

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

ROOT CAUSE ANALYSIS

IN LARGE AND COMPLEX NETWORKS

Tiago Filipe Rodrigues de Carvalho

MESTRADO EM SEGURANÇA INFORMÁTICA

Dezembro 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/12421538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

ROOT CAUSE ANALYSIS

IN LARGE AND COMPLEX NETWORKS

Tiago Filipe Rodrigues de Carvalho

Orientador

Hyong S. Kim

Co-Orientador

Nuno Fuentecilla Maia Ferreira Neves

MESTRADO EM SEGURANÇA INFORMÁTICA

Dezembro 2008

I

Resumo

Uma grande parte do sucesso de uma empresa depende do desempenho da função de

Tecnologias de Informação. Em redes de grandes dimensões, devido à evolução do número de

clientes e às constantes mudanças nas necessidades das empresas, as dependências entre

sistemas e elementos de rede têm vindo a tornar-se cada vez mais complexas.

Consequentemente, a localização das causas originais de problemas de desempenho de

sistemas é uma tarefa complexa. A rede tem de ser analizada como um todo porque, mesmo

durante a ocorrência de uma falha, todos os sistemas podem parecer estar correctos quando

analizados separada e instantâneamente. O objectivo deste projecto é o estudo de uma solução

automática de análise de causas originais de falhas em redes complexas e de grandes

dimensões. Neste trabalho, é apresentado o Etymon, uma ferramenta que identifica os

componentes e métricas mais relevantes para explicar os problemas que afectam o trabalho

diário dos utilizadores finais.

O presente trabalho propõe uma arquitectura modular para executar as acções necessárias

para encontrar uma explicação para um problema de desempenho. A análise começa por

processar registos de falhas (trouble-tickets) de forma a identificar os principais períodos de

desempenho degradado. O tráfego de rede é analizado continuamente para identificar as

dependências entre componentes e mantê-las actualizadas. Usando a informação sobre

dependências, é criado um modelo da rede que representa o ambiente para uma aplicação

específica. De seguida, é avaliado o estado de cada componente do modelo durante o período

do problema com base em desvios do seu comportamento habitual. Finalmente, é feita a

pesquisa no modelo por caminhos causais em que o primeiro componente corresponde à causa

original do problema.

Para testar a aplicação desenvolvida foi utilizada a rede empresarial de um operador de

telecomunicações Europeu. Assim, foram enfrentados todos os desafios inerentes a uma rede

de produção, como por exemplo, possível insuficiência de informação sobre algumas

aplicações, interações complexas entre aplicações, e um grande número de fluxos de dados. A

aplicação Etymon introduz conceitos como caminhos causais, modelo de rede específico para

um ambiente de uma aplicação, informação sobre dependências condicionada a um contexto

específico, correlação temporal de anomalias, e classificações de causas.

Palavras-chave: análise de causa-raiz, problemas de desempenho, redes complexas e de

grandes dimensões, QoS, Etymon.

II

Abstract

A huge share of a company’s success relies on the performance of its IT infrastructure. In large

networks, due to the evolution of the number of clients and changes in the company

requirements, the dependencies among systems and network elements tend to become

increasingly complex. Consequently, the localization of root-causes of performance problems is

a very challenging task. The network must be analyzed as a whole because, despite the failure,

all systems may seem to work fine when analyzed separately. The purpose of this project is to

study an automatic root-cause analysis of failures in large and complex networks. We present

Etymon, a tool that identifies the most relevant network components and metrics to explain

performance problems affecting the daily work of end-users.

We propose a modular architecture to perform the tasks necessary to find explanation root-

cause of a problem. The analysis starts by processing trouble tickets in order to identify the

major performance issues. Traffic monitoring and analysis are continuously performed on the

network to identify the dependencies among components. Using the dependency information,

we create a network model that represents the environment for a specific application. We then

evaluate the state of each component of the model during the time when the trouble ticket is

issued, based on deviations from observed normal behavior. Finally, we search the model for

causal paths that start on a root-cause component and provide an explanation for the failure.

The testbed for our application is the enterprise IT network of a large European Telecom

operator. Therefore, we face challenges of applying such tools to a production network. For

example, the challenges are possible lack of information about applications, complex

interactions, and high number of workflows. Etymon introduces concepts such as environment-

specific network model, context-conditioned dependency information, temporal correlation of

the anomalies and rankings of root-cause components and metrics.

Keywords: root cause analysis, performance problems, large and complex networks, Etymon.

III

Acknowledgments

This thesis represents a lot of hard work. But my effort would be useless if not for the priceless

support from some people who helped me overcome all obstacles.

I would like to thank Professor Hyong Kim for his guidance and suggestions. His valuable experience

was vital to keep this project on the right track.

To Luís Costa, Ricardo Marques, Ricardo Oliveira for all the companionship and interesting

discussions throughout the course.

To Sihyung Lee, for making my stay in Pittsburgh so pleasant. Thanks to you, I was able to take full

advantage of my experience there. To Andrew Turner, many of the ideas expressed in this work

stem from our interesting brainstorms.

To José Alegria for his support, incentive and trust in my capabilities. To Adriana Luz, Ricardo

Ramalho, Tiago Mendo, Nuno Almeida, Paulo Serrão, Fernando Carvalho, Pedro Simões and Rui

Martins who spared no effort to provide all the information I needed.

To my family and friends, who suffered the most during this project. I promise to make up for my

absence in the last 16 months.

A special thanks to my wife Cláudia for her support, comprehension and patience. My success will

always be yours too.

IV

To my Grandmother, Albertina.

V

Table of Contents

1 Introduction .. 1

1.1. Related Work .. 2

1.2. Main Challenges .. 3

1.3. Contributions .. 4

2 Background ... 7

2.1. The Network .. 7

2.2. The Monitoring Application .. 9

2.3. The Network Record Application .. 11

2.4. Limitations ... 11

3 Etymon Overview .. 12

3.1. Architecture .. 12

3.1.1. Online mode .. 14

3.1.2. Offline mode ... 15

3.2. Event Correlator .. 15

3.2.1. Issue Identification through Problem Ticket Filtering ... 15

3.3. Traffic analysis and network discovery ... 17

3.4. Network Model ... 18

3.4.1. Generic Model ... 19

3.4.2. Model Dependencies .. 21

3.4.3. Nodes and Metrics .. 24

3.5. Time series analysis ... 25

3.6. Cause and Effect Probability ... 28

3.7. Root Cause Candidates Selection .. 31

3.7.1. Independent Analysis of Components .. 31

3.7.2. Causal Path Lookup ... 32

3.8. The graphical user interface ... 33

4 Results ... 35

4.1. Traffic Analysis Results .. 35

4.2. Issue Identification .. 37

4.3. Model Statistics ... 41

4.4. Root Cause Listings ... 41

5 Future Work .. 46

VI

6 Conclusion ... 51

7 Bibliography .. 54

VII

List of Figures

Figure 1 – Sample diagram of an application with multiple dependencies .. 8

Figure 2 – Generic architecture of the monitoring application .. 10

Figure 3 – Etymon architecture .. 13

Figure 4 – From ticket registration to performance issue detection .. 16

Figure 5 – TCP State Machine ... 18

Figure 6 – Generic Network Graph ... 20

Figure 7 – Example of one level of the model .. 22

Figure 8 – Cause and effect on the evaluation time period ... 26

Figure 9 – Relation between issue vectors for metrics with different cycles 29

Figure 10 – Calculation of the component state .. 30

Figure 11 – Example of identification of relevant components using independent analysis 32

Figure 12 – Traffic Analysis Interface .. 34

Figure 13 – Network model interface ... 34

Figure 14 – Frequency of the detected flows ... 36

Figure 15 – Abnormal flow identified on a limited period .. 36

Figure 16 – Graph of related traffic flows ... 37

Figure 17 – List of top issues ordered by number of tickets ... 38

Figure 18 – Distribution of the Issues Duration .. 39

Figure 19 – Distribution of the number of tickets and locations per issue... 40

Figure 20 – Distribution of the issues start time through the hours of a day....................................... 40

Figure 21 – Sketch of a detailed model of the network .. 48

VIII

List of Tables

Table 1 – Ticket filtering and grouping ... 17

Table 2 – List of possible metrics .. 25

Table 3 – Distribution of values for a distribution regarding the standard deviation 27

Table 4 – Statistics of the network model for the first issue (id=9579) which affects 19 sites 41

Table 5 – Results of the independent analysis of components for the first issue (id = 9579) 42

Table 6 – Results of the causal path lookup for the first issue (id = 9579) ... 43

Table 7 – Top five of the most relevant metrics for the first issue (id=9579) 44

IX

A distributed system is one in which the failure of a machine

I’ve never heard of can prevent me from doing my work.

Leslie Lamport

1

1 Introduction

Nowadays, the pressure for companies towards the short-term profit is overwhelming. A company is

expected to operate continuously in any environment and sales are the top priority for the daily

management. In large companies, new products are constantly being created and new promotions

and campaigns are launched in a weekly or monthly basis. These demands tend to increase faster

than the support IT infrastructure.

For the Telecom companies, for instance, the number of applications in daily operation is very large.

From the moment a client requests a new phone or DSL line, until the moment it is installed in his

house, a high number of interactions must occur within the IT infrastructure of the company. It

starts with the application that registers the request for a new DSL line. Then, a new record must be

placed in the application that manages the teams that will physically install the line, and configure

the circuits. This application will interact with other system that identifies the place where the client

lives, and retrieves the information about the relevant paths of the network. After the installation,

another application is responsible for triggering physical tests to the phone line to check for any

possible problems. In addition to these applications, there are other applications that manage calls

in the call centers, handle billing, or simply process the monthly invoices. Failures may happen not

only in the application but also in the network. The network covers almost the entire country and

comprises a large number of routers, switches, firewalls and links with different capacities. There are

many possible points of failure than can affect the company’s daily work and may have a significant

impact on the company’s image.

Another source of problems is the frequent release of new products and promotions. These changes

usually require adjustments to the applications. Sometimes, due to lack of time or negligence, these

new developments are not adequately tested and the impact on the current infrastructure can be

disastrous. Some examples are common: a new SQL query, if not adequately tested can take a long

time to run and consequently block many other users and applications; a new request can demand

transferring a large file over the network to a remote store with a low bandwidth connection.

Sometimes, the quick fixes applied to solve these problems are themselves a source of performance

issues.

Finally, another important aspect is the natural evolution of the company’s services and of the IT

infrastructure. Throughout the years the number of employees and clients has grown and therefore

the applications add to cope with more demanding usage profiles. The usual solution is to keep

adding more resources (i.e. more and better servers, increase memory, upgrade links etc.) and

deploy improved and more complex applications. As the network and systems became more

complex, more intricate solutions are necessary to allow new applications to communicate with

older and legacy applications. The middleware solutions adapted to make this interaction possible

constitute new points of failure. The personnel that use and manage the system as changed also.

Some undocumented changes were lost, and valuable know-how about the network and the

applications was lost.

2

All these changes and evolutions can make managing network and systems a chaotic task. It is vital

to the company to have adequate control over the network and its systems. For instance, there must

be detailed records of all elements on the network as hosts, servers, links, routers and switches.

Real-time monitoring is another fundamental function to be used to generate alarms, trend analysis

or technical risk assessment. These tasks should be performed automatically and several monitoring

solutions are available (either commercial or open source). But, in large and complex networks,

these applications generate a large amount of data that is very hard to filter and analyze manually.

The main purpose of this project is to study a root-cause analysis of failures in large and complex

networks. The final solution must be as automatic as possible. For the reasons stated earlier, the

task of identifying the root cause for a performance problem experienced by the end-user a large

enterprise IT network is very difficult. Sometimes the problem has its origin in a dependency that the

network and systems operators did not even had knowledge of and also, despite the failure, all

systems may seem to work fine when checked individually.

The first step of the analysis is acquiring as much information as possible from the network. Due to

the constant changes on the network and systems, one cannot trust completely the existing network

systems architectures diagrams, so one of the first components of a root cause analysis tool must be

a network discovery mechanism. This component should also identify dependencies among systems.

A second important component is fault diagnosis, i.e. one should identify faulty behavior by one

node of the network or by some component of the system. Having identified faults in several nodes,

they have to be correlated in order to understand which fault is responsible for the failure perceived

by the user.

One of the main goals of this project is to create a useful tool to apply in the company whose

network is used as testbed. Thus, focus has been given in creating small applicable modules that

could not only be used as a component of root-cause analysis system, but also be applied

independently and provide interesting information to system managers. Another purpose is to

identify what are the requirements to improve the accuracy of this root-cause analysis tool. For this

reason, a real and very complex testbed is used rather than a scenario created from scratch. Using a

real and complex network for such a short term project introduced some obstacles: lack of

information about the systems, high number of workflows for which there is no documentation

available, difficulty to implement some important metrics in production systems, huge amounts of

data to process, and naturally, the existence of numerous complex interactions between the same

systems which may add some noise in the service dependency discovery process.

