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SUMMARY 

 

Pregnancy-associated malaria (PAM) represents a major health concern worldwide. Current 

knowledge of this form of human malaria is concurred by epidemiological, pathological, 

immunological and parasite biology evidence. Nevertheless, the lack of  animal models to 

study PAM constitute a limitation to in-depth identification of cellular and molecular 

components of PAM pathogenesis and to further understand the susceptibility and protection 

mechanisms underlying PAM. 

The aim of this thesis was firstly to establish an experimental system enabling pregnancy-

associated malaria (PAM) studies in mouse models and secondly to characterize the 

immunological and pathological features in murine pregnancy-associated malaria. 

Using P. berghei-ANKA-GFP parasites and the BALB/c mouse strain the experimental systems 

were developed taking in consideration that human PAM has distinct presentations and 

consequences depending on the previous maternal immunity to malaria (premunition). In one 

scenario, women have not developed an immune protection against malaria before pregnancy 

(low premunition), which is typical of regions with low malaria transmission or unstable 

malaria. To model the low premunition scenario the mouse females contacted with malaria 

parasites for the first time when infected with iRBC during pregnancy (Model of infection 

during pregnancy). On the other hand, in the high-transmission areas women experience 

prolonged exposure to malaria and are relatively well protected against malaria before 

pregnancy (high premunition). To model high premunition before pregnancy, the females were 

immunized by infection with iRBC before pregnancy (Model of pre-exposure).  

These models were scrutinized for pregnancy outcome, placenta pathology and PAM 

protective responses. The experimental model established in non-immune mice showed 

enhanced disease severity, poor pregnancy outcomes and the prominent histological 

alterations. The pathology of mouse placenta infected with P. berghei resembles the acute 

P. falciparum placental malaria in humans allowing us to identify trophoblast thickening and 

vascular space reduction as hallmarks of placenta malaria induced by the P.berghei. In the pre-

exposure (pregnancy-induced malaria recrudescence) model the intensity of parasite 

recrudescence showed to be quantitatively correlated with the placenta pathology while the 

recrudescence incidence and the adverse pregnancy outcomes decreased with parity.  
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P. berghei-GFP adhesion experiments indicate that iRBC express ligands for different receptors 

in the mouse placenta. iRBC from recrudescent females displayed enhanced adhesion to the 

placenta suggesting that P. berghei parasites mediating PAM have increased specificity for 

placenta receptors. Pre-exposed females showed a long-term malaria protection state that is 

abrogated by pregnancy, strongly suggesting that the host mechanisms that confer protection 

against pregnancy–associated P. berghei appear not to protect from non-placental P. berghei. 

The data provided in this thesis demonstrate that the experimental systems based on 

P.berghei-BALB/c mouse are valid models to study the pathogenesis of placenta malaria, the 

adhesion of placental parasites, the parasite-placenta interaction and the mechanisms of PAM 

protection elicited during pregnancy. The experimental systems presented in this thesis could 

prove useful in drawing new hypothesis and testing analogies on the factors and mechanisms 

that are considered relevant for human PAM. 

 

Keywords: malaria, pregnancy, placenta, Plasmodium berghei, pathology, parity, mouse 

models, BALB/c, recrudescence, premunition, immunopathology. 
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RESUMO 

 

Em áreas endémicas de malária, estima-se a ocorrência de mais de 50 milhões de gravidezes 

por ano, aproximadamente metade das quais se verificam na África Sub-Sahariana, onde a 

transmissão de P. falciparum é mais intensa. A Malária Associada à Gravidez é um dos mais 

importantes problemas de saúde pública em África, contribuindo para uma alta carga da 

morbilidade materna e fetal, que pode ser responsável por 100,000 mortes de bebés por ano. 

As mulheres grávidas são mais susceptíveis à malária e podem exibir manifestações clínicas 

mais severas. Para além disso, a malária durante a gravidez está associada a maiores taxas de 

aborto e os recém-nascidos têm maior probabilidade de manifestar restrição de crescimento 

intra-uterino em combinação com um baixo peso à nascença, que constituem factores de risco 

fortemente associados à mortalidade neonatal. 

Nem todos os aspectos da malária na gravidez estão totalmente entendidos, tanto do lado do 

parasita, como do lado do hospedeiro e constituem prioridades para a investigação. A maior 

parte do conhecimento que suporta a base biológica e imunopatológica da Malária Associada à 

Gravidez apenas deriva de estudos realizados em mulheres grávidas que vivem em áreas 

endémicas de malária. Uma vez que, por razões éticas ou logísticas, algumas questões 

importantes não podem ser abordadas em seres humanos, o conjunto de resultados 

apresentado na presente tese demonstra as potencialidades em usar modelos de ratinho para 

estudar a Malária Associada à Gravidez.  

Na primeira parte da tese, apresentam-se os aspectos principais da Malária Associada à 

Gravidez em humanos, sendo abordados os pontos seguintes: (i) a importância da doença, 

realçando-se a epidemiologia e o seu impacto, tanto na mãe, como no feto/recém-nascido; (ii) 

caracterização da placenta e de alguns aspectos da imunologia associada à gravidez, 

realizando-se uma descrição subsequente das modificações conhecidas que são causadas pela 

malária; (iii) descrição da interacção entre os parasitas P. falciparum e o hospedeiro (grávida), 

realçando-se as características do parasita essenciais para a doença, bem como os mediadores 

placentários reconhecidos como intervenientes nesta interacção; e finalmente (iv) 

fundamenta-se a necessidade e as vantagens de usar modelos de ratinho para estudar a 

Malária Associada à Gravidez, salientando-se as semelhanças/diferenças na estrutura e no 

desenvolvimento da placenta entre o ratinho e o ser humano e, por último, refere-se os 

estudos anteriores que se debruçaram sobre a malária na gravidez em ratinho.  

Os sistemas experimentais desenvolvidos tiveram em consideração que a malária na gravidez 

humana tem apresentações e consequências distintas conforme o grau de protecção da mãe. 

Este nível de imunidade materna à malária prévia à gravidez (premunição) está correlacionado 

com a exposição à malária e, portanto, com o nível de endemicidade, ou intensidade da 
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transmissão da malária, podendo considerar-se separadamente uma de duas situações. Na 

primeira, as mulheres não desenvolveram uma protecção contra a malária antes da gravidez 

(premunição baixa), o que é típico de regiões com baixa transmissão de malária ou com 

malária instável. No outro cenário, no qual as mulheres vivem em regiões que facilitam a 

exposição permanente à malária, as futuras mães estão relativamente bem protegidas contra 

a malária antes da gravidez (alta premunição). Consequentemente, decidiu-se pelo 

estabelecimento de dois modelos de ratinho que mimetizassem cada um destes cenários. 

No modelo associado a uma premunição baixa, as fêmeas contactam com o parasita pela 

primeira vez apenas quando infectadas durante a gravidez (Modelo de Infecção Durante a 

Gravidez). No outro modelo, é necessário garantir que as fêmeas tenham uma alta premunição 

antes da gravidez, pelo que as fêmeas são infectadas e imunizadas antes da gravidez (Modelo 

de Pré-Exposição). Ambos os modelos foram estabelecidos usando a estirpe de ratinho BALB/c 

e os parasitas P. berghei-ANKA. Além disso, os modelos foram analisados considerando a 

reprodutibilidade das características principais da doença humana, tais como as modificações 

na placenta, os efeitos na prole e o tipo de interacção entre o parasita e a placenta.  

Estes modelos foram avaliados para o resultado da gravidez, patologia da placenta e respostas 

protectoras à malária associadas à gravidez. O modelo experimental estabelecido em ratinhos 

não imunes mostrou uma maior severidade da doença, efeitos adversos na prole e alterações 

histológicas proeminentes. A patologia da placenta de ratinho infectada com P. berghei 

assemelha-se às manifestações agudas de infecções de P. falciparum em seres humanos. 

Particularmente, é possível observar o espessamento do trofoblasto e a redução dos espaços 

intervilosos, características da malária placentária induzida por P. berghei. No modelo de pré-

exposição (recrudescência induzida pela gravidez) a intensidade da recrudescência, em termos 

de percentagem de parasitas no sangue periférico, mostrou estar quantitativamente 

correlacionada com a patologia da placenta. Por outro lado, a incidência de recrudescência e 

os resultados adversos da gravidez diminuíram com a paridade.  

As experiências de adesão com P. berghei-GFP indicam que os eritrócitos infectados expressam 

ligandos diferentes para os receptores na placenta de ratinho. Os eritrócitos infectados de 

fêmeas recrudescentes manifestam uma maior intensidade de adesão na placenta, o que 

sugere que os parasitas de P. berghei que medeiam a malária na gravidez tenham aumentado 

a sua especificidade para se ligarem a receptores das placentas. As fêmeas pré-expostas à 

malária mostraram um estado de protecção por longos períodos contra a doença, mas este 

estado é alterado pela gravidez, sugerindo que os mecanismos que conferem protecção contra 
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os parasitas P. berghei associados à gravidez não protegem de parasitas P. berghei não 

placentários. 

A descrição das características de ambos os modelos permitiu a sua validação como 

representações congruentes da Malária Associada à Gravidez humana. Consequentemente, 

estes modelos podem ser explorados no sentido de contribuir para o avanço do conhecimento 

da doença, nomeadamente dos aspectos da imunopatologia.  

A investigação que serviu de base a esta tese permitiu a observação e a descrição da doença 

murina e das suas consequências. Para além disso, com este trabalho foi possível perspectivar 

algumas linhas de pesquisa, umas relacionados com a biologia de parasita, como a exploração 

da variação antigénica em P. berghei através do uso de parasitas recrudescentes, e outras 

referentes aos mecanismos da doença, como a imunopatologia. Nesse sentido, estes modelos 

podem contribuir para elucidar várias questões que estão ainda por esclarecer, como os 

factores que provocam a recrudescência de parasitas na ausência de reinfecção, o papel de 

anticorpos assimétricos na Malária Associada à Gravidez, a relação entre pre-eclampsia e 

malária, a activação policlonal e os processos associados à memória imunológica. Finalmente, 

a exploração das futuras potenciais direcções da pesquisa da doença pode fornecer novos 

avanços na compreensão dos mecanismos imunopatológicos, bem como servir de base para 

testes de segurança e eficácia de medicamentos ou mesmo contribuir para encontrar uma 

vacina que confira protecção durante a gravidez. Em suma, os modelos de ratinho parecem ser 

um instrumento promissor para compreender melhor os mecanismos desconhecidos da 

Malária Associada à Gravidez humana, constituindo uma esperança para melhorar a prevenção 

e o controlo da doença. 

 

Palavras-Chave: malária, gravidez, placenta, Plasmodium berghei, patologia, paridade, 

modelos murinos, recrudescência, premunição, BALB/c. 
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INTRODUCTION  

 

Pregnancy-associated malaria (PAM) represents a major health concern worldwide. Current 

knowledge of this form of human malaria is concurred by epidemiological, pathological, 

immunological and parasite biology evidence. In this section we summarize the background 

evidence that supports current hypotheses on PAM pathogenesis and elaborate considerations 

on the potential contribution of animal models to further understand the susceptibility and 

protection mechanisms underlying PAM. 

MALARIA IN HUMAN PREGNANCY 

Global distribution and disease burden 

Pregnant women appear to be more susceptible to malaria than other adults and malaria is 

widely recognized as an infection that can seriously jeopardize the outcome of pregnancy, 

especially in women pregnant for the first time (Bray & Anderson, 1979; Brabin, 1983). Each 

year more than 50 million pregnancies occur in malaria-endemic areas, half of which in Africa 

mostly in areas of relatively stable malaria transmission and less than 5% of pregnant women 

have access to effective proposed interventions (Steketee et al., 2001; WHO, 2004). Malaria 

infection of the placenta and malaria-caused maternal anemia contribute to low birth weight 

(LBW) which is a risk factor for infant mortality and impaired child development.  

The burden of malaria infection during pregnancy is caused chiefly by Plasmodium falciparum 

(P. falciparum) (Figure 1), the most virulent/lethal, and also the most common Plasmodium 

species in Africa (Newbold et al., 1997). The global population at risk of P. falciparum 

transmission in 2007 was estimated in 2.37 billion across 87 countries and included 0.98 billion 

people living in areas with low, unstable transmission risk (Snow et al., 2008). Although P. vivax 

is responsible for infecting an estimated 2.59 billion people annually (Guerra et al., 2006), it is 

commonly considered more benign than P. falciparum and its impact in pregnancy has recently 

started to be assessed (ter Kuile & Rogerson, 2008).  

It is generally acknowledged that during pregnancy there is an increase in prevalence and 

density of P. falciparum malaria (Bray & Anderson, 1979; Brabin, 1983) and the impact of the 

other three human malaria parasites (P. vivax, P. malariae and P. ovale) is less clear in 

pregnancy, but they are not associated with severe disease. P. falciparum is normally present 

in tropical, subtropical and warm temperate regions. P. vivax is instead the most frequent 

parasite found in Asia, Central- and South-America and less common in West Africa as the 

majority of the population is negative for the Duffy blood group antigen that serves as a 

receptor for P. vivax parasites to enter the host red blood cells (RBC). P. malariae is much less 

common, appearing only in few African regions and in Western Pacific. Finally, P. ovale which 
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has the most limited distribution of all the malaria parasites of humans, can occur throughout 

most of sub-Saharan Africa and is known to be endemic only in New Guinea and in Philippines 

(Carter & Mendis, 2002). Acquired infections in humans have been recently reported in East 

Malaysia and Singapore for P. knowlesi, a simian malaria parasite that is generally misidentified 

as P. malariae since the blood stages are morphologically similar on microscopy, needing 

molecular methods of detection for correct diagnosis (Singh et al., 2004; Ng et al., 2008). 

 
Figure 1. Geographical distribution of P. falciparum malaria risk defined by annual parasite incidence, 

temperature and aridity. Populations at risk in areas defined as having stable (dark pink) and unstable 

transmission (light pink). No transmission was assumed where assembled data stated no malaria risk, because 

not a single P. falciparum clinical case had been reported over several years, or where temperature was too low 

for sporogony to complete within the average life span of the local dominant vector species, or conditions were 

too arid for anopheline mosquito survival. In this map unstable malaria was used to define areas where 

transmission was biologically plausible and/or had been documented but where incidence was likely to be less 

than one case per 10,000 population per annum. Stable malaria areas represent populations at risk of significant 

disease burdens, including populations exposed to infrequent malaria infection risks and those subject to 

repeated infections and thus high disease burden risks with great public health needs. From Snow et al.(2008). 

 

Effective interventions recommended by WHO have proved capable of reducing substantially 

the adverse disease outcomes in pregnancy (Steketee et al., 2001). These interventions include 

intermittent preventive malaria treatment in pregnancy (IPTp), insecticide-treated bed nets 

(ITN) and effective case management of malaria illness and anemia, which in turn includes 

nutritional supplementation with iron/vitamin/mineral preparations, screening for anemia and 

monitoring of other diseases such as helminthes or bacterial infections (WHO, 2004). 

Nevertheless the majority of pregnant women still have no access to those measures, some of 

which are expensive and logistically difficult to apply, and efforts are required to accelerate 

implementation of strategies to prevent and control malaria in pregnancy. PAM focused 

research is needed to fulfill gaps of knowledge and thus contribute to disease impact 

reduction. The work in progress towards a better understanding of the disease mechanisms, 

parasite biology and maternal immunopathology, is a critical contribution for a stronger 
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interaction between science and strategic programs developing new control/clinical measures 

including a vaccine specific for PAM. 

Epidemiology 

Malaria exists in many parts of the world but the incidence varies from place to place and the 

same is observed for pregnancy malaria. The term “malaria” is derived from the belief of the 

ancient Romans that the disease was caused by the “bad air” of the marshes surrounding 

Rome, which denotes the past occurrence of the disease in places where any cases are 

currently observed. 

The disease distribution is determined by several factors, including parasite life cycle 

attributes. The completion of Plasmodium spp. life cycle usually needs two obligatory hosts: a 

vertebrate intermediate host (mammals, birds and reptiles) and an invertebrate definitive host 

(hematophagous insect of the genus Anopheles). The life cycle of P. falciparum is outlined in 

Figure 2. 

gamete
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mosquito gut

sporozoites migration to salivary gland

 
Figure 2. Plasmodium falciparum life cycle. Female mosquitoes of the genus Anopheles carrying malaria parasites 

inject sporozoites into the blood stream with the saliva while feeding blood. Within few minutes the sporozoites 

travel to the liver where they transverse several hepatocytes before invade and replicate in one (Mota et al., 

2001). Liver stage infection is asymptomatic. About 10-12 days later each sporozoite develops into thousands of 

merozoites that are released back into the bloodstream and will invade RBC. Inside a RBC, the parasite undergoes 

a new phase of asexual division to form a multinucleated schizont while expressing proteins in the outer RBC 

membrane, some of which have adhesive properties, enabling the mature parasite to bind receptors expressed by 

endothelial cells and in the deep vascular beds of organs such as the brain, lungs and placenta. Every 48 hours the 

parasite multiplies, each iRBC bursts and releases around 20 daughter merozoites, thereby continuing the blood 

stage cycle. Some merozoites follow a different developmental path and, rather than form another schizont, they 

differentiate into the sexual stage, forming either a male or female gametocyte, which, when taken by another 

feeding mosquito, perpetuate the sexual cycle in the insect. In the mosquito stomach the gametocytes develop 

into female and male gametes and after fertilization the diploid ookynetes migrate into the gut wall where they 

mature to form oocysts. Meiosis occurs within the oocysts leading to development of haploid infective 

sporozoites. When oocysts rupture the sporozoites migrate to the salivary glands, ready to be injected during the 

next mosquito blood meal. Adapted from Miller et al. (2002) and Carvalho et al. (2002). Malaria is considered 
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endemic in a region when it occurs at a relatively constant incidence by natural transmission 

over successive years. Endemicity levels can be separated in classes according to the parasite 

prevalence in the population. Following Lysenko’s classification cited by Hay et al. (Hay et al., 

2004), endemicity classes are defined by the parasite rate (PR) in the 2–10-year age cohort as 

follows: hypoendemic < 10% infection prevalence; mesoendemic 11–50% infection prevalence; 

hyperendemic 51–75% infection prevalence. The exception is for the holoendemic class (> 75% 

infection prevalence) where the PR refers to the 1-year age group (Snow et al., 2005). 

Stable malaria transmission is associated with little seasonal or annual fluctuation in the 

disease incidence and leads to a characteristic pattern of immunity whereby older children and 

adults become progressively immune to the worst effects of the disease. In areas of stable 

malaria, the parasite is transmitted by a strongly anthropophilic rather than zoophilic 

Anopheles vector species that is found in the warmer regions of the world where the climatic 

conditions facilitate a rapid parasite development inside the mosquito (Carter & Mendis, 

2002). P. falciparum is commonly the most prevalent parasite in areas with stable malaria 

transmission. Malaria is considered unstable in places where there is no reliable periodic 

transmission and sporadic epidemics may occur after long periods of almost no transmission. 

Unstable malaria is often associated with a short-lived vector or a more zoophilic mosquito, 

with low probability of taking two consecutive meals from a human host. In these areas 

typically temperatures are lower than in areas with stable malaria, sporogony (the nuclear 

divisions that give rise to sporozoites inside the mosquito) is slower and the most prevalent 

pathogen is P. vivax. 

Malaria transmission intensity can be quantified by the Entomological Inoculation Rate (EIR) 

that expresses the average number of infective bites per person per year. Climatic factors, 

including temperature, humidity and precipitation, influence the density and development of 

the parasite inside the vector. For instance, the sporogony does not occur bellow 16oC or 

above 33oC, and open-air water is needed for the oviposition by fertilized females, where the 

eggs develop to adults in 7 to 20 days depending on the temperature. In addition, other 

factors such as mosquito longevity, predilection of the vector to feed on humans 

(anthropophily), mosquito endophily (tendency to preferentially rest inside the houses, in 

opposition to exophily when the mosquitoes likely abandon the house after a blood meal) or 

human factors (density and behavior of the human population), are also critical to shape 

human malaria epidemiology (Forattini et al., 1987; Guerra et al., 2008). Furthermore, the 

knowledge of disease epidemiology and the understanding of mosquitoes preferences and 

habits are very important to the design of preventive measures. For instance, if a parasite 

shows exophilic behavior and uses outside refuges, convincing people to use personal 

protection such as a bed net and eliminating open-air water, instead of indoor residual 

spraying, may be considered as a more effective malaria control measure in those conditions. 
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The outcome of malaria disease is determined by factors besides the transmission intensity, 

which include parasite features (virulence, drug resistance), host factors (age, immunity, 

genetics) and even socio-economic factors (access to treatment, politics, gender, economic 

condition, etc.). Relatively to the last point, it is worth to strengthen that malaria and poverty 

are closely related. Endemic countries are among the ones with lower rates of economic 

growth, making more difficult the access to preventive and curative measures. In addition, low 

socioeconomic status, normally associated with low maternal educational levels, can even 

complicate the consequences of malaria in pregnancy. For instance, low socioeconomic 

conditions are connected with poor nutritional status of the mother and hence poor fetal 

nutrition, limited access to complementary foods/supplements due to their cost and standard 

living conditions that facilitate diseases transmission, including malaria (De Pee et al., 2002). 

On the other way round, malaria can be seen as an obstacle to development and a cause of 

poverty, because it can affect population growth, worker productivity, absenteeism and 

premature mortality (Sachs & Malaney, 2002). Specifically, malaria in pregnancy, as a major 

public health concern in low-income countries, also has a negative impact in the development 

and its resolution is constrained by the lack of resources to implement specific and effective 

interventions. The costs associated to malaria in pregnancy include the expenditures coming 

up from measures directed to pregnant women (for example, ITN and IPTp) but also the 

additional costs arising as a consequence of PAM, namely the long-term costs of treating the 

effects of maternal infection in the infant (Worrall et al., 2007). 

Together, all these epidemiological features of malaria determine the worldwide distribution 

of the disease in pregnancy. Africa bears 90% of the world burden of P. falciparum malaria and 

consequently the greatest problems of malaria in pregnancy are in sub-Saharan Africa, where 

it is one of the leading causes of maternal and perinatal mortality and morbidity (WHO, 2004). 

In Asia and South America there is a different scenario because transmission intensities are 

generally lower, despite the existence of discrete areas of very high transmission (Singh et al., 

2001). In those regions P. vivax is the most prevalent species and thus is the major parasite to 

be aware of.  

It is noteworthy the efforts put in the construction of a map of estimates of P. falciparum 

infection prevalence worldwide (http://www.map.ox.ac.uk). This project appears as a tool to 

the commitment of reducing/eliminating malaria, as part of a global effort to tackle diseases of 

poverty through the Millennium Development Goals (Hay & Snow, 2006). These maps will 

constitute a support to identify intervention needs and may provide tools to evaluate the 

implementation of future strategies on malaria control, including malaria in pregnancy.  
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Factors affecting Pregnancy-Associated Malaria (PAM)  

The consequences of P. falciparum-PAM are determined by a range of factors, including the 

number of previous pregnancies, the existence of co-infections and the level of immunity 

acquired by the woman throughout her life. This level of pre-pregnancy immunity, or 

premunition, depends largely on the epidemiological setting where the woman is living. 

Therefore, the prevalence of malaria infection on pregnant women can range from 10% to 65% 

across the different settings (Steketee et al., 2001). A description of PAM in high and low 

transmission regions is reviewed in detail by Nosten et al. (Nosten et al., 2004). 

