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Resumo

A presente tese de mestrado é composta por quatro capítulos,  sendo o segundo e o 

terceiro independentes e dedicados a dois temas distintos e o primeiro e o último uma 

introdução geral e considerações finais respectivamente. 

São propostos três objectivos para realizar nesta tese:

1. Inferir  uma  filogenia  da  espécie  Psammodromus  algirus com  base  numa 

amostragem ao longo de quase toda a sua área de distribuição (excepção feita 

para Algeria, Tunísia e Sul de França). Esta abordagem providenciará ainda dados 

básicos para o estudo populacional.

2. Contribuir  para o debate científico relativa à filogeografia da espécie  P. algirus, 

recorrendo ao melhor dos métodos utilizados em dois estudos anteriores dedicados 

à mesma problemática e adicionado-lhe uma componente ao nível populacional. 

Espera-se  que  estes  novos  resultados  possam fazer  avançar  a  resolução  dos 

conflitos identificados.

3. Através  da  disponibilização  do  software  Concatenator,  facilitar  a  realização  de 

análises  filogenéticas,  especialmente  ao  utilizadores  que  não  estejam 

familiarizados  com  edição  de  ficheiros  de  texto  UNICODE,  através  de  uma 

interface gráfica simples do tipo “apontar e clicar”.

A  espécie  Psammodromus  algirus tem  sido  estudada  desde  1973,  nessa  altura 

principalmente  ao  nível  da  morfologia,  e  gradualmente  a  outros  níveis,  tal  como  da 

biologia, distribuição, taxonomia e ecologia. Mais tarde, em são realizados trabalhos com 

marcadores  moleculares  em  que  é  incluída  esta  espécie  mais  mais  recentes,  são 

realizados  dois  trabalhos  sobre  a  filogeografia  de  P.  algirus com  recurso  a  estes 

marcadores e que apresentam resultados discordantes.

Com vista à resolução deste conflito, foram experimentados diversos genes candidatos 

dos quais apenas quatro foram utilizados, apesar das diversas tentativas de amplificação 

e sequenciação efectuadas.  Os quatro  genes utilizados nas análises realizadas neste 

estudo são todos mitocondriais, e são o 12s rRNA, 16s rRNA, citocromo b, e NAD4. 

2



Os resultados obtidos para os diversos conjuntos de dados analisados são apresentados 

sob a forma de árvores filogenéticas (apenas uma por conjunto de dados visto que os 

métodos  utilizados  apresentaram  sempre  resultados  concordantes):  4  resultantes  da 

análise  de  cada  conjunto  de  sequências  individualmente,  4  resultantes  de  dados 

concatenados dois a dois (2 árvores enraizadas e 2 desenraizadas) e 1 resultante da 

concatenação dos quatro conjuntos de dados.

É então analisado um quinto conjunto de dados, com sequências de apenas um gene 

(citocromo  b),  mas  com  um  maior  conjunto  de  amostras  do  que  na  abordagem 

filogenética. Com base nestes dados são efectuadas diversas análises, tais como mapas 

de  “redes”,  gráficos  de  “mismatch”,  variância  molecular  (AMOVA),  ou  cálculo  de 

diversidades nucleotídica e haplotípica.

Mostra-se  então  que as  árvores  apresentadas são de alguma forma contraditórias,  e 

concluí-se que é devido a diferenças na relação do “ingroup” com o “outgroup”, que difere 

de gene para gene. No entanto, é possível distinguir 6 “clades”, Ibéria Este (IE), Ibéria Sul 

(IS),  Ibéria Oeste (IW),  Marrocos Interior  (MI),  Marrocos Este (ME) e Marrocos Oeste 

(MW), que são congruentes em todas as árvores. É ainda demonstrado nesta análise que 

os grupos IS e IW são bastante próximos e que existe uma maior clivagem entre IE e IS + 

IW do que entre os 3 “clades” Marroquinos. 

Com base nestes resultados, são explicadas as diferenças encontradas entre os trabalhos 

anteriores  sobre  o  mesmo  tema.  Uma  vez  que  apenas  com  estes  genes  a  análise 

filogenética clássica não permite resolver totalmente as relações entre os diversos grupos 

considerados recorre-se aos dados da abordagem populacional, principalmente valores 

de  diversidades nucleotídica  e  haplotípica,  para  testar  as  hipóteses de  explicação do 

padrão biogeográfico actual da espécie propostas nos trabalhos anteriores, e ainda um 

terceira  hipótese  proposta  pela  primeira  vez  neste  trabalho.  Os  dados  obtidos, 

principalmente a partir  da abordagem populacional,  dão um pouco mais de suporte  à 

hipótese nova apresentada neste trabalho do que ás propostas em outros estudos, sem 

no entanto permitir colocar um ponto final na questão.

De qualquer das formas, uma vez que a hipótese apontada como mais provável exige 

dois  momentos  de  atravessamento  do  mar  Mediterrâneo  por  parte  de  uma  espécie 

terrestre  como  é  o  caso  de  P.  algirus,  é  de  notar  que  esta  barreira  não  será  tão 

“impermeável” como se pensava outrora.
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É  importante  ainda  realçar  que  acrescentar  um  ou  mais  genes  nucleares  à  análise, 

poderá com relativa facilidade alterar os resultados aqui obtidos.

Em relação ao terceiro objectivo desta tese, este é abordado no terceiro capítulo, que é 

um artigo publicado sobre o software desenvolvido neste âmbito. Este software foi escrito 

na  linguagem  “Perl”,  hoje  em  dia  bastante  comum  em  bioinformática,  recorrendo  ao 

módulo  “Perl/Tk”  para  a  implementação  de  uma interface  gráfica  simples  e  elegante. 

Devido a este interface, é possível com este programa de uma forma simples e rápida 

efectuar conversões de formatos de ficheiros (FASTA para Nexus para FASTA) tendo em 

conta requerimentos específicos de outros programas populares em análise filogenética / 

filogeográfica  (Ex.  PAUP*,  MrBayes,  Network,  TCS,  etc...)  e  ainda  efectuar  a 

concatenação de até cinco matrizes de dados do tipo Nexus, mais uma vez com opções 

de  preparação  de  ficheiros  para  outros  programas  populares  neste  tipo  de  análise 

(apenas PAUP* e MrBayes neste caso).  Finalmente é dado um exemplo da utilização 

deste software em situações comuns neste tipo de análises.  O programa encontra-se 

disponível  para  “download”  em  http://cobig2.fc.ul.pt na  secção  de  “Downloads”.  Estão 

disponíveis  os  ficheiros  binários  (executáveis)  para  Windows  e  o  código  fonte  para 

Windows e sistemas UNIX (Linux e Mac OS X). A instalação em ambiente Windows e 

Linux resume-se à simples descompactação dos ficheiros e colocação numa pasta. Para 

Mac OS X este procedimento é mais complexo, mas está também disponível na mesma 

página um manual de instalação para este sistema.

Como considerações finais sobre os resultados obtidos neste trabalho, pode afirmar-se 

que:

Em relação ao estudo filogenético e filogeográfico são comentados os resultados pouco 

conclusivos, mas no entanto inovadores em relação aos trabalhos já existentes, não só 

pelo tipo de abordagem em termos de métodos, mas também pela distribuição dos locais 

amostrado como são também ainda expressas as expectativas  futuras,  em relação a 

outras hipóteses e aumento de amostragem e genes analisados (em relação à inclusão 

de um ou mais genes nucleares).

Relativamente à parte sobre software, biologia evolutiva e bioinformática é expressa a 

preocupação  com  a  crescente  dificuldade  ao  nível  da  análise  de  dados  em biologia 

evolutiva, onde as ferramentas existentes hoje em dia não são “amigas do utilizador”. É 

necessário  inverter  esta  situação,  visto  que hoje  em dia  é  necessário  saber  diversas 

linguagens de (quase) programação para se poder efectuar uma análises filogenéticas 
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completas  (principalmente  com as  mais  recentes  ferramentas  de  aferição  de  relógios 

moleculares).  Porque  biólogos  não  são  programadores,  espera-se  que  esta  pequena 

aplicação desenvolvida nesta tese ajude a definir um padrão em termos de facilidade de 

utilização do software nesta área.

Palavras-chave: Psammodromus  algirus,  Filogenética,  Filogeografia,  mtDNA, 

Concatenação, Perl.
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Abstract

In  this  work  phylogenetic  and phylogeoraphic  analyses are  conducted on  the  species 

Psammodromus algirus based on samples from the Iberian Peninsula and Morocco with 

the goal of resolving the controversy relative to this subject that exists in the literature. 

Four genes were used (12s, 16s, cytochrome b and NAD4) which were analysed one by 

one  and  concatenated  in  different  combinations.  The  results  differed  from  dataset  to 

dataset if the trees were rooted; in the case of unrooted trees, the results were relatively 

congruent.  The phylogenetic approach was thus not  enough to resolve the addressed 

issues  and  reach  satisfying  conclusions  regarding  the  species'  present  biogeographic 

patterns. In order to address this issue a population approach was made with a larger 

number of samples. With the combined results from both approaches it was possible to 

propose an explanation for this species' past migrations which is different from the ones 

presented in former publications.

Furthermore, software was developed in the context of this thesis, which is very useful in 

phylogenetic/phylogeographic analyses. The program's purpose is to make data matrix 

conversions (FASTA to Nexus to FASTA with several program requirements in mind) and 

concatenation (of up to five Nexus data files) an easy task, that anyone with minimum 

computer skills can easily use it. The chapter about this software is the content of a paper 

which is in press in at the time of writing this thesis.

Finally, comments are weaved on the outcome of this thesis, and brief remarks are made 

on the future of the two main components of this work.

Keywords: Psammodromus  algirus,  Phylogenetics,  Phylogeography,  mtDNA, 

Concatenated Data, Perl.
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Chapter 1

General Introduction
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General Introduction

The Studied Species

A Brief Review

Psammodromus algirus was first described by Linnaeus in 1758 and later placed in the 

genus Psammodromus by Fitzinger in 1826 (Arnold, 1973).

The species P. algirus is exhaustively described in Arnold (1973), both in morphology and 

in internal function (skeletal and organ). This work considered 50 other reptile species, and 

finally suggested a full reclassification of the palaearctic lacertids, based on osteological 

and hemipenial characters, chromosomes, external morphology, coloring and distribution. 

Although this  work  was not  centered on  P. algirus,  it  is  the first  publishing where the 

species was throughly studied. It is also the first time that the genus Psammodromus was 

considered close to the genus Gallotia.

