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1. Resumo da tese (Abstract in portuguese) 

Os microARNs (miARNs) são pequenas moléculas de ARN com um tamanho de  20 a 24 nucleótidos 

(nt). Os genes dos miARNs são transcritos pela ARN polimerase II e os transcritos adquirem uma 

estrutura secundária em cadeia dupla em forma de gancho denominada de miARN primário (pri-

miARN). As proteínas Dicer-like 1 (DCL1), HYPOSTATIC LEAVES (HYL1) e  SERRATE (SE) formam 

um complexo enzimático que cliva o pri-miARN na região oposta à cabeça do gancho libertando uma 

das extremidades do miARN originando uma sequência em cadeia dupla mais curta denominada de 

miARN precursor (pre-miARN). As enzimas DCL1 e HYL1 voltam a interagir e a clivar a estrutura 

secundária no lado oposto do primeiro corte, libertando o miRNA em cadeia dupla (miARN maduro), 

sendo o seu complementar na cadeia oposta denominado de miARN*. A extremidade 3´de cada 

cadeia é metilada pela HUA ENHANCER 1 (HEN1), de forma a proteger o miRNA da degradação por 

uridilação. O miRNA maduro é então exportado do núcleo para o citoplasma pela proteína HASTY 

(HST). No citoplasma o miARN maduro associa-se à proteína Argonate 1 (AGO1), que integra o 

Complexo Silenciador Induzido por ARN, ocorrendo depois a dissociação e degradação do miARN*. 

O miARN direcciona o complexo enzimático para ARN mensageiros (mARN), que possuem uma 

região complementar, acabando por ter dois destinos, a clivagem ou repressão traducional. A 

clivagem no mARN, ocorre a meio da região complementar, entre os resíduos que estão 

emparelhados com os nucleótidos +10 e +11 do miARN guia (a contar da extremidade 5´). Os 

miARNs apresentam-se assim como reguladores negativos da expressão génica.  

Em plantas a via de produção de miARNs e seu posterior funcionamento é regulada por um processo 

de “feed-back”. As proteínas DCL1 e AGO1 são reguladas ao nível do mARN, pelo miR162 e pelo 

miR168 respectivamente. O principal objectivo deste trabalho foi analisar como se processa esta 

regulação em “feed-back” na planta modelo Medicago truncatula sujeita a condições de défice hídrico. 
Para  tal foram utilizadas plantas adultas crescidas em vaso em condições controladas e 

posteriormente divididas em quatro grupos: plantas bem irrigadas (Controlo, Ct), plantas com 

supressão da irrigação por um período de 5 dias (Défice Hídrico Moderado, DHM), supressão da 

irrigação por um período de 8 dias (Défice Hídrico Severo, DHS) e plantas que após 8 dias de falta de 

irrigação foram regadas durante 3 dias (Recuperação, Rec). O estado hídrico das plantas foi avaliado 

por parâmetros fisiológicos: calculou-se o conteúdo hídrico relativo (CHR) das plantas de cada 

condição antes da sua recolha para armazenamento e posterior análise. Para cada condição, as 

plantas apresentaram em média valores de 80% para Ct, 50% para DHM, 30% para DHS e 80% para 

Rec. Com isto surgiu-nos a questão, será que ao nível celular/molecular as respostas estarão a 

ocorrer  em paralelo às respostas fisiológicas? Para responder a esta questão escolhemos 4 genes 

descritos por serem induzidos em resposta ao défice hídrico em plantas, para comparar os seus 

valores de expressão com os de CHR. Os genes escolhidos foram: Early Responsive to Dehydration 

1 (ERD1), Plasma membrane intrinsic protein 1;5 (PIP1;5), Dehydrin e L-Myo-inositol-1-phosphate 

Synthase (MI-1-PS). Todos aumentaram a sua expressão na parte aérea e nas raízes em condições 

de défice hídrico, apresentando uma relação inversa com o CHR da planta, à excepção do MI-1-PS, 

que na parte aérea reduziu a sua expressão em DHS em relação ao DHM. Desta forma, com os 
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parâmetros avaliados, conseguimos relacionar as respostas fisiológicas de M. truncatula com as 

respostas ao nível molecular e reforçar a confirmação do estado hídrico da planta avaliado pelo CHR. 

Para investigar o que ocorre na via de regulação em “feed-back” da produção/função dos miARNs em 

défice hídrico, procedemos à análise da expressão de miR162 e miR168 em M. truncatula nos 4 

estados hídricos. A sequência do miR162 para M. truncatula estava disponível na miRBase mas não 

a do miR168, o que nos levou a fazer a pesquisa deste miARN no genoma da planta. A validação de 

um miARN tem de obedecer a um mínimo de dois critérios: critério da biogénese e critério da 

expressão. Segundo o critério da biogénese, tem de ser identificado o precursor de um miRNA que 

consiga formar uma estrutura secundária em gancho estável. Para isto são avaliados vários 

parâmetros da estrutura secundária como a energia mínima necessária para adquirir aquela 

conformação, o conteúdo em adeninas e uracilos da sequencia e o número de nucleótidos não 

complementares entre o miARN e seu miARN*. Após esta primeira análise no genoma de M. 

truncatula, foram encontrados dois possíveis genes MIR168 (denominados MIR168a e MIR168b), que 

dão origem a pre-miARNs com o mesmo miR168 (sequência de miR168a igual à de miR168b).  

Para verificar o critério da expressão, foram construídas sondas para miR162 e miR168a/b e 

procedeu-se à sua hibridação com ARN total (northern blot) isolado de diferentes tecidos de M. 

truncatula. Detectou-se expressão de ambos miRNAs, confirmando-se assim o critério de expressão 

para miR162 e miR168, que em conjunto com a confirmação do critério da biogénese nos permitiram 

avançar para a análise da sua expressão nas plantas em défice hídrico. Foi usado o northern blot 

para avaliar a expressão do miR162 e miR168a/b em cada um dos estados hídricos tanto em raízes 

como em parte aérea. Observou-se que ambos aumentaram ligeiramente a sua expressão na parte 

aérea com o défice hídrico. Na raiz o miR168 reduziu a sua expressão com o défice hídrico mas no 

défice hídrico severo a sua quantidade é maior que no moderado, continuando a ser inferior ao 

controlo. No caso do miR162, também se observa uma redução de expressão, mas superior à do 

miR168a/b, atingindo o nível mais baixo no DHS. A quantificação relativa (por quantitative real time 

PCR, qRT-PCR) do nível de expressão dos alvos destes miARNs (DCL1 e AGO1) nos diferentes 

tecidos e estados hídricos das plantas revelou um aumento da expressão de ambos na parte aérea e 

raízes em défice hídrico. Este aumento foi maior para DCL1 nas raízes, estando os seus níveis 

negativamente relacionados com os níveis de expressão de miR162. Para o caso de miR168a/b e 

AGO1 não conseguimos estabelecer a mesma relação. Desta forma concluímos que DCL1 está a ser 

regulado nas raízes por miR162 em M. truncatula sujeita a condições de défice hídrico.  
Por último, fizemos a pesquisa bioinformática de outros genes codificantes de AGOs e DCLs no 

genoma de M. truncatula, usando os algoritmos de BLASTn e tBLASTn, com as sequências de 

mARN e proteínas das DCLs e AGOs de A. thaliana como referência. Os domínios proteicos das 

sequências identificadas para M. truncatula foram analisados de forma a pesquisar a existência dos 

motivos característicos de cada família (DCLs ou AGOs). Foram identificados 3 genes codificantes 

para DCLs e 9 para AGOs. A análise de expressão por qRT-PCR foi feita para alguns destes genes 

nos tecidos e estados hídricos anteriormente referidos. Observámos que DCLs (MtDCL3) e AGOs 

(MtAGO4b, MtAGO4c e MtAGO7) envolvidas em vias de processamento de pequenos ARNs para 

além da dos miARNs têm os níveis de expressão aumentados em situação de défice hídrico. A 
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MtAGO7 está envolvida na produção dos denominados trans-acting small RNAs, que estão 

associados ao desenvolvimento da planta ao regularerem a expressão de Auxin Response Factor 

genes (ARF) e a MtDCL3, MtAGO4b e MtAGO4c, estão envolvidas em processos de metilação do 

DNA e consequente silenciamento transcripcional de genes. 
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2. Resumo (Abstract in portuguese) 

Os microARNs (miARNs) são pequenas moléculas de ARN com um tamanho de  20 a 24 nucleótidos 

(nt) e apresentam-se como reguladores negativos da expressão génica. As proteínas Dicer-like 1 

(DCL1) e Argonaute 1 (AGO1) estão envolvidas na via de produção de miARNs e seus mARNs são 

regulados por miR162 e miR168 respectivamente. O principal objectivo deste trabalho foi analisar 

como se processa esta regulação em “feed-back” negativo na planta modelo Medicago truncatula 

sujeita a condições de défice hídrico. As plantas foram sujeitas a progressiva supressão da irrigação 

e de acordo com a avaliação do conteúdo hídrico relativo (CHR) das folhas, foram divididas em 

quatro grupos: controlo, défice hídrico moderado, défice hídrico severo e recuperação. Primeiro, foi 

analisada a expressão de 4 genes descritos por serem induzidos em resposta ao défice hídrico - 

Early Responsive to Dehydration 1 (ERD1), Plasma membrane intrinsic protein 1;5 (PIP1;5), Dehydrin 

e L-Myo-inositol-1-phosphate Synthase (MI-1-PS) - para comparar com os valores do CHR das 

plantas. Todos aumentaram a sua expressão na parte aérea e nas raízes em condições de défice 

hídrico, apresentando uma relação temporal e inversa com o CHR das plantas, à excepção do MI-1-

PS na parte aérea. Em segundo, a expressão de miR162 reduziu e de DCL1 aumentou com o défice 

hídrico. Desta forma concluímos que DCL1 está a ser regulado nas raízes por miR162 em M. 

truncatula sujeita a condições de falta de água. Em ultimo, foram identificados em M. Truncatula, 3 

genes codificantes para DCLs e 9 para AGOs envolvidos outras vias de processamento de pequenos 

ARNs. Observámos que têm os níveis de expressão aumentados em situação de défice hídrico. A 

MtAGO7 está envolvida na produção dos denominados trans-acting small RNAs e a MtDCL3, 

MtAGO4b e MtAGO4c, estão envolvidas em processos de metilação do DNA e consequente 

silenciamento transcripcional de genes. 

 

Palavras chave: M. truncatula, Défice Hídrico, miR162, Dicer-like, Argonaute 
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3. Abstract 
The microRNAs (miRNAs) are small RNAs with 20-24 nucleotides that negatively regulate the 

transcripts of several genes. Dicer-like 1 (DCL1) and Argonaute 1 (AGO1) are two key proteins 

involved in the miRNA biogenesis and their mRNAs are feedback regulated by miR162 and miR168 

respectively. The main goal of this work was to study this mechanism of regulation of miRNAs 

biogenesis in Medicago truncatula under different water deficit conditions. Plants were subjected to 

progressive water deprivation and according to the evaluation of their water status by the leaf relative 

water content (RWC) were divided in four groups: control, moderate water deficit, severe water deficit 

and recovery. First, we analyzed the expression of 4 water deficit-responsive genes - Early 

Responsive to Dehydration 1 (ERD1), Plasma membrane intrinsic protein 1;5 (PIP1;5), L-Myo-inositol-

1-phosphate Synthase (MI-1-PS) and Dehydrin - to establish a relation with the RWC of the plants. 

We found that the expression levels of ERD1, PIP1;5 and Dehydrin genes in plant shoots and roots 

and MI-1-PS in roots were temporally and inversely correlated with the plants RWC parameters, 

confirming that progressive water deficit induces an increase in transcription of water deficit-

responsive genes. Second, we showed that miR162 was down-regulated in M. truncatula in water 

deficit whereas its target, DCL1, was up-regulated. This indicates that miR162 is regulating the mRNA 

levels of DCL1 in M. truncatula plants under water deficit. Third, in a bioinformatic screen we found 

and characterized the protein sequence of 3 and 9 new DCLs and AGOs in M. truncatula. The 

expression analysis of some of these genes under water deficit, showed up-regulation of genes 

encoding proteins involved in small RNA silencing pathways like direction of chromatin methylation for 

silencing of gene transcription (DCL3, AGO4b and AGO4c) or the production of trans-acting small 

interfering RNAs derived from TAS3 gene transcripts (AGO7). 

 

Key words: M. truncatula, Water Deficit, miR162, Dicer-like, Argonaute 
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4. Introduction 

4.1. Medicago truncatula as a model legume 
Arabidopsis thaliana (L.) Heynh is considered a model plant but is a non-nitrogen-fixing plant, creating 

a flaw in the concept of model plant, making it important to develop a leguminous model with its ability 

to establish symbiotic interactions with rhizobia and mycorrhizae (Rose, 2008). With more than 18 000 

species, legumes are the third largest family of higher plants (Young et al, 2003) and their ability to 

utilize atmospheric nitrogen fixation by the rhizobia symbiosis is of key importance in the biosphere 

and in agricultural systems (Rose, 2008). 

In 1990, Barker et al (1990) proposed M. truncatula as a model legume for the study of the molecular 

genetics of the rhizobia-legume symbiosis. M. truncatula (2n=16) is diploid and autogamous, has a 

relatively small genome (~500 mbp, Bennett and Leitch, 1995) and a generation time of ~3 months in 

long day conditions (Barker et al, 1990).  

Several tools for molecular genetics and genomics have been recently developed. Genome 

sequencing began in 2002 (Young et al, 2005) and has continued until the present time 

(http://www.medicago.org/genome/, accessed 18 September 2009). Expressed sequence tags (ESTs) 

(259642 ESTs) were sequenced and have been assembled into 29673 TCs (tentative consensus 

sequences) and 26696 singleton ESTs (http://compbio.dfci.harvard.edu/tgi/, accessed 18 September 

2009). M. truncatula is able to be transformed by Agrobacterium tumefaciens and to regenerate via 

somatic embryogenesis (Araujo et al, 2004). 

 

4.2. Plant Responses to Water Deficit 
Plant responses to water deficit are multiple and interconnected, ranging from physiological, 

biochemical/cellular and molecular responses.  

 

4.2.1. Physiological and biochemical responses 

One of the first responses to water deficit is the closure of stomata to prevent the transpiration water 

loss (Hsiau et al, 1973; Taiz and Zeiger, 2002). Nunes et al (2008) showed that under severe water 

deficit conditions, M. truncatula resistance to water shortage involved mainly water deficit avoidance 

mechanisms through a decrease in stomatal conductance, caused by stomatal closure. Stomatal 

closure in response to a severe water deficit stress primarily results in a decline in the photosynthesis 

rate (Taiz and Zeiger, 2002; Mahajan et al, 2005). A very severe water deficit condition results in 

limited photosynthesis due to decline in Rubisco activity (Bota et al, 2004). 

A water deficit consequence in plants is the shoot growth inhibition (Chaves et al, 2003) and cell 

division and expansion are inhibited by long exposure to mild water stress (Hsiau et al, 1973). Nutrient 

uptake by plants is decreased under water deficit stress conditions due to reduced transpiration, 

impaired active transport and membrane permeability resulting in reduced root absorbing capacity 

(Tanguilig et al, 1987).  

A biochemical/cellular response of the plants to water deficit is known as osmotic adjustment, and 

consists in the decrease of the cellular osmotic potential by the accumulation of solutes (Mahajan et 
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al, 2005). The osmotic compounds synthesized include proline, glycine betaine and trehalose (Taiz 

and Zeiger, 2002; Seki et al, 2007).   

 

4.2.2. ABA signaling 

Water deficit triggers the production of the phytohormone abscisic acid (ABA), which in turn causes 

stomatal closure and induces expression of stress-related genes (Shinozaki and Yamaguchi-

Shinozaki, 2007). Several water deficit-inducible genes are induced by exogenous ABA treatment 

(ABA-dependent), whereas others are not affected (ABA-independent). Gene transcription is regulated 

through the interaction of transcription factors with specific regulatory sequences in the promoters of 

the genes they regulate (Taiz and Zeiger, 2002). Two of the cis-acting elements present in promoters 

of water deficit regulated genes are ABRE (ABA-responsive element), and DRE (dehydration-

responsive element)/CRT (C-RepeaT), both of which are involved in stress-inducible gene expression.  

ABRE with the DNA-binding motif ACGTGGC, is the major regulatory region in ABA-responsive gene 

expression. For ABA-responsive transcription, a single copy of ABRE is not sufficient (Yamaguchi-

Shinozaki and Shinozaki, 2006). Two ABRE motifs or one ABRE and its coupling element are required 

in the promoter region for the expression of ABA-responsive genes. The basic leucine zipper (bZIP) 

transcription factors, AREB/ABF, can bind to ABRE, thereby activating ABA dependent gene 

expression (Choi et al, 2000; Uno et al, 2000).  

Transcription factors belonging to the ERF/AP2 family that binds to these DRE/CRT elements were 

isolated and termed CBF/DREB1 and CBF/DREB2. Their conserved DNA-binding motif is A/GCCGAC 

(Shinozaki and Yamaguchi-Shinozaki, 2007). 

 

4.2.3. Molecular Responses 

Proteins denominated as aquaporins, are important in water flux control in cells (Shao et al, 2008). 

Several protease genes are also induced and they degrade other proteins that are denatured by 

stress (Bray, 1993; Ingram and Bartels, 1996). The expression levels of ubiquitin genes are up-

regulated under water deficit, and ubiquitin enzyme tags proteins that are targeted for proteolytic 

degradation. Chaperones involved in protein repair by helping other proteins to recover their native 

conformation after denaturation or misfolding during water stress, are induced too. Other group of 

genes regulated by water deficit is the LEA (late embryogenesis abundant) proteins (Taiz and Zeiger, 

2002). These proteins are suspected to have a role in the cellular membrane protection and in 

preventing the crystallization of cellular proteins and other molecules. 

 

4.3. What are miRNAs? 
Although most genes use RNA in the form of messenger RNA (mRNA) as a coding intermediate for 

protein production, there are many genes whose final products are RNA (Bartel and Bartel, 2003). 

These noncoding RNAs range from the transfer and ribosomal RNAs to the 18–25 nucleotide (nt)-long 

regulatory small RNAs (sRNAs) that can mediate endogenous gene silencing at both the 

transcriptional and pos-transcriptional levels (Bartel and Bartel, 2003; Voinnet et al, 2009). sRNAs are 

classed into two categories based on their biogenesis: small interfering RNAs (siRNAs) are processed 
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from long, perfectly double-stranded RNA, and microRNAs (miRNAs) from single-stranded RNA 

transcripts (transcribed from MIR genes) that have the ability to fold back onto themselves to produce 

imperfectly double-stranded stem loop precursor structures (Eamens et al, 2008).  

