
 

  Universidade de Lisboa 

Departamento de Biologia Animal 

Faculdade de Ciências 

The role of microRNAs in 

 X-Linked Myotubular Myopathy 

Mariana Miranda Fontes 

Mestrado em Biologia Humana e Ambiente 

2009 



 
 

  
Universidade de Lisboa 

Departamento de Biologia Animal 

Faculdade de Ciências 

The role of microRNAs in 

 X-Linked Myotubular Myopathy 

Mariana Miranda Fontes 

Mestrado em Biologia Humana e Ambiente 

2009 

Alan H Beggs, PhD, Children´s Hospital Boston, Harvard Medical School  

Maria do Mar Oom, PhD, Faculdade de Ciências da Universidade de Lisboa 

 

Dissertation co-orientated by: 



Acknowledgments: 

First and foremost I would like to thank my advisor and tutor, Prof. Dr. Alan Beggs, for all the motivation 

and scientific inspiration during this past year. I am truly grateful and thankful for all the opportunities 

you created to me and for all the excitement and enthusiasm you put on your support to my ideas and 

dreams.  It definitely couldn’t have made my experience more pleasant. Thank you for your sensitivity 

and care, contagious passion for research and knowledge. 

I also would like to specially thank Prof. Dr. Vandana Gupta for all the motivation in the everyday 

learning experience, for all the incredible scientific ideas, unequal patience and critic point of view that 

made this thesis project such an exciting challenging journey.  Thank you for your unstoppable 

dedication and continuous help! 

To my parents and grandma for all the patience and support since the early first day I decided to do my 

way in this project until the last minute, and I’m sure the minute after. It is unbelievable for me how you 

can always be there, believe in me so hard and pull me up so easily. Your help and positive attitude is so 

fascinating and inspiring to me.  

To my best and forever friends Ines Freitas, Ana Queiros, Matthew Raphael, Joana Reis, Joao Cerveira, 

Joao Delfim and Pedro Fonseca for being there and sharing with me their fun times and frustrations.  A 

particular thank you to the first three ones for this amazing year filled with incredible wonderful times 

together, strong friendship, and constant support in most stressful moments. 

To my advisor and friend Prof. Dr. Maria do Mar Oom for the constant connection, care and excitement 

about my career progression. Thank you.  

And finally I would like to thank my master’s coordinators Prof. Dr. Deodalia Dias e Prof. Dr. Ana Crespo 

for making this experience possible and supporting the development of my master thesis outside of 

Portugal.  

 

 

 

 

 

 



Abstract 

 

X-linked myotubular myopathy (XLMTM) is a congenital neuromuscular disorder characterized 

by profound hypotonia and severe skeletal muscle weakness in the affected newborn males. The 

pathology is associated with mutations in the MTM1 gene leading to loss of function of the resulting 

encoded protein, myotubularin. Myotubularin is a phosphoinositol lipid phosphases known to be 

involved in endosome trafficking and membrane remodeling, however, the molecular mechanisms 

underlying myotubular myopathy are not yet clear. 

 

MicroRNAs (miRNAs) are post transcriptional modulators of gene expression and play an 

important role in many developmental processes and diseases. To identify functional miRNA-protein 

networks that may be dysregulated in myotubular myopathy, we performed miRNA as well as mRNA 

expression profiling of skeletal muscle of Mtm1 knockout mice. Bioinformatic analysis and real-time RT-

PCR validation resulted in identification of 12 miRNAs that showed significantly differential expression in 

Mtm1 mice. The functional targets of these miRNAs in myotubular myopathy were identified by a 

combinatorial approach in which computationally predicted targets genes of these 12 miRNAs were 

matched with statistically altered genes obtained by mRNA profiling of skeletal muscle tissues from 

Mtm1 mice.  Ontological classification of target genes revealed genes primarily belonging to skeletal 

muscle development and maintenance, regulation of cell cycle and differentiation of muscle fibers. 

 

Expression analyses of miRNA-target genes identified from this study were also performed 

during earlier developmental time points (2 and 4 weeks) in Mtm1 mice for a better comprehensive 

insight of miRNA-mRNAs in the progression of the disease. We observed that an increase in the severity 

of XLMTM is associated with an increase in the fold change of several miRNAs and their target genes, 

suggesting their crucial role in pathology of myotubular myopathy.  We hope understanding the 

molecular pathways involving these miRNA-mRNA networks, which are disrupted in myotubular 

myopathy, will contribute to uncovering the mechanisms of muscle development and maintenance and 

the development of new therapies for myotubular myopathy. 

 

 

 

 



Resumo 

 Miopatia miotubular associada ao cromossoma X (XLMTM) é  a forma mais severa de um grupo 

de doenças musculares congénitas denominado miopatias centronucleares.   XLMTM é caracterizada 

por uma marcada  redução de tónus muscular e profunda debilitação do músculo esquelético em 

neonatais do sexo masculino. Como consequência, a maioria dos doentes falece nos primeiros oito 

meses de vida, devido a insuficiência respiratória. XLMTM tem uma estimada incidência de 1:50.000 

neonatais, estando associada a mutações no gene MTM1 que conduzem à perda de função da proteina 

por este codificado, miotubularina. A miotubularina é o membro prototipico de uma família 

evolucionariamente conservada de fosfatases de fosfatidilinositois (PtdIns), envolvida na regulação de 

tráfico endossomal e remodelação membranar. As vias bioquímicas reguladas por miotubularina estão 

fundadamente reconhecidas, no entanto o modo como a deficiência em miotubularina e 

consequentemente uma alteração nos níveis de  fosfatidilinositol 3-P e fosfatidilinosital (3,5)P2 

conduzem a um fenótipo musculo-esqueletico especifico é ainda indeterminado.  

 Estudos recentes atribuem à miotubularina um papel crucial no manutenção dos tubulos 

transversais (tubulos T). Os túbulos T são parte integral das triadas que constituem a região subcelular 

responsável pelo mecanismo de excitação e contração muscular. Os túbulos T são estruturas 

membranes que requerem constantes oscilações dos níveis de PtdIns, regulados por miotubularina. 

Segundo este modelo,  uma deficiência em miotubularina conduz a uma descoordenação dos 

mecanismos de contração muscular, resultando na atrofia muscular observada nos doentes de miopatia 

miotubular.  

 Neste projecto pretendemos clarificar as vias afectadas pela ausência de miotubularina e 

compreender o envolvimento dos microRNAs na patofiosiologia da miopatia miotubular. Os microRNAs 

(miRNAs) são moléculas recentemente descobertas que modulam a expressão génica a nível pos-

transcripcional.  Após transcrição, transporte para o citoplasma e vários ciclos de processamento 

mediados pelas RNAses III Drosha e Dicer, os miRNAs funcionam como moléculas guia, que reconhecem 

por complementaridade as regiões 3’UTR dos mRNA alvo e promovem o seu silenciamento. Elevados 

graus de complementaridade miRNA:mRNA geram  degradação do mRNA alvo enquanto que ligações 

com mismatch conduzem a repressão da tradução. A importância dos microRNAs no desenvolvimento 

muscular e em estados patológicos foi previamente demonstrada através da formação de Dicer 

knockouts condicionais e reportada em várias doenças neuromusculares. 



 Com o intuito de identificar potenciais vias reguladas por microRNAs alteradas na miopatia 

miotubular uma abordagem baseada em microarrays foi adoptada. O perfil de expressão de miRNAs e 

mRNAs foi primariamente efectuado e potenciais interações miRNA-target identificadas. miRNA 

profilling e subsequente validação por real time PCR revelaram expressão diferencial de miRNAs em 

ratinhos deficientes em miotubularina quando comparados com os controlos, demonstrando o seu 

envolvimento na miopatia miotubular. Na tentativa de decifrar redes miRNA/mRNA alvo relevantes para 

o desenvolvimento de XLMTM, o perfil de expressão de mRNAs foi comparado com a lista de potenciais 

alvos dos microRNAs obtidos como significantes nesta experiência por abordagens bioinformaticas. A 

combinação dos resultados de mRNA profiling (com 424 genes significantes) para a identificação de 

potenciais alvos dos 12 microRNAs obtidos como significantes nas análises de miRNA microarrays 

resultou em 142 genes alvos diretos de microRNAs.  Este grupo de genes potencialmente regulados por 

miRNAs e diferencialmente expressos no contexto da patologia foram subsequentemente classificados 

em grupos funcionais sobre-representados usando o software GOstat. As categorias funcionais de 

contração muscular, regulação da progressão através do ciclo celular, morfogénese do músculo 

cardíaco, assim como desenvolvimento do músculo esquelético e componentes do sarcomero foram 

identificadas.  

 Dada a relevância biológica dos grupos funcionais obtidos, estudos posteriores basearam-se em 

genes presentes nestas categorias. Apenas genes que apresentaram um padrão de expressão diferencial 

contrário ao dos seus potenciais miRNAs foram considerados uma vez que os microRNAs regulam 

negativamente a expressão dos seus mRNAs alvo. Subsequente validação da expressão dos genes 

selecionados por qRT-PCR array permitiu a formulação de hipóteses quanto às vias moleculares 

envolvidas na XLMTM.  

 Estes estudos permitiram verificar que a atrofia muscular observada em pacientes de miopatia 

miotubular é dependente da expressão de FoxO1/Murf1/Mafbx. FoxO1 é um membro crucial da via de 

sinalização celular Akt/Pi3k que conduz a atrofia muscular como resposta a uma redução da actividade 

desta via. FoxO1 promove um aumento de expressão de componentes chave da via de ubiquitinacao-

proteossoma. Em particular, Murf1 e Mafbx (moléculas sobreexpressas em XLMTM como foi detectado 

por análises de microarrays)  foram identificados como marcadores necessários para a activação de 

atrofia muscular. Igualmente várias proteínas integrais do sarcomero previamente reportadas como 

envolvidas no processo de atrofia muscular foram encontradas sobre-expressas e potencialmente alvo 

de miRNAs sub-expressos na miopatia miotubular.  



 Estes resultados sugerem que estes miRNAs possam talvez não ter um papel específico nesta 

patologia, mas representar um mecanismo de regulação comum a outras doenças musculares. Desta 

forma, usando adenovirus para sobre-expressar estes miRNAs (sub-expressos em condições de atrofia 

muscular) poderá ser possível reduzir os níveis de proteínas implicadas no processo de atrofia e 

consequentemente atenuar o progresso da miopatia miotubular, entre outras doenças musculares. 

Adicionalmente foi também observada uma persistente sub-expressão de microRNAs alvo de genes 

inibidores de proliferação celular e respectiva sobre-expressão dos respectivos mRNA. Entre este os 

genes supressores de tumores p21, Gadd45a e Dusp4 representam alvos candidatos de microRNAs sub-

expressos nesta doença. Igualmente, marcadores de diferenciação celular foram consistentemente 

detectados sobre-expressos.  

 Por outro lado, foi observado um aumento de expressão de genes (regulados por miRNAs) 

envolvidos no controlo da manutenção da população de células estaminais em ratinhos mutantes para 

miotubularina. Estas observações despoletaram o desenvolvimento de hipóteses explicativas da 

incapacidade do músculo esquelético de responder a estímulos regenerativos. É postulado que a 

incapacidade do músculo de ratinhos mutantes de promover hipertrofia muscular poderá estar 

correlacionada com um defeito no potencial proliferativo das células estaminais. De uma forma 

cooperativa vários miRNAs pertencentes a um mesmo cluster genomico (Dlk1-Dio3 cluster no 

cromossoma 12 em Mus musculus) poderão ser responsáveis pela sobre-expressão de genes inibidores 

do ciclo celular e igualmente genes indutores da diferenciação celular.  

 Estas evidências sugerem que uma redução na capacidade de proliferação celular acoplada a um 

aumento de proteinas de diferenciação nos ratinhos knockout deficientes em miotubularina, resultam 

na produção de apenas um pequeno pool de satellite cells activadas (células estaminais progenitoras de 

tecido muscular), insuficientes para uma eficiente reparação da injuria muscular. Esta incapacidade 

regenerativa  poderá ser um dos mecanismos básicos fundamentais a contribuir para o desenvolvimento 

de atrofia muscular.  Os genes responsáveis por estas duas vias (activação das células estaminais 

precursoras de mioblastos e indução de atrofia muscular) são regulados por vários microRNAs que 

formam uma rede altamente coordenada levando a que mesmo um pequeno defeito no circuito resulte 

no desenvolvimento de severa atrofia, incluindo associada às manifestações de miopatia miotubular.  

 Estudos de expressão génica realizados para diferentes tempos de desenvolvimento do ratinho 

usando a tecnologia de highthroughput qRT-PCR array permitiram demonstrar a relevancia do grupo de 

genes regulados por miRNAs selecionados. 26 genes envolvidos nas vias de diferenciação/proliferação 



de células estaminais ou proteinas marcadores de atrofia muscular foram testados e demonstraram 

significativas alterações de expressao entre as classes wild-type e KO ratinhos ainda no estado pré-

clinico da doenca. Desta forma, a hipotese de estas moléculas representarem apenas  representarem 

um artefacto experimental ou apenas serem inespecificamente induzidas como consequência do estado 

geral de doença foi refutada. Os microRNAs encontrados diferencialmente expressos na XLMTM e 

identificados como responsáveis pelo estabelecimento de várias das vias funcionais desreguladas neste 

sistema constituem candidatos preferenciais para estudos futuros de terapia genética.  
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1) Introduction 

1.1) Linked Myotubular Myopathy 

 linked myotubular myopathy (XLMTM) is the most severe form of a group of congenital 

muscular disorders named centronuclear myopathies, and presents an estimated incidence of 1 in 

50,000 newborn males. (D'Amico and Bertini, 2008) In contrast to the heterogeneous patterns 

found in the majority of congenital myopathies, XLMTM has a relatively homogeneous clinical 

presentation, where males are born with marked hypotonia and generalized muscle weakness, 

with respiratory difficulties often requiring ventilation. Most XLMTM patients die within 4-8 

months as a consequence of respiratory failure. Even though some of them are able to survive 

several years (approximately 15%), and some achieving independent respiration, so far, it is not 

possible to accurately predict the severity of the phenotype at birth. (Jungbluth et al., 2008) 

 The morphological hallmark in muscle biopsies of XLMTM patients is the presence of 

numerous rounded hypotrophic fibers with a higher than expected occurrence of centrally placed 

nuclei in hematoxylin/eosin stained sections. This pattern resembles the structure of fetal 

myotubes, whereas in healthy individuals nuclei usually occupy a peripheral location. The 

percentage of these “myotubes” in a sample can vary widely among cases with a reported range 

between 2% to 60%. Based on this canonical characteristic this pathology previously was thought 

to be due to an arrest in muscle development at the myotube stage. (Sarnat, 1990) Subsequent 

studies, however, refuted this hypothesis and suggested instead that myotubular myopathy 

represents a defect in skeletal muscle maintenance. Typically found surrounding these nuclei in 

central locations is a clear perinuclear zone containing glycogen and mitochondria deposits, which 

can be observed in histochemical stains PAS and NADH-TR, respectively. (Tronchere et al., 2003) 

Disease diagnostic results from an integrative approach compiling pathological findings, 

age of onset and, if available, genetic testing. The definitive diagnosis, however, is based on 

genetic screening for mutations in the MTM1, the only gene associated with the development of 

the pathology. (Laporte et al., 1996) So far, more than 200 different loss-of-function mutations 

have been identified throughout the entire coding sequence of MTM1, in more than 300 unrelated 

families. (Laporte et al., 2000) The MTM1 gene spans approximately 100Kb at the genomic level, 

contains 15 exons and is located in Xq28 locus. MTM1 mRNA is expressed as of 3.9 Kb long 

transcript, ubiquitously expressed in all human tissues as idenfied by northern blot analysis. 

