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1. INTRODUCTION 

 

1.1 Alzheimer’s disease: Pathophysiological characteristics and 

potential therapeutical approaches 

 

Age-related impairments in cognition and memory have been known since ancient 

times, but the clinical-pathological features of the syndrome, now termed Alzheimer’s 

disease (AD), were not documented in the literature until the first decade of last century 

(1906), when the german neurologist Alois Azheimer reported the case of a middle-

aged woman who developed memory deficits and progressive loss of cognition. AD is 

characterized by cognitive symptoms like memory loss, disorientation and confusion, 

problems with reasoning and thinking and by behavioral symptoms that include 

agitation, anxiety, depression, hallucination, insomnia and wandering. 

 

It is established that AD is a progressive, degenerative disorder of the brain and the 

most common form of dementia among the elderly, affecting more than 20 million 

people worldwide. It is recognized as a major public health problem in developed 

nations and the third more expensive disease to treat in the U.S., costing society close 

to $100 billion annually. There is currently no cure for AD and the exact causes of the 

disease are still unknown, but current research is beginning to allow a greater 

understanding of how this disease develops and potential therapeutic approaches to 

treat or prevent AD under investigation. 

 

 

1.1.1 Biochemistry of Alzheimer’s disease 

 

Microscopic examination of the AD brain reveals a number of characteristic histological 

lesions comprising intracellular neurofibrillary tangles (NFTs), extracellular amyloid 

plaques, congophilic angiophaty (CA) of the vessels, neuropil treads that lead to 

extensive neuronal loss, predominantly of the cholinergic neurons. Since the innervate  
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the hippocampus and cortex and are believed to be involved in information processing 

and storage, their loss is responsible for severe memory loss and behavioural and 

intellectual deterioration seen in AD. 

 

Neurofibrillary tangles are neuronal cytoplasmatic accumulations of paired helical 

filaments consisting of hyperphosphorilated tau protein, a neuron-specific 

phosphoprotein that is the major constituent of neuronal microtubules. The microtubules 

help transport nutrients and other important substances from one part of the nerve cell 

to another. In AD the tau protein is abnormal and the microtubule structures collapse. 

Intracellular protein accumulation is not specific for Alzheimer’s disease alone, but has 

been shown in other degenerative disease. 

 

The other neuropathological feature of AD is the accumulation and invariant deposition 

of extracellular beta-amyloid plaques (senile plaques) in the brain. Two major types of 

senile plaques have been identified: the classic (neuritic) and the diffuse senile plaques. 

The major component of either plaque type is the amyloid beta peptide (Aβ), a 39-43 

amino acid peptide derived from its precursor amyloid protein (βAPP) by proteolytic 

processing. Whereas classic senile plaques consist of a central core of amyloid, made 

up of Aβ fibrils and surrounded by a halo of degenerating and dystrophic neuritis, the 

diffuse senile plaque contains non-fibrillar Aβ and contains neither an amyloid core nor 

neuritic changes (they are more abundant in AD brains than the classic senile plaques, 

but are also found in the brains of non-demented eldery). 
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Figure 1: APP and Aβ protein schematic. 

 

βAPP is a transmembrane glycoprotein with a single membrane spanning region, a 

large extracytoplasmatic domain (ectodomain) and a small C-terminal 

intracytoplasmatic part. It is expressed in the heart, kidneys, lungs, spleen and 

intestines, as well as in the brain. The most abundant isoforms in the brain are APP695, 

APP751 and APP770. APP695 is the shortest of the three isoforms and is produced 

mainly in neurons. APP 751, which contains Kunitz-protease inhibitor domain (KPI), and 

APP770, which contains both the KPI and an Ox-2 antigen domain, are found mostly in 

non-neuronal glial cells. All three isoforms share the same Aβ transmembrane and 

intracellular domains and are thus all potentially amyloidogenic. 

 

The initial step of the metabolic pathway of APP involves the alfa-secretase enzyme 

that cleaves out APP within the Aβ sequence, allowing for the release of its 

transmembrane fragment. This metabolic pathway is not amyloidogenic because it 

precludes the formation of Aβ and leads to the release of APPα wich appears to exert 

neuroprotective activity. Several reports suggested that mainly adamalysin proteinases 

such as ADAM 10 (a disintegrin and metalloprotease) or ADAM 17 (also know as  
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TACE, tumor necrosis factor converting enzyme) are involved in the constitutive and 

regulated alpha-secretory pathway of APP. 

 

The alternative pathway of APP secretion results in the cleavage of APP at β-and γ-

cleavage sites, liberating secreted APP (sAPPβ) and Aβ peptide. Recently, proteases 

that cleave APP at the β-site have been cloned and identified. They are namedBACE 1 

and 2 for beta-site cleaving enzyme and belong to the family of aspartyl-proteases. 

 

γ-Secretase is a hetero-oligomer containing at least four protein components, 

presenilins (PS-1/PS-2), nicastrin, APH-1 and PEN-2, in a high molecular mass 

complex of unknown stoichiometry. 

 

Aβ and Aβ-like peptides have been found to be produced with strong N- and C- terminal 

heterogeneity. Under normal conditions, the most abundant species in the brain is the 

Aβ40; however much of the fibrillar Aβ is composed of the longer, more fibrillogenic 

Aβ42. Aβ40 comprises 90-95% of the secreted Aβ and it is the predominant species in 

cerebrospinal fluid (CSF). In contrast, less than 10% of secreted Aβis Aβ42. Originally, 

Aβ42 peptide was assumed to be released by a pathogenic event; it is now well 

established that Aβ42 is released from cells during normal cellular metabolism of the 

Alzheimer amyloid precursor protein. Aβ42 is the predominant species found in the 

plaques and is deposited initially to form insoluble amyloidogenic aggregates more 

rapidly tha Aβ40. 

 

1.1.2 Amyloid cascade hypothesis of Alzheimer’s disease 

 

Several lines of evidence suggest that Aβ plays a key role in the pathogenesis of AD. It 

was found that all patients with AD accumulate deposits of first Aβ42 and then also 

Aβ40 in regions of the brain important for memory, cognition and behavioural stability. 

Aβ42 diffuse plaques occur increasingly with age in neurologically normal individuals, 

strongly suggesting that Aβ42 accumulation precedes all other pathological feature of 

AD. 
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Figure 2: Generation of A  from APP via proteolytic processing by - and -secretase (for details, see 

text). A  aggregates and finally precipitates in amyloid plaques. This event initiates the amyloid cascade 

resulting in additional intracellular aggregations of the tau protein, which then form tangles (the black 

structures surrounding the amyloid plaque). 

 

1.2 Human cystatin c peptides in Alzheimer’s disease 

 

Alzheimer’s disease (AD) and AD-related neurodegenerative disorders have become 

the predominant form of progressive cognitive failure in elderly humans, a development 

presently accelerating due to the significant increase in life expectancy in the last 

decades. Consequently, uncovering details of AD pathology has become of paramount 

importance. Major neuropathological features in AD brain are cortical atrophy, neuronal 

loss, regionspecific amyloid deposition, neuritic plaques and neurofibrillary tangles.[1,2] 

A major constituent of amyloid fibrils in brain of patients with AD and AD-related 

diseases, as well as in aged individuals without any neurological disorder is the β-

amyloid polypeptide (Aβ). Aβ arises from a large precursor, the amyloid precursor 

protein (APP); [3,4] it is produced by normal cells and detected as a circulating peptide 

in plasma and cerebrospinal fluid (CSF) of healthy humans.[5,6] Although the 

physiological role of APP is not well understood, specific missense mutations confer 

autosomal dominant inheritance of AD (FAD) and have pointed out pathogenic,  
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proteolytic processing mechanism(s).6 The accumulation of Aβ, a 39-42 amino acid 

proteolytic fragment of APP, in neuritic AD plaques is thought to be causative for 

disease progression.5,6 The N-terminal sequence of Aβ(1-42) is part of the extracellular 

region of APP, while the major C-terminal Aβ sequence is contained within the 

transmembrane domain. 

 

Despite the lack of details on degradation pathways and mechanism(s) of formation of 

Aβ-derived plaques, recent studies towards the development of immunisation methods 

for AD based on therapeutically active antibodies have yielded initial success in 

generating antibodies capable of disaggregating Aβ-plaques and reversing the memory 

impairments in transgenic AD mice. Both active immunisation with pre-aggregated 

Aβ(1-42) and administration of antibodies against Aβ significantly attenuated plaque 

deposition and neuritic dystrophy.[7,8,9] Thus, active or passive immunization of AD 

patients may emerge as a therapeutic approach targeting the production, clearance, 

and aggregation of Aβ.[10,11] The molecular antigen recognition of antibodies produced 

by immunisation with Aβ has been identified using selective proteolytic excision 

(epitope-excision) of antigen-antibody complexes in combination with high resolution 

mass spectrometry [12] , providing a specific N-terminal epitope, Aβ(4-10); the same 

epitope of plaque-specific antibodies has been identified in AD plaques, extracts from 

Aβ-protofibrils, and synthetic Aβ(1-42).[12,13] Recently, natural anti-Aβ- antibodies (Aβ-

autoantibodies) have been identified in both blood and CSF of nonimmunized 

humans,[14] which specifically bind to human Aβ(1-40) as well as to Aβ in brain of 

transgenic mice and have been shown to reduce Aβ-fibrillation and neurotoxicity.[15-17] 

Aβ-autoantibodies have been also found in intravenous IgG preparations (IVIgG), and 

treatment of AD patients with IVIgG caused a reduction of Aβ concentrations in CSF15 

and neuroprotective effect in inhibiting Aβ-plaque deposition.[16-18] A specific carboxy-

terminal Aβ-epitope has been identified to be targeted by Aβ-autoantibodies using 

epitope excision mass spectrometry (M. Przybylski et al., Abstr. 7th Austral. Pept. 

Sympos. 2007; Cairns, Oct. 21-25; 32), in contrast to Aβ-antibodies produced by active 

immunisation.[17,18] 
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Figure 3: Interaction structure of the HCC-Aβ complex revealed by molecular dynamics simulation. 
Hydrophobic interactions between HCC and Aß, Tyr-102, Val-104 and Trp-106 residues of HCC are 
colored in blue, Phe-19, Phe-20, Val-24 residues of Aß are colored in red. Hydrogen bonds between Gln-
107 and Thr-109 residues of HCC and Asp-23 and Phe-19 of Aβ are indicated by black dashed lines, 
respectively; amino acids and carbonyl groups (Phe-19) forming hydrogen bonds are colored in yellow.  
 

