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Preface 

 

 

This dissertation assembles data obtained during my PhD 

research project, developed at the New York University 

School of Medicine, Department of Medical Parasitology, 

under the supervision of Doctor Ana Rodriguez, from August 

2003 to June 2007. 

  

This thesis is structured in 5 chapters, preceded by a 

summary, both in Portuguese and English, outlining the 

aims, results and outcomes of this project.  

The first chapter provides an insight on malaria liver 

stage research field and the aims of this work.  

The two following chapters (second and third) contain the 

original data regarding this project.  

The fourth chapter encloses an overall discussion and 

conclusion of the studies performed.  

Chapter five contains the description of the methods and 

material employed to carry out the present work.  

In Appendix 1 and 2 are included the publications that 

derived from this project. 

 

 

 

 

 

The data presented in this dissertation is the result of 

my own work. This work has not been previously submitted 

for any degree at this or any other University. 



 

 



 

 vii 

Ackowledgments/ Agradecimentos 

 

I would like to thank Ana Rodriguez for accepting me in 

her lab and for the close supervision during the five 

years we worked together. THANK YOU for sharing your 

knowledge and enthusiasm and for always making me feel 

like part of a team. Most of all thank you for your 

friendship and patience. 

 

À Doutora Maria Manuel Mota agradeço o incentivo na fase 

inicial do doutoramento, a disponibilidade, apoio e 

carinho no decorrer deste projecto e também o ter aceite 

ser responsável por esta tese na Faculdade de Medicina da 

Universidade de Lisboa.  

 

To all the colleagues at Ana’s lab and at the Medical and 

Molecular Parasitology department: Carlos, Olga, Jamie, 

Julius, Kurt, Russell, Daniel, Takeshi and Esther, Mike, 

Camilo, Dabeiba (precious mosquito girl), Jean Noonan 

(precious mosquito man), Alida, Pilar, Russell, Freya, 

Christian, Beccy and Marie. Thank you all for the help 

with the little big things, the brain storming discussions 

and the good laughs. Mike and Marie, my special cigarette 

budies (…Thank God those days are gone!) 

 

To all the people I got to meet in New York and today 

call friends: Heloísa, Sonsoles, Kalpa - We will always 

have Chicago. Cláudia & Edgar - obrigada pela recepção em 

NY e por me incluirem de um forma natural e rápida nas 

vossas vidas. César, Daniela, Peter, Ramiro, Sara, 

Richard. 

“ Yes Mariella, your Italian family holds the best 

recipes ever!” Thanks and I miss you. 

Gudrun, the sweetest smile and my dance buddy, Jan the 

photographer scientist with the loudest laughs and  



 

 viii 

Sir Tommy for the best welcome to the East Village. Thanks 

guys for wearing your heart in your hands - Laughing club 

forever!  

Marie: girl, your zest for life is contagious. Hope you 

miss me at the African dance classes!   

Tomás, adicionar uns momentos em NY aos muitos que 

constituem a nossa longa amizade foi um grande prazer.  

Madame Daniela, finalmente alguém que é mais “shopaholic” 

que eu! Dos cafés para as compras para uma linda amizade 

foi um suspiro. Para o ano lá estarei no grande dia. 

Daniel: I will always be your Grace. A tua companhia e 

amizade, em casa, no lab, a “lida sob o efeito Abba”, os 

bate-boca doces ou amargos, serão sempre parte das minhas 

recordações mais queridas. Foi verdadeiramente uma honra 

partilhar uma casa e uma vida contigo na East Village. 

 

A todos os amigos que trouxeram um pouco de Portugal até 

NY. Ver a cidade pelos vossos olhos foi como redescobri-la 

uma e outra vez. Obrigado. 

Aos meus amigos de 4 patas, tão importantes na minha 

vida: Lhocas & Gaspar “sim! Voltei!”, Tutu, a nossa gata 

nova-iorquina-bulímica. Dave, Benny, Sham: Thank you for 

the wonderful rides in Prospect Park and for sharing the 

carrots! 

 

Aos grandes amigos de sempre - Há um bocadinho de cada um 

de vocês nesta tese.  

“bem… R & C, talvez na próxima vez que descermos o Grand 

Canyon eu vá de mula, ok?” 

 

Aos meus pais, Ester e João. À Marta. Por acreditarem em 

mim, pelo apoio e carinho. Ao Zé Manel, por me fazer rir e 

me fazer acreditar que é fácil ser e fazer melhor. 

 



SumÁrio 

ix 

  

SUMÁRIO 

 

A malária é a doença parasitária  mais relevante a nível 

mundial, uma vez que é responsável por mais de 1 milhão de 

mortes anualmente. O agente causador da doença é o 

parasita protozoário do género Plasmodium. Aquando da 

picada de um mosquito fêmea Anopheles, o vector de 

transmissão da doença, o parasita é introduzido na pele do 

hospedeiro sob a forma de esporozoíto. Os esporozoítos são 

células móveis que migram na pele até alcançarem a 

circulação sanguínea. Uma vez em circulação, os 

esporozoítos atingem o fígado do hospedeiro onde 

atravessam a barreira sinusoidal e invadem os hepatócitos. 

Aqui multiplicam-se e desenvolvem-se até atingirem o seu 

próximo estado de maturação, o merozoíto.  

 O desenvolvimento dos esporozoítos nas formas exo-

eritrocíticas ocorre exclusivamente em hepatócitos, o que 

torna o percurso desde o local da inoculação na derme até 

ao fígado um passo imprescindível na conclusão do ciclo de 

vida do parasita. Durante este trajecto os esporozoítos 

necessitam de atravessar várias barreiras celulares. 

Estudos prévios mostram que os esporozoítos interagem com 

as células do hospedeiro de duas formas: podem invadir a 

célula formando um vacúolo parasitóforo no qual o parasita 

se irá replicar , ou podem atravessar a célula, rompendo a 

membrana plasmática no processo de migração (Mota et al. 

2001). Neste último caso, os parasitas entram em contacto 

directo com o citoplasma dos hepatócitos.  Este processo 

de migração conduz à exocitose regulada de organelos 

secretórios no parasita, o que resulta na exposição de 

proteínas, tal como a TRAP (thrombospondin-related 

anonymous protein), no pólo apical do esporozoíto (Mota et 

al. 2002). Devido às suas propriedades de adesão, a TRAP  
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é considerada um intermediário essencial na invasão do 

fígado, uma vez que sua exposição no pólo apical dos 

esporozoítos é necessária durante  o processo de invasão 

dos hepatócitos (Mota et al. 2002). 

De modo a aprofundar o conhecimento dos diferentes 

processos moleculares envolvidos na interacção dos 

esporozoítos com os hepatócitos, propusemo-nos a fazer as 

seguintes caracterizações: 

1) Como é activada a exocitose nos esporozoítos durante a 

migração através dos hepatócitos? 

2) Este processo de migração/activação é regulado? Como? 

3) Quais as vias de sinalização no esporozoíto que 

intervêm na activação da exocitose? 

 

Usando um modelo murino, observámos que a exocitose 

apical nos esporozoítos é induzida por nucleótidos 

derivados de uracilo. Estes nucleótidos, que se encontram 

em concentrações elevadas no citoplasma de qualquer 

célula, contactam e consequentemente activam os 

esporozoítos durante o processo de migração. Contudo , os 

esporozoítos parecem possuir um mecanismo regulador que 

previne a sua activação prematura, uma vez que a exocitose 

apical só ocorre quando estes atingem os hepatócitos, as 

células alvo para a infecção. É conhecido que a albumina, 

uma proteína presente em elevadas concentrações no sangue 

e nos tecidos, aumenta a motilidade dos esporozoítos 

(Vanderberg 1974). Observámos que, na presença de 

albumina, os esporozoítos não são activados pelos 

nucleótidos derivados de uracilo, mantendo-se os níveis 

basais de exocitose apical. Desta forma, concluímos que a 

albumina previne a ocorrência de exocitose induzida pelos 

nucleótidos derivados de uracilo. Assim, quando os 

esporozoítos são depositados na pele, a presença da  
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albumina promove um  aumento na sua mobilidade ao mesmo 

tempo que inibe a sua activação prematura. No entanto, na 

presença de hepatócitos, o efeito inibitório da albumina 

desaparece, permitindo desta forma a activação dos 

esporozoítos e subsequente infecção dos hepatócitos. 

Concluímos que a passagem dos esporozoítos através de 

células que não os hepatócitos, não contribui  para a 

activação de exocitose nos esporozoítos nem aumenta a sua 

infectividade.  

As cadeias de glicosaminoglicanos dos proteoglicanos de 

sulfato de heparina (HSPG), presentes na superfície dos 

hepatócitos, são consideradas os receptores dos 

esporozoítos na ligação aos sinusóides hepáticos (Sinnis 

et al. 1996). A proteína CS (circumsporozoite protein), 

que se encontra na superfície dos esporozoítos, liga-se 

com elevada eficiência aos proteoglicanos de sulfato de 

heparina das células hepáticas antes dos parasitas 

atravessarem para o  parenquima (Pradel et al. 2002). Os 

nossos resultados demonstram  que o grau de sulfatação das 

cadeias de HSPGs está directamente relacionado com a 

capacidade do parasita em superar o efeito inibitório da 

albumina na exocitose dos esporozoítos induzida por 

nucleótidos derivados de uracilo. Deste modo, na migração 

através dos hepatócitos, os esporozoítos podem ser 

activados por nucleótidos derivados de uracilo presentes 

no citoplasma destas células, e iniciar a exocitose apical 

necessária para a invasão e infecção.  

O parasita utiliza processos de sinalização de forma a 

alterar o seu comportamento dependendo do ambiente em que 

se encontra,. Por exemplo, Os esporozoítos têm de mudar de 

um estado inicial em que migram por diferentes tipos de 

células na pele e nos sinusóides hepáticos, para outro em 

que invadem hepatócitos e formam um vacúolo necessário 

para a infecção. De facto, observámos que uma elevação nos  
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níveis de cálcio (Ca2+) e de AMP cíclico (cAMP) nos 

esporozoítos induz exocitose apical, passando os 

esporozoítos de um estado migratório para um estado 

infeccioso. 

Com os resultados apresentados nesta tese esperamos 

contribuir para a compreensão das interacções que se 

estabelecem entre os esporozoítos de Plasmodium e o seu 

hospedeiro no decurso de uma infecção. 

 

Palavras-chave: malária, esporozoítos, Plasmodium, 

exocitose regulada, infecção, hepatócitos, sinalização. 
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Abstract 

 

Malaria remains one of the most prevalent and severe 

human infectious diseases in the world and is responsible 

for more than a million infant deaths per year. The 

causative agent of malaria is the protozoan parasite 

Plasmodium. It is transmitted by the bite of infected 

mosquitoes that deposit the sporozoite form of the 

parasite in the skin of the mammalian host. Sporozoites 

are motile and travel from the skin into the circulation, 

from where they reach the host’s liver. Liver infection is 

the first obligatory step and is clinically silent. 

Plasmodium sporozoites are able to invade all sorts of 

cells but they only develop inside hepatocytes. 

Sporozoites can enter cells by two distinct routes, either 

through a tight moving junction with the target cell that 

leads to the formation of a parasitophorous vacuole, where 

development proceeds, or by disrupting their plasma 

membrane (Mota et al. 2001). In the latter case, the 

parasite glides in the cytoplasm, and exits the cell again 

rupturing the plasma membrane. Migration through cells 

triggers the secretion of micronemes in the sporozoite. 

This process is called apical regulated exocytosis and is 

triggered when sporozoites are in contact with host cells 

(Mota et al. 2002). Thrombospondin-related anonymous 

protein (TRAP) is an essential mediator of hepatocyte 

invasion due to its adhesive properties, and it is 

believed that exposure of this protein in the apical end 

of the sporozoites is required for invasion of the host 

cell (Mota et al. 2002). 
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In an effort to broaden our knowledge of the molecular 

processes involved in the malaria sporozoite - host 

hepatocyte interactions, we addressed the following 

questions:   

1) How does migration through cells induce exocytosis in 

Plasmodium sporozoites? 

2) Is this process regulated and how? 

3) What are the signaling pathways that mediate the 

activation of exocytosis in sporozoites? 

We determined that uracil and its derived nucleotides, 

which are found in the cytosol of traversed cells, induce 

apical regulated exocytosis in P. yoelii and P. falciparum 

sporozoites. However, sporozoites seem to have a 

regulatory mechanism preventing a premature activation, 

since exocytosis only occurs when sporozoites reach the 

liver. Albumin is a protein present at high concentrations 

in circulation and in the tissue and it has been described 

to increase the motility of Plasmodium sporozoites 

(Vanderberg 1974). We determined that exocytosis is 

specifically inhibited by albumin, since in its presence 

sporozoites no longer respond to uracil and its derived 

nucleotides. However, the inhibitory effect is no longer 

active once sporozoites contact hepatocytes, allowing 

activation of sporozoites for infection. We conclude that 

sporozoite migration through cells other than hepatocytes 

does not activate exocytosis or increase their 

infectivity.  

Glycosaminoglycan chains of heparan sulfate proteoglycans 

(HSPGs), on the surface of hepatocytes, are considered the 

main receptors for Plasmodium attachment in the liver 

sinusoids (Sinnis et al. 1996). Circumsporozoite (CS) 

protein in the surface of sporozoites binds efficiently to 

liver HSPGs before parasites traverse into the parenchyma 

(Pradel et al. 2002). We found that the level of sulfation 

at the HSPGs chains is directly related to its capacity to 
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overcome albumin inhibition of exocytosis by uracil 

nucleotides. 

In order to change the behavior according to the 

surrounding environment, sporozoites use signaling 

processes. We have analyzed the role of the cAMP signaling 

pathway in sporozoite apical exocytosis and infection and 

showed that apical regulated exocytosis is induced by 

increases in cAMP in sporozoites of rodent (P.yoelii and 

P.berghei) and human (P. falciparum), which activates 

sporozoites for host cell invasion.  

In summary, data presented in this thesis contributes to 

a wider understanding of the interactions established 

between the Plasmodium sporozoites and its host in the 

course of a malaria liver infection.  

 

 

Keywords: malaria, Plasmodium sporozoites, regulated 

exocytosis, hepatocyte infection, signaling. 
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Abbreviations 

 

AC  Adenylyl cyclase 

ADP, ATP Adenosine 5’ – Di/TriPhosphate 

Alb  Albumin 

cAMP  Cyclic adenosine monophosphate 

CelTOS Cell Traversal protein for Ookinete and Sporozoite 

CHO  Chinese Hamster Ovary cell line 

CS  Circumsporozoite protein 

CTRP  Circumsporozoite protein and TRAP related protein 

EEF  ExoErythrocytic Form 

Hepa1-6 mouse hepatoma cell line 

HepG2  human hepatoma cell line 

HGF  Hepatocyte Growth Factor 

HSPG  Heparan Sulfate Proteoglycan  

IMC  Inner Membrane Complex 

MDF  Mouse dermal fibroblasts 

MTRAP  Merozoite specific TRAP analogue 

MTs  Microtubules 

PbPL  Plasmodium berghei Phospholipase 

PKA  cAMP-dependent Protein Kinase 

PV  Parasitophorous Vacuole 

SPECT  Sporozoite Protein Essential for Cell Traversal 

TRAP  Thrombospondin- Related Anonymous Protein 

UD  Uracil nucleotides and its derivatives 

UMP,UDP, UTP Uridine 5’- mono/di/triphosphate 

wt  Wild type



 

 



 xix 

Table of Contents 

 
 
Preface           v 
Acknowledgments/ agradecimentos        vii 
SumÁrio           ix 
Abstract          xiii 
Abbreviations           xvii 
Table of Contents          xix 
 

Chapter 1. General introduction        1 
 

1.1. General Overview         3 
1.2. Plasmodium and its life cycle       5 

1.2.1 study of host infection with mouse models     7 
1.3 – Liver stage biology        8 

1.3.1 The Plasmodium sporozoite       9 
1.3.2. Sporozoite gliding motility      11 

 1.3.3. In the skin        12 
 1.3.4. Getting to the liver       15 
 1.3.5. In the Liver        15 
 1.3.6. Sporozoite Migration and Apical Regulated Exocytosis  17 
 1.3.7. Hepatocyte Invasion and intrahepatic development   20 
1.4 Aims and Strategies       21 

 

Chapter 2. Host Molecules involved in the Regulation  
of Plasmodium sporozoites Exocytosis and Infection   23 

 
 2.1 – Introduction        25 
 2.2 – Results         27 
  2.2.1. Uracil derivatives induce apical regulated exocytosis in  
  Plasmodium sporozoites       27 
  2.2.2. Albumin inhibits exocytosis induced by uracil nucleotides   31 
  2.2.3. The inhibitory effect of Albumin on sporozoites exocytosis  
  is reversed in the presence of hepatocytes     33 
  2.2.4. Highly sulphated HSPGs in hepatocytes reverse the  
  inhibitory effect of Albumin on sporozoite exocytosis   40 
 2.3 – Discussion         44 
 

Chapter 3. cAMP signaling in Plasmodium sporozoites exocytosis  
and infection         49 

 
 3.1 – Introduction         51 
 3.2 – Results         53 
  3.2.1. Exocytosis in P. yoelii, P. berghei and P. falciparum sporozoites  

is mediated by increases in intracellular levels of cAMP.  53 
  3.2.2. PKA mediates sporozoites exocytosis and is activated  

downstream of cAMP .       58 
  3.2.3. Extracellular K+ is required for sporozoites exocytosis   62 
 3.3. Discussion         67 
 
 
 
 



 xx 

Chapter 4. General Discussion       71 
 
4.2. Discussion         73 
 4.1. Conclusions and Perspectives      80 

 

Chapter 5. Materials and Methods       85 
 
 5.1 – Materials         87 
  5.1.1 – Parasites        87 
  5.1.2 – Cells         87 
  5.1.3 – Hepa1-6 lysates       88 
  5.1.4 – Uracil derivatives      88 
  5.2 – Methods         89 

5.2.1 – Chlorate Treatment of Cells      89 
5.2.2 – Apical regulated exocytosis     89 
5.2.3 – Drug Treatments       90 
5.2.4 – Determination of live/dead sporozoites with propidium iodide . 91 
5.2.5 – Intracellular camp levels     91 
5.2.6 – Migration through cells and Infection    92 
5.2.7 – Transwell filter assays      92 

 

Bibliography          95 

Appendix I          113 

Appendix II          129 

 

 

Index of Figures 
 

Fig.1.1 | Global Distribution of malaria.                         4 

Fig.1.2 | Plasmodium Life Cycle.         6 

Fig.1.3 | Schematic representation of a Plasmodium sporozoite.    10 

Fig.1.4 | Gliding Plasmodium sporozoites leaving trails of CS protein.    12 

Fig.1.5 | Sporozoites arrest in the liver.       16 

Fig.1.6 | Plasmodium sporozoite migration through cells.     18 

Fig.1.7 | Plasmodium yoelii sporozoite showing apical exocytosis.    19 

Fig.2.1 | Schematic of Apical regulated exocytosis in Plasmodium sporozoites.   27 

Fig.2.2 | UDP and UTP induce apical regulated exocytosis in Plasmodium sporozoites.  28 

Fig.2.3 | Effect on sporozoite exocytosis of, uracil, thymine  and Cytosine derivatives.   29 

Fig.2.4 | Physiological concentrations of uracil derivatives induce apical regulated  

 exocytosis in P. yoelii sporozoites and activate them for infection.   30 

Fig.2.5 | Albumin inhibits exocytosis induced by uracil derivatives in P. yoelii sporozoites.  32 

Fig.2.6 | Effect of some serum proteins on exocytosis induced by UD.    33 

Fig.2.7 | Albumin inhibitory effect on exocytosis is specific and dose dependent.   34 

Fig.2.8 | The inhibitory effect of albumin on sporozoite exocytosis is reversed in     

 the presence of hepatocytes.       36 

 



 xxi 

Fig.2.9 | Migration through hepatocytes reverses the inhibitory effect of albumin on Exocytosis. 37 

Fig.2.10 | Migration through hepatocytes overturns inhibitory effect of albumin on  

 Sporozoites and activates them for Infection.     38 

Fig.2.11 | P. falciparum sporozoites apical regulated exocytosis is induced by uracil derivatives  

 or migration through human hepatocytes and it is inhibited by human albumin.  40 

Fig.2.12 | Inhibitory effect of albumin on sporozoite exocytosis is reversed in the  

 presence of highly sulfated HSPGs present in hepatocytes.    42 

Fig.2.13 | Migration through cells with highly sulfated HSPGs overcomes the inhibitory  

  effect of albumin on exocytosis.       43 

Fig.3.1 | Exocytosis of TRAP occurs in the apical end of sporozoites.    54 

Fig.3.2 | Increases in cAMP induce exocytosis in P. yoelii sporozoites.    55 

Fig.3.3 | Exocytosis response In P. berghei spect 1 - deficient sporozoites.   56 

Fig.3.4 | Increases in cAMP induce exocytosis in P. falciparum sporozoites.   57 

Fig 3.5 | Intracellular levels of cAMP in P. yoelii sporozoites stimulated with UD.  58 

Fig.3.6 | Stimulation of exocytosis mediated by cAMP increases sporozoites  

infection and decreases migration through cells.     59 

Fig.3.7 | Inhibition of  PKA activity  reduces sporozoites exocytosis and infection.           61 

Fig.3.8 | Extracellular K+ is required for sporozoites apical regulated exocytosis.  63 

Fig.3.9 | Extracellular Ca+ is not required for sporozoites exocytosis.    64 

Fig.3.10 | Possible model for the signaling cascade mediating exocytosis.   65 

 

Index of tables 

 

Table 3.1 |  Sporozoite viability after drug treatment.     66 



 

 



 

 

 

 

 

 

General 

Introduction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 1 



 
 
 
 
 
 
 
 
 
 
 
 
 
 



General Introduction | 1 

 3 

1.1. General overview - 

 

Malaria infection is caused by an intracellular protozoan 

parasite of the genus Plasmodium and is transmitted by an 

Anopheles mosquito vector.  

The earliest medical writers in China, Assyria, and India 

described malaria-like intermittent fevers, which they 

attributed to evil spirits. In medieval times it was 

believed that vapors and mists arising from swamps and 

marshes caused the disease. The names malaria (mal, bad; 

aria, air) and paludism (palus, marsh) reflect these 

beliefs. 

All concepts of malaria changed within 20 years after 

Laveran’s 1880 description of the unicellular parasite 

Plasmodium falciparum in the fresh blood of an infected 

soldier. Golgi described asexual development in 1886, and 

MacCallum observed the sexual cycle of the parasite in 

1897. In 1898 Ross, Grassi and colleagues showed that the 

parasite developed in the mosquito and was transmitted to 

the human within the small amount of salivary fluid 

secreted by that insect (Wahlgren 1999). 

The full understanding of malaria parasite’s cycle was 

achieved only in 1948 when Shortt and Garnham described 

the exoerythrocytic liver stage, after observing malaria 

parasites developing in livers of sporozoite-infected 

monkeys and in livers of human volunteers bitten by 

mosquitos infected with Plasmodium vivax (Shortt HE 1948). 

Malaria is a widespread infectious human disease, with an 

estimated annual worldwide toll of 350-500 million acute 

episodes, resulting in more than a million deaths. Most of 

these are caused by P. falciparum infections, which are 

the leading cause of Africa’s mortality in the under-five 

(20%) and represents 10% of the continent's overall 

disease burden. 
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It also accounts for 40% of public health expenditure, 30-

50% of inpatient admissions, and up to 50% of outpatient 

visits in areas with high malaria transmission. The vast 

majority of malaria deaths occur south of the Sahara, 

where it presents major obstacles to social and economic 

development. For instance, malaria has been estimated to 

cost Africa more than US$ 12 billion every year in lost 

Gross Domestic Product - GDP, even though it could be 

controlled for a fraction of that sum (W.H.O., 2005).  

 

Figure 1.1| Global distribution of malaria (A) World’s malaria 
transmission risk in 2003 and (B) the estimated incidence of 
clinical malaria episodes caused by any Plasmodium species, 
resulting from local transmission, country level averages in 
2004. (Adapted from Roll Back Malaria partnership report, 2005). 
 

The fight against malaria is currently being pursuit, 

among others, by The Roll Back Malaria, an international 

partnership launched by the World Health Organization 

(W.H.O). Its goal is to halve malaria-associated mortality 

by 2010 and again by 2015. Four action steps are being 

taken in four different areas: prevention is to be 

achieved by the use of protection against mosquito bites; 

prompt treatment by using effective anti malarial 

medicines; protection of pregnant women and their unborn 

children and, in areas of high risk, preventive 

medication; and pre-empting epidemics by predicting 

outbreaks and acting swiftly (W.H.O. 2005). 
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1.2. Plasmodium and its life cycle- 

 

Malaria parasites (Plasmodium spp.) are part of the 

phylum Apicomplexa that includes other important 

intracellular pathogens such as Toxoplasma, 

Cryptosporidium, Eimeria, Babesia and Theileria. Different 

Plasmodium species can infect different vertebrates, 

including human, other primates, rodents, birds, and 

reptiles. 

 

The malaria parasite life cycle is complex and involves 

both a vertebrate and an invertebrate host, the Anopheles 

mosquito vector. The interaction between them results in 

transmission, which in turn allows the infection to 

endure. Of the approximately 400 species of Anopheles 

throughout the world, about 60 are malaria vectors under 

natural conditions, 30 of which are of major importance 

(W.H.O. 2005). 

 

While probing to find blood, a malaria-infected female 

Anopheles mosquito injects salivary fluids into the skin 

and inoculates sporozoites into the human host. 

Sporozoites migrate through the skin and enter into the 

circulation, a step that can take up as long as a few 

hours (Yamauchi et al. 2007), circulate for a short time 

in the blood stream, and then infect liver cells where 

they undergo asexual division followed by maturation into 

schizonts. Some parasites, such as Plasmodium vivax and P. 

ovale, have a dormant stage instead, the hypnozoite 

(Krotoski et al. 1982; Wahlgren 1999), that can persist in 

the liver and cause relapses by invading the bloodstream 

weeks, or even years later.  

Although primary infection occurs in the liver, no 

pathology is associated with the hepatic stage of malaria. 
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After this initial replication in the liver (exo-

erythrocytic schizogony), the parasites undergo asexual 

multiplication in the erythrocytes (erythrocytic 

schizogony). The asexual cycle is synchronous and periodic 

(parasite species dependent and can take 48 or 72 hours) 

and is the stage where clinical manifestations of the 

disease occur and individuals get sick. 

 

Figure 1.2|Plasmodium life cycle (A) An infected female 
Anopheles mosquito feeds on a host injecting Plasmodium 
sporozoites into the blood stream (B) Sporozoites arrest at the 
liver, glide along sinusoidal endothelia and breach through 
several hepatocytes before finally developing into liver 
schizonts (merozoites) within the hepatocyte. (C) Upon merozoite 
formation, merozomes are extruded into liver sinusoids and 
liberated into the blood stream (D) where they will cyclically 
infect erythrocytes. (E) Repeated infection cycles occur with 
some parasites developing into gametocytes. (F) When an 
Anopheles mosquito takes a blood feed on this host, it will 
collect these gametocytes (G) Fertilization takes place in the 
mosquito gut and an ookinete, and later oocyst, are formed. 
Oocysts will give rise to sporozoites, which will migrate and 
invade the mosquito salivary glands. (H) Infective sporozoites 
are ready to be inoculated in a new host upon the mosquito’s 
next blood meal. 
 

An exoerythrocytic schizont contains 10.000 to 30.000 

merozoites, which once released invade the red blood cells 

in about 30 seconds. This process is dependent on the 
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interactions of specific receptors on the erythrocyte 

membrane with ligands in the surface of the merozoites. 

Once within the cell, the parasite begins to grow, first 

forming the ring-like early trophozoite, and eventually 

enlarging to fill the cell. The parasites are nourished by 

the hemoglobin within the erythrocytes and produce a 

characteristic pigment called hemozoin. The erythrocytic 

cycle is completed when the red blood cell ruptures and 

releases merozoites that proceed to invade other 

erythrocytes.  