Interestingly, in skeletal muscle and testis, an additional smaller 2.5 Kb tissue-specific transcript is 

detected, resulting from the use of a different polyadenylation site. The biological significance of 
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this mechanism of gene regulation for MTM1 remains unknown, pointing out the importance of 

further studies in MTM1 expression control. (Pierson et al., 2005) 

 

1.2) Myotubularin and the etiology of myotubular myopathy 

The protein product of the ubiquitously expressed MTM1 gene is myotubularin, a 

phosphatidylinositol (PtdIns) lipid phosphatase of 603 amino acids. Myotubularin contains an 

active phosphatase domain (PTP) and a prixomal PH-GRAM domain that binds phosphoinositides. 

Phosphoinositides (PI) are lipid second messengers that play key roles in signal transduction, 

trafficking and cellular homeostasis through the recruitment of effectors proteins to their 

subcellular target sites. The selection of the PI specie to be formed (in a set of seven) is dependent 

on the phosphorylation/ desphosphorylation balance in the position 3, 4 or 5 of their inositol sugar 

rings. These interconversions are controlled by their respective PI kinases and phosphatases. 

Myotubularins are 3’-phosphatases specific for PtdIns3P and PtdIns(3,5)P2, PIs involved in the 

endosomal–lysosomal pathway. (Robinson and Dixon, 2006) 

Myotubularin is the archetypical member of a protein tyrosine phosphatase (PTP) 

superfamily of 14 closely related genes that share high levels of homology, present in a wide 

spectrum of eukaryotic organisms from yeast to mammals. (Clague and Lorenzo, 2005) In the 

myotubularin family only 8 members were defined has containing phosphatase activity. Other 

myotubularins that have an inactive phosphatase seems to be crucial for the stability and 

activation of the other catalytic active members. Most of the myotubularin family members are 

able to form homodimers or heterodimers with other members of the family by direct protein-

protein interactions. The interaction between the inactive MTMR9 and active MTMR6 form 

reflects this essential function by leading to an increase in the 3-phosphatase activity of MTMR6 

up to 6-fold. (Zou et al., 2009) Mutations in MTMR13 or its binding partner MTMR2 have been 

found in human patients of Charcot-Marie-Tooth disease further strengthing the importance of 

their interactions. 

The biochemical functions of myotubularin have been intensively described, although, the 

biological pathways and regulatory mechanisms that when disrupted lead to myotubular 

myopathy, still remain uncertain. To address these questions several knockout/overexpression 

experiments were recently developed. Using siRNA-mediated technology it was demonstrated 

that knocking down the levels of myotubularin results in an increase of 60% to 120% of 

endogenous PI3K that accumulates on early endosomes. The sequential waves of PI(3)P synthesis 
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and degradation, regulated by the interplay of PI3 kinases and phosphatases and controlled by the 

activation of Rab GTPases, has been postulated to be the mechanism for signal transduction and 

receptor sorting necessary for acute recruitment, release or activation of the trafficking machinery 

components, during endocytosis. (Cao et al., 2008) A dysregulation in the orchestration of these 

antagonistic proteins seems to lead to impairment cellular metabolism, contributing to the 

development of several pathologies, including XLMTM.  

Likewise MTM1, several MTM related genes (MTMR) have been established as involved in 

different types of neuromuscular disorders (e.g. MTMR2 and MTMR13 mutations are associated 

with Charcot-Marie-Tooth type 4B1 and 4B2 neuropathy, MTMR14 mutations result in autosomal 

centronuclear myopathy, MTMR1 splicing variants are associated with myotonic dystrophy and 

MIP/Mtmr14 mutations lead to muscular weakness and fatigue). (Azzedine et al., 2003); (Houlden 

et al., 2001); (Shen et al., 2009) 

It is remarkable to note that ubiquitously expressed PI phosphatases acting in the same 

biological pathway and with similar catalytic active profiles are involved in pathologies affecting 

different specific tissues. As noted above, MTMR2 gene that shares 65% sequence identity with 

MTM1 affects primarily Schwann cells in peripheral nerves instead of skeletal muscle as MTM1 

mutations. The reason for large amounts of apparently functional redundant PI proteins seems to 

be directly correlated with their specific spatiotemporal expression pattern and subcellular 

location. Both MTM1 and MTMR2 desphosphorylate pools of Ptdns(3)P and Ptdns(3,5)2P, 

however, MTM1 primary acts both on early and late endosomes, whereas MTMR2 is exclusively 

active on late endosomes. (Nicot and Laporte, 2008) 

Although displaying specific subcellular functions, at least some MTM-related genes are 

able to compensate for the lack of expression of a particular family member, demonstrating a fine 

efficient mechanism of gene regulation, to restore cell homeostasis. MTM1 is ubiquitously 

expressed, although XLMTM is a muscle specific disorder. A possible justification for this 

phenomenon is the ability of MTMR1 and MTMR2 to compensate the loss of myotubularin in all 

but skeletal muscle tissue, where MTM1 is the main 3’-phosphatase. (Dowling et al., 2009) 

The overexpression of myotubularin promotes formation of fillapodia-like structures and 

disrupts protein transport from late endosomes to lysosomes. (Tsujita et al., 2004) To deeper 

define the subcellular function of myotubularin in skeletal muscle, overexpression experiments 

were performed using adeno-associated virus (AAV) vectors expressing myotubularin. The 

formation of packed membrane assemblies and the presence of vacuoles positives for T-tubules 
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and plasma membrane markers were observed. Subcellular staining of myotubularin revealed the 

protein associates with sarcolemma and triads. Triads are highly specialized junctions where the 

control of calcium concentration, and therefore, regulation of excitation-contraction occurs. These 

structures are constituted by transverse T-tubules (plasma membrane invaginations) and terminal 

cisternae of sarcoplasmic reticulum.  Myotubularin is suggested to be important for the 

maintenance of triads, remodeling of longitudinal T-tubules to become transverse T-tubules and 

plasma membrane homeostasis. The failure of these processes would lead to impaired excitation-

contraction coupling and consequently generate muscular atrophy. (Buj-Bello et al., 2008); (Al-

Qusairi et al., 2009) 

In vivo studies using morpholino antisense technology to knockdown myotubularin, 

provides additional functional evidences supporting this hypothesis. Knockdown of myotubularin 

in zebrafish results in impaired motor function and histopathologic changes in skeletal muscle, 

resembling clinical XLMTM patient observations. Also, tubule-reticular structural abnormalities 

were found in MTM1-morpholino treated zebrafish and human patient biopsies, displaying 

disorganized and irregular patterns. T-tubule integrity is required for proper force generation, 

muscle contraction and more specifically for the process of excitation-contraction coupling. 

Defects in T-tubule structure and localization (T-tubule were found concentrated around the 

abnormal located nuclei in XLMTM patients) were also associated with T-tubule functional defects, 

as was demonstrated by abnormal mechanisms of excitation-contraction observed in skeletal 

muscle. (Dowling et al., 2009) 

The physiological implications of T-tubules dysfunction in the etiology on myotubular 

myopathy can be hypothesized: T-tubules are membrane invaginations whose biogenesis and 

maintenance requires continuous recycling of membrane components, including 

phosphoinositides. If MTM1 function is disrupted, membrane recycling does not occur efficiently. 

Consequently, T-tubule function is impaired, leading to abnormal excitation-contraction 

mechanism, necessary to produce muscle force. Mutations of MTM1, causing loss of function, 

deregulate this process, and subsequently promote muscle wasting and atrophy, characteristics 

present in skeletal muscle of myotubular myopathy patients. (Dowling et al., 2009) 

Recent findings, originated through investigation of MIP/MTMR14 mutant mice, 

remarkably elucidate the crucial function of MTMR14 in control of PtdInsP levels in establishing 

calcium homeostasis and muscle performance. Several PtdInsP were identified to directly bind and 

activate ryanodine receptors (RyR1) - the skeletal muscle calcium release channel in sarcoplasmic 
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reticulum, crucial for excitation-contraction coupling. These studies strongly help to understand 

how loss of myotubularin family proteins that are responsible for regulation of PtdInsP function 

lead to muscle contraction deficiencies. (Shen et al., 2009) (Treves et al., 2005) 

Although considerable progress has been made in the understanding the pathogenesis of 

XLMTM, many critical aspects still remain mainly uncovered, in particular concerning the 

translation of the identified metabolic defects, into the skeletal muscle phenotype found in the 

disease.  

In this project we will try to bring new insights to address these questions by studying 

gene expression control in the myotubularin-deficient mouse, model of XLMTM, using microarray 

analysis of mRNA as well as miRNA (endogenous modulators of gene expression) expression 

profiles. We aim to contribute to dissect primary molecular pathways disrupted in myotubular 

myopathy through the identification of miRNA-mRNA regulatory interactions and differential 

expression of relevant genes in the context of the disease, in knockout mice when compared to 

wild-type littermates. 

 

1.3) Skeletal muscle development 

The knowledge of the networks underlying muscle development and the regulatory 

mechanisms responsible for the homeostasis and maintenance of muscle integrity are a pivotal 

basis of muscle biology we hope to improve with our findings. 

Skeletal muscle results from muscle progenitor cells derived from mesoderm. In humans, 

at approximately 3 weeks of gestation, these muscle stem cells generate myoblasts which fuse to 

generate myotubes at 7 weeks. The myotube stage is characterized by long multinucleated 

filaments with central located nuclei sharing the same basal lamina. Along the development, 

myotubes start to produce significant amounts of contractile components required for muscular 

function. Also, each nucleus acquires an individual basal lamina and become innervated. At this 

step, mature myotubes are called myofibers and possess peripheral located nuclei and contractile 

apparatus located in the central region. The determination of cell fate and coordination to 

myogenic lineage specific seems to be upstream regulated by Pax3 and Pax7. (Maroto et al., 1997) 

(Seale et al., 2000) Pax3 acts mainly during primary myogenesis while Pax7 during the later stages 

of muscle growth.  

After the initial phase of embryonic muscle development, muscle mass can be produced, 

according to functional needs, by mechanisms such as hypertrophy (the most common adult 
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muscle growth) and hyperplasia (primary occurs during embryonic development). During skeletal 

muscle growth through hypertrophy, myofibers increase their volume by increasing the amount of 

contractile components, requiring the incorporation of additional nuclei. Satellite cells are 

mononucleated cells able to fuse and increase the growing capacity of myofibers. (Sanger, 2004) 

  Satellite cells are the major muscle precursor cells and are involved in maintenance and 

repair of skeletal muscle. These stem cell-like structures derive from the dermomyotomal 

population (the dorsal compartment of the somites, where the embryonic myogenesis starts to 

take place), located in a specific niche between the basal lamina and the sarcolemma. Typically, 

there is a small pool of mitotically quiescent satellite cellswhich are activated in response to 

external stimuli that produce stress such as need for growth by hypertrophy or muscular injuries. 

Activated satellite cells proliferate and generate myogenic precursor cells (myoblasts), which 

undergo multiple rounds of cell division until they experience terminal differentiation. The 

resulting cells undergo fusion, leading to the formation of multinucleated myofibers.  

 The molecular mechanisms that underlie the regulation of the satellite cell pool and their 

self-renewal are still poorly understood.  Myogenesis requires co-expression of myogenic 

regulatory factors (MRFs) such as Myf5, MyoD, Myogenin and MRF4 which promote cell cycle 

arrest and subsequent terminal differentiation into contractile muscle fibers. Concomitant with 

this process is the down-regulation of the levels of pax7. (Buckingham and Montarras, 2008) 

Several studies indicated pax7 as a key molecule in adult muscle cell remodeling pointing out its 

action as a negative regulator of MyoD and Myogenin and consequently delaying the successful 

adoption of the myotube phenotype. It has also been recently elucidated that myostatin controls 

self-renewal of satellite cells and their state of activation, through negative regulation of pax7 via 

the Erk1/2 pathway. (Bryson-Richardson and Currie, 2008; McFarlane et al., 2008) 

Skeletal muscle development is organized by evolutionarily conserved networks of 

transcription factors that coordinate the expression of muscle-specific genes responsible for 

muscle growth, differentiation and contractibility. MADS-box transcription factors MEF2 (myocyte 

enhancer factor 2) and SRF (serum response factor), in combination with MyoD and Myogenin 

(basic helix-loop-helix factors) play a central role in the regulation of myogenesis through the 

activation of fine subsets of muscle specific genes according to developmental stages. (Chen et al., 

2009) 
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1.4) microRNAs biogenesis and cellular function 

 

Recently, an additional layer of complexity in skeletal muscle gene regulatory circuits 

started to be revealed.  MicroRNAs (miRNAs) are pos-transcriptional gene expression modulators. 