1.1. Related Work

One of the most complete projects in the field of root-cause analysis found in the literature today is

probably Sherlock [1]. Its main advantage is that the network is considered in its entirety instead of

analyzing only a specific application. The authors describe techniques for building a dependency

model that allows the identification of root-cause candidates. The model also simulates the effect of

fail-over and load balancing mechanisms. The inference graph model consists of nodes and edges.

The node represents an associated probability of having performance problems and the edge

represents a dependency in the system. Detection of the root-cause is limited to a server or service

3

and does not address finer resolution. The authors argue that the model can be applied to any

granularity but the methods used to identify the dependencies could be limiting as they are based

on simple traffic analysis. The analysis uses the response time to detect and understand problems.

The first component of this project infers causality relations among TCP flows that establish between

the servers that compose the entire ecosystem. The correlation of these flows follows a similar

approach to two convolution algorithms in [2]. The first one involves recognizing RPC-like

communication and combining the calls and responses into path sequences. The second one

organizes messages exchanged between each pair of nodes in a time series, and then correlates

them by calculating the convolution of each pair of functions. Applying this procedure recursively,

the authors obtain possible paths used in the application. The latter approach uses any kind of

messages, thus it is more generic but less accurate than the one based on remote procedure calls.

The method used for RPC communications can be extended to other protocols.

In Pinpoint [3], a unique ID is assigned to every HTTP request that enters the system. This tool is

intrusive, as it must intercept all requests in order to assign them the unique IDs. This is easy to do

on a basic J2EE platform, but almost impossible to implement pervasively in a large network with

diverse software and hardware systems. Pinpoint is evaluated using simple J2EE web applications

without intricate relations among a large number of servers. Besides Pinpoint, other approaches [4]

[5] require the programmers to instrument applications to reveal relevant events. Instrumentation

of large and sometimes legacy applications in a compatible fashion could be a very expensive task.

Another approach with a higher level of control is Magpie [6]. Magpie makes an extensive use of

event monitoring in all the components in the system. By capturing all the relevant events and

guaranteeing their causal order, Magpie is able to identify the workload of the application. In order

to organize these events, an event schema must be generated and is as complex as the number of

different events monitored. Although it is difficult to apply this approach on the entire network

supporting several interacting applications and to every possible event, it could be effective if it is

applied in specific points of the IT infrastructure.

1.2. Main Challenges

The following list presents challenges of this project:

 Complexity of networks and dependencies: To find the root cause of a problem in a large

distributed network, using only a manual analysis is often very difficult or even impossible.

Using an automatic tool, although we are able to do more processing in less time, we lose

some of the benefits of a manual analysis done by experts: we lose intuition! Due to the lack

of this human characteristic it is very hard to choose, among a large set of elements, those

that should be analyzed most deeply. It is also hard to configure all the possible

dependencies in such a system. The overabundance of elements in such a network and the

complexity of the dependencies among them is one of the main challenges to address in this

project;

 Number of metrics: The number of metrics available is always an issue, no matter if we have

too many or too few available. In the most frequent case, we lack some metrics which are

important to explain a problem. In this case, the application should try to identify some

4

component or group of components where the root cause may be located, i.e. the

application should reduce its granularity. In contrast, when the number of metrics available

is too large, we have complexity and performance issues. Too many metrics is equivalent to

too much processing and it is harder to distinguish the most important metrics.

 Automation of procedures: An application that overcomes the problem of manual analysis

should be, by definition, as automatic as possible. One must minimize the amount of expert

opinion needed to construct models, configure them, etc. This field of research is addressed

by Expert Systems [7], where all components of the system are correlated automatically

using their attributes. The construction of an automatic system raises many issues:

- How to find which metrics are behaving badly? One approach is to focus on

modeling failure behavior. This is an approach to avoid because different failures

tend to have different manifestations. Therefore, such method is prone to false

positives. Another approach is to identify deviations from normal behavior. In any

case, how should we process these anomalies to obtain a node state?

- How should metrics influence the state of a component? This is one of the most

difficult questions to answer without introducing some expert opinion. Different

failures may be identified by different metrics. Therefore, the state of the

component should use as much past history as possible to understand how to use

metrics to evaluate the state of a specific component.

1.3. Contributions

The main goal of this project is to create a functional root cause analysis tool that could be helpful

for problem diagnosis in a large enterprise networks. The system is called Etymon1. As it is shown in

the related work, most of the current solutions make extensive use of instrumentation of

applications. The company whose testbed is chosen has an ongoing project that monitors part of IT

infrastructure. The project is named Pulso2 [8] and has been extending its scope throughout the past

few years. Pulso plays a major role in this project, as it constitutes the main data source used to feed

Etymon.

This section describes three components of an automated root cause analysis system: network

discovery, failure diagnosis, and network model.

The major contribution is the study of the deployment of such a system in a large and complex

production network, which has been adapted to the company’s needs over several years. This

implies major changes to standard applications, many times without sufficient documentation,

monitoring, logging capabilities and with “unexplainable” collateral effects on the performance of

the application.

In such a large system, it is extremely hard to characterize its use and what constitutes a

performance error. The company has a trouble ticket system used to identify performance issues.

1 Etymon is a Greek word for “true meaning of a word”.
2 The Portuguese word “pulso” means both “pulse” (for representing the act of monitoring and sensing the
network) and “wrist” (for representing the need of having control over the way network and systems behave).

5

This application stores end-users complains, which represent the best sign that an abnormal

behavior is affecting the application’s performance. This method can later be replaced by automatic

methods of failure diagnosis, possibly based on the knowledge acquired from the analysis of the

issues raised by users.

We provide our system with five main properties, so that it can fit well in such large scale network.

The application should be:

 Usable – the application should be immediately useful to network operators, despite its

accuracy in identifying root-causes of failures. Therefore, a set of views are carefully

designed and implemented to analyze data. Using this view, network and system operators

can easily identify the most relevant elements to analyze from a large dataset. Therefore,

they must have access to features like ticket analysis, traffic analysis and correlator, network

model, components and metrics relevant to study a performance problem;

 Automatic – the developed tool must search for causes using automatic mechanisms

whenever possible, minimizing any intentional human intervention or opinion. Therefore,

the methods are mainly based on the recent relations among application components and

on the detection of deviations with respect to a baseline of the recent behavior. The use of

these applications in production systems is locally stable, i.e. the usage of each application is

more or less the same when seen in a time window of a few weeks, which allows the

application of anomaly-based methods;

 Adaptable – the application fits and adjusts well to the discovery of new components and to

the inclusion of new metrics on the underlying monitoring systems. The network model is

dynamic and contains a different view for each problem, including only the most relevant

elements. The model uses information available in the company’s underlying applications

that monitor the network and keep records of each network element. Whenever a new

element is added to these applications, it is reflected on our application in the relevant

models;

 Granular – the model is easily extendable to increase the resolution of root-cause

identification. Whenever we have more information about a specific component, we may be

able to pinpoint a more detailed root-cause. Consequently, all mechanisms used must be

generic and should be applied to any type of component added to the model. This property

will facilitate the implementation of extensions to the application by adding new model

components that will be processed as any other component, but that will add a new level of

detail to the application;

 Accurate – the application improves the accuracy of a normal intuitive analysis. Although it

is hard for an application to surpass the years of user experience, it should be able to

pinpoint components as being problematic in a more accurate way than users would do in a

manual analysis. The advantage of automatic applications is that they can scan the complete

set of dependencies of an application, without being biased by any frequent anomalies of a

system.

 Scalability – the application must be able to process data for all nodes represented in the

network model, in an efficient. Analyzing past issues involves access to large databases with

historical data, which slows down the entire process. Therefore, the statistics needed to

determine the network state are updated in real time, whenever a new measurement is

6

available. Then, if a relevant event is detected, the network state can be saved for later

analysis.

This project is strongly related to the company whose network is used as testbed. Therefore, the

feedback to be given to the company constitutes an extra requirement. When we tried to correlate

components to create the network model, we noticed some inconsistencies that could thwart any

automatic analysis. The network and the information available constitute the main advantage and,

at the same time, a challenging task. There are numerous metrics available covering many of the

areas of the analysis but, even so, root-cause analysis demands some more metrics to be able to find

a coherent causal path, i.e. an explanation of how components have affected each other until they

provoked the complain of a user. Therefore, the feedback about what needs to be reorganized, what

extra metrics should be obtained and what parts of a system should be documented, is very

important.

7

2 Background

Root cause analysis projects require a huge amount of information. To be able to identify problems

in the network, systems or interactions among them, we need information about the network

architecture, mechanisms to trigger the collection of metrics and traffic samples and to constantly

monitor the state of all elements that may be involved in this kind of analysis. When one starts an

analysis, it is hard to choose a subset of elements where we are sure to find the original cause, thus

every single element may have its own importance.

In order to choose the testbed, several criteria have to be fulfilled. The main requirements that

influence the choice of the company and testbed to use during this project are:

 Existence of widely deployed monitoring tools which are easy to interact with: the

enterprise IT network chosen has developed and implemented during the past four years a

tool that monitors and stores information about systems, network and application. The

diversity of metrics is very large and is growing continuously. This not only allows some rich

insights for the current analysis, but also opens hopeful perspectives for evolution in the

near future for this tool;

 Existence of information about the network and systems and how they are related:

another tool available in the enterprise IT network monitors relations among systems and

maintains records about the hosts identified. This tool is frequently updated with

information about the systems, including their characteristics and functions. This allows the

recognition of the IP addresses in our traffic analysis, making it possible to include its

statistics in the network model used for root cause analysis;

 Existence of complex and diverse relations among systems: many of the papers about root

cause analysis present solutions to approach the problem. But one of the main drawbacks

found in most of them, is that they usually test their results using simplistic application

architectures. Normally, these results are obtained for systems involving nothing fancier

than a web server with a database and a DNS for name resolution. Actually, although they

are important scenarios due to its pervasiveness on most companies, they are not

challenging because the relations between systems are very simple and similar throughout

the network. Also, the chosen testbed should be challenging in terms of the network

architecture. The testbed used in this project includes end-users spread throughout the

country and more than one data center where the main systems are localized.

2.1. The Network

The enterprise IT network possesses several important applications. The employees, and potential

end users of the applications, are spread all over the country and are connected by a private internal

network. The density of end users is not homogeneous as most users are naturally located near the

larger cities. Therefore the network capacity is much higher in the larger cities than in some remote

locations. All this asymmetry must be accounted for in an analysis of the complaints made by users.

8

The testbed application is one of the most critical and used within the enterprise IT network.

Therefore, the set of users of this application is a proportional sample of the overall set of

employees. Another aspect of this application is that it deals with several different types of

information and therefore it must interact with a high number of different systems. This constitutes

an ideal environment to test the solutions developed in this project.

The application has been developed inside the company and its functionalities have been

augmented throughout its development. During its evolution, the application had to be changed in

order to add new features, to add new interactions with other applications often resorting to

middleware systems, to cope with new system requirements due to the increasing number of users

and clients and so on. This fact increased the complexity of the system and the difficulty to explain

performance problems detected by the users. We should add to this, the disparity of technology

used in the several systems. For instance the operating system can vary from Linux to Windows

while the databases can go from Oracle to MSSQL servers.

To have a sense of how complex the used system is consider Figure 1.

Figure 1 – Sample diagram of an application with multiple dependencies

As we can see the end users (user sites) communicate with a single application. Many times they are

unaware of the other applications, with which the central application must communicate to provide

some service. Some of the servers are in different data centers, thus introducing other possible

points of failure. The smaller boxes represent routers. Thus, we can verify that between a user and

the application or between data centers, the paths are long and traverse many routers. This gives an

9

idea of how complex the system is, and of the quantity of elements that may fail when a user makes

a request.

We may easily conclude that the tool to be developed must consider each application as being part

of a large ecosystem. This ecosystem includes not only the target application, but also every single

system that communicates with it (even in second or third order, i.e. applications that communicate

with the target application through one or more other systems). It should also include the network

that supports the communication between all systems, and between each system and its end-users.

2.2. The Monitoring Application

The company which supplied the testbed application for this project has implemented in past few

years a project for event processing and monitoring (Pulso), covering a large fraction of the IT

infrastructure. In this section we provide a description of the system’s architecture and of the

metrics available. This information is important because this monitoring project is the major source

of information used in the root cause analysis tool.

As we referred before, new metrics are difficult to implement in production systems and a lot of

time is necessary to obtain the authorizations, thus the main option is to use only the metrics

available in the company’s monitoring tool at the start time of this research project. The idea behind

this is that a huge and complex model, with many middle components without any information,

tends to be less useful than a simpler model where all elements contain some information about its

state. Naturally, this approach should only be followed if the model is able to adapt to new

knowledge being acquired and inserted into the application.

Figure 2 represents the architecture of the system. As we can see the philosophy of the Pulso system

follows the ideas developed under the subject of Complex Event Processing [9]. In this type of

systems, all measurements are treated like events that should be stored using a canonical format.

Each event can trigger some processing that result on different events with a higher degree of

abstraction. In this system, the events are metrics applied over servers, network links, applications,

etc.

The low level events are used in this system to evaluate the state of the components. The model is

created using the information available about the network. The network records contain the existent

servers, applications, and links and provide some attributes which we use to construct our model.