Between 1973 and 1987 several works were published including P. algirus. These papers 

assessed data like body temperatures (Busack, 1978) and ecological relations (Busack & 

Jaksic, 1982; Arnold, 1987).

The first work where molecular markers were applied to  P. algirus is Busack & Maxson, 

(1987) where the taxonomic relations of lacertids from Arnold (1973) were confirmed using 

quantitative micro-complement fixation analysis of serum albumin.

No other studies using molecular markers on P. algirus were released until 1998. However, 

during this time, at least ten other works were published regarding the ecology (Carrascal 

& Diaz, 1989),  biology (Veiga et al., 1997), life history traits  (Bauwens et al., 1995) and 

thermal biology of the species (Belliure & Carrascal, 1996).

After this date, more then 40 other works were published including P. algirus, making this 

species well studied, on ecological, biological and behavioural levels.

Of  particular  importance  to  this  thesis  are  the  last  few works,  regarding  the  species' 

phylogeography, namely Carranza et al. (2006), Busack & Lawson (2006) and Busack et 

al. (2006). These works not only used molecular markers similar to what is done in this 

thesis, but they also reached different results. These will be compared later in this chapter.

In Busack et al. (2006) P. algirus was divided into two different species, P. manuelae and 
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Chapter 1

P.  jeanneae. However, since the species separation morphological characters are not very 

clear, and during the sampling for the present thesis all the individuals were considered the 

same species, only P. algirus will be considered here. 

In Carranza et al. (2006) and  Busack & Lawson (2006), the species was subjected to 

through phylogeographic and phylogenetic analysis, using several different approaches.

Distribution

This species is a typical inhabitant of very dense bushy habitats, although it sometimes 

occurs in more open areas. Often found in open or degraded woodland, in undergrowth in 

pine or eucalyptus forest, and among very dense spiny shrubs, dwarf oak, heather, gorse, 

brambles, and even prickly pear (Arnold, 2002). This sort of habitat (and thus, P. algirus) 

can be found throwout almost all  of the Iberian Peninsula (except in the north Atlantic 

coast), in the southwest of France, and in the north of Tunisia and Algeria and in the north 

and center of Morocco  (Miras et al.,  2006). The distribution, according to  (Miras et al., 

2006) can be visualized in Figure 1.1. The species occurs mainly at altitudes below 400m, 

however, it can be found at up to 1600m in Portugal (Malkmus, 2004) and up to 2600m in 

the High Atlas in Morocco (Barbadillo et al., 1999).
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General Introduction

Biology

P. algirus adults usually measure up to 7.5 cm from snout to vent though sometimes they 

may reach 9 cm; their tail normally measures two or three times the body length. Relative 

size of males and females is variable from place to place. These thick-necked lizards have 

a thin, rather stiff, tail and no collar. The scales on their back and flanks are large, flat and 

pointed with a prominent keel, strongly overlapped, just like the belly scales. The species' 

color is fairly constant: usually metallic brownish with two conspicuous white or yellowish 

stripes on each side, the upper ones bordered above by dark dorsolateral  stripes; the 

flanks  are  often  dark  and  there  may be  vague  dark  stripes  on  back.  Some  animals, 

especially old males are almost uniform. Males often have one or more blue spots in the 

shoulder region. The underparts are slightly iridescent-whitish or even tinged green. The 

breeding males have orange, red or yellow sides of head and throat; the flanks and chest 

may also be yellow; the head coloring may occasionally show up on females. Infants look 

like adults, but the pale stripes are less obvious and tail is often of a more orange tone 

(Arnold, 2002).
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Chapter 1

The individuals of this species spend most of time around the base of plants hunting in leaf 

litter etc. but may climb in bushes and sometimes makes excursions across more open 

areas. It is the most abundant lizard species in many parts of Spain and Portugal but is not 

easily spotted, due to good camouflage that blend them with the landscape. They may 

sometimes  squeak,  especially  when  picked  up  but  also  at  other  times.  Tends  to  be 

replaced  by  Spiny-footed  Lizard  (Acanthodactylus  erythrurus)  and  Spanish 

Psammodromus (Psammodromus hispanicus) in more open areas (Arnold, 2002).

Their diet is composed mostly of arthropods, occasionally complemented with other small 

lizards and some vegetation (Arnold, 2002).

During mating, the male will hold the female's neck in his jaws which is different from most 

lacertids which hold the body flank. The eggs are laid from 2 to 4 weeks after mating. 

Females lay up to 2-3 clutches of 2-11 eggs every year. These range 12 – 14  mm x 7 – 9 

mm in dimension, and hatch in 5 – 6 weeks producing infants of about about 2.5 – 3 cm 

from snout to vent. These mature in 1 or 2 years and may sometimes live up to 7 years.

These individuals have a pocket in the skin on each side of neck where chiggers (red 

larvae of trombiculid mites) often accumulate. These mites feed on the lizard's body fluids 

for some weeks and often attach around the eyes or ears, reducing efficiency of these 

organs, damaging delicate tissues. The pockets are believed to reduce this problem by 

luring mites into areas where they do less harm (Arnold, 2002).

The closest relatives

The genus includes four species: P. algirus (African and European), P. blanci, confined to 

the east of Morocco (Bons & Geniez, 1996), P. microdactylus, endemic to Morocco (Bons 

& Geniez, 1996) and P. hispanicus (Gasc et al., 1997), endemic to the Iberian Peninsula.

There are two known subspecies of  P. algirus:  P. a. nollii from the algero-tunisian high 

plateau and Sahara, and P. a. doriae from the islet of Galitone north of Tunisia (Gasc et al., 

1997).  The  present  work  however  does  not  contemplate  any  individuals  from  these 

subspecies.
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General Introduction

Detailed Review on the Genetic Publications of the Species

This section will attempt to comprehensively describe the recent publications involving P. 

algirus and molecular markers.

The first work regarding molecular markers and P. algirus was Busack & Maxson (1987), 

which  was essentially  a  taxonomic study.  The used marker  is  the  “quantitative  micro-

complement fixation analysis of serum albumin evolution”, and it is indicated that P. algirus 

is quite separated from Lacerta lepida and Lacerta monticola, the central species in this 

study.  The main  conclusions  were that  the classification  suggested in  Arnold,  1973 is 

adequate and should be adopted.

The next work showed up only eleven years later. Harris et al., 1998 made a review of the 

1973  classification  using  more  sophisticated  molecular  marker  techniques  and  some 

changes  to  that  classification  were  proposed,  including  the  inclusion  of  the  genus 

Psammodromus and Gallotia in the same group and considering them as a sister taxa to 

all other lacertids. This phylogenetic analysis used parts of three mitochondrial genes – 

12s ribosomal RNA (12s), 16s ribosomal RNA (16s) and Cytochrome b.

Later, in Harris et al. (2001) a nuclear gene was included in order to complete the analysis 

made in  Harris et al. (1998). Once again, the position of the genus  Psammodromus is 

assessed as close to Gallotia and as a sister taxa to the remaining lacertids. Although it 

did not bring any new insights into the lacertid group resolution, this work resolved the 

relationships among other reptile groups.

After  a  five  year  period  with  no  publications  considering  molecular  approaches  on  P. 

algirus, in 2006 three publications arose: Carranza et al. (2006), Busack & Lawson (2006) 

and Busack et al. (2006).

Using partial sequences of the 12s, 16s and cytochrome b, Carranza et al. (2006) infer a 

phylogeography of the species based on two concatenated phylogenetic trees: one was 

constructed  with  the  3  mentioned  gene  sequences,  using  10  samples  of  the  genus 

Gallotia,  21  individuals  of  the  species  P.  algirus and 3 more  individuals  of  the  genus 

Psammodromus, but not of the species P. algirus and another based on the 12s and 16s 

sequences using 66 individuals of P. algirus and 2 individuals of Gallotia caesaris.
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Chapter 1

The authors infer from these results that P. algirus existed initially in the east of Iberia and 

then separated into two clades (east and west) about 3.6 Million years ago. Later, this 

newly formed western clade separated into two sections – the Iberian section and the 

Maghreb section (in the north of Africa) at about 1.9 Million years ago. Finally, less then 1 

Million years ago, the western Iberian clade divided again into a south and north clade.

Busack &  Lawson  (2006) use  mitochondrial  DNA (mtDNA)  (6  complete  sequences of 

cytochrome  b,  11 complete NADH dehydrogenase subunit  2 (ND2) sequences and 13 

partial NADH dehydrogenase subunit 4 (ND4) sequences) and allozymes to estimate a 

phylogeny  of  P.  algirus.  The  mtDNA sequences  were  concatenated  and  outputted  a 

phylogenetic tree that was considered for the analysis; they were further used to perform a 

Mantel test (only in Morocco, since the authors did not have enough Spanish samples to 

preform this test). The allozymes data was used essentially to perform Mantel tests as with 

the mtDNA.

After  these  results,  the  authors  infer  that  P.  algirus must  have  invaded  the  Iberian 

Peninsula from the north of Africa because the results indicate that the genetic differences 

per  distance  unit  in  Morocco  are  larger  than  in  Spain  (where  the  populations  later 

subdivided  into  two  isolated  clades).  They  further  estimate,  based  on  other  works 

regarding the genus Podarcis, that the last time that the European and African populations 

must have been in complete reproductive contact should have been at about 2.98 – 3.23 

Million years ago. Likewise, the last time that the southern Spain populations must have 

been in complete reproductive contact must have been at about 1.40 – 1.54 Million years 

ago.

In  Busack et al. (2006), the the species P. algirus is divided into 3 different species – P. 

algirus in the north of Africa,  P. manuelae in the north of the Iberian Peninsula and  P. 

jeanneae in the south of the Iberian Peninsula. These conclusions were drawn based on 

the  results  of  Busack  &  Lawson  (2006) and  on  morphological  aspects  exhaustively 

described in the paper. 
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General Introduction

The Selected Genes

Although the initial plan for the phylogeographic study included a nuclear gene, budget 

and time constraints impeded this plan to step forward. The study was thus completed 

using only mitochondrial DNA.