Through their ability to coordinately regulate networks of genes, they enable a fast and precise 

cellular reaction to developmental, physiologic and pathologic signals in skeletal muscles. 

(Williams et al., 2009) 

The recognition of fundamental catalytic activities carried out by RNA molecules on gene 

expression dates back to 1961 when Jacob and Monod proposed the role of RNAs in the inhibition 

of operons expression, through Watson-Crick base-pairing interactions with the operator 

sequence. (Jacob and Monod, 1961) However, the steeply growing knowledge and interest about 

these tiny molecules was triggered by the discovery of RNA interference mechanism in 1998 by 

Craig Mello’s group. (Fire et al., 1998) By silencing the expression of specific genes in specific 

spatial-temporal limits this phenomenon of gene silencing generated by small non-coding RNAs 

(and effector proteins) is implicated in innumerous crucial cellular and biological processes and 

has been associated with human pathologies.  MicroRNAs are defined as ssRNAs of ~22 

nucleotides in length generated by the RNAse-III enzyme Dicer from an endogenous transcript 

containing a local hairpin structure. (Ambros et al., 2003) Bioinformatics methodologies have 

predicted that almost 30% of mammalian mRNAs of protein coding genes are regulated by these 

molecules, revealing their remarkable biological significance. (Bartel, 2004) 

The first experiments highlighting the existence of miRNAs were conducted by the Ambros 

and Ruvkun labs. It was reported that short lin-4 RNA directly down-regulate lin-14 gene product 

by binding to specific repetitive sequences on the 3’UTR of the lin-14 messenger. This functional 

interaction promotes the progression from the first nematode larval stage to the second. (Lee et 

al., 1993) (Wightman et al., 1993) 

Despite the fact that it is only seven years the next miRNA was discovered (let-7) (Reinhart 

et al., 2000) at the date of writing, the official miRNA database - miRBase (release 14.0, Sep 2009) - 

reports 10581 mature miRNAs in 115 species, including more than 700 human miRNAs. 

(http://www.mirbase.org) For a long period of time, miRNAs were thought exclusive to 

multicellular organisms, as a vehicle for the transition to a more complex organism design. Recent 

studies have identified microRNAs in Chlamidomonas reinhardtii, a unicellular alga, demonstrating 

the evolutionarily conserved nature of this mechanism of gene regulation. (Molnar et al., 2007) 
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With only one unique exception detected so far (Bao et al., 2004) microRNAs function at 

the post-transcriptional level. MicroRNAs regulate gene expression either by blocking mRNA 

translation or decreasing mRNA stability in the cytoplasm. New perspectives expect microRNAs to 

operate in almost every cellular process, including regulating pre-mRNA processing in the nucleus, 

acting as chaperones that modify mRNA structure or modulating mRNA-protein interactions. 

(Filipowicz et al., 2008) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The genomic localization and transcription process used for microRNAs is not deeply 

understood yet, however, different mechanisms seem to be involved. Initial studies have pointed 

out that the majority of microRNAs were encoded in intergenic regions (> 1kB away from the 

annotated/predicted gene) although the presence of microRNA codified in intronic regions in the 

Figure 1: Schematic representation of 

miRNAs biogenesis and their mode of action. 

(Filipowicz, 2008)  

miRNAs can either be transcribed as 

independent transcriptional units producing pri-

miRNAs or as a result of splicing of intronic 

portions of protein-coding genes (mirtrons) 

leading to the direct formation of pre-mRNAs . 

Pri-miRNAs are processed by a complex that 

includes Drosha giving rise to pre-miRNAs.  

These molecules are transported to the 

cytoplasm through exportin5 and cleaved by the 

RNAse III type Dicer to yield approximately 20 

nucleotide miRNA duplexes. One of the strands is 

selected to form the mature miRNA being 

assembled into a miRNA-induced silencing 

complex (miRNP) while the other strand is 

subsequently degraded.  High levels of 

complementarity between miRNA:mRNA target 

lead to endonucleolytic cleavage and sequences 

with several mismatches guide translational 

repression of mRNA targets. 
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sense or antisense orientation were quickly reported: the notion of microRNAs as autonomous 

transcription units had emerged. Since more than 50% of the miRNAs are in close proximity with 

each other, and it was experimentally proven that they can be transcribed by their own promoters 

as a unique unit of clusters of pri-miRNAs, there is sufficient data to demonstrate that microRNAs 

might be transcribed as mono or polycistronic transcription units.  

Their biogenesis is usually catalyzed in two major steps, processed by two RNAse III family 

proteins, namely Drosha and Dicer. (Figure 1) Once the precursors miRNAs (pri-miRNAs) are 

transcribed, typically by RNA Pol II (besides some exceptions reported (Cai et al., 2004)) they fold 

in a long hairpin-like structure containing an imperfectly base-pairing stem, often including several 

sequences for different miRNAs. Pri-miRNAs are processed by the endonuclease Drosha, 

complexed with a dsRNA-binding protein DiGeorge syndrome critical region gene 8 (DGCR8), 

leading to the release of ~70 nucleotide hairpins known as pre-miRNAs. As an RNAse III 

endonuclease, this enzyme cuts the RNA duplex at both strands of the stem near the base of the 

primary stem loop, resulting in a stem with 5’ phosphate and 2 nucleotides 3’ overhang. An 

alternative pathway that circumvents the requirement of Drosha-DGCR8 machinery was found in 

C. elegans, D. melanogaster and mammals and enable a subset of pre-miRNAs (mirtrons) to be 

generated from introns, by cooperative actions of spliceosome and lariat-debranching enzyme 

(LDBR). (Berezikov et al., 2007; Ruby et al., 2007) 

In animals the pre-miRNAs are actively transported to the cytoplasm by the nuclear 

transport receptor exportin-5, in a cooperative complex with Ran-GTP, which after hydrolysis 

permits the release of the cargo. Once there, pre-miRNAs are subsequently subject to the second 

processing step by Dicer (associated with TAR RNA binding protein), generating the final ~22 

nucleotides miRNA duplex product. This short duplex is incorporated into the functional miRNA-

Ribonucleoprotein complex (miRNP), where the mature miRNA preferentially remains assembled 

in the complex.  

The criterion for the selection of the strand to be matured seems to be the 

thermodynamic stability of the 5’ end, with the less stable end to be generally elected and the 

other degraded. The key components of miRNP or miRISC (microRNA- induced silencing complex) 

are the Argonaute family proteins (AGO). This family comprises four AGO proteins with only AGO2 

protein having the ability to participate in the RNAi-like mechanism developed by this complex. 

After assembly, the mature miRNA strand functions as the guide molecule to the complementary 

mRNA target to be silenced. The recognition of the exact mRNA to be targeted seems to be the 
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more controversial and critical issue in understanding the function of microRNAs in mammals. In 

plants the interactions between microRNA:mRNA are nearly perfect but when this relation is 

transposed to metazoans, miRNAs usually bind to mRNA by imperfect base-pairing, yielding 

variable degrees of miRNA-target mismatches.  Consequently, this leads to large difficulties in the 

prediction of their target mRNAs. (Winter et al., 2009) 

 Although the mechanistic details of this interaction are poorly understood it is accepted 

that a stringent requirement must be present for a functional and productive binding: a 

contiguous and perfect base-pairing on the 2-8 nucleotides of the 5’end of the miRNA with the 

mRNA, denominated seed region. (Lewis et al., 2005) Further studies have also mentioned the 

importance of secondary structures on the 3’ untranslated region (UTR) surrounding the target 

site (seed) in the target mRNA and the ability of complementarity at the 3’ end of the cognate 

miRNA to compensate for imperfect seed matching. (Brennecke et al., 2005) 

 The molecular basis of this interaction is directly correlated with the selected 

pathway in miRNA-mediated gene regulation. If miRNA:mRNA-target interaction presents high 

affinity and nearly perfect complementary, the mRNP complex will trigger endonucleolytic mRNA 

cleavage by an RNAi-like process. On the other hand, when this match is imperfect, the most 

common event in mammals, miRNA lead to translation repression and possibly destabilization of 

the mRNA target. (Carthew and Sontheimer, 2009) 

Despite the consensus about the role of microRNAs in promoting translation repression of 

mRNA targets, the mechanism through which miRNAs interfere with active translation, and, in 

particular, the step of translation inhibited, is a matter of controversy.  Perhaps, the paramount 

open question is if miRNAs modulate gene expression by single or multiple mechanisms. Thus far, 

the model of miRNA gene regulation interfering with translation initiation stage has received 

increasing support by in vivo and in vitro studies. However, repression mechanisms starting after 

the initiation of translation mediated by miRNAs were also identified when miRNAs were found 

associated with actively translating polysomes. (Filipowicz et al., 2008) 

miRNA regulatory pathways can not only affect the translation  of cognate mRNAs but also 

might directly decrease their amounts, through the promotion of molecule destabilization.  

miRNAs control transcript levels by recruiting the machinery involved in mRNA decay. miRNPs 

recruit GW182  (a protein of the P-body structure), which subsequently recruits proteins involved 

in 3’ poly-A cleaving. As a result, an unstable transcript is generated, susceptible to 3’-5’ 

exonucleotidic activity, and vulnerable to decapping proteins with subsequent 5’-3’ exonucleases 
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exposure. (Behm-Ansmant et al., 2006) P-bodies are highly dynamic cytoplasmatic structures, 

enriched in translation repressor molecules and mRNA-catabolizing enzymes. By conducting mRNA 

targets to P-bodies, miRNAs can promote the cleavage or storage of the repressed mRNAs, making 

miRNA regulation a versatile and wide ranging system. (Rana, 2007) 

Furthermore, Vasudevan and colleagues have illustrated this versatility when they 

reported that miRNAs complexed with Ago2 and FXR1 (Fragile X mental retardation protein 1) can 

trigger upregulation of mRNAs target, in specific cellular conditions.  MicroRNAs can switch from 

repression to activation according to cell cycle state: in proliferating mammalian cells they repress 

translation whereas in G1/G0 arrest, which usually precedes differentiation, they can potentially 

promote activation of gene expression. (Vasudevan et al., 2007) 

As trans-acting molecules, miRNAs act in the maintenance of cellular homeostasis and 

development in cooperation with transcription factors. It is now clear that miRNAs have highly cell 

type-specific expression profiles and mutations in specific miRNAs that lead to the development of 

severe diseases.  

 

1.5) miRNAs in skeletal muscle 

The importance of the role of miRNAs in skeletal muscle development was identified 

through the generation of conditional Dicer null alleles under the control of MyoD regulatory 

elements (a muscle specific marker). The resulting Dicer-deficient mice show skeletal muscle 

hypoplasia associated with perinatal lethality. C2C12 experiments demonstrate increased 

apoptosis of cultured embryonic myoblasts. (O'Rourke et al., 2007) 

Further studies revealed the involvement of particular muscle specific miRNAs (MyomiRs) 

in skeletal muscle proliferation and differentiation. (Chen et al., 2009; Williams et al., 2009) miR-1 

and miR-206 were identified as enhancers of myogenesis and mir-133 was ascribed as a critical 

factor for myoblast proliferation and repression of myoblast differentiation. miR-1 promotes 

muscle cell differentiation by  targeting histone deacetylase 4 (hdac4). Hdac4 is a main repressor 

of Mef2c, which in turn constitutes an essential muscle related transcription factor. Besides 

belonging to the same miRNA polycistron and being transcribed together, mir-133 triggers an 

opposite effect to mir-1. miR-133 stimulates myocyte proliferation, to a certain extent, by 

reducing the levels of serum response factor (SRF), a crucial regulator of muscle cell differentiation  

(Chen et al., 2006) Similarly to mir-1, mir-206 promotes myoblast differentiation. miR-206 has 

been shown to inhibit electrical coupling between myofibers via gap junctions through the 
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suppression of gap-junction protein connexin 43 (Cx43), a required step after fusion of skeletal 

myoblast during myogenesis (Anderson et al., 2006) Also, mir-206 is responsible for the 

suppression of cell proliferation by the repression of p180 subunit of DNA polymerase-alpha and 

inhibition of genes encoding follistatin-like 1 and utrophin in skeletal muscle. (Kim et al., 2006); 

(Rosenberg et al., 2006) 

A surprising evidence of the connection of miRNAs to skeletal muscle disorders came from 

a direct genetic link, observed in a Texel sheep detected with exceptional muscularity. Fine 

mapping identified a mutation in the 3´-UTR of the myostatin gene (GDF8), a transforming growth 

factor family B (TGF-B) member, responsible for inhibition of muscle growth. This mutation creates 

an illegitimate microRNA target site for miR-1 and miR-206, muscle-specific miRNAs, that lead to 

specific translation repression of myostatin, and consequently promote muscular hypertrophy. 

(Clop et al., 2006) 

As of late, miRNA overexpression or downregulation was associated with several primary 

muscular disorders, including muscular dystrophy and nemaline myopathy, contributing to 

progress in the understanding of these pathologies. (Eisenberg et al., 2007) Nevertheless, these 

studies have not been conducted for X-linked myotubular myopathy.  