Although amyloid plaques in brain of AD patients contain predominantly Aβ- 

aggregates, immunohistochemical studies have shown the co-deposition of several 

other proteins, such as the protease inhibitor cystatin C, apolipoprotein E, clusterin, 

transthyretin and gelsolin.[19-22] In particular, the presence of human cystatin C (HCC) 

in amyloid deposits has found much interest,[23,24] and a wide spectrum of activities 

has been associated with HCC such as modulation of neuropeptide activation and 

neurite proliferation.[25,26] The 13 kDa protein HCC is the main cysteine protease 

inhibitor in mammalian body fluids27,28 and has been found with high concentrations in 

CSF. While wild type cystatin C has no aggregation tendency, the naturally occurring 

mutant L68Q shows a high tendency to form amyloid fibrils, causing hereditary cerebral 

hemorrhage of the amyloidosis-Icelandic type.[20-23] The presence of HCC in Aβ-

plaques has been suggested to result from its binding to APP, or alternatively, HCC 

may bind to Aβ prior to the secretion or following the deposition in brain.[23] Sastre et 

al. found that the association of HCC with Aβ causes an inhibition of fibril formation, and 
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suggested an N-terminal Aβ-sequence to be responsible for the interaction, with 

formation of a stoichiometric HCC-Aß complex.[25] 

 

The recent results suggesting an important role of HCC in the processing and/or 

aggregation of Aβ prompted our interest in the molecular characterization of the Aβ- 

HCC interaction. Here we report the identification of the interacting epitopes of HCC and 

Aβ using selective proteolytic excision of the HCC-Aβ complex (epitope-excision) and 

mass spectrometry (MS).[18] The general analytical scheme of the epitope excision- 

MS approach is shown in Figure 1. Briefly, the immobilised ligand-binder (antigen-

antibody) complex is subjected to specific, limited protease digestion followed by mass 

spectrometric analysis of the eluted affinity-bound epitope fragments. In the proteolytic 

step the ligand epitope is protected from digestion due to the shielding of the ligand-

binder interaction, enabling subsequent specific dissociation and MS analysis of the 

bound epitope(s).18 In a variation of this approach (“epitope-extraction”) the ligand is 

first subjected to proteolytic digestion and the mixture of peptide fragments presented to 

the immobilised binder. Using both MS approaches the Aβ-epitope interacting with HCC 

was identified in a central, C-terminal Aβ sequence interfering with the Aβ-aggregation; 

an analogous proteolytic-MS approach with immobilised Aß provided the identification 

of a specific Aβ-binding epitope at the C-terminus of HCC, HCC(101-117). Structures 

and affinities of both the Aβ and HCC epitopes were characterised by ELISA, surface 

plasmon resonance (SPR), direct mass spectrometric analysis of HCC-Aβ-epitope 

peptide complexes, and a structure model of the HCC-Aβ complex obtained by 

molecular docking simulation. Furthermore, we show the functional activity of the 

identified synthetic HCC-epitope by analysis of its Aβ- fibril inhibitory effect in vitro. 

 

 

1.3 Methods and instrumentation of biopolymer 

 

Mass spectrometry (MS) is today one of the major analytical methods. The information 

gained from the analyses of the intact or fragmented molecular ions can be used for the 

determination of structure and composition of pure substances or mixtures. 
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The general build-up of mass spectrometers suitable for biopolymer analyses can be 

summarized in a simple scheme of their basic components: ion source, mass analyzer 

and detector. The ion source is the place of ion formation from sample. The mass 

analyzer is responsible for the separation of ions according to their m/z. The ion signals 

from the detector, combined with other information from the ion source or the analyzer 

are transferred for processing to the computer that delivers the mass spectra. 

 

The mass spectrometry became widespsread in the biopolymer analyses only afer the 

introduction of soft ionization methods, two most used today being matrix-assisted laser 

desorption ionization (MALDI) and electrospray ionization (ESI). Their importance has 

been also recognized by the awarding of the 2002 Nobel Prize for Chemistry to John B. 

Fenn [1] and Koichi Tanaka. [2] 

 

Matrix-assisted laser desorption ionization (MALDI) [3] is a pulsed method in which the 

sample under vacuum or at atmospheric pressure [10] is irradiatedwith a laser (usually 

nitrogen laser, wavelength 337 nm, pulse duration 3-4 ns). The analyte is embebbed in 

a so called matrix, which consists of crystals of small organic molecules that absorb 

strongly in the UV domain, lose to the wavelength of the laser. Their role is to protect 

the analyte molecules from the high energy of the laser beam and allow them to remain 

intact during the ionization. They must also be acidic, in order to provide a proton source 

for the sample ionization. A typical used matrix is α-cyano-4-hidroxycinnamic acid. 
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Figure 4: Matrix-assisted laser desorption ionization (MALDI). 

 

Protonation and deprotonation is the main source of charging for biologically relevant 

ions in ESI. In fact, ions of proteins, peptides, oligonucleotides and other molecules with 

acid/base functionality are often found with several sites of protonation or deprotonation. 

The multi-charge ions are a typical characteristic for ESI, bein alsoa major advantage. 

The multiple peaks from the ESI mass spectrum make the measurements more 

accurate. The large number of charges on the ions allows the mass spectrometers with 

limited m/z ranges to analyze high molecular weight molecules. Aditionally to the 

ionization of very large molecules, ESI enables alo the study of non-covalent bio-

macromolecular complexes [14]. But the most important feature of ESI is the ease with 

each it can be coupled with other instruments. Particularly the association with HPLC 

systems is a very successful practice. Generally, ESI may be coupled with any kind of 

other instrument that delivers a continuous flow of solution to be analysed. However, 

ESI has also two notable deficiencies: i) the continuous sparaying leads inevitable to 

wasdte of sample, as no mass spectrometer ca continuously analize ions; ii) the 

presence of salts in samples has a very negative impact on ESI formation. The second 

drawback can be overcome by first desalting the samples, this intermediate step being  
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rendered by different methods. 

 

Figure 5: Electrospray ionization – principle of functioning: high positive potencial is applies to the 

capillary (anode), causing positive ions in solution to drift towards the exit, where the liquid surface is 

distorted, forming a cone (“Taylor” cone); from the tip of the cone is emitted a spary of droplets with an 

excess of positive charge; gas phase ions are formed from charged droplets in a series of solvent 

evaporation steps. 

 

1.4 Introduction to affinity-mass spectrometry: Analytical methods for 

identification of ligand-binder interactions 

 

Affinity binding refers in general to those binding interactions between complex 

molecules of biological nature that are non-covalent and originating in a multitude of 

different physical interactions, like dipole interaction, hydrogen bond or hydrophobic 

interaction. Although every single physical interaction involved is weak, the affinity 

binding is their specificity. This is explained through a highly specific structure with a 

certain special location of different sites of interaction, required in order that all the types 

of non-covalent bindings are formed. This simplistic description is a lock-and key model 

[22,23] of the affinity interaction. 

 

Affinity bindings are of crucial importance in most of the biochemical interactions 

involved in a living organism. Therefore their study has been always a source of 

precious information for understanding the mechanisms of different biological  

 



____________________________________________________________________12 

 

processes. Particularly the investigation of the different diseases at molecular levels, in 

search of a new drug, has stimulated the study of affinity bindings. A major class of 

biomolecules, the proteins, owe their biological role to the capability to affinity bind other 

molecules like other proteins, peptides, carbohydrates, lipids, metal ions, antibody to its 

antigen is very interesting through the potential of the antibodies to become highly 

specific drugs against different types of targets. The antigen region of binding to the 

antibody is called antigenic determinant or epitope. The analogue region from antibody 

that binds to the epitope is called paratope. In the case that the antigen is a peptide or a 

protein, the epitope consists of one or more short sequences of amino acids. When 

there is only a single sequence, the epitope is said to be linear (continuous). In case of 

more sequences, the epitope is discontinuous. 

 

Figure 6: Schematic representation of the two types of epitopes found in proteins. 

 

The identification and analysis of antigenic determinant is of crucial importance for the 

understanding of the binding between an antibody and an antigen, providing a starting 

point for the design of diagnostic tools or for the development  of new vaccines [24,32]. 

There are several methods for the epitopoe identification, such alanine-sacanning  
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mutagenesis [25] or X-ray christallography [26]. 

 

A molecular approach for identification of epitopes from peptide and protein antigens is 

the mass spectrometric epitope excision or extraction [27, 28]. Beside the capacity of 

investigation at the molecular level, this method offers many other advantages, such as 

time consume, sample quantity and purity, and employment of solution sample in the 

work flow. 

 

Figure 7: Schematic representation of mass spectrometric epitope excision and extraction procedures. 

 

The principle of mass spectrometric epitope identification has been developed by our 

laboratory, and is based on the finding that the contact sides of the antigen are sterically 

protected by the antibody during the proteolyses [29]. In practice the antibody is 

covalently immobilized on a sepharose matrix and the antigen is allowed to bind to it. A 

specific protease digestion is then performed and the resulted fragments are eluted.  
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Bound to antibody remain only the epitope fragments, which are eluted under acidic 

conditions and then analyzed by mass spectrometry, for sequence identification 

(epitope excision). Alternatively, the digestion can be performed first and the mixture is 

added to the antibody micro-column. The epitope peptides can be separated through 

binding to the antibody, and then analyzed by mass spectrometry (epitope extraction). 

The discontinuous epitopes are more difficult to identify, their identification requires 

frequently a differential chemical modification [30, 62-65]. 

 

 

1.5 Affinity interaction analysis using a surface acoustic wave 

biosensor system 

 

In the last three decades, the biosensors have been developed as a new and efficient 

tool of analytical chemistry. After Thévenot [33], “biosensors are chemical sensors in 

which the recognition system utilizes a biochemical mechanism”. Furthermore, he 

defines a chemical sensor as a combination of two elements: “a chemical (molecular) 

recognition system (receptor) and a psycho-chemical transducer”. 

