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2008





Universidade de Lisboa
Faculdade de Ciências

Departamento de Informática
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Abstract

Virtual environments that are inhabited by agents with a human like embodi-

ment have many practical applications nowadays, in areas such as entertainment,

education, psychotherapy, industrial training, or reconstitution of historical environ-

ments. These are examples of areas that may benefit from a flexible platform that

supports the generation and rendering of animated scenes with intelligent virtual

humans.

The IViHumans platform is currently being built with this perspective in mind.

The platform is divided in two layers: one for graphical processing and another for

artificial intelligence computation. It was projected to provide a set of features which

automatically takes care of many issues that are common to applications integrating

virtual humans and virtual environments. This document focuses on the conception

and development of the Graphical Processing layer, which constitutes the ground

for the Artificial Intelligence layer. The connection between the two layers is also

addressed. The layers were projected to run in different processes, communicating

by means of a simple, yet effective and extensible client/server protocol that we

idealized and implemented.

The tasks of the graphical processing layer rely, first of all, on graphical repre-

sentations. For that matter, we highlight the techniques used in 3D object model-

ing. We also focus on our design and implementation and on how we applied the

principles of object oriented design to confer flexibility to the platform. Reynolds’

conception of movement is applied according to our own view, to make virtual hu-

mans and other objects steer autonomously in the world, while displaying consistent

animations that are automatically chosen according to character specific rules. We

expose our solution for facial expressions that can be mixed to transmit complex

emotions and that are subject to automatic smooth transitions. We show how vir-

tual objects can be characterized with default and custom properties. We discuss

the integration of perception through synthetic vision, including how it is coupled

with distinct kinds of automatic memory that recalls any attributes of the objects

that inhabit the virtual world.

KEYWORDS:

Virtual Humans, Virtual Environments, Emotional Expression, Synthetic

Perception, Steering, Locomotion.
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Resumo

Os ambientes virtuais habitados por agentes com uma aparência humanóide têm

diversas aplicações práticas nos dias que correm, em áreas como o entertenimento,

a educação, a psico-terapia, o treino industrial ou a reconstituição de ambientes

históricos. Estes são exemplos de áreas que podem beneficiar de uma plataforma

flex́ıvel que suporte a geração e produção de cenas animadas com humanos virtuais

inteligentes.

A plataforma IViHumans está actualmente a ser constrúıda com esta perspectiva.

A plataforma divide-se em duas camadas: uma para o processamento gráfico e

outra para a computação de inteligência artificial. A sua concepção pressupõe a

inclusão de um conjunto de funcionalidades que cobrem muitos aspectos comuns a

aplicações que integram humanos virtuais em ambientes virtuais. Este documento

atenta na concepção e no desenvolvimento da camada de processamento gráfico,

que constitui a base para a camada de inteligência artificial. A ligação entre as duas

camadas é também abordada. As camadas foram projectadas de modo a correr

em diferentes processos que comunicam por meio de um protocolo cliente/servidor

eficaz e extenśıvel, que idealizámos e implementámos.

As tarefas da camada de processamento gráfico baseiam-se, antes de mais, em

representações gráficas. Assim sendo, destacamos as técnicas usadas na modelação

de objectos tridimensionais. Também nos focamos no desenho e na implementação

da plataforma e explicamos como aplicámos os prinćıpios do desenho orientado a

objectos para lhe conferir flexibilidade. A concepção de movimento de Reynolds é

aplicada de acordo com a nossa interpretação, para que humanos virtuais e outros

objectos possam conduzir-se autonomamente pelo mundo, enquanto reproduzem

animações coerentes que são automaticamente escolhidas com base em regras es-

pećıficas para cada personagem. Expomos também a nossa solução para expressões

faciais que podem ser misturadas de modo a transmitir emoções complexas e que

são objecto de transições suaves e automáticas. Mostramos ainda como os objec-

tos virtuais podem ser caracterizados com propriedades pré-definidas ou atribúıdas

pelo utilizador e discutimos a integração da percepção através de visão sintética, in-

cluindo como ela é acoplada a diferentes tipos de memória que recordam quaisquer

atributos dos objectos que habitam o mundo virtual.

PALAVRAS-CHAVE:

Humanos Virtuais, Ambientes Virtuais, Expressão Emocional, Percepção Sintética,

Condução, Locomoção.
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Chapter 1

Introduction

Virtual environments that are inhabited by agents with a human like embodiment

have many practical applications nowadays, in areas such as entertainment, educa-

tion, psychotherapy, industrial training or reconstitution of historical environments.

These are examples of areas that can benefit from a flexible platform that supports

the generation and rendering of animated scenes with intelligent virtual humans,

specially if it is suitable for applications that have diverse purposes.

The IViHumans (Intelligent Virtual Humans) platform is currently being de-

veloped with this perspective in mind. It was projected to integrate a sufficiently

wide set of elements, in order to reach the degree of completeness that is indispens-

able to its effective applicability. Its purpose is to be used as a grounding base

for the development of applications that integrate Virtual Humans (VHs) and vir-

tual environments. We try to accomplish that by providing a set of features that

automatically takes care of many issues that are common to such applications.

The architecture of the IViHumans platform comprises two separate layers that

have distinct purposes: graphical processing and artificial intelligence. The Graphi-

cal Processing (GP) layer is not only responsible for rendering scenes that incorpo-

rate VHs and other objects, it also manages many logical aspects that are related to

the virtual world and its components. The AI layer, on the other hand, implements

the intelligent processing that commands virtual humans, through a multi-agent

system (MAS). This document addresses the GP layer of the platform, which was

the object of study and development in this research work. However, the GP layer

is not isolated and some aspects of the AI layer are sometimes brought up.

The project for the conception of the IViHumans platform had began before the

author joined it. Prior to the beginning of this research work, much had already been

done. The first steps of projecting the platform happened in 2004/2005 [71, 70, 17].

Later on, a tool for mixing facial expressions was created [25, 24], along with the

face for a female VH and her basic expressions. A synthetic vision algorithm was

also conceived [67] and a proof of concept implementation was accomplished [68].

1



Chapter 1. Introduction 2

The actual implementation of both the GP layer and the AI layer, however, had not

been done yet.

Building the GP layer was the global task of this work. Some of its aspects were

redesigned and it was implemented from scratch, to include features that had not

yet been planned for. We followed the general architecture that had already been

established. The software that was originally appointed to aid us in our work was

used. Namely, OGRE is used as a rendering library and Blender as the 3D modeling

software. ODE is the library that will enable the inclusion of rigid body dynamics

and JADE is the environment that will support the MAS of the AI layer. We also

built on top of boost libraries and another tool was added to the content production

pipeline: Poser. The former was chosen mainly for networking. The latter was used

for the first stage of the creation of our first VH prototype. The content that had

already been created for the platform – the face of a female VH – was integrated in

this prototype in a second stage, with Blender. Another VH was also derived from

an original model of aXYZ design(http://www.axyz-design.com/). We obtained

free motion capture data from the website www.mocapdata.com, adapted it, and

imbued the latter model with it. The graphical representation of virtual humans is

addressed in Section 3.2. Documentation on the creation of the female VH can be

found in [5, 4].

We can now use two VH models with the IViHumans platform, but it was de-

veloped in such a way that many other models, with different characteristics, can

be used. In fact, one of the main goals we always kept in mind when deciding on

how to develop the GP layer, was to make it as flexible and extensible as possible,

so that it could effectively be used in different contexts. This concern is reflected in

the way we conceived and developed the features that the GP layer now includes,

which can be grouped in four major topics: movement, expression, perception, and

networking.

The ability to move is one of the main base features that must definitely char-

acterize VHs. In the IViHumans platform, VHs’ movement is based on Reynolds’

behavioral concepts, which we adapted and implemented according to our own view.

VHs, and potentially other beings, can have their movement dictated by steering be-

haviors, displaying consistent animations that are automatically chosen and updated

according to custom rules, as explained in Section 3.3.1.

In the future, VHs’ cognition will be accomplished by the AI layer, which may in-

clude complex models of emotion. If modeled in a way that approximates its impact

on real life, emotion will have profound effects on the decisions of the characters and,

ultimately, on the overall progress of events within the virtual world. To achieve a

higher degree of believability, however, the practical consequences of emotion should

be accompanied by the physical expression that it naturally entails. This physical

http://www.axyz-design.com/
www.mocapdata.com


Chapter 1. Introduction 3

expression of emotion is now supported by the GP layer. Emotion’s first reflection

was projected for the face of the VHs. We propose an approach that supports default

and custom facial expressions that can be mixed together to originate other, more

complex, expressions, and that even withstands certain kinds of body expressions.

The transition between expressions is fully automatic and it happens smoothly, even

when multiple face deformations are involved. Expressions are discussed in Section

3.3.2. Our approach for movement and emotional expression is documented in [6].

Another trait of VHs in our platform is that they can perceive their environment

through synthetic vision. For that purpose, the vision algorithm that had already

been devised was fully re-implemented and integrated in the platform. VHs can

observe the objects of the world and extract their properties, either as an effect of

explicit command or with distinct kinds of optional automatic memories that we

coupled with the vision sense. This subject is exposed in Section 3.3.3.

Finally, the GP layer was given a server to communicate with the AI layer

through a client/server paradigm. A simple yet effective protocol was designed

and implemented, along with stub clients that allowed us to test and demonstrate

how the services that the GP layer provides can be used by external programs.

Networking is the topic of Section 3.3.4.

In Chapter 4 we expose the main conclusions we draw from this research work and

we suggest possible future paths for the IViHumans platform. Chapter 3 contains

a thorough explanation of the work that was performed during the execution of our

research work. In the next Chapter, we present and discuss important work that

greatly influenced our progress.



Chapter 2

Related Work

The area of virtual environments inhabited by intelligent virtual humans is extremely

vast and has inspired a great amount of research work, especially since around two

decades ago. Since the end of the 80’s until today, several contributions have been

made, directly or indirectly related to the subject. Some of the efforts contribute to

general perspectives on how the virtual environments and agents should be architec-

tured and implemented. However, the vast majority follows a trend of specialization,

focusing deeply on specific topics that incisively enhance the overall knowledge.

The task of building a platform as the one we have been conceiving draws great

benefit from the awareness of problems that were already identified and from the

solutions found for them. Generally, an expanded notion of the progress that has

already been achieved allows us to benefit from knowledge that helps the design of

a, hopefully, useful system.

This chapter briefly describes some of the major works that focus on virtual

environments and VHs or on related aspects that we consider relevant to the point

of view we adopt. We dedicate special attention to the ones we consider the most

influential and we focus on the aspects that are the most relevant to the approach

exposed here. However, we also describe some research courses that essentially

diverge from ours but that we consider substantial for the full picture and that

contributed to the grounding base we build upon.

Even though this work concentrates on the graphical layer, understanding some

issues that relate mainly to the field of artificial intelligence is crucial to harmonize

the behavior and the interaction of both layers, so that they fit properly. Bearing

this fact in mind, we also devote much attention to subjects that are not strictly

classified as belonging to the area of computer graphics.

We include some figures in the following discussions that we believe can be an

aid in understanding key concepts. All of them were drawn from the respective

publications.

4



Chapter 2. Related Work 5

2.1 Most Relevant Work

Although the last two decades were prolific in scientific publications that disclose

distinct approaches to the problems involved in the subject of virtual environments,

in our opinion, the most striking contributions are not always the most recent.

Nevertheless, we consider it fair to place them prominently because they were foun-

dational and set the courses that oriented subsequent research. In this section we

include the work we distinguish this way.

2.1.1 Reynolds – Boids

The work of Craig Reynolds definitely marked the history of computer graphics by

introducing the concept of behavioral animation, repeatedly employed ever since. In

1987 he released a distributed behavioral model for the simulation of animated flocks,

herds, and schools [61], breaking up with traditional approaches of scripting the

movement of virtual actors and objects. In the model he built, “boids” decide their

routes autonomously and at runtime. The decision of each individual is achieved

according to a set of behavioral rules and using simple models of local perception of

a dynamic environment.

Using this model for flock animation, Reynolds avoided having to predetermine

the path of each individual, a tedious and error-prone task, largely automatizing the

generation of the animation. The behavior of each boid is modeled according to the

following three principles:

Collision avoidance – each individual tries to avoid collisions with nearby flock

mates and objects;

Velocity matching – each individual tries to match velocity with nearby partners;

Flock centering – each individual tries to stay close to its neighbors.

In order to have a consistent behavior, boids act according to a limited aware-

ness of the surrounding environment, which is obtained through what the author

calls simulated perception – a means of controlling the information that a charac-

ter can access by filtering irrelevant data and knowledge that should naturally be

inaccessible due to any physical limitation (e.g. an imperceptible sound due to the

distance from its source, or an invisible object due to some obstruction). This kind

of technique is widely used today and it is also often called synthetic perception.

In Craig Reynolds’ work, the actors can only access such properties as velocity

and position from mates that stand nearer than a given threshold. This way, the

volume that a boid can reach with its perception is a sphere centered in itself.

However, the author acknowledges that a deformation of this volume in the direction
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of movement would increase the similarity with what happens in the real world. In

what concerns external obstacles, a boid is only sensitive to the objects that are

in front of him. It detects them by looking for incidental intersections with its

local Z-axis. When an intersection is discovered, the boid diverts its movement by

an amount that is calculated on the basis of the distance to the object that was

intercepted. The benefits of local perception can be exemplified, in this context,

by the ability that a flock demonstrates of separating, when before an obstacle, to

eventually merge again. Clearly, this emergent behavior would not come up if flock

centering enclosed all the group as one.

Boids are given steering specifications in the form of acceleration suggestions.

Each behavior returns acceleration vectors that are somehow combined to derive

the net acceleration that the actor is submitted to. Therefore, the evolution of the

flock is dictated by the search of a balance situation among all behavioral principles.

Global movement exhibits a behavior that emerges from the individual ones and that

surpasses their sum: an unit behavior displayed by the group that appears to have

a centralized intention source.

In some occasions, disabling conflicts may erupt between individual behaviors.

As a way of solving undesired conflicts, a priority schema for behaviors may be

followed. In this work, Reynolds embodies behavior priority by imposing a limit for

the magnitude that the net force can achieve and by adding the individual forces

in the order that is established by their relative priorities. When the threshold is

exceeded, the excess is removed and remaining additions are discontinued. Hence,

less urgent behaviors are temporarily left unsatisfied.

The author claims that, with correct parameterization of the rules, the results

can be quite realistic and prove to be in accordance with zoological observation.

Some demonstrations of these results can be found at [13].

2.1.2 Reynolds – Steering Behaviors

After little more than a decade later, Craig Reynolds deepened the concept he had

applied in the creation of flocks of virtual animals, generalizing it to imbue different

characters with realistic and spontaneous navigation capabilities [62]. The new

behaviors were varied and had different purposes, in order to extend the autonomy

of virtual characters. The rules for the movement of the boids were early examples

of what the author came to call Steering Behaviors, name by which they are still

emblematically known.

To clarify the scope of his behavioral model, the author proposed a conceptual

division of the behaviors of a virtual character in three separate layers, ranked by

degree of abstraction, as depicted in Figure 2.1.

The locomotion layer includes low-level tasks that carry the movement of the



Chapter 2. Related Work 7

Figure 2.1: Hierarchy of the conceptual division for the movement of a virtual
character.

character; the steering layer establishes the way to go to reach an objective; the

action selection layer defines objectives and sub-objectives. According to this hier-

archical layout, the aims of the action selection layer are achieved throw the features

that the steering layer provides, and the same relation holds between the steering

layer and the locomotion layer. In Reynolds’ vision, steering behaviors are a part of

the steering layer.

By categorizing three movement control layers, Reynolds views them as inde-

pendent, anticipating a plugin-like implementation that enables, for instance, the

exchange of one locomotion module for another, maintaining the viability of com-

mands from the steering layer. In practice, some adjustments may be necessary to

deal with differences in agility and intrinsic characteristics of distinct locomotion

models. The author sustains that such adjustments can be made by parameter

tweaking, in the same way a driver quickly adapts to a new car, instinctively cor-

recting differences in the mapping between the vehicle’s commands and responses.

Steering behaviors stand on the assumption that the underlying layer can be ap-

proximated by a simplified concept of vehicle that can equally be applied to planes,

cars, horses, or the legs of a human being (with some abuse of nomenclature, as the

author points out). The vehicle is modeled as a point mass whose main character-

istics are position, mass, velocity, and orientation. The intentions associated with

steering behaviors are transmitted to the vehicle as force vectors to be applied on

itself. As the force is applied on the vehicle by itself and since, in the real world,

it should be limited in spendable energy, the forces’ magnitudes must not be arbi-

trarily large. Thus, a maximum applicable force attribute is also included in the

point mass model, as is a maximum speed attribute, for analoguous reasons. In

fact, in the real world the forces that a body is subject to are, from a certain speed

on, canceled by friction and air resistance and so do not produce an acceleration to

further increase speed.

The state of a vehicle is defined by the values of its variable attributes (position,

velocity and orientation). It is updated discretely, as a function of the elapsed time

since the previous update and it can be changed by external or internal forces.

Internal forces – the ones that are produced by steering behaviors – are combined
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to originate a net force whose intensity is truncated to the maximum allowed value.

Applying Newtonian laws for kinetics, an acceleration is derived and used to update

velocity which, in its turn, is used to update position.

Taken together with its position, the orientation of the vehicle determines its

local space: the position defines the origin of a frame whose axis are defined by

orientation. The orientation is partially dependent on velocity, since the depth axis

of the vehicle is always aligned with its velocity. Therefore, the vehicle has its own

velocity-aligned local coordinate space. Nevertheless, the orientation is not totally

established by velocity. Indeed, there is an additional degree of freedom that is left

undetermined, namely the one that corresponds to rotation around the depth axis

– roll. This additional information can be obtained recursively, for timestep n, from

the rotation of the velocity vector since timestep n − 1, applied to the orientation

of timestep n− 1.

Although it is a simple approximation to reality, this model leaves space for

sudden rotations of the object because it does not impose a limit to angular velocity.

The author suggests that this problem can be solved, for instance, with a restriction

for variation in the orientation of the object of by limiting the side component of

the net force.

Assuming that the implementation for locomotion is in accordance with this

simple vehicle model, Reynolds described several steering behaviors that operate by

geometrically computing the intended forces. Some examples of the behaviors he

invented are seek, that tries to direct the vehicle to a certain target, pursuit, that

leads the vehicle into the computed future position of a moving target, and leader

following, which steers the vehicle so that it follows the actor appointed as leader.

2.1.3 Tu and Terzopoulos – Artificial Fishes

Xiaoyuan Tu and Demetri Terzopoulos proposed a framework for automatic anima-

tion of artificial fish that mimics the complexity of movement in natural ecosystems

[80]. In their approach, several properties of fish and of their interaction with the

real world are faithfully approximated by a system that holistically embraces rules

for physics, locomotion, perception, and behavior. To believably simulate these ani-

mals, they modeled them as autonomous agents that are composed by features that

belong to these four layers of abstraction, contrastingly with the approaches that,

like Reynold’s simple vehicle, aim solely and directly on the final appearance of the

animation.

The physics layer encloses the vast dynamics of natural forces, particularly those

that are produced in an underwater world. It is over this layer that all the system

is built. At this level, the artificial fish is modeled as a sophisticated spring-mass

model that imitates its muscular structure and mechanics. The contraction of some
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sections of the body gives rise to forces that are applied over the water and that

originate reaction forces that drive the fish forward. The authors claim that the

model keeps structural stability of the body while allowing it to flex.

In the locomotion layer, motor controllers are implemented to give the fish the

ability of swimming forward or changing direction. These controllers command both

the actions of the muscles and the pose of the pectoral fins, so that the fish can move

with precision in the 3D world.

The artificial fish has a vision sensor that, while not imitating the highly de-

veloped eye of real fish, provides him information about the environment, such as

colors, sizes, and distances. The vision is cyclopean and covers a spherical angle of

300o along a radius that is parameterized according to the translucence of the water.

The artificial fish has also got a temperature sensor that samples the ambient water

temperature at the center of its body.

The final animation relies on yet another layer for behavior that amounts to an

intention generator that has a simple memory mechanism for recording interrupted

actions, so they can be resumed later. The character of a fish may be defined by

specifying its tastes and habits (e.g. whether it likes light or whether it normally

incorporates schools). These specifications are used by the intention generator,

together with the attributes that determine the state of the fish, to define his im-

mediate behavior. Behavior priorities are defined with chained rules. By specifying

different priority schemes, Tu et al. created three kinds of fish – predator, prey, and

pacifist.

With this framework, underwater animations where rendered with reduced inter-

ference by the animator. The authors claim that the framework is easily extensible.