• PAM in regions with high malaria transmission 

In areas with high endemicity or with stable malaria transmission, adults usually manifest a 

protective semi-immunity against P. falciparum, which is maintained only by continued 

exposure to malaria and most of the malaria infections are asymptomatic (do not produce 

fever or clinical illness) (Desai et al., 2007). Women with previously reasonable immunity 

appear to lose part of that protection in pregnancy and are more likely to be parasitemic than 

non-pregnant women (WHO, 2000). Parasite prevalence and parasitemia density are maximal 

in the second pregnancy trimester, and this is most evident in first and second pregnancies 

with decreased risk in each successive pregnancy (Singh et al., 2001; Rogerson et al., 2007). In 

fact, in contrast with other infectious diseases that induce complications in pregnant women, 

malaria burden in pregnancy decreases in incidence with successive pregnancies (Duffy & 

Fried, 1999). Despite the higher parasite incidence in pregnancy, severe disease is uncommon, 

infection is frequently asymptomatic in these settings and, consequently, malaria may go 

unsuspected and undetected (Diagne et al., 1997). Nevertheless, immune women can display 

heavy placental infection, despite negative peripheral blood smears, which can result in the 

development of maternal anemia and in babies with LBW (Dorman & Shulman, 2000).  

• PAM in regions with low malaria transmission 

In regions where malaria transmission is unstable, less intense, sporadic or periodic, the state 

of premunition is not attained and people are at greater risk of developing severe and 

symptomatic disease, and even of death, at all ages (Luxemburger et al., 1997; WHO, 2004). In 

this epidemiological context, malaria infection in pregnant women may result in a variety of 

adverse outcomes, including a high risk of developing complicated malaria, with central 

nervous system problems, maternal death (as a direct result of severe malaria or as an indirect 

result of malaria-related severe anemia), spontaneous abortion, neonatal death and LBW 

(Nosten et al., 1991; WHO, 2004). Since in these settings malaria is usually symptomatic, it is 

likely to be detected at early stages and, if treated, might result in the reduction of the harmful 

consequences of malaria in pregnancy, often allowing parasite clearance before placental 

colonization (McGready et al., 2004). 
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Malaria pathogenesis and PAM consequences  

Symptomatic malaria disease begins only after multiplication of blood stage asexual parasites, 

leading to massive destruction of RBC, release of bioactive parasite molecules and toxins, 

eventual iRBC sequestration and stimulation of host innate immune system to produce 

proinflammatory mediators that are the main components of malaria pathogenesis. 

The common symptoms of non-pregnant individuals to all four human malaria parasite species 

are headache and muscle aches, periodic fever and chills. However, some P. falciparum 

infections can progress to severe anemia, metabolic acidosis, hypoglycemia and some organ-

related pathological conditions (Miller et al., 2002). The destruction of iRBC is also part of 

malaria pathogenesis that, collectively with the acute hemolysis of uninfected RBC and 

dyserythropoiesis, leads to anemia, compromising the oxygen delivery in the tissues. Only 

P. falciparum, and not the other three species, causes fatal forms of disease due to its two 

main characteristics, that are its higher levels of parasitemia when compared with the other 

species and its property of being sequestered in the microvascular endothelial surface (Kyes et 

al., 2001). This distinct ability of P. falciparum to sequester favors an extensive accumulation of 

the iRBC in vital organs. In addition, the local and/or systemic action of parasite released 

products, as well as local and/or systemic production of inflammatory cytokines and 

chemokines in response to the infection, and the activation, recruitment and infiltration of 

inflammatory cells, can all together influence the progress to pathology, the clinical 

manifestations and the outcome of the disease (Schofield & Grau, 2005). 

The effect of P. vivax in pregnancy has received little attention but is considered less severe 

than P. falciparum. P. vivax infections in pregnancy are likely to result in febrile illness; infected 

women are more likely to be anemic and to deliver neonates with lower birth weight as 

compared to uninfected women, but less pronouncedly than with P. falciparum cases (Nosten 

et al., 1999; ter Kuile & Rogerson, 2008). 

• Effects of malaria on maternal health 

The effect of the infection on the mother may range from insignificant to severe, depending on 

the previous acquired immunity, parity and on other health conditions such as co-infections, 

being the human immunodeficiency virus (HIV) the most worrying at present (Desai et al., 

2007; Van geertruyden & D'Alessandro, 2007). Pregnant women are also more prone to 

develop hypoglycemia, which may be worsen during P. falciparum infection, and possibly 

contribute for LBW associated with peripheral parasitemia (Menendez, 1995). Anemia is the 

most common consequence of maternal malaria regardless the level of endemicity. WHO 

defines anemia when hemoglobin is lower than 11 g/dl and severe anemia when hemoglobin 

is lower than 5 g/dl (WHO, 2000). Anemia is more common in pregnant women than in non-

pregnant and even asymptomatic infections frequently worsen maternal anemia. In areas with 

stable P. falciparum transmission, PAM can contribute to approximately 2% to 15% of 
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maternal anemia (Steketee et al., 2001). Severe maternal anemia increases the risk of 

maternal death and is estimated to cause 10.000 deaths in Africa per year (Guyatt & Snow, 

2001). Generally, anemia causes are multifactorial and include inadequate nutrition, iron and 

folate deficiency, helminthes infections, hemoglobinopaties and HIV infections. In malaria-

endemic regions, malaria-induced anemia in pregnancy is caused by destruction of parasitized 

and non-parasitized erythrocytes, suppression of hematopoiesis and intense sequestration of 

infected erythrocytes in the placenta (Fleming, 1989; Menendez et al., 2000).  

• Effects of malaria on fetus and infant health 

PAM may affect the fetus/infant by a variety of mechanisms, including severe maternal 

disease, placental damage or even by direct infection. Firstly, maternal infection may lead to a 

systemic illness and, because of the high maternal fever, anemia, respiratory distress or 

systemic reactions to malaria, the fetus can suffer, display Intrauterine Growth Retardation 

(IUGR) and even die in absence of parasite sequestration in the placenta. Secondly, the 

placenta may be directly infected, resulting in placental insufficiency by impaired blood flow 

and reduced placental exchanges. Thirdly, the fetus may be directly infected through the 

placenta (Menendez & Mayor, 2007). Moreover, maternal infection may precipitate preterm 

delivery, when the fetus is still unable to tolerate life outside uterus or with LBW, which in turn 

is a cause of poor infant survival and development (van Geertruyden et al., 2004; Menendez & 

Mayor, 2007).  

Epidemiological data reveal that neonates appear to be relatively well-protected from clinical 

malaria and from severe consequences of malaria infection for the first 3-6 months of life 

(Snow et al., 1998). Several attempts have been described to explain the reduced malaria 

incidence in infants. The relative protection of the infants from infection could be due to 

behavioral practices, such as the constant supervision by the mother who may repel biting 

mosquitoes away from them and because they tend to be kept well covered up (Riley et al., 

2001). Furthermore, there are some physiological mechanisms that may inhibit the replication 

of blood stage parasites in neonates conferring them clinical protection during early infancy. 

For instance, malaria parasites grow much more slowly in RBC containing fetal hemoglobin 

(HbF) than in those with normal adult hemoglobin (Pasvol et al., 1977) and infants diet may 

lack some of the essential nutrients for parasite replication, such as the p-amino-benzoic acid 

(pABA) that is vital for parasites and it is present in low levels in breast milk (Riley et al., 2001) 

Depending on the level of malaria transmission intensity, malaria contributes to an estimated 

8% to 36% of cases of prematurity and 13% to 70% of IUGR. Maternal malaria, especially in 

areas of low or unstable transmission, can result in abortion (delivery of a dead fetus before 28 

weeks of gestational age) or stillbirth (delivery of a dead fetus after 28 weeks), and is 

estimated to account for 3% to 8% of all infant deaths (Steketee et al., 2001).  
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PLACENTAL IMMUNOPATHOLOGY CAUSED BY MALARIA 

The aims of this section are firstly to provide an overview of the main characteristics of the 

placenta and pregnancy immunology, and secondly to depict the major malaria-induced 

modifications in both domains. 

Placenta structure 

The word placenta has Latin origin and means ‘flat cake’ (Cross, 2005). The placenta is an 

organ that develops during pregnancy, deriving at a large extent from embryonic tissue and 

indispensable for pregnancy success (Benirschke, 1998) and performs a multitude of 

nutritional, respiratory, hormonal, excretory and immunological functions. By being attached 

to the uterus wall the by blood vessels, it conveys supplies to the fetus and removes waste 

from the fetus transferring it to the mother.  

The placenta is essential for sustaining the fetus growth during gestation and defects in its 

function result in fetal growth restriction or, if more severe, fetal death. The pathological 

changes are best understood in the context of the placenta structure and anatomy (Figure 3).  

 

 
Figure 3. Schematic representation of the human placenta. The human placenta 

can be described as a disk full of blood where the villous trees (fetal part) are 

bathing. Inset showing a cross-section of terminal villi, the “placenta barrier”. 

From Duffy (2001).  

 

The fetus side (chorion) of the human placenta has a flat form, where the umbilical cord is 

inserted, and the opposite face, bordering the uterus, has a u-shaped surface. The umbilical 

cord is a channel that carryies fetal blood between the fetus and the placenta and normally 

contains two arteries and one vein, surrounded by extensive mesenchymal tissue. The villi, 

consisting of connective tissues (mostly fibroblasts) in which fetal blood vessels are found, 
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extend from the chorion plate into the vascular interior of the placenta and continue to branch 

throughout the pregnancy. The spaces between villi, the intervillous spaces (IVS), are filled 

with maternal blood supplied by spiral arteries in the decidua. Some villi end freely in the 

vascular space while others extend to the opposing decidua anchoring to the pregnant uterus 

in the decidua basalis, contributing to stabilize the mechanical integrity of the placental-

maternal interface. The decidual cells are lining the uterus and result from the differentiation 

of maternal endometrial stromal tissue adjacent to the placenta. Fetal circulation is entirely 

closed, confined to vessels within the chorionic villi, whilst maternal blood flow through the 

placenta is open. The inset of Figure 3 outline a cross-section of terminal villi, known as 

“placenta barrier” that separates maternal blood and fetal blood, across which occur all 

exchanges of gases, nutrients, hormones and wastes. The “placenta barrier” is constituted by 

three cell layers: the outer layer, covering the villi named syncytiotrophoblast (a syncytium 

with many dark-stained nuclei), the trophoblastic basement membrane and the fetal capillary 

endothelium. The villous cytotrophoblastic cells (Langhan’s layer) at early pregnancy form a 

continuous single layer of stem cells over the connective tissue of the chorionic villi that, 

during differentiation, fuse together into the multinucleated syncytiotrophoblast and add the 

cellular components to the syncytium. Later in pregnancy the cytotrophoblast is reduced to a 

few scattered large pale cells. In addition to the regulation of the exchange between the 

mother and the fetus, the syncytiotrophoblast is also responsible for placental hormone and 

enzyme production (Benirschke, 1998). During the latter half of the pregnancy, or under stress 

conditions, the villi might shrink allowing the syncytial epithelium to buckle and leading to the 

production of an excessive number of syncytial knots. Hofbauer cells are the placental 

macrophages, within the villous stroma and chorio-amniotic membranes, which naturally have 

phagocytic activity (Benirschke, 1998).  

Placenta pathology associated to malaria 

Placental malaria is an important component of the deleterious effects of malaria in pregnancy 

and the connection between placental histological changes and pregnancy outcome was 

reviewed in detail by Brabin et al. (Brabin et al., 2004b). The accumulation of P. falciparum 

parasites in the intervillous spaces (IVS) of the placenta is a pathological feature of malaria in 

pregnancy. Other characteristics of placental malaria include malaria pigment (hemozoin) 

accumulation, fibrinoid deposits, thickening of the trophoblastic basement membrane, focal 

necrosis, damage of the syncytiotrophoblastic membrane and mononuclear inflammatory 

infiltration of the IVS (Walter et al., 1982; Crocker et al., 2004).  

The striking alterations caused by placental malaria occur within the IVS, but typical 

pathological features are found both in maternal and fetal parts of the placenta. It is possible 

to evaluate the presence of parasites/pigment in IVS, in erythrocytes and monocytes and in 

polymorphonuclear leucocytes. It is also in the IVS that parasites can be sequestered and 

inflammatory infiltrates accumulated. Fibrin-type fibrinoid deposits (blood-clotting product) 
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can be evident in intervillous/perivillous and in the basal plate. Parasites, hemozoin and 

fibrinoid necrosis can be present in the syncytiotrophoblast. In the trophoblastic basement 

membrane a matrix-type fibrinoid can occur resulting in its thickening. Excessive syncytial 

knots are also observed in infected placentas (Walter et al., 1982; Bulmer et al., 1993; Crocker 

et al., 2004).  

The first classification of human placental infection was introduced by Bulmer et al. (Bulmer et 

al., 1993). The rationale of this histological classification was the assumption of the 

progression of infection and allows distinguishing current and past placental malaria infection. 

Thus, active infections are associated with the presence of parasites and can be either acute, if 

the parasites are present in maternal RBC as well as hemozoin (which can be found in iRBC or 

within macrophages) or chronic, when iRBC are also present but hemozoin is covered by fibrin. 

Past infections involve the presence of hemozoin, usually mixed with fibrin but with the 

absence of parasites, since after clearance of the infection the pigment can persist in fibrin 

(Bulmer et al., 1993).  

The cause of placental pathology associated to malaria is still not clear and could include direct 

effects of malaria infection by iRBC and hemozoin deposition as well as accumulation of 

inflammatory infiltrates in the IVS. For instance, intervillous accumulation of mononuclear cells 

induces an alteration in the cytokine balance and may contribute to pathological changes 

resulting in the damage of the syncytiotrophoblastic membrane (Walter et al., 1982; Crocker et 

al., 2004). When the degree of infiltration is intense it results in a massive chronic 

intervillousitis with a prominent inflammatory infiltrate in the IVS mainly composed by 

monocytes and macrophages, frequently associated with fibrin deposition, syncytial knots and 

malarial pigment (Ordi et al., 1998). 

The consequences of these pathologic changes on maternal disease and poor fetal outcomes 

have been discussed (Duffy, 2001; Brabin et al., 2004b). In sum, several observations invoke 

that the dense accumulation of parasites and inflammatory cells, together with the increased 

fibrinoid deposition and the trophoblast basement membrane thickening, could collectively 

cause an obstacle to gas and nutrients placental exchange, between the mother and the fetus.  

Components of immunological response to pregnancy 

Locally in the placenta a correct balance of cytokines produced by various immune cells (T 

lymphocytes, uterine NK (uNK) cells, macrophages) is essential for the pregnancy success 

(Veenstra van Nieuwenhoven et al., 2003). Many cells within the placenta, including Hofbauer 

cells, decidual cells, cells of the syncytiotrophoblast, uterine epithelial cells, uNK cells, amniotic 

membranes, the fetal tissues and intervillous maternal leucocytes, can produce a wide variety 

of cytokines and chemokines having a determinant role in placental development and 

immunology (Robertson et al., 1994).  
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The uNK cells have a NK cell-like function but they are specific for the uterus as they show a 

different phenotype when compared with peripheral NK cells. It has been suggested that uNK 

cells affect implantation and placentation and, at the same time, they play an important role in 

the protection against infections and in the regulation of immune response. For instance, 

decreased numbers of uNK cells were associated with significantly higher rates of miscarriage 

and low numbers of uNK cells were also found in the decidua of women with a genetically 

abnormal fetus as compared with women pregnant with a normal fetus. One recognized 

function of the uNK cells is the production of cytokines, usually influencing placentation, such 

as granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating 

factor (GM-CSF), macrophage colony-stimulating factor (M-CSF) and leukemia inhibitory factor 

(LIF) that stimulate growth of the trophoblast and promote trophoblast cell proliferation and 

differentiation (Veenstra van Nieuwenhoven et al., 2003).  

T lymphocytes are the best studied peripheral immune cells in human pregnancy (Veenstra 

van Nieuwenhoven et al., 2003). There are various types of T-lymphocytes namely the helper T 

lymphocytes (Th) and the cytotoxic T lymphocytes (CTL). The former provide help to other 

immune cells by producing cytokines, whereas CTL lymphocytes can directly kill foreign or 

infected cells. T lymphocytes can also be classified into different functional subsets based on 

their profile of cytokine production. Type 1 T (Th1) cells produce cytokines that promote 

cellular immune responses, whereas the cytokines produced by type 2 T cells (Th2) provide 

optimal help for humoral responses (Raghupathy, 2001). 

Each pattern of cytokines has different roles in immune responses. Th1 cells produce, for 

example, IFN-γ, TNF-α and IL-2, which are soluble mediators of the cellular response by 

activating macrophages and cell-mediated reactions, important in resistance to infection with 

intracellular pathogens. Th2 cells produce IL-4, IL-5, IL-9, IL-10 and IL-13 that encourage 

humoral responses, promoting antibody production which is important in combating infections 

with extracellular agents (Veenstra van Nieuwenhoven et al., 2003). However, Th1 and Th2 are 

not the only types of Th-mediated responses and other cytokine patterns also exist. For 

instance, Th3 cells secrete TGF-β but do not secrete IFN-γ, IL-2, IL-4 or IL-10, and are capable of 

down-regulating Th1 cells (Raghupathy, 2001). Th1 and Th2 cells are reciprocally inhibitory to 

each other. For instance, IL-10, a product of Th2 cells, inhibits the development of Th1 cells by 

acting on antigen-presenting cells, whereas IFN-γ, a product of Th1 cells, prevents the 

activation of Th2 cells. The overall effect is that a given immune response can be dominated by 

either a cell-mediated profile (Th1) or humoral immunity (Th2) (Raghupathy, 2001). 

Typically, pregnancy is considered a Th2 dominant state because during pregnancy it is 

observed a decrease in the ratio between type 1 and type 2 cytokine production by peripheral 

lymphocytes, as compared with non-pregnant women, which is beneficial for pregnancy. 

However, Th1 or Th2 balance might be a dynamic process throughout the course of pregnancy. 

For instance, at pregnancy start a Th1 environment is necessary to promote endometrium 
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invasion and implantation. Later, Th2 dominance is adequate for the maintenance of the 

pregnancy and to tolerate the fetus, since Th1 cytokines are harmful as they inhibit embryonic 

and fetal development. Finally at pregnancy termination, the shift towards Th1 is essential for 

delivery.  

The Th1/Th2 paradigm provides an explanation to understand immune responses in pregnancy 

and how the immune system directs responses to different types of pathogens and stimuli. 

However, there is no consensus to whether the decreased type 1/type 2 cytokine production 

ratio is due to a decreased production of Th1 cytokines or to an increased production of Th2 

cytokines (Veenstra van Nieuwenhoven et al., 2003). This decreased ratio can be explained by 

different mechanisms. Firstly, the increase in pregnancy hormones (e.g. progesterone and 

estrogen) may directly affect lymphocytes by shifting their cytokine production towards type 2. 

Secondly, the placenta may interfere with lymphocyte cytokine production, since trophoblast 

cells also produce cytokines (mainly type 2), which may direct the maternal immune response 

towards a Th2 immune response, and could produce factors that inhibit cytotoxic T-

lymphocyte activity (Veenstra van Nieuwenhoven et al., 2003).  

In sum, successful pregnancy and fetal growth are associated with a predominant Th2 

response in the placenta, accompanied by an adequate hormonal regulation. Thus, production 

of Th2 cytokines locally in the placenta favor the maintenance of pregnancy, whereas any 

stimuli that increase Th1 cytokine production locally or systemically may lead to unsuccessful 

pregnancies, since a Th1 dominance is associated with fetal rejection and miscarriage because 

they cause an inflammatory environment (Veenstra van Nieuwenhoven et al., 2003). 

Immunological tolerance of the fetus 

The description of the known pregnancy immunological mechanisms is essential for 

pregnancy-associated malaria studies, because they establish a pattern of comparison with the 

malaria-induced modifications. For instance, abnormalities of maternal immune tolerance to 

the fetal semi-allograft have been implicated in several common disease processes occurring 

during pregnancy, leading to recurrent early miscarriage, pre-eclampsia and eclampsia 

(Zenclussen et al., 2007). These conditions are characterized by inflammation in the fetal-

maternal interface and/or systemic manifestations, which are common to the malaria disease. 

The fetus is often compared to an allograft because it is genetically different from the host 

(mother) and thus must find strategies to evade immune defenses and avoid “rejection”. The 

embryo in early development divides into two groups of cells that originate the fetus and the 

trophoblast, and the last are the only cells to directly interact with the cells of the maternal 

immune system (Veenstra van Nieuwenhoven et al., 2003). The trophoblast cells encounter a 

systemic immune response in the maternal circulation as well as when they are invading into 

the uterine wall, and several specialized mechanisms have evolved to help the fetus, which 

expresses paternal antigens, to evade maternal immune attack. Indeed, the maternal immune 
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system not only becomes aware of the fetus presence but dynamically tolerates it. Those 

mechanisms of tolerance were recently reviewed and summarized (Zenclussen et al., 2007).  

Trophoblast cells, which include the syncytiotrophoblast, villous cytotrophoblast and non-

villous cytotrophoblast, lack expression of major histocompatibility complex (MHC) class Ia 

molecules and so they cannot be recognized as non-self by maternal T cells. However, invading 

non-villous cytotrophoblasts (the tissue of implantation) in endometrium are at risk of lysis by 

uNK cells, which are present in endometrium and in the decidua in large amounts. 

Nevertheless, they do not attack the semi-allogeneic non-villous cytotrophoblast, because uNK 

express inhibitory receptors that bind to the MHC Ib, the non-classical HLA (HLA-C, HLA-E and 

HLA-G), on cytotrophoblasts (Veenstra van Nieuwenhoven et al., 2003).  

Furthermore, trophoblast cells express apoptosis-inducing ligand (FasL) that may cause 

apoptosis of activated maternal lymphocytes expressing the cognate receptor (Fas). In fact, Fas 

and its ligand (FasL) play an important role in the regulation of immune tolerance. Fas is highly 

expressed in several immune cells including activated T and B lymphocytes, NK cells, 

monocytes and macrophages. FasL is expressed on the surface of fetal cytotrophoblasts as well 

as on maternal decidual cells of the placenta, that is, in cells located at the interface between 

the fetal placenta and maternal endometrium (Veenstra van Nieuwenhoven et al., 2003).  

There are other mechanisms acting locally at the site of fetal antigen exposure which may 

operate in parallel to sustain gestation. Complement activation promotes inflammatory and 

immune responses, by inducing chemotaxis of inflammatory cells, enhancing phagocytosis by 

neutrophils and monocytes, facilitating immune complex clearance and mediating cell lysis by 

the membrane attack complex. Complement can also bind and attack self tissues, especially in 

areas of active inflammation but its deleterious effects can be avoided by complement control 

proteins. In pregnancy, complement regulation is essential for the maintenance of a normal 

pregnancy and complement activation is inhibited by expression of some proteins, such as Crry 

which has been implicated as a negative regulator of complement activation in mice, 

promoting maternal-fetal tolerance and survival (Xu et al., 2000).  

Moreover, in a normal pregnancy there is an increase on the levels of IgG asymmetric 

antibodies that have an effective participation in fetal protection. These antibodies behave as 

univalent for having one of the paratopes blocked with a carbohydrate chain and, 

consequently, they do not form antibody-antigen complexes. Thus, due to their molecular 

asymmetry and functional univalency, these immunoglobulins are unable to generate a 

classical immune response and, therefore, to trigger effector immune responses (Margni & 

Zenclussen, 2001). Asymmetric antibodies are present in humans as well as in mice and are 

synthesized systemically, representing 15% of the total serum antibodies (Zenclussen et al., 

2001). When specific for self-antigens, asymmetric antibodies are beneficial for the host due to 

their blocking functions, namely in allergic manifestations, auto-immune diseases and 

especially in pregnancy. During pregnancy asymmetric antibodies were found in serum and in 
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the placenta with specific activity to paternal antigens. Acting locally in the placenta, they 

block paternal antigens without generating the classical immune response (Malan Borel et al., 

1991). In a normal pregnant woman, IgG asymmetric antibodies are elevated in sera and in the 

placenta, constituting around 50% of the IgG population in that organ and 80% of them have 

anti-paternal activity (Malan Borel et al., 1991), being their synthesis modulated by placental 

secreted factors, such as IL-6. High levels of this cytokine are associated with low levels of 

asymmetric antibodies which can endanger pregnancy success (Margni & Zenclussen, 2001).  

