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Abstract: 
Central Nervous System (CNS) Neoplasms are characterized by their cell of 

origin and their histopathological features. Tumors of glial cell origin (Gliomas) are the 

most frequent, with Glioblastoma Multiforme (GBM) rising as the most common. GBM 

tumors of grade IV accordingly with the World Health Organization (WHO), are 

generally lethal, with a median survival time of 4.9 months, and their most striking 

histopathological features are the high degree of vascularization and necrosis. 

 The most common genetic alterations in GBM are the amplification, 

overexpression and mutation of the EGFR gene, and the deletion of the long arm of 

chromosome 10, where, among others, the PTEN gene is located. These genes are 

related, respectively, with the activation and inhibition of pathways like the MAPK 

cascade, the PIP-mediated signaling and STAT signaling which are involved in cellular 

proliferation and inhibition of apoptosis. Deregulation of these pathways renders them 

the logical target for inhibition of growth and proliferation of tumoral cells, and some 

anti-EGFR therapies have been tried, but with relatively poor success. 

 The goal of this work is to analyse the genetic expression of the genes that 

make up the EGFR-activated signaling pathways in gliomas, and identify those 

molecules where targeted intervention would make sense in such a way that cellular 

proliferation would cease, and differentiation and apoptosis would be induced. 

 Tumor samples (n=100) were characterized by Multiplex Ligation-dependent 

Amplification (MLPA) and Chromosomal Comparative Genomic Hybridization (cGGH). 

Further analysis of tumors samples (n=15) was done by using Gene Expression Arrays 

GeneChip® HuGene 1.0ST and data analysis softwares Partek Genomics Suite and 

Ingenuity Pathway Analysis, in order to determine the expression values of the various 

genes that make up the EGFR-activated signaling pathways. This allowed us to identify 

a particular pathway that appears to have its components constantly overexpressed, 

the STAT signaling pathway, mainly through the STAT3 gene. 

 The STAT3 protein is activated by various receptors and is implicated in 

tumorigenesis and immune evasion, and as such, may be a suitable target for anti-

neoplasic therapies. 

 

Key-words: Glioma, EGFR, STAT3. 
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Resumo  
Os tumores do Sistema Nervoso Central (SNC) são caracterizados pelo tipo de 

célula original e características histopatológicas. Representam cerca de 1,2% das 

neoplasias diagnosticadas em 2002 (Parkin et al., 2005). Os tumores de origem glial 

(Gliomas) são os mais comuns, destacando-se entre eles o Glioblastoma Multiforme 

(GBM) que representa cerca de 15% das neoplasias intracranianas.  

Os tumores GBM de grau IV segundo a Organização Mundial de Saúde (OMS), 

são geralmente letais, com um tempo médio de sobrevida de 4,9 meses, e são 

caracterizados histopatologicamente pelo seu elevado grau de vascularização e 

necrose (Louis et al., 2007). Apesar de indistinguíveis a nível histopatológico, estas 

neoplasias podem ser subdivididas em GBM primário (pGBM) e secundário (sGBM). 

Estes grupos distinguem-se pelo processo de progressão e pelas características 

genéticas. Os pGBMs apresentam as características histopatológicas de GBM, 

aquando do seu diagnóstico inicial, enquanto que os sGBMs são caracterizados por 

uma progressão a partir de neoplasias de grau inferior (Ohgaki et al., 2005). 

As alterações genéticas mais comuns em tumores GBM (com diferentes 

incidências entre os subtipos) são o ganho de cópias do cromossoma 7 com 

amplificação em 7p12 [onde se situa, entre outros, o gene EGFR (Epidermal Growth 

Factor Receptor)], a deleção do braço longo do cromossoma 10 [onde se situa, entre 

outros, o gene PTEN (Phosphatase and Tensin Homologue)] e a mutação no gene 

TP53 (Nicholas et al., 2006). 

Este tipo de alterações tem impacto directo na activação e regulação de várias 

vias de sinalização envolvidas no controlo da proliferação celular, no controlo do ciclo 

celular e na indução da apoptose. Destas vias, as mais relevantes na caracterização 

dos GBM são as vias relacionadas com os genes Rb, TP53 e EGFR (The Cancer 

Genome Atlas (TCGA), 2008). 

A via TP53/MDM2/p14ARF é responsável pelo controlo da integridade do DNA 

antes da divisão celular. Em tumores GBM é comum haver alteração do gene TP53 

(com inibição da actividade da proteína TP53), o que permite a proliferação celular 

neoplásica. Além da alteração directa da proteína TP53, também é comum ocorrer a 

sobreexpressão de MDM2 (inibidor de TP53) e a subexpressão de p14ARF (inibidor de 

MDM2) (Ohgaki et al., 2007). 

A via associada ao gene Rb é responsável pelo controlo da progressão do ciclo 

celular de G1 para S. Em tumores GBM é comum a subexpressão do gene Rb e de 

p16INK4A (ambos inibidores da progressão G1-S), o que favorece a progressão 

desregulada do ciclo celular (Ohgaki et al., 2007). 
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O gene EGFR codifica um receptor com actividade cinásica de tirosinas (RTK – 

Receptor Tyrosine Kinase) da família ErbB, que é responsável pela transdução de 

sinal de vários factores de crescimento. A activação deste receptor pelos seus 

ligandos (e.g. EGF, HB-EGF e TGF-α, entre outros), provoca a homodimerização de 

EGFR ou a sua heterodimerização com outro membro da família ErbB, levando a uma 

autofosforilação de resíduos na extremidade –COOH da proteína, o que a torna capaz 

de fosforilar moléculas das vias de sinalização das MAP cinases, do Fosfatidilinositol-

3,4,5-Fosfato (PIP3) e das STATs (Sebastian et al., 2006). Quando activadas, estas 

vias levam a um aumento generalizado da capacidade de proliferação das células 

neoplásicas e, consequentemente, da tumorigénese. Em tumores GBM, é comum 

observar desregulação destas vias por sobreexpressão dos seus activadores (e.g. 

EGFR) e/ou por subexpressão dos seus reguladores (e.g. PTEN) (Ohgaki et al., 2007). 

O tratamento de tumores GBM consiste na remoção cirúrgica da área afectada, 

seguida de radioterapia. A temozolamida (um agente alquilante) (Stupp et al., 2009), 

pode ser adicionada e, em certos casos, aumenta a sobrevida para 14,6 meses.  

O reconhecimento da importância do EGFR no processo tumorigénico em 

gliomas, tornou-o o alvo óbvio na busca de novas terapias anti-neoplásicas e no 

aumento da sobrevida (Kuan et al., 2001; Kari et al., 2003). Com esse intuito, foram 

tentadas várias estratégias para impedir a activação das vias de sinalização activadas 

por EGFR (Halatsch et al., 2006). Uma das estratégias baseia-se no impedimento 

físico do reconhecimento de ligandos e de dimerização do receptor e é representada 

pelo anticorpo monoclonal Cetuximab (Li et al., 2005; Halatsch et al., 2006), que tem, 

no entanto, demonstrado fracos resultados em ensaios clínicos (Neyns et al., 2009). 

Uma outra estratégia baseia-se no bloqueio da actividade cinásica do receptor, 

utilizando inibidores moleculares da cinase de tirosinas (TKIs) (Halatsch et al., 2006; 

Omuro et al., 2007), que têm demonstrado igualmente fracos resultados na inibição da 

sinalização mediada pelo EGFR (Lassman et al., 2005).  

O facto de as vias de sinalização activadas pelo EGFR serem partilhadas por 

outras RTKs pode explicar, em parte, o fraco desempenho destas estratégias 

terapêuticas. O objectivo deste trabalho consiste em analisar as vias de sinalização 

activadas pelo EGFR com base na expressão génica dos seus constituintes, e 

identificar potenciais alvos nos quais uma intervenção dirigida faça sentido de modo a 

bloquear a proliferação celular e induzir apoptose e diferenciação nestas neoplasias. 

Para alcançar este objectivo analisámos cerca de 100 gliomas com diferentes 

alterações genéticas previamente identificadas por Chromosomal Comparative 

Genomic Hybridization (cCGH) e avaliámos nestes casos a presença de possíveis 

mutações no gene EGFR por Multiplex Ligation-dependent Probe Amplification 
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(MLPA). Dentro deste grupo de gliomas, determinámos os perfis de expressão de 15 

casos, usando os Arrays de expressão génica GeneChip® HuGene 1.0ST da 

Affymetrix, a partir de extractos de RNA total. Os perfis de expressão dos diferentes 

grupos de amostras foram depois comparados com um controlo de córtex cerebral 

normal usando o software Partek Genomics Suite. A utilização deste software permitiu-

nos quantificar as diferenças de expressão génica entre os diferentes subgrupos de 

tumores e o córtex cerebral normal. Estes valores foram depois inseridos no software 

Ingenuity Pathway Analysis (IPA), que origina vias de sinalização canónicas e redes 

de interacções entre genes sobrepondo-lhes os valores de expressão de cada gene 

envolvido.  

A partir dos dados obtidos pelo software IPA, foi possível determinar o padrão 

de expressão dos vários componentes das vias de sinalização activadas pelo EGFR 

nos vários subgrupos de tumores:  

- 5 GBM com ganho de cromossoma 7 e amplificação em 7p12; 

- 3 GBM com ganho de cromossoma 7; 

- 1 Ganglioglioma Anaplásico com ganho de cromossoma 7 e respectiva linha celular; 

- 2 Gliomas (um GBM e um Oligodendroglioma Anaplásico) com amplificação em 

8q24; 

- 1 GBM com ganho de cromossoma 7 e amplificação de 4q12; 

- 3 Linhas celulares com diferentes alterações genéticas. 

À excepção dos dois casos com amplificação em 8q24 (onde se situa, entre 

outros, o gene c-Myc), todos os outros tumores e linhas celulares demonstram uma 

sobreexpressão dos componentes da via STAT (Signal Transducers and Activators of 

Transcription). Nas vias de sinalização PIP e das MAP cinases não se verificam 

alterações substanciais que nos indiquem que estas possam ser preferencialmente 

utilizadas na sinalização activada por EGFR. 