 

1.6) Mouse model of XLMTM 

Given that XLMTM is a rare disorder, we decided to use a knockout mouse (KO) model, 

which reproduces the major features of the human disease, to facilitate sample collection and 

improve statistical relevance. The knockout mouse Mtm14 was generated for Mtm1, through 

homologous recombination followed by selection of mice with exon 4germline excision, by 

Professor Jean-Louis Mandel´s group. This excision causes absence of myotubularin protein 

production by creating a frameshift mutation that induces an early codon stop. Despite this 

deletion generating myotubularin-deficient viable mice, some degree of pre or neonatal lethality 

was observed with only 16.6% of the litter born, instead of the 25% expected. The resulting male 

mice recapitulate the histopathology of human XLMTM, showing morphological variation in 

muscle fiber size and accentuated hypotrophy (predominantly in type 1 fibers), with centrally 

located nuclei present in a higher proportion in the affected animals. A perinuclear halo containing 

ER glycogen and mitochondria accumulations was also detected, as well as myofibrillar 

disorganization with sarcomeric disarray and Z-line streaming.  In accordance with the observed 

pathology in humans, Mtm14 mice manifest a muscle-specific disorder. These data corroborate 
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the tissue specific impact of myotubularin dysfunction in muscle integrity and the inability of other 

MTMRs to compensate for this defect in muscle. (Buj-Bello et al., 2002) 

Although this model reproduces the human disease, some clinical differences are found 

and consequently should be considered when extrapolating conclusions. Mtm1 KO mice present 

with variable and progressive muscular weakness with associated severe reduced life expectancy 

following four characterized stages, based on distinctive clinical manifestations. Mtm1 (-/-) mice are 

born asymptomatic (phase I) manifesting a disease onset around 4-5 weeks of life with 

accentuated decrease in muscular hindlimb strength (phase II) that reaches forelimbs at 5~7 

weeks and is associated with the manifestation of kyphosis (phase III). A reduction of 64% in 

muscle strength is observed in the later phase IV and leads to complete hindlimb paralysis in 

addition to severe respiratory difficulties that often result in cachexia and respiratory insufficiency, 

promoting death at 59  19 days. The human disease is mainly nonprogressive, contrasting with 

the clinical evolution reported in the knockout. Different times of myogenesis may be the reason 

for these discrepancies since mouse muscle differentiation is completed much later during 

development (at birth) as compared with humans (which ends around 16 weeks of gestation). 

Analysis of Mtm1-deficient mice enabled identification of muscle weakness in XLMTM as a 

consequence of atrophy rather than hypoplasia, as well as demonstrated that the observed 

muscle fiber defects are not due to an arrest in myogenesis, but perhaps attributable instead to a 

defect in the maintenance of muscle structure. (Buj-Bello et al., 2002) 

 

1.7) Study description and biological impact 

To decipher the molecular mechanisms underlying XLMTM, it is crucial to improve the 

knowledge about MTM1 gene regulation expression, and in particular, the process involved in its 

translation. In this project we will try to develop new insights about gene expression control in 

XLMTM by bioinformatic analysis of mRNA as well as miRNA expression profiles, using qRT-PCR for 

confirmation of obtained data. 

 Gene expression profiles of XLMTM patients were previously investigated by Nishino 

group. (Noguchi et al., 2005) Using custom cDNA microarrays, the molecular signature of eight 

XLMTM patients was characterized. An upregulation of extracellular/sarcolemmal proteins and 

cytoskeletal components was observed (in particular, actin-interacting proteins). On the other 

hand, proteins involved in muscle contraction and energy metabolism were found downregulated. 

These findings implicate myotubularin as a key regulator of membranous cytoskeletal actin 
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remodeling and suggest that a defect in myotubularin function contributes to disorganization of 

actin filament architecture, giving rise to the characteristic phenotype of XLMTM myofibers, with 

altered cell morphology and abnormal intracellular organelle distribution. (Noguchi et al., 2005)  

 Although the study was the first of its kind aimed at the understanding of the 

pathomechanisms of myotubular myopathy, the project was performed using a custom cDNA 

microarray with only 4,200 selected genes – muscle specific genes and others expected to be part 

of the dysregulated pathways in XLMTM.  Furthermore, the patient group consisted primarily of 

infants was not well matched in age with the controls who were significantly older. 

 In the current investigation we developed a microarray-based approach, using 

oligonucleotide microarrays able to detect whole mice transcriptome, for an unbiased study of the 

molecular mechanisms involved in myotubular myopathy. Also, in a combinatorial methodology 

we analyzed simultaneous significant changes in mRNA and miRNA expression to recognize 

potential miRNA-based regulatory circuits in myotubular myopathy. mRNA and miRNA profiling by 

microarrays were evaluated in endstage mice (7 weeks), given that this is the mouse 

developmental disease time point that better recapitulated human pathology. However, for an 

accurate extrapolation of conclusions to human disease, final significant results should be 

experimentally repeated for confirmation in human skeletal muscle biopsies. Additionally, for a 

deeper understanding of the relevance of statistically significant identified miRNAs in the disease 

context, we analyzed the expression levels of these miRNAs and also several of their candidate 

cognate target genes, by qRT-PCR in two other developmental stages (14 and 27 days mice).  

Through the study of differential regulated pathways in myotubular myopathy, as well as 

the identification of specific miRNAs potentially responsible for the development of the disease, 

we hope to dissect fundamental molecular features of disease and open new avenues for the 

generation of new therapies. The identification of miRNA signatures in diseases and their specific 

characteristics, such as small size and ability to affect the expression of several genes present in a 

given pathway, makes miRNA targeting a promising approach for pathology treatment. New 

approaches, such as locked nucleic acids (LNAs) and antagomiRs, which are synthetic 

complementary sequences able to inhibit the function of miRNAs, represent exciting new 

potential therapies to be used when a particular miRNA is upregulated and identified as promoter 

of a disease phenotype. Adeno-associated viruses (AAV) represent a very efficient delivery method 

to introduce miRNAs into cells of patients where these molecules are downregulated, potentially 

restoring health status.  (Brown and Naldini, 2009); (Eisenberg et al., 2009); (Saunders and Lim, 
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2009) Thus, the findings achieved in this investigation constitute a comprehensive foundation for 

future research into microRNAs-mediated gene regulation in X-linked myotubular myopathy.  

 

2) Methods 

 

2.1) Samples preparation 

Gastrocnemeus muscle from 14, 27 and 49 days mice were dissected under Rnase free 

conditions and immediately frozen using dry ice. Eight samples from 7 week-old wild-type (WT) 

mice and Mtm1 KO mice (Mtm14) were collected for microarray expression profiling.  Four WT 

and four 4 week old mice, as well as 4 WT and 4 KO 2 week old mice gastrocnemeus samples were 

used for additional qRT-PCR experiments. All the protocols for mice experimentation were 

performed in compliance with IACUC (Institute of animal care and use committee) guidelines.  

 

2.2) RNA extraction 

 Total RNA was isolated using mirVana isolation kit (Ambion, Austin, TX) accordingly to 

manufacturer´s instructions. The extraction was made according to the manufacturer’s 

instructions. Yield and purity of RNA was examined using ND1000 Nanodrop (NanoDrop 

Technologies) and 2100 Bioanalyzer (Agilent Technologies).  

 

2.3) miRNA Array analysis 

 miRNA profilling was performed by Asuragen Services (Austin, TX)  applying a custom-

manufactured Affymetrix® GeneChip from Ambion – DiscovArrayTM. RNA samples were processed 

according to the standard operating procedures of the company. (Shingara J, 2005) The miRNA-

enriched fraction was obtained by total RNA fractionation through a flashPAGE Fractionator 

apparatus (Ambion) followed by clean-up and concentration using the flashPAGE Reaction Clean-

Up Kit (Ambion). Subsequently, the resulted purified fraction was hybridized to the miRNA 

DiscovArray containing 623 human and 361 mouse probes plus additional species and >12,000 

exploratory probes. GenePix 4200AL scanner (Molecular Devices) was used to scan processed 

arrays. Microarray signal processing included substraction of estimated background levels based 

on the median signal of a set of G-C-matched anti-genomic controls.  

 Raw data was also normalized through variance stabilization and normalization (VSN) 

method by Asuragen services. For each mature miRNA sequence a minimum of at least two 
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probes were available. After data processing, Asuragen designated the two probes as A and B, 

according to their hybridization performance and signal quality. Only probes A values were 

selected for subsequent statistical analyses.   

 

2.4) mRNA microarray hybridization 

 mRNA expression profiles of Mtm1 KO mice and controls were evaluated by hybridization 

of the isolated total RNA with GeneChip® Mouse Gene 1.0 ST Arrays (Affymetrix) containing 

approximately 27 probes for each of the 28,853 genes, covering the whole mouse transcriptome. 

The chip was processed by the Microarray Core Facility at Children’s Hospital Boston, MA, 

according to the company standard protocol.  Raw data was also further normalized using the VSN 

method using GeneSpring software. 

 

2.5) Principal Component Analysis (PCA), Box-Whisker plot and Hierarchical Clustering 

 PCA was constructed using normalized scaling and mean centered values. Box whisker plot 

was created based on Pearson correlation. Hierarchical unsupervised 2D-clustering was processed 

for non-averaged significant entity lists on WT/MTM1 conditions via Euclidean distance metric and 

average linkage. GeneSpring GX 10.0.2 allowed these analyses.  

 

2.6) Statistical Analysis of microarray data 

 For statistical analysis a combinatorial strategy was used. miRNAs were only considered 

statistical significant if both GeneSpring statistics and SAM identified the same miRNA as 

significant.   

GeneSpring GX was used to apply the non-parametric unpaired Mann-Whitney U test with a cut-

off p-value<0.05. The resulted mRNAs were subject to a filter of fold change> 1.5 and the genes 

still present in the final list considered significant by this statistic approach. In parallel the 

additional Statistical Analysis of Microarrays (SAM) method was also run. A False Discovery Rate 

(FDR) of 18% combined with a bootstrap of 5000 randomization of samples was selected to test T-

statistic.  

 miRNAs matching both statistical criteria detected on GeneSpring and SAM analyses were 

selected for further research.  

 

 



Masters dissertation/ The role of microRNAs in X-Linked Myotubular Myopathy 
Mariana Fontes 

Universidade de Lisboa – Faculdade de Ciências 17 

2.7) miRNA and mRNA Real Time PCR (qRT-PCR) 

 miRNA and mRNA expression were independently assed by real time PCR, using Taqman 

microRNA assays (containing specific primers to generate miRNA cDNA) and Taqman mRNA 

expression assays respectively (Applied Biosystems, Foster City, CA).  

 miRNA expression was evaluated using 5ng of initial RNA sample  and 3 replicates per 

sample in a 7300 ABI Real Time PCR system. The relative amount of each miRNA was normalized 

to snRNA U6 endogenous control and the fold change calculated as described by the equation       

2-ΔΔCt, where ΔΔCt = (CtWt miRNA - CtWt U6) – (CtKO miRNA – CtKO U6).  

 mRNA expression was quantified by qRT-PCR using 48.48 Dynamic array (BioMark System, 

Foster City, CA). For each sample 3 technical replicates were examined with 100 ng of initial RNA 

sample used. Gapdh was select as the endogenous control and similarly fold change calculated 

accordingly to the 2-ΔΔCt  method.  

 

2.8) miRNA target prediction and functional analysis 

 To predict miRNA target genes a multi-step sequential approach was performed.  

 The list of significant miRNAs obtained from the match of SAM and Genespring analysis 

was individually searched against the Argonaute database to identify already described and 

validated mRNA targets of the miRNAs in the study. (http://www.ma.uni-

heidelberg.de/apps/zmf/argonaute/) The previously described miRNA targets found in this 

database were compared with the experimental mRNA expression profiles. Only mRNAs with 

differential expression were considered as potential miRNA target genes.  

 Statistically significantly changed miRNAs were subjected to in silico target prediction 

using the public TargetScan 4.2 algorithm incorporated in the GeneSpring software. 

(http://www.targetscan.org) Matching of subset gene lists obtained for statistically significant 

miRNAs predicted genes and mRNAs profiled by microarrays allowed the identification of most 

probable functional miRNA:mRNA interactions. Predicted genes, that didn´t show an inverse 

differential expression when compared with their associated miRNAs, were excluded from the 

group of genes of interest. 

  Genes targeted by several miRNAs differentially expressed in miRNA microarray analysis 

and overrepresented in significant functional categories were preferentially kept for further 

research. 

http://www.ma.uni-heidelberg.de/apps/zmf/argonaute/
http://www.ma.uni-heidelberg.de/apps/zmf/argonaute/
http://www.targetscan.org/
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 To characterize gene ontology categories overrepresented in the knockout mouse model 

of XLMTM, GOstat software associated with the MGI (mouse genome informatics) GO database 

was used. The minimum of 3 genes per functional class and an associated p-value<0.02 were used 

as inclusion criteria. (http://gostat.wehi.edu.au) (Beissbarth and Speed, 2004) 

 The precise genomic location and nucleotide sequence of each miRNA was determined 

using miRBase (Wellcome Trust Sanger Institute; http://microrna.sanger.ac.uk). miRBase and 

BLAST allowed search for evolutionary conservation of microRNAs 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). (Griffiths-Jones et al., 2006) 
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3) Results/Discussion 

In this work we have used a genome wide microarray based approach to identify miRNA-

mediated regulatory networks in XLMTM. miRNA expression profile was evaluated using a Mtm1 

mouse model to assess miRNAs potentially contributing to myotubular myopathy. In parallel, 

transcriptional profiles were generated to investigate the occurrence of miRNA/predicted target 

mRNA pairs anti-correlations. The resultant subset of target genes and associated enriched 

pathways might represent significant miRNA-regulated circuits in the pathophysiology of 

myotubular myopathy.  

 

3.1) miRNAs are differentially expressed in XLMTM 

In an attempt to identify miRNAs expression changes in myotubular myopathy, microarray 

experiments were performed for 8 Mtm1 (49 days) mice as well as 8 age-matched WT control 

mice using Affymetrix DiscoVarry chips. These chips were based on miRBase 9.2 that contained 

>13000 miRNAs and representated by all miRBase organisms including Mus musculus (mmu) and 

Homo sapiens. In our studies, only results of hybridization of RNA samples with mmu probes were 

considered for analysis. Each miRNA was represented by two probes on the chip and depending on 

the efficiency of hybridization, they were classified in to two groups: A and B.  Among these two 

groups, probes A (108 miRNAs) provided superior reliability and were further used for data 

analysis by Genespring Software. 