However, several attempts were made to amplify nuclear genes for this species. After a 

bibliographic  search,  several  candidate  genes  were  proposed  and  the  following  were 

thoroughly experimented:

● β fibrinogene intron 7 (FIB7) – Fibrinogene is a protein involved in blood clotting 

whereby clot formation involves the conversion of soluble fibrinogene into insoluble 

fibrin clot (Doolittle, 1984). This was the most promising nuclear gene found in the 

bibliography since  it  had  been  described  as  a  very  variable  gene  (Prychitko  & 

Moore, 1997) and was successfully amplified in species close to P. algirus such as 

Lacerta lepida or  Lacerta schreiberi (Godinho et  al.,  2006).  The primers for  this 

sequence were described originally in  Prychitko & Moore (1997). Despite all  the 

efforts, however, no amplification of this intron was produced in the laboratory.

● Tropomyosin α subunit (TROP) – Tropomyosin is a myofibrillar protein involved in 

the  regulation  of  contraction  and  relaxation  of  muscle  fiber  (Cummins  &  Perry, 

1973). The primers for the amplification of  the α subunit of this gene are described 

in Friesen et al. (1999). However, just like with the  FIB7 gene, after many attempts 

no amplification of this gene could be obtained in the laboratory.

● C-MOS – This is a protooncogene that codes for the protein involved in the arrest of 

oocite maturation (Whiting et al., 2003). It is not described as a very variable gene 

(Whiting et al., 2003), however, it is adequate for phylogenetic analysis in species 

close  to  P.  algirus (Harris et  al.,  1998).  The  primers  for  this  sequence  were 

published in  Saint et al. (1998). By the time erratic amplification for this gene in 

Iberian  individuals  were  accomplished  (no  African  individual  was  successfully 

amplified) the deadline for this work was close to due, so there was no opportunity 

to optimize the PCR protocols, and thus, this analysis was aborted. 
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Chapter 1

● BOV-B lines – This gene has a quiet history in bibliography and was suggested for 

the first time in the context of phylogenetic analysis in Kordis & Gubensek (1997). It 

was later used in Piskurek et al. (2006) for a phylogenetic analysis in vipers. In the 

present  thesis,  this  gene  was  sequenced  initially  for  six  individuals.  The  mean 

pairwise difference among these initially sampled individuals was of about 0.5%, 

and 3 haplotypes were found. Afterwards, the sequencing of twenty more samples 

was  carried  on.  However,  in  these  samples  all  of  the  variation  ended (no  new 

haplotypes and 18 of the 20 new samples were all the same haplotype), making this 

gene  unusable  for  phylogenetic  analysis  in  this  species.  Despite  this  lack  of 

variability in  P. algirus,  it  was successfully used to distinguish this species from 

Lacerta lepida and Lacerta agilis.

Finally, the used mitochondrial genes were:

● 12s rRNA – This is the gene for the small subunit ribosomal RNA in mitochondria 

(Palumbi,  2000). It  is moderately conserved in squamates  (Whiting et  al.,  2003) 

(Palumbi,  2000),  considering  the  overall  mutation  rate  of  more  variable 

mitochondrial genes. It is thus, good to infer basal relations among closely related 

individuals  in  a  phylogenetic  tree.  It  is  however,  not  so  good  to  infer  closer 

relationships among these individuals. Should the considered individuals belong to 

more separate groups, this gene will also resolve closer relations. The primers used 

to amplify this gene were described in Palumbi (2000).

● 16s  rRNA –  This  is  the  gene  for  the  large  subunit  ribosomal  RNA in  mtDNA 

(Palumbi,  2000).  It  is  even more conserved than the 12s  (Whiting et  al.,  2003) 

(Palumbi, 2000), but despite this fact, its usage in phylogenetics is similar to that of 

12s, due to being a larger fragment. The primers for this gene were described in 

Palumbi (2000).

● Cyt b – Cytochrome b is a protein in the electron transport chain (Palumbi, 2000). It 

is the only functional monomer in the mtDNA (Palumbi, 2000). It is also one of the 

most variables if not the most variable among lacertids in the mitochondrial genome 

(Whiting et al., 2003). Should the individuals in a phylogenetic analysis be closely 

related, this gene will resolve most of the tree branches, both in the basal level and 
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in  the  end level.  However,  if  the  considered  individuals  are  more  diverged, 

polyctomies are likely to cause analysis problems. The primers used to amplify this 

gene are described in Paulo et al. (2001).

● NADH dehydrogenase subunit  4  (NAD4) –  This  gene is  not  as  variable  as  the 

cytochrome b (this study),  but is nevertheless a very variable gene in the Lacertid 

mitochondrial  genome panorama.  The phylogenetic  analyses it  is  suited for  are 

similar  to  those of the cytochrome  b.  This gene has been used in phylogenetic 

analysis in this species before (Busack & Lawson, 2006), but the primers used in 

this thesis were designed from gene bank sequences since the primers provided in 

Busack & Lawson (2006) did not amplify more than a fragment of 100 bp. 

This set of genes was analysed both individually and concatenated with the others. This 

provided not only the individual gene “histories” but also a “big picture” approach of all of 

them together.

Bioinformatics and Software Development

Bioinformatics  is  an  emerging  area in  biological  sciences.  More  and more  the  use of 

computer science is being applied to other scientific areas and biology is no exception.

With  the  increase  of  DNA sequencing,  bioinformatics  tools  were  required  not  only  to 

analyse these outputs, but also to assemble them in large databases and to group them in 

analysis specific clusters.

Phylogenetics (the main biological component of this thesis) is one of the main branches 

of  bioinformatics  and  more  and  more  often  enters  the  laboratories  and  computers  of 

molecular biologists.

It  is in this context that software needs to be developed with the less informatics-wise 

informed user in mind.  Since software is  developed by computer science experts,  the 

resulting programs are usually not so simple to use by biologists with scarce computer 

training. That is when command line driven programs stop fulfilling their objectives – users 

simply do not understand how to use them, because of their missing formation in computer 
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science. To computer experts, this is completely trivial, but for the common user this might 

well be a potential nightmare and makes data analysis much more error prone.

That is the main reason why Concatenator was created: in order to simplify the task of file 

format transfers, and the managing of several of these into a single file. For most users the 

DNA sequences saves as a FASTA files are not a UNICODE text file with sequence names 

identifiers, followed by several lines of 60 characters ending in a “newline” character. For 

most users, DNA data files are sets of purines and pyrimidines identified by a given name, 

that can be aligned by mathematic algorithm at a click of a button. These regular users 

may well be excellent biologists, but they are not computer experts.  Concatenator is for 

this sort of scientist. For those who dedicate to their area in exclusive. It is the author's 

sincere hope that the work and effort put into developing this tool will save great deals of 

time and reduce errors in future phylogenetic analysis, for all the molecular biologists who 

should find it useful.

Objectives

The objectives of this thesis are:

First: to outline a phylogeny of the species  P. algirus based on a very wide sampling 

throughout the most of its distribution (only Algeria, Tunisia and southern France data are 

missing from this study). This approach will also provide the basic data for the population 

study.

Second: to contribute to the scientific debate about the phylogeography of the species P. 

algirus,  using  the  best  approaches  considered  in  the  two  similar  previous  studies, 

Carranza et al. (2006) and  Busack & Lawson (2006),  adding them a new populational 

approach. This new data will  contribute to the resolution of  the conflicting results from 

other authors.

Third: with the release of the software  Concatenator, to improve the usability and user 

friendliness of phylogenetic analysis, especially to users who are not familiarized with the 

UNICODE text file formats and who will benefit from having to skip this learning step in 
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order  to  make  their  phylogenetic  analysis,  using  a  simple  point  and  click  graphical 

interface.
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A new Perspective on the Evolutionary History of 
Psammodromus algirus

Abstract

A  phylogeny  of  the  species  Psammodromus  algirus was  performed  using  four 

mitochondrial genes (12s rRNA, 16s rRNA, cytochrome b and NAD4). The phylogenetic 

analyses of the datasets one by one and on different combinations were not concordant on 

the rooted trees approach, but were concordant on the unrooted trees approach. These 

trees, were however, not able to fully resolve the existing controversy about the ancestral 

group. A population study was also used to address this issue, using more samples but 

with only one gene. Network analysis combined with other parameters enabled the testing 

of several hypotheses proposed by other authors for the species' phylogeography. Neither 

of  these  models  was  in  full  accordance  with  the  obtained  data  and  an  additional 

hypotheses that  is  in  much more  concordance with  the  obtained data  is  proposed to 

explain today's P. algirus biogeographic patterns. 

Keywords: Phylogeography; mtDNA; Lacertidae; Concatenated sequence analyses; west 

Mediterranean species.
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Introduction

Understanding the pattern

This  work  is  about  the  phylogenetic  and  phylogeographic  patterns  of  the  species 

Psammodromus algirus.  The distribution of this species in Africa ranges from the western 

Morocco coast to the eastern coast of Tunisia and in Europe it occupies almost all of the 

Iberian Peninsula (it is only absent from the north Atlantic coast) and part of the south of 

France  (Miras et  al.,  2006).  P.  algirus is  in  this  aspect,  a  typical  west  Mediterranean 

species (Arnold, 2002).

In the traditional view, today's biogeographic patterns for west Mediterranean species have 

been shaped by events of dispersal and vicariance. The Messinian Salinity Crisis (Hsu et 

al., 1973) is considered to be one of the most important event in the region responsible for 

the species' distributions and genetic pattern we see today, but after that several other 

events  seem  to  have  shaped  the  current  observed  patterns  (Harris et  al.,  2004; 

Vasconselos et al., 2006).

Despite  being  one  of  the  most  common  reptiles  found  in  it's  distribution  areas,  the 

population structure of P. algirus was not very well known until recently with the works of 

Busack & Lawson, 2006 and Carranza et al. (2006).  Until these works it was not even 

clear whether the colonization of the Iberian Peninsula by the species had been related to 

the closing of the Strait of Gibraltar. 

More  recently,  several  works  using  DNA  markers  have  shown  that  some  west 

Mediterranean terrestrial species have crossed the Mediterranean sea after the Messinian 

Salinity Crisis (Harris et al., 2002; Carranza et al., 2004) and P. algirus is thought to be no 

exception.

It  has  further  been  proposed  in  Busack et  al. (2006),  using  both  DNA markers  and 

morphological data that the species P. algirus should be divided in two new species in the 

Iberian Peninsula,  P. jeanneae and  P. manuelae.  We adopt only the designation of  P. 

algirus since the sampling was made before this paper was published and the distinction 

of different species is outside the scope of this research.
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The controversy

Recently,  two  papers  that  use  DNA  markers  have  shown  different  possibilities  for 

explaining  the  species'  present  biogeographic  patterns.  However,  these  publications 

present  contradicting  results  and  propose  different  explanations  for  the  mentioned 

patterns.