The placenta also grants an effective physical barrier to the immune attack, because it 

provides a separation between the maternal and fetal blood, and the villous 

syncytiotrophoblast (the placental membrane directly exposed to maternal blood) is semi-

permeable acting as a filter for two way transport including diffusion of certain molecules and 

active transport (Myren et al., 2007). 

In addition to locally acting mechanisms, systemic changes are also needed to facilitate fetal 

tolerance. For instance, it was shown a peripheral expansion of regulatory T cells (Treg) during 

pregnancy as a result of continuous alloantigen release from the placenta (Zenclussen et al., 

2007). Treg are known to play a major role in preventing autoimmunity but also in tolerating 

allogeneic organ grafts, acting either by cell-cell contact or by secreting immunomodulatory 

factors such as IL-10 and TGF-β. In pregnancy, Treg play a role in promoting additional 

acceptance of the fetus because in certain pathologic scenarios the recruitment and function 

of Treg appear to be impaired and the proportion of Treg is lower in cases of spontaneous 

abortion, when compared with induced abortions in mice (Aluvihare et al., 2004). Particularly, 

at the maternal-fetal interface, Treg are thought to inhibit maternal effector cells and up-

regulate tolerant molecules such as heme oxygenase 1 (HO-1), LIF, TGF-β and IL-10. LIF is 

essential for implantation success but is involved in tolerance of allografts and also has an 

important role on inducing tolerance at the fetal-maternal interface. HO-1 beneficial effects 

are related to the avoidance of the toxic accumulation of free heme. In fact, free heme, 

originated from senescent RBC for example, can cause cell damage and tissue injury as heme 

catalyses the formation of reactive oxygen intermediates (ROI), resulting in oxidative stress 

(Zenclussen et al., 2007).  

General aspects of the immunity to malaria  

It is generally accepted that repeated malaria exposure will lead to increasing immunity to 

malaria. Since protection increases with exposure, the acquisition of immunity is faster in high 

transmission regions, where the age group more affected by the disease is infants under one 

year, who are at higher risk of death. As both age and exposure increase, the individuals also 

acquire higher ability to limit the consequences of infection, namely they are more protected 

from severe illness and death. However sterile immunity is seldom attained, since many adults 

continue to have circulating parasites in the blood (Langhorne et al., 2008). These 
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observations, together with the fact that adult travelers from non-endemic areas are likely to 

have severe clinical manifestations of the disease, suggest that malaria protection can be 

immune-mediated. Clinical immunity to malaria could therefore be attained when the immune 

responses are regulated to perform parasite clearance while avoiding detrimental effects and 

pathology (Artavanis-Tsakonas et al., 2003). There are immune mechanisms that effectively act 

against each parasite stage, some of which are represented in Figure 4.  

Toxins

Antibodies block 
invasion of hepatocytes

(1)

Cellular immunity
Antibodies

(2)

Antibodies block 
invasion of RBC

(3)

Antibodies blocking cytoadherence
Cell-mediated immunity
ROI and NO                                       (4)
Antibodies to parasite toxins

Antibodies blocking 
fertilization

(5)

 
Figure 4. Possible immune protection mechanisms at various stages of the plasmodium life cycle in 

the mammalian host. (1) Antibodies to sporozoite antigens neutralize sporozoites and/or block 

invasion of hepatocytes. (2) At liver stage cellular immunity is essential: IFN-γ released by CD8
+
 and 

CD4
+
 T cells induces NO production by hepatocytes; CD8

+
 CTL and NK cells exert cytotoxicity and 

induce Fas/FasL-mediated apoptosis; NK cells plus antibodies exert ADCC (antibody dependent 

cellular cytotoxicity); γδ T cells and NKT cells also kill intrahepatic parasites. (3) Antibodies to 

merozoites block invasion of RBC, mediate merozoites opsonization and ADCI (antibody dependent 

cell-mediated inhibition), facilitating merozoite phagocytosis by macrophages. (4) Antibodies to iRBC 

surface proteins opsonize iRBC for phagocytosis and/or block the adhesion of iRBC to endothelium; 

CD4
+
 T cells and monocytes secrete cytokines with parasiticide / parasitostatic effects: TNF-α and 

IFN-γ activate macrophages to phagocytose and/or kill iRBC and merozoites; antibodies can 

neutralize parasite toxins (GPI) and prevent severe clinical disease, though with no effect on parasite 

itself; NO (nitric oxide) and TNF-α, released from activated macrophages and ROI (reactive oxygen 

intermediate), have a parasiticidal effect on merozoites or intra-erythrocytic parasites. (5) Antibody 

and complement taken up in the blood meal mediate the lysis of gametocytes and prevent 

fertilization and further development of the parasite in the mosquito. Figure from Long & Hofman 

(2002) and adapted with Bolad & Berzins (2000) and Langhorne et al. (2008).  

 

The relative importance of each of these mechanisms is still debatable (Langhorne et al., 

2008). At the pre-erythrocytic stage, following the sporozoites inoculation into the host, 

antibodies to sporozoites antigens could protect both through opsonization of the sporozoite 

and its clearance before reaching the hepatocyte or by blocking hepatocytes invasion. 

However antibodies to sporozoites are thought of reduced importance (Langhorne et al., 2008) 
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as the intracellular parasite, within a cell expressing MHC classes I and II, is the major target of 

the immune system in the pre - erythrocytic stage. CD8+ T cells, recognizing parasite-derived 

peptides presented by MHC class I have been shown to be important in eliminating 

intracellular parasites that successfully invade and replicate within hepatocytes. This activity is 

mediated essentially by perforin, Fas ligand (FasL) and IFN-γ (Overstreet et al., 2008). The 

process of CD8+ T cells priming by DCs was thought to occur after hepatocytes infection, when 

DCs acquire antigens from apoptotic hepatocytes, migrate to lymph nodes draining the liver 

where they prime T cells, a process called “cross-presentation” (Leiriao et al., 2005). However, 

it was further demonstrated that protective CD8+ T cells are primed primarily in the lymph 

node that drains sporozoite from the skin inoculation site (Chakravarty et al., 2007). The 

parasite antigens are internalized by immature DCs that prime the T cell response specific for 

the parasite through antigen presentation. Thus, CD8+ T cells against malaria are found early in 

the lymphoid tissues linked to the cutaneous infection site. 

As infection progresses to blood stages, the potential targets for an immune response are free 

merozoites or iRBC. Given that RBC do not have MHC I or II, and so, contrary to the infected 

hepatocyte, they cannot be targeted by CD8+ T cells, the humoral responses are usually 

assumed as having a key role in the blood-stage immunity. Antibodies can be effective in 

protection by several mechanisms. Anti-merozoite antibodies may mediate blockade of RBC 

invasion, lead to opsonization of merozoites for uptake through Fc receptors and/or 

complement receptors on phagocytes. Antibodies against parasite molecules on the RBC 

surface membrane could act by either allowing antibody-dependent cell-mediated inhibition 

(ADCI) mediated by cytophilic antibodies (IgG1 and IgG3 in humans, which are functionally 

similar to IgG2a in mice) or complement-mediated lysis of iRBC or by mediating opsonisation 

of iRBC for phagocytosis. In the case of P. falciparum some of the surface proteins mediate the 

iRBC sequestration to endothelium, and thus, antibodies blocking adhesion to host receptors 

could allow phagocytes to act and avoid severe malaria syndromes, such as cerebral malaria.  

Malaria infection symptoms in non-immune individuals arise as the rupture of schizont-

infected erythrocytes triggers a cascade of inflammatory responses, owing to molecules 

released at that moment by the synchronic parasites, which, if not controlled, can lead to 

death. This wave of toxaemia and cytokines release from cells of both the innate and adaptive 

immune systems trigger the classical symptoms of fever and chills, but also contribute to 

control parasite replication, maintaining densities at levels compatible with host survival. 

Glycolipids have been identified as the major candidates to trigger toxins release, having a 

potent capacity of stimulate TNF-α production by macrophages (Schofield & Hackett, 1993). 

Thus, the antibodies that neutralize malaria toxins can contribute to reduce disease severity. 

For instance, antibodies to malarial glycosylphosphatidylinositol (GPI) and other glycolipids 

block induction of TNF-α from macrophages thereby down-regulating the inflammatory 

cascade and preventing immunopathology (Artavanis-Tsakonas et al., 2003). 
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Antibody-independent cellular-mediated immunity might also play a role in natural immunity 

against the erythrocytic stage. CD4+ cells of the Th2 type have a role in humoral immunity as 

helper cells for B cells (Perlmann & Troye-Blomberg, 2000). CD4+ T cells of the Th1 type 

activate macrophages and other cells to produce TNF, nitric oxide (NO), reactive oxygen 

intermediates (ROI) and other mediators, through the release of cytokines, such as IFN-γ 

(Good et al., 2004). These inflammatory molecules and released products have been shown 

capable of killing parasites, which probably occurs in the spleen, where blood flow slows in 

marginal sinuses, allowing iRBC to be removed by marginal zone macrophages and DCs. 

The spleen has several crucial functions to control malaria infection including the removal of 

damaged iRBC and the restitution of blood cells, since it is a major site for erythropoiesis, and 

it is a place where pathogen-specific T and B cells are generated (Engwerda et al., 2005). In 

Figure 5, it is represented an accepted model by which cell-mediated immunity clears the 

parasite in the spleen. Parasite-specific CD4+ T cells can be activated specifically by parasite 

epitopes expressed on APCs, but parasites are killed by non-specific mechanisms. 

 

 

 
 

 

 

Figure 5. Schematic representation of the 

possible mechanism by which cell-mediated 

immunity clears malaria parasites. Immature 

dendritic cells (DC) are “sentinels” that 

endocytose and process parasites in their 

immediate environment, which leads to its 

activation and presentation to CD4
+
 T cells (and 

also to CD8
+
 T cells), together with activation 

signals (IL-12) to initiate immune response. 

Activation of CD4
+
 T cells lead to macrophage 

activation, phagocytosis of parasitized RBC and 

production of cytokines and inflammatory 

molecules, such as NO and ROI. From Wykes & 

Good (2008).  

 

Innate immune cells have an important role in controlling the primary wave of blood-stage 

parasitemia. Monocyte-derived macrophages, polymorphonuclear leukocytes, NK cells and γδ 

T cells are able to kill mature stages of parasitized iRBC in the absence of antibodies, which 

may be due to the expression of proteins (such as PfEMP1) on the iRBC surface containing 

binding sites for CD36 or ICAM-1, promoting binding of leukocytes and phagocytosis (Bolad & 

Berzins, 2000). Moreover NK cells and γδ T cells can have an important role in controlling the 

disease by producing IFN-γ. Additionally, iRBC or parasite products can interact with various 

Toll-like receptors (TLR) present in immune cells. GPI anchors from certain protozoans have 

been shown to bind TLR2-TLR1 complex on human DC, macrophages and B cells, and hemozoin 

(or more likely contaminating DNA) activates DC through TLR9, inducing potent 

immunostimulatory properties and pro-inflammatory cytokines (Langhorne et al., 2008).  
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In the murine malaria model using P. chabaudi chabaudi AS both cell-mediated immunity and 

humoral immunity act sequentially to clear the infection. The predominant response during 

the first/acute phase of the infection is of a Th1-type cell, producing IL-2 and IFN-γ, while the 

control of the parasites at later phases, after the clearance of the first phase, also involves a 

specific response where Th2 cells provide B cell help by producing IL-4, which generate specific 

IgG antibodies important effectors in controlling the disease in these phases (Langhorne et al., 

1989). 

It is noteworthy to remark that in malaria endemic regions the majority of malaria-infected 

individuals are also concomitantly infected with a range of other pathogens, such as other 

protozoan, helminthes, bacteria and viruses. The immune response to intracellular 

microorganisms, such as protozoan, bacteria, viruses, is often characterized by cellular 

cytolytic activity and the production of inflammatory cytokines, such as IFN-γ and TNF-α. 

Conversely, the immune protection to extracellular pathogens, helminthes for example, 

depends on humoral responses and on specific Igs generated to neutralize the foreign agent 

(Constant & Bottomly, 1997). Thus, individuals with co-infections can display different abilities 

in mounting an effective immune response to malaria. For instance, an individual with 

helminthes may bias the immune response towards Th2-type, which may reduce the levels of 

IFN-γ necessary in early response to malaria infection. 

Immune memory in malaria 

It is often observed that immunity to malaria wane quickly when immune adults leave malaria-

endemic regions, proposing that continued exposure to malaria antigens is necessary not only 

for the generation of effector and memory cells but also for their persistence (Langhorne et al., 

2008). It has been difficult to identify the several immune players involved in immunological 

memory, as these cells are ill-defined by available methods, both in humans and in mouse 

models (Langhorne et al., 2008). It is established that the formation of both central and 

effector CD8+ memory T cells in the liver stage requires priming by DC in the draining lymph 

nodes (Chakravarty et al., 2007) and are long-lived (up to 6 months). Immune responses to 

blood-stages malaria antigens have also memory cells associated. However, the normal 

immune response and memory establishment can be hampered by a chronic plasmodium 

infection (Figure 6) (Urban & Roberts, 2002; Langhorne et al., 2008). In fact the parasite seems 

to be able to manipulate the host immune system during infection and to interfere with B and 

T cell activation, impairing the generation of immunological memory, which might result in a 

short-lived memory.  
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Figure 6. Possible mechanisms interfering with B 

and T cells activation and with the generation of 

immunological memory induced by malaria 

parasites. Red vertical bars indicate points in the B 

and T cell response at which parasites could 

interfere (inhibit, suppress or change the immune 

response). Numbers indicate possible mechanisms 

of interference: 1, interaction between iRBC–

parasite and DC can inhibit DC maturation and 

reduce its capacity to stimulate T cells; 2, hemozoin 

can inhibit macrophage (Mφ)–monocyte function; 

3, shift of IL-12 to IL-10 secretion by parasite-

modulated DC and macrophages may inhibit CD4
+
 T 

cell (CD4T) activation; 4, CD4
+
 T cells produce IL-10 

and TGF-β, which inhibits the generation of central 

and memory-effector (m-e) cells; 5, iRBC induce 

apoptosis and/or depletion of memory B cells 

(Bmem); 6, limiting specificities repertoire of 

plasma cells; 7, the P. falciparum genome encodes a 

large number of predicted proteins and most 

induced responses to many polymorphic targets 

may not be protective and act as a ‘smoke-screen’. 

Hypergamma-globulinemia, a common feature of 

P. falciparum infection, may accelerate the 

catabolism of immunoglobulin molecules. 8, 

antigenic variation of proteins on the iRBCs may be 

an effective mechanism for immune escape; 9, 

circulating immune complexes and low-affinity 

immunoglobulin molecules can trigger apoptosis of 

long-lived plasma cells (PC) through FcγRIIB. From 

Langhorne et al. (2008)  

 
 

 

Polyclonal B cell activation and hypergammaglobulinemia are prominent features of human 

malaria (Achtman et al., 2005), which are caused by parasite molecules that can directly induce 

the proliferation and differentiation of antibody-secreting cells from different B cell, regardless 

of their antigen specificity. Particularly, malarial chronic infections lead to severe deregulation 

of the immune system and B cells are overactivated resulting in hypergammaglobulinemia, the 

secretion of an array of autoantibodies and the frequent occurrence of B-cell tumors (Burkitt’s 

lymphoma) (Donati et al., 2004). The antibodies secreted by B cells stimulated with polyclonal 

activators are nonspecific and normally recognize antigens such as actin, myoglobin, myosin 

and DNA (Montes et al., 2007). The antigens and mechanisms that lead to polyclonal activation 

are poorly understood. Polyclonal activators can be components of cell membranes, the 

cytosol or excretion/secreted products. For instance, it was identified the exact region of the 

PfEMP1 (the CIRD1α domain) that induces the polyclonal activation in malaria (Donati et al., 

2004). Polyclonal activators have the capacity of inducing the proliferation of multiple B cell 

clones and the up-regulation of MHC class II, CD69, CD25 and costimulatory receptor 

molecules such as CD80 and CD86 (Montes et al., 2007). It has been debated whether 

polyclonal activation produces detrimental or beneficial effects in the host (Achtman et al., 

2005; Montes et al., 2007). Polyclonal activation can be seen as a strategy of the infectious 

agents to avoid the host-specific immune response. Conversely, two potential beneficial 

effects of polyclonal activation were described. First, by enhancing natural antibodies 

production, recognizing a conserved range of antigens in many pathogens that can activate the 

innate immune system via the classical pathways of complement activation. Thus natural 
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antibodies represent a first line of defense while the adaptive response is not mounted 

(Montes et al., 2007). Second, the polyclonal stimuli can be responsible for memory B cells 

maintenance. In this sense, it was demonstrated that in contrast to naïve B cells, memory B 

cells proliferate and differentiate into antibody-secreting cells after in vitro stimulation with 

polyclonal stimuli. This continuous stimulation and differentiation of memory B cells has been 

proposed as a plausible mechanism for the sustainment of “a long term serological memory” 

in the absence of a specific antigen. Contrarily, a “short term serological memory” is antigen-

dependent and lasts for few months (Bernasconi et al., 2002). In respect to malaria, it has been 

debated how malaria antibodies can persist for long periods after termination of the infection 

and the role of polyclonal activation in malaria, namely whether it gives rise to long-lived 

plasma cells (Achtman et al., 2005). 

Immunological response to malaria in pregnancy 

Malaria in pregnancy might be the overall result of combining humoral immunity and cellular 

immunity mechanisms to the modifications associated to pregnancy, which include alterations 

in hormones balance and the development of the placenta. 

Human PAM antibodies are directed to antigens specific of P. falciparum selected for their 

affinity to placental receptors, namely chondroitin sulfate A (CSA) (Staalsoe et al., 2004). 

Through exposure to CSA-binding parasite variants over successive pregnancies women might 

acquire specific immunity to this parasite subpopulation. This notion is supported by several 

studies showing that primigravida women do not have antibodies that block binding of 

parasites to CSA. By contrast, multigravida possess serum IgG that inhibit iRBC adhesion to CSA 

(Ricke et al., 2000). Moreover, women with high levels of anti-CSA-binding antibodies have 

reduced anemia and deliver babies with increased birth weight (Staalsoe et al., 2004). 

Decreased cellular immunity can also be a reason for increased malaria susceptibility, since 

several reports showed reduced responses to malaria antigens in pregnancy (Rasheed et al., 

1993; Fievet et al., 2002). Placental infections are frequently characterized by the presence of 

inflammatory cells that are not usually present in sites of peripheral circulation. These 

recruited cells are predominantly monocytes that can be activated by parasites or parasite-

derived products, such as hemozoin (Pichyangkul et al., 1994) and GPI (Nebl et al., 2005). 

Activated macrophages release potent anti-microbial molecules to aid parasite elimination, 

such as ROI, NO and TNF-α, contributing to an altered Th1 cytokine milieu in the placenta.  

Changes in cytokines levels during malaria in pregnancy and associated to parity have also 

been documented. PAM typically induces a Th1/Th2 disequilibrium favoring the Th1-type 

pathway, leading to increased levels of inflammatory cytokines in the placenta and maternal 

peripheral blood. This event is associated with poor outcomes principally in primigravida and 

the role of inflammatory cytokines, such as IFN-γ and TNF-α, on PAM pathogenesis has been 

intensively investigated. Conversely, it has been observed a counter-regulatory effect in 

response to the inflammation, possibly to compensate immune-mediated damage in the 
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placenta. Th2 cytokines concentrations have also modified concentrations among pregnant 

infected women in comparison with non-infected. For example, in a study from Kenya (Fried et 

al., 1998a) malaria-infected women had abundant levels of pro-inflammatory cytokines in 

concert with increased levels of the regulatory cytokine TGF-β. In fact, this cytokine is 

recognized by its immunosuppressive role, for example by reducing macrophages activation. In 

the placenta the main sources of TGF-β are the decidual and trophoblast cells (Robertson et 

al., 1994) and it is known that it plays an important role in pregnancy by inhibiting strong 

proliferative cellular responses and that low levels of this cytokine are associated with 

spontaneous abortions (Raghupathy, 2001).  

Increased levels of TNF-α has been associated with adverse birth outcomes (Fried et al., 1998a; 

Fievet et al., 2001; Rogerson et al., 2003a). Besides having a role in protection, this cytokine 

has also been implicated in the pathogenesis of malarial disease, in particular in the malarial 

fever (Schofield & Hackett, 1993). Despite its potent cytotoxic effects, TNF-α also plays a role 

in normal fetal development and parturition and is produced in normal placentas by 

trophoblast cells and by resident macrophages (Hofbauer cells) (Robertson et al., 1994). 

Overproduction of TNF-α and other pro-inflammatory cytokines in the placenta were observed 

in women that experienced spontaneous abortion (Raghupathy, 2001) and pre-eclampsia 

(Azizieh et al., 2005). Higher levels of TNF-α were observed in malaria-exposed pregnant 

women and associated with LBW in a study realized in Kenya (Fried et al., 1998a), and also in 

another report on placental malaria from Malawi (Rogerson et al., 2003a), suggesting that this 

cytokine has also an immunopathologic role. TNF also primes neutrophils, regulates 

macrophage IL-12 production and is a co-factor for IL-12-induced IFN-γ production by T cells, 

and can even up-regulate the expression of ICAM-1 on endothelial cells (Robertson et al., 

1994). 

IFN-γ is extremely potent in mediating host defense and is released from NK cells, T-

lymphocytes and γδ T cells, upon stimulation by other T-cell or macrophage immune-

mediators such as IL-12, TNF-α and hydrogen peroxide. In turn, high levels of IFN-γ may 

activate mononuclear cell production of TNF-α. In the placenta IFN-γ can be produced by 

cytotrophoblasts and by villous syncytiotrophoblast (Robertson et al., 1994). Although 

elevated levels of TNF-α associated to LBW in PAM have been a consistent finding, the effect 

of IFN-γ has been controversial. In the study from Malawi mentioned above, IFN-γ levels are 

higher in plasma of women with placental malaria and in malaria-infected placentas than in 

uninfected placentas but were not associated with LBW (Rogerson et al., 2003a). In the Kenyan 

study, placental plasma showed higher levels of IFN-γ associated with LBW especially in 

aparasitemic exposed primigravida, meaning that even after resolving infection IFN-γ might 

have harmful effects (Fried et al., 1998a). In a different report from Kenya, IFN-γ response, 

elicited by placental leucocytes in response to malaria antigen stimulation, correlates with 

protection against placental malaria and in fact multigravida produce higher levels of this 
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cytokine. In particular, parasitemic multigravida cells were low IFN-γ responders, producing 60-

fold less IFN-γ than cells from uninfected multigravida (Moore et al., 1999). 

IL-10, as a Th2 cytokine induces B cell proliferation, plasma cell differentiation and 

immunoglobin production. However, IL-10 has other tasks than the stimulation of humoral 

activity and the development and maturation of antimalarial antibodies. It also has a role on 

the decrease of anti-inflammatory responses, by reducing the production of IL-6, TNF-α, IFN-γ 

and IL-12, which make it also a regulatory cytokine. Trophoblast cells and maternal leucocytes 

are the main source of placental IL-10 (Robertson et al., 1994; Fievet et al., 2001). The effective 

role of IL-10 in protecting the placenta and the fetus by preventing the termination of the 

pregnancy has been demonstrated in several studies (Moore et al., 1999; Fievet et al., 2001; 

Suguitan et al., 2003b), even though the elevated levels of IL-10 may suppress anti-parasite 

inflammatory responses resulting in high placental parasitemias and anemia (Suguitan et al., 

2003a).  

Nevertheless, the relationship between peripheral and placental cytokine levels in the same 

individual has not been established. In human studies only peripheral parameters are available 

and it is not possible to access the concentrations in the placenta in order to infer their role in 

pathogenesis. A correlation between peripheral and placental concentrations of TNF-α, IFN-γ 

and IL-4 has been reported at delivery, suggesting that placental responses might determine 

the systemic profile of some cytokines (Fried et al., 1998a). Since placentas are only available 

at delivery, these evaluations are limited and it is not possible to perform kinetics of this 

correlation. 