MicroRNAs (miRNAs) are 20-24nt RNA molecules and fundamental sequence-specific post-

transcriptional regulatory elements of eukaryotic genomes (Voinnet et al, 2009). The first miRNA, lin-4, 

was discovered in Caenorhabditis elegans in 1993 (Lee et al, 1993), and today hundreds of miRNAs 

have been identified in plants and animals, including several hundred unique miRNAs in Arabidopsis 

alone (Millar and Waterhouse, 2005).  

 

4.4. miRNA Biogenesis 
4.4.1. miRNA Transcription 

Plant MIR genes are located generally in intergenic regions and are transcribed into a primary 

precursor known as primary miRNA (pri-miRNA) (Figure 1) (Jones-Rhoades and Bartel, 2004, 

Voinnet, 2009). MIR genes are class-II genes, that is, genes transcribed by RNA polymerase II (pol II) 

(Lee et al, 2004, Xie et al, 2005). For instance, primary transcripts of some microRNA genes contain 

poly(A) tails, or the cap structure (Tam, 2001; Aukerman and Sakai, 2003). The great majority of the 

pri-miRNAs begin with an adenosine, which is located within 40nt downstream of a conserved TATA 

box-like sequence (Xie et al, 2005). A bioinformatic analysis of 800nt regions upstream of the mapped 

transcription start sites in these genes identified binding motifs for a number of known transcription 

factors (Megraw et al, 2006). Expressions of some microRNA genes are regulated by phytohormones, 

like ABA, indicating that some MIR genes possibly have ABRE regulatory motifs (Liu et al, 2009a). 

 

4.4.2. Processing to mature form 

The pri-miRNA transcript is cleaved by DCL1 in the nucleus, to produce the shorter precursor miRNA 

(pre-miRNA) dsRNA molecule (Kurihara and Watanabe, 2004; Kurihara et al, 2006). The first DCL1-

catalyzed cleavage step in the miRNA biogenesis pathway is made just below the miRNA duplex 

region of the dsRNA stem loop (Figure 1) (Voinnet, 2009). pri-to-pre-miRNA conversion also 

necessitates the double-stranded RNA-binding protein HYPONASTIC LEAVES1 (HYL1) and the 

C2H2-zinc finger protein SERRATE (SE), which interact with DCL1 in nuclear processing centers 

called D-bodies (Fang and Spector, 2007; Kurihara et al, 2006). The miRNA duplex is then released 

from the pre-miRNA stem loop structure by the second cleavage step of the miRNA pathway, which is 

again directed by the combined action of DCL1 and HYL1 (Wu et al, 2007; Liu et al, 2005).  

 

4.4.3. Methylation 

The two-nucleotide 3’ overhangs of the liberated miRNA duplex are methylated by the sRNA-specific 

methyltransferase HUA ENHANCER1 (HEN1) (Figure 1) (Chen et al, 2002; Yu et al, 2005). The 

duplexes of siRNAs are also methylated by HEN1, a process that appears to be plant specific and are 

assumed to protect all sRNA species from polyuridylation and degradation (Li et al, 2005; Yang et al, 

2006). The recent isolation of Arabidopsis exonucleases that degrade miRNA single strands in vitro 

further highlights the importance of miRNA stability control in plants (Ramachandran and Chen, 2008). 
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Figure 1: miRNA maturation and target cleavage in Plants - a simplified schematic. Plant MIR genes are 

transcribed by RNA Polymerase II (Pol II). Transcripts fold into a hairpin structure denominated as primary miRNA 

(pri-miRNA). The Dicer-like 1 (DCL1), HYPOSTATIC LEAVES (HYL1) and SERRATE (SE) proteins form a 

complex DCL1 that cleaves it into a shorter precursor miRNA (pre-miRNA) dsRNA molecule in the D-bodies. The 

DCL1 and HYL1 are involved in the second cleavage of the pre-miRNA into the mature miRNA. The 3’ ends of 

miRNAs and the complementary strands (miRNA*) are methylated by HUA ENHANCER 1 (HEN1), which protects 

against uridylation and subsequent decay. The nuclear exporter HASTY (HST) exports the mature miRNAs to the 

cytoplasm where one strand of miRNA duplexes associates with AGO proteins. Mature miRNAs bind to 

Argonaute1 (AGO1) protein integrated in the RNA-induced silencing complex (RISC) and directs the cleavage of 

partially complementary target mRNAs (1) or target translation repression (2).  AGO proteins have three domains: 

MID, PAZ, and PIWI. It has been proposed that the MID domain binds miRNA 5’ ends while the PAZ domain 

binds miRNA 3’ ends to position miRNAs for PIWI-mediated cleavage, of partially complementary mRNA target 

sites. The cleavage site is between the nucleotides 10 and 11 starting from the 5’ end of the miRNA sequence. 
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4.4.4. Export from Nucleus to Cytoplasm 

In the plant cells the miRNA duplex is then transported to the cytoplasm from the nucleus, with several 

classes of miRNAs relying on the action of the HASTY (HST) protein one ortholog of the animal 

Exportin-5 (Figure 1) (Park et al, 2005). However, the exact role of HST in miRNA biogenesis remains 

unclear, as other families of miRNA appear to be transported to the cytoplasm via a HST-independent 

mechanism (Park et al, 2005).  

 

4.4.5. RISC assembly 

The methylated miRNA/miRNA* duplex strand is then incorporated into a protein complex called RNA-

induced silencing complex (RISC) whose major protein component is an Argonaute1 (AGO1) protein 

(Voinnet, 2009). In humans and Drosophila, the complementary strand of the miRNA (miRNA*) is 

cleaved by AGO2 and the cleaved fragments are released, resulting in the formation of RISC with one 

miRNA strand (Matranga et al, 2005; Miyoshi et al, 2005).  

The determination of which strand of the duplex ends up in RISC is largely based on the 

thermodynamic properties of the two ends of the miRNA/miRNA* duplex. The strand in which the 5′ 

end is less thermodynamically stable in the duplex becomes preferentially incorporated into RISC 

(Khvorova et al, 2003; Schwarz et al, 2003). Plant miRNAs and siRNAs appear to follow this 

asymmetry rule in RISC loading. In fact, most plant miRNAs begin with a U residue such that the 5′ 

end of the miRNAs tends to be engaged in A–U, rather than G–C, hydrogen bonding (Reinhart et al, 

2002; Rajagopalan et al, 2006).  

 

4.5. Mode of action of Plant miRNAs 
Plant miRNAs have a high degree of sequence complementarity to their target mRNAs and direct the 

cleavage of the target mRNAs in the middle of the complementary regions, between nucleotide +10 

and +11 starting from the 5’ end of the miRNA sequence (Figure 1) (Llave et al, 2002; Tang et al, 

2003). Cleaved RNA fragments mapping to central regions of predicted hybrids were indeed retrieved 

in experiments using the technique of rapid amplification of 5' complementary DNA ends (5' RACE). 

Brodersen et al (2008) showed that the action of most plant miRNAs commonly involves a 

combination of target degradation and translational repression, which affects the pool of transcripts 

remaining after cleavage. Importantly, neither the position (ORF, 5’ or 3’UTR) nor the degree of pairing 

at the miRNA target sites appeared to be predictive of the prevalence of one process over the other. 

Furthermore, 5’ RACE, the technique predominantly used to validate miRNA targets, is a qualitative 

procedure and does not indicate the extent of target cleavage (Voinnet, 2009). 

 

4.6. miRNAs discovery in Plants 
Three major methods have been used for miRNA discovery: forward genetics, direct cloning and 

sequencing, and bioinformatic prediction (Chen, 2008).  

Forward genetic studies, seeks to find the genetic basis of a phenotype. Despite having resulted in the 

identification of a few miRNAs, this method provides hints to the, functions of these miRNAs in 

addition to their isolation (Chen, 2008). 
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A second approach to miRNA discovery is bioinformatic prediction that employs several different 

algorithms to predict miRNAs. The features that the algorithms search for in the genomic sequences 

are based on our current knowledge of plant miRNAs (Bonnet et al, 2004; Jones-Rhoades and Bartel, 

2004; Adai et al, 2005). These features include the intergenic location of the MIR genes, the high 

degree of sequence complementarity of miRNAs to their mRNA targets, the hairpin structures of the 

precursors, and the conservation of some miRNAs between species.  

A third method for miRNA discovery is direct cloning and sequencing. One advantage of this method 

is that the antisense strands of the small RNAs (miRNA* or siRNA*) that are also released from the 

precursor during small RNA biogenesis are often detected, although at much lower frequency 

compared to the sense strands. This also helps to distinguish the miRNAs from the small RNA 

populations since, by definition, the miRNA and the miRNA* should map to the same strand and 

should be separated by hundreds of nucleotides (Chen, 2008). 

 

4.7. miRNA function  in Plants 
4.7.1-Regulatory functions of miRNAs in development 
At least three types of regulatory functions are specified for miRNAs in plant development:  

 

4.7.1.1. Spatial expression 

Some miRNAs define the spatial expression pattern of their targets, that is, miRNAs control 

developmental processes by depleting the tissue where they accumulate from their target, thereby 

regulating cell fate transition or differentiation. This function is usually proposed when the target 

expression pattern increases in the absence of miRNA regulation (Garcia, 2008). Spatial restriction 

was proposed for the action of miR165/166 in the regulation of PHB in Arabidopsis and RLD1 in 

maize. Those genes are polarly expressed on the adaxial side of the leaf. In contrast, in situ 

hybridization in maize and Arabidopsis revealed the accumulation of miR165/166 on the adjacent 

abaxial side (Kidner and Martienssen, 2004; Juarez et al, 2004). 

 

4.7.1.2. Buffering Function 

Other miRNAs function to prevent excessive variations in the accumulation level of a target on a 

transcriptionally defined expression domain. This action prevents fluctuations and accurately controls 

the expression level of targeted genes (Garcia, 2008). miR156 exerts a quantitative control on the 

accumulation of its target SPL9 that determines the timing of leaf initiation. The expression domains of 

miR156 and SPL9 are largely overlapping and the expression of SPL9 in plants with reduced miR156 

activity increases, and do not accumulate ectopically (Wang et al, 2008). 

 

4.7.1.3. Temporal regulation 

This kind of regulation involves opposite gradients of miRNA and target genes accumulation up to a 

predetermined target threshold inducing developmental transition (Garcia, 2008). miR172 targets AP2-

like genes and controls the plant transition from vegetative to reproductive phase (Aukerman and 

Sakai, 2003). The progressive accumulation of miR172 during vegetative development induces a 



14 
 

gradual decrease in the abundance of its targets. When the target reaches a critical threshold, it 

promotes flowering (Chen, 2004). 

 

4.7.2. miRNAs involved in plant response to biotic and abiotic stress 

The involvement of miRNAs in plant response to pathogens was shown in the case of miR393 that 

plays a crucial role in the plant defense against pathogens by targeting Transport Inhibitor Response 1 

(TIR1), an auxin receptor (Navarro et al, 2006). Several miRNAs have an important role in plant 

response to abiotic stress like: mechanical stress (Lu et al, 2005), oxidative stress (Sunkar et al, 

2006), phosphate starvation (Fujii et al, 2005), UV-B stress (Zhou et al, 2007), salinity and cold stress 

and water deficit (Sunkar et al, 2004; Zhao et al, 2007). 

 

4.8. Feedback Regulation 
miRNA biogenesis is under feedback regulation such that two key players in miRNA biogenesis and 

function are themselves regulated by miRNAs (Figure 2). DCL1 mRNA has a binding site for miR162, 

which leads to the cleavage of DCL1 mRNA (Xie et al, 2003). miR168 has a binding site in AGO1 

mRNA and leads to AGO1-mediated cleavage of AGO1 mRNA (Vaucheret et al, 2004). 

 

 

Figure 2: miRNA biogenesis feedback regulation and major steps in miRNAs biogenesis. Primary miRNA 
transcripts (pri-miRNAs) are processed to miRNA/miRNA* duplexes by the coordinated activities of DCL1, HYL1 
and SE within the nucleus. Both strands of the duplex are methylated on the 3’ end by HEN1. In the cytoplasm 
the miRNA strand becomes incorporated into an AGO1-containing RNA-induced silencing complex (RISC) and 
directs either mRNA cleavage (1) or translational inhibition (2). miRNA feedback regulatory loops are depicted in 
red: miR162 and miR168 target DCL1 and AGO1 mRNAs, respectively.  
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5. Objectives 
To perform the study in water deficit conditions our plant material consisted in 4 groups of M. 

truncatula plants, each one subjected to a different water deficit treatment. The plants water status 

was evaluated by a physiological parameter named relative water content (RWC).  

The first objective of this work was to find a relation between the RWC of the plants and the molecular 

responses of the plants cells. For this, we quantified the expression levels of 4 genes previously 

reported to change their expression levels in water deficit and established a relation with the RWC 

values.  

Our second objective in this work consisted the studying of the feedback regulation of the biogenesis 

of the miRNAs under water deficit conditions in M. truncatula. The elements targeted for expression 

analysis were the miR162 and miR168 that regulate the two key enzymes of the miRNA biogenesis, 

DCL1 and AGO1 respectively. 

The third objective was to search for other Dicer-like and Argonaute genes in the M. truncatula 

genome and to analyze their expression in the 4 water deficit conditions, to know if they could be 

involved in plant response to water deficit. 
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6. Methods 
6.1. Plant material and treatment conditions 
6.1.1. Plant material and growth conditions 
Medicago truncatula Gaertn. cv. Jemalong seeds were scarified in concentrated anhydrous sulphuric 

acid and sterilized according to Araújo et al (2004). Seeds were placed in Petri dishes with soaked 

filter paper at 24ºC in dark conditions for 3 days and then transferred to the growth chamber 

(thermoperiod of 25/18ºC, day/night, relative humidity of 40%) to germinate within 2–3 days still in dark 

conditions. Seedlings were allowed to grow for one week under light conditions (photoperiod of 16/8 h, 

day/night, and a Photosynthetic Photon Flux Density (PPFD) of around 500µmol m−2 s−1 obtained 

from white fluorescent and incandescent lamps, TLD58W/77, Halo Star 64476, L30W/77, L58W/77. 

Seedlings were transferred to trays with vermiculite for 2 weeks and then individually transferred to 

0.5L pots with standard commercial soil (“terra de Montemor”, Horto do Campo Grande, Lisboa, 

Portugal). The plants were kept in the growth chamber, under the same conditions, through the entire 

experiment, even during water deficit imposition. 

 

6.1.2. Water deficit treatments  

Eight-week-old plants were divided in 4 groups, corresponding to the different levels of soil water 

availability imposed to the plants. The Control group (Ct) was constituted by plants maintained fully 

irrigated with tap water until the maximum soil water capacity. For the other 3 groups, the Soil Water 

content (SWC) was decreased by suppression of soil irrigation for approximately 5 days (Moderate 

Water Deficit, MWD) and 8 days (Severe Water Deficit, SWD) and rewatering took place for 3 days, 

after 8 days of water suppression, until plants were recovered (Rec). Each group was constituted by 

plants taken at day 5 and 8 after water suppression and day 3 after rewatering. Leaf water status was 

monitored by determination of the plant Relative Water Content (RWC), as described in Catsky 

(1960). Briefly, the weight of one leaf was determined immediately after cutting (Fresh Weight, FW). 

Each leaf was then submerged in water, at room temperature for 24h in the dark (Turgid Weight, TW). 

Finally, the leaves were dried in a 70ºC chamber for at least 48h or until they were completely dried 

(Dried Weight, DW). RWC was calculated according to the formula: RWC = (FW-DW) / (TW-DW) x 

100. The youngest fully expanded leaf of the main branch was used for all measurements. Shoot and 

roots of water deficit treated and control plants were stored at -80ºC after evaluation of plant relative 

water content. Average RWC in Ct plants was around 80%. Water deficit treated plants had RWC of 

about 50% (MWS) and 30% (SWS). Recovered plants showed RWC of about 30% after 8 days of 

water deprivation and then recovered to RWC of 80% after 3 days of watering. 

 

6.2. RNA extraction 
6.2.1. RNA Extraction from Medicago truncatula 

1. Plant tissues (about 100mg) were frozen in liquid nitrogen  and ground into fine powder using 

mortar and pestle; 

2. 700μl of extraction buffer (8.0M guanidine hydrochloride, 20mM 2-(N-

morpholino)ethanesulfonic acid (MES), 20mM ethylenediaminetetraacetic acid (EDTA), 2% β-
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mercaptoethanol, pH7.0)(van Kan et al, 1992) were added and after vigorous vortexing for 30s 

an equal volume of phenol (pH5.2) was added, vortexed vigorously and centrifuged at 

12000rpm for 10min at room temperature; 

3. The supernatant was transferred to a fresh tube containing one equal volume of 

phenol:chloroform:isoamyl alcohol (25:24:1) vigorously vortexed and centrifuged at 12000rpm 

for 2min; 

4. The upper phase was removed to a fresh tube and step 3 was repeated again (to improve the 

quality of RNA extraction); 

5. The upper phase was removed to a fresh tube containing equal volume of chloroform:isoamyl 

alcohol (24:1), vigorously mixed and centrifuged at 12000rpm for 2min; 

6. The upper phase was transferred to a fresh tube containing 2 volumes of absolute ethanol and 

1/20 volumes of 4M sodium acetate (pH5.2), mixed gently and left at -20o

7. After centrifugation for 10min at 12000rpm, the RNA was washed with ethanol 70%, air-dried 

on ice and resuspended in 100μl RNase-free water. 

C for 30min. 

 

6.2.2. RNA integrity and quantification 

The integrity of the RNA was verified running it in a 2% agarose gel (0,5X Tris-Borate-EDTA Buffer 

(TBE) (10X solution: 890mM Tris Base, 890mM Boric acid, 20mM EDTA)), stained with Sybr Safe 

(Invitrogen, Carlsbad, California, USA) (Supplementary Figure 1). The RNA was previously denatured 

in formamide buffer (10ml dionized formamide, 200μl 0,5M EDTA (pH 8.0), 10mg xylene cyanol, 10mg 

bromophenol blue) at 65o

 

C for 10min. RNA quantification was done in a NanoDrop ND1000 (Thermo 

Scientific, Wilmington, Delaware, USA). 