The computational cost does not seem too high, given the wide range of features

that are implemented. Nonetheless, the number of fish that can be animated with

a real-time rendering is forcibly low, when compared with approaches that simplify

the modeling of lower-lever layers to pay special attention to higher-level ones.

2.1.4 Funge et al. – Cognitive Modeling

In [33], Funge et al. present a cognitive model to direct artificial characters, with the

aim of increasing their autonomy and, thus, the automatism of animation creation.

With their method, they attempt to outdo behavioral approaches that are directly

built over physical or motor layers. While some of the previous works already

involve a certain degree of autonomous decision-making and objective picking, they

are closely bound to some particular system and may be categorized as essentially

pertaining to the behavioral level (see, for instance, how the intention generator

deals directly with collision possibilities, in [80], or how, in [57], low-level actions

are pointed to actors by the typical script).
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The cognitive paradigm that the authors propose transcends the behavioral one

mainly because it originates deliberative attitudes in place of reactive attitudes.

Funge et al. construct a cognitive layer that is clearly separate from the behavioral

layer, albeit seating on it. Cognitive modeling is supported by behavioral modeling

and, hence, rises one level above it. Figure 2.2 shows how the compartmentalization

of the functionality that is involved in automatic animation can be seen. The figure

highlights the authors’ contribution.

Figure 2.2: Hierarchy of the modeling layers that are involved in automatic anima-
tion generation.

The assignment of cognitive capabilities to characters entails the need for grant-

ing them with the power of acquiring and using knowledge, namely to plan action

sequences that can be mapped into commands for lower layers. The Cognitive Mod-

eling Language (CML) is developed as a means of constructing cognitive actors that

can elaborate plans to achieve their own goals and whose decisions depend on their

knowledge. The cognitive models that CML enables the user to create withstand

complex behaviors of interaction with the environment and with other characters.

Still, the language does not prevent the user from including as much detail as he

wants into an animation, since a section for the direction of the animation should

also be defined, leaving the author to directly handle any aspect in the world. Also,

the scope of the language is not limited to the use of features from the behavioral

layer, but it allows resorting to lower-level services.

In this work, the author’s also came up with an alternative formalism for interval

arithmetics. This formalism is fully integrated in CML and it supports reasoning

with uncertainty about the state of the world. CML also includes perception mech-

anisms and it allows reasoning over specific domain knowledge as well as general

planning algorithms.
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2.1.5 Perlin and Goldberg – Improv

Perlin and Goldberg built a system, which they name Improv, for the creation of

animated actors whose behavior is synthesized, to a vast extent, in real rime, fol-

lowing user’s intentions [57]. These are defined in scripts whose content ranges from

simple actions, which can be specified as postures of the skeleton that is associated

with a character, to decision rules and composite actions.

Improv is constituted by two subsystems: an animation engine and a behavior

engine. The animation engine controls the body of the actors and it is responsible

for the generation of animations. It allows the actors to switch between animations

in a smooth and natural fashion. Base animations are combined with coherent noise,

which was originally conceived by Perlin for procedural textures, in order to render

non-repetitive animations. Noise is stochastically applied as slight displacements of

the limbs of a character, so that any two repetitions of the same animation are never

equal. Additional believability is thus bestowed on the characters.

The system is robust, dealing effectively with interference between animations.

To this end, animations are grouped together and a priority order is established

among the groups. Animations that are in the same group compete with each other

and, when one of them is selected, the remaining ones are progressively deactivated.

If two animations that belong to different groups are played simultaneously, the

animation that belongs to the group with higher priority invalidates any interfering

movements from the other one.

Chronological dependence between actions is solved with the concept of action

buffering. Inconsistent action transitions are circumvented this way. Suppose that,

at some instant, a virtual actor had his hands behind his back an that the next

action was to clasp his hands. If linear interpolation was applied, the hands of the

actor would pass through his body. To prevent this, a dependency must be declared

that states that, before clasping his hands, the actor has to assume a posture in

which his arms are laterally placed along his torso. An auxiliary action is thus

inserted in the transition sequence (Figure 2.3).

Figure 2.3: Example of action buffering.

The behavior engine allows the user to create sophisticated rules that govern
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how actors communicate, change, and make decisions. The flow of decision of an

actor can depend on properties of the world and of other actors. For instance, it is

possible to create an actor that interacts only with actors that he finds interesting,

based on their characteristics.

The system is comprehensive and allows the creation of complex interactive

stories that may unfold in a non-deterministic way. Stochastic behaviors may be

declared at distinct levels of abstraction. For instance, when participating in a game,

a character may choose the following play randomly or according to some probability

distribution.

Improv is implemented as a set of distributed programs that connect through

TCP/IP and through UNIX pipes, with a flexible synchronization but also with guar-

anteed consistency. If the system is distributed along a LAN, it is possible to have

several animation engines, although the behavioral engine must be unique. Hence,

albeit executing the same abstract operations that the behavior engine determines,

the animation engines produce slightly different results. The authors illustrate the

situation explaining that, although the body of the actor exists in parallel universes,

exhibiting small differences in posture at each instant, his mind is unique and com-

prises always one single current state that is compatible with what is being rendered

by all animation engines.

2.1.6 Vosinakis et al. – SimHuman

Vosinakis et al. created a platform for virtual agents with planning capabilities that

run in real-time in an arbitrary virtual environment – SimHuman [83]. The authors

seek to have performance and autonomy well balanced with the believability of the

agents, which have a graphical representation in a 3D world.

The visualization module includes features such as keyframing animation, colli-

sion detection and response, and an alternative form of inverse kinematics. It relies

on an engine for rendering and physics that is implemented in C++ and based on

OpenGL. This engine applies kinematics’ rules to the objects that are present in

the environment to determine their following state. Collision detection is performed

with a non-exact method [45], relying on automatically calculated bounding cylin-

ders (Figure 2.4). This type of collision detection is considered perfectly adequate

for the purpose, considerably reducing the use of computational resources, when

compared to exact collision detection.

Virtual agents consist mainly of a high-level planner, which is implemented in

Prolog. An agent senses, decides and acts simultaneously. The sensing process is

carried out by a ray-casting synthetic vision algorithm – in each call, the agent casts

a series of rays from the position of his eyes and accesses only the information of

the first objects to be intersected by any ray. The agent records this information
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Figure 2.4: Bounding cylinders for VHs in SimHuman

in memory, until the next perception yields new data to substitute it. This data is

subject to an abstraction process that returns symbolic information. The informa-

tion that results from this abstraction is handed over to the planner to constitute

the agent’s beliefs, so that plans can be generated (e.g. the position of a ball might

be translated to a belief that states that the ball is over some table).

The decision process corresponds to planning. Since the world is dynamic, the

planning is carried out with monitoring, which is performed by constantly comparing

what the agent perceives with its beliefs. Aspects like the type of planner or the

scope of its domain are not addressed by the authors. The planning process uses

a set of all possible actions the agent is able to perform, which are executed by

standard algorithms and whose specification must include preconditions and effects.

At this time, the Prolog planner was directly called from within C++ code. Later

on [8], however, the architecture underwent some changes to fit it to the Unreal

Engine [75]. The cognitive layer was then implemented in an external controller,

but the way this controller was connected with the rest of the framework is not

explained.

In [9] the authors report how they changed the design of the system in order in

include emotion. To achieve that, they pursued a hybrid approach of cognitive and

sub-cognitive theories for categorizing emotion, following someone else’s [35] classifi-

cation of emotion as partly mental and partly physical. The framework was divided

in an execution subsystem and in a behavioral subsystem. The latter is constituted

by a physical layer, in which basic sensory and motor functions are included, while

the former is divided in two layers: cognitive and non-cognitive. Basic beliefs and

emotions reside in the non-cognitive layer. The cognitive layer is responsible for

high-level behavior, which is determined by high-level beliefs, affective experiences

and deliberative processes.

Finally, in [84], the authors develop SimHuman even further. They explain that
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characters’ behavior is now specified by the programmer through callback functions

that can implement intelligent behavior. The callback functions call also map user

input into characters’ actions, to create avatars.

The walk animation receives special attention, being implemented by a FSM1

that attends necessary movements for a character to change its path direction. All

transitions between states are carefully established so that no inconsistent move-

ment may be generated. The authors also focus on their own Inverse Kinematics

algorithm that successively changes skeleton position to approach the target, instead

of calculating the final position at once. They argue that this approach is benefi-

cial because it produces more realistic animations than the ones that result from a

simple interpolation of initial and final states of the skeleton, and because it copes

successfully with moving objects, avoiding obstacles between the character and the

target.

2.2 Other relevant work

There is a great amount of published work that is somehow related to the subjects

that the IViHumans platform explores. This section summarizes a selection of them,

focusing on the characteristics that matter the most to our work.

2.2.1 Noser et al. – Synthetic Vision

In [52], a solution for the navigation of digital actors in a 3D world is proposed,

based on a single means of perception: synthetic vision. The authors present a

Z-buffer based method for synthetic vision. They argue that vision is a sufficient

source of information for the agents to create a mental model of the environment

that can be searched and used for path planing and obstacle avoidance.

The internal environment map of an agent has a dynamic octree structure. In-

formation is kept about which nodes are occupied by objects. Other relevant data

can be also associated with octree nodes, depending on application needs. When

an object is detected, the octree is refined so that the corresponding node has an

adequate dimension and the node is marked as occupied and timestamped. As time

goes by, the deeper nodes of the octree can be deleted, so that the agent forgets

what he saw.

The map can be used to what the authors distinguish as global navigation tasks

(e.g. path planning). For local navigation tasks like obstacle avoidance, no repre-

sentation of this kind is needed, nor the knowledge of the agent’s position. The

perception of objects that stand close by is enough for the agent to immediately

react if these objects pose a collision threat to him. The reactions are caused only

1Finite State Machine
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by objects that are in the vision field of the agent and closer to him than a threshold

that is proportional to the speed of the agent.

The agent periodically probes the world with vision, being the period called

attention rate. This rate should be adjusted to balance the quickness of reflexes of

the agents with computational weight.

2.2.2 Peters and Sullivan – Synthetic Vision

C. Peters and C. O’ Sullivan propose a combination of synthetic vision and memory

as a means for the VHs to access their environment [16]. The synthetic vision

module is based on the one that was described by Noser et al. and uses false-coloring

rendering from the point of view of the VHs.

The features of the vision module are extended with the inclusion of multiple

vision modes. With the distinct mode, a unique color is assigned to each object

so that it can be identified and looked up in the scene database. In the grouped

mode, single colors are attributed to groups of objects. These groups are selected

according to a number of different criteria (e.g. proximity; brightness). In this mode,

the sight of one object suffices for its group to be identified. Further querying is

then necessary to establish which objects are actually being seen.

Some features of the examined objects are recorded in the memory of the VH that

saw them. The detail of extracted data is dependent on the attention that was paid

to the corresponding object or group of objects. The memory model distinguishes

sensory memory, short-term memory, and long-term memory. The information is

transferred among different types of memory, depending on the action of filters whose

permeability is determined by logic assertions about specific attributes (e.g. age of

the observation; attention).

2.2.3 Szarowicz et al. – Freewill

Freewill was presented in [73] as a prototype that means to liberate animators from

some of the decision responsibilities that are involved in the creation of animated

scenes with human-like characters, by transferring them to the characters them-

selves. By empowering it with perception and decision making capabilities, the

authors give the virtual character the ability of acting according to its goals and

to a certain degree of awareness of its environment. The animation is simulated in

the Freewill software and then translated into a format that can be used by some

animation package, like Autodesk 3ds Max. The perception is done with a vision

cone and the implementation of goal based planning is inspired by STRIPS [26].

The authors also discuss an example of the application of Freewill in a setting of

avatars that walk in either direction of a city street, stopping to shake hands. In
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[30], the authors discuss the application of their prototype to the generation of crowd

scenes, comparing it with other alternatives. By this time, Freewill had already been

updated, as they state that their model built on the cognitive architecture of John

Funge (see section 2.1.4). Finally, in [74] it is shown that the system was further per-

fected by combining Funge’s cognitive model with Winikoff’s SAC (Simplified Agent

Concepts) [85], thus employing a simplification of the BDI (Belief-Desire-Intention)

architecture.

2.2.4 Torres et al. – Autonomous Characters with BDI
architecture

Torres et al. propose the use of the Belief-Desire-Intention (BDI) model for cognitive

agents that control animated characters [79]. They bring together an articulated

model for character animation and an interpreter for AgentSpeak(L) [59], an object-

oriented language that implements the BDI architecture.

Each character is controlled in real-time by a cognitive agent that runs in an

individual process. The agents are implemented as clients of the environment, which

plays the role of the server. The environment is responsible for managing the data

that the agents can access, that is, the perception information. Each agent runs a

perception-reasoning-execution cycle that determines its conduct. The beliefs of the

agent are reviewed whenever it acquires new sensory data and the reasoning process

may yield a single intention per iteration. When an intention is executed, new beliefs

and objectives may arise and an action can be performed, which translates to an

animation. The agents communicate with the environment through sockets [77].

Nor the way the graphical environment is implemented, nor its characteristics are

explained.

In [78] new features are reported. Agents can now concentrate on multiple foci

of attention. They are still only able to execute one intention at a time but they can

now alternate between intentions along successive iterations of the cycle. New agents

that are not responsible for animating characters are also added to the simulation.

The authors explain that all possible perceptions of any agent at any state of the

world have to be previously listed as facts that can be true or false. When a change

occurs, this list is updated and an agent obtains sensory information by consulting

it. This may be viewed as a drawback, in the sense that the domain over which

agents operate must be very limited and, apparently, even discrete.

In [60] this work is further extended and the authors clarify that the graphical

environment is now built on top of Cal3D API [44] and that the agents can now run

in different interpreters of AgentSpeak(L). The multi-agent system is distributed

and has built-in communication between agents.
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2.2.5 Karla et al. – Real-Time Virtual Humans

Nadia Magnenat-Thalmann and Daniel Thalmann have long been researching in the

field of VHs and they are unquestionable authorities in the field. Their teams have

achieved amazing results that are documented in countless publications.

In [40] the authors synthesize the complex methods they were using for modeling

and animating VHs in real-time, as early as 1998. These methods successfully

combine artistic skills with the products of intense and diverse scientific research,

to simulate humans with real-time visualization and animation. In this paper, they

highlight the different constraints that are involved in modeling VHs for frame-by-

frame versus real-time rendering, focusing on the real-time approach.

They choose to divide the modeling of VHs in separate parts that require distinct

techniques. The hands and the head/face are modeled with polygon meshes whilst

the body follows a multilayer approach. On the other hand, the body and the hands

are subject to skeletal animation while head and face are animated using Minimum

Perceptible Actions (MPAs) that are associated with basic motion parameters for

elementary deformations2.

The modeling of VHs for real-time applications is constrained by computational

resources. The authors express this concern, in head modeling, noting that the

number of polygons employed should reflect an equilibrium between appearance

and efficiency, and observing that some of the detail can be achieved with texture

mapping. Also the regions of the mesh that are less involved in animations allow

sparing some polygons that can be used on those that participate the most. They

suggest that head modeling should start from a prototype or from an hemisphere

that can be copied for the other half, before some small changes are made on the

whole head, since slightly asymmetric faces look more realistic.

The body is modeled with three layers. The first layer provides the skeleton,

that allows the definition of postures. The second layer consists of groups of volume

primitives known as metaballs. The metaballs simulate muscles’ shapes and behavior

and can be joined smoothly and gradually to give a realistic organic look to the body.

The bodies are constructed by positioning, scaling and rotating these volumes, as

well as by attaching them to a desired joint articulation, a process that requires

strong skills in anatomy or drawing and sculpting, as the authors mention. The

third layer is the body envelope, the equivalent of human skin, and it is defined as

spline surfaces, through a ray-casting method. Textures are mapped on it, as well

as on the head and hands.

For hand modeling, the authors begin with two basic sets of 3D hands, one

for each gender. The muscular and skeleton layers can be parameterized to obtain

morphological variations, such as hand thickness or finger length. The muscle layer

2Examples of MPAs are open mouth, close upper eyelids, or raise corner lip
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is first fitted to the skeleton, then the muscular operators are applied to the hand

surface.

2.2.6 Ulicny and Thalmann – Crowd Simulation

In [81], Branislav Ulicny and Daniel Thalmann present a system projected for crowd

simulation in which each individual is an autonomous VH. The system comprises

two clearly separate layers: the model layer and the visualization layer. The model

layer consists of a set of agents that are associated with VHs an on an abstract model

of the environment. This abstract model contains the symbolic representation of the

static part of the environment, along with information about the dynamic objects

that inhabit it. In the visualization layer, graphical representations of the world, of

the objects, and of the VHs are included, as well as the user interface.

The agents interact with the environment, with other agents, and with human

participants of the simulation. They do so with events that trigger behavior rules

and that are incorporated into changes of the state of elements that constitute the

world. Excluding those that are introduced by the user, the events are created

and processed in the model layer. The visualization layer is bound to exhibit the

graphical results of the simulation, which is, therefore, independent. This rigid limit

between the layers allows the simulation to executed offline, leaving the output as a

log of its execution. The log can later be used to render the simulation graphically,

with high quality and different possible 3D models.

2.2.7 Conde and Thalmann – ALifeE

Toni Conde and Daniel Thalmann created ALifeE (Artificial Life Environment)

[18]. It is based on the multi-sensory integration approach of the standard theory of

neuroscience, where signals of a single object coming from distinct sensory systems

are combined. They equip Autonomous Virtual Agents (AVAs) with the main virtual

sensors in the form of a small nervous system. These senses are synthetic vision,

synthetic audition, and synthetic touch.

After obtaining sensory information, filtering, selection, and simplification pro-

cesses are carried out to obtain a cognitive map. Behavioral animation is employed

to have the AVA react to its virtual environment and to decide according to its

perceptive system.

The AVAs are imbued with proprioception, which is the faculty of capturing

information related to their internal state. An AVA has an inherent set of variables

whose values must be kept within pre-determined boundaries and proprioception

allows it to take actions to prevent them to exceed these boundaries. An AVA has

also got active perception which, based on prediction capabilities, allows it to direct
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its attention elsewhere.

2.2.8 Rickel et al. – Mission Rehearsal Exercise

In [63], the Mission Rehearsal Exercise system is presented. A virtual world is in-

habited by VHs that can interact with it, with the user, and among them. Because

their minds are accomplished with intelligent agents whose abilities are domain-

independent, the VHs can play multiple roles. Together with their minds, their

bodies lend the VHs the typical realism of motion capture animation and the flexi-

bility of procedural animation.

The VHs also have specialized valencies that, along with the graphical visual-

ization and with an involving sound environment, lead the user to immerse in the

military training experience. Dialog capacities are accomplished with a grammar-

based approach that uses domain-specific knowledge to reach semantic meaning.

Agents can assess events according to their knowledge and objectives and, as a re-

sult, they experience emotions that lead them to change their body language and

that can have an effect on their beliefs, desires, and intensions.

The perception model reproduces many natural human sensory limitations, both

visual and aural. The scope of an agent’s vision resembles that of human vision and

the detail of perceived objects varies on the basis of their position in the visual field.

Hearing functions are modeled by sound pressure estimation that takes individual

and cumulative effects into account, as well as distances and directions of sound

sources. This allows, on the one hand, consciousness of some events that are not

captured by vision and, on the other hand, masking of some sound events by others

(for instance, an helicopter could prevent a VH from listening to someone speaking

in normal tone).

2.2.9 Si et al. – Thespian

Thespian, a framework for realizing interactive drama that seeks to reduce program-

ming effort, is presented in [69]. It aims at enabling the creation of interactive stories

with minimal technical knowledge. To start, an author provides linear scripts of the

drama. The environment and the possible actions are specified, along with the se-

quences of actions that allow the story to unfold. These sequences of actions are

used by an automated fitting algorithm that configures agents to behave as intended.

The character of each agent is modeled by tunning its goal parameters. The fitting

algorithm assigns a suitable weight to each objective, according to the scripts that

were originaly provided.

Thespian is built over PsychSim [49], a social simulation system that allows

modeling characters as intelligent agents. Therefore, it provides features that are
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suitable for the creation of interactive stories. For instance, different policies can be

chosen for action selection, such as reactive or bounded optimality (which involves

limited lookahead). Another example of a PsychSim feature that is incorporated in

Thespian is the possibility of having agents acting accordingly to subjective beliefs

about the world or about other agents.

2.2.10 Barella et al. – JGOMAS

JGOMAS [11, 10, 82] is a game-oriented multi-agent system built over JADE [31].

It comprises a module for the multi-agent system, which is the main one, and one

module for graphic visualization. Currently, JGOMAS implements a particular

simulator for a capture-the-flag kind of game. Nevertheless, the authors express the

intention of extending and changing the simulator to make it general and applicable

to any type of multi-agent simulation. They also state that the framework must

allow users to add their own code modifications (mods) so that it can be used for

various purposes.