The balance between pro- and anti-inflammatory cytokines is required for adequate protection 

and influences the pathology, namely the degree of anemia, clinical severity and disease 

outcome (Stevenson & Riley, 2004). Th1 cytokines are important in controlling early 

parasitemia, but they need to be counterbalanced later in the infection by a Th2 response 

leading to antibody production. In fact, cytokines such as IFN-γ appear to play a role in 

protecting against placental parasitemia whilst IL-10, for example, appears to avert 

inflammation, having a regulatory role in avoiding the detrimental effects of IFN-γ and TNF-α. 

Cytokines may be determinants of malaria severity and disease outcome and, once their 

effects are better understood, are potential targets for therapeutic interventions or even for 

placental malaria diagnosis. In conclusion, unraveling the cytokines interplay in the context of 

placental malaria should be helpful in scrutinizing the PAM pathogenesis mechanisms and 

define possible correlations of altered levels of cytokines with poor pregnancy outcomes. 

Vertical transmission of disease and protection 

There is no clear agreement on the definition of congenital malaria. Vertical transmission of 

parasites, from mother to child, may occur during pregnancy or perinatally during labour. 

Some authors stated that only the former should be considered true congenital malaria 

(Menendez, 1995), although more recently they do not discriminate both courses of 
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transmission (Menendez & Mayor, 2007). The overall incidence of congenital malaria is 

unknown and difficult to estimate owing also to its unclear definition. It is thought that 

congenital transmission is an uncommon event due mainly to the effectiveness of the placenta 

as a barrier to parasites. However, some reports have described cord blood infections in 35% 

of babies born to women with placental malaria infection (Redd et al., 1996), or up to 10-32% 

of all newborns independently of the placental infection using sensitive diagnostic molecular 

methods, suggesting that cord malaria parasites were acquired antenatally and that they could 

cross the placenta with higher frequency than what was previously expected (Brabin, 2007; 

Menendez & Mayor, 2007). Indeed, placental malaria may be accompanied by damage of the 

syncytiotrophoblastic membrane, which may compromise the integrity of the placenta, 

allowing the parasites to enter the fetal circulation, establishing a route for malaria 

transmission (Crocker et al., 2004). Moreover, some immunological evidence also points to 

fetal lymphocyte exposure to malaria antigens in uterus (Menendez & Mayor, 2007).  

Whatever the course of parasite transmission to fetus/newborn is, the exposure to malaria 

parasites or to malaria antigens is likely to have important implications in their development. 

Certainly this exposure has immunological effects by priming the immune response or by 

inducing immune tolerance in the fetus, conferring reduced or increased malaria susceptibility, 

respectively (Menendez & Mayor, 2007). Thus, infection during pregnancy may be either 

harmful or beneficial for the infant, and the outcome will depend mainly on the time of 

pregnancy at which the first infection has occurred (Menendez, 1995).  

Transfer of maternal antibodies occurs in utero across the placenta and vertical transmission of 

malaria maternal antibodies has been observed (Hviid & Staalsoe, 2004). The Ig transplacental 

transfer is restricted to the IgG isotype and the mechanism of transplacental transfer of 

maternal IgG was reviewed few years ago (Kristoffersen, 2000). Briefly, the transfer of IgG 

across the placental barrier (Figure 7) is an active process involving Fc receptor (FcR) 

molecules. The maternal IgG must pass two cellular barriers: the syncytiotrophoblast and the 

fetal endothelial cells.  

Passive transfer of antibodies continues after birth via breast feeding, since anti-malaria 

antibodies have been detected in human breast milk (Leke et al., 1992). However these 

antibodies are believed to act only within the gut to protect the infant from enteric pathogens, 

as the majority of the immunoglobulins are degraded in the intestine and very little if any Ig 

isotype is absorbed in an active form into circulation (Riley et al., 2001).  
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Figure 7. Steps in the IgG transport through the 

placental barrier. Maternal IgG (A) enters the 

syncytiotrophoblast (STB) by an active receptor-

mediated process, or by liquid fluid phase endocytosis 

(not established). Once internalized (B), by either mode, 

vesicles fuse and molecules are sorted. Transport within 

the endocytotic compartment involves IgG binding to 

the high-affinity FcRn of the early endosome and 

transcytosis (the complex is internalized and carried 

through the cytoplasm of the syncytiotrophoblast in a 

transport vesicle to its luminal surface), whereas 

unbound molecules will enter the lysosomal pathway 

(C) and are degraded. Once brought to the basal side 

(D), the FcRn/IgG complex is exocytosed and IgG 

dissociated from FcRn. The FcRn is then probably 

recycled (E). IgG then diffuse through the villous stroma 

(VS) and is transferred to the fetal vessels (FV) through 

the endothelial cells in caveolae by an unknown 

mechanism (F). From Kristoffersen (2000).  

Placental pathologic changes caused by malaria may inhibit the transfer of maternal proteins 

generically and reduce the transfer of antibodies, even those associated to other diseases 

(Riley et al., 2001). Systemic antibody transfer to the infant decays abruptly at birth and IgG 

concentrations decline as it is catabolized and thus the persistence of antibody titers in the 

infant depends on the starting concentration of antibody at birth (Riley et al., 2001). 

Furthermore, it has been observed that maternal antibodies do not protect infants against 

malaria as it could be expected. In a longitudinal study with 143 children in Ghana there was 

no association between levels of maternal antibodies and protection against malaria over the 

first 20 weeks of age, but in the contrary infection risk was higher in children with higher 

maternally derived antibody levels (Riley et al., 2000). This increased susceptibility to infection 

in presence of maternal infection, rather than an expected protection, might be due to 

immunologic tolerance induced by in utero exposure to parasite antigens (Lammie et al., 

1991). Later, a study conducted in Cameroon evaluated the levels of antibodies specific for 

PAM and for non PAM parasites in cord blood of 79 neonates, who were followed up to 2 

years until the first appearance of P. falciparum parasites (Cot et al., 2003). They concluded 

that maternally transmitted anti-PAM antibodies, but not antibodies to any other specificity, 

were negatively related to the length of time until the first appearance of parasites in 

peripheral blood and positively related to the mean parasite density during the first 2 years of 

life. In fact, these results show that such antibodies have affinity to P. falciparum that 

cytoadhere in the placenta and this parasite population is only present in pregnant women and 

not in non-pregnant hosts like children. Therefore the presence of anti-PAM antibodies in cord 

blood only reflects the past occurrence of a maternal infection and is non-protective in 

children. 
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PARASITE-HOST INTERACTIONS IN PREGNANCY-ASSOCIATED MALARIA 

P. falciparum infected red blood cells (iRBC) do not generally remain in the peripheral 

circulation but instead adhere to molecules expressed on the vascular endothelium surface of 

the capillaries of specific organs of the host. Hence, the parasites find a proper environment 

for their relatively safe maturation and multiplication, avoiding to be taken by macrophages in 

the spleen. As a result there is an extensive accumulation of parasites in vital organs and, 

consequently, high concentration of parasite toxic metabolites and other factors inducing pro-

inflammatory responses in the host, leading to vascular damage and organ dysfunction (Miller 

et al., 2002). The adhesion is mediated by the recognition of parasite proteins expressed on 

the outer membrane of infected erythrocytes by receptors on the host endothelial cells. 

Parasite features determinant for disease establishment 

Malaria parasites and disease have several peculiar features and the understanding of how 

they are achieved is crucial to the knowledge of disease-related mechanisms and for the 

design of interventions aimed to reduce or eliminate infection. The parasite biology itself 

presents certain characteristics that appear strategic for immune evasion, ranging from the 

fact of being an intracellular parasite, to antigenic diversity and antigenic variation, and even 

to the capacity of being sequestered. Many aspects of PAM epidemiology are explained on the 

light of some of these parasite features. 

Malaria parasites rely on a mosquito vector for a part of their life cycle, which is dependent of 

suitable moist conditions for its breeding. In areas of highly seasonal transmission with a long 

dry season, malaria episodes are concentrated in a short period of the year following the rainy 

season and parasites have to maintain long infections in order to survive. This was imperative 

to ensure their transmission, since they must survive for 9 or 10 months in their mammalian 

hosts in order to be transmitted to mosquitoes in the following wet season (Kyes et al., 2001). 

Another characteristic of malaria parasites, functioning as a strategy of immune evasion, is 

evident at RBC invasion by merozoites that evolved a ‘just-in-time’ mode of invasion (Kats et 

al., 2008). Merozoites have a polarized morphology and several organelles characteristic of the 

Phylum Apycomplexa, namely an apicoplast (a plastid-like organelle) and an apical complex 

constituted by three other organelles (rhoptries, micronemes and dense granules), 

concentrated on the apical end of the parasite that are involved in cellular invasion (Cowman 

& Crabb, 2006). The apicoplast possibly arose in an ancestor of the apicoplexan parasites that 

engulfed a eukaryotic alga retaining its plastid. Its genome encodes for 30 proteins and is 

essential for parasite survival, having a function in the anabolic synthesis of fatty acids, 

isoprenoids and heme (Gardner et al., 2002). The initial interaction between the merozoite 

and the RBC appears to occur at any point on the surface of the merozoite, followed by its 

reorientation in order to juxtapose the apical end of the merozoite with the erythrocyte 

membrane, allowing a subsequent stronger interaction (Figure 8). To invade a RBC the 
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merozoite must engage RBC receptors and undergoes apical reorientation. Afterwards, the 

invasion process is facilitated by released proteins contained within the apical organelles. The 

fact that these secreted factors are inside an organelle might protect the parasite from 

recognition, as they are secreted only shortly prior to or at the time of merozoite attachment. 

This allows the parasite to protect essential ligands from antibody-mediated neutralization by 

minimizing their exposure to the host immune system. Moreover, the parasite can 

compartmentalize proteins according to function and deliver them in a temporally-regulated 

manner. For instance, proteins that are involved in reorientation and tight junction formation 

are secreted first, followed by proteins necessary for alteration of the host RBC cytoskeleton 

and parasitophorous vacuole (PV) formation, as the parasite invades the host cell, and finally 

proteins required for long-term maintenance of the PV are released. Within this PV, derived 

from the RBC plasma membrane, the parasite creates a frontier to seal itself from the host cell 

cytoplasm (Kats et al., 2008). 

 

 

Figure 8. Invasion of a RBC by a 

P. falciparum merozoite. Invasion is 

a sequence of processes. Initial 

attachment can occur with the 

merozoite in any orientation and 

involves low-affinity interactions 

between merozoite surface proteins 

and receptors on the target cell 

(glycophorin A in P. falciparum). 

Subsequent interactions are 

facilitated by proteins that are 

initially hidden within the apical 

organelles and are secreted only 

shortly prior to or at the time of 

attachment. From Kats et al. (2008).  

Malaria parasites seem to have chosen an immune-privileged site by infecting RBC, which have 

no surface MHC molecules and no mechanism for antigen presentation. However, the parasite 

is not invisible to the host immune system, since on the iRBC surface novel proteins appear 

produced by the parasites. Some of these proteins correspond to highly polymorphic antigens, 

and can enable the iRBC to cytoadhere to host receptors. In fact, a controlled parasite 

proliferation may be attained by exposing iRBC to the immune system even without leading to 

its total elimination. Otherwise, if parasites remained unchecked, proliferation would be 

unconstrained and the host would be killed before an efficient transmission to a mosquito 

(Scherf et al., 2008).  

Once infection is established in the blood, it continues until either the host dies or the parasite 

is controlled by drugs or by the immune response. In an untreated individual the typical 

pattern for parasitemia is to rise to a high level, producing severe clinical symptoms, and then 

fall, with the symptoms either disappearing or becoming milder. At some later point, 

parasitemia rises again and clinical symptoms return (Scherf et al., 2008). The clinical pattern 

of relapses reflects the “strategy” used by the parasite to contour the host immune response 
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by an antigen switching mechanism. In principle, parasite strains with inherently high switching 

rates (allowing rapid sequential expression of novel antigens) would be able to cause repeated 

infections in the same patient and to establish a chronic infection (Kyes et al., 2001).  

A further property of some P. falciparum isolates is the ability of iRBC to bind to uninfected 

RBC, leading to the formation of erythrocyte rosettes and this event is associated with an 

increased risk of severe disease (Udomsangpetch et al., 1989). Parasite sequestration and 

rosetting are mechanisms that maintain the parasite shielded from destruction by the immune 

system, favoring its growth and multiplication, but with likely problematic consequences for 

the host, such as capillary occlusion, organ dysfunction and severe malaria syndromes like 

cerebral malaria. 

Additionally, most immune responses directed to many of these polymorphic antigens may not 

have any protective function and may confound the immune system. It is noteworthy to 

remark that P. falciparum genome encodes for 5,268 predicted proteins, 31% (1,631) have one 

or more transmembrane domains, many of which are highly polymorphic (Gardner et al., 

2002).  

The surface of infected erythrocytes 

A normal RBC presents a discoid shape and a diameter of about 7 µm, having a central bi-

concave form, enabling it to entry the smallest blood vessels and capillaries. Upon infection of 

RBC by merozoites, the parasites modify the RBC membrane to enable their survival and 

proliferation. After RBC invasion, the parasite starts to increase in size and to digest 

hemoglobin taken from the RBC cytoplasm, depositing the undigested heme residue in a 

polymerized pigment, the hemozoin (Cooke et al., 2004). Maturation of the parasites causes 

structural and morphologic changes in the iRBC, which include alterations in cells deformability 

(loss of the normal discoid shape and acquisition of a spherical appearance), permeability, and 

perturbations in the mechanical and adhesive characteristics, accomplished essentially by the 

trafficking of proteins and proteins export to the RBC membrane. Some exported proteins are 

conserved across plasmodial species and are essential for parasite survival. The parasite 

develops inside the RBC through the ring, trophozoite and schizont stages and at the 

termination of this asexual cycle the iRBC needs to be lysed to release merozoites for invading 

new RBC. This lysis is completed in two steps, firstly the lysis of the internal membrane that 

surrounds the parasite, the PV membrane, allowing the parasite to enter the RBC cytoplasm, 

and secondly the lysis of the RBC membrane (Cooke et al., 2004).  

The iRBC surface (in trophozoites and schizonts stages) appears punctuated by up to 10.000 

distinct knob-like protrusions (with ~100 nm in diameter) (Figure 9) that resulted from the co-

localization of parasite proteins and might be associated with altered cellular adhesive 

properties of the cell (Cooke et al., 2004; Maier et al., 2009). Although knobs are considered 

necessary for adhesion, some studies show that the presence of knobs does not necessarily 

lead to sequestration. For example P. malariae iRBC show knobs and do not sequester 
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(Sherman et al., 1995), whereas the rodent parasite P. chabaudi iRBC lack knobs and can 

sequester (Cox et al., 1987) as well as a knobless line of P. falciparum (Biggs et al., 1990). Thus, 

the presence or absence of knobs is not as decisive for cytoadhesion, as the presence of 

certain parasite proteins on the RBC surface. 

 
Figure 9. The variant PfEMP1 mediates adhesion of the infected RBC to host receptors. PfEMP1 is 

expressed by the malaria parasite P. falciparum on the knobs formed on the surface of iRBC. The 

variable extracellular regions of the protein (DBLs and CIDR) mediate adhesion through binding to 

several tissue receptors such as CD36, ICAM1 and CSA. PfEMP1 also mediates adhesion to 

uninfected erythrocytes forming rosettes. (PV, parasitophorous vacuole; MC, Maurer’s cleft). From 

Pasternak & Dzikowski (2009).  

Antigenic diversity and antigenic variation in P. falciparum 

Different populations of P. falciparum show antigenic differences, which confer them distinct 

properties. Antigenic diversity, which reflects polymorphisms in allelic gene products, can be 

distinguished from antigenic variation, which is a result of the expression of alternative genes 

in multicopy family genes. This process of antigenic variation prevents the parasite of being 

attacked by continuously changing some iRBC surface proteins, allowing the extension of the 

infection period. Antigenic variation in P. falciparum has been intensively studied but many 

underlying molecular mechanisms remain unknown. Significant work in recent years has 

contributed to the understanding of antigenic variation process and the “state of the art” has 

been reviewed and summarized by diverse authors (Kyes et al., 2001; Ralph & Scherf, 2005; 

Kyes et al., 2007; Scherf et al., 2008; Dzikowski & Deitsch, 2009). The process of antigenic 

variation results from switches in expression between members of a specific gene family, thus 

altering the form of the surface exposed protein (variant surface antigen or VSA). Four 

multicopy gene families might be involved in antigenic variation of P. falciparum: var, rifin, 

stevor and Pfmc-2TM. The best characterized is the var family, which encodes the Plasmodium 

falciparum Erythrocyte Membrane Protein 1 (PfEMP1), a protein responsible for iRBC 

sequestration, recognized as the major target of antibodies and clustered on the iRBC knobs 

(Figure 9). Similarly to the var genes, the other gene families also undergo clonal variation, but 



Parasite - Host Interactions in Pregnancy-Associated Malaria 

31 

 

the proteins they encode have unknown biological functions (Kyes et al., 2001; Scherf et al., 

2008).  

The multigene family var has approximately 60 genes distributed across all P. falciparum 

genome, each one displaying a distinct repertoire of surface variants for PfEMP1. The 

switching in transcription from one var gene to another appears to rely only in epigenetic 

changes in the gene locus (Ralph & Scherf, 2005). Each individual parasite expresses a single 

var gene at a time (coding for the dominant neoantigen), maintaining all the other members of 

the family in a transcriptionally silent state. Therefore, there is a mutually exclusive expression 

of a single var gene member orchestrated by different epigenetic factors that do not require 

programmed DNA rearrangements. A switch in expression must be coordinated so that 

activation of one gene coincides with simultaneous silencing of the previously active copy with 

modifications in chromatin structure clearly playing an important role in determining which 

var gene is active in any given parasite. However, a mechanism of “memory” must exist to 

maintain the transcription state through subsequent parasite generations, so that the 

epigenetic marks, namely that the chromatin structure is kept across cell divisions. At present 

this process is not completely understood. Several other aspects remain to be elucidated, 

namely the switching sequence process and the clarification on how to maintain an antigen 

switching rate that allows emergence of a new protein variant without exhausting all the 

possibilities, and whether the switching follows an order or is a random process.  

Studies to clarify those unknown mechanisms are impracticable in humans. For instance, the 

order and rate at which parasites switch expression from one var gene to another is difficult to 

measure in patients. iRBC VSA switch rates of P. falciparum were firstly evaluated in a study 

where the authors showed that parasites cultured in vitro, in absence of immune pressure, 

switched spontaneously at a rate of 2%, leading to parasites with different antigenic and 

cytoadherence phenotypes (Roberts et al., 1992). Nevertheless, there is evidence that 

switching rates in vivo are higher (~18%) although the predictions are based in few 

experiments and on mathematical models founded on assumptions of hypothetical var 

switching mechanisms (Gatton et al., 2003).  

Host receptors for malaria parasites 

The P. falciparum adhesion process, in which most parasites first tether and then roll before 

becoming firmly secure, is comparable to leukocyte adhesion. Only two receptors, CD36 and 

chondroitin sulphate A (CSA), have been shown to provide stable stationary iRBC adhesion 

(Miller et al., 2002). Cooperation between host receptors is known to enhance adhesion of 

iRBC, which may need to be preceded by tethering and rolling before stabilizing. The type of 

affinity between iRBC and the host receptors might modulate the final interaction, namely 

adhesion and/or rosetting properties. Binding studies using recombinant PfEMP1 domains 

have shown interactions with various host receptors, which include: CD36, the most abundant 

adhesion receptor and a mediator for most of the clinical isolates and laboratory lines of 
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P. falciparum; is found in the surface of platelets, monocytes, dendritic cells and microvascular 

endothelial cells; ICAM-1, expressed in the endothelium, has an important role in the 

leucocytes adhesion to the endothelium during inflammation and was shown to support rolling 

of iRBC; thrombospondin, a molecule with anticoagulant properties, that appears on 

extracellular matrix of the endothelium and syncytiotrophoblast; platelet-endothelial cell 

adhesion molecule (PECAM); vascular cell adhesion molecule-1 (VCAM1) and the endothelial-

cell selectin (E-selectin). The last two receptors are not expressed on resting endothelium but 

their expression is induced by inflammatory cytokines, such as TNF-α (Sherman et al., 1995; 

Baruch et al., 2002; Schofield & Grau, 2005).  

Rosettes, or aggregates of infected and uninfected RBC, are observed in some P. falciparum 

isolates and appear to involve several RBC surface molecules. Rosetting mediators can include 

the sulfated glycoconjugates heparin or heparan sulfate, blood groups antigens A and B and 

the complement receptor (CR1) expressed on uninfected RBC, and also IgM in serum (Kyes et 

al., 2001). The formation of these aggregates, between parasitized and non-parasitized RBC, 

might also lead to the obstruction of capillaries in patients with cerebral malaria 

(Udomsangpetch et al., 1989).  

Other host receptors were also found to have affinity to iRBC surface proteins. In 1995, 

Rogerson et al. found that P. falciparum laboratory strains can adhere to Chinese hamster 

ovary (CHO) cells and that the binding is mediated by CSA (Rogerson et al., 1995). In their 

experiments, CHO cell-adherent iRBC were unable to bind CHO cell mutants lacking CSA 

expression. Moreover, iRBC binding to CHO cells was inhibited by CSA but not by other 

glycosaminoglycans and treatment of CHO cells with chondroitinase ABC but not with other 

enzymes led to a reduction in iRBC binding. Thus CSA was identified as a potential receptor 

involved in parasite sequestration, a result confirmed a year later by Fried and Duffy. In fact, 

these authors discovered the biological importance of iRBC adhesion to CSA, by demonstrating 

that iRBC obtained from human infected placentas binds to uninfected placentas in a CSA-

dependent manner (Fried & Duffy, 1996). 

Receptors for parasites on human placentas 

In human pregnancy-malaria pathogenesis the receptors that are reportedly involved in 

placental parasite sequestration are glycosaminoglycans (GAG), such as the low-sulphated CSA 

(Fried & Duffy, 1996; Achur et al., 2000) and possibly the hyaluronic acid (HA) (Beeson et al., 

2000; Beeson et al., 2002b; Rasti et al., 2006). Within the placenta, CSA is shown to be 

distributed throughout the intervillous spaces and at low but significant levels on the 

syncytiotrophoblast lining (Muthusamy et al., 2004). Studies of placental CSA expression 

kinetics show that CSA is present in placentas and available for iRBC adhesion during the 

second and third trimesters of pregnancy (Gowda, 2006). CSA is a GAG composed of repeats of 

disaccharide units of D-glucuronic acid (GlcA or GlcUA) linked to N-acetyl-D-galactosamine 

(GalNAc) with a sulfate group at position C4 of GalNAc. CSA molecules from different sources 
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differ in sulfation patterns, and this property may influence their ability to support iRBC 

binding in the placenta (Fried et al., 2000). Highly sulfated forms can fail to support adhesion, 

whereas low-sulfated forms are optimal for binding (Alkhalil et al., 2000). 

HA is a controversial candidate as iRBC placental receptor, since it is not present in the 

intervillous spaces (Achur et al., 2000; Muthusamy et al., 2007) and it is claimed that its 

presence in the placenta is due to contamination from the umbilical cord where it is abundant 

(Fried et al., 2006). Previously reported binding to HA could be due to the CSA contaminations 

in HA preparations. Additionally, since the level of HA is less than 1-2% as compared to other 

GAG, if it can be a placental receptor, it should not be a main one (Valiyaveettil et al., 2001). 

Few years ago it was also suggested that non-immune immunoglobulins (of the IgG isotype) 

can be adsorbed to iRBC surface and this prompted the hypothesis that IgG may act as a bridge 

for iRBC to bind Fc receptors on the syncytiotrophoblast (Flick et al., 2001; Rasti et al., 2006). 