 

Figure 8: Schematic representation of the basic components of a biosensor: the biochemical sensitive 

element (bio-receptor) and the physical element responsible for signal generation (transducer). 

 

Therefore, a biosensor has two major components: the biochemical sensitive element  
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and the physical element of signal generation. For the signal processing and results 

display a computer is usually used. Both major components are of various types and an 

exhaustive classification is not the purpose of this work. However, the physical elements 

of the biosensors are generally optical, electrochemical or electro-mechanical. Further, 

most of the electro-mechanical biosensors are based on the piezoelectric effect. The 

piezoelectric crystals can be made to vibrate at a specific frequency with the application 

of an electrical signal of a specific frequency. These oscillations are actually mechanical 

waves that travel through the bulk matter. Their frequency is dependent on the electrical 

frequency apllied to the crystal as well as the crystal’s mass. Therefore, when the mass 

increases due to binding of chemicals, the oscillation frequency changes and the 

resulting change can be measured electrically and be used to determine the additional 

mass of the crystal. This is the function principle of a quartz crystal microbalance (QCM) 

[34]. If the oscillation is confined in a thin layer on the surface of the crystal, one speaks 

of surface acoustic waves (SAW) [35, 36]. Different types of acoustic waves can be 

employed in a SAW device, but Love waves [35] offer particularly high sensitivities due 

to the confinement of the acoustic energy to the sensing surface (Figure 8). The Love 

wave are in fact shear horizontally polarized guided waves [36], being especially suited 

for sensing liquids [37]. The recently introduced K% biosensor system uses surface 

acoustic wave of Love type [38]. 
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Figure 8: a) Functioning principle of the SAW sensor: an electrical signal is transformed in mechanical 

wave through piezoelectricity; the wave changes its amplitude and phase due to surface mass loading 

and liquid viscosity changes; the wave is then transformed back into electrical signal for processing; b) 

The input and output signals differ in phase and amplitude; mass loadings render phase shifts, while 

viscosity changes induce modification in both phase and shift; c) Love waves are horizontally polarized 

transversal waves. 

 

The essential part of the instrument is the microstructured sensor-chip. This is a thin 

plate of quartz (the substrate) on which are deposited, by standard thin film deposition  
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and optical lithography processes, the contact pads for electronics and the interdigital 

transducers (IDTs) [38, 39].The split finger design is used in order to reduce distortions 

from reflections. Over the IDTs there is deposited another layer of amorphous SiO2, with 

a 4.5 mm thickness. This is the “guiding layer” for the Love waves. On top of it the 

sensitive surface is covered with a thin (150 nm) film of Cr/Au alloy. On one single chip 

there are five sensor elements, which can be operated independently (Figure 9). 

 

 

Figure 9: a) The K5 biosensor instrument, containing the electronics, the pump and the flow cell; b) the 

SiO2 chip, covered with a layer of gold. There are visible the sensing surfaces of the five channels, the 

contacts for electronics and the regions of interdigital transducers (IDTs). c) self assembled monolayer 

(SAM) formation on he gold sensitive surface, used as a linker for the covalent immobilization of different 

other molecules. 

 

Further, the chemical components used in analysis are physically absorbed on the gold 

surface, or are fixed through a covalent bound (or a linker) to the gold layer. The most 

convenient method is the covalent binding to gold surface. This can be easily achieved 

with organic molecules containing free thiol groups employing the well known chemical 

affinity of sulphur for gold. With bifunctional molecules like 16-mercaptohexadecanoic 

acid different other molecules, capable of forming bonds with the carboxyl group 

(amines, alcohols, etc.), can be attached to the gold-surface. When employing 16-

mercaptohexadecanoic acid, or other similar molecules, as a linker, an important  
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process occurs on the gold surface: the saturated carbon chains align themselves 

parallel one to another due to the hydrophobic interactions. This is the so called self 

assembled monolayer (SAM) [40-43]. The carboxyl groups of the 16-

mercaptohexadecanoic acid can be activated using 1-ethyl-3-(3-(dimethylamino)propyl) 

carbodiimide hydrochloride (EDC) and N-hydroxy-succinimide (NHS) [44]. 

 

 

1.6 Aims of the thesis 

 

The aims of the present thesis are summarized as follows: 

 

1. Synthesis and purification of amyloid β-peptides including Aβ (1-40) and Aβ (17-28), 

as well as of hCC-peptides, more specifically hCC (101-117) and hCC (93-120). 

 

2. Characterization of affinity binding between Aβ-peptides and hCC-peptides by 

Surface Acoustic Wave (SAW) and ELISA to compare the resultes obtained from both 

methods. 

 

3. Determination of the dissociaton constant (kd) of Aβ peptides (using SAW biosensor). 

 

4. Study of the inhibition effect on the fibrillization process of Aβ observed in presence of 

hCC. 

 

 

 

 

 

 

 

 

 



____________________________________________________________________19 

 

2. RESULTS AND DISCUSSION 

 

2.1 Synthesis and structural characterization of beta-amyloid and HCC 

peptides 

 

The synthesis of the peptides employed in this study was performed on a NovaSyn 

TGR resin according to fluorenylmethyloxycarbonyl (Fmoc)/tert-Butyl (tBu) chemistry. 

Double coupling was used to reach an almost complete formation of amide bond for 

each amino acid. The protocol of the synthesis consisted of removal of Fmoc group with 

20% piperidine in dimethylformamide (DMF) for 8 minutes, coupling of PyBOP/NMM-

activated amino acid for 30 minutes and washing. DMF was employed as a solvent for 

all the reactions and it was also used for all washing steps. After the desired sequence 

was completed, the cleavage of the peptide from the resin was carried out with TFA, 

triethylslane and water for 3 hours at room temperature. The crude product was 

precipitated with t-butylmethylether, filtered, re-dissolved in 5% acetic acid and 

lyophilized. The crude product was purified  by reversed phase high performance liquid 

chromatography (RP-HPLC) and analyzed by ESI ion trap MS. The amino acid 

sequences, the HPLC chromatograms and the mass spectra are shown in Table 1 and 

Figure 10. 

 

Table 1: Chemical characteristics of Aβ-peptides. 

Peptide Sequence R
t 
(min) 

a

 Purity (%) 
b

 
[M+H]

+  

Theoh/Exp.

c

 

Aß(1-40) 
NH

2
-DAEFRHDSGYEVHHQKLVFFAE 

DVGSNKGAIILMVGGVV-CONH
2
 

31.9 94 4329.9 / 4329.0 

Aß(17-28) NH
2
-LVFFAEDVGSNK-CONH

2
 28.7 90 1325.5 / 1324.9 

HCC     (101-117) NH
2
-IYAVPWQGTMTLSKSTC-CONH

2
 25.3 96 1886.2 / 1884.7 

HCC      (93-120) 
NH

2
-RKAFCSFQIYAVPWQGTMTLSKS 

TCQDA-CONH
2
 

31.9 95 3168.7 / 3168.2 
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a. 

 

 

b.

 

 

c. 
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d. 

 

Figure 10: HPLC profile and the ESI ion trap  mass spectrum of: a. Aβ (17-28), b. Aβ (1-40), c. hCC (101-

117), d. hCC (93-120) 

 

The investigation of the brain tissue from patients with Alzheimer’s disease revealed the 

accumulation of Aβ peptides.  

The protease inhibitor human cystatin C (HCC) co-associates with ß-amyloid (Aß) in 

Aß- fibrils in brain of Alzheimer's disease patients by a specific interaction, the 

molecular basis of which has been elucidated in the present study. The binding epitopes 

and interaction structure of HCC and Aß in the stoichiometric Aß-HCC complex have 

been identified using a combination of selective proteolytic excision and high resolution 

mass spectrometry; they encompass a central sequence of Aß that inhibits fibril 

formation, and is consistent with the structure of the Aß-HCC complex obtained by 

molecular docking simulation. The molecular characterisation of the Aß-HCC interaction 

provides a basis to derive new neuroprotective AD and HCC amyloidosis therapeutic 

lead structures and AD diagnostics. 

To proceed to the interaction studies, the synthesis of both peptides was necessary.  Aß 

(17-28) comprehends the epitope of the larger peptide (Aß(1-40)) and theoretically an 

higher affinity, but the last one is one of the most common in the AD patients brains. In 

this way. In hCC case, the epitope (hcc(101-117)) and the larger peptide are of 

interested to see which one will interact more with the Aβ peptides. 
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2.2 Mass spectrometric characterization of the HCC-Aß epitope 

peptide complex. 

 

Further evidence for the specific interaction of the HCC- and Aβ- epitopes was obtained 

by direct high resolution ESI- mass spectrometry of the complexes of HCC- and Aβ- 

peptides. The nano ESI-FTICR mass spectrum of the peptide complex between the 

HCC(101-117) and the Aβ(17-28) epitopes is shown in Figure 11. The specific formation 

of a stoichiometric complex between the two minimal epitope peptides is ascertained by 

the triply and quadruply charged molecular ions (M+3H)3+ (m/z 1070,1408) and 

(M+4H)4+ of the complex which were determined with a relative mass accuracy of 

approximately 5 ppm. Likewise, the complex between HCC(93-120) and Aβ(17-28) 

yielded molecular ions (M+3H)3+ (m/z 1497,6012) and (M+4H)4+ (m/z 1123,4403) (_m 

6.5 ppm; not shown). Thus, the ESI- MS analysis of the peptide complex ascertained 

the specific interaction of the C-terminal HCC epitope with the Aβ epitope located in the 

middle- to C- terminal domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



____________________________________________________________________23 

 

 

Figure 11: Nano ESI-FTICR mass spectrum of the peptide complex between the HCC(101-117) and the 

Aβ(17-28) epitopes. 

 

 

2.3 Affinity interaction hCC  and Aβ-peptides system by ELISA 

 

The affinities interactions between the hCC-peptides and Aβ-peptides were investigated 

by ELISA. 

The Enzyme-Linked ImmunoSorbent Assay (ELISA) experiment was performed by 

coating the 96-well microtiter plate with 12 serial dilutions of peptides. The unspecific 

binding sites were blocked with bovine serum albumin (BSA) before adding the specific 

antibody with a dilution 1:1000. The systems investigated were …. For the detection 

was used anti-mouse antibody conjugated with horseradish peroxydase (HRP), diluted  
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1:5000. 