A via de sinalização STAT, particularmente a molécula STAT3, é directamente 

activada pelo receptor EGFR, por fosforilação de um resíduo de tirosina na posição 

705, levando à homo- ou heterodimerização (com STAT1) e, consequentemente, a um 

aumento da actividade transcricional, mediada por STAT, de vários genes (Dauer et 

al., 2005), entre os quais o gene c-Myc. Propomos que a activação preferencial da via 

STAT permita à célula tumoral aumentar a expressão de c-Myc, pelo que quando a 

sua expressão está aumentada por outras razões (como a que resulta da amplificação 

do seu locus) diminua a pressão selectiva para que a via STAT tenha os seus 

componentes sobreexpressos (como se verifica nos casos com amplificação de 8q24). 

 A presença de STAT3 activado, em gliomas, foi demonstrada (Abou-Ghazal et 

al., 2008) e o seu papel na tumorigénese (Abou-Ghazal et al., 2008) e na 
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imunosupressão (Kortyleswki et al., 2008) foi realçado, tornando-a um alvo terapêutico 

óbvio, tendo já sido tentadas várias abordagens de inibição desta molécula, que 

incluem o uso de RNA de interferência (Konnikova et al., 2003; Li et al., 2009), 

oligonucleótidos inibitórios (Gu et al., 2008), fosfopéptidos (Shao et al., 2003) e 

inibidores moleculares (Fuh et al., 2009). 

 O facto de STAT3 estar sobreexpresso na maioria dos casos analisados, da 

sua activação estar comprovada em gliomas de alto grau, de estar envolvido no 

processo tumorigénico e de imunossupressão, e de também poder ser activado por 

vários outras RTKs e não-RTKs que não o EGFR, leva-nos a propor que em gliomas a 

via STAT3 é a via de sinalização preferencialmente activada por EGFR, entre outros. 

 

Palavras-chave: Glioma, EGFR, STAT3 
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Introduction 
 Central Nervous System (CNS) Neoplasms are a result of an abnormal growth of 

cells within the CNS, and can be of various types, as determined by their cell of origin and 

histopathological features. The World Health Organization (WHO) classifies and grades CNS 

neoplasms into four grades, Grade 1 being the less severe and Grade 4 the most severe 

(Louis et al., 2007).  

 CNS Neoplasms account for 1.7% of all neoplasms that were diagnosed in 2002, and 

around 2.1% of cancer related fatalities (Parkin et al., 2005). One of the most distinctive 

features of CNS neoplasms is their lethality and short survival period. The most common 

CNS tumor, Glioblastoma Multiforme (GBM), accounting for 12-15% of intracranial 

neoplasms, and 60-75% of astrocytic neoplasms, is a WHO Grade 4 glioma, with a median 

survival time of 4.9 months (Ohgaki et al., 2005). This neoplasm is defined by a typically 

astrocytic differentiation, and its histopathological 

features include nuclear atypia, cellular pleomorphism, 

mitotic activity, vascular thrombosis, microvascular 

proliferation and necrosis (Louis et al., 2007). It affects 

mainly adults and it emerges mostly in the white 

subcortical matter of the brain hemispheres (Louis et 

al., 2007) (Figure 1). 

 GBM can be divided into two classes, 

Primary Glioblastoma (pGBM), accounting for 

roughly 95% of GBM cases, and Secondary Glioblastoma (sGBM), around 5% of GBM 

cases. Although they are histopathologically indistinguishable, they do have several 

differences. The median age of diagnosis of pGBM is 62 years, with a median survival time 

of 4.7 months, unlike sGBM, in which the median age of diagnosis is 45 years, with a median 

survival time of 7.8 months (mostly due to age difference between the groups) (Ohgaki et al., 

2005). Another distinction that can be made between pGBM and sGBM is the way they both 

progress. sGBM progresses from less severe lesions (like a low-grade astrocytoma), unlike 

pGBM, which is primarily diagnosed as such, without evidence of previous lesions. Also, their 

genetic modifications are somewhat different, EGFR (Epidermal Growth Factor Receptor) 

amplification and overexpression being most common in pGBM (40% and >60% in pGBM, 

8% and <10% in sGBM), and TP53 mutation appearing mostly in sGBM (28% in pGBM, 65% 

in sGBM). One feature that seems to be similar in both types of GBM is Loss of 

Heterozygosity (LOH) in 10q (70% of pGBM and 63% of sGBM) (Nicholas et al., 2006) 

(Figure 2). 

Figure 1. Glioblastoma Multiforme in a transverse 
cross section of the adult brain.    
(http://www.neuropathologyweb.org/chapter7/chapter
7bGliomas.html) 

http://www.neuropathologyweb.org/chapter7/chapter7bGliomas.html�
http://www.neuropathologyweb.org/chapter7/chapter7bGliomas.html�
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Some of the most defining genetic modifications in GBM have direct impact on 

various signaling pathways. The most studied signaling pathways in GBM are related with 

the TP53, Rb and EGFR genes (Louis et al., 2007; The Cancer Genome Atlas Research 

Network (TCGA), 2008).  

The TP53/MDM2/p14ARF pathway is responsible for maintaining DNA integrity prior to 

cell division. TP53 (a tumor suppressor gene, coding for the p53 protein) is one of the most 

important and tightly regulated genes of the cell, having the ability to block cell division if 

there is any type of damage in the genome (Lodish et al., 2008). In most sGBM (65%), TP53 

gene is altered (57% of mutations located in codons 248 and 273), this event occurring less 

frequently in pGBM (30%). Direct modifications of the TP53 gene that disable its activity are 

enabling of neoplastic cell proliferation. Beside the direct modifications on the TP53 gene, 

GBM tumors also have other mechanisms of disabling its activity. For instance, MDM2 

(Murine Double Minute 2, an inhibitor of p53) is amplified in 31% of pGBM, which leads to 

increased capacity of the cell to inhibit p53, and hence, increased capacity of cell division. 

There is yet another way of the cell to decrease p53 activity, and this is achieved by 

deregulation of the MDM2 protein inhibitor, p14ARF. The p14ARF gene is underexpressed in 

76% of GBM (either by homozygous deletion or promoter methylation) (Ohgaki et al., 2007).  

Thus, the neoplastic cell has various features enabling blockage p53 regulation, 

either by modification of the TP53 gene (mainly in sGBM) or by overexpressing of its inhibitor 

MDM2 (mainly pGBM), or even by underexpressing MDM2’s inhibitor, p14ARF. 

The Rb1 (Retinoblastoma) protein regulates progression through the cell cycle, 

mainly the G1-S transition. In a normal cell, a CDK4/ciclinD1 complex phosphorylates the 

Figure 2. Differences between pGBM and sGBM (adapted from Ohgaki et al., 2007). 
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Rb1 protein, allowing the release of the E2F transcription factor which regulates several 

genes responsible for the G1-S transition. p16INK4A is the inhibitor of CDK4, and therefore, the 

inhibitor of the progression through the cell cycle (Lodish et al., 2008). In GBM this pathway 

is usually deregulated by either the deregulation of the p16INK4A gene, the underexpression of 

the RB1 gene, or by both events. The p16INK4A gene is deregulated by either homozygous 

deletion, or by promoter methylation, and is most common in pGBM. RB1 gene 

underexpression is achieved in GBM by promoter methylation, an event which occurs in 43% 

of sGBM and 14% of pGBM (Ohgaki et al., 2007).  

In a similar way to the p53 deregulation described above, Rb1 deregulation may 

come by either direct inhibition of the RB1 gene, or by modification of other members of the 

pathway that inhibit cell cycle progression. 

One of the most defining features of GBM is the amplification, overexpression and 

mutation of the EGFR gene, and the prevalent activation of the EGFR family (TCGA, 2008). 

This gene occupies roughly 200 kb of the 7p12 region in chromosome 7 [which is amplified in 

approximately 40% of GBM (Olson et al., 2009)] and is composed by 28 exons (Reiter et al., 

2001). A common feature in GBM is that EGFR amplification is commonly accompanied by 

various mutations. The most common mutation is EGFRvIII [accounting for roughly 60% of 

mutations (Nicholas et al., 2006)] present in 54% of cases with amplification of the EGFR 

gene (Olson et al., 2009). This mutation is defined by an inframe deletion of exons 2 through 

7, leading to a truncated protein lacking the extracellular binding domain. This truncated 

version of the EGFR is constitutively active, leading to increased activation of downstream 

signaling pathways (Ohgaki et al., 2007).  

The EGFR protein is a receptor tyrosine kinase (RTK) of the ErbB family. This 

receptor can directly translate extracellular stimulus (by binding of the EGFR ligands, like 

EGF, HB-EGF, TGFα and others, and dimerization with another member of the ErbB family), 

into phosphorylation of downstream targets of the Ras/MAPK cascade signaling pathway, 

the PIP signaling pathway and the STAT signaling pathway (Oda et al., 2005; Sebastian et 

al., 2006) (Figure 3).  

The mitogen-activated protein kinase (MAPK) cascade is involved in a variety of 

cellular functions such as growth, proliferation, differentiation, migration and apoptosis 

(Lodish et al., 2008; Zohrabian et al., 2009). These pathways rely on the sequential 

phosphorylation of several proteins, beginning in the activation of Ras [a known oncogene, 

mutated in 2% of GBM (TCGA, 2008)] and ending in the activation of various transcription 

factors (c-Jun and c-Fos) that regulate expression of cell-cycle progression and 

differentiation related proteins (elegantly reviewed in Lodish et al., 2008 Chapters 14.3 and 

14.4).  
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Figure 3. EGF receptor mediated signaling pathway overview (www.sigmaaldrich.com). 

Phosphatidylinositol (PIP) signaling is one of the most important pathways in the cell. 

It regulates multiple biological events such as apoptosis, metabolism, cell proliferation and 

cell growth (Blanco-Aparicio et al., 2007). RTKs can signal through PIP either by activation of 

the PIP3/DAG or PI3K pathways. Both these pathways lead to activation of Akt or mTOR 

proteins and thus to cell proliferation (as reviewed in Lodish et al., 2008 Chapter 14.5, and in 

Blanco-Aparicio et al., 2007). Regulation of the PI3K pathway is accomplished by the PTEN 

(Phosphatase and Tensin homolog) protein. The PTEN gene is located on the long arm of 

chromosome 10, which loss is a common event in GBM (70% of pGBM and 63% of sGBM). 