Nevertheless, the presence of HA and Fc receptors either in the intervillous space or in the 

syncytiotrophoblast lining of placentas is still unclear and more data is needed to resolve these 

controversies.  

CSA and other GAG on the intervillous spaces and on the syncytiotrophoblast appear to have 

several functions. They may play a structural role (similarly to other organs subjected to 

mechanical deformation like the joints cartilage) in maintaining the shape of the IVS to 

facilitate maternal blood flow. Additionally, they might constitute chemical barriers in masking 

fetal antigens from the maternal immune system and they may be involved in adsorbing 

essential components including metal ions, growth factors, and nutrients from maternal blood 

and in assembling them in the IVS for effective uptake by fetal villi. The low sulfation of the 

GAGs is associated with a low charge density of GAG chains that may facilitate the effective 

transfer of the adsorbed materials by a relatively weak interaction, which would be stronger if 

the GAGs were to be highly sulfated (Achur et al., 2000). In sum, the accumulation of these 

molecules with low sulfated GAG chains in the IVS suggests that they play a fundamental role 

in the placenta, and P. falciparum takes advantage of it to sequester and thus survive.  

Variant surface antigens associated to PAM 

CSA is expressed in large amounts in the placental IVS and on syncytiotrophoblast and, in fact, 

placental parasite isolates preferentially adhere to CSA in vitro, whereas parasites from men 

and non-pregnant women usually do not (Fried & Duffy, 1996; Beeson et al., 1999). Thus, the 

conclusion of several experimental observations is that placental parasites are antigenically 

distinct from those of non pregnancy origin.  

PfEMP1 proteins are involved in several malaria disease syndromes, but its role is best 

understood for PAM (Rogerson et al., 2007). Through switching expression of the different var 

genes, PfEMP1 undergoes antigenic variation and expresses specific VSAs that mediate 

adhesion to CSA, allowing the parasite to evade former host immune responses (Smith et al., 

1995). The gene var2csa is transcriptionally upregulated in both placental isolates and 
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laboratory parasites selected to bind CSA (Salanti et al., 2003), and disruption of var2csa 

causes infected erythrocytes to lose their ability to bind CSA (Viebig et al., 2005; Duffy et al., 

2006). In fact, in iRBC with non-CSA-binding abilities the gene var2csa is silent and different 

members of the var gene family are transcribed during chronic infection.  

During the first pregnancy, women who have previously developed malaria immunity are 

susceptible to placenta infection. After one or two pregnancies they develop protection to the 

placental form of the disease and generate antibodies recognizing placental parasites (Fried et 

al., 1998b; Duffy & Fried, 2003; Staalsoe et al., 2004), suggesting that surface molecules 

expressed by placental infected erythrocytes may have unique and conserved features. 

Additionally, Salanti et al. show that high levels of anti-VAR2CSA antibodies correlated with a 

lower risk of delivering LBW neonates (Salanti et al., 2004) and in a different study CSA-binding 

placental isolates were also significantly associated with LBW children (Tuikue Ndam et al., 

2004). 

VAR2CSA-PfEMP1 plays a major role in PAM, displaying an extensive polymorphism, but only a 

limited portion of the variable domain is actively seen by the host immune system (Bockhorst 

et al., 2007). Thus, placenta-associated parasites have adhesive and antigenic differences 

between isolates that correspond to var2csa polymorphisms, hence stimulating different host 

responses (Beeson et al., 2006; Trimnell et al., 2006; Kyes et al., 2007). Women exposed to 

malaria acquire and expand the repertoire of variant-specific antibodies, some of which cross-

react with different placental isolates and the extent of reactivity appears to be greater among 

women who experienced more exposures in pregnancies (Beeson et al., 2006). 

Overall, a woman is highly susceptible to placental infection when pregnant for the first time, 

even if her pre-existing acquired immunity can control non-placental parasitemia. 

Nevertheless, an interesting question remains: how does a var gene that is apparently silent in 

a woman appear to be the major var gene expressed during pregnancy? Nunes and Scherf 

reviewed this issue recently and considered that there are two hypothetical mechanisms that 

could lead to var2csa activation during pregnancy malaria (Nunes & Scherf, 2007). The first is a 

selective process by the placenta, which is based on the fact that the placenta expresses a 

range of new receptors, providing a niche for parasites expressing variant CSA-binding 

phenotypes (that are circulating in very small numbers in the peripheral blood of the 

primigravida) to survive and selectively accumulate. The second is an induction mechanism 

promoted by specific host factors. Pregnancy triggers physiological changes, including serum-

specific factors (hormones/cytokines) and locally-released mediators by the 

syncytiotrophoblast, which may promote the transcription of var2csa. 

Parasite recrudescence in human PAM  

Parasite recrudescence has been observed in course of pregnancy in different situations but is 

generally difficult to identify. Many P. falciparum genes show extensive genetic polymorphism, 

which can be detected by molecular genotyping studies. Because of this ample polymorphism, 
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it is highly unlikely for individuals in areas of intense transmission to become newly infected 

with a parasite having an identical genotype during a disease follow up (this probability is the 

product of individual allele frequencies of each allele of the total number of genes in study). 

Therefore, by comparing the genotypes of the target loci across disease relapses, parasite 

recrudescence can be distinguished from a new infection (Mugittu et al., 2006). A recent study 

on PAM using a sensitive genotyping method of P. falciparum isolates show PAM recrudescent 

infections in 21% of the women as they had parasite isolates sharing the same antigens 

without evidence of new infections and with a mean time interval between consecutive 

malaria-recrudescence episodes of 58 days (Mayor et al., 2009). A case of recrudescence was 

reported in a pregnant woman who had been absent from endemic regions for a long period 

of time (4 years) (Giobbia et al., 2005).  

It is important to point out that the genotyping of field isolates could be useful in detecting not 

only the multiplicity of infections (number of concurrent infections) but also in studying 

infection dynamics in pregnancy. In fact, WHO states that recurrent parasites should be 

genotyped by polymerase chain reaction (PCR) to distinguish recrudescent from new infections 

and that these tools are very valuable for studies on drug resistance and for other specialized 

epidemiological investigations (WHO, 2006). However these tools are not generally available 

for human PAM studies in malaria endemic areas, where women are continuously exposed to 

new infections. Identification of recrudescent events in pregnant women by parasite molecular 

genotyping may improve the understanding of the pathological mechanisms of PAM, the 

processes of acquired immunity, the evaluation of the placenta-specific parasite antigenic 

variation, transmission conditions, efficacy of treatments and the genetic basis of drug 

resistance in pregnancy. 

Mechanisms attempts to explain PAM epidemiology 

The mechanisms and biological bases of PAM susceptibility and linked recrudescence, as well 

as protection acquired by multigravida, are still not well understood. Several efforts have been 

made to explain the epidemiological finding that, especially in areas of stable transmission, 

malaria is more frequent and severe in first pregnancies with observed reduced susceptibility 

in women who have had several pregnancies exposed to malaria (Fried & Duffy, 1998).  

Some explanatory attempts are based on the higher attractiveness of women for malaria-

carrying mosquitoes during pregnancy (Himeidan et al., 2004), due to both physiological and 

behavioral changes. In fact, pregnant women have a higher production of exhale breath and an 

increased blood flow / hotter skin than their non-pregnant counterparts, raising the release of 

volatile products that allow mosquitoes to perceive them more readily (Lindsay et al., 2000). 

However this can only explain the higher parasite exposure to new infections, which could 

cause the parasitic load to expand, but not the cases of recrudescence. 

Other postulated mechanisms include the hormone-dependent depression of the immune 

system during pregnancy that would allow the exacerbation of malaria. Indeed, there are few 
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examples of hormone fluctuations during pregnancy that can modulate the immune system, 

either by suppressing or stimulating it, and thus modify maternal susceptibility to malaria 

(Rasheed et al., 1993; Bouyou-Akotet et al., 2005; Mavoungou, 2006). The immunosuppression 

is mainly sustained by increased blood levels of cortisol that reduces the NK cytolytic effect on 

P. falciparum iRBC (Bouyou-Akotet et al., 2004). Cortisol concentrations were higher in 

primigravida than in multigravida from the second trimester onwards, and also higher in 

infected than in uninfected primigravida (Vleugels et al., 1989; Bouyou-Akotet et al., 2005), 

whereas susceptibility to malaria is higher in the second trimester and then decreases (Brabin, 

1983). Conversely, the plasma prolactin levels, a stimulator of the immune system, is higher in 

multigravida (Bouyou-Akotet et al., 2005). It was proposed that the hypothalamic-pituitary-

adrenal (HPA) axis might be modulated by repeated pregnancies/lactations events, which 

could “desensitize” stress circuits leading to a reduction of cortisol secretion after multiple 

births (Tu et al., 2006), thus reducing multigravida immunosuppression. 

However these hypotheses do not explain the preferential replication of parasites within the 

placenta. Duffy discussed the immunosuppression hypothesis (Duffy, 2001), stating that 

malaria could confound cortisol studies in pregnancy, since it makes difficult the distinction 

between cortisol levels due to pregnancy, due to malaria disease itself, puzzled with malaria-

related immunosuppression. Interestingly, the connection between malaria in pregnancy and 

immunosuppression was first demonstrated in mouse models, showing that development of 

recrudescent infection leads to increased corticosteroide production, suggesting that cortisol 

played a regulatory role in malaria during pregnancy (van Zon et al., 1982). 

Presently, immunosuppression is not generally acknowledged as an explanation for PAM 

susceptibility and hypotheses that include acquired immunity to neoantigens, resulting from 

parasite antigenic variation, are more accepted because they corroborate the epidemiology of 

the disease. The currently accepted hypothesis emerged after the discovery that P. falciparum 

parasite sub-populations are responsible for maternal malaria (Fried & Duffy, 1996). As specific 

immunity would start developing towards those parasites, infections could be cleared. 

Primigravida generally do not have antibodies to placental-binding iRBC, suggesting that these 

parasites represent novel VSAs to which women have not been previously exposed (Beeson et 

al., 1999; Ricke et al., 2000). Antibodies to surface antigens expressed by placental isolates and 

isolates that adhere to CSA are more prevalent in multigravida after exposure to placental 

malaria (Beeson et al., 1999; Ricke et al., 2000; Beeson et al., 2004) and are associated with a 

reduced risk of malaria during pregnancy and improved pregnancy outcomes (Staalsoe et al., 

2004). This explains why malaria premunition acquired during childhood, by people living in 

endemic areas, does not include antibodies that prevent CSA-iRBC adhesion and immunity 

against CSA-adherent parasites. Indeed a placental-parasite related immunity is crucial to 

control placental malaria and parasite exposure through consecutive pregnancies is required 

for this immunity to develop and be maintained (Hviid & Staalsoe, 2004).  
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CONTRIBUTION OF MOUSE MODELS FOR PREGNANCY-ASSOCIATED 

MALARIA STUDIES 
 

There are still several gaps of knowledge on PAM that constitute priorities of research, both in 

the parasite side and in the host side, some of which are difficult to perform in vivo for several 

reasons, including ethical constraints. Animal models can give a contribution in this area of 

research and some authors mentioned the importance of animal studies in providing new 

scientific hypotheses (Beeson et al., 2002a; Nosten et al., 2004; Greenwood et al., 2007; 

Rogerson & Boeuf, 2007).  

Malaria exposure is a composite of mosquito and parasite factors including numbers of 

infective bites, duration of infection and genetic diversity of the parasite population, which are 

difficult to quantify and to compare. Disease outcomes (duration and density of infection and 

disease severity) are equally difficult to categorize and measure and are influenced by host 

factors other than immunity. Animal models can have an added value in this respect, since 

they allow the tight control of many exposure variables and close monitoring of disease 

development. 

Laboratory animals, such as mice, are suitable models for PAM because of their relatively short 

gestational period that allows a reasonable experimental time frame, and of the availability of 

immunological and genetic tools. It is critical to appreciate the degree of similarity/differences 

of mice and human pregnancy physiology, namely on their immunology, placental structure 

and function. Desowitz summarizes the possible model systems that can be used to study 

malaria in pregnancy (Desowitz, 2001) and concludes that the congruency between the mouse 

and human is enough to allow the use of rodent malaria as a model for human PAM. It is clear 

that placental malaria is associated with several complications in pregnancy, paralleling 

analogous features in human and animal pregnancies, including embryonic lethality, fetal 

growth restriction, pre-eclampsia and the high rates of fetal mortality. 

Comparative histology of the human and mouse placentas 

Recent studies have provided extensive new data on the anatomy and physiology of the 

mouse placenta. Although the gross construction of the human and mouse placentas differ 

somewhat in their details, the overall structures and molecular mechanisms underlying 

placental development are thought to be quite similar (Rossant & Cross, 2001). Placental 

development comparison between mouse and human, as well as studies of molecular biology 

that attempt to localize gene expression patterns, have been described in several other 

reports (Adamson et al., 2002; Cross et al., 2002; Georgiades et al., 2002; Cross et al., 2003; 

Cross, 2005; Watson & Cross, 2005). 

Both rodents and humans have discoid placentas, with a flat part facing the fetus and a convex 

opposite surface adjacent to the uterine wall. During implantation and subsequent trophoblast 
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invasion, fetal trophoblast cells and maternal tissues (endometrium and myometrium in 

humans but only endometrium in mice) come into intimate contact. Both placentas are 

classified as hemochorial, because the uterine epithelium is eroded such that maternal blood 

comes into direct contact with trophoblast villi surface. In a cross-sectional view of both 

placentas it is possible to observe analogous structures (Figure 10) (Georgiades et al., 2002). 

Briefly, the three major placental zones have a correspondence in human and mouse: the 

outer maternal layer (decidua basalis) includes decidua cells of the uterus, as well as the 

maternal vasculature that brings blood to/from the uterine implantation site; a middle region 

which attaches the fetal placenta to the uterus and contains trophoblast cells that invade the 

uterine wall and maternal vessels (known as basal plate in humans and junctional zone in 

mice); and an inner region formed of highly branched villi where exchanges occur (the fetal 

placenta (villous tree) in human or labyrinth zone in mouse placenta).  

 

 

Figure 10. Human and mouse placentas. Schematic representation of the major regions and cell types of the 
human (left) and mouse (right) placentas, during the last trimester and last fifth of gestation respectively. The 
placentas are oriented with their maternal side towards the top and that facing the fetus (flat) at the bottom. The 
plane of sectioning is through the center of the placenta and perpendicular to its flat surface. The major placental 
zones have a correspondence in human and mouse respectively: decidua basalis (db) in both; basal plate (bp) and 
junctional zone (jz); fetal placenta (villous tree) (fp) and labyrinth zone (l). Arrows depict the direction of maternal 
blood flow within the utero-placental circulation. avb, anchoring villous branch; avm, allantoic vasculature and 
mesenchyme; bp, basal plate; bpet, basal plate endovascular trophoblast; bpit, basal plate interstitial trophoblast; 
bpvc, basal plate venous channel; cc, cytotrophoblastic cell column; cma, central maternal artery; cp, chorionic 
plate; cpp, chorionic plate projection; db, decidua basalis; fp, fetal placenta; igc, invading glycogen trophoblast cells; 
ivs, intervillous space; jz, junctional zone; jzgc, junctional zone glycogen trophoblast cells; jzst, junctional zone 
spongiotrophoblasts; jzvc, junctional zone venous channel; l, labyrinth; m, myometrium; mbs, maternal blood 
sinus/spaces; msa, maternal spiral arteries; mv, maternal veins; pbit, placental bed interstitial invasive trophoblast; 
pbet, placental bed endovascular trophoblast; tgc, trophoblast giant cell; tgcz, trophoblast giant cell zone; tv, 
terminal villi; uc, umbilical cord; vt, villous tree; zi, zona intima. From Georgiades et al. (2002). 
 

The decidua basalis is the zone in contact with the uterus and receive the same name in both 

species, although in human placentas the assembly of the decidua basalis and the underlying 

myometrium is known as placental bed (Georgiades et al., 2002).  

Between the murine decidua basalis and the junctional zone, is a zone of trophoblast giant 

cells that appear not to have an analogous zone in human placenta, although a parallel can be 

HHuummaann  MMoouussee  
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made between the murine trophoblast giant cells and the earlier extravillous cytotrophoblast 

cells that invade the human decidua basalis (Georgiades et al., 2002). The trophoblast giant 

cells, so named because of their unusually large size, related to the fact that they are 

extensively polyploid, mediate implantation and invasion into the uterus and at later stages 

produce several hormones and cytokines supporting both local and systemic physiological 

adaptations in the mother (Cross, 2005).  

In the junctional zone of the mouse placenta, also known as spongiotrophoblast layer, there 

are two types of cells, the spongiotrophoblasts and the trophoblast glycogen cells. The 

function of the spongiotrophoblast layer is unknown, but some of the spongiotrophoblast cells 

can differentiate into giant cells and are somewhat analogous to the cytotrophoblastic cell 

columns that anchor the villi of the human placenta. The trophoblast glycogen cells appear 

within the spongiotrophoblast layer after gestational day (G) 12.5 and later they invade into 

the uterus in a diffuse interstitial pattern (Cross, 2005). These cells can secrete hormones, 

contain large amounts of glycogen and under histological observation have large vacuoles 

given the appearance of a clear cytoplasm (Georgiades et al., 2002). In the basal plate, 

especially at the begin of gestation, there are also two types of cytotrophoblasts based on the 

degree of vacuolation and glycogen content and showing a morphological gradient, being the 

cells closest to decidua basalis more vacuolated and glycogen-rich (distal cells) and the 

remaining cells (proximal cells) have an eosinophilic cytoplasm and low amounts of glycogen, 

which allow several analogies between human and mouse (Georgiades et al., 2002).  

The labyrinth layer of the mouse is completely analogous in function to the chorionic villi 

(villous tree) of the human placenta and in both the villi are covered by syncytiotrophoblast 

that lie in direct contact with the maternal blood. These structures differ in terms of the 

ramification patterns. In human placentas they are of the villous type, maintaining a tree-like 

pattern with blunt-ended edges. On the contrary, the branches in the murine labyrinth are 

much more interconnected and generate a maze-like pattern. Consequently the human villi 

are well separated and the maternal blood space (the IVS) appears as a large open space, 

whereas in mice the “villi” are found anastomosed together originating tortuous channels in 

which the maternal blood flows (Cross, personal communication).  

All trophoblast cells located outside the placental villi form the extravillous trophoblast (also 

known as extravillous cytotrophoblast or intermediate trophoblasts). In the basal plate the 

extravillous trophoblast form clusters of stem cells named cytotrophoblast cell columns, which 

connect the anchoring villi to the basal plate (Georgiades et al., 2002; Kaufmann et al., 2003).  

The “placenta barrier” which constitutes the interface between maternal and fetal bloods, has 

few differences between both species. Both interfaces include a trophoblastic portion (lining 

the maternal blood spaces), a basement membrane and the fetal capillary endothelial cells 

that directly line the circulating fetal blood. The difference resides in the number of cell layers 

in the syncytiotrophoblast: in humans the trophoblast has a single syncytial layer (monochorial 
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placenta), whereas in mice it has three layers, namely two syncytial layers and a single 

mononuclear cell type (trichorial placenta). The unique continuous layer of syncytium in 

human placenta (Figure 11) is facing the maternal blood and has numerous microvilli to 

enhanced exchange.  

 

Figure 11. Cross section representation of a 

terminal chorionic villus in human placenta. Fetal 

blood enters the placenta by the umbilical cord spiral 

arteries and arbors into branching chorionic villi that 

are immersed in maternal blood (MB). This cross 

section scheme shows the continuous layer of 

multinucleated syncytiotrophoblasts (STB), a few 

underlying cytotrophoblasts (CT), and the villous 

stroma (VS) with fetal vessels (FV) and the 

macrophage-like Hofbauer cells (HC). From 

Kristoffersen (2000).   

 

In mice the trilaminar trophoblastic layer (Figure 12) consists of a first layer formed by 

mononuclear trophoblast cells (layer I), lining the maternal blood sinusoids, which does not 

have microvilli. The middle and third layers (layers II and III) are syncytiotrophoblastic that 

surround the fetal blood vessels endothelium. 

 

 

Figure 12. Schematic representation of the 

trilaminar layer of labyrinth trophoblast cells 

that separates the maternal and fetal 

circulations of the mouse placenta. From 

Watson & Cross (2005). 

Placental development in mice and humans  

At implantation, which occurs at G4.5 in mice and at G7-10 in humans, a precocious and 

intimate apposition between the maternal and fetal tissues is established. However, the 

establishment of a complete maternal circulation only occurs after this point. In fact, according 

to the effective maternal blood circulation in the placenta, the pregnancy can comprise two 

contrasting periods. In the first trimester of human pregnancy there is a little maternal blood 

flow in the placenta, the oxygen tension within the feto-placental unit is low, and the uterine 

glands may provide much of the nutrient supply (histiotrophic nutrition). At the start of the 

second trimester (around the 12th week of gestation) the maternal circulation within the 

intervillous spaces becomes fully established, the oxygen tension rises and the nutrients and 

gases are supplied by the maternal blood flow (haemotrophic nutrition) (Burton et al., 2001). 

This stage, correspondent to the full establishment of utero-placental circulation, is seen by 
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G12.5 in mice. This suggests that the murine definitive placenta becomes functional at or soon 

after mid-gestation, which indicates that temporarily the end of the first trimester in the 

human gestation may be equivalent to the time around mid-gestation in the mouse (De Pee et 

al., 2002; Georgiades et al., 2002).  

The change from histiotrophic to haemotrophic nutrition is an important event to take into 

consideration in the study of diseases such as malaria, whose infectious agent can reach the 

various tissues through blood circulation. Histiotrophic nutrition, and thus the absence of 

effective blood flow in the intervillous space during the first pregnancy period, may serve to 

protect the fetus from excessive high oxygen levels, reducing the damage mediated by free 

radicals during the sensitive period of organogenesis (Burton et al., 2001). During this phase 

the metabolism relies on anaerobic glycolysis, with oxygen consumption increasing towards 

the end of this period. The uterine glands in the endometrium discharge a cocktail of growth 

factors and carbohydrate-rich secretions into the IVS, which are taken up by 

syncytiotrophoblast. Moreover, the yolk sac also plays a role in nourishing the developing fetus 

in the first pregnancy period, by accumulating nutrients and transporting them to the fetus 

(Burton et al., 2001). The second phase of the pregnancy, starting after the completion of 

organogenesis and when the definitive placenta becomes functional and fully irrigated by 

maternal blood, is dominated by fetal growth. The increasing fetal requirements of oxygen 

arising from its growth are now provided by haemotrophic nutrition. Table 1 summarizes the 

main characteristics of human and mouse placentation described above. 

Table 1. Placentation features in human and mouse. Comparative structural and 

physiological aspects of the human and mouse placentas. 

Human Mouse 

38 weeks of gestation 

Histiotrophic nutrition in the first 

pregnancy period (3 months) 

Haemotrophic support in the second 

phase (last 2 trimesters) 

Discoid placenta 

Invasion of endometrium and 

myometrium during implantation 

Monochorial placenta (single 

syncytiotrophoblast layer) 

Haemochorial placenta (direct contact 

between maternal blood and chorionic 

trophoblast) 

Chorionic villi with a tree-like pattern 

3 weeks of gestation 

Histiotrophic nutrition in the first 

pregnancy period (12.5 days) 

Haemotrophic support in the second 

phase (nearly last half) 

Discoid placenta (per embryo) 

Invasion of endometrium during 

implantation 

Trichorial placenta (three 

syncytiotrophoblast layers) 

Haemochorial placenta (direct contact 

between maternal blood and chorionic 

trophoblast) 

Chorionic villi with a labyrinth or maze-

like pattern 
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Mouse models in immunopathological PAM studies  

To date the contribution of mouse models to the placental malaria immunopathogenesis 

knowledge has been negligible although the development and the exploitation of mouse 

models for PAM are likely to have a positive impact offering many tools to dissect the 

immunological and pathological components of pregnancy-associated malaria. 