The multi-agent system includes not only the agents that play the role of bots,

but also agents that are responsible for the behavior of game objects (e.g. health

packs). There is also a special agent that has no graphical representation or physical

existence in the game but that is responsible for the management of all game logics,

as well as for providing interfaces for the visualization module. This agent acts as a

server that can accept connections from one or more instances of the graphic viewer.

The graphic viewer is implemented in C++, using the graphic library OpenGL

[54], and it communicates with the multi-agent system through sockets. Its only

task is to display the information it gets from the multi-agent system (e.g. positions

or velocities of agents or objects) in a 3D representation. As a matter of fact, the

visualization module has no influence what so ever over the state of the world or

over the progress of the game. Therefore, the user can interact with the simulation

only through the multi-agent system.

The authors intend to generalize the networking interface of the multi-agent sys-

tem module so that other visualization units can connect to the system, particularly

other viewers that are built over complete rendering engines. Although JGOMAS is

a very promising framework, some of its traits are left unmentioned. For instance,

its not clear whether arbitrary 3D models can be associated with the agents, how

are they animated, and what are their motor characteristics.

2.2.11 Other works

Longhi et al. present an architecture for an Embodied Conversational Agent that

inhabits a virtual environment that can be built and edited by the user [46]. The
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agent, called Maga Vitta, is an entity that was conceived with cognitive and emo-

tional capabilities for interacting with the user that deals with the environment

CIVITAS, which was created by the team to allow children to interactively build

virtual cities. The interactive features are embedded in the graphical representation

of the agent as a talking head, in the authors’ own words. The agent interprets the

action that the user performs over the virtual world and expresses itself through

speech and through the six facial expressions that were identified by Paul Ekman.

Multon et al. propose a framework for animating humans in virtual reality, ca-

pable of performing real-time motion editing in interactive complex environments

[51]. It offers efficient and morphology independent motion representation [42] that

sustains synchronization, retargeting and adaptation. Blending is achieved by an

algorithm that is driven by priorities and states.

2.3 Discussion of Related Work

By comparing the work of Tu and Terzopoulos with the one of Reynolds, it be-

comes clear that there are two essentially distinct approaches to simulate reality in

automatically generated animation. While Tu and Terzopoulos closely model the

interaction between fish and the virtual world employing a holistic approximation

of reality’s processes, Reynolds abstracts lower-level details to produce generally

applicable models, leaving the final appearance of the animation to be tweaked ac-

cording to particular cases. Since then, research has been situated between these

two approaches, leaning towards one or the other. Even though the tendency to ab-

stract low-level aspects is more frequent, attempts of faithfully reproducing natural

operations, with models that range from physics to cognition, are also found in the

literature. Among these are the integration of sensory systems by Conde et al., the

simulation of the aural sense with sound pressure estimation by Rickel et al., and

the complex motions that the framework of Multon et al. is capable of producing.

Our approach with the IViHumans platform is more inclined to focus on the

appearance of the simulation, even though it is produced by processes that may

diverge from what happens in the real world. Indeed, Reynolds’ work is probably

the one that influenced us the most. We consider his conception of virtual movement

as a grounding base for our approach and we adapt and implement it in our own

way. We pay special attention to locomotion and our characters display consistent

animations that are automatically chosen according to their own rules.

Reynolds’ boids already apply an early version of synthetic perception (that he

calls simulated perception) in which the actors detect companions and obstacles

that are closer than a given threshold. Even then, the author recognizes that this

threshold should not be homogeneous in all directions, but greater in the direction
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of movement. Evolution continued the trend of trying to improve to make virtual

perception have the limitations that are intrinsic to real perception. Nonetheless,

synthetic perception is a typical case in which the effects of these limitations are

accomplished with models that completely bypass the complexity of real perception

systems. Vosinakis et al., Noser et al., and Peters and Sullivan, all apply a model

of virtual vision that acts by filtering out the objects that should not be seen by

the characters, granting them access to the information that characterizes the ones

that are seen (though sometimes its detail depends on attention). In the IViHumans

platform, we use a model of ray-casting synthetic vision, like Vosinakis et al. did. We

do so with an original algorithm that tries to maximize precision without any mean-

ingful impairment of efficiency and that provides parameters that can be tweaked

to find the correct balance.

Like these authors, we also have a memory model coupled with perception. It

is able to remember default and custom properties of objects with three different

memory management techniques. Our memory is capable of recalling the different

states an object goes through in time, and not only one instantaneous state. This

allows the extraction of conclusions about the evolution of the world.

Currently, this memory model is incomplete, as it still keeps only raw data that

will be processed later, in the AI layer. The symbolic representation that will thus

be produced will be used as the base of agents’ reasoning processes. These agents

will rely on the features of an agent-specific framework to compose a layer whose

role is analogous to the top cognitive layer of Funge et al.

Like Vosinakis et al., Rickel et al. and Longhi et al., we also account for emotions

on the IViHumans platform. Emotion will integrate cognitive models on the AI layer,

according to what is described in [50]. On the GP layer, it will be indirectly expressed

in the behavior of the characters and, directly, through their facial expressions.

Unlike these authors, however, we propose a solution for facial expressions that

allows the exhibition of complex expressions and that supports smooth transitions

between them.

In the overall perspective, our architecture is also different from others. Torres

et al. implement agents as individual processes. The agents play the role of clients

of an environment that acts like server. Vosinakis et al. have the AI code supplied

by the user through callback functions. The IViHumans platform seeks to evenly

distribute computation tasks between both layers. The GP layer even includes some

behavioral features that are sometimes classified as belonging to the field of artificial

intelligence [15]. This allows reactive behavior to happen faster, without having to

wait for the decisions of the AI layer.

The IViHumans platform is projected to be generally applicable, in order to

enable different applications to use and build upon it. Our aim is to allow user
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applications to focus and extend either one of the layers, or both. Interaction with

the user can be included in either side, as both layers have a determinant influence

in the course of events, unlike what happens in the works of Perlin et al., Ulicny et

al., and Barella et al. Also, in the approaches of these authors, the server is on the

artificial intelligence side, while in ours the server is on the GP layer. Agents operate

according to the basic services that the graphical layer, which is at a lower level,

provides, instead of having the latter with the sole responsibility of rendering the

effects of agents’ operations. In this sense, our view is similar to the one manifested

by Funge et al., in the sense that cognition is built on top of lower-level functionality.

Albeit having significant differences from the research work summed up here,

the IViHumans platform is greatly influenced by it. Besides partially owing our

perspectives to them, previous works like these can still originate ideas for future

work on the platform that would increase its value. Our aim for flexibility is, in

part, driven by the potential inclusion of great ideas that were already explored,

and that still are, like inverse kinematics, anatomic modeling of VHs, or synthetic

audition.



Chapter 3

The Conception of the IViHumans
Platform

In this chapter, the IViHumans platform is globally laid out. First, its architecture is

described, along with the way its components relate to each other. Then we proceed

to some more detailed descriptions of its graphical side, paying special attention to

the topics covered by the tasks we carried out. In the second part of this chapter,

some implementation details are explained and the main related design options are

discussed and justified.

Some of the issues that are involved in the work this chapter focuses on are solved

by simplified approximations that aim at solution prototyping. These could be im-

proved in the future. We sometimes expose some frequent techniques and solutions

to problems that are shared by this project, even though they are not currently

fulfilled by the platform. In these cases, it is discussed how they could be applied

in the respective contexts, as a means of clarifying how the current implementation

complies with the inclusion of more elaborate procedures and contents.

3.1 The Architecture of the IViHumans Platform

The IViHumans platform is composed by two layers: the Graphical Processing (GP)

layer and the Artificial Intelligence (AI) layer [17]. The communication between

them happens by means of TCP sockets (Figure 3.1). The GP layer is mainly

responsible for visually representing the virtual environment and the elements that

compose it, among which VHs are the most significant. Given that the environment

is dynamic, the GP layer must properly exhibit adequate animations to carry on the

flow of events, clearly and consistently displaying the changes that the world and

its components undergo.

Whilst the GP layer hosts the “bodies” of the VHs, the AI layer manages their

“minds”. The AI layer consists mainly of a Multi-Agent System (MAS) whose agents

may play several roles. High-level decisions of the VHs are performed by of one or

24
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Figure 3.1: The Graphical Processing and Artificial Intelligence layers

more agents that can bring intelligent behavior into being.

Modifications in the scene can be lead by both layers. The GP layer manages

a great deal of events and provides services of perception and action to the AI

layer. So, an agent in the AI layer can ask the GP layer for the sensory information

obtained by the VH it controls and command it, by ordering it to execute certain

actions or to assume certain behaviors.

Instead of developing any of the layers from scratch, open-source softwares were

selected, since the beginning of the platform’s conception, to serve as a basis for

subsequent development. Previous work established that the GP layer should be

built over OGRE [55], as the essential library that enables the fulfillment of the

graphics engine, and over ODE [22], a library that supports the completion of the

physics engine through rigid body dynamics simulation. The AI layer, on the other

hand, is meant to be implemented over the FIPA [27] compliant agent middleware

that the JADE framework [31] provides, as a base environment for the MAS that

underlies this layer.

The GP layer of the IViHumans platform is the one that manages the core aspects

of the virtual world and that is responsible for rendering the scenes. Its duties range

from the management of lights and cameras to the movement of the objects that

are present in the world. Applying textures and materials to the models, computing

mesh deformations, animating all the elements, handling collisions, updating the

internal state of all the entities and reflecting it in the rendering, are some examples

of the tasks we want it to cope with. Besides this, it must be able to engage in formal

communication with the process that runs the AI layer, through sockets, according

to a specific protocol, providing perception and actuation services, among others, to

the agents that lie on the AI layer.

We realized, from about the time we began this work, that we had to assign

priorities to the objectives of the project, because many could not be accomplished

with the time we had available. We ended up establishing one main orientation: we

should begin by creating a small set of features that made the GP layer functional

and that would allow the connection to the AI layer; only then should new features

be iteratively added.

One of the grounding issues we had to solve was how were the VHs to be rendered.
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Their graphical representations, as for any other objects, rely on digital content that

is produced offline and loaded at runtime. Blender [12] is the tool suite that was

chosen for 3D content creation, particularly for the 3D models that are used in the

visual representation of VHs, remaining objects, and scenery. Recently another tool

was added to the content creation pipeline: Poser [3] (the choice of this tool is

explained ahead). In fact, any 3D modeling tools can be used to the same end, as

long as there is some way to translate the models from the original format of that

particular tool to a format that OGRE can understand. The choice of all these

softwares happened before the beginning of the work conveyed by this document.

It obeyed well defined criteria – such as what were the cost, offered features, or the

activity and dimension of any related user community – and it is documented in

[71]. Figure 3.2 illustrates how content creation tools articulate with the remaining

architecture of the platform.

Figure 3.2: Global architecture of the IViHumans platform

The next section describes the content we used, how we obtained it, and some

techniques that lie on the basis of both its production and rendering.

3.2 Visualization of Objects and Virtual Humans

One of the essential features that a virtual environment should have is the propensity

for capturing the user’s attention so that he “forgets” his real environment and

focuses on the simulated environment. In other words, and borrowing an expression

from the field of virtual reality, the virtual environment should provoke a sensation

of immersion on the user. To that end, one of the issues to account for is the

realism of 3D models and the naturalness of animations associated with interaction

movements among all the elements of the environment, particularly in what concerns

VHs. On the other hand, the models that are used in real-time applications of
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virtual environments should be “light”, that is, they should not be defined with

excessive detail, nor depend on too heavy algorithms, due to the inherent restrictions

to graphical processing in real-time. The combination of these two requirements

has driven much of the recent progress concerning graphical simulation of human

beings, both static and dynamic, and led to diverse techniques, such as skeletal

animation, metaballs, anatomic modeling (with bones, muscles and skin), motion

capture, Levels Of Detail (LODs), Inverse Kinematics (IK), hair simulation, or cloth

simulation [40, 47].

In the following subsection we briefly introduce some of the techniques that are

commonly used in 3D modeling for real-time applications and describe the models

we used in the platform.

3.2.1 Static Representation

In the IViHumans platform, and in a preliminary approach, a prototypical model of

a VH was defined as a polygon mesh to which some simple materials were applied.

The model represents a female human and its body has an associated skeleton that

enables its deformation, hence allowing easier movement definition. A set of poses

that affect this VH’s face is also defined for the exhibition of facial expressions.

However, modeling VHs is a task that requires refined artistic skills and, for

purposes other than early testing and demonstration, it is best left to talented

specialists. Acknowledging this evidence, we later integrated a higher-quality com-

mercial VH model into the platform, for tests and demonstrations. This model was

obtained for free from aXYZ design as a textured, fully rigged mesh1 that represents

a male human. We applied some animations to it that we derived and adapted from

free motion capture data obtained from the website www.mocapdata.com2.

The models that figure in mainstream animation movies have an astonishing 3D

detail, in part at the expense of a large number of polygons. However, rendering

films takes a lot of time, even when it is carried out in the so called render farms –

sets of computers that work in parallel in the generation of frames. This option is

obviously not viable when real-time rendering is needed. In the IViHumans platform

the objects and characters that are used should not be modeled by resorting to too

many polygons, due to efficiency requirements, specially if one intends to include

many objects and characters in a simulation without impairing the performance of

the visualization. Indeed, low-polygon modeling is a frequent approach to video

game design, since video games share requirements of fast processing and real-time

execution [36]. In spite of that, the term low-poly denotes a concept that is intrinsi-

1Copyright c©2008 aXYZ design (http://www.axyz-design.com/)
2The motion capture data that we used is licensed under a Creative Commons Attribution-Share

Alike 2.1 Japan License

www.mocapdata.com
http://www.axyz-design.com/
http://www.axyz-design.com/
http://creativecommons.org/licenses/by-sa/2.1/jp/
http://creativecommons.org/licenses/by-sa/2.1/jp/
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cally subjective and whose interpretation varies parallelly with what a fast computer

is considered to be. These observations were kept in mind when we developed our

first model, which has around 12500 triangles, with a great concentration of them

in the face, and when we decided to use the second model, which has around 4600

polygons. These might be considered to be relatively low-poly character models,

when compared with many modern ones 3.

Like the majority of rendering libraries, OGRE allows the definition of complex

materials that may rely on programs for the Graphical Processing Unit (GPU),

called shaders, that can take full advantage of the rendering capacities of this spe-

cialized hardware [29]. Great quality and spectacularity may be reached by defining

pixel shaders or vertex shaders, but this kind of programming requires specialized

knowledge to which we do not attribute much priority and that is not included in

our current abilities. In spite of that, some complex materials were already defined

in a previous work [25], through composition of procedural textures, in Blender,

namely for the skin and for the eyes. However, this materials cannot be directly

translated into the shaders that OGRE supports, even though the way that the

platform is projected does not raise any obstacle to the potential definition of more

elaborate materials, as long as their formats can be assimilated by OGRE. For now,

the materials we use are limited to the application of colors, to the moderate use

of transparencies and to UV mapping of textures. Different colors are sometimes

assigned to a polygon, depending on the way they react to light. In OGRE, each

polygon can have one color for each of the following attributes: ambient, diffuse,

specular, and emissive. By combining these attributes, nuances of light and mate-

rial interaction can be approximated. Figure 3.3 illustrates the effect that can be

achieved by combining only specular and diffuse color attributes.

Figure 3.3: Combination of specular and diffuse reflection

UV mapping is a technique for mapping 2D images over 3D surfaces. Texture

mapping is done with a 2D coordinate system that establishes a relation between

the image and the 3D model. Each pixel of the image is identified with a pair of

coordinates (U, V ), hence the name. When one of the pixels is applied to a vertex

3For instance, polygon counts of native Poser characters often amount to numbers of the order
of hundreds of thousands
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of a mesh, a texture element, or texel, is originated. Typically, U and V may assume

values on the range [0, 1] 4, so that the four corners of the image are identified

by the pairs (0, 0), (0, 1), (1, 0), and (1, 1). Given a polygon whose vertices are

associated with UV coordinates, the remaining texels are simply derived from linear

interpolation. How the information contained in a texel is interpreted and applied

to the model varies, raising different types of texture mapping that can be combined

or used separately. Color maps, transparency maps and bump maps are examples

of different types of texture mapping.

The UV mapping technique is also used in the models that we use in the IViHu-

mans platform, in its most direct form – color maps. While in transparency maps

and in bump maps the color of the texels are translated into transparencies or sur-

face normals, respectively, in color maps the color of each texel is directly applied

to the surface. Figure 3.4 shows the effect of correctly mapping images of the earth

over a sphere. An introductory, yet detailed, description of UV mapping can be

consulted in [56].

(a) 2D images of the earth (b) The result of mapping im-
ages of the earth over a sphere

Figure 3.4: UV Mapping of images into a mesh

The virtual woman prototype we created (Figure 3.5) combines colors, trans-

parencies, and texture mapping. The eyes, whose composition and modeling is

documented in [25], employ all these techniques (Figure 3.6). However, their trans-

ference to OGRE’s format implied the loss of some quality that cannot be restituted

without resorting to shaders. The modeling of this female character started from the

face, which had been previously created. A body was then extracted and adapted

from Poser and merged with the head. This process also involved fitting a skeleton

for animation purposes and it is discussed in the following section.

The male VH was obtained from aXYZ design, as mentioned above. Its materials

are essentially made up of color maps that give it much more realistic appearance

because they are properly done and include such details as cloth folds and wrinkles

or facial hair (Figure 3.7). The aspect of this character while standing still can be

4Values outside of this range are specified when the image is applied repeatedly, as a tile
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Figure 3.5: The virtual woman prototype, in its original posture

Figure 3.6: The eye that was modeled for the female virtual woman
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seen in Figure 3.8.

Figure 3.7: The images that are used for color-mapping the virtual man.
Copyright c©2008 aXYZ design

3.2.2 Dynamic Representation

The creation of the female VH began with face modeling and with the definition of

the six basic expressions identified by Paul Ekman [24, 25]. The face was modeled

as a polygon mesh and the deformations that correspond to the basic expressions

were codified as poses of this mesh. A pose records a set of displacement vectors

for the vertices of the mesh. When the vertices are translated by the corresponding

displacement vectors that a given pose specifies, the geometry of the mesh changes so

that the intended expression is exhibited. If one intends to show an expression just

partially, it suffices to reduce the length of the vectors that specify the translation

of each vertex. On the other hand, the visualization of complex expressions can also

be easily achieved by mixing basic expressions with desired intensities. Suppose,

for instance, that two poses are defined for a face mesh: joy and surprise. An

expression that is composed by a partial joy expression with 80% intensity and by

a partial surprise expression of 30% can be obtain this way: for each vertex of the

mesh, multiply the corresponding displacement vector, in each pose, by 0.8 and 0.3,

respectively; then, add the two resulting vectors and translate the vertex according

to the final vector.

In the same work, a tool was created for obtaining complex expressions by mixing

basic ones, observing the effect in real-time. This tool was called Faces. The user can

vary the intensity of each basic expression intuitively by playing with scroll buttons,

and the results are immediately shown as a deformation of the face. In order to
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Figure 3.8: The male VH in a static position.
Copyright c©2008 aXYZ design

prevent excessive deformations being applied, the intensity of each expression must

be comprised in the interval [0, 1]. These limits are implicitly imposed by the Faces’

Graphical User Interface (GUI) since the positions of scroll buttons can only be

varied so much. The sum of individual intensities is not limited, however. Indeed,

one can even create a complex expression by mixing, in the limit, all the basic

expressions with 100% intensity. Obviously, the results would not be the most

natural. Even though there is no limit for how much deformation is applied, pushing

it to far will create uninteresting results and should be avoided, unless it is done

with an experimental resolution. It is up to the user to find the correct balance that

produces the intended results. This tool was later perfected and completed. The

user can now save new expressions as individual poses. This way, rich libraries of

facial expressions can be created for each model.

Once we had the face of the female VH, it was neccessary to give it a body and

to animate the resulting model, so that it had the ability of wandering about the

scene. The body, cloth, and hair of the VH was derived from an model we obtained

in Poser as a polygon mesh. The geometries of the meshes (body, cloth, hair, and

face) were adjusted so that they would fit together and could be merged into a single

continuous mesh.

We prototyped only one animation for our virtual woman: a walk animation. To

produce it, we used a very common technique: skeletal animation. The method relies

on the assignment of a skeleton to the mesh whose animations should be produced.
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According to this technique, specially suitable for the animation of vertebrate char-

acters, the abstract representation of a character is composed by two elements: the

mesh and the skeleton. The mesh is a structured set of polygons that shapes the

body of the character and coincides with its rendered aspect. The skeleton, which

is not visible in the rendered images, consists on a set of bones organized in one or

more tree structures. Figure 3.9 shows the mesh and the skeleton, still separate and

slightly misfit, during an intermediate modeling phase.