In Figure 12 the optical density (OD) at λ 450 nm is plotted versus antigen 

concentration. 

The specificities and affinities of the epitope interactions were analysed by ELISA of the 

HCC and Aß peptides in an analogous manner as employed for antibody binding to an 

antigen-coated plate. A suitable ELISA approach for the Aβ-HCC complex was 

developed to determine the affinities of Aβ peptides to HCC, by absorption of HCC on 

the ELISA plate and binding the N-terminally biotinylated Aß- peptides via a spacer 

peptide (Biotin-(Gly)5- Aβ peptides), using of an antibiotin detection antibody. No anti-

HCC or anti-Aß antibody was used to exclude a possible interference of the antibody 

epitope with the binding sites of the HCC-Aβ complex. Biotinylated peptide derivatives 

of full length Aβ(1-40), Aβ(12-40), Aβ(17-28) and Aβ(1-16) were tested in a comparative 

ELISA experiment (Figure 12a). All Aβ peptides comprising the HCC-binding epitope 

showed binding affinity to HCC, with Aβ(17-28) having the highest affinity, while the N-

terminal peptide Aβ(1-16) did not show any binding. Thus, the ELISA results were in 

complete agreement with the mass spectrometric epitope identification. 

 

Further comparative ELISA studies with the Aβ(17-28) epitope were performed using 

the C-terminal HCC peptides identified by epitope excision-mass spectrometry, by 

coating the ELISA plate with intact HCC and the HCC(93-120), HCC(101-117), and 

HCC(101-114) fragments. The results confirmed the C-terminal HCC epitope, with the 

carboxy-terminal sequence being essential for binding affinity to Aβ (Figure 12b).  
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Figure 12: Antigen-antibody affinity binding for Aβ peptides. 

 

 

 

2.4 SAW bioaffinity studies of β-amyloid and hCC peptides 

 

The affinity interaction of the peptides was investigated using the SAW biosensor. The 

antibodies were immobilized on the active gold surface of the active gold surface of the 

biosensor chip and their interaction with peptides in dissolved in the liquid phase was 

observed. The studies show that the antibodies recognize β-amyloid peptides in 

concentration ranges from 1.22 nM to 2.5 µM (table 2). These concentrations represent 

the minimum and the maximum limits of detection. The purpose was to demonstrate 

that the affinity between the antibody and peptides is detectable with the SAW 

biosensor, having the first peptide covalently immobilized and the second peptide free in 

the aqueous phase, but also the determination of the dissociation constant of the 

peptides involved.  These limits of detection are needed to be determined in order to be 

possible the determination of the dissociation constant. For this determination is also 

necessary the existence of a minimum of 8 different concentration, being used in the 

present work 12 different concentrations between 1.22 nM and 2.5 μM. 

For the affinity component of the study, the mass loading was the value found. 
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Table 2: Mass loading after affinity injection (Aβ peptides) 

 

 

 

Figure 17: SAW binding curves referring to the immobilization of hCC a) (101-117) and b) (93-120) on the 

surface of the chip. 
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Figure 18: SAW binding curves referring to the: on the left the complete spectra and on the right the  
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affinity component with all the injections overlapped. The immobilization was performed with HCC (101-

117) and then, in this order, the affinity with Aβ (1-40), Aβ (12-40) and Aβ (17-28). 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 



____________________________________________________________________29 

 

 

Figure 19: SAW binding curves referring to the: on the left the complete spectra and on the right the 

affinity component with all the injections overlapped. The immobilization was performed with HCC (93-

120) and then, in this order, the affinity with Aβ (1-40), Aβ (12-40) and Aβ (17-28). 

 

2.5 Determination of dissociation constant of Aβ and hCC peptides by 

SAW  

 

A dissociation constant (Kd) is a specific type of equilibrium constant that measures the 

propensity of a larger object to separate (dissociate) reversibly into smaller components, 

as when a complex falls apart into its component molecules, or when a saltsplits up into 

its component ions. The dissociation constant is the inverse of the association constant.  

 

For a general reaction: 

 

in which a complex AxBy breaks down into x A subunits and y B subunits, the 

dissociation constant is defined 

 

where [A], [B], and [AxBy] are the concentrations of A, B, and the complex AxBy, 

respectively. 

 

http://en.wikipedia.org/wiki/Equilibrium_constant
http://en.wikipedia.org/wiki/Complex_(chemistry)
http://en.wikipedia.org/wiki/Molecules
http://en.wikipedia.org/wiki/Salt_(chemistry)
http://en.wikipedia.org/wiki/Ions
http://en.wikipedia.org/wiki/Inverse
http://en.wikipedia.org/wiki/Association_constant
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The dissociation constant is commonly used to describe the affinity between a ligand (L) 

(such as a drug) and a protein (P) i.e. how tightly a ligand binds to a particular protein. 

Ligand-protein affinities are influenced by non-covalent intermolecular 

interactions between the two molecules such ashydrogen bonding, electrostatic 

interactions , hydrophobic and Van der Waals forces. They can also be affected by high 

concentrations of other macromolecules, which causes macromolecular crowding.[1][2] 

 

The formation of a ligand-protein complex (C) can be described by a two-state process 

 

the corresponding dissociation constant is defined 

 

where [P], [L] and [C] represent the concentrations of the protein, ligand and complex, 

respectively. 

The dissociation constant has molar units (M), which correspond to the concentration of 

ligand [L] at which the binding site on a particular protein is half occupied, i.e. the 

concentration of ligand, at which the concentration of protein with ligand bound [C], 

equals the concentration of protein with no ligand bound [P]. The smaller the 

dissociation constant, the more tightly bound the ligand is, or the higher the affinity 

between ligand and protein. For example, a ligand with a nanomolar (nM) dissociation 

constant binds more tightly to a particular protein than a ligand with a micromolar (μM) 

dissociation constant. 

 The dissociation constant for a particular ligand-protein interaction can change 

significantly with solution conditions (e.g. temperature, pH and salt concentration). The 

effect of different solution conditions is to effectively modify the strength of 

any intermolecular interactions holding a particular ligand-protein complex together. 

Knowing this, it is possible to determine the dissociation constants by using all the data 

resulting from the 12 different concentrations and the 5 channels that constitute the 

chip. The values presented result from the average of these 5 channels. 

 

 

http://en.wikipedia.org/wiki/Chemical_affinity
http://en.wikipedia.org/wiki/Ligand_(biochemistry)
http://en.wikipedia.org/wiki/Drug
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Non-covalent
http://en.wikipedia.org/wiki/Non-covalent
http://en.wikipedia.org/wiki/Hydrogen_bond
http://en.wikipedia.org/wiki/Electrostatic
http://en.wikipedia.org/wiki/Electrostatic
http://en.wikipedia.org/wiki/Hydrophobic
http://en.wikipedia.org/wiki/Van_der_Waals_force
http://en.wikipedia.org/wiki/Macromolecular_crowding
http://en.wikipedia.org/wiki/Dissociation_constant#cite_note-0
http://en.wikipedia.org/wiki/Dissociation_constant#cite_note-0
http://en.wikipedia.org/wiki/Concentration#Molarity
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/PH
http://en.wikipedia.org/wiki/Non-covalent
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Table 3: Dissociation constants determined using SAW Biosensor. 

 
KD(Ab 1-40) [μM] KD(Ab 12-40) [μM] KD(17-28) [μM] 

hCC [101-117] 1,366 1,045 0,228 

hCC [93-120] 0,0652 2,04 1,77 
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Figure 20: SAW binding curves referring to the: on the left the affinity spectra with the fiting parameters of 

the best values found among the different 1 concentrations used in the beginning, and on the right the 

linear regression that give the Kobs value which is used to determine the dissociation constant using the 

equations previously given. In this order, hCC (101-117) with Aβ (1-40), Aβ (12-40) and Aβ (17-28). 
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Figure 21: SAW binding curves referring to the: on the left the affinity spectra with the fiting parameters of 

the best values found among the different 1 concentrations used in the beginning, and on the right the 

linear regression that give the Kobs value which is used to determine the dissociation constant using the 

equations previously given. In this order, hCC (93-120) with Aβ (1-40), Aβ (12-40) and Aβ (17-28). 

 

The values of kd found are in agreement with the results obtained with the ELISA 

procedure and with some data already available in the literature. These data was 

obtained using a Biacore T100 instrument (Biacore SA, Uppsala, Sweden) with a KD of 

3.9 μM for hCC (93-120) in affinity to Biotin-G5-Aβ(1-40), which is a positive reference 

point. 
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2.6 Inhibition of Aß-fibril formation by C-terminal HCC epitopes.  

 

Inhibition studies of Aβ-oligomerisation and fibril formation were performed with intact 

HCC in comparison with the C-terminal HCC epitope as shown in Table 2, using an in 

vitro assay of Aβ- oligomerisation. [25] For formation of Aβ-oligomers, Aβ(1-40) was first 

dissolved in 100 % TFE to ensure re-formation of monomers, and the sample then 

lyophilized and redissolved in DMSO. The samples were then diluted to a final peptide 

concentration of 100 μM in 50 mM phosphate buffer, pH 7.4, and a 10 % final DMSO, 

and Aβ(1-40) with and without HCCepitope peptides incubated at 37 °C for up to 76 

hours. Prior to analysis by SDS-PAGE, the samples were centrifuged at 13,000 x g for 5 

min and then lyophilized. These comparative analyses clearly showed a time-and 

concentration-dependant, inhibitory effect of the HCC epitope peptides on the formation 

of Aβ-oligomer aggregates, with highest relative effect obtained for the HCC (101-117)-

peptide (Table 4). Thioflavine T (ThT) is a dye common used to visualize the amyloid 

fibrils. For the free dye excitation and emission occur at 385nm and 445 nm; for the 

bounded – excitation and emission occur at 450nm and 482nm (Figure 22). 

 

Table 4: Relative inhibition (inhibition of oligomer bands) of Aß- fibril formation by HCC-epitope peptides 

after 72 hrs. 