6.3. miRNA prediction 
6.3.1. Bioinformatic prediction of precursor and mature miR168 gene  

The precursor and mature sequences of Glycine max miR168 were downloaded from the miRBase 

(Figure 3) (http://microrna.sanger.ac.uk/sequences/, Griffiths-Jones et al, 2006). The algorithm 

BLASTn was used to search for similar sequences in the M. truncatula genome databases, at the 

National Center for Biotechnology Information (NCBI) (http://blast.ncbi.nlm.nih.gov/Blast.cgi), at the 

Medicago truncatula Gene Index (MTGI) 9.0 (http://compbio.dfci.harvard.edu/tgi/) and at the Medicago 

truncatula Genome Sequencing Project (MTGSP) (Medicago truncatula genome release version 2.0 

or Mt2.0) (http://www.medicago.org/genome/) using the CviT-Blast. To select the putative miR168 

sequences for further analysis two criteria were considered: (1) good similarity with the precursor of G. 

max miR168 sequence; (2) no more than four mismatches with the G. max mature miR168 (Zhang et 

al, 2006a). 
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Figure 3: Simplified scheme of the bioinformatic search of MIR168 gene(s) in M. truncatula. The 
parameters used to evaluate the putative mature and precursor miR168 are shown (first and second filter). NCBI, 
National Center for Biotechnology Information; MTGI, Medicago truncatula Gene Index 9.0; MTGSP, Medicago 
truncatula Genome Sequencing Project (Medicago truncatula genome release version 2.0 or Mt2.0). 

 

6.3.2. Characterization, secondary structure, and targets of miR168  

The length, composition of AU and genomic location were determined for the putative pre-miR168 

found for M. truncatula. The pre-miRNA plus 18bp to the 3’ side and to the 5’ side (Ambros et al, 2008) 

were used to obtain the minimum free energy (MFE) (the smallest energy necessary for the folding of 

the RNA molecule). The MFE and the most favorable RNA secondary structure for the sequences 

were determined via RNAfold software included in the Vienna RNA Package 1.8.2 

(http://rna.tbi.univie.ac.at/) (Hofacker et al, 2003). For the secondary structure prediction was used too 

the “RNA folding/annotation” tool (http://srna-tools.cmp.uea.ac.uk/) (Moxon et al, 2008).  

The adjusted MFE (AMFE) was calculated applying the equation (Zhang et al, 2006b):  

 

 

(Equation 1) 
 

The minimum folding free energy index (MFEI) (Zhang et al, 2006b) for the sequences was 

determined using the formula: 

 

 

(Equation 2) 
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RNA sequences were considered miRNA candidates only if they fit the following criteria (Zhang et al, 

2006a): (1) a RNA sequence can fold into an appropriate stem-loop hairpin secondary structure; (2) a 

mature miRNA sequence site in one arm of the hairpin structure;(3) miRNAs had less than six 

mismatches with the opposite miRNA*sequence in the other arm; (4) no loop or break in miRNA* 

sequences;(5) predicted secondary structures had MFEIs higher than 0.85, AMFEs with ΔG between  

-36 and -56, negative MFEs, and 30–70% A + U contents (Zhang et al, 2006a, Zhang et al, 2006b). 

The targets of the miRNAs were determined using the “Target prediction tool” available online 

(http://srna-tools.cmp.uea.ac.uk/) (Moxon et al, 2008). 

 

6.4. Identification of genes and their characterization 
6.4.1. Identification of genes in  M. truncatula by homology to A. thaliana 

The mRNA and protein sequences of Arabidopsis thaliana Early Responsive to Dehydration 1 (ERD1), 

Plasma membrane intrinsic protein 1;5 (PIP1;5), Argonautes and Dicer-like genes were downloaded 

from the NCBI (http://www.ncbi.nlm.nih.gov/) (Supplementary Table 1). The algorithms BLASTn and 

tBLASTn were used to search the nucleotide sequence of the genes of interest at the NCBI database 

and the MTGSP (Mt2.0). The analysis performed in the MTGSP database were done in the genome 

sequenced to the data (version 2.0) using CViT-Blast and in the annotated genome (version 2,0) using 

IMAG-Blast. In parallel, the same algorithms were used to search in the MTGI 9.0. The Argonautes 

and Dice-like genes results were analyzed in the following way (Figure 4): (1) only the mRNA 

sequences with more than 1000bp were accepted; (2) identification of the same sequences that were 

obtained in different databases (NCBI Vs MTGSP Vs MTGI); (3) the sequences that after BLASTn 

against A. thaliana, in NCBI, did not give a protein belonging to the Argonaute and Dicer-like families 

were discarded. Steps 1 and 2 were also used for the ERD1 and PIP1;5 identification. 

 

6.4.2. Characterization of the Medicago truncatula Argonaute and Dicer-like genes 

The protein and nucleotide sequences of several DCLs and AGOs genes were downloaded from 

MTGSP and MTGI. In the cases that the protein sequence was not available, the translation of the 

nucleotide sequence was done with the Translate software from Expert Protein Analysis System 

(ExPASy) (http://www.expasy.ch/). The end of translation was considered when the first stop codon 

appeared. 

The newly identified genes in this study were named based on the nomenclature used in A. thaliana 

and on the basis of their phylogenetic relatedness to other members of the same family. 

Determination of the genes Open Reading Frames (ORFs) sizes was done and characteristics of the 

proteins like size and isoelectric point (Pi) were done with the Protein Isoelectric Point software and 

calculation of molecular weight (MW) was done using the Protein Molecular Weight software, both 

softwares from the Sequence Manipulation Suite (SMS) package (version 2.0) 

(http://www.bioinformatics.org/sms2/). 

The chromosomal location of the genes and their locus was determined doing BLASTn in MTGSP 

database. 
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Figure 4: Scheme of the bioinformatic search for the Argonautes and Dicer-like genes in M. truncatula 
genome. The selection of the most provable sequences to be AGOs and DCLs was done performing a filter 
selection of the sequences. Was done a genomic, mRNA and protein sequence characterization, the protein 
domains were found using NCBI Conserved Domain Database (NCBI-CDD) and the phylogenetic relatedness 
between the proteins of M. truncatula and A. thaliana determined. BLASTn performed in the NCBI against A. 
thaliana. NCBI, National Center for Biotechnology Information; MTGI, Medicago truncatula Gene Index 9.0; 
MTGSP, Medicago truncatula Genome Sequencing Project (Mt2.0). 

 

6.4.3. Protein domain search 

The domain search was performed in NCBI Conserved Domain Database (NCBI-CDD). (Marchler et 

al, 2009) The characteristic catalytic domain of AGOs protein was obtained from the alignment of the 

PIWI domains from M. truncatula and the known amino acid positions of AGO1 from A. thaliana. 

 

6.5. Alignment and phylogenetic trees 
6.5.1. Nucleotide or amino acid alignment and phylogenetic tree build 

The protein alignment was done using CLUSTALW software (Thompson et al, 1994) present in 

MEGA4.0 (Tamura et al, 2007). The phylogenetic trees based in protein sequences were generated 

using the following parameters: the distance model for amino acid substitution was Jones-Taylor-

Thornton (JJT) matrix, the type of tree the Neighbor-Joining, and was performed a bootstrap analysis 

with 1000 replications. Pre-miRNA sequence alignment was performed using RCOFFEE software that 

do the alignment taking in account the secondary structure of the RNA molecule 

(http://www.tcoffee.org/) (Notredame et al, 2000). The phylogenetic tree was built using: the distance 

model for nucleotide substitution Maximum Composite Likelihood, the Neighbor-Joining tree and 

bootstrap analysis with 1000 replications. The software used for tree construction on both cases was 

MEGA4.0 (Tamura et al, 2007). 
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6.6. Quantitative Real Time PCR (qRT-PCR) 
6.6.1. Quantitative PCR assay  

The RNA samples were treated with the TURBO DNA-free Kit (Ambion, Austin, Texas, USA) to 

eliminate DNA contaminations (Figure 5). A pool of RNA (four plants) was made by treatment and 

organs (shoot and root). 1ug of RNA from each pool was reverse transcribed using the Promega - 

ImProm-II™ Reverse Transcription System (Promega, Madison, Wisconsin, USA) according to the 

manufacturer’s instruction. Three independent reverse-transcription reactions (RT) were performed 

using the RNA pools and each one was diluted 5-fold (~10ng of initial RNA) before each quantitative 

Real Time Polymerase Chain Reaction (qRT-PCR) reaction. 

PCR primers (Supplementary Table 2) were designed using the Beacon Designer software (version 

7.0) (Premier Biosoft International, Palo Alto, California, USA).  Reference genes were selected based 

on a pre-screen of HDA3, L2, APRT, ELF-1α , ACT7 and ACT11 genes on different treatments and 

plant tissues (shoots and roots) using  the geNorm (Vandesompele. et al, 2002) and NormFinder 

(Anderson et al, 2004) in Genex software (version 4.3.8) (MultiD, Göteborg, Sweden

 

). Primers were 

designed to have an optimal size of 22bp (18–24bp), GC content of 40–60% and melting temperature 

(Tm) of 58–62°C. The AGO1 and DCL1 primer pair was designed to give one amplicon with the 

cleavage site of miR168 and miR162 respectively. This way, the product of amplification just derives 

of the cDNA from mRNA not cleaved by the respective miRNA. Other criteria, such as primer self-

annealing, were also taken into account. Predicted fragment size ranged between 80 and 180bp. 

Olignonucleotides were synthesized by Stabvida (Stabvida, Oeiras, Portugal). 

 
Figure 5: Synthetic scheme of the main steps starting from RNA extraction to quantification of gene 
expression on M. truncatula. 

 

qRT-PCR reactions were performed in an iQ™5 Real-Time PCR Detection System (Bio-Rad 

Laboratories, München, Germany), by adding 10μl of iQ™ SYBR Green Supermix (Bio-Rad 

Laboratories), 4 μl of diluted cDNA, 0.5pmol of each primer, and water to a final volume of 20μl. After 

one initial incubation step at 95°C for 3min, amplifications were performed for 40 cycles with the 

following cycle profile: a denaturing step at 95°C for 15s followed by an annealing step at 60ºC for 10s, 
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and an extension step of 72ºC for 10s. Fluorescence data were collected during the 72°C step, and 

the specificity of qRT-PCR products was confirmed by performing a melting temperature analysis at 

temperatures ranging from 55°C to 95°C in intervals of 0.5°C, and running the PCR product in agarose 

gel to confirm the existence of a unique band of the expected size. 

For all genes studied, three independent cDNA samples of each experimental condition were 

evaluated in technical duplicates, giving a total of 6 technical replicates for each treatment. 

The raw, background-subtracted fluorescence data provided by the iQ5 software (version 2.0) were 

analyzed by the real-time PCR Miner software (version 2.2) (www.ewindup.info/miner/version2) (Zhao 

and Fernald, 2005). The resulting PCR efficiency and fractional cycle number of the threshold (CT) 

were used for transcript quantification. The efficiency for each gene was calculated doing the 

arithmetic mean of all efficiencies given by PCR Miner. 

For the relative quantification of the genes of interest (GI) was used the Pfaffl method (Pfaffl, 

2001).The expression of a gene is calculated based in the efficiency (E) value of the primer pair used 

in the amplification reaction and the CT value obtained: 

 

 
(Equation 3) 

 

The relative quantification is calculated with the Pfaffl equation. The Pfaffl method allows the use of 

different PCR efficiencies for the GI and the reference gene (RG). 

 

 

(Equation 4) 

 

Relative quantification of gene expression of the different tissues/treatments (T/T) was normalized in 

relation to the arithmetic mean of the shoot control treatment (SC) relative quantification: 

 

 

(Equation 5) 

 

A Two-tailed t-test of significance (Microsoft Office Excel, 2007) was used to compare the 4 conditions 

between them in each tissue. 

 

6.7. Northern Blot 
6.7.1. Electrophoresis and Blotting of RNA 

All RNA samples were separated by electrophoresis, in 15% acrylamide gels (15x30cm). The gel 

solution (50ml) is composed by: 25g urea, 5ml MOPS 10X (200mM, pH7.0), 18.75ml 40% 

acylamide:bisacrylamide   (19:1) and water to 50ml. The solution can be warmed in the microwave or 

water bath to dissolve the urea, but before use, the solution may cool at room temperature (can be 
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stored at 4o

The RNA samples and the small RNA molecular weight marker (New England Biolabs, Ipswich, UK) 

were prepared by joining 10μl of formamide loading buffer with 15μg of RNA or 0.25μl of molecular 

weight marker, at a final volume of 20μl. Before loading the samples were denaturated at 65

C). Polymerization of acrylamide was achieved by adding to each 12ml of solution, 4μl 

TEMED and 50μl 10% APS. The gel was allowed to polymerize at least 1 hour and before loading the 

samples the gels have to be pre-run about 1 hour, at 110V, in 1X MOPS buffer.  

o

 

C for 

10min. After loading, the gels were run in a Mini-Protean II Electrophoresis Device (Bio-Rad 

Laboratories) with 1xMOPS buffer, at 100V, for 3 hours (until all the xylene cyanol dye runs out of the 

gel), stained with Sybr Safe (Invitrogen) and visualized in a UV image acquisition system (Gel Doc, 

Bio-Rad Laboratories) (Supplementary Figure 2).  

6.7.2. Cross-Linking of RNA 

The RNA was transferred to a Hybond-NX membrane (GE Healthcare (formerly Amersham 

Biosciences) Piscataway, New Jersey, USA) by electro blotting with Bio-Rad's Trans-Blot Semi-Dry 

System (Bio-Rad Laboratories), at 20V for 60min, 4oC. After this, the gels were stained again with 

Sybr Safe (Invitrogen) and visualized (Supplementary Figure 2). In this work the chemical cross-link 

was chosen instead of the UV cross-link because it greatly improves the detection of small RNA by 

northern blot hybridization (Pall et al, 2007) A solution consisting of 0.13M 1-methylimidazole, pH 8.0 

and 1-ethil-3-(3-dimethylaminopropyl) carbodiimide (EDC) to a final concentration of 0.16M was 

prepared immediately before the cross-link (Pall et al, 2007). The hybridization membrane was placed, 

with the RNA side faced up on a 3MM Whatman paper saturated with the cross-link solution wrapped 

in SARAN wrap and incubated at 60o

 
C for one hour (Pall et al, 2007). 

6.7.3. Hybridization 

The membranes were pre-hybridized with the ULTRA Oligo Hybridization buffer (Ambion) for about 2 

hours. The Locked Nucleic Acid (LNA)-modified oligonucleotide (Exiqon, Vedbaek, Denmark) 

complementary to miR168 and miR162 and the molecular weight marker probe were labeled 

simultaneously in the same reaction. The labeling reaction consisted of: 1pmol of LNA-modified 

oligonucleotide proves, 0.3μl of molecular weight maker probe (New England Biolabs), 4μl of Kinase 

buffer, 1μl of T4 polynucleotide Kinase (10U/μl) (Invitrogen) and 5μl of γP32-ATP (PerkinElmer, 

Waltham, Massachusetts, USA) and ddH20 to a final volume of 10μl. After incubation incubated for 1 

hour at 37oC, the unincorporated radioisotopes were removed with Ilustra G-25 MicroSpin columns 

(GE Healthcare) and the purified labelled probe was added to the hybridization solution used to 

perform the pre-hybridization step. Hybridizations were carried over night at 42oC (Várallyay et al, 

2007).  The membranes were washed in 2x SSC (20x SSC stock solution: 3.0M sodium chloride, 

0.3mM sodium citrate, pH7.0) more 0.1% SDS (Sodium Dodecyl Sulphate) at 42oC, wrapped in 

SARAN wrap without allowing the membranes to dry and finally exposed in a phosphorimager 

cassette for 16-48 hours (depending on the signal detected in the membranes with a Geiger counter). 

The images were obtained, using a PhosphoImager (Storm 860, GE Healthcare). When necessary the 
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membranes were striped with boiling 0.1% SDS. In the end the membranes were hybridized with the 

small nuclear RNA U6 prove used as loading control. 
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7. Part 1 
 

7.1. Introduction 
This work was initiated using M. truncatula plants subjected to 4 different conditions of water deficit 

status: the control plants (Ct), moderate water deficit (MWD), severe water deficit (SWD) and recovery 

(Rec), as described in the Material and Methods section. Leaf relative water content (RWC) as been 

used as an indicator of the plant water status (Chaves, 1991; Lawlor and Cornic, 2002) due to the 

close relationship found to exist between RWC and predawn water potential measured during 

progressive water deficit in various plant species (Cruz de Carvalho  et al, 1998; Scotti Campos et al, 

1999).  

The RWC was used as one physiological indicator of the plants water status in the 4 water deficit 

conditions.  But in this way we are just analyzing responses to water deficit at a physiological level and 

because of this we decided to determine if the plant has responses to water deficit at the 

cellular/molecular level in accordance to the RWC. 

We decided to investigate the expression of some water deficit-related genes in the 4 water deficit 

conditions, to establish a relation between the plant relative water content (Physiological condition) 

and the level of transcription of water deficit regulated genes. For this, we selected MI-1-PS and 

Dehydrin that were tested in a pervious work with water deficit in M. truncatula (Matilde et al, 

unpublished results) and ERD1 and PIP1;5 were selected for been reported to have differential 

expression in water deficit (Kiyosue et al, 1993; Alexandersson et al, 2005).   

 

7.1.1. Myo-inositol-1-phosphate Synthase (MI-1-PS) 

L-myo-Inositol-1-phosphate synthase (1L-MI(1)P1

 

) (MI-1-PS) does the conversion of D-Glucose-6-P to 

1L- myo-Inositol-1-phosphate, that constitutes the first step of myo-Inositol (MI) biosynthesis. MI is a 

very important molecule with several cellular functions: substract for auxin conjugates; oxidation to D-

glucuronic acid that have a role in the biogenesis of uronosil and pentosyl units of pectins, 

hemicelluloses and related structures in plant cell walls; precursor of methylated inositols like pinitol 

and ononitol that are osmoprotectors (Loewus and Murthy, 2000). 

7.1.2. Early Responsive to Dehydration 1 (ERD1) 

The designation Early Responsive to Dehydration 1 (ERD1) gene was given because of its early 

response (1h) to water deficit in A. thaliana, increasing its expression (Kiyosue et al, 1993). ERD1 

encodes a ClpC-like protein, which sequence analysis suggests that may interact with the chloroplast-

localized ClpP protease, to facilitate ATP-dependent proteolysis (Kiyosue et al, 1993; Nakashima et al, 

1997; Weaver et al, 1999). Is chloroplast targeted and present within the soluble fraction of the 

chloroplast, presumably in the stroma (Weaver et al, 1999). 