Naturally the model is only as complete as the network records.

10

Figure 2 – Generic architecture of the monitoring application

The system metrics are collected from a large number of servers which use different technologies.

These servers are in production thus the retrieval of metrics should not require making major

changes to the system and should have a minimal impact on it. This makes more difficult the

obtainment of some metrics in specific operation systems and/or applications. Examples of system

metrics obtained at the machine level are CPU usage, load average, memory, etc.

Some other metrics depend on the specific purpose of the system. For instance, in a database we

can collect several metrics which can also vary with the database type (Oracle, MSSQL, MySQL, etc.).

Other types of servers, such as mail or web servers, may also have specific metrics. Examples of

application-specific metrics are server-side transactions response time, number of application/server

errors, database wait time, etc.

Within the Pulso system, the network is seen as a black box. The measurements are made to end-to-

end links between critical points of the network. These points correspond normally to two types of

locations: data centers where the main servers are located and the end user sites. The links are

defined for a pair <data center, user site>. For each of the links the system provides measurements

of bandwidth and latency.

Other type of links is considered when the analysis is made in the transport and application layers.

Here, the application defines application links, which connect some user site to some application.

The metrics collected refer to aspects of the communication to or from a specific application. Some

of the metrics available are number of timeouts, resets, end-to-end duration of a transaction, etc.

Targets: Processes, Systems e
Technologic Infrastructures

Portal/”Messaging”:
(Alarms, SMS, Graphs,
Maps, Flash Screens,

KPIs, Tables, …)

Analyzers:
(Stats, Temporal Series,

SLA’s Analysis,…)

Sources:
(Collectors, Loggers,
Sniffers/IDS, Traps,

Imports, Simulators,…)

Auxiliary Data
Structures

Analysis
Algorithms

Events
(Canonical

Format)

UsersCritical
Resources

Basic Processing Infrastructure

Write Events Reads EventsRead/Write Events

P
ro

d
u

ce
rs

 a
n

d
 C

o
n

su
m

e
rs

o

f E
ve

n
ts

Se
rv

ic
e

s
o

ve
r

Ev
e

n
ts

, R
es

o
u

rc
es

an

d
 U

se
rs

11

2.3. The Network Record Application

There is also an application that keeps track of the network hosts. This application monitors network

traffic and stores information about the flows seen on the network. It can be fed with more

information manually, by introducing a list of the network hosts and of their purpose, or

automatically, by using tools like NMAP to retrieve information about a host. The automatic analysis

is rather limited, as the servers often do not allow this type of scans or provide insufficient

information.

The information contained in this application is useful to correlate the data gathered in our traffic

captures with the components defined in the monitoring application. For instance, whenever we

want to correlate two servers, we can identify their IPs using this application, and then lookup the

frequency of their relation in a specific traffic capture.

2.4. Limitations

There are several limitations to this work due to the time available for the project and to some

operational constraints. The time available, together with the fact that we are working with a

production environment, does not allow the retrieval of some metrics considered relevant and that

are not being collected by the monitoring system. The probe to retrieve some metrics in a

production server must be extensively tested and specific authorizations are required. Therefore,

the approach for this project, given its scope, is to develop an end-to-end application using whatever

information is available.

Another limitation is that we only have probes to capture traffic from one server to another, i.e. we

have mirrors for the traffic generated and received by the most critical servers. Naturally, this

prevents us from obtaining information from the control plane. The traffic captures are used and

analyzed to detect the network and transport flows between servers. Although it would be

interesting to verify and analyze some of the lower level protocols (for instance, routing protocols),

this is considered to be out of the scope of this project due to this limitation.

12

3 Etymon Overview

Etymon deals with finding a root cause of problems identified by internal end-users3 of a large

enterprise IT network. The application starts by filtering and grouping failure information reported

by the end-users. These tickets are processed to identify periods of unavailability or performance

degradation. For each period of degraded performance, Etymon constructs a model of the IT

infrastructure using the information available on Pulso and obtained in traffic analysis. Afterwards, a

time series analysis is computed for all metrics identified for each node of the model. This analysis

identifies patterns of behavior of the recent past for each metric. Subsequently, the state of each

node can be computed by analyzing deviations from the pattern or identifying abnormal events.

The application runs either in online or offline mode. In online mode the failure reports are received

continuously and patterns are updated on the fly using the recent past values. This mode allows

quick identification of root cause candidates as processing is being performed continuously. The

offline mode is the most used to test the application. Using this mode we can calculate the network

model and patterns on demand and identify a root cause in the past. Naturally, these computations

are time and CPU consuming and therefore the application takes some time to identify the root

cause candidates. Naturally, to speed up processing one can use pre-calculated patterns at the

expense of a reduced accuracy.

This section describes the architecture of the application, where both modes are presented and the

main components are described. Then we focus on each specific component. First, in Section 3.2 we

describe the event correlator module and the process of filtering failure reports and identifying

performance issues. Section 3.3 describes the traffic analysis components and the main outputs

possible from this component. Section 3.4 describes the network model and how it is computed

using information from Pulso and information obtained through the traffic analysis. Sections 3.5

covers the time series analysis, which allowed us to compute the probability of a node being

affected by a failure or being a cause of the failure. These computations are presented in Section 3.6.

Finally, in Section 3.7 we describe the component that finger-points the components and metrics

that may identify the root causes of the problem.

3.1. Architecture

The Etymon application has several components that can be applied individually or in sequence for

ongoing events. Figure 3 depicts the several components and data flows for online and offline event

processing.

3 Internal users are company employees that need to use its applications and IT infrastructure to execute their
daily tasks.

13

Network and Systems Model

Root Cause Candidates

Selection

T
ra

ff
ic

C
a

p
tu

re
s

IssuesIssuesIssues
F

ilt
e

rs

D
e

p
e

n
d

e
n

c
ie

s

ComponentsComponentsComponents
MetricsMetricsMetrics

Cause/Effect

Probability

Calculation

Traffic

Analysis

E
ty

m
o

n
 P

o
rt

a
l

Pulso

Pattern

Determination

Online mode

Offline mode

Event Correlator

Esper

Real-Time

Events

Real-Time

Events
Tickets

Figure 3 – Etymon architecture

The main inputs of the application are the events collected by Pulso. As seen previously, these

events are collected in real time and stored on a central database. The tool has two possible modes

of operation:

 Online mode: this mode is used to identify and analyze performance issues as they occur.

The online mode is represented in Figure 3 by solid arrows.

 Offline mode: this mode is used to identify and analyze performance issues that have

occurred in the past. The offline mode is represented in Figure 3 by dashed arrows.

The core components of the tool, which are represented in the darker boxes, are the following:

 Event Correlator (uses Esper Java Framework) [10]: complex event processor framework

that receives events and triggers the corresponding methods for pattern calculation or state

update. The Esper engine enables the implementation of Complex Event Processing (CEP)

applications [9]. A CEP engine, like Esper, is a platform to allow easy development of

applications that process and analyze real time data. Esper implements an in-memory

database which is better suited to applications where a high number of events needs to be

processed quickly and frequent queries are made to correlate real time data;

14

 Traffic Analysis: traffic stream analyzer responsible for identifying flows, calculate traffic

statistics and output conclusions about network nodes’ roles and dependencies among

nodes and flows;

 Pattern Determination: component used for detection of abnormal events either by

comparison with an usual pattern of behavior, a prediction based on the recent past or a a

chosen threshold;

 Causal and/or Effect Probability Calculation: module that computes the state of each node

given a specific period. In the online mode this period has a fixed size ending on the current

time instant. In the offline mode this period corresponds to the duration of the issue plus an

extra fixed period where the causal behavior may have happened;

 Root Cause Candidates Selection: module responsible for crawling the graph and search for

the most problematic component or metrics in the graph. The path between these nodes

and the root issue influences the overall probability of the node being pinpointed as a cause

for the problem.

The technology used is an Apache/Tomcat web server for the graphical user interface and a

database MySQL for data storage. The application is entirely developed using Java.

3.1.1. Online mode

When in online mode, the Etymon tool can receive events from several sources. Mainly, the sources

used are the database and data collectors from the company’s monitoring application and the

ticketing application which receives the end users reports for problems. The initial component in this

mode is the event correlator. This component allows the setup of filters and correlation operations

over the streams of events. The stream of events corresponding to the tickets opened by the end

users constitutes the first input of the application. This stream is analyzed to identify periods of

degraded performance in each application. This information will then trigger the creation of a

network model. A model is built based primarily on the information retrieved from the tickets about

the systems and network locations affected. The ticket filtering and model creation operations are

described in Section 3.2.1 and Section 3.4 respectively.

The online mode bases the state calculation on a fixed-size past period. All nodes for which

information is received must be updated continuously. The patterns must be available whenever a

user desires to analyze the model state or whenever an issue is detected and, consequently, the root

cause candidates need to be determined.

The performance of the online operation is better than that of the offline mode because the

patterns are immediately updated whenever an event enters the application. Therefore, this mode is

used to pinpoint causes to issues that occur at the time of the analysis. The event correlator module

is responsible for triggering these updates and for sending the events for the pattern calculation

component. Also, the state of the model nodes can be updated as soon as the pattern update is

performed. The methods used to calculate the patterns or other abnormal events detection are

described in Section 3.5.

15

3.1.2. Offline mode

In the offline mode the user can request an analysis of a past issue. The application can, for

instance, analyze an input file containing the tickets opened for a specified period. These files are in

the CSV format and are obtained through queries to the Ticketing application of the company. The

ticket filtering operation uses, as in the case of the online mode the event correlator module, to

process the events (see Section 3.2.1).

When the user chooses one of the issues the application creates a model based on it. The process

follows the same steps of the online mode but, in this case, all time series analysis, pattern detection

and state calculation must be computed. For the state calculation, the analysis period includes the

time interval of the issue plus some previous period. The size of this extra period is determined by

the duration of the issue.

As a consequence, an offline analysis is considerably slower due to data retrieval constraints. The

Pulso database contains large volumes of data and the patterns must be computed for a large

period, which increases the time needed for data retrieval queries

The offline mode is useful to evaluate issues that are inserted in the application some time after

their occurrence. For the past issues, that have been detected online by the application some

optimizations can be made. For instance, the online mode can save information about the state

immediately after an issue as occurred. Whenever the user desires to analyze the issue again the

model can be quickly loaded from the database.

3.2. Event Correlator

The event correlator model is based on the Esper framework. The input data is aggregated in

streams of events. This framework executes a call-back function whenever a new event of a specific

stream arrives. The programmer of a module using the Esper framework must define the call-back

function, the stream aggregation and mapping between functions and event streams. Events on

Esper are tuples. The streams are defined by specifying a query that will be applied to each of the

tuple. These queries are defined using the EsperSQL language that, as the name implies, is very

similar to SQL. The inputs for this component can be either real time events of input files containing

a list of events to be processed in batch.

3.2.1. Issue Identification through Problem Ticket Filtering

The main goal of the Etymon application is to find explanations for performance issues. A

performance issue can be defined as problem that occurs in some application or network element

affecting the normal behavior of the company’s information systems. Therefore, these issues affect

the end-users productivity. The users are, in general, company employees that depend on the

systems performance to be able to do their job efficiently. Whenever a user sense a problem on a

system that prevents him from doing some operation, he may report the problem by opening a

ticket using the e-mail or the telephone. These tickets are registered centrally and are the perfect

input for an application like Etymon.

16

The input of this module can be live events sent by the ticketing application or a CSV file containing a

list of tickets opened during a specific period that the user wants to analyze. We apply a text-filtering

function to all the ticket events received, aggregate them by their timestamp, and generate an issue

event for each group.

The ticket opened by end-users can have several subjects: blocked accounts, software errors,

unexpected results or performance problems. Etymon identifies root-causes for performance

problems like slow or unresponsive applications, or unreachable servers. In the context of this

project we use the name ticket to denominate a user report of any type of problem and an issue to

refer a set of one or more tickets of performance.

The issue constitutes the root of the dependency graph used to find root cause candidates. The main

fields of an issue needed to create the relevant graph of dependencies are the period’s start and end

timestamp, the application name and the network location of the users who reported the tickets. To

construct the model relation we correlate these values with the systems and network information

stored by the monitoring application (see Section 3.4) and with the traffic analysis results (see

Section 3.3).

When a ticket is created it includes a description made by the user (see Figure 4). As this description

is formed using free text, the possible descriptions are infinite. The ticketing application has a large

number of categories to characterize the problem. Nevertheless, sometimes, either by lack of an

adequate category or by inexperience of the call center operator, the ticket is not correctly or

accurately categorized. The solution to identify relevant issues is to search for a set of specific

keywords in the description provided by the user and group the tickets with near timestamps.

user creates ticket

with a personalized

description

user calls and

reports the ticket operator registers the

ticket using the

perceived description

and categorizes

tickets

all tickets
Ticket Filtering

and Grouping

performance issues

Figure 4 – From ticket registration to performance issue detection

The filtering process is presented on Table 1. Here one can see some typical descriptions provided by

the users4. The keywords used are presented in the second row and in the bottom of the table it is

possible to see the final issue. This approach has proven to be very effective given the common

descriptions found. Whenever a false positive is encountered, it probably is isolatedticket that leads

to an issue of duration zero. Such an issue has a very low relevance, because the main target of this

application are issues with long durations, i.e. at least over thirty minutes. Even if it does not

4 The ticket description was translated and therefore the solution is slightly different due to languages’
grammatical differences.