Not all merozoites divide asexually. Some differentiate 

into the sexual forms, the macrogametocytes (female) and 

microgametocytes (male) and can only complete their 

development within the gut of an Anopheles mosquito. The 

duration of gametocytogony is assumed to be approximately 

4 to 10 days depending on the Plasmodium species. Upon 

ingestion by the mosquito, and once in the gut, the 

microgametes penetrate the macrogametes generating 

zygotes. Within 18 to 24 hours the zygotes become motile 

and elongated ookinetes which in turn invade the midgut 

wall of the mosquito where they develop into oocysts. It 

takes between 7-15 days for the oocysts to grow, rupture, 

and release sporozoites, which then make their way to the 

mosquito's salivary glands. Inoculation of the sporozoites 

into a new human host perpetuates the malaria life cycle. 

 

1.2.1. Study of host infection with mouse models. 

Clinical cases of malaria in humans are caused by four 

different species of Plasmodium: P. falciparum, P. vivax, 

P. ovale and P. malariae. P. falciparum is, by far, the 

deadliest of the four, accounting for most of the 

mortality and morbidity associated with this disease. 

Several studies involving Plasmodium pre-erythrocytic 

stages have made use of Plasmodium species that infect 

rodents, specifically P. berghei and P. yoelii. These two 
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species have striking differences in sporozoites 

infectivity in inbred mouse strains. Plasmodium yoelii is 

often favored as a model for human malaria because, 

similarly to P. falciparum in humans, a low number of P. 

yoelii sporozoites is enough to establish an infection 

(Khusmith et al. 1991), whereas at least 100 P. berghei 

sporozoites are required to ensure blood stage infection 

(Burkot et al. 1988); (Khan and Vanderberg 1991). 

Nevertheless, P. berghei remains the most widely used 

rodent parasite since the technology enabling its 

transfection was developed earlier (van Dijk et al. 1996) 

than for P. yoelii (Mota et al. 2001a). 

  

1.3 Liver Stage Biology-  

 

Although intense research on the cell biology of 

Plasmodium liver stages has considerably advanced our 

understanding of basic events in the host, from sporozoite 

deposition into the skin, to liver stage maturation and 

merozoite differentiation, the lack of a large-scale 

culture system for infectious sporogonic stages, the 

difficulty in isolating sporozoites, the need to study the 

interaction of the parasites with complex tissues of the 

host and problems obtaining pure preparations of infected 

hepatocytes, have delayed the progress of this field.  

There is still great controversy on why Plasmodium has 

elected the liver and the hepatocyte as a first cellular 

home inside mammalian hosts. However, it is possible that 

the reason is related to the hepatocyte’s highly complex 

metabolism (hepatocytes are small storehouses of glycogen 

and serum protein factories, hence a great supply of 

nutrients), capable of fulfilling parasite replication 

needs (Frevert 2004). Another plausible reason is that the 

immunologic characteristics of the liver permit parasites 

to survive and pursue infection. In an effort to maintain 
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immunological silence to harmless material from the gut, 

the liver favors a tolerogenic response towards incoming 

antigens (Knolle and Gerken 2000; Crispe 2003). Other 

aspects to take into consideration are the morphology of 

the liver itself and the fact that hepatocytes are 

heterogeneous, allowing easy access to venules and 

arteries separated by the space of Disse (Wisse et al. 

1985).  

 

1.3.1. The Plasmodium Sporozoite 

Malaria life cycle consists of three major invasive 

stages: the ookinete, the sporozoite and the merozoite. 

There is a large degree of conservation in their 

organization, including a surface designed to interact 

with the host cell and a cytoskeleton against which the 

actomyosin exerts its power. Additionally, secretory 

organelles modify the host cell to permit entry (the 

micronemes) and establish a parasitophorous vacuole (PV), 

in which the parasite may replicate (the rhoptries) 

(Sinden and Matuschewski 2005). 

Between day 7 and 17 after infection, depending on the 

Plasmodium species and environmental temperature, the 

single-celled ookinete transforms into a mature oocyst, 

which contains hundreds or even thousands of sporozoites. 

Mature sporozoites exit from the oocyst to the body cavity 

and invade the salivary glands. The first morphological 

evidence for sporozoite bud formation is the appearance of 

the inner membrane complex (IMC) and the associated 

microtubules (MTs) under the cytoplasmatic face of the 

sporoblast plasma membrane. The sporozoite plasma membrane 

is derived from the sporoblast plasma membrane whilst the 

IMC is presumably made de novo from Golgi-derived 

cytoplasmatic vesicles that fuse and flatten together with 

sporozoite outgrowth (Sinden and Strong 1978; Beier and 

Vanderberg 1998).  
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Figure 1.3|Schematic representation of a Plasmodium sporozoite 

(showing some of its organelles and subcellular structures). 

 

The fully formed sporozoite has a crescent shape ranging 

from 9 to 16.5 µm in length and 0.4 to 2.7 µm in width, 

depending upon the species (Sinden and Strong 1978). 

Sporozoites contain an elongated nucleus, mitochondria, 

endoplasmatic reticulum and Golgi apparatus. Additionally, 

an actin-myosin motor, essential for parasite motility and 

invasion, is located in the narrow space between the 

plasma membrane and the outer membrane of the IMC (Kappe 

et al. 2004b). The anterior half side of the sporozoite 

contains two classes of electron-dense tubules: (i) 

Micronemes are small vesicles of varying electron density 

in Plasmodium sporozoites that frequently show a neck-like 

extension; and (ii) Rhoptries are large, usually paired, 

pear-shaped organelles filled with proteins and 

phospholipids. Both organelles discharge at the anterior 

tip of the parasite, and their contents (and that of dense 

granules, not yet identified in Plasmodium sporozoites) 

are involved in apicomplexan motility, host cell invasion, 

and generation of the non-phagosomal parasitophorous 

vacuole, where the parasite resides and replicates inside 

the host cell.  

Two well-characterized sporozoite proteins are 
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circumsporozoite protein (CS) and thrombospondin-related 

anonymous protein (TRAP). 

CS, not found in any other Aplicomplexa besides 

Plasmodium, is encoded by a single copy gene and covers 

the entire surface of sporozoites (Nussenzweig and 

Nussenzweig 1989). Following sporozoite invasion of 

hepatocytes, CS is also detected in the plasma membrane of 

early Exoerythrocytic forms (EEFs) and in the cytoplasm of 

infected cells (Hamilton et al. 1988; Singh et al. 2007). 

Due to its abundance, surface localization, 

immunogenicity, and key role in parasite invasion, CS 

constitutes the leading candidate molecule for the 

development of malaria pre-erythrocytic vaccines (Alonso 

et al. 2004; Saul et al. 2004). 

TRAP is a member of a type I trans-membrane protein 

family (Menard 2001). In Plasmodium, three TRAP proteins 

have been identified: TRAP in sporozoites stage, TRAP 

homologue (MTRAP) in merozoite stage and CS- and TRAP-

related protein (CTRP) in ookinetes (Baum et al. 2005). In 

sporozoites, TRAP is found in micronemes and on the plasma 

membrane, with a characteristic patchy distribution. 

Furthermore, the TRAP family members connect the host cell 

receptors with the molecular motor, driving Apicomplexa 

motility and cell invasion (Buscaglia et al. 2003). 

 

1.3.2. Sporozoite gliding motility 

Plasmodium sporozoites, as many of other invasive stages 

of the Apicomplexa phylum, present a form of locomotion 

that is not based on cilia or flagella. They cannot swim 

in liquid medium but they can glide on solid substrates, 

including host cell surfaces. Substrate dependent gliding 

motility is defined by the absence of any obvious 

modifications in the shape of the moving cell. 

 During gliding motility, CS protein is secreted at the 

apical end of the parasite, translocated along the 
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sporozoite’s surface by an actin-dependent process, and 

shed on the substrate from the posterior end (Stewart and 

Vanderberg 1988). In this way gliding sporozoites leave 

surface proteins and membrane lipids on the substrate, 

resulting in characteristic spiral trails that can be 

visualized by CS protein staining (Fig. 1.4) 

Plasmodium sporozoites can also enter and exit host cells 

by breaching their plasma membrane, a process that also 

requires gliding motility and is used for migration 

through host cells and tissues (Mota et al. 2001b). 

 

 
 
 
 
 
 
 
 
 
 
Figure 1.4| Gliding Plasmodium 
sporozoites leaving trails of CS 
protein. (Adapted from Mota, 2002) 
 

 

1.3.3. In the skin 

When a female Anopheles mosquito bites the mammalian 

host, it probes for a blood source under the skin. While 

probing, the mosquito injects saliva containing 

vasodilators and anti-coagulants to facilitate the blood 

ingestion (Griffiths and Gordon 1952; Ponnudurai et al. 

1991), along with Plasmodium sporozoites. Although 

mosquitoes can harbor hundreds of sporozoites in their 

salivary glands, they typically inoculate only small 

numbers (Medica and Sinnis 2005). The majority of these 

sporozoites are injected into the dermis and not directly 

into circulation. They can remain in the skin for a long 

time (Yamauchi et al. 2007) and probably traverse skin 

cells before entering the blood circulation from where 

they reach the liver (Vanderberg and Frevert 2004; Amino 
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et al. 2006). An alternative route for the sporozoite 

journey to the liver is via the lymphatic system, possibly 

inside leukocytes (Vaughan et al. 1999; Krettli and Dantas 

2000). Videomicroscopic analysis of GFP- expressing 

sporozoites in the skin revealed their high motile 

activity and subsequent active penetration through the 

vascular endothelium. Also, recent intravital microscopy 

using the Plasmodium berghei rodent model of malaria 

showed that sporozoites deposited into avascular dermal 

tissue use gliding motility to migrate within the skin and 

into dermal vessels, covering distances of many 

micrometers for several minutes before reaching 

circulation (Vanderberg and Frevert 2004). There are 

indications that a sporozoite surface phospholipase (PbPL) 

is required to breach host cell membranes during migration 

in the skin, as parasites deficient in PbPL are impaired 

in their ability to cross epithelial cell monolayers, and 

their infectivity is greatly decreased when they are 

transmitted by mosquito bite (Bhanot et al. 2005). During 

migration in the skin the parasite is vulnerable to 

antibodies against Plasmodium surface proteins, which may 

act as the first line of the host’s immune response 

against the parasite (Vanderberg and Frevert 2004).  

Amino et al (Amino et al. 2006) showed that a significant 

proportion of mosquito-injected sporozoites remain in the 

dermis after exhausting their gliding motility. Of those 

that leave the area of the bite within 1 hour of 

injection, approximately 70% enter blood vessels and the 

remaining 30% invade lymphatic vessels. The majority of 

the latter do not reach the blood circulation, as had been 

previously assumed. Instead, they are trapped in the lymph 

nodes, where most are phagocytosed by dendritic cells. 

Some of these lymphatic sporozoites were found to 

partially develop into small-sized EEFs before eventually 

being degraded (Amino et al. 2006). These studies were 
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performed with the rodent malaria parasite P. berghei. 

Studies on P. yoelii showed that the majority of injected 

sporozoites remain at this site for several hours and exit 

in a slow trickle rather than a rapid burst. Similar to 

what was found for P. berghei, about 20% of the P. yoelii 

sporozoite innoculum traffic through the draining lymph 

node, a process that is likely to have an effect on the 

immune response generated against the sporozoite stage of 

infection (Yamauchi et al. 2007). Taken together these 

studies suggest that there are significant interactions 

between sporozoites and their mammalian host at the 

injection site. 

 

1.3.4. Getting to the liver  

Most invasive stages of Apicomplexan parasites are 

released in close proximity to of their target and 

therefore do not required to move long distances. 

Plasmodium sporozoites differ from other zoites in this 

regard since, in the mammalian host, they must make their 

way from the dermis to the hepatocyte. The majority of the 

circulating sporozoites are arrested in the liver after a 

single passage, suggesting that specific receptors are 

present on the cells lining the sinusoids (Shin et al. 

1982). The liver sinusoid lining consists mostly of a 

fenestrated endothelium and Kupffer cells. The reduced 

speed in the blood circulation, while percolating through 

the liver, facilitates the encounter of the parasites with 

the putative sinusoidal receptors. Because CS covers the 

entire sporozoite plasma membrane, it is very likely that 

it contains the postulated liver ligand(s). Numerous 

observations indicate that the ligand is contained in the 

stretch of positively charged residues of region II-plus 

of CS, and that the binding sites in the liver are heparan 

sulfate proteoglycans (HSPGs) (Sinnis and Nardin 2002; 

Tewari et al. 2002). In addition to region II-plus, the 
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positively charged region I of CS may also bind to HSPGs 

and contribute to sporozoite arrest in the liver (Rathore 

et al. 2002). In addition to the liver, HSPGs are 

ubiquitously distributed in extracellular matrices and on 

cell surfaces. Among other functions, HSPGs bind growth 

factors and cytokines, are involved in the lipoprotein 

metabolism and participate in the viral entry into cells. 

The multiple roles of HSPGs are associated with extensive 

chemical variation, imparting specificity to the various 

interactions (Iozzo 2001). Liver HSPGs include two members 

of the syndecan family (syndecam 1 and syndecan 2), which 

are the type I integral membrane proteins that can 

function as co-receptors (Couchman 2003). Interestingly, 

Syndecan 1 knockout mice are as susceptible to sporozoite 

infection as the wild type controls suggesting that 

syndecan 1 is not necessary for the infection to occur 

(Bhanot and Nussenzweig 2002). Thus, syndecan 2 is more 

likely to be the CS receptor. It is an unusual member of 

the HSPGs family, with a large proportion of heparin-like, 

highly sulfated structures at the distal end of 

glycosaminoglycans chains (Pierce et al. 1992; Lyon et al. 

1994). Notably, among glycosaminoglycans, heparin is the 

most efficient inhibitor of CS binding to the human 

hepatoma cell line HepG2 (Kappe et al. 2004a).  

 

1.3.5. In the Liver  

The first step of infection is the establishment and full 

development of Plasmodium sporozoites inside hepatocytes, 

which, although symptomatically silent, gives rise to 

thousands of merozoites in each hepatocyte.  
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The molecular signals that allow sporozoites to determine 

their position in the mammalian host are not known. It was 

suggested by recent studies on the proteolytic cleavage of 

the sporozoite’s major surface protein, CS, that 

sporozoites recognize different cell types (Coppi et al. 

2005). 

 
Figure 1.5| Sporozoites arrest in the liver. Once sporozoites (in 
green) reach the liver sinusoids they glide along the endothelium of 
the blood vessel and interact with the heparan sulfate proteoglycans 
from hepatocytes and stelate cells. They cross the sinusoidal layer by 
traversing either endothelial cells or Kupffer cells (as represented). 
 

  

After being sequestered in the sinusoids, sporozoites 

must reach and invade the hepatocytes. They encounter two 

different cell types on the way: endothelial and Kupffer 

cells. Although liver endothelial cells have 

fenestrations, these are too small (about one tenth of the 

diameter of a sporozoite) to allow sporozoite passage 

(Wisse et al. 1985).  

As sporozoites are able to migrate through all nucleated 

cell types examined to date, it is possible that 

sporozoites can traverse either endothelial or Kupffer 

cells. However, there is increasing evidence indicating 

that sporozoites cross the sinusoidal layer primarily 

through Kupffer cells (Frevert et al. 2006). 
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1.3.6. Sporozoite Migration and Apical Regulated Exocytosis 

Sporozoites can enter cells by two distinct routes, 

either through a tight moving junction with the target 

cell that leads to the formation of a parasitophorous 

vacuole (PV) where EEF development proceeds, or by 

disrupting their plasma membrane (Mota et al. 2001b). In 

the latter case, the parasite glides in the cytoplasm and 

exits the cell again rupturing the plasma membrane. Using 

a cell-wounding assay, it has been shown, both in vitro 

and in vivo, that during migration through cells, 

Plasmodium spp. sporozoites breach the plasma membranes of 

several hepatocytes, which can rapidly be repaired (Mota 

et al. 2001b). Recently, sporozoite migration in the liver 

was confirmed by intravital microscopy (Frevert et al. 

2005). Migration through cells is also observed in other 

parasites at similar stages of the life cycle: Toxoplasma 

and Eimeria bovis (a cattle pathogen) sporozoites are also 

able to migrate through cells by disrupting the membrane 

(Mota and Rodriguez 2001).  

Breaching of the cell membranes by the Plasmodium 

parasite is likely to involve specific lipases, proteases 

and pore-forming proteins. Four distinct P. berghei 

proteins have been shown to have important roles during 

cell traversal: sporozoite protein essential for cell 

traversal (SPECT), SPECT2, cell traversal protein for 

ookinete and sporozoite (CelTOS) and the phospholipase 

PbPL (Ishino et al. 2004; Bhanot et al. 2005; Ishino et 

al. 2005b; Kariu et al. 2006). At least two of these 

proteins, SPECT2 and PbPL, seem to be involved in pore 

formation (Ishino et al. 2005b), whereas CelTOS has been 

proposed to be required for movement through the host-cell 

cytosol (Kariu et al. 2006) 



General Introduction | 1 

 18 

Entering hepatocytes by breaching the cell membrane might 

be advantageous to Plasmodium parasite, since it offers an 

unimpeded view of the local host cytoplasmatic 

environment. In Plasmodium sporozoites, migration through 

cells induces apical regulated exocytosis. Exocytosis is 

observed as an accumulation of micronemal proteins, such 

as TRAP, in the apical end of the sporozoite. TRAP is a  

 

Figure 1.6| Plasmodium sporozoites migration through cells. Time lapse 

video images of a Plasmodium berghei sporozoite entering and exiting a 

HepG2 cell (hepatocyte) in about a minute (adapted from Mota et al, 

2001). 

 

transmembrane protein with most of its aminoacid sequence 

located in the lumen of the micronemes. When micronemes 

fuse with the plasma membrane of the sporozoite, TRAP is 

incorporated in the apical plasma membrane, with its main 

domains exposed to the extracellular medium. Since TRAP is 

an essential mediator of hepatocyte invasion and presents 

adhesive properties, it is believed that exposure of this 

protein in the apical end of the sporozoites is required 

for invasion of the host cell (Mota et al. 2002). This 

type of secretion occurs in response to a stimulus, and 

can be visualized as a “cap” structure on the apical end 

of the sporozoite (Gantt et al. 2000; Mota et al. 2002).  
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Invasion with formation of a parasitophorous vacuole is 

tightly associated with exocytosis of apical organelles in 

different Apicomplexa (Rick et al. 1998; Carruthers et al. 

1999). In Toxoplasma, this process is accompanied by 

sequential discharge of micronemes, rhoptries and dense 

granules (Carruthers and Sibley 1997). Attachment of 

toxoplasma tachyzoites to host cells triggers a transient 

cytosolic Ca2+ increase that is required for invasion 

(Vieira and Moreno 2000).  

 
Figure 1.7|Plasmodium yoelii sporozoite exocytosis. Sporozoites were 
incubated with (lower panel) or without (upper panel) a hepatocyte 
lysate. Surface staining with monoclonal antibody against TRAP. Right 
panels show the same microscopic field in phase contrast. Exocytosis 
is observed as a cap at the apical end of the parasite. 
 

 

In Plasmodium sporozoites, activation of exocytosis is 

induced by migration through cells but can also be 

activated in an artificial manner by incubating 

sporozoites with a Ca2+ ionophore (Gantt et al. 2000) or 

with host cell lysates (Mota et al. 2002), suggesting that 

factors from the host cell activate signaling cascades in 

sporozoites leading to exocytosis. Activation of 

exocytosis leads to increased infectivity of sporozoites, 

by enabling the release of key factors required for 
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hepatocyte invasion. Many of the proteins found in the 

micronemes contain cell adhesive domains that function in 

zoite-host cell interactions required for invasion 

(Soldati et al. 2001). Another aspect of sporozoite 

migration in the liver is that the wounding of the cells 

induces the secretion of “Hepatocyte Growth Factor” (HGF), 

that renders the surroundings more susceptible to parasite 

growth (Carrolo et al. 2003). 

In summary, migration through cells is involved in at 

least four sporozoite activities necessary to achieve 

efficient liver infection: exit from the skin into 

circulation (Bhanot et al. 2005), entry from circulation 

into the liver (Ishino et al. 2004), generation of HGF in 

the liver to increase host cell susceptibility (Carrolo et 

al. 2003) and activation of sporozoites before infection 

(Mota et al. 2002).  

 

1.3.7. Hepatocyte Invasion and Intrahepatic development 

Intense secretion of TRAP and CS accompanies the final 

invasion of the hepatocyte and the parasite finds itself 

surrounded by a PV, in which it replicates and develops 

(Meis et al. 1983; Mota et al. 2002; Silvie et al. 2004). 

CS seems to have an active role in sporozoite attachment 

rather than internalization (Pradel et al. 2002), whereas 

TRAP contributes to sporozoite internalization and not 

attachment (Matuschewski et al. 2002). Other proteins have 

recently been implicated in the invasion of hepatocytes: 

AMA-1 (apical membrane antigen 1) is required for 

hepatocyte invasion by P. falciparum parasites (Silvie et 

al. 2004); two P. berghei proteins, Pb36p and Pb36, seem 

necessary for sporozoites to recognize hepatocytes and 

commit to infection (Ishino et al. 2005a) but also for 

sporozoite early development (van Dijk et al. 2005) . One 

host protein that seems to interact with sporozoites is 

the tetraspanin CD81. It is required for P. yoelii 
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invasion of mouse hepatocytes and for P. falciparum 

invasion of human hepatocytes. 

After the final invasion each Plasmodium sporozoite 

develops and multiplies inside the hepatocyte, thereby 

generating thousands of merozoites. Recently, it has been 

observed that removal of either protein UIS3, UIS4 or 

Pb36p (Mueller et al. 2005b; Mueller et al. 2005a; van 

Dijk et al. 2005) (UIS stands for upregulated in infective 

sporozoites) leads to impairment of parasite development 

in hepatocyte.  

The final important step in the life cycle of 

intracellular pathogens is the exit from the host cell 

after replication, but the molecular mechanisms involved 

in this process are poorly understood. It has been 

recently reported that P.berghei merozoites are not 

released by the rupture of the hepatocyte, but by the 

formation of merozoite filled vesicles (merosomes), which 

bud of from the infected hepatocytes into the lumen of the 

liver sinusoids (Sturm et al. 2006). 

 

1.4. Aims and strategies- 

 

Plasmodium sporozoites are found for extended periods of 

quiescence in the mosquito’s salivary gland lumen before 

being subjected to a sudden change in environment when 

inoculated into the warm-blooded host. In the mammalian 

host, the inoculated sporozoites enter a journey from the 

skin to the liver. During this period, sporozoites are 

activated to a state of readiness for hepatocyte invasion 

and expose molecules necessary in the process of invasion. 

 

The main questions proposed in this thesis are concerned 

with the activation of exocytosis upon migration through 

host cells and its importance in host cell invasion. We 

posed three specific questions: 
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1) How does migration through cells induce exocytosis in 

Plasmodium sporozoites? We propose to determine which host 

cell molecules are responsible for the activation of 

exocytosis. 

2) Is this process regulated and how? Since sporozoites 

activation only occurs in the liver, we propose that 

sporozoites make use of regulatory mechanisms that permit 

a sequential and specific preparation for infection. 

3) What are the signaling pathways that mediate the 

activation of exocytosis in sporozoites? It was observed 

in a previous study that an intracellular increase of 

calcium in sporozoites leads to an increase in apical 

exocytosis (Mota et al. 2002) and a subsequent boost in 

infectivity. We propose to elucidate the role of signal 

transduction in sporozoites exocytosis and infection. 
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2.1. Introduction- 

 

Plasmodium sporozoites and other apicomplexan parasites, 

such as Eimeria sporozoites and Toxoplasma tachyzoites, 

have small vesicles – micronemes that contain proteins 

involved in host cell infection (Sibley 2004). These 

proteins, such as MIC-2 in Toxoplasma or TRAP in 

Plasmodium, become exposed on the apical surface of the 

parasite upon exocytosis of the micronemes, which is 

triggered by incubation of these parasites with host cells 

(Carruthers et al. 1999; Gantt et al. 2000). Exocytosis of 

micronemal proteins, resulting in the appearance of TRAP 

on the apical surface of Plasmodium sporozoites, is 

induced during the process of migration through cells and 

precedes infection with the formation of an 

internalization vacuole (Mota and Rodriguez 2004). This 

process, similarly to Toxoplasma secretion of MIC2 (Huynh 

et al. 2006), is thought to facilitate invasion of the 

host cell (Mota et al. 2002). Migration through host cells 

is therefore considered an early step in activation of 

sporozoites for infection (Mota and Rodriguez 2004). 

During this process sporozoites are not surrounded by a 

vacuolar membrane and therefore are in direct contact with 

the cytosol of the traversed cell. Because apical 

regulated exocytosis can also be induced by incubation of 

sporozoites with host cell lysates, it was proposed that 

cytosolic factors in the mammalian cell activate 

exocytosis in the parasite (Mota et al. 2002).  

 

The results presented in this chapter include the 

identification of host cell cytosolic factors that induce 

exocytosis of the rodent parasite P. yoelii and the human 

parasite P. falciparum. We found that uracil, uridine and 

uracil-derived nucleotides, at concentrations that are 
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normally found in the cytosol of mammalian cells, induce 

exocytosis in sporozoites and increase their infectivity. 

We have also characterized the regulation of this process. 

As sporozoites are deposited in the host skin, where they 

apparently traverse host cells (Vanderberg and Frevert 

2004; Amino et al. 2006), it is likely that they encounter 

high concentrations of uracil-derived nucleotides before 

reaching their target cells in the liver. However, 

exocytosis is only expected to take place just before 

hepatocyte infection, as it exposes high concentrations of 

adhesive molecules on the surface of the parasite, such as 

TRAP, which are required for internalization and formation 

of a parasitophorous vacuole.  

 

In this study, we found that exocytosis is inhibited 

specifically by albumin, a protein found in the skin, 

blood and liver of the mammalian host. This finding 

suggests that during infections in vivo, sporozoites don’t 

undergo apical regulated exocytosis in the presence of 

physiological concentrations of this protein. Additionally 

we observed that this inhibitory effect of albumin is 

reversed when sporozoites are in contact with hepatocytes, 

suggesting that after arrival in the liver, sporozoites 

become susceptible to stimulation by uracil-derived 

nucleotides that will in turn induce apical regulated 

exocytosis and facilitate hepatocyte infection. In fact, 

the reversion of albumin inhibitory effect appears to be 

mediated by HSPGs present in the surface of hepatocytes. 
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2.2. Results- 

 

2.2.1. Uracil derivatives induce apical regulated exocytosis in Plasmodium sporozoites 

Exocytosis in the rodent parasite P. yoelii is induced by 

migration through host cells, as well as by incubation 

with lysates of a hepatoma cell line (Hepa1-6), which is 

susceptible to sporozoite infection (Mota and Rodriguez 

2000; Mota et al. 2002). Apical regulated exocytosis in P. 

yoelii, (Mota et al. 2002) and in the human parasite, P. 

falciparum, is observed as the surface exposes TRAP 

protein in the apical end of the sporozoites (Fig.2.1).  

 

Figure 2.1| Schematic of Apical regulated exocytosis in 
Plasmodium sporozoites. (A) Upper panels show surface staining 
of P. falciparum sporozoites with anti-TRAP mAb. Lower panel 
shows the same microscope field in phase contrast. Apical 
regulated exocytosis is observed as a ‘cap’ in one end of the 
sporozoite (right panels). (B) Model of apical regulated 
exocytosis. After activation, Plasmodium sporozoites recruit 
TRAP-containing micronemes to their apical end, which fuse with 
the apical membrane of the parasite.  
 

Regulated exocytosis in mammalian cells can be induced by 

a wide variety of molecules, ranging from proteins to 

nucleotides. In particular, uracil and adenine nucleotides 

(UDP, ADP, UTP and ATP) bind to specific receptors of the 

P2X and Y families and induce regulated exocytosis in 

different cell types (Lazarowski et al. 2003). Since these 

nucleotides are found in high concentrations in the 
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cytosol of cells and therefore are in direct contact with 

migrating sporozoites, we tested their ability to induce 

exocytosis in P. yoelii sporozoites. We found that UDP and 

UTP, but not ADP or ATP, induce sporozoite exocytosis 

(Fig.2.2.A). Furthermore, UDP induced exocytosis in 

Plasmodium sporozoites in a dose dependent manner and 

physiological concentrations of UDP in the cytosol (app. 

100 µM) (Traut 1994) were sufficient to efficiently induce 

exocytosis in sporozoites (Fig.2.2.B). Additionally, this 

induction by UDP was observed already 5 min after 

incubation and reached it maximum by 10 to 20 min 

(Fig.2.2.C).  

 

 
Figure 2.2| UDP and UTP induce 
apical regulated exocytosis in 
Plasmodium sporozoites. 
Percentage of P. yoelii 
sporozoites showing apical 
regulated exocytosis after 
incubation for 1 h alone 
(Control), with a lysate of 
Hepa1-6 cells (Lys) or 100 µM 
UDP, ADP, UTP and ATP (A), 
decreasing concentrations of UDP 
(B), 100 µM UDP for the 
indicated time periods (C). 
Results are expressed as mean of 
triplicate determinations ± SD. 
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We also investigated whether other pyrimidines were able 

to induce exocytosis in sporozoites. Similar 

concentrations of thymine, uracil and their derivative 

nucleosides and nucleotides (100 µM) showed identical 

capability of stimulating exocytosis (Fig.2.3.A). No 

significant activity was detected with cytosine 

derivatives (Fig.2.3.B). As the physiological 

concentrations of thymine and its derivatives are very low 

(<5 µM) in mammalian tissues (Traut 1994), uracil and its 

derivatives are likely to be the major effectors in 

activating sporozoite exocytosis during migration through 

host cells.  

We next analyzed the effect of a mixture of uracil and 

its derivatives (uridine, UMP, UDP and UTP) at the 

physiological concentrations found in the cytosol of 

mammalian cells (from 30 to 300 µM, described in methods) 

(Traut 1994), and observed that exocytosis is efficiently 

induced (Fig.2.4.A). 

  
Figure 2.3| Effect on Plasmodium sporozoites exocytosis of 
Uracil, Thymine and Cytosine derivatives. Percentage of P. 
yoelii sporozoites showing apical regulated exocytosis after 
incubation for 1 h alone (Control) or 100 µM of the indicated 
pyrimidines of the thimidine and uracil families (A) and the 
cytosine family (B). Results are expressed as mean of triplicate 
determinations ± SD. 
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Migration through hepatocytes induces sporozoite apical 

regulated exocytosis, which facilitates invasion of the 

host cell (Mota et al. 2002). Stimulation of exocytosis by 

other means, such as calcium ionophores or Hepa1-6 cells 

lysates, overcomes the need for migration through host 

cells and increases infection (Mota et al. 2002). 

To examine whether this was also the case for 

physiological concentration of uracil and its derivatives 

we tested whether stimulation of exocytosis by 

physiological concentrations of uracil and its 

derivatives, would also overcome the need for migration 

through hepatocytes before infection, we incubated P. 

yoelii sporozoites with these molecules to induce 

regulated exocytosis before incubation with Hepa1-6 cells. 

Migration through host cells was determined as the 

percentage of cells wounded by sporozoite migration and 

that in turn became positive for a soluble impermeant 

tracer (dextran) (McNeil et al. 1989).  

 
Figure 2.4| Physiological concentrations of uracil derivatives 
induce apical regulated exocytosis in P. yoelii sporozoites and 
activate them for infection. (A) Percentage of P. yoelii 
sporozoites showing apical regulated exocytosis after incubation 
with physiological cytosolic concentrations of uracil and its 
derivatives, as described in methods. (B) P. yoelii sporozoites 
were incubated with uracil derivatives mix and added to 
monolayers of Hepa1-6 cells. Percentage of dextran-positive 
cells (black bars) and infected cells (white bars) are shown. 
Results are expressed as mean of triplicate determinations ± SD. 
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We found an increase in the number of infected cells, 

indicating that stimulation of regulated exocytosis 

increases infectivity, in sporozoites. In addition, 

reduced migration through hepatocytes was observed, 

suggesting that such migration is not necessary when 

exocytosis is previously induced by these nucleotides 

(Fig.2.4.B).  

 

2.2.2. Albumin inhibits exocytosis induced by uracil nucleotides. 

A malaria infection starts with the bite of an infected 

mosquito that deposits saliva containing Plasmodium 

sporozoites in the skin of the host. Motile sporozoites 

move freely in the dermis (Vanderberg and Frevert 2004), 

where they most likely encounter high concentrations of 

uracil-derived nucleotides. This would then lead to 

stimulation of apical regulated exocytosis long before 

sporozoites have reached their target cells. However, 

exocytosis only happens once sporozoites have reached 

liver cells, suggesting that host factors that sporozoites 

encounter during the journey from the skin to the liver 

regulate sporozoite exocytosis. To test this hypothesis we 

first analyzed the effect of mouse serum on sporozoite 

exocytosis. Pre-incubation of sporozoites with mouse serum 

completely inhibited exocytosis induced by uracil-

derivatives (Fig.2.5.A). Since albumin is found at high 

concentrations in the serum and specifically regulates 

sporozoite activity, by inducing gliding motility 

(Vanderberg 1974), we tested the effect of this protein on 

sporozoites exocytosis. Interestingly, we observed that 

albumin completely prevents activation of exocytosis by 

uracil derivatives (Fig.2.5.B).   

Albumin has previously been described as a carrier 

protein that binds lipids (Kragh-Hansen et al. 2002). 

Therefore, we next tested the effect of highly purified 
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fatty acid-free albumin on sporozoite exocytosis and 

observed a similar inhibitory effect (Fig.2.5.C). The 

inhibitory effect of albumin was found to be dose 

dependent (Fig.2.7.A), with physiological concentrations 

in the interstitial fluid of the dermis (35 mg/ml) (Reed 

et al. 1989) or in blood (28-37 mg/ml) (Don and Kaysen 

2004) being sufficient to prevent sporozoite stimulation 

for exocytosis (Fig.2.6).  

  

 

Figure 2.5| Albumin inhibits 
exocytosis induced by uracil 
derivatives in P. yoelii sporozoites. 
Sporozoites were pre-incubated with 
(A) mouse serum (non-diluted), (B) 
mouse albumin (1 mg/ml), (C) fatty 
acid free albumin (1 mg/ml) 
Sporozoites were washed before 
incubation with the uracil 
derivatives (UD). Percentage of P. 
yoelii sporozoites showing apical 
regulated exocytosis is shown. 
Results are expressed as mean of 
triplicate determinations ± SD. 

 

 

In contrast, other proteins, such as gelatin or the serum 

proteins alpha2-macroglobulin and transferrin, did not 

inhibit sporozoite exocytosis (Fig.2.6). To confirm that 

the inhibitory activity observed is specifically due to 
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the presence of albumin, we tested the effects of 

neutralizing antibodies, which show reversal of the 

inhibitory effect of albumin (Fig.2.7).  

 

 
Figure 2.6| Effect of some serum proteins on exocytosis induced 
by UD. P. yoelii sporozoites were pre-incubated with gelatin at 
35 mg/ml or serum physiological concentrations of albumin (35 
mg/ml), a2-macroglobulin (1.64 mg/ml) and transferrin (2.5 
mg/ml) Sporozoites were washed before incubation with the uracil 
derivatives (UD). Percentage of P. yoelii sporozoites showing 
apical regulated exocytosis is shown. Results are expressed as 
mean of triplicate determinations ± SD. 
 

 

2.2.3. The inhibitory effect of albumin on sporozoites exocytosis is reversed in the 

presence of hepatocytes. 

Since albumin is at high concentrations in the 

interstitial fluids of the skin tissues (Reed and 

Burrington 1989) our results would suggest that following 

inoculation of sporozoites in the mammalian host, albumin 

inhibits the exocytosis response to a stimulus, such as 

uracil derivatives, preventing premature activation of 

sporozoites for infection. However hepatocytes contain 

high concentrations of albumin (Reed et al. 1989) which 

would interfere with the infectivity of the parasite.  

To analyze the regulation of exocytosis by albumin in the 

presence of hepatocytes, we added albumin pre-incubated 

sporozoites to monolayers of mouse or human hepatoma cell 

lines. In the presence of these cells the inhibitory 
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effect of albumin was no longer detectable, resulting in 

efficient activation of exocytosis (Fig.2.8.A). This 

finding indicates that in the presence of hepatocytes, 

sporozoites are no longer susceptible to the inhibitory 

effect of albumin and can be activated by uracil 

derivatives.  

 
Figure 2.7| Albumin inhibitory effect on exocytosis is specific 
and dose dependent. Sporozoites were pre-incubated with (A) 
decreasing concentrations of mouse albumin or (B) mouse albumin 
(1 mg/ml) pre-incubated or not with anti-albumin specific 
antiserum. Sporozoites were washed before incubation with the 
uracil derivatives (UD). Percentage of P. yoelii sporozoites 
showing apical regulated exocytosis is shown. Results are 
expressed as mean of triplicate determinations ± SD. 
 

In order to prevent internalization of sporozoites inside 

host cells, where exocytosis cannot be detected, we 

inhibited sporozoite motility with a myosin inhibitor 

(BDM). This way sporozoites, although in contact with the 

surface of hepatocytes, were no longer able to migrate 

through or infect these cells and instead the exocytosis 

stimulus was provided by addition of uracil derivatives to 

the medium. We then tested whether hepatocytes had to be 

alive and whether a hepatocyte lysate or hepatocyte 

membrane fraction could mediate the reversal of albumin 

inhibition in uracil derivatives-induced exocytosis. We 

found that both paraformaldehyde fixed hepatocytes and 
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sporozoites pre-incubated with either hepatocyte lysate or 

its membrane fraction, could also reverse the inhibitory 

effect of albumin on uracil derivatives induced exocytosis 

(Fig.2.8.B). These results suggest that a molecule 

localized in the extracellular side of the hepatocyte 

membrane mediates the hepatocyte effect on exocytosis. 

Conversely, primary cultures of skin dermal fibroblasts 

did not reverse the inhibitory effect of albumin, 

resulting in the lack of exocytosis activation 

(Fig.2.8.C). Together, these results indicate that 

different cell types have different effects on the 

regulation of parasite activity, and suggest that 

sporozoites when migrating through cells in skin dermis 

are not able to undergo exocytosis in response to the 

cytosolic uracil nucleotides present in these cells. On 

the other hand, contact with hepatocytes seems to 

counteract the inhibitory effect of albumin resulting in 

exocytosis activation after migration through these cells.  

To further confirm this hypothesis, we analyzed the 

capacity of different cell types to induce sporozoite 

exocytosis in the presence of albumin. P. yoelii 

sporozoites were incubated with cells cultured on 

Transwell filters. Sporozoites migrate through cells on 

the filter and are collected on coverslips placed 

underneath the filters (Mota et al. 2002). The assay is 

performed in the presence of fluorescent dextran to 

confirm sporozoite migration. We found that migration 

through hepatocytes results in the activation of 

sporozoite exocytosis, while migration through dermal 

fibroblasts or other non-hepatic cell types does not 

(Fig.2.9). During infection of the host, this differential 

capacity to activate sporozoites may play a role in 

ensuring stimulation of exocytosis only after sporozoites 

have reached their target cells in the liver. 
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Figure 2.8| The inhibitory effect of albumin on sporozoite 
exocytosis is reversed in the presence of hepatocytes. (A) 
Percentage of P. yoelii sporozoites showing apical regulated 
exocytosis. Sporozoites were pre-incubated or not with mouse 
albumin (1 mg/ml), washed and incubated with BDM to inhibit 
parasite motility before incubation with monolayers of mouse 
(Hepa1-6) and human (HepG2) hepatoma cell lines, in the presence 
or absence of the uracil derivatives (UD). As negative control 
in each condition, we used sporozoites incubated with albumin 
(Alb) but not stimulated with UD. (B) P. yoelii sporozoites were 
pre-incubated or not with mouse albumin, washed and incubated 
with intact or fixed monolayers of mouse Hepa1-6 cells, a lysate 
or the membrane fraction of Hepa1-6 cells. (C) Sporozoites were 
pre-incubated or not with mouse albumin, washed and incubated 
with BDM before incubation with monolayers of mouse (Hepa1-6) or 
mouse dermal fibroblasts (MDF). Results are expressed as mean of 
triplicate determinations ± SD. 
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To analyze whether lack of exocytosis activation by skin 

cells actually results in lack of sporozoite activation 

for infection, we compared sporozoites after migrating 

through dermal fibroblasts and hepatocytes. P. yoelii 

sporozoites were added to filters containing confluent 

dermal fibroblasts or Hepa1-6 cells. Sporozoites that 

traversed the filters encountered Hepa1-6 cells on 

coverslips placed underneath. In this way, we could 

distinguish between sporozoites that migrated through 

Hepa1-6 cells or through dermal fibroblasts before 

encountering the cells on the coverslip.  

 
 
Figure 2.9| Migration through hepatocytes reverses the 
inhibitory effect of albumin on exocytosis. P. yoelii 
sporozoites were pre-incubated with mouse albumin, washed and 
added to filter insets containing the indicated cell types. 
Sporozoites were collected on empty coverslips placed underneath 
the filters in the lower chamber. Percentage of sporozoites in 
coverslips showing apical-regulated exocytosis is shown. Results 
are expressed as mean of triplicate determinations ± SD. 
 
 
We found that sporozoites that traversed filters with 

Hepa1-6 cells migrated through fewer cells before 

infection in the coverslips when compared to sporozoites 

that migrated through dermal fibroblasts (Fig.2.10.A). 

Additionally, whilst sporozoites that migrated through 

Hepa1-6 cells appeared to be ready to infect host cells in 
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the coverslips underneath, with no need for further 

migration, the ones that migrated through dermal 

fibroblasts still required migration through Hepa1-6 in 

the coverslips to be infective. As an alternative way to 

analyze sporozoite infectivity after migration through 

different types of host cells, we incubated P. yoelii 

sporozoites with Hepa1-6 cells or mouse dermal fibroblasts 

for 30 min, before transferring them to new Hepa1-6 cell 

monolayers and analyze their infectivity.  

Sporozoites pre-incubated with Hepa1-6 cells migrated 

through fewer cells before infection when they contacted 

cell monolayers a second time, as compared to sporozoites 

that migrated through mouse dermal fibroblasts that still 

needed to migrate through Hepa1-6 cells before infection 

(Fig.2.10.B).  

 

Figure 2.10| Migration through hepatocytes overturns inhibitory 
effect of albumin on sporozoites and activates them for 
infection.  
(A) Hepa1-6 cells or MDF were cultivated on filters and 
coverslips with Hepa1-6 cells were placed underneath the filters 
in the lower chamber. P. yoelii sporozoites were added to the 
filter insets. As a control, sporozoites were added to filters 
containing no cells. The ratio of dextran-positive cells to 
infected cells is shown for coverslips placed under filters. (B) 
P. yoelii sporozoites were incubated with monolayers of Hepa1-6 
cells or MDF, before transfer of the supernatants containing 
sporozoites to new Hepa1-6 monolayers. The ratio of dextran-
positive cells to infected cells is shown for each condition. 
Results are expressed as mean of triplicate determinations ± SD. 
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These results suggest that while migration through 

hepatocytes activates sporozoites for infection, migration 

through dermal fibroblasts does not. Since all cells have 

high concentrations of uracil derivatives in their 

cytosol, these data are consistent with the existence of a 

regulatory mechanism that would allow exocytosis when 

sporozoites migrate through hepatocytes, but not through 

other cell types. 

In order to determine whether this is specific for P. 

yoelii sporozoites or reflects a more general mechanism of 

the malaria parasite, we looked at the induction of 

exocytosis in Plasmodium falciparum sporozoites. P. 

falciparum is the human malarial parasite that causes most 

of the mortality associated with this disease. Its 

sporozoites also migrate through host cells (Mota et al. 

2001b), but apical regulated exocytosis has not been 

studied in this species of the parasite. We observed that 

physiological concentrations of uracil and its derivatives 

also induce exocytosis in these sporozoites, which is 

inhibited by albumin (Fig.2.11.A). 

We also found that migration through a hepatocyte cell 

line that is susceptible to infection by P. falciparum 

sporozoites (Sattabongkot et al. 2006) induces exocytosis, 

while migration through other cells does not activate 

sporozoites (Fig. 2.11.B). 

These results suggest that P. falciparum sporozoites also 

activate exocytosis in response to uracil-derived 

nucleotides that they encounter in the cytosol of host 

cells during migration. Similarly to P. yoelii, exocytosis 

is also inhibited by albumin and seems to be reversed by 

the presence of hepatocytes, resulting in efficient 

activation of exocytosis. 
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Figure 2.11| P. falciparum sporozoites apical regulated 
exocytosis is induced by uracil derivatives or migration through 
human hepatocytes and it is inhibited by human albumin. 
Percentage of P. falciparum sporozoites showing apical regulated 
exocytosis when pre-incubated with fatty-acid free human albumin 
followed by washing and (A) uracil derivatives (UD) or (B) 
addition to filter insets containing no cells, non-hepatic cells 
(HeLa) or the human hepatocyte cell line (HC-04). Sporozoites 
were collected on empty coverslips placed underneath the filters 
in the lower chamber. Results are expressed as mean of 
triplicate determinations ± SD. 
 
 

2.2.4. Highly sulfated HSPGs in hepatocytes reverse inhibitory effect of albumin on 

sporozoite exocytosis.  

As the interaction between HSPGs and CS protein 

determines the liver specificity for Plasmodium infection, 

we next tested whether HSPGs expressed on the surface of 

hepatocytes are responsible for the hepatocyte-specific 

reversion of the inhibitory effect of albumin.  Previous 

work has shown that sporozoites bind to the heparan 

sulfate glycosaminoglycans (GAGs) of HSPGs (Frevert et al. 

1993). In addition, the sulfate moieties of the GAGs are 

critical for sporozoite binding and a high overall density 

of sulfation is required (Pinzon-Ortiz et al. 2001). To 

determine whether highly sulfated heparan sulfate mediates 

the recovery from the inhibitory effect of albumin, we 
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treated Hepa1-6 cells with chlorate, a metabolic inhibitor 

of sulfation that decreases the extent of GAG sulfation 

(Humphries and Silbert 1988). Previous studies in hepatoma 

cells indicated that treatment with 10 mM and 30 mM 

chlorate decreased incorporation of 35SO4-sulfate into 

proteoglycans by 60% and 75% respectively, with no effect 

on protein synthesis or cell growth (Pinzon-Ortiz et al. 

2001).  

 We found that chlorate treatment decreases the ability 

to overcome the inhibitory effect of albumin, resulting in 

lack of exocytosis activation (Fig.2.12.A). Since chlorate 

is a general inhibitor of macromolecular sulfation, we 

also performed experiments with CHO (Chinese hamster ovary 

cells) cell mutants, derived from the parental cell line 

CHO K1. The mutant CHO pgsA lacks xylosyltransferase 

activity and produces less than 2% of wild-type levels of 

glycosaminoglycans. The mutant CHO pgsE has a mutation in 

N-deacetylase/N-sulfotransferase (Ndst1), which results in 

the formation of HS with less overall sulfation (Esko et 

al. 1985). 

We observed that these CHO mutant cell lines, that 

present less HSPGs or low sulfation of these, have 

decreased ability to overcome the inhibitory effect of 

albumin, resulting also in lack of exocytosis activation 

(Fig.2.12.B). As expected, CHO wt cells that express HSPGs 

at lower levels than hepatocytes induce a partial 

reversion of the inhibitory effect of albumin. These 

results indicate that HSPGs are required to overcome the 

inhibitory effect of albumin on exocytosis and induce 

efficient sporozoite activation.  

We next tested the effect of deficient HSPG expression 

and sulfation on the activation of exocytosis in 

sporozoites. When sporozoites migrate through cells with 

deficient sulfation or low HSPG expression, exocytosis 
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activation is no longer induced in these parasites whilst 

is efficiently induced after migration through hepatic 

cell lines (Fig.2.13.A). 

 

 

Figure 2.12| Inhibitory effect of albumin on sporozoite 
exocytosis is reversed in the presence of highly sulfated HSPGs 
present in hepatocytes. (A) Percentage of P. yoelii sporozoites 
showing apical regulated exocytosis. Sporozoites were pre-
incubated or not with mouse albumin (1 mg/ml), washed and 
incubated with BDM to inhibit parasite motility before 
incubation with monolayers of Hepa1-6 or Hepa1-6 treated with 
sodium chlorate (B) CHO k1, CHO pgsA or CHO pgsE cell lines, in 
the presence or absence of the uracil derivatives (UD). As 
negative control in each condition, we used sporozoites 
incubated with albumin (Alb) but not stimulated with UD. Results 
are expressed as mean of triplicate determinations ± SD 
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To determine if lack of exocytosis activation by cells 

with deficient HSPGs also results in lack of sporozoite 

activation for infection, we compared sporozoites after 

migrating through cells with low expression of HSPGs and 

hepatocytes. P. yoelii sporozoites were added to filter 

sets containing confluent CHO pgsA or Hepa1-6 cells. 

Sporozoites that traversed the filters encountered Hepa1-6 

cells on coverslips placed underneath. We found that 

sporozoites that traversed filters with Hepa1-6 cells 

migrated through fewer cells before infection in the 

coverslips when compared to sporozoites that migrated 

through CHO pgsA cells (Fig.2.13.B).  

 

 
 
Figure 2.13| Migration through cells with highly sulfated HSPGs 
overcomes the inhibitory effect of albumin on exocytosis.(A) P. 
yoelii sporozoites were pre-incubated with mouse albumin, washed 
and added to filter insets containing the indicated cell types. 
Sporozoites were collected on empty coverslips placed underneath 
the filters in the lower chamber. Percentage of sporozoites in 
coverslips showing apical-regulated exocytosis is shown. (B) 
Hepa1-6 cells or CHO pgsA cell lines were cultivated on filters, 
and coverslips with Hepa1-6 cells were placed underneath the 
filters in the lower chamber. P. yoelii sporozoites were added 
to the filter insets. The ratio of dextran-positive cells to 
infected cells is shown for coverslips placed under filters. 
Results are expressed as mean of triplicate determinations ± SD 
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2.3.  Discussion - 

 

The completion of a successful liver infection by 

Plasmodium sporozoites involves multiple steps, as these 

parasites need to traverse different host tissues before 

reaching the liver parenchyma where they finally invade a 

non-phagocytic cell, the hepatocyte. Sporozoites perform 

this journey with high rates of success, as very low 

numbers of sporozoites are able to initiate a malaria 

infection (Ungureanu et al. 1977). The capacity of 

sporozoites to sense their environment and react 

accordingly seems essential to complete this task with 

high efficiency. Signaling pathways are probably activated 

in sporozoites regulating activities such as motility, 

migration through cells and exocytosis. Our results 

suggest that Plasmodium sporozoites can sense and react to 

the extracellular environment modulating their 

infectivity.  

We have found different molecules that regulate the 

behavior of Plasmodium sporozoites. Uracil, uridine and 

uracil-derived nucleotides, at concentrations that are 

normally found in the cytosol of mammalian cells, induce 

exocytosis in sporozoites and increase their infectivity. 

We have also characterized the regulation of this process.  

Immediately after being injected into the dermis, 

sporozoites will encounter albumin, as this protein is 

found in the interstitial fluids of the dermis in high 

concentrations (Reed and Burrington 1989). In addition, 

the blood pool formed after mosquito bite (Sidjanski and 

Vanderberg 1997) must contain albumin normally present in 

serum. Albumin specifically induces Plasmodium sporozoites 

motility (Vanderberg 1974), suggesting that sporozoites 

are able to sense the presence of this protein. Albumin is 

not present in mosquitoes, where sporozoites move at a 
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slow speed (<2 µm/s) (Frischknecht et al. 2004), however, 

it is abundant in mammals, where sporozoites need to 

initiate active motility. At the same time, our results 

indicate that albumin prevents sporozoite exocytosis. 

These observations are consistent with the requirements of 

an infection in vivo, where sporozoites in the skin need 

to move actively in order to reach the circulation but 

also need to prevent premature activation of exocytosis 

before reaching the liver.  

 

There are several observations suggesting that 

sporozoites migrate through cells in the dermis after 

mosquito inoculation. Intravital microscopy of the skin 

has revealed that sporozoites move through the dermis and 

through endothelial cells (Vanderberg and Frevert 2004; 

Amino et al. 2006). Additionally, mutant sporozoites with 

reduced ability to migrate through cells have low 

infectivity in the host when deposited in the dermis by 

mosquito bites (Bhanot et al. 2005). It has also been 

observed that sporozoites migrate through several 

hepatocytes in the liver before infecting a final one 

(Mota et al. 2001b; Frevert et al. 2005) and that mutant 

parasites with defective migration have reduced 

infectivity after intravenous injection (Ishino et al. 

2004; Ishino et al. 2005b). As migration through cells 

leads to the activation of sporozoite exocytosis (Mota et 

al. 2002), albumin would prevent this process before 

sporozoites reach the liver. In fact, we found that 

migration through skin dermal cells does not induce 

exocytosis and does not activate sporozoites for 

infection. Sporozoites must enter in contact with high 

concentrations of uracil derivatives while migrating 

through the cytosol of these cells, but exocytosis is not 

induced, presumably due to the inhibitory effect of 
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albumin. Our results indicate that migration through cells 

can occur without sporozoite activation, a situation  

probably occurring in vivo during migration in the skin of 

the host.  

We have confirmed that sporozoite stimulation and 

regulation of exocytosis is similar in P. falciparum, the 

human parasite with highest clinical importance. It seems 

likely that this is a common mechanism in different 

species of Plasmodium, as the molecules involved, uracil 

derived-nucleotides and albumin, are highly conserved 

among different host species (Baker 1989). It is 

noteworthy that Plasmodium uses these essential, highly 

conserved molecules to regulate its behavior towards 

infection. This may represent an advantage for the 

parasite, as it limits the possibility of encountering 

host variants that would be more resistant to infection. 

 

Plasmodium sporozoites may require specific surface 

receptors or transporters to respond to uracil 

derivatives. Several putative nucleoside transporters have 

been identified within the P. falciparum genome (Bahl et 

al. 2003), but only one (PfNT1) has been functionally 

characterized, showing preferential affinity for purines 

(El Bissati et al. 2006). Mammalian cells have pyrimidine 

receptors, the P2Y family, that activate signaling 

cascades and exocytosis in specific cell types 

(Brunschweiger and Muller 2006) however, no sequence 

homology is found for this type of receptor in the 

Plasmodium genome (Bahl et al. 2003). Our results also do 

not exclude the possibility of alternative signals to 

trigger exocytosis provided by host cells.  

After reaching the liver, sporozoites need to undergo 

exocytosis to release or expose on their surface molecules 

necessary to invade hepatocytes forming a parasitophorous 
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vacuole. We have observed that after contact with 

hepatocytes, sporozoites recover their capacity to 

exocytose regardless of the presence of albumin. 

Accordingly, migration through hepatocytes induces 

sporozoite exocytosis, activating parasites for infection. 

The reversion of the inhibitory effect of albumin 

therefore must be necessary to establish an infection in 

the host, as there are high concentrations of albumin in 

the liver, both in the cytosol of hepatocytes and in 

interstitial tissues. The activation of exocytosis during 

migration through hepatocytes would also represent an 

advantage to the parasite, since molecules that are 

required for host cell invasion, such as TRAP, would only 

be exposed to the cytosol of traversed hepatocytes and not 

to the extracellular environment, avoiding the potential 

inhibitory effect of antibodies. In fact, although TRAP is 

required for host cell invasion, antibodies to TRAP do not 

inhibit the infectivity of sporozoites, even at high 

concentrations (Gantt et al., 2000).  