 

7.1.3. Plasma membrane intrinsic protein 1;5 (PIP1;5) 

Aquaporins are channel forming membrane proteins with the extraordinary ability to combine a high 

flux with a high specificity for water across cell membranes (Shao et al, 2008). They can be localized 
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in the plasma membrane, tonoplast, endoplasmatic reticulum or intracellular vesicles (Maurel et al, 

2008; Shao et al, 2008).  On the basis of sequence homology, aquaporins in most plant species can 

be divided into four subgroups: (1) the plasma membrane intrinsic proteins (PIP) (with two phylogenic 

subgroups, PIP1 and PIP2); (2) the tonoplast intrinsic proteins (TIP); (3) the nodulin-26–like intrinsic 

membrane proteins (NIP); (4) small basic intrinsic proteins (SIPs) (Johanson et al, 2001). PIP1–PIP2 

interaction in the endoplasmic reticulum is required for in plants PIP1 trafficking to the plasma 

membrane to modulate plasma membrane permeability (Zelazny et al, 2007). Otherwise PIP1 will be 

retained in the endoplasmic reticulum, and PIP2 transported to the plasma membrane. 

 

7.1.4. Dehydrin 

Dehydrins is a group division (group 2 of 6) of the late embryogenesis abundant (LEA) proteins (Dure 

et al, 1989) and they are proteins with small molecular weight (10-30kDa) (Hong-Bo et al, 2005). LEA 

proteins are formed during the late period of seed development a phase accompanied by dehydration 

(Hong-Bo et al, 2005). It is interesting that appearance of the LEA proteins in embryonary tissue 

depends on content of endogenous ABA, whose level is usually increased during seed formation and 

especially before their maturation (Allagulova et al, 2003). Dehydrins are considered stress proteins 

that protect the plant against dehydration (Allagulova et al, 2003) and their synthesis is induced ABA 

treatment (Hellwege et al, 2004). 

 

7.2. Results 
7.2.1. Selection of a reference gene for water deficit conditions in M. truncatula 

For MI-1-PS, ERD1, PIP1;5 and Dehydrin transcript quantification we decided to use the technique of 

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) that have the advantage of the need 

of much less RNA compared with the Northern Blot technique, from ng to μg respectively. The relative 

quantification is based on the relative expression of a target gene versus a reference gene. (Pfaffl et 

al, 2001) The reference(s) gene(s) have the function to control the pipeting errors and the RNA 

quantity used to make cDNA. For this, the gene expression has to be equal in all treatments, or in the 

case of more then one reference gene used, their mean has to be constant in all condition studied.  

Six genes were tested to select the reference gene(s) for gene expression analysis in the shoots and 

roots of the plants in the 4 conditions. The genes selected were: 60S ribosomal protein L2 (RPL2C), 

Adenine Phosphoribosyl Transferase 1 (APRT), Actin 7 (ACT7), Actin 11 (ACT11), Elongation Factor 

1-Alpha (ELF-1a) and Histone Deacetylase 3 (HDA3) (Supplementary Table 3 and Supplementary 

Table 4). These genes are usually used to do screens in plants and referred as house keeping genes 

for reference genes (Nicot et al, 2005), less in the case of HDA3 that was selected just because we 

had results indicating that it could have a stable expression in the conditions tested. 

To perform the selection of the best reference gene(s) were used geNorm and NormFinder softwares. 

The first relies on the principle that the expression ratio of two ideal internal control genes is identical 

in all samples, regardless of the experimental condition or tissue type. In this way, variation of the 

expression ratios of two real-life housekeeping genes reflects the fact that one (or both) of the genes 

is (are) not constantly expressed, with increasing variation in ratio corresponding to decreasing 
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expression stability (Vandesompele et al, 2002). The second evaluate the overall expression variation 

and the variation across the sample subgroups (treatments) (Andersen et al, 2004). The data used in 

the softwares was the expression level of the genes tested (Equation 3, Methods) from shoots (Figure 

6, B) and roots (Figure 6, C) individually and together (Figure 6, A). 

 

Figure 6: Selection of the best reference gene(s) for M. truncatula under water deficit. The expression 
values of the genes (Equation 3, Methods) were used in the geNorm (A1, B1, C1) and NormFinder (A2, B2, C2) 
softwares to determine the best gene. The analysis was performed with the expression levels calculated for the 
genes in shoot (B) and root (C) individually and together (A). 

L2 was selected as the best reference gene (Figure 6), because it presented a more stable expression 

than the rest of the genes in all conditions tested. In the geNorm analysis, L2 was always in the group 

of the first 3 genes selected to have the most similar expression (Figure 6, A1, B1 and C1). But no 

other gene besides L2 stayed in the top 3, in this way is difficult to select more than one gene to use 

as reference genes. From this, we decided to select just one gene as reference gene. NormFinder 

selected L2 as the gene with the smallest variation between the 4 conditions for almost all analysis 

(Figure 6, A2 and C2) except in one of the situation (Figure 6, B2), but its difference from the best 

gene (ACT11) was very little. Usually normalization against a single reference gene is not acceptable 

(Bustin et al, 2009), but in our analysis L2 proved to be the best gene comparing to the rest of the 

genes. 

 

7.2.2. The relation between the plant water status and the expression of water deficit 

responsive genes 

In our water deficit conditions, the average RWC in Ct plants was around 80%. In water deficit treated 

plants the mean was 50% for MWD and 30% for SWD, and Rec plants had a RWC of about 30% after 

8 days of water deprivation and then recovered to RWC of 80% after 3 days of watering. With the 

objective to establish a relation between the RWC and the expression of MI-1-PS, Dehydrin, ERD1 
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and PIP1;5 genes (Supplementary Table 5) we analyzed these genes expression in shoots and roots 

of M. truncatula plants subjected to the 4 water deficit conditions described above. The first two genes 

were identified as being regulated by water deprivation in M. truncatula in a previous study (Matilde et 

al, 2007, not published) and the other two were reported to have differential expression in water deficit 

in A. thaliana (Kiyosue et al, 1993; Alexandersson et al, 2005).   

 

 
Figure 7: Relative expression levels of the genes ERD1, PIP1;5, MI-1-PS and Dehydrin determined by 
quantitative Real Time PCR. The shoot (green) and roots (brown) of M. truncatula are the tissues analyzed in 
the different water treatment conditions imposed to the plants. Values are the mean of two technical replicates of 
three independent cDNAs for each treatment (giving a total of 6 technical replicates) and bars represent standard 
errors. The relative expression was calculated using L2 as reference gene and normalized against to the shoot 
control treatment (Equation 5, Methods). A Two-tailed t-test of significance was applied, and was considered a 
significant difference with a p-value<0.05: a, significative difference with control of the same tissue, b, with MWD, 
and c, with SWD. (A) ERD1, Early Responsive to Dehydration 1, (B) PIP1;5, Plasma Membrane Intrinsic Protein 
1;5, (C) Dehydrin, (D) MI-1-PS, L-Myo-inositol-1-Phosphate Synthase. Ct, Control; MWD, Moderate Water Deficit; 
SWD, Severe Water Deficit, Rec, Recovery. 
 

All four genes increased their expression with the water deficit treatment in both tissues studied and 

returned to normal, control levels in the recovery treatment (Figure 7). Their expression was inversely 

related to the plants RWC, this is, at MWD (RWC of 50%) the genes increase their expression 

comparison to control (RWC of 80%) and at SWD (RWC of 30%) the expression levels are higher, 

returning to control levels in recovered plants (RWC of 80%). The only exception is MI-1-PS in the 

shoot (Figure 7, D) that in SWD decreases its expression relative to MWD.  
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7.3. Discussion 
7.3.1. The regulation of MI-1-P, ERD1, PIP1;5 and Dehydrin in water deficit 

The first objective of this work was to find a relation between the plant relative water content 

(physiological condition) and the level of transcription of water deficit regulated genes. All four genes 

presented a relation between the two variables, that is, when the RWC of the plant increased it was 

accompanied with the increase of those genes expression (Figure 7), except for MI-1-PS transcript 

levels in the shoots that decreased from MWD to SWD (Figure 7, D). Our observations seems to be in 

accordance with the levels of myo-inositol detected in leaves of Nicotiana tabacum plants subjected to 

water deficit conditions, in which myo-inositol concentration increased until day four without water 

(MWD corresponds to 5 days of suppression of soil irrigation, Methods) and then decreased along the 

water deficit treatment (SWD corresponds to 8 days of water deficit, Methods), but with values 

superior of those measured in day zero of the treatment (Sheveleva et al, 1997).  

In A. thaliana it was shown that MI-1-PS reduced its expression in the presence of increasing 

concentrations of inositol (Johnson et al, 1995). In Saccharomyces cerevisiae was demonstrated that 

MI-1-PS regulation by inositols happens because their promoters have a conserved repeated element 

known as UASINO

In our results ERD1 appeared to be strongly induced by water deficit in shoots as demonstrated by 

Nakashima and coworkers (1997) in A. thaliana. In stress conditions like this, chloroplast ClpP 

proteases could be important to degrade unassembled or misfolded proteins (Halperin and Adam, 

1996; Majeran et al 2000). ERD1 is a ClpC-like protein, is suggested that may interact with the 

chloroplast-localized ClpP protease, to facilitate ATP-dependent proteolysis (Kiyosue et al, 1993; 

Nakashima et al, 1997; Weaver et al, 1999), so if its expression increased in plants under water deficit 

conditions it could possible mean that in the chloroplasts the number of unassembled or misfolded 

proteins increased because of the stress condition imposed to the plants. 

, which is the binding site for two heterodimeric transcription factors, INO2 and INO4 

(Majumder et al, 1997). The decrease in the expression of MI-1-PS in SWD shoots in relation to MWD 

(Figure 2, D), was maybe due to the increase in the inositol concentration in the cells. The reason why 

in roots there is not one inhibition of the gene (Figure 7, D) is unknown. Myo-inositol transport through 

the xylem from the roots to the shoots increased in salt stressed plants (Nelson et al, 1998). We can 

hypothesize that in our plants inositol is transported from the roots to the shoots, so that the 

repression happens just in the shoots. 

The aquaporin here studied is homologous of PIP1;5 from A. thaliana. In water deficit conditions the 

expression of several aquaporins could be up-regulated, down-regulated or kept its expression levels 

constant (Alexandersson et al, 2005). Although the four classes are conserved among all plant 

species, the aquaporin gene family shows signs of rapid and recent evolution and orthologs can not 

necessarily be distinguished between species (Maurel et al, 2008). MtPIP1;5 has increased its 

expression in M. truncatula but in A. thaliana the expression level of AtPIP1;5 reduced its expression 

(Alexandersson et al, 2005). This could be explained because the two genes got different functions 

and different regulatory regions in the evolution of both species. 
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8. Part 2 

  

8.1. Introduction 
miRNA biogenesis is under feedback regulation such that two key players in miRNA biogenesis and 

function are themselves regulated by miRNAs. DCL1 mRNA has a binding site for miR162, which 

leads to the cleavage of DCL1 mRNA (Xie et al, 2003). Consistent with this, DCL1 mRNA levels are 

elevated in the hen1-1 mutant, in which the abundance of miR162 is reduced. miR168 has a binding 

site in AGO1 mRNA and leads to AGO1-mediated cleavage of AGO1 mRNA (Vaucheret et al, 2004). 

Vaucheret and coworkers (2006) described the transcriptional co-regulation in time and space of 

miR168 and AGO1, the miRNA is regulated by its target mRNA/protein levels, in a way that, if the 

expression of AGO1 increases, than it will load more miR168, that in turn will silence more AGO1 

mRNA, returning it to normal level. The model proposed imply that a perturbation in the level of 

miR168, AGO1 mRNA, or AGO1 protein would induce compensatory adjustments to bring AGO1 

levels back to equilibrium. They proposed that the miR168 duplex loading to AGO1 is very inefficient, 

and because of this the slight alteration of AGO1 level will induce a feedback response to reestablish 

the usual levels. AGO1 is silenced by cleavage (Vaucheret et al, 2004) and by translational repression 

that has a stronger silencing effect, of three fold compared with the cleavage situation (Lanet et al, 

2009). 

The second objective of this work was to study the feedback regulation of miRNA biogenesis in M. 

truncatula under water deficit conditions. To achieve this goal, we need to study the relation between, 

miR162 and miR168 expression levels and their respective targets, DCL1 and AGO1.  

 

8.2. Results 
8.2.1. Identification of M. truncatula miR168  

Most mature miRNAs are evolutionary conserved from species to species within the Plant Kingdom, 

which provides an easy way to predict new miRNA homologous in most plant species (Dezulian et al, 

2005; Zhang et al, 2006a). The sequence of miR162 from M. truncatula was downloaded from the 

mirBase (Dezulian et al, 2005), but the sequence of miR168 was not available in the database (until 

July of 2009). Szittya and coworkers (2008) sequenced a small RNA library and identified the mature 

sequence of miR168, but did not publish its sequence. In a later work, the mature sequence of 

miR168 was published, but the secondary structure of its precursor and its loci were not determined 

(Jagadeeswaran et al, 2009). Thus, we decided to perform a bioinformatic search for miR168 in the M. 

truncatula genome (Mt2.0), taking into account the following criteria for its annotation (Ambros et al, 

2008): expression criteria - consists in distinction of a RNA with the size of the mature form of the 

miRNA by northern blot; biogenesis criteria – bioinformatic homology search using as query the 

sequence of miR168 from G. max, prediction of it secondary structure, determination of MFE (Ambros 

et al, 2008), AMFE, MFEI and A + U content (Zhang et al, 2006b).  

The M. truncatula miR168 mature and precursor sequences were predicted using G. max miR168 and 

pre-miR168. As shown in Table 1, there are 3 loci for miR168 in the M. truncatula genome (Mt2.0), all 
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located on chromosome 5 (Figure 8), with two mature miR168 sequences having the same nucleotide 

sequence  and a third one with two mismatches. 

 

Table 1: Characteristics of the mature and precursor sequences of the putative miR168 sequences of M. 
truncatula. L. (bp), Length in base pairs; N.M., Nucleotide mismatches; MFE, minimum free energy; AMFE, 
adjusted MFE; MFEI, minimum folding free energy index; BAC AC, BAC accession number. 

 Mature miRNA pre-miRNA + 18bp 5’ and 3’ Genome 
miRNA mature miRNA sequence RNA Blot L. (bp) N.M. Arm A+U (%) MFE (ΔG) AMFE (ΔG) MFEI BAC AC 
miR168a UCGCUUGGUGCAGGUCGGGAA Yes 21 0 5' 44.4 -68.8 -55.5 1.00 CU302345 
miR168b UCGCUUGGUGCAGGUCGGGAA Yes 21 0 5' 52.5 -53.5 -44.6 0.94 CU302337 
miR168c UUGCUUGGUGCUGGUCGGGAA No 21 2 5' 53.9 -50.1 -39.2 0.85 AC126012 

 

The predicted precursor miR168 sequences of M. truncatula have low MFE values, the AMFEs values 

are between -39,2 and -55,5 and the MFEIs are equal or higher than 0.85 and the A+U content 

between 44.4 and 53.9. These results are in conformity with Zhang and collaborators (2006b) and are 

good indicators of the presence of a miRNA gene sequence. 

 

 

Figure 8: Localization in M. truncatula chromosome 5 of the precursor sequences of miR168a, b and c 
genes. The arrow is pointing from 5’ end to 3’ end of the pre-miR168 sequences.   

 

The secondary structure of the pre-miRNAs was determined (Figure 9), and the mature sequence of 

miR168c presented the higher number of mismatches (5) with the miRNA* region. The region of 

complementarity of the mature miRNA with its miRNA* in the pre-miRNA presented the highest 

stability (less number of mismatches, wobbles or bulges) (Figure 9, positional entropy), comparing to 

other regions of the precursor.  

The miRNAs in plants have high complementarily with their targets, making easy their search 

(Rhoades et al, 2002). When conservation of miRNAs among different species exists, follows the 

conservation of the targets of that miRNAs (the same target genes or genes that belong to the same 

family). (Jones-Rhoades and Bartel, 2004; Lu et al, 2005; Zhang et al, 2006a; Jagadeeswaran et al, 

2009) The targets predicted for miR162, miR168a, b and c are shown in Supplementary Table 6 and 

Supplementary Figure 3. For miR162 the target gene belonged to the family of the Dicer-like proteins 

(DCL1) and for miR168a, miR168b and miR168c the target was the Argonaute 1 gene. 

These targets were previously predicted in other plant species (Jones-Rhoades and Bartel, 2004; Lu 

et al, 2005) and their validation was done by 5’ RACE (Rapid Amplification of cDNA Ends) in 

Jagadeeswaran et al (2009). With the modified 5’RACE technique, one of the mRNA target strands 

originated from miRNA directed cleavage is sequenced to confirm the identity and position of the 

cleavage of the cleaved target (Llave et al, 2002).  



32 
 

Although we could find three miR168 loci in the M truncatula genome, we decided to continue this 

work with miR168a/b and miR162 and drop miR168c, because the data on this miRNA is less reliable 

then for the other two miR168. Also, Jagadeeswaran et al (2009) and Szittya et al (2008) could not 

sequence miR168c, although these last authors describe sequences of miR168 with two mismatches 

in their small RNA libraries but at a very low number. 

 

 
Figure 9: Secondary structure of M. truncatula miR168 precursors. The sequence of miR168a, miR168b 
and miR168c are evidenced in red at the secondary structure of the respective precursors (RNA 
folding/annotation software). The positional entropy (RNAfold) of each nucleotide in the precursor’s secondary 
structure is shown. 
 

8.2.2. The three loci of miR168 in M. truncatula and their evolutionary relationship  

Some MIRNAs genes might have arisen from duplication of their target loci (Allen et al, 2004; 

Rajagopalan et al, 2006) or from MIRNAs (Gazzani et al, 2009) In M. truncatula there are 3 loci for 

MIR168 gene family in chromosome 5 (Figure 8), two in plus strand and the other in the minus strand. 