Busack & Lawson (2006) estimated that the last time that the populations of P. algirus from 

the north and south of the Strait of Gibraltar were in full reproductive contact was about 

2.98-3.23 Million Years Ago (MYA). These estimates are made based on sequences of the 

full NADH dehydrogenase subunit 2 (11 samples), partial NADH dehydrogenase subunit 4 

(13 samples), partial cytochrome b (6 samples) and allozymes data. The mutation rate of 

Podarcis erhardi  according  to  Poulakakis et  al. (2003) was used to calibrate the used 

molecular  clock. Based  on  the  same  data,  the  authors  further  advance  that  the  two 

southern Spanish populations must have been in last reproductive contact about 1.40-1.54 

MYA. The direction of the migration is also assumed to have occurred from Morocco to 

Spain since the species has a more extensive and complex history in Morocco than in 

Spain.

Carranza et  al. (2006),  using  partial  sequences  of  the  12s  rRNA,  16s  rRNA  and 

cytochrome b  analysed in two separate datasets (one with the three genes' sequences 

but with only 21 samples of P. algirus and another only with 12s and 16s sequences, but 

using  66  P.  algirus samples),   suggested that  the  species  is  original  from an eastern 

Iberian clade that originated about 3.6 MYA a western Iberian clade which later, about 1.9 

MYA divided into  an  Iberian  and a  Maghreb sections.  These conclusions  were  drawn 

based on a molecular  clock calibrated by the differentiation between  Gallotia caesaris 

gomerae and Gallotia caesaris caesaris. 

The two scenarios proposed in the mentioned publications are displayed in Fig. 2.1. 
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In this work, using four different DNA markers and a wide sampling, across most of the 

species'  range,  we try to  clarify the phylogeography of  P. algirus in  the context  of  the 

western Mediterranean species dynamics.

Materials and Methods

Laboratory work and sample collection

Thirty six samples of  Psammodromus algirus tails were collected under permit from the 

Iberian Peninsula and Morocco (Fig. 2.2); the tails were clipped, and the animals were 
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Fig.  2.1: The  figure  shows  the  models  proposed  in  the 
papers of  Busack & Lawson (2006) (Black dots and arrows) 
and  Carranza et  al. (2006)  (Different  shades  of  grey)for 
explaining  the  phylogeography of P.  algirus.  The dots  and 
shaded  zones  represent  sampling  areas  and  the  arrows 
represent the proposed migrations. 



A new Perspective on the Evolutionary History of Psammodromus algirus

immediately released. The outgroups for the phylogenetic analyses were selected from the 

sequences available in GenBank and are from the species  Lacerta lepida and  Podarcis 

muralis.  Both strands of four fragments of mitochondrial DNA genes were amplified using 

the primers described in  Table 2.1.  DNA was extracted from tails using the Jet  Quick 

Tissue  DNA  Extraction  Kit (Genomed) according  to  the  provided  protocol.  The 

amplification cycle consisted of 20 seconds at 94ºC, 30 seconds at 46ºC (51ºC for the 

NAD4 primers) and 42 seconds at 72ºC repeated 30 times. Conditions consisted of 1x 

PCR Buffer, 0.25mM MgCl2, 0.20mM of each DNTP, 1mM of each primer, 1 unit of TAQ 

polymerase and approximately 2ng of genomic DNA on a 25µl reaction. PCR products 

were  purified  using  a  SureClean  Kit (Bioline)  with  a  few  minor  changes  to  protocol. 

Sequencing reactions were processed in the company  Macrogen Inc. on ABI automatic 

sequencers. For the population approach, seventeen additional samples were collected, 

extracted, amplified and sequenced (only for the partial cytochrome b gene) for a total sum 

of 53 used samples. 

Data analyses

The sequences were verified and corrected using SEQUENCHER 4.0.5 (Gene Codes). 

DNA sequences were initially aligned using CLUSTAL X  v1.83  (Thompson et al., 1997) 

and  then corrected manually using BioEdit  (Hall, 1999). The two matrix concatenations 

were preformed using the software  Concatenator  (In press, Chapter 3 of this thesis), as 

were all the file conversions.
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Table 2.1: Primers for the sequences used in this work. Each pair is referenced and the size of 
the amplified fragment is indicated. Cyt b stands for cytochrome b, 12S stands for 12s ribosomal 
RNA, 16 stands for 16s ribosomal RNA and NAD4 stands for NADH dehydrogenase subunit 4.
Primer Name Direction Primer Sequence Gene Size Reference

B1 F CCA TCC AAC ATC TCA GCA TGA TGA AA
700 bp

B702 R AAA TAG GAA GTA TCA CTC TGG TTT
12 S L F TGA CTG CAG AGG GTG ACG GGC GGT GTG T

12S 450 bp Palumbi (2000)
12 S H R CAA ACT GGA TTA GAT ACC CCA CTA T
16 S L F CGC CTG TTT ATC AAA AAC AT

16S 600 bp
16 S H R CTC CGG TTT GAA CTC AGA TC
NAD4 F F GGATCCATRGTACTAGCCGC

NAD4 650 bp This study
NAD4 R R GTGAATGAGCTGGAAATTAGGC

Cyt b Paulo et al. 
(2001)

Paulo et al. 
(2002)
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Phylogenetic  analyses  were  performed  using  PAUP*  4.0b10  (Swofford,  1993) and 

MrBayes  3.1.2  (Ronquist  &  Huelsenbeck,  2003).  Modeltest  3.7  software  (Posada  & 

Crandall,  1998) associated with  PAUP* 4.0 was used for  choosing the most  plausible 
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Fig. 2.2:  Map of the sampled individuals. All samples starting with the letter “I” are Iberian, while 
all samples starting with the letter “M” are from Morocco. From north to south: ISAN1(Puebla de 
Sanabria) , IGER1 (Gerês), ISOR15 (Soria), IAIZ1 (Alcañiz), IMBE1 (Moimenta de Beira), IVIS4 
(Viseu),  IAVI4 (Ávila),  ISPF2 (Sierra de Peña de Francia),  IOLH1 (Oliveira do Hospital),  IBEJ6 
(Bejar), ITER5 (Teruel), IADE3 (Alcanede), IMTO5 (Montes de Toledo), ICAC2 (Cáceres), ISMA5 
(Serra de Malcata), IGRA5 (Grândola), IBAR1 (Barrancos), IBEL1 (Belmez), ISFI1 (Sierra de los 
Fibrilares), IMON2 (Serra de Monchique), ISCA3 (Serra do Caldeirão), ISNE1 (Sierra Nevada), 
IMAT1 Matalascañhas),  IRON7 (Ronda),  MCHA1 (Chefchaouen),  MALH1(Al-Hocemia),  MBER4 
(Berkane), MBER8 (Berkane), MBER10 (Berkane), MBER11 (Berkane), MAZR1 (Azrou), MKHE1 
(Kenherifa), MAZI1 (Azilial), MDEM1 (Demnate), MMAR1 (Marrakech), MMAR2 (Marrakech). The 
samples exclusive of the population study are not indicated in the map, but are from roughly the 
same locations as other samples indicated: IVGU1 (Vale do Guadiana) ~ IBAR1, ISOR7 (Soria) ~ 
ISOR15,  IEFS1  (Embalse  de  la  Fuensanta)  ~  ISOR15,  IYES1  (Yeste)  ~  ISOR15,  ILGR1  (El 
Granado) ~ IMAT1. The Moroccan samples for the population study are from the same locations 
displayed in  the  map:  MKHE2,  MKHE3,  MKHE4;  MAZR2,  MAZR3;  MCHA3,  MCHA4;  MALH2, 
MALH3, MALH4, MALH5, MALH6.
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evolutionary model  for  the different data sets according to Akaike Information Criterion 

(AIC). Both the Maximum Likelihood (ML) and the Neighbour-Joining (NJ) analysis were 

based on this model. MrModeltest 2.2 (Nylander, 2004) software was used in association 

with PAUP* 4.0b10 for selecting the most plausible evolutionary model for the different 

individual data sets (again, according to AIC); the concatenated data sets used separate 

evolutionary models  with unlinked topology and unlinked parameters for  the nucleotide 

substitution models across partitions. Bootstrapping consisted of 1000 replicates on every 

dataset.  ML  trees  were  obtained  using  10  random  sequence  addition  replicates. 

Parsimony analyses considered gaps as a fifth state. Bayesian analysis was conducted 

using  an  MCMC algorithm with  1.5  x  106 generations.  The  “burn  in”  was  determined 

according to the plot  of  the average standard deviation of  split  frequencies; this value 

ranged from 500 to 1000, depending on the dataset. Two closely related species were 

used as outgroups on all analysis, Lacerta lepida and Podarcis muralis (data downloaded 

from GenBank). The incongruence length difference test (ILD), was implemented in PAUP* 

with  all  invariant  characters  removed.  All  datasets  were  analysed  individually  and 

concatenated with each other in every possible combination.  However,  only a few are 

mentioned in this work as many of these combinations did not yield any informative result.

The phylogenetic trees were drawn with the software TreeView (RodPage Software). They 

were further improved for easier visualization using a Perl script to scale the data and The 

Gimp 2.4.0-rc3 (Spencer Kimball, Peter Mattis and the GIMP Development Team) to treat 

the image files. Branches with values of posterior probability or bootstrap below 0.50 or 

50.0 respectively are collapsed, displaying polictomies. 

The population analysis was conducted using the software Network 4.2.0.1 (Bandelt et al., 

1999),  using  a  median  joining  approach,  and  the  software  Arlequin  3.1.1  for  AMOVA 

analyses  (Excoffier et  al.,  1992) and to  obtain  FST values  (100000 replicates  on  both 

cases).  The  division  of  individuals  into  samples  for  the  AMOVA analyses  were  made 

according  to  the  clades  formed  in  the  phylogenetic  analysis  divided  in  two  “units” 

according to geographic locations. The groupings were made according to the results from 

the network analyses. The mismatch analysis and the calculation of nucleotidic diversity 

(π) and haplotipic diversity (H) were performed with DnaSP (Rozas et al., 2003). 
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Results

Phylogenetic analysis:

The shown trees are the results of the combined 12s and cytochrome b, 16s and NAD4, 

and the concatenation of all four genes (plus the individual datasets). The summary of the 

tree data information is displayed in Table 2.2.
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Table 2.2: Variability and phylogenetic model details for each gene and combination analysed: 
fragment  size  in  base  pairs,  numbers  of  variable  and  parsimony  informative  sites,  selected 
evolutionary model, shape parameter of the gamma distribution (Γ), proportion of invariable sites 
(I), individual substitution rates and number and length of maximum parsimony trees.