Quality control analyses were done to identify potential outliers among 8 Mtm1 and 8 WT 

control samples by performing Principal Component Analysis (PCA) and Pearson Correlation. All 

samples showed a good correlation by these approaches except two control samples: WT2 and 

WT5. Moreover, these two samples also showed showed a distinct pattern of expression when 

compared with the other samples of the same class by Hierarchical classification so were further 

excluded from the experiment. (Appendix Fig.1 and Fig.2) 

After removing the outlier samples, the 3D-PCA aggregated samples in two different 

clusters which corresponding to two conditions in this study:  Mtm1 mice and WT control muscle 

groups.  The clear separation of muscle samples in two different classes on PCA plot illustrated the 

unique miRNA expression profile in myotubular myopathy disease vs normal condition. (Fig.2) 

These samples were then normalized using variance stabilization method. Normalized 

samples were analyzed by a box whisker plot to compare homogeneity among all samples.  In each 

box plot, the box represents the main body of the data and the whiskers show the extreme values. 
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The variability is indicated by the size of the box and the length of the whiskers. A box whisker plot 

of all normalized samples showed a low variability among them suggesting high quality of 

hybridization data. (Fig. 2) 

 

 

 

 

 

 

Different kind of test statistics may be applied to microarray data. All of these tests are 

aimed at identifying p-values that help assess the likelihood that particular genes are regulated. 

Tests may be parametric or nonparametric. Parametric tests are applied to data sets that are 

assumed to follow a normal (Gaussian) distribution. Common parametric test for comparing two 

groups includes the t-test. Nonparametic tests do not make assumptions about the distribution of 

data. They rank the outcome variable (gene expression) from low to high and analyze the ranks. 

Mann-Whiteny and Wilcoxon tests are the most commonly used among nonparametric tests.   

We analyzed our miRNA microarray data using both parametric as well as nonparametric 

statistical analysis methods to improve the confidence of obtained results. Only those miRNAs that 

were identified as significant in both methods were selected for further experimental validations. 

In nonparametric statistical analysis, GeneSpring GX software (version 10.0.2, Agilent 

Technologies) was employed to perform the Mann-Whitney test using a cut-off p-value<0.05.  In 

parametric analysis SAM was used to perform t-statistics test with a FDR threshold of 18% to 

minimize the number of false positives. A high FDR value was selected to avoid exclusion of true 

Figure 2: miRNA microarray data analysis for endstage mice. a) 3D-PCA analysis shows a robust distinction 

of the two classes (WT and KO) and reveals small variance intra-populations. b) Box Whisker Plot reflects a 

consistent homogeneity of the samples after normalization, as it is illustrated by the predominance of the 

values around 0. 
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hits (Appendix Fig.3). A filter of fold change >1.5 was applied to the subset of list of significant 

results in both statistical methods.  

27 miRNAs were obtained as significant in SAM and 16 miRNAs were identified using 

Genespring. 12 miRNAs matched both lists and therefore were chosen for subsequently studies 

(miR-127; miR-137; miR-337; miR-376a; miR-376c; miR-379; miR-434-3p; miR-434-5p; miR-410; 

miR-431; miR-489 and miR-541). (Table 1) 

 

 

 

 

 

 

           

A hierarchical 2D-clustering constructed for these 12 statistically significant miRNAs using 

the Euclidean measure enabled to additionally investigate the clustering of the distinct patterns of 

expression of both groups. In agreement with the PCA comparison, the heatmap assorts miRNAs in 

mainly up or downregulated in knockout mice versus wild-type animals. Despite this observation, 

three mutant samples (MTM1-3, MTM1-5 and MTM1-8) showed an intermediate level of 

expression being separated from the remaining mutated samples on the clustering tree. (Fig.3) 

 

 

 

Upregulated 

miRNAs
q-value (%)

Downregulated 

miRNAs
q-value (%)

Upregulated 

miRNAs
p-value

Downregulated 

miRNAs
p-value

mmu-miR-137 17,97 mmu-miR-434-5p 0 mmu-miR-137
0,0201

mmu-miR-127
0,002

mmu-miR-324-5p 17,97 mmu-miR-127 0 mmu-miR-329 0,010

mmu-miR-469 17,97 mmu-miR-376a 0 mmu-miR-337 0,020

mmu-miR-546 17,97 mmu-miR-541 0 mmu-miR-376a 0,020

mmu-miR-429 17,97 mmu-miR-434-3p 0 mmu-miR-376c 0,020

mmu-miR-344 17,97 mmu-miR-410 0 mmu-miR-379 0,002

mmu-miR-290 17,97 mmu-miR-431 8,66 mmu-miR-410 0,028

mmu-miR-367 17,97 mmu-miR-379 8,66 mmu-miR-411 0,010

mmu-miR-542-5p 17,97 mmu-miR-383 8,66 mmu-miR-431 0,039

mmu-miR-199b 17,97 mmu-miR-337 8,66 mmu-miR-434-3p 0,002

mmu-miR-465 17,97 mmu-miR-489 12,6 mmu-miR-434-5p 0,002

mmu-miR-464 17,97 mmu-miR-376c 12,6 mmu-miR-466 0,020

mmu-miR-295 17,97 mmu-miR-483 0,010

mmu-miR-224 17,97 mmu-miR-489 0,028

mmu-let-7d 17,97 mmu-miR-541 0,005

SAM GeneSpring statistical Analysis

Table 1: Genespring and SAM results of miRNA microarrays data analysis for endstage mice. miRNAs highlighted in 

green were identified as significant using both statistical methods. 
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3.2) Validation of differentially expressed miRNAs by qRT-PCR analysis 

  

To validate the results obtained in microarray data analysis, qRT-PCR experiments were 

developed for 12 significantlly altered miRNAs identified from the match between SAM and 

statistical analysis using GeneSpring GX. (Table 2) All tested miRNAs, with the exception of miR-

489, showed a good correlation between  microarray and qRT-PCR results. (Figure 4) miR-24 and 

snRNA U6 were tested to use as internal control miRNAs. miR-24 showed significant up-regulation 

in mutants demonstrating not to be an appropriate reference miRNA for skeletal muscle 

expression experiments.  snRNA U6 expression levels in mutant and control samples were 

indistinguishable. Thus, snRNA U6 was adopted for data normalization in qRT-PCR experiments.  

 To check the accuracy of our hypothesis that only those miRNAs  that are common 

between two statistical analysis are significant, we also performed RT-PCR on  few miRNAs that 

were excluded by parametric test, but considered significant by nonparametric and vice versa. No 

significant expression differences were observed for mir-411 (fold difference: significant by 

nonparametric) or miR-295 (fold difference: only identified as significant in parametric) between 

WT and Mtm1 KO samples, corroborating the efficiency of the approach applied. 

Figure 3: Hierarchical 2D-clustering produced for non-averaged significant miRNA lists via Euclidean distance metric 

and average linkage. The miRNA clustering tree is shown on the left and the sample clustering tree is shown on the 

top. The colored range represents the differential expression of miRNAs with red denoting <0 and blue >0.  
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3.3) miRNAs genomic location  

 Several miRNAs identified in our study showed to be arranged in a tandem called Dlkq-

Dio3 cluster array resulted from the processing of a single transcript designated Mirg (microRNAs-

containing gene). Mirg is located in the Dlk1-Dio3 (Delta-like 1 homolog-type III iodothyronine 

deiodinase) imprinted domain in the distal portion of mouse chromosome 12 and respective 

human 14q32, and contains more than 40 miRNAs. (Table 3) (da Rocha et al., 2008)  

 Microarrays qRT-PCR 

mmu-miR-127 -3.09 -2.1 

mmu-mir-137 1.75 2.36 

mmu-miR-337 -3.27 -2.87 

mmu-miR-376a -6.89 -5.5 

mmu-miR-376c -3.16 -1.35 

mmu-miR-379 -2.53 -1.4 

mmu-miR-410 -5.62 -2 

mmu-miR-431 -7.53 -3.4 

mmu-miR-434-3p -2.68 -2 

mmu-miR-434-5p -4.88 -2.01 

mmu-miR-489 -4.39 -9.6 

mmu-miR-541 -5.53 -4.4 

Table 2: Foldchange values obtained for microarray and qRT-PCR of 12 significant miRNAs p-value < 0.05  

and FDR <18% was applied to Genespring and SAM analysis,respectively.   

 

Figure 4: Linear correlation graph 

obtained with microarrays data in the 

X-axis and qRT-PCR values in the Y-

axis for endstage mice.   

Linear Trendline was applied. With 

the exception of miR-489, all miRNAs 

show a directly proportional variation 

of folchange between microarray and 

qRT-PCR values.  
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 miR-431, miR-127, miR-434, miR-379, miR-337, miR-541, miR-410, mir-376a, differentially 

expressed in our miRNA microarray, are located in this cluster. (Appendix Fig.4) miRNAs clustering 

is thought to represent a coordinated internal strategy to control more rapidly and efficiently 

common downstream pathways. Given that the same mRNA is often required to be target by 

several miRNAs, the expression of miRNAs regulated by the by same promoter sequence enables a 

powerful modulation of protein networks in response to a given stimulate. (Yuan et al., 2009) 

(Altuvia et al., 2005) 

 The biological importance of this domain, with ten genes detected so far, is illustrated by 

the resulted phenotypes obtained in Dlk1-Dio3 mutants. (Hagan et al., 2009) A single nucleotide 

mutation in Dlk1-Dio3 domain is responsible for the development of callipyge phenotype in sheep, 

characterized by extreme postnatal muscular hypertrophy, due to upregulation of Dlk1 and Rtl1 

transcripts from this cluster. (Charlier et al., 2001) (Fleming-Waddell et al., 2009) Moreover, Dlk1 

was reported to be involved in regulation of cell fate determination and skeletal muscle 

remodelling, showing high expression levels during development and on satellite cells in 

myopathic conditions. (Andersen et al., 2009) 

 Additionally, it was demonstrated the expression of Dlk1-Dio3 cluster requires Mef2 

(myocyte enhancing factor 2) transcription factor activation in neurons. (Fiore et al., 2009) Mef2 is 

also a regulator of myogenesis, responsible for the coordination of muscle specific gene 

expression in developing embryos. These evidences suggest the potential induction and 

implication of this cluster in myogenenesis. Mirg expression (containing several microRNAs 

differentially regulated in this experiment) was never reported in skeletal muscle and mir-410 and 

miR-431 were identified as nervous system specific. (Wheeler et al., 2006) In this study we report 

for the first time the expression of miRNAs belonging to Dlk1-Dio3 domain in skeletal muscle of 

mice with 14, 27 and 49 days. The reason underling the non-detection of these miRNAs in previous 

experiments might correlate with the fact in situ analyses were developed for embryonic day 11.5. 

Primary mouse myogenesis starts between E12.5 and E14.5 and secondary fibers start to be 

established around E14-E16. (Buckingham et al., 2003) Further functional experiments, using in 

situ hybridization, should also be performed in adult mice sections to an accurate understanding 

of temporal expression patterns of identified differential expressed miRNAs. 
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miR-489 is an intronic miRNA located in the host gene calcineurin receptor precursor (CT-R) 

 miRNAs expression often correlates with expression of their respective host genes as well 

they involved in common biological pathways. In this study all miRNAs, with the exception of miR-

489, are located either in the Dlk1-Dio3 cluster or in intergenic regions widespread in the genome. 

Interestingly, the host gene of miR-489 is the calcineurin-receptor precursor.  

 In adult animals, muscle growth is mainly mediated by hypertrophy, resulting in an 

increase in size, rather than in number, of pre-existing muscle fibers. Depending on 

external/internal stimulus, different molecular signaling pathways can be activated to increase 

intracellular Ca2+ levels, which subsequently promote not only muscle contractibility but also the 

induction of muscle specific genes required for hyperthrophy. Insulin-like growth factor (IGF-1) 

expression, mediated by the activation of phosphoinositide 3-kinase (Pi3K)/Akt/mTOR and 

PI(3)K/Akt/GSK3 pathways, is thought to be sufficient to induce hypertrophy. (Rommel C, 2001) 

However, Ca2+/calmodulin-dependent pathway, through the activation of calcineurin and 

subsequent interaction with GATA2 and NFATc1, was also reported to be required, although not 

sufficient, for hypertrophic mechanisms. (Musaro et al., 1999) (Semsarian et al., 1999) 

Calcineurin is a Ca2+/calmodulin-activated phosphatase implicated in the phosphorilation 

state of NFAT (nuclear factor of activated T cell) transcription factor members. Calcineurin enables 

the activation and subsequent nuclei translocation of specific NFAT isoforms, which in cooperation 

with MEF2, are crucial in the modulation of muscle specific gene expression in different stages of 

skeletal muscle development. (Schulz and Yutzey, 2004) A direct role of calcineurin in myoblast 

differentiation was also observed in C2C12 myogenic cells. Calcineurin levels were demonstrated 

to be upregulated during terminal myogenesis, with the inhibition of calcineurin being responsible 

for a decrease myoblast ability to progress to myotube formation stage. (Delling et al., 2000) 

Moreover, calcineurin signaling appears to be crucial in reprogramming of myofiber-

specific gene expression, promoting the transition from resting IIb fiber types to slow contractile 

type I fibers (muscle fibers able to sustain high concentrations of intracellular calcium as a result of 

tonic motor nerve activity). (Naya et al., 2000) (Chin et al., 1998) 

In this project it was not observed a significant change in the expression levels of 

calcineurin, however calmodulin levels were found to be downregulated. In several neuromuscular 

disorders, and mainly in congenital myopathies, higher incidence of atrophy in type I (slow) muscle 

fibers is mainly observed. (Imoto and Nonaka, 2001) In myotubular myopathy this phenomenon is 

not a constant observation, however type I predominance is often detected. (Pierson et al., 2005) 
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3.4) Biological relevance of identified miRNAs 

 

Significant miRNAs involved in cell-cycle arrest and progression to differentiation state 

 It is noteworthy the observation that several miRNAs found differentially expressed in this 

study were consistently reported as cell cycle regulators in previous investigations. (Table 4) 

 miR-137, in cooperation with miR-124, was identified in glioblastoma multiforme tumors 

to inhibit cellular proliferation. Furthermore, it was revealed miR-137 induces differentiation of 

mouse neural stem cells. (Papagiannakopoulos and Kosik, 2008; Silber et al., 2008) 

 Conversely, miR-489 was found to be down-regulated upon differentiation and when 

inhibited promote differentiation of human mesenchymal stem cells - progenitor cells with multi-

lineage capacity that can generate myocytes. (Schoolmeesters et al., 2009) 

 Despite different results were obtained for different tumors miR-127 was also 

associated with the modulation of cell cycle. In invasive squamous cell carcinomas patients, this 

microRNA was upregulated (suggesting the role in the promotion of proliferation). Also, it was 

identified as a potential biomarker for lymph nodes metastasis in this condition. (Lee et al., 2008) 

In contrast with these studies, in hepatocellular carcinoma miR-127 was shown to be 

downregulated in the early stages of the disease in a rat model. (Tryndyak et al., 2009) 

In our data, miR-137 is overexpressed, while miR-127 and mi-489 are downregulated in 

the later, most severe stage of the disease. Overall, we might speculate the process of myogenesis 

miRNA ID 
Chromosome 

location 
Genomic region Gene description  

mmu-miR-137 chr 3 Intergenic region   

mmu-miR-337 chr 12 Intergenic region   

mmu-miR-127 chr 12 Rtl1  Retrotransposon-like protein 1  

mmu-miR-376a chr 12 Intergenic region   

mmu-miR-376c chr 12 Intergenic region   

mmu-miR-379 chr 12 Intergenic region   

mmu-miR-410 chr 12 Intergenic region   

mmu-miR-431 chr 12 Rtl1  Retrotransposon-like protein 1  

mmu-miR-434-3p chr 12 Rtl1  Retrotransposon-like protein 1  

mmu-miR-434-5p chr 12 Rtl1  Retrotransposon-like protein 1 

mmu-miR-489 chr 6 Calcr Calcitonin receptor Precursor 

mmu-miR-541 chr 12 Intergenic region   

Table 3:  Significant miRNAs identified by bioinformatic analysis and their genomic location in mouse. The data below 

was obtained from miRBase (miRNA database). 
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is being promoted while proliferation supressed, with miRNAs reported to trigger differentiation 

upregulated (miR-137) and miRNAs responsible to suppress this process downregulated (miR-489, 

miR-127) in endstage Mtm1-deficient mice.  