And doing a phylogenetic analysis with the precursor sequences (Figure 10) we stated that the first 

duplication event is between MIR168a and MIR168b/c, and the second is between MIR168b and 

MIR168c. 
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Figure 10: Phylogenetic tree of the pre-miR168 sequences from M. truncatula (Mt), G. max (Gm), A. 
thaliana (At) and Populus trichocarpa (Pt). For alignment was used the RCOFFEE software, that take into 
account the secondary structure of the RNA used for the alignment. A Neighbour joining tree was constructed 
using the MEGA 4.0 software.  
 

8.2.3. Expression analysis of miR162 and miR168a/b in M. truncatula 

Northern blot analysis of miR162 and miR168a/b expression in different plant parts of M. truncatula 

(Shoot, Root, Seedling, Seedpod and Flower) was very similar between both of them (Figure 11). 

Their expression was higher in the roots and lower in the seedpods and flowers. For miR162, two 

bands were visible (Figure 11): one band of 21bp that correspond to the miR162 size (Table 1) 

(Szittya et al, 2008) and an extra less strong band of 24bp. For miR168a/b, again two bands are 

visible, one of 21bp that corresponds to the miRNA and a faint band of 24bp. The reason for these 

extra bands is that DCL3 competes with DCL1 for the same miRNA precursors to produce small RNAs 

molecules with 24nt (Vazquez et al, 2008). Nevertheless, the presence of a band of the correct size in 

all plant parts fills the expression criteria that distinct a RNA with the size of the mature form of the 

miRNA, indicating that both miR162 and miR168a/b are expressed in Medicago truncatula. 

 

 

Figure 11: Northern blot of miR162 and miR168a/b in M. truncatula tissues. RNA gel blots containing total 
RNAs (15μg) from different samples of shoot (S), root (R), seedling (Sd), seedpod (Sp) and flower (F). They were 
hybridized with radioactive Locked Nucleic Acid (LNA) probes complementary to the miRNAs. The small nuclear 
RNA U6 was used as internal loading control for quantification of RNA gel blot signals (indicated down each lane), 
which were normalized against to the shoot samples. The membrane was first hybridized with miR168a/b prove 
and then striped and rehybridized with miR162 prove. A molecular marker was used and presents three different 
sizes: 17nt, 21nt and 24nt. 
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Figure 12: Northern blot of miR162 and miR168a/b of RNA samples of shoots and roots from M. 
truncatula plants with different water status. RNA gel blots contained 15μg of total RNA, for each sample. 
They were hybridized with radioactive Locked Nucleic Acid (LNA) probes complementary to the miRNAs. The U6 
small nuclear RNA U6 was used as internal loading control for quantification of RNA gel blot signals (indicated 
down each lane), which were normalized against to the control condition of the shoots and roots samples. The 
membrane was first hybridized with miR162 prove and then striped and rehybridized with miR168a/b prove. A 
molecular marker was used and presents three different sizes: 17nt, 21nt and 24nt. Ct, Control; MWD, Moderate 
Water Deficit; SWD, Severe Water Deficit; Rec, Recovery.    
 

8.2.4. Expression of miR162 and miR168a/b and their targets during water deficit 

From the moment that the mature sequence of miR168 and miR162 and their targets were established 

in M. truncatula we could proceed for to their expression analysis in the water deficit conditions 

previously described.  

 

 
Figure 13: Relative quantification of miR162 and miR168a/b targets, Dicer-like 1 (DCL1) (A) and 
Argonaute 1 (AGO1) (B) mRNAs respectively, by quantitative Real Time PCR. The shoot (green) and roots 
(brown) of M. truncatula are the tissues analyzed in the different water treatment conditions imposed to the plants. 
Values are the mean of two technical replicates of three independent cDNAs for each treatment (giving a total of 6 
technical replicates) and bars represent standard errors. The relative expression was calculated using L2 as 
reference gene and normalized against to the shoot control treatment (Equation 5, Methods). The AGO1 and 
DCL1 primer pair was designed to give one amplicon with the cleavage site of their corresponding miRNA. A 
Two-tailed t-test of significance was applied, and was considered a significant difference with a p-value<0.05: a, 
significative difference with control of the same tissue, b, with MWD, and c, with SWD. Ct, Control; MWD, 
Moderate Water Deficit; SWD, Severe Water Deficit, Rec, Recovery. 
 

In the shoots, miR168a/b presented like miR162 a small increase in the water deficit treatments and 

recovery (Figure 12). The miR162 expression levels in the roots reduced from the control to MWD and 
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SWD (with the lowest value) and increased a little in the Rec treatment compared to SWD. miR168a/b 

reduced its expression in the roots from the control to MWD then the expression increased a little in 

SWD and reduced again in the recovery condition (with the lowest value) (Figure 12).  

The expression levels of miR162 (DCL1) and miR168a/b (AGO1) targets (Supplementary Table 6) 

were quantified by qRT-PCR, to determine if there is a negative relation between the expression levels 

of the miRNAs and their respective targets. In all water deficit treatments and tissues analyzed there 

was an increase in the expression levels of DCL1 and AGO1 (Figure 13). The roots showed the 

highest increase between control and SWD, of about 5 and 3.5 fold, in DCL1 and AGO1 respectively 

(Figure 13). 

 

8.3. Discussion 
8.3.1. miR168 annotation 

Three loci that correspond to putative genes of miR168 were found (Figure 8). The secondary 

structures of the precursors were evaluated and are in agreement with the biogenic criteria, but the 

expression criterion was just validated for miR168a/b by northern blot (Figure 11 and 12). 

Jagadeeswaran et al (2009) and Szittya et al (2008) sequenced miR168a/b, but Szittya et al (2008) 

found miR168 mature sequence with 2 mismatches with the miR168a/b. But the proportion of reads 

with two mismatches was approximately 4%, and in the library sequences with two mismatches were 

identified for almost all miRNAs, some with higher proportions. The only way to verify if miR168c is a 

miRNA is at least to do its blot (to verify the expression criteria) or sequence it with its miRNA* (Kim et 

al, 2009). We could not confirm if both precursors (pre-miR168a and pre-mi168b) are responsible for 

the mature miR168a/b that appears in the blot. One way to confirm this is to perform a promoter 

analysis of the MIR168a and MIR168b genes, to know if both genes are expressed and present 

variations between them.  

 

8.3.2. MIR168a/b /c genes phylogenetic analysis 

A. thaliana and P. trichocarpa have two genes for MIR168 in the genome (Figure 10) and Gazzani and 

coworkers (2009) suggested that these copies had their origin from two independent duplication 

events. Then A. thaliana, P. trichocarpa and M. truncatula share a common ancestral that had just one 

copy of the MIR168 gene and that by independent evolution in the each species lineage had occurred 

at least one duplication event (paralogous sequences) (Figure 10).   

 

8.3.3. Regulation of miRNA biogenesis in water deficit by miR162 

DCL1 is subjected to negative feedback regulation by miR162 (Reinhart et al, 2002; Xie et al, 2003) 

that maintain DCL1 at concentrations functionally sufficient, but not at limiting or excessive levels. In 

our results, miR162 is less expressed at the roots in water deficit (Figure 12), having the highest 

decrease in SWD. Correlating this with the levels of DCL1 expression (Figure 13, A), we have strong 

evidence that the regulation of the DCL1 gene is being done by miR162 in water deficit conditions. 

The possible implication of the DCL1 mRNA up-regulation is the increase on DCL1 protein levels. In 

this way, the production of mature miRNAs will increase. One possibility for this is the increase of the 
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exoribonucleases that degradate the miRNAs in water deficit (Ramachandran et al, 2008). In this way 

to compensate the degradation, the cell has to increase the production of mature miRNAs (up-

regulation the DCL1 levels). To confirm this, the expression analysis of this exoribonucleases should 

be performed. 

 

8.3.4. Regulation of miR168 and its target in water deficit conditions  

Argonaute1 is targeted by miR168a/b (Rhoades et al, 2002) and this is needed for proper plant 

development, illustrating the importance of Argonaute 1 feed-back control by this miRNA (Vaucheret 

et al, 2004). In our results we observe in roots that miR168a/b decrease its expression in MWD, SWD 

and Rec (Figure 12) with the lowest expression in Rec, but AGO1 just increase its expression in SWD 

(Figure 13, B). These results are not completely coherent. To complete the analysis of miR168 and its 

regulation we would needed to do a western blot in the shoots and roots in the different treatments, to 

determine the real implications of water deficit in the levels of AGO1 protein. 

  



37 
 

9. Part 3 
 

9.1. Introduction 

After analysis of the expression of miR162 and miR168a/b and their targets (DCL1 and AGO1) in 

water deficit, we decided to find other Dicer-like and Argonaute coding genes in M. truncatula genome 

and do the gene expression quantification of some of them to add more information to our study on 

the behavior of components of other small RNA biogenesis pathways during water deficit. 

 

9.1.1. Plant Dicer-like proteins  

Plants are characterized for having at least four DCLs (Margis et al, 2006), with different roles: DCL1 

generates miRNAs with ~21nts; DCL2 produce siRNAs with 22nts, associated with virus defense and 

production of natural antisense-siRNAs (nat -siRNAs) from natural cis-acting antisense transcripts; 

DCL3 generates siRNAs with 24nts, that guide chromatin modification; DCL4 generates trans-acting 

siRNAs with 21nts (Vaucheret et al, 2008; Liu et al, 2009). 

Plant DCL proteins contain six types of domains (Margis et al, 2006): 

• DEAD-helicase box: kinetic analysis of wild-type and mutant human Dicer proteins showed 

that the DEXD/H-box domain might have one auto-inhibitory function, because removal of this 

domain increases the cleavage rate. This suggests that before catalysis can occur, the 

DEXD/H-box domain imposes on the protein a non-productive conformation that must be 

arranged, perhaps upon assembly with its molecular partners (Jinek and Doudna, 2009);  

• Helicase-C: with unknown function; 

• DUF283: DUF283 has a fold similar to the double-stranded RNA-binding domain (dsRBD) 

(Dlakić, 2006). 

• PAZ: binds to single- and double-stranded RNAs at the 3’ overhangs (Olmedo and Guzmán, 

2008). 

• RNase III: this domain is present in two copies (RNase IIIa and RNase IIIb) in DCLs. The two 

RNase II domains form an intramolecular dimer and the active site of each domain is involved 

in catalytic activity in dsRNA cleavage. The distance between the 3’-overhang-binding pocket 

of the PAZ domain and the active site of the RNAase IIIa domain is 65 Å, and matches the 

length of the siRNAs produced by it (Jinek and Doudna, 2009).  

• dsRBD: plant DCLs have usually two copies of this domain, but in the case of DCL2 there is 

only one. dsRBD domain not only bind to dsRNA but also function as protein-protein interation 

domain, interaction specially with the HYL1 protein (Margis et al, 2006). 

 

9.1.2. Plant Argonaute proteins  

AGOs are large proteins (90–100 kDa) and multidomain proteins that contain one variable N-terminal 

domain and conserved C-terminal PAZ, middle (MID) and PIWI domains (Tolia and Joshua-Tor, 2007; 

Hutvagner and Simard, 2008; Jinek and Doudna, 2009). The crystal structure of a full-length 

Argonaute protein, from the archaeal species Pyrococcus furious, showed that the sequence motif 
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originally defined as PIWI domain by Lorenzo Cerutti et al (2000) consists of two structural domains, 

termed MID and PIWI. The Argonaute domains have specific functions: 

• PAZ: is a RNA-binding domain that specifically recognizes the 3´ends of ssRNAs suggesting 

that it might function as a module for anchoring the 3’ end of the guide RNA (Vaucheret, 2008; 

Jinek and Doudna, 2009). 

• MID: the 5’ phosphate group of the guide RNA strand is buried in a deep pocket at interface 

between the MID domain and PIWI domain (Jinek and Doudna, 2009). 

• Piwi: this domain adopts a fold similar to that in RNaseH, an endoribonclease that cleaves 

RNA-DNA hybrids, suggesting that Piwi domain is responsible for the “slicer” activity of 

Argonaute protein in the RISC complex (Jinek and Doudna, 2009). The cleavage activity is 

carried out by an active site on the PIWI domain usually presenting an Asp–Asp–His (DDH) 

motif (Rivas et al, 2005; Bumberger and Baulcombe, 2005). 

In plants distinct types of sRNAs associate with different Argonaute proteins on the basis of the 

identity of the 5´nucleotide. AGO1 binds mainly to RNAs with a uridine at their 5’ end, whereas AGO2 

and AGO4 recruits RNAs with a 5’ adenosine and the AGO5 predominantly bind sRNAs that initiate 

with a cytosine (Mi et al, 2008). 

For to Argonaute to exert its slicer activity the perfect complementarity around the cleavage site in the 

guide–target duplex is required. The base-pairing around the 10-11-base ensures correct orientation 

of the active site for the cleavage (Jinek and Doudna, 2009).  

 

9.2. Results 
9.2.1. Molecular characterization of other AGOs and DCLs in M. truncatula 

Blastn and tBlastn search in M. truncatula genome databases using A. thaliana AGOs and DCLs 

cDNA and proteins sequences (Supplementary Table 1) resulted in the identification of 3 sequences 

encoding Dicer-like genes (MtDCLs) and 9 sequences for Argonautes (MtAGOs) (Table 2) (note that 

DCL1 and AGO1 were previously identified as miR168a/b ad miR162 targets). MtAGO2 was just 

found in M. truncatula cDNA database MTGI, and MtDCL2, MtDCL3 and MtAGO11 were just found in 

M. truncatula annotated genome (Mt2.0) (Table 2).  

The MtAGO7 genome sequence (CU179907_3) and CDNA sequence (TC114668) originated 

incomplete Argonaute protein sequences (Supplementary Table 7 and Supplementary Figure 4) when 

analyzed using the Conserved Domains Database (CDD) from NCBI for domain search. But both 

sequences complemented each other, then we decided to join both them in one (Supplementary 

Figure 4 and Supplementary Figure 6). The BAC sequence close to the MtAGO7 gene presents some 

regions with N entries, and this means that the sequencing on that region was of poor quality what 

may explain why the complete genomic region of the gene is not in the M. truncatula databases. With 

MtAGO11 a similar case happened but with two annotated incomplete AGO protein sequences 

(CT030192_30 and CT030192_31) (Supplementary Table 8 and Supplementary Figure 5) whose 

genes were spaced in the genome just by 282nt from each other (intron size range from 0.1 to 0.6 kb 

in plants, Carels and Bernardi, 2000). After applying the Fgeneh-H software (for prediction of multiple 

(alternative splicing) variants of potential genes in genomic DNA)(http://linux1.softberry.com) in the 



39 
 

genomic region that contains the two annotated genes, one coding sequence was obtained which 

translated protein gave one complete AGO protein (Supplementary Figure 5 and Supplementary 

Figure 7). 

   

Table 2: Characteristics of Argonaute and Dicer-like genes and proteins identified in M. truncatula (Mt). 
Mt2.0 genecall, Medicago truncatula Genome Sequencing Project release version 2.0 (Mt2.0) accession number 
of the gene; ORF, Open Reading Frame; MTGI, Medicago truncatula Gene Index (MTGI) 9.0 reference; MW, 
Molecular Weight; pI, Isoelectric point; Chrom., Chromosome; NCBI Blastn and Blastp in A. thaliana database. 
Gene 
Name Mt2.0 Genecall ORF Size 

(bp) MTGI Reading 
Frame Protein Chrom. Genomic Region Blastn 

Blastp 

     
Size 
(a.a.) 

MW 
(KDa) 

pI 
(pH)    

DCLs           
MtDCL1 AC150443_32 5820 TC129362  1940 218.32 6.22 7 31913677-31923713 DCL1 
MtDCL2 AC192958_13 4119   1373 156.11 7.18 2 27599809-27590829 DCL2 
MtDCL3 AC137830_51 5184   1728 192.35 6.68 3 19558574-19571225 DCL3 

AGOs           
MtAGO1   TC126820 2 1040 115.42 9.47   AtAGO1 
MtAGO12b AC136450_38 1521 NP7267711  506 57.69 10.03 2 14863531-14868049 AtAGO10 
MtAGO12a AC160838_11 2631   876 85.97 9.00 8 25391911-25397439 AtAGO10 
MtAGO2   TC135942 1 720 85.35 9.01   AtAGO2 

MtAGO7 CU179907_3 3051 AW693202 
BI309506  1016 116.65 9.44 5 17162372-17166459 AtAGO7 

MtAGO4a AC147429_4  TC114668 1 824 92.40 8.24 0  AtAGO4 
MtAGO4b AC131455_15 2726 TC114471  908 101.37 9.13 5 31663907-31669806 AtAGO4 
MtAGO4c AC131455_31 2607 TC112620  868 97.83 9.54 5 31672438-31678208 AtAGO4 

MtAGO11 CT030192_30 
CT030192_31 2661   886 101.10 9.18 3 1284064-1277890 AtAGO4 

 

DCL genes encoded a protein with a molecular weight between 156.11 and 218.32 KDa, with a 

neutral isoelectric point ranging from 6.22 to 7.18 (Table 2) in accordance to Kapoor et al (2008). AGO 

proteins presented a lower molecular size ~100KDa and a basic isoelectric point between 8.24 and 

10.03 (Table 2) (Kapoor et al, 2008). 

 

9.2.2. M. truncatula AGOs and DCLs protein domains 
To designate the M. truncatula AGOs and DCL genes found a neighbor joining phylogenetic tree was 

built containing the M. truncatula and A. thaliana DCLs and AGOs protein sequences (Figure 14, A 

and Figure 15, A). The DCLs and AGOs clustered into 3 subgroups, similar to those described by 

Margis et al (2006), Liu et al (2009) and Vaucheret (2008). The names were given in respect to their 

phylogenetic relationship with A. thaliana proteins (Figure 14 and Figure 15). 

The search for protein domains using CDD from NCBI revealed the presence of DExD, Helicase-c, 

DUF283, PAZ, RNaseIIIa/b and dsRBa/b in DCLs protein sequences (Figure 14, B and 

Supplementary Table 9). MtDCL2 has just one domain dsRB characteristic of DCL2 proteins in A. 

thaliana, Oryza sativa and P. trichocarpa (Margis et al, 2006). All AGO protein presented the domains 

DUF1785, PAZ and Piwi (Figure 15, B and Supplementary Table 10). The MtAGO12b has an 

incomplete Piwi domain and this is because this gene was sequenced in the end of the BAC and was 

no more BACs sequenced (July of 2009 in Mt2.0) that could provide a consensus sequence in the 

terminal region where the Argonaute is located. 
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Figure 14: Evolutionary relationship of M. truncatula (Mt) and A. thaliana (At) DCLs (A) and 
characterization of the protein domains (B). The protein sequences were aligned using the CLUSTALW and a 
Neighbour joining tree was constructed using the MEGA4.0 software. The protein domains were obtained using 
the Conserved Domains Database (CDD) database of NCBI. The Dicer-like protein domains DExD (green), 
Helicase-c in (blue), DUF283 (pink), PAZ (black), RNAase III (orange), dsRB (brown) are shown. 

 

 

Figure 15: Evolutionary relationship of M. truncatula (Mt) and A. thaliana (At) AGOSs (A), 
characterization of the protein domains (B) and their catalytic center (C). The protein sequences were 
aligned using the CLUSTALW and a Neighbour joining tree was constructed using the MEGA4.0 software. The 
protein domains were obtained using the Conserved Domains Database (CDD) database of NCBI. The Argonaute 
protein domains DUF1785 (green), PAZ (black), Piwi (red) are shown. The catalytic center was obtained from the 
alignment of the Piwi domains from the AGO proteins, corresponding to the positions of the aspartate, aspartate 
and histidine (DDH) motif and the Argonaute 1 histidine at position 800 (H800). D, aspartate, H, histidine, S, 
serine, A, alanine, P, proline, R, arginine.  
 

Structural studies in other organisms have shown that the Piwi domain of Argonaute proteins folds 

similar to RNaseH proteins (Song et al, 2004). Consistent with this observation, some Argonaute 

proteins in both plants and animals are known to cleave the target RNAs that have sequence 

complementary to the small RNAs (Liu et al, 2004; Baumberger et al, 2005).  

The catalytic center of these catalytic proteins are known to possess three conserved metal chelating 

residues in the Piwi domain i.e. aspartate, aspartate and histidine (DDH), that function as the catalytic 

triad. In Arabidopsis AGO1, a conserved histidine at position 798 (H798) was also observed to be 
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critical for the endonuclease activity of AGO1 in vitro (Baumberger et al, 2005). We used a protein 

sequence from other database and because of that the histidine position passed from 798 to 800. 

 
Figure 16: Relative expression levels of Argonautes and Dicer-like mRNAs in M. truncatula, by 
quantitative Real Time PCR. The shoot (green) and roots (brown) of M. truncatula are the tissues analyzed in 
the different water treatment conditions imposed to the plants. Values are the mean of two technical replicates of 
three independent cDNAs for each treatment (giving a total of 6 technical replicates) and bars represent standard 
errors. The relative expression was calculated using L2 as reference gene and normalized against to the shoot 
control treatment (Equation 5, Methods). The AGO1 and DCL1 primer pair was designed to give one amplicon 
with the cleavage site of their corresponding miRNA. A Two-tailed t-test of significance was applied, and was 
considered a significant difference with a p-value<0.05: a, significative difference with control of the same tissue, 
b, with MWD, and c, with SWD. (A) AGO7, Argonaute 7; (B) DCL3, Dicer-like 3; (C) AGO4b, Argonaute 4b; (D) 
AGO4c, Argonaute 4c; (E) AGO12a, Argonaute 12a; (F) DCL2, Dicer-like 2. Ct, Control; MWD, Moderate Water 
Deficit; SWD, Severe Water Deficit, Rec, Recovery. 
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To interrogate which of the MtAGOs included the conserved catalytic residues and could potentially 

act as the slicer component of the silencing effector complexes, we aligned the Piwi domains of all the 

MtAGOs and AtAGOs using CLUSTALW (Supplementary Figure 8).  Two proteins, MtAGO1 and 

MtAGO7 were found to have the conserved domain DDH/H (Figure 14, C) in other cases like 

MtAGO12b the motif was missing or the residue H800 substituted by A, S or P, or in MtAGO2 the H 

(in the DDH motif) is substituted by one D (passing to a DDD motif), characteristic of AGO2 and AGO3 

proteins in A. thaliana and O. sativa (Kapoor et al, 2008). 

 

9.2.3. qRT-PCR of the AGOs and DCLs 
DCL2 cleaves double-stranded virus RNA producing 22nt small RNAs (Vaucheret et al, 2008), and 

DCL3 cleaves endogenous dsRNA producing 24nt small RNAs involved in chromatin rearrangements 

(Vaucheret et al, 2008). AGO7 is involved in the biogenesis of trans-acting small RNAs (tas-siRNAs) 

derived from TAS3 mRNA (Vaucheret et al, 2008). AGO4 and AGO6 are involved in the transcriptional 

gene silencing (TGS) pathway, which perform chromatin remodeling (Vaucheret et al, 2008). 

We performed the expression analysis by qRT-PCR of, MtAGO7, MtDCL3, MtAGO4b, MtAGO4c, 

MtAGO12a, MtDCL2 and MtAGO11 in shoots and roots of plants subjected to water deficit (Figure 

16). MtAGO11 could not be quantified because the CT values were close to 40, and this is 

unacceptable for quantification (Bustin et al, 2009). MtAGO7, MtDCL3, MtAGO4b and MtAGO4c 

increased their expression in moderate and severe water deficit treatments in both tissues (Figure 16, 

A, B, C and D), the first three genes were more expressed in the roots than in the shoots and in 

MtAGO4c the expression levels were similar in shoots and roots. MtAGO12a expression was only 

found only in the shoots, decreasing its mRNA level in MWD and SWD (Figure 16, E). MtDCL2 

expression increases just in SWD in the roots (Figure 16, F). 

 

9.3. Discussion 
9.3.1. Catalytic domain of AGOs 

The slicing activity has been demonstrated for A. thaliana AGO1, AGO2, AGO4 and AGO7 

(Baumberger and Baulcombe, 2005; Qi et al, 2005; Qi et al, 2006; Montgomery et al, 2008) and all of 

them, except AGO2, have an active site carrying a DDH motif (for AGO2 a DDD motif) (Figure 15, C) 

related with the Argonaute slicer function in plants and animals (Rivas et al, 2005). Baumberger and 

Baulcombe (2005) showed that the histidine residue in position 800 was essential for the cleavage 

activity of Argonaute1, but AtAGO4 has a slicing activity and have instead a serine residue. This 

means that the existence of this residue in Argonautes could not be so critical for their activity. 

MtAGO1, MtAGO2 and MtAGO7 have the motif DDH/H or DDD/H (in the case of AGO2) (Figure 15, 

C) and are homologous to AtAGO1, AtAGO2 and AtAGO7 indicating that they may have a slicer 

activity. In the cases of the MtAGO4a, b, c and d, AGO12a with a DDH/(A/S/P) and AGO11 with a 

DDD/S motif, the possibility of them to have a slicing activity can not be discarded. And in some 

organisms like in Homo sapiens, the AGO3 protein has a DDH domain but does not have slicing 

activity (Liu et al, 2004; Meister et al, 2004). One the other hand, the Drosophila melanogaster Piwi 
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domain has one DDK motif and has catalytic activity (Saito et al, 2006). This means that the existence 

or absence of a DDH domain does not preclude the protein from having or not slicing activity.  

 

9.3.2. AGO7 and its involvement in water deficit response in M. truncatula 

Argonaute 7 binds specifically with miR390 and directs the cleavage at 3’ end of its non-coding target 

TAS3 RNA (Allen et al, 2005; Montgomery et al, 2008). The TAS3 cleavage products are stabilized by 

Suppressor of Gene Silencing 3 (SGS3), and one of the two TAS3 cleavage products is converted to 

dsRNA by RNA dependent RNA Polymerase 6 (RDR6) and finally diced by DCL4 into 21nts trans 

acting siRNA (ta-siRNA) a process assisted by a dsRNA binding protein 4 (DRB4) (Peragine et al, 

2004; Vazquez et al, 2004; Gasciolli et al, 2005; Yoshikawa et al, 2005; Adenot et al, 2006). The 

bioinformatic search for DCLs in M. truncatula, could not find one homolog sequence with A. thaliana 

DCL4, possibly because the M. truncatula genome is not yet fully sequenced. Three genes annotated 

as similar with Auxin Response factor 3 (ARF3) of A. thaliana were identified for M. truncatula as 

targets of two TAS3-derived ta-siRNAs (Jagadeeswaran et al, 2009). 

A. thaliana ago7 mutants accelerate the juvenile to adult transition but not the onset of reproductive 

competence or flowering time (Hunter et al, 2003). ARF3 over-expression resulted in further 

acceleration of phase change and severe morphological and patterning defects of leaves and floral 

organs (Fahlgren et al, 2006).  We observed that MtAGO7 is up-regulated in water deficit in both 

shoots and roots (Figure 16, A). Previous works correlated the role of TAS3 derived ta-siRNAs with 

plant development processes, but our results indirectly suggest that ARF3 can have a role in plant 

reaction to water deficit, maybe by repressing the development processes in the plant under stress 

conditions. The expression levels of the TAS3, the three ARF3 genes and TAS3 derived ta-siRNAs 

from M truncatula should be analyzed under water deficit to test this hypothesis. 

 

9.3.3. Water deficit response in M. truncatula and chromatin rearrangements 

In plants, chromatin gene silencing involves the coordinated action of: (1) a DNA dependent RNA 

polymerase IV (Pol Iva and Pol IVb) that transcribes genomic regions with transposons and highly 

repeated sequences (Herr et al, 2005; Pontier et al, 2005); (2) a RNA dependent RNA polymerase 2 

(RDR2), that produces a dsRNA sequence from the regions transcribed by RNA Pol IV (Chan et al, 

2004); (3) a Dicer-like 3 (DCL3), that cleaves the dsRNA in 24nt siRNAs (Chan et al, 2004; Xie et al, 

2004; Qi et al, 2005); (4) Argonaute 4 and 6 (AGO4 and AGO6), important for the accumulation of 

specific heterochromatin-related siRNAs, and for DNA methylation and subsequent transcriptional 

gene silencing (Zilberman et al, 2003; Chan et al, 2004; Zheng et al, 2007).  In this work we showed 

that the MtDCL3, MtAGO4b and MtAGO4c are up-regulated in water deficit situations (Figure 16, B, C 

and D) which suggest that chromatin rearrangements may have a role in the plants response to water 

deficit. 

 

9.3.4. MtAGO11 and MtAGO12a 

MtAGO11 have similarities to AtAGO4 and AtAGO6 that are involved in DNA methylation and also 

with AtAGO8 and AtAGO9, but their functions remain to be discovered (Vaucheret et al, 2008). The 
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MtAGO11 sequence was initially annotated as being two proteins (CT030192_30 and CT030192_31) 

but using Fgeneh-H software we showed that it is just one gene and one protein (Supplementary 

Figure 4). MtAGO11 is expressed at very low levels in shoots and roots under all water deficit 

treatments with CTs values close to 40 that did not allow a good quantification of its expression. 

AtAGO8 was determined to be a pseudogene of AtAGO9, and has a very low expression level 

contrary to AtAGO9 that is highly transcribed (Vaucheret et al, 2008). It is possible that MtAGO11 is a 

pseudogene of MtAGO4 or may instead be expressed in other tissues not here analyzed (like 

MtAGO12a that is expressed in the shoots and not in the roots) or in other stress conditions imposed 

to the plant (Kapoor et al, 2008). To test this must be performed the expression analysis of MtAGO11 

in other tissues (like flowers, seedpods, seedlings and nodules) and in plants under other stress 

conditions (like salt stress, heat stress or light stress).   

MtAGO12a was just expressed in shoots, reduced its expression in water deficit conditions and 

returned to control levels in recovered plants (Figure 16, E). This differential expression in water deficit 

conditions suggests that MtAGO12a may have role in M. truncatula adaptation to water deficit. No 

information about the expression of MtAGO12 was found in the literature.  
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10. Conclusions 
In this work we showed that the molecular responses to water deficit in M. truncatula were stronger in 

the roots comparing to the shoots, with the genes here analyzed. This is in conformity with the fact, 

that the roots are the plant organ that contact directly with the water deprivation in the soil and should 

perceive the stress stimulus at first.  

With this work we were able to establish L2 as a good reference gene for studies involving water 

deficit responses in M. truncatula. We could show a relation between the RWC values (physiological 

parameter) of the plants in the 4 water status conditions and the expression level of water deficit-

responsive genes ERD1, PIP1;5, Dehydrin and MI-1-PS (molecular/cellular parameter). The 

expression levels of ERD1, PIP1;5 and Dehydrin in shoots and roots and of MI-1-PS in roots were 

temporally and inversely related with the RWC values of the plants, confirming that the progressive 

water deficit induced an increase in transcription of drought-responsive genes. 

In the second part of the work we show that A. thaliana, P. trichocarpa and M. truncatula share a 

common ancestral that had just one copy of the MIR168 gene. In M. truncatula genome there are 3 

possible genes for MIR168 and that in its evolutionary lineage the first duplication event occurred 

between MIR168a and MIR168b/c, and the second between MIR168b and MIR168c. 

We observed an inverse relation between the expression levels of the miR162 and its target Dicer-like 

1 mRNA in M. truncatula roots under water deficit. From this we concluded that the down-regulation of 

miR162 in response to water deficit should decrease the number of DCL1 mRNA molecules cleaved, 

thus increasing the levels of its mRNA in the root cells.  

It was not possible to relate the expression of miR168a/b and AGO1 in the different water status 

although both of them showed to be differentially expressed in M. truncatula under water deficit, 

principally in the roots. Then the role of miR168a/b in the plant adaptation to water deficit remains to 

be elucidated.  

In last, we identified 3 Dicer-like and 9 Argonaute genes in the M. truncatula genome. The proteins 

DCL3, AGO4b, AGO4c (involved in chromatin rearrangements) and AGO7 (implicated in the 

production of ta-siRNAs) are being up-regulated in water deficit conditions showing that other silencing 

pathways besides the miRNA biosynthesis are regulated in M. truncatula under water deficit. These 

results highlight the importance of a better understanding of the small RNA silencing regulatory 

pathways in plants under water deprivation. 
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11. Future Perspectives 
This work can be used in future studies: 

1. It will be very interesting to verify if a linear correlation between the plant relative water content 

and the expression level of ERD1, PIP1;5 and Dehydrin genes in shoots and roots and MI-1-

PS in roots can be established. For these studies biological replicates must be used in the 

quantification of both variables, and more points are needed for plant RWC.  

2. We have shown that in roots under SWD the expression of MI-1-PS increase when compared 

to MWD, contrary to what happens in the shoots (Figure 7, D). A quantification of inositol and 

other inositol derived cyclitols levels in the roots would be a good start to comprehend why MI-

1-PS was not inhibited in SWD. One hypothesis is that inositol could be transported in the 

xylem from the roots to the shoots, and then a quantification of its level in the xylem and 

phloem would be necessary to test this hypothesis. 

3. We show that the expression of miR162 and miR168a/b are very similar in the different 

tissues (Figure 11) and in the water deficit conditions (Figure 12) except in the SWD in the 

roots comparing with the other conditions. A promoter analysis of MIR162, MIR168a and 

MIR168b should be performed to compare if they have a spacial and temporal relation of their 

expression in M. truncatula. The plants should be transformed with a construction of the β-

glucuronidase (GUS) reporter gene expressed under the control of the promoter region of the 

MIR genes and the expression patterns analyzed and interpreted. 

4. MtAGO7 increase its expression in M. truncatula under water deficit (Figure 16, A). We 

hypothesized that this would increase the number of ta-siRNAs derived from TAS3 mRNA. 

Finally it would increase the cleavage of their targets, the ARF3 mRNA, reducing their levels. 

The expression levels of the TAS3, the three ARF3 genes and TAS3 derived ta-siRNAs from 

M truncatula should be analyzed under water deficit to test this hypothesis. 

5. To try to understand the function of MtAGO12a, in situ hybridization of MtAGO12a mRNA in 

shoots could be done to know if its expression is tissue specific. Sequencing the small RNAs 

associated with MtAGO12a could also be done to try to understand its possible function (for 

example, AGO7 is associated predominantly with miR390, Montgomery et al, 2008). To 

achieve this MtAGO12a must be expressed with a fusion tag that allows its purification by 

immunoprecipitation together with the small RNAs associated with it. 

6. Sequencing the small RNAs associated with the MtAGO4b and MtAGO4c to find if both genes 

are associated with the same RNAs or if each one is specific for different RNAs. 
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13. Supplementary Tables and Figures 
 

13.1. Methods - Supplementary Tables and Figures 
 

 
Supplementary Figure 1: Integrity of the RNA extracted from M. truncatula. To test the quality of the 
extracted RNA, it was run in a 2% agarose gel (0.5X TBE) stained with Sybr Safe. In this way is possible to see if 
exists degradated RNA. (A) RNA from shoots (S) and roots (R), seedlings (Sd), seed pods (Sp) and flowers (F) 
from control plants was extracted. The integrity of the RNA from shoots (B) and roots (C) of the 4 plants under the 
4 water treatments, control (Ct), moderate water deficit (MWD), severe water deficit (SWD) and recovery (Rec), 
are shown. 
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Supplementary Table 1: A. thaliana Argonaute, Dicer-like and genes responsive to water deficit mRNAs 
and protein sequences used for identification of the genes in M. truncatula. Are indicated in the table the 
gene abbreviation names, The Arabidopsis Information Resource (TAIR) accession number of the genes are 
shown and their mRNA and protein accession numbers in NCBI. 

Gene name Gene Abbreviation TAIR mRNA acession number Protein accession number 
Dicer-like         
Dicer-like 1 DCL1 AT1G01040 NM_099986.3 NP_171612.1 
Dicer-like 2 DCL2 AT3G03300 NM_111200.5 NP_566199.4 
Dicer-like 3 DCL3 AT3G43920 NM_114260.1 NP_189978.1 
Dicer-like 4 DCL4 AT5G20320 NM_122039.4 NP_197532.3 
Argonaute         
Argonaute 1 AGO1 AT1G48410 NM_179453.2 NP_849784.1 
Argonaute 2 AGO2 AT1G31280 NM_102866.2 NP_174413.2 
Argonaute 3 AGO3 AT1G31290 NM_102867.1 NP_174414.1 
Argonaute 4 AGO4 AT2G27040 NM_128262.3 NP_565633.1 
Argonaute 5 AGO5 AT2G27880 NM_179779.2 NP_850110.1 
Argonaute 6 AGO6 AT2G32940 NM_128854.3 NP_180853.2 
Argonaute 7 AGO7 AT1G69440 NM_105611.3 NP_177103.1 
Argonaute 8 AGO8 AT5G21030 NM_122111.2 NP_197602.2 
Argonaute 9 AGO9 AT5G21150 NM_122122.2 NP_197613.2 
Argonaute 10 AGO10 AT5G43810 NM_123748.2 NP_199194.1 
Genes responsive to water stress         
Early Responsive to Dehydration 1 ERD1 AT5G51070 NM_124486.2 NP_568750.1 
Plasma Membrane Intrinsic Protein 1;5 PIP1;5 AT4G23400 NM_118469.3 NP_194071.1 
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Supplementary Table 2: Primers used for gene quantification by quantitative Real Time PCR in M. 
truncatula. Indication of the amplification product size (Amplicon size) and the PCR efficiency used for each pair 
of primers obtained from real-time PCR Miner software (version 2.2). The efficiency for each gene was calculated 
doing the arithmetic mean of all efficiencies given by PCR Miner. 