HCC-Peptide / Aβ peptide 

% 

HCC-epitope 

(μM) 

% Fibril inhibition 

HCC(93-120) / Aβ(1-40) 

HCC(93-120)/ Aβ(1-40) 

 

10 10 

 

HCC(101-117)/ Aβ(17-28) 

 

10 12 

HCC(101-117)/ Aβ(17-28) 100 51 
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Figure 22: Relative inhibition (inhibition of oligomer bands) of Aß- fibril formation by HCC-epitope peptides 

after 72 hrs, with the respective information from the thioflavine assay. a. and d. as the combination of Aβ 

(1-40) with hCC (93-120), b. and e. as the combination of Aβ (1-40) with hCC (101-117); and c. and f. as 

the combination of Aβ (17-28) with hCC (101-117). 

 

The better experimental results are observed for Thiflavin T test compering to gel 

electrophoresis. Aβ (1-40) with hCC (93-120) in 1:1, 1:0.5 and 1:0.25 molar ratios 

shows clearly an inhibition process and it is dependent of the hCC concentration – the 

best inhibition process was observed in the molar ratio 1:1. Also Aβ (1-40) with hCC 

(101-117) in 1:1, 1:0.5 and 1:0.25 molar ratio shows inhibitory effect but we cannot see 

the dependence on the hCC concentration. For Aβ (17-28) with hCC (101-117) in 1:1, 

1:0.5 and 1:0.25 molar ratio the Tris-PAGE shows clearly the inhibition dependence on 

the molar ratio. 
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2.7 Mass spectrometry.  

 

MALDI-TOF MS analyses were carried out on a Bruker (Bruker Daltonics, Germany) 

Biflex ITM linear TOF mass spectrometer equipped with a nitrogen UV laser (λ = 337 

nm) and a dual channel plate detector, at conditions as previously described.17 

Samples were dissolved in 0.1 % trifluoroacetic acid and desalted using the Zip-Tip 

procedure. High resolution FTICR- mass spectrometry was performed with a Bruker 

(Bruker Daltonics, Bremen, Germany) APEX II FTICR instrument equipped with an 

actively shielded 7T superconducting magnet, a cylindrical infinity ICR analyzer cell, and 

an external Bruker Apollo-II nano-electrospray ion source.40 Sample preparation of 

HCC- Aβ-epitope complexes was carried out with 10 μL aliquots of freshly prepared 

solutions of Aβ(17-28) (100 μM; Mr 1323.68) in deionised water, which were added to 

10 μL of an equimolar solution of HCC(101-117) or HCC(93-120) in 0.5 mM ammonium 

acetate, pH 6. After incubation of the HCC-Aβ- peptide complex for three hrs at 25 0C, 

the solution was infused in the Apollo-II electrospray ionisation source at a flow rate of 4 

μL/min. FTICR Mass spectra were obtained by accumulation of 32 single scans, with 

the capillary exit voltage set to 50 V for ion desolvation external accumulation of ions in 

a radio frequency-only hexapole for 0.05 s before transfer into the ICR cell. The 

capillary voltage was adjusted between 960 and 1120 V until a stable spray was 

obtained. Other experimental conditions were: Setting of skimmer 1, 15; setting of 

skimmer 2,7; RF Amplitude, 600; ionization pulse time, 2 ms; mass resolution was 

approximately 150000. Acquisition of spectra was carried out with the Bruker Daltonics 

Software XMASS and corresponding programmes for mass calculation, data calibration, 

and processing. 
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Abnormal accumulation of β-amyloid peptide (Aβ) into extracellular toxic plaques in the 

brain is responsible for the neurodegeneration and resulting dementia in Alzheimer’s 

disease (AD). Therefore, Aβ represents an important molecular target for intervention in 

AD, and agents that can prevent its formation and accumulation or stimulate its 

clearance might be of therapeutic benefit. The immunological approach to the treatment 

of AD involves either stimulating the host immune system to recognize and attack Aβ or 

providing passively pre-formed antibodies. It has been shown that active immunization 

with Aβ (1-42) in transgenic mouse models of AD reduces both the accumulation of Aβ 

plaques in brain and associated cognitive impairment. However, a therapeutic trial of 

immunization with Aβ (1-42) in humans was discontinued due to the significant toxic 

side effects such as meningo-encephalitic cellular inflammatory reactions.  

 

Human cystatin C (HCC) is an ubitquitous protease inhibitor in human body fluids which 

has a propensity to form β-amyloid (Aβ)-like fibrils and to coassociate with 

amyloidogenic proteins. A high (ca. 90%) proportion of patients with Alzheimer’s 

disease (AD) has been diagnosed to also suffer from HCCçmyloidosis, and a specific 

interaction between HCC and Aβ has been found. The molecular characterization of the 

Aβ-HCC epiope interaction structure provides lead structures of new neuroprotective 

inhibitors for AD and cystatin C amyloidosis therapy, and mew tools for AD diagnostics. 

 

Although the co-localisation of cystatin C and Aβ has been demonstrated in cerebral 

arteries of CAA patients [24] cerebral vasculature and brain parenchyma of AD 

patients[28] and in muscle cells of patients with age-dependent inclusion body 

myositis[25] the biological role of the HCC- Aβ interaction and mechanism of the HCC- 

Aβ co-aggregation has been hitherto unknown. In this study we investigated the binding 

epitopes between HCC and Aβ using a molecular affinity- mass spectrometry 

approach,[18] and present the first identification of the epitope sequences and 

interaction structure of the Aβ-HCC complex. The results of proteolytic excision- mass 

spectrometry show that the HCC binding site is located in the central region of Aβ within 

residues (17-28) which is critically important for the Aβ structure and aggregation. The 

Aβ-epitope identified comprises a part of the hydrophobic core at residues (17-22)  
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 (LVFFA) and the β-turn for fibril formation located within residues (25-28).[30] Tycko et 

al. reported the residues (12-24) and (30-40) to be involved in the formation of the 

parallel β-sheet structure in fibrils.[31,32] The residues (25-35) are part of the highly 

hydrophobic C-terminal region of A which is crucial for oligomerization and 

fibrilogenesis,[33] while residues (17-21) have been proposed to be involved in side-

chain interactions and are pivotal in the dimerisation of Aβ.[30] Furthermore, it been 

suggested that the sequence KLVFFAE (16-22) has an inhibitory effect on fibril 

formation, indicating the importance of these residues for Aβ assembly.[32,34] This 

region is very sensitive to single site mutations which cause significant changes of 

structure, aggregation and toxicity of Aβ.[34-36] The HCC binding results confirm that 

HCC efficiently binds to this region, and by blocking the residues (17-28) can influence 

the A  oligomerization, decreasing neurotoxicity and plaque formation. The HCC 

binding site in Aβ identified here is different from that proposed by Sastre et al.,[25] as 

our results ascertain binding at the central domain of Aβ, not at an N-terminal sequence 

as previously suggested. 

The observed blocking of HCC binding to Aβ by an anti-Aβ(1-17) antibody may be well 

explained by steric hindrance of HCC access to the binding site starting at Leu-17. 

Selenica et al. showed that HCC reduced the in vitro formation of soluble oligomers and 

protofibrils of Aβ(1-42); however, HCC did not dissolve preformed Aβ- oligomers.[23] 

Our results suggest that HCC is interacting only with monomeric Aβ, and binding of the 

120 aa protein to the central domain of Aβ may effectively suppress aggregation by 

blocking the access to the hydrophobic C-terminal part of Aβ, thus inhibiting interaction 

with a second Aβ molecule. In preformed oligomers the hydrophobic core is involved in 

Aβ-Aβ interactions thus blocking the access of HCC. This result is in full agreement with 

the hypothesis that the presence of HCC in Aβ solution can decrease oligomerisation25 

and slow down the aggregation process. The HCC binding site in Aβ identified here is 

localised in a similar position to the Aßepitope recognised by physiological Aβ-

autoantibodies in human serum which recognise a specific C-terminal domain of Aβ and 

seem to play a neuroprotective role in the oligomerisation of Aβ.[16] A similar, 

neuroprotective effect may be suggested for the HCC binding to Aβ, in contrast to the 

plaque-specific effect of Aß-antibodies obtained by active immunisation, that target an  
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N-terminal Aβ-epitope.12 The Aβ- binding site identified in HCC, residues (101-117) is 

located in the Cterminal part within the L2 loop and β5 strand of HCC which comprise 

the external part of the protein and are exposed to the environment.[27] The C-terminal 

binding epitope enables interaction of the Aβ peptide with the L2-β5 part without any 

restriction. The identification of the binding site in HCC may be of high importance for 

oligomerisation and fibrillisation studies of HCC and its amyloidogenic mutant L68Q 

which, due to its structural similarity to HCC [20,25] can be assumed to have a similar 

binding epitope for Aβ. The knowledge of the binding epitope may be used for future in 

vitro studies of HCC fibril formation, since fibrils can be easily formed with the L68Q 

HCC mutant by 3D domain swapping, but not by native HCC. In a model postulated by 

Jaskolski [29] the Aβ binding site is located in the center of the fibrils which would 

provide the opportunity to disturb the interaction between cystatin molecules by binding 

of Aβ to the C-terminal part of monomeric HCC. Here, the HCCepitope identified could 

be used as a new template for designing efficient inhibitors for amyloid angiopathy 

related to cystatin C oligomerisation. 