 

 

 

3.5) miRNAs expression differences during mouse development 

   

 Subsequently to the identification of statistical significant miRNAs by bioinformatic 

analysis of microarrays and their experimental validation by qRT-PCR we decided to assess their 

differential expression in two additional developmental time points. Through an integrative 

analysis of miRNA differential expression changes in 14, 27 and 49 days mutant animals, compared 

to respective controls, we aimed to deeper understand the role of selected miRNAs in the 

progression of myotubular myopathy severity. 

 Real-time PCR experiments detected the expression of all 12 tested miRNAs in skeletal 

muscle of 14, 27 and 49 days mice. (Figure 5) Comparing to endstage (49 days) mice which 

manifest significant levels of identified miRNAs downregulation, 14 and 27 days mice only present 

slight expression changes in KO/WT analysis.  A pattern of increasing or decreasing foldchange 

sequentially from 14 days to 27 and finally 49 days, was not observed for miR-127, miR-376a, miR-

376c, miR-379, miR-410, miR-431 and miR-434-3p. These results might indicate that the function 

of specified miRNAs is only triggered and biologically relevant in the most severe stage of the 

disorder. Conversely, miR-337, miR-434-5p, miR-489 and miR-541 show a significant progressive 

decrease in foldchange (KO/WT) values from the assymptomatic stage of the disorder (14 days 

Genomic location miRNA name Cellular function 

Cluster Dlk1-Dio3 

 miR-337, miR-376a, miR-376c, miR-
379, miR-410, miR-431, miR-434-3p,              

miR-434-5p, miR-541 

Cooperative role regulated by MEF2;   
Induction of myogenesis? 

miR-127 Cell cycle regulator 

Intergenic and 
intronic region 

miR-137  
Inhibition of proliferation and 

induction of differentiation 

miR-489 Induction of stem cells differentiation 

Table 4: Previously described functions of 12 identified miRNAs  
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mice) to their terminal most severe stage (endstage 49 days mice). Based on these evidences we 

suggest a direct involvement of these microRNAs in the evolution and associated increase in 

phenotypic severity of myotubular myopathy. Finally, we highlight miR-137 and miR-489 for 

presenting a constant pattern of up and downregulation in mutants, respectively, throughout 

mouse development. miR-137 and miR-489 might represent main fundamental miRNAs essential 

for the etiology and manifestation of XLMTM.  

 

 

 

 

 

 

3.6) mRNA expression profile of XLMTM 

  

 Following the identification of 12 differentially expressed miRNAs for subsequent in silico 

target prediction, we further restrict our analysis to mRNAs statistically differentially expressed in 

myotubular myopathy to increase the biological relevance of this study. Affymetrix Exon 1.0 ST 

array was used for mRNA hybridization that contains 27 probes for each of the approximately 
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Figure 5: qRT-PCR foldchanges values for KO/WT 14 days, 27 days and 49 days mice. snRNA U6 was used as internal 

control with foldchange calculated using the ΔΔCt method.  
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29.000 genes. We applied the same criteria as for miRNA microarrays data analysis: VSN method 

for normalization, p-value<0.05 and fold difference of 1.5 as cut-off. 424 genes were found 

differentially expressed in XLMTM. In this experiment outliers identified in miRNA profiling were 

not included. An additional sample, KO7, was excluded by Spearman rank correlation quality 

controls performed by Affymetrix. (Appendix Fig.5) 

 In order to determine the functional categories potentially dysregulated in XLMTM, gene 

ontology enrichment using GOstat was estimated. GOstat assigns overrepresented functional 

categories according to associated significant p-values within a set of genes. Using as primary 

entity list the previously identified 424 differentially expressed mRNAs we obtained 8 significant 

functional groups (corrected p-value<0.02). In agreement with the expected, the resulted 

categories are directly associated with the pathophysiology of myotubular myopathy. Functional 

groups related to sarcomere structure, muscle development processes and protein network 

regulation were found overrepresented.  (Appendix Table1) The muscle-specific phenotype 

characteristic of XLMTM rationalizes the data and corroborates the biological importance of 

further studies based on these genes. 

  

3.7) Identification of miRNA-target interactions  

 miRNA profiling and subsequent qRT-PCR validation revealed differential expression of  

miRNAs in Mtm1-deficient mice compared to controls, demonstrating their involvement in 

myotubular myopathy. Each of the computational miRNA target prediction tool provides hundreds 

of target genes that may be regulated by a particular miRNA. Most of those predicted target genes 

may not be regulated in all tissue types or diseases sates. Further, a larger number of false 

positives also make the identification of real targets a very tedious process.  To decipher functional 

miRNA/target gene networks in myotubular myopathy, we decided to identify significantly altered 

transcripts by mRNA profiling.  All the genes that were thus identified were then matched with the 

list of 12 significantly altered miRNAs to identify their target genes in myotubular myopathy.  

 mRNA profiling was performed in the same Wt/Mtm1 mice samples that were used for 

miRNA profiling earlier. This led us to identification of 424 transcripts that showed differential 

expression between Mtm1 and WT mice.  We next identified genes from these 424 genes that 

were a direct target of any of the 12 miRNAs that are significantly altered in Myotubular myopathy 

using Genespring.   
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 There are several computational tools that are commonly used to identify miRNA target 

genes such as Targetscan, Miranda, PicTar and MicroCosm. Genespring has Targetscan integrated 

in its module and is widely used to identify targets with high accuracy. Combing the mRNA data 

(424 genes) to identify potential 12 miRNA targets resulted in 142 direct target genes of these 

miRNAs. (Figure 6) 

 

 

 

 

 

 

 

 

 

 

Fig 6: Skematic representation of combinatorial approach used to identify significant miRNAs and their mRNA target 

genes. miRNA as well as mRNA expression profile were performed using microarrays. Statistical analysis considered 

p-values<0.05 and foldchange>1.5 cut-offs. 424 significant mRNAs were overlapped with the predicted target genes 

for the 12 identified miRNAs, using TargetScan software. The resulted matching list contains 142 genes and is 

represented in the Venn-diagram.  
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3.8) Functional categories enriched in potential miRNA-regulated genes correlates with disease 

phenotype 

The group of 142 candidate miRNA-regulated genes differentially expressed in XLMTM, 

was subsequently classified in overrepresented functional groups using GOstat. Interestingly, 

although the main categories involved in muscle development and sarcomeric composition 

overlapped the functional groups obtained for the 424 genes differentially expressed in mRNA 

expression profile, additional categories were highlighted for the same p-value<0.02. 

 Regulation of the progression through cell cycle, cardiac muscle morphogenesis and 

muscle contraction we also identified as enriched categories. (Table 5) These results are in 

conformity with previous reports suggesting the role of some of the identified miRNAs in the 

regulation of cell cycle. (Papagiannakopoulos et al., 2008) (Tryndyak et al., 2009) (Schoolmeester 

et al., 2009)  

Furthermore, due to muscle injury in XLMTM patients and mice models, the observed 

overrepresentation of cardiac genes (skeletal muscle embrionary protein isoforms) might 

represent a biological compensatory mechanism to restaure muscle integrity and homeostasis. 

This strategy was previously described for several other congenital myopathies, including 

nemaline myopathy. (Laing NG, 2007) Patients with nemaline myopathy associated with null 

mutations in the alpha-skeletal muscle actin are only able to survive due to a re-expression of 

cardiac (embryonary) actin isoform that partially compensates for the absence of alpha-actin, 

required for muscle structure and function. (Nowak et al., 2007) 

Finally, the identification of muscle contraction category is in agreement with recent 

studies that postulate myotubular myopathy results in defective excitation-contraction coupling 

due to transverse-tubules (T-tubules) structure destabilization and impaired ryanodine-mediated 

sarcomeric reticulum Ca2+ release. (Dowling et al., 2009) (Al-Qusairi et al., 2009) A deficiency in the 

production of myotubularin dysregulates the levels of phosphoinositides synthesis and 

degradation, required for proper regulation of endocytosis dynamics and membranous structures 

remodeling.  

Muscle contraction requires the transfer of action potential from the sarcollema (in 

particular from T-tubules) to the sarcoplasmic reticulum to trigger Ca2+ release and subsequent 

Ca2+ dependent signaling pathways activation. T-tubules are sarcolemma invaginations constituent 

of the triads that transmit the signal to terminal cisternae promoting the induction of Ca2+ release 

from the internal Ca2+ storage compartment sarcoplasmic reticulum to the cytoplasm through 
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RyR1 channel. As membranous structures, T-tubules function, and consequently excitation-

contraction coupling, is dependent on phosphoinositide activity regulated by PI3 kinases and 

phosphatases, such as myotubularin. (Flucher, 1992) (Frank and Oz, 1992) 

Given the described evidences of biological relevance of the functional categories 

enriched in this experiment for myotubular myopathy development, we further decided to focus 

on miRNA-regulated mRNAs differentially expressed included in these groups.   

 

 

 

 

Most significant GO 
categories 

Genes 

GO:0005515 
(Protein binding) 

ube2g2 rb1 klhl31 abcd2 tcf12 lrrc2 trim63 app bhlhb3 phka1 adssl1 
col8a1 btg2 mkl1 homer1 igfbp5 napb ablim1 csrp3 postn sorbs1 dmd 
gadd45a ranbp9 mafk flnc lrrn1 mstn jak2 tiam2 ncam1 esr1 erbb2ip 
frzb errfi1 lrrc58 mtap1b arntl atp1b2 tnni1 ctgf actc1 rasgrp3 ankrd1 

enah cnksr1 atf3 cdkn1a atp2a2 gabarapl1 tlr4 dapk1 kcnn3 runx1 
macf1 calm3 ar palld arl6ip5 calm2 fbxw7 hexa hdac4 aspn 

GO:0043292 
(Contractile fiber) 

trim63 dmd actc1 ankrd1 myoz2 tnni1 tnnt2 csrp3 

GO:0005856 
(Cytoskeleton) 

jak2 gabarapl1 ablim1 rb1 csrp3 sorbs1 dmd hspb7 app mtap1b macf1 
myoz2 tnni1 tnnt2 flnc palld actc1 eml1 enah 

GO:0005737 
(Cytoplasm) 

2610207i05rik ube2g2 oxct1 abcd2 msrb3 trim63 app adssl1 alas1 
col8a1 mkl1 homer1 egln3 h6pd napb slc25a24 ablim1 csrp3 sorbs1 

dmd ranbp9 flnc nploc4 jak2 tiam2 esr1 fmo2 cyb5r3 errfi1 hpgd 
mtap1b atp1b2 ces3 tnni1 tnnt2 actc1 rasgrp3 ankrd1 eml1 cnksr1 enah 

atp2a2 cdkn1a gabarapl1 bex2 chodl dapk1 glul nt5c2 psmd3 macf1 
myoz2 ar calm3 tfrc ak3 palld arl6ip5 calm2 hexa snf1lk fbxw7 hdac4 

atp6v1a 

GO:0007517 
(Muscle development) 

app chrna1 rb1 tnni1 tnnt2 csrp3 dmd actc1 trp63 

GO:0000074 
(Regulation of 

progression though cell 
cycle) 

app cdkn1a macf1 loh11cr2a rb1 esr1 trp63 gadd45a snf1lk 

GO:0055008 
(Cardiac muscle 
morphogenesis) 

actc1 tnni1 tnnt2 

GO:0006936 
(Muscle contraction) 

trim63 atp2a2 actc1 tnni1 tnnt2 

Table 5: Gene ontology categories and respective genes integrated for p-value <0.02 of significant genes matching 

mRNA expression profile and predicted genes of significant miRNAs. Total of 142 genes analysed. 
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Additional biological considerations were also taking into account to select genes for 

subsequent research. miRNAs negatively modulate gene expression by  leading to mRNA target 

degradation, guiding of cognate mRNAs to P bodies for subsequent inactivation or complete 

degradation or by directly repressing their translation. (Bartel, 2004; Rana, 2007) In light of this 

mode of action if a miRNA is downregulated its target gene is expect to be upregulated, and the 

opposite respectively. Following this concept we next searched for mRNA target genes that 

showed an inverse differential expression comparing to their candidate differentially expressed 

miRNAs. 