Gene Side Primer sequence Amplicon size Efficiency 
Genes used to do the screen for selection of the qRT-PCR reference(s) gene(s) 
Actin 11 Forward TTGGCATCACACCTTCTAC 158 0.81825 

 Reverse CCTGAATAGCAACATACATAGC   
Actin 7 Forward GACAATGGAACTGGAATGG 196 0.8726 

 Reverse CAATACCGTGCTCAATGG   
Aprt Forward ATGTGCTGCGATTAAACTAC 139 0.9005 

 Reverse GGCTCCTTCTCCTTCAAC   
Elf-1a Forward ATTACCATTGATATTGCTTTGTG 186 0.87855 

 Reverse CTGTCCATCCTTAGAGATACC   
L2 Forward GCTTACCACAAGTTCAGAG 164 0.90345 

 Reverse GCAATGAGACCAACCTTC   
HDT3 Forward GCCAAGCACAGTGCCAAG 123 0.97335 
  Reverse CCATCAGCCAGTTTTCCTAAATC     

Genes responsive to water stress 
ERD1 Forward TTGGATTGATGAGCCGAGTG 112 0.9582 

 Reverse TGCAGCCTTTATGGCATCTT   
PIP1;5 Forward ACTGGAACTGGCATTAACCC 83 0.97465 

 Reverse ATCCAGTGGTCATTCCAAGC   
Dehydrin Forward ACGGTGCTGTTCCTATAAGC 115 0.87435 

 Reverse TCAACTGCGGTGGTTGTATC   
MI-1-P Forward AATTTAAGGAAGCAAACAAAG 98 0.81845 
  Reverse CATGGTGTCATTGAGTCC     

Dicer-like genes 
DCL1 Forward CCATAAAGTGCGAGAATGTAGG 160 0.90525 

 Reverse AAGACAAGAGACGCCTTCG   
DCL2 Forward AGACTCGGTGCTGGACTATC 170 0.91165 

 Reverse GCTCTTGAGAGGCATGAAGG   
DCL3 Forward ATATGCGGTGAGCTGTCATC 116 0.9348 
  Reverse GATCTGTTCCCAGCTTGTGT     

Argonaute genes 
AGO1 Forward GTGGAAGAGGTGGATATAGC 134 0.8695 

 Reverse GTAGGGAGCAGAAGATACAG   
AGO12b Forward GGTTACCAACCTCCGGTTAC 104 0.9793 

 Reverse TTCCCACTCCTATCCATGCT   
Ago-07 Forward CTCGCTTCCTTCTCAATTACC 137 0.95545 

 Reverse GCCAGTTCATGCTACCAAC   
Ago-11 Forward GCCTTGAGAGGTCAGGAATC 175  
 Reverse GGAAGCCACGACAACATTG   
AGO4b Forward AAGCGACCTACATTTGTCCC 89 0.9733 

 Reverse GAGGATCTCTGGAGTGTGGA   
AGO4c Forward ACAAGCAGACCAACACATTATC 176 0.89955 
  Reverse ATGAACTGTCCAACTTGAGATG     
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Supplementary Figure 2: Staining of acrylamide the gels used to make the northern blot membranes. 
Gel stained with Sybr Safe (4ul to 50ml 1X MOPS) during 10min before and during 20min after the transferring of 
the RNA to a Hybond-NX membrane.(A) Gel  with RNA from different tissues of M. truncatula: shoots (S) and 
roots (R), seedlings (Sd), seed pods (Sp) and flowers (F). (B) The RNA from the plants under the 4 water 
treatments, control (Ct), moderate water deficit (MWD), severe water deficit (SWD) and recovery (Rec). 

 

13.2. Part 1 - Supplementary Tables and Figures 
 

Supplementary Table 3: Functions of the genes used to determine the best reference gene(s) for the 
water deficit treatments imposed to M. truncatula. 
Gene Name Abreviation Gene Function Reference 

60S Ribosomal 
Protein L2 L2 or RPL2 The ribosomal protein L2 is an essential component of the ribosomal large subunit (60S) and 

have a function in the subunit association. 
Marty and 
Meyer, 1992 

Adenine 
Phosphoribosyl 
Transferase 1 

APRT Adenine phosphoribosyl transferase (APRT) is the key enzyme that converts adenine and 5-
phosphoribosyl-1-pyrophosphate to adenosine monophosphate. 

Moffatt et al. 
1991 

Actin 11 ACT11 ACT11 increase its expression in the ovule, embryo, and endosperm, indicating that it plys a 
role in the reproductive life cycle of Arabidopsis. 

Huang et al, 
1997 

Actin 7 ACT7 Arabidopsis ACT7 geneis involved in the regulation of hormone-induced (auxin and cytokinin 
or auxin alone) plant cell proliferation and callus formation. 

Kandasamy et 
al, 2001 

Elongation 
Factor 1-Alpha ELF-1α ELF-1a is a subunit of the protein synthesis factor eFEL and binds the aminoacyl-tRNAs to 

the acceptor site of ribosomes during peptide chain elongation. Sun et al, 1997 

Histone 
Deacetylase 3 HDA3 The histone deacetylases regulates the status of histone acetylation in a cell and HDA3 are 

required to establish leaf polarity. 
Ueno et al, 
2007 

 

Supplementary Table 4: Some characteristics of the genes used in the screen of the best reference 
gene(s) in the water deficit treatments imposed to M. truncatula. ORF, Open Reading Frame; MTGI, 
Medicago truncatula Gene Index (MTGI) 9.0 reference; Mt2.0 genecall, Medicago truncatula Genome Sequencing 
Project release version 2.0 (Mt2.0)accession number; Crom., chromosome localization. 

Gene  Mt2.0 genecall ORF size (bp) MTGI Chrom. Genomic region Blastn and Blastp 
L2 AC135311_31 780 TC133735 7 16423357-16421921 L2 (At2g18020) 

APRT   TC114600   APRT (AT1G27450) 

ACT11 AC184161_16 1134 TC119043 7 3709067-3711803 ACT11 (AT3G12110) 

ACT7 AC137836_27 1149 TC124607 3 34688024-34686876 ACT7  (AT5G09810) 

EF-1α   TC114384    EF-1a (AT1G07940) 

HDA3     TC130795     HDA3 (AT3G44750) 
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Supplementary Table 5: Some characteristics of ERD1, PIP1;5, Dehydrin and MI-1-PS M. truncatula 
genes. ORF, Open Reading Frame; MTGI, Medicago truncatula Gene Index (MTGI) 9.0 reference; Mt2.0 
genecall, Medicago truncatula Genome Sequencing Project release version 2.0 (Mt2.0 genecall) accession 
number. databases,  Mt2.0; Crom., chromosome localization. 

Gene name Abreviation Mt2.0 genecall ORF size (bp) MTGI Chrom. Genomic region Blastn and Blastp 
Early Responsive to 
Dehydration 1 ERD1 CT010504_34 2469 TC123036 3 27304045-27297848 ERD1 

(AT5G51070) 
Plasma Membrane 
Intrinsic Protein 1;5 PIP1;5 CT573507_13 864 TC117941 5 2379410-2377969 PIP1;5 

(AT4G23400) 

Dehydrin  AC141922_11  TC137420 4  
Putative dehydrin 
(At1g76180) 

Myo-inositol-1-
Phosphate Synthase MI-1-PS AC125389_5 1553 TC115706 3 25226161-25229597 MI-1-PS 

(AT2G22240) 
 

13.3. Part 2 - Supplementary Tables and Figures 
 

Supplementary Table 6: Targets of miR162, miR168a, b and c. 

miRNAs TC or Genecall of the miRNA target Gene Gene Function Cleavage site of the target validated 
miR162 AC150443_32.2 Dicer Like 1 miRNA Biogenesis Jagadeeswaran et al, 2009 

miR168a TC126820 Argonaute 1 miRNA Biogenesis Jagadeeswaran et al, 2009 

miR168b TC126820 Argonoute 1 miRNA Biogenesis Jagadeeswaran et al, 2009 

miR168c TC126820 Argonoute 1 miRNA Biogenesis Jagadeeswaran et al, 2009 

  TC140219 Unknown Unknown Not valiated 

 

 

Supplementary Figure 3: Cleavage site of the miR168a/b and miR168c in Argonaute 1 (AGO1) mRNA. 

The arrow is pointing to the site of cleavage in the mRNA sequence between the nucleotide 10 and 11 (from 5’ to 

3’) of miR168.  

 

13.4. Part 3 - Supplementary Tables and Figures 
 

Supplementary Table 7: Protein domains present in the translated TC114668 sequence, in protein 
AC147429_4 sequence and in the sequence originated from the joining of both sequences (TC114668 + 
AC147429_4). The protein domains were obtained using the Conserved Domains Database (CDD) database of 
NCBI. 

Gene Name Mt2.0 Genecall MTGI 9.0 Protein Domains (CDD) 

      DUF1785 PAZ PIWI 

MtAGO4a  AC147429_4 AC147429_4  142-194  194-306 351-763 
MtAGO4a 

 
 TC114668 

  
8-253 

MtAGO4a TC114668 + AC147429_4 142-194 194-306 351-779 
 

Supplementary Table 8: Protein domains from CT030192_30, CT030192_31 and the sequence 
originated from the joining of both protein sequences (CT030192_3031). The protein domains were obtained 
using the Conserved Domains Database (CDD) database of NCBI. 

Gene Name Mt2.0 Genecall Protein Domains (CDD) 

    DUF1785 PAZ PIWI 

MtAGO11 CT030192_30 192-244 244-368 413-596 
MtAGO11 CT030192_31     22-273 
MtAGO11 CT030192_3031 192-244 244-368 413-846 
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Supplementary Figure 4: Scheme demonstrating the TC114668 and AC147429_4 protein common 
regions, and the fusion done with both sequences. TC114668 and AC147429_4 give two incomplete proteins 
that complement each other, that after the junction it originates one complete protein. The protein domains were 
obtained using the Conserved Domains Database (CDD) database of NCBI. 
 

 

 

Supplementary Figure 5: Scheme showing the genomic region of CT030192_30, CT030192_31 in 
chromosome 3 and the distance between both sequences. CT030192_30 and CT030192_31 give two 
incomplete proteins. But after use of Fgeneh-M software in the genomic region belonging to both genes, was 
obtained just one coding sequence originating one complete protein. The protein domains were obtained using 
the Conserved Domains Database (CDD) database of NCBI. 
 

 

Supplementary Figure 6: Nucleotide coding sequence of AGO4a resulted from the junction of Black 
TC114668 (black) and AC147929_4 (blue). 
CCCTGTGGAAGGGAAGGGTGTTGGGAGGAAGATTATGGACAGGGTGCAGGAGACATACGCCTCTGACTTGAATGGCAAGGAATTTGCATATGATGGGGAGAAAAGCT
TGTTTACTATTGGCTCTCTTCCACAAAACAAGCTCGAGTTTGAAATTGTTCTAGAGGATGTTGTTTCCAGCAGAAATAATGGAAATCGTAGTCCTGATGCTAATGGG
GACAATGAAGCTGACAAAAAGAGGGTGCGACGCCCATACAATGCAAAGACATTTAAAGTTGAGATTAGCTTTGCTACAAAAGTTCCTATGTATGCCATAGCCAATGC
GTTACGCGGGCAGGAAACTGAGAATTTCCAAGAAGCAGTCAGAGTTCTCGATATCATATTGAGGCAACATGCTGCTAAGCAGGGCTGCCTACTTGTGCGCCAATCTT
TCTTCCACAATGATCCCAAGAATTTTGCTGATGTGGGGGGTGGTGTTCTAGGCTGTCGAGGATTCCATTCAAGTTTTAGAGCTACACAGAGCGGGCTCTCTCTTAAC
ATAGATGTCTCAACTACCATGATAATTCAACCTGGGCCTGTGGTGGATTTCTTAATTTCCAATCAAAATGTTAGAGATCCTTTTCAGATTGACTGGGGAAAGGCCAA
GAGGACCCTAAAAAATCTGAGGGTGAAGACTCATCCATCCAATCAAGAGTGGAAAATATGCGGACTCAGCGAAGTCCCATGCAAAGAGCTTACTTTTACTTTGAAGA
AAAGGGATGGTGATGGTACTGATGAGATGACTGTTCTGGATTATTTTACTAATGTCCGGAAGATAGATCTGCGCTACTCTGCTGATCTTCCATGTATTAATGTTGGC
AGGCCCAAACGGCCAACATATTTCCCCATTGAGCTGTGTGAATTGGTATCACTCCAACGATATACAAAAGCTCTTTCCACACTTCAAAGGGCTTCACTGGTGGAGAA
GTCCAGACAGAAGCCACAAGAGAGAATGAGAATTTTGTCGGATGCACTTAAAACTAGCAACTACGGGGCTGAACCTCTGCTTCAAAGTTGTGGAATTTCTATAAGCA
CAGGCTTCACTCAAGTGGAGGGACGTGTTTTGCCTGCTCCAAAGTTGAAGTTCGGCAATGGTGAAGATTTCACTCCGAGAAATGGAAGATGGAATTTCAACAACAAG
AAATTTGTGCAGCCAACAAAGAAGATAGAAAAATGGGCTGTGGCAAACTTTTCTGCACGATGTGATGTACGAGGACTTGTGAGGGATATAATTAGAATTGGAAATAT
GAAAGGAATTATGATTGACCAACCATTCGATGTGTTTGAAGAAAATCCTCAGTTTAGACGTGCTCCACCAATGGTGAGGGTAGAGAAAATGTTTGAGGACATTCAGT
CCAAACTTCCAGGGGCTCCTCAATTCCTTCTTTGTTTGCTTCCTGATCGGAAAAACTGTGATATTTATGGGCCATGGAAAAAGAAGAATCTTGCTGATTTTGGAATC
GTTAATCAGTGCATGTGTCCTTTGAGAGTCAATGATAATTATTTGGGTAATATTATGTTGAAGATAAATGCCAAGCTTGGTGGGTTGAACTCTTTGTTGGGTGTTGA
AAGTTCTCCATCTCTTCCTATTGTTTCCAAAGCACCTACCCTCATTCTAGGAATGGATGTGTCCCATGGCTCACCAGGGCAGACTGATATTCCTTCAATTGCCGCCG
TTGTCAGCTCTAGACAGTGGCCTCTGATTTCAAAATATAGGGCATGTGTTCGCACACAGTCTGCAAAAGTTGAAATGATAGATAATTTGTTCAAGAAAGTATCAGAT
ACCGAGGATGAAGGCATCATGAGGGAACTCTTGCTCGATTTCTATACTAGTTCTAAGAATAGAAAACCAGATAACATAATTATTTTCAGGGATGGTGTTAGTGAGTC
ACAATTCAATCAAGTTTTGAATATTGAACTCGACCAGATCATTGAGGCATGCAAGTTTCTTGATGAAAATTGGACTCCAAAATTTGTGGTAATTGTTGCTCAAAAGA
ACCACCACACAAGATTCTTCCAGCCCAATTCTCCTGACAACGTCCCACCTGGAACTGTTATCGACAATAAAATTTGTCATCCAAGAAACTATGATTTCTACCTCTGT
GCTCATGCTGGGATGATAGGCACCAGTAGGCCTACCCACTACCATGTGCTGCTTGATGAGATTGGCTTCTCCCCTGATGAACTTCAGGAGCTTGGTCATTCCCTGTC
ATATGTTTACCAGAGGAGCACGACTGCTATTTCAGTTGTTGCACCTATATGCTATGCACACTTGGCCGCTACTCAGTTGGGGCAGTTCATGAAATTCGAGGATAAAT
CTGAGACATCCTCAAGTCATGGTGGGCTGAGTGCTGCAGGAGCTGTACCTGTCCCTCAGCTGCCAAAGTTGCAGGACAACGTGTGCAACTCCATGTTCTTTGT 
TTGA 
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Supplementary Figure 7: Nucleotide coding sequence of AGO11 resulted from the use of Fgeneh-M 
software in the genomic region belonging to both genes, obtaining a coding region constituted for the 
junction of CT030192_30 (black) and CT030192_31 (blue). 
ATGGAATACTCATTGAACAATGAGGAAATGAGAAAGACATTGAATTCAAACCATGTGCCCATGGCCAGGAGAGGTCTTGGATCCAAGGGAGCCAAGATACAACTCTT
AGCGAACCATTTTCGAGTTGGCCTGAGCAAGAATGACGGCTACTTCTATCACTACAATGTTGCTTTATGTTATCAAGATGGACATGCGGTTGAAGTGAAAGGAGTTG
GGAGAAAAGTCATTGACAAGCTTTGTGAAACATATGATGTATTAAGAAACAAGAATTTTGCATATGATGGCGAGAAAAGTTTATTCACTCTTCGTTCTCTACATCAT
AAAAAGCAGGAATTCATTGTTGTGTTAGAGGAAGTTTCATCAACGAGAGTTGGAAGCAACCCTTCTGAAGCAACCAAGAGAATGAAGCATCAATCTCGGTCCAAAAC
ATTTAAGGTTGAGATTAGTCATGTATCTAAAATTCCGTTACAAGAAATTACAGATGCCTTGAGAGGTCAGGAATCTGAACACTATCAGGAAGCATTTAATTTCCTTG
ACACAATACTGAGGCAGAATGCAGCAAAACAGGGATGTCTCCGTATTCATAAATCGTACTTTCACGATAATCAAAAGAATATTACAAACCTGGAAGGTGGTATTCAA
TGTTGTCGTGGCTTCCATTCGAGCTTCAGAGTCACACAAAGAGGTTTATCTCTCAATGTTGATGTGTCAACTACATTACTTGTAAAGCCTGGTCCTGTAGTGGACTT
CCTTCTCCAGAATCAGAATGTTCAGAAACCAAACTTGATTGATTGGACCAAGGTTATATTGCTCCTCCATCTCGAAGTAGAGGCAAAAAGAATGTTGAAAAATCTTA
GAATCAAGGCTAACAATACACAACGCAAAATCACTGGACTAAGTGAAAAGTCCTGCATGACACAAAATTTTTTATTTAAACATGGAAATGATGCTAATGGTGAAGTG
CAGTCAAGTGAAATAACAATTTATGAATACTTCAAACGCCACAAAAAGATTGAACTTTGTTATTCTGTTGATATGCCATGCATCAATGTTGGAAAACCAAAGAGGCC
AATTTATTACCCTATGGAGTTATGCACATTAGTCTCATTGCAGCGATACACTAAGCCGTTAGCGCATAAACAAAGGGCTCAACTGATATTGGAATCAAGGACTAGTC
CTCGTGAAAGGAAAGAAGCTTTGCAATATTCTTTAAGAAACAGCAGATATGGCGATGAGCCTATGCTTCGCTCTTTAGGGATTACTATCGAACCTTCCTTTACACAA
GTTGACGGTCGTGTCTTGCAACCTCCGACACTTATTGTTGGAAGGGGACAGAACTTTTGTCCCCGAAATGGGAGCTGGAATTTCAATGATAAGAAACTAATTGAACC
TGTGAAGATTAAGCGTTGGGCAATTGTAAACTTTTCGTCACAGTGTGATACGAAACATTTGTGCAGTATGATTAAAAAATGTTCTGAAATGAAAGGGATGCTCATAG
ATCCTCCGTTCGACATATTTGAAGAGGATATTCGCCATAGGAATGAGTCGCCATTTGCGAGGGTTGCAAGAATGTATGAAATGGTAAAGGCCAAGCTACCTGGACCC
CCTACGCATCCTCTAGCTCAGCTTCTTTTGTGTATTCTTCCGGTTAGCAGGAATTGTAACATTTATGGTCCTTGGAAAAGAAGATGTCTTGTTGATGAAGGGATTGC
AACACAATGCATTGCTCCAACAAAAATTAATGATCATTACATTATTAATGTTCTATTGAAAATTAATGCAAAGCTTGGTGGGATGAATTCCTTTTTGTTAACTGAAT
TTAAGCATTCGATACCACTGTTTTCAAAAATACCTACATTGGTTATTGGAATGGATGTTTCACATGGATCTCAAGGTCAATCAGAAGCACTATCCATTGCTGCGGTT
GTGAGCTCAAGATGTTGGCCTCAAATCTCTCGTTACAAAGCTGTAGTCCGCACTCAGTCGTCAAAAGTAGAGATCGTTCAGTCTCTATTCAAGCCTGTTTCTGATAC
TAAGGATGACGGTATCATCAGTGAGTTGCTTAAAGACTTCCAAACAACTTCAGGAGTAAAGCCTCAACAAATTATAATTTTCAGGGACGGCGTGAGCGAATCACAGT
TCAACCAAGTCCTCAACATTGAATTGAATGAAATCATAAAGGCATGTAAGTGTTATGATGAAAGTTGGTGTCCAAAGTTTACTTTGATTGTTGCTCAGAAGAATCAT
CACACTAGGTTCTTCAAAGCCAATTCTCCTCAAGAAAATGTTTCACCTGGAACTGTTATTGATAACACTATATGTCATCCCAAAGACAATGACTTCTACATGTGTGC
ACATGCTGGGAGGATTGGCACAAGTCGTCCTACTCATTACCATGTTTTATATGATGAAATTGGGTTCTCAGCAGATAATTTACAAGAATTTGTGCATTCTCTATGTT
ATGTGCACCAGAGAAGCACAAATGCCATATCAATAGTTGCACCAATATATTATGCTGACCTAGCTGCTGCTCAGATAGCACAATTTATAAAATATGATGAGTCAGAG
AATCTTTCCAGCCACAATGAATTCATATCTCAAATACCTACTGAGTTACCACGTCTTCATGAACGAGTTGCAGATTCTATGTTCTTCTGTTAA 