 

The interaction of HCC with Aβ may be an important neuroprotective mechanism in 

brain, and may attenuate the oligomerisation of Aβ and play a regulating role in Aβ 

amyloidogenesis. The identification of the binding epitope of HCC in the central domain 

of Aβ confirmed the importance of this protease inhibitor for the aggregation process 

and amyloidogenesis, since blocking the hydrophobic core may inhibit Aβ 

oligomerisation and regulate fibril production. On the other hand, the identification of the 

binding site in HCC should be of importance for oligomerisation studies of cystatin C, 

and new oligomerisation inhibitors may be designed based on the HCC-epitope.[37,38] 

It seems somewhat paradox that interaction of two potentially amyloidogenic molecules 

might give a lead to control or inhibit neuropathological changes in amyloidogenic 

diseases. 
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3. EXPERIMENTAL PART 

 

3.1 Materials and reagents 

 

The following commercial available reagents were used in the present work: 

Antibodies: anti-Aβ (1-16) antibody (clone 6E10) and anti-Aβ (17-24) antibody (clone 

4G8): Chemicon (Millipore); labeled goat anti-mouse IgC: Jackson ImmunoResearch; 

Coomassie Brilliant Blue G250, Tween-20 (Polyoxyethylensorbitanmonolaureat): Sigma; 

deionisate water MilliQ (MQ): Millipore; T-buthylmethyleter (99%), diethylether (99%), 

dimethylformamide (DMF, 99.8%), N-Methylmorpholine (NMM 99.5% p.a.), piperidine 

(99%), trifluoroacetic acid (TFA, 99 % p.a.), triisopropylsilane (97%): Fluka 

 

The amino acids (N-α Fmoc protected), TGR resin and the activator Benzotriazol-1-yl-

N-oxy-tris-pyrrolidino-phosphonium-hexafluoro-phosphat (PyBOP) used for peptide 

synthesis: NovaBiochem. 

 

Hydrochloric acid (37% p.a.), sulfuric acid (98%), soium hydroxide (99%), acetic acid 

(100%) ethanolamine (99%), Trizma base (2-amino-2-hidroxymethyl-1,3-propandiol, 

99,9%) sodium dihydrogen phosphate monohydrate (NaH2PO4, 99.5%), sodium acetate 

trihydrate (99.5%), hydrogen peroxide (30%), glycine (>99%), N-Hydroxysuccinimid 

(NHS): Merck; ethanol (99.8% p.a.), disodium hydrogen phosphate-2-hydrate (Na2 

HPO4, 99.5%), Riedel-de Haen; acetonitrile (CAN, 100%, p.a.): Roth; diethanolamine 

(min. 98%), 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide Hydrochloride (EDC): 

Sigma. 

 

 

3.2 Solid phase peptide synthesis 

 

Solid phase peptide synthesis is a time saving approach to obtain high-yelds of high-

purity peptides. It was first introduced in 1963 by Merrifield [59] and since then has  



____________________________________________________________________41 

 

become a widely used method for the small scale peptides synthesis. The method 

consists of a cyclic repetition of simple chemical reactions which leads to the successive 

addition of α amino acids into a chain anchored to an insoluble resin support. The main 

advantage in using the insoluble resin support is the fast and complete separation of the 

reaction products from the reaction mixture. Further, this allows the use of great excess 

of reactants, which increases the yield. In present work SPPS was employed for the 

synthesis of Aβ and HCC peptides, using the Fmoc strategy [60, 61]. This implies the 

use of 9-fluorenylmethoxycarbonyl as amino-protecting group and other compatible 

protecting groups for the reactive side chains. Allpeptides were synthesized on a 

NovaSyn TGR resin (Figure 29). Before starting the synthesis, the resin was washed 

with 50 mL of DMF and allowed to “swell”. 

 

Cl
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Figure 29: NovaSyn® TGR-resin from Novabiochem. PEG is the plyetthyleneglycol spacer between the 

resin and the polystyrene matrix. 

 

The synthesis were performed on a semiautomated peptide synthesizer EPS 221 from 

Abimed,Germany. The following Nα-Fmoc protected amino acids were used in five-fold 

molar excess: Nα-Fmoc-L-Alanine (Fmoc-Ala-OH), Nα-Fmoc-S-trityl-L-Cystein (Fmoc-

Cys(Trt)-OH), Nα-Fmoc-L-Aspartic-acid-β-t-butylester (Fmoc-Asp(OtBu)-OH), Nα-Fmoc-

LGlutamicacid-γ-t-butylester (Fmoc-Glu(OtBu)-OH), Nα-Fmoc-L-Phenilalanine (Fmoc-

Phe-OH), Nα-Fmoc-Glycine (Fmoc-Gly-OH), Nα-Fmoc-N-im-trityl-L-Histidine (Fmoc-

His(Trt)-OH), Nα-Fmoc-L-Iso-Leucine (Fmoc-Ile-OH), Nα-Fmoc-Nε-t-Boc-L-Lysine 

(Fmoc-Lys(Boc)-OH), Nα-Fmoc-Nβ-trityl-L-Asparagine, (Fmoc-Asn(Trt)-OH), Nα-Fmoc-

L-Proline (Fmoc-Pro-OH), Nα-Fmoc-Nγ-trityl-L-Glutamine (Fmoc-Gln(Trt)-OH), Nα-

Fmoc-NG-2,2,4,6,7-pentamethyl-dihydrobenzofuran-6-sulfonyl-L-Arginine (Fmoc-

Arg(Pbf)-OH), α-Fmoc-O-t-butyl-L-Seine (Fmoc-Ser(tBu)-OH), Nα-Fmoc-O-t-butyl-L-

Threonine (Fmoc-Thr(tBu)-OH), Nα-Fmoc-L-Valine (Fmoc-Val-OH), Nα-Fmoc-N-in-t-

Boc-L-Tryptophan (Fmoc-Trp(Boc)-OH). 
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The main steps followed during a synthesis cycle are: a) the deprotection of the α-amino 

group with 2% DBU and %% piperidine in DMF for 5 minutes; the side products 

dibenzofulvene is scavenged by the piperidine and removed in the subsequent 

washingstep; b) washing with DMF; c)activation of the amino acid with 0.9 M PyBOP 

and 1.3 M NMM in DMF; d) washing with DMF; e) coupling of the activated amino acid 

on the resin for 30 minutes; the coupling and the subsequent washing step are repeated 

for every amino acid of the sequence (Figure 30). In the end the last amino acid is also 

deprotected and the peptide is then cleaved from the resin with 95% TFA as cleavage 

reagent, 2.5% trietylsilan and 2.5% deionized water for 3 hours at room temperature- 

Then it was precipitated with 40 mL cold tert-butyl-methylether, filtered, dissolved in 5% 

acetic acid and lyophilized. 

 

Figure 30: General scheme of solid phase peptide synthesis employing Fmoc_/tBu strategy. 

 

3.3 High performance liquid chromatography 

 

High performance liquid chromatography (HPLC) is a separation method based on  
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sample partitioning between a coated silica solid phase and a mobile liquid phase. The 

term high-performance (also known as “high pressure”) refers to the speed and superior 

separation compared to agarose gel particules that were used before in column-

chromatography. For peptide and protein separation the main type of HPLC used today 

is reversed-phase HPLC (RP-HPLC). This separation mode is based on acid nonpolar 

adsorption of peptides onto the hydrophobic stationary phase within the column. The 

peptides are then differentially released from the stationary phase as a function of 

increasing organic component in the liquid phase. The two major adjustments of the 

method that made it highly popular in the peptide and protein separation: the pore size 

of silica particles, which, increased from ~100 to ~300Ǻ, had a dramatic effect on 

inproving the separation of peptide, and the replacement of phosphoric  with 

trifluoroacetic acid (TFA) as the ion-pairing agent, which was volatile and improved also 

the peptide separation. The sample is introduced into the HPLC column via a manual 

injector. The hydrophobic coating of the silica solid phase consists of saturated alkyl 

chains that interact with the hydrophobic moieties of the analyte.The elution is made 

with aqueous solvents containing TFA as ionic modifier to adjust the pH and CAN as an 

organic modifier is applied by using a two-phase mobile system: 

Solvent A: 0.1% (v/v) TFA in MilliQ 

Solvent B: 0.1% (v/v) TFA, 80% (v/v) acetonitrile in MilliQ 

The solutions were thoroughly deaerated prior to use by sonication at low pressure (a 

vaccum was employed). The sample was dissolved in solvent A. To prevent column 

damage, the sample was centrifuged before injection. Analytical RP_HPLC was 

performed on a UltiMate 3000 system (Dionex, Germering, Germany), equipped with 

LPG-3400A pumps, using a Vydac C4 column (250×4.6 mm I.D.) with 5 μm silica (300 Ǻ 

pore size) (Hesperia CA). The chromatograms were recorded by UV detection at 220 

nm, employing the VWD-3400 variable wavelength detector of the UltiMate system, with 

a flow cell of PEEKJ, 0.4 mm long and an internal volume of 0.7 μL. The fractions were 

collected with the FOXY Jr® automated fraction collector. 
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3.4 Gel Electrophoresis 

 

3.4.1 SDS-PAGE 

 

All peptide samples were analyzed by one-dimensional electrophoresis, to establish 

their constituency and purity. The electrophoresis was performed on polyacrylamide-

gels, using also the SDS detergent in sample preparation. Proteins are biopolymers 

folded into compact structures held together bya variety of non-covalent interactions like 

salt bridges, hydrophobic interactions and hydrogen bonds. These interactions can be 

disrupted using SDS, a detergent that consists of a hydrophobic 12-carbon chain and a 

polar sulphated head. The hydrophobic chain intercalates into the hydrophobic parts of 

the protein, leaving the sulfate group on the surface of the protein. SDS coats the 

protein with a uniform “layer” of negative charges which replaces the net intrinsic charge 

of the native protein. Once the SDS treated samples are placed into a gel and an 

electric field is applied, the proteins migrate towards the anode and get separated 

depending only on their size. The size depending separation is achieved through the 

pores of the gel that allow the small molecules to travel faster than the big ones. The 

hydrogen bonding between the different amide groups present in the peptide chain 

plays a crucial role in the formation of protein secondary structures. High concentrations 

of urea interrupt these hydrogen bonds, rendering the polypeptides highly water-soluble. 

Urea achieves this through its strong dipole moment. However, because it is uncharged, 

urea does not migrate in electrical field and does not interfere with the results of the 

electrophoretic separation. 

 

The gels were prepared using the mini-gel instrument MiniProtean from Bio-Rad. 

In the table 5 are presented the solutions for the separation gel and stacking gel. 

The separation gel buffer contains 0.5 M Tris, 0.4% SDS pH 6.8 and the stacking gel 

buffer contains 1.5M Tris, 0.4% SDS pH 8.8. The power/PAC 1000 instrument from Bio-

Rad at constant current in two steps was used for gel electrophoresis. 

a. 60 V when the samples were in the stacking gel. 

b. 120 V when the samples were in the separation gel. 



____________________________________________________________________45 

 

The molecular weight of the proteins was assigned using different markers. 

 

Table 5: Solution volumes required for gel casting. 

Solutions Gel concentration 

5% 12% 10% 

4× Stacking gel buffer 2.5 mL - - 

4× Separation gel buffer - 6 mL 6 mL 

MilliQ 5.8 mL 8.4 mL 10 mL 

Acrylamide solution 1.7 mL 9.6 mL 8 mL 

10% Amonium 

peroxidsulphate 

85 μL 125 μL 125 μL 

N’, N’, N’, N’-

tetramethylethylenediamine 

20 μL 20 μL 20 μL 

 

 

3.4.2 Staining of the gels with Coomassie Brilliant Blue 

 

Coomassie Blue staining is based on the non-specifically binding of the dye Coomassie 

Brilliant Blue G250 to virtually allproteins in acid solutions. This binding results in a 

spectral shift from reddish-brown (λ 465 nm) to blue (λ 610 nm). Coomassie Blue binds 

roughly stoichiometrically to proteins, allowing densitometric determinations. The 

proteins are detected as blue bands on a clear background, after fixing the gel with 

trichloro-acetic acid (TCA) for obtaining maximum sensitivity. Staining solution was 

prepared from: acetic acid 10% (v/v); methanol 40% (v/v); Coomassie Brilliant Blue G-

250 0.1% (w/v). After the gel was fixed for 30 minutes in fixing solution (12% TCA in 

MilliQ), it was left overnight in a mixture of 80 mL buffer (10% (NH4)2SO4, 2% H3PO4 in 

MilliQ) with 20 mL methanol and 2 mL Brilliant Blue G-Colloidal Concentrate, shaking. 

Afterwards the gel was washed with 25% methanol for 60 seconds and scanned with 

GS-710 Calibrated Imaging Densidometer from Bio-Rad. The image was acquired and 

saved with PD Quest software. 
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3.5 Inhibition assay of Aß-oligomerization by HCC peptides.  

 

The gel was prepared using the mini-gel instrument MiniProtean from BioRad. Samples 

were dissolved in 50 μL of running buffer (25 % glycerol, 4 % SDS, Coomassie) and 

added to the 12 % gel (8.4 mL MilliQ, 6 mL 4X separation buffer, 9.6 mL acrylamide 

solution, 125 μl APS, 20 μL TEMED). The power/PAC 1000 instrument from Bio-Rad at 

constant current was used for gel electrophoresis in two steps: (a) 60V when samples 

were in the stacking gel; (b) 120V when samples were in the separating gel. 

Thioflavine T (ThT) is a dye common used to visualize the amyloid fibrils. For the free 

dye excitation and emission occur at 385nm and 445 nm; for the bounded – excitation 

and emission occur at 450nm and 482nm. For this experiment 100μM ThT solution was 

prepared in 50mM Glycine, pH 8.5. The samples (50μl of supernatant and 10μl of 

suspention) were loaded on a 96-well black plate together with 50μl ThT, and measured 

on PerkinElmer Wallac VICTOR2 E.L.I.S.A. reader. The results for each experiment are 

presented on graphs and they are average from two measurements. 

 

 

3.6 Immunoanalytical Methods 

 

3.6.1 Enzyme linked immunosorbant assay (ELISA) 

 

Indirect ELISA using antigen dilutions was carried out for the immunological 

characterization of Aβ and HCC peptides. Ninety-six-well ELISA plates (Bio-Rad) were 

coated overnight at room temperature with 100 μL/well of antigen (serial dilutions from 

2.5 μM to 0.00001 μM of biotin G5Aβ(…) peptides concentration). Afetr coating, the 

wells were washed with 200 μL/well PBS-T 0.05% Tween-20 v/v in PBS-phosphate 

buffer saline (Na2HPO4 5 mM, NaCl 150 mM, pH 7.) and the nonspecific adsorption 

sites were blocked with 200 μL 5 % BSA for 2 h at RT.After incubation and washing 

steps, mouse anti-Aβ(…), anti-Aβ (…) were added to the plate. After another 2 h of 

incubation at room temperature the unbound first antibody was washed away and 100 

μL of peroxidase labeled goat anti-mouse IgC (Jackson Immuno Research) diluted 5000  
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times in 5% BSA was added to each well. After an additional incubation for 2 h, he wells 

were washed three tmes with PBS-T and once with 50 mM sodium phosphate-citrate 

buffer, pH 5. 100 μLwell of 0.1% o-phenylenediamine dihydrochloride (OPD) in sodium 

phosphate-citrate buffer at c1mg/mL and 2 μL of 30% hydrogen-peroxide per 10 mL of 

substrate buffer was added to the plates. The absorbance was measured at λ = 450 nm 

on a Wallac 1420 Victor2 ELISA Plate counter (Perkin Elmer). 

 

 

3.6.2 SAW Biosensor 

 

The bioaffinity measurements were performed using a SAW biosensor K5 instrument 

from the firma Biosensor GmbH, Bonn. The instrument consists of the biosensor itself 

and an automated autosmapler. The sensing surface consisting of gold is found on a 

small chip made of quartz. Before performing the actual measurements, the active 

surface of the chip has to be cleaned and then chemically modified, in order to permit 

the immobilization of the antibodies. The gold chips can be reused after a thorough 

cleaning of the surface. This is achieved by washing the chip using Piranha solution 

which consists of equal volumes of concentrated sulphuric acid (98%) and hydrogen 

peroxide (30%). Practically, the solution was made by mixing 1 mL of each reagent in a 

small glass recipient (the hydrogen peroxide was added first, then the acid). In the cold 

mixture (room temperature, 10 minutes after mixing) the chip was left for 45 minutes. 

After this, the chip was washed with MQ and ethanol, and then dried. Accordingly to the 

producer’s specifications, the chips can be reuse as many as 50 times, but in practice 

we observed a much faster degradation of the active surface (scratches and spots), 

after 10to 20 cycles of use and cleaning. The formation of the self assembled monolayer 

(SAM) occurs through chemical adsorption from a solution containing compounds with 

thiol groups. A solution of 16-mercaptohexadecanoic acid 10 μM is prepared by 

dissolving 5.77 mg of the acid in 2 mL of chloroform and ethanol, and then dried. 

 

All reactions involved in the immobilization of the first partner of the affinity system are 

conducted in the micro-fluidic cell of the biosensors. The gold chip with a fresh SAM  
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build on its surface is inserted in the instrument and a flow of MQ is allowed to wash the 

chip. The flow rate is usually a small one, and kept relatively constant throughout the 

entire experiment. Typically used flow rates are 20 to 30 μL/min. The reactants are 

added as solutions that are injected using the autosampler. In general, for the 

immobilization of a compound (antibody or protein) three injections are required. The 

first one contains the reactants for the activation, a mixture of 200 mM EDC (1-ethyl-3-

(3-dimethylaminopropyl)carbodiimide) and 50 mM NHS (N-Hydroxysuccinimide) 

solutions, I a volumetric ratio of 1:1. Since EDC is quite unstable at room temperature, 

samples with weightsclose to 11.502 mg (quantity needed for 300 mL solution 200 mM) 

are weighted and then stored at -20 ºC in the freezer. Short before he injection, the 

solution is made by adding the required volume of PBS (used to insure the right pH for 

the reaction) over the EDC sample. The NHS is more stable then the EDC, but the 

same procedure is followed as for the EDC. The samples with weights close to 1.726 

mg (quantity required for 300 mL solution 50 mM) are stored also in the freezer (-20 ºC) 

or in the fridge (5 ºC) and the solutions are made short before the injection by adding 

the right volume of PBS. Generally, in the autosampler was introduced a sample glass 

with 200 μL mixture of both solutions and for the injection were use 150 μL.  

 

 

The second injection contains the compound to be immobilized (peptides, proteins and 

antibodies). Different concentrations and volumes have been tested in order to achieve 

a maximum quantity of compound on the chip. However, given the purpose of the work, 

the focus was to determine the best conditions for the immobilization of the antibodies. 

A maximum quantity of antibody on chip can be achieved by injecting 150 μL (out of 200 

μL inserted in the autosampler) of a 200 nM antibody solution in MQ. With a molecular 

weight of …, the solution was prepared diluting … μg peptide in 200 μL MQ. Practically 

we added 6 μL stock solution of peptide (which had a concentration of 1 μg/μL) to 194 

MQ. The third injection the function of capping all the activated carboxyl groups that did 

not reacted with the compound to be immobilized. It consisted of a 1 M solution of 

ethanolamine, brought to pH 8.5. From the 200 μL inserted in the autosampler, were  
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injected only 100 or 120 μ. After the immobilization of a first compound, it’s affinity 

partner was also injected. This was done when the signal of the biosensor was 

equilibrated back after the change of the buffer from MQ (used during the 

immobilization) to PBS. For the study of the affinity interactions PBS was used as buffer 

in order to adapt the conditions of the experiment as close as possible to those of the 

physiological environment. For the injection of the affinity partner were also different 

concentrations and volumes used, according to the purpose of the experiment. 

 

For attempting the coupling of the biosensor with the ESI-ion trap mass spectrometer, it 

was aimed to bind through affinity to the chip as much compound as possible through a 

single injection. For eluting the affinity bound compounds from the chip, we used acidic 

conditions, injecting for example glycine 50 mM (with an adjusted pH 2) or acetic acid 

1% (pH 1.8). However, for dissoaciation of the antigen/antibody complexeswe found the 

solution of HCl 0.1 M (pH 1.8) to be best suited. Active surface of a channel is 0.072 

cm2. The quantity of bound compound to the chip can be evaluated from the measured 

phase shift (recorded with the K15 software) using the following sensitivity calibration 

factor: 

 

515 = φ(º)/(m(μg).A(cm2)  

 

 3.6.3 ZipTip desalting and clean up procedure 

 

The ZipTip desalting procedure was performed using ZipTip® C18 and C4 pipette tips 

from Millipore. The ZipTip pipette tips are modified pipette tips containing a small bed of 

reversed-phase chromatography media (0.6 μL) inside the cone end of the tip, with no 

dead volume. ZipTip C18 pipette tips are to be used for peptides and low molecular 

weight proteins. The procedure was performed according to the instructions of the 

producer, following five major steps: wetting the chromatographic media, equilibration of 

the ZipTip pipette tip, binding of the peptides and/or proteins to ZipTip pipette tip, 

washing off of the impurities nd slats, elution of the purified and  
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desalted protein/peptide sample. The used solutions are listed in Table 3. 