Fragment Evo. Model Γ I A-C G-A A-T C-G C-T

12s rRNA 462 79 49 GTR + I Equal 0,7268 16,39 78,48 26,08 1,00E-005 200,18 51 (107)
16s rRNA 547 117 66 GTR + I + G 0,6934 0,5518 05-01-00 16,65 10,21 1,00E-005 68,14 62 (149)

659 249 156 GTR + I + G 2,7656 0,5782 02-01-00 84,32 3,61 1,00E-005 45,03 18 (428)
NAD4 617 224 132 GTR + I + G 1,7222 0,5644 52218,9 1,60E+006 74438,80 1,00E-005 581512 38 (363)

1121 328 205 TVM + I + G 1,1472 0,6120 07-01-00 94,49 8,35 1,00E-005 94,49 27 (566)
16s + NAD4 1164 341 198 TVM + I + G 0,4654 0,4369 06-01-00 68,58 10,64 1,00E-005 68,58 4 (539)

2249 669 403 TVM + I + G 0,5766 0,5331 07-01-00 86,51 9,40 1,00E-005 86,51 3 (1133)
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For each dataset, the tree topology was similar on all methods and thus, only one tree is 

displayed.  These trees are shown in   Figs.  2.4  to  2.10.  The  cytochrome b,  NAD4 and 

concatenated trees have a better resolution (due to higher variability) than the 12s and 16s 

genes  trees.  These  inferred  phylogenetics  patterns  allow  the  division  of  the  studied 

samples in 6 different geographic clades (Fig. 2.3):  Iberia East (IE),  Iberia South (IS), 

Iberia West (IW), Morocco Interior (MI), Morocco East (ME) and Morocco West (MW).

The topology of the trees differs among datasets, even tough the formed clades/groups 

are always very similar. The main differences are on the placement of the basal group and 

on the groups that actually form in each dataset.
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Fig. 2.3: Map of the zones sampled for this work divided by clades according to the phylogenetic 
analyses. IE, IS, IW, MI, ME and MW stand for Iberia East, Iberia South, Iberia West, Morocco 
Interior, Morocco East and Morocco West respectively. The samples in each group are: IE – IAIZ1, 
ISOR15,  ITER5,  ISFI1,  ISMA1,  IMTO5,  ISNE1;  IS –  IRON7,  IMAT1,  IBEL1,  IMON2,  IGRA5, 
IADE3;  IW – ISCA3, IBAR1, ICAC2, IAVI4, IBEJ6, ISFP2, IOLH1, IVIS4, IMBE1, IGER1, ISAN1; 
MI – MDEM1, MAZI1, MKHE1, MAZR1;   ME – MALH1, MBER10, MBER8, MBER11, MBER4; 
MW – MCHA1, MMAR1, MMAR2.
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Cytochrome b (Fig. 2.4): The trees obtained for this dataset are well resolved (with high 

posterior  probabilities/bootstraps in general)  with the IE group in the tree base.  In the 

crown of the tree, two groups can be found, one composed of the African clades and one 

composed of  the IS clade basal  to  the IW clade.  This tree resolves all  of  the groups 

considered in this work due to  highly variable sequences. It is important to notice that the 

IE group is displayed as a polytomy, rather than a single clade/group as happens with the 

other groups. In the African groups, the MW group is not as supported as the other clades 

or even as in the other genes' sequences. The homoplasy index for this tree was 0.3270.
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Fig. 2.4: Phylogenetic tree of the cytochrome b sequences dataset. The values above 
the  branches  are  posterior  probabilities  and  ML  bootstraps  (above  and  below 
respectively); When only one value is displayed the bootstrap support was lower than 
50. Right of the tree, the formed groups/clades are indicated.
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12s ribosomal RNA (12s) (Fig.2.5): The trees obtained for this dataset place the IE group 

as basal and are unable to differentiate the remaining groups except for the IS, MI and 

MW clades in the tree crown. Nevertheless, the bootstrap/posterior probability support is 

high for these relationships. Due to being a relatively conserved gene and it's small size, 

these trees are not able to resolve many of the existing relations among the expected 

groups. It is important to note that in this tree too, the IE group is polytomic, although, in 

this  dataset  most  relationships  between  the  existing  groups  are  not  resolved.  The 

homoplasy index for this tree was 0.1441.
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Fig. 2.5: Phylogenetic tree of the 12s rRNA sequences dataset. The values above the branches 
are posterior probabilities and ML bootstraps (above and below respectively). Right of the tree, the 
formed groups/clades are indicated.



Chapter 2

16s ribosomal  RNA (16s)  (Fig.  2.6): The results  obtained  for  this  dataset  place  the 

Moroccan clade/groups as basal and further discern three Iberian groups. The IW clade is 

displayed very evidently and the IS group shows up as basal to IE clade. The posterior 

probabilities  from  the  bayesian  analysis  give  a  good  support  to  this  tree's 

groups/branches, but the bootstrap values are considerably lower, most times below 50. 

Nevertheless, the tree topologies are concordant, regardless of the method used to obtain 

them.  Despite  being  a  somewhat  conserved  dataset,  the  16s  resolves  most  of  the 

relationships  between  groups.  Still,  the  ML  tree  is  not  very  well  supported  by  the 

bootstraps. It is important to note that the ME and MW groups are polytomic on this tree. 

Another important detail to highlight is that in the base of the Iberian groups, is the MW 

group, which is a geographically coastal group. The homoplasy index for this tree was 

0.1258.
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Fig. 2.6: Phylogenetic tree of the 16s rRNA sequences dataset. The values above the 
branches  are  posterior  probabilities  and  ML  bootstraps  (above  and  below 
respectively); When only one value is displayed the bootstrap support was lower than 
50. Right of the tree, the formed groups/clades are indicated.
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NADH dehydrogenase subunit 4 (NAD4) (Fig.2.7): The obtained trees for this dataset 

are well resolved in both methods and place the MI clade at the base of the tree; three 

groups derive from this clade – one is the ME clade, the second is the MW clade and the 

third is composed of the IE clade, and the IS group basal to the IW clade. Once again, due 

to  a  high  variability  of  the  sequences  the  resulting  tree  is  well  resolved  and  all  the 

relationships between the considered groups are displayed. Similar to what happened with 

the 16s,  but  in  a smaller  scale,  the ML bootstrap support  tends to  be lower  than the 

posterior probabilities. The homoplasy index for this tree was 0.3202.

For the three concatenated datasets, the results are shown in Figs. 2.8 – 2.10, for the 12s 

and cytochrome b, 16s and NAD4 and the total evidence dataset, respectively. 
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Fig. 2.7: Phylogenetic tree of the NAD4 sequences dataset. The values above the branches are 
posterior probabilities and ML bootstraps (above and below respectively); When only one value 
is  displayed  the  bootstrap  support  was  lower  than  50.  Right  of  the  tree,  the  formed 
groups/clades are indicated.
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When the 12s and cytochrome  b datasets are combined  (Fig. 2.8), the result is a well 

resolved tree with the IE clade in the base of the tree and the African clades and the IS 

and IW groups as derived. Most relationships in this tree are very well supported by the 

posterior probabilities/bootstrap values. Like in the individual datasets, the IE group does 

not  resolve here as a single  clade,  though the existing polytomies from the individual 

datasets  are  almost  completely  resolved.  Although  the  ILD  partition  test  result  was 

significant (p<0.01), the datasets were concatenated and analysed, since both datasets 

presented a similar phylogenetic signal and it is generally accepted that the mitochondria 

is behaves like a single molecule, and suffers no recombination, thus transferring both 

these genes as a single unit.  The homoplasy index for this tree was 0.3291.
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Fig. 2.8: Phylogenetic tree of the concatenated 12s rRNA and cytochrome b sequences 
dataset. The values above the branches are posterior probabilities and ML bootstraps 
(above and below respectively); When only one value is displayed the bootstrap support 
was lower than 50. Right of the tree, the formed groups/clades are indicated. 
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When the  16s and NAD4 datasets  are  combined  (Fig.  2.9),  the  result  is  also  a  well 

resolved tree where the three African clades are at the base of the tree and shows the 

Iberian groups as two clades, IE as a crown clade and IS as a group basal to the IW clade, 

derived from the Moroccan populations. The posterior probability/bootstrap support for this 

tree is very high on most branches and the polytomies displayed in the two individual 

datasets  are  resolved  with  the  concatenation.  The  ILD partition  test  results  were  not 

significant (p<0.9), meaning that these datasets are similar enough to be concatenated. 

The homoplasy index for this tree was 0.2812.
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Fig. 2.9: Phylogenetic tree of the concatenated 16s rRNA and NAD4 sequences dataset.  The 
values  above  the  branches  are  posterior  probabilities  and  ML bootstraps  (above  and  below 
respectively); When only one value is displayed the bootstrap support was lower than 50. Right of 
the tree, the formed groups/clades are indicated.
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When all four datasets are concatenated (Fig. 2.10), the IE group (once again, polytomic) 

is placed on the tree base with relatively good posterior probability/bootstrap support for 

each subgroup. The tree further distinguishes two crown groups, one composed of the 

three Moroccan clades, and one composed of the IS group, basal to the IW clade. The 

polytomies  may eventually  be  explained by contradictory phylogenetic  signal  from the 

different datasets, which also explains the ILD partition test results (p<0.01). Regardless of 

this, the dataset was analysed when concatenated since the tree is composed of only 

mitochondrial gene sequences. The homoplasy index for this tree was 0.3320.

The  sample  IADE3 displayed  a  great  affinity  with  the  MI  clade  for  the  cytochrome  b 

sequences. Although this sample was amplified and sequenced before any African sample 

had ever reached the laboratory, it was sequenced twice, to make sure there was no cross 
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Fig. 2.10: Phylogenetic tree of the four concatenated genes' sequences dataset. The values above 
the branches are posterior probabilities and ML bootstraps (above and below respectively); When 
only one value is displayed the bootstrap support was lower than 50. Right of the tree, the formed 
groups/clades are indicated.
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contamination  of  any sort  and the  results  were  the  same.  This  could  be  indicative  of 

recombination, but since it is outside the scope of this paper, it will not be addressed any 

longer.  The  effect  it  had  on  phylogenetic  analysis  was  not  important,  and  the  trees 

produced without it were not significantly different from those where it was included, and 

so it was left in the analysis. In the population analyses it was always included in the MI 

clade, despite having been captured in Iberia.

Two  other  phylogenetic  trees  were  obtained  in  order  to  more  easily  visualise  the 

differences between the two different sets of results. These datasets are identical to the 

combined 12s + cytochrome  b, and 16s + NAD4 but the outgroups were removed. The 

results are displayed in Figs. 2.11 & 2.12. 

The unrooted 12s and cytochrome b (Fig. 2.11) and 16s and NAD4 (Fig. 2.12) trees are 

very similar to the rooted ones. The same clades/groups are formed and the distances 
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Fig. 2.11: An unrooted bayesian inference phylogenetic tree of the 12s rRNA and cytochrome b 
concatenated  datasets. The  values  close  to  the  branches  are  posterior  probabilities.  The 
clade/group that each set  of  samples forms is indicated with the larger font.  IE – Iberia East, 
IS – Iberia South,  IW – Iberia West,  MI – Morocco Interior,  ME – Morocco East,  MW – Morocco 
West.



Chapter 2

between groups are similar as expected.

This set of results clearly indicate that the IE group is the more differentiated group of the 

ones detected independently of his position in relation to the outgroups

Population analysis:

The results of the network analyses are shown in Figs. 2.13 & 2.14. These are congruent 

with the species' geographical distribution, except for the distance from the eastern Iberian 

clade to the others which is much more separated genetically than it is geographically. This 

population analysis using the cytochrome b sequences with 53 samples is displays more 

complex links than the analysis of all four concatenated genes with only 36 samples.
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Fig.  2.11:  An  unrooted  bayesian  inference  phylogenetic  tree  of  the  16s  rRNA  and  NAD4 
concatenated  datasets. The  values  close  to  the  branches  are  posterior  probabilities.  The 
clade/group that  each set  of  samples forms is indicated with the larger font.  IE –  Iberia East, 
IS – Iberia South,  IW – Iberia West,  MI – Morocco Interior,  ME – Morocco East,  MW – Morocco 
West.
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The four performed AMOVAs outputted in Arlequin the results shown in  Table 2.3. The 

groupings are the only difference in the analyses inputs. These results are congruent with 

the phylogenetic analysis when the 6 clades are separated (70% of variation is explained 

among groups). All results are significant (p < 0.04624±0.00186). The 6 clades grouping 

clearly makes the best separation between groups followed by IE Vs. IS + IW Vs. Morocco 

which means that this grouping is not as good as the former to explain variance, but it is 

still quite good (explaining 54.12% of the variance). 
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Fig. 2.13:  A median-joining network of the cytochrome  b dataset with 53 samples. The formed 
relations respect the geographic positions of the samples, except for the distance from the IE clade 
to  the  others,  which  is  longer  genetically  relatively  to  the  geographic  distance.  Larger  circles 
represent several individuals sharing the same haplotype (the larger the circle, the more individuals 
share that haplotype).
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The obtained nucleotide diversity (π)  and haplotype diversity (H)  values are shown in 

Table 2.4. The values of π are relatively high and the values of H are very high. Since the 

number of samples was low for mismatch analyses on each group, these analyses were 

performed including  multiple  groups.  The graphs (Figs.  2.15-2.17)  display multi-modal 

profiles in all cases: the mismatch peaks are either separated by a slope (IE and IS+IW) or 

are roughly constant (Moroccan clades).
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Fig. 2.14: A median-joining network of the four genes concatenated dataset with 36 samples. The 
formed relations respect the geographic positions of the samples, except for the distance from the 
IE  clade  to  the  others,  which  is  longer  genetically  relatively  to  the  geographic  distance.  The 
resolution is low due to the large dataset used. Larger circles represent individuals sharing the 
same haplotype (the larger the circle, the more individuals share that haplotype).
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Table 2.5 shows the pairwise FST values. All values are significant (p<0.01564 ± 0.0012). 

The higher values are found between IW and all the groups except IS and the lowest is 

found between MI and MW.
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Table  2.3:  AMOVA results  with  the  percent  variation  obtained  with  four 
different groupings.  All results are significant (p < 0.04624±0.00186).

Source of Variation 6 clades

Among groups 54,12 24,29 45,81 70,00

24,67 53,54 36,75 9,36

Within populations 21,21 22,17 17,44 20,64

IE Vs. IS+IW 
Vs. Morocco

Iberia Vs. 
Morocco

IE Vs. IS+IW
+Morocco

Among populations within 
groups

Table  2.4:  Observed  π and  H in  each  of  the 
considered clades and in several combinations.

Dataset Number of Samples
Observed

π H
IE 10 0,02441 0,97778
IS 7 0,01413 1,00000
IW 11 0,00558 0,61818
MI 10 0,01550 1,00000

MW 5 0,02449 1,00000
ME 10 0,01678 0,95556

IS+IW 18 0,02171 0,86275
Iberia 28 0,05162 0,94180

Morocco 25 0,02814 0,99333
M+IS+IW 43 0,04206 0,97453

All 53 0,05429 0,98258

Table  2.5: Pairwise  FST values  between  each  of  the 
considered clades.

IE IS IW MI MW ME
IE
IS 0.73704
IW 0.82839 0.75411
MI 0.76010 0.74500 0.82633
MW 0.68837 0.66420 0.80683 0.21198
ME 0.74369 0.70969 0.82860 0.57617 0.42429
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Fig. 2.15: Mismatch distribution of the IE group. The dashed line represents the 
observed mismatch values and the whole line represents the expected line under 
a recent growth model.

Fig. 2.16: Mismatch distribution of the IS + IW group. The dashed line represents 
the observed mismatch values and the whole line represents the expected line 
under a recent growth model.
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Discussion

The phylogenetic analyses

Regardless of  the methods used (parsimony,  neighbour-joining,  maximum likelihood or 

bayesian)  the  topologies  of  the  found  trees  are  always  very  similar.  This  congruence 

among  the  analyses  is  not  very  common  and  it  indeed  reinforces  the  validity  of  the 

obtained results.

The data is congruent when it comes to defining groups. The six considered groups/clades 

are very well supported on most trees, regardless of the sequence set that originated them 

but in some trees not all  groups are defined, however the formed groups are identical 

across datasets.  This seems to be indicative of a well  established separation between 

these groups. 

The main issue on this data, was defining the ancestral clade and thus, a putative origin of 

the species'  phylogeographic patterns. If  two of the genes seem to indicate an Iberian 

origin for the species, the other two suggest an African origin. When concatenated, the 

agreeing datasets provide the same results as the individual ones. When all four datasets 
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Fig. 2.17: Mismatch distribution of  the Moroccan group (all  three clades).  The 
dashed  line  represents  the  observed  mismatch  values  and  the  whole  line 
represents the expected line under a recent growth model.
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are  analysed  as  a  single  unit,  the  obtained  tree  indicates  the  IE  group  as  ancestral. 

However, this result is not final, since the ILD partition test indicated that these sequences 

may be providing distinct phylogenetic signal; furthermore, it may be due to the fact that 

gene sequences with  the phylogenetic  signal  indicating an Iberian origin have 7 more 

parsimonious informative sites than the one that indicates an African origin.

Despite  all  the  differences  found  in  the  rooted  trees,  when  the  unrooted  trees  are 

analysed, the differences between the datasets are minor, both in the relationships among 

groups and in the support that each branch has. This is due to the outgroup being closer to 

the Moroccan clades in the 16s and NAD4 datasets and closer to the IE group in the 12s 

and  cytochrome  b datasets.  These  discrepancies  may  be  originated  by  homoplasies. 

Nevertheless,  these  trees  only  marginally  support  one  of  the  theories  regarding  the 

ancestral clade.

The classical phylogenetic analysis was performed using four different genes and yielded 

two different results regarding the ancestral clade and unrooted trees were added to try to 

understand the controverse results. However it the number of used genes  were to be 

increased,  several  more  hypotheses  of  evolutionary  histories  with  different  kinds  of 

supports could have been generated. Could this issue be solved with the use of a different 

outgroup? And what if nuclear genes had been included in the analyses? Would we be 

looking at even another scenario?

The different perspectives revisited

After looking at our own data, we seem to have found the origin of the differences found 

between Carranza et al. (2006) and Busack & Lawson (2006). By using  different genes' 

sequences, the authors obtained different topologies due to different relations between the 

analysed genes and the outgroup which caused different types of tree rootings. In Busack 

& Lawson (2006), despite the use of two genes that produce different results, it is likely 

that the lack of cytochrome b samples (only 6) caused them to miss this point, even if it is 

mentioned  in  their  work  that  this  gene's  sequences  pointed  their  trees  in  a  different 

direction.
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In Carranza et al. (2006) the tree that is mainly used to propose a biogeographic model is 

based on two genes (12s and 16s) that our work has shown to produce contrasting results 

about  the  basal  group.  This  reason,  coupled  with  relatively  high  conservation  of  the 

datasets, may be why regardless of the large amount of samples used their tree is not very 

well supported by bootstrap values.

In order to better understand the differences obtained by these authors, we have proposed 

hypotheses  similar  to  the  ones  proposed  in  the  mentioned  papers  but  based  on  our 

datasets. However, since our main phylogenetic dataset only provides marginal support 

when resolving the ancestral clade, a populational approach with additional samples was 

used,  increasing  their  number  especially  in  the  Moroccan  clades.  With  both  the 

phylogenetic and the phylogeographic approach, we try to clarify the biogeographic pattern 

of this species.

The Population Approach

Since the differentiation among the Moroccan clades is not as marked as in the Iberian 

clades, the analyses in the population approach (except the AMOVA) consider all of the 

Moroccan clades as a single group. The same is also applied to the IS and IW groups 

which were considered as a single group in many analyses.

The two network analyses are relatively congruent and the differences in complexity can 

be explained by the number of bases and the number of included samples. The great 

increase in the number of bases in the concatenated genes analysis makes the Median- 

-Joining  algorithm  lose  resolution,  producing  an  “all  straight  lines”  output,  where  the 

increase in  the sample size will  make the connections between individuals  (especially 

among the most differentiated individuals) more difficult to resolve, resulting in complex 

median points arrangement in a “net” shape.