Although differences between mouse and human immunology do exist and have already been 

reviewed (Mestas & Hughes, 2004), mice constitute an important experimental tool for many 

immunological studies. Regarding mouse malaria, the course of infection depends on factors 

inherent both to the host and to the parasite species/clone but is usually acute and results in 

either death or self-cure. Parasitemia is usually more extreme than in humans and anemia 

develops rapidly and can be either of short term or lethal.  

The first reported studies on mouse PAM were conducted by a Dutch group that used 

Plasmodium berghei K173 to infect outbred (Swiss) and inbred (C3H/StZ and B10LP) mice (van 

Zon & Eling, 1980a), followed by a chemotherapic treatment with sulfadiazine. They observed 

peripheral parasitemia recrudescence in about 46% of the pregnant females, but none of the 

non pregnant controls had recrudescent parasites. The authors noticed that recrudescence in 

second pregnancy depended on the presence of parasites in the first pregnancy. Therefore, 

the presence of parasites during pregnancy reinforced immunity, preventing recrudescence in 

a subsequent pregnancy. In a second report (van Zon & Eling, 1980b) these authors also 

observed a lower recrudescence rate in multigravida. Moreover, the authors verified that 

challenges of immunized mice before pregnancy did not reinforce immunity during pregnancy 

and the presence of parasites before G11 did not act as an antigenic signal, contrarily to the 

proliferating parasites after the second half of the pregnancy period (van Zon et al., 1985). In 

these pregnancy-malaria mouse studies, immunosuppression was the most accepted 

hypothesis to explain the higher malaria vulnerability in pregnancy. Other reports by the same 

team showed that mice that had recrudescence during pregnancy had significantly higher 

plasma corticosterone levels and that immune pregnant females without adrenal gland had a 

reduction of recrudescence rate (van Zon et al., 1982; Van Zon et al., 1986).  

Two research groups have used P.berghei NK65 in A/J and ICR mice strains (Oduola et al., 

1982) and in BALB/c mice (Hioki et al., 1990). In the first report, pregnant females were 

infected at gestational days 7, 12 and 14 and this resulted in a more severe disease in pregnant 

females in comparison with non pregnant controls, placenta pathology and reduced birth 

weight of pups. The second research group observed the fate of pregnant females after 

infection at several gestational days. Mice infected at G12 or before died before the pregnancy 

reached term, whereas the other groups (G14 and 16) lived long enough to deliver their litters. 

All the pregnant infected mice died earlier than non-pregnant controls, which also confirm the 

higher disease susceptibility during pregnancy.  
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In other studies, lethal P. yoelli challenge of pre-immunized pregnant females, using either the 

virulent YM or the non-virulent 17X strains, did not cause maternal mortality and led to the 

delivery of healthy newborns (Pavia & Niederbuhl, 1991). P. chabaudi AS was used to evaluate 

the incidence of abortions/fetal loss, maternal parasitemia and anemia in C57Bl/6 pregnant 

females infected at conception day (Poovassery & Moore, 2006).  

Those reports had the seminal role of revealing disease similarities between mouse and 

humans, such as the pregnancy-induced loss of pre-existing immunity to malaria and the 

presence of placental pathologic features. Nevertheless, these observations were not pursued 

and the PAM pathogenesis mechanisms were not investigated. The availability of sophisticated 

techniques of analysis, including molecular and genetic approaches, imaging tools, transgenic 

parasites and mice, and the current knowledge of parasite biology and host immune system, 

prompt the investigation of many pathological and immunological mechanisms underlying 

PAM and that remain to be elucidated.  

Most of the understanding of the biological basis of PAM is coming from studies conducted 

with pregnant women living in malaria endemic areas. Consequently the disease mechanisms, 

including the immunological tools, have been exploited only based in human data and 

samples, which might constitute a limitation for the disease understanding. In addition, some 

important questions cannot be addressed due to ethical constraints. An easily manipulable 

mouse model for malaria in pregnancy could be a precious tool to investigate disease 

mechanisms that, complemented and validated with human data, would constitute a valuable 

contribution to resolve unanswered questions in PAM.  

In the introduction the current state of knowledge of relevant aspects of PAM in humans was 

summarized, including currently proposed mechanisms contributing to adverse pregnancy 

outcomes. In this thesis we set out to establish and characterize immunopathological features 

of murine models of PAM and we conclude that these models can be useful to address specific 

questions relevant for human PAM. 
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AIMS AND PURPOSES 

 

The aim of the work presented in this thesis was firstly to establish an experimental system 

enabling pregnancy-associated malaria (PAM) studies in mouse models and secondly to 

characterize the immunological and pathological features in murine pregnancy-associated 

malaria. 

SPECIFIC PURPOSES: 

1. To develop a PAM mouse model representing pregnant women with a low premunition 

status before pregnancy. 

2. To establish a PAM mouse model that represents pregnant women carrying a high 

premunition status before pregnancy. 

3. To validate both models by evaluating their capacity of reproducing the main 

characteristics of the human disease and their limitations. 

The objectives 1, 2 and 3 were the subject of the publications I (PAM Model for Low 

Premunition) and II (PAM Model for High Premunition). The scope of characterization 

and validation of the developed PAM models is represented in the following scheme: 

 
Infection during Pregnancy 

Model 
Pre-Exposure Model 

Established 

Model 

Women living in regions with 
low malaria transmission 

(low premunition) 

Women living in a region with 
high malaria transmission 

(high premunition) 

Analysis & 

Validation 

Maternal Disease Severity 

Pregnancy Outcome: Low Birth Weight / Intrauterine Growth 

Retardation 

Placenta Pathology: Parasite-Host Interaction / Adhesion 

PAM Immunopathology: Molecular and Cellular Components 

PAM Immunological Protection: Multigravida Protection and 

Humoral Response. 
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METHODOLOGY  

 

Mice and Parasites 

BALB/c mice were bred and maintained in conventional housing and fed with a regular diet. All 

procedures were in accordance with national regulations on animal experimentation and 

welfare, authorized by the Instituto Gulbenkian de Ciência animal welfare committee. 

P. berghei ANKA parasites (P. berghei ANKA-GFP; 259Cl2 clone) used in infection experiments 

constitutively express green fluorescent protein (GFP) (Janse et al., 2006a; Janse et al., 2006b). 

Infected red blood cells (iRBC) were used in experimental infections at the concentration of 106 

iRBC/animal, either from in vivo passage in BALB/c mice, obtained when the percentage of 

iRBC reached approximately 10%, or from frozen stocks. For the Model of Infection During 

Pregnancy, pregnant females were infected with iRBC from in vivo passage, whereas females 

of the Model of Pre-Exposure were infected with iRBC from frozen stocks. Animal infections 

were performed either by intraperitoneal (i.p.) or intravenous (i.v.) injections in accordance 

with the experiment characteristics. Parasitemia was measured in tail blood using flow 

cytometry analysis as described elsewhere (Janse & Van Vianen, 1994). Alternatively, 

parasitemia was evaluated in thin blood films methanol-fixed and Giemsa-stained.  

Gestation timing and pregnancy monitoring 

BALB/c female and male mice (2:1 or 3:1) were caged together for mating during two to three 

days and females examined for the presence of vaginal plug every morning. Detection of the 

vaginal plug and measurement of body weight were jointly used to determine the timing of 

pregnancy, as described elsewhere (Freyre et al., 2006). The day of finding of the vaginal plug 

was considered as gestation day one (G1) and pregnancy progression was monitored every 

other day by weighting the females. Since the presence of vaginal plug was not always 

followed by pregnancy and in some cases not detectable, successful fertilization was 

confirmed between G10 and G13 when the animals had an average body weight increase of 3-

4 g. Females placed without male did not show a weight fluctuation of more than 1 g for a 

period of 20 days. Thus, weight gain was taken as sign of pregnancy and abrupt weight loss as 

indicator of pregnancy disturbance or interruption. 

Pregnant females infection (Model of Infection During Pregnancy) 

Pregnant mice were infected intravenously (i.v.) between G11 and G13 with 106 iRBC from in 

vivo passage in BALB/c mice and parasitemia was recorded every other day. This infection 

period was determined to be the optimal time point as earlier infections did not allow reaching 

pregnancy at term (data not shown). Non-pregnant infected females or non-infected pregnant 

females were used as controls in pregnancy infection experiments as appropriate. Part of the 

pregnant females (both infected and controls) were allowed to deliver and the progenies were 
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followed up to weaning. The other pregnant females were subjected to caesarian section at 

G17-19 for fetal survival evaluation and placenta pathology observation. 

Offspring monitoring (Model of Infection During Pregnancy) 

As P. berghei ANKA-GFP infection is lethal in BALB/c mice, foster mothers were used for 

newborn post-natal follow-up studies. Hence, both newborns from infected mothers and 

newborns from control mothers were also transferred to foster mothers to avoid weight bias 

due to differential maternal nourishment. The newborns were weighted every other day. 

Chemotherapic treatment for immunization (Model of Pre-Exposure) 

BALB/c females were infected i.p. with 106 iRBC obtained from frozen stocks and treated IP 

with 0.7 mg chloroquine/animal/day for 3 days. Typically the treatment started at day 7 post-

infection when parasitemia reaches values of 5 - 10%. Five to ten percent of the female mice 

exposed to this immunization protocol succumbed but the remaining recovered from the 

infection and were used in subsequent pregnancy-induced recrudescence experiments. 

Pregnancy-induced recrudescence monitoring (Model of Pre-Exposure) 

Forty days post-infection, or thereafter, pre-exposed females were put to mate or used as non-

pregnant controls. Pregnancy monitoring was performed as described above. Some of the 

pregnant females were subjected to caesarian section at G19 for placenta pathology studies, 

while the others were allowed to deliver and to follow to subsequent pregnancies. At delivery, 

the weight and the number of live newborns were registered. Newborns weight and 

development was followed up to day 30 after birth. Non-infected pregnant females were used 

as controls. 

Fetal survival evaluation 

Females used for in uterus pregnancy outcome evaluations were killed by CO2 narcosis 

between G17 and G19, the spleens weighted, uterus examined and the number of fetuses and 

resorptions recorded. Resorptions were identified as small implants with no discernible fetus 

and placenta, corresponding to embryos that died before complete placenta vascularization. 

The fetuses were extracted from their amniotic envelop and viability was immediately 

evaluated by prompted movement reaction to touching with pliers. The lack of reactive 

movement indicated that the fetus had recently died and was considered an abortion. 

Macerated pale white fetuses were dead and recorded as abortions. Fetuses and placentas 

were separately weighted. Non-aborted fetuses were killed combining CO2 narcosis and 

hypothermia. 

Tissue preparation and histopathological analysis 

Placentas from infected and non-infected females were treated in a similar way. Placentas 

were separated in two halves, one half was fixed either in 10% formalin or, in case they would 
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follow to immunohistochemistry, in 1.6% paraformaldehyde with 20% sucrose, for further 

processing and the other half was collected for RNA extraction. Paraffin-embedded non-

consecutive placenta sections were stained with hematoxylin-eosin (HE) and examined under a 

light microscope (Leica DM LB2, Leica Microsystems). For histological and morphometric 

analysis, placental sections were examined in a blind fashion. 

Immunohistochemistry 

Fixed placenta samples were washed in PBS with 15% sucrose overnight, soaked in Tissue-Tek® 

(Sakura) and frozen in dry ice. For immunohistochemistry staining, freshly made frozen 

sections (6 μm thick) were rinsed in PBS for 30 minutes and blocked with 1% bovine serum 

albumin (BSA). To enhance parasite GFP signal, we used rabbit polyclonal anti-GFP antibody 

conjugated with Alexa488 (Molecular Probes). To identify macrophages/monocytes we used 

anti-CD11b biotinilated antibodies (BD Biosciences, Pharmingen), followed by incubation with 

Rhodamin-Avidin D (Vector Laboratories). Nuclei were stained with DAPI (Invitrogen) and 

coverslips were mounted with aqueous mounting media (Mowiol 4-88, Calbiochem). Stained 

sections were examined under fluorescence microscopy (Leica DMRA2, Leica Microsystems). 

Morphometric analysis 

HE stained placental sections were analyzed for vascular space quantification. In each section, 

5 randomly selected microscopic fields in the labyrinthine region (magnification x40) were 

acquired at 1280 x 960 resolution, using a color video camera (Evolution TM MP color, Media 

Cybernetics) connected to a light microscope (Leica DM LB2, Leica Microsystems). The images 

were analyzed by a routine implemented in the ImageJ software (ImageJ 1.37v, National 

Institutes of Health). Briefly, after acquisition, the images underwent an automated light 

analysis procedure where noise removal was applied to ensure color and image quality 

standardization across sections and specimens. The images were given a color threshold to 

cover the area corresponding to blood spaces lumen. The coverage percentage was calculated 

as the ratio between the number of pixels covered by the area defined by the threshold and 

the overall number of pixels in the image. The blood vascular area in each placenta was 

estimated from the analysis of two non-consecutive sections. The reported results correspond 

to individual pregnant females and represent the average result for 2-3 placentas. 

Gene Expression  

Total RNA, from individual placentas and viable newborns, was obtained using an RNeasy Mini 

Kit (Qiagen), following the manufacturer’s protocol for animal tissues. One microgram of total 

RNA was converted to cDNA (Transcriptor First Strand cDNA Synthesis Kit, Roche) using 

random hexamer primers. MCP-1 (Ccl2) and MIP-1α (Ccl3) expression was quantified using 

TaqMan Gene Expression Assays from ABI (Mm00441242_m1 and Mm00441258_m1, 

respectively) with TaqMan Universal PCR master mix. T lymphocytes (Cd3e), natural killer cells 

(Klrd1), macrophages (Mgl2), neutrophils (Ncf2), cytokines and hemoxygenase-1 (Hmox-1) 
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expression was amplified using primer sequences previously described (Epiphanio et al., 2008). 

Endothelin-1 (Edn1) and β-actin (Actb) specific primer sequences were, Edn1 -5’-ACG CAC AAC 

CGA GCA CAT TGA CTA C-3’and 5’ TCC TGC CCG TCT GAA CAA GAA ACT G-3’ and Actb - 5’ AGC 

CAT GTA CGT AGC CAT CC-3’ and 5’-CTC TCA GCT GTG GTG GTG AA-3’. These qRT-PCR 

reactions used Applied Biosystems Power SYBR Green PCR Master Mix. The gene expression 

quantification reactions were performed according to the manufacturers’ instructions on an 

ABI Prism 7900HT system. Relative quantification of specific mRNA was normalized for a 

mouse housekeeping gene mRNA. To select an appropriate internal control, the expression of 

the following housekeeping genes: ACTB, GAPDH, TATA box binding protein (TBP), Succcinate 

dehydrogenase complex, subunit A (SDHA) and Tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein, zeta polypeptide (YWHAZ) was studied. The last three 

genes have been previously validated in human placental malaria (Boeuf et al., 2008). Due to 

uneven gene expression, when comparing non-infected and infected placentas, the 

housekeeping genes TBP, SDHA and YWHAZ were unsuitable for internal controls. Conversely, 

ACTB and GAPDH expression was maintained under infection conditions. 

Synchronization of parasitized erythrocytes 

iRBC were collected from infected animals (non-pregnant and pregnant females with 

recrudescence) with 10-20% parasitemia, by cardiac puncture, suspended in RPMI medium 

containing 25% of foetal bovine serum (FBS). In order to obtain mature blood stage parasite 

forms (trophozoites / schizonts), P. berghei ANKA-GFP infected erythrocytes were 

synchronized as described elsewhere (Janse et al., 2006c). Briefly, parasites were maintained in 

vitro at 370C for one developmental cycle, which takes about 16 hours. During this period the 

ring forms and young trophozoites develop into schizonts containing mature merozoites. The 

schizonts-infected erythrocytes are separated from the uninfected RBC by a Nicodenz-density 

gradient centrifugation (65% (v/v) Nicodenz/PBS solution), resulting in cell-populations that 

yield over 90% infected erythrocytes. After mature forms enrichment, infected erythrocytes 

were suspended in PBS at a concentration of 108 iRBC/ml.  

iRBC binding assays in placental sections 

Placentas from uninfected BALB/c females, obtained at G19, were treated using a previously 

described protocol (Muthusamy et al., 2004). Briefly, the placentas were fixed in 2% formalin 

and 0.5% glutaraldehyde for 10 minutes, heated in a microwave oven before being paraffin-

embedded, and cut into sections of 5 µm onto glass slides. This fixation protocol aims to 

preserve the binding capacity of glycosylaminoglycans (GAG) in the placenta IVS (Muthusamy 

et al., 2004). Tissue sections on the glass slides, after deparaffinized and rehydrated, were 

delimitated with a DAKO pen. For placenta-receptor cleavage experiments, placental sections 

were incubated with 0.5 U/ml chondroitinase ABC (from Proteus vulgaris, Sigma), with 

30 µg/ml hyaluronidase (from bovine tests, Sigma), with heparinase II (from Flavobacterium 

heparinum, Sigma) or with PBS for 2 periods of 2 hours at 37oC. Both enzyme-treated sections 
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and non-treated sections were blocked with 1% BSA in PBS at room temperature for 30 

minutes. Fifty microliters of synchronized iRBC suspension, at the concentration of 108/ ml, 

were overlaid onto each tissue section for 60 minutes at 370C in a humid chamber. After 

washing the unbound cells, the placental sections were incubated with DAPI. For iRBC-ligand 

blocking experiments, synchronized iRBC were pre-incubated with the indicated 

concentrations of chondroitin sulfate A (CSA) from bovine trachea (Sigma), hyaluronic acid 

(HA) potassium salt from human umbilical cord (Sigma) or colominic acid sodium salt (as 

negative control) from E. coli (Sigma), at 370C for 30 minutes with moderate agitation. Of note 

is that according to Sigma certificate of analysis, HA has less than 5% contamination of 

chondroitin sulphate. For iRBC-ligand cleavage assays iRBC were treated with trypsin (Gibco), 

proteinase K (Sigma) or neuraminidase as a negative control (from Clostridium perfringens, 

Sigma). iRBC were pre-incubated with each enzyme at indicated concentrations for 30 minutes 

at 370C. After washing, iRBC were overlaid on placental sections as described above. The slides 

were mounted with Mowiol and examined under fluorescence microscopy (magnification x40). 

The number of iRBC adhering placental sections in each experimental condition was 

determined in a blind fashion, counting 50 fields in each of three independent experiments. 

Hemoglobin determination 

This procedure is based on the oxidation of hemoglobin to methemoglobin in the presence of 

alkaline potassium ferricyanide. Methemoglobin reacts with potassium cyanide to form 

cyanmethemoglobin, which has maximum absorption at 540 nm. The color intensity, 

measured at 540 nm, is proportional to the total hemoglobin concentration and was quantified 

by visible spectrophometry using the Drabkin method (Drabkin, 1949; Singh & Shinton, 1965). 

Briefly, two microliters of tail blood were collected in 500 μl of Drabkin’s Reagent and 

absorbance measured at 540 nm. 

P. berghei antigens preparation 

Recrudescent parasites were expanded in non-pregnant females following in vitro culture for 

parasite synchronization and parasite mature forms enrichment (about 95% of late stages).  A 

crude preparation of blood stage P. berghei components was obtained from the mature forms 

that were freeze-thawed six times, sonicated and ultra-centrifuged. The protein was quantified 

and aliquots stored in liquid nitrogen.  

ELISA  

For the determination of parasite - specific antibodies, 96 well plates (NUNC MaxiSorp) were 

coated with P. berghei-iRBC proteins extract (50 μl/well at the concentration of 5 μg 

protein/ml) and incubated overnight (ON) at 4ºC. The unbound antigen was removed by 

washing with 0.05% Tween-20 in PBS (PBST). Possible residual free sites were saturated by 

treatment with PBS 1% BSA for 1 h at RT and the plates washed five times with PBST. Fifty μl of 

serum serially diluted samples (diluted from 1:27= 1:128 to 1:214= 1:16384) were incubated for 

3 h at 37ºC. The plates were washed five times with PBST and developed using either 
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antibodies AP-conjugated diluted 1:1500 (for the classes IgG, IgM or IgA) (Southern Biotech) or 

antibodies horseradish peroxidase (HRP)-conjugated diluted 1:4000 (for the IgG isotypes IgG1, 

IgG2a or IgG3) (Southern Biotech) and incubated for 1.5 h at 37oC. Plates were revealed to 

detect bound immunocomplexes by adding, to each group, PA buffer/PNPP or TMB buffer 

(BD), respectively. When PA conjugated was used the absorbance was read at 405 nm 

wavelength filter (Bio-Rad plate reader) after 5-15 minutes of development. When using HRP 

conjugated, the enzymatic reaction, developed for 10 minutes, was blocked with sulfuric acid 

(0.1 M, 50 μl per well) and the OD was read at 450 nm. The anti-P. berghei antibody titers were 

expressed as log2 of the reciprocal serum dilution giving an absorbance value of 30% of the 

saturation level, as previously described (de Moraes et al., 2006). 

Visualization of luciferase activity in whole body and dissected organs 

A pregnant female was infected with a Plasmodium berghei line expressing a GFP-Luciferase 

(676m1cl1 clone) fusion protein, under the control of the eef1a-promoter, at G13 and at G18 

the parasites accumulation was observed through the determination of luciferase activity 

previously described (Franke-Fayard et al., 2005). Briefly, luciferase activity was visualized 

through whole-body imaging or dissected organs with an intensified-charge-coupled device (I-

CCD) video camera of the in vivo Imaging System (IVIS 100, Xenogen). The pregnant mouse 

was injected i.p. with d-luciferin dissolved in PBS (100 mg/kg of body weight; Synchem, Kassel, 

Germany). After 10 minutes the female was killed by CO2 narcosis and bioluminescence 

imaging was acquired with a 15-cm FOV, a medium binning factor and exposure times of 10–

60 s. Individual organs and fetuses were obtained by dissection and placed in a Petri dish and 

imaged with a 10-cm FOV, a medium binning factor, and exposure times of 10–60 s.  

Cytokines quantification in serum 

IL-4, IL-6 and IL-10 levels were determined by Cytometric Bead Array (CBA) (Becton Dickinson 

Biosciences, San Diego, CA, USA) assay, according to manufacturer’s recommendations. Briefly, 

50 μl of the mixed capture beads were added to 50 μl plasma diluted 1:4 of each animal from 

the different groups in their respective tubes and mixed. After 1 hour of room temperature 

(RT) incubation, 50 μl mouse-phycoerythrin (PE) (Positive Control Detector) were added, 

followed by another incubation of 1 hour at RT. Standards were ran simultaneously for each 

cytokine, and were mixed with capture beads and detection reagent conjugated with PE. 

Samples were incubated for 1 h at RT once they had been mixed and protected from exposure 

to light. The samples were washed and centrifuged at 200 × g for 5 min to remove unbound 

detection antibody and then analyzed by flow cytometry (FACScan, BD). Cytokine 

concentration (pg/ml) was calculated by a standards regression curve.  

Statistical analysis 

Statistical differences between groups of mice used in this study were evaluated by the 

Student’s t test, Mann-Whitney test or Kruskal-Wallis, and Log Rank test for survival curves. 

Chi-square or Pearson tests were used for association or correlation analysis, respectively. 
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RESULTS  

EXPERIMENTAL SYSTEMS 

This work aimed to establish mouse models for Pregnancy-Associated Malaria studies taking in 

consideration that different mouse strains are differentially susceptible to malaria and 

different parasite species/strains can lead to different disease manifestations in the same 

mouse strain. In this section we describe the preliminary experiments that were performed in 

order to choose suitable experimental systems that would allow investigating PAM 

development and pathological outcomes.  