For further fine-mapping of potential important miRNA-mRNA interactions we prioritized 

genes overrepresented in common functional ontology categories and mRNA targeted by several 

miRNAs to reduce the number of false positives. (Ivanovska and Cleary, 2008; Krek et al., 2005) 

This approach promoted the exclusion of miR-337, miR-376a and their single target genes 

from the list of miRNAs/mRNAs to deeper investigate.   

The genes Ablim1, Actc1, Carp (Ankyrin 1), Cdkn1a (p21), Csrp3, Gadd45a, Jak2, Macf1, 

Mtap1b, Myoz2, Tnni1, Trim63 (Murf1), Trp63, Frzb, Hdac4, Homer 1, Igfbp5, Runx1 passed the 

described criteria and consequently were selected for subsequent analysis. In addition, a subset of 

genes differentially expressed in the mRNA expression profile that are not direct targets of 

miRNAs but are known to work in conjugation with the miRNA target genes were also included to 

identify regulatory networks operating in myotubular myopathy. (Table 6) 

 Among these Tnnt2, Rb1, Mstn, Foxo1, Fbxo32, Myog and Gas5 genes were found differentially 

expressed in XLMTM and selected based on their known role in muscle development and repair. 

(Table 7). To validate the differential expression of these genes qRT-PCR array was performed.   

qRT-PCR confirmed the results of microarray expression data in  these mice, with the exception for 

plcd4 gene. (Fig. 9) 
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Table 6: Genes selected for further studies based on mRNA expression profile and predicted target genes of significant 

miRNAs list (142 genes). TargetScan was used to identify target miRNA target genes. 

 

 

  

 

 

 

 

 

 

 

 

Gene Name Description miRNA target 

Ablim1 actin-binding LIM protein 1 miR-434-3p, mir-376c 

Actc1 actin, alpha, cardiac miR-434-3p 

Carp ankyrin repeat domain 1 (cardiac muscle) miR-431 

Cdkn1a cyclin-dependent kinase inhibitor 1A (P21) miR-379 

Csrp3 cysteine and glycine-rich protein 3 (muscle LIM protein) miR-431 

Gadd45a growth arrest and DNA-damage-inducible 45 alpha miR-489 

Jak2 Janus kinase 2 miR-541 

Macf1 microtubule-actin crosslinking factor 1 miR-431, miR-410, miR-379 

Mtap1b microtubule associated protein 1b miR-376c, miR-379 

Myoz2 Myozenin2 miR-410, miR-379 

Tnni1 troponin I, skeletal, slow 1 mir-489 

Trim63 tripartite motif-containing 63 miR-431, miR-410 

Trp63 transformation related protein 63 miR-434-3p, miR-410 

Hdac4 histone deacetylase 4 miR-127 

Homer 1 Homer homolog 1 (Drosophila) mir-410 

Igfbp5 insulin-like growth factor binding protein 5 miR-137 

Runx1 Runt related transcription factor 1 miR-541 
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3.9) Biological pathways modulated by miRNAs relevant in the etiology of XLMTM 

 

3.9.1) Muscle atrophy molecular pathways are upregulated in XLMTM 

Our studies led us to identify several miRNA target genes that play a role in musclular 

atrophy. Mtm1 knockout mice show remarkable atrophy in muscle fibers as the diseases 

progresses.  Muscular atrophy represents a decrease in myofiber size due to a negative 

imbalanced ratio of protein synthesis versus protein degradation, hence shifting towards protein 

wasting. FoxO1 is a key regulator of muscular atrophy and found to be consistently upregulated in 

this study (1.63 folds upregulated in Mtm1 mice). FoxO1 transgenic mice, overexpressing FoxO1 

also show marked muscle loss and fiber atrophy. (Kamei et al., 2004) FoxO1 is an important 

member of Akt/Pi3K signaling pathway and leads to muscle atrophy in response to decreased 

Akt/PI3K signaling. It functions by upregulation of key components of ubiquitin- proteosome 

pathway that are involved in protein breakdown and are increased during atrophy (Sandri M, 

2008) In particular, the muscle-specific E3 ubiquitin ligases Murf (also denominated Trim63) and 

Mafbx (also called Fbx032) are identified as required markers for atrophy that are activated by 

FoxO1 (Bodine et al., 2001).  We found both Muscle RING finger protein 1 (Murf1) +2.68  as well as 

Muscle atrophy F-box protein (Mafbx or Fbxo32) +3.16 were overexpressed in mutants Therefore 

our results demonstrate the involvement of FoxO1 mediated activation of Murf1 and Mafbx and 

suggest the possible implication of supressed Pi3K/Akt pathway in myotubular myopathy. 

Gene Name Description miRNA target 

Dusp4 
(MKP-2) 

dual specificity phosphatase 4 miR-434-5p 

Plcd4 phospholipase C, delta 4 miR-410 

Tnnt2 troponin T2, cardiac 
 

Rb1 retinoblastoma 1 
 

Mstn Myostatin 
 

Foxo1 forkhead box O1 
 

Myog Myogenin 
 

Fbx032 F-box protein 32 
 

Gas5 Growth arrest-specific 5 
 

Frzb Frizzled related protein 
 

Table 7: Genes selected from microarrays analysis for further studies. Potential genes involved in the pathways 

regulated by miRNAs were selected. 
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We further identified two miRNAs, miR-431 and miR-410 that are downregulated in Mtm1 

KO mice and target Murf1 which we found to be upregulated and is a crucial regulator of atrophy. 

These results suggest multiple levels of activation of muscular atrophy pathways 

dependent/independent of miRNAs. Further functional studies will provide detailed insights in to 

contribution of these miRNAs in to muscular atrophy seen in myotubular myopathy. (Figure 7) 

 

3.9.2) Structural sarcomeric proteins implicated in muscle integrity are overexpressed in XLMTM 

 

In XLMTM, integrity of myofibrillar apparatus predominates, however, Z-streaming or 

complete sarcomeric loss is often reported. Coordinate expression changes in the levels of 

structural proteins harboring the link between the sarcomere and the nucleus might be crucial 

during disease status. Different specialized compartments in the sarcomere orchestrate distinct 

proteins relevant for intracellular signalling. In M-bands predominate protein-kinase regulated 

ubiquitin signaling and protein turnover mechanisms, while I-bands and Z-disks are mainly 

constituted by stretch sensitive pathways associated with transcription factors modifiers. (Laing 

NG, 2008)  

Interestingly, we identified several structural sarcomeric proteins upregulated in Mtm1 

mice.  Conversely, miRNA targeting these structural proteins were found to be downregulated in 

diseased state. Many of these sarcomeric genes have found to be upregulated in muscular atrophy 

in other myopathies as well. ankyrin repeat domain 1 (Ankrd1 or CARP) showed in microarrays 

analysis an upregulation in mutants of +7.30. Ankrd1 is a skeletal and cardiac muscle expressed 

transcription cofactor protein known to interact with titin/connectin and myopalladin. Mutations 

in Ankrd1 were described to be associated with the development of hypertrophic 

cardiomiopathies, revealing its requirement for muscle architecture. (Moulik et al., 2009) (Arimura 

et al., 2009) Ankrd2 was also upregulated in mRNA expression profile (+2.91). Ankrd2 shares high 

levels of homology with Ankrd1 and belongs to the same muscle ankyrin repeat proteins family 

(MARP). Ankrd2 is preferentially expressed in slow muscle fibers and cardiac muscle and was 

postulated to function in cooperation with Ankrd1 in the modulation of skeletal muscle gene 

expression programming in response to signaling pathways. Marp family function is still mainly 

unknown although increasing evidences support its role in sarcomeric structure integrity and 

function in the modulation of muscle-specific gene expression in muscular pathology context, such 

as atrophy. (Barash et al., 2007) (Miller et al., 2003) Ankrd1 and Ankrd2 were also suggested to 
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induce the expression of the cell cycle inhibitor gene p21 (+4.8 upregulated in our experiment and 

present in the 142 genes list), MLP (also +3.9 upregulated in 142 entity list) and regulate the 

expression of MyoD. (Kojic et al., 2004; Laure et al., 2009)  

 Other sarcomeric proteins such as Csrp3 (cysteine and glycine-rich protein 3 or muscle LIM 

protein) showed an upregulation of +3.9 and Myozenin2 (Myoz2) an upregulation of +2.4 in 

diseases muscles. Muscle LIM protein (encoded by the csrp3 gene upregulated in XLMTM) has a 

dual role by colocalizing with Z-disks and nucleus. In the first scenario, MLP function as a linker 

scaffolding protein fundamental to muscle integrity. (Barash et al., 2005) By presenting the ability 

of translocation to the nucleus MLP is involved in muscle sensory signaling pathways and 

promotion of myogenesis in differentiating muscle cells. (Arber et al., 1994; Flick and Konieczny, 

2000) Interestingly, Csrp3 and Ankrd2 were also found upregulated in nemaline myopathy, a 

severe non-dystrophic congenital myopathy.  (Sanoudou et al., 2006) In addition, Csrp3 was found 

to be upregulated in muscle injury conditions (Barash et al., 2004) while mutations associated with 

this gene promoted hypertrophic cardiomyopathy. (Geier et al., 2008; Knoll et al., 2002) Finally, 

Myozenin 2 (or Calsarcin-1) is an additional Z-disk interacting protein known to be mutated in 

cardiac hypertrophy conditions. 

 As noted earlier many miRNAs that target these sarcomeric proteins were found to be 

downregulated in myotubular myopathy. miR-431 that targets Ankrd1 and Crsp3 is significantly 

decreased (7.31 folds) in Mtm1 mice. miR-431 also targets Murf1 another gene that is upregulated 

in muscular atrophy as discussed earlier. Similarly, miRNA 379 that is found to be down regulated 

in diseases state also have several direct targets that are upregulated in Mtm1 mice as well in 

muscle atrophy. Therefore, our work identified few miRNAs that regulate a number of muscle 

atrophy causing genes. These studies suggests that these miRNA many not be specific to 

myotubular myopathy and many be operating in a number of muscle diseases involving muscle 

atrophy. Nonetheless, overexpression of these miRNAs may downregulate the genes involved in 

muscular atrophy and slow down the muscle damage and progression of myotubular myopathy. 

(Figure 7) 
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Figure 7: Putative molecular pathways involved in muscular atrophy are postulated to be mediated by miRNA gene 

expression regulation in XLMTM. The schematic diagram presented was constructed based on differential 

expression values in microarrays experiments. Positive values (and green molecules) represent gene or miRNA 

downregulated in mutants comparing to controls, while negative values and associated red molecules illustrated 

genes or miRNAs upregulated. Green filled schematic genes represent identified potentially miRNA-regulated genes 

in the 142 gene list. White filled molecules surrounded by green line represent genes only significantly differentially 

expressed in the mRNA expression profile, present in the 424 gene list.  
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3.9.3 ) Inhibition of proliferation and induction of differentiation in satellite cells 

  

 Myogenesis requires the coordinate activation of genes responsible for cell cycle 

withdrawal and muscle lineage commitment or differentiation.  We identified a robust 

upregulation of cell cycle arrest genes as well as muscle differentiation markers in diseased 

muscles. (Figure 8) p21, a predicted target of miR-379 upregulated in XLMTM, is a cyclin-

dependent kinase inhibitor of G1 cell cycle progression that directly suppresses the activity of 

cyclin-CDK2 and cyclin-CDK4 complexes that are required for cell cycle progression. p21 expression 

is required for irreversible cell cycle exit upon myocyte differentiation. In agreement with these 

data and gene expression profile in XLMTM, retinoblastoma 1 (Rb1) and myogenin (Myog) were 

also found upregulated in this condition. Rb1 is a tumor suppressor gene that negatively regulates 

the progression from G0 through to G1 and into S phase. (De Falco et al., 2006; Mal et al., 2000) 

Rb together with myogenin (a marker of differentiation) also plays a key positive role in the 

activation of muscle specific genes during myogenesis.  Also described to promote cell cycle arrest, 

Gadd45a (growth-arrest and DNA-damage inducible 45 alpha) was shown upregulated in this 

experiment, possibly as a result of the decrease expression of its candidate negative regulator 

miR-489. 

 Additionally, the actin-binding protein 1 (ablim1) previously described as a tumor 

suppressor gene, was also detected upregulated in this experiment and is a target of miR434-3p 

and miR-376c. It will be interesting to identify if each of these miRNA acts independently or miR-

434-3p and miR-376c cooperatively regulate ablim1 expression. Downregulation of these miRNAs 

and subsequent upregulation of ablim1 in XLMTM might contribute to cell cycle exit. (Kim et al., 

1997) 

 Another upregulated protein with tumor suppressor gene function associated with 

XLMTM was dusp4, a predicted target of miR-434-5p. Dusp4 (also named MKP-2) is a dual-

specificity phosphatase of the activated MAP kinases ERK1 and ERK2, which plays an essential role 

in mitogen-regulated growth factor signal transduction. (Armes et al., 2004) Erk1/2 functions by 

phosphorylation of MAPKK in response to growth factors and/or ligand molecules. An increase in 

Dusp4 can result in a subsequent decrease in Erk1/2 activation affecting MAPK and or Akt signaling 

pathways.  These are the first studies that hint towards an involvement of MAPK signaling 

pathway in myotubular myopathy. Our hypothesis is further strengthened by a recent study in 

which inhibition of Erk1/2 kinases led to reduction of myotube size and protein content. This 

http://en.wikipedia.org/wiki/Cyclin-CDK2
http://en.wikipedia.org/wiki/Cyclin-CDK4


Masters dissertation/ The role of microRNAs in X-Linked Myotubular Myopathy 
Mariana Fontes 

Universidade de Lisboa – Faculdade de Ciências 40 

effect of MAPK pathway on muscle growth is specific to Erk1/2 as inhibition of other MAPK 

pathways i.e. JNK or p38 did not show any affect on muscle growth (Shi et al., 2009) Further over-

expression of one of the MAPK-phosphatases, MAPK1 in soleus as well as gastrocnemeus muscles 

decreased the fiber size. These studies clearly suggest the role of MAPK signaling in skeletal 

muscle maintenance as inhibition of this signaling result in muscular atrophy. 