Figure 3.9: Skeleton and mesh of the virtual woman, still disconnected and slightly
misfit

The skeleton is organized hierarchically so that parent bones have their move-

ment automatically inherited by their children. Typically, the skeleton consists only

of a single tree. It has one bone as root and other bones descend, directly or in-

directly from it. As in any tree structure, every bone as a parent, except for the

root, and all have one or more descendants, except for the leaves. The animation of

the skeleton results from the animation of its bones, in such a way that each bone

inherits the movement of its parent. For instance, in a simple skeleton whose root

is the hip bone, which has the leg bones as direct children, these latter ones have

all the movements of the former and, potentially, others too. If one applies, to the

hip bone, a translation of 10 units along the X-axis and a rotation of 90o about the

Y-axis, the leg bones will also suffer these movements. If each leg also has a foot

bone as child, and if each one is subject to an additional rotation of -60o about the

Y-axis, the bones of the feet will inherit the translation of the hip and a rotation of

30o about the Y-axis. This kind of approach enables fast creation of the movements

that characterize vertebrate beings, since it is a good conception of the way their

skeleton behaves when in absence of external forces (particularly, gravity).

The movement of a bone, by itself, does not meet any function, since the skeleton

is not even a part of the rendered images. Its purpose is only that of being applied

to a mesh object. For the movement of a skeleton to be reflected on the mesh, they

must be connected. This is done by associating each vertex of the mesh to one or

more bones of the skeleton and by assigning a real value to each such connection.
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This value is usually comprehended in the interval (0, 1]. It can be regarded as

the intensity, or as the weight, with which the movement of the bone affects the

movement of the vertex. The displacement of each vertex of the mesh is then

calculated as a function of the movement of the bones it is associated with and of

the weight that describes each one of these associations.

The walk animation that was mentioned before was also created in Poser. To

this end, we used the skeleton that was predefined for the chosen model and we

defined its motion by parameterizing a base movement, relying on a set of features

provided by that tool. The skeleton, already imbued with the walk animation, was

imported into Blender and associated to the mesh. This process involved consecutive

adjustments of the mesh, to eliminate any residual interpenetrations among body

and clothes and among different parts of the body. The skeleton and the mesh were

then exported to OGRE formats and went through a series of additional procedures

that we conceived to overcome other obstacles. At last, we were able to achieve a

prototype of a VH, ready to be integrated in the platform and able to walk and to

assume several facial expressions. The elaboration of this virtual woman faced some

other difficulties that are not mentioned in this document, though the process we

devised to create her is documented in [5] and, in more detail, in [4]. The result of

applying a skeleton posture to the mesh is shown in Figure 3.10.

Figure 3.10: The virtual woman in a posture determined by her skeleton

The static posture of the female VH – when no skeletal deformation is applied

– is the one that was originally defined for the character we got from Poser and,

even though it may be adequate for modeling tasks, it is not a rest pose that a

real person would assume. We wanted to establish a position for the skeleton that

corresponded to a more realistic pose and we performed several attempts with that
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purpose, experimenting different connections between the skeleton and the mesh, but

to no avail, due to interpenetrations that always appeared among different parts of

the mesh. In order for the postures of a skeleton to reflect properly in the mesh,

the associations between the vertices and the bones, as well as the respective weight

values, must be accurately determined, which requires specialist skills. Moreover,

an association between the skeleton and the mesh will often fully serve a particular

animation while being inadequate for the rest. Hence, the connection of the two

components is usually defined iteratively, being target of successive improvements,

in order to support the generation of a varied collection of consistent poses. In

the particular case of the creation of our VH, we also faced this common issue.

Unfortunately, it is a problem we were unable to solve, since we could not reconcile

the necessary artistic skills.

Aiming at a male VH prototype that could move around the scene conveying a

better sense of believability, we searched the internet for a free model that would not

require much modeling work. We came to a model of a male VH that was provided

for free by aXYZ design and we found it very realistic while still perfectly suitable

for real-time demonstrations. This model was already textured and fully rigged.

The association between mesh and skeleton proved to be quite perfect and we could

easily create several poses without incurring the issues we had with our prototype.

We downloaded the model in Autodesk 3ds Max [1] format and readied it in a trial

version of this software.

We imbued the model with three animations: an idle animation (for when the

VH stood in the same place), a walk animation, and a run animation. These ani-

mations were derived from motion capture data we got from www.mocapdata.com.

We obtained them in a 3ds Max proprietary format that could directly be applied

to the skeleton of the VH – the biped format. However, this format only records

the movement of some bones, which sometimes can originate strange animations in

which some parts of the body move in a very realistic fashion, while others stand

rigid. For instance, whenever the arms of the model moved, his fingers and hands

would stay stiff and still relatively to their bone’s parents. We tried to mitigate

this problem by merging some custom keyframes, concerning the bones that did not

move, with the original animations. We also had to select sections of the original

animations and change them so that they could be played cyclically. For that, we

modified the poses of the bones in the frames of the beginning and of the end of

these sections, in order to have the first frame be a natural sequence of the last one.

The position and orientation of the root bone were also adjusted in every frame,

so that the animations did not move the VH from his original place. Once these

tasks were complete, the model was exported and immediately ready to be used

with OGRE’s library. In the end, and considering our amateur abilities in what

www.mocapdata.com
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concerns 3D modeling, the result turned out to be quite alright. However, this was

only possible due to the high quality rig of the original model. Figure 3.11 shows

screenshots of the male VH in each of the animations we created for him.

(a) Idle (b) Walking (c) Running

Figure 3.11: The virtual man while idle, walking, and running
Copyright c©2008 aXYZ design

In both VH prototypes, the animations are composed by a set of keyframes that

record successive postures of the skeleton. Each keyframe encodes a set of trans-

formations that, when applied to the bones, put the skeleton in the corresponding

pose. The keyframes are assigned unique instants of the animation, normally sep-

arated by regular time intervals. The posture of the skeleton in any animation is

then generated by linear interpolation of the two closest keyframes, chronologically

speaking (one that precedes it and another that comes after it). Each animation is

created in such a way that it would remain coherent if its last frame was placed in

the begining of the animation and the rest were shifted. So, the animation can be

repeatedly played with the first frame perfectly fit to succeed the last one. That is,

the animations are cyclic and can be played unlimitedly.

Besides the animations the models currently have, several more would be de-

sirable, to enable actions like sitting, grasping, and moving the head. In fact, the

typical number of animations of a videogame character, according to [28], is a hun-

dred, for central role characters, and about twenty, for supporting characters.

Additionally, an IK solver could be included, either to deviate existing poses or

to create new ones on the fly. The skeletal animation methods we have been talking

until now are included in the Forward Kinematics (FK) approach. According to it,
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the movement of the bones are transmitted in the top-down direction – from the

root to the leaves – of the bone hierarchy. In FK, each bone determines the original

position of its children but it has no influence over its parent. However, in real life,

the movement of a bone propagates influences in both ways and, indeed, the notion

of parent or child bone, which is imposed in 3D animation only for convenience,

does not make much sense. IK is the converse of FK and it is used for deriving

interactions in the bottom-up direction of the skeleton tree. In other words, IK

allows the derivation of movements of a bone chain that put its utmost point in

some intended position. Usually, an IK solver operates with skeletons that impose

movement restrictions that limit the chains of bones, so that inconsistent positions

are prevented. For instance, an IK solver could find ways of moving the bones of

a leg so that the tip of the foot would reach a certain position. For that, it would

work its way from the foot bones to the femur, which would probably end the bone

chain.

An IK algorithm could also be used to, for instance, understand how a VH could

put his hand in a certain position and with a certain orientation. If the VH had an

animation for grasping, it could be combined with the additional offsets that the IK

prescribed so that objects in different locations could be grasped. The IViHumans

platform does not integrate IK but we see it as an hypothesis of future work that

would greatly benefit it.

The subject of IK is really vast and there are various approaches for its applica-

tion. Some of the techniques that were developed to solve the issues it deals with

even have their own taxonomy. For a small introduction to the subject and a set of

other references concerning it, see [47].

The walk and run animations of the VHs we use are designed for moving in a

straight line, but we also use them when the characters turn. To increase believ-

ability, the VHs should be animated in distinct ways depending on their angular

velocities and accelerations, so that their movements more closely corresponded to

the impulses that should generate them. A possible solution would be to have a set

of different animations for different turn arcs, so that these base animations could

be blended to generate a proper animation for each arc tightness. Some kind of IK

could also be applied to deviate the movement of the original straight line movement

animations and achieve the intended result. To find and apply a precise solution for

this issue is left as future work.

3.3 Implementing the Graphical Processing Layer

During the time we were involved with the platform, we could only complete a

fraction of all the features we wish some day will be provided by the GP layer.
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Nonetheless, the core set of features we implemented give the GP layer a substantial

body, and we believe it can be a great aid for creating applications that involve

virtual environments and VHs. Moreover, we have reached a state of development

that, for the first time, allows the AI layer to be implemented. This was not possible

until now, since the AI layer must rely on the services of the GP layer and these

were not defined yet.

The GP layer is developed with the C++ programming language [72], since this

is the language in which OGRE and ODE are implemented. Although the ODE

is projected to be one of the base libraries of the GP layer, we did not use it yet.

Although physics is an essential part of graphical processing, we did not have the

time to implement it. Therefore, no collision handling exists yet: when objects

collide, they simply interpenetrate. In our opinion, it is the greatest priority for the

near future, on what concerns the GP layer.

This section focuses on the issues we devoted most effort to and on the features

that are currently implemented. We explain our main design and implementation

choices and we try to make apparent how they reflect our two greatest concerns,

which are intimately interconnected: to make the platform extensible and to give it

a wide range of applicability. We considered these properties very important, since

they should characterize any library that is used as a base for creating applications

and because of the iterative fashion we adopted for implementing the platform. The

features that are added to the platform at any time should not prevent subsequent

development, even if for pursuing goals that are not yet planned. Whenever possible,

existing code should be self contained so that there is no need to change it when

adding new code. It should also be general and suitable for applications that have

different purposes.

The organization of the main features that we included in the platform can be

roughly abbreviated by the following scheme:

• VH’s Action

– Movement

∗ Steering

∗ Locomotion

– Expressions

• VH’s Perception

– Synthetic Vision

– Memory

• Networking
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– IViHumans’ Server

In the IViHumans platform, the VHs can perceive the environment through ray-

casting synthetic vision. It is accomplished with an algorithm that was devised in

a previous work [67]. That work also involved the implementation of a preliminary

version of the algorithm that is documented in [68]. Although, as nothing else was

implemented at that time, apart from the tool Faces, this early implementation

laid directly on top of OGRE and served only as a proof of concept. Recently, we

implemented it again from scratch and included it in the platform. We also created

an automatic memory mechanism associated with it. These aspects are discussed

in Section 3.3.3.

Currently, the VHs have two ways of acting: moving and exhibiting expressions.

As collision handling is not included yet, and since no modules of interpretation of

expressions exist, both movement and the exhibition of expressions are considered

actions of a special kind. Indeed, the state of the world is left unchanged by them,

apart from what concerns the entity itself.

In what regards movement, we did not try to mimic all natural processes in

our models, from physics to decision making, as did Tu and Tersopoulos with their

artificial fishes (see Section 2.1.3). Instead, we focus on the final appearance of the

simulation. We follow Reynolds’ conception of movement and his division of it in the

three layers of locomotion, steering and action selection (see Sections 2.1.1 and 2.1.2).

We are not concerned whether motion is generated by natural processes, only that

it looks natural in the end. We follow the simple vehicle model, as an abstraction

of locomotion over which the steering layer can be implemented. We based our

implementation on the explanation of [15], but we adopt a rather different approach

in design. Once having the steering layer, distinct entities can map locomotion into

actual movement in different ways. Our design and implementation of movement is

explained in Section 3.3.1.

The VHs of the IViHumans platform were given the ability of conveying emotions

through either basic or composite facial expressions. Transitions from an expres-

sionless face to any expression, and conversely, happen smoothly, as do transitions

among different expressions, even if several expressions are displayed sequentially in

a short time period. Event though we only have expressions that are modeled as

poses, we took into account that other ways of defining them should also be allowed

and that is reflected in our design decisions, which are exposed in Section 3.3.2.

As explained earlier, the GP layer has to provide services to the AI layer. In fact,

the connection between the two layers follows the client-server architecture, being

the GP layer left with the role of the server, while the AI layer is the client. Besides

managing the graphical aspects of the environment, as well as many logical ones, the

GP layer has to accept orders from the AI layer, to control VHs, the environment, or
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its elements. TCP was defined, early on, as the protocol in which the communication

between the layers should take place, and we designed and implemented a simple,

yet extensible, protocol on top of it, for networking on the IViHumans platform.

The server was implemented so that it accepts and handles requests automatically,

as explained in Section 3.3.4.

Besides OGRE and the C++ standard library [37] we also used boost libraries

[14] and a modified version of OPCODE [21]. OPCODE was used indirectly, through

an OGRE wrapper called OgreOpcode [53], to implement the ground for collision

detection in the IViHumans platform. Collision handling – which includes collision

detection and response – is far from finished, but collision detection is already sup-

ported. However, until now we only used collision detection for the implementation

of the vision algorithm, as will be explained ahead.

The main boost library we used was Boost.Asio, to implement networking with

the AI layer, but we also used other libraries as programming aids. Boost.For-

each, Boost.Bind, Boost.Lambda, Boost.SmartPtr, Boost.Timer, and Boost.Utility

are some examples. From these, Boost.Bind and Boost.SmartPtr were included

in the technical report ISO/IEC TR 19768: C++ Library Extensions TR1 [7],

more commonly known only as C++ Technical Report 1, that suggests a series of

extensions for the C++ standard libraries that will probably be included in the new

standard, aimed for 2009 by the C++ Standards Committee. Either way, all the

libraries we used for the implementation of the GP layer are standard or open-source,

with public implementations for all major operating systems. So, in principle, the

platform can be used with any operating system, although we only tested it on

Microsoft Windows XP. In practice, some minor changes might be necessary to

compile and execute it in other operating systems.

In the following sections we discuss the design and implementation of the GP

layer in more detail, paying special attention to its main features. We allude to some

contents of the OGRE’s library, so we suggest consulting the partial documentation

of its API5. The fully documented API of the GP layer may also be helpful6. There

are also several places that document the standard C++ library, but we suggest

Josuttis’ book [37].

3.3.1 Movement

As stated, the GP layer is implemented in C++, hence we tried to guide our design

according to the Object-Oriented paradigm, seeking to take full advantage from it.

The VHs are the central element the IViHumans platform has to deal with and

we put them at the heart of the GP layer’s implementation. Concretely, the VHs

5http://www.ogre3d.org/docs/api/html/
6http://labmag.di.fc.ul.pt/virtual/IViHumans-GPLayerAPI/api/html/

http://www.ogre3d.org/docs/api/html/
http://labmag.di.fc.ul.pt/virtual/IViHumans-GPLayerAPI/api/html/


Chapter 3. The Conception of the IViHumans Platform 41

are implemented, in the GP layer, by the class IViHuman. Objects of this class

are particular VHs that can perceive their environment with synthetic vision, move

about it, and exhibit expressions.

The most obvious attributes that a VH must have are the ones that describe

its basic physical state, such as position, velocity, or orientation. Values for these

attributes can be derived by applying laws of classical physics. Using these laws,

an IViHuman can update its own physical state if it is given the time that elapsed

since the last state. However, this ability is not exclusive of a VH. It is part of every

entity with physical existence that moves in the virtual world, be it a ball, a car,

or a camera. Thus, we created a base class that aggregates this functionality, so

that every moving entity can inherit from it, and we called it IViEntity. This class

has also got other functionality, discussed ahead, that should be common to various

elements. Its inheritance diagram is shown in Figure 3.12.

Figure 3.12: Class Diagram – IViEntity

In what concerns movement, an IViEntity models a point mass that has a mass,

a position and a velocity. A vector that specifies the direction of movement is also

kept and updated. This heading vector is always normalized and tangent to the

entity’s path at every instant. Another vector, called facing vector, is also included.

It specifies the direction the IViEntity is facing and it can be automatically updated

to match the heading vector, if that is what is intended. For that, the IViEntity’s

auto facing mode should be set on. If these two vectors coincide, the entity faces

the direction it moves. Otherwise, the entity moves in one direction while facing

another. We conventionalize that the heading vector is the null vector when the

entity is not moving. The facing vector is left intact in this case. The movement

of an IViEntity can be automatically updated as a function of the time elapsed

since the last update, with a call to the method IViEntity::updateMovement. This
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involves updating the position of the entity according to the formula −→vm = ∆−→x
∆t

and,

in case there was a change in velocity, updating the heading vector. If the auto

facing mode is active, the facing vector is also updated to coincide with the heading

vector, unless the latter is null.

The class IViEntity implements only an abstract representation of movement.

It is not even connected with OGRE in any way other then by using its basic

tipes (e.g. vectors). It serves as a base class that provides some basic movement

functionality to other classes that inherit from it. Its functionality can be identified

with part of the functionality of Reynolds’ vehicle model and. Once mapped into

rendered motion, it is enough for entities whose movement is generated by some

external force or will, that is, entities that do not need to appear as being self-

powered or as moving on their own.

The MovingCharacter and the Steering Behaviors

MovingCharacter is one of the classes that inherit from IViEntity and it extends its

movement functionality to the point that the vehicle model achieves, completing an

abstract interface of the locomotion layer, over which the steering layer can be built.

Besides updating its position on the basis of velocity, the MovingCharacter can also

compute a new velocity from the acceleration that, on its turn, results from a force.

This is performed according to the laws −→am = ∆−→v
∆t

and
−→
F = m−→a , except for the

fact that a MovingCharacter is restricted by limits for the maximum velocity it can

reach and for the maximum force it can apply on itself.

To construct an instance of MovingCharacter, certain knowledge is needed. This

class’s constructor receives a series of parameters that configure a particular Mov-

ingCharacter, along with its initial state. We make this distinction between a char-

acter’s configuration and its initial state because some of these parameters are used

to define the characteristics that will change during the lifetime of the MovingChar-

acter, while others are used to establish traits that will not change at all, being an

intrinsic part of the character. These constant attributes do not depend on the con-

text. Therefore, they are directly obtained from a file in the constructor. The file’s

name is provided as the name of the intended template character and its extension is

.mcharacter. Its format follows the one that is defined by the class Ogre::ConfigFile

and it defines such attributes as mass, maximum velocity, or maximum force. The

attributes that define the state of the character, or that are just dependent on the

context, are directly passed to the constructor7.

The MovingCharacter class also implements the features of the steering layer. It

7for more information on the data that this type of file includes, refer to the class MovingChar-
acter on the API of the IViHumans platform. An example of this file can be found on Appendix
A.1.
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models a character that can move by producing forces to steer itself. These forces

produce accelerations that are used to update the MovingCharacter’s state. Steering

behaviors determine forces that the character applies on himself, simulating how a

self-powered entity uses energy to move by itself. The restrictions on velocity or

applicable force are used as makeshifts for the effects of having limited energy to

steer and of being vulnerable to friction and to air resistance.

The vehicle model is used so that the steering layer can operate independently

of the actual vehicle it is driving. The abstract vehicle moves as an effect of forces.

A steering behavior decides on a force for the character to apply on himself in each

iteration, impelling him towards his goal, but simulating the production of these

forces is up to the locomotion layer. This way, the operation of the steering layer is

always the same, no matter what kind of entity is the subject. Thus, the point mass

model can be used in conjunction with steering behaviors to move a man driving a

car or just walking, although in practice some changes might be necessary.

In the IViHumans platform, a MovingCharacter can have one instance of the

class SteeringBehavior managing its motion. This steering behavior can either be

a basic one or what we called a CombineBehavior, which is actually a composite

[34, 32, 38, 43] steering behavior (see Figure 3.13).

Figure 3.13: Class Diagram – Steering behaviors

We implemented six basic steering behaviors: SeekBehavior, Seek2DBehavior,

Arrive2DBehavior, Walk2DBehavior, Stop2DBehavior, and FollowPoints2DBehav-

ior. We decided to distinguish behaviors that operate in three dimensions from

those that operate in two, by including the term “2D” in their name. Behaviors

that operate in 3D are intended for characters that can move freely in the three

dimensions of an environment (e.g. birds, that can fly in the sky; fish, that can

swim in the sea). On the other hand, characters whose movement is constrained

to one plane need behaviors that operate in 2D. In our approach, the 2D behaviors
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still operate with vectors that are defined in three dimensions, but they are imple-

mented so that they always return forces that have a null height component. This

allows all behaviors to be represented under one common type. Also, it does not

prevent characters from changing their height when necessary. Steering behaviors

that operate in 2D never influence the height component of a character’s position

or velocity, because the character is assumed not to be able to vertically change

his position on his own. However, the environment can do so, through the physics

layer. For instance, if a VH was steering to reach some target that stood at whatever

height and he found stairs on his way, his steering behavior would still return an

horizontal force. So, if the velocity was already horizontal, the activity of the 2D

steering behavior would still leave it so. But, on a second phase, external influences

on the velocity of the character would have to be taken into account, as the physics

layer performed its duties. The environment would change the character’s position

or velocity automatically and he would climb up the stairs.