The percentage of variance explained by the groupings in the AMOVA analyses indicates 

that the six clades division is indeed where the great cleavages exist in our dataset. This 

grouping alone explains 70.0% of the found variance. The other groupings explain only low 

to moderate amounts of variation (24.29% to 54.12%).
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Regarding the values of nucleotide diversity (π) and haplotipic diversity (H), it is important 

to mention that the H values are much more sensitive to small sample sizes than π. When 

both of these values are mentioned later in the analyses, we attribute a much greater 

weight to π than to H.

The  results  displayed  in  Table  2.5 show that  the  FST results  are  congruent  with  the 

phylogenetic analyses when considering which groups are closer. The Moroccan clades 

are displayed as the closest to each other and IS is shown to be closer to the Moroccan 

group than to IE. the IW clade is also closer to IS than to any of the other clades. The IS 

group is also roughly equidistant to IE and the Moroccan clades.

Despite the relatively low number of samples for the mismatch analyses, they were still 

performed and are somewhat informative. In the IE group, this might be indicative of two 

expansions (an older one and a more recent one), but in other analyses such as in the IS

+IW grouped the bimodal profile might represent an old expansion (IS expanding) and a 

recent  expansion  (IW  expanding)  or  simply  the  differences  between  two  established 

populations. In the Moroccan groups we see a many peaks profile (although always lower 

than in the other graphs) that must represent the differences between the three clades 

(regardless of expansions). The AMOVA has shown that this is a good way to join the 

groups and any of the isolated groups provided too little information to be analysed by 

itself.

The proposed hypotheses

Based on the obtained results, we assesed the hypotheses proposed by other authors 

(and our own) to explain P. algirus' current phylogeography. 

Hypothesis 1:

This hypothesis is according to the conclusions of  Busack & Lawson (2006). The model 

proposes an African origin followed by a crossing of the Mediterranean sea into the Iberian 

Peninsula. The newly established Iberian population would then expand separately to the 

east and to the west. The model is displayed in Fig. 2.18.
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This model is only only supported by some results of the phylogenetic analyses, but not by 

infered trees of  the concatenated four genes dataset,  the Moroccan clades should be 

basal in relation to the Iberian one, which is not verified. Nevertheless, it can be further 

tested under our populational data. According to this model we expected the data to show 

the highest values of π and H in the African clades, medium values for all Iberian groups 

together and the lowest of these values for each of the Iberian groups. However, what we 

observe are higher values of π  in Iberia than in Morocco (and similar values of H), and the 

lowest of these in each of the Iberian groups. Most of the expectations are not verified in 

this model which means that the support from our data to this hypothesis is limited.

Hypothesis 2:

The model proposed by Carranza et al. (2006) suggests an Iberian origin, which according 

to our results this means an origin in the IE group, followed by an expansion to the south-
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Fig.  2.18:  Map  of  the  Iberian  Peninsula  with  P.  algirus 
movimentations  according  to  Hypothesis  1.  The  numbers 
next to the arrows are the order of the movements.
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west of Iberia and then, from this area, across the Mediterranean sea into Africa, forming 

the Moroccan clades. Later the IS clade would expand to the north forming the IW clade. 

The model is shown in Fig. 2.19.

This model is in agreement with our phylogenetic analyses. Not only the distance from the 

ancestral clade is congruent, as the two derived clades are roughly equidistant from their 

origin. Under it, we would expect to find the highest values of π and H in Iberia (all three 

clades together), followed by IE, followed by IS + IW and finally, the Moroccan clades. In 

fact, the highest π is found on all the Iberian groups together (although H is not, but it is 

due to a low value in the IW clade), but the Moroccan clades display a higher value of π 

and H (except for H in IS which is 1, but has only 7 samples, all them unique haplotypes) 

than any of the Iberian groups. This too is incompatible with the proposed hypothesis, 

unless we consider the lower values of π and H as effects of glaciations on the Iberian 

Peninsula. This hypothesis is thus, only marginally supported by our population study. 
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Figure  2.19:  Map of  the  Iberian  Peninsula  with  P.  algirus 
movimentations  according  to  Hypothesis  2.  The  numbers 
next to the arrows are the order of the movements.
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Hypothesis 3:

This model is based on the data obtained on this study and represents the hypothesis that 

seems more reasonable according both our phylogenetic and population study. Like the 

former,  this  hypothesis  assumes  an  Iberian  origin  for  the  species  (also  in  the  IE 

group/clade). However, in our model, we propose an initial expansion from this clade to the 

south, across the Mediterranean sea, establishing the Moroccan clades; later, individuals 

from these populations crossed the Mediterranean sea heading north and established the 

IS clade, with a later expansion, once again northwards forming the IW clade. The model 

is shown in Fig. 2.20.

This hypothesis is also supported by the phylogenetic analyses. The IE group/clade is the 

most distant from the rest of the groups and Morocco and IS+IW are roughly equidistant 

from the ancestral clade. According to this hypothesis we would expect to find the highest 

π and H values in the conjunction of all Iberian clades, followed by the IE clade, then the 
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Fig.  2.20:   Map  of  the  Iberian  Peninsula  with  P.  algirus 
movimentations  according  to  Hypothesis  3.  The  numbers 
next to the arrows are the order of the movements.
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Moroccan clades, then the set of IS + IW, then IS and finally IW. When looking at the H 

values, they are not verified in some cases for the same reasons than in the above models 

– low sample size in one case, and high amount of samples sharing the same haplotype in 

the other. Regarding the π values, all of these expectations are verified, except the order 

of IE – Morocco, which is reversed. However, this may well be due to the fact that the IE 

has only 10 samples and the Morocco group is composed of 25. Thus, this hypothesis 

cannot  be  rejected  by  the  data.  Although  it  is  less  parsimonious  than  the  second 

hypothesis, because it requires two crossings of the Mediterranean, the data seem to be 

much more supportive of this model than of any of the others.

Final Remarks

The data presented here shows that conventional phylogenetic analysis, based only in four 

is not sufficient to discern the origin of P. algirus as was presented in other studies (Busack 

& Lawson, 2006; Carranza et al., 2006). The use of a larger set of gene sequences not 

only explained the differences found between the two mentioned studies, as it raised new 

questions  regarding  the  phylogeography of  the  species.  In  an  attempt  to  resolve  the 

conflicting  data  (or  to  rephrase  it,  the  unresolving  data)  a  population  approach  was 

required using an increased sampling. This has enabled the testing of a set of hypotheses 

that could explain the species' phylogeography. Of these hypotheses, the data give more 

support to one that implies two migration events across the Mediterranean sea. However, 

the data does not support this hypothesis to it's full extent, though it is likely that it is due to 

differences in the number of samples on the groups/clades involved in the non matching 

expectations. A larger sampling in the IE and Moroccan clades/groups could resolve this 

issue either by giving support to this hypotheses or by pointing in a different direction. The 

use of nuclear genes could also eventually provide a better insight on this issue.

It is also important to note that, when the sampling in Morocco was increased from 12 to 

25 samples the network complexity increased much more in this location then in any of the 

Iberian clades. If the rate of increase in complexity per additional sample was kept should 

we continue to  increase the  sampling,  it  is  possible  that  the  data could  start  pointing 

towards an African origin rather than an Iberian one.
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The  data  marginally  favours  an  hypothesis  that  requires  two  crossings  of  the 

Mediterranean sea. This is not a parsimonious explanation for  P. algirus'  biogeographic 

patterns, but it is in fact the most supported we have found. The idea of a single crossing 

of the Mediterranean sea after the Messinian Salinity crisis was already present in the 

works of  Busack & Lawson (2006) and  Carranza et al. (2006), but in here we present 

crossings  in  two  distinct  moments.  This  reinforces  the  already  present  idea  that  the 

Mediterranean sea is not so impermeable to the crossing of terrestrial species such as P. 

algirus as it was once thought.

References

Arnold  E.  2002.  Reptiles  and  Amphibians  of  Europe.   Princeton  University  Press, 

Princeton, NJ. 288 pp.

Bandelt H, Forster P and Rohl A. 1999. Median-joining networks for inferring intraspecific 
phylogenies. Molecular Biology and Evolution. 16: p. 48.

Busack  S  and  Lawson  R.  2006.  Historical  biogeography,  mitochondrial  DNA,  and 
allozymes  of  Psammodromus  algirus  (Lacertidae):  a  preliminary  hypothesis. 
Amphibia-Reptilia. 27: pp. 181-193.

Busack  S,  Salvador  A  and  Lawson  R.  2006.  Two  new  species  in  the  genus 
Psammodromus (Reptilia : lacertidae) from the Iberian peninsula. Annals of Carnegie 
Museum. 75: pp. 1-10.

Carranza S, Arnold E, Wade E and Fahd S. 2004. Phylogeography of the false smooth 
snakes,  Macroprotodon (Serpentes,  Colubridae):  Mitochondrial  DNA  sequences 
show  European  populations  arrived  recently  from  northwest  Africa.  Molecular 
Phylogenetics and Evolution. 3: pp. 523-532.

Carranza S, Harris D, Arnold E, Batista V and de la Vega J. 2006. Phylogeography of the 
lacertid lizard,  Psammodromus algirus, in Iberia and across the Strait of Gibraltar. 
Journal of Biogeography. 33: pp. 1279-1288.

Excoffier L, Smouse P and Quattro J. 1992. Analysis of molecular variance inferred from 
metric distances among DNA haplotypes - application to human mitochondrial-DNA 
restriction data. Genetics. 131: p. 491.

Hall  T. 1999. BioEdit:  a user-friendly biological sequence alignment editor and analysis 
program for Windows 95/98/NT. Nucl. Acids. Symp.. 41: pp. 95-98.

52



Chapter 2

Harris  D,  Batista  V,  Carretero  M.  2004.  Assesment  of  genetic  diversity  within 
Acantodactylus erythrurus (Reptilia: Lacertidia) in Morocco and the Iberian Peninsula 
using mitochondrial DNA sequence data. Amphibia-Reptilia. 25: pp. 227-232.

Harris D, Carranza S, Arnold E, Pinho C and Ferrand N. 2002. Complex biogeographical 
distribution  of  genetic  variation  within  podarcis  wall  lizzards  across  the  Strait  of 
Gibraltar. Journal of Biogeography. 29: pp. 1257-1262.

Hsu K, Ryan W and Cita M. 1973. Late miocene desiccation of mediterranean. Nature. 
242: p. 244.

Miras  J,  Cheylan  M,  Nouira  M,  Joger  U,  Sá-Sousa  P  and  Pérez-Mellado  V.  2006 

Psammodromus algirus. UICN 2007. 2007 IUCN Red List of Threatened Species. 