Our results suggest that sporozoites are able to 

differentiate hepatocytes from other cell types. The 

reversion of albumin inhibitory effect appears to be 

mediated by HSPGs present in the surface of hepatocytes, 

as treatments that inhibit sulfation or mutant cells with 

low HSPGs or deficient sulfation fail to revert the 

inhibitory effect of albumin on sporozoite exocytosis. 

This mechanism would allow for the fine regulation of 

sporozoite activation, as it would only take place after 

sporozoites have reached their target cells in the liver. 

In this way, when sporozoites contact hepatocytes in the 

liver, HSPGs would interact with sporozoites making them 

susceptible to the stimulatory effect of nucleotides and 

resulting in exocytosis, which is required for infection 

of hepatocytes. Recently, it was shown that HSPGs in the 
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surface of hepatocytes induce signaling cascades in 

sporozoites, resulting in the cleavage of the surface 

protein CS and enhancing sporozoite infectivity (Coppi et 

al. 2007). It appears that HSPGs may be the key signaling 

event marking sporozoite recognition of the liver and 

triggering the initiation of mechanisms required for 

infection. 
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3.1. Introduction- 

 

Plasmodium belongs to the phylum apicomplexa, a group of 

parasites that share conserved mechanisms of motility and 

cell invasion machinery (Kappe et al. 1999). Apical 

exocytosis is another common feature that has been 

characterized in Toxoplasma tachyzoites (Carruthers and 

Sibley 1999) and sporozoites from Eimeria (Bumstead and 

Tomley 2000), Cryptosporidium (Chen et al. 2004) and 

Plasmodium (Gantt et al. 2000). This process has been most 

extensively studied in Toxoplasma tachyzoites, where 

active invasion of host cells involves the secretion of 

transmembrane adhesive proteins from the micronemes, which 

congregate on the anterior surface of the parasite and 

bind host receptors to mediate apical attachment 

(Carruthers 2006).  

Sporozoites of different human and rodent Plasmodium 

species have the ability to migrate through host cells. 

Sporozoites enter and exit cells by breaching the plasma 

membrane of the traversed cell. This process results in 

sporozoites traversing host cells by moving through their 

cytosol without any surrounding membranes. Migration 

through host cells induces apical exocytosis in Plasmodium 

sporozoites, resulting in the exposure of high 

concentrations of TRAP/SSP2 in the apical end of the 

parasite (Mota et al. 2002). This process, similarly to 

Toxoplasma secretion of MIC2 (Huynh and Carruthers 2006), 

is thought to facilitate invasion of the host cell (Mota 

et al. 2002).  

During migration through host cells sporozoites are not 

surrounded by any host membranes, and as a result, they 

are in direct contact with the cytosol of the host cell 

(Mota et al. 2001). Incubation of Plasmodium sporozoites 

with a lysate of host cells activates apical exocytosis in 
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the parasite, suggesting that host cell molecules induce 

the activation of exocytosis in migrating parasites (Mota 

et al. 2002). We have studied the role of uracil 

nucleotides in sporozoite exocytosis, since these 

molecules induce exocytosis in other cellular systems 

(Lazarowski et al. 2003) and are found in the cytosol of 

mammalian cells in high concentrations. We found that 

uracil and its derived nucleoside and nucleotides (UMP, 

UDP and UTP) at the physiological concentrations found in 

the cytosol of mammalian cells, activate apical regulated 

exocytosis and increase the infectivity of sporozoites 

(Chapter 2; Cabrita-Santos L. et al.). Addition of uracil 

derivatives in vitro induces apical regulated exocytosis 

within the first ten minutes after addition of the 

stimulus (Cabrita-Santos L. et al.). In certain mammalian 

cell types, UTP and UDP can activate signaling cascades by 

binding to P2Y receptors, which in turn can activate 

adenylyl cyclase and increase cAMP levels. Activation of 

P2Y receptors by nucleotides leads to exocytosis in 

different cells, from insulin release from pancreatic islet 

b cells to the release of histamine from mast cells 

(Abbracchio et al. 2006). 

Here we have analyzed the role of the cAMP signaling 

pathway in sporozoite apical exocytosis and infection. We 

found biochemical evidences indicating that increases in 

cAMP levels in sporozoites mediate apical regulated 

exocytosis, which activates sporozoites for host cell 

invasion. A role for migration through cells and apical 

regulated exocytosis in infection was proposed before 

(Mota et al. 2002), but it had been questioned in view of 

transgenic sporozoites that were able to infect cells in 

vitro without performing the previous migration step 

(Ishino et al. 2004). Here we show that apical regulated 

exocytosis contributes significantly to host cell 
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invasion, but the parasite seems to have alternative 

mechanisms to establish successful infections in host 

cells.  

 

3.2. Results- 

 

3.2.1. Exocytosis in P. yoelii, P. berghei and P. falciparum sporozoites is mediated by 

increases in intracellular levels of cAMP. 

To investigate the signaling pathways mediating 

Plasmodium sporozoite exocytosis, we used a mix of uracil 

and its derivatives (uridine, UMP, UDP and UTP) at the 

concentrations normally found in the cytosol of mammalian 

cells (described in Materials and Methods), which induces 

exocytosis in sporozoites (Chapter 2; Cabrita-Santos L. et 

al.). Apical regulated exocytosis has been characterized 

in Plasmodium sporozoites by the exposure of high 

concentrations of TRAP/SSP2 in the apical end of the 

parasite and also by the release of this protein into the 

medium (Mota et al. 2002).  We confirmed that exocytosis 

occurs at the apical end of the sporozoite by staining the 

trails left behind after gliding motility. Trails are 

always behind the posterior end because sporozoites move 

with their apical end in the front (Fig. 3.1).  

We first investigated whether cAMP induces or modulates 

sporozoite regulated exocytosis by preincubating P. yoelii 

sporozoites with a membrane permeant analogue of cAMP 

(8Br-cAMP). Exocytosis is quantified as the percentage of 

sporozoites that present a defined accumulation of 

extracellular TRAP/SSP2 in their apical end (Mota et al. 

2002). 

We found that 8Br-cAMP induces sporozoite exocytosis to a 

similar level than uracil derivatives. Addition of both 

stimuli to sporozoites did not increase the level of 

exocytosis (Fig. 3.2A), suggesting that both stimuli may 
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be using the same pathway to induce exocytosis. As an 

alternative way to increase cytosolic cAMP in sporozoites, 

we used forskolin, an activator of adenylyl cyclase (AC), 

the enzyme that synthesizes cAMP. 

 

 
 
Figura 3.1| Exocytosis of TRAP occurs in the apical end of 
sporozoites. P. berghei sporozoites were incubated on coverslips 
coated with anti-CS antibodies for 20 min before addition of 
forskolin. After another 30 min, sporozoites were fixed and 
stained for CS protein. 
 

This treatment also induced apical regulated exocytosis in 

sporozoites (Fig.3.2B). Incubation of sporozoites with 

MDL-12,330A, an inhibitor of AC (Guellaen et al. 1977) 

prevented activation of exocytosis by uracil derivatives 

(Fig.3.2B). We confirmed that this treatment did not 

increase sporozoite lysis when compared to the control 

(Table 3.1). 

Genetically manipulated sporozoites that are deficient in 

their capacity to migrate through cells (spect-deficient), 

infect hepatic cell lines in vitro, questioning the role 

of migration through cells in the activation of 

sporozoites for infection (Ishino et al. 2004). In order 

to analyse the exocytosis response, these sporozoites were 

stimulated with uracil derivatives or treatments that 

modulate cAMP levels. Incubation of P. berghei wt or 
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spect-deficient sporozoites with uracil derivates induced 

apical regulated exocytosis. However, neither forskolin 

nor 8-Br-cAMP induced exocytosis in spect-deficient 

sporozoites and MDL-12,330A had only a partial effect in 

the inhibition of exocytosis (Fig. 3.3). These results 

suggest that, in contrast to wt P. berghei sporozoites, 

spect-deficient sporozoites do not use cAMP-mediated 

signaling pathways to activate exocytosis.  

 

Figure 3.2| Increases in cytosolic cAMP induce exocytosis in 
Plasmodium yoelii exocytosis. P. yoelii sporozoites were pre-
incubated for 15 min with 8Br-cAMP (A), forskolin (FSK) or MDL-
12.330A (B) to activate or inhibit adenylyl cyclase 
respectively, followed by addition or not of uracil derivatives 
(UD). Sporozoites were incubated for 1 h before fixation and 
quantification of exocytosis. Results are expressed as mean of 
triplicates ± SD. 
 

We have used the rodent malaria parasites P. yoelii and 

P. berghei as a model for P. falciparum, the human 

parasite responsible for the mortality associated with 

this disease. P. falciparum sporozoites also migrate 

through host cells (Mota et al. 2001), a process that 

induces apical regulated exocytosis in this species 

(Cabrita-Santos L. et al.). Similar to the rodent 

parasites, uracil and its derivatives induce exocytosis in 

P. falciparum sporozoites (Chapter 2; Cabrita-Santos L. et 

al.).  
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Here, we found that elevated cAMP levels also induce 

exocytosis in P. falciparum sporozoites and that 

exocytosis induced by uracil derivatives is inhibited by 

MDL-12,330A (Fig.3.4), suggesting that this pathway is 

conserved in the human and murine parasites. 

 

Figure 3.3| Exocytosis response in P. berghei spect 1- deficient 
sporozoites. P. berghei wt (white bars) or spect 1-deficient 
(black bars) sporozoites were pre-incubated for 15 min with 8Br-
cAMP, forskolin (FSK) or MDL-12.330A to activate or inhibit 
adenylyl cyclase respectively, followed by addition or not of 
uracil derivatives (UD). Sporozoites were incubated for 1 h 
before fixation and quantification of exocytosis. Results are 
expressed as mean of triplicates ± SD.  
 

 

To directly demonstrate that cAMP levels are increased in 

P. yoelii sporozoites in response to exocytosis-inducing 

stimuli, we measured cAMP concentration in sporozoites 

after incubation with uracil derivatives. Salivary glands 

dissected from uninfected mosquitoes and processed in a 

similar way, were used as negative control. We found that 

uracil derivatives significantly increase the levels of 

cAMP in sporozoites (Fig.3.5).  No increases were found 

when control material from uninfected mosquitoes was 

stimulated with uracil derivatives (not shown).  
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Figure 3.4| Increases in cAMP induce exocytosis in Plasmodium 
falciparum sporozoites. P. falciparum sporozoites were pre-
incubated for 15 min with, forskolin (FSK), 8Br-cAMP or MDL-
12.330A to activate or inhibit adenylyl cyclase, followed by 
addition or not of uracil derivatives (UD). Sporozoites were 
incubated for 1 h before fixation and quantification of 
exocytosis. Results are expressed as mean of triplicates ± SD.  
 

 

Migration through host cells induces sporozoite apical 

regulated exocytosis, which activates sporozoites for 

infection. Stimulation of exocytosis by other means, such 

as host cells lysate (Mota et al. 2002) or uracil 

derivatives (Chapter2; Cabrita-Santos L. et al.), 

overcomes the need for extensive migration through cells 

and increases infection. To test whether stimulation of 

exocytosis by increases in intracellular cAMP in the 

sporozoite would also overcome the need for migration 

through host cells before infection, we incubated P. 

yoelii sporozoites with forskolin or 8Br-cAMP to induce 

regulated exocytosis before addition of sporozoites to 

intact Hepa1-6 cells. Migration through host cells is 

determined as the percentage of cells that are wounded by 

sporozoite migration and, as a result, become positive for 

a soluble impermeant tracer (dextran) (McNeil et al. 

1999). We observed an increase in the number of infected 

cells, indicating that stimulation of regulated exocytosis 

by cAMP in sporozoites increases their infectivity 
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(Fig.3.6.A, black bars). In addition, activation of 

sporozoite exocytosis with increased cAMP levels reduces 

sporozoite migration through host cells, confirming that 

such extensive migration is no longer necessary when 

exocytosis is induced by elevations in the level of cAMP 

(Fig.3.6.A, white bars).  These results indicate that 

cAMP-induced exocytosis contributes to the activation of 

sporozoites for infection. 

 

 

Figure 3.5| Intracellular levels 
of cAMP in P. yoelii sporozoites 
stimulated with UD. P. yoelli 
sporozoites were incubated or not 
with uracil derivatives for 45 
min. Same number of uninfected 
salivary glands were processed in 
a similar way and used as a 
control (uninfected). Results are 
expressed as mean of triplicates ± 
SD. 
 

Since sporozoites appear to activate the cAMP signaling 

cascade to stimulate apical regulated exocytosis, 

inhibition of cAMP production by MDL-12,330A, the 

inhibitor of AC, should decrease sporozoites infectivity. 

We actually found a significant reduction in their 

infectivity after treatment with this inhibitor 

(Fig.3.6.B). MDL-12.330A does not appear to have a toxic 

effect on sporozoites, since migration through cells was 

not affected (Fig.3.6.B).  

 

3.2.2. PKA mediates sporozoites exocytosis and is activated downstream of cAMP . 

The major downstream effector of cAMP is PKA, a 

serine/threonine kinase that activates other kinases and 

transcription factors in the cell. This protein is likely 

to be present in Plasmodium because PKA activity has been 
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detected in P. falciparum during the blood stage of the 

parasite (Syin et al. 2001; Beraldo et al. 2005). In 

addition, a gene sequence with high homology to PKA is 

expressed in P. falciparum and conserved in all species of 

Plasmodium analyzed (Li and Cox 2000; Bahl et al. 2003). 

However no functional assays have yet determined the PKA 

activity of this putative protein.  

 

Figure 3.6| Stimulation of exocytosis mediated by cAMP increases 
sporozoite infection and decreases migration through host cells. 
P. yoelii sporozoites were pretreated with forskolin or 8Br-cAMP 
(A) or MDL-12.330A (B) before addition to monolayers of Hepa1-6 
cells. Percentage of dextran-positive cells (white bars) and 
number of infected cells/coverslip (black bars) are shown as 
mean of triplicates ± SD. *, p < 0.05; ** p < 0.01 when compared 
to control by ANOVA. 
 

To investigate whether sporozoite exocytosis is mediated 

by PKA activity, we treated sporozoites with H89, a PKA 

inhibitor already shown to inhibit this kinase in a 

different stage of the parasite (Syin et al. 2001; Beraldo 

et al. 2005). We found that H89 inhibits sporozoite 

exocytosis induced by uracil derivatives (Fig.3.7.A), 

suggesting that this process is mediated by the activation 

of PKA. The infectivity of sporozoites pretreated with H89 

is reduced, probably as a consequence of the inhibition of 

exocytosis (Fig.3.7.B), while parasite migration through 
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host cells is not affected, confirming that H89 treatment 

is not toxic for sporozoites (Fig.3.7.C).  

Activation of PKA should occur after cAMP has been 

generated in the signaling cascade. To analyze this step 

of the pathway, we pretreated sporozoites with H89 before 

increasing cAMP levels with the addition of 8Br-cAMP. As 

expected, we found that exocytosis was fully inhibited 

(Fig.3.7.D), suggesting that PKA is activated down-stream 

of cAMP. Incubation of sporozoites with genistein, an 

inhibitor of tyrosine kinases, did not affect regulated 

exocytosis (Fig.3.7.E), indicating that tyrosine kinases 

are not involved in the signaling cascade. In fact, no 

sequences with homology to tyrosine kinases have been 

found in the Plasmodium genome (Bahl et al. 2003) 

To strengthen the evidence that the cAMP signaling 

pathway mediates the activation of exocytosis in 

sporozoites and at the same time reduce the possible non-

characterized effects of the inhibitors on exocytosis, we 

made use of alternative inhibitors with unrelated chemical 

structures from the ones used previously. We found similar 

inhibitory results using 2’, 5’-Dideoxyadenosine or 

SQ22536, which inhibit adenylyl cyclase. The addition of a 

competitive inhibitor of cAMP (cAMP Rp-isomer), which 

inhibits PKA, also results in inhibition of apical 

regulated exocytosis in sporozoites (Fig.3.7.F).  
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Figure 3.7| Inhibition  of PKA 
activity reduces sporozoite 
exocytosis and infection. P. yoelii 
sporozoites were pre-incubated with 
H89 followed by addition of uracil 
derivatives to induce exocytosis 
(A) or followed by incubation with 
monolayers of Hepa1-6 cells to 
quantify infection (B) and 
migration though cells (C). 
Sporozoites were pre-incubated with 
H89 before addition of 8Br-cAMP to 

induce exocytosis (D). Sporozoites were pre-incubated with 
genistein (Gen) before addition of uracil derivatives (E). P. 
yoelii sporozoites were pre-incubated with 2’, 5’-
Dideoxyadenosine (DDA) or SQ22536 (SQ) to inhibit adenylyl 
cyclase activity or with cAMP Rp-isomer to inhibit PKA, before 
addition of uracil derivatives to induce exocytosis(F). Results 
are expressed as mean of triplicates ± SD. ** p < 0.01 when 
compared to control by ANOVA. 
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3.3.3. Extracellular K+ is required for sporozoites exocytosis. 

 

Since cAMP signaling appears to mediate the activation of 

apical exocytosis, we searched for ACs in the malaria 

genome. Two different genes with high homology to ACs (ACα 

and ACβ) have been identified in Plasmodium. In particular, 

ACα was shown to have AC activity in P. falciparum (Muhia 

et al. 2003; Weber et al. 2004). Interestingly, ACα genes 

from Plasmodium, Paramecium and Tetrahimena are closely 

related and their sequence includes a domain with high 

homology to K+ channels (Weber et al. 2004). In Paramecium, 

where the purified AC protein also has K+ channel activity, 

generation of cAMP is regulated by K+ conductance (Schultz 

et al. 1992). It is thought that ACα presents a 

transmembrane K+-channel domain and an intracellular AC 

domain, which are functionally linked (Baker 2004). 

Given that cAMP in Plasmodium sporozoites induces apical 

exocytosis, we first tested whether extracellular K+ is 

required for this process. High concentrations of K+ are 

found in the cytosol of eukaryotic cells; therefore 

sporozoites are likely to remain in a high K+ during 

migration through cells (Alberts B 2002). The existence of 

K+ channels has been predicted for Plasmodium parasites 

from electrophysiological (Allen and Kirk 2004) and 

genomic sequence data (Bahl et al. 2003). 

To determine whether extracellular K+ is required for 

sporozoite exocytosis, we stimulated exocytosis in 

P.yoelii sporozoites in either regular (containing K+) or 

K+-free medium. We found that exocytosis stimulated with 

uracil derivatives was inhibited in K+-free medium 

(Fig.3.8.A). To confirm that sporozoites were not impaired 

by K+-free medium incubation, sporozoites were transferred 

to regular medium after the K+-free medium incubation. We 

found that exocytosis in these sporozoites was similar to 
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exocytosis in those that were never incubated in K+-free 

medium (Fig.3.8.B). Moreover, pre-incubation of 

sporozoites with different K+-channel inhibitors resulted 

in inhibition of exocytosis (Fig.3.8.C, D), suggesting 

that K+ is required for the activation of this process.  

 

Figure 3.8| Extracellular K+ is required for sporozoite apical 
regulated exocytosis. (A) P. yoelii sporozoites were pre-
incubated for 15 min in regular medium or K+-free medium before 
addition or not of uracil derivatives (UD) for 45 min. (B) 
Sporozoites were incubated with regular medium or K+-free medium 
for 45 min, followed by incubation in regular medium in the 
presence or absence of UD for another 45 min. (C, D) Sporozoites 
were pre-incubated with the K+-channel inhibitors charybdotoxin 
(C) or margatoxin (D) for 15 min  before addition of UD for 45 
min. (E,F) sporozoites were pre-incubated for 15 min in regular 
medium or K+-free medium before addition or not of forskolin (E) 
or 8Br-cAMP (F). Results are expressed as mean of triplicates ± 
SD. 
 
 
Next we analyzed the requirement for extracellular K+ in 

sporozoite exocytosis induced by 8Br-cAMP or forskolin. We 

found that in these cases extracellular K+ is not required 

(Fig.3.8.E, F), suggesting that extracellular K+ is 

required upstream of cAMP in the signaling cascade. 

Removal of K+ from the medium may alter the electrochemical 
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gradient of sporozoites affecting exocytosis induced by 

UD. However, since the response to forskolin and 8Br-cAMP 

in K+ free medium is not affected, it suggests that the 

sporozoite exocytosis pathway is perfectly functional in 

the absence of extracellular K+. Also, the viability and 

capacity of exocytosis response (Fig.3.8.B) of sporozoites 

after this treatment was found to be unaffected.  

 

 
 
Figure 3.9| Extracellular Ca2+ is not required for sporozoites 
exocytosis. P. yoelii sporozoites were incubated with UD, 
ionomycin or 8Br-cAMP for 45 min (A). Sporozoites were pre-
incubated for 15 min in regular medium or Ca2+-free medium before 
addition or not of UD for 45 min. (B) Sporozoites were pre-
incubated with the membrane permeant calcium chelator BAPTA-AM 
for 15 min before addition of UD for 45 min. Results are 
expressed as mean of triplicates ± SD. 
 

 

A Ca2+ ionophore can induce apical regulated exocytosis 

in P. yoelii (Mota et al. 2002), suggesting that Ca2+ 

signaling may be involved in exocytosis. To test this, we 

first compared the magnitude of the cAMP-induced to the 

Ca2+-induced exocytosis, and found no difference 

(Fig.3.9.A). To study whether Ca2+ is also involved in the 

signaling induced by UD, we induced exocytosis with UD in 

Ca2+-free medium. Again, we found that exocytosis is not 

inhibited in Ca++-free medium (Fig.3.9.B). Taken together 

these results suggest that extracellular Ca2+ is not 
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required for this process. However, when sporozoites were 

incubated with a membrane-permeant Ca2+ chelator, a strong 

inhibition of exocytosis was detected, suggesting that 

intracellular Ca2+ is required for exocytosis (Fig.3.9.C). 

A possible model for the signaling mediating exocytosis is 

proposed (Fig.3.10). 

 

 

 

 

 
 
 
Figure 3.10| Possible model for the signaling cascade mediating 
exocytosis. Consistent with our results: UD activate directly or 
indirectly the K+ channel domain of ACα (1) and trigger the 
activation of AC activity (2). The increase in cAMP activates 
PKA (3), which leads to the activation of exocytosis. 
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Table 3.1| Sporozoite viability after drug treatment. Plasmodium 
yoelii sporozoites were incubated with the different conditions 
indicated. Dead sporozoites were quantified using propidium 
iodide staining. An untreated control was performed for each 
condition since the background do dead sporozoites may vary on 
each batch of dissected mosquitoes. 
 

DRUGS % DEAD SPZ 

Uracil Derivatives 0.00 

Control 2.13 

Forskolin 100 µM 5.21 

Control 3.57 

8-Br-cAMP 500 µM 4.94 

Control 1.40 

MDL 100 µM 1.11 

Control 3.09 

SQ22536 50 µM 3.90 

Control 4.24 

Dideoxyadenosine 50 µM 0.00 

Control 3.95 

H-89 10 µM 3.83 

Control 0.00 

cAMP Rp isomer 5µM 1.72 

Control 
 2.99 

Charybdotoxin 100 nM 0.00 

Control 2.50 

Margatoxin 1nM 0.89 

Control 1.12 

K+ free medium 4.66 

Control 1.90 

BAPTA 20 µM 1.71 

Control 1.29 

Control heated sporozoites 100.00 
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3.3. Discussion- 

 

Using a rodent malaria model we have identified a role 

for cAMP signaling pathway in Plasmodium sporozoite 

exocytosis. The similar response observed in P. falciparum 

sporozoites suggests that the cAMP-dependent signaling 

pathway leading to exocytosis is conserved in the human 

parasite.  

Regulated exocytosis in mammalian cells is frequently 

triggered by an elevation of intracellular Ca2+ levels and 

is modulated by cAMP, which acts synergistically with Ca2+, 

but cannot induce exocytosis by itself. However, in some 

specific cell types exocytosis is triggered solely by 

elevations in cAMP concentrations (Fujita-Yoshigaki 1998). 

Increases in cytosolic Ca2+ induced with ionophores can 

trigger exocytosis in Plasmodium sporozoites (Mota et al. 

2002), suggesting that Ca2+ stimulation is also sufficient 

to induce this process. The signaling pathways of Ca2+ and 

cAMP are interrelated inside eukaryotic cells (Borodinsky 

and Spitzer 2006). In particular, in P. falciparum blood-

stages, a cross talk between Ca2+ and cAMP has been 

observed, where increases in cAMP induce the elevation of 

intracellular Ca2+ concentrations through the activation of 

PKA (Beraldo et al. 2005). Our results suggest that the 

cAMP and Ca2+ pathways are also interconnected in the 

sporozoite stage and that intracellular, but not 

extracellular Ca2+, is required for exocytosis.   

It has been previously observed that activation of 

sporozoite exocytosis increases their infectivity and 

reduces the need for migration through cells (Mota et al. 

2002). This work confirms that activation of exocytosis by 

cAMP-mediated pathways increases exocytosis infectivity 

reducing migration through cells. Accordingly, inhibitors 

of this pathway inhibit sporozoites regulated exocytosis 
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and decrease their infectivity. Interestingly, spect-

deficient sporozoites, which do not migrate through host 

cells (Ishino et al. 2004), responded to uracil 

derivatives but were not able to respond to either an 

activator of AC or to a permeant analogue of cAMP, 

suggesting that cAMP-induced signaling leading to 

exocytosis is different in these mutant sporozoites. The 

positive exocytosis response observed in the presence of 

the inhibitor of AC, indicates that these parasites are 

able to respond to uracil derivatives by activating cAMP-

independent pathways that are not normally activated in wt 

sporozoites, where cAMP is required for exocytosis. It is 

still not clear how this relates to their impaired 

capacity to migrate through cells, but suggests that they 

may up-regulate the alternative mechanisms that are 

independent of migration through cells and exocytosis to 

infect hepatocytes. These results are consistent with the 

concept that sporozoites can use alternative pathways to 

invade hepatocytes, as the infection experiments with 

PbACα- sporozoites suggest (Ono et al. 2008).   

Two genes with high homology to ACs have been identified 

in the Plasmodium genome: ACα and ACβ (Baker 2004). ACα 
activity as an AC has been demonstrated for P. falciparum, 

where the catalytic domain was expressed independently 

(Muhia et al. 2003). Interestingly, the ACα gene contains a 

N-terminal domain with high homology to voltage-gated K+ 

channels. Other apicomplexans and also the ciliates 

Paramecium and Tetrahymena have an ACα gene homologous to 

the one in Plasmodium (Weber et al. 2004). In Paramecium 

it has been demonstrated that the purified ACα protein also 

has K+ channel activity, and the generation of cAMP is 

regulated by K+ conductance (Schultz et al. 1992). Although 

functional K+ channel activity has not been demonstrated 

for ACα in Plasmodium, our results are consistent with a 
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role for K+ conductance in sporozoite exocytosis. Uracil 

derivates do not induce exocytosis in K+ free medium, but 

activation of AC with forskolin or addition of the 

permeant analogue of cAMP overcomes the requirement for 

extracellular K+. Therefore, it seems likely that increased 

K+ permeability may induce activation of ACα and synthesis 

of cAMP.  
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4.1. Discussion- 

 

The completion of a successful liver infection by 

Plasmodium sporozoites involves multiple steps, as these 

parasites need to traverse different host tissues before 

reaching the liver parenchyma where they finally invade a 

non-phagocytic cell, the hepatocyte. Sporozoites perform 

this journey with high rates of success, as very low 

numbers of sporozoites are able to initiate a malaria 

infection (Ungureanu et al. 1977). The capacity of 

sporozoites to sense their environment and react 

accordingly seems essential to complete this task with 

high efficiency.  