The force that a SteeringBehavior instance applies on its owner is obtained by

the MovingCharacter with the template method [34] SteeringBehavior::getForce8,

which is called in each update of the MovingCharacter’s movement. This method

checks whether the behavior is on or off. If it is off, a null force is returned; oth-

erwise, the core computation is delegated on the protected method SteeringBehav-

ior::calcForce9. This is a pure virtual method, that is, a virtual10 method that is

not defined in the base class. The classes that inherit from SteeringBehavior can

then implement this method whichever way is appropriate, and that is how steering

behaviors are distinguished. Besides computing a force to apply on the character,

this method can also have side effects. For instance, some kinds of SteeringBehavior

will remove themselves from the character once their job is complete.

Before being returned, the force is truncated to the maximum magnitude the

character allows. The most elementary steering behavior we implemented is Seek-

Behavior. It drives the character in the direction of a target position, independently

of the position of the character or of the obstacles that may interpose in its straight

path. In its pure form, it leads the character to orbit around the target, even after

the target has been reached, since it has no stop condition. This behavior is usu-

ally applied repeatedly to have a character walk through a series of points. In that

case, the upper layer – the action selection layer – can assume the responsibility of

updating the target once it has been reached. An alternative is to have a special

behavior for that effect, as we did with FollowPoints2DBehavior, which is explained

ahead.

Seek2DBehavior is a particularization of SeekBehavior that functions only in

8The declaration of this method is virtual Ogre::Vector3 getForce();
9The declaration is virtual Ogre::Vector3 calcForce() = 0;

10to allow polymorphic behavior [72, 23, 41]
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two dimensions. The movement that this behavior generates is restricted to the

horizontal plane that stands at the same height as the character. For that purpose,

this steering behavior computes forces considering, not the original target, but its

projection on the character’s horizontal plane. Thus, it only yields forces that have

a null height component.

As the previous one, Arrive2DBehavior operates on the horizontal plane of the

character. For most of the time, this behavior does the same thing as Seek2DBe-

havior but, when the character approaches the target, the computation differs. So,

we had Arrive2DBehavior as a subclass of Seek2DBehavior, in order to reuse the

implementation of this last one. It also drives the character in the direction of the

target, but it makes him slow down linearly as he approaches it. In the original

Arrive behavior, the agent is subject to constant deceleration once he reaches a

certain distance from the target, eventually stopping in a position that coincides

with the target. In our version, the deceleration is applied only until the character’s

speed reaches some predetermined value, after what the speed is maintained. When

the character comes very close to the target, as defined by another threshold, the

behavior stops the character’s movement and deactivates itself. In our opinion, this

version produces more realistic results, in what concerns the movement of VHs.

Their speed decreases when they approach the target but they stop at once, like

real humans do with one last step. In the original version, characters tend to move

at an unrealistically low speed when approaching the target, for too long a period,

before coming to a halt, unless they decelerate too quickly, which is not desirable

either.

We also implemented a steering behavior that drives the character at a given

velocity and we called it Walk2DBehavior. This behavior has a target, like the

previous ones, although this target is a velocity vector instead of a position. In each

iteration, it calculates a force that will accelerate the character towards a velocity

that can be obtained from the supplied target velocity as follows. Let
−→
V and −→v

be the target and current velocities, respectively. The velocity that will actually

be taken into account is
−→
Vh = (VX , vY , VZ), in a system where height is defined by

the Y component11. The returned force can be viewed as (
−→
Vh −−→v )× 1Kg/s, thus

it will always have a null height component. So, this steering behavior will also

maintain the character moving horizontally (if he was already moving horizontally).

The velocity of the character eventually comes to match the projection of the target

velocity. This steering behavior is a 2D version of one of the three behaviors that

Reynolds created for his flocking boids. We find it very useful to have a user directly

controlling an avatar with a keyboard or a joystick (instead of an action selection

layer).

11This is the case of OGRE
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A steering behavior to stop the character – Stop2DBehavior – was also created.

This behavior is a particularization of Walk2DBehavior, but the target velocity is

defined a priori as the null vector. When the character stops moving, that is, when

his velocity drops bellow a very low threshold, the behavior deactivates and removes

itself from the MovingCharacter. One may wonder why would this behavior also

operate in two dimensions but we figured that, if a character only has the ability to

steer in two dimensions, he would also be able to stop only his horizontal movement,

since he can only affect his horizontal velocity. In other words, one character that

can speed up by generating only horizontal forces should also be able to reduce only

the horizontal components of his velocity. The vertical component of velocity could

only be generated by external forces and this behavior will not influence it.

The last steering behavior we implemented was FollowPoints2DBehavior. It will

drive the character across a sequence of n target positions and it will stop him once he

comes to the last one. It does so by making the character seek the first n−1 targets

and arrive at the nth target. In fact, it aggregates instances of Seek2DBehavior and

Arrive2DBehavior to accomplish that goal, but that is completely transparent to the

user. The task this behavior performs can also be delegated to the action selection

layer. This more abstract layer could also activate instances of the elementary

behaviors Seek2DBehavior and Arrive2DBehavior successively but, when the path

is known beforehand, the same effect can be achieved with only one command, which

contributes to reduce communication overhead. Besides, monitoring and changing

the behavior of the character is always possible.

Besides these basic steering behaviors, many more may be implemented in the

future, simply by extending the abstract class SteeringBehavior and implementing

the calcForce method appropriately.

Sometimes the movement of the MovingCharacter must be driven by different

behaviors at once. For this purpose, further steering behaviors could be implemented

to mix the operation of existing ones, but that would be cumbersome and very

inflexible, requiring implementation, compilation and linking, each time a new mix

was to be tried. The MovingCharacter could also simply be able to aggregate several

steering behaviors directly, but then the issue would be how to combine them. The

moving character would be left with one single way of combining SteeringBehaviors,

but there are at least four ways [62, 15]:

• Truncated Sum – simply add the forces and truncate the resulting net force.

This method is the most simple but it is costly since the contribution of every

behavior is calculated in each time step. It is not the best option in most

cases, because all behaviors are considered equally important.

• Weighted Truncated Sum – multiply the forces by a relative weight, before

adding them, and truncate the resulting force. This method also requires
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the computation of every steering behavior and the weights can be difficult to

tweak. Its biggest problem, however, happens with strange results produced by

conflicting forces. This problem is also shared by the simple Truncated Sum,

which is just a particular instance of the Weighted Truncated Sum method,

when the total weight is evenly distributed among all active behaviors.

• Weighted Truncated Running Sum with Prioritization – sequentially

add each force vector, truncating the result in each iteration to make sure the

maximum force was not exceeded. Each behavior is prioritized and processed

in the corresponding order and the forces can also be added with weighting.

Before definitely adding the contribution of each vector, it is checked whether

there is enough “remaining force” relatively to the maximum allowed magni-

tude. If there is, the new force is added and the process continues. Otherwise,

if the maximum amount has been reached, the current net force is returned

and the process ends. If there is enough space for only a portion of the last

force, then only that portion is added. In time steps that involve large steering

activity, the contribution of some behaviors is disregarded. This method gives

a good compromise between speed and accuracy.

• Prioritized Dithering - besides a priority, each steering behavior is assigned

a probability for evaluation. In each time step, it is checked whether the next

highest priority behavior is going to be evaluated, according to the assigned

probability. If it is, and if it returns a non-null force, that force is all that

is returned. Otherwise, the behavior is skipped and the next highest priority

behavior is considered. This method requires far less CPU time than others,

but that comes at the cost of accuracy. It is also necessary to tweak the

probabilities until the desired effect is reached.

In addition to these methods, other variations, or even new methods, may be

suitable to combine steering behaviors, depending on the circumstances. In the

IViHumans platform we considered this issue and chose an implementation that

allows different methods for combining steering behaviors. For that, we created

the abstract class CombineBehavior which can aggregate other steering behaviors

and we left the method CombineBehavior::calcForce still undefined. This class has a

series of features that are related to its purpose of aggregating steering behaviors, but

the duty of actually combining them is left to descending classes, which can apply

whatever technique by implementing the method calcForce. This way, different

procedures for combining steering behaviors can be chosen at runtime, depending

on application needs.

The class CombineBehavior has another pure virtual method, besides calcForce,
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called CombineBehavior::prototypeClone12. The purpose of this member is discussed

ahead, when the need for it becomes apparent. The only subclass of CombineBe-

havior we created was SimpleCombineBehavior, which implements the most simple

combination method – Truncated Sum. Other methods can be implemented at any

time with no changes to existing code. The design of how an IViHuman calculates

its steering force was inspired on the Strategy Pattern [34, 32].

The RegularEntity, the IViHuman, and their Locomotion

In an architecture that tries to deeply mimic reality, the locomotion layer would

produce forces as a result of some intrinsic physical mechanism, as in [80]. Instead,

the forces do not have a specific natural origin. In our case, the locomotion layer

simply maps the state of the abstract vehicle into observable motion.

The class IViEntity represents a point in space. MovingCharacter completes the

abstract vehicle model and groups the steering functionality for entities that can be

represented by it. Both these classes are abstract, so they allow no direct instances

to be created, and neither of them is associated with OGRE. The actual observable

locomotion must be embodied in subclasses.

The class RegularEntity accomplishes this with a general and simple approach.

It is intended for entities that “do not steer”, that is, for whom the steering layer

is absent. Therefore, it is a direct subclass of IViEntity (Figure 3.12). To provide

a visual representation, it is intimately associated with an instance of Ogre::Entity

and with an instance of Ogre::SceneNode. These are the main structures that enable

an object to be rendered. The class Entity encapsulates the features and contents

that are associated with the graphical representation of an object, such as meshes,

materials, poses or animations. The class SceneNode represents a node in the scene

graph and has an inherent local frame of reference that admits the usual transforms

of translation, rotation, and scale. As the class RegularEntity extends the class

IViEntity, it has a position and a facing vector that are managed by that class,

besides the position and orientation of its SceneNode.

The state of an IViEntity is updated with the method IViEntity::updateMove-

ment13. In the base class, this method updates the attributes that define the IViEn-

tity’s state, such as position and velocity, according to classical physics, as explained

earlier. In the class RegularEntity, this method is overridden to update the state of

the scene node, so that its attributes coincide with the attributes of the IViEntity it

also is. Of course, the updates that are already available in the parent class are also

performed. So, the state of the RegularEntity is always consistent with the state of

its SceneNode.

12virtual CombineBehavior * prototypeClone() const = 0;
13virtual bool updateMovement(Ogre::Real timeSinceLastUpdate);
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For the RegularEntity to always face the direction that is specified by its facing

vector, the orientation of the scene node must be set accordingly. This vector can

change as an effect of an external order or because the auto facing mode is on. Either

way, since it is only a vector, it is not enough to completely specify an orientation.

That would require another degree of freedom, namely the one that would specify

the angle of rotation around the local axis that the facing vector, itself, defines.

For flying entities, further heuristics would have to be used, as Reynolds points out

[62]. However, given the previous orientation of the entity, and assuming that the

roll14 component of the orientation should remain the same, the scene node can

be transformed by the smallest rotation that would transform the previous facing

vector in the new one. This is enough to approximate the movement of most 2D

constrained entities, but requires the initial facing vector to be properly defined,

so that it is aligned with the facing direction that the observer actually sees. For

RegularEntities, an initial rotation transform may be provided in the constructor to

account for this15.

The minimum rotation can be easily found, except when the new vector points

in the exact opposite direction of the old one. When the old and new vectors are

the same, no rotation needs to be applied whatsoever, but when they point in the

opposite direction, there is an infinity of planes that contain them both, therefore,

there are infinite rotations with the same magnitude that would transform the old

one in the new one. This may seem like a really rare case, especially if entities are

commanded by steering behaviors and updated frequently, because, in this case, their

velocity and, thus, their facing direction, should change very little in each time step.

But there are some circumstances that happen often enough and that give rise to

this issue. For instance, suppose that an entity, commanded by steering behaviors,

is still, facing the direction of the positive X-axis. Suppose that, afterwards, the

seek behavior is activated for the target (X, 0, 0), X ∈ R. The character would

reach the target and, eventually, surpass it, at which time the force returned by

the behavior would have the opposite direction of movement. The character would

have entered a particular straight orbit around the target position and, in some time

steps, his movement would invert its direction suddenly. In the case of entities that

move on 2D and whose roll component is not supposed to change, a 180o degree

rotation around the up axis can be applied and, for now, this is what happens in the

IViHumans platform. We are aware that this is not the best solution because sudden

rotations like this do not happen in the real world and it compromises the intended

sensation of believability. The investigation of how to overcome this problem is

14Rotation about the depth axis
15Actually, a scale transform may also be specified. With this option, the modeler does not have

to worry with the right proportions or orientations of the objects he models. In the case of VHs,
initial transforms can be specified in a configuration file that is discussed ahead.
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suggested as future work. In the case of flying entities, the roll component should

not be assumed as null, as they would incline to make turns and, as mentioned

above, another method should be used.

The movement of a RegularEntity is simply translated to the change of its po-

sition and orientation. In the case of a VH, he also needs a means of locomotion

to look convincing. Real humans move by contracting and distending muscles, ex-

ecuting complex movements that make them walk, run, climb, crawl, etc. In the

case of our VHs, instead of deeply simulating these complex processes, synchronized

animations are played in a way that looks like they are actually pushing themselves

forward, which gives a pretty fair appearance of realism while significantly reducing

the use of computational resources. Unfortunately, the VHs we use have very few

animations, so they are restricted to only about a couple of movements. In fact,

our virtual woman can only walk, while the virtual man can walk and run (besides

staying in the same place with a consistent animation).

The VHs are represented, in the IViHumans platform, by the class IViHuman,

which descends from MovingCharacter, inheriting steering abilities. The transforms

that are applied to the bones of the VHs we use consist only on operations of

rotation, even in the special case of the root of the skeleton – in both models,

the hip bone. Thus, the animations preserve the original position of the entity

they apply to. On the other hand, the orientation of the whole skeleton is also

approximately maintained, even though small rotations of the hip bones take place

in the animations. This way, the attributes of an IViHuman are always consistent

with what is actually observed and, indeed, to change its position and orientation,

its SceneNode has to be transformed.

Along with the transformations of their scene nodes, the animations of the VHs

drive their motion. To play the animations, a specialized object – of the type

Ogre::AnimationState – receives indications in each update that tell it the instant it

should use to derive the current transforms for the skeleton. For instance, suppose

that some simple animation lasts one second and that it relies on two keyframes: one

for the instant 0s and another for the instant 1s. Suppose that the first keyframe

encodes a null transform and that the second encodes a 90o rotation of the root

bone, about some arbitrary axis. If right before rendering a particular frame it

is known that 1
3
s elapsed since the beginning of the animation, the responsible

AnimationState instance can be commanded to put the animation in the instant
1
3
s and it will ensure that the right measures are taken to deform the skeleton

accordingly, that is, to rotate the hip bone, and therefore the whole body, by 30o

relatively to its original orientation.

The vast majority of the updates that need to be performed over the virtual

environment are a function of the time elapsed since the previous updates and the
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methods that are responsible for the individual updates receive this information

through a parameter. In the case of the class IViHuman, the elapsed time is added

to the current time registered by the AnimationState object that controls some

animation. The repetition of this process in every frame or, at least, in most of the

frames, allows animations to be played at their original speed. However, playing

an animation at its original speed while the character moves is not enough to get

good results, unless the character is restricted to move at a single constant speed

that matches the speed of the animation. In the IViHumans platform we wanted

every character to be able to move at any speed comprised in the interval whose

upper limit is his maximum velocity and whose lower limit is zero velocity (when

the character is still). Therefore, it was needful that the animations could be played

at variable speeds on the basis of the speed of the VH.

When a real human walks naturally, his instantaneous speed varies little in dis-

tinct phases of his steps. The horizontal speed at which a person’s center of mass

moves when he puts the foot on the ground is approximately the same as when the

same foot is in middle air. Similarly, for each speed of the scene node the VH is

attached to, a speed for the animation can be found that does not compromise be-

lievability. For instance, take the walk animation of the female VH and let Do be her

displacement after walking for To time at the natural speed of the animation, where

To is the time of one full cycle of the animation. Obviously, the average speed of the

virtual woman was Vo = Do

To
. This is the speed that maximizes the synchronization

between the translation of the IViHuman’s scene node and the continued playing

of the animation at its original speed. With this relationship in mind, the speed

at which the animation is played can be adjusted in order to have it synchronized

with the VH’s movement. The time it takes to play some portion of the animation

is inversely proportional to the character’s speed. For any speed Vx of the VH, we

have

Vx =
Vx

Vo

Vo =
Vx

Vo

Do

To

=
1
Vo

Vx

Do

To

=
Do

Vo

Vx
To

On the other hand, we know that there is an amount of time T ′o for which the

equality Vx = D0

T ′
o

holds. T0 is exactly the time that the animation should take to

complete one full cycle when the VH is moving at a speed of Vx. From these facts,

we can extract the equation 1
Vo
Vx

Do

To
= Do

T ′
o
. Since the problem we are trying to solve is

about animations that are played when the VH is displaced, we know that Do 6= 0.

Therefore, we obtain (
1
Vo

Vx

Do

To

)−1

=

(
Do

T ′o

)−1

⇐⇒ T ′o =
Vo

Vx

To

So, to update the movement of a VH, the animation should be forwarded an amount

of time given by the function f(t, v) = Vo

v
t, where t is the time that actually went
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by since the last update and v is the current speed of the VH. We call the constant

Vo Translation to Animation time Ratio, or simply T2ARatio.

Figure 3.14 shows that the class IViHuman delegates to the class TranslateAn-

imController the responsibility of choosing and updating the animations that enable

the translation of the VHs. An instance of this class chooses the right animation for

the IViHuman that owns it according to specified rules.

Figure 3.14: Class Diagram – TranslateAnimController

TranslateAnimController is composed by instances of TranslateAnimInfo. There

is one and only one TranslateAnimInfo object for each translation animation. This

class is characterized by the attributes mInterval, mT2ARatio and mAnimState, as

shown in the figure. The animation to be played is chosen according to its current

speed. Each animation has a corresponding range of speed that is expressed in

the attribute mInterval. If the VH is moving with a speed that belongs in this

interval, this is the animation to be played. mT2ARatio specifies the Translation to

Animation time Ratio and mAnimState is a pointer to the AnimationState object

that controls the animation. When an IViHuman is commanded to update its

movement, it forwards the animation update to its TranslateAnimController. This

object will first choose the correct animation and then update it, both operations

performed on the basis of the speed of its owner. It checks in its TranlateAnimInfo

objects for the first animation whose speed interval includes the speed of the VH and,

if one is found, it updates the animation by putting it in the correct instant, through

the AnimationState object, according to what was described earlier. The period of

time the AnimationState object is told that elapsed since the last update is as much

larger (or smaller) as the speed is smaller (or larger, respectively). For instance, if

the character A moves at twice the speed of character B, the AnimationState of B

is given twice the amount of the elapsed time as that of character A (as long as they
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both play the same animation).

If the right animation is not found, no animation is played. Whenever a new an-

imation is selected, it is advanced a random amount of time so that no synchronized

animations are seen. Otherwise, when different instances of the same VH are in a

similar state, their animations would appear synchronized (e.g. when all the VHs

are told to walk at the same time).

As for MovingCharacter, instances of IViHuman are configured according to

some characteristics that are not supposed to vary at runtime and that are therefore

obtained from a file. The file that contains these specifications, that apply only to

VHs and not to all characters, has the extension .ivihuman16. The rules for transla-

tion animations should be included in this file, one rule per animation. These rules

follow the format <anim name>=<x> <y> <z>. <anim name> should be substituted

by the actual name of the animation. <x> and <y> specify the speed interval for the

animation: (x, y], x, y ∈ R ∧ x < y . Finally, <z> specifies the value T2ARatio for

the corresponding animation.

The .ivihuman file can also contain initial transforms to be applied to the VH

before rendering the first frame. The need for two further parameters – eyeHeight

and headBode – is discussed ahead, in Section 3.3.3.

3.3.2 Expressions

In the IViHumans platform, a VH has the capability of showing emotions through

facial expressions. As explained before, the facial expressions are conceived as poses

that encapsulate a set of displacement vectors. When the translations these vectors

declare are applied to the corresponding vertices of the mesh, the character assumes

the intended facial expression.