17

correspond to a filtering error, a single ticket may indicate that only one user is experiencing

problems. In this situation, the cause of the problem is probablylocated in the user’s workstation. As

we are not able to monitor the users’ workstations for now, this kind of causes cannot be analyzed.

Raw
Tickets

App 1 2008-10-04 14:00 Lisboa App 1 is unavailable

App 1 2008-10-04 14:03 Aveiro Record is not shown on the interface

App 1 2008-10-04 14:10 Lisboa The App 1 is extremely slow

App 1 2008-10-04 14:13 Porto App 1 keeps blocking

App 1 2008-10-04 14:28 Lisboa App 1 has stopped

Keywords Unavailable, slow, block, stop…

Issue Performance Issue: 2008-10-04 14:00-14:28, Application: App 1, Locations: Lisbon, Porto

Table 1 – Ticket filtering and grouping

3.3. Traffic analysis and network discovery

The first goal of the traffic analysis is to identify the application flows established between the most

relevant servers. Given the scope of this traffic analysis it is feasible to apply it to any servers

available. Another objective is to find correlations between flows, i.e. flows that, with some high

probability, start a short time after the termination of another flow. Using this information we

characterize some of the relations of the dependency graph (see Section 3.4). Using this module is

also possible to confirm the application’s workflows, identify clients and servers automatically or

discover unknown dependencies of the application.

To obtain the capture files for the servers we use a feature already implemented on the company’s

network discovery tool. This system is mirroring the traffic of some of the most relevant servers to

one of its machines, and thus, we use this mechanism to obtain traffic to our application. The files

are created in the CAP format and then processed within Etymon in order to the transport level

flows. To open and process the packet headers we use a Java library: the protocol decoder

jNetStream [11].

To identify the TCP flows, we resort to the implementation of a state machine driven by the packets

captured. The definition of the state machine is available in [12], and is reproduced in Figure 5. The

most important instants to identify for each flow are naturally those when a flow is established and

when the flows are terminated. Abnormally terminated connections can be a sign that a server is

having problems. We will use the information about resets and timeouts as metrics in the modules

that compute the state of each node.

18

recv: ACK

LISTEN

CLOSED

TIME_WAIT

CLOSING

FIN_WAIT_2

LAST_ACK

FIN_WAIT_1

CLOSE_WAIT

SYN_SENT

ESTALISHED

SYN_RCVD

appl: active open

send:SYN

appl:send data

send: SYN

recv:SYN; send:SYN, ACK

recv: RST

recv: SYN, send: SYN, ACK

timeout

send:RST

appl: close

send:FIN

recv: ACK

recv: ACK recv: SYN, ACK

send: ACK

recv: FIN

send: ACK

appl: close

send: FIN

recv: FIN, ACK

send: ACK

recv: FIN

send: ACK

recv: FIN

send: ACK

recv: ACK

timeout

appl:close

or timeout

appl: close

send: FIN

appl:passive operation

Normal transitions for client

Normal transitions for server

Figure 5 – TCP State Machine

3.4. Network Model

The central component of Etymon is the network model. The network model should represent, as

faithfully as possible, the relationships between systems, servers, network links and application links.

Naturally the process of gathering information about a system and identify each dependency in a

large and complex network is a huge task. We follow an approach that optimizes the use of the

already available metrics instead of building a complete and very complex model of dependencies.

The construction of such model would have failed because many of the middle nodes would not

have any metric associated and would compromise the detection of failures.

The model is created using an automatic approach to correlate the information available. The

monitoring system which manages data collection has already information about servers, systems

and network links. Hence, the correlation methods use the properties of each entity to correlate

them with order type of entities. For instance, a server has some information associated with it, e.g.

IP address, application, and so on. Through the company’s network records, it is possible to identify

a host location based on its IP address and, consequently, we can identify the network link used.

Also, as the servers have a reference to the application they belong to, we are able to identify the

most relevant servers in each application, using statistic of the traffic analysis.

19

 Until now, we only have access to the quality of the end-to-end communications between key

points of the network. These points are, in one side, the sites where most end-users are located and,

on the other side, the data centers where the main servers are located. As we do not have control

plane information, we will address low-level network issues in future work. The model can easily

accommodate new information collected on the network and new dependencies between middle

routers, gateways and other network elements. Nevertheless, the current setup allows us to

pinpoint the network as a cause of problems although it is not possible to identify the exact cause

component accurately.

3.4.1. Generic Model

The model is a directed graph (or digraph) where the nodes are the enterprise IT network

components and the edges represent a possible causal relation. Each node has a state representing

the probability of having some anomaly. Each edge has an associated probability the child node

influencing the parent node. Naturally, the final probability of the parent node having a problem and

of it being caused by an anomaly in the child node will depend both on the state of the nodes and on

the probability of the edge between them.

The generic model, which is represented in Figure 6, uses five different classes of components:

 Issue: corresponds to the root of the causal graph, and represents an event of degraded

performance identified during the ticket analysis and filtering operation;

 Application: represents a specific application. Although it does not correspond to a physical

component per se, it is important to define an element that represents the application and

to which several application level metrics are applied. For instance, metrics pertaining to

higher level transactions or some parameters specific to a given application may be

associated with the Application component instead of being associated with the Server

which maps to the hardware level component;

 Server: represents a specific physical or virtual machine. Servers are the elements that

compose the applications, and can correspond to DNS servers, web servers, databases or

simply virtual servers. In some cases, the virtual server may also help making load balancing

or active-passive replication mechanisms transparent to the model because it always

represents the active replica on a cluster, i.e. the one being accessed by the users;

 Network Link: represents a physical connection between two end-points. The two end-

points are a site where end-users are and a data center. The metrics for these network links

indicate the quality of the communication (e.g. bandwidth, latency) between the two points;

 Application Link: represents the connection at the transport and application layer. The state

of the application link corresponds to the probability of the communication between two

applications having problems. For instance, it will consider metrics like the speed of the

transactions performed on a specific link, timeouts of those transactions, resets sent by

client or server applications, anomalies on the traffic pattern observed, etc. Thus, the

Application Link component represents a relation between two applications. The possible

relations are:

- Application to Application: when the relation does not specify any servers but is

only the intervenient applications;

20

- Application to Server: when the destination application has a specific server that

relates to another application;

- Server to Application: when the source application has a specific server that relates

to another application;

- Server to Server: when the relation between two applications is performed by two

the servers explicitly defined;

- Location to Application: when an application has many accesses from a specific site

and thus metrics are obtained for several connections from different host but only

to one application, etc. Naturally this association typically represents accesses from

end-users to the application.

Each component will have a state expressed in the form of a probability. This probability tries to

represent how likely it is for the node to have problems. The calculation of this state is described in

Section 3.6.

Issue

Application NetworkLink

Server ApplicationLink

ApplicationLink Application Server NetworkLink

applications

identified in the

issue

locations

identified in the

issue

servers that

compose the

application

links between parent application

and other servers, applications or

users’ locations

links between parent server and

other servers, applications or

users’ locations

destination

application of the

applicational link

destination server (if any)

of the application link

destination location of the

application link

the graph continues until no new nodes are identified

Figure 6 – Generic Network Graph

As we can see from Figure 6 the identification of an issue triggers the creation of the model. An issue

results from tickets opened by users. One of the properties of the users’ tickets, used to do the

second iteration of the model, is their location. The other important property is the application that

has been exhibiting performance problems. Using the location and application attributes of the

issue, we identify the relevant network and application links (location to application). These links are

those that connect the users’ sites to the application reported on the issue. Using the two layers, the

network and the application, we can cover a wide range of metrics. By also adding the application as

a child of the issues component we complete the first iteration of our model.

21

The second step is to identify the servers that compose the application. When a server is added to

knowledge base of our application one of the required attributes is the application to which it

belongs. Thus, we use this attribute to identify all the servers that belong to the parent application.

Also, we must identify the relations that the parent application has with other applications. To solve

this problem, we have two possible approaches. The first one is to use the traffic analysis results to

identify all the relations from the servers of a specific application to other applications. The second

one and chosen approach is to add to the model only those relations already defined by the

underlying monitoring application and that already have metrics associated. The latter approach is

chosen due to both time and simplicity constraints. The time constraints prevent us from building a

thorough and detailed model. Thus, we opt for building a simpler model where all the nodes have

some metrics associated instead of building a larger and complex model, hard to visualize and with

several nodes that would not add much to the final root cause analysis due to the absence of

metrics. In the future, if we define new metrics and components correctly on the monitoring

application they will be automatically included in our model.

The application links are the remaining nodes to connect to the application element, namely, the

application to application and the application to server links. These represent application level

transactions that do not necessary involve a specific server on one or both sides of the

communication. The option to relate some metrics with either one server or the overall application

depends on the monitoring application. One of the goals of this project is that it must be easily

attached to any infrastructure already in place and complement the existent monitoring and analysis

tools. Therefore, whenever possible, we follow the decisions taken within the scope of the

monitoring application.

The next iteration of the model construction is to find the application links related to the identified

servers. Here the approach is similar to the one used in the application case but, this time, we search

for application to server, server to application or server to server links.

The remaining iterations correspond to finding the child nodes for each application link. For these,

the sons are created based on the three main attributes of an application link: the destination

application which originates a child application, the destination server which originates a child server

and/or the location of destination node which may refer to a network link.

After defining what to look for in each component, the model is constructed recursively until no new

nodes are created. We only need to define the edges’ probability for finishing the model’s skeleton.

The methods used to define the dependencies strengths are described in following section.

3.4.2. Model Dependencies

There are two main sources for assigning strengths to the edges of the dependency graph. The first

source is the traffic analysis results that can be used to identify the most active servers and links.

This way, we identify those components that will have a major impact on they parents in case of

failure. The second source used is human knowledge. Despite of being an inefficient way of assigning

dependencies, the human intuition and intelligence is what we are trying to add to this kind of tools.

Therefore we use some human intuition when classifying the dependencies on the generic model

(Figure 6) that is used to construct the final model. Nevertheless, we should not neglect the

22

possibility of replacing any manual parameterization by any automatically determined parameters,

whenever enough information is available.

The strength of each edge depends on two values. The first value corresponds to the type of child

and the predicted impact on a parent node. The second value corresponds to a statistical analysis of

how relevant the child is to understand the behavior of the parent. Normally, this is determined

from how frequently it relates to the parent. Let us take as an example the relations between the

issue nodes and their child nodes (see Figure 7). The issue component has three sets of child nodes.

The first set is composed by a single element and corresponds to the application referred on the

issue. The two other sets correspond to the communication with the application. Thus it is assigned

an equal probability of the problem being originated on the application or on the communication5.

This probability impacts on the parent if the child nodes have a degraded state (we explain the node

state calculation in Section 3.6). The probability assigned to the communication between the users

and the application is further split in two as the problem can either be due to application or network

level. Then for each set, a statistical analysis is performed in order to decide the second value for the

probability of an edge. The sum of the probabilities of all sets (the first value) is equal to 1. And the

sum of the probabilities within a set is also equal to 1. The final probability of an edge results of the

multiplication of the two probabilities. Therefore the total sum of the probabilities of all edges

departing from one node is equal to 1.

Figure 7 – Example of one level of the model

5 Given the automatic nature of this tool, all manual parameterization, even if it corresponds to an
interpretation of the reality, should be replaced by automatic inference in the future (see Future Work in
Section 5). The manual solutions are justified by time constraints.

23

The values assigned for the first component of the strength of a relationship have been defined

together with the tool’s generic network model. The second component of the relationship strength

is determined by the traffic analysis module described above. Using the statistics obtained from the

traffic analysis, we are able to assign relative probabilities to many of the relationships present in the

model. Basically, the dependency probabilities are based on how frequently a relationship is seen in

the network. Two machines that communicate often are more likely to influence the behavior of

each other and to propagate failures. Nevertheless, as we will see in the future work section, many

other properties may be used to correlate entities. In order, to be able to relate the several entity

types to the traffic observed in the network, we must identify the location, server or user site to

which an IP address corresponds. The following dependencies are present in the model:

 An Issue depends on:

- Network Links –the issue contains references to several user locations and one

application, hence the dependency is as strong as the number of requests made from

each user site to the application. The probability associated with the dependency is

given by the ratio of the number of requests per location to the total number of

requests;

- Application Links (Client Sites to Application) –the same attributes are used to identify

the application links, and therefore the probability of relation will also be given by the

fraction of the number of requests from the specified site to the total number of

requests;

- Application – each issue has a reference to only one application, consequently the

dependency strength will correspond to the value one, as there are not any other child

nodes.