In this study we were particularly interested in the 

signaling pathways regulating sporozoites activities such 

as motility, migration through cells and exocytosis. Our 

results suggest that Plasmodium sporozoites can sense and 

react to the extracellular environment modulating their 

infectivity.  

The role of exocytosis of apical organelles in invasion 

of host cells has been extensively studied in Toxoplasma 

tachyzoites. Our knowledge of Plasmodium sporozoite 

exocytosis and infection is less advanced, as this 

parasite stage can only be obtained by dissection of 

infected mosquitoes, and this procedure provides limited 

numbers of sporozoites. 

 

Exocytosis of apical organelles is associated with 

apicomplexan parasite invasion of host cells. Different 

stages of Plasmodium, Eimeria and Toxoplasma present 

apical exocytosis triggered by incubation with host cells 

(Bannister and Mitchell 1989; Carruthers et al. 1999; 

Carruthers and Sibley 1999; Bumstead and Tomley 2000; Mota 

et al. 2002) or Ca2+ ionophores (Carruthers and Sibley 
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1999; Mota et al. 2002). Previous work on Plasmodium 

sporozoites showed that signaling exocytosis is induced by 

signals provided during migration through host cells (Mota 

et al. 2002). Most probably this process takes place while 

sporozoites migrate through hepatocytes in the liver 

before infection occurs. Here we have identified uracil-

derived nucleotides as host molecules that can signal in 

the sporozoite inducing apical exocytosis. In other 

related parasites such as Plasmodium merozoites and 

Toxoplasma tachyzoites that do not migrate through host 

cells before infection, exocytosis is induced after 

contact with the host cell membrane (Carruthers and Sibley 

1997; O'Donnell and Blackman 2005). Since exocytosis in 

Plasmodium sporozoites is activated during the process of 

migration through cells (Mota et al. 2002) this form of 

the parasite may have specific surface receptors or 

transporters to respond to uracil derivatives or other 

host signaling molecules that can trigger exocytosis . 

Several putative nucleoside transporters have been 

identified within the Plasmodium falciparum genome (Bahl 

et al. 2003), but only one (PfNT1) has been functionally 

characterized, showing preferential affinity for purines 

(El Bissati et al. 2006). Mammalian cells have pyrimidine 

receptors, the P2Y family, that activate signaling 

cascades and exocytosis in specific cell types 

(Brunschweiger and Muller 2006) however, no sequence 

homology is found for this type of receptor in the 

Plasmodium genome (Bahl et al. 2003).  

Additionally, we found that, in sporozoites, the 

signaling induced by uracil derivatives leading to 

exocytosis is mediated by elevated levels of cAMP. In 

mammalian cells, regulated exocytosis is frequently 

triggered by an elevation of intracellular Ca2+ levels and 

is modulated by cAMP, which acts synergistically with Ca2+, 
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but cannot induce exocytosis by itself. On the other hand, 

in some specific cell types exocytosis is triggered solely 

by elevations in cAMP concentrations (Fujita-Yoshigaki 

1998). In the case of sporozoites, cAMP seems to be 

sufficient to trigger exocytosis. However, since 

elevations of intracellular Ca2+ are also able to induce 

exocytosis in sporozoites (Mota and Rodriguez 2002), it is 

likely that both pathways are interconnected in the 

parasite and act synergistically to achieve efficient 

activation for infection. 

Activation of sporozoite exocytosis increases their 

infectivity and reduces the need for migration through 

cells (Mota and Rodriguez 2002). In our studies, we 

confirmed that activation of exocytosis by cAMP-mediated 

pathways increases sporozoite infectivity reducing 

migration through cells. Accordingly, inhibitors of this 

pathway prevent sporozoite exocytosis and decrease their 

infectivity. These results indicate that sporozoites need 

activation of exocytosis for host cell invasion, and that 

this activation is provided by stimulation of the cAMP 

pathway. The physiological ligands capable of stimulating 

Ca2+ signaling in the sporozoite are not yet known, 

although uracil derivatives are possible candidates.  

Genetically manipulated sporozoites that are deficient in 

their capacity to migrate through cells (SPECT), present 

very low infectivity of hepatocytes in vivo, but they are 

able to infect hepatic cell lines in vitro, questioning 

whether migration through cells is necessary to induce 

exocytosis before infection (Ishino et al. 2004; Amino et 

al. 2008). We have found that uracil and its derivatives 

induce apical regulated exocytosis in these mutant 

parasites. However, SPECT-deficient parasites show altered 

signaling responses and seem to use different signaling 

pathways to activate exocytosis that are not used by wt 
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sporozoites, suggesting that these parasites are activated 

using alternative mechanisms, which may be independent of 

migration through cells (Ono et al. 2008). Another factor 

contributing to the apparently contradictory results found 

using SPECT deficient sporozoites might be the fact that 

all SPECT mutants were performed in P. berghei background. 

Our experiments of sporozoite infectivity are performed 

with P. yoelii, a parasite that is more restricted to 

infection of hepatocytes, and therefore, more similar to 

P. falciparum. It is possible that the regulation of 

exocytosis and its role in infection is more important in 

P. yoelii infection than in P. berghei. Since we found 

that the ACα deficient sporozoites, which are also 

P.berghei, have only a 50% decrease in their infectivity 

(Ono et al. 2008), it is possible that alternative 

infection strategies, that are independent of apical 

exocytosis and are not regulated by migration through 

cells, are used by this strain of parasites.  

Two genes with high homology to ACs have been identified 

in the Plasmodium genome (Baker 2004). The generation of 

ACβ -deficient parasites failed, as the gene seems to be 

essential for the asexual blood-stages of Plasmodium (Ono 

et al. 2008). PbACα- sporozoites were generated in our 

laboratory and it was found that ACα is required for the 

stimulation of apical exocytosis. PbACα- sporozoites are 

able to stimulate exocytosis in response to the permeant 

analogue of cAMP, but not to forskolin, the activator of 

ACs, confirming that the defect is caused by the lack of a 

functional AC and can be compensated by artificially 

increasing intracellular concentrations of cAMP (Ono et 

al. 2008). The results obtained with PbACα- sporozoites 

also suggest that ACα is sensitive to forskolin 

stimulation, as the increase in exocytosis induced by this 

drug is lost in the genetically deficient sporozoites. 
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Since AC activity is insensitive to forskolin in asexual 

blood-stages (Read and Mikkelsen 1991) and ACβ is 

preferentially expressed in this stage of the parasite 

cycle (Baker 2004), it seems likely that ACβ, rather than 

ACα, is required for cAMP formation during erythrocyte 

infection. Ono et al also found that the growth of PbACα- 

parasites in the asexual blood-stages was 

indistinguishable from control, consistent with the lack 

of activity of ACα during this stage.  

Interestingly, the ACα gene contains a N-terminal domain 

with high homology to voltage-gated K+ channels. Other 

apicomplexans and also the ciliates Paramecium and 

Tetrahymena have an ACα gene homologous to the one in 

Plasmodium (Weber et al. 2004). In Paramecium it has been 

demonstrated that the purified ACα protein also has K+ 

channel activity, and the generation of cAMP is regulated 

by K+ conductance (Schultz et al. 1992). Although 

functional K+ channel activity has not been demonstrated 

for ACα in Plasmodium, our results are consistent with a 

role for K+ conductance in sporozoite exocytosis. Uracil 

derivates do not induce exocytosis in K+ free medium, but 

activation of AC with forskolin or addition of the 

permeant analogue of cAMP overcomes the requirement for 

extracellular K+. Therefore, it seems likely that increased 

K+ permeability may induce activation of ACα and synthesis 

of cAMP. Recently, it has been reported that exposure of 

Plasmodium sporozoites to the intracellular concentration 

of potassium enhances their infectivity (Kumar et al. 

2007), reinforcing the role of host intracellular K+ in 

sporozoite biology. 

 

Our work represents one of the first studies describing 

signaling in Plasmodium sporozoites. As mentioned before, 

signaling is required for sporozoites to complete their 
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journey from the skin to the liver. Specific signals are 

required for parasites to traverse different tissues and 

specifically enter the liver in order to complete 

infection. How can a sporozoite differentiate skin cells 

from hepatocytes? Why do soporozoites enter the 

circulation rather than being lost in the skin? How can 

sporozoites specifically enter the liver and not other 

organs? How can sporozoites infect hepatocytes but not 

other cell types? All these questions are probably 

answered by the capacity of sporozoites to sense their 

environment by transducing signals from extracellular 

receptors. Well-coordinated signaling cascades that lead 

to specific reactions in the sporozoites are essential to 

achieve high levels of infectivity. For example, when 

mosquitoes deposit sporozoites their motility increases 

(Amino et al. 2006). This is likely mediated by albumin, 

known to increase sporozoite motility (Vanderberg 1974) 

and found in the skin of the mammalian host, but not in 

the mosquito. In this case albumin functions as the signal 

for the parasite, when in the mammalian host, to move 

rapidly to reach the liver. The same way, we found that 

albumin can also signal to prevent activation of 

exocytosis. In this case, host albumin signals to trigger 

parasite sensors, which consequently modify the behavior 

of the sporozoite towards a more efficient infection (i.e. 

higher motility with inhibition of exocytosis activation). 

Once in the liver sporozoites contact highly sulfated 

heparan sulfate proteoglycans (HSPGs) and as a consequence 

modify their behavior, resulting in the removal of albumin 

inhibition.  

 After contact with HSPGs, sporozoites are ready to be 

activated for exocytosis. At this point, the parasite 

migrates through several hepatocytes where, as mention 

above, uracil derivatives present in the cytosol, induce 
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exocytosis by activation of the cAMP cascade. The 

activation of this pathway leads to the fusion of 

micronemes with the apical end of the sporozoite and 

results in the extracellular exposure of adhesive 

molecules, therefore facilitating invasion of the 

hepatocyte. The regulation by albumin and HSPGs would then 

ensure that exocytosis only occurs after sporozoites have 

reached the liver and available host cells are in the 

surroundings. If this regulatory mechanism was not in 

place, activation of exocytosis in the skin would lead to 

premature activation and lack of efficient infection 

because there are no available hepatocytes. It is still 

not clear which signaling pathways mediate these 

regulatory mechanisms, but it is likely that the 

sporozoite signaling cascades are tightly regulated. 

Recently, it was shown that signaling in Plasmodium 

sporozoites can be induced by HSPGs resulting in the 

cleavage of the sporozoites surface protein CS (Coppi et 

al. 2007). Since cleavage of CS is required for infection 

and is supposed to take place after the sporozoite arrival 

to the liver, it appears that HSPGs may constitute the 

recognition signal that sporozoites need to acknowledge 

that they have arrived to the liver. It is not clear yet 

the relation between apical exocytosis and cleavage of CS, 

however, since both events take place just before 

infection, are required for it and are regulated by HSPGs, 

it seems likely that they are related. It is possible that 

apical exocytosis may contribute to the activation of a 

protease that cleaves CS protein. 

We have confirmed that sporozoite stimulation and 

regulation of exocytosis is similar in P. falciparum, the 

human parasite with highest clinical importance. It seems 

likely that this is a common mechanism in different 

strains of Plasmodium, as the molecules involved, uracil 
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derived-nucleotides and albumin, are highly conserved 

among different host species (Baker 1989). It is 

noteworthy that Plasmodium uses these essential, highly 

conserved molecules to regulate its behavior towards 

infection. This may represent an advantage for the 

parasite, as it limits the possibility of encountering 

host variants that would be more resistant to infection. 

Therefore, our results appear to be relevant for the human 

parasite P. falciparum and may be applied to understand 

the infection of humans by this parasite. We believe our 

results open a door to develop novel clinical 

interventions against malaria. The finding that exocytosis 

is stimulated by uracil derivatives and inhibited by 

albumin indicates that these molecules must have receptors 

in the sporozoite that could be used as drug targets for 

putative interventions.  

 

 

4.2 Conclusions and perspectives - 

 

In summary we can conclude that the infection of 

hepatocytes by Plasmodium sporozoites is a tightly 

regulated mechanism that involves sensing of the 

environment by the sporozoite. Signaling cascades in the 

parasite are essential to achieve efficient infection and 

will provide a number of new targets for interventions 

against the disease.  

 

When exocytosis is inhibited by the AC or the PKA 

inhibitors, the reduction in sporozoite infectivity is 

comparatively lower than the reduction in exocytosis. 

Similar results were obtained with the PbACα- sporozoites, 

where exocytosis is reduced to background levels, but 

infection is reduced by 50% (Ono et al. 2008). Taken 
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together these results suggest that sporozoites have 

alternative pathways to invade host hepatocytes that do 

not require apical regulated exocytosis. However, we 

cannot exclude the possibility that low levels of 

exocytosis, which are not sensitive enough for our assays, 

still occur in the PbACα- sporozoites and are sufficient to 

mediate infection of hepatocytes. 

 

The analysis of host cell molecules required for 

sporozoite infection has provided evidence that 

sporozoites use more than one unique pathway to achieve 

hepatocyte infection (Silvie et al. 2007), suggesting that 

sporozoites may take advantage of this phenomenon to 

overcome polymorphisms in host receptors or to escape from 

immune mechanisms inhibiting one particular pathway of 

infection.  

 

The next step in the development of this project is to 

identify of the parasite molecules that interact 

specifically with uracil derivatives and albumin to 

modulate infection. Theoretically, inhibition of a 

putative uracil receptor would impair infectivity of 

sporozoites. Similarly, inhibition of a putative albumin 

receptor in the sporozoite would also allow early 

activation of sporozoites inhibiting infection in the 

liver. In addition, the binding partner of HSPGs in the 

sporozoite is very well characterized, that is, the 

circumsporozoite (CS) protein (Rathore et al. 2002; Sinnis 

and Nardin 2002; Tewari et al. 2002). Currently, one of 

the anti-malaria vaccine design approaches is focusing in 

the inhibition of the interaction between CS protein and 

HSPGs in the liver, in an attempt to inhibit liver 

infection. Our findings suggest that this approach would 
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also lead to inhibition of sporozoite exocytosis 

activation having a stronger inhibitory effect. 

So far, inhibition of infection of hepatocytes by 

sporozoites has proven a difficult task. One factor to 

consider is that when sporozoites migrate through host 

cells they are not accessible to the action of immune 

defense mechanisms such as antibodies or complement 

fixation. In addition, once sporozoites activate 

exocytosis, the exposure of critical molecules such as 

TRAP occurs only inside the cytosol of the traversed host 

cells. Consequently, essential parasite molecules are not 

exposed to antibodies that the host may use as defense 

against infection. The long co-evolution of Plasmodium 

parasites and humans suggest that the mechanisms of 

infection of this parasite are finely tuned to achieve the 

maximal efficiency of infection. 

It is becoming apparent that Plasmodium has developed 

different redundant strategies to achieve similar 

milestones that are required for infection. Therefore, the 

parasite ensures that inhibition of one single pathway 

does not result in complete inhibition of infection. An 

example of this is the stimulation of exocytosis by both 

cAMP elevations and by Ca2+. Even in the case of complete 

inhibition of a single cellular pathway required for 

infection, it seems likely that sporozoites would be able 

to up-regulate alternative pathways to achieve infection. 

These observations are promoting the idea that efficient 

intervention strategies should target more than one 

physiological target affecting more than one cellular 

process. Strategies that affect more than one stage of the 

parasite are also welcome because they would increase the 

effectiveness. Studies in this field have shown that some 

similar events take place in the invasion of hepatocytes 

by sporozoites and in the invasion of erythrocytes by 
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merozoites. Specific inhibitors or vaccines targeting 

these common events between sporozoites and merozoites are 

currently being evaluated. One of these mechanisms is the 

cleavage of surface proteins in sporozoites and merozoites 

that precedes infection, targeting exocytosis in 

Plasmodium could also be a common approach for the 

inhibition of both sporozoite and merozoite infectivity. 
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5.1. Materials-  

 

5.1.1. Parasites. 

Plasmodium yoelii yoelii sporozoites (cell line 17X NL), 

P. berghei ANKA wt and spect-1 deficient sporozoites 

(Ishino et al. 2004) and the NF54 isolate (Ponnudurai et 

al. 1981) of P. falciparum were used to produce 

sporozoites in A. stephensi mosquitoes. Salivary glands 

were dissected from the mosquitoes. The P. falciparum 

sporozoites were extracted from the salivary glands, 

purified, and cryopreserved. Prior to being used in 

assays, the sporozoites were thawed and suspended in RPMI 

medium. 

3-5 day-old Anopheles stephensi mosquitoes were fed on 

Swiss-Webster mice infected with either P. yoelii, P. 

berghei (ANKA wt or SPECT-1 mutant). On days 14 to 16 for 

P. yoelii and 18 to 20 for P. berghei, post-infective 

blood meal, mosquitoes were anesthetized on ice, rinsed in 

70% ethanol, washed in RPMI 1640 medium (Gibco) and the 

salivary glands were removed. Tissue was mechanically 

disrupted and homozenized to free the parasites. The 

debris was pelleted by centrifugation at 80 x g for 3 

minutes and sporozoites were collected, counted in a 

hemocytometer and maintained on ice until use. 

 

5.1.2. Cells. 

Hepa1-6 (ATCC CRL-1830), a hepatoma cell line derived 

from a C57L/J mouse, which is efficiently infected by 

rodent malaria parasites (Mota and Rodriguez 2000) was 

used for in vitro hepatocyte infections. Hepa1-6, HepG2 

(ATCC, HB-8065; human hepatocelular carcinoma cell line), 

J774 (ATCC, TIB-67; monocyte/macrophage cell line) and 

HeLa cells were maintained at 37ºC with 5% CO2 in DMEM 

medium supplemented with 10% fetal calf serum, 1% 

penicillin/streptomycin and 1mM glutamine. HC-04 cells 
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were maintained as described (Sattabongkot et al. 2006). 

CHO cells were grown in Ham's F-12 medium supplemented 

with 7.5% FCS. Mouse dermal fibroblasts (MDF) were 

isolated from Balb/C mice as previously described (Freshney 

2000) with some modifications. Briefly, 1 cm x 1 cm strips 

of skin from the back of a male Balb/C mouse were soaked 

in penicillin/streptomycin for 3 minutes before mincing 

into 1 mm x 1 mm pieces under sterile conditions. Skin 

pieces were then incubated in Liberase III (Roche Applied 

Sciences) in PBS for 1 hr at 37°C with agitation followed 

by grinding with PBS/0.2% BSA and centrifugation for 10 

minutes at 100 x g. The tissue was then filtered through 

70 mm mesh, centrifuged, resuspended in DMEM/FCS and 

transferred to a 25 cm2 culture flask. 

 

5.1.3. Hepa1-6 cell lysates.  

Hepa1-6 cells (4 x 105 cells per ml) resuspended in 

culture medium were repeatedly passed through a 28G 

syringe until more than 95% of the cells were lysed, as 

determined by Trypan blue staining. For membrane 

extraction, the Hepa 1-6 cells lysate was centrifuged at 

3,600 x g to remove debris and nuclei. The supernatant was 

centrifuged at 110,000 x g for 40 minutes to pellet the 

membrane fraction. 

 

5.1.4. Uracil derivatives.  

Exocytosis was induced by incubation of sporozoites with 

a mixture of physiological concentrations of uracil 

derivatives in the cytosol of mammalian cells (Traut 1994) 

consisting of 180 mM uracil, 280 mM uridine, 300 mM uracil 

monophosphate (UMP), 50 mM uracil diphosphate (UDP) and 30 

mM uracil triphosphate (UTP) (ICN Biomedicals), prepared 

in RPMI 1640 and pH adjusted to 7. 
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5.2. Methods- 

 

5.2.1. Chlorate treatment of cells. 

Hepa1-6 cells were seeded on glass coverslips (2,5 x 105/ 

well) and grown overnight in a low sulfate medium (Ham’s 

F-12, 1 mM glutamine and 2% FCS that had been dialyzed 

extensively versus 150 mM NaCl, 10 mM HEPES, [pH 7.3] with 

20 mM of sodium chlorate (Sigma). An appropriate amount of 

medium was replaced with water to maintain normal 

osmolarity. Cells were washed twice with DMEM not 

containing chlorate next day. 

 

5.2.2. Apical regulated exocytosis.   

Plasmodium sporozoites (105 for P. yoelii, P. berghei or 

5 x 104 for P. falciparum) were centrifuged for 5 minutes 

at 1,800 x g on glass coverslips before addition of uracil 

derivatives mixture or conditioned medium, with or without 

a monolayer of 2x105 Hepa1-6 cells, HepG2 cells or mouse 

dermal fibroblasts. In one experiment as indicated, Hepa1-

6 cells were fixed with 4% paraformaldehide for 2 hours 

and washed before use.  After 45 minutes incubation at 37 

°C, sporozoites were fixed with 1% paraformaldehyde (non-

permeabilization conditions) for 20 minutes before 

staining with anti-TRAP mAb (F3B5 for P. yoelii or 

PfSSP2.1 for P. falciparum (Charoenvit et al. 1997) and a 

specific TRAP/SSP2 rabbit anti-serum for P. berhgei).  

Sporozoite regulated exocytosis was quantified as the 

percentage of total sporozoites that present a TRAP/ SSP2 

stained “cap” in their apical end. Results are expressed 

as mean of triplicate quantifications of a minimum of 50 

sporozoites with standard deviation. Background level of 

exocytosis was measured in sporozoites after dissection 

from mosquitoes, before incubation in vitro. Background 

exocytosis was always lower than 8% and was subtracted 

from all values.  
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Digital pictures were acquired using an inverted Olympus 

1x70 with a 63x oil-immersion objective at room 

temperature with a Hammatsu Photonics C4742-95 camera 

using Metamorph Imaging Systems software. Images were not 

modified other than adjustment of brightness and contrast 

to the whole image. 

 

 Albumin from mouse serum, essentially fatty acid-free 

human and mouse albumin (0.005% fatty acid content) 

solutions were prepared at 35 mg/ml in RPMI 1640. Gelatin 

from bovine skin was used at 35 mg/ml in RPMI 1640, 

alpha2-macroglobulin at 1.64 mg/ml and apo-transferrin at 

2.5 mg/ml. All proteins were from Sigma. Sporozoites were 

pre-incubated with albumin or the other proteins for 15 

minutes at room temperature in an eppendorf tube, spun 

down at 8,600 xg and resuspended in fresh medium before 

incubation with the uracil derivatives at 37ºC for 45 

minutes. Rabbit anti-albumin antiserum (4-6 mg/ml) (Sigma) 

was pre-incubated for 1 h at 37ºC with mouse albumin at 

1mg/ml before addition of the complex to sporozoites. When 

indicated, sporozoites were pre-incubated for 15 minutes 

with the myosin inhibitor butanedionemonoxime (BDM) (1 mM) 

to inhibit gliding motility. 

 

5.2.3. Drug treatments. 

Sporozoites (105) were incubated with 100 µM forskolin, 

100 µM MDL-12.330A, 500 µM 8Br-cAMP, 10 µM H89, 30 µM 

genistein, 100 nM charybdotoxin, 50 µm SQ22536, 50 µm 

2’,5’-Dideoxyadenosine, 5 µm Adenosine 3’, 5’-cyclic 

monophosphoriothioate 8Br-Rp-isomer, 1 nM margatoxin, 20 µM 

BAPTA, ionomycin 1µM  (all from Calbiochem) before 

addition, or not, of uracil derivatives mixture for 1 

hour, followed by fixation and quantification of 

exocytosis. For exocytosis assays, sporozoites were 
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pretreated with the drug for 15 minutes and concentrations 

were kept constant throughout the experiment. For 

infection and migration, treatment with drugs was 

performed for 15 minutes before washing and spinning 

sporozoites on Hepa1-6 cells grown on coverslips placed in 

24-well dishes containing 1 ml of culture medium/well.  

For assays in K+-free medium: 105 P. yoelii sporozoites 

were incubated for 45 minutes in regular medium (RPMI 

1640, that contains 5.3 mM KCl and 100 mM NaCl), K+-free 

medium (modified RPMI 1640 with no KCl and 110 mM NaCl to 

maintain osmolarity) in the presence or absence of 

stimulus, before fixation and quantification of 

exocytosis. To assay sporozoites viability after 

incubation in K+-free medium, sporozoites centrifuged at 

20,800 x g and resuspended in regular medium with uracil 

derivatives to induce exocytosis. All experiments were 

performed twice showing similar results. 

 

5.2.4. Determination of live/dead sporozoites with Propidium Iodide.  

P. yoelii sporozoites were incubated with the indicated 

drugs for 20 minutes before addition of propidium iodide 

(1 mg/ml) for 10 minutes. Sporozoites were washed and 

observed directly with a fluorescence microscope. 

Propidium iodide positive sporozoites were considered dead 

and quantified. At least 100 sporozoites were counted in 

each condition. 

 

5.2.5. Intracellular cAMP levels.  

Intracellular levels of cAMP in P. yoelii sporozoites 

were determined using a cAMP Biotrack Enzymeimmunoassay 

system from Amersham Bioscience.  For each sample 2 x 106 

P. yoelii sporozoites were incubated with uracil 

derivatives for 45 minutes at 37ºC. All experiments were 

performed twice showing similar results. 
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5.2.6. Migration through cells and infection. 

Sporozoites (105 sporozoites/coverslip) were added to 

monolayers of 2 x 105 Hepa1-6 cells for 1 hour in the 

presence of 1 mg/ml of rhodamine-dextran lysine fixable 

(10,000 MW; Molecular Probes). Sporozoites breach the 

plasma membrane of host cells during migration and as a 

result fluorescent dextran enters in their cytosol, 

allowing detection of wounded cells (McNeil et al. 1989; 

McNeil et al. 1999). In a different set of experiments, P. 

yoelii sporozoites (105 per coverslip) were added to 

monolayers of 2 x 105 Hepa1-6 cells or mouse dermal 

fibroblasts for 30 minutes. Sporozoites were then 

transferred to a new monolayer of Hepa1-6 cells and 

incubated for an additional 30 minutes in the presence of 

the tracer dextran.  Cells were washed and incubated for 

another 24 hours before fixation and staining of infected 

cells with the mAb (2E6) recognizing HSP70 to detect 

infected cells (Tsuji et al. 1994), followed by anti-mouse 

IgG-FITC antibodies. Migration through host cells is 

quantified as percentage (or total number) of dextran-

positive cells. Infection was quantified as the number of 

infected cells per coverslip. All experiments were 

performed twice showing similar results. 