 

Supplementary Table 9: Protein domains and their localization on the Dicer-like protein sequences of 
M. truncatula using the Conserved Domains Database (CDD) database of NCBI. 
Gene Name Protein Domains (CDD) 

 
DExD Helicase-c Duf283 PAZ RNaseIII-a RNaseIII-b dsRB-a dsRB-b 

MtDCL1 234-386 624-740 816-905 1149-1354 1399-1582 1617-1772 1776-1836 1865-1933 
MtDCL2 33-187 383-483 555-628 806-917 964-1115 1147-1301 1305-1370 

 MtDCL3 67-214 398-521 585-668 917-1053 1096-1260 1306-1456 1462-1528 1609-1692 
 

Supplementary Table 10: Protein domains and their localization on the Argonaute protein sequences 
of M. truncatula using the Conserved Domains Database (CDD) database of NCBI. 
Gene Name Protein Domains (CDD) 

 
DUF1785 PAZ PIWI 

MtAGO1 324-376 376-490 535-986 
MtAGO12a 178-230 230-344 389-839 
MtAGO12b 204-241 241-255 400-490 
MtAGO2 17-69 71-185 233-669 
MtAGO7 316-368 379-484 533-976 
MtAGO4a 142-194 194-306 351-779 
MtAGO4b 222-274 274-390 435-867 
MtAGO4c 188-240 240-357 401-831 
MtAGO11 192-244 244-368 413-846 
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Supplementary Figure 8: Amino acid alignment of the PIWI domains of M. truncatula (Mt) and A. thaliana (At) 
Argonaute proteins. The protein sequences were aligned using CLUSTAW. The amino acids residues 
corresponding to the conserved aspartate, aspartate and histidine (DDH) triad residues are marked in red, while 
the A. thaliana Argonaute 1 histidine in the position 800 (H800) is in blue. Amino acid positions corresponding to 
the beginning and end of the PIWI Domains in each protein are mentioned. 
 
AtAGO4   626 KINAKLGGLNSMLSVERTPAFT--VISKVPTIILGMDVSHGSPGQSD-VPSIAAVVSSREWPLISKYRASVRTQPSKAEMIESLVKKNG-TE----DDGIIKELLVDFYT 
MtAGO4a  525 KINAKLGGLNSLLGVESSPSLP--IVSKAPTLILGMDVSHGSPGQTD-IPSIAAVVSSRQWPLISKYRACVRTQSAKVEMIDNLFKKVSDTE----DEGIMRELLLDFYT 
MtAGO4b  572 KINAKLGGMNSLLGVEHSPSIP--IVSKAPTLILGMDVSHGSPGQTE-IPSIAAVVSSRQWPLISKYRACVRTQGAKVEMIDNLFKPVSDTE----DEGIIRELLIDFYN 
MtAGO4c  608 KINAKLGGMNSWLGVEHSRSIP--IVSKVPTLILGMDVSHGSPGQPD-IPSIAAVVSSRKWPLISKYRACVRTQGSKVEMIDNLFKPVSDKE----DEGIIRELLLDFFH 
AtAGO8   570 KINAKLGGLNSVLDMELSGTMP--LVMRVPTIIIGMDVSHGSPGQSDHIPSIAAVVSSREWPLISKYRACVRTQSPKVEMIDSLFKPVSDKD----DQGIMRELLLDFHS 
AtAGO9   598 KINAKLGGLNSLLAMERSPAMP--KVTQVPTIIVGMDVSHGSPGQSD-IPSIAAVVSSRQWPLISKYKACVRTQSRKMEMIDNLFKPVNGKD----E-GMFRELLLDFYY 
MtAGO11  591 KINAKLGGMNSFLLTEFKHSIP--LFSKIPTLVIGMDVSHGSQGQSE-ALSIAAVVSSRCWPQISRYKAVVRTQSSKVEIVQSLFKPVSDTK----DDGIISELLKDFQT 
AtAGO6   589 KINSKLGGINSLLGIEYSYNIP--LINKIPTLILGMDVSHGPPGRAD-VPSVAAVVGSKCWPLISRYRAAVRTQSPRLEMIDSLFQPIENTEK--GDNGIMNELFVEFYR 
AtAGO5   687 KINVKTGGRNTVLNDAIRRNIP--LITDRPTIIMGADVTHPQPGEDS-SPSIAAVVASMDWPEINKYRGLVSAQAHREEIIQDLYKLVQDPQRGLVHSGLIREHFIAFRR 
MtAGO12a 569 KINVKMGGRNTVLLDAISCRIP--LVSDVPTIIFGADVSHPESGEDV-CPSIAAVVASQDWPEVTKYAGLVCAQPPREEIIKDLFKCWNDPRRGIVYGGMIRELLLSFQK 
MtAGO12b     -------------------------------------------------------------------------------------------------------------- 
AtAGO10  575 KINVKMGGRNTVLVDAISCRIP--LVSDIPTIIFGADVTHPENGEES-SPSIAAVVASQDWPEVTKYAGLVCAQAHRQELIQDLYKTWQDPVRGTVSGGMIRDLLISFRK 
AtAGO1   728 KINVKVGGRNTVLVDALSRRIP--LVSDRPTIIFGADVTHPHPGEDS-SPSIAAVVASQDWPEITKYAGLVCAQAHRQELIQDLFKEWKDPQKGVVTGGMIKELLIAFRR 
MtAGO1   716 KINVKVGGRNTVLVDALSRRIP--LVSDRPTIIFGADVTHPHPGEDS-SPSIAAVVASQDWPEITKYAGLVCAQAHRQELIQDLFKQWQDPVRGTLTGGMIKELLISFRR 
AtAGO7   713 KINAKIGGSMTELYNSIPSHIPRLLRPDEPVIFMGADVTHPHPFDDC-SPSVAAVVGSINWPEANRYVSRMRSQTHRQEIIQDLD-------------LMVKELLDDFYK 
MtAGO7   698 KINAKVGGCTVALYNSLPSQLPRLFNIDEPVMFMGADVTHPHPLDDS-SPSVAAVVGSMNWPTANKYISRIRSQTHRQEIIADLG-------------AMVGELLEDFYQ 
MtAGO2   420 KINAKIGGSNVELIN-RLPHFE----DESHVMFIGADVNHPGSRDTN-SPSIVAVVATTNWPAANRYAARVCAQEHCTEKILNFG-------------EICLDLVRHYEK 
AtAGO2   823 KMNAKVGGSNVELMD-TFSFFK----KEDEVMFIGADVNHPAARDKM-SPSIVAVVGTLNWPEANRYAARVIAQPHRKEEIQGFG-------------DACLELVKAHVQ 
AtAGO3   715 KINAKVGGTNVELVDNIFSFFK----KEDKVMFIGADVNHPAAHDNM-SPSIVAVVGTLNWPEANRYAARVKAQSHRKEEIQGFG-------------ETCWELIEAHSQ 
 
AtAGO4       SSNKRKPEHIIIFRDGVSESQFNQVLNIELDQIIEACKLLDANWNPKFLLLVAQKNHHTKFFQPTSP------------ENVPPGTIIDNKICHPKNNDFYLCAHAGMIG 
MtAGO4a      SSKNRKPDNIIIFRDGVSESQFNQVLNIELDQIIEACKFLDENWTPKFVVIVAQKNHHTRFFQPNSP------------DNVPPGTVIDNKICHPRNYDFYLCAHAGMIG 
MtAGO4b      SSGNRKPDNIIIFRDGVSESQFNQVLNIELSQIIEACKFLDEKWNPKFLVIVAQKNHHTKFFQPGSP------------DNVPPGTVVDNKICHPRNYDFYMCAHAGMIG 
MtAGO4c      SSEERRPENIIIFRDGVSESQFNEVLNVELSQIIEACKFLDENWNPKFMVIVAQKNHHTKFFQPRSP------------DNVPPGTVVDSKICHPRNYDFYMCAHAGMIG 
AtAGO8       SS-GKKPNHIIIFRDGVSESQFNQVLNIELDQMMQ-------------------INHHTKFFQTESP------------NNVLPGTIIDSNICHQHNNDFYLCAHAGKIG 
AtAGO9       SSENRKPEHIIIFRDGVSESQFNQVLNIELDQMMQACKFLDDTWHPKFTVIVAQKNHHTKFFQSRGP------------DNVPPGTIIDSQICHPRNFDFYLCAHAGMIG 
MtAGO11      TS-GVKPQQIIIFRDGVSESQFNQVLNIELNEIIKACKCYDESWCPKFTLIVAQKNHHTRFFKANSPQ-----------ENVSPGTVIDNTICHPKDNDFYMCAHAGRIG 
AtAGO6       TSRARKPKQIIIFRDGVSESQFEQVLKIEVDQIIKAYQRLGESDVPKFTVIVAQKNHHTKLFQAKGP------------ENVPAGTVVDTKIVHPTNYDFYMCAHAGKIG 
AtAGO5       AT-GQIPQRIIFYRDGVSEGQFSQVLLHEMTAIRKACNSLQENYVPRVTFVIVQKRHHTRLFPEQHGNRDMTD----KSGNIQPGTVVDTKICHPNEFDFYLNSHAGIQG 
MtAGO12a     AT-GKKPCRILFYRDGVSEGQFYQVLLYELDAIRKACASLEPGYQPPVTFVVVQKRHHTRLFSDNHNDRNSMD----RSGNILPGTVVDTKICHPTEFDFYLCSHAGVQG 
MtAGO12b     -------------------------------------------------------------------------------------------------------------- 
AtAGO10      AT-GQKPLRIIFYRDGVSEGQFYQVLLYELDAIRKACASLEPNYQPPVTFIVVQKRHHTRLFANNHRDKNSTD----RSGNILPGTVVDTKICHPTEFDFYLCSHAGIQG 
AtAGO1       ST-GHKPLRIIFYRDGVSEGQFYQVLLYELDAIRKACASLEAGYQPPVTFVVVQKRHHTRLFAQNHNDRHSVD----RSGNILPGTVVDSKICHPTEFDFYLCSHAGIQG 
MtAGO1       AT-GQKPQRIIFYRDGVSEGQFYQVLLFELDAIRKACASLEPNYQPPVTFVVVQKRHHTRLFASNHQDKSSVD----RSGNILPGTVVDSKICHPTEFDFYLCSHAGIQG 
AtAGO7       AV-KKLPNRIIFFRDGVSETQFKKVLQEELQSIKTACS-KFQDYNPSITFAVVQKRHHTRLFRCDPD-----------HENIPPGTVVDTVITHPKEFDFYLCSHLGVKG 
MtAGO7       EV-EKLPNRIIFFRDGVSETQFYKVLQEELQSIKQACSSRFHGYKPFITFVVVQKRHHTRLFPADTDQSSMHNNFHFQYENIPPGTVVDSVITHPKEFDFYLCSHWGVKG 
MtAGO2       LN-KVRPQKIVIFRDGVSESQFHMVLGEELKDLKTVFQ--HSNYFPTITLIVAQKRHQTRLFPAGVR-EGAPS------GNVFPGTVVDTKVVHPFEFDFYLCSHYGSLG 
AtAGO2       AT-GKRPNKIVIFRDGVSDAQFDMVLNVELLDVKLTFE--KNGYNPKITVIVAQKRHQTRFFPATNN-DGSDK------GNVPSGTVVDTKVIHPYEYDFYLCSHHGGIG 
AtAGO3       AP-EKRPNKIVIFRDGVSDGQFDMVLNVELQNVKDVFA--KVGYNPQITVIVAQKRHQTRFFPATTSKDGRAK------GNVPSGTVVDTTIIHPFEYDFYLCSQHGAIG 
 
AtAGO4       TTRPTHYHVLYDEIGFSADELQELVHSLSYVYQRSTSAISVVAPICYAHLAAAQ----- 879 
MtAGO4a      TSRPTHYHVLLDEIGFSPDELQELGHSLSYVYQRSTTAISVVAPICYAHLAATQ----- 779 
MtAGO4b      TSRPTHYHVLLDEIGFSPDDLQELVHSLSYVYQRSTTAISVVAPICYAHLAASQVGQFM 867 
MtAGO4c      TSRPTHYHVLLDEIGFSPDDLQELVHSLSYVYQRSTTAISVVAPICYAHLAASQVGQFM 831 
AtAGO8       TTRPTHYHVLYDEIGFDTDQLQELVHSLSYVYQRSTTAISLVAPICYAHLAAAQ----- 805 
AtAGO9       TTRPTHYHVLYDEIGFATDDLQELVHSLSYVYQRSTTAISVVAPVCYAHLAAAQ----- 851 
MtAGO11      TSRPTHYHVLYDEIGFSADNLQEFVHSLCYVHQRSTNAISIVAPIYYADLAAAQI---- 846 
AtAGO6       TSRPAHYHVLLDEIGFSPDDLQNLIHSLSYVNQRSTTATSIVAPVRYAHLAAAQVAQFT 850 
AtAGO5       TSRPAHYHVLLDENGFTADQLQMLTNNLCYTYARCTKSVSIVPPAYYAHLAAFRARYYM 957 
MtAGO12a     TSKPAHYHVIWDDNKFSADEIQSLTNNLCYTYARCTRSVSLVPPAYYAHLAAYRARFYM 839 
MtAGO12b     ----------------------------------------------------------- 
AtAGO10      TSRPAHYHVLWDENNFTADGIQSLTNNLCYTYARCTRSVSIVPPAYYAHLAAFRARFYL 945 
AtAGO1       TSRPAHYHVLWDENNFTADGLQSLTNNLCYTYARCTRSVSIVPPAYYAHLAAFRARFYM 998 
MtAGO1       TSRPAHYHVLWDENNFSADGLQSLTNNLCYTYARCTRSVSIVPPAYYAHLAAFRARFYM 986 
AtAGO7       TSRPTHYHILWDENEFTSDELQRLVYNLCYTFVRCTKPISIVPPAYYAHLAAYRGRLYI 949 
MtAGO7       TSRPTHYHVLLDENKFTSDELQKLVYNLCFTFVRCTKPISLVPPAYYAHLAAYRGRLYL 976 
MtAGO2       TSKPTHYHVLWDEHRFTSDNLQKLIYDMCFTFARCTKPVSLVPPVYYADLAAYRGRLYY 669 
AtAGO2       TSKPTHYYTLWDELGFTSDQVQKLIFEMCFTFTRCTKPVSLVPPVYYADMVAFRGRMY- 963 
AtAGO3       TSKPTHYYVLSDEIGFNSNQIQKLIFDLCFTFTRCTKPVALVPPVSYADKAASRGRVYY 1074 
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