 

Table 3: Solutions required for use with ZipTip pipette tips containing C18 media. 

Solution ZipTipC18 Pipette Tips 

Wetting solution 100% ACN in MilliQ water 

Sample preparation 0.1% TFA in MilliQ water (final sample solution pH<4) 

Equilibration solution 0.1% TFA in MilliQ water 

Wash solution 0.1% TFA in MilliQ water 

Elution solution for MALDI 0.1% TFA/50% ACN 

for ESI 2% acetic acid/50% 

methanol 

 

 

3.6.4 ESI-Ion Trap-MS 

 

All mass spectra were obtained using an ESI ion trap mass spectrometer Esquire 3000 

plus from Bruker Daltonik (Bremen, Germany). The scheme of its build-up is presented 

in Figure 34. 

 

 

Figure 34: Schematic representation ESI ion trap mass spectrometer Esquire 3000 plus from Bruker. The 

ions are generated by the ESI source, are introduced in the mass spectrometerbthrough a capillary, are  
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focused by two octopoles and then allowed to enter the ion trap. After being separated according to their 

m/z values, the ions exit the trap and reach the detector. 

 

The Aβ and HCC peptides, solubilized in 1% formic acid at a final concentration of 10 

μM, were measured through direct infusion with an Esquire 3000 Plus ion trap device. 

The instrument was controlled by the equireControl software. For the direct bioaffinity, a 

binary gradient system consisting of solvent A (0.3% formic acid, 5% acetonitrile) and 

solvent B (95% acetonitrile, 0.3% formic acid in water) was employed. All MS results 

were obtained using atmospheric pressure chemical ionization (APCI) in the positive ion 

mode. Mass spectra were recorded in the full scan mode, scanning from m/Z 100 to 

3000. Ion source parameters were 15 psi nebulizer gas and 6L/min of drying gas with a 

temperature of 200 ºC (Table 4). 

 

Table 6: The ESI ion trap parameters: 

Parameter Value 

Target mass 1000 

Compound stability 100% 

Trap drive 80% 

Nebulizer 15 psi 

Dry gas 6L/min 

Dry temperature 200 ºC 

Mode Positive 

Scann 100-3000 

Average scans 6 

 

4.7 Computer programs 

 

4.7.1 GPMAW 

 

The software GPMAW 5.0 (General Protein/Mass Analysis for Windows) from 

Lighthouse Data, Denmark, was employed in the theoretical calculation of molecular  
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weight of the peptides and proteins. The program was able to calculate both the 

monoisotopic and average masses of the peptides or proteins having as input their 

sequence. It also allowed to modify the sequence adding different chemical 

modifications, e.g. to the side chain of the amino acid rest. It was also possible to 

predict the average and the monoisotopic values for the single and multiple charge ions. 

Another feature of GPMAW 5.0 is the prediction of the secondary structure and the 

hydrophobicity of a given protein or peptide sequence. 
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4. SUMMARY 

 

Alzheimer’s disease (AD) and AD-related neurodegenerative disorders have become 

the predominant form of progressive cognitive failure in elderly humans, a development 

presently accelerating due to the significant increase in life expectancy in the last 

decades. A major constituent of amyloid fibrils in brain of patients with AD and AD-

related diseases, as well as in aged individuals without any neurological disorder is the 

β-amyloid polypeptide (Aβ). Aβ arises from a large precursor, the amyloid precursor 

protein (APP); [1,2] it is produced by normal cells and detected as a circulating peptide 

in plasma and cerebrospinal fluid (CSF) of healthy humans.[3, 4]The accumulation of 

Aβ, a 39-42 amino acid proteolytic fragment of APP, in neuritic AD plaques is thought to 

be causative for disease progression. [3, 4] 

Although amyloid plaques in brain of AD patients contain predominantly Aβ-aggregates, 

immunohistochemical studies have shown the co-deposition of several other proteins, 

such as the protease inhibitor cystatin C, apolipoprotein E, clusterin, transthyretin and 

gelsolin. [5-8] In particular, the presence of human cystatin C (hCC) in amyloid deposits 

has found much interest, [9, 10] and a wide spectrum of activities has been associated 

with hCC such as modulation of neuropeptide activation and neurite proliferation. [11, 

12] 

The 13 kDa protein hCC is the main cysteine protease inhibitor in mammalian body 

fluids [13, 14 ] and has been found with high concentrations in CSF. The presence of 

hCC in Aβ-plaques has been suggested to result from its binding to APP, or 

alternatively, hCC may bind to Aβ prior to the secretion or following the deposition in 

brain. [9] Sastre et al. found that the association of hCC with Aβ causes an inhibition of 

fibril formation, and suggested an N-terminal Aβ-sequence to be responsible for the 

interaction, with formation of a stoichiometric hCC-As complex. [11] The interaction of 

hCC with Aβ may be an important neuroprotective mechanism in brain, and may 

attenuate the oligomerisation of Aβ and play a regulating role in Aβ amyloidogenesis. 

The identification of the binding epitope of hCC in the central domain of Aβ confirmed 

the importance of this protease inhibitor for the aggregation process and  
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amyloidogenesis, since blocking the hydrophobic coremay inhibit Aβ oligomerisation 

and regulate fibril production. 

 

Using proteolytic extraction and excision of the human cystatin C-Aβ(1-40) immune 

complex (e.g. trypsin, Glu-C proteases) in combination with electrospray ionization 

(ESI)- and MALDI- mass spectrometry, the epitope was identified at the middle-carboxy 

terminal domain of Aβ, Aβ(17-28). An almost identical minimal epitope to that of the 

VHH-anti-Aβ-antibody (Aβ(17-24)) was found, which binds to a specific C-terminal 

domain of HCC, HCC(101-114) [1, 2]. The identified HCC epitope peptide was found to 

specifically inhibit Aβ-oligomerization in vitro, in agreement with the Aβ-epitope domain 

interfering with the Aβ-aggregation. Other affinities studies using SAW and ELISA 

allowed to understand better the interaction between this two groups of peptides. The 

identified Aβ and HCC epitopes and the study of their affinity represent new lead 

structures for designing neuroprotective inhibitors of the Aβ-aggregation process, and 

for molecular AD diagnostics. 

 

The discovery of soft ionization methods such as MALDI and ESI has the mass 

spectrometry analyses of biomacromolecules. Since then, mass spectrometry has 

become one of the most important analytical methods for the analysis of biopolymers. 

Biosensors have been recently developed as new analytical tools that rapidly found 

applications in the study of biomolecular interactions. The SAW biosensor is suitable to 

analyze samples in solution, being highly sensitive to mass loadings and viscosity 

changes. Therefore, the SAW biosensor is successfully used for affinity binding studies. 

However, a principal weakness of all bioaffinity methods is the lack of molecular 

structure information of ligand-binder interactions. The method was applied to several 

antigen-antibody systems related to a neurodegenerative disease of great impact 

worldwide, Alzheimer’s disease). The antibodies were covalently immobilized on the 

surface of the chip used by the SAW sensor and the interactions with the antigens 

(peptide or protein) present in solution were determined.  
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Several Aβ peptides were synthesized and their bioaffinity to HCC peptides was 

studied. The investigated antigen-antibody systems were:  Aβ (1-40) with HCC (93-120), 

Aβ (12-40) with HCC (93-120), Aβ (17-28) with HCC (93-120); Aβ (1-40) with HCC (101-

117), Aβ (12-40) with HCC (101-117), and Aβ (17-28) with HCC (101-117 )as well as the 

inverse systems. The bioaffinities were comparatively investigated by ELISA and SAW, 

and the results were found to be in good agreement. It was demonstrated that all the 

systems (after a successful synthesis and purification) present affinity, and was possible 

to calculate all the constant dissociation basing on the affinity results.  
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6. APPENDIX 

 

6.1 Appendix 1 – Abbreviations 

Abbreviations Name 

ACN Acetonitrile 

Ab Antibody 

APS Ammoniumperoxodisulfat 

CD Circular dichroism 

CDR Complementary determining region 

Da Dalton 

DHB Dihydroxybenzoic acid 

DTT Dithiothreitol 

EDC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

ELISA Enzyme liked immunosorbent assay 

ESI-MS Electrospray/ionizations- Mass spectrometry 

HCCA 4-Hydroxy-α-cynamic acid 

HPLC High performance liquid chromatography 

MALDI-MS Matrix-assisted Laser desorptions-/ionizations-Mass 

Spectrometry 

min Minute 

m/z Mass over charge ratio 

NHS N-Hydroxysuccinimide 

PBS Phosphate buffered saline 

PD Parkinson disease 

pH Negative logarithmus of H30
+-iones concentration 

SAM Self Assembled Monolayer 

SDS-PAGE Sodiumdodecylsulfat-Polyacrylamid-Gel electrophoresis 

TEMED N,N,N’,N’-Tetramethylethylendiamine 

TFA Trifluoroacetic acid 

TOF Time of flight 
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Tween Polyoxyethylen Sorbitan Monolaurat 

UV Ultraviolet 

ºC Grad Celsius 

 

 

6.2 Appendix 2 – Abbreviations for amino acids 

Table 5: Amino acids abbreviations. 

Name One letter code Three letters code 
Monoisotopic 

mass (Da) 

Alanine A Ala 71.03711 

Arginine R Arg 156.10111 

Asparagine N Asn 114.04293 

Aspartic Acid D Asp 115.02694 

Cysteine C Cys 103.00919 

Glutamine Q Gln 123.05858 

Glutamic acid E Glu 129.04259 

Glycine G Gly 129.04259 

Histidine H His 57.021046 

Isoleucine I Ile 113.08406 

Leucine L Leu 113.08406 

Lysine K Lys 128.09496 

Methionine M Met 131.04049 

Phenilalanine F Phe 147.06841 

Proline P Ro 97.05276 

Serine S Ser 87.03203 

Threonine T Thr 101.04768 

Tryptophan W Trp 185.07931 

Tyrosine Y Tyr 163.06333 

Valine V Val 99.05841 

 