 An Application depends on:

- Servers – an application is composed by several servers. The most used servers are

considered to have more impact to the overall state of the application. As we can easily

conclude this is true for the generality of the applications. If the transactions are

relevant for the immediate perception that end users have of the application

performance, they are executed online and considered on the statistics. Otherwise, they

are executed offline using batch processing at non-work hours, will overload the

application and with high probability impact the performance of the application. The

probability for the application to server relation will thus be given by the number of

flows to and from each server with respect to the total number of the server’s flows;

- Application Links (Application to Application) – the application links that are loaded to

an application correspond to interactions between different applications, where no

servers are specified. Thus, the probability associated with each dependency will be

directly proportional to the number of flows between the servers of each of the two

applications.

 An Application Link may depend on:

- Application – each application link only has references to a single application, to a single

server and/or to a single location. Thus, the dependency between an application and the

parent application link will correspond to 1;

- Server– as in the previous case the dependency will also correspond to the value 1.

- Location – as in the previous situations the dependency will have a strength of 1.

24

 A Server depends on:

- Application Links – the only dependencies considered for servers are their interactions

with other servers. The probability associated with each application link will correspond

to the number of flows between the parent server and the peer server identified in the

application link.

3.4.3. Nodes and Metrics

Each node has several metrics defined for it. The metrics used are all those available on the

monitoring applications for each node. As more focus is given to the development of the model and

node state evaluation, the option is to optimize the use of the information already available.

Naturally, the absence of certain metrics made it difficult to develop some reasoning about what is

happening inside of the application. Thus, in this first version of the tool, the metrics associated with

a node are used to evaluate how abnormally a node is behaving. This knowledge, together with the

fact that we are analyzing a time period that corresponds to some performance degradation

perceived by end users, will allow the identification of the nodes (servers, links, applications, etc.)

that are most probable to have originated the problem. Table 2 presents a summary of the metrics

or type of metrics that might be available for each type of node.

25

Table 2 – List of possible metrics

3.5. Time series analysis

One of the components with a major impact on the final results is the time series analysis module.

This module is responsible for identifying the most relevant events that are observed in a metric,

during a time period considered relevant for the issue analysis. These events may be deviations from

the normal behavior observed on a metric at a specific time of day, or simply the violation of pre-

defined thresholds which represent widely known situations that can cause problems on servers or

links. For instance, for some metrics, as disk space or occurrence of timeouts, we only need to verify

if some conditions are met. If we have no space on one partition or if we note the occurrence of

timeouts we know that these situations can eventually cause or indicate problems.

The first step of the model is to choose the time period during which we need to analyze the

behavior of the metrics. The analysis time period includes the time during which tickets were

Component Metrics Description

Application
Process Execution

Indicates if a specific process of the application is
running (1 metric per process)

Transaction Response
Time

(Server side)

Measures the response time of specific transaction of
the application measured on the server side (no
network involved)

Server Active Processes Number of processes active on server

CPU Usage Percentage of CPU in use

Disk Space
Percentage of free space on disk (1 metric per disk
partition)

Latency Response time of the server

Load Average Mean load of the server

Memory Percentage of used memory

Oracle Database Metrics

These are several oracle-specific metrics that
represent the state of the database (if it is running,
how long a login takes, average wait time for queries,
etc.)

Process Execution
Indicates if a specific process of the server is running (1
metric per process)

Swap Percentage of swap memory used

Time-drift Deviation of the system clock

Traffic Volume of Network Traffic

Users Number of users logged in the system

Application Link Resets Number of TCP resets observed

Timeout Number of TCP timeouts observed

Traffic Volume of Network Traffic

Transaction Response
Time

(Client-Side)

Measures the response time of specific transaction of
the application measured on the client side (includes
the time spent on the network)

Network Link Bandwidth Available bandwidth

Latency Latency of the link

26

opened by end users (corresponds to the start and end timestamps of the issue) and some previous

period during which the causes may have been reflected on the collected metrics. The user reaction

is not immediate. Figure 8 represents the two main periods we must consider. The causal behavior

has to start earlier than the effect that may be noticed past the end of the cause’s period. The effect

period includes (but may be larger than) the period referred in the issue.

Figure 8 – Cause and effect on the evaluation time period

Therefore we must choose how long we should extend our analysis period in order to include the

cause interval. The choice may be based on the period identified by the issue, but this option may

bring some problems. First, the issue is created using the tickets opened by users, which may

conduce to an issue duration that may not represent the reality faithfully. In that case, we will

propagate the error to our analysis. On the other hand, if the issue has a very short duration, any

arbitrary deviation in some metrics will have a huge influence in the final results. Thus, our option is

to make an extension of the same size of the issue’s duration, but using a minimum period size for

smaller issues.

The next step would be to identify deviations from the normal behavior for each of the metrics. To

achieve this goal we must use training data from the last few weeks or months. At this point, one

must use some knowledge about the usage pattern of the. In large companies, the use of the

applications follows a seasonal pattern. Although some variations are observed between months or

weeks the main unit of pattern is one day. In weekdays the usage pattern of almost all applications is

very similar and even on Fridays the pattern does not change much. The same can be concluded

concerning weekends and holidays. Another advantage of using the day as the basic unit for pattern

definition is the number of data points we have per each pattern point. If we were to consider

weekly or monthly patterns we would have to use much larger training periods, and we would end

up using too old data. The earlier periods would be of little or no relevance to assess the present

behavior of an application.

The pattern determination uses statistical information about the historical data of a metric. The

granularity of the pattern will be equal to the cycle attribute of the metric. The cycle, a value defined

by the company’s monitoring application, represents the period of data collection. The first step of

the pattern creation consists on dividing the day in intervals of size equal to the metric’s cycle value.

Then, for each point of the training data, we must identify the interval of day to which it belongs and

update the statistics for the interval by adding the point’s value. In the end we will obtain the

standard deviation and mean for each interval in a day. These and other statistics (e.g. kurtosis,

variance, etc.) are all stored and will constitute the raw materials for setting up a pattern. The final

27

pattern will be defined by two time series that correspond to the lower and upper bounds of the

expected values for the data. Several statistics are stored at the time the historical data is analyzed.

Therefore, the pattern can be built in different ways for each metric. The generic procedure to

obtain the patterns is based on the characteristics of the standard deviations for several

distributions. Table 3 represents the percentage of values that are within several units of standard

deviation for the normal distribution and for any distribution.

 Interval

Distribution
within 2σ of the

average
within 3σ of the

average
within 4σ of the

average
within 5σ of the

average

Normal/Gaussian 95.44% 99.72% 99.994% 99.99994%

All 75% 89% 94% 96%

Table 3 – Distribution of values for a distribution regarding the standard deviation

The last row represents the worst-case situation, i.e. the percentage of values that are within the

several units of standard deviation despite the actual distribution of the metric values. One should

remember that the distribution is applied to each of the day’s intervals. For most cases the normal

distribution would fit well to the analyzed data.

After analyzing the data contained on Table 3 it we decided to use an interval of three standard

deviations around the mean value for each point. For each interval in a day we will have different

statistics and thus different predictions based on the behavior of the metric in that interval in the

past. The state determination for a metric will be based on how much the values are deviating from

the pattern (see Section 3.6).

Other approach to detect relevant events is to compare the metric values with a pre-defined

threshold. In this case, no training data is necessary but, on the other hand, we need to provide the

threshold value. In most situations, this is an undesirable approach because is prone to errors of

human reasoning and is non-adaptive, i.e. it does not change with time and behavior of the metrics.

But, in some cases it is intrinsically the most adequate approach. If we are measuring the free disk

space for a disk partition, the behavior of the metric is irrelevant. What is really important is to

detect if the free space reaches zero at any point. This is a typical case where we rather use

threshold violation analysis instead of pattern detection. The procedure for applying the threshold is

trivial, as it consists on comparing the values with the threshold and verifying if there is a violation.

One should note that even for applying thresholds, the day is also split into fixed size intervals. The

reason for this is to make it possible to apply the state calculation algorithms uniformly to all

metrics.

Several other analyses are possible and will be explored in the future. For instance, we can try to find

other relevant events that are not necessarily synonym of a problem but can be relevant to find the

root cause. Examples of these events are a metric reaching an historical maximum or minimum,

reaching a maximum or minimum on a specific time window, presenting a higher variation than

normally without crossing the pattern boundaries, and so on. Other possibility to explore is to learn

from the analysis made and from the evaluation of the final results using a machine learning

algorithm. The most common behaviors under failure may be saved and utilized in future analyses

by the tool.

28

3.6. Cause and Effect Probability

The next step is to compute the state of each metric for the period in analysis and the overall state

of a component given the metrics associated with it. The state aims to represent the probability of a

given node being affected in some manner by the occurrence of problems. During a performance

degradation period, a node that presents some deviations of the usual behavior may be a:

 Causal Node – if the node is in the origin of the problem, which means that its behavioral

discrepancies are causing other nodes to behave strangely. Normally these nodes are

affected early in the considered time period;

 Affected Node – if the node is affected in response to abnormal or problematic behaviors

from other nodes. These nodes may be affected for the whole period of analysis just like the

causal nodes.

To accurately identify the root cause for an issue, one should be able to distinguish between causal

nodes and nodes that are only exhibiting the effects of the problems. The main problem is that

isolating the two cases is neither always possible nor easy. Both nodes may present anomalies

almost at the same time.

Several slightly different approaches were tried in order to determine the state of a metric. The

approaches taken for this module are all based on how much a metric is deviating from its normal

behavior or how much it violates a pre-defined threshold (as explained earlier this approach is only

used with metrics that do not exhibit a pattern on their behavior and have values that are

intrinsically a synonym of problems). As was described in Section 3.5 a day is divided into intervals of

size defined by the metrics cycle, i.e. the metric sampling period. Thus, we are able to define an issue

vector for each metric, which is a set of values representing the behavior of the metric during the

relevant period.

29

Figure 9 – Relation between issue vectors for metrics with different cycles

Figure 9 shows the notion of the issue vector and how it is filled based on the data obtained from

the pattern analysis. The size of the issue vector is determined by the metric’s cycle. Hence, each

element of this vector has a scope inversely proportional to the size of the vector. On other words,

for issue vectors with fewer elements each element represents the metric behavior during a larger

period of time. While the metric’s value is inside the values predicted, the issue vector elements

have a value of zero. Whenever the metric’s value goes beyond one of the patterns limits, the value

of the issue vector is a number between zero and one. These abnormal values are represented on

the figure using a light shadow. The exact value placed in the issue vector is determined by

measuring the deviation from the predicted pattern. The value is assigned according to the following

formula:

The idea of the previous equation is to evaluate the amount of deviation from the predicted pattern.

If it surpasses one standard deviation it is considered a large deviation from the normal behavior.

Otherwise it is classified according to the difference from the pattern boundary.

After determining the issue vector for all metrics associated with a component, the state of the

metrics must be transposed for the component. For determining the issue vector of the component

we apply the addition rule of probabilities:

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

issue vector

issue vector

cycle Values out of the pattern
Issue vector value
between 0 and 1

cycle

30

To apply the previous formula, the issue vector must have a size equal to the maximum size among

the issue vectors of the associated metrics. Then, for each position of the issue vector of the

component, the higher probability on that position for all metrics will be assigned.

Figure 10 – Calculation of the component state

From each issue vector we will compute the probability ofa metric or component being a cause of

the issue (). Several methods were tried to obtain the value. The following four

methods were tested:

 State based on the number of relevant events – in this method each element of the vector

is either zero or one, depending on the existence or not of a relevant event for the

corresponding time interval. The final state value will be the simple ratio of relevant

elements to the total elements of the vector:

 State based on the measure of deviation – as we have seen in the description of the issue

vector, a value between zero and one is assigned to each element. Using this method the

final state will be determined dividing the sum of all elements by the total number of

elements of the vector:

 State based on the causal period–earlier we have explained the idea behind of dissociating

the causal and the effect period. This method is based on only taking into account the period

until the impact is felt by the user, i.e. the start instant of the issue. Therefore, the state is

determined by applying the previous method, but only to the period before the start of the

issue:

 State based on weight for the causal period –this method involves applying a weighted

function to the entire issue vector. We assign a higher weight for the values under the

“causal” period. The value of the weight will be decreasing linearly until the end of the issue.

0 0 0 0 0 0 0 0 1 0.5 0.3 0.2 0 0 0

0 0 0 0 0 0 0.2 0.3 0.4 0.5 0.3 0.2 0 0 0

0.2 0 0.3 0 0

metric 1

metric 2

metric 3

0.2 0.2 0.2 0 0 0 0.3 0.3 1 0.5 0.3 0.2 0 0 0component

31

The parameters for determining the weighting function must be determined for every

different issue, because it depends on the duration of the issue and on the total period of

analysis:

3.7. Root Cause Candidates Selection

After creating the network model all nodes have an associated state that corresponds to the

probability that the node is experiencing anomalies. All relations between the components of the

model have also been assigned a strength representing the probability that the child node is

affecting its parent node.

This module is responsible for the identification of the most relevant components and metrics to

explain the origin of the issue. The choice of root cause candidates should consider not only the

state of the nodes, but also how likely it is that they have caused or influenced the identified issue

(i.e. the dependency strengths).