Parasite species and mouse strain selection 

Several preliminary tests were performed, using Plasmodium berghei ANKA, P. yoelli 17XL and 

P. chabaudi chabaudi, and the C57Bl/6, BALB/c and DBA-2 mouse strains. When pregnant 

females were infected during pregnancy the three parasite species caused pregnancy 

disturbances in all tested mouse strains, both in the mother and in the offspring. However, 

when females were pre-exposed to each parasite species, only P. berghei ANKA parasites 

relapsed during pregnancy. Thus, P. berghei ANKA was the selected parasite to pursue our 

model set-up. It is worth to remark that this choice would take advantage of a P. berghei 

transgenic line expressing the green fluorescent protein (GFP).  

P. berghei ANKA caused severe malaria syndromes causing high lethality soon after infection in 

all the tested mouse strains except in BALB/c mice that showed progression to 

hyperparasitemia and survived for longer periods (20 days in average). As the other strains 

could not survive long enough to evaluate the typical manifestations of malaria in pregnancy, 

the BALB/c strain was chosen as the host model.  

Infection protocol establishment 

Several preliminary pre-exposure protocols were tested aiming to avoid anti-parasite 

chemotherapy, namely the use of irradiated parasites and RBC transfers. 

Blood stage parasites were irradiated in order to abolish their infective capacity while 

maintaining their antigenicity. In order to identify an irradiation dose suitable to trigger 

protective immunity, iRBC were irradiated with 0, 12, 15, 18, 20 and 23 krad and injected in six 

groups of animals. The results show that parasites irradiated with 12 rad kept their viability 

and lethality while parasites irradiated with 15 rad or higher did not have parasitemic infection 

but did not induce protection against a challenging infection. Thus, we did not find an iRBC 

irradiation regimen that would provide the needed protection to infection in non-pregnant 

females (Figure 13). 
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Figure 13. Irradiated P. berghei-iRBC were not inducers of a protective status. Blood stage 

parasites were irradiated according to the irradiation doses indicated (0, 12, 15, 18, 20 and 23 krad) 

and 5 x 10
6
 iRBC were injected i.v. in C57Bl/6 mice at day 0 (5 animals). The mousethat received 

non-irradiated parasites (0 krad) died at day 8. The parasitemia of the group injected with 12 krad 

irradiated - iRBC was delayed by day 21 all the animals were dead. The four remaining animal 

groups, corresponding to higher doses of irradiation, did not revealed parasitemia and were 

challenged with non-irradiated iRBC at day 21. The parasitemia curves show a dosis dependent-

kinetics, but all animals succumbed. Each point represents mean ± s.e.m. 

 

Next, we tried to prolong the course of infection expecting to obtain a protective immune 

response. We replaced the erythrocytes that were destroyed by the infection through 

repeated blood transfusions from non-infected adult females. Several experiments were 

performed with slight modifications in the protocol, but all of them failed to confer protection. 

In one of these experiments, thirty-one BALB/c females were infected with 105 infected red 

blood cells (iRBC) intraperitonealy (i.p.). Seven days after infection each infected female 

started to receive 100 µl of non-infected blood by intravenous injection (i.v.), and this 

treatment was repeated within an interval of two to four days (Figure 14).  

This transfusion regimen reduced parasitemia almost collectively, but the mice were never 

completely cured and the initial weight was never recovered. The mice start dying on day 14 

post-infection and at day 60 post-infection all the mice succumbed. To discard any detrimental 

effect caused by blood transfusion, five non-infected females were also treated on the same 

way and no weight fluctuation was observed (Figure 2, lower graph, black line). This attempt 

did not result in a protective response implying that prolonging the blood stage of infection is 

not enough to generate an immune response that resolves the infection and confers ulterior 

protection.  
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Figure 14. RBC replacement failed to control infection. Blood transfusion treatment of BALB/c 

P. berghei infected females. Parasitemia (upper plot) and weight (lower plot) of thirty one 

females that were infected i.p. at day 0 with 10
5
 P. berghei infected red blood cells (iRBC) and 

treated with exogenous blood in the indicated days (arrows in the lower plot). In each blood 

transfusion treatment every infected female received 100 µl of non-infected blood, starting 

seven days after infection, and repeated with an interval between two and four days. By day 

60 all the treated females were dead. Red line represents a female infected and not treated. 

Black line (lower graph) corresponds to the weight (mean ± s.e.m) of five non-infected BALB/c 

females that also received blood transfusions. 

 

Finally, the pre-exposure protocol chosen was based in treating chemotherapeutically infected 

females to promote their premunition. Chemotherapic treatments have been used with the 

purpose of generating malaria protected mice (Poels et al., 1977). Since P. berghei ANKA GFP is 

not sensitive to drugs such as pyrimethamine (Franke-Fayard et al., 2004), we used 

chloroquine to perform the immunization protocol. Females immunized under this protocol, as 

described in Methodology section (Figure 15), were the players of the pre-exposure model. 

Thus, the immunization was attained using chloroquine therapy that interferes with the 

parasite metabolism inhibiting the enzymatic reaction of hemozoin synthesis. Briefly, the 

malaria parasite takes up hemoglobin from the host RBC and degrades it to heme (toxic for the 

parasite) and aminoacids. A parasite enzyme – heme polymerase – converts the potentially 

harmful heme into hemozoin (non-toxic storage form) in a reaction that can be blocked by 

chloroquine (Hunt & Stocker, 2007). 
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Figure 15. Subpatent infection is acquired with chemotherapy. Parasitemia and weight 

follow-up of eighteen females infected with 10
6
 P. berghei-iRBC at day 0 and treated 

with chloroquine at days 9, 10 and 11. Typically the parasitemia is controlled after the 

treatment, raised around day 20 and reaches a second peak, which the mice likely self-

clean, and thereafter the parasitemia will never come up again. In this experiment three 

females did not resist to the second parasitemia peak (represented by dashed lines) and 

died. Red line corresponds to a female infected and not treated.  

 

The data plotted in Figure 15 correspond to one of the several pre-exposure experiments that 

were performed, but in all of them the patterns of parasitemia and weight were very similar. 

Usually about 5-10% of the treated females died during the second peak but never before, 

suggesting they were not able to mount an immune response capable of controlling the 

infection. Females that survive after controlling the second peak did not experienced 

parasitemia relapses, unless they became pregnant. Thus, following day 40 after infection the 

females acquired a silent infection and had already recovered their physical condition, as 

judged by the weight recovery, and thus were prepared to be used in the pre-exposure PAM 

model.  
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MODEL OF INFECTION DURING PREGNANCY 

This mouse model aims to represent acute malaria in pregnancy, which enables experimental 

evaluation of human PAM when women have no acquired immunity, a characteristic of 

regions with unstable malaria transmission. 

To set up an experimental model that recapitulates the typical pathology features of severe 

malaria in pregnancy, we took in consideration that poor pregnancy outcomes and fetal 

growth impairments are critically dependent of the gestational day (G) chosen for infection. In 

fact, infection at early stages led to premature pregnancy interruption, while infection around 

mid-pregnancy (G13) when blood flow has already full access to the placenta (Figure 16), 

allowed pregnancy to proceed to later stages, and fetal and placenta pathology became 

apparent resembling human PAM.  

G13

Haemotrophic nutrition

 
Figure 16. Schematic representation of mouse development in uterus. The pre- and post-

implantation phases are shown above the time line. Bellow, the critical events and processes 

are indicated. After G12.5 the placenta is already functional and the maternal circulation in 

the placenta is fully established. Adapted from Kispert & Gossler (2004).  

 

Effects of malaria infection on the pregnant females 

Comparison of P. berghei-GFP course of infection in pregnant and non-pregnant females 

confirmed earlier findings that pregnancy in mice confers an increased susceptibility to malaria 

showing that pregnant mice experienced faster increase in parasitemia as compared to non-

pregnant females (Oduola et al., 1982; Hioki et al., 1990; Pathak et al., 1990). Parasitemia in 

pregnant mice was 55.41 ±  5.44 % (mean ± SE) on day 7 post-infection as compared to 33.83 ± 

3.47 % in non-pregnant mice (P-value = 0.007) (Figure 17A). In addition, survival to infection 

was reduced in pregnant mice, with all deaths occurring between day 5 and day 10 post-

infection (Figure 17B). In contrast, the majority of non-pregnant infected females survived until 

day 20 post-infection and by day 30 all had succumbed to infection (data not shown). Average 

survival time for pregnant and non-pregnant infected mice was 7.5 and 20.5 days, respectively. 
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These results suggest that, similarly to humans, pregnant mice show increased susceptibility to 

malaria infection which may affect their progeny or compromise pregnancy. 

 

 
Figure 17. Increased disease susceptibility in 
pregnant BALB/c mice infected with 
P. berghei-GFP. BALB/c pregnant females 
were infected on G13 by IV injection of 10

6
 

iRBC and non-pregnant females were 
simultaneously infected. The plots represent 
cumulative results of three independent 
experiments in a total of 32 pregnant and 16 
non-pregnant females. (A) Parasitemia curves 
where data points represent mean ± s.e.m. 
From day 3 post-infection onwards 
parasitemia was significantly higher in 
pregnant females (P-value < 0.05). (B) Survival 
curves up to 10 days after infection show that 
survival time of pregnant female mice are 
significantly lower than in controls (P–
value < 0.0001). Non-pregnant females died at 
a later stage with hyperparasitemia. 
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Effects of maternal malaria on the progeny 

• Unsuccessful pregnancy and impaired post-natal growth 

We followed-up the pregnancy outcome in 22 infected females and found out that malaria had 

a strong negative effect in pregnancy success (Table 2). Approximately two-thirds of infected 

pregnant females (14 out of 22) did not give rise to viable pups due to maternal death before 

parturition (8 cases) or to preterm delivery/abortions (6 cases). The remaining mothers carried 

out pregnancy to term giving rise to 27 viable newborns. The progeny of 2 infected mothers, 

out of 8 that gave birth, died after birth between day 2 and day 21, indicating that malaria 

during pregnancy increases newborns mortality. 

 

Table 2. Effect of Plasmodium berghei infection during pregnancy on reproductive outcome and fetus 
development 

(a)
 

P. berghei  
exposure 

No. of  
Pregnant 
females 

Gestational 
period (days)(b) 

 Birth   
weight (g)(b) 

Weight    
day10 (g)(b) 

No. 
Successful 

fetus(b) 

No. Unsuccessful 
pregnancies(c) 

Infected 22 19.8 1.3 3.4 5 14(8/6) 

Uninfected 14 20.7 1.4 5.6 6 0 

p- value(d) __ 0.05 0.03 < 0.0001 0.39 __ 

(a) BALB/c mothers were infected on G13 with P.berghei by IV injection of 106 iRBC and were allowed to give birth at term. 
(b) Average values. 
(c) Number of unsuccessful pregnancies (mother dead pregnant / preterm delivery or abortion). 
(d) Student’s t test. 

 

 

 

A 

B 
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Figure 18. Reduced growth rate in progenies of P. berghei-GFP infected mothers. BALB/c pregnant females 

were infected on G13 by IV injection of 10
6
 iRBC. After delivery newborns were transferred to a foster 

mother and their body weight was followed up to weaning (A). Example of body size difference at day 21 of 

age is shown in (B), mouse born from non-infected (left side) and from infected mother (right side).  

 

• Fetal survival and intrauterine growth retardation 

We evaluated the effects of malaria in pregnancy on fetal survival and fetal growth at late 

pregnancy stages (G18) by analyzing fetuses from 28 pregnant females infected at G13 and 

from 9 non-infected pregnant females (Table 3). Uterus collected at G18 from infected 

pregnancies frequently showed macroscopic abnormalities, as compared to controls, 

corresponding to the presence of aborted fetuses (Figure 19A). In fact, infected mothers had 

significantly lower number of viable fetuses as compared to non-infected mothers (p = 0.01) 

and had higher number of aborted fetuses (p = 0.002) (Table 3). 

 

 

 

Figure 19. P. berghei-GFP infection impairs 

pregnancy outcome and fetus development. (A) 

Representative uterus at G18 from BALB/c pregnant 

females uninfected (upper) and infected on G13 with 

P. berghei-GFP by IV injection of 10
6
 iRBC (bottom). 

The arrowheads indicate abortions. (B) Fetus from 

uninfected (left) and from infected mother (right). In 

detail, mouse placenta from an uninfected (C) and 

infected mother (D). Lack of blood circulation is 

noticeable in the placenta, paws and tail in panel (D). 

Scale bar represents 1 cm in A-B and 0.5 cm in C-D. 

We searched for intrauterine signs of fetal impaired development. Fetuses from uninfected 

healthy mothers showed pink coloration, had translucent skin with visible blood flow in the 

blood vessels and the placentas were replenished with blood (Figure 19B left and 19C). In 

contrast, many fetuses from infected mothers appeared abnormal having remarkable reduced 
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size, pale tone with poor blood vessel replenishment and placentas with reduced blood 

content (Figure 19B right and 19D). It is worth to remark (Table 3) that average weight of 

viable fetus at G18 was significantly lower in infected mothers (0.55 ± 0.034 g) as compared to 

non-infected mothers (0.9 ± 0.053 g). Together, these data strongly suggest that fetuses from 

infected mothers suffer IUGR and have decreased viability due to placenta blood flow 

impairment, recapitulating pathological features of severe malaria manifestations typically 

observed in pregnant women from low malaria transmission regions. 

 

Table 3. Pregnancy outcome obtained at caesarean section on G18 after Plasmodium berghei infection 
during pregnancy

 (a)
 

P. berghei-GFP 

exposure 

No. of 
pregnant 
females(b) 

Mother's spleen 
weight (mg)(c) 

Fetus weight 
(g)(c) 

No. 
Abortions(c) 

No. 
Resorptions(c) 

No. 
Successful 

fetus(c) 

Infected 28 521 0.6 2.4 1.7 3.7 

Uninfected 9 102 1.0 0.2 0.7 7.7 

p-value(d) __ 0.02 < 0.0001 0.002 0.11 0.01 

(a) BALB/c mothers were infected G13 with P.berghei by IV injection of 106 iRBC. 
(b) Pregnant females sacrificed at G18. 
(c) Average values. 
(d) Student’s t test. 

 

Placental pathology  

• Placenta is a site of parasite accumulation 

It has been described that P. falciparum iRBC have the capacity of being sequestered in several 

organs, including the placenta (Brabin et al., 2004b). Parasite-placenta interaction studies in 

humans are based on ex-vivo assays (placental tissues) and on in vitro assays (cell cultures and 

immobilized candidate receptors). To date in vivo placental sequestration studies have not 

been performed in animal models and there is no direct evidence of P. berghei-iRBC dynamics 

inside pregnant hosts. Infection of BALB/c pregnant females at G13 with P. berghei luciferase-

GFP allowed the subsequent visualization of the parasite distribution at G18, confirming that 

the placentas are predilection sites of P. berghei parasites accumulation (Figure 20), similarly 

to organs like lungs and spleen. The observed parasite accumulation strongly suggests that 

placentas are indeed a parasite preferential target. An intriguing observation was that 

parasites accumulated asymmetrically within the uterus. 
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Figure 20. Placentas are target destination of P. berghei parasites. One pregnant female was infected with 10

6
 

P. berghei GFP-luciferase-iRBC at G13 and parasites accumulation was revealed by measuring luciferase activity in 

the whole pregnant female at G18 and in dissected organs. Rainbow scale of the total photon counts show the 

relative level of luciferase activity, ranging from low (violet, blue) to high (red). (A) Whole body acquisition, where 

parasite groups can be visualized in several points distributed on the right side (placentas, fat, lungs) and a strong 

parasite accumulation in the left side. This corresponds to the zone of the spleen and to the uterus left horn, as it is 

illustrated in (B) where it is visualized the asymmetric parasite distribution in the uterus. In (C) dissected organs: 

lungs (top), spleen (bellow) and two groups of fetus with the respective placentas. The two placentas of the fetuses 

from the rifgt horn of the uterus show a lower luciferase activity, whereas the four placentas from the left horn of 

the uterus have a higher parasite accumulation. 

• Placental pathology and inflammation 

Placenta represents the interface between mother and fetus, playing a critical role in fetal 

growth and development and thus any modification on its structure or function can have 

consequences for the pregnancy outcome. Placental tissue of infected pregnant females 

revealed a number of abnormalities in comparison to non-infected controls (Figure 21).  

 
Figure 21. Placenta pathology in infected pregnant mice. Histology of infected placentas collected 

at G18. HE stained sections from non-infected mice (panels A and C) and infected (panels B and D) 

are depicted. Different cell types are identified in panel A as (DC) decidual cells, (Cy) 

cytotrophoblastic cells and (La) labyrinth region. Fibrinoid necrosis areas (Ne) are indicated in 

panel B. Arrowhead in D shows tissue thickening. Scale bar represents 100 μm in (A-B), and 10 μm 

in (C-D). 

We repeatedly observed significant thickening and disorganization in the labyrinthine zone, 

distension and disarrangements of perivascular space (Figure 21D), as well as presence of 
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parasitized red blood cells in the maternal blood space (Figure 22A). Hemozoin, the malaria 

pigment, was observed in most of the infected placentas (Figure 22B). Fetal blood circulation 

often contains larger amount of erythroblasts (Figure 22D) but they never presented any sign 

of parasites or hemozoin.  

 
Figure 22. Placental malaria features. HE stained placentas from BALB/c females infected with 

P. berghei and collected at G18. (A) Image from severely infected placenta with high number of 

parasitized maternal erythrocytes. (B) The same field as (A) under polarization microscopy 

revealing hemozoin. (C) Arrow and insert show an infected erythrocyte adhered to the 

syncytiotrophoblast layer. (D) Placental section with infected erythrocytes in the maternal blood 

and fetal erythroblasts (arrow). Scale bar represents 30 μm in (A, B and D) and 20 μm in (C). 

 

Some specimens show focal fibrinoid necrosis in the placenta basal zone (Figure 21B), 

hyperplasia of syncytiotrophoblastic cells (Figure 21D) and accumulation of mononuclear cells 

in the maternal blood space as revealed by immunofluorescence staining (Figure 23A). The 

accumulation of CD11b expressing cells, suggested that the infiltrate was predominantly 

composed by monocytes/macrophages. This result prompted us to measure the expression of 

macrophages attracting chemokines MIP-1α and MCP-1 in the placenta. RNA quantification 

revealed that MIP-1α gene expression was significantly increased in the infected placenta 

(Figure 23B) providing support for the notion that cell and molecular components of the innate 

immune system participate in the host response to the placenta malaria infection. 



Model of Infection During Pregnancy 

63 

 

0

5

10

15

20

25

R
el

at
iv

e 
Q

ua
nt

ifi
ca

tio
n 

(n
or

m
al

iz
ed

  
by

 G
A

P
D

H
)

Uninfected Infected

0

1

2

3

4

MIP-1αααα

MCP-1

***
MIP-1αααα

MCP-1

 
Figure 23. Inflammatory infiltration and macrophage/monocyte attractant chemokine expression 

in malaria infected placenta. (A) Immunohistochemistry analysis of placentas from BALB/c females 

infected on G13 with P. berghei-GFP iRBC and collected at G18 that were stained with anti-GFP 

(green) and anti-CD11b (red) revealing the presence of parasites on vascular walls and 

monocytes/macrophages infiltration, respectively. The (B) panel represents sections of non infected 

placentas. The cell nuclei were stained with DAPI (blue). Scale bar represents 30 μm. (C) RNA 

expression of MIP-1α and MCP-1 genes was quantified in 30 infected and 8 uninfected BALB/c 

placentas collected on G18. Relative quantification was obtained by normalization for GAPDH 

expression. Each bar represents the mean ± s.e.m. of individual values. P-value = 0.0002 is 

represented by ***. 

• Placental vascular space reduction 

The alterations in tissue organization observed in the infected placenta suggested that the 

maternal blood flow could be reduced in pregnancy malaria. Thus, we used a computerized 

morphometric method to quantify cross-sectional areas of blood sinusoids in placental 

labyrinthine region. Morphometric analysis was performed as described in methods section 

and confirmed that the blood sinusoids areas differed significantly between infected and non-

infected placentas. The average blood sinusoid area was 52.0 ± 4.0 (mean ± SD, arbitrary units) 

in the control group and it dropped to 34.7 ± 7.5 in the infected pregnant group (Figure 24). 

The blood sinusoids area was measured in five different regions of the labyrinthine zone and in 

all of them the area decreased in similar degree, indicating that this phenomenon is spread 

across the placenta rather than restricted to specific areas.  

C 
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Figure 24. Reduction of placental vascular space in infected pregnant mice. The available area 

for blood circulation at G18 is reduced in infected placentas (lower photo) in comparison with 

non-infected placentas (upper photo). Scale bar represents 25 µm. The placental area occupied 

by blood sinusoids was quantified in relation to the total placental area (plot) in non-infected 

and infected placentas using an automated morphometric procedure, as described in 

Methodology section (P – value < 0.001). 

 
Together, the data suggest that alterations of pregnancy outcomes observed in mice infected 

with P. berghei-GFP correlate with pathological alterations of the placenta tissue, involving 

inflammation, tissue disorganization, reduction of vascular spaces and consequent reduction in 

blood supply. 
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EXPOSURE PRIOR PREGNANCY  

The aim of this model was to establish and analyze a system recapitulating the specificities of 

PAM protection observed in women with premunition and allowing investigations on the host 

and parasite components of PAM protection. Non-pregnant women living in regions with 

intense malaria transmission typically display a good protection against clinical malaria, but 

when they become pregnant this scenario of resistance likely changes.  

Malaria outcome in multigravida pre-exposed females 

• Pregnancy-induced malaria recrudescence  

In total, more than one hundred female mice, distributed by several experiments, were 

infected with P. berghei-parasitized red blood cells and subsequently treated with chloroquine. 

These mice typically showed a transient parasitemia peak, which eventually resolved (see 

Figure 15). In the absence of pregnancy, parasitemia remained essentially sub-patent and was 

never observed for the rest of lifespan (Figure 25, upper graph). In contrast, parasite 

recrudescence was frequently observed when malaria-treated females become pregnant 

(Figure 25, under graph), more often after gestation day 14 (G14) but never before G12. We 

followed the first pregnancy of eighty-four pre-exposed females and found out that forty-nine 

(58%) showed parasite recrudescence induced by pregnancy. Twenty-nine recrudescent 

females were followed to the end of pregnancy and we observed uncontrolled parasitemia 

leading to severe malaria and eventually to maternal death in nine of those females (31%), 

while the remaining controlled the parasitemia peak and were apparently cured. These results 

confirm the hypothesis that sub-patent P. berghei infection is exacerbated by pregnancy. 

 

 
Figure 25. Malaria susceptibility is increased during pregnancy. Representative parasitemia curves 
of BALB/c females infected with P.berghei (day 0) and treated with chloroquine for 3 days starting at 
day 7. Parasitemias of females maintained without male (non-pregnant) are represented in the 
upper plot. The lower plot shows 5 typical parasitemia curves of recrudescent primigravida.  
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We investigated whether pregnancy related factors such as reticulocytosis, hormonal balance 

and imnunosuppression could per se trigger malaria recrudescence in pregnancy. 

Reticulocytosis is very frequent during pregnancy and it has been described that P. berghei 

preferentially infects reticulocytes (Cromer et al., 2006). To ascertain if reticulocytosis could 

elicit parasite recrudescence, reticulocytes production was stimulated using phenylhydrazine. 

Phenylhydrazine is an oxidant drug that destroys RBC by denaturation of hemoglobin with little 

evidence of toxicity to other tissues. Consequently, the treatment induces a sudden 

erythropenia followed by an increase in erythropoiesis, as evidenced by the increased number 

of reticulocytes into the blood circulation (Flanagan & Lessler, 1970). This treatment is 

commonly used to increase P. berghei parasitemia level in mice due to its preference by 

reticulocytes. We treat seven pre-exposed and two non-infected females with phenylhydrazine 

(2.5 mg/20 g of body weight, i.p. in one single dose) which were monitored during the 

subsequent month. The treatment evoked extensive reticulocytosis that persisted for eight 

days and weight loss was evident in the immediate subsequent days (Figure 26), without a 

single parasite observation in the peripheral blood. Reticulocytes were depicted in Giemsa 

blood smears as showing stained granules. All the mice were able to recover the weight loss.  