In a normal cell PTEN removes phosphate from PIP3 (a key molecule in PIP signaling), 

inhibiting PIP downstream signaling. If PTEN is lost, PIP signaling can occur almost 

constitutively, promoting cell survival and proliferation (Lodish et al., 2008). 

STAT (Signal Transducer and Activator of Transcription) proteins are a family of 

transcription factors that are activated (phosphorylated) as a response to extracellular 

stimulus of various receptors like RTKs, cytokine receptors (like IL6R, OSMR) and others 

(Caló et al., 2003; Lodish et al., 2008 Chapter 14.2). Activation of the STAT transcription 

factors can lead to events such as differentiation, proliferation, cell survival, apoptosis and 

angiogenesis. STAT proteins can be divided into two groups, according to their specific 

functions. One group, made up of STAT2, STAT4 and STAT6, is activated by cytokines and 

plays a distinct role in T-Cell differentiation and IFNγ signaling (Caló et al., 2003). The other 

group, made up of STAT1, STAT3 and STAT5, is activated by various ligands, and plays a 

role in controlling cell-cycle progression and apoptosis (Bromberg, 2002).  
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STAT phosphorylation can be mediated either by JAK (Janus Kinase) (Wilks, 2008), 

Non-RTK proteins like Src (Silva, 2004) or directly by RTKs like EGFR (Coffer et al., 1995; 

Ihle, 1996). STAT signaling is regulated by the SOCS proteins (Supressor of cytokine 

signaling), PIAS proteins (Protein Inhibitor of Activated STATs) and Protein tyrosine 

phosphatases (Brantley et al., 2008a). SOCS proteins attenuate STAT signaling through 

inhibition of upstream JAK activation, in a classical feedback loop. PIAS are constitutively 

expressed proteins that mediate transcriptional repression by interfering with STAT 

transcription factors ability to bind DNA. Protein tyrosine phosphatases, like PTPRD (Protein 

Tyrosine Phophatase Receptor-type D) (Veeriah et al., 2009) inhibit STAT signaling by 

removing phosphate from STAT proteins, rendering them inactive. 

STAT3 activation has been linked to GBM (Brantley et al., 2008a), either by 

constitutive activation of STAT3 protein or by loss of its inhibitors, like PIAS-3 (Brantley et al., 

2008b). STAT3 regulates transcription of several genes, like c-Myc (Dauer et al., 2005; 

Bowman et al, 2009), EGFR (Dauer et al., 2005) and other genes like Bcl-2, Bcl-x and mcl-1, 

which are related to inhibition of apoptosis (Rahaman et al., 2002). 

The treatment of GBM is based heavily upon radiation therapy and adjuvant 

temozolomide followed by surgical resection of the tumor mass increasing progression-free 

survival (PFS) to 14.6 months (Stupp et al., 2005; Olson et al., 2009). 

Temozolomide is a cytostatic prodrug that is rapidly absorbed by oral administration, 

is able to cross the blood-brain barrier and is spontaneously hydrolyzed to the active 

metabolite methyltriazeno-imidazole-carboxamide (MTIC). In the cell, MTIC methylates DNA 

at several positions, of which methylation at the O6 positition of a guanine is regarded as 

fatal for the cell (Friedman et al., 2000). The methyl group at O6 can be removed by the DNA 

repair enzyme MGMT. Methylation of the MGMT gene promoter in GBM has been linked with 

an increase of PFS to 21.7 months (Hegi et al., 2005). 

Altough improved with the use of chemotherapy and adjuvant temozolomide, 

prognosis of GBM still remains dismal. Alternative therapies have been attempted with 

various results (Omuro et al., 2007). Some of these therapies target the EGFR protein. As 

mentioned previously, EGFR overexpression and amplification, in league with the EGFR 

protein’s ability to activate various pathways related to oncogenesis, make it a natural target 

for cancer therapy (Kuan et al., 2001; Kari et al., 2003). 

Attempts of targeting EGFR as a means to induce tumor regression have been made, 

mainly by two approaches (Halatsch et al., 2006).  

The first approach is based upon the inhibition of the receptors ability to either bind its 

ligands or to dimerize. This type of inhibition may be accomplished by the use of antibodies 

like Cetuximab and other EGFR specific antibodies (Halatsch et al., 2006). Cetuximab 

physically inhibits binding of EGFR ligands and also prevents EGFR conformational 
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modifications that allow it to dimerize. (Li et al., 2005).  Cetuximab has had promising results 

in animal models (Martens et al., 2008) but as shown limited potential in phase-II clinical 

trials (Neyns et al.,2009). 

The second approach is based upon the inhibition of the receptors ability to 

phosphorylate downstream targets, that is, inhibition of its Tyrosine Kinase domain. This may 

be accomplished by Tyrosine Kinase Inhibitors (TKIs) such as Erlotinib and Gefitinib 

(Halatsch et al., 2006). Both Erlotinib and Gefitinib inhibit the TK domain of EGFR by 

selectively binding its ATP-binding position, thus rendering it inactive (Omuro et al., 2007). 

Regrettably, these compounds have failed at showing significant inhibition of EGFR-

mediated signaling in GBM (Lassman et al., 2005). An effort has been made to explain why 

TKIs are unsuccessful. Conflicting theories have come up in regard to EGFR copy number 

and EGFRvIII status as markers of sensitivity (Mellinghoff et al., 2005) or resistance (Learn 

et al., 2004). Also, successful inhibition of EGFR may only diminish downstream signaling 

pathways, because EGFR shares its signaling pathways with many other RTKs and non-

RTKs. Also, PTEN inhibition as been suggested as a marker of increased tumor resistance 

to TKIs (Mellinghoff et al., 2005; Guillamo et al., 2009).  

The dismal prognosis of GBM, allied with the yet relative failure at therapies based 

upon EGFR direct targeting, lead us to suggest that GBM treatment should by targeted at 

intra-cellular points in the EGFR activated pathways. Therefore, the goal of this project is to 

study the signaling pathways activated by EGFR, and by means of gene expression analysis, 

understand if there is any genetic preference to a particular pathway or molecule of a 

pathway, in which targeted therapy would be a valid option. 
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Materials and Methods 
DNA Extraction for Multiplex Ligation-dependent Probe Amplification (MLPA) and 

Chromosomal Comparative Genomic Hybridization (cCGH) 

DNA extraction from frozen glioma tumor samples (n=100) was performed with the 

Proteinase K and Phenol protocol for isolation of High-molecular-weight DNA (Sambrook et 

al., 2001), concentration and purity were determined with NanoDrop ND-1000 

spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). For MLPA, DNA was 

diluted in Tris-EDTA 1X buffer pH 8.0. For cCGH, DNA was diluted in Tris buffer 1X pH 8.0. 

Chromosomal Comparative Genomic Hybridization 

cCGH analysis was performed from frozen material at the Cytogenetics laboratory – 

CIPM of the Lisbon Portuguese Cancer Institute. cCGH was performed according to the 

method of Kallioniemi (Kallioniemi et al., 1994). Briefly, tumor DNA was labeled with biotin 

16dUTP (Enzo-Roche), and normal reference DNA with digoxigenin-11-dUTP (Enzo-Roche), 

in a standard nick translation reaction. Equal amounts (400ng) of labeled tumor DNA and 

labeled reference DNA were coprecipitated with 15 µg of Cot-1-DNA (Invitrogen) in ethanol. 

After a 3-day hybridization period, fluorescent detection ot the biotin- and digoxigenin-labeled 

DNAs was accomplished by using avidin-FITC (Jackson Immunoresearch) and 

antidigoxigenin rhodamine (Enzo-Roche) antibodies, respectively. Samples were 

counterstained in DAPI in antifade solution (Vector). For image acquisition, an epifluorescent 

microscope (Zeiss Axioplan II) equipped with a cooled CCD Camera (Photomic Science) and 

a triple-band beam splitter and emission filters (Chroma Technology, USA) were used. For 

each tumor, three color images (blue, red and green) were acquired from at least 10 

metaphases. Image analysis was performed using the cCGH analysis software from 

CytoVision System (version 2.51 Applied Imaging, Sunderland Tyne & Wear, UK). A 

simplified overview of this protocol is given in Supplementary Figure S1. 

 

Multiplex Ligation-dependent Probe Amplification (MLPA) 

For EGFR mutational analysis SALSA P315 Kit for EGFR from MRC-Holland was 

used (MRC-Holland, Amsterdam, The Netherlands). This kit includes probes for each of the 

28 exons of the EGFR gene. As a control, this kit also includes 9 probes for different 

chromosomal positions (2q37.3, 3q11.2, 5p13.2, 5q35.3, 7q21.1, 9q31.1, 10q23.3, 12q23 

and 17p13.1). MLPA Protocol was carried out as previously described (Schouten et al., 

2002), using 100ng of DNA for each normal control and tumor sample. 3 µL of the amplified 

sample product was analyzed using ABI 3130 Genetic Analyzer and as an internal size 

standard the Genescan 500 LIZ (ABI 4322682). Successful ligation reaction and 

identification of samples with insufficient amount of DNA were verified using MLPA’s internal 
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ligation-independent probes. Data analysis was carried out with the MRC-Coffalyser version 

8.0. Ratios were calculated using the Tumor Analysis LS method in MRC-Coffalyser V8. 

Tumor Analysis LS is a direct analysis method which performs slope correction in all probes 

and then compares each individual probe peak height in a sample (which is related to the 

relative quantity of the probe target in the sample) to its counterpart in a normal reference 

control, establishing ratios between them: Homozygous loss of a particular probe was 

considered when ratios were 0; Heterozygous loss was considered when ratios were 

between 0,3 and 0,7; Normal status was considered when ratios were between 0,7 and 1,3; 

Gain was considered when ratios were between 1,3 and 1,7; Amplification was considered if 

ratios were above 2,5. A simplified overview of this protocol is given in Supplementary Figure 

S2. 

Microarray Analysis 

Human cerebral cortex total RNA was purchased from Clontech (Mountain View, CA, 

USA), consists of a pool of cerebral cortex RNA obtained from 10 individuals who died from 

sudden death, and was used as normal baseline reference for microarray experiments. 

Total RNA was extracted from tumor samples, using the RNeasy Lipid Tissue Mini Kit 

(Qiagen, Hilden, Germany). Concentration and purity was determined with NanoDrop ND-

1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA), and integrity was 

confirmed using an Agilent 2100 Bioanalyzer with a RNA 6000 Nano Assay (Agilent 

Technologies, Palo Alto, CA, USA). Samples were selected if they had more than 100 ng of 

RNA and a RNA Integrity Number (RIN) larger than 7. RNA was processed for use on 

Affymetrix (Santa Clara, CA, USA) GeneChip® HuGene 1.0 ST Arrays, according to the 

manufacturer’s Whole Transcript Sense Target Labeling Assay, at the Affymetrix Core 

Facility located in the Gulbenkian Institute of Science. Briefly, 100 ng of total RNA containing 

spiked in Poly-A RNA controls (GeneChip® Expression GeneChip® Eukaryotic Poly-A RNA 

Control Kit; Affymetrix) were used in a reverse transcription reaction (GeneChip® WT cDNA 

Synthesis Kit; Affymetrix) to generate first-strand cDNA. After second-strand synthesis, 

double-stranded cDNA was used in an in vitro transcription (IVT) reaction to generate cRNA 

(GeneChip® WT cDNA Amplification Kit; Affymetrix). 10 µg of this cRNA were used for a 

second cycle of first-strand cDNA synthesis (GeneChip® WT cDNA Synthesis Kit; 

Affymetrix). 5.5 µg of single stranded cDNA were fragmented and end-labeled (GeneChip® 

WT Terminal Labeling Kit; Affymetrix). Size distribution of the fragmented and end-labeled 

cDNA, respectively, was assessed using an Agilent 2100 Bioanalyzer with a RNA 6000 Nano 

Assay. 5 µg of end-labeled, fragmented cDNA were used in a 100-µl hybridization cocktail 

containing hybridization controls. 80 µl of mixture were hybridized on arrays for 17h at 45°C. 

Standard post hybridization wash and double-stain protocols (FS450_0007; GeneChip® 
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HWS kit, Affymetrix) were used on an Affymetrix GeneChip® Fluidics Station 450. Arrays 

were scanned on an Affymetrix GeneChip® scanner 3000 7G. A simplified overview of this 

protocol is given in Supplementary Figure S3. 

 

Gene Expression Analysis 

RMA Background Correction, Quantile Normalization, Log2 Transformation and 

Median Polish Summarization were performed on the initial microarray data with the Partek 

Genomics Suite (GS) software (Partek Inc. St. Louis, MO). To determine gene expression 

ratios and fold-change between the various samples (Table 2) and the normal cerebral brain 

cortex control, one-way ANOVA statistical analysis was performed with Partek GS. ANOVA, 

or Analysis of Variance, is a parametric test which is used to test differences in means of a 

response variable between different groups. Also, in the context of the ANOVA analysis, 

linear contrasts between the different groups were performed, yielding gene expression 

Ratios and Fold-Change values (FC). Ratios were calculated by the ratio between the Least 

Squares Mean (LS Mean, calculated as the linear combination of the estimated means 

generated by the ANOVA model) of the different groups. Fold-change was determined in a 

similar fashion. Genes identified with a FC over 2 (e.g. overexpressed in sample A vs B) and 

genes with a FC below -2 (e.g. underexpressed in sample A vs B) were then selected for 

gene ontology analysis and EGFR pathway construction 

 

Gene ontology, canonical pathways, and functional network analysis 

Gene ontology, canonical pathways and functional network analysis were performed 

with the Ingenuity Pathway Analysis software (Ingenuity Systems, Redwood City, CA), which 

enables the discovery, visualization and exploration of molecular interaction networks in 

gene expression data. The gene lists identified by ANOVA, containing Genebank accession 

numbers as clone identifiers as well as FC values, were uploaded into the Ingenuity Pathway 

Analysis software. Each clone identifier was mapped to its corresponding gene object in the 

Ingenuity pathway knowledge base. These so-called focus genes were then used as a 

starting point for generating biological networks. A score was computed for each network 

according to the fit of the original set of significant genes. This score reflects the negative 

logarithm of the P that indicates the likelihood of focus genes in a network being found 

together due to random chance. Significance for biological functions were then assigned to 

each network by determining a P for the enrichment of the genes in the network for such 

functions or pathways compared with the whole Ingenuity pathway knowledge base as a 

reference set. Right-tailed Fisher’s exact test was used with α=0.05. The same statistical 

approach was used for gene ontology analysis of the initial gene lists. Molecules in networks 

and canonical pathways were given a color code directly related with their expression value. 
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A molecule is light-green if its expression value is two-fold smaller than in the control (which 

means that particular molecule is underexpressed in the sample set). A molecule is light-red 

if its expression value is two-fold larger than in the control (which means that molecule is 

overexpressed in the sample set). The darker the tone of green or red, the more that 

molecule is respectively under- or overexpressed. A molecule is colored grey if its expression 

value is between these two limits. A molecule is colored white if no information is available in 

regard to its expression. A list with Network shapes (Supplementary Figure S4) and 

Relationship types (Supplementary Figure S5) is given in the Supplementary Data section. 

EGFR Signaling Pathway: 

Along with the IPA EGFR signaling pathways, an EGFR Signaling Pathway adapted 

from the work of Oda et al. (Oda et al., 2005) was also constructed. This group constructed a 

comprehensive pathway for EGFR-mediated signaling based on published scientific papers, 

namely EGFR endocytosis followed by its degradation or recycling, small guanosine 

triphosphatase (GTP-ase)-mediated signal transduction such as mitogen-activated protein 

kinase (MAPK) cascade, phosphatidylinositol polyphosphate (PIP) signaling, cell cycle, and 

G Protein-coupled receptor (GPCR)-mediated transactivation via intracellular Ca2+ signaling. 

Oda’s et al. map was created using CellDesigner (http://celldesigner.org), a software 

package that enables users to describe molecular interactions using a well-defined and 

consistent graphical notation. The data of molecular interactions are stored in Systems 

Biology Markup Language (SBML; http://sbml.org/). They are based on the molecular 

interactions documented in 242 papers accessible from PubMed 

(http://www.ncbi.nlm.nih.gov). It comprises 211 reactions (131 state transitions, 34 

transportations, 32 associations, 11 dissociations, 2 truncations and 1 unknown transition) 

and 322 species (202 proteins, 3 ions, 21 simple molecules, 73 oligomers, 7 genes and 7 

mRNAs). A ‘species’ is defined by SBML as ‘an entity that takes part in reactions’ and it is 

used to distinguish the different states that are caused by enzymatic modification, 

association, dissociation, and translocation. In our EGFR Signaling Pathway adapted from 

Oda’s et al. work, we included the GTP-ase mediated signal transduction (MAPK cascade), 

the PIP signaling and also STAT signaling. Like in the Ingenuity Pathway Analysis, we also 

colored the individual molecules in a direct relation with their expression values. So, 

molecules colored red had a two-fold expression value above the normal control 

(overexpressed), green colored molecules had a two-fold expression value below the normal 

control (underexpressed), and as in the IPA pathways the darker the tone of green or red, 

the more that molecule is respectively under- or overexpressed. White colored molecules 

had expression values between these limits. Molecules colored white and with italic lettering 

have no associated gene expression data. 
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Results 

Multiplex Ligation-dependent Probe Amplification (MLPA) 

 To determine the status of the EGFR gene, in regard to its copy number and possible 

presence of the EGFRvIII mutation, we analyzed 98 cases with previously diagnosed CNS 

tumors with the MLPA Salsa P315 Kit for EGFR. MLPA was theoretically suitable for this task 

because it can be both a qualitative and quantitative method (Schouten et al., 2002). The 

SALSA P315 Kit for EGFR has 28 probes (one for each exon of the gene) and 9 control 

probes for other genomic regions. This kit enabled us to quantify each individual exon in a 

given sample, when compared to a set of normal control samples. The resulting ratios for 

each sample would then allow us to determine if a particular exon is over- or 

underrepresented, and if the complete set had a particular pattern of representation.  

 By MLPA and as show in Table 1 and Figure 4 (page 12), EGFR amplification was 

found in 43% of GBM, 42% of high-grade Oligodendrogliomas (Oligodendrogliomas grades 

IV and III, and Astrocytoma grade IV) and 9% of low-grade Oligodendroglioma 

(Oligodendroglioma grade II) (this is a particular case, in which the only amplification 

detected was also the only case of EGFRvIII detection in the low-grade Oligodendroglioma 

group). EGFRvIII mutation was detected in 8% of GBM, 5% of high-grade Oligodendroglioma 

and 9% of low-grade Oligodendroglioma. EGFR gain was detected in 10% of GBM, 24% of 

high-grade Oligodendroglioma and 9% of low-grade Oligodendroglioma. No change of EGFR 

status was detected in 39% of GBM, 29% of high-grade Oligodendroglioma and 82% of low-

grade Oligodendroglioma. 

 
Table 1. EGFR gene status analysis in CNS Tumors by MLPA. 

Hystological Type EGFR 
Amplification 

EGFR 
Amplification 
and EGFRvIII 

Mutation 
EGFR Gain No change Total 

Glioblastoma Multiforme 
(GBM) 21 cases (43%) 4 cases (8%) 5 cases (10%) 19 cases 

(39%) 
49 

cases 
Oligodendroglioma Grades 
IV and III + Astrocytoma 
Grade IV 

16 cases (42%) 2 cases (5%) 9 cases(24%) 11 cases 
(29%) 

38 
cases 

Oligodendroglioma Grade II 0 cases (0%) 1 case (9%) 1 case (9%) 9 cases 
(82%) 

11 
cases 

Total 37 cases (38%) 7 cases (7%) 15 cases 
(15%) 

39 cases 
(40%) 

98 
cases 
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Figure 4. EGFR gene status analysis in CNS Tumors by MLPA. Blue bars represent EGFR Amplification, Orange 
bars represent EGFR Amplification and simultaneous detection of EGFRvIII mutation, Red bars represent EGFR 
Gain and Green bars represent no change in EGFR status. Numbers indicate the number of samples related with 
the particular EGFR status. 

EGFR signaling pathways gene expression analysis 

 To understand how the EGFR signaling pathways behave in GBM, we selected a 

group of 15 samples (previously analyzed by cCGH) that was broad enough to describe the 

most common genetic events in GBM (Table 2, page 13). The first group of samples (cases 

1, 2, 3 ,4 and 5; Group 1) was composed by cases with GBM that were characterized by 

cCGH as having (among other changes) gain of chromosome 7 and amplification of 7p12 

(amp7p12). The second group (cases 6, 7 and 8; Group 2) was composed by cases with 

GBM that were characterized by cCGH as having (among other changes) gain of 

chromosome 7. The third group (cases 9 and 10; Group 3) was composed by one case of 

GBM and another case of AO that were characterized by cCGH as having (among other 

changes) amplification of 8q24. In one case (case 11) we obtained RNA for both the cell line 

and tumor, which allowed us to determine if the EGFR signaling pathway profile was 

maintained between the tumor and the cell line. One case (case 12), was characterized by  

cCGH as having (among other changes) gain of chromosome 7 and amplification in 4q12. 

There were also in our group of samples different individual cell lines derived from primary 

tumors that had unique changes in their cCGH profiles (cases 13, 14 and 15). These 

samples were included to determine if different genomic modifications would produce 

different EGFR signaling pathways profiles. Also, due to sample size limitation, we sought to 

statistically validate our results by comparing them with the publicly available data of Group 1 

(79 cases) and Group 2 (106 cases) tumor types derived from the work of “The Cancer 

Genome Atlas” (TCGA, 2008), of which we used a total of 185 tumor cases. 
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Table 2. Samples used in Gene Expression Analysis. 

Case Type Sex Hystological 
Type Chromosomal Gains (determined by cCGH) 

1 Tumor F Glioblastoma 
Multiforme 

Total Gain of Chromosome 7 with Amplification 
of 7p12 

2 Tumor F Glioblastoma 
Multiforme 

Total Gain of Chromosome 7 with Amplification 
of 7p12 

3 Tumor M Glioblastoma 
Multiforme 

Total Gain of Chromosome 7 with Amplification 
of 7p12 

4 Tumor F Glioblastoma 
Multiforme 

Total Gain of Chromosome 7 with Amplification 
of 7p12 

5 Tumor M Glioblastoma 
Multiforme 

Total Gain of Chromosome 7 with Amplification 
of 7p12 

6 Tumor M Glioblastoma 
Multiforme Total Gain of Chromosome 7 

7 Tumor M Glioblastoma 
Multiforme Total Gain of Chromosome 7 

8 Tumor M Glioblastoma 
Multiforme Total Gain of Chromosome 7 

9 Tumor M Glioblastoma 
Multiforme DNA Amplification of 8q24.2 

10 Tumor M Anaplastic 
Oligodendroglioma DNA Amplification of 8q24.1 

11 Cell Line 
M Anaplastic 

Ganglioglioma 

Total Gain of Chromosome 7 

Tumor Total Gain of Chromosome 7 

12 Tumor M Glioblastoma 
Multiforme 

Total Gain of Chromosome 7 and Amplification 
of 4q12 

13 Cell Line M Glioblastoma 
Multiforme Total Gain of Chromosome 7 

14 Cell Line F Glioblastoma 
Multiforme DNA Amplification of 3q, 4p, 18q and Xq 

15 Cell Line F Glioblastoma 
Multiforme 

Total Gain of Chromosome 7 and Amplification 
of 3q, 4q and 12q 

Note: In one case (11), RNA for tumor and cell line was available for microarray analysis.  
 
 

To understand how the molecules in the EGFR signaling pathways were expressed in 

our samples, we used Affymetrix’s GeneChip® HuGene 1.0 ST gene expression microarrays 

that allow us to determine the expression values of 28,869 genes. Having the data for each 

individual sample, we then compared the subgroups with the normal brain cerebral cortex 

control. This comparison was made with Partek Genomics Suite’s ANOVA, which made it 

possible to generate gene expression Ratios and FC between the subgroups and the normal 

control. Gene lists for each comparison were made, and only genes with a FC over 2 or 

below -2 were selected for further analysis. Gene lists filtered by FC were then inputted into 

the IPA software, generating networks and canonical pathways, of which the EGFR Signaling 

pathway was of particular interest (Table 3, page 14). 
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Table 3. EGFR Canonical Pathway in the various samples groups (Ingenuity Pathway Analysis). 

Cases Genes Overexpressed 
(FC ≥ 2) 

Genes Underexpressed 
(FC ≤ -2) 

Genes with no Change in 
Expression 
(-2 ≤ FC ≤ 2) 

Group 1 vs N 7/48(14.5%) 4/48 (8.4%) 37/46 (77.1%) 

Case 3 (EGFRvIII vs 
N) 8/48 (16.6%) 4/48 (8.4%) 36/48 (75%) 

Group 2 vs N 7/48 (14.5%) 6/48 (12.5%) 35/46 (73%) 

Group 1 vs Group 2 2/48 (4%) 0/48 (0%) 46/48 (96%) 

Group 1 vs Group 2 
(TCGA data) 1/48 (2%) 0/48 (0%) 47/48 (98%) 

Group 3 vs N 5/48 (10.5%) 5/48 (10.5%) 38/48 (79%) 

Case 11 - Cell Line 
vs N 6/48 (12.5%) 11/48 (23%) 31/48 (64.5%) 

Case 11 – Tumor vs 
N 5/48 (10.5%) 7/48 (14.5%) 36/48 (75%) 

Case 12 vs N 7/48 (14.5%) 8/48 (16.6%) 33/48 (68.9%) 

Case 13 vs N 6/48 (12.5%) 11/48 (23%) 31/48 (64.5%) 

Case 14 vs N 5/48 (10.5%) 13/48 (27%) 30/48 (62.5%) 

Case 15 vs N 8/48 (16.6%) 11/48 (23%) 29/48 (60.4%) 

N = Normal Cerebral Cortex 

 

Tumors with Gain of Chromosome 7 and Amplification of 7p12 vs N 

When comparing expression data of Group 1 vs N in our series  as depicted in Figure 

5 (page 15) and Table 4 (page 16), in what concerns EGFR canonical pathway, several 

findings drew our attention. The most striking was the degree of overexpression of the EGFR 

gene with a fold-change of 10.66 over the normal control (p-value 0.111). Analysis of EGFR 

signaling revealed different profiles in the various intracellular transducer branches. 

Accordingly, in the MAPK signaling cascade, we verified that transducers molecules did not 

have a distinctive uniform profile of gene expression. That is, molecules in this pathway were 

either underexpressed (e.g. MKK4, FC = -3.07), had no change in expression (e.g. hRas, FC 

= -1.07) or were overexpressed (e.g. MEKK1, FC = 2.27) without an evident pattern that 

could indicate a preferential activation of this pathway branch. In the PIP signaling pathway 

we saw no changes in expression, except for the underexpression of one of the genes that 

constitute the ITPR (e.g. ITPR1, FC = -5.54).  

In the STAT signaling pathway we saw an overexpression of both STAT3 and STAT1 

genes (with an average FC of 2.1 for STAT1 and STAT3 when compared with normal 

cerebral cortex, with a p-value of 0.168 for STAT1 and 0.015 for STAT3). Although through 

analysis of figure 5 there is seemingly no direct interaction between the STAT proteins and 
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the EGFR protein, it is known that EGFR is able to directly activate these proteins (Coffer et 

al., 1995) without need of interaction with the JAK proteins.   

The combined results from the three different EGFR activated signaling transducers 

branches lead us to suggest that there is an apparent genetic preference for EGFR signaling 

to proceed through the STAT signaling pathway in this group of cases. 

In one case, EGFRvIII mutation was detected by the MLPA technique (case 3), and 

we also proceeded to analysis of the EGFR signaling pathway in this case. In similarity with 

other cases with amp7p12, an apparent genetic expression preference for EGFR signaling to 

proceed through STAT signaling was also found (Supplementary Figure S6 and Table S1). 

Although the IPA canonical pathways were very useful in ascertaining if there was a 

genetic preference for signaling in GBM with amp7p12, it was clear that the IPA canonical 

pathway for EGFR signaling was incomplete. We therefore used a more detailed EGFR 

pathway (Oda et al., 2005) depicted in Figure 6 (page 16). The results obtained were similar 

to those obtained with the IPA pathway (Figure 5), with evidence of a genetic preference for 

EGFR signaling to proceed through the STAT proteins becoming apparent. 

 

 
 

 

 

 

 

 

Figure 5. IPA EGFR Canonical Pathway in Tumors with Gain of Chromosome 7 and Amplification in the 
Chromosomal Region 7p12 vs Normal Cerebral Cortex. Molecules colored red are overexpressed, molecules 
colored green are underexpressed, molecules colored grey have no change in gene expression and molecules 
colored white have no information in regard to gene expression.  
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Table 4. EGFR Canonical Pathway characterization in Group 1 vs Normal Cerebral Cortex. 

Cases Genes Overexpressed 
(FC ≥ 2) Genes Underexpressed (FC ≤ -2) 

Genes with no Change 
in Expression 
(-2 ≤ FC ≤ 2) 

Group 1 
vs N 

7/48 
(14.5%) 

c-Fos, c-Jun, EGFR, 
MEKK1, SHC, STAT1, 

STAT3 

4/48 
(8.4%) 

IPTR1, JNK1, MKK4, 
PIK3CB 37/48 (77.1%) 

 

 
 

 

 

 

Figure 6. EGFR Pathway (adapted from Oda et al., 2005) in Tumors with Gain of Chromosome 7 and 
Amplification in the Chromosomal Region 7p12 (Group 1) vs Normal Cerebral Cortex. Molecules colored red are 
overexpressed, molecules colored green are underexpressed, molecules colored white have no change in gene 
expression and molecules colored white with italic lettering have no data of expression  Trapezoids represent 
receptor tyrosine kinases, rectangles represent generic proteins, circles represent simple molecules. 
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Tumors with Gain of Chromosome 7 vs N 
 When comparing Group 2 vs N we could observe that the EGFR canonical pathway 

depicted in Figure 7 and Table 5 (page 18) was very similar to the one obtained for the 

previous cases (Group 1). The most striking difference between them was the degree of 

overexpression of the EGFR gene, which was 2.4 times more expressed in these samples 

than in the normal cerebral cortex control (p-value = 0.108). In regard to the signaling 

pathway branches, results were similar of those obtained in Group 1 vs N, where no 

distinctive pattern of gene expression in MAPK or PIP signaling pathways was observed. 

Overexpression of STAT, more specifically, the STAT3 gene with a 2.3 fold-change over the 

normal cerebral cortex control (p-value = 0.065) was a distinctive feature in this cases. 

 As in the previous samples group, a more detailed EGFR signaling pathway was built  

as depicted in Figure 8 (page 18) and again, the results were similar of those obtained with 

the IPA EGF canonical pathway. 

 
 

 

 
 

 

 

 

 

 

 

 

Figure 7. IPA EGFR Canonical Pathway in Tumors with Gain of Chromosome 7 vs Normal Cerebral Cortex. 
Molecules colored red are overexpressed, molecules colored green are underexpressed, molecules colored grey 
have no change in gene expression and molecules colored white have no information in regard to gene 
expression.  
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Table 5. EGFR Canonical Pathway characterization in Group 2 vs Normal Cerebral Cortex. 

Cases Genes Overexpressed 
(FC ≥ 2) Genes Underexpressed (FC ≤ -2) 

Genes with no Change 
in Expression 
(-2 ≤ FC ≤ 2) 

Group 2 
vs N 

7/48 
(14.5%) 

c-Fos, c-Jun, EGFR, 
ITPR3, PIK3CG, SHC, 

STAT3 

6/48 
(12.5%) 

IPTR1, JNK1, MEK1, 
MKK4, PIK3CB, 

PIK3C2B 
35/48 (73%) 

 

 
 

 

 

 

Figure 8. EGFR Pathway (adapted from Oda et al, 2005) in Tumors with Gain of Chromosome 7 (Group 2) vs 
Normal Cerebral Cortex. Molecules colored red are overexpressed, molecules colored green are underexpressed, 
molecules colored white have no change in gene expression and molecules colored white with italic lettering have 
no data of expression. Trapezoids represent receptor tyrosine kinases, rectangles represent generic proteins, 
circles represent simple molecules. 
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Tumors with Gain of Chromosome 7 and Amplification in 7p12 vs Tumors with Gain of 
Chromosome 7 

Comparison between Group 1 and Group 2 of our series as depicted in Figure 9 and 

Table 6, revealed that there were no significant differences between the gene expression of 

most of the individual molecules in the EGFR mediated signaling pathways between these 

two groups. However, there was a striking difference between them in the overexpression of 

the EGFR gene, which was 5.42 fold overexpressed (p-value of 0.0387), what can be related 

to the lack of amplification of the EGFR gene in Group 2 samples. 

 

 
 

 

 
 

Table 6. EGFR Canonical Pathway characterization in Group 1 vs Group 2. 

Cases Genes Overexpressed 
(FC ≥ 2) Genes Underexpressed (FC ≤ -2) 

Genes with no Change 
in Expression 
(-2 ≤ FC ≤ 2) 

Group 1 
vs Group 
2 

2/48 (4%) EGFR, PIK3C2B 0/48 (0%) - 46/48 (94%) 

 

Figure 9. IPA EGFR Canonical Pathway in Tumors with Gain of Chromosome 7 and Amplification in 7p12 vs 
Tumors with Gain of Chromosome 7. Molecules colored red are overexpressed, molecules colored green are 
underexpressed, molecules colored grey have no change in gene expression and molecules colored white have no 
information in regard to gene expression.  
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Tumors with Gain of Chromosome 7 and Amplification in 7p12 vs Tumors with Gain of 

Chromosome 7 (TCGA data) 

Statistical validation of our results was performed by comparing them with the publicly 

available gene expression array data of GBM derived from the work of “The Cancer Genome 

Atlas” (TCGA) consortium (http://cancergenome.nih.gov/dataportal/data/about/). TCGA used 

a different microarray set (GeneChip® Human Genome U133 Plus 2.0 Array from Affymetrix) 

to analyze gene expression in 79 cases of GBM with amp7p12 and 106 cases of GBM with 

gain of chromosome 7. Data was analyzed with the same protocol used in our series of data 

(Partek one-way ANOVA analysis with FC filtering, followed by Ingenuity Pathway Analysis). 

The EGFR canonical pathway retrieved from IPA depicted in Figure 10 and Table 7 (page 

21) markedly resembled the one obtained with our data series. Concurrently, using the 

TCGA database analysis evidenced that the most significant difference between GBM with 

amp7p12 and GBM with gain of chromosome 7 was the expression level of the EGFR gene. 

This gene presented an average 13.29 fold-change (p-value = 1.73E-34) in GBM with 

amp7p12 over GBM with gain of chromosome 7 in the TCGA data series. 

 

 

 
 

 

 

 

 

 

Figure 10. IPA EGF Canonical Pathway in Tumors with Gain of Chromosome 7 and Amplification in 7p12 vs 
Tumors with Gain of Chromosome 7 (TCGA data). Molecules colored red are overexpressed, molecules colored 
green are underexpressed, molecules colored grey have no change in gene expression and molecules colored 
white have no information in regard to gene expression.  
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Table 7. EGFR Canonical Pathway characterization in Group 1 vs Group 2 (TCGA data). 

Cases Genes Overexpressed 
(FC ≥ 2) Genes Underexpressed (FC ≤ -2) 

Genes with no Change 
in Expression 
(-2 ≤ FC ≤ 2) 

Group 1 
vs Group 
2 (TCGA 
data) 

1/48 (2%) EGFR 0/48 (0%) - 47/48 (98%) 

Tumors with Amplification in 8q24 vs N 

Analysis of Group 3 vs N data revealed a different pattern for the EGFR signaling 

pathway branches as depicted in Figure 11 and Table 8 (page 22). Although overexpression 

of the EGFR gene was evident with a 2.3 fold-change over the normal cerebral cortex control 

in this sample group, there was no ascertainable genetic preference for any of the signaling 

pathways, in contrast with previous sample groups (Groups 1 and 2) in which a genetic 

preference for STAT signaling was apparent. 

In these cases, STAT3 gene had a FC of 1.7 over the normal control, which falls 

below our selected limit. This result was also evident in the more detailed EGFR signaling 

pathway (Supplementary Figure S7). 

Data analysis of these samples also revealed a striking overexpression of the c-Myc 

gene (which is amplified in these samples), with a FC of 6.16. Recently c-Myc 

overexpression was reported in glioma (Faria et al., 2008) and it has been implicated as a 

key gene in gliomagenesis (Lassman et al., 2004; Bredel et al., 2005) and maintenance of 

glioma cancer stem cells (Wang et al., 2008).  

 

 

Figure 11. IPA EGFR Canonical Pathway in Tumors with Amplification in 8q24 vs Normal Cerebral Cortex. 
Molecules colored red are overexpressed, molecules colored green are underexpressed, molecules colored grey 
have no change in gene expression and molecules colored white have no information in regard to gene expression.  
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Table 8. EGFR Canonical Pathway characterization in Group 3 vs Normal Cerebral Cortex. 

Cases Genes Overexpressed (FC ≥ 2) Genes Underexpressed (FC ≤ -2) 
Genes with no Change 

in Expression 
(-2 ≤ FC ≤ 2) 

Group 3 
vs N 

5/48 
(10.5%) 

c-Fos, c-Jun, EGFR, 
MEKK1, STAT1 

5/48 
(10.5%) 

ITPR1, MEK1, MKK4 
PIK3CB, PIK3C2B 38/48 (79%) 

 

Anaplastic Ganglioglioma Cell Line and Tumor vs N 

Another goal of this work was to determine if cell lines derived from primary tumors 

maintained the EGFR signaling pattern of the original tumors. For one of the cases (case 11) 

of our group of samples, RNA quality and quantity for both tumor and cell line were adequate 

for microarray analysis, enabling us to investigate the EGFR signaling pathway in both 

samples. As depicted in Figure 12 and Table 9 (cell line) and Figure 13 and Table 10 (tumor, 

page 23), the EGFR signaling pathway is essentially equal in both cell line and tumor, with, 

again, an apparent preference toward STAT signaling, in a very similar result to those of the 

other samples analyzed. The comparison of the cell line sample vs the tumor sample yielded 

a totally unchanged EGFR pathway (not shown). The more detailed EGFR signaling pathway 

confirmed these results (not shown). 

 
 

 
T 

 

 

Figure 12. IPA EGFR Canonical Pathway in a Tumor Cell Line with derived from an Anaplastic Ganglioglioma of 
case 11 vs Normal Cerebral Cortex. Molecules colored red are overexpressed, molecules colored green are 
underexpressed, molecules colored grey have no change in gene expression and molecules colored white have no 
information in regard to gene expression.  
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Table 9. EGFR Canonical Pathway characterization in Case 11 (Cell Line) vs Normal Cerebral Cortex. 

Cases Genes Overexpressed 
(FC ≥ 2) Genes Underexpressed (FC ≤ -2) 

Genes with no Change 
in Expression 
(-2 ≤ FC ≤ 2) 

Case 1 – 
Cell Line 
vs N  

6/48 
(12.5%) 

c-Jun, EGF, ITPR3, 
SHC1, STAT1, STAT3 

11/48 
(23%) 

ERK 3,ITPR1, ITPR2, 
JNK1, MEK1, MKK4, 
PIK3CB, PIK3C2B, 
PIK3C3, PIK3R1, 

RasGAP, 

31/48 (64.5%) 

 

 
 

 
T 

 

Table 10. EGFR Canonical Pathway characterization in Case 11 (Tumor) vs Normal Cerebral Cortex. 