  

5.2.7. Transwell filter assays.  

Cell lines or primary cultures of mouse dermal 

fibroblasts (5x105) were cultivated on 3 µm pore diameter 

Transwell filters (Costar, Corning, New York) until they 

form a continuous monolayer. Empty coverslips or 

coverslips containing Hepa1-6 cells monolayers (2x105 

Hepa1-6) were placed underneath the filters. P. yoelii 

sporozoites (2x105) were added to filter insets containing 

Hepa1-6 cells, mouse dermal fibroblasts, other cell lines 

or no cells. Filters and coverslips were fixed after 2 h 

of incubation with sporozoites, before staining for 
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surface TRAP. To determine migration through host cells, 

FITC-dextran (1 mg/ml) was added before addition of 

sporozoites. Coverslips were washed after 2 h of 

incubation with sporozoites and further incubated for 24 h 

before fixation, staining and quantification of dextran 

positive cells and infected cells with anti-HSP70. All 

experiments were performed twice showing similar results. 
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Abstract

Malaria starts with the infection of the liver of the host by Plasmodium sporozoites, the parasite form transmitted by
infected mosquitoes. Sporozoites migrate through several hepatocytes by breaching their plasma membranes before finally
infecting one with the formation of an internalization vacuole. Migration through host cells induces apical regulated
exocytosis in sporozoites. Here we show that apical regulated exocytosis is induced by increases in cAMP in sporozoites of
rodent (P. yoelii and P. berghei) and human (P. falciparum) Plasmodium species. We have generated P. berghei parasites
deficient in adenylyl cyclase a (ACa), a gene containing regions with high homology to adenylyl cyclases. PbACa-deficient
sporozoites do not exocytose in response to migration through host cells and present more than 50% impaired hepatocyte
infectivity in vivo. These effects are specific to ACa, as re-introduction of ACa in deficient parasites resulted in complete
recovery of exocytosis and infection. Our findings indicate that ACa and increases in cAMP levels are required for sporozoite
apical regulated exocytosis, which is involved in sporozoite infection of hepatocytes.
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Introduction

Plasmodium, the causative agent of malaria, is transmitted by the
bite of infected mosquitoes that inoculate the sporozoite form of
the parasite in the host. Sporozoites rapidly migrate to the liver,
where they infect hepatocytes, replicate and develop into
merozoites, the blood-stage form of the parasite. Plasmodium
belongs to the phylum apicomplexa, a group of parasites that share
conserved mechanisms of motility and cell invasion machinery [1].
Apical exocytosis is another common feature that has been
characterized in Toxoplasma tachyzoites [2] and sporozoites from
Eimeria [3], Cryptosporidium [4] and Plasmodium [5]. This process has
been most extensively studied in Toxoplasma tachyzoites, where
active invasion of host cells involves the secretion of transmem-
brane adhesive proteins from the micronemes, which congregate
on the anterior surface of the parasite and bind host receptors to
mediate apical attachment [6]. One of these adhesive proteins,
MIC2, which plays a central role in motility and invasion [7] is
closely related to Plasmodium Thombospondin-Related Anonymous
Protein, TRAP (also known as Sporozoite Surface Protein 2,
SSP2) [8], which is also exposed in the apical end of the parasite
upon microneme exocytosis [5,9] and is also required for
Plasmodium sporozoite motility and invasion [10].

While in Toxoplasma tachyzoites microneme secretion is strongly
up-regulated upon contact with the host cell, in Plasmodium
sporozoites contact with host cells is not sufficient to activate this
process and migration through cells is required to induce apical
regulated exocytosis [9]. Sporozoites of different human and
rodent Plasmodium species have the ability to migrate through host
cells. Sporozoites enter and exit cells by breaching the plasma
membrane of the traversed cell. This process results in sporozoites
traversing host cells by moving through their cytosol without any
surrounding membranes. Ultimately, sporozoites establish infec-
tion in a final hepatocyte through formation of a vacuole within
which the parasite replicates and develops [9]. Migration through
host cells induces apical exocytosis in Plasmodium sporozoites,
resulting in the exposure of high concentrations of TRAP/SSP2 in
the apical end of the parasite [9]. This process, similarly to
Toxoplasma secretion of MIC2 [7], is thought to facilitate invasion
of the host cell [9].
During migration through host cells sporozoites are not

surrounded by any host membranes, and as a result, they are in
direct contact with the cytosol of the host cell [11]. Incubation of
Plasmodium sporozoites with a lysate of host cells activates apical
exocytosis in the parasite, suggesting that host cell molecules
induce the activation of exocytosis in migrating parasites [9]. We
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have studied the role of uracil nucleotides in sporozoite exocytosis,
since these molecules induce exocytosis in other cellular systems
[12] and are found in the cytosol of mammalian cells in high
concentrations. We found that uracil and its derived nucleoside
and nucleotides (UMP, UDP and UTP) at the physiological
concentrations found in the cytosol of mammalian cells, activate
apical regulated exocytosis and increase the infectivity of
sporozoites [13]. Since sporozoites are in contact with the cytosol
of the traversed host cells, it is likely that the high concentrations of
uracil derivatives that they would encounter, probably participate
in the activation of sporozoites during migration through cells.
Addition of uracil derivatives in vitro induces apical regulated
exocytosis within the first ten minutes after addition of the stimulus
[13]. In certain mammalian cell types, UTP and UDP can activate
signaling cascades by binding to P2Y receptors, which in turn can
activate adenylyl cyclase and increase cyclic adenosine mono-
phosphate (cAMP) levels. Activation of P2Y receptors by
nucleotides leads to exocytosis in different cells from insulin
release from pancreatic islet b cells to the release of histamine from
mast cells [14].
Here we have analyzed the role of the cAMP signaling pathway

in sporozoite apical exocytosis and infection. We found biochem-
ical evidences indicating that increases in cAMP levels in
sporozoites mediate apical regulated exocytosis, which activates
sporozoites for host cell invasion. By creating a parasite line
deficient in adenylyl cyclase a (ACa), we confirmed that the cAMP
signaling pathway is essential to induce apical exocytosis, which is
activated during migration through cells. In addition, this
recombinant parasite provides a tool to determine the precise
contribution of apical exocytosis to sporozoite infection. A role for
migration through cells and apical regulated exocytosis in infection
was proposed before [9], but it had been questioned in view of
transgenic sporozoites that were able to infect cells in vitro without
performing the previous migration step [15]. Here we show that
apical regulated exocytosis contributes significantly to host cell
invasion, but the parasite seems to have alternative mechanisms to
establish successful infections in host cells.

Results

To investigate the signaling pathways mediating Plasmodium
sporozoite exocytosis, we used a mix of uracil and its derivatives
(uridine, UMP, UDP and UTP) at the concentrations normally
found in the cytosol of mammalian cells (described in Experimen-
tal Procedures), which induce exocytosis in sporozoites [13].
Apical regulated exocytosis has been characterized in Plasmodium
sporozoites by the exposure of high concentrations of TRAP/
SSP2 in the apical end of the parasite and also by the release of
this protein into the medium [9]. We confirmed that exocytosis
occurs at the apical end of the sporozoite by staining the trails left
behind after gliding motility. Trails are always next to the posterior
end because sporozoites move with their apical end in the front
(Fig. S1).
We first investigated whether cAMP induces or modulates

sporozoite regulated exocytosis by preincubating P. yoelii sporozo-
ites with a membrane permeant analogue of cAMP. Exocytosis is
quantified as the percentage of sporozoites that present a defined
accumulation of extracellular TRAP/SSP2 in their apical end [9].
We found that 8Br-cAMP induces sporozoite exocytosis to a
similar level than uracil derivatives. Addition of both stimuli to
sporozoites did not increase the level of exocytosis (Fig. 1A),
suggesting that both stimuli may be using the same pathway to
induce exocytosis. As an alternative way to increase cytosolic
cAMP in sporozoites, we used forskolin, an activator of the
enzyme that synthesizes cAMP, adenylyl cyclase (AC). This
treatment also induced apical regulated exocytosis in sporozoites
(Fig. 1B). Incubation of sporozoites with MDL-12,330A, an
inhibitor of AC [16] prevented activation of exocytosis by uracil
derivatives (Fig. 1B). We confirmed that these treatments did not
increased sporozoite lysis compared to control (Table S1 and Fig.
S2).
Genetically manipulated sporozoites that are deficient in their

capacity to migrate through cells (spect-deficient) infect hepatic cell
lines in vitro, questioning the role of migration through cells in the
activation of sporozoites for infection [15]. To analyze the
exocytosis response of these sporozoites, we stimulated them with
uracil derivatives or treatments that modulate cAMP levels.
Incubation of P. berghei wt or spect-deficient sporozoites with uracil
derivates induced apical regulated exocytosis. However, forskolin
and 8-Br-cAMP did not induce exocytosis in spect-deficient
sporozoites and MDL-12,330A only has a partial effect in the
inhibition of exocytosis (Fig. 1C). These results suggest that, in
contrast to wt P. berghei sporozoites, spect-deficient sporozoites do
not use cAMP-mediated signaling pathways to activate exocytosis.
We have used the rodent malaria parasites P. yoelii and P. berghei

as a model for P. falciparum, the human parasite responsible for the
mortality associated with this disease. P. falciparum sporozoites also
migrate through host cells [11], a process that induces apical
regulated exocytosis in this species of the parasite [13]. Similar to
the rodent parasites, uracil and its derivatives induce exocytosis in
P. falciparum sporozoites [13]. We found that elevated cAMP levels
also induce exocytosis in P. falciparum sporozoites and that
exocytosis induced by uracil derivatives is inhibited by MDL-
12,330A (Fig. 1D), suggesting that this pathway is conserved in the
human and murine parasites.
To directly demonstrate that cAMP levels are increased in P.

yoelii sporozoites in response to exocytosis-inducing stimuli, we
measured cAMP concentration in sporozoites after incubation
with uracil derivatives. Salivary glands dissected from uninfected
mosquitoes and processed in a similar way, were used as negative
control. We found that uracil derivatives significantly increase the
levels of cAMP in sporozoites (Fig. 1E). No increases were found

Author Summary

Malaria is transmitted through the bite of an infected
mosquito that deposits Plasmodium sporozoites under the
skin. These sporozoites migrate from the skin into the
circulation and then enter the liver to start a new infection
inside hepatocytes. Sporozoites have the capacity to
traverse mammalian cells. They breach their membranes
and migrate through their cytosol. This process is required
for infection of the liver and triggers the exposure of
adhesive proteins in the apical end of sporozoites, a
process that facilitates invasion of hepatocytes. We found
that elevations of cAMP inside sporozoites mediate the
exposure of adhesive proteins and therefore the infection
process. Mutant sporozoites that do not express adenylyl
cyclase, the enzyme that synthesizes cAMP, are not able to
expose the adhesive proteins and their infectivity is
reduced by half. Reinsertion of adenylyl cyclase gene in
the mutant sporozoites recovers their capacity to expose
adhesive proteins and to infect hepatocytes, confirming
the specific role of this protein in infection. These results
demonstrate the importance of cAMP and the exposure of
adhesive proteins in sporozoites, but also show that
Plasmodium sporozoites have other mechanisms to invade
host hepatocytes that are not inhibited in the mutant
parasites.

cAMP Signaling in Plasmodium Sporozoites
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when control material from uninfected mosquitoes was stimulated
with uracil derivatives (not shown).
Migration through host cells induces sporozoite apical regulated

exocytosis, which activates sporozoites for infection. Stimulation of
exocytosis by other means, such as host cells lysate [9] or uracil
derivatives [13], overcomes the need for extensive migration
through cells and increases infection. To test whether stimulation
of exocytosis by increases in intracellular cAMP in the sporozoite
would also overcome the need for migration through host cells

before infection, we incubated P. yoelii sporozoites with forskolin or
8Br-cAMP to induce regulated exocytosis before addition of
sporozoites to intact Hepa1-6 cells. Migration through host cells is
determined as the percentage of cells that are wounded by
sporozoite migration and as a result become positive for a soluble
impermeant tracer (dextran) [17]. We found an increase in the
number of infected cells, indicating that stimulation of regulated
exocytosis by cAMP in sporozoites increases their infectivity
(Fig. 2A, black bars). In addition, activation of sporozoite

Figure 1. Increases in cytosolic cAMP induce Plasmodium sporozoite exocytosis. (A–B) P. yoelii sporozoites were pre-incubated for 15 min
with 8Br-cAMP, forskolin (FSK) or MDL-12.330A to activate or inhibit adenylate cyclase respectively, followed by addition or not of uracil derivatives
(UD). Sporozoites were incubated for 1 h before fixation and quantification of exocytosis. (C) P. berghei wt (white bars) or spect 1-deficient (black bars)
sporozoites were pre-incubated with the different activators and inhibitors as in (A,B). (D) P. falciparum sporozoites were pre-incubated with the
different activators and inhibitors as in (A,B). (E) Intracellular levels of cAMP in P. yoelii sporozoites incubated or not with uracil derivatives for 45 min.
Same number of uninfected salivary glands were processed in a similar way and used as a control (uninfected). Results are expressed as mean of
triplicates6SD. *, p,0.05; ** p,0.01 when compared to control by ANOVA.
doi:10.1371/journal.ppat.1000008.g001
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exocytosis with increased cAMP levels reduces sporozoite
migration through host cells, confirming that such extensive
migration is no longer necessary when exocytosis is induced by
elevations in the level of cAMP (Fig. 2A, white bars). These results
indicate that cAMP-induced exocytosis contributes to the
activation of sporozoites for infection.
Since sporozoites appear to activate the cAMP signaling cascade

to stimulate apical regulated exocytosis, inhibition of cAMP
production in sporozoites by MDL-12,330A, the inhibitor of AC,
should decrease their infectivity. We actually found a significant
reduction in their infectivity after treatment with this inhibitor
(Fig. 2B). MDL-12.330A does not appear to have a toxic effect on
sporozoites, since migration through cells was not affected (Fig. 2B).
We also observed that gliding motility of sporozoites is greatly

decreased 18 to 24 min after addition of the exocytosis inducing
stimulus (UD or forskolin), but not during earlier time points, while
exocytosis is presumably occurring (0 to 8 min after addition of the
stimulus) (Fig. S3).
The major downstream effector of cAMP is protein kinase A

(PKA), a serine/threonine kinase that activates other kinases and
transcription factors in the cell. This protein is likely to be present
in Plasmodium because PKA activity has been detected in P.
falciparum during the blood stage of the parasite [18,19] and there
is a gene sequence with high homology to PKA expressed in P.
falciparum and conserved in all species of Plasmodium analyzed
[20,21], however no functional assays have yet determined the
PKA activity of this putative protein. To investigate whether
sporozoite exocytosis is mediated by PKA activity, we treated
sporozoites with H89, a PKA inhibitor already shown to inhibit
this kinase in a different stage of the parasite [18,19]. We found
that H89 inhibits sporozoite exocytosis induced by uracil
derivatives (Fig. 3A), suggesting that this process is mediated by
the activation of PKA. The infectivity of sporozoites pretreated
with H89 is reduced, probably as a consequence of the inhibition
of exocytosis (Fig. 3B), while parasite migration through host cells
is not affected, confirming that H89 treatment is not toxic for
sporozoites (Fig. 3C).
Activation of PKA should occur after cAMP has been generated

in the signaling cascade. To analyze this step of the pathway, we
pretreated sporozoites with H89 before increasing cAMP levels
with the addition of 8Br-cAMP. As expected, we found that
exocytosis was completely inhibited (Fig. 3D), suggesting that PKA

is activated down-stream of cAMP. Incubation of sporozoites with
genistein, an inhibitor of tyrosine kinases, did not affect regulated
exocytosis (Fig. 3E), indicating that tyrosine kinases are not
involved in the signaling cascade. In fact, no sequences with
homology to tyrosine kinases have been found in the Plasmodium
genome [20].
To strengthen the evidence that the cAMP signaling pathway

mediates the activation of exocytosis in sporozoites and reduce the
probability of inhibitors affecting exocytosis due to non-charac-
terized effects of the drugs, we used alternative inhibitors with
unrelated chemical structures from the ones used before to inhibit
adenylyl cyclase and PKA. We found similar inhibitory results
using 29, 59-Dideoxyadenosine or SQ22536, which inhibit
adenylyl cyclase. The addition of a competitive inhibitor of cAMP
(cAMP Rp-isomer), which inhibits PKA, also results in inhibition
of apical regulated exocytosis in sporozoites (Fig. 3F).
Since cAMP signaling appears to mediate the activation of

apical exocytosis, we searched for ACs in the malaria genome.
Two different genes with high homology to ACs (ACa and ACb)
have been identified in Plasmodium. In particular, ACa was shown
to have AC activity in P. falciparum [22,23]. Interestingly, ACa
genes from Plasmodium, Paramecium and Tetrahimena are closely
related and their sequence includes a domain with high homology
to K+ channels [23]. In Paramecium, where the purified AC protein
also has K+ channel activity, generation of cAMP is regulated by
K+ conductance [24]. It is thought that ACa presents a
transmembrane K+-channel domain and an intracellular AC
domain, which are functionally linked [25].
Since cAMP in Plasmodium sporozoites induces apical exocytosis,

we first tested whether extracellular K+ is required for this process.
In fact, sporozoites must remain in a high K+ environment during
migration through cells, because the cytosol of eukaryotic cells has
high concentrations of this ion [26]. The existence of K+ channels
has been predicted for Plasmodium parasites from electrophysio-
logical [27] and genomic sequence data [20].
To determine whether extracellular K+ is required for

sporozoite exocytosis, we stimulated exocytosis in P. yoelii
sporozoites in regular medium (containing K+) or in K+-free
medium. We found that exocytosis stimulated with uracil
derivatives was inhibited in K+-free medium (Fig. 4A). To confirm
that sporozoites were not impaired by the incubation in K+-free
medium, we transferred sporozoites to regular medium after the

Figure 2. Stimulation of exocytosis increases sporozoite infection and decreases migration through host cells. P. yoelii sporozoites
were pretreated with forskolin or 8Br-cAMP (A) or MDL-12.330A (B) before addition to monolayers of Hepa1-6 cells. Percentage of dextran-positive
cells (white bars) and number of infected cells/coverslip (black bars) are shown as mean of triplicates6SD. *, p,0.05; ** p,0.01 when compared to
control by ANOVA.
doi:10.1371/journal.ppat.1000008.g002
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K+-free medium incubation. We found that exocytosis in these
sporozoites was similar to exocytosis in sporozoites that were never
incubated in K+-free medium (Fig. 4B).
Exocytosis was inhibited when sporozoites were pre-incubated

with different K+-channel inhibitors (Fig. 4C,D), suggesting that
K+ is required for the activation of exocytosis. We also analyzed
the requirement for extracellular K+ in sporozoite exocytosis
induced by 8Br-cAMP or forskolin. We found that in these cases
extracellular K+ is not required (Fig. 4E,F), suggesting that
extracellular K+ is required upstream cAMP in the signaling
cascade. Removal of K+ from the medium may alter the

electrochemical gradient of sporozoites affecting UD-induced
exocytosis. However, since the response to forskolin and 8Br-
cAMP in K+ free medium is not affected, it suggests that the
sporozoite exocytosis pathway is perfectly functional in the
absence of extracellular K+. Also, the viability (Table S1) and
capacity of exocytosis response (Fig. 4B) of sporozoites after this
treatment was found to be unaffected.
A Ca++ ionophore can induce apical regulated exocytosis in P.

yoelii [9], suggesting that Ca++ signaling may be involved in
exocytosis. We first compared the magnitude of the cAMP-
induced to the Ca++-induced exocytosis, finding similar results

Figure 3. Treatment with an inhibitor of PKA reduces sporozoite exocytosis and infection. P. yoelii sporozoites were pre-incubated with
H89 followed by addition of uracil derivatives to induce exocytosis (A) or followed by incubation with monolayers of Hepa1-6 cells to quantify
infection (B) and migration though cells (C). (D) Sporozoites were pre-incubated with H89 before addition of 8Br-cAMP to induce exocytosis. (E)
Sporozoites were pre-incubated with genistein (Gen) before addition of uracil derivatives. (F) P. yoelii sporozoites were pre-incubated with 29, 59-
Dideoxyadenosine (DDA) or SQ22536 (SQ) to inhibit adenylyl cyclase activity or with cAMP Rp-isomer to inhibit PKA, before addition of uracil
derivatives to induce exocytosis. Results are expressed as mean of triplicates6SD. * p,0.05; ** p,0.01 when compared to control by ANOVA.
doi:10.1371/journal.ppat.1000008.g003
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(Fig. 4G). To study whether Ca++ is also involved in the signaling
induced by UD, we induced exocytosis with UD in Ca++-free
medium. We found that exocytosis is not inhibited in Ca++-free
medium (Fig. 4H), suggesting that extracellular Ca++ is not
required for this process. However, we found a strong inhibition of
exocytosis when sporozoites were incubated with a membrane-
permeant Ca++ chelator, suggesting that intracellular Ca++ is
required for exocytosis (Fig. 4I). A possible model for the signaling
mediating exocytosis is proposed (Fig. 4J).
Since Plasmodium sporozoite regulated exocytosis requires both

extracellular K+ and cAMP, we decided to test whether ACa is
involved in the process of sporozoite exocytosis and activation for
infection by producing recombinant parasites deficient for this
enzyme. We identified the sequence encoding PbACa, the P. berghei
orthologue of PfACa, in the PlasmoDB database (http://www.
plasmoDB.org/). Complete PbACa sequences were retrieved from
Sanger sequencing genomics project (http://www.sanger.ac.uk/).
We found that PbACa is 60% identical to PfACa at the amino-acid
level of the full-length predicted protein, and 79% in the AC
catalytic domain.
Microarray analysis had detected expression of PfACa in

sporozoites [28]. To analyze the expression of PbACa, we
isolated mRNA from P. berghei sporozoites and performed

reverse transcription followed by PCR. We also found
expression of this gene in sporozoites (Fig. 5A). Thus, we
decided to pursue a targeted gene disruption at the blood stages
to study the importance of ACa for the Plasmodium pre-
erythrocytic life cycle stages. We created two independent
cloned lines of P. berghei parasites that are deficient in ACa
(PbACa-) by using targeted disruption of the ACa gene through
double crossover homologous recombination (Fig. 5B). PbACa-
deficiency of the mutant parasites was confirmed by RT-PCR
and Southern Blotting (Fig. 5C).
We examined the phenotype of PbACa- parasites during the

Plasmodium life cycle. We compared the two PbACa- lines with WT
P. berghei parasites also cloned independently. PbACa- parasites
were indistinguishable from WT parasites in growth during red
blood cell stages in mice (Fig. 6A). We next analyzed parasite
growth in the mosquito by determining oocyst development and
sporozoite salivary gland invasion. Similar oocyst and salivary
gland sporozoite numbers were obtained for PbACa- and the WT
control, indicating that PbACa is not involved in oocyst
development and sporozoite salivary gland invasion (Table 1).
Gliding motility, the characteristic form of substrate-dependent

locomotion of salivary gland sporozoites, was unaffected in PbACa-
parasites. Stimulation of gliding motility with albumin [29] was

Figure 4. Extracellular K+ is required for sporozoite apical regulated exocytosis. (A) P. yoelii sporozoites were pre-incubated for 15 min in
regular medium or K+-free medium before addition or not of uracil derivatives (UD) for 45 min. (B) Sporozoites were incubated with regular medium
or K+-free medium for 45 min, followed by incubation in regular medium in the presence or absence of UD for another 45 min. (C,D) Sporozoites
were pre-incubated with the K+-channel inhibitors charybdotoxin (C) or margatoxin (D) for 15 min before addition of UD for 45 min. (E,F) sporozoites
were pre-incubated for 15 min in regular medium or K+-free medium before addition or not of forskolin (E) or 8Br-cAMP (F). (G) Sporozoites were
incubated with UD, ionomycin or 8Br-cAMP for 45 min. (H) Sporozoites were pre-incubated for 15 min in regular medium or Ca++-free medium
before addition or not of UD for 45 min. (I) Sporozoites were pre-incubated with the membrane permeant calcium chelator BAPTA-AM for 15 min
before addition of UD for 45 min. Results are expressed as mean of triplicates6SD. ** p,0.01 when compared to control by ANOVA. (J) Possible
model consistent with the results. UD activate directly or indirectly the K+ channel domain of ACa (1) and trigger the activation of AC activity (2). The
increase in cAMP activates PKA (3), which leads to the activation of exocytosis.
doi:10.1371/journal.ppat.1000008.g004
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also similar in WT and PbACa- sporozoites (Fig. 6B). We also
tested whether deletion of the ACa gene affect sporozoites ability to
migrate through cells. We found that the cell-traversal activity of
PbACa- sporozoites was slightly lower, but not significantly
different from WT sporozoites (Fig. 6C).
We then tested whether apical regulated exocytosis was affected

in PbACa-sporozoites. Activation of exocytosis by the mix of uracil
derivatives or by forskolin, was greatly reduced in the two different
clones of PbACa- sporozoites analyzed (Fig. 7A). Addition of a
membrane permeant analogue of cAMP (8-Br-cAMP), which
induces exocytosis in WT parasites, also stimulated exocytosis in
PbACa- sporozoites (Fig. 7B). This result indicates that all
sporozoite components required for exocytosis downstream of
cAMP are functional in PbACa- sporozoites; however, the lack of
ACa inhibits proper response upon activation with uracil
derivatives or activators of AC activity. Migration through host
cells induces apical regulated exocytosis in Plasmodium sporozoites
[9]. To confirm that ACa is also required for exocytosis stimulated
by migration through hepatocytes, we measured the response of
WT and PbACa- sporozoites after migration through Hepa1-6

cells. We found that regulated exocytosis was not activated in
sporozoites deficient in ACa (Fig. 7C).
To examine the role of apical regulated exocytosis and ACa in

sporozoite infection, we first analyzed the infectivity of PbACa-
sporozoites in vitro using Hepa1-6 cells. We found that PbACa-
sporozoites are approximately 50% less infective than WT
sporozoites (Fig. 7D). As the infectivity of Plasmodium sporozoites
can be noticeably different depending on each particular mosquito
infection, we repeated the experiment using sporozoites from three
different batches of infected mosquitoes. Similar results were
found, confirming that PbACa- sporozoites have reduced infectivity
in hepatocytes (not shown).
We also tested the infectivity of PbACa- parasites in vivo in C57/

Bl6 mice, which are highly susceptible to infection by P. berghei
sporozoites [30]. To quantify the infectivity of PbACa-, we used
real time PCR to measure parasite load in the liver by determining
the levels of the parasite-specific 18 S rRNA [31]. Remarkably,
50% decrease of parasite rRNA was detected by this method
(Fig. 7E). We repeated the experiment using sporozoites from three
different batches of infected mosquitoes finding similar results (not

Figure 5. Generation of PbACa- parasite lines. (A) RNA from WT P. berghei sporozoites was reverse transcribed into cDNA and used as template
to amplify ACa. Water was used as negative control (Neg) and wild type P. berghei genomic DNA (gDNA) as positive control. (B) Schematic
representation of the ACa locus and the replacement vector. Correct integration of the construct results in the disrupted ACa gene as shown. Arrows
indicate the position of the primers used for PCR in C. (C) Disruption of ACa was shown by PCR (left) and by Southern analysis (right). PCR on DNA of
WT transfected population (before cloning) and PbACa- clones (C1 and C2) results in the amplification of two 0.7-kb WT fragments and a 0.8 and a
0.9-kb disrupted fragments when using the primers indicated in (B). Genomic Southern blot hybridization of WT and the PbACa- C1. The probe used
for hybridization is represented in B. Integration of the targeting plasmid causes reduction in size of a 1.6-kb fragment in WT parasites to a 1.0-kb
fragment in the PbACa- parasites. Similar results were found for PbACa- C2.
doi:10.1371/journal.ppat.1000008.g005
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shown). These results suggest that Plasmodium sporozoites use apical
regulated exocytosis to infect host cells and that ACa is an important
protein involved in Plasmodium liver infection.
To confirm that the phenotype observed in the PbACa-

sporozoites is caused specifically by depletion of the PbACa gene,
we complemented one of the PbACa- parasite lines with ACa. The
correct replacement event was confirmed by PCR and Southern
blot hybridization (Fig. 8A). No differences were found between
the complemented parasite line and WT or PbACa- parasites
during blood stage infection in mice or in mosquito oocyst
development and salivary gland sporozoite numbers (not shown).
We found that apical regulated exocytosis response to uracil
derivatives was recovered in the complemented sporozoites

(Fig. 8B). The infectivity of sporozoites was restored by
complementation of the PbACa gene (Fig. 8C), confirming the
role of PbACa in sporozoite exocytosis and infection.

Discussion

The role of exocytosis of apical organelles in invasion of host
cells has been extensively studied in Toxoplasma tachyzoites. Our
knowledge of Plasmodium sporozoite exocytosis and infection is less
advanced, as this parasite stage can only be obtained by dissection
of infected mosquitoes, and this procedure provides limited
numbers of sporozoites. Sporozoite purification methods have
been recently developed (S. L. Hoffman, personal communication)

Figure 6. PbACa- has normal blood-stage growth rates and sporozoite motility. (A) Growth curves of P. berghei WT (black squares), PbACa-
C1 (black circles) and C2 (white circles) in mice. (B) Gliding motility of sporozoites fromWT, PbACa- C1 and C2 in the presence (right panel) or absence
(left panel) of mouse albumin. Percentage of sporozoites that do not glide or do less than a complete circle (black bars), gliding sporozoites
exhibiting 1 (dark gray bars), 2 to 10 (light gray bars), or .10 (white bars) circles per trail. (C) Migration through Hepa1-6 cells was measured as the
number of dextran positive cells per coverslip. The difference between C1 or C2 and WT is not significantly different (p.0.05).
doi:10.1371/journal.ppat.1000008.g006
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allowing us to use highly purified P. falciparum sporozoites in our
studies. Gene deletion technology has opened the possibility of
dissecting the role of complex pathways into their individual
protein components. Using a rodent malaria model we have first
identified that the cAMP signaling pathway is involved in
Plasmodium sporozoite exocytosis. The similar response observed
in P. falciparum sporozoites suggests that the cAMP-dependent
signaling pathway leading to exocytosis is conserved in the human
parasite. Based on these results, we have generated a transgenic
parasite that is deficient in an essential protein in the cAMP
signaling pathway. This approach allowed us to evaluate the role
of apical regulated exocytosis in hepatocyte infection by
sporozoites in vitro and in vivo using a mouse model.
Regulated exocytosis in mammalian cells is frequently triggered

by an elevation of intracellular Ca2+ levels and is modulated by
cAMP, which acts synergistically with Ca2+, but cannot induce
exocytosis by itself. However, in some specific cell types exocytosis
is triggered solely by elevations in cAMP concentrations [32].
Increases in cytosolic Ca2+ induced with ionophores can induce
exocytosis in Plasmodium sporozoites [9], suggesting that Ca2+

stimulation is also sufficient to induce this process. The signaling
pathways of Ca2+ and cAMP are interrelated inside eukaryotic
cells [33]. In particular, in P. falciparum blood-stages, a cross-talk
between Ca2+ and cAMP has been observed, where increases in
cAMP induce the elevation of intracellular Ca2+ concentrations
through the activation of PKA [18]. Our results suggest that the
cAMP and Ca2+ pathways are also interconnected in the
sporozoite stage and that intracellular, but not extracellular
Ca2+, is required for exocytosis.
When exocytosis is inhibited by the AC or the PKA inhibitors, the

reduction in sporozoite infectivity is comparatively lower than the
reduction in exocytosis. Similar results were obtained with the PbACa-
sporozoites, where exocytosis is reduced to background levels, but
infection is reduced by 50%. Taken together these results suggest that
sporozoites have alternative pathways to invade host hepatocytes that
do not require apical regulated exocytosis. However, we cannot
exclude the possibility that low levels of exocytosis that cannot be
detected in our assays still occur in the PbACa- sporozoites and are
sufficient to mediate infection of hepatocytes.
The analysis of host cell molecules required for sporozoite

infection has provided evidence that sporozoites use more than one
unique pathway to achieve hepatocyte infection [34], suggesting
that sporozoites may take advantage of this phenomenon to
overcome polymorphisms in host receptors or to escape from
immune mechanisms inhibiting one particular pathway of infection.
We had previously observed that activation of sporozoite

exocytosis increases their infectivity and reduces the need for
migration through cells [9]. Here we confirmed that activation of
exocytosis by cAMP-mediated pathways increases exocytosis

infectivity reducing migration through cells. Accordingly, inhibi-
tors of this pathway inhibit sporozoite exocytosis and decrease
their infectivity. Interestingly, spect-deficient sporozoites, which do
not migrate through host cells [15], responded to uracil derivatives
but were not able to respond to either an activator of AC or to a
permeant analogue of cAMP, suggesting that cAMP-induced
signaling leading to exocytosis is different in these mutant
sporozoites. The positive exocytosis response observed in the
presence of the inhibitor of AC, suggests that these parasites are
able to respond to uracil derivatives by activating cAMP-
independent pathways that are not normally activated in wt
sporozoites, where cAMP is required for exocytosis. It is still not
clear how this relates to their impaired capacity to migrate through
cells, but suggests that they may up-regulate the alternative
mechanisms that are independent of migration through cells and
exocytosis to infect hepatocytes. These results are consistent with
the concept that sporozoites can use alternative pathways to
invade hepatocytes, as the infection experiments with PbACa-
sporozoites suggest.
Apical regulated exocytosis in the transgenic parasites deficient in

ACa is dramatically decreased in response to uracil derivatives or
migration through host cells, indicating that ACa is necessary to
induce high levels of exocytosis and confirming the essential role of
the cAMP signaling pathway in this process. Complementation of the
genetically deficient parasites with the ACa gene confirms that the
defect in exocytosis and infection observed in PbACa- sporozoites is
caused by deletion of the ACa gene and not by other modifications
resulting from the genetic manipulations of these parasites.
Two genes with high homology to ACs have been identified in

the Plasmodium genome: ACa and ACb [25]. ACa activity as an AC
has been demonstrated for P. falciparum, where the catalytic domain
was expressed independently [22]. A second putative AC gene,
called ACb, has been identified in the Plasmodium database. We tried
to generate ACb-deficient parasites; however the ACb gene seems to
be essential for the asexual blood-stages of Plasmodium.
ACa- sporozoites are able to stimulate exocytosis in response to

the permeant analogue of cAMP, but not to forskolin, the activator
of ACs, confirming that the defect is caused by the lack of a
functional AC and can be compensated by artificially increasing
intracellular concentrations of cAMP. The results obtained with
PbACa- sporozoites also suggest that ACa is sensitive to forskolin
stimulation, as the increase in exocytosis induced by this drug is
lost in the genetically deficient sporozoites. Since AC activity is
insensitive to forskolin in asexual blood-stages [35] and ACb is
preferentially expressed in this stage of the parasite cycle [25], it
seems likely that ACb, rather than ACa, is required for cAMP
formation during erythrocyte infection. We also found that the
growth of PbACa- parasites in the asexual blood-stages was
indistinguishable from control, consistent with the lack of activity
of ACa during this stage.
Interestingly, the ACa gene contains a N-terminal domain with

high homology to voltage-gated K+ channels. Other apicomplex-
ans and also the ciliates Paramecium and Tetrahymena have an ACa
gene homologous to the one in Plasmodium [23]. In Paramecium it
has been demonstrated that the purified ACa protein also has K+

channel activity, and the generation of cAMP is regulated by K+

conductance [24]. Although functional K+ channel activity has not
been demonstrated for ACa in Plasmodium, our results are
consistent with a role for K+ conductance in sporozoite exocytosis.
Uracil derivates do not induce exocytosis in K+ free medium, but
activation of AC with forskolin or addition of the permeant
analogue of cAMP overcomes the requirement for extracellular
K+. Therefore, it seems likely that increased K+ permeability may
induce activation of ACa and synthesis of cAMP.

Table 1.

Midgut Salivary glands

Number of
oocysts per
infected
mosquito (day 11)

Percentage
of infected
midguts
(day 11)

Number of salivary
gland sporozoites
per mosquito (day
18)

WT 36 76 3,157

C1 37 80 3,653

C2 33 80 3,333

doi:10.1371/journal.ppat.1000008.t001
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Materials and Methods

Host cells and parasites
Hepa 1-6 (ATCC CRL-1830), a hepatoma cell line derived

from a C57L/J mouse, which is efficiently infected by rodent

malaria parasites [36] was used for in vitro hepatocyte infections.
Plasmodium yoelii yoelii sporozoites (cell line 176 NL), P. berghei
ANKA wt and spect-1 deficient sporozoites [15] and the NF54
isolate [37] of P. falciparum were used to produce sporozoites in A.
stephensi mosquitoes. Salivary glands were dissected from the

Figure 7. PbACa- sporozoites have defective exocytosis and infection. Exocytosis and infectivity of P. berghei WT (white bars), PbACa- C1
(black bars) and C2 (gray bars) sporozoites was analyzed. (A, B) Sporozoites were incubated or not with uracil derivatives (UD) or forskolin (FSK) (A) or
8Br-cAMP (B) for 1 h before fixation and quantification of exocytosis. (C) Sporozoites were added to filter insets containing confluent Hepa1-6 cells
and collected on empty coverslips placed underneath the filters in the lower chamber. Percentage of sporozoites in coverslips showing apical-
regulated exocytosis is shown. (D) Infection of Hepa1-6 cell by sporozoites in vitro was determined by counting the number of infected cells after
24 h incubation. (E) Infection of mice was determined by real-time PCR amplification of 18S rRNA in the liver 40 h after inoculation of sporozoites.
doi:10.1371/journal.ppat.1000008.g007
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mosquitoes. The P. falciparum sporozoites were extracted from the
salivary glands, purified, and cryopreserved. Prior to being used in
assays, the sporozoites were thawed and suspended in RPMI
medium.

Uracil derivatives
Exocytosis was induced by incubation of sporozoites with a

mixture of the physiological concentrations of uracil derivatives

(ICN Biomedicals) consisting of 180 mM uracil, 280 mM uridine,
300 mM uracil monophosphate (UMP), 50 mM uracil diphosphate
(UDP) and 30 mM uracil triphosphate (UTP) was prepared in
RPMI 1640 and pH adjusted to 7.

Regulated exocytosis
Sporozoites (105 P. yoelii, P. berghei or 56104 P. falciparum) were

centrifuged for 5 min at 18006g on glass coverslips before addition

Figure 8. PbACa- complemented sporozoites recover the WT phenotype. (A) Schematic representation of the complement replacement
vector, the ACa- disrupted locus and the complemented ACa locus. Correct integration of the construct results in the reconstitution of the disrupted
ACa gene as shown. Arrows indicate the position of the primers used for PCR in B. (B) Complementation of ACa was shown by PCR (left) and by
Southern analysis (right). PCR on DNA of WT, PbACa- C1 and complemented ACa (Cmp) results in the amplification of a fragment of 1 kb when using
the primers indicated in (A). Genomic Southern blot hybridization of WT, PbACa- C1 and complemented ACa. The probe used for hybridization is
represented in A. Integration of the complementation plasmid causes reduction in size of a 4.3-kb fragment in PbACa- C1 parasites to a 2.0-kb
fragment in the ACa2 complemented parasites. (C) Exocytosis of WT (white bars), PbACa- C1 (black bars) and complemented ACa (stripped bars)
sporozoites in response to uracil derivatives (UD). (D) Infection of Hepa1-6 cells in vitro by WT, ACa- C1 (black bars) and complemented ACa (stripped
bars) sporozoites was determined by counting infected cells 24 h after addition of sporozoites. * significant difference (p,0.01, ANOVA) compared to
WT and complemented ACa.
doi:10.1371/journal.ppat.1000008.g008
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of uracil derivatives or conditioned medium. After incubation at
37uC for 1 h, sporozoites were fixed with 1% paraformaldehyde for
10 min (non-permeabilizing conditions) before staining for surface
TRAP/SSP2 with the monoclonal antibody (F3B5) for P. yoelii,
PfSSP2.1 for P. falciparum [38] and a specific TRAP/SSP2 rabbit
anti-serum for P. berghei. Sporozoite regulated exocytosis was
quantified as the percentage of total sporozoites that present a
TRAP/SSP2 stained ‘cap’ in their apical end. Results are expressed
as the average of triplicate determinations counting at least 50
sporozoites for each condition. Background level exocytosis was
measured by staining sporozoites after dissection from mosquitoes,
before incubation in vitro. Background exocytosis was always lower
than 8% and was subtracted from all values. All experiments were
performed twice showing similar results.

Western blot
4 6 105 P. yoelii sporozoites were incubated alone or with the

different exocytosis stimuli for 1 h at 37uC before spinning at
20,000 g for 10 min. The supernatants were collected and
separated in a 7.5% gel in reducing conditions. After semi-dry
transfer to a PDVF membrane, proteins were stained with anti-P.
yoelii MTIP antiserum followed by anti-rabbit conjugated to
horseradish peroxidase. Bound antibodies were detected by
chemiluminescence using ECL (GE Healthcare Bio-Sciences).

Drug treatments
Sporozoites (105) were incubated with 100 mM forskolin, 100 mM

MDL-12.330A, 500 mM 8Br-cAMP, 10 mM H89, 30 mM genis-
tein, 100 nM charybdotoxin, 50 mM SQ22536, 50 mM 29, 59-
Dideoxyadenosine, 5 mM Adenosine 39, 59-cyclic monophosphor-
othioate 8Br-Rp-isomer, 1 nM margatoxin, 20 mM BAPTA,
ionomycin 1 mM (all from Calbiochem) before addition or not of
uracil derivatives for 1 h, followed by fixation and quantification of
exocytosis. For exocytosis assays sporozoites were pretreated with
the drug for 15 min and concentrations were kept constant
throughout the experiment. For infection and migration, treatment
with drugs was performed for 15 min before washing and spinning
sporozoites on Hepa1-6 cells grown on coverslips placed in 24-well
dishes containing 1 ml of culture medium/well. For assays in K+-
free medium: 105 P. yoelii sporozoites were incubated for 45 min in
regular medium (RPMI 1640, that contains 5.3 mM KCl and
100 mM NaCl), K+-free medium (modified RPMI 1640 with no
KCl and 110 mM NaCl to maintain osmolarity) in the presence or
absence of stimulus, before fixation and quantification of exocytosis.
To assay sporozoites viability after incubation in K+-free medium,
sporozoites centrifuged at 20,800 g and resuspended in regular
medium with uracil derivatives to induce exocytosis. All experi-
ments were performed twice showing similar results.

Intracellular cAMP levels
Intracellular levels of cAMP in P. yoelii sporozoites were

determined using a cAMP Biotrack Enzymeimmunoassay system
from Amersham Bioscience. For each sample 2 6 106 P. yoelii
sporozoites were incubated with uracil derivatives for 45 min at
37uC. The experiment was performed twice showing similar
results.

Migration through cells and infection
Sporozoites (105 sporozoites/coverslip) were added to mono-

layers of 26105 Hepa1-6 cells for 1 h in the presence of 1 mg/ml
of rhodamine-dextran lysine fixable, 10,000 MW. Sporozoites
breach the plasma membrane of host cells during migration and as
a result fluorescent dextran enters in their cytosol, allowing

detection of wounded cells [17]. Cells were washed and incubated
for another 24 hours before fixation and staining of infected cells
with the mAb (2E6) recognizing HSP70 to detect infected cells
[39], followed by anti-mouse IgG-FITC antibodies. Migration
through host cells is quantified as percentage (or total number) of
dextran-positive cells. Infection was quantified as the number of
infected cells per coverslip or per 50 microscopic fields. For
transwell filter assays Hepa1-6 cells (56105) were cultivated on
3 mm pore diameter Transwell filters (Costar, Corning, New York)
until they form a continuous monolayer. Empty coverslips were
placed underneath the filters. P. berghei sporozoites (26105) were
added to filter insets containing Hepa1-6 cells. Coverslips were
fixed after 2 h of incubation with sporozoites, before staining for
surface TRAP/SSP2. All experiments were performed twice
showing similar results.

Determination of live/dead sporozoites with propidium
iodide
P. yoelii sporozoites were incubated with the indicated drugs for

20 min before addition of propidium iodide (1 mg/ml) for 10 min.
Sporozoites were washed and observed directly with a fluorescence
microscope. Propidium iodide positive sporozoites were consid-
ered dead and quantified. At least 100 sporozoites were counted in
each condition.

Motility of live sporozoites
Live P. yoelii sporozoites were observed directly under the

microscope in a heated stage at 37uC before or after addition of
different stimuli. As control, the same volume of medium with the
same solvent used for the stimuli was added. At least one hundred
sporozoites were counted in each condition and they were
classified as immobile, twisting or gliding, depending on their
type of motility observed.

Generation of the PbACa- parasite lines
To disrupt the ACa locus an ACa replacement vector was

constructed in vector b3D.DT.ˆH.ˆDb (pL0001, MRA-770) con-
taining the pyrimethamine-resistant Toxoplasma gondii (tg) dhfr/ts
gene. To complement ACa into the genome of PbACa- parasites, a
vector was constructed with the human (h) dhfr selectable marker
and two fragments of 4.3kb (59) and 0.5 kb (39) of the ACa gene of
P. berghei. The linearized vector can integrate in ACa. Further
details are described in Fig. 5. P. berghei-ANKA (clone 15cy1) was
used to generate PbACa-parasites. Transfection, selection, and
cloning of PbACa- parasites was performed as described [40]. Two
clones (C1 and C2) were selected for further analysis. PbACa- C1
parasites were transfected with the complement vector to create
ACa- complement. Selection of transformed parasites was
performed by treating infected animals with WR99210 (20 mg/
kg bodyweight) as has been described [41]. One parasite clone
(Cmp) in which the ACa gene was integrated into the ACa locus
was selected for further analysis. Correct integration of constructs
into the genome of transformed parasites was analyzed by RT-
PCR and Southern analysis of restricted DNA. PCR on DNA of
WT and ACa2 parasites was performed by using primers specific
for the WT 59 (flG1F 59-AGCGCATTAGTTTATGATTTTTG-
39 and flG1R 59-TTGTGAATTAGGGATCTTCATGTC-39;
amplifying a fragment of 0.7 kb) and WT 39 (flG2F 59-
ATGCGCAAACCCGTTAAAT-39 and flG2R 59-TTTGATT-
CATTCCACTTTCCA-39; amplifying fragment of 0.7 kb) and
disrupted 59 (flG1F and Pb103 59-TAATTATATGTTATTT-
TATTTCCAC-39; amplifying a fragment of 0.8 kb) and disrupted
39 (flG2R and Pb106a 59-TGCATGCACATGCATGTAAA-
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TAGC-39; amplifying fragment of 0.9 kb) locus. PCR on DNA of
complement was performed by using primers specific for INT39
(Pb106a and flG4R 59-GCAGAGAGAGCGTTAAAAAC-
TATTG-39, amplifying a fragment of 1.0 kb). RT-PCR was
performed on RNA isolated from WT sporozoites. Primers 02-F
(59-AGGGTGACATTGAAGGGATG-39) and 02-R (59-
ATTCCTCGGGATATTCCACC-39) were used to amplify
cDNA or genomic DNA derived from the PbACa gene, amplifying
a fragment of 270 bp and 658 bp, respectively.

Genomic Southern hybridization
Genomic DNA of P. berghei (2 mg) was digested with HincII /

EcoRI or NheI / EcoRI, separated on 0.9% agarose gel and then
transferred onto a nylon membrane. DNA probe was labeled with
digoxigenin using the DIG PCR labeling kit (Roche Diagnostics)
using genomic DNA as template with the following primer pair,
59-TCCTTCGTGGAATTTACACTTG-39 and 59-CCAGAC-
GAGGAACTAATGCAG-39. Signals were detected using the
DIG/CPSD system (Roche Diagnostics).

Phenotype analysis of the PbACa- parasite during blood
stage and mosquito stage development
Parasitemia in mice was determined by examination of a

Giemsa-stained blood smear. Oocyst formation and sporozoite
development were quantified in infected Anopheles stephensi
mosquitoes as described [42]. The number of salivary gland
sporozoites per mosquito was determined by dissecting salivary
glands from 10 infected mosquitoes in each condition [43]. Blood
stage infections were studied in mice (male Swiss Webster or C57/
Bl6 mice, 20–25 g) infected with 200 ml of blood at 0.5%
parasitemia. Experiment was performed twice showing similar
results.

Gliding motility of sporozoites
Gliding motility of sporozoites was analyzed by counting the

average number of circles performed by single sporozoites [44].
Sporozoites (2 6 104) were centrifuged for 10 min at 1,800 6 g
onto glass coverslips previously coated with anti-CS 3D11
antibody, followed by incubation for 2 h at 37uC and staining
with biotin-labeled 3D11 antibody followed by incubation with
avidin-FITC for sporozoite and trail visualization. Quantification
was performed by counting the number of circles performed by
100 sporozoites in three independent coverslips. When indicated
3% mouse albumin was present in the assay.

Transwell filter assays
Hepa1-6 cells were cultivated on 3 mm pore diameter Transwell

filters (Costar, Corning, New York) until they form a continuous
monolayer. Empty coverslips were placed underneath the filters.
Sporozoites (26105) were added to filter insets containing Hepa1-6
cells or no cells. Coverslips were fixed after 2 h of incubation with
sporozoites, before staining for surface TRAP to determine
exocytosis. Experiment was performed twice showing similar
results.

Sporozoite infectivity in vivo
Groups of three C57/Bl6 mice were given i.v. injections of

20,000 sporozoites. 40 h later, livers were harvested, total RNA
was isolated, and malaria infection was quantified using reverse
transcription followed by real-time PCR [31] using primers that
recognize P. berghei–specific sequences within the 18S rRNA 59-

AAGCATTAAATAAAGCGAATACATCCTTAC and 59-GGA-
GATTGGTTTTGACGTTTATGT. Experiment was performed
three times showing similar results.

Accession numbers/ID numbers for genes and proteins
P. falciparum ACa: UniProtKB/TrEMBL accession number:

Q8I7A1. PlasmoDB identifier: PF14_0043
P. berghei ACa: PlasmoDB identifier: PB001333.02.0. Complete

PbACa sequences (contig 1047, 5680) were retrieved from Sanger
sequencing genomics project. P. falciparum PKA: PlasmoDB
identifier PFI1685w.

Supporting Information

Figure S1 Exocytosis of TRAP occurs in the apical end of
sporozoites. P. berghei sporozoites were incubated on coverslips
coated with anti-CS antibodies for 20 min before addition of
forskolin. After another 30 min, sporozoites were fixed and stained
for CS protein.
Found at: doi:10.1371/journal.ppat.1000008.s001 (5.64 MB TIF)

Figure S2 Control for sporozoite lysis. P. yoelii sporozoites (4 6
105) were incubated for 1 h with UD, forskolin (FSK) or 8Br-
cAMP. Culture media (upper panel) and pellet containing
sporozoites (lower panel) were analyzed by Western blot against
myosin A tail domain interacting protein (MTIP), which is
localized to the inner membrane complex. A unique band at
25 kDa was found.
Found at: doi:10.1371/journal.ppat.1000008.s002 (1.20 MB TIF)

Figure S3 Motility of sporozoites before and after exocytosis.
Live P. yoelii sporozoites were observed directly under the
microscope before or after addition of forskolin (A) or UD (B).
Sporozoite motility was classified as immobile, twisting or gliding.
There is a clear shift in sporozoite motility profile from gliding to
immobile at later times after addition of the stimuli. As expected, a
certain decrease in motility is observed over time even in control
sporozoites, however, the decrease induced by the exocytosis
stimuli is significantly more pronounced. No significant changes
were observed in twisting motility.
Found at: doi:10.1371/journal.ppat.1000008.s003 (1.23 MB TIF)

Table S1 Determination of sporozoite viability after drug
treatments. P. yoelii sporozoites were incubated in the different
conditions indicated. Dead sporozoites were quantified using
propidium iodide staining. An untreated control was performed
for each condition because the background level of dead
sporozoites may vary on each batch of dissected mosquitoes.
Found at: doi:10.1371/journal.ppat.1000008.s004 (1.05 MB TIF)
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Abstract: 

Malaria is transmitted through the bite of a mosquito that deposits Plasmodium 

sporozoites in the skin, from where they migrate into circulation and later into the liver.  

Sporozoites traverse hepatocytes before infection, a process that activates them for 

infection by inducing regulated exocytosis at the apical end of the parasite. Here we 

show that uracil and its derived nucleotides, which are found in the cytosol of traversed 

cells, induce apical regulated exocytosis in P. yoelii and P. falciparum sporozoites. 

Exocytosis is specifically inhibited by albumin, which is present in host tissues, but this 

inhibitory effect is no longer active once sporozoites contact hepatocytes, allowing 

activation of sporozoites for infection. In this way, sporozoite migration through cells 

other than hepatocytes does not activate exocytosis or increase their infectivity. We 

have identified two host molecules that regulate sporozoite exocytosis and infectivity. 

Our results indicate that sporozoites regulate exocytosis in response to specific 

molecules in their environment and may use this capacity to distinguish between 

different tissues to successfully establish infection in the liver. 
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Introduction: 

The causative agent of malaria is the protozoan parasite Plasmodium. It is transmitted 

by the bite of infected mosquitoes that deposit the sporozoite form of the parasite in the 

skin of the mammalian host. Sporozoites are motile and travel from the skin into the 

circulation, from where they reach the host’s liver (Mota and Rodriguez, 2004). We 

have previously observed that Plasmodium sporozoites traverse several cells in the liver 

before infecting a final hepatocyte. Sporozoites migrate through host cells by disrupting 

their plasma membranes and traversing their cytosol. In vitro, sporozoites can migrate 

through different types of cells, in what appears to be a non-specific type of cell 

invasion (Mota et al., 2001). This is in contrast to infection, in which sporozoites are 

more selective for hepatocytes and enter these cells forming a parasitophorous vacuole 

where they replicate (Mota and Rodriguez, 2004).  

 

Plasmodium sporozoites and other apicomplexan parasites such as Eimeria 

sporozoites and Toxoplasma tachyzoites have small vesicles called micronemes that 

contain proteins involved in host cell infection (Sibley, 2004). These proteins, such as 

MIC-2 in Toxoplasma or thrombospondin-related anonymous protein (TRAP) in 

Plasmodium, become exposed on the apical surface of the parasite upon exocytosis of 

the micronemes, which is triggered by incubation of these parasites with host cells 

(Gantt et al., 2000; Carruthers et al., 1999). Exocytosis of micronemal proteins resulting 

in the appearance of TRAP on the apical surface of sporozoites is induced during the 

process of migration through cells and precedes infection with formation of an 

internalization vacuole. This process, similarly to Toxoplasma secretion of MIC2 

(Huynh and Carruthers, 2006), is thought to facilitate invasion of the host cell (Mota et 

al., 2002).  

Migration though host cells is therefore considered an early step that activates 

sporozoites for infection (Mota and Rodriguez, 2004).  

 

During the process of migration through cells sporozoites are not surrounded by a 

vacuolar membrane and therefore are in direct contact with the cytosol of the traversed 

cell. Because apical regulated exocytosis can also be induced by incubation of 

sporozoites with host cell lysates, it was proposed that cytosolic factors in the 

mammalian cell activate exocytosis in the parasite (Mota et al., 2002). In this work we 

have identified host cell cytosolic factors that induce exocytosis of the rodent parasite P. 
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yoelii and the human parasite P. falciparum. We found that uracil, uridine and uracil-

derived nucleotides at concentrations that are normally found in the cytosol of 

mammalian cells induce exocytosis in sporozoites and increase their infectivity. We 

have also characterized the regulation of this process. As sporozoites are deposited in 

the skin of the host where they traverse host cells (Amino et al., 2006; Vanderberg and 

Frevert, 2004), it is likely that they encounter high concentrations of uracil-derived 

nucleotides before reaching their target cells in the liver. However, exocytosis is only 

expected to take place just before hepatocyte infection, as it exposes high concentrations 

of adhesive molecules on the surface of the parasite, such as TRAP, which are required 

for internalization and formation of a parasitophorous vacuole. We found that 

exocytosis is inhibited specifically by albumin, a protein found in the skin, blood and 

liver of the mammalian host, suggesting that during infections in vivo sporozoites would 

not undergo apical regulated exocytosis in the presence of physiological concentrations 

of this protein. The inhibitory effect of albumin is reversed when sporozoites are in 

contact with hepatocytes, suggesting that after arrival in the liver, sporozoites become 

susceptible to stimulation by uracil-derived nucleotides that will induce apical regulated 

exocytosis and facilitate hepatocyte infection.  