To identify the most relevant components and metrics, two main approaches were tested:

 Independent analysis of the components, where each component is assessed considering

its state and its dependencies until it reaches the root issue;

 Causal path lookups, where each node in the graph may “inherit” the state of its children. In

this case, the state of the parent is determined by computing the weighted sum of the

children’s states based on the strength of the dependencies and by comparing it with the

parent’s internal state.

The first approach has one major drawback: the search is biased towards the components that are

nearer to the root issue.

To apply any of these approaches, one must travel through the graph recursively until a childless or

repeated node is found. Each node returns its internal state and triggers the execution of the chosen

protocol on its sons. The calculation must stop when a repeated node is reached because the graph

may contain loops.

3.7.1. Independent Analysis of Components

As we described earlier, this approach consists in evaluating each component individually. The state

of each component is multiplied by all the dependencies observed in the path from it to the root

issue. Thus, as farther away the component is from the root issues, less likely it is to be considered

relevant to contribute to the performance problem.

32

Figure 11 shows an example of how this type of component selection is applied. The larger boxes

represent the network model components, to which generic names are assigned. Near each edge

representing a dependency, there is a value, which represents the corresponding strength. The

smaller rectangles contain the final value assigned to the component that is obtained by multiplying

their internal states by their upward dependencies. The components that have a state equal to zero

are those for which no anomaly was detected during the issue’s period and during the period that

preceded it.

Figure 11 – Example of identification of relevant components using independent analysis

As we can see the first level nodes, i.e. those immediately below the root issue, are easily considered

as extremely relevant. When compared to nodes several layers down the graph, these components

may have only a small number of deviations from the pattern detected. On the other hand the

nodes have a direct impact on the end-user experience, and that immediate influence should be

valued.

3.7.2. Causal Path Lookup

This second approach tries to make a balanced approach to dependencies and state evaluation. This

strategy overcomes the limitation of the previous method concerning overrating the nodes closer to

the root node. In each round, the most probable causal path is identified.

A causal path () of a root component () is identified by the probability of the

path () and the set of components () included on the causal path. Each component is

represented by a tuple containing its identification (), the dependency strength for the parent node

() and its state ().

In order to obtain an ordered list of the most probable causal paths, the state of a node that is

identified as a causal node at the end of a round, should be set to zero in the following one. This

AppLink

Server (ext)

NetLink

Server

Application

Issue

Application (ext)

NetworkLink

NetLink NetLink

Server Server

AppLink

AppLink

AppLink

Server (ext)

Application (ext)

NetworkLink

0.2

0.1

0.4

0.2

0.4

1

0.2

0.8

0.7 0.2

0.2 0.2 0.20.2

0.4

0.2

0.4

0.0 0.0 0.2 0.0

0.2

0.0

0.0

0.4

0.5

0.5

0.2

0

0.8

0.1

0

0.10.70.0

0,04

0,098 0,004

0,0112

0,056

0,03584

0,0056

0.00112

0,00224

33

allows the algorithm to remove the effect that the node is having in the overall model, enabling the

identification of alternative causal paths. The algorithm recursively travels through the graph, to

calculate the node state. Therefore, the following procedure is executed for each node:

1. Compute or retrieve the internal state of the node;

2. For each son trigger the execution of this procedure;

3. Compute the weighted sum of the child nodes states, where the weights are given by their

dependency probability to the parent;

4. If the internal state of the node is higher than the weighted sum of its sons, then the node is

assigned as the end-node of a new causal path which is returned to its parent;

4.1. The final state of the node corresponds to its internal state.

5. Otherwise, the node is added to the causal path returned by the node with the highest

value.

5.1. The final state of the node corresponds to the weighted sum of its sons’ states.

In the end of each round, the final node of the causal path is made null, i.e. its state will be

considered zero, for the next iteration. The output of this algorithm will be a rank of causal paths

ordered by their probability.

3.8. The graphical user interface

The graphical user interface assumes an important role in this project. As one of the main goals is to

create an application that can ease the work of network and system operators, the interaction with

the application must be as easy and as intuitive as possible. In order to achieve the goal of

compatibility with existing software, the project’s interface is web-based. This characteristic allows a

simple integration with other tools already deployed in the company and can be made available

through their intranet.

The graphical user interface has two main sections:

 Traffic Analysis: where one can upload traffic analysis requests and see the results down to

the level of a single packet (naturally this level of information should not be kept indefinitely,

as it requires a huge amount of storage space). This section contains some graphical analysis

of the results obtained enabling the acquisition or confirmation of information about the

network and infrastructure6;

 Root Cause Analysis: where one can visualize the root issues and trigger a root cause

analysis for each one of them. This section includes the network model visualization and the

list of relevant metrics, components and identified causal paths.

Some of the main features of the traffic interface are represented in Figure 12. The interface allows

the user to visualize the information both in tabular and graphic form. The tables and graphs

represent a first level of simple traffic statistics. Furthermore, Etymon has an interface that presents

6 During this project we did not took full advantage of this extra information about the network in the
construction of the network model. Some ideas about the future work in this area will be provided in Section
5.

34

results of traffic flows correlation. The results may be seen in a table, but the most intuitive interface

is a graph representation. This view allows a quick perception by the user of the composite flows

identified.

Figure 12 – Traffic Analysis Interface

Figure 13 presents the interface developed for visualizing the network model. As we can see, the

model is a directed graph which is represented two levels at a time (one parent and the respective

child nodes). Each child node has a specific color representing the probability of influencing the

parent’s state. The root causes and components can later be listed in a normal table view.

Figure 13 – Network model interface

35

4 Results

In the previous section we described the framework developed to choose the most relevant

components and metrics when performing root cause analysis. In this section, we describe our

findings and provide some insight of how these results can be used in order to gather information on

the network and to analyze the performance problems that frequently occur in such complex

networks.

The network used was chosen due to its large size and high complexity. As we have described in

Section 2.1, we focus only in one application. But this application has many dependencies, and for

that reason the network model ended up including many applications and network locations.

Therefore as it was explained earlier the problem may be located in a remote system which is, due

to the nature of the applications and the relations among them, influencing the performance

perceived by the end user.

Section 4.1 comprises a sample evaluation of the results obtained during traffic analysis and they can

be used to increase the information about the network. Section 4.2 includes a study about the issues

identified and their characteristics. The network model obtained for the analyzed issues is described

in Section 4.3. As the target application was the same for all issues the network model is similar.

Finally, Section 4.4 presents the major final results obtained and they should be evaluated in this

phase of the project.

4.1. Traffic Analysis Results

The traffic analysis has two main purposes. The most important goal is to gather information about

which systems are used more frequently and whose servers recurrently interact with the servers of

the main system. A secondary objective is to gather some knowledge about the network, to identify

the most important or frequent flows and to discover correlations among flows.

Most of the information obtained is specific to the network of this company and cannot be

described here without disclosing its proprietary information. The approach taken on this section is

to display some of the results, without revealing the real physical identities (application names,

server names or addresses, etc.).

The traffic analysis can be filtered by the IP addresses of a specific application. In Figure 14 we

represent the most frequent flows identified for the application chosen as testbed. As we can see

there are flows that are very important in the normal functioning of one application. The three

major flows represent the three different communication streams, in which one of the participants is

a server from the chosen application. These results lead us to conclude that the other applications

involved in these flows must be considered important when analyzing the issues for the central

application. This will be done automatically by including these results in the network model. The

relative frequency of each flow will influence the dependency relations between the applications

involved.

36

Figure 14 – Frequency of the detected flows

While these main flows normally remain in the top places of the list of most frequent flows,

connections involving other servers may have a momentary importance. It was observed during

some other period of observation that one flow, confirmed as being unusual, was responsible for a

large volume of data during the normal working hours. The traffic transferred had been significant

and had caused some network congestion. Therefore, at the time of its occurrence that abnormal

flow would be relevant to explain any perturbations felt by the users. The observations depend on

the period of observation and recent events may be extremely important to explain root causes.

Figure 15 – Abnormal flow identified on a limited period

Other results were obtained by analyzing composite graphs of traffic flows. In this case, the traffic

analysis is not filtered, in order to identify workflows involving other applications. The sample graph

shown in Figure 16 represents an example of one interesting observation. The graph is intentionally

small in order to make server names and addresses illegible. The graph is obtained by finding

sequences of flows, i.e. flows that start from a node that has received a flow immediately before.

The large cloud of nodes on the left side, are clients making a request to the node on the center of

the image. We can see that, immediately after these requests, this node has communicated with

other application. Although not seen in image we could verify, through the ports used that it

0

200

400

600

800

1000

1200

1400

1600

Flows

0

200000000

400000000

600000000

800000000

1E+09

1,2E+09

B
yt

e
s

Flows

Bytes D->S

Bytes S->D

Abnormal
flow causing
network
congestion

Flows with highest
impact in the
application’s
performance

37

corresponded to a communication between two databases. The final application responded to the

first application, but now using a virtual address. This kind of dependency is interesting because not

only it informs us of the direct relations between machines but can provide information about more

complex workflows.

Figure 16 – Graph of related traffic flows

From this point on we can start characterizing workflows. This information can be complemented

using more information in packets and by identifying some actions. The communication with the

database uses a proprietary protocol that provides some indication about the type of action that is

being performed. For instance, if a user is logging in, there is a specific header field value that

indicates that action. Updating this analysis with this type of information, allows us to create a

profile of usage of the applications. We plan to extend these results in order to draw some

conclusions concerning the role of each identified host. This intention is based on several logical

observations. For instance, we observe that most frequent flows are between server machines, that

clients are normally only initiators of a flow, that the protocols and services in use provide clear

information if the destination (or even source) host is a database, web server or simply an middle-

tier application server. We can also clearly identify groups of hosts that are mainly initiators of

connections in order to characterize each user site in terms of volume of data and number of users.

4.2. Issue Identification

This section presents some of the results obtained after aggregating the reports of problems sent by

users into an entity with more significance: the issue. An issue represents the global problem

occurring in the network and may involve one or more tickets and/or locations. The method used to

determine the issues consisted, as explained earlier, on filtering and grouping tickets by application

and by their proximity in time.

38

In Figure 17 we present the top results obtained for a period of nine months. In this period we can

observe that a diversity of issues have been raised for the testbed application, here represented by

“App 1”. The most relevant columns are the start and end columns, from which we can derive the

duration of the issue, the number of tickets which represents how many users reported the problem

and the number of different locations which represents how spread was the problem.

As we can see, the number of tickets tends to grow with the number of locations. This happens

because, normally, one site of users does not open many tickets for what they perceive as being the

same problem. Normally, these sites are call centers having one or two coordinators, to whom the

operators complain. Therefore the number of tickets does not necessarily represent the number of

users affected by the problem.

In this application the objective is to analyze the root causes for the most relevant issues. To judge

which issues should be given a higher priority one should measure the number of end-users affected

or, depending on the application, the number of clients too whom the operators are unable to

provide some service. As an indirect measure, we can use both the number of tickets and the

number of locations to be able to understand which tickets have more impact in the network. The

duration of the issue may be taken into consideration but a large duration does not necessary mean

that the issue is more severe. For instance, some issues may include some less loaded periods as the

lunch time, thus reducing its overall impact.

Figure 17 – List of top issues ordered by number of tickets

39

We can therefore consider the issues containing more user reports (tickets) as being more reliable,

i.e. there is a higher probability that these entries really correspond to a performance issue. We can

assume this because these issues depend on the user perceived performance and, logically, users

have different opinions of qualitative notions of the performance of an application. The

characteristics of a problem in an application or the notion of what is a slow application are different

for each user because they are influenced by their past experience. A transaction that, for some

user, accustomed to slow network connections, may be considered normal, may be taking too much

time from the perspective of users used to have more bandwidth available. Therefore, as many users

report the problem, the idea of the existence of an issue becomes more credible.

The following analysis includes some statistics used to characterize the performance problems

detected on the testbed network. Figure 18 represents the duration of the issues. The issues with

duration zero are composed by only a single ticket instance. These results result of a single user

reporting a problem and are normally the result of heavy load, misconfigurations or other problems

on the user workstations. Since the users’ workstations are not monitored at the time of this project,

these issues are not appropriate to test this approach to root cause analysis.

Figure 18 – Distribution of the Issues Duration

We observe that most of the remaining tickets may take from less of thirty minutes up to two hours.

These are the most common issues. Finally, we have issues that last for four and even six hours.

These are the issues that may affect the company’s normal functioning and therefore indirectly

affect the income and the image of the company. Also these are problems that must be solved

quicker and to which a root cause analysis tool would be most helpful.

1 0
2 2 2

5 6
8

21

12

19
22

0

5

10

15

20

25

30

35

40

N
u

m
b

e
r

o
f

Is
su

e
s

Duration

Issue Duration Distribution
160

40

Figure 19 – Distribution of the number of tickets and locations per issue

Figure 19 presents the distribution of the number of tickets per issue. Once again the majority of

issues have only one ticket that could not be correlated with any other ticket. The main observation

is that the majority of issues affect only up to eight locations. But normally, this is enough to cover a

large part of the network. Except in most rare situations where the entire network is affected, this

corresponds to problems in the backend, i.e. in the main application or in some other one on which

the main application depends. That is why it affects several distant users with different network

conditions simultaneously. Therefore, we identify both generalized issues (high number of different

locations) and localized issues (reduced number of locations).