Each VH should have a set of basic facial expressions that, when mixed to-

gether, originate composite expressions. The conceptual distinction between basic

and composite expressions is essential for the design of the fraction of the platform

that implements the features required for emotional expression. As the name indi-

cates, composite expressions are composed of other expressions. However, from the

point of view of the observer, the effects of activating basic or complex expressions

are identical: both originate changes on the shape of the face of a VH. In fact, even

for a programmer that deals with expression objects, their use should be identical

in most aspects.

The class IViHuman, which is a client of the class Expression must deal with

basic and complex expressions uniformly, needing only to know that they are ex-

pressions. Nevertheless, some distinctions obviously exist. The process of creating

16For a detailed description of this file, refer to the class IViHuman, in the API of the IViHumans
platform. An example of this file can be found on the appendix A.2.
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Figure 3.15: Example of a tree of expressions.

expressions is different for these two types, as a basic expression does not need to

know or interact with any other expression, while a composite expression is created,

as the name suggests, by composition of other expressions. Besides, the type of

expressions that a composite expression can aggregate is not restricted to basic ex-

pressions. The elaboration of composite expressions by combining other composite

expressions is perfectly plausible, as long as no cycles are formed. As a matter of

fact, the constitution of a composite expression can actually be represented by a tree

structure, as Figure 3.15 exemplifies. Thus, our implementation follows the Com-

posite Pattern17, as shown in Figure 3.16. This figure also includes some important

parameters and methods of the involved classes, though less relevant information is

omitted.

For clarity sake of the arguments exposed here, we assume that the common

interface of the composite pattern receives the name component, that the basic com-

ponents are called leaf and that the components that aggregate other components

are called composite18. In the present case, these roles are played by the classes

Expression, BasicExpression and CompositeExpression, respectively.

As Figure 3.16 shows, all the expressions have a common interface, except for

the fact that CompositeExpression has also got operations for managing its children

(the main ones are CompositeExpression::addChildExpression and CompositeExpres-

sion::getChildExpression). To aggregate other expressions, CompositeExpression

has an attribute that maps Expression objects by their name. These methods add

expressions to and obtain them from this map. For a very short discussion on two

17Assuring that no cycles exist is a responsibility of the client programmer. This can be viewed
as a drawback of the composite pattern, which does not prevent cycles but does not support them
either.

18This naming convention is withdraw from the GoF (Gang of Four) book [34]
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Figure 3.16: Class Diagram – Expressions
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variants of the Composite Design Pattern, in what concerns the management of

components, as well as for a justification of our option, see Appendix B.

An important attribute of an expression is its intensity. The class Expression de-

clares an attribute that specifies the current intensity of its instances – mCurrentIn-

tensity – and another that records the value that they should ultimately achieve

– mDesiredIntensity. As previously mentioned, an expression can be partially ap-

plied to a VH’s face. Here, the intensity of an expression is seen as a value that

represents the relative amount of application to the VH’s face: a real number that

should be comprised in the interval [0, 1]. Put another way, it is the percentage of

activation of an expression. In the class Expression, the current intensity is rela-

tive to the maximum intensity and not to the desired intensity, so it is considered

that the expression has reached the desired intensity when mCurrentIntensity ==

mDesiredIntensity, instead of mCurrentIntensity == 1.0f being the condition.

Recall that expressions are recorded as poses of the mesh and let a be some

arbitrary value in the specified range (a ∈ [0, 1]). Suppose that M = {−→vi | i ∈
N ∧ i ≤ N} is the set of vertices of the mesh, where N is the number of vertices.

Suppose also that P = {
−→
di | i ∈ N ∧ i ≤ N} is the set of displacement vectors

that codifies one pose for that mesh. When the mesh is deformed by the pose, each

displacement vector
−→
di comprised in the pose, is used to displace the corresponding

vertex −→vi
19. If the pose is applied with an intensity a, the set of vertices that

compose the mesh becomes M ′ = {
−→
v′i |
−→
v′i = −→vi +a

−→
di}, that is, each vertex becomes

−→
v′i = (vix + adix, viy + adiy).

For instance, suppose that some polygon in 2D space (instead of a 3D mesh, for

simplicity sake) was composed by the vertices

−→v1 = (−5,−5); −→v2 = (−5, 5); −→v3 = (5,−5); −→v4 = (5, 5).

Suppose also that some “2D pose” for that polygon comprised the displacement

vectors
−→
d1 = (−2,−2);

−→
d2 = (−2, 2);

−→
d3 = (2,−2);

−→
d4 = (2, 2),

and that each displacement
−→
di was applied to the vertex −→vi . If this pose was to be

applied with an intensity of 100%, the polygon’s vertices would end up being
−→
v′1 = (−7,−7);

−→
v′2 = (−7, 7);

−→
v′3 = (7,−7);

−→
v′4 = (7, 7).

If, on the other hand, the pose was applied with an intensity a = 0.5 (50%), the

vertices would become
−→
v′′1 = (−6,−6);

−→
v′′2 = (−6, 6);

−→
v′′3 = (6,−6);

−→
v′′4 = (6, 6).

19Usually a pose does not change all the vertices of a mesh. In this discussion we assume that
each vertex is displaced by some vector, even if it is the null vector. In practice, the poses only
record non-null vectors, along with data that enables the identification of the vertices they apply
to
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By constructing an Expression object with the adequate desired intensity, we can

have a VH showing weak or strong emotions. For instance, he can be very joyful or

somewhat surprised.

The transition of a VH’s expressions should be gradual, so that no sudden

changes on his face compromise believability. To achieve this, an Expression object

goes through various states of activity, in what regards the variation of its intensity.

During its lifetime, whether the intensity of an expression increases, decreases, or

stays the same is controlled by a fundamental attribute that states its state of ac-

tivity: mAct. This attribute’s type – ActivityType – enumerates five values: INACT,

ACT, SKIP, DEACT, and DONE. When the value of the attribute mAct is INACT, the

expression is in the inactive state. At this moment, though the object was already

created, it was not associated with any VH yet. The object symbolizes only an

abstract expression and it has zero intensity. When the expression is activated,

with the method Expression::activate, it goes to the state ACT, being necessarily

associated with an IViHuman. When in this state, its intensity is increased in each

call to the method Expression::update. The expression remains in this state until its

intensity reaches the intended value or until it is explicitly commanded to change

to the state DEACT. If the desired intensity is reached, the state of the expression

becomes SKIP. While at this state, the intended expression is fully applied to its

owner and its intensity is maintained. The expression eventually changes its state

to DEACT, when Expression::deactivate is called. At this state, its behavior is

symmetrical to that of state ACT. Its intensity is decreased in each update, until it

becomes zero again, or until an activation order is issued again. When the intensity

decreases to zero, the expression is put in the state DONE. At this time, its job

is fulfilled and it can be dissociated from the VH. That happens in the following

update and the expression’s state becomes INACT again. If desired for any reason,

it can be used again with any VH that has the pose(s) the expression relies upon.

Figure 3.17 depicts the life cycle of Expression objects with a Finite State Machine

(FSM), whilst Figure 3.18 shows how the intensity of an expression varies on the

basis of its activity state.

As shown in Figure 3.16, the class IViHuman relates to the class Expression

through two distinct associations: one for the most recent expression (the current

expression of the VH) and one for the set of expressions under deactivation. When

the method IViHumans::updateExpression is called, the IViHuman is held respon-

sible for the update of all his expressions. That responsibility is then delegated by

him on the Expression objects themselves, through their update method, and the

updates occur in accordance with what was just explained.

The association between the VH and his current expression is the one that plays

the central role. This association is established when the expression is activated.
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Figure 3.17: FSM for the Activity of an Expression

Figure 3.18: Graph of the intensity of an expression, with respect to time, in its
diverse states of activity
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While the association lasts, the expression is in the state ACT, to begin with, and

SKIP, following (if the desired intensity is reached before deactivation). This first

association ceases, being replaced by the second association, when an order is issued

for the expression to deactivate. This order may be given explicitly to the IViHuman

or placed by himself when another expression is set as the current one.

When an expression is deactivated, it is still related to the same IViHuman.

In fact, from the point of view of the Expression object, no change occurs with the

association, as it sees it only as being tracked by an attribute that points to its owner.

Yet, from the point of view of the IViHuman object, the association is replaced by a

new one that withstands multiple deactivating expressions. This second association

is implemented with what may be seen as a buffer of deactivating Expressions,

which is kept by the IViHuman. So, when the IViHuman commands an expression

to deactivate, it puts it in the buffer of deactivating expressions, simultaneously, and

that is when the Expression goes from the state SKIP (or act, in case its activation

was not completed) to the state DEACT. When updating his facial expression, the

IViHuman issues the update command, not only to the current expression, but also

to those that are still deactivating. He also checks, from these, which have achieved

the state DONE, and terminates any such associations, notifying the expressions

and removing them from the buffer. This is when the expressions’ states become

INACT once again.

Figure 3.19 shows the variation of three composite expressions that received the

names combo1 100, combo2 100, and combo3 75. The desired intensity for the first

couple is 1 (or 100%) while, for the third, it is 0.75. The data used for the creation

of this graph was obtained from a small program we implemented for that purpose.

The program uses our framework and the assignement of an expression as the current

one is triggered by a simple keyboard event – pressing a single determined key. The

instants in which the key is pressed are also those in which an active expression is

deactivated. They can be identified in the graph as the moments when the intensity

of one expression starts to increase, along with the decrease of the intensity of an

expression that has just been put in the deactivating buffer.

How an Expression is internally translated into a deformation of the mesh de-

pends on its ultimate type, that is, on whether it is a BasicExpression or a Compos-

iteExpression. Whilst BasicExpressions can be directly translated into an effective

expression, the application of CompositeExpressions depends on the translation of

the leafs that, at the bottom of the tree, compose it.

To materialize a visible expression, each BasicExpression relies on a simple an-

imation that gradually intensifies the corresponding pose. The animation lasts 1s

and is composed by only two keyframes: one at the instant 0s, in which the face has

its default appearance, with no pose applied, and one at the instant 1s, in which
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Figure 3.19: Variation of intensity of three expressions with time

the pose is applied at 100% of its intensity. If this animation was to be played

without any modification, the face of the VH would show 30% of the corresponding

expression in a frame that was rendered at the instant 0.3s, 50% at 0.5s and so on.

Generally speaking, if one intends to show an expression with 1
x

of its maximum

intensity, it sufices to render the scene as if the animation was at the instant 1
x
.

As we already saw, this can be very easily performed through the AnimationState

object of each animation.

When an Expression instance receives an order of activation or deactivation, it

can also receive a parameter that indicates the speed desired for the transition, as a

factor to multiply by the original speed. This parameter is not required, as it has the

default value of 1.0. Let I be the desired intensity for an expression. The transition

between 0 intensity and the intensity I then lasts Is. If the supplied factor is c, the

transition will be c times faster or, put another way, it will last I
c
s. If the time that

elapses between two consecutive calls to the update method of an Expression is ∆t,

that Expression will forward the animation by c∆t.

CompositeExpressions are not directly associated with any pose or animation.

Instead, when their update method is called, they figure out the proper intensity

variation for each direct component Expression as a function of the intended in-

tensity, of the elapsed time since the last update and of the factor to apply to

the default transition speed. The responsibility of the update is then passed on to

the component Expressions, through the method Expression::manualUpdate, that

directly receives the variation of intensity as a parameter.

Besides being a simpler way of manipulating an expression, the idea of wrapping

it into an animation has also got the advantage of encapsulating any deformation

that may represent an expression. This way, it is very easy to deal with more

complex expressions. For instance, there is no need for any change in the code, for

an expression that is built by two poses to be displayed. An expression could also be
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setup by deforming a skeleton, a lattice or any kind of auxiliary object whose shape

can be referenced at a keyframe in any way OGRE supports. Thus, certain kinds

of body expressions can also be used with the existing framework. For instance, if

we want some VH to express fear by also rising his hands a bit, that posture would

only have to be modeled and referenced in the last frame of the animation that

corresponds to that emotion.

3.3.3 Perception

If one wants VHs to be autonomous, they have to include reactive and deliberative

behavior. Reactive behavior happens when VHs engage in predetermined activities

that are triggered by specific world states or events. Deliberative behavior, on

the other hand, is much more complex, involving reasoning that is dependent on

the mental state of the agent, which is influenced and also influences his internal

conception of the world in a feedback cycle that builds up along time. Any actual

attitudes involved in both these kinds of behavior rely on the simulation of external

stimuli that are given to the VH as input. In some cases, internal stimuli are also

determinant to the agents conducts, specially in deliberative behavior.

A proper perception model is key to simulating VHs’ intelligence, and an agent’s

awareness of its environment should be consistent with his embodiment [15]. A

character that has ears should behave as if he was hearing, one with eyes should

behave like he was seeing, and so on. In the case of VHs, and in the limit, they

should have all the senses that a real human has, since real humans are exactly what

they try to simulate. However, depending on the purpose of the simulation, some

senses are much more important than others. For instance, the absence of the sense

of taste would probably have no effect on an application in which VHs did not eat

or drink; the sense of smell would probably not be missed if no extraordinary scent

sources were present in the scene. In our case, and due to the need of establishing

priorities among all desired features of the IViHumans platform, we chose to include

vision as the primary perception mechanism for VHs.

The inclusion of simulation models for other senses is suggested as future work.

It is our opinion that the second most important sense for the majority of simulation

applications would be hearing. The tactile sense, is obviously very important but it

would be already simulated in its most important implications by collision handling

and by intrinsic abilities of VHs, so we consider it as a special case. Some complex

model would probably have to be created if VHs were to distinguish objects only by

their touch, but the mere perception of whether or not they collided with something

and of whether or not they successfully grabbed a tool, may be directly included in

their simulated abilities simply by providing them with knowledge of the external

events they are involved in through contact. In what concerns the awareness that
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comes from these effects of the tactile sense, which we regard as the most important

ones, a particular model of touch can be simply skipped.

The same is not certainly true for other senses. With the sense of touch, the main

manifestation can be viewed as a simple boolean event (whether or not anything

was touched), maybe with some further information, such as heat. Contrastingly,

with taste, evaluation of other characteristics of what was being tasted would have

to be performed, so that the inseparable qualitative appreciation could take place.

With the remaining senses, an even more prominent issue must be dealt with: which

events should and should not be perceived.

If with touch and taste we can simply state that events are perceived by a real

human if he is in contact with the respective objects, that is certainly not the case

for other senses. Vision, hearing, and smell are the result of specialized sensitivity to

particular effects of certain events that may happen far away from who notices them,

but they are all subject to physical obstacles or to medium characteristics that can

prevent the perception of these events. For instance, we might or might not smell a

distant fire depending on the direction of the wind; we might or might not see the

formation of a supernova depending on how cloudy was the sky when its light arrived

at Earth; and we might or might not hear a whale call, depending on whether we

were inside or outside the water and on whether there was any motorboat around.

As vision was the only sense that was already included in the IViHumans platform,

it is the only one that will be discussed from now on.

Synthetic Vision

Some approaches to games and simulations implement virtual agents with unre-

stricted access to the world data, bestowing them with sensory omnipotence [15].

These approaches incur in a flaw that originates unnatural events in the behavior of

the intelligent agents. Their actions demonstrate they have knowledge they should

not have, like being aware of objects in different rooms. This is not a good approach

when believability is sought. It is essential to restrain from the agents the informa-

tion they should not be capable of accessing, otherwise it will be apparent that the

AI is cheating.

In other approaches, classified as classical by Conde et al. [18], different [steering]

behaviors implement their own perception mechanisms. In the IViHumans platform,

VHs sense the environment through the single means of synthetic vision and the

perceptions generated by this centralized approach can be used to whatever pur-

poses. The VHs watch the world with an algorithm that was devised in previous

works [67, 68]. It is not the goal of this algorithm to simulate the complexity of real

visual systems. Instead, it accomplishes a means of filtering out the information that

cannot be perceived by the VHs. It works by casting rays from the point of view of
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the VH and by checking which objects are intersected by them, to detect which are

visible to the agent. These rays are calculated in such a way that their concentration

is greater in the center of the Field of View (FoV). They are also displaced in each

iteration of the vision algorithm, to minimize the chances of undetected objects over

a series of iterations. On their turn, the displacement vectors that are applied to

the rays also change in each iteration, in such a way that each ray describes a spiral

path. Figure 3.20 shows an example of such a spiral, yielded by our implementation

of the algorithm.

Figure 3.20: A spiral formed by successive points that represent the displacement
vectors

A demonstration of the vision algorithm had already been implemented. It was

implemented directly over OGRE, however, as the GP layer was yet to be built, and

we had to implement it again from scratch to fit it into the platform. We also had

an idea for an alternative vision algorithm that we did not have the opportunity

to explore. In the vision algorithm we currently use, rays are sent to all over the

FoV of the VH, regardless of the disposition of objects relatively to it. An object is

considered as being seen if it is the first to be intersected by at least one ray, that

is, if there is at least one ray whose intersection with the object is closest to the

VH than any other intersection with the same ray. Our idea was to concentrate the

rays in the areas where objects are known to be. In the IViHumans platform, VHs

already have a camera that can render the scene from their point of view, so that it

can be shown to the user. This camera is also used to derive the direction of rays,

as explained ahead. In the alternative we imagined, intersections of world objects

with the camera’s frustum would first be checked for. A parameterizable number of

rays would then be cast only to the objects that were found to be, at least partially,

within the FoV. For each object, the faces that were facing the camera could be

found the traditional way, by checking whether the angle between their normals

and the camera’s normal were acute. Rays would then be cast only to these faces.

We speculate that this procedure could yield a more efficient and precise algorithm.

This idea was not explored in any way, though, and a study of its viability would
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be required. It should also be compared thoroughly with the existing method, to

check if it would be advantageous. This is suggested as future work and, if it was

concluded that this idea could be profitable, it could be deepened and implemented.

To position the camera that is associated with each VH, a parameter is obtained

from the correspondent .ivihuman file: eyeHeight. As the name suggests, this

parameter indicates the height at which the eyes of the VH stand, relatively to the

base of his feet (the vertex with the lowest height component). After positioning

the camera, it is rotated in order to have it facing the same direction as the VH.

Only then is it attached to the head bone of the VH, whose name is also specified

in its configuration file by the parameter headBone. The camera inherits all the

transforms of the head bone, thus we ensure that the camera always captures what

the VH would see.

To create the rays that are to be cast, a matrix of 2D points is first computed. In

each iteration of the algorithm a displacement vector is added to all the points. The

resulting points indicate the positions in the viewport that are used to calculate the

rays. Each 2D viewport point corresponds to a 3D point in world space. This point

is found, along with the origin of the camera, and both points are used to derive the

line that will carry the ray. Figure 3.21 gives and example of such a ray.

Figure 3.21: Example of how rays are generated in the vision algorithm

The coordinates of the points included in the original matrix vary in the interval

[0 + k, 1− k], where k is a security margin to ensure that the rays do not get out of

the FoV because of the displacements that are applied in each iteration. The original

matrix is square and symmetrical with respect to its center – the point (0.5, 0.5) –

which might or might not be included in it, depending on whether it has an odd

or even number of points. An explanation of how this matrix is computed can be

found in [68]. Figure 3.22 shows the point distribution of a 20× 20 such matrix.

A synthetic vision algorithm acts as a filter that distinguishes which objects

are seen and which are unseen by some VH. Collisions between the rays that the

algorithm casts and the bounding boxes of the objects are checked for. To detect
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Figure 3.22: Point distribution of a base matrix for synthetic vision

the collisions, Axis Aligned Bounding Boxes (AABBs) are used in the first place.

When a collision is detected with an AABB, a much more tight bounding box is

used to determine whether the object is really intersected by the ray. This allows

the algorithm to act as a more precise filter, so that VHs can detect objects that

were occluded by an AABB but that are not really occluded by the corresponding

object. For instance, with this approach the VHs can see through the hole in a

torus.

The vision algorithm only checks which objects are visible. After executing it, a

VH can access the properties of the objects he sees but, for him to be able to extract

them, every object that he can see must be accessible through a common interface.

In our platform, this common interface is provided by the class IViEntity, which was

already partially presented. The attributes and methods of this class that matter

the most for this purpose are shown in Figure 3.23.

Figure 3.23: A portion of the class IViEntity
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Direct and indirect instances of the class IViEntity can have built-in properties

and custom properties. Eventually, these properties have to be sent to the AI

layer, where they will be processed by the intelligent agents. So they must have a

common representation, to be transmitted over the network and parsed on the other

side. Here we decided for simplicity and we have all the properties represented as

string key-value pairs that are human readable. One string keeps the name of the

property, which is used as its key, and another keeps its value. When sending

a property, or a list of properties, over the network, the single strings are joined

together, interweaving them with other predefined separator strings.