<www.iucnredlist.org>  

Nylander  JAA,  Ronquist  F,  Huelsenbeck  JPP,  Nieves-Aldrey  JL.  2004  Bayesian 
phylogenetic analysis of combined data. Systemaic Biology. 53: pp. 47-67

Posada D and Crandall  K. 1998. MODELTEST: testing the model  of  DNA substitution. 
Bioinformatics. 14: p. 818.

Poulakakis N, Lymberakis P, Antoniou A, Chalkia D, Zouros E, Mylonas M and Valakos E. 
2003.  Molecular  phylogeny and  biogeography of  the  wall-lizard  Podarcis  erhardii 
(Squamata : Lacertidae). Molecular Phylogenetics and Evolution. 28: p. 46.

Ronquist F and Huelsenbeck J. 2003. MrBayes 3: Bayesian phylogenetic inference under 
mixed models. Bioinformatics. 19: p. 1574.

Rozas  J,  Sanchez-DelBarrio  J,  Messeguer  X  and  Rozas  R.  2003.  DnaSP,  DNA 
polymorphism analyses by the coalescent and other methods. Bioinformatics. 19: pp. 
2496-2497.

Swofford D. 1993. PAUP - A computer-program for phylogenetic inference using maximum 
parsimony. Journal of General Physiology. 102: p. a9.

Thompson J, Gibson T, Plewniak F, Jeanmougin F and Higgins D. 1997. The CLUSTAL_X 
windows  interface:  flexible  strategies  for  multiple  sequence  alignment  aided  by 
quality analysis tools. Nucleic Acids Research. 25: p. 4882.

Vasconselos R, Carretero M and Harris D. 2006. Phylogeography of the genus Blanus 
(Worm Lizzards) in Iberia and Morocco based on mitochondrial and nuclear markers 
- preliminary analysis. Amphibia-Reptilia. 27: pp. 339-346.

53



Chapter 3

Software Development

54



Chapter 3

Chapter 3

Developed Software

Article.  Pina-Martins, F.; Paulo, O.S. 2008. Concatenator: Data Matrices Handling Made 

Easy. Molecular Ecology Notes. In Press.

55



Software Development

Concatenator: Sequence Data Matrices Handling Made Easy

F. Pina-Martins1 and O. S. Paulo1

1Centro de Biologia Ambiental, Departmento de Biologia Animal, Faculdade de Ciências 

da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.

Keywords: Sequence data; concatenation; Nexus; FASTA; software; perl.

Corresponding author: 

Name: Francisco Rente de Pina Martins;

Address: Centro de Biologia Ambiental, Departmento de Biologia Animal, Faculdade de 

Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;

E-mail: f.pinamartins@gmail.com

56



Chapter 3

Abstract

Concatenator  is  a  simple  and  user  friendly  software  that  implements  two  very  useful 

functions for phylogenetics data analysis. It concatenates Nexus files of several fragments 

in a single NEXUS file ready to be use in phylogenetics softwares, such as PAUP and 

MrBayes  and  it  converts  FASTA  sequence  data  files  to  NEXUS  and  vice-versa. 

Additionally,  concatenated files can be prepared for partition tests in PAUP. It  is freely 

available in the downloads section of http://cobig2.fc.ul.pt/.

The Program

Sequence  data  files  can  be  organized  in  many  different  formats.  Different  sequence 

analysis software require differently formatted input files. The FASTA format has become 

very popular due to its simplicity and the capacity to quickly compare sequences (Pearson 

& Lipman 1988); these characteristics made this format one of the NCBI default outputs. 

The Nexus format became popular due to its modular format which is at the same time 

flexible and standardized (Maddison et. al 1997).

The existence of different file formats for the same data types require investigators to know 

how to handle them since they are not shared by some of the most common phylogenetic 

analysis software.

Concatenator’s main purpose is to turn data matrix handling into a simple task, by allowing 

intuitive format conversions and concatenations of data matrices.

Concatenator is written in Perl  using the Perl/TK module in order to give it  a GUI for 

simplifying usage. The software was compiled using PAR module. It  is available in the 

Win32 version and source code at the author’s group website.

The only requirements are either  a system with  a  Perl  interpreter  and the Tk module 

installed (source code version) or a system running Microsoft Windows XP (not tested on 

other  versions).  The  software  was  developed  with  a  very  specific  aim  –  the  simple 

handling of data matrices from one program to another and the concatenation of several of 
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these data matrices. All  the functions that the program performs can be accomplished 

manually provided the user has some knowledge about the involved file formats; however, 

even in such case this process is very error prone due to complex data organization such 

as in the interleave Nexus format.

The user interface is very simple (Fig. 3.1) and consists of a window that accommodates 

essentially the input  and output entry boxes;  these files can be selected thru the File 

menu, a browse button located on the right of every entry box or by entering the path and 

filename directly on the entry box.

Concatenator  can be used to  accomplish 2 essential  tasks chosen from the welcome 

window buttons or from it’s “File” menu.

Fasta-Nexus-Fasta Converter  – It converts files from FASTA to Nexus format and from 

Nexus to FASTA format.  When converting from Nexus to FASTA, there are no options 

available to chose from, however, when converting from FASTA to Nexus the user can 

choose whether to include a Taxa block, a leave or interleave organization, the type of 

data, the character for missing data and the gap character. File comments are ignored 

when converting. 

Matrix  Concatenator  –  This  function  takes  2  to  5  Nexus  formatted  matrices  and 

concatenates them into a single file. Two output formats are possible, one formatted to be 

used with PAUP* (Swofford 2003), and the other prepared to input to MrBayes (Ronquist & 

Huelsenbeck 2003). Several parameters are customizable such as the inputs’ data type, 

the gap character, the missing character, whether or not to include the Taxa block and a 
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pre input for performing a “partition test” in PAUP* excluding constant characters (Fig. 

3.2).

Each function has a help file. The whole program is simple to use, but the help files are 

nevertheless as descriptive as possible.

Example Usage

The user downloads two arrays of sequences (e.g. two different genes from the same 

species) from the NCBI database using a program such as BioEdit (Hall 1999). After a 

proper alignment session, the program outputs two FASTA files – one for each gene.

The user then wants to analyze these files using PAUP*, MrBayes, TCS (Clement  et. al 

2000) or Network (Bandelt  et al. 1999). Concatenator is useful  in this step, because it 

provides a simple way to convert these FASTA files into Nexus files, ready to use in the 

analysis programs.

If  after  this  first  analysis  the  user  decides  to  analyze  both  genes  as  a  single  block, 

Concatenator  can  join  the  two  Nexus  files  in  a  single  data  matrix,  ready to  input  on 

software  such  MrBayes  or  PAUP*;  the  built  in  function  for  data  partitioning  will 

59

Fig. 3.2: Concatentor interface on Win XP when concatenating two data matricres.



Software Development

automatically add the required commands for partitioning data required for  a “Partition 

Test” in PAUP*.
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The Psammodromus algirus case study

This study aims to address the controversy of the explanation of the evolutionary history of 

the species P. algirus. However, it ended up rising more questions than provided answers. 

No  conclusions  on  the  evolutionary  history  of  P.  algirus could  be  drawn  from  the 

exhaustive  phylogenetic  analysis  of  the  four  datasets  and  their  combinations. 

Nevertheless,  a  new hypothesis  is  proposed  for  the  explanation  of  P.  algirus present 

phylogeographic  patterns,  based  on  a  large  number  of  samples.  In  this  case  the 

determination of the migrations order was not only based on a phylogenetic tree, but on 

the values of  nucleotidic  diversity and haplotipic  diversity coupled with  the information 

provided in the phylogenetic analyses of four datasets from different genes.

Just as it was shown in chapter 2 of this thesis, concatenated datasets can in fact be a 

great  aid  in  resolving  phylogenetic  relations,  since  the  resolution  of  the  trees  can  be 

greatly  improved  by  adding  “size”  to  the  dataset.  Some  of  the  relations  evident  in 

concatenated trees could not be seen in any of the individual datasets.

In order to fully support the proposed hypotheses, more sampling in a few key areas, such 

as  the  Iberia  east  zone  or  some  previously  unsampled  areas  in  Morocco  would  be 

required.

Additionally, completing these analyses with information from nuclear genes, could also 

provide the information that is missing to reach a conclusive outcome and would probably 

lead to a different phylogenetic history for the species.
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Evolutionary Biology and Bioinformatics

Evolutionary genetics do rely a lot on bioinformatics. It is a reality and the association will 

only become stronger in the future. 

In the second chapter of this thesis 9 different software packages were used to conduct 

the data analysis. More and more, evolutionary biologists are required to learn new sets of 

skills in the area of informatics. And it's not just learning to use a spreadsheet, or a word 

processor.

Biologists are required to know how to modify and even create UNICODE datafiles which 

have to be formatted according to the analysis program input type. This is about learning 

new languages – those that the programs we use speak.

Who in evolutionary biology has not lost hours of valuable research time figuring out data 

inputs alone? The field of bioinformatics is very advanced, but it lack the user friendliness 

that is required for the less computer instructed audience – biologists included. It should 

not be required of  biologists to know the syntax of  several programming languages to 

perform their research.

The recent software BEAST is a dire example of this. The input file has to be loaded in 

XML format, and so far, no program can replace the manual edition of the input datafile 

(BEAUti  tries to  accomplish this  task,  but  it  is  very limited according to  the program's 

manual).

That is why software such as Concatenator is useful. The user only has to click in order to 

get the desired results. No coding, no text editing, no learning curve. In a future version, 

this small program is intended to be able to convert between all the file formats used in 

molecular phylogenetics. Due to it's modular architecture, this change will take some time, 

but not that much effort. It is the author's hope that the amount of people benefiting from 

this work increases and that it helps set a new standard for the next generation of data 

analysis software.
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Informatic Support

In the provided CD's inside the folder “Concatenator”, the program can be found in three 

versions:

● Windows Binaries – Ready to use on a system running Microsoft Windows XP (it 

was not tested on earlier versions of this OS, but should run fine on them; it will not 

run on Windows Vista).

● Windows Source Code – This version is not compiled and will run on any machine 

with Perl and the Perl/Tk module. It is optimized for running on windows though.

● Mac OS X and Linux Source Code – Another pre compiled version, but optimized 

for running on Unix based systems, such as the above mentioned. Will have issues 

running on a Microsoft Windows system.
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