 

Results: 

 

Apical regulated exocytosis in the rodent parasite, P. yoelii (Mota et al., 2002) and in 

the human parasite, P. falciparum is observed as the surface exposure of TRAP protein 

in the apical end of the sporozoites (Fig. 1A and B). Exocytosis in P. yoelii is induced 

by migration through host cells, but also by incubation with lysates of a hepatoma cell 

line (Hepa1-6), which is susceptible to sporozoite infection (Mota et al., 2002; Mota 

and Rodriguez, 2000). Regulated exocytosis in mammalian cells can be induced by a 

wide variety of molecules, ranging from proteins to nucleotides. In particular, the uracil 

and adenine nucleotides (UDP, ADP, UTP and ATP) bind to specific receptors of the 

P2X and Y families and induce regulated exocytosis in different cell types (Lazarowski 

et al., 2003). Since these nucleotides are found in high concentrations in the cytosol of 

cells and therefore migrating sporozoites are in direct contact with them during 

migration, we tested their ability to induce exocytosis in P. yoelii sporozoites. We found 

that UDP and UTP induce sporozoite exocytosis, but not ADP or ATP (Fig. 1C). We 

also found that UDP induces exocytosis in Plasmodium sporozoites in a dose dependent 
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manner and that the physiological concentration of UDP found in the cytosol of cells 

(app. 100 µM) (Traut, 1994) is sufficient to induce efficient exocytosis in sporozoites 

(Fig. 1D).  UDP induces exocytosis in sporozoites already 5 min after incubation and 

reaches maximum stimulation by 10 to 20 min (Fig. 1E).   

 

We also determined whether other pyrimidines could induce exocytosis in sporozoites. 

Using the same concentration of 100 µM, we found that uracil and thymine and their 

derivative nucleosides and nucleotides also induce exocytosis in sporozoites (Fig. 1F). 

No significant activity was found with cytosine derivatives (not shown). We next tested 

a mix of uracil and its derivatives (uridine, UMP, UDP and UTP) at the concentrations 

normally found in the cytosol of mammalian cells (from 30 to 300 µM, described in 

methods) (Traut, 1994), and found that it efficiently induced exocytosis in sporozoites 

(Fig. 2A). As the physiological concentrations of thymine and its derivatives are very 

low (<5 µM) in mammalian tissues (Traut, 1994), uracil and its derivatives are likely to 

be the major effectors in this pathway to activate sporozoite exocytosis during migration 

through host cells.  

 

Migration through hepatocytes induces sporozoite apical regulated exocytosis, which 

facilitates invasion of the host cell (Mota et al., 2002). Stimulation of exocytosis by 

other means, such as calcium ionophores or Hepa1-6 cells lysates, overcomes the need 

for migration through host cells and increases infection (Mota et al., 2002). To test 

whether stimulation of exocytosis by physiological concentrations of uracil and its 

derivatives, would also overcome the need for migration through hepatocytes before 

infection, we incubated P. yoelii sporozoites with these molecules to induce regulated 

exocytosis before incubation with Hepa1-6 cells. Migration through host cells was 

determined as the percentage of cells that were wounded by sporozoite migration and as 

a result became positive for a soluble impermeant tracer (dextran) (McNeil et al., 1999). 

We found an increase in the number of infected cells, indicating that stimulation of 

regulated exocytosis in sporozoites increases their infectivity. In addition, activation of 

sporozoite exocytosis by uracil and its derivatives reduced sporozoite migration through 

hepatocytes, suggesting that such migration is not necessary when exocytosis is 

previously induced (Fig. 2B).  
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A malaria infection starts with the bite of an infected mosquito that deposits saliva 

containing Plasmodium sporozoites in the skin of the host. Motile sporozoites move 

freely in the dermis (Vanderberg and Frevert, 2004), where they probably encounter 

high concentrations of uracil-derived nucleotides. This would lead to the stimulation of 

apical regulated exocytosis long before sporozoites have reached their target cells in the 

liver. To study whether sporozoite exocytosis might be regulated by host factors that 

sporozoites encounter during the journey from the skin to the liver of host, we first 

tested the effect of mouse serum on sporozoite exocytosis. We found that pre-incubation 

of sporozoites with mouse serum completely inhibits exocytosis induced by uracil-

derivatives (Fig. 3A). Since albumin is found in high concentrations in the serum and 

specifically regulates sporozoite activity inducing gliding motility (Vanderberg, 1974), 

we tested the effect of albumin on sporozoites exocytosis. We found that albumin 

completely prevents activation by uracil derivatives (Fig. 3B).  Because albumin is a 

carrier protein normally found binding lipids (Kragh-Hansen et al., 2002), we next 

tested the effect of highly purified fatty acid-free albumin, which presented a similar 

inhibitory effect (not shown). We also found that other proteins such as gelatin, or the 

serum proteins a2-macroglobulin and transferrin did not inhibit sporozoite exocytosis 

(Fig. 3C). The inhibitory effect of albumin was found to be dose dependent (Fig. 3D), 

with physiological concentrations found in the interstitial fluid of the dermis (35 mg/ml) 

(Reed et al., 1989) or in blood (28-37 mg/ml) (Don and Kaysen, 2004) completely 

inhibiting sporozoite stimulation for exocytosis (Fig. 3C).  

 

To confirm that the inhibitory activity observed is specifically due to the presence of 

albumin, we pre-incubated albumin with specific antibodies to neutralize its effect. We 

found that anti-albumin antibodies specifically reverse the inhibitory effect of albumin 

(Fig. 3E).  As albumin is found in high concentrations in the interstitial fluids of the 

skin tissues (Reed et al., 1989) our results suggest that after sporozoites are inoculated 

in the mammalian host, albumin would inhibit the exocytosis response to a stimulus 

such as uracil derivatives, preventing premature activation of sporozoites for infection. 

 

This inhibitory mechanism, however, would interfere with the infectivity of the parasite, 

since hepatocytes contain high concentrations of albumin. To analyze the regulation of 

exocytosis by albumin in the presence of hepatocytes, we first added sporozoites pre-

incubated with albumin or not to monolayers of mouse or human hepatoma cell lines.  
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 We found that in the presence of these cells the inhibitory effect of albumin on 

exocytosis was no longer detectable, resulting in efficient activation of exocytosis (Fig. 

4A). This result indicates that in the presence of hepatocytes, sporozoites are no longer 

susceptible to the inhibitory effect of albumin and can be activated by uracil derivatives. 

In these experiments, we inhibited sporozoite motility with a myosin inhibitor (BDM) to 

inhibit internalization of sporozoites inside host cells where exocytosis cannot be 

detected. Therefore, sporozoites were in contact with the surface of hepatocytes, but 

were not able to migrate through or infect these cells and the exocytosis stimulus was 

provided externally by addition of uracil derivatives in the medium. We then tested 

whether hepatocytes had to be alive and whether a hepatocyte lysate or the membrane 

fraction of hepatocytes could also mediate the reversal of albumin inhibition in uracil 

derivatives-induced exocytosis. We found that paraformaldehide fixed hepatocytes 

could also reverse the inhibitory effect of albumin (Fig. 4B). Incubation of sporozoites 

with a hepatocyte lysate or only its membrane fraction also prevented the inhibitory 

effect of albumin on uracil derivatives induced exocytosis (Fig. 4B), suggesting that the 

hepatocyte effect on exocytosis is mediated by a molecule localized in the extracellular 

side of the hepatocyte membrane. 

 

Conversely, primary cultures of skin dermal fibroblasts did not reverse the inhibitory 

effect of albumin on exocytosis, resulting in the lack of exocytosis activation (Fig. 4C). 

These results indicate that different cell types have different effects on the regulation of 

parasite activity, and suggest that when sporozoites migrate through cells in skin 

dermis, they would not be able to undergo exocytosis in response to the cytosolic uracil 

nucleotides present in these cells. Conversely, contact with hepatocytes seems to 

counteract the inhibitory effect of albumin resulting in exocytosis activation after 

migration through these cells.  

 

To test this hypothesis, we analyzed the capacity to induce sporozoite exocytosis of 

different cell types in the presence of albumin. P. yoelii sporozoites were incubated with 

cells cultured on Transwell filters. Sporozoites migrate through cells on the filter and 

are collected on coverslips placed underneath the filters (Mota et al., 2002). The assay is 

performed in the presence of fluorescent dextran to confirm sporozoite migration 

through cells on the filter. We found that migration through hepatocytes results in the 

activation of sporozoite exocytosis, while migration through dermal fibroblasts or other 
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non-hepatic cell types does not (Fig.4D). During infection in the host, this differential 

capacity to activate sporozoites may play a role to achieve timely stimulation of 

exocytosis only after sporozoites have reached their target cells in the liver. 

 

To analyze whether lack of exocytosis activation by skin cells actually results in lack of 

sporozoite activation for infection, we compared sporozoites after migrating through 

dermal fibroblasts or through hepatocytes. P. yoelii sporozoites were added to filters 

containing confluent dermal fibroblasts or Hepa1-6 cells. Sporozoites that traversed the 

filters encountered Hepa1-6 cells on coverslips placed underneath.  In this way, we can 

distinguish between sporozoites that migrated through Hepa1-6 cells or through dermal 

fibroblasts before encountering the cells on the coverslip. We found that sporozoites 

that traversed filters with Hepa1-6 cells migrated through fewer cells before infection in 

the coverslips when compared with sporozoites that migrated through dermal fibroblasts 

(Fig. 4E, left panel). Sporozoites that migrated through Hepa1-6 cells appear ready to 

infect host cells in the coverslips underneath without need for further migration, 

whereas sporozoites that migrated through dermal fibroblasts still required migration 

through Hepa1-6 in the coverslips to be infective. As an alternative way to analyze 

sporozoite infectivity after the migrating through different types of host cells, we 

incubated P. yoelii sporozoites with Hepa1-6 cells or mouse dermal fibroblasts for 30 

min, before transferring them to new Hepa1-6 cell monolayers to analyze their 

infectivity. Sporozoites that were pre-incubated with Hepa1-6 cells migrated through 

fewer cells before infection when they contact cell monolayers the second time, as 

compared to sporozoites that migrated through mouse dermal fibroblasts that still need 

to migrate through Hepa1-6 cells before infection (Fig. 4E, right panel). These results 

suggest that while migration through hepatocytes activates sporozoites for infection, 

migration through dermal fibroblasts does not. Since all cells have high concentrations 

of uracil derivatives in their cytosol, these results are consistent with the existence of a 

regulatory mechanism that would allow exocytosis only when sporozoites migrate 

through hepatocytes, but not through other cell types. 

 

P. falciparum is the human malarial parasite that causes most of the mortality associated 

with this disease. P. falciparum sporozoites also migrate through host cells (Mota et al., 

2001), but apical regulated exocytosis has not been studied in this species of the 

parasite. We observed that physiological concentrations of uracil and its derivatives also 
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induce exocytosis in these sporozoites, which is inhibited by albumin (Fig. 5A). We 

also found that migration through a hepatocyte cell line that is susceptible to infection 

by P. falciparum sporozoites (Sattabongkot et al., 2006) induces exocytosis, while 

migration through other cells did not activate sporozoites (Fig. 5B). These results 

suggest that P. falciparum sporozoites also activate exocytosis in response to uracil-

derived nucleotides that they encounter in the cytosol of host cells during migration. 

Similarly to P. yoelii, exocytosis is also inhibited by albumin and seems to be reversed 

by the presence of hepatocytes, resulting in efficient activation of exocytosis. 

 

Discussion: 

The completion of a successful liver infection by Plasmodium sporozoites involves 

multiple steps, as these parasites need to traverse different host tissues before reaching 

the liver parenchyma where they finally invade a non-phagocytic cell, the hepatocyte. 

Sporozoites perform this journey with high rates of success, as very low numbers of 

sporozoites are able to initiate a malaria infection (Ungureanu et al., 1977). The 

capacity of sporozoites to sense their environment and react accordingly seems essential 

to complete this task with high efficiency. Signaling pathways are probably activated in 

sporozoites regulating activities such as motility, migration through cells and 

exocytosis. Our results suggest that Plasmodium sporozoites can sense and react to the 

extracellular environment modulating their infectivity.   

 

We have found two different molecules that regulate the behavior of Plasmodium 

sporozoites. Immediately after being injected into the dermis, sporozoites will encounter 

albumin, as this protein is found in the interstitial fluids of the dermis in high 

concentrations (Reed et al., 1989). In addition, the blood pool formed after mosquito 

bite (Sidjanski and Vanderberg, 1997) must contain albumin normally found in serum. 

Albumin specifically induces Plasmodium sporozoites motility (Vanderberg, 1974), 

suggesting that sporozoites are able to sense the presence of this protein. Albumin is not 

present in mosquitoes, where sporozoites move at a slow speed (<2 µm/s) (Frischknecht 

et al., 2004), however, it is abundant in mammals, where sporozoites need to initiate 

active motility. At the same time, our results indicate that albumin prevents sporozoite 

exocytosis. These observations are consistent with the requirements of an infection in 

vivo, where sporozoites in the skin need to move actively in order to reach the 

circulation and but also need to prevent premature activation of exocytosis before 
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reaching the liver.  

 

There are several observations suggesting that sporozoites migrate through cells in the 

dermis after mosquito inoculation. Intravital microscopy of the skin has revealed that 

sporozoites move through the dermis and through endothelial cells (Amino et al., 2006; 

Vanderberg and Frevert, 2004). Also, mutant sporozoites with reduced ability to 

migrate through cells have low infectivity in the host when deposited in the dermis by 

mosquito bites (Bhanot et al., 2005). It has also been observed that sporozoites migrate 

through several hepatocytes in the liver before infecting a final one (Frevert et al., 2005; 

Mota et al., 2001) and that mutant parasites with defective migration have reduced 

infectivity after intravenous injection (Ishino et al., 2005; Ishino et al., 2004). As 

migration through cells leads to the activation of sporozoite exocytosis (Mota et al., 

2002), albumin would prevent this process before sporozoites reach the liver. In fact, we 

found that migration through skin dermal cells does not induce exocytosis and does not 

activate sporozoites for infection. Sporozoites must enter in contact with high 

concentrations of uracil derivatives while migrating through the cytosol of these cells, 

but exocytosis is not induced, presumably due to the inhibitory effect of albumin. Our 

results indicate that migration through cells can occur without sporozoite activation, a 

situation that probably occurs in vivo during migration in the skin of the host.  

 

After reaching the liver, sporozoites need to undergo exocytosis to release or expose on 

their surface molecules necessary to invade hepatocytes forming a parasitophorous 

vacuole. Probably several parasite and host cell molecules are involved in this 

interaction.  We have used TRAP as a marker for apical regulated exocytosis, as it is 

one of the best-characterized parasite proteins that is found in the micronemes (Bhanot 

et al., 2003) and is involved in host cell invasion (Jethwaney et al., 2005; Sultan et al., 

1997). We have observed that after contact with hepatocytes, sporozoites recover their 

capacity to exocytose regardless of the presence of albumin. Accordingly, migration 

through hepatocytes induces sporozoite exocytosis, activating parasites for infection. 

This reversion of the inhibitory effect of albumin must be necessary to establish an 

infection in the host, as there are high concentrations of albumin in the liver, both in the 

cytosol of hepatocytes and in interstitial tissues. The activation of exocytosis during 

migration through hepatocytes would also represent an advantage to the parasite, since 

molecules that are required for host cell invasion, such as TRAP, would only be 
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exposed to the cytosol of traversed hepatocytes and not to the extracellular environment, 

avoiding the potential inhibitory effect of antibodies. In fact, although TRAP is required 

for host cell invasion, antibodies to TRAP do not inhibit the infectivity of sporozoites, 

even at high concentrations (Gantt et al., 2000).  

 

Our results suggest that sporozoites are able to differentiate hepatocytes from other cell 

types. This mechanism allows the parasite to respond to exocytosis stimuli only after 

being in contact with hepatocytes. Sporozoites probably recognize hepatocyte surface 

molecules, as they become responsive to uracil derivatives after incubation with 

hepatocytes when sporozoite motility was inhibited to avoid host cell invasion. Once 

they start migrating through host hepatocytes, uracil derivatives in their cytosol would 

induce apical exocytosis, activating sporozoites for infection. This mechanism probably 

allows sporozoites to sense that they have reached an intracellular cytosolic 

environment, as the concentration of uracil derivatives is very low in extracellular fluids 

(Traut, 1994). Plasmodium sporozoites may require specific surface receptors or 

transporters to respond to uracil derivatives. Several putative nucleoside transporters 

have been identified within the P. falciparum genome (Bahl et al., 2003), but only one 

(PfNT1) has been functionally characterized, showing preferential affinity for purines 

(El Bissati et al., 2006). Mammalian cells have pyrimidine receptors, the P2Y family, 

that activate signaling cascades and exocytosis in specific cell types (Brunschweiger 

and Muller, 2006) however, no sequence homology is found for this type of receptor in 

the Plasmodium genome (Bahl et al., 2003). Our results also don’t exclude the 

possibility of alternative signals to trigger exocytosis provided by host cells. 

 

Genetically manipulated sporozoites that are deficient in their capacity to migrate 

through cells (SPECT), present very low infectivity of hepatocytes in vivo, but they are 

able to infect hepatic cell lines in vitro, questioning whether migration through cells is 

necessary to induce exocytosis before infection (Ishino et al., 2004). We have found 

that uracil and its derivatives induce apical regulated exocytosis in these mutant 

parasites. However, SPECT-deficient parasites present altered signaling responses and 

seem to use different signaling pathways to activate exocytosis that are not used by wt 

sporozoites, suggesting that these parasites are activated using alternative mechanisms, 

which may be independent of migration through cells (Ono et al.).  
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We have confirmed that sporozoite stimulation and regulation of exocytosis is similar in 

P. falciparum, the human parasite with highest clinical importance. It seems likely that 

this is a common mechanism in different species of Plasmodium, as the molecules 

involved, uracil derived-nucleotides and albumin, are highly conserved among different 

host species (Baker, 1989). It is noteworthy that Plasmodium uses these essential, 

highly conserved molecules to regulate its behavior towards infection. This may 

represent an advantage for the parasite, as it limits the possibility of encountering host 

variants that would be more resistant to infection. 

 

 

 

 

Experimental Procedures: 

Cells and parasites. Cell lines were maintained at 37ºC with 5% CO2 in DMEM 

medium supplemented with 10% fetal calf serum, 1% penicillin/streptomycin and 1mM 

glutamine. HC-04 cells were maintained as described (Sattabongkot et al., 2006). P. 

yoelii yoelii (parasite line 17 XNL) and  P. falciparum (parasite line NF54, clone 3D7) 

sporozoites were obtained from dissection of infected female Anopheles stephensi 

mosquito salivary glands. Mouse dermal fibroblasts were obtained from a Balb/c 

mouse. 

Hepa1-6 cell lysates and membrane fraction. Hepa1-6 cells (4 x 105 cells per ml) 

resuspended in culture medium were repeatedly passed through a 28G syringe until 

more than 95% of the cells were lysed, as determined by Trypan blue staining.  For 

membrane extraction, a Hepa1-6 cells lysate was centrifuged at 3,600 g to remove 

debris and nuclei. The supernatant was centrifuged at 110,000 g for 40 min to pellet the 

membrane fraction.   

Uracil derivatives. A mixture of the physiological concentrations of uracil derivatives 

in the cytosol of mammalian cells (Traut, 1994) consisting of 180 µM uracil, 280 µM 

uridine, 300 µM uracil monophosphate, 50 µM uracil diphosphate and 30 µM uracil 

triphosphate (ICN Biomedicals) was prepared in RPMI 1640 and pH adjusted to 7.  

Apical regulated exocytosis.  Plasmodium sporozoites (105) were centrifuged for 5 min 

at 1,800 x g on glass coverslips with or without a monolayer of 2x105 Hepa1-6 cells, 

HepG2 cells or mouse dermal fibroblasts. In one experiment as indicated, Hepa1-6 cells 
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were fixed with 4% paraformaldehide for 2 h and washed before use. After 45 min 

incubation at 37 °C sporozoites were fixed with 1% paraformaldehyde for 20 min 

before staining with anti-TRAP mAb (F3B5 for P. yoelii or PfSSP2.1 for P. falciparum 

(Charoenvit et al., 1997)), followed by FITC-labeled anti-mouse secondary antibodies. 

Sporozoite regulated exocytosis was quantified as the percentage of total sporozoites 

that present a TRAP stained “cap” in their apical end. Results are expressed as mean of 

triplicate quantifications of a minimum of 50 sporozoites with standard deviation. 

Background level of exocytosis was measured in sporozoites after dissection from 

mosquitoes, before incubation in vitro. Background exocytosis was always lower than 

8% and was subtracted from all values. Digital pictures were acquired using an inverted 

Olympus 1x70 with a 63x oil-immersion objective at room temperature with a 

Hammatsu Photonics C4742-95 camera using Metamorph Imaging Systems software. 

Images were not modified other than adjustment of brightness and contrast to the whole 

image. Albumin from mouse serum, essentially fatty acid-free human and mouse 

albumin (0.005% fatty acid content) solutions were prepared at 35 mg/ml in RPMI 

1640. Gelatin from bovine skin was used at 35 mg/ml in RPMI 1640, alpha2-

macroglobulin at 1.64 mg/ml and apo-transferrin at 2.5 mg/ml. All proteins were from 

Sigma. Sporozoites were pre-incubated with albumin or the other proteins for 15 min at 

room temperature in an eppendorf tube, spun down at 8,600 xg and resuspended in fresh 

medium before incubation with the uracil derivatives at 37ºC for 45 min. Rabbit anti-

albumin antiserum (4-6 mg/ml) (Sigma) was pre-incubated for 1 h at 37ºC with mouse 

albumin at 1mg/ml before addition of the complex to sporozoites. When indicated, 

sporozoites were pre-incubated for 15 min with the myosin inhibitor 

butanedionemonoxime (BDM) (1 mM) to inhibit gliding motility. 

Migration through cells and infection in vitro. P. yoelii sporozoites (105 per 

coverslip) were added to monolayers of 2x105 cells for 1 h in the presence of 1 mg/ml 

of FITC-conjugated, lysine-fixable dextran (Mr 10,000; Molecular Probes). Cells were 

washed and incubated for another 24 h before fixation and staining with anti-HSP70 

mAb (2E6) to detect infected cells (Tsuji et al., 1994). Migration through host cells is 

quantified as percentage of dextran positive cells. In a different set of experiments, P. 

yoelii (105 sporozoites per coverslip) were added to monolayers of 2x105 Hepa1-6 cells 

or mouse dermal fibroblasts for 30 min. Sporozoites were then transferred to a new 

monolayer of Hepa1-6 cells and incubated for an additional 30 min in the presence of 

the tracer dextran. 
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Transwell filter assays. Cell lines or primary cultures of mouse dermal fibroblasts 

(5x105) were cultivated on 3 µm pore diameter Transwell filters (Costar, Corning, New 

York) until they form a continuous monolayer. Empty coverslips or coverslips 

containing Hepa1-6 cells monolayers (2x105 Hepa1-6) were placed underneath the 

filters. P. yoelii sporozoites (2x105) were added to filter insets containing Hepa1-6 cells, 

mouse dermal fibroblasts or no cells. Filters and coverslips were fixed after 2 h of 

incubation with sporozoites, before staining for surface TRAP. To determine migration 

through host cells, FITC-dextran (1 mg/ml) was added before addition of sporozoites. 

Coverslips were washed after 2 h of incubation with sporozoites and further incubated 

for 24 h before fixation, staining and quantification of dextran positive cells and 

infected cells with anti-HSP70. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix II 

 151 

Figure legends: 

Fig. 1. Uracil derivatives induce apical regulated exocytosis in Plasmodium sporozoites. (A) 

Upper panels show surface staining of P. falciparum sporozoites with anti-TRAP mAb. Lower 

panel shows the same microscope field in phase contrast. Apical regulated exocytosis is 

observed as a ‘cap’ in one end of the sporozoite (right panels). (B) Model of apical regulated 

exocytosis. After activation, Plasmodium sporozoites recruit TRAP-containing micronemes to 

their apical end, which fuse with the apical membrane of the parasite.  (C-F) Percentage of P. 

yoelii sporozoites showing apical regulated exocytosis after incubation for 1 h alone (Control), 

with a lysate of Hepa1-6 cells (Lys) or 100 µM UDP, ADP, UTP and ATP (C), increasing 

concentrations of UDP (D), 100 µM UDP for the indicated time periods (E), 100 µM of the 

indicated pyrimidines (F). Results are expressed as mean of triplicate determinations ± SD. 

  

Fig. 2. Physiological concentrations of uracil derivatives induce apical regulated exocytosis 

in P. yoelii sporozoites and activate them for infection. (A) Percentage of P. yoelii 

sporozoites showing apical regulated exocytosis after incubation with physiological cytosolic 

concentrations of uracil and its derivatives, as described in methods. (B) P. yoelii sporozoites 

were incubated with uracil derivatives mix and added to monolayers of Hepa1-6 cells. 

Percentage of dextran-positive cells (black bars) and infected cells (white bars) are shown. 

Results are expressed as mean of triplicate determinations ± SD. 

 

Fig. 3. Albumin inhibits exocytosis induced by uracil derivatives in P. yoelii sporozoites. 

Sporozoites were pre-incubated with (A) mouse serum (non-diluted), (B) mouse albumin (1 

mg/ml), (C) gelatin (35 mg/ml) or serum physiological concentrations of albumin (35 mg/ml), 

a2-macroglobulin (1.64 mg/ml) and transferrin (2.5 mg/ml), (D) increasing concentrations of 

mouse albumin, (E) mouse albumin (1 mg/ml) pre-incubated or not with anti-albumin specific 

antiserum. Sporozoites were washed before incubation with the uracil derivatives (UD). 

Percentage of P. yoelii sporozoites showing apical regulated exocytosis is shown. Results are 

expressed as mean of triplicate determinations ± SD. 

 

Fig. 4. The inhibitory effect of albumin on sporozoite exocytosis is reversed in the presence 

of hepatocytes. (A) Percentage of P. yoelii sporozoites showing apical regulated exocytosis. 

Sporozoites were pre-incubated or not with mouse albumin (1 mg/ml), washed and incubated 

with BDM to inhibit parasite motility before incubation with monolayers of mouse (Hepa1-6) 

and human (HepG2) hepatoma cell lines, in the presence or absence of the uracil derivatives 

(UD). As negative control in each condition, we used sporozoites incubated with albumin (Alb) 

but not stimulated with UD. (B) P. yoelii sporozoites were pre-incubated or not with mouse 

albumin, washed and incubated with intact or fixed monolayers of mouse Hepa1-6 cells, a 
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lysate or the membrane fraction of Hepa1-6 cells. (C) Sporozoites were pre-incubated or not 

with mouse albumin, washed and incubated with BDM before incubation with monolayers of 

mouse (Hepa1-6) or mouse dermal fibroblasts (MDF). (D) P. yoelii sporozoites were pre-

incubated with mouse albumin, washed and added to filter insets containing the indicated cell 

types. Sporozoites were collected on empty coverslips placed underneath the filters in the lower 

chamber. Percentage of sporozoites in coverslips showing apical-regulated exocytosis is shown. 

(D) Left panel: Hepa1-6 cells or MDF were cultivated on filters and coverslips with Hepa1-6 

cells were placed underneath the filters in the lower chamber. P. yoelii sporozoites were added 

to the filter insets. As a control, sporozoites were added to filters containing no cells. The ratio 

of dextran-positive cells to infected cells is shown for coverslips placed under filters. Right 

panel: P. yoelii sporozoites were incubated with monolayers of Hepa1-6 cells or MDF, before 

transfer of the supernatants containing sporozoites to new Hepa1-6 monolayers. The ratio of 

dextran-positive cells to infected cells is shown for each condition. Results are expressed as 

mean of triplicate determinations ± SD. 

 

 

Fig. 5. P. falciparum sporozoites apical regulated exocytosis is induced by uracil 

derivatives or migration through human hepatocytes and it is inhibited by human 

albumin. Percentage of P. falciparum sporozoites showing apical regulated exocytosis when 

pre-incubated with fatty-acid free human albumin followed by washing and (A) uracil 

derivatives (UD) or (B) addition to filter insets containing no cells, non-hepatic cells (HeLa) or 

the human hepatocyte cell line (HC-04). Sporozoites were collected on empty coverslips placed 

underneath the filters in the lower chamber. Percentage of sporozoites in coverslips showing 

apical-regulated exocytosis is shown. Results are expressed as mean of triplicate determinations 

± SD. 
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