Finally, we present in Figure 20 the hourly distribution of tickets. We can visualize the two typical

humps that correspond to the peak work-hours. The highest peak happens between 9 and 10

o’clock. This is the hour when most people arrive at the call centers or distribution centers. These

are the main sites containing end-users of the application used as testbed. Therefore, any issues

already happening in the network, are only noticed when these users start trying to use the

application.

Figure 20 – Distribution of the issues start time through the hours of a day

0 0 0 0 0 0 0 1

14

54

18

29

19
14

20

28
31

14

7 6
3 1 1 0

0

10

20

30

40

50

60

0
-1

1
-2

2
-3

3
-4

4
-5

5
-6

6
-7

7
-8

8
-9

9
-1

0
1

0
-1

1
1

1
-1

2
1

2
-1

3
1

3
-1

4
1

4
-1

5
1

5
-1

6
1

6
-1

7
1

7
-1

8
1

8
-1

9
1

9
-2

0
2

0
-2

1
2

1
-2

2
2

2
-2

3
2

3
-2

4

N
u

m
b

e
r

o
f

Is
su

e
s

Hour of the Day

Distribution of Issues through the Day

41

This characterization of the issues identified on the network can probably give us some hints

concerning the problems we may find in a root cause analysis. Most relevant problems (with more

than one tickets opened) affect a large and diversified number of users. Issues affecting two distant

locations (Lisbon and Porto) in a small country can immediately mean that a great part of the

network is being used by the affected users. The hourly distribution of issues has a distribution

similar to the number of users of the application. This indicates that many issues may be created due

to the increase of the load in the system, which would naturally explain why most issues happen in

the peak work hours.

4.3. Model Statistics

The network model is a graph whose root node is the issue chosen by the user. When the user clicks

on an issue, the model is created as explained in Section 3.4 by using the attributes of the issue to

find applications and links, and then by using the application attributes to find servers, and so on. All

the issues identified during this project generate similar models, because all of them are related with

the same application. Nevertheless, the model differs on the number of locations (user sites)

affected. This has an impact on the number of application and network links. As an example, we

show on Table 4 the statistics of the network model for the issue that affected most locations. As we

can see we have only 1 issue represented in the model, but we are able to correlate it with 18

applications and 28 servers. With these statistics one can have an idea of how complex is the server-

side application and of the numerous components with potential impact on the application’s

performance. The application links represent communications between user sites and servers and

between servers. For that reason each of these application links represents a dependency on the

network model. As we can see from the table, the number of application links is one 107, and

therefore we can have an idea of the number of dependencies involved for a specific issue.

Component Count

Issue 1

Applications 18

Servers 28

Application Links 107

Network Links 39

Total 193

Table 4 – Statistics of the network model for the first issue (id=9579) which affects 19 sites

4.4. Root Cause Listings

In this section we will provide an example based on the results obtained for the most relevant issue,

i.e. the issue that affects the largest number of user sites. We will provide a sample explanation that

illustrates how the results of the tool should be analyzed. Besides pointing the main components to

uncover the cause of the problem, the application suggests the metrics that most probably help

identifying what happened.

42

In the results description we will use generic names for the applications (App-1, App-2, App-3, etc.),

for the servers (Server-i-j, for the server of the server j of the application i) and for the sites (Site-1,

Site-2, Site-3, etc.). On Table 5 we show the top five root-cause components, identified by the Entity

and Type columns. The approach taken to obtain these results was the independent analysis of

components described in Section 3.7.1. The column Base Value represents the state internal state of

the component while the column Value represents the impact of the component over the root issue,

i.e. the internal state multiplied by the upward dependencies. The column causal start indicates the

first element of the issue vector containing anomalies. This value can indicate if the node is a

manifestation of the problem or a cause.

Value Entity Type Base Value
Causal
Start

0.0957 Server-1-1 (App-1) Server 0.8793 1

0.0290 From: App-1, To: App-2 Application Link 0.5776 1

0.0156 From: App-1, Server-1-1, To: App-2, Server-2-1 Application Link 0.2414 4

0.0126 From: App-1, Server-1-1 , To: Site-1 Application Link 0.1466 57

0.0118 From: App-1, Server-1-1, To: Site-2 Application Link 0.1121 51

Table 5 – Results of the independent analysis of components for the first issue (id = 9579)

Analyzing these top five components we can take some interesting conclusions. The central server,

normally the most obvious element to consider seems to be the prime suspect, and the first position

on this rank indicates it. But the tool alerts to a relevant relation between the central application and

a second one. The problem is probably caused inside the central server and due to some aspect on

the processing related to the second application. The fourth and fifth entries are links to user sites

where, as we can see in the causal start index, the problems have started some time later.

Therefore, they reflect the impact on the communication between the user’s client application and

the application’s servers.

Table 6 represents the values obtained for the causal path lookup approach (see Section 3.7.2). The

main difference for the results obtained using the first approach (see Table 5) is that the application

links from user sites to applications are no longer on the top positions of the causes’ ranking. In this

approach the communication between the central application (App-1) and two other applications

(here represented by App-2 and App-3) are now present. These components have been

underestimated on the previous approach due to their distance to the root node.

43

Causal Path
Probability

Path

0,1965

[0.1965] Issue: Issue-app1-9579

0,5

[0.2968] Application:App-1

0,2176

[0.8793] Server: Server-1-1

0,1246

[0.1246] Issue: Issue-app1-9579

0,5

[0.1547] Application: App-1

0,1005

[0.5776] Application Link: From: App-1, To: App-2

0,0953

[0.0953] Issue: Issue-app1-9579

0,5

[0.0967] Application: App-1

0,2176

[0.2261] Server: Server-1-1

0,5955

[0.2414] Application Link: From: App-1, Server-1-1, To: App-2, Server-2-1

0,0794

[0.0794] Issue: Issue-app1-9579

0,5

[0.0654] Application: App-1

0,2176

[0.0824] Server: Server-1-1

0,2999

[0.2328] Application Link: From: App-1, Server-1-1, To: App-3, Server-3-1

0,0732

[0.0732] Issue: Issue-app1-9579

0,5

[0.0530] Application: App-1

0,0506

[0.2328] Application Link: From: App-1, To: App-3

Table 6 – Results of the causal path lookup for the first issue (id = 9579)

Also, we should notice that the values of the causal path probability are much closer than the values

obtain for the first approach. Once again, the first approach overestimates the values obtained for

the main server of the central application (App-1). As this application’s servers tend to be clearly

affected whenever a problem occurs and is near the root issue, the analysis would be biased

towards considering these servers as root causes. The presence of the application links between the

central application and two other applications lead us to conclude, that these applications may have

been affected by the issue.

Let us now take a look at the list of metrics most relevant to explain the performance issue. Table 7

presents the top ranked.

44

Value Entity Type Metric Base Value Causal Start

0.0706 Server-1-1 (App1) Server oracle_wait_event 0.6486 7

0.0647 Server-1-1 (App1) Server oracle_statistic 0.5946 1

0.0633 Server-1-1 (App1) Server swap 0.5818 1

0.0554 Server-1-1 (App1) Server active_processes 0.5091 1

0.0549 Server-1-1 (App1) Server cpu 0.5046 25

Table 7 – Top five of the most relevant metrics for the first issue (id=9579)

From the results obtained for the metrics we may conclude that the problem had its origin in the

database server of App-1. The cause was most probably some slow query that triggered a high usage

of the system resources. The database average wait time is the metric presenting the most

anomalous behavior and leads us to conclude that all other queries were affected by the problem.

The swap metric has also presented some anomalous values indicating a high consumption of

memory. The CPU usage metric appears on the fifth position of this rank and, together with the

swap value, suggests that the machine workload started to increase probably due to swap memory

I/O operations.

Given this scenario, the first action to be performed by an administrator, would be to identify the

query causing the problem for later analysis. In a future work version of the tool, this action can be

automated by logging the list of queries that are consuming more resources. The query analysis

could reveal some more information about why the query has had such an impact on the database.

Some typical problems are incorrect use of condition clauses given the available table indexes, large

amount of data returned by the query or poor query design (for instance, containing too many

joins). In the future, the analysis to some of these problems could also be included in the tool by

triggering an EXPLAIN SQL statement. This command provides some insight about the use of the

table indexes and how many rows have to be scanned to execute the query. These problematic SQL

queries are normally the result of insufficient testing, automatic query generation by applications, or

poor programming skills.

The main action to recover the database on a short time could be to kill the query. But the problem

may lead to a state where such action is not enough. For instance, if the server presents a high load

it may take some time to recover, users may have tried to shutdown their client processes leaving

“zombie” connections and queries on the server or they may have simply retried the same actions

which would multiply the number of queries to be processed. Therefore, in some cases, an effective

recovery can only be achieved by restarting the server.

Etymon mixes dependency between network elements with analysis of the behavior intra-host.

Therefore, as happens in some of the related work, the analysis does not end when we identify a

possible root host or server on the network. The relevant metrics are identified and graded given

their deviations from the normal behavior in the recent past. Besides pointing out the most probable

root cause, Etymon provides complete rankings of components and metrics, allowing a network

operator to understand not only which component is failing, but also what other applications,

servers, or network segments may be affected by the failure. This is important because a single

metric or component normally is insufficient to explain what is happening in the network.

45

The temporal information also helps identifying some components as being affected by the problem.

If we had developed the network model as a snapshot of the state of the network at a given instant,

these components could be wrongly mistaken by possible root causes. This would introduce some

noise in our analysis.

46

5 Future Work

The scope of a project about root cause analysis in such a large and complex network as the one

used as a testbed is an open subject. The main goal of building a first iteration of a root-cause

analysis tool was accomplished. The architecture presented in Section 3.1 was implemented using a

simple version of each module. For each model we tried to implement some ideas, but several

improvements were left behind due to the lack of time to experiment them. Therefore, this section

has some relevance in this report because much has been left to try in the future.

Besides the improvements on each module, also the data gathered from the testbed network must

be re-evaluated. With more time to interact with network and system administrators, several more

metrics and data sources can be deployed. This will contribute to create a richer model for the

network, not only in terms of diversity and number of components, but also in terms of what can be

concluded from the metrics.

Also the network-level, i.e. routers, network protocols, are not analyzed. This reduces the

possibilities of accurately identifying problems in the network. Therefore when we detect any

anomaly in the network link components, we cannot confirm if any problem is detected underneath.

Some of the ideas to explore in future versions of the tool are:

 Parameterization Removal

Some modules need human parameterization. For instance, when the network model is built

some of the dependencies are conditioned from the start. The dependencies between a parent

and its children are conditioned not only by the traffic analysis but also by some intuitive

parameters that depend on the type of each component. These parameters have some influence

in the final result and should be removed from the application. The study of how to organize the

network model without these parameters was left to future work. Also, it was described before

that some metrics could not be analyzed using the patterns described. By that reason, threshold

violation was used. Naturally, this type of analysis is very dependent of who configures the data

and, although the thresholds used were very simplistic and logical (e.g. 0% disk space, number of

timeouts equal to or greater than 1, etc.) they should be replaced by some automatic method of

evaluation.

 Pattern Detection and Deviation Analysis Improvements

Another module than can be improved is the pattern detection. Several techniques are

described on the literature to design patterns. One of such approaches is the ARIMA (Auto-

Regressive Integrated Moving Average) model that can be used to forecast the behavior of a

time series. This forecast can then be compared to the actual behavior to detect unexpected

behavior. Furthermore, a small improvement can be done by applying some mechanism to

automatically sanitize input data used in the patterns. For instance, one can make data

smoother by removing some sporadic peaks that may have strong influence in the final

prediction.

47

Other approach that can be used to complement pattern detection is an analysis of the

distribution of a metric. One can use several tests for finding the best-fitting distribution for a

specific dataset. Some of the available tests are Kolmogorov-Smirnov test, the Anderson-Darling

test, the Shapiro-Wilk test and the Chi-Square goodness of fit test. After determining the best-

fitting distribution for a specific metric some improvements can be made. For instance, it will be

possible to optimize the values used in the algorithm to define the pattern limits, i.e. knowing

the distribution we can choose a better value for multiplying by the standard deviation to obtain

the upper and lower limits.

Also, to perform a generic analysis all metrics to which a pattern was applied were treated in the

same way. The metrics were considered to have a seasonal pattern and therefore the pattern

would depend on the time of day. For some metrics that seasonal approach is much

conservative because the metric’s behavior is similar throughout the entire day. Therefore, one

could apply similar methods with different granularities.

 Feedback to the Company

One of the most important results of this project is the acquisition of know-how in what root-

cause analysis is concerned. Throughout the development of Etymon, several obstacles were

encountered that could not be overcome in the time available. Some of these obstacles arise

from the fact that the testbed network used is very complex, with lack of information about

some aspects of its architecture and that corresponds to a production environment, where every

change can take some time to effectuate.