Cases Genes Overexpressed 
(FC ≥ 2) Genes Underexpressed (FC ≤ -2) 

Genes with no Change 
in Expression 
(-2 ≤ FC ≤ 2) 

Case 11 - 
Tumor vs 
N  

5/48 
(10.5%) 

c-Fos, c-Jun, PIK3CG, 
PIK3R5, STAT3 

7/48 
(14.5%) 

ERK3, ITPR1, JNK1, 
MEK1, MKK4, 

PIK3C2B, PIK3CB 
36/48 (75%) 

  

Tumor with Gain of Chromosome 7 and Amplification in 4q12 vs N 

The comparison of case 12 vs normal cerebral cortex, as represented in Figure 14 

and Table 11 (page 24), revealed an apparent preference towards STAT signaling, as in our 

previous results for Groups 1 and 2. In this case, STAT3 gene had a 2.5 fold overexpression 

over the normal control. Data analysis also revealed overexpression of PDGFRα (whose 

Figure 13. IPA EGFR Canonical Pathway in an Anaplastic Ganglioglioma of case 11, with gain of chromosome 7 
vs Normal Cerebral Cortex. Molecules colored red are overexpressed, molecules colored green are 
underexpressed, molecules colored grey have no change in gene expression and molecules colored white have 
no information in regard to gene expression.  
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locus is amplified in this sample). This protein is an indirect activator of STAT3 (activation is 

mediated by JAK) (Vignais et al., 1999) and in our samples had a 7.85 fold gene 

overexpression over the normal control. This event may constitute an alternative activating 

pathway for STAT3 in this sample. Results were confirmed by the more detailed EGFR 

signaling pathway (not shown). 

 

 
 

 

 
Table 11. EGFR Canonical Pathway characterization in Case 12 vs Normal Cerebral Cortex. 

Cases Genes Overexpressed 
(FC ≥ 2) Genes Underexpressed (FC ≤ -2) 

Genes with no Change 
in Expression 
(-2 ≤ FC ≤ 2) 

Case 12 
vs N  

7/48 
(14.5%) 

c-Fos, c-Jun, EGFR, 
PIK3C2G, PIK3CG, 

PIK3R5, STAT3 

8/48 
(16.6%) 

JNK1, ITPR1, MEK1, 
MKK4, JNK1, PIK3C3, 

PIK3C2B, PIK3CB, 
RasGAP 

33/48 (68.9%) 

 

Other Cases vs N 

 In other comparative analysis using samples that represent unique cell lines derived 

from primary GBM (depicted in Supplementary Figures S8, S9 and S10 and Tables S2, S3 

and S4), the EGFR signaling pathway continued to reveal an apparent preference towards 

STAT signaling independently of the cytogenetic changes the cell lines possess, what was 

also confirmed by the more detailed EGFR signaling pathways (not shown).  

 

Figure 14. IPA EGFR Canonical Pathway in a Tumor with Gain of Chromosome 7 and Amplification in 4q12 (case 
12) vs Normal Cerebral Cortex. Molecules colored red are overexpressed, molecules colored green are 
underexpressed, molecules colored grey have no change in gene expression and molecules colored white have 
no information in regard to gene expression.  
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Discussion 
EGFRvIII mutation detection by MLPA 

 The results of our MLPA experiments were different from those previously 

documented in the Portuguese population (Viana-Pereira et al., 2008) in regard to the 

EGFRvIII mutation prevalence. In their work, Viana-Pereira et al. studied the incidence of 

EGFR overexpression, amplification and EGFRvIII mutation in a Portuguese group of high-

grade gliomas. In this group’s cases EGFR amplification was found in 54% of GBM and 67% 

of Anaplastic Oligodendrogliomas (AO) [versus 43% and 42% (AO are similar to high-grade 

Oligodendrogliomas) respectively, in our cases]. EGFRvIII mutation was detected in 22% of 

GBM and 8% of AO (versus 8% and 5% respectively, in our cases). 

The difference between our results and Viana-Pereira’s group may be explained by 

the different methods used (Viana-Pereira et al. used immunohistochemistry in their attempt 

to identify the prevalence of EGFRvIII mutation). To our knowledge, no work has been 

published, using the MLPA kit P315 for EGFR, for investigation of EGFRvIII prevalence in 

any population.  

 To address the issue of different prevalence of the EGFRvIII mutation between our 

technique and Viana-Pereira’s, we propose that a third different technique should be used to 

evaluate the mutation’s prevalence in the same group of individuals, mainly a mRNA based 

evaluation like the one proposed by Mellinghoff et al. (Mellinghoff et al., 2005) and 

Yoshimoto et al. (Yoshimoto et al., 2008). 

What our results also reflect is that amplification of EGFR is a current event in high-

grade gliomas (both GBM and high-grade Oligodendrogliomas) (Figure 4, page 12) being 

relatively rare in low-grade gliomas, as previously stated by Ohgaki et al. (Ohgaki et al., 

2005). 

 

EGFR Pathway Analysis in Glioma 

 Some of the hallmarks of high-grade gliomas are total gain of chromosome 7, 

amplification of the EGFR gene and total loss of chromosome 10 or partial loss of 

chromosome arm 10q (Ohgaki et al., 2007). EGFR signaling can be deregulated by these 

two events, at the activation level by EGFR, and at the inhibition level by PTEN (located in 

10q23). EGFR signaling deregulation has been confirmed as a key event in high-grade 

gliomas (TCGA, 2008). With this work, we sought to understand the pattern of expression of 

the genes that compose the EGFR pathway and if there was any preference for a particular 

“branch” of the pathway. 

  In the majority of our samples, the STAT3 and STAT1 genes have, on average, a 

two-fold increment over the normal control. On the other hand, genes in the PIP and MAPK 

branches of the EGFR signaling pathway have different levels of expression, that do not 
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clearly indicate any type of preference toward one or the other. In the PIP pathway there was 

no ascertainable change in its component’s gene expression in the majority of our samples, 

what lead us to believe that there was no particular preference for EGFR signaling to 

proceed through PIP signaling. In what concerns the MAPK cascade in the EGFR signaling, 

there was an apparent antagonistic level of expression in its transducer molecules. As 

depicted in Figure 5 (page 15 of the Results section), overexpression (e.g. MEKK1), 

underexpression (e.g. MKK4) and no change in expression (e.g. MKK7) coexisted in the 

same branch of the pathway. This seemingly incompatible gene expression between the 

constituents of the MAPK cascade may lead to a decreased signaling ability by this pathway, 

what lead us to believe that, like for PIP signaling, there was no particular preference for 

EGFR signaling to proceed through the MAPK cascade. 

Of the three possible EGFR transducer intracellular signaling cascades (PIP, MAPK 

and STAT), we could recognize that gene expression changes support a preferential 

signaling through STAT1/3. 

However, in one sample group (Group 3, amp8q24), we did not observe this event. 

As depicted in Figure 11 and Table 8 (pages 21 and 22 of the Results section), the Group 3 

vs N analysis did not show a clear preference for STAT3, but data analysis of gene 

expression revealed an increased expression of the c-Myc gene. In the comparisons of 

Group 1 vs N and Group 2 vs N, c-Myc overexpression was also evident, with a median FC 

of 4.05.  It is known that STAT3 is a mediator of c-Myc transcription (Dauer et al., 2005) and 

inhibition of STAT3 in glioma cells leads to decreased expression of c-Myc (Gu et al., 2008). 

Thus, the STAT3 signaling preference revealed in Group 1 and 2 cases can be interpreted 

as a glioma cell strategy to induce increased expression of c-Myc when no other possibility 

(like amplification of the gene locus) exists. If so, amplification of the c-Myc locus, which 

occurs in Group 3, would relieve selective pressure for EGFR signaling to proceed through 

STAT3, leading to decreased overexpression of this gene. This hypothesis could therefore 

explain why STAT3 signaling preference is not so evident in Group 3 cases when compared 

with Group 1 and 2 cases. 

 STAT3 activation has been encountered in roughly 51% of GBM (Abou-Ghazal et al., 

2008), and has been identified as a key regulator of both immune suppression and 

tumorigenesis. STAT3 activity in natural killer cells and neutrophils leads to decrease of their 

citotoxic activity. In dendritic cells STAT3 reduces the expression of MHC II, CD80, CD86 

and IL12, which renders these cells unable to stimulate T cells and generate antitumor 

immune responses (Kortyleswki et al., 2008). STAT3 participation in tumorigenesis lies in its 

ability to induce transcription of several genes involved in preventing apoptosis and 

enhancing proliferation, angiogenesis, invasion and metastasis (Dauer et al., 2005; Abou-

Ghazal et al., 2008).  
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 As previously stated, the STAT3 protein is a direct target of EGFR-mediated 

phosphorylation, what occurs when STAT3 binds phosphorylated residues in the C-terminus 

of the EGFR protein (Y1068 and Y1086) (Xia et al., 2002), which in turn phosphorylates the 

Tyrosine 705 residue of STAT3, leading to STAT3 homo- or heterodimerization, nuclear 

translocation and gene activation, making this the most straight-forward pathway for EGFR 

signaling. STAT3 activity is regulated by various proteins, mainly PIAS, SOCS and protein 

phosphatases like PTPRD. In the majority of our samples, the genes encoding these proteins 

are either underexpressed or have no change in gene expression. The PTPRD gene for 

instance has an average five-fold gene expression reduction in Group 1 and 2 samples vs N.  

 Knowing the importance of STAT3 activation in glioma, several attempts at promoting 

apoptosis and decreased proliferation of glioma by inhibition of STAT3 activity have been 

made. 

One of the first attempts of inhibiting STAT3 was made by Konnikova et al. 

(Konnikova et al., 2003) with siRNA. In this work, Konnikova et al. inhibited STAT3 in 

astrocytoma cell lines and normal human astrocytes (NHA) and observed a decreased 

viability and induction of apoptosis in the astrocytoma cell lines but not in the NHA, proposing 

siRNA should be used as a possible therapy.  

Another effort, by Shao et al. (Shao et al., 2003), used phosphopeptides in squamous 

carcinoma cells. Phosphopeptides, mimicking the phosphorylated residues of EGFR where 

STAT3 binds for activation (Y1068 and 1086), resulted in a destabilization of STAT3 

homodimers, and thus, lead to a decrease of STAT3-DNA binding and cell proliferation.  

One attempt at inhibiting STAT3 by blocking its capacity to bind DNA was made by 

Gu et al. (Gu et al., 2008). Gu et al. used decoy oligonucleotides (ODN) mimicking STAT3 

specific cis-elements in two glioma cell lines. These ODN blocked STAT3 signaling and 

decreased its capacity to mediate transcription of several genes including c-Myc, Cyclin D1 

and Bcl-xl, resulting in decreased cell proliferation by inducing of apoptosis and cell-cycle 

arrest.  

Use of small molecule inhibitors of STAT3 was proposed by Fuh et al. (Fuh et al., 

2009). Fuh et al. used LLL-3, a polyphenol that binds the SH2 domain of STAT3 (the binding 

domain), leading to a decreased ability for STAT3 to dimerize. Applying LLL-3 to various 

glioma cell lines led to the inhibition of STAT3-dependent transcription and to induction of 

apoptosis in the cell lines. In mice with injection of GBM cell lines, the use of LLL-3 increased 

viability from 16 days to 28.5 days.  

Li et al. (Li et al., 2009) used a strategy based upon delivery of a lentiviral vector with 

a shRNA specific for STAT3, to induce knockdown of STAT3 expression in GBM cell lines. 

STAT3 inhibition with this approach led to suppression of growth and increase in apoptosis in 

the cell lines and also an increase in differentiation of some cells. 
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Conclusion: 
 Deregulation of the EGFR signaling pathway is one of the most important features of 

GBM. When deregulated, this pathway confers upon the GBM cells an increased ability to 

proliferate and evade both apoptosis and immune responses from the host. Suppressing the 

activity of this pathway should, in theory, lead to a decrease in some of these abilities, and 

hence, to a decrease in tumor mass and an increase in survival of the host. Efforts in the 

targeting of this pathway have been made, mostly through the inhibition of the EGFR protein. 

Although some progress has been made, progression free survival of GBM patients still 

remains dismal. This probably occurs because EGFR shares most of its pathways with other 

RTKs and non-RTKs, giving the glioma cells the ability to bypass inhibition of EGFR, through 

activation of its core signaling pathways via other RTKs and non-RTKs. Clearly, another 

target, downstream from activators like EGFR, must be selected to enable blockage of GBM 

core pathways. Several attempts at targeting key components of the PIP and MAPK 

signaling cascade have been made in this regard, but median survival time remains dismal.  

Our work reveals STAT3 as another potential molecule that can fit this description. STAT3 

overexpression and activation have been proven in GBM, but, to our knowledge, no work has 

been published on the preferential 

activation of the STAT3 pathway in 

GBM (Figure 15).  

 We can look at STAT3 as a 

“molecular hub” because it is activated 

by various RTKs and non-RTKs, and it 

can lead to increased transcription of 

several genes related to proliferation, 

immune evasion and inhibition of 

apoptosis. In theory, inhibition of the 

signaling pathways at this level should 

overcome the obstacles found in the 

inhibition of EGFR. And in fact, some 

recent work on inhibition of STAT3 in 

glioma cells has yielded promising results, although, to our knowledge, no clinical trials 

involving any of the strategies mentioned in the discussion are ongoing. 

 We are aware that sample size is a limitation of our work, so we propose as a future 

work to scale-up our results, with different approaches directed at STAT3: evaluation of the 

mRNA levels through real-time RT-PCR and validation of STAT3 activation by evaluation of 

Tyrosine 705 Phosphorylated STAT3 and Tyrosine 1068 Phosphorylated EGFR presence 

through immunohistochemistry in a larger set of samples. 

Figure 15. EGFR Signaling pathway model in GBM. 
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Figure S1. Simplified Overview of the cCGH protocol (in http://www.currentprotocols.com/protocol/hg0406). 
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Figure S2. Simplified Overview of the MLPA protocol (in http://www.mrc-holland.com/). 
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Figure S3. Simplified Overview of the GeneChip Microarray protocol (adapted from the GeneChip Whole 
Transcript Sense Target Labelling Assay Technical Manual, Affymetrix). 
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Figure S4. Network shapes in 
IPA (in IPA Help Manual). 

Figure S5. Relationship types in 
IPA (in IPA Help Manual). 
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Table S1. EGFR Canonical Pathway characterization in Case 3 vs Normal Cerebral Cortex. 

Cases Genes Overexpressed 
 (FC ≥ 2) Genes Underexpressed (FC ≤ -2) 

Genes with no Change 
in Expression 
(-2 ≤ FC ≤ 2) 

Case 3 
vs N  

8/48 
(16.6%) 

c-Fos, c-Jun, EGF, 
EGFR, ITPR2, 

MEKK1, PIK3C2B, 
STAT3 

4/48 
(8.4%) 

JNK1, ITPR1, MKK4, 
PIK3CB 36/48 (75%) 

 

Figure S6. IPA EGFR Canonical Pathway in a Tumor (case 3) with Gain of Chromosome 7, Amplification in 7p12 
and EGFRvIII mutation vs Normal Cerebral Cortex. Molecules colored red are overexpressed, molecules colored 
green are underexpressed, molecules colored grey have no change in gene expression and molecules colored 
white have no information in regard to gene expression. 
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Figure S7. EGFR Pathway (adapted from Oda et al, 2005(ref.10)) in Tumors with Amplification in 8q24 (Group 3) 
vs Normal Cerebral Cortex. Molecules colored red are overexpressed, molecules colored green are 
underexpressed, molecules colored white have no change in gene expression and molecules colored white with 
italic lettering have no data of expression. Trapezoids represent receptor tyrosine kinases, rectangles represent 
generic proteins, circles represent simple molecules. 
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Table S2. EGFR Canonical Pathway characterization in Case 13 vs Normal Cerebral Cortex. 

Cases Genes Overexpressed  
(FC ≥ 2) Genes Underexpressed (FC ≤ -2) 

Genes with no Change 
in Expression 
(-2 ≤ FC ≤ 2) 

Case 13 
vs N  

6/48 
(12.5%) 

EGF, EGFR, ITPR3, 
MEKK1, SHC1, 

STAT3 

11/48 
(23%) 

c-Fos, ERK2, ITPR1, 
ITPR2, JNK1, MEK1, 

MKK4, PIK3C2B, 
PIK3CB, PIK3R1, SOS2 

31/48 (64.5%) 

 

 

Figure S8. IPA EGFR Canonical Pathway in a Tumor Cell Line with Gain of Chromosomes 7 (case 13) vs Normal 
Cerebral Cortex. Molecules colored red are overexpressed, molecules colored green are underexpressed, 
molecules colored grey have no change in gene expression and molecules colored white have no information in 
regard to gene expression.  
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Table S3. EGFR Canonical Pathway characterization in Case 14 vs Normal Cerebral Cortex. 

Cases Genes Overexpressed  
(FC ≥ 2) Genes Underexpressed (FC ≤ -2) 

Genes with no Change 
in Expression 
(-2 ≤ FC ≤ 2) 

Case 14 
vs N  

5/48 
(10.5%) 

c-Jun, ITPR3, MEKK1, 
SHC1, STAT3 

13/48 
(27%) 

EGFR, ERK2, ITPR1, 
ITPR2, JNK1, MKK4, 
PIK3C2A, PIK3CA, 

PIK3CB, PIK3R1, PKCα, 
RasGAP, SOS1 

30/48 (62.5%) 

 

Figure S9. IPA EGFR Canonical Pathway in a Tumor Cell Line with Amplification in 3q, 4p, 18q and Xq (case 14) 
vs Normal Cerebral Cortex. Molecules colored red are overexpressed, molecules colored green are 
underexpressed, molecules colored grey have no change in gene expression and molecules colored white have 
no information in regard to gene expression.  
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Table S4. EGFR Canonical Pathway characterization in Case 15 vs Normal Cerebral Cortex. 

Cases Genes Overexpressed 
(FC ≥ 2) Genes Underexpressed (FC ≤ -2) 

Genes with no Change 
in Expression 
(-2 ≤ FC ≤ 2) 

Case 15 
vs N  

8/48 
(16.6%) 

c-Jun, EGF, ERK5, 
ITPR3, PIK3CA, 

PIK3R2, SHC1, STAT3 

11/48 
(23%) 

ERK2, ERK3, ITPR1, 
JNK1, MEK1, MKK4, 
PIK3C3, PIK3C2B, 
PIK3CB, PIK3R1, 

RasGAP 

29/48 (60.4%) 

 

 

Figure S10. IPA EGFR Canonical Pathway in a Tumor Cell Line with Gain of Chromosome 7 and Amplification in 
3q, 4q and 12q (case 15) vs Normal Cerebral Cortex. Molecules colored red are overexpressed, molecules colored 
green are underexpressed, molecules colored grey have no change in gene expression and molecules colored 
white have no information in regard to gene expression.  


	Capas (versão final)
	Capa, Index, Glossário, Agradecimentos e Resumos (final version) (com linhas delimitadoras)
	Abstract:
	Resumo

	Dissertation Main Body (versão final) (com linhas delimitadoras)
	Introduction
	Materials and Methods
	DNA Extraction for Multiplex Ligation-dependent Probe Amplification (MLPA) and Chromosomal Comparative Genomic Hybridization (cCGH)
	Chromosomal Comparative Genomic Hybridization
	Microarray Analysis
	Gene Expression Analysis
	Gene ontology, canonical pathways, and functional network analysis
	EGFR Signaling Pathway:

	Along with the IPA EGFR signaling pathways, an EGFR Signaling Pathway adapted from the work of Oda et al. (Oda et al., 2005) was also constructed. This group constructed a comprehensive pathway for EGFR-mediated signaling based on published scientific...
	Results
	Multiplex Ligation-dependent Probe Amplification (MLPA)
	Table 2. Samples used in Gene Expression Analysis.
	Tumors with Gain of Chromosome 7 and Amplification of 7p12 vs N
	Tumors with Gain of Chromosome 7 vs N
	When comparing Group 2 vs N we could observe that the EGFR canonical pathway depicted in Figure 7 and Table 5 (page 18) was very similar to the one obtained for the previous cases (Group 1). The most striking difference between them was the degree of...
	Tumors with Gain of Chromosome 7 and Amplification in 7p12 vs Tumors with Gain of Chromosome 7

	Statistical validation of our results was performed by comparing them with the publicly available gene expression array data of GBM derived from the work of “The Cancer Genome Atlas” (TCGA) consortium (http://cancergenome.nih.gov/dataportal/data/abou...
	Tumors with Amplification in 8q24 vs N
	Anaplastic Ganglioglioma Cell Line and Tumor vs N
	Tumor with Gain of Chromosome 7 and Amplification in 4q12 vs N

	Discussion
	EGFRvIII mutation detection by MLPA
	EGFR Pathway Analysis in Glioma

	Conclusion:

	Supplementary Data (com linhas delimitadoras)