The properties are already kept as string key-value pairs in the IViEntity. This

class has an attribute – mProperties – that maps the name of each property to

its value. Nonetheless, this map is used only for custom properties. Any custom

properties can be added to any IViEntity object and changed, at runtime, provided

that the key-value string representation is used. Objects can even have descriptions

of how they can be handled, which would make them similar to smart objects [39].

However, these properties are static, unless they are externally changed.

Built-in properties are also included. For instance, any IViEntity is already cre-

ated with properties like speed, velocity, or facing. Classes that descend from IVi-

Entity add their own built-in properties. For instance, some of the properties that

are included in every MovingCharacter are characterName, mass, and maxSpeed.

These properties cannot be externally changed. Some of them are completely static

and do not ever change within the lifetime of the object (e.g characterName). Oth-

ers are dynamic and their string representation is generated only when asked for

(e.g. speed).

Figure 3.24 shows a diagram the includes the main classes and associations in-

volved in the vision process. An IViHuman has an instance of SyntheticRayVi-

sion, which is an abstract class. This class declares the interface that the IVi-

Human uses to see. The main portion of this interface is accomplished by the

methods SyntheticRayVision::see, SyntheticRayVision::doSee, and SyntheticRayVi-

sion::recallLastSeen. The class SyntheticRayVision has an attribute that remembers

the results of the last iteration of the algorithm – mShortMemory. This attribute

has the type VisibleObjects which, as the name indicates, is a data structure that

can hold relevant information about visible objects, among which are their identi-

fiers. Two methods can be used to execute one iteration of the vision algorithm.

SyntheticRayVision::doSee is the basis one. It does not return anything, but it

records its results in the attribute mShortMemory. This method is called by Syn-

theticRayVision::see, which returns the results afterwards. The method Syntheti-

cRayVision::recallLastSeen can be used to obtain the results of the last iteration.

SyntheticRayVision is still an abstract class, since it leaves the actual imple-
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Figure 3.24: Class Diagram – Vision and IViHumansManager

mentation of the algorithm to its subclasses. This implementation should be deter-

mined by the method doVision. The class MatrixSyntheticRayVision implements

this method according to the algorithm that Semião et al. created. Other algorithms

can be implemented, though, as long as they return the same data for objects that

are seen in each iteration. We chose this design so that different synthetic ray vision

algorithms can be added without changing existing code.

When the owner of the SyntheticRayVision object gets the results of casting

vision, its client becomes aware of the identifiers of the objects whose data the IVi-

Human is allowed to access. To get information about the objects, he first obtains

the references to the actual objects through the singleton object [34] of IViHu-

mansManager, a class that has several managing duties related to the entities that

inhabit an IViHumans’ world (e.g. creation, memory release, indexation, update).

The client can then use the properties interface to obtain the required data.

Memories

Synthetic vision can be explicitly called upon, to obtain information about the

objects that a VH sees at any given moment. The AI layer can post such requests

on the GP layer any time, and the vision algorithm will be executed. Memories

and beliefs can then be managed by the intelligent agents. However, we included an

alternative in the GP layer that we believe significantly reduces the communication

overhead and that releases the AI layer from the burden of constantly asking the

VHs what they see. It may also be used for reactive behavior directly handled by the

GP layer (e.g. by creating steering behaviors that use it). This alternative consists

on an automatic vision mode with custom memory associated.

An IViHuman can be told to activate the “auto vision” mode, so that he period-

ically executes his vision algorithm on his own. This can be done with the method
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IViHuman::activateAutoVision (see Figure 3.25), which receives a real number that

specifies the frequency (f), in Hertz, for the periodical execution of vision. A timer

is initialized when the auto vision mode is activated. The timer is updated when

the IViHuman object is updated and, if more than a whole period (T = 1
f
) went by

since the last iteration of the algorithm, it is executed again and the timer is reset.

The first time this timer is initialized, it is assigned a random value in the interval

[0, T ), so that, if several VHs were given auto vision and are updated in the same

time-steps, vision is carried asynchronously to all of them. Otherwise, and if they

all had the same vision frequency, the algorithm would be executed for all of them

at the same time, which would greatly increase processing time before rendering

certain frames. With this simple solution we get a uniform statistical distribution

of the execution of the algorithm over time.

Figure 3.25: Class Diagram – Vision and Memory

There would be no point in having the vision algorithm automatically executed if

the results were not used. As it is, the IViHuman class does not analyze the results of

the vision algorithm, as this is assumed to be mainly a responsibility of the AI layer.

So, the auto vision mode cannot be executed unless the IViHuman has a memory

that can record relevant data and provide it whenever needed. VisionMemory is

the abstract class that represents this memory, as shown in Figure 3.25.

Every VisionMemory instance is a listener of a SyntheticRayVision object. The
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former is notified whenever the vision algorithm is executed. VisionMemory ob-

jects register themselves with SyntheticRayVision objects with the method Syn-

theticRayVision::addListener and they can stop listening by passing themselves

to the method SyntheticRayVision::removeListener. The method SyntheticRayVi-

sion::doSee is a template method that, besides calling the polymorphic method doVi-

sion, notifies every registered listener by calling VisionMemory::visionDone, passing

the results along. VisionMemory objects can then process these results and save the

information they have been commanded to. A VisionMemory can be told what

properties to get from the objects that are seen by its owner. This can be done

upon construction or through the method VisionMemory::addRegardedProperty, by

providing the names (the keys) of the intended properties. When the VisionMemory

instance is notified of the results of one iteration of the vision algorithm, they obtain

the value of each property they were commanded to focus on, for each object. If

any object does not have any of these properties, the property is simply ignored for

that object.

VisionMemory is still only an abstract class that aggregates the main features

that must be provided by every actual memory. Subclasses implement the pure

virtual methods that had no implementation, according to their specific memory

model. We implemented three subclasses that store and manage data in their own

way: VisionMemoryBySpace, VisionMemoryByTime, and VisionMemoryBySteps.

Event though they manage their storage space in distinct ways, all the implementa-

tions have some limit for their capacity, which is provided upon construction. Thus,

they function only as short or medium term memories. A more persistent memory

model should be built in the AI layer, possibly storing data after it was processed

to a more meaningful symbolic representation that may be more useful in reasoning

and cognition.

VisionMemoryBySpace stores information for a certain number of objects. Its

capacity is determined in terms of the number of object entries that can be stored

at any given time. It has a counter that tracks the number of iterations of the

vision algorithm. The entries are ordered according to their chronological relation

and, when the capacity is exceeded, the results from the oldest iterations are erased,

until there is some space left again.

VisionMemoryByTime stores all the information obtained in a certain time span,

which is specified by its capacity. An absolute timer is kept and updated when the

object is notified of new vision results. Only the results obtained in the last C mil-

liseconds are kept at any time, where C is the capacity of the VisionMemoryByTime

instance.

VisionMemoryBySteps is very similar to VisionMemoryByTime, but it uses rel-

ative time instead of absolute time, as VisionMemoryBySpace does. It stores all the
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information obtained in a certain number of vision iterations. As with VisionMem-

oryBySpace, a counter that tracks the number of iterations of the vision algorithm

is kept. The step of each set of results, that is, the iteration it was obtained at,

is used as a relative timer and only the results from the last C timesteps are kept,

where C is the capacity of the VisionMemoryBySteps instance.

The contents of the IViHuman’s memory can be requested by the AI layer. With

this memory model, agents can ask for the most recent value of some particular

property, for a particular object or for all objects that were seen. They can trace

how a certain property varied recently for some object or draw conclusions from

relating properties of different objects. They can also request information, from

time to time, to monitor the world while reasoning, or to build a persistent memory,

at the pace that suits them best.

3.3.4 Networking

As explained earlier, our platform was conceived in such a way that its two layers run

in different processes, possibly in completely distinct places, and that they connect

by TCP sockets. As the layers are built in different languages and rely on distinct

libraries, we had to restrict our use of networking features to the point strictly

specified by global standards. For instance, we could not use the mechanism of

serialization that Sun’s libraries provide for Java, unless we also implemented it in

C++ for the GP layer. Instead, we chose to use only the TCP protocol and build

upon it.

The communication between the two layers follows the client/server approach.

The GP layer provides the server, and the AI layer connects to it through a client.

Although this work only comprised the implementation of the server, in C++, some

client stubs were also implemented in Java, to ensure that the server was working

properly and to produce demonstrations.

Our server relies heavily on the boost libraries, mainly on Boost.Asio, an open

source cross-platform C++ library for network programming that provides developers

with a consistent asynchronous I/O model using a modern C++ approach. This

library is based on the Proactor design pattern, whose description can be found

elsewhere [66].

A Simple Protocol

The layers of the IViHumans platform communicate with a very simple protocol

that we built over TCP. With this protocol, the server can be connected with only

one client. The client sends requests to the server, which handles them and replies

back to the client, in such a way that every request message from the client triggers

one and only one reply message from the server. This allows the computation of
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both sides to be sequential: the client only sends a new request after receiving the

reply for the previous one and the server deals with only one request at a time.

Messages are composed by two fields: the header and the body of the message.

The header has a fixed size of 3bytes and it indicates the size of the body. The

body has a variable size, but it must not exceed 512bytes. These requirements are

imposed in the class IViMessage, which implements a message in the GP layer, but

they may easily be changed. We also implemented this class in Java, to be used by

the AI layer, and we gave it the same name.

The body of a message is a human readable array of characters. The first thing

that the body of any message includes is an identifier. For request messages, this

identifier is generated by the client as an unique number. Reply messages are iden-

tified with this number followed by the string "(R)". For request messages sent by

the client, the rest of the body is composed by a sequence of keywords that the

server can univocally identify as a particular request, possibly along with the pa-

rameters of the request. In the replies, and after the identifier, the body can carry

string representations of the values that answer client’s questions, or simply success

or error messages.

One of our main goals for this protocol was that it was extensible. On the one

hand, the GP layer is not finished and we hope it comes to provide more features

in the future than it does currently. On the other hand, the development of the AI

layer is only at its early stages and, in time, we may find that more services than

we predicted are needed. So, we need to project existing code in order to welcome

subsequent extension. In what concerns the communication protocol, we needed it to

be able to cope with semantics that is yet to be defined. To meet this requirement,

we conceived the protocol so that it specifies the structure and organization of

messages but in a way that does not restrict the meaning of their contents. This

was accomplished with an approach that was inspired on the Interpreter pattern

[34]. We believe we managed to create a flexible and extensible protocol that is

independent of the meaning of messages.

To explain how messages are handled in the server, we begin by explaining

our parser architecture. Figure 3.26 shows that our message parsers are organized

according to a variation of the Composite pattern. IViParser is the base class of

all parsers. It is characterized by a string attribute, that can be viewed as its key.

The key of a parser is used to identify the message sections it should interpret and

to identify the parser itself, since there is no point in having more than one parser

for each command section. The IViParser class accepts the key in its constructor.

IViParser is an abstract class since it provides no implementation for its main

method: IViParser::parse. This is the method whose implementation determines

the behavior of the parser. It receives an IViTokenizer, which is an auxiliary type
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Figure 3.26: Class Diagram – Parsers

that can encapsulate messages and split them into tokens, and it returns a string

that is used in the construction of the reply message.

All the existing subclasses of IViParser are concrete classes that have implemen-

tations for all their methods. SBStartParser, SBStopParser, and VisionParser are

leaf parsers. They rely on no other parsers to complete the interpretation of one mes-

sage, as opposed to CompositeParsers. CompositeParser instances aggregate other

IViParsers and, after parsing their share of the message, they forward the remainder

of it to their components. GlobalParser is a special kind of CompositeParser, meant

to be the first to receive the message. Put another way, it is used as the root of the

parser tree.

The classes IViParser, CompositeParser, and GlobalParser are not tied to any

particular message semantics. Rather, they suggest a tree structure organization for

the set of possible messages. SBStartParser, SBStopParser, and VisionParser, on

the other hand, are parsers that know how to parse a single kind of message. While

the key of IViParser and CompositeParser instances must be defined upon creation,

their descendants automatically initialize this key according to their particular pur-

pose. The key of GlobalParser is simply the empty string – "". SBStartParser, SB-

StopParser, and VisionParser have their keys automatically initialized to "start",

"stop", and "vision", respectively.

CompositeParser is the class that most parsers are created from, as it is meant

for those that are responsible for parsing the middle sections of a message, that is,
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for those parsers that constitute the middle nodes of the parsers tree. To under-

stand how the method CompositeParser::parse works, look at the example of Figure

3.27. The root of the parsers tree is, as always, an instance of GlobalParser. This

instance can aggregate any number of IViParsers, as the general CompositeParsers.

In this case, it has two composite parsers, whose keys are "foo" and "bar". The

CompositeParser "foo" aggregates two leaf parsers with keys "a" and "b". The

CompositeParser "bar" has one descendant parser, keyed "c".

Figure 3.27: Example of a tree of parsers

In this example, LeafParser1, LeafParser2, and LeafParser3 are imaginary leaf

parser classes. This parser tree would be capable of parsing any message that could

be generated by the following context-free grammar, followed by any string20

<message> ::= <foo> | <bar>

<foo> ::= "foo" <separator> ("a" | "b")

<bar> ::= "bar" <separator> "c"

<separator> ::= <sepliteral> <separator>

<sepliteral> ::= " " | "," | ";" | ":"

To parse any such message, after keeping the id of the message, the GlobalParser

reads the first token and checks which of the parsers it aggregates has that token as

key. The following parser, being also a composite one, will do the same thing. When

the last key string is reached, the corresponding leaf parser is delegated the respon-

sibility of parsing the remainder of the message, which may include an arbitrary

string in which any parameters can be supplied. After completing the computation

that is required by the client’s request, the leaf parser returns a string that is used

20The grammars are expressed in Augmented Backus-Naur Form (ABNF) [2], sometimes called
Extended Backus-Naur Form (EBNF)
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to form the reply message. The control goes back up in the chain and any involved

parser can add information to the returned string. Finally the GlobalParser adds

the string "<id>(R)" to the beginning of the string, before returning it.

In some cases, it would be important to have some of the CompositeParsers do

a part of the processing, eventually consuming more from the original message than

their key. This can be very easily accomplished by subclassing CompositeParser and

overriding the method CompositeParser::parse accordingly, so that parameters are

interpreted and the right tasks are carried before forwarding the rest of the message

to the proper component parser. This is exactly what GlobalParser does.

Figure 3.28: Our default tree of parsers

The leaf parsers we implemented allow us to parse a small set of messages, that

can be used for demonstration purposes and extended in the future. Our default

parser tree looks like what is show in Figure 3.28 and it is fit to parse the messages

that can be generated by the following grammar, where some intuitive rules are

informally defined:

<message> ::= <id> <separator> (<sense> | <act>)

<sense> ::= "sense" <separator> <vision>

<vision> ::= "vision" <separator> <targetIV> <separator>

(<obj> | "all")
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<obj> ::= <objID> <separator> (<property> | "propKeys" | "props")

<act> ::= "act" <separator> <sb>

<sb> ::= "sb" <separator> (<start> | <stop>)

<start> ::= "start" <separator> <targetMC> <separator>

<steeringBehavior> <separator> <params>

<stop> ::= "stop" <separator> <targetMC> <separator>

(<steeringBehaviorID> | "all")

<separator> ::= <sepliteral> <separator>

<sepliteral> ::= " " | "," | ";" | ":"

<id> – a number that identifies the request message

<targetIV> – the name that identifies an IViHuman

<targetMC> – the name that identifies a MovingCharacter

<objID> – the name that identifies an IViEntity that is seen by the target IViHuman

<property> – the name of the property whose value is requested

<steeringBehavior> – the name of a (type of) steering behavior (e.g. Arrive2D-

Behavior)

<params> – a list of the parameters that are used to create the steering behavior

<steeringBehaviorID> – the id of a particular steering behavior

The rules of this grammar could be simplified, but we chose to present them

so that each IViParser in our structure had a corresponding rule. The root parser

– GlobalParser – acts over messages described by the rule <message>. <sense>,

<act>, and <sb> are the rules for the other composite parsers. Finally, <vision>,

<start>, and <stop> are the rules for the leaf parsers.

The replies to these requests are very simple. First of all comes the reply id

(<id>(R)). Then, when the client expects a value, or a list of values, their string

representation forms the remainder of the message. For instance if the server received

a request message with the body 1 sense vision Human1 object1 speed, and the

speed at which Human1 saw object1 was s = 20, the reply would be simply 1(R) 20.

If the request was 2 sense vision Human1 object1 position, and the position

seen for object1 was
−→
P = (5, 0, 10), the reply would be 2(R) 5 0 10. If the server

successfully handles a request regarding a particular SteeringBehavior object, its id

is used for the body of the reply. When an error occurs and the server is not able

to cope with the request, an error description is put after the reply id.
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This parser structure is used for a particular set of messages that account only

for a part of the features that the GP layer already provides. The main portion

that is not addressed by currently implemented messages is the one that deals with

expressions. However, the existing parser structure can be extended to support

further semantics. For instance, suppose that it was to be extended to deal with

expressions, with a similar approach to the one is used for steering behaviors. A pos-

sible solution would be to use a CompositeParser with the key "expression" that

would have leaf parsers for the keywords "activate" and "deactivate". Of course,

the corresponding leaf classes would have to be implemented, extending IViParser

directly. Suppose also that the "expression" parser had to read a parameter be-

fore forwarding parsing control to its components. The class CompositeParser alone

could not do the trick, but a class ExpressionParser that inherited from it could be

created, overriding the method ExpressionParser::parse so that it consumed the pa-

rameter from the IViTokenizer that encapsulated the message. When this method

was called, the keyword "expression" would already have been consumed. The

ExpressionParser would consume and process the parameter. It would then con-

sume the following keyword to check whether it should call the parse method on

ActivateExpressionParser or DeactivateExpressionParser. The ExpressionParser in-

stance would be given as a component to the "act" CompositeParser, since emotion

expression can be viewed as a special form of acting.

Other extensions could be added, even to control other aspects of the virtual

world. Also, this protocol could be used by any client that followed it, even if it

had no intent of dealing with artificial intelligence. For instance, a GUI client could

be connected to the GP layer to have a real human remotely control not only the

VHs but also other world or application aspects (e.g. lighting conditions, viewport

configuration).

IViParserManager

Instead of leaving them for the application layer, we concentrate the duties of man-

aging parsers in the class IViParserManager (see Figure 3.29). This class deals with

low-level memory management for IViParsers and provides the correct parsers by

key, ensuring that only one parser is created for the same purpose. Clients of this

class can access any parser at any time, without worrying about whether it was

already created or not. Further, it encapsulates parser creation at a single place, by

accepting creator functions that determine its behavior when parsers that were not

created yet are requested. These creator functions have to be registered with the

IViParserManager by the layer that establishes the semantics of the messages, which

is built on top of existing code, to relieve the application layer from that duty. This

way, as long as a single set of messages has been defined as enough for the intended
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purposes, multiple applications can use it without always having to rebuild parser

structure. Besides, a default parser structure is provided by the method IViParser-

Manager::registerDefaultCreators. As the current parser structure (that of Figure

3.28) is not complete yet, the implementation of this method is still not final. In

the future, it should be augmented to include new developments in what regards

general purpose message semantics.

Figure 3.29: The class IViParserManager

IViParserManager aggregates IViParsers in the attribute mParsers. As it deals

with only one parser per key, it uses the key as their identifier to index them in

a map. The method IViParserManager::getParser provides parsers by their key.

When this method is called, the IViParserManager checks if it already has any parser

with the supplied key. If it does, it simply returns the parser, otherwise, it creates

one before returning it. However, as parser creation differs according to the intended

parser structure, the IViParserManager cannot have hardcoded implementations for

every possible parser creation process. Instead, it registers what we call creator

functions, that is, functions that are called back when the corresponding parsers

need to be created. In fact, IViParserManager aggregates these creator functions,

in the attribute mCreators, also indexing them by the key of the parser they create.

The manager must have a creator function for every parser it is asked for, otherwise

an exception is thrown when it realizes that it does not know how to create them.

Recall that, to create a parser, most of the time it is not enough to declare

and initialize the parser. CompositeParsers must be given their components, which

might also have to be created. On the other hand, any IViParser subclass could

declare a constructor that received obligatory configuration parameters. What the

method IViParserManager::registerDefaultCreators does is spare programmers from

having to make this effort when the current parser structure is fit for their intentions,

by automatically registering creator functions for the involved parsers. Appendix

C shows the implementation of this method and of the creator functions that are

registered by default21.

21These functions are local to the compilation unit used for the IViParserManager class and
cannot be used externally
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Services and Leaf Parsers

The current leaf parsers provide the grounding interface between the server and the

rest of the GP layer. Although our architecture enables composite parsers to play a

role in interpreting and mapping messages to commands, currently the leaf parsers

are the ones that actually fulfill the requests.