In addition to an increase of cell cycle inhibitors in Mtm1 KO mice we also  found an 

upregulation of several genes involved in the control of stem cell growth, particularly satellite 

cells. Muscle satellite cells account for 2-5% of the total cell population in adult skeletal muscle 

where they play a major role in muscle regeneration. Under normal conditions satellite cells are 

mitotically quiescent in the adult skeletal muscle. When activated by muscle damage, they 

proliferate, differentiate and fuse with each other or injured fibers and eventually regenerate 

mature myofibers. Importantly, a small fraction of activated satellite cells exit the cell cycle and 

return to the quiescent satellite state during muscle regeneration to maintain their number and 

regenerative capacity of muscle. Thus, normal functioning of satellite cells are indispensable for 

the integrity of skeletal muscle, and the cells themselves are an important source of cells for cell 

therapy of muscle diseases, making it valuable to clarify the molecular regulation of maintenance, 

activation/proliferation, and differentiation in satellite cells.  

 Syndecan-4, a marker of satellite cells, was seen upregulated in Mtm1 mice. Syndecan-4 

expression in adult mice is restricted to satellite cells and in particular into the quiescent 

population, suggesting its role in the maintenance of quiescent satellite cell population.. 

(Cornelison et al., 2001) Gas5 (growth arrest-specific gene 5) another marker of quiescent satellite 

cells was also found upregulated in Mtm1 mice. (Coccia et al., 1992) Trp63 (transformation related 

protein 63) that is necessary for adult stem cells maintenance was also seen to be upregulated in 

diseased muscles. (Su et al., 2009) Trp63 is a target gene of miR-410 and miR-434-3p and may be 

co-regulating by these miRNAs. We also observed a number of other satellite cell activation 

markers such as Pax3, Myf5, Eya1 downregulated in Mtm1 mice by other expression analysis. 

Furthermore, recent studies demonstrated that a reduction in frizzled levels (also downregulated 

in Mtm1 KO mice) leads to an increase in Wnt signaling pathway which consequently is associated 

with a reduction in the ability of maintenance of stem cells potential in mice. (Brack et al., 2007) 

 These observations make us hypothesize that the inability of atrophic skeletal muscle to 

respond to regenerative stimuli and promote hypertrophy might result from defective 

proliferation as well as activation of satellite cells (myogenic stem cells progenitors). In a 
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cooperative mode miR-379, miR-410, miR-434-3p, miR-434-5p, miR-376c and miR-489 might 

control the overexpression of genes that promote cell cycle arrest, as well as induce muscle 

differentiation. This suggests that a lack of cell proliferation coupled with an increase in 

differentiation proteins in Mtm1  KO mice result in only a small number of activated satellite cells, 

insufficient for proper muscle repair and constitutes one of the crucial mechanisms that ultimately 

result in muscular atrophy in Mtm1-deficient mice. The genes responsible for these pathways are 

regulated by a number of miRNAs thus forming a coordinated network where any defect in the 

circuit can elicit a response eventually leading to muscle atrophy.   

 Some of these miRNAs such as miR-379 and miR-410 show a significant contribution in 

multiple processes: cell cycle defects as well as muscular atrophy. This suggests that muscle 

atrophy is not a final manifestation of diseased muscle state but a process in which genes are 

tightly regulated from very early stages of disease.  This is clearly seen from expression of several 

muscle atrophy genes that show an increase in Mtm1 mutant mice in preclinical stage (this 

difference increases further as the disease progresses).  Therefore, over expression of miR-379 

and miR-410 in Mtm1 KO mice may lead to correct satellite cell activation as well as muscular 

atrophy defects and provides a promising potential therapeutic approach for treatment of 

myotubular myopathy. 
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Figure 8: Diagrams illustrating the hypothesized miRNA-mediated pathways implicated in the regulation of satellite 

cells function. a) Microarray expression of genes and potential regulator miRNAs reported to be crucial for stem cells 

maintenance. B) Microarray expression of miRNAs and cognate predicted target genes responsible for regulation of cell 

cycle. Of note, genes involved in the promotion of cell cycle arrest and promotion of cell differentiation are 

upregulated in mutants. Positive values (and green molecules) represent gene or miRNA downregulated in mutants 

comparing to controls, while negative values and associated red molecules illustrated genes or miRNAs upregulated. 

Green filled schematic genes represent identified potentially miRNA-regulated genes in the 142 gene list. White filled 

molecules surrounded by green or red line represent genes only significantly differentially expressed in the mRNA 

expression profile, present in the 424 gene list. 
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3.9.4) Overexpression of Type I myofiber genes 

An additional pathway seems to be also upregulated in XLMTM and correlate with the phenotype 

observed in individuals with myotubular myopathy. A significant overepresentation and 

upregulation of genes involved in the switch from fast to slow muscle fibers was observed.  

Troponin I, skeletal, slow 1, cysteine and glycine-rich protein 3 (muscle LIM protein), Myozenin2 

and ATPase, Ca++ transporting, cardiac muscle, slow twitch 2, Troponin T2, cardiac, were found 

significantly upregulated. (Table 8) Their inverse correlation with miRNA predicted targets suggest 

the involvement of miRNAs in regulation of this biological mechanism associated with several 

neuromuscular disorders. Further analyses in this topic are presently being developed.  

 

 

 

 

 

 

 

 

 

 

Biological Process Associated Genes 

Muscle atrophy Murf1, Mafbx, FoxO1, 

Sarcomeric integrity Ankrd1, Csrp3, Myoz2, Ankrd2 

Differentiation/ Proliferation 
Ablim1, Dusp4, Gadd45a, Igfbp5, Frzb, p21, Runx1, 

 Trp63, Rb1, Myog, Syndecan-4, Gas5 

Type I myofibers Tnni1, Myoz2, Csrp3, Tnnt2, Atp2a2 

  

Table 8: Biological pathways hypothesized to be regulated by miRNAs and disrupted in XLMTM pathology. Genes 

highlighted in bold are predicted targets of significant identified miRNAs. 
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3.10) Differential expression of  candidate miRNA-regulated genes during development 

 After the identification of potential significant miRNA-regulated pathways 

involved in the etiology of myotubular myopathy we further decided to evaluate their association 

with the progression of the pathology observed in knockout mice. Graphic X represents the 

obtained folchanges in qRT-PCR array for KO/WT gene expression of 26 selected genes in three 

developmental disease stages (14, 27 and 49 days). The expression of all genes for all stages was 

successfully achieved, with the exception of plcd4 to which signal was never observed (indicating 

the probe used was unsuitable to hybridize with our samples).  (Figure 9) 

As the results illustrate, there is a significant and consistent increase in the changes of 

expression of the identified genes during development, refecting their fundamental role in the 

development of XLMTM progression. It is striking to note that 21 out of 26 analysed genes showed 

the same pattern of differential expression in the three developmental time points verified 

(Ablim1, Actc1, Ankyrin 1, Cdkn1a, Csrp3, Gadd45a, Macf1, Mtap1b, Myoz2, Tnni1, Trim63, Trp63, 

Hdac4, Runx1, Tnnt2, Rb1, Foxo1, Fbxo32, Myog, Gas5 and Dusp4). These data suggest that 

identified overepresented pathways regulated by miRNAs do not represent experimental artifacts 

but are involved in the basis of myotubular myopathy since the assymptomatic stage (14 days).  

Interestingly, all genes that present an opposed pattern of foldchange showed a slight 

upregulation in the assymptomatic and mild disease condition stages and a significant higher 

downregulation in endstage mice. Therefore, we suggest the expression of Frzb, Igfbp5, Homer1 

and Mstn might represent a general consequence of muscle injury.  
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Figure 9: Graphic illustrating foldchange differences obtained in qRT-PCR array for 26 selected genes. For each gene, three developmental time points were evaluated: 14 days, 

27 days and 49 days. For each stage 4 WT and 4 KO samples were used. For each sample 3 technical replicates were used and the data was normalized to GAPDH expression 

values. FoldChange was calculated using ΔΔCt method. Error bars were design on excel using pattern error. 49 days mice show a significant higher difference of folchange KO/WT, 

correlating with the severity of the disease and consequently corroborating the hypothesis of the involvement of these genes in the pathology of XLMTM. 
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4) Concluding remarks 

 In the current investigation we have explored the potential role of microRNAs in X-linked 

myotubular myopathy. The relationship between miRNAs and their target genes is complex and 

available miRNA target prediction methods are still mainly imprecise. To dissect miRNA-regulated 

pathways with functional significance in the disease context, we used a microarray-based 

combinatorial approach that integrates differential expressed genes in XLMTM and in silico 

predicted targets of differentially expressed miRNAs.  

 We identified miR-127, miR-137, miR-337, miR-376a, miR-376c, miR-379, miR-410, miR-

431, miR-434-3p, miR-434-5p, miR-489 and miR-541 as strong candidate molecules to be 

implicated in these interactions.  It is interesting to remark that the expression of these miRNAs 

was never previously described in skeletal muscle. miR-337 and miR-376a target genes were, 

however, not recognized as significant in the pathophysiology of XLMTM. miRNAs are pos-

transcriptional modulators of gene expression thought to influence cell function through 

translation repression of their specific mRNA targets or promotion of mRNAs degradation. 

(Sontheimer and Carthew, 2005) (Eulalio et al., 2008) 

 Accordingly, direct effects of miRNAs in their targets genes might not be reflected at the 

mRNA level in conditions of translation repression.  miR-337 and miR-376a may be involved in 

XLMTM but not detected their target genes by  the methodology applied,  highlighting the 

importance of further studies in this field. Nonetheless this possibility, miRNAs may indirectly 

trigger a down-stream cellular feedback mechanism to promote mRNA destabilization of 

translational repressed molecules.  Moreover, miRNAs can directly promote mRNA degradation as 

well as mRNA target sequestration to P bodies for subsequent inactivation and degradation. (Wu 

and Belasco, 2008) These effects correlate with decreasing messenger RNA levels, detected in 

microarray experiments. Thus, we preferred to follow this approach to reduce false discovery 

values. 

 Ultimately, the goal of this study was to decipher how miRNA-mediated regulation of gene 

expression is associated with the disrupted molecular pathways of XLMTM. For this purpose 

functional categories enrichment for differentially expressed genes overlapping significant miRNA 

predicted genes was assessed. The functional groups muscle development, cardiac 

morphogenesis, regulation of cell cycle and muscle contraction were recognized. Further 

bioinformatic analysis with parallel experimental validation by qRT-PCR arrays of miRNAs and their 
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potential target genes enabled a comprehensive analysis of the role of identified miRNAs during 

muscle development and disease.   

 An overall analysis integrating miRNA/mRNA data allowed us to suggest potential 

significant biological pathways regulated by miRNAs that may underlie myotubular myopathy. Our 

preliminary data strongly supports the involvement of miRNAs in the regulation of muscular 

atrophy process, severely observed in this pathology, through the activation of a dependent 

FoxO1/Murf1/Fbxo32 molecular network. Furthermore, we speculate the inability of skeletal 

muscle to respond to muscle injury signaling pathways and promote regeneration might be 

associated with miRNA-regulated defects in the activation and proliferation of satellite cells, 

required for adult muscle growth and repair. (Buckingham and Montarras, 2008; Shi and Garry, 

2006)(Gangaraju and Lin, 2009) Additionally, an overexpression of type I myofiber genes was 

observed to be targeted by differentially expressed miRNAs in this study, corroborating known 

associations in the literature  that report predominance of slow fibers in XLMTM. (Pierson et al., 

2005) 

 These findings propose an intricate control of gene expression in X-linked myotubular 

myopathy both at the transcriptional and miRNA-mediated pos-transcriptional level, providing a 

foundation for future functional studies. We warrant the requirement for additional validation 

studies in human biopsies and larger sample sets as well as the possibility of other miRNAs 

discovered since this project was initiated also contributing to disease development.   

 Knockout and over-expression experiments are in progress and might give further insights 

into the regulatory interactions between miRNAs and their cognate genes and potentially 

contribute to the identification of novel therapeutic targets.  
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 Supplementary Fig. 1: miRNA microarrays data analysis using 7 WT samples and 8 KO samples. 

  a) 3D-PCA graphic exhibiting a clear preferential association of WT2 sample with the knockout samples classe. b) 

 Genespring software class prediction application through randomization of the samples and posterior inclusion in 

 specified groups includes WT2 in the class of mutants.  
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Supplementary Fig. 2: miRNA microarray of endstage mice (49 days)  

a) Pearson correlation table shows a dramatic reduction in the values of 

linear association for wild-type 5 sample. High values of correlation 

approximate 1, while 0 represents no correlation between normalized 

samples. b) Box Whisker Plot translates the distinct pattern of 

expression of normalized wild-type 5 sample.  

Bone contamination in the collection of gastrocnemeous muscle might 

explain this discrepancy in miRNA expression profile. 
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Supplementary Fig. 3: Statistical Analysis of Microarrays (SAM) used to examine miRNA expression profile in endstage mice. 

Different tried FDR values with the respective significant genes obtained are shown. 
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Supplementary Fig 4: Dlk1-Dio3 representation from Ensembl highlighting with arrows the genomic 

location of miRNAs identified in human (has) and mouse (mmu) probes available in the miRNA 

microarray as significant (black arrow), only significant changes in mmu probes (red arrow) and only in 

hsa probes (blue arrow). All the miRNAs found only differentially expressed in hsa probes didn’t have 

the homologous probe for mmu in the chip. Moreover, BLAST search enabled to identify homology 

between significant hsa identified miRNAs and mmu miRNAs as shown in the diagram. Their possible 

involvement in the disease should consequently be addressed in further studies.  
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GO Term Corrected p-value 

Muscle development 0.017 

Myofibril 2.97E-07 

Sarcomere 8.79E-08 

Z disc 0.007760731 

I band 7.72E-06 

Contractile fiber 8.79E-08 

Protein binding 0.0030 

Cytoplasm 4.37E-04 

Supplementary Fig. 5: Spearman Rank Correlation quality control performed by Affymetrix representative 

company. This coefficient is a non-parametric measure of the correlation between two variables. Samples WT4 

and KO7 were considered potential outlier, however only KO7 was significantly considered as outlier and 

excluded for further analysis.  

Supplementary table 1: Gene ontology enriched categories for 424 

statistically significant genes, identified on mRNA expression profile 