Therefore, one of the future steps will be to provide some feedback about the results obtained

and difficulties encountered. The idea is to provide feedback about the monitoring and

documentation process, in order to facilitate the deployment of this kind of applications (e.g.

additional metrics to collect, important network locations to probe, metrics reorganization to

facilitate correlation mechanisms).

One other important aspect to improve in future analysis is to close the gap between obtaining

results for the network and confirming them using manual analysis. Therefore, each incident

should be assessed and a root cause whenever possible identified manually. For this purpose,

one can monitor for some period all the incidents that are occurring in real time using this tool

and try to confirm the root causes manually with the help of network and system operators

and/or administrators immediately after their occurrence.

 Increase Model’s Granularity

The model was built using only elements already defined on the monitoring application, and

there was no time left to extend the model to use other sources (besides the traffic analysis to

compute the dependencies’ strengths). With the increase of the material available the model

can consider more specific components. For instance, instead of using a component named

server, we can add more information about its functionality, i.e. specify web servers, application

servers, database servers, etc. An initial idea of can be defined for a generic host is depicted in

Figure 21. This figure is part from a more detailed ongoing study about the elements that a

generic network model should contain. This diagram provides a small idea of the numerous

48

elements to consider in such analysis and of some of the elements to include in the model in the

near to medium term. It also displays possible root causes that can occur in each element.

Figure 21 – Sketch of a detailed model of the network

With the increased complexity we also plan to develop templates to analyze each specific

component. At the moment, metrics are used to identify anomalies. In the future, we should be

able to value metrics differently and establish some correlations between them. Then for the

behavior of each metric or set of metrics we want to associate root causes descriptions (i.e. a

human understandable tag). The figure contains some of the root causes descriptions and

metrics we can look for.

 State Machines Module

One interesting way of establishing causal relations is to define state machines for several

aspects of the system and networks. For instance, one can try to identify workflows in an

application and search ways to measure each state and/or transition. From this point on, we can

easily detect failures by checking where some execution has failed or in which state most them

are stopping. Also, a state machine was used to analyze the TCP protocol and can be applied to

any other protocol in use in the network. The inclusion of a generic module for following and

detecting errors in protocols and workflows is also one future step.

 Network Simulation

Another possible approach is to build a model of the network where all inputs can be controlled.

The idea can be to simulate controlled failures with well known root causes, in order to see how

the model reacts to them, instead of using unpredictable and noisy operation failures. The

observations made in a controlled model can probably help us to understand the reactions of

the model to the operation failures in the real network.

49

 Add More Knowledge to Dependencies

A future step will be to add some extra functionality to the module that calculates the

dependencies strength, i.e. some knowledge about the function of each node. For instance the

protocol or the port in use for communication allow us to identify the service in use and draw

some conclusions about the node, and therefore to extrapolate something about the

importance of the relations. Also some correlation may be made between end-users requests

and communication between applications in order to understand which flows have more direct

impact in the users’ daily work. We could, for instance, value more online transactions than

batch processing.

Also, we can make dependencies as a function of time. For instance, if a connection is only used

periodically and if we are able to detect it we can increase the dependency only near the instant

where the connection is suppose to occur.

Another idea to explore is the inclusion of not only direct dependencies (1st order dependencies)

but also dependencies that depend on the recent past, i.e. 2nd and higher order dependencies. If

we identify that some workflows (or sequence of transactions) are more common than others,

than we can influence the dependencies strengths based on a sequence of transactions

observed before.

 Automatically Trigger Deeper Analyses

As we have seen in Section 4.4, given a specific failure scenario, we can immediately trigger

some analysis. In the future, with the inclusion of new metrics we will be able to achieve a finer

granularity, which will enable some customized analysis for specific situations. Upon a detection

of a failure, a network operator could also define the necessary actions to perform in a future

similar situation. The actions could be saved and automatically executed once the same root-

causes were identified.

 Performance of the Tool

The main focus during the development phase was functionality. We tried to implement all the

functions necessary to conduct a root cause analysis end-to-end. Therefore, one issue that has

been neglected was the performance of the tool. The application has been used mostly in the

offline mode. In this mode, all data is retrieved on demand not only for the period of analysis but

also for the pattern processing which includes much more data. This makes analyzing an issue a

time consuming task, despite of being much faster than a manual analysis.

The performance of the tool in the offline mode is mostly influenced by the format of the

database. Therefore, one of the solutions would be too reorganize the database so that the

tables become smaller. In the present case, on data table contains information about an entire

month and thus may contain up to 6 or 7 GB of data. Any query that tries to retrieve some

weeks or even a few hours from such a table will be very slow, regardless of any optimization

make to the table indexes.

Also, the application works in a most intuitive manner, i.e. as it goes through the model it

retrieves the information for each metric separately. Although not as intuitive as this approach,

50

retrieving all the information from the database in one step (and few larger queries) is much

faster than doing several small queries. Thus, the code can be reorganized to cope with this

change, and a significant performance improvement is expected.

These are some of the ideas already considered to implement in the near future. This area of

research depends on being able to test the applications in real environments and on the information

available about those environments. Therefore, depending on the effort placed in this research by

interested parties (as large companies), one can explore even more demanding solutions.

51

6 Conclusion

In this project our proposal was to build a root-cause analysis tool end to end. Root cause analysis

involve, as we have seen throughout this report, failure diagnosis (in this project was based on users’

reports but could be done also by automatic metric analysis), creation of a network model (the

components should be integrated as automatically as possible), determination of node state (by

analyzing the metrics available for each component) and given the results of the other three main

modules the determination of the root cause components and the indicative metrics.

Instead of focusing on one single component of such a system, we decided to build a tool end-to-

end, i.e. to develop a module for each of the tasks described in the last chapter. This objective was

accomplished. In the process, we acquired a deeper knowledge of the requirements of such a

system and gathered some ideas of what should be done in the future to improve the results

obtained. Another important decision was to focus on performance problems that are usually the

most complex to solve and the most abstract.

For the identification of performance failures we use the reports of problems made by end-users.

For companies today, the evaluation of this kind of problems is normally made by comparing the

reports of the IT management teams with the number of problems identified by users. In the end,

what really matters is if the users were able to perform their daily work. Therefore, these are the

main issues we want to solve. Naturally we can also use this information about problems and

correlate those with metrics’ behavior and focus, in the future, on automatically detection of

performance failures.

For creating the model we decided to use any information available on the deployed company tools

to correlate metrics. The idea is that any element that is introduced on those applications is

reflected in the model. To keep using automatic methods, we use traffic statistics to determine the

dependencies among the components of the model.

The determination of the node state has followed the most practical approach for detecting events

that are very difficult (if not impossible) to model. We focus on detecting anomalies given a baseline

computed over the recent past of the issue. This approach fits well on these applications that keep a

usual behavior during several weeks. The work load is normally very similar from one week to the

other. The final results are obtained by checking how much the metrics deviate from the considered

“normal” behavior.

The final results of the tool are obtained either by crawling the graph and search for the components

with highest relation between their influence over the root node and their state, or by following the

strongest path where sons influence their fathers. In our list of relevant components and metrics to

decide on the root cause, we can see several different applications that have considerable impact on

the central application.

Given the implemented features we focus on four of them that differ from the approaches taken in

the related projects.

52

 Creation of a model for a specific environment – the issues identified immediately set a

target application which is directly accessed by the users. The relations dependencies

identified in this application define an environment for the network model. This prevents us

from analyzing components that are not relevant to the behavior of the main application.

 Differentiating correlation from causality – we introduce a temporal analysis in order to

check how a node can be considered as cause instead of being just a reflection of the

performance problem. Thus we analyze the recent past of the issue, to see for how long has

the component experiencing anomalies.

 Use of dependencies over a recent period – we also use dynamic dependencies computed

by analyzing traffic behavior over a recent period at the time of the issue. This allows us to

introduce in the model, on run time, the relevant flows that have occurred only on the

recent past. This is done while maintaining a period of analysis long enough to calculate

reliable statistics.

 Identification of more than one root-cause element – the final results of the tool identify

not only the most relevant components but different metrics that can contribute to clarify

what happened. As we have seen in Section 4.4, we can take some interesting conclusions

not only from the top list of causal paths as from the top list of the metrics presenting major

manifestations. Therefore, this solution presents something more than just the finger-

pointing of the component (host or link) responsible for the problem. Sometimes the

problem is complex and cannot be explained by the behavior of a sole element. The

explanation may have to include the interactions from different components.

In the introduction we presented five main properties to characterize the requirements of a root-

cause analysis application. Etymon is:

 Usable – the application includes a complete graphical user interface that allows the users to

perform the most important actions of the tool. The user can trigger traffic analyses and see

the results through the interface. The results are shown using detailed tables, easy to

visualize charts and intuitive graphs that can help operators to become aware of features

that, at a first glance, could go unnoticed. We added also an interface for visualizing the

network model that allows navigation from node to node. The user can also see charts of the

metrics that influence a node state, for the period of the issues that have been analyzed;

 Automatic – the methods used for the construction of the model are mostly automatic. The

calculation of the nodes’ state, the dependencies among components and the determination

of the most affected elements are all made with minimal manual parameterization. The only

exception was the definition of the generic model, where generic components are related to

each other, but the mapping of this initial (and very simple) model to the production

network is made automatically;

 Adaptable – the application loads all the components defined on the monitoring application

and all the low level metrics that can be used to characterize the component behavior.

Consequently, all new components introduced in the monitoring application are reflected on

the model;

 Granular – the model is generic and is as generic as the definition of the initial model using

abstract components. The definition of new components and new relations on this model

will allow to easily increase the granularity of the model;

53

 Accurate – the application clear identifies the most affected components. Besides the

central server the application focus the attention of its users on other server that show signs

of being affecting the overall performance. Given the absence of explanations for the issues

analyzed in this tool we were not able to confirm how close the results obtained were from

the real root cause. This is, perhaps, the most important task to perform in the future.

 Scalability - the online mode provides the ability to process node states in real time. This

mode uses on-going descriptive statistics objects that can be updated once an event arrives.

Therefore, it allows the quick identification of root causes for recent issues. These network

model states in the moment the issue is closed can be saved for latter analysis in the offline

mode. This reduces the time necessary to analyze past issues. Also, the network model is

created for a specific environment, i.e. includes only the elements that directly or indirectly

interact with the main application. This reduces the number of elements to be analyzed and

consequently increases the efficiency of the tool.

Etymon looks at the network as one should be looking to any distributed system. All elements should

be considered as any of them can influence the behavior major servers. In the end of day, the

companies do not even care why and how a failure occurred. Their only desire is to avoid failures

and, if they occur, to solve them fast. Whoever analyses the problem, will need tools like Etymon to

be able to quickly identify the root-cause of the failure.

54

7 Bibliography

[1] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and M. Zhang, "Towards Highly

Reliable Enterprise Network Services Via Inference of Multi-level Dependencies," in Proceedings

of the 2007 Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communications, Kyoto, Japan, 2007, pp. 13-24.

[2] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthitacharoen, "Performance

Debugging for Distributed Systems of Black Boxes," in Proceedings of the19th ACM Symposium

on Operating Systems Principles, Boston Landing, NY, USA, 2003, pp. 74-89.

[3] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewe, "Pinpoint: Problem Determination in

Large, Dynamic Internet Services," in Proceedings of the International Conference on

Dependable Systems and Networks, Florence, Italy, 2002, p. 595–604.

[4] J. L. Hellerstein, M. Maccabee, W. N. Mills, and J. J. Turek, "ETE: A Customizable Approach to

Measuring End-to-End Response Times and Their Components in Distributed Systems," in 19nth

IEEE International Conference on Distributed Computing Systems, Austin, TX, USA, 1999, pp.

152-162.

[5] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks, and D. Gunter, "The NetLogger

methodology for high performance distributed systems performance analysis," in Proceedings

of the 7th IEEE Symposium on High Performance Distributed Computing, Chicago, IL, USA, 1998,

pp. 260-267.

[6] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, "Using Magpie for Request extraction and

Workload Modelling," in 6th Symposium on Operating Systems Design and Implementation, San

Francisco, CA, USA, 2004, pp. 259-272.

[7] P. Jackson, Introduction to Expert Systems, 3rd ed. Addison-Wesley, 1998.

[8] J. A. Alegria, T. Carvalho, and R. Ramalho, "Uma Experiência Open Source para "Tomar o Pulso"

e "Ter Pulso" sobre a Função Sistemas e Tecnologias de Informação," in 5th CAPSI, Lisboa, 2004.

[9] D. Luckham, The Power of Events: An Introduction to Complex Event Processing in Distributed

Enterprise Systems. Addison-Wesley, 2002.

[10] EsperTech. Esper. [Online]. http://esper.codehaus.org

[11] M. Bednarczyk. jNetStream OpenSource, Protocol Analyzer and Decoder SDK. [Online].

http://jnetstream.com

http://esper.codehaus.org/
http://jnetstream.com/

55

[12] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley Professional

Computing Series, 1994.