VisionParser can handle two essential kinds of requests related to the VHs’ sense

of vision: obtaining the identifiers of the objects that are seen by a certain VH;

obtaining characteristics for a certain object. The first request is carried by the

message <id> sense vision <targetIV> all. When the vision parser is asked

to parse its section of such a message, it commands the IViHuman with the name

<targetIV> to execute its vision algorithm and returns a string with the sequence

of identifiers of the objects that were seen (their names). The other kind of re-

quests comprehends the three messages <id> sense vision <targetIV> <objID>

(<property> | propKeys | props). In the first case, <property> assumes the

name of a property and the VisionParser replies with the value of that property for

object <objID>, if this object is being seen by <targetIV>. The IViHumans and

the other IViEntities are obtained through the IViHumansManager. If the object is

not seen by the IViHuman, if it does not exist, or if it does not have the specified

property, an error message is returned.

SBStartParser can add steering behaviors to a moving character. For that, it asks

the singleton instance of SBFactory to create them (see Figure 3.30). SBFactory

is the class that manages the construction and destruction of SteeringBehaviors

and, for that, it also aggregates instances of another class – SBCreator. The ideia

is similar to that of IViParserManager, in which creator functions are registered

with the manager so that he knows how to create custom IViParsers. Here, the

SBCreator instances have an analogous role to that of creator functions. Due to

implementation details, SBCreators benefit from being instances of a class instead

of functions.

When a request is made to add some SteeringBehavior to an IViHuman, it is

handled differently based on whether the new behavior is a CombineBehavior or

not, on whether any steering behavior is set for the IViHuman currently, and, if so,

which is. The pseudocode shown in Figure 3.31 illustrates how the addition of a

steering behavior is processed depending on these factors.

This pseudocode shows that there are cases in which a new CombineBehavior

must be created, even if it was not explicitly asked for. Even though the current

implementation only includes one CombineBehavior, namely SimpleCombineBehav-

ior, clients of the platform may wish to provide and use other alternatives. In order

for the parser to obtain a CombineBehavior automatically, one must have been

appointed as default. Our solution to this issue is based on the Prototype de-
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Figure 3.30: Class Diagram – SBStartParser, SBFactory and SBCreators

1 I f ( ! human . hasSteer ingBehav ior ( ) )
2 human . g iveStee r ingBehav io r ( requestedBehavior ) ;
3 Else
4 I f ( requestedBehavior . isCombine ( ) )
5 I f (human . getCurrentBehavior ( ) . isCombine ( ) )
6 For( Stee r ingBehav ior sb In human . getCurrentBehavior ( ) )
7 human . getCurrentBehavior ( ) . removeSteer ingBehavior ( sb ) ;
8 requestedBehavior . addSteer ingBehavior ( sb ) ;
9 human . g iveStee r ingBehav io r ( requestedBehavior ) ;

10 Else
11 requestedBehavior . addSteer ingBehavior (human .

getCurrentBehavior ( ) ) ;
12 human . g iveStee r ingBehav io r ( requestedBehavior ) ;
13 Else
14 I f (human . getCurrentBehavior ( ) . isCombine )
15 human . getCurrentBehavior ( ) . addSteer ingBehavior (

requestedBehavior ) ;
16 Else
17 CombineBehavior comb ;
18 comb . addSteer ingBehavior (human . getCurrentBehavior ( ) ) ;
19 comb . addSteer ingBehavior ( requestedBehavior ) ;
20 human . g iveStee r ingBehav io r (comb) ;

Figure 3.31: Pseudocode for the addition of a SteeringBehavior to a MovingChar-
acter
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sign pattern [34]. The default CombineBehavior can be appointed by calling the

method SBFactory::setDefaultCombine and passing in a standard instance of the

CombineBehavior that should be used. This instance will have to be copied ev-

ery time the default CombineBehavior is requested by the SBStartParser. To that

end, the class CombineBehavior declares the pure virtual method CombineBehav-

ior::prototypeClone, which returns a new CombineBehavior that is intended to be

a shallow copy of the instance the method is called upon. We say that the copy

should be shallow because no component behaviors should be included in the new

CombineBehavior. This method should be implemented so that the returned copy

is of the same ultimate type as the original and so that any particular configura-

tions are kept. In the case of our SimpleCombineBehavior, it simply returns a new

SimpleCombineBehavior.

SBStopParser can handle two different kinds of requests: to deactivate a partic-

ular steering behavior from a MovingCharacter; to completely stop the movement

of the MovingCharacter. To cope with the second kind of request, the parser ex-

changes the current steering behavior of the moving character for an instance of

StopBehavior obtained from the SBFactory singleton instance. To stop a single

behavior, the parser first checks whether the supplied id corresponds to the cur-

rent behavior of the MovingCharacter. If it is, the parser removes it. Otherwise, if

the current behavior is a CombineBehavior, the parser executes a depth-first search

over the corresponding behavior tree. If no behavior with the id is found, an error

message is returned.

The Server

The server of the IViHumans platform is implemented in the GP layer, by the

class IViServer. The sessions that are established with the client also have a class

representation – IViServSession. The IViServer relies on the Boost.Asio library

and it is most dependent on an object of the type boost::asio::io service, which is

essential for asynchronous networking operations. With the help of this object, the

server behaves almost automatically.

Figure 3.32 shows the classes IViServer and IViServSession. The class IViServer

is able to accept connections right after it is created, albeit only one at a time.

When a connection is accepted, the IViServer creates an instance of IViServSession,

which will be expecting messages from the client right away.

Networking operations are executed asynchronously, so that processing time is

properly shared with the other tasks of the GP layer. To execute an asynchronous

Input/Ouput (I/O) operation, clients of the Boost.Asio library post the correspond-

ing request to the io service object, providing a handler method to be called right

after the I/O operation completes. The io service registers the request and im-
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Figure 3.32: Class Diagram – IViServer and IViServSession

mediately returns control to the client, so that he can continue with other duties.

The requests are later dealt with by the io service, when the right method is called

upon it. In the case of the IViHumans platform, the main loop of any GP layer

application must adequately distribute processing time by all the tasks. Thus, at

each iteration, the io service should be commanded to execute at most one pend-

ing operation, without blocking. This should be done in the main loop by calling

the method io service::poll one22. The implementation of the server follows the

continuation-passing style, in which the continuation of execution is represented by

a handler method, in order to avoid blocking the main loop with I/O operations.

When the IViServer object is created, it automatically posts an asynchronous

task to accept a client connection, providing the method IViServer::handleAccept as

handler. Control is immediately returned to the method that created the IViServer

object to carry on with any other operations. When io service::poll one is hit, the

io service checks whether there are any operations awaiting completion and it notices

the accept operation, executing it. If the client did not try to communicate with

the server yet, the operation is delayed again and control is returned. Otherwise,

the connection is accepted and the handler is called. In IViServer::handleAccept, an

IViServSession object is created and an operation is posted to the io service to read

h bytes, where h is the number of bytes of the header of an IViMessage. The method

IViServSession::handleReadHeader is passed along as a handler. Until something is

received from the client, this read operation is the only operation pending on the

22which should be followed by the method io service::reset, due to design details of the underlying
library
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io service. When something arrives, the io service reads x bytes, where x <= h,

and returns. This action is repeated in each call to io service::poll one until x = h,

at which point the read operation is complete. IViServSession::handleReadHeader

is then called. In this method, the header is decoded to check how many bytes long

is the body of the message. Still in this method, a new read operation is posted,

to read n bytes, where n is the number of bytes that the body of the message

occupies. Again, control is returned and the application can carry on with anything

else. When io service::poll one is hit, again only an undefined number of bytes is

read. Durring the following iterations of the main loop, eventually n bytes are read

and IViServSession::handleReadBody is called. In this method, the IViServSession

has a complete IViMessage object. The message is encapsulated in an IViTokenizer

and passed to the global parser. The parser parses the message, forwarding it down

the parser tree. The request is handled and, eventually, a reply string is returned

back up the tree, to the method that is handling the reception of the message

(IViServSession::handleReadBody). A request for the io service to write the reply

is made and the control is returned. Again, several iterations of the main loop may

go by until all the bytes are written to the socket stream. When the last byte is

written, the method IViServSession::handleWrite is called. In this method, a new

post to read a message header is made and everything happens again.

If the io service fails to execute any of the tasks he is assigned to perform, the

corresponding handler is called with a meaningful error code (recall the declaration

of the mentioned handlers, in Figure 3.32). The handler uses this code to create

and throw an exception. This exception can be caught, in the main loop and, if

the error occurred because the client terminated the connection, the server can be

initiated again, so that the GP layer recovers from the problem. Other errors can

be also dealt with or ignored by the application. It can be stated that the server

carries on its duties autonomously as, besides updating the io service, the only time

the application needs to worry about the server is when it creates it and when it is

restarted.
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Conclusions

Many ideas involved in the IViHumans platform are borne by current scientific

context. Thus, we present the contributions that we consider the most important

for the topic of virtual humans and virtual environments. Although current scientific

research in this topic is shaped in large proportions, we share the prevailing opinion

that there is still much space for further efforts to help leveraging it. It is with

this hope that we seek to create a generally applicable platform to support the

development of applications that integrate virtual humans and virtual environments,

and that are conceived for various purposes.

The IViHumans platform comprises one layer for graphical processing and one for

artificial intelligence. The layers were projected to run in different processes, com-

municating by means of a simple, yet effective and extensible client/server protocol

that we projected and implemented. In this framing, the graphical processing layer

plays the role of server, while the artificial intelligence layer occupies the position

of the client. Therefore, the graphical processing layer is the base of the platform,

providing services for the intelligent agents that populate the artificial intelligence

layer.

We expose the methods we applied to achieve the main goals that were projected

for the IViHumans platform, focusing on the layer that accomplishes the graphical

processing, along with the theory that sustains them. The tasks of the graphical

processing layer rely, first of all, on graphical representations. For that matter, we

highlight the techniques used in object modeling, mainly in what concerns the virtual

humans we use, and we explain how their graphical representation reflects in static

and dynamic scene rendering. We also focus on our design and implementation and

on how we applied the principles of object oriented design to confer flexibility to the

platform and to enable different applications to use and build upon its core features,

which support the exploration of different kinds of simulations.

We pay special attention to the central capabilities of the virtual humans. We ex-

plain our approach to the application of Reynolds’ conception of movement to make

83
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virtual humans and, potentially, other objects steer autonomously in the world,

while displaying consistent animations that are automatically chosen according to

character specific rules. We expose the solution of our framework for facial expres-

sions that can be mixed together to transmit complex emotions, being subject to

multiple blending that automatically drives smooth transitions on characters’ faces.

We also discuss how facial expressions are encapsulated in convenience animations

that allow easy manipulation and that can be extended to reference objects that aid

the production of deformations. We show how virtual objects can be characterized

with default and custom properties and we discuss the integration of perception

through synthetic vision, as well as how it is coupled with distinct kinds of auto-

matic memory that recalls arbitrary attributes of the objects that inhabit the virtual

world. Some of these features are depicted in the most recent video we created, that

can be found at [20].

Due to the scarceness of human resources assigned to this project, its diverse

sub-topics are tackled somewhat slowly when compared to our wishes. In time,

we came to the solid conclusion that the configuration of this project demands a

judicious layout of priorities. The priority scheme we followed in the development

of the graphical processing layer of the IViHumans platform was driven by a central

idea: to start by creating a conducting wire that crosses this layer and unites it to the

artificial intelligence layer; then, to broaden and consolidate this wire, in an iterative

way, so that it becomes a fully consistent bridge. Many other paths could have been

followed, to explore different ideas, and many will certainly still be. However, to

achieve solid results it is essential to stand on solid ground. We hope that we built

accurately shaped foundations that can sustain ever higher results in the future.

4.1 Future Work

Since the first stages of conception of the IViHumans platform, much effort was put

in projecting its main aspects but, as we believe it is natural in scientific research, the

course of this project was not completely defined beforehand. Instead, we established

a series of aims that was often revisited while we pursued their accomplishment.

During the study of the platform’s context and during its development, we came

up with relatively detailed ideas that we believe would enrich its applicability to

different purposes. Most of these ideas, alike some of the goals that were previously

set, could not be put into practice yet. These are left as future work and discussed

here.

The integration of the physics engine with the remainder of the graphical pro-

cessing layer is probably the most important goal for this layer in the short-term. It

will supply it with necessary capabilities for the natural progress of the events that
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underlie any dynamic world. From these, we emphasize the automatic application

of forces to the objects that are present in the virtual environment, with special

attention to collision handling mechanisms.

As explained in Section 3.2.2, the movement animations that the platform ap-

plies show the virtual humans moving in a straight line. It is our opinion that the

believability of virtual humans would be increased if, when they were turning, they

were animated in different ways on the basis of how steep was their turn. In the

same section we suggested that a possible solution would imply that the models

could have distinct animations for different turn arcs and that these animations

could be blended to generate the right animation for any case. Of course, this would

require that the animations were correctly synchronized and that all of them fitted,

so that no sliding feet or other artifacts would emerge.

An Inverse Kinematics algorithm could also be added to the graphical layer,

to solve issues like these and others as well. This algorithm would be particularly

helpful for having characters interacting with the environment in any way that

involved touch, be it for grasping, sitting and even walking on rugged terrain.

Transitions between animations should also be accounted for. Currently, they

are only correct for the exchange or update of facial expressions, but not in what

concerns other features, namely walking and running. When a virtual human goes

from an animation to another, the change in his speed is gradual, as is the change

in animation speed. However, the transition between the two animations happens

instantly and it should not. This problem may be hard to solve, again mainly due

to sliding feet artifacts, and finding its solution would require significant research.

Another improvement we proposed, in Section 3.3.3, aims at increasing the ef-

ficiency of the vision algorithm. We believe the distribution of the rays that the

algorithm casts into the scene could be improved by using information of the ob-

jects that are known to be in the field of view of a character. Instead of casting

rays to all over the field of view, they could be concentrated in the zones that were

known to be occupied by objects. We speculate that this procedure could yield a

more efficient and precise algorithm. This idea was not explored yet though and it

would require a study to ensure its viability and to check whether it was better than

the existing approach. The inclusion of simulation models for other senses besides

vision could also be very interesting, even though it should probably be left for a

more distant future.

For the user to be able to interact with the graphical processing layer, a GUI

should be provided by applications. Some GUI features that are common to applica-

tions that display 3D worlds could be developed over a carefully chosen GUI library,

to create a standard GUI framework for this layer. Selecting objects by pointing

and clicking with the mouse, highlighting and showing information for them, and



Chapter 4. Conclusions 86

positioning entities, lights, and cameras in the world, are examples of such features.

For the development of rich applications, much more digital content should be

provided to be used in the creation of virtual worlds. Complex material shaders,

realistic object and scenery meshes, and accurately rigged and animated character

models would be the priorities.

For the whole of the platform, the most urgent effort should clearly be put on

projecting and developing the artificial intelligence layer. For now, the graphical

processing layer can already be used to quickly create applications that do not

include agents with cognitive capabilities. We believe that, when both layers reach

a solid state of development and interconnection, the IViHumans platform can be

even more fruitful in diverse contexts.



Appendix A

Examples of Configuration Files
for Characters

A.1 An Example of a .mcharacter File

## Parameter definition file for MovingCharacter CMan_v1_1

[General]

mass=0.3

maxSpeed=75.0

maxForce=100.0

[SteeringBehaviorsSettings]

walkMinSpeed=5.0

arriveDecDist=20.0

arriveStopDist=2.0

arriveSpeed=9.0

arriveDecel=6.0
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A.2 An Example of a .ivihuman File

## Parameter definition file for IViHuman BizWoman_v1_3

meshFileName=BizWoman_v1_2.mesh

defaultFacing=<default>

headBone=Head

eyeHeight=10.3

# Translation Animations

[TranslateAnims]

WalkForward=0.00001 30 18.5

# Transformation operations to be applied at load time.

# The transformations are applied in alphabetical order of the keys.

[Transform]

a=translate 0 16.9 0



Appendix B

Expressions and the Composite
Pattern - Two Alternatives

The Composite Design Pattern is used in the IViHumans platform for implementing

expressions. There is an issue about this pattern that demands attention, towards

which there is no universally accepted correct solution. The question is where should

the operations for managing children components be put and opinions diverge re-

garding this matter.

Since the composite class aggregates other components, it must have operations

for adding, removing, and obtaining children components, typically accomplished

by methods with names like addComponent, removeComponent, and getComponent.

However, it is not unanimous whether this methods should belong only to the com-

posite class or be declared in the component class. It is clear, though, that both

approaches have advantages and drawbacks, as the analysis found in [34] explains.

The option we followed was to declare these operations only on the composite class.

This implies less transparency, since the components cannot be dealt with uniformly,

but more security, because any attempt to allude to children of a leaf node is ex-

cluded at compilation time. Moreover, in our case, the alteration of an expression

that is already fully created is not justified. Indeed, adding components to an expres-

sion that is already conceived would most likely deprive it of its essence, effectively

turning it into another expression. The class CompositeExpression even leaves the

remove operation out, remaining faithful to this opinion.

The time when the use of this operations makes most sense is immediately af-

ter the creation of Expression objects. Because in the moment of creation of the

expressions their types are necessarily distinguished (since calls to the respective

constructors were just made) there is no real loss of transparency in this situation.

With this choice we are able to respect a basic principle of object oriented design

that determines that a class should only declare operations that are meaningful for

every descendant.
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Default Creator Functions for
IViParserManager

1
2
3 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 IViParser ∗ createSBStar tParse r ( )
5 {
6 return new SBStartParser ;
7 }
8
9 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 IViParser ∗ createSBStopParser ( )
11 {
12 return new SBStopParser ;
13 }
14
15 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 IViParser ∗ c r ea t eV i s i o nPar s e r ( )
17 {
18 return new Vis ionParse r ;
19 }
20
21 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 IViParser ∗ createSBParser ( )
23 {
24 CompositeParser ∗ r e t = new CompositeParser ( ” sb” ) ;
25 IViParser ∗ c h i l d 1 = IViParserMgr . ge tParse r ( ” s t a r t ” ) ;
26 IViParser ∗ c h i l d 2 = IViParserMgr . ge tParse r ( ” stop ” ) ;
27 ret−>addParser ( c h i l d 1 ) ;
28 ret−>addParser ( c h i l d 2 ) ;
29
30 return r e t ;
31 }
32
33 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34 IViParser ∗ createActParse r ( )
35 {
36 CompositeParser ∗ r e t = new CompositeParser ( ” act ” ) ;
37 IViParser ∗ c h i l d = IViParserMgr . ge tParse r ( ” sb” ) ;
38 ret−>addParser ( c h i l d ) ;
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39
40 return r e t ;
41 }
42
43 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44 IViParser ∗ c r ea t eSensePar s e r ( )
45 {
46 CompositeParser ∗ r e t = new CompositeParser ( ” sense ” ) ;
47 IViParser ∗ c h i l d = IViParserMgr . ge tParse r ( ” v i s i o n ” ) ;
48 ret−>addParser ( c h i l d ) ;
49
50 return r e t ;
51 }
52
53 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 IViParser ∗ c r ea t eGloba lPar s e r ( )
55 {
56 GlobalParser ∗ r e t = new GlobalParser ( ) ;
57 IViParser ∗ c h i l d 1 = IViParserMgr . ge tParse r ( ” act ” ) ;
58 IViParser ∗ c h i l d 2 = IViParserMgr . ge tParse r ( ” sense ” ) ;
59 ret−>addParser ( c h i l d 1 ) ;
60 ret−>addParser ( c h i l d 2 ) ;
61
62 return r e t ;
63 }
64
65 //−−−
66
67 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
68 void IViParserManager : : r e g i s t e r D e f a u l t C r e a t o r s ( )
69 {
70 r e g i s t e r C r e a t o r ( ” s t a r t ” , c reateSBStar tParser ) ;
71 r e g i s t e r C r e a t o r ( ” stop ” , createSBStopParser ) ;
72 r e g i s t e r C r e a t o r ( ” v i s i o n ” , c r ea t eV i s i onPa r s e r ) ;
73 r e g i s t e r C r e a t o r ( ” sb” , createSBParser ) ;
74 r e g i s t e r C r e a t o r ( ” act ” , c reateActParse r ) ;
75 r e g i s t e r C r e a t o r ( ” sense ” , c r ea t eSensePar s e r ) ;
76 r e g i s t e r C r e a t o r ( ”” , c r ea t eGloba lPar s e r ) ;
77 }
78
79 //−−−
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Interacção Pessoa-Máquina, Interacção 2006, pages 133–138, Outubro 2006.

[68] Pedro Miguel Semião, Maria Beatriz Carmo, and Ana Paula Cláudio. Imple-
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