors of the formula,

which results in a negative gain. As f3 gets more expensive, the value of CF

grows. This causes n · (1 − α) · (Cprd + CF) to increase, eventually leading to a

positive gain.

Figure 6.11b, shows that the cost of the optimized expression for Rule 4.4

eventually becomes more expensive than the cost of the original expression. In

fact, as the selectivity factor α increases, n · (1− α) · (Cprd + CF) decreases, and

since CH is high, the gain eventually becomes negative.

These two experiments highlight the limitation of Rule 4.3. This rule does not

optimize the cost of evaluating the functions. Thus, when the cost of evaluating

the mapper functions increases, both the original and the optimized expressions

increase by the same amount. By contrast, Rule 4.4 reports important gains.

Nevertheless, Rule 4.3 is quite successful if the cost of applying the predicate

is high. In the optimized version for Rule 4.3, the predicate is applied for each

output value of the mapper function. In the non-optimized version, the predi-

cate is applied for each tuple of the result Cartesian product. The number of

tuples produced by the Cartesian product, for each input tuple, is given by mul-

tiplying the fanout factors of all mapper functions. In the presence of expensive

predicates, for functions with high fanout, high gains can be achieved.

6.4 Mapper Execution Algorithms

This section compares the performance of the physical execution algorithms pro-

posed for the mapper operator. The algorithms considered are the Naïve, Short-

circuiting and Cache-based algorithms proposed in Chapter 5. The performance

of each algorithm is obtained by measuring the response time required for per-

forming one-to-many data transformations.

This section reports two groups of experiments. The first group aims at

validating the performance benefits of the Shortcircuiting and Cache-based algo-

rithms over the Naïve algorithm in the presence of selective mapper functions and

duplicate function input values, respectively. In this first group of experiments of

the Shortcircuiting algorithm, the experiments compare its performance with the

Naïve algorithm varying the selectivity and cost per call of the mapper functions.

124

6.4 Mapper Execution Algorithms

Function Input Output Avg cost Duplicates
name parameters parameters per call (in µs) ratio (in %)
name AUTHOR NAME 469 58.52
title TITLE TITLE 113 74.04
event EVENTNAME EVENT 1612 46.54
loctn LOCATION CITY, COUNTRY 4 99.998
year DATE YEAR 25 99.999

Table 6.2: Details of the mapper functions used in Example 3.2.2.

The Cache-based Algorithm is compared with the Naïve algorithm varying the

number of duplicates of the input relation.

The second group of experiments studies the performance of different cache

replacement strategies for the Cache-based algorithm. These experiments aim

at validating the performance and behavior of the XLUR replacement strategy

proposed in Section 5.7. In particular the experiments compare XLUR cache re-

placement policies with the well-known LRU and RND (which replaces a random

entry) strategies, by varying the parameters that influence their performance,

such as the number of duplicates and the size of the cache.

6.4.1 Setup

Example 3.2.2 is used throughout the experiments. This example was imple-

mented through the mapper µname,title,event,loctn,year that encodes a data cleaning

transformation that takes as input the relation CITEDATA and produces the rela-

tion EVENTS. The transformation employs three expensive functions name, title

and event and two cheap functions loctn and year (the details concerning cost

and duplicate ratios for each function are given in Table 6.2).

Most experiments use a real-world version of the CITEDATA input relation. The

values of the CITEDATA input relation follow a Zipfian distribution in the columns

AUTHOR, TITLE and EVENTNAME (see Appendix C). The variation in the number of

duplicates is obtained by using specially prepared versions of the CITEDATA input

relations with different skewness parameters, obtained by selecting records from

the original CITEDATA relation until the desired skewness is observed.

125

6. EXPERIMENTAL VALIDATION

 0.1

 1

 10

 100

 0.1 1 10 100

R
es

po
ns

e
T

im
e

[in
 s

ec
on

ds
]

Average Function Selectivity [in %]

shortcircuiting
naive

Figure 6.12: Comparison of the response time required by the Shortcircuiting
and Naïve algorithms for transforming 10K tuples with increasing total mapper
function selectivity varying from 0.1% to 95%. The results displayed correspond
to averages of several runs, where the costs of the mapper function are random
and uniformly distributed totaling 250ms. The fanout is set to 1.0.

In order to analyze the effect of the variation of the function cost and se-

lectivity parameters, the experiments employ modified versions of the mapper

functions. These mapper functions are specifically tunned to have predefined

evaluation costs and selectivities.

6.4.2 Performance of the Shortcircuiting algorithm

The behavior of the Shortcircuiting algorithm was compared with the Naïve al-

gorithm through a set of experiments that vary the average selectivity and the

cost of the mapper functions.

Figure 6.12 and Figure 6.13 show the time required for transforming an input

relation, varying the selectivity and cost parameters, respectively. When the

selectivity is 100%, both algorithms have the same behavior. In this situation,

the shortcircuiting optimization does not bring any benefit. The superiority of

the Shortcircuiting algorithm becomes clear as the selectivity decreases, since

126

ThesisFigs/shortcircuit_sel.ps

6.4 Mapper Execution Algorithms

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
es

po
ns

e
T

im
e

[in
 s

ec
on

ds
]

Average Function Cost [in ms]

shortcircuiting
naive

Figure 6.13: Comparison of the response time required by the Shortcircuiting and
Naïve algorithms for transforming 10K tuples with increasing average function
cost varying from 0.01ms to 5.0ms in total. Average selectivity is 25% and the
fanout is 1.0.

the difference in the response time required to perform the data transformation

using the Shortcircuiting algorithm decreases. Recall that, when executing the

Shortcircuiting algorithm, when the result of executing a mapper function is the

empty set, the remaining mapper functions are not evaluated. In contrast, the

Naïve algorithm requires always the same amount of work to evaluate the mapper

operator for a given input tuple. In fact, according to the cost model introduced

in Section 4.6, the Naïve algorithm is insensitive to the variation of selectivity.

Concerning the variation in terms of the mapper function cost, and taking into

account the plot of Figure 6.13, although the response time of both algorithms

increases with the average function cost, the performance gap between the two

algorithms increases as the mapper functions become more expensive. In this

experiment, the difference in the number of mapper function calls between the

Shortcircuiting and Naïve algorithms is always the same since the selectivity is

kept constant. Therefore, when the cost of the mapper functions increases, the

difference in response time between the two algorithms also increases.

127

ThesisFigs/shortcircuit_cost.ps

6. EXPERIMENTAL VALIDATION

Duplicate ratios Cache hit ratios
Skewness name title event RND LRU XLUR
z = 0.01 36.84% 36.68% 36.72% 1.64% 1.64% 1.64%
z = 0.25 38.36% 38.39% 38.27% 1.84% 1.84% 1.86%
z = 0.50 44.28% 44.27% 44.35% 3.89% 4.24% 4.87%
z = 0.75 56.70% 56.84% 56.94% 17.00% 19.24% 21.75%
z = 0.99 75.30% 75.16% 75.21% 50.89% 54.75% 56.66%

Table 6.3: Ratios of duplicate input values for each cached mapper function and
the corresponding cache hit ratios of the different cache replacement strategies.
The values concern processing 100K tuples on a Zipfian distributed CITEDATA

input relation with different values of z using a cache with 5K entries.

6.4.3 Performance of the Cache-based algorithm

To validate the potential benefits of the Cache-based algorithm over the Naïve al-

gorithm, the effect of the number of duplicates in the input relation in the response

time was evaluated. The results depicted in Figure 6.14 show the performance

of the cache-based implementations using different replacement strategies over

input relations with increasing quantities of duplicates (as detailed in Table 6.3).

The changes in the number of duplicates are obtained by varying the skewness

parameter z of the Zipfian distribution used for preparing different versions of

the CITEDATA input relation.

The Naïve algorithm takes the same time to perform the transformation,

independently of the number of duplicates. In the case of the Cache-based al-

gorithm, the response time required for transforming an equal-sized sample of

the CITEDATA relation decreases as the number of duplicates increases. This is

explained as follows: an increase in the number of duplicates eventually results

in a higher cache-hit ratio. As the cache becomes more effective, the total run

time of the Cache-based algorithm decreases.

Another interesting aspect of the Cache-based algorithm is that it can be

implemented with a very small overhead in terms of computation cost when com-

pared with the Naïve algorithm. The breakdown of response time in terms of the

function evaluation cost vs. the I/O cost plus algorithm cost shown in Figure 6.14,

indicates that the overhead incurred is roughly the same in all implementations.

128

6.4 Mapper Execution Algorithms

 Algorithm overhead and I/O

 Function evaluation effort

 0 s

 20 s

 40 s

 60 s

 80 s

 100 s

 120 s

 140 s

 160 s

 180 s
R

e
s
p
o
n
s
e
 t
im

e
 [
in

 s
e
c
o
n
d
s
]

n
a
iv

e
rn

d
lr

u
x
lu

r

z = 0.99

n
a
iv

e
rn

d
lr

u
x
lu

r

z = 0.01

n
a
iv

e
rn

d
lr

u
x
lu

r

z = 0.25

n
a
iv

e
rn

d
lr

u
x
lu

r
z = 0.50

n
a
iv

e
rn

d
lr

u
x
lu

r

z = 0.75

Figure 6.14: Throughput comparison of implementations of the Naïve with
Cache-based mapper implementations of Example 3.2.2 with different replace-
ment policies using a cache with 5K entries. The response times refer to trans-
formations of 100K tuples of CITEDATA input relations prepared with Zipfian
distribution obeying increasing skewness parameters z on the columns AUTHOR,
TITLE and EVENTNAME. Higher values of z correspond to more duplicates.

For smaller values of z, the total cost of evaluating the mapper functions

incurred by the cache-based implementations is slightly greater than the total

function evaluation cost of the Naïve algorithm. This is due to the overhead of

using a cache: smaller values of z mean less duplicates and hence more cache

misses.

6.4.4 Performance of the cache replacement policies

The performance of the Cache-based algorithm is influenced by the parameters

that affect the performance of the cache, e.g., size and access pattern character-

istics, like the number of duplicates of the input and the inter-reference intervals

of the cache entries. Additionally, as other mapper evaluation algorithms, the

Cache-based algorithm is influenced by the cost of the mapper functions. This

section focuses on the influence of these parameters on the considered cache re-

placement strategies: LRU, XLUR and RND. The RND replacement strategy

129

ThesisFigs/evolution-skewness.eps

6. EXPERIMENTAL VALIDATION

replaces a random entry and it is interesting because it serves as a lower bound

for the performance of cache replacement strategies (Belady, 1966).

Influence of cache size. Increasing the cache size leads to higher cache-hit ra-

tios, which results in fewer function evaluations and less total effort required

for evaluating the Cache-based algorithm for any of the three replacement

strategies considered.

As shown on Figure 6.15, for very small cache sizes, LRU is usually better

than XLUR in terms of cache hit ratio. However, in terms of response time,

XLUR is still more efficient than LRU. XLUR makes better replacement

decisions in terms of cost when the cache is small. As the size of the cache

increases, the difference between the two algorithms vanishes, because there

are less cache misses and consequently less replacement decisions to be made

with a larger cache.

Moreover, despite the fact that XLUR aims at optimizing the total evalu-

ation cost, in some situations XLUR attains higher cache hit ratios than

LRU, as seen in Figure 6.15. However, in general, XLUR is less effective

than LRU in terms of cache hit ratio. As described in Section 5.5.2, XLUR

divides the cache into multiple stacks to force entries with distinct frequen-

cies to age at different speeds. Hence, the size of the larger XLUR stack is

smaller than a single LRU stack, turning XLUR less effective than LRU in

situations where cache accesses have large inter-reference intervals.

Influence of the number of duplicates. In general, a greater number of du-

plicates in the input leads to a higher cache hit ratio, resulting in less func-

tion evaluations. Figure 6.14 shows that the total work required to perform

the data transformation decreases as the number of duplicates increases,

because more duplicates usually correspond to higher cache-hit ratios.

Table 6.3 validates the hypothesis that higher ratios of duplicates corre-

spond to higher cache hit ratios. However, by increasing the number of

duplicates does not lead to a proportional increase in the cache-hit ratio.

The conclusion that can be drawn is that in every replacement strategy the

cache hit ratio can increase non-linearly with the number of duplicates.

130

6.4 Mapper Execution Algorithms

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 20000 40000 60000 80000 100000

R
es

po
ns

e
tim

e
[in

 s
ec

on
ds

]

Cache size [entries]

rnd
lru

xlur

 57

 57.5

 58

 58.5

 59

 59.5

 60

 60.5

 61

 0 20000 40000 60000 80000 100000

C
ac

he
 h

its
 [i

n
%

 o
f c

ac
he

 a
cc

es
se

s]

Cache size [entries]

rnd
lru

xlur

 370

 380

 390

 400

 410

 420

 430

 440

 450

 460

 470

 0 100000 200000 300000 400000 500000

R
es

po
ns

e
tim

e
[in

 s
ec

on
ds

]

Cache size [entries]

rnd
lru

xlur

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 0 100000 200000 300000 400000 500000

C
ac

he
 h

its
 [i

n
%

 o
f c

ac
he

 a
cc

es
se

s]

Cache size [entries]

rnd
lru

xlur

 650

 700

 750

 800

 850

 900

 950

 0 200000 400000 600000 800000 1e+006

R
es

po
ns

e
tim

e
[in

 s
ec

on
ds

]

Cache size [entries]

rnd
lru

xlur

 67

 67.5

 68

 68.5

 69

 69.5

 70

 70.5

 71

 71.5

 0 200000 400000 600000 800000 1e+006

C
ac

he
 h

its
 [i

n
%

 o
f c

ac
he

 a
cc

es
se

s]

Cache size [entries]

rnd
lru

xlur

(a) Evolution of Response Time (b) Evolution of Cache Hit Ratio

Figure 6.15: Evolution of response time (a) and cache hit ratios (b) as a function of
cache size. From top to bottom, the graphics depict the evolution for transforming
100K, 500K and 1M records the CITEDATA relation, respectively.

131

ThesisFigs/evolution_cache_size_100k.eps
ThesisFigs/evolution_cache_hit_100k.eps
ThesisFigs/evolution_cache_size_500k.eps
ThesisFigs/evolution_cache_hit_500k.eps
ThesisFigs/evolution_cache_size_1m.eps
ThesisFigs/evolution_cache_hit_1m.eps

6. EXPERIMENTAL VALIDATION

 0

 20

 40

 60

 80

 100

 0 20000 40000 60000 80000 100000

C
ac

he
 h

it
ra

tio
 [i

n
%

 o
f c

ac
he

 a
cc

es
se

s]

Cache size [in entries]

rnd
lru

xlur

 0

 20

 40

 60

 80

 100

 0 20000 40000 60000 80000 100000

C
a
c
h
e
 h

it
 r

a
ti
o
 [
in

 %
 o

f
c
a
c
h
e
 a

c
c
e
s
s
e
s
]

Cache size [in entries]

rnd
lru

xlur

75000

(a) Varying inter-reference intervals (b) Uniform inter-reference intervals

Figure 6.16: Evolution of cache hit ratio for transforming 100K tuples of modified
versions of the CITEDATA relation using increasingly large caches. The input rela-
tion was prepared with roughly the same number of duplicates (≈ 75%) but with
different inter-reference intervals. One relation is generated following a Zipfian
distribution that produces inter-reference intervals of various sizes (a), while in
the other, duplicate references to the same entry are separated by 25000 records
(b).

Influence of the inter-reference interval. The inter-reference interval is an

important characteristic of a given sequence of cache accesses (see Sec-

tion 5.6.1), since it dictates the performance of a cache replacement strat-

egy. LRU and XLUR, which is based on LRU, are particularly sensitive

to situations where the average inter-reference interval is greater than the

number of entries in the cache. For example, the modest cache hit ratios

reported in Table 6.3 are explained by the the fact that a cache of 5K entries

is not capable of detecting the duplicate input values whose inter-reference

interval corresponds to more than 5K distinct references.

Figure 6.16 displays the evolution in terms of cache hit ratio for transforming

two versions of the CITEDATA input relation where the cache entries have

different inter-reference intervals. This experiment aims at validating the

influence of inter-reference intervals. Although the number of duplicates

is the same, there is a noticeable difference in the cache hit ratio. The

Zipfian distributed version (left graphic of Figure 6.16) responds smoothly

to increases of the cache size, while in the second version of input data, both

132

ThesisFigs/evolution_interref_zipf.eps
ThesisFigs/evolution_interref.eps

6.5 Data Fusion

LRU and XLUR, whose lines overlap in the graphic, display a step increase

of the cache-hit ratio from 0 to 75% as soon as the cache size crosses 75000.

Since each input value is repeated twice, separated by 25000 distinct values

and 3 functions are being cached, 75000 is the number of distinct references

before the same entry is referenced again. When the cache is smaller than

75000, each new entry installed in the cache will force the oldest cache entry

out of the cache in a cyclic way, resulting in zero cache hits. Once the cache

becomes large enough to hold 75000 distinct references, all the duplicate

references are detected resulting in an increase of the high cache hit ratio.

The distribution reported in Figure 6.16b explores the difficulty of LRU

to deal with cyclic references to entries separated by intervals larger than

the cache size. This problem also affects XLUR since its implementation is

based on LRU. In contrast, RND is not affected. Distinct cache replacement

strategies may react differently to the distribution of the inter-reference

intervals.

6.5 Data Fusion

Data Fusion is a commercial data transformation tool developed and marketed

by Oblog Consulting to address the requirements of legacy-data migration sce-

narios (Carreira & Galhardas, 2004a). Data Fusion incorporates the mapper

operator implemented using the Naïve Algorithm.

The tool has evolved from the experience of the company in deploying several

large scale legacy-data migration projects. The mapper operator was included in

Data Fusion since data migrations from legacy data model into a new model re-

quire the use of the inverse of the SQL group by/aggregate primitive. Moreover,

in the context of legacy-data migrations, the cost of developing such transfor-

mations is frequently very high, since there is no easy solution for expressing

them.

133

6. EXPERIMENTAL VALIDATION

1: mapper LoanToPayments

2: import master LOANS

3: export PAYMENTS

4: ACCTNO = lpad(tostr(ACCT), 4, ’0’)

5: AMOUNT, SEQNO = rule

6: var rem_amnt: numeric

7: var seq_no: integer = 0

8: rem_amnt = AMT

9: while rem_amnt > 100 do

10: rem_amnt = rem_amnt - 100

11: seq_no = seq_no - 100

12: AMOUNT = rem_amnt

13: SEQNO = seq_no

14: insert

15: end while

16: AMOUNT = rem_amnt

17: SEQNO = seq_no

18: insert

19: end rule

20: end mapper

Figure 6.17: Implementation of Example 1.1.2 as a DTL mapper in Data Fusion

6.5.1 Overview

Data Fusion offers a domain-specific language for data transformations named

DTL (Data Transformation Language) for writing concise and short programs.

It also provides an Interactive Development Environment (IDE) for efficiently

producing and maintaining code.

In DTL, data transformations are organized as modules that consist of two

blocks. The first block establishes a view over the source data and the second

block encodes how the data of the view is mapped into one or more target re-

lations. The first block is specified as an SQL query that contains joins and

aggregations, while the second step is expressed using a modified version of the

mapper operator. In the DTL implementation, a mapper operator comprises sev-

eral rules that enclose transformations with similar logics, e.g., populate fields

with the null value as exemplified in Figure 6.17. Rules represent mapper func-

tions and can be re-used and arranged into libraries.

134

6.5 Data Fusion

Figure 6.18: A snapshot of Data Fusion IDE displaying the editor (top) together
with the mapping statistics (bottom).

DTL brings several advantages. First, migration transformations can be ex-

pressed in a language close to the problem domain. Second, very large data

transformation projects can be decomposed and arranged into packages accord-

ing to the functionality provided. This is an essential feature for the success of

real-word projects. Third, the compiler can check if the specific vocabulary is

correctly used. In DTL, for example, a target attribute cannot be assigned twice.

The Data Fusion IDE supports the development of data migration projects. It

follows the trend of modern environments for software development (e.g., Eclipse

135

ThesisFigs/snapshot.eps

6. EXPERIMENTAL VALIDATION

or Visual Studio). The IDE illustrated in Figure 6.18, includes a text editor that

supports known functionalities, such as syntax highlighting and code templates.

Moreover, the DTL compiler is integrated within the IDE and provides helpful

hints when compilation errors occur. The user can configure the IDE in order

to differentiate among production and development modes. The types of errors

that are allowed when writing and testing a migration application are not the

same as the ones that may occur when migrating real data. A debugger facility

was proposed to be integrated with the IDE for tracking errors in data migration

specifications.

The IDE also supports project management through a project tracking facility

that shows to be very useful in real data migration applications. One feature pro-

vided is impact analysis reports that display how source and target fields depend

on each another. Auditing a data migration project is a very common activity.

For this purpose, a special auditing report that shows the logic underlying each

source field is generated. Since the information to migrate is precious, in the sense

that every source record must be migrated and every slot of the target schema

must be filled in, the project stakeholders ask for periodically checking the cover-

age of the data migration process. The IDE also provides a set of progress reports

that display the state of all source and target fields, i.e., the association between

all target and source fields, the percentage of source and target tables already

covered, etc.

6.5.2 Architecture

The Data Fusion platform follows the client-server architecture depicted in Figure

6.19. On the client side, the Integrated Development Environment (IDE) allows

users to work in multiple data migration projects. On the server side, the Run-

Time Environment (RTE) is responsible for compiling and parallelizing the data

migration requests submitted from IDE instances. This client-server architecture

attains scalability. An instance of the IDE may submit requests to multiple RTE

instances and an instance of the RTE may run, in parallel, accepted submissions

from multiple IDE instances. The IDE is constituted by:

136

6.5 Data Fusion

IDE

(Client)

extract load

Data staging area

Run-time Library

Execution Service

Java Run-time Environment

Target dataSource data

Remote Comm. DTL Compiler Report System

User Interface

RTE

(Server)

status

information

Java

mappers

User Extensions

Compiled mappers

Figure 6.19: Architecture of Data Fusion.

i) the Graphical User Interface, which is a development environment for DTL

specifications;

ii) the Remote Communication Subsystem, in charge of submitting the com-

piled mappers and receiving the migration progress information;

iii) the DTL compiler, which generates Java code from DTL mappers;

iv) the Report System, which is responsible for displaying project tracking and

auditing information.

The RTE is consists of:

i) an Execution Service, responsible for processing submission requests by

compiling, launching and monitoring the execution of mappers;

ii) a Run-time Library that implements the semantic concepts of DTL;

iii) the Java Run-time Environment, which is responsible for executing the Java

code.

137

ThesisFigs/architecture.eps

6. EXPERIMENTAL VALIDATION

The transformations are executed by the RTE on a data staging area that

can be supported by any RDBMS with a JDBC connection. Data extraction and

loading are performed by third-party tools (e.g., Oracle SQL*Loader).

6.5.3 Real-world experience

Data Fusion has been used in several real data migration projects in the Por-

tuguese banking industry. It was also selected by the Spanish software house

INDRA1 to migrate financial data, and by Siemens to integrate three databases

storing Portuguese public administration information.

In each of these projects, Data Fusion handled the migration of entire infor-

mation systems, each comprising around 1000 tables. Concerning the complexity

of data transformation rules, most of the rules (about 90%) were simple, with

a small set of rules (about 10%) accounting for most of the complexity. Sim-

ple rules consist of constant and attribute assignments, mathematic expressions,

code conversions and simple conditional assignments. Complex rules are those

that involve complex computations like check-digit computations or one-to-many

data transformations.

Most one-to-many to many data transformations implemented consisted of

bounded one-to-many data transformations requiring only one multi-valued func-

tion. Mappers proved useful when one-to-many data transformations had to be

handled, drastically reducing the time taken to develop these data transforma-

tions. In DTL, mappers were also helpful as an abstraction for organizing the

very large amounts of mapping rules.

6.6 Conclusions

This chapter presented the conducted experiments aimed at validating the fea-

sibility of the mapper operator, including its logical and physical optimization.

The chapter starts by analyzing several alternatives for implementing one-to-

many data transformations. The analysis compare different implementations of

1http://www.indra.es

138

6.6 Conclusions

bounded and unbounded one-to-many data transformations using two RDBMSs

and mapper operators implementing the Naïve physical execution algorithm.

The experiments show that the naïve implementation of the mapper oper-

ator outperforms the RDBMS solutions, except on the cases where the cache

size may become bigger than the size of the input relation (often infeasible in

practice). In that case, the implementation of bounded one-to-many data trans-

formations using an SQL query is faster by ≈ 10% than the mapper approach.

The influence of selectivity and fanout factors on the throughput of one-to-many

data transformations was also reported. As it turns out, the highest selectivities

and highest fanout factors correspond to the lowest throughputs for all imple-

mentations. From the analysis of the query plans generated by the RDBMSs

for unions and recursive queries, it was clear that RDBMSs do not, in general,

perform logical optimization of queries that access the same input relation mul-

tiple times. Instead, they simply rely on the cache to save physical reads. This

implies that the performance of one-to-many data transformations implemented

using currently available RDBMS solutions can be very sensitive to cache size. In

contrast, the performance of the mapper operator remains very good even when

not using cache resources.

The logical optimization rules for the mapper operator proposed in Chapter 4

were also validated. The validation compared original unoptimized expressions

with their optimized equivalents. The experiments highlight the influence of pred-

icate selectivity, mapper function fanout, and mapper function cost on the gains

obtained by the optimizations for the algebraic optimization rules that combine

selections and mappers. High gains are obtained for expressions involving predi-

cates with small selectivity factors and mapper functions with high fanouts and

expensive functions. Moreover, the experiments also validated the accuracy of

the cost model proposed in Section 4.6.

The behavior of the alternative execution algorithms proposed in Chapter 5 for

the mapper operator was also assessed. The Shortcircuiting algorithm is clearly

advantageous in cases where selective and expensive mapper functions are used.

In turn, cache-based algorithms seem to be successful when the input relation has

duplicate values. Despite the modest results, the XLUR Cache-based algorithm

proposed in this thesis was capable of improving the performance of the mapper

139

6. EXPERIMENTAL VALIDATION

implementation. This approach validates the choice of approximating an utility

metric for performing cache replacement decisions.

The usefulness of the mapper was validated by implementing the mapper

operator, with the Naïve algorithm, in the Data Fusion tool. The support for

one-to-many mappings the large commercial legacy-data migration projects was

found to greatly reduce the cost involved in deploying one-to-many data trans-

formations.

In summary, one-to-many data transformations can be executed with promis-

ing performance using the mapper operator. A first set of experiments showed

that even the naïve implementation of the mapper operator is capable of outper-

forming RDBMS based solutions in most situations. In addition, since expressions

involving standard relational operators and the mapper operator can be logically

and physically optimized, the performance of one-to-many data transformations

expressed using the mapper operator can be greatly enhanced.

140

Chapter 7

Conclusions

This chapter starts reviewing the main objectives of the thesis, followed by a

discussion of the limitations of the conducted work. Then, it presents directions

for future work. The thesis closes with a discussion about the broadness of ap-

plication of its contributions.

7.1 Summary

This thesis proposed a specialized operator for expressing one-to-many data trans-

formations in a way that is declarative, expressive and optimizable. It contains

the following contributions:

Evaluation of how RDBMSs handle one-to-many transformations. The

alternative RDBMS implementations for expressing one-to-many data trans-

formations (Sections 2.2 and 2.3) were compared experimentally (Section 6.2).

It was concluded that bounded one-to-many transformations can be ex-

pressed as SQL queries and are optimizable by the query optimizer. How-

ever, their performance is very sensitive to cache size variations. Unbounded

one-to-many data transformations can only be expressed as table functions,

stored procedures or recursive queries. Table functions and stored pro-

cedures are, in general, not optimized. Recursive one-to-many transforma-

tions, expressed as relational queries, do not provide an efficient alternative.

These findings support the claim that no comprehensive solution exists for

141

7. CONCLUSIONS

tackling one-to-many data transformations, which should be at the same

time, declarative, optimizable and capable of expressing all conceivable one-

to-many data transformations.

A specialized operator for expressing one-to-many transformations. In

order to provide an adequate solution for the problem of expressing one-to-

many data transformations, Chapter 3 introduced the new specialized data

mapper operator, as an extension to RA.

The mapper operator was formalized as a unary operator capable of pro-

ducing multiple output tuples for each input tuple (Section 3.2). Like other

extensions to RA, such as the generalized projection and aggregation op-

erator, the mapper operator also relies on the use of external functions.

In order to better understand the mapper operator, some of its properties

were studied (Section 3.3). Among these, the demonstration that the map-

per semantics can be implemented as a Cartesian product of the function’s

output values leads to a simple naïve physical execution algorithm. Another

noteworthy property is that the RA extended with the mapper operator is

more expressive than standard RA.

A straightforward extension to the SQL syntax to handle mappers was

proposed in Section 3.6. One-to-many data transformations can be denoted

by expressions that combine standard relational operators with mappers,

which can then be logically and physically optimized.

The mapper operator was incorporated in Data Fusion, a data transforma-

tion tool used in real world settings, in order to validate the relevance of

one-to-many data transformations (Section 6.5). The tool has been selected

for several legacy-data migration projects of banking information systems.

The support for one-to-many data transformations through a specialized

operator had a positive impact on the effort required to develop complex

data transformations.

A set of provably correct algebraic optimization rules. A set of algebraic

rewriting rules for generating logical query plans involving mappers and

142

7.1 Summary

standard relational operators were proposed. Sections 4.2 to 4.5 introduce

these rules, together with their corresponding formal proofs of correctness.

The proposed logical optimization rules were validated through multiple ex-

periments contrasting unoptimized one-to-many data transformations that

apply selections to mappers, with their algebraically optimized equivalents

(Section 6.3).

A cost model for the Naïve algorithm was proposed for studying the cost-

based optimization of expressions involving mappers (Section 4.6). The ex-

periments, reported in Section 6.3, confirmed the accuracy of the proposed

cost-model and showed that the introduction of algebraic optimizations im-

parts high gains.

Optimized mapper execution algorithms. The semantics of the mapper op-

erator (Section 3.2) suggests a simple iterator-based algorithm implementa-

tion (Section 5.2). This algorithm, designated as Naïve, despite its simplic-

ity, may turn out to be very inefficient, especially when expensive mapper

functions are present.

To overcome this difficulty, two new evaluation algorithms were proposed

for reducing the overall mapper evaluation cost. Both algorithms rely on

avoiding superfluous function evaluations. The Shortcircuiting algorithm,

takes advantage of the semantics of the mapper operator, skipping the eval-

uation of the remaining functions, as soon as the result of a mapper function

is an empty set (Section 5.3). The Cache-based algorithm explores the pres-

ence of duplicated values in the input relation through an in-memory cache

of mapper function results (presented in Section 5.4).

To overcome the limitations of an in-memory cache, strategies for cache

replacement were also considered. Section 5.5 introduced a cache-based

mapper evaluation algorithm with an LRU replacement strategy, commonly

implemented in databases and operating systems. Two new replacement

strategies, specific for mapper evaluation, were proposed. The Least Useful

Replacement (LUR) bases its replacement decisions on the maximization

of an utility function. It considers the number of references to an entry as

143

7. CONCLUSIONS

well as the function evaluation cost, besides the time-to-last reference (see

Section 5.6). Because LUR cannot be widely applied in practice due to its

big overhead, a lightweight approximation to LUR based on multiple LRU

stacks, designated as Relaxed LUR (XLUR) was also proposed (Section 5.7).

The main finding of the analysis of the proposed algorithms showed that

both the Shortcircuiting and the Cache-based techniques are quite suc-

cessful in reducing the overall evaluation cost of the mapper execution.

They showed important improvements both on synthetic and real-world

data sets. In addition, the experiments demonstrated that the gains are

highly dependent on factors such as the mapper function cost, the mapper

function selectivity and the distribution of duplicates on the input relation

(Section 6.4).

7.2 Limitations

The generalizability of the results presented in this thesis is bounded by the

following issues.

Lack of performance comparison with data transformation tools. The

performance of one-to-many data transformations was tested on several im-

plementations that use RDBMSs. However, a comparison of one-to-many

data transformations using ETL tools has not been conducted. The main

factor that hindered such comparison was the difficulty in assessing the

internals of data transformation tools, which are often not documented.

In contrast, RDBMSs have a well-understood architecture and comprehen-

sive documentation. Without a precise description of the internals of data

transformation tools, the conclusions drawn from the experiments could be

misleading.

Nevertheless, the lack of experimentation with ETL tools has a small im-

pact on the conclusions regarding the implementation of one-to-many data

transformation, since the underlying technology is progressively becoming

more and more RDBMSs-like (Amer-Yahia & Cluet, 2004; Galhardas et al.,

2000; Simitsis et al., 2005).

144

7.2 Limitations

Assumption of the completeness of MRA. The extension of RA with the

mapper operator (MRA) was shown to be powerful enough for expressing

all one-to-many data transformations. Using formal terms, it is assumed

that MRA is complete with respect to one-to-many data transformations.

Unfortunately, this has not been formally demonstrated. Hence, the claim

of expressiveness of the mapper operator is undermined, because it can be

questioned whether a one-to-many data transformation can be conceived,

that is not expressible as a combination of RA operators and mappers.

From a theoretical standpoint, data transformations can be envisioned as

functions from databases to relations. The class of functions that denote

one-to-many data transformations, represented by M, can be defined as all

data transformations that produce multiple output tuples for each input tu-

ple. Presumably, the set M can be formalized and enable the demonstration

that MRA is powerful enough to express all one-to-many data transforma-

tions.

Lack of a cost model for cache-based evaluation algorithms. There is no

principled way to estimate the cost of a data transformation that uses a

cache based algorithm. Some of the factors that influence the performance

of the cache based algorithm, such as the cache size, the number of du-

plicates, the mapper function cost or the average inter-reference interval,

have been identified and validated in Sections 5.4 and 6.4.4, respectively.

However, the accuracy of the cost estimates of a cache-based algorithm

are limited by the difficulties in determining in advance the cache access

patterns. In the case of the cache-based implementations of the mapper op-

erator, such patterns are induced by the different distributions of duplicate

values within the attributes of the input relations. Forecasting such cache

access patterns is an interesting research problem in itself.

However, in this thesis, the lack of a cost model for a Cache-based algorithm

does not impact the dynamic selection of a different execution algorithm for

mappers. In Section 5.9, a straightforward heuristic is proposed for select-

ing the most appropriate algorithm. The remaining ambiguity of deciding

145

7. CONCLUSIONS

between a cache-based evaluation with LRU or one with XLUR can be re-

solved by always selecting XLUR as a replacement strategy. Section 6.4.4

validates that XLUR performs better or at least as good as LRU.

7.3 Future Work

During the development of this thesis, several interesting lines for future work

concerning the implementation of the mapper operator were identified. The bulk

of these lines of work is on extending the proposed logical and physical optimiza-

tions by incorporating the mapper operator in a query processor of an RDBMS

or, alternatively, in the transformation engine of a data-transformation tool.

7.3.1 Further rewriting rules

The rules stated in Chapter 4 can be further extended, enabling the logical opti-

mization of a broader class of queries. One way to do this is to consider further

re-writing for joins, grouping and duplicate removal. Concerning join operations,

one possible rewriting adopts the form µF (r) 1 µF (s) = µF (r 1 s), if none of

the mapper functions in F produces duplicate values. This rewriting pushes the

mappers to the sources, potentially resulting in fewer evaluations than over the

joined relation. Moreover, we can introduce rules to take advantage of outer-joins,

similar to those proposed by Amer-Yahia & Cluet (2004), for the map operator.

The grouping operator γG,L, where G represents the grouping attributes and L

is the set of aggregation functions, can be pushed through a mapper resulting

in potentially huge reductions on the number of tuples passed to the mapper.

For example, consider the expression γB,COUNT(A)(µX→A,Y→B,fC
(r)), where fC is a

potentially expensive mapper function, and r is a relation instance. The grouping

operator in this expression can only be computed after mapping all tuples of r.

In contrast, the equivalent expression µX→A,Y→B(γY,COUNT(X)(r)) is more efficient

to compute because the mapper is evaluated only once for each distinct value of

Y . Likewise, the duplicate removal operator δX(µF (r)) can be commuted with

the mapper operator, resulting in µF (δY (r)), whenever the attributes of X are

directly mapped from the attributes of Y .

146

7.3 Future Work

7.3.2 Cost-based optimizer for one-to-many transformations

A cost-based optimizer capable of optimizing data transformations expressed as

queries involving the mapper operator can be implemented. This optimizer must

incorporate the logical re-writing rules, the mapper execution algorithms, and the

cost model presented in this thesis. Two key extensions to the traditional Sys-

tem/R algorithm need to be implemented to handle mappers. First, a mechanism

for maintaining accurate statistics of selectivity, fanout and cost of the mapper

functions, must be available. This is necessary for estimating the expected car-

dinality of the mapper operator and its expected cost, using the various physical

execution algorithms. Second, the optimizer must be extended to handle expen-

sive mapper functions. Expensive mapper functions introduce a new requirement

to a cost-based optimizer: when determining the join orderings, besides mini-

mizing I/O cost, the optimizer must minimize the cost of evaluating mappers

functions.

In addition, since one-to-many data transformations usually arise in the con-

text of data management activities (e.g., ETL, data integration and cleaning), a

cost-based optimizer tunned for one-to-many data transformations should take

into account the characteristics of the workload of data transformations. This

kind of workload differs from the traditional RDBMSs workload in aspects such

as:

Long running queries. The workload resulting from data management activi-

ties is characterized by a small number of complex and long-running queries

(that only change if the source or target schemas change) with a small de-

gree of concurrency. In this context, the optimizer can devote more time

and resources to finding better plans in the prospect of achieving greater

savings during the execution of the queries. The heuristics of a traditional

optimizer must be revised. For instance, bushy join trees can be considered

instead of only left-deep join trees as considered by most RDBMS optimiz-

ers.

Heterogeneous data sources. Data is often read from heterogeneous sources.

These sources are often database systems that use distinct representations of

147

7. CONCLUSIONS

data, may have diverse query capabilities and different data transfer rates.

The challenges of optimizing queries against heterogeneous data sources

have been considered in the literature on query evaluation in heterogeneous

sources and distributed databases (Kossmann, 2000).

Heterogeneous data targets. Instead of being returned to the user, data pro-

duced by a query implementing a data transformation is often loaded into

another database system. It is frequently required that this load be per-

formed in multiple target systems simultaneously. As a result, the optimizer

must also optimize the data-load process. One way to improve the load

process consists of loading the target data ordered according to the indexes

defined on the target relations, because this avoids random I/O seeks in the

target system.

From a technical standpoint, the problem corresponds to that of optimizing

the access plan for a set of interesting orders associated with the target re-

lations. It can, in principle, be obtained by enhancing the interesting orders

mechanism of the traditional optimizers. However, computing interesting

orders when mappers are present is a complex task, since it is not always

possible to automatically decide whether the result of a mapper function

is ordered if the input of the function is ordered. The query optimizer can

identify many trivial cases. Complex functions could be annotated with a

flag indicating that the function is order-preserving.

7.4 Closing Notes

This thesis introduced the new mapper operator and proposed a solution for the

problem of expressing and executing queries with it. The conducted research im-

pacts the technology used for performing data transformations, since it shows that

another class of data transformations can be expressed and optimized using the

best practices of logical and physical independence granted by RDBMSs. Nowa-

days, RDBMSs perform increasingly complex roles in many data management

activities as data staging areas and as data transformation engines. This thesis

also contributes to broadening the span of application of RDBMS by enlarging

148

7.4 Closing Notes

the class of data transformations that they can effectively handle. The mapper

operator is also a valuable addition to a data transformation tool by uncovering

one-to-many data transformations in scripts, turning data management software

easier to understand and maintain.

149

Appendix A

Mathematical Proofs

A.1 Cost Formulas

Development of Equation (4.7) into Equation (4.8):

∆4.3 = n · (Cprd + CF) + n · (OF · Csel)− n · (Cprd′ + CF + OgAj
· Csel)

= n · (Cprd + OF · Csel)− n · (Cprd′ + OgAj
· Csel)

= n · (k ·OF + m · k0 + OF · Csel)− n · (k · α ·OF + m · k0 + OgAj
· Csel)

= n · (k ·OF + OF · Csel)− n · (k · α ·OF + OgAj
· Csel)

= n · k ·OF · (1− α) + n · Csel · (OF −OgAj
)

Development of ∆4.3 > 0:

∆4.3 > 0

n · k ·OF · (1− α)− n · Csel · (OgAj
− OF) > 0

k ·OF · (1− α) > Csel(OgAj
−OF)

Development of Equation (4.10) into Equation (4.11):

∆4.4 = n · (Cprd + CF) + n ·OF · Csel − n · (Csel + CH)− n · α · (Cprd + CF)

= n · Cprd · (1− α) + n · CF · (1− α) + n · Csel · (OF − 1)− n · CH

= n · (1− α) · (Cprd + CF) + n · Csel · (OF − 1)− n · CH

151

A. MATHEMATICAL PROOFS

Development of ∆4.4 > 0:

n · (1− α) · (Cprd + CF) + n · (OF − 1) · Csel − n · CH > 0

(1− α) · (Cprd + CF) + (OF − 1) · Csel − CH > 0

CH < (1− α) · (Cprd + CF)

+ (OF − 1) · Csel

Development of ∆4.3 −∆4.4:

∆4.3 −∆4.4 = n · k ·OF · (1− α) + n · Csel · (OF − OgAj
)

−
(

n · (1− α) · (Cprd + CF) + n · Csel · (OF − 1)− n · CH

)

= n · (1− α) · k ·OF + n · Csel · (OF − OgAj
)

− n · (1− α) · (Cprd + CF)− n · Csel · (OF − 1) + n · CH

= n · (1− α) · (k ·OF − Cprd − CF) + n · Csel · (OF −OgAj
− OF + 1) + n · CH

= n · (1− α) · (k ·OF − k ·OF −m · k0 − CF) + n · Csel · (1− OgAj
) + n · CH

= −n · (1− α) · (CF + m · k0) + n · Csel · (1− OgAj
) + n · CH

= n · CH + n · Csel · (1−OgAj
)− n · (1− α) · (CF + m · k0)

Development of ∆4.4 −∆4.3:

∆4.4 −∆4.3 = n · (1− α) · (Cprd + CF) + n · Csel · (OF − 1)− n · CH

−
(

n · k ·OF · (1− α) + n · Csel · (OF −OgAj
)
)

= n · (1− α) · (Cprd + CF) + n · Csel · (OF − 1)− n · CH

− n · (1− α) · k ·OF − n · Csel · (OF −OgAj
)

= n · (1− α) · (Cprd + CF − k ·OF) + n · Csel · (OF − 1−OF + OgAj
)− n · CH

= n · (1− α) · (k ·OF + m · k0 + CF − k ·OF) + n · Csel · (OgAj
− 1)− n · CH

= n · (1− α) · (CF + m · k0) + n · Csel · (OgAj
− 1)− n · CH

A.2 Binary Rank Ordering Lemma

Herein we present the proof of Lemma 5.1. Consider a set of mapper functions F

and a sequence ωi≺j ∈ Ω(F). We will prove that ωi≺j is more economic than ωj≺i,

whenever rank(ω[i]) ≤ rank(ω[j]). To simplify the notation we set f = ω[i] and

152

A.2 Binary Rank Ordering Lemma

g = ω[i]. We will use Cf and Cg to represent the expected cost of evaluating f

and g. The selectivity factor of the function ω[i] is represented by αi. Whenever

clearer, we will also denote the selectivity factor of f by αf . If, by hypothesis,

ωi≺j is the optimal order, we want to prove that

C
ωi≺j

F ≤ C
ωj≺i

F (A.1)

is equivalent to

rank(f) ≤ rank(g) (A.2)

mutatis mutandis for the case ωj≺i. Taking into account the meaning of Cω
F ,

Equation (A.1) can be rewritten as

∑

f∈F

P ωi≺j(f) · Cf ≤
∑

f∈F

P ωj≺i(f) · Cf (A.3)

which simplifies to

P ωi≺j(f) · Cf + P ωi≺j(g) · Cg ≤ P ωj≺i(f) · Cf + P ωj≺i(g) · Cg (A.4)

Since the function P ωi≺j is defined by cases, the rest proof development will follow

by cases. We start by considering the case where the probability of evaluating

f is 0. Whenever the probability of evaluating f is not 0, we consider two more

cases, first the sub-case when f is the first function on the sequence ωi≺j , i.e.,

when i = 1, and then the sub-case when i > 1.

Case 1. When P ωi≺j(f) = 0. In this case, since we assume that f always

precedes g, the Shortcircuiting algorithm also does not evaluate g, and thus nec-

essarily P ωi≺j(g) = 0. Thus, Equation (A.4) holds trivially.

Case 2. When P ωi≺j(f) > 0 and i = 1. If we take into account that j = i+1,

then

P 1≺2(f) = 1 and P 1≺2(g) = αf

Conversely, if g was evaluated before f then we would have

P 2≺1(f) = αg and P 2≺1(g) = 1

153

A. MATHEMATICAL PROOFS

Thus, taking into account the former case case, the inequality of Equation (A.4)

can rewritten as

Cf + αf · Cg ≤ αg · Cf + Cg (A.5)

After switching sides and factorizing, becomes equivalent to

(1− αg) · Cf ≤ (1− αf) · Cg (A.6)

Which simplifies to

Cf

(1− αf)
≤

Cg

(1− αg)
(A.7)

This is the same as rank(f) ≤ rank(g).

Case 3. When P (f) > 0 and i > 1. If we assume that f is evaluated before

g then

P ωi≺j(f) =
∏

k≤i

αk and P ωi≺j(g) = αg ·
∏

k≤i

αk (A.8)

Conversely, if g is evaluated before f then

P ωj≺i(f) = αg ·
∏

k≤i

αk and P ωj≺i(g) =
∏

k≤i

αk (A.9)

Making

p =
∏

k≤i

αfAp
(A.10)

This inequality expands to

p · Cf + αf · p · Cg ≤ αg · p · Cf + p · Cg (A.11)

Switching sides, we have

p · Cf − αg · p · Cf ≤ p · Cg − αf · p · Cg (A.12)

154

A.3 Optimality of the Ascending Rank Ordering

Factorizing

(1− αg) · p · Cf ≤ (1− αf) · p · Cg (A.13)

Simplifying we get

(1− αg) · Cf ≤ (1− αf) · Cg (A.14)

Which is the same as

Cf

(1− αf)
≤

Cg

(1− αg)
(A.15)

Which denotes rank(f) ≤ rank(g).

A.3 Optimality of the Ascending Rank Ordering

This section demonstrates the claim of Theorem 5.1, which is that the evaluation

sequence that corresponds to the ascending rank order is an optimal strategy for

the Shortcircuiting algorithm. Given a set F of mapper functions, we start by

observing that whatever sequence ω ∈ Ω(F), the probability that an empty set

is returned after evaluating all the mapper functions, i.e., P ω(fAm
), is the same.

This makes invariant

P ω(fAm
) · k ·

∏

f∈F

Of + m · k0 (A.16)

in the cost formula of the Shortcircuiting algorithm given in Equation (5.3). Thus,

the optimal evaluation sequence is the one that minimizes

∑

f∈F

P ω(f) · Cf (A.17)

which is equivalent to Cω
F . It remains to be shown that the sequence that mini-

mizes Cω
F must be an ascending rank order of the mapper functions. The proof

is developed by reductio ad absurdum. Suppose that there exists an evaluation

sequence ωi≺j, that is optimal but that is not in ascending rank order. Moreover,

155

A. MATHEMATICAL PROOFS

consider that i and j are the indices of two adjacent functions in that evaluation

sequence that are not rank ordered, i.e., such that rank(ω[i]) > rank(ω[j]). By

exchanging i with j we get a sub-sequence ωj≺i, which, by Lemma 5.1 is more

economic than ωi≺j. Thus, the sequence ωj≺i obtained from ωi≺j by exchang-

ing i with j is cheaper than ωi≺j, which is a contradiction. Hence, any optimal

sequence ω corresponds necessarily to an ascending rank order of the mapper

functions.

A.4 More Past References Imply Greater Utility

This section demonstrates that more past references lead to greater utility. Let C

be a cache with entries e1 and e2 to have the same cost c and the same frequency

θ. It must be proved that, after an equal k without referencing e1 or e2, nh1
> nh2

implies ut0(e1) > ut0(e2).

The equality θ1 = θ = θ2 can be written as:

nh1

tl − ta1

= θ =
nh2

tl − ta2

(A.18)

This is true if nh1 = nh2 and ta1 = ta2. Otherwise, to maintain the frequencies

equal, either nh1 > nh2 (which implies that ta1
< ta2

), or nh1 < nh2, (which

implies that ta2
< ta1

). Whenever nh1 > nh2, the entry e1 has been referenced

more often in the past than e2, implying that e1 must have been seen for the

first time before e2. Hence, from Definition 5.4 it follows that ut0(e1) > ut0(e2).

Hence, the entry that has the oldest arrival time is the most useful. A similar

reasoning applies to the case nh2 > nh1.

156

Appendix B

Overview of Cache Replacement

Strategies

A cache is a mechanism that enables algorithms to trade space for time by storing

the results of costly operations in memory. Due to space constraints, some entries

have to be discarded to make room for newer ones. The selection of the entry to

be discarded is governed by a cache replacement strategy.

The cache replacement strategy directly influences the performance of cache-

based algorithms, since different strategies may have a distinct capabilities to

correctly predict which entries will be needed in the future. Since, it is impossible

for many algorithms to predict accurately in practice the future references to a

cache entry, the replacement decisions are usually based on heuristics that exploit

patterns of references to the cache. These are known as cache access patterns.

Different algorithms result in different cache access patterns. Hence, a cache

replacement strategy should be tunned to the specific cache access pattern of

the algorithm in order to increase the chances of finding previously computed

results in the cache. One well-known cache access pattern is temporal locality

of references, which postulates that once an entry is referenced, then it will be

referenced again in the near future (Coffman Jr. & Denning, 1973, Section 7.2).

This pattern has been exploited by heuristics such as replacing the least recently

used entry (LRU), or replacing the least frequently used entry (LFU).

Cache replacement strategies that base their replacement decisions on a single

metric, like time-to-last reference in the case of LRU or access frequency in the

157

B. OVERVIEW OF CACHE REPLACEMENT STRATEGIES

case of LFU, perform sub-optimally whenever the cost of creating the cache entries

is not uniform. For example, LFU may discard a very expensive entry instead of

a cheaper entry, even if the frequency of the expensive entry is marginally lower

than the frequency of the cheaper one.

Cache replacement strategies can be enhanced to consider compound metrics

that also include cost. In this way, the entries kept in cache are not only those

that are more likely to be referenced in the future, but also those that are more

expensive to compute, thus reducing the overall computation cost of the cache-

based algorithm.

In the context of a cache, time does not correspond to the elapsed wall-clock

time but rather to the number of times the cache was accessed so far.

158

Appendix C

Overview of the Zipfian

Distribution

A Zipfian distribution is characterized as follows: Let r be a relation with n tuples.

The domain of a mapper function f evaluated over r, is a relation r[Dom(f)] with

cardinality n and a number d ≤ n of distinct values. Sort the distinct values in

decreasing order of frequency (also referred to as popularity). The position j such

that 1 ≤ j ≤ d is known as the rank ; lower ranks correspond to most frequent

values. The frequency the jth distinct input of f is given by pj = a ·(1/jz), where

a =
d

∑

j=1

1/jz

is a normalization constant and z is the skewness parameter. Skewness reflects

the asymmetry of the frequency distribution around its mean. If z is set to

zero, the distinct values are distributed uniformly. As z increases, more skewed

patterns are produced.

The plot of rank versus frequency on a log-log scale of data following a Zip-

fian distribution displays a straight line trend as exemplified in Schwartz (1963).

Similarly, the plot of rank versus frequency of the input values of the relation

CITEDATA for the functions name, title and event of Example 3.2.2 shown in

Figure C.1.

159

C. OVERVIEW OF THE ZIPFIAN DISTRIBUTION

 0.001

 0.01

 0.1

 1

 1 10 100 1000

F
re

qu
en

cy

Rank

name function
y = 1.15/j0.60

title function
y = 2.20/j0.74

event function
y = 3.99/j0.91

Figure C.1: Rank versus frequency characteristics of the input data for the three
most expensive functions of Example 3.2.2 read from a sample with 10K tuples of
the CITEDATA relation. The plots is rendered on a log-log scale with corresponding
fitting functions in the form y = a/jz, where j is the rank (x-axis).

Zipfian data distribution in literature

It as been widely acknowledged that several phenomena in computer science

follow powerlaw distributions (Knuth, 1998, p. 399) like the Zipfian distribu-

tion (Zipf, 1949). In particular the values in real-world relational databases often

follow a Zipfian distributions (Christodoulakis, 1984; Ioannidis & Christodoulakis,

1991; Lowe, 1968; Lynch, 1988; Motwani & Vassilvitskii, 2006; Siler, 1976). Zip-

fian distributed data is known to influence diverse aspects of query processing,

like undermining the execution of certain relational operators (Taniar & Leung,

2003; Wolf et al., 1993) and making plan selection less accurate (Ioannidis &

Christodoulakis, 1991; Lynch, 1988). Synthetically generated data for evaluat-

ing the performance of database technology also follows Zipfian distributions.

This was initially proposed by Siler (1976) and later Gray et al. (1994) employed

Zipfian distribution in the data generator of the TPC benchmarks (TPC, 1999).

160

ThesisFigs/functions-rank-vs-frequency.ps

References

Abelson, H., Sussman, G.J. & Sussman, J. (1985). Structure and Interpre-

tation of Computer Programs. MIT Press.

Abiteboul, S., Hull, R. & Vianu, V. (1995). Foundations of Database Sys-

tems. Addison-Wesley.

Abiteboul, S., Quass, D., McHugh, J., Widom, J. & Wiener, J.L. (1997).

The Lorel Query Language for Semistructured Data. International Journal on

Digital Libraries , 1, 68–88.

Agrawal, R. (1988). Alpha: An Extension of Relational Algebra to Express a

Class of Recursive Queries. IEEE Transactions on Software Engineering , 14,

879–885.

Ahad, R. & Yao, S.B. (1993). RQL: A Recursive Query Language. IEEE Trans-

actions on Knowledge and Data Engineering , 5, 451–461.

Aho, A.V. & Ullman, J.D. (1979). Universality of Data Retrieval Languages.

In Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages, 110–119, ACM Press.

Amer-Yahia, S. & Cluet, S. (2004). A Declarative Approach to Optimize

Bulk Loading into Databases. ACM Transactions of Database Systems, 29,

233–281.

Atzeni, P. & de Antonellis, V. (1993). Relational Database Theory . The

Benjamin/Cummings Publishing Company, Inc.

161

REFERENCES

Barateiro, J. & Galhardas, H. (2005). A Survey of Data Quality Tools.

Datenbank-Spektrum, 14, 15–21.

Batini, C., Lenzerini, M. & Navathe, S.B. (1986). A Comparative Anal-

ysis of Methodologies for Database Schema Integration. In ACM Computing

Surveys, vol. 18, 323–364.

Belady, L.A. (1966). A Study of Replacement Algorithms for Virtual-Storage

Computer. IBM Systems Journal , 5, 78–101.

Bernstein, P.A. & Chiu, D.M.W. (1981). Using Semi-Joins to Solve Rela-

tional Queries. Journal of the ACM , 28, 25–40.

Bleiholder, J. & Naumann, F. (2005). Declarative Data Fusion - Syntax,

Semantics, and Implementation. In J. Eder, H.M. Haav, A. Kalja & J. Penjam,

eds., 9th East European Conference on Advances in Databases and Information

Systems (ADBIS 2005), vol. 3631 of Lecture Notes in Computer Science, 58–73,

Springer.

Börzsönyi, S., Kossmann, D. & Stocker, K. (2001). The Skyline Opera-

tor. In Proceedings of the 7th International Conference on Data Engineering

(ICDE’01), 421–430.

Breslau, L., Cao, P., Fan, L., Phillips, G. & Shenker, S. (1999). Web

Caching and Zipf-like Distributions: Evidence and Implications. In Proceedings

of the IEEE INFOCOM Conference, 126–134.

Buneman, P., Davidson, S., Hillebrand, G. & Suciu, D. (1996). A Query

Language and Optimization Techniques for Unstructured Data. In Proceedings

of the ACM SIGMOD International Conference on Management of Data, 505–

516.

Cao, P. & Irani, S. (1997). Cost-Aware WWW Proxy Caching Algorithms.

In Proceedings of the 1997 USENIX Symposium on Internet Technology and

Systems, 193–206.

162

REFERENCES

Carreira, P. & Galhardas, H. (2003). Efficient Development of Data Mi-

gration Transformations. In Proceedings of the Semantic Integration Workshop

(The Second International Semantic Web Conference).

Carreira, P. & Galhardas, H. (2004a). Efficient Development of Data Mi-

gration Transformations. In Proceedings of the ACM SIGMOD International

Conference on the Management of Data.

Carreira, P. & Galhardas, H. (2004b). Execution of Data Mappers. In Inter-

national Workshop on Information Quality in Information Systems (IQIS’04),

ACM.

Carreira, P., Galhardas, H., Lopes, A. & Pereira, J. (2005a). Extending

Relational Algebra to Express One-to-many Data Transformations. In Proceed-

ings of the 20th Brazilian Symposium on Databases (SBBD’05).

Carreira, P., Galhardas, H., Pereira, J. & Lopes, A. (2005b). Data

Mapper: An Operator for Expressing One-to-many Data Transformations. In

7th International Conference on Data Warehousing and Knowledge Discovery,

DaWaK ’05 , vol. 3589 of LNCS , Springer-Verlag.

Carreira, P., Galhardas, H., Lopes, A. & Pereira, J. (2007). One-to-

many Transformation Through Data Mappers. Data and Knowledge Engineer-

ing Journal , 62, 483–503.

Casey, R.G. & Osman, I.M. (1974). Generalized Page Replacement Algo-

rithms in a Relational Data Base. In R. Rustin, ed., Proceedings of 1974 ACM-

SIGMOD Workshop on Data Description, Access and Control , 101–124, ACM.

Castano, S. & Antonellis, V.D. (1999). A Schema Analysis and Reconcilia-

tion Tool Environment. In Proceedings of the International Database Engineer-

ing and Applications Symposium (IDEAS’99).

Chamberlin, D., Robie, J. & Florescu, D. (2000). Quilt: An XML Query

Language for Heterogeneous Data Sources. In WebDB (Informal Proceedings),

53–62.

163

REFERENCES

Chamberlin, D.D. (2002). XQuery: An XML query language. IBM Systems

Journal , 41, 597–615.

Chaudhuri, S. (1998). An Overview of Query Optimization in Relational Sys-

tems. In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems (PODS ’98), 34–43, ACM Press.

Chaudhuri, S. & Shim, K. (1993). Query Optimization in the Presence of For-

eign Functions. In Proceedings of the International Conference on Very Large

Data Bases (VLDB’93), 529–542.

Chaudhuri, S. & Shim, K. (1999). Optimization of Queries with User-defined

Predicates. ACM Transactions on Database Systems, 24, 177–228.

Chimenti, D., Gamboa, R. & Krishnamurthy, R. (1989). Toward an Open

Architecture for LDL. In Proceedings of the International Conference on Very

Large Data Bases (VLDB’89), 195–203, Morgan Kaufmann Publishers Inc.

Chou, H.T. & DeWitt, D.J. (1985). An Evaluation of Buffer Management

Strategies for Relational Database Systems. In Proceedings of 11th Interna-

tional Conference on Very Large Data Bases (VLDB’85), 127–141, Morgan

Kaufmann.

Christodoulakis, S. (1984). Implications of Certain Assumptions in Database

Performance Evaluation. ACM Transactions on Database Systems, 9, 163–186.

Clark, J. (1999). XSL Transformations (XSLT) Version 1.0. W3C Recomen-

dation.. World Wide Web Consortium.

Clark, J. & DeRose, S. (1999). XML Path Language (XPath) Version 1.0.

W3C Recomendation.. World Wide Web Consortium.

Cluet, S. & Siméon, J. (1997). Data Integration Based on Data Conversion

and Restructuring. Extended version of Cluet et al. (1998).

Cluet, S., Delobel, C., Siméon, J. & Smaga, K. (1998). Your Mediators

Need Data Conversion! In Proceedings of the ACM SIGMOD International

Conference on the Management of Data, 177–188.

164

REFERENCES

Codd, E.F. (1970). A Relational Model of Data for Large Shared Data Banks.

Communications of the ACM , 13, 377–387.

Coffman Jr., E.G. & Denning, P.J. (1973). Operating Systems Theory .

Prentice-Hall Series in Automatic Computation, Prentice-Hall.

Cormen, T.H., Leiserson, C.E., Rivest, R.L. & Stein, C. (2001). Intro-

duction to Algorithms, 2nd Edition. MIT Press.

Cui, Y. & Widom, J. (2001). Lineage Tracing for General Data Warehouse

Transformations. In Proceedings of the International Conference on Very Large

Data Bases (VLDB’01).

Cunningham, C., Graefe, G. & Galindo-Legaria, C.A. (2004). PIVOT

and UNPIVOT: Optimization and Execution Strategies in an RDBMS. In Pro-

ceedings of the International Conference on Very Large Data Bases (VLDB’04),

998–1009, Morgan Kaufmann.

Denning, P.J. (1968). The Working Set Model for Program Behavior. Commu-

nications of the ACM , 11, 323–333.

Deutsch, A., Fernandez, M., Florescu, D., Levy, A.Y. & Suciu, D.

(1998). XML-QL. In QL’98 The Query Languages Workshop (W3C Workshop).

Deutsch, A., Fernandez, M.F., Florescu, D., Levy, A.Y. & Suciu, D.

(1999). A Query Language for XML. Computer Networks, 31, 1155–1169.

Do, H.H. & Rahm, E. (2002). COMA – A System for Flexible Combination of

Schema Matching Approaches. In Proceedings of the International Conference

on Very Large Data Bases (VLDB’02).

Doan, A.H., , Madhavan, J. & Domingos, P. (2002). Learning to Map Be-

tween Ontologies on the Semantic Web. In Proceedings of the 11th International

WWW Conference.

Effelsberg, W. & Haerder, T. (1984). Principles of Database Buffer Man-

agement. ACM Transactions on Database Systems (TODS’84), 9, 560–595.

165

REFERENCES

Eisenberg, A., Melton, J., Michels, K.K.J.E. & Zemke, F. (2004).

SQL:2003 Has Been Published. Proceedings of the ACM SIGMOD Record , 33,

119–126.

Fagin, R., Kolaitis, P.G., Miller, R.J. & Popa, L. (2003). Data Exchange:

Semantics and Query Answering. In Proceedings 8th International Conference

on Database Theory (ICDT), IEEE Computer Society.

Fernandez, M.F., Florescu, D., Kang, J., Levy, A.Y. & Suciu, D.

(1998). Catching the Boat with Strudel: Experiences with a Web-Site Manage-

ment System. In Proceedings of the ACM SIGMOD International Conference

on the Management of Data, 414–425.

Feuerstein, S. & Pribyl, B. (2005). Oracle PL/SQL Programming . O’Reilly

& Associates, 4th edn.

Florescu, D., Levy, A.Y., Manolescu, I. & Suciu, D. (1999). Query

Optimization in the Presence of Limited Access Patterns. In Proceedings of the

ACM SIGMOD International Conference on the Management of Data, 311–

322.

Galhardas, H. (2001). Data Cleaning: Model, Declarative Language and Algo-

rithms . Ph.D. thesis, Université de Versailles Saint-Quentin-en-Yvelines.

Galhardas, H., Florescu, D., Shasha, D. & Simon, E. (2000). AJAX:

An Extensible Data Cleaning Tool. Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data, 2.

Galhardas, H., Florescu, D., Shasha, D., Simon, E. & Saita, C.A.

(2001). Declarative Data Cleaning: Language, Model, and Algorithms. In Pro-

ceedings of the International Conference on Very Large Data Bases (VLDB’01).

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A.,

Sagiv, Y., Ullman, J. & Widom, J. (1997). The TSIMMIS Approach to

Mediation: Data Models and languages. Journal of Intelligent Information

Systems, 8, 117–132.

166

REFERENCES

Garcia-Molina, H., Ullman, J.D. & Widom, J. (2002). Database Systems

– The Complete Book . Prentice-Hall.

Gosling, J., Joy, B., Steele, G. & Bracha, G. (2005). The Java Language

Specification. Addison-Wesley, 3rd edn.

Graefe, G. (1993). Query Evaluation Techniques for Large Databases. ACM

Computing Surveys, 2.

Gray, J., McJones, P., Blasgen, M., Lindsay, B., Lorie, R., Price, T.,

Putzolu, F. & Traiger, I. (1981). The Recovery Manager of the System/R

Database Manager. ACM Computing Surveys, 13, 223–242.

Gray, J., Sundaresan, P., Englert, S., Baclawski, K. & Weinberger,

P.J. (1994). Quickly Generating Billion-Record Synthetic Databases. In Pro-

ceedings of the 1994 ACM SIGMOD International Conference on Management

of Data (SIGMOD ’94), 243–252, ACM Press.

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D.,

Venkatrao, M., Pellow, F. & Pirahesh, H. (1997). Data Cube: A Re-

lational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-

Totals. J. Data Mining and Knowledge Discovery , 1, 29–53.

Haas, L.M., Lin, E.T. & Roth, M.T. (2002). Data Integration Through

Database Federation. IBM Systems Journal , 41, 578–596.

Halevy, A.Y., Ashish, N., Bitton, D., Carey, M.J., Draper, D., Pol-

lock, J., Rosenthal, A. & Sikka, V. (2005). Enterprise Information Inte-

gration: Successes, Challenges and Controversies. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, 778–787, ACM.

Han, J. & Kamber, M. (2001). Data Mining: Concepts and Techniques.

Morgan-Kaufmann.

Hanani, M.Z. (1977). An Optimal Evaluation of Boolean Expressions in an

Online Query System. ACM Transactions on Database Systems, 20, 344–347.

167

REFERENCES

Hellerstein, J.M. (1998). Optimization Techniques for Queries with Expensive

Methods. ACM Transactions on Database Systems, 22, 113–157.

Hellerstein, J.M. & Naughton, J.F. (1996). Query Execution Techniques

for Caching Expensive Methods. Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data, 423–434.

Hellerstein, J.M. & Stonebraker, M. (1993). Predicate Migration: Op-

timizing Queries with Expensive Predicates. In Proceedings of the ACM SIG-

MOD International Conference on Management of Data, 267–276, ACM Press.

Hergula, K. & Härder, T. (2001). How Foreign Function Integration Con-

quers Heterogeneous Query Processing. In Proceedings of the ACM Interna-

tional Conference on Information and Knowledge Management (CIKM), 215–

222, ACM.

Hull, R. & Yoshikawa, M. (1990). ILOG: Declarative Creation and Manipu-

lation of Object Identifiers. In Proceedings of the International Conference on

Very Large Databases (VLDB’90), 455–468.

Hwang, D.J.H. (1995). Function-based Indexing for Object-Oriented Databases.

Ph.D. thesis, Massachusetts Institute of Technology.

Ioannidis, Y.E. & Christodoulakis, S. (1991). On the Propagation of Errors

in the Size of Join Results. In Proceedings of the 1991 ACM SIGMOD Inter-

national Conference on Management of data (SIGMOD ’91), 268–277, ACM

Press.

ISO-ANSI (1992). Database Language SQL. ANSI, ISO/IEC 9075:1992 edn.

ISO-ANSI (1999). Database Language SQL-Part 2: SQL/Foundation. ANSI, ISO

9075-2 edn.

J. Robie, D.S., J. Lapp (1998). XQL. In QL’98 The Query Languages Workshop

(W3C Workshop).

168

REFERENCES

Jaedicke, M. & Mitschang, B. (1998). On Parallel Processing of Aggregate

and Scalar Functions in Object-Relational DBMS. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, 379–389, ACM

Press.

Jaeschke, G. & Schek, H.J. (1982). Remarks on the Algebra of Non First

Normal Form Relations. In Proceedings of the 1st ACM SIGACT-SIGMOD

Symposium on Principles of Database Systems (PODS ’82), 124–138, ACM

Press.

Janmohamed, Z., Liu, C., Bradstock, D., Chong, R., Gao, M.,

McArthur, F. & Yip, P. (2005). DB2 SQL PL. Essential Guide for DB2

UDB . Prentice-Hall.

Jiang, S. & Zhuang, X. (2002). LIRS: An Efficient Low Inter-Reference Re-

cency Set Replacement Policy to Improve Buffer Cache Performance. In Pro-

ceedings of the 2002 ACM SIGMETRICS international conference on Measure-

ment and modeling of computer systems.

Johnson, T. & Shasha, D. (1994). 2Q: A Low Overhead High Performance

Buffer Management Replacement Algorithm. In Proceedings of the 20th Inter-

national Conference on Very Large Data Bases (VLDB ’94), 439–450, Morgan

Kaufmann Publishers Inc.

Kernighan, B. & Ritchie, D. (1988). The C Programming Language.

Prentice-Hall, 2nd edn.

Kim, W., Choi, B.J., Hong, E.K., Kim, S.K. & Lee, D. (2003). A Taxonomy

of Dirty Data. Data Mining and Knowledge Discovery , 7, 81–99.

Kimball, R. & Caserta, J. (2004). The Data Warehouse ETL Toolkit . Willey.

Kirk, T., Levy, A.Y., Sagiv, Y. & Srivastava, D. (1995). The Information

Manifold. In C. Knoblock & A. Levy, eds., Information Gathering from Hetero-

geneous, Distributed Environments, Stanford University, Stanford, California.

169

REFERENCES

Kline, K., Gould, L. & Zanevsky, A. (1999). TransactSQL Programming .

O’Reilly & Associates, 1st edn.

Klug, A. (1982). Equivalence of Relational Algebra and Relational Calculus

Query Languages Having Aggregate Functions. Journal of the ACM , 29, 699–

717.

Knuth, D. (1998). The Art of Computer Programing , vol. 3. Addison-Wesley,

Reading, MA.

Koch, C. (2001). Data Integration against Multiple Evolving Autonomous

Schemata. Ph.D. thesis, Technische Universität Wien, Austria.

Kossmann, D. (2000). The State of the Art in Distributed Query Processing.

ACM Computer Surveys, 32, 422–469.

Labio, W., Wiener, J.L., Garcia-Molina, H. & Gorelik, V. (2000). Ef-

ficient Resumption of Interrupted Warehouse Loads. SIGMOD Record , 29,

46–57.

Lakshmanan, L.V.S., Sadri, F. & Subramanian, I.N. (1996). SchemaSQL -

A Language for Querying and Restructuring Database Systems. In Proceedings

International Conference on Very Large Databases (VLDB’96), 239–250.

Lee, D., Choi, J., Kim, J.H., Noh, S.H., Min, S.L., Cho, Y. & Kim, C.S.

(1999). On the Existence of a Spectrum of Policies that Subsumes the Least

Recently Used (LRU) and Least Frequently Used (LFU) Policies. In Proceedings

of the 1999 ACM SIGMETRICS international conference on Measurement and

modeling of computer systems, 134–143, ACM Press.

Li, C., Chang, K., Ilyas, I. & Song, S. (2005). RankSQL: Query Algebra and

Optimization for Relational Top-K Queries. In Proceedings of the 2005 ACM

SIGMOD international conference on Management of Data (SIGMOD ’05),

131–142, ACM Press.

Lomet, D. & Sarawagi, S., eds. (2000). Special Issue on Data Cleaning , vol. 23

of IEEE Data Engineering Bulletin, IEEE.

170

REFERENCES

Lowe, T.C. (1968). The Influence of Data Base Characteristics and Usage on

Direct Access File Organization. Journal of the ACM , 15, 535–548.

Lynch, C.A. (1988). Selectivity Estimation and Query Optimization in Large

Databases with Highly Skewed Distribution of Column Values. In Proceedings

of the 14th International Conference on Very Large Data Bases (VLDB ’88),

240–251, Morgan Kaufmann Publishers Inc.

Lynch, C.A. & Stonebraker, M. (1988). Extended User-Defined Indexing

with Application to Textual Databases. In Proceedings of the Fourteenth Inter-

national Conference on Very Large Data Bases, 306–317, Morgan Kaufmann

Publishers Inc.

Madhavan, J., Bernstein, P.A. & Rahm, E. (2001). Generic Schema Match-

ing with Cupid. In The VLDB Journal , 49–58.

Madhavan, J., Bernstein, P.A., Domingos, P. & Halevy, A.Y. (2002).

Representing and Reasoning about Mappings between Domain Models. In

AAAI/IAAI , 80–86.

Maier, D. & Stein, J. (1986). Indexing in an Object-Oriented DBMS. In Pro-

ceedings on the International Workshop on Object-oriented database systems

(OODS), 171–182, IEEE Computer Society Press.

Mayr, T. & Seshadri, P. (1999). Client-Site Query Extensions. In Proceedings

of the ACM SIGMOD International Conference on the Management of Data,

347–358.

Megiddo, N. & Modha, D. (2004). Outperforming LRU with an Adaptive

Replacement Cache. IEEE Computer , 37, 58–65.

Melton, J. & Simon, A.R. (2002). SQL:1999 Understanding Relational Lan-

guage Components. Morgan Kaufmann Publishers, Inc.

Miller, R.J. (1998). Using Schematically Heterogeneous Structures. Proceedings

of the ACM SIGMOD International Conference on the Management of Data,

2, 189–200.

171

REFERENCES

Miller, R.J., Haas, L.M., Hernandéz, M., Ho, C.T.H., Fagin, R. &

Popa, L. (2001). The Clio Project: Managing Heterogeneity. SIGMOD Record ,

1.

Milo, T. & Zhoar, S. (1998). Using Schema Matching to Simplify Hetero-

geneous Data Translation. In Proceedings of the International Conference on

Very Large Data Bases (VLDB’98).

Mishra, P. & Eich, M.H. (1992). Join Processing in Relational Databases.

ACM Computer Surveys, 24, 63–113.

Mohan, C. & Levine, F. (1992). ARIES/IM: An Efficient and High Concur-

rency Index Management Method Using Write-Ahead Logging. In Proceedings

of the ACM SIGMOD International Conference on Management of Data, 371–

380, ACM Press.

Motwani, R. & Vassilvitskii, S. (2006). Distinct Value Estimators for Power

Law Distributions. In Proceedings of the Third Workshop on Analytic Algorith-

mics and Combinatorics (ANALCO’06).

O’Neil, E.J., O’Neil, P.E. & Weikum, G. (1993). The LRU-K Page Replace-

ment Algorithm for Database Disk Buffering. In Proceedings of the ACM SIG-

MOD International Conference on the Management of Data, 297–306, ACM

Press.

Papakonstantinou, Y., Garcia-Molina, H. & Ullman, J. (1996). Med-

Maker: A Mediator System Based on Declarative Specifications. In Proceedings

of the International Conference on Data Engineering (ICDE’96).

Paredaens, J. (1978). On the Expressive Power of the Relational Algebra. In-

formation Processing Letters, 7, 107–111.

Paulson, L.C. (1996). ML for the Working Programmer, 2nd Edition. Cam-

bridge University Press.

172

REFERENCES

Pieciukiewicz, T., Stencel, K. & Subieta, K. (2005). Usable Recursive

Queries. In Proceedings of the 9th East European Conference, Advances in

Databases and Information Systems (ADBIS), vol. 3631 of Lecture Notes in

Computer Science, 17–28, Springer-Verlag.

Porto, F., Laber, E. & Valduriez, P. (2003). Cherry Picking: A Semantic

Query Processing Strategy for the Evaluation of Expensive Predicates. In Pro-

ceedings of the 18th Brazilian Symposium on Databases (SBBD’03), 356–370,

UFAM.

Rahm, E. & Do, H.H. (2000). Data Cleaning: Problems and Current Ap-

proaches. IEEE Bulletin of the Technical Committee on Data Engineering , 24.

Raman, V. & Hellerstein, J.M. (2000). An Interactive Framework for Data

Cleaning. Tech. Rep. UCB/CSD-0-1110, Computer Science Division (EECS),

University of California, Berkeley, California 94720.

Raman, V. & Hellerstein, J.M. (2001). Potter’s Wheel: An Interactive Data

Cleaning System. In Proceedings of the International Conference on Very Large

Data Bases (VLDB’01).

Refaat, M. (2006). Data Preparation for Data Mining Using SAS . The Morgan

Kaufmann Series in Data Management Systems.

Rifaieh, R. & Benharkat, A.N. (2002). Query-based Data Warehousing Tool.

In D. Theodoratos, ed., Proceedings of the 5th ACM International Workshop

on Data Warehousing and OLAP (DOLAP 2002), 35–42, ACM.

Rizzo, L. & Vicisano, L. (2000). Replacement Policies for a Proxy Cache.

IEEE/ACM Transactions on Networking , 8, 158–170.

Robinson, J.T. & Devarakonda, M.V. (1990). Data Cache Management us-

ing Frequency-Based Replacement. In Proceedings of the 1990 ACM SIGMET-

RICS conference on Measurement and modeling of computer systems, 134–142,

ACM Press.

173

REFERENCES

Rundensteiner, E.A. (1999). Letter from the Special Issue Editor. IEEE Data

Engineering Bulletin, 22, 2.

Sacco, G.M. & Schkolnick, M. (1986). Buffer Management in Relational

Database Systems. ACM Transactions on Database Systems, 11, 473–498.

Scheuermann, P., Shim, J. & Vingralek, R. (1997). A Case for Delay-

conscious Caching of Web Documents. Computer Networks and ISDN Systems,

29, 997–1005.

Schwartz, E.S. (1963). A Dictionary for Minimum Redundancy Encoding.

Journal of the ACM , 10, 413–439.

Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A. &

Price, T.G. (1979). Access Path Selection in a Relational Database Manage-

ment System. In Proceedings of the ACM SIGMOD International Conference

on the Management of Data, 23–34.

Shan, M.C. & Neimat, M.A. (1991). Optimization of Relational Algebra Ex-

pressions containing Recursion Operators. In Proceedings of the 19th annual

conference on Computer Science (CSC ’91), 332–341, ACM Press.

Sheth, A.P. & Larson, J.A. (1990). Federated Database Systems for Manag-

ing Distributed, Heterogeneous, and Autonomous Databases. ACM Computing

Surveys, 22, 183–236.

Shu, N.C., Housel, B.C. & Lum, V.Y. (1975). CONVERT: A High Level

Translation Definition Language for Data Conversion. Communications of the

ACM , 18, 557–567.

Shu, N.C., Housel, B.C., Taylor, R.W., Ghosh, S.P. & Lum, V.Y. (1977).

EXPRESS: A Data EXtraction, Processing and REStructuring System. ACM

Transactions on Database Systems, 2, 134–174.

Silberschatz, A., Korth, H.F. & Sudarshan, S. (2005). Database Systems

Concepts. MacGraw-Hill, 5th edn.

174

REFERENCES

Siler, K.F. (1976). A Stochastic Evaluation Model for Database Organizations

in Data Retrieval Systems. Communications of the ACM , 19, 84–95.

Simitsis, A., Vassiliadis, P. & Sellis, T.K. (2005). Optimizing ETL pro-

cesses in data warehouses. In Proceedings of the 21st International Conference

on Data Engineering (ICDE’05).

Smaragdakis, Y., Kaplan, S. & Wilson, P. (1999). EELRU: Simple and

effective adaptive page replacement. ACM SIGMETRICS Performance Evalu-

ation Review , 27, 122–133.

Smith, A.J. (1978). Sequentiality and Prefetching in Database Systems. ACM

Transactions on Database Systems, 3, 223–247.

Suciu, D. (1998). An Overview of Semistructured Data. SIGACTN: SIGACT

News (ACM Special Interest Group on Automata and Computability Theory),

29, 28–38.

Taniar, D. & Leung, C.H. (2003). The Impact of Load Balancing to Object-

Oriented Query Execution Scheduling in pArallel Machine Environment. In-

formation Sciences, 157, 33–71.

Thomas, S.J. & Fischer, P.C. (1986). Nested Relational Structures. Advances

in Computing Research, 3, 269–307.

TPC (1999). Benchmark H Standard Specification. http://www.tpc.org.

Ullman, J.D. (1988). Principles of Database and Knowledge-Base Systems,

vol. I. Computer Science Press. New York.

Valduriez, P. & Boral, H. (1986). Evaluation of Recursive Queries Using

Join Indices. In 1st International Conference of Expert Databases, 271–293.

van den Bercken, J., Dittrich, J.P. & Seeger, B. (2000). XXL: A Proto-

type for a Library of Query Processing Algorithms. In W. Chen, J.F. Naughton

& P.A. Bernstein, eds., Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, ACM Press.

175

REFERENCES

van den Bercken, J., Dittrich, J.P., Kräamer, J., Schäafer, T.,

Schneider, M. & Seeger, B. (2001). XXL A Library Approach to Support-

ing Efficient Implementations of Advanced Database Queries. In Proceedings of

the International Conference on Very Large Data Bases (VLDB’01).

van Deursen, A., Klint, P. & Visser, J. (2000). Domain-Specific Languages:

An Annotated Bibliography. SIGPLAN Notices, 35, 26–36.

Vassiliadis, P., Vagena, Z., Skiadopoulos, S. & Karayannidis, N.

(2000). ARKTOS: A Tool For Data Cleaning and Transformation in Data

Warehouse Environments. IEEE Data Engineering Bulletin, 23, 42–47.

W3C (2006). XQuery 1.0: An XML Query Language. W3C Candidate Recomen-

dation. World Wide Web Consortium.

Wall, L., Christiansen, T. & Orwant, J. (2000). Programming Perl .

O’Reilly & Associates, 3rd edn.

Wang, J. (1999). A Survey of Web Caching Schemes for the Internet. ACM

SIGCOMM Computer Communication Review , 29, 36–46.

Wiederhold, G. (1992). Mediators in the Architecture of Future Information

Systems. IEEE Computer , 25, 38–49.

Wolf, J.L., Yu, P.S., Turek, J. & Dias, D.M. (1993). A Parallel Hash

Join Algorithm for Managing Data Skew. IEEE Transactions on Parallel and

Distributed Systems, 4, 1355–1371.

Wooster, R.P. & Abrams, M. (1997). Proxy Caching that Estimates Page

Load Delays. In Selected Papers from the Sixth International Conference on

World Wide Web, 977–986, Elsevier Science Publishers Ltd.

Zhou, G., Hull, R. & King, R. (1996). Generating Data Integration Mediators

That Use Materialization. Journal of Intelligent Information Systems, 6, 199–

221.

176

REFERENCES

Zhou, Y., Philbin, J.F. & Li, K. (2001). The Multi-Queue Replacement Al-

gorithm for Second Level Buffer Caches. In Proceedings of the 2001 Usenix

Technical Conference.

Ziegler, P. & Dittrich, K.R. (2004). Three Decades of Data Integration –

All Problems Solved? In R. Jacquart, ed., Building the Information Society,

IFIP 18th World Computer Congress, 3–12, Kluwer.

Zipf, G.K. (1949). Human Behavior and the Principle of Least Effort . Addison-

Wesley, Reading, MA.

177

	1 Introduction
	1.1 One-to-Many Data Transformations
	1.2 Problem Statement
	1.3 Overview of Existing Solutions
	1.4 Proposed Solution
	1.5 Contributions
	1.6 Organization of the Thesis

	2 Implementing One-to-many Transformations
	2.1 Introduction
	2.2 Relational Algebra
	2.3 Extensions to Relational Algebra
	2.3.1 Pivoting operations
	2.3.2 Recursive queries
	2.3.3 Persistent stored modules

	2.4 Data Restructuring Languages
	2.4.1 Semi-structured data restructuring languages
	2.4.2 XML data transformation languages

	2.5 Schema Mapping Tools
	2.6 Data Integration Tools
	2.7 ETL and Data Cleaning tools
	2.8 Conclusions

	3 The Mapper Operator
	3.1 Introduction
	3.2 Formalization
	3.2.1 Preliminaries
	3.2.2 Mapper functions
	3.2.3 Semantics of the mapper operator

	3.3 Properties of Mappers
	3.4 Normal Forms
	3.5 Expressive Power of Mappers
	3.6 SQL Syntax for Mappers
	3.7 Related Work
	3.8 Conclusions

	4 Algebraic Optimization
	4.1 Introduction
	4.2 Projections
	4.3 Selections
	4.3.1 Pushing selections to mapper functions
	4.3.2 Pushing selections through mappers

	4.4 Joins
	4.5 Other Binary Operators
	4.6 Cost of Expressions
	4.6.1 Cost of mappers
	4.6.2 Cost of a filter applied to a mapper
	4.6.3 Cost of an expression optimized with rule 4.3
	4.6.4 Cost of an expression optimized with rule 4.4
	4.6.5 Selecting the best optimization

	4.7 Related Work
	4.8 Conclusions

	5 Mapper Execution Algorithms
	5.1 Introduction
	5.2 Naïve Evaluation Algorithm
	5.3 Shortcircuiting Evaluation Algorithm
	5.4 Cache-based Evaluation Algorithm
	5.5 LRU Caching Strategy for Mapper Functions
	5.5.1 Limitations
	5.5.2 Enhancements

	5.6 LUR Caching Strategy for Mapper Functions
	5.6.1 Utility metric for cache entries
	5.6.2 Complexity

	5.7 XLUR Caching Strategy for Mapper Functions
	5.8 Related Work
	5.9 Conclusions

	6 Experimental Validation
	6.1 Introduction
	6.2 Performance of One-to-many Data Transformations
	6.2.1 Setup
	6.2.2 Workload characterization
	6.2.3 Throughput comparison
	6.2.4 Influence of selectivity and fanout factors
	6.2.5 Query optimization and execution issues

	6.3 Algebraic Optimization
	6.3.1 Setup
	6.3.2 Real-world example
	6.3.3 Influence of the predicate selectivity factor
	6.3.4 Influence of the function fanout factor
	6.3.5 Influence of the function evaluation cost

	6.4 Mapper Execution Algorithms
	6.4.1 Setup
	6.4.2 Performance of the Shortcircuiting algorithm
	6.4.3 Performance of the Cache-based algorithm
	6.4.4 Performance of the cache replacement policies

	6.5 Data Fusion
	6.5.1 Overview
	6.5.2 Architecture
	6.5.3 Real-world experience

	6.6 Conclusions

	7 Conclusions
	7.1 Summary
	7.2 Limitations
	7.3 Future Work
	7.3.1 Further rewriting rules
	7.3.2 Cost-based optimizer for one-to-many transformations

	7.4 Closing Notes

	A Mathematical Proofs
	A.1 Cost Formulas
	A.2 Binary Rank Ordering Lemma
	A.3 Optimality of the Ascending Rank Ordering
	A.4 More Past References Imply Greater Utility

	B Overview of Cache Replacement Strategies
	C Overview of the Zipfian Distribution
	References