 

Figure 26. Effect of phenylhydrazine treatment in pre-

exposed mice. Phenylhydrazine treatment (at day 0) 

provoked reticulocytosis in six pre-exposed females 

treated. Blood smears and weight were monitored to 

identify any detrimental effect of the drug. No parasite 

was found in the blood but an exuberant presence of 

reticulocytes was observed immediately after the drug 

administration. The weight of the treated pre-exposed 

females suffers a decrease on the days following the drug 

administration but it was recovered (dashed line, mean ± 

s.e.m.). Continuous line corresponds to the weight 

fluctuation of a naïve female not treated.  

0 1 2 4 5 7 8 11 13 15 19 32
20

25

30

Days Post-Phenylhydrazine Treatment

W
e

ig
h

t 
(g

)

 

The mice treated with phenylhydrazine were challenged three weeks later with P. berghei and 

also more than four months after the treatment, controlling the parasitemia, which reveals 

that protection was still active. However, we cannot guarantee that the phenylhydrazine 

treatment is not toxic for the parasite, since none of the treated females that become 

pregnant revealed pregnancy-associated recrudescence. Collectively, these results cannot 

exclude that reticulocytosis has an effect on eliciting parasite recrudescence during pregnancy. 

On the other hand, hormonal immunoregulation occurring in pregnancy induces a level of 

immunosuppression that was suggested to be implicated in the higher malaria susceptibility 

during pregnancy in humans (Vleugels et al., 1989) and also in animal models (van Zon et al., 

1982). We made use of P. berghei pre-exposed females to test this possibility in two ways. 

First, we mimicked the pregnancy hormonal balance in malaria pre-exposed females through 

inducing pseudo-pregnancy by mating them with vasectomized males during 30 days. We did 

not detect any parasite recrudescence after mating in any of the females that exhibit vaginal 
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plug. However, when the same females became pregnant after mating with normal males, ten 

out of fifteen (60%) showed recrudescence (data not shown). It is possible that the hormonal 

modifications in pseudo-pregnant females, although sufficient to sustain embryonic 

development in embryonic transfers, were inadequate to induce immunosuppression and 

therefore we further tested whether a direct immunosuppressive treatment would evoke 

parasite recrudescence (Alvarez et al., 1991). Thus, a group of pre-exposed females was 

treated with a single dose of cyclophosphamide (200 mg/Kg of body weight, i.p.) and was 

monitored for parasitemia in the following two weeks, but again no recrudescence was 

detected (data not shown). These results do not discard that pregnancy-induced 

immunosuppression could play a role in the breakdown of malaria protection but they strongly 

suggest that other mechanisms are implicated in malaria recrudescence during pregnancy and 

suggest that as the placenta is absent in pseudo-pregnant females it could play a role in 

inducing parasite recrudescence in pregnancy. 

 

• Disease severity and pregnancy-induced recrudescence are reduced in multigravida 

Analysis focused on recrudescent females revealed that maternal mortality associated to 

recrudescence decreases with parity (Figure 27) suggesting a decrease in disease severity. 

Conversely, we noted that among non-recrudescent females, irrespective of parity, about ten 

percent died during pregnancy or shortly after delivery.  
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Figure 27. Exposure to pregnancy-induced 

recrudescent parasites reduces maternal 

mortality in subsequent pregnancies. 

Maternal mortality rate is plotted according to 

parity and recrudescence occurrence.  

 

 

To test whether pregnant females were able to develop PAM protection upon exposure to the 

recrudescent parasite, we followed up the fate of thirty-two primigravida in subsequent 

pregnancies. The pregnancy-induced peripheral parasitemia peak was graded as high 

recrudescence, if higher than 5%, and as patency if between 1% and 5 %. The pregnant 

females with less than 1% of iRBC as detected by FACS analysis were declared non-

recrudescent. We found that the aggregate incidence of high recrudescence and patency 

significantly decays from the first (59%) to the second (41%) and third pregnancy (22%) 

(Figure 28A). The reduced incidence of cases with high pregnancy parasitemia peaks (more 

than 5% of iRBC) was particularly striking and close to a four-fold reduction from the first (44%) 

to the second pregnancy (12%). Accordingly, the level of parasitemia also decreased 

significantly when comparing first (14.5 % ± 19.2 %), second (3.9 % ± 9.4 %) and third 

pregnancy (2.0 % ± 4.1 %) (Figure 28B).  
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Figure 28. Recrudescence incidence and 

peripheral parasitemia are decreased in 

multigravida. (A) Frequency of females with 

high recrudescence (above 5% parasitemia), 

patency (parasitemia between 1% and 5%) and 

no recrudescence (parasitemia < 1%) according 

to parity. Recrudescence incidence is 

significantly associated with parity (P-value = 

0.001, Chi-square test). (B) Box-plots illustrate 

the range of the peripheral parasitemia peak 

according to parity. The parasitemia peak in the 

first pregnancy was significantly different from 

the second (P-value = 0.004) and third 

pregnancies (P-value = 0.006). Box-plots show 

medians (middle line in the box), central 50% of 

data (box), data range (whiskers) and 
0
 and * 

represent outliers and extremes, respectively. 

 

These results indicate that females that are repeatedly exposed to recrudescent parasites 

during pregnancy develop a protective response that tends to control parasite recrudescence 

and placental malaria during subsequent pregnancies.  

PAM protection in multigravida is not attributable to the age of the pregnant females as we 

observed that pregnancy-induced recrudescence incidence in primigravida was not reduced at 

older ages. In particular, females infected under 20 weeks of age presented about 55% of 

recrudescence and in the group of older females, with more than 20 weeks of age, the 

recrudescence was about 65%. Furthermore, pregnancy-induced recrudescence seems to be 

uncorrelated with the period between infection and the first pregnancy, since we were able to 

observe primigravida recrudescence 40 weeks after infection. These data suggest that both the 

age of the mother and the duration of subpatent parasitemia are not determining factors in 

triggering parasite recrudescence or in malaria protection in multigravida. 

• Susceptibility to pregnancy-induced anemia in pre-exposed mice is associated with 

parasite recrudescence  

Malaria-induced anemia in pregnancy is a major concern in endemic regions. Our data support 

the idea that hemoglobin levels are strongly correlated with parasite density in the peripheral 

blood. We observed that hemoglobin levels decrease with parasitemia rise, both in infected or 

challenged mice (Figure 29A and 29B). In the last case, hemoglobin levels recover after 

parasite clearance. Corresponding correlations were observed with respect to levels of 
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parasitemia and hemoglobin concentration (Figure 29C), both in infected or challenged mice. 

Of note is the fact that infecting naïve mice induces faster hemoglobin decay than in 

challenged mice, as indicated by the respective correlation slopes, - 0.253 and - 0.217. Besides, 

we observed that both P. berghei pre-exposure and pregnancy-associated P. berghei 

recrudescence caused a significant reduction in hemoglobin levels (Figure 29D) in comparison 

with non-exposed and non-recrudescent pregnant females (P-value < 0.001).  

Taken together, these results confirm that P. berghei parasitemia adversely affects hemoglobin 

levels and, consequently, maternal anemia is a likely clinical complication of parasite 

recrudescence during pregnancy. Still, maternal acquired and cumulative immunity reduces 

recrudescent parasitemias, thereby partially protecting the pregnant mice from death by 

severe anemia. 

Offspring of multigravida pre-exposed females 

• Poor pregnancy outcome is associated with pregnancy-induced malaria recrudescence 

but convalesces in multigravida  

To evaluate the effect of pregnancy-induced parasite recrudescence in the pregnancy outcome 

we monitored the offspring of recrudescent females. The twenty-nine recrudescent 

primigravida had significantly smaller litter sizes (average of 1.9 newborns/litter) as compared 

to twenty non-infected females (5.9 newborns/litter in average) (Table 4). Likewise, the 

average birth weight of newborns from recrudescent mothers (1.1 g) was significantly lower 

when compared to the newborns from non-infected mothers (1.4 g). These findings indicate 

that recrudescent primigravida females show poor pregnancy outcome that is characterized by 

decreased fetal viability and intra-uterine growth retardation. 

Table 4. Disease severity and pregnancy outcome in P.berghei recrudescent females according to parity 

Parity 
Pregnant 

females 

Average parasitemia 

peak (%) 

Maternal 

mortality (%) 
Litter size a 

Newborns Birth 

weight (g) a 

Primigravida 29 22.7 31 1.9 ± 3.0 (29) 1.1 ± 0.2 (6) 

Second Pregnancy 9 10.7 20 5.6 ± 2.1  (9) 1.3 ± 0.2 (7) 

Third Pregnancy 3 3.4 0 6.7 ± 1.2 (3) 1.3 ± 0.1 (3) 

Non-Infected 20 ___ 0 5.9 ± 2.2 (20) 1.4 ± 0.2 (20) 

a
 Mean ± stdev (number of litters analyzed) 
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Figure 29. Hemoglobinemia is strongly correlated with parasitemia. Peripheral blood hemoglobin and parasitemia 

were followed after infection in eight naïve BALB/c females (A) and after challenge in seven pre-exposed (B). In (C) 

scatter plot of parasitemia versus hemoglobin with adjusted linear curves for each group of mice: naïve infected (r
2
 

= 0.718, P-value < 0.0001, 31 observations) and pre-exposed challenged collected during the parasitemia peak (r
2
 = 

0.418, P-value = 0.0003, 27 observations). Hemoglobinemia is represented in (D) for different groups of females. 

The first three boxes correspond to non-pregnant females: uninfected females (UF), pre-exposed never-pregnant 

(ENP), pre-exposed pregnant-before (EPB); the others correspond to pregnant females: uninfected pregnant 

females (UP), pre-exposed pregnant females with no recrudescence (EPNR), pre-exposed pregnant females with 

recrudescence (EPR). In pregnant mice hemoglobin was measured between G18 and delivery. Box-plots (D) show 

medians (middle line in the box), central 50% of data (box), data range (whiskers) and outliers (dots). The number of 

mice (n) per group is indicated. (***, P-value < 0.001). 

 

• Poor pregnancy outcome is associated with pregnancy-induced malaria recrudescence 

but convalesces in multigravida  

To evaluate the effect of pregnancy-induced parasite recrudescence in the pregnancy outcome 

we monitored the offspring of recrudescent females. The twenty-nine recrudescent 

primigravida had significantly smaller litter sizes (average of 1.9 newborns/litter) as compared 

to twenty non-infected females (5.9 newborns/litter in average) (Table 4). Likewise, the 

average birth weight of newborns from recrudescent mothers (1.1 g) was significantly lower 

when compared to the newborns from non-infected mothers (1.4 g). These findings indicate 

that recrudescent primigravida females show poor pregnancy outcome that is characterized by 

decreased fetal viability and intra-uterine growth retardation. 

 

 

*** 

*** *** 

*** 
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Table 4. Disease severity and pregnancy outcome in P.berghei recrudescent females according to parity 

Parity 
Pregnant 

females 

Average parasitemia 

peak (%) 

Maternal 

mortality (%) 
Litter size a 

Newborns Birth 

weight (g) a 

Primigravida 29 22.7 31 1.9 ± 3.0 (29) 1.1 ± 0.2 (6) 

Second Pregnancy 9 10.7 20 5.6 ± 2.1  (9) 1.3 ± 0.2 (7) 

Third Pregnancy 3 3.4 0 6.7 ± 1.2 (3) 1.3 ± 0.1 (3) 

Non-Infected 20 ___ 0 5.9 ± 2.2 (20) 1.4 ± 0.2 (20) 

a
 Mean ± stdev (number of litters analyzed) 

The litter size and the newborn birth weight were lower in the first pregnancy but recovered 

and approximated normal levels in subsequent pregnancies (Figure 30). 

  

Figure 30. Reduced adverse pregnancy outcomes in multigravida. Box-plots of the average litter 
size (left) and average newborn birth weight (right) according to parity (first, second and third 
pregnancy). Pregnancy outcome was significantly different in primigravida as compared to 
multigravida and non-infected pregnant females (***, P-value < 0.001; **, P-value < 0.01; *, P-value 
< 0.05). 

 

• Progeny costs in absence of Maternal Recrudescence 

Progeny derived from non-recrudescent pregnant females, irrespective of parity, displayed a 

litter size below normal levels, even though the mean birth weight appears not to be affected 

(Table 5). This data indicate that in absence of peripheral parasitemia, pre-exposed pregnant 

females may display a degree of placental malaria leading to a slight but significant loss of 

fetuses. 

Table 5. Disease severity and pregnancy outcome in non-recrudescent females according to parity 

Parity 
Pregnant 
females 

Maternal mortality (%) Litter size 
a
 

Newborns Birth 

weight (g) 
a
 

Primigravida 22 12 3.2 ± 3.3 (22) 1.4 ± 0.2 (2) 

Second Pregnancy 10 11 3.8 ± 2.4  (10) 1.4 ± 0.3 (4) 

Third Pregnancy 13 8 3.5 ± 0.2 (13) 1.5 ± 0.7 (6) 

Non-Infected 20 0 5.9 ± 2.2 (20)  1.4 ± 0.2 (20) 

a
 Mean ± stdev (number of litters analyzed) 
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Effects of maternal pre-exposure on placental immunopathology 

• Parasitemia recrudescence correlates with placenta pathology 

The poor pregnancy outcome in females infected during pregnancy is associated with a 

placental inflammatory response that leads to marked tissue disorganization, and the presence 

of maternal iRBC at different stages of maturation in the placenta. In recrudescent 

primigravida the intensity of peripheral parasitemia was quantitatively correlated with the 

reduction of the placental vascular spaces (P-value = 0.0012) (Figure 31A).  

 

Figure 31. Peripheral parasitemia correlates with the reduction of placental blood sinusoids area. (A) The 
blood sinusoidal area is plotted against the peripheral parasitemia peak observed in primigravida. The area of 
placental blood sinusoids, expressed as a fraction of the total placental area, was obtained using an automated 
morphometric procedure as described in the Methodology section. In recrudescent females, the degree of 
parasitemia was correlated with sinusoidal area reduction (correlation coefficient for recrudescent females is 
0.45, P-value = 0.0012). Representative photomicrograph of placental sections HE stained from non-infected (B) 
and recrudescent (C-D) mothers. Accumulation of inflammatory cells (C), trophoblast thickening (arrows) and 
presence of iRBC (D) in blood sinusoids (arrowheads) are evidenced in placenta tissue from recrudescent 
mothers. Scale bars represent 15 μm in (B-D). 

 

In particular, recrudescent females with high parasitemia showed an increased reduction of 

vascular spaces. These results strongly suggest that malaria recrudescence correlates with 

placental tissue damage (Figure 31C and 31D) that possibly underlies the observed poor 

pregnancy outcomes. In addition, the expression analysis of cell-type specific genes in 

placentas from females with recrudescence, revealed increased amounts of inflammatory 

cells, particularly natural killer (NK) cells, T cells and macrophages (Figure 32A) and up-

regulation of macrophages attractant chemokines (MCP-1 and MIP-1α) (Figure 32B).  
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We also found that the expression of several molecules related to vascular stress, namely 

hemoxygenase-1 (HO-1) and endothelin-1 (ET-1), was increased in placentas of recrudescent 

females (Figure 32D). TNF-α expression showed a trend to increase in infected placentas and 

the balance of the immuno-modulatory molecules IL-12 and IL-10 expression denoted an anti-

inflammatory response in the course of the placenta malaria pathogenesis (Figure 32C). In fact, 

IL-10 expression was mostly increased in placentas where pathology was more intense (Figure 

32E). 

 
Figure 32. Placenta pathology is associated with altered gene expression of inflammation markers. 
qRT-PCR of placenta tissue was used to detect the expression of cell type–specific genes indicating 
infiltration of inflammatory cells: Klrd1 gene for Natural Killer cells, Cd3e gene for T cells, Ncf2 gene 
for neutrophils and Mgl2 for macrophages (A). Placental gene expression was quantified for relevant 
markers of monocyte/macrophage chemotaxy (B), inflammation mediators (C) and vascular stress 
(D). RNA expression was quantified in 15 placentas from recrudescent primiparous BALB/c females 
and in 8 uninfected placentas, collected on G19. In (E) placental IL10 mRNA expression was 
separately analyzed in 5 placentas showing moderate pathology (+) and 4 placentas showing severe 
(++) pathology. Relative quantification was obtained with normalization by ß-actin for (A), (C), (D) 
and (E) and by GAPDH for (B). In (E) results are plotted as fold change over the respective non-
infected controls. Each bar represents the mean ± s.e.m. (*, P-value < 0.05).  

 

It is worth noting that, regardless the number of previous pregnancies, the placentas from 

recrudescent females typically showed iRBC in the maternal blood spaces, inflammatory 

infiltrates, erythroblast accumulation in the fetal blood, placenta architecture disruption and 

trophoblast basal membrane thickening. Together these data suggest that placental malaria is 

an inflammatory syndrome likely driven by parasite expansion and accumulation in the 

placental blood spaces. 

 

• Modified levels of cytokines in sera  

The type of cytokines response may modulate the effective immune response and can have a 

role in tailoring the pregnancy outcome. Using a Cytokine Beads Array we intended to capture 

in several animal groups, variations in serum levels of IL-6 as well as IL-4 and IL-10 that are 

typically involved in B cell activation and anti-inflammatory responses (Figure 33).  
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Figure 33. Cytokines evaluation. IL-4, IL-6 and IL-10 cytokines levels in various groups of malaria 

infected mice. Using the Cytokine Bead Assay technique the cytokines were measured in sera from 

individual mice either non-pregnant in the indicated conditions or at G18 of pregnancy.  

IL-10 higher levels are consistently associated with the presence of parasites probably as part 

of a response to compensate the exacerbated inflammation elicited by the active infection 

(Figure 33, upper graph). Among the pre-exposed pregnant, the recrudescent with 

unsuccessful pregnancy show higher IL-10 levels, whereas the recrudescent that succeed in 

delivering offspring only manifest a slight increase. These results are concordant with the 

overexpression of IL-10 in the placenta (Figure 32). IL-4 levels have a more heterogeneous 

pattern but a common characteristic is that all the pre-exposed females are more likely to have 

increased levels of this cytokine, independently of the presence of the parasite (Figure 33, 

middle graph). This corroborates with the fact that IL-4 is associated with the control of the 

disease in later phases by providing B cell help on the generation of specific IgG antibodies 

(Malaguarnera & Musumeci, 2002). IL-6 is a cytokine that can have both a pro-inflammatory 

and anti-inflammatory role, and like IL-1 and TNF-α, is involved in the induction of fever and 
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the acute phase response (Robinson et al., 2009). High levels of this cytokine may compromise 

pregnancy success (Margni & Zenclussen, 2001). Interestingly, increased levels of this cytokine 

were observed in unsuccessful cases of pregnancy (Figure 33, lower graph). These results 

suggest that IL-10 and IL-6 in sera of pregnant females with malaria are associated with poor 

pregnancy outcomes.  

• Sporadic placental parasites are associated with pathologic events in non-recrudescent 

mothers and adverse pregnancy outcomes 

The analysis of non-recrudescent placentas in some cases revealed the presence of iRBC and 

tissue lesions resembling the pathology observed in recrudescent females (Figure 34). We 

quantified P. berghei parasites by qRT-PCR in 24 placentas from six non-recrudescent mice, 

and observed very small amount of parasites of about seventeen-fold less in average as 

compared to placentas from recrudescent mice (data not shown). Since it is possible that small 

parasite numbers are circulating in the peripheral blood of non-recrudescent mothers, we 

carried out an isodiagnosis test in a group of non-recrudescent pregnant females, by injecting 

a blood drop diluted in PBS in naïve animals and observing the parasitemia occurrence. Among 

the 14 non-recrudescent pregnant females tested, 7 had positive isodiagnosis, meaning that 

the parasite was present in the blood. These data suggest that albeit at low frequency, 

placental malaria occurs in absence of detectable peripheral parasitemia recrudescence.  

 

 
Figure 34. Occasional placenta pathology in non-recrudescent pregnant females. 
Photomicrographs of HE-stained placental sections of sporadic cases of placental pathology in non-
recrudescent females. The figure shows presence of iRBC adhered to the syncytiotrophoblast layer 
(A, insert) and in blood sinusoids (arrowheads) as well as trophoblast thickening (arrow). Scale bar 
represents 15 µm. 

 

Together, the data suggest that pregnancy-associated malaria evoked by recrudescent 

P. berghei is attributable to parasites, which on one hand are able to trigger an inflammatory 

response of the placental tissue and, on the other hand, induce a cumulative protective 

response in multigravida that had experienced recurrent infection relapses induced by 

pregnancy. 
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PARASITE AND PLACENTA INTERACTION 

iRBC binding to placental sections  

In histological observations it is common to find iRBC attached to syncytiotrophoblast or in the 

labyrinth vascular space of placentas both from pregnant females infected during pregnancy 

and recrudescent females (Figure 35). To characterize the nature of the interaction of the 

P. berghei-iRBC and mouse placenta tissue, we investigated the role of receptors that have 

been suggested to mediate P. falciparum cytoadhesion and sequestration to the human 

placenta. 

 
Figure 35. Placental section of a recrudescent pregnant female. Of 

note, iRBC on syncytiotrophoblast surface and in the IVS (arrows). 

Erythroblasts and tissue thickening are also evident. Pre-exposed 

pregnant female with 29% of recrudescence. 

Parasite molecules that likely mediate the interaction parasite-placental are surface 

membrane proteins expressed by mature iRBC, the trophozoites and schizonts. Thus, for the 

adhesion/inhibition assays, we used P. berghei-iRBC preparations that were enriched for 

mature forms of parasites prepared by selection, after parasite synchronization (Figure 36), as 

described in the Methodology section.  

With the aim of demonstrating that adhesion properties of iRBC were dependent on the 

presence of surface proteins, we pre-treated iRBC with two proteolytic enzymes (trypsin and 

proteinase K) and a non-proteolic enzyme (neuraminidase). Proteolitic depletion of iRBC 

surface proteins showed to reduce adhesion capacity to placental sections in a concentration-

dependent manner (Figure 37). 
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Figure 36. Synchronization of blood stage parasites and schizonts enrichment. Blood stage parasites were 

incubated to develop into mature forms as described in the methodology section. In (A) a thin blood smear Giemsa-

stained from a recrudescent pregnant female with 20% parasitemia. Of note is the presence of 

polymorphonucleated cells and echinocytes (modified RBC with small knob-like surface projections evenly spaced 

and uniform in shape that are poorly deformable and usually impart high viscosity to the blood, interfering with 

capillary blood flow; the mechanisms of echinocytes formation are diverse but include erythrocytes dehydration as 

a result of electrolyte imbalance; these RBC were frequently observed in blood smears from infected animals). After 

16 h of synchronization, blood stage parasites have developed essentially into mature forms, trophozoites and 

schizonts (B). By a gradient selection it is possible to separate the cultured cell essentially in two groups: one group 

(found in the pellet) formed mainly by non infected RBC and free merozoites (C) and the other group (obtained in 

the ring on the gradient), formed mostly by blood stage mature forms (D), usually enriched in more than 90% of 

iRBC. Inset (D) showing a mature schizont with differentiated merozoites.  
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Figure 37. Protein-like molecules have a role in 

iRBC-placenta interaction. Intact iRBC were 

treated with neuraminidase, proteinase K and 

trypsin prior incubation with the placental 

tissue. All data represent the proportion of 

bound iRBC expressed as a percentage of 

control (mean ± s.e.m. for three experiments).  
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Candidate placental receptors modulate iRBC adhesion  

We analyzed the involvement of two placental candidate mediators of iRBC binding, chosen on 

the basis of human trials. The first one is a generally accepted receptor for parasites 

sequestration in human placentas (CSA), whereas the second (HA) is a controversial candidate. 

Our results showed evidence that CSA and HA are involved in specific interactions of 

P. berghei-GFP iRBC of non-placental origin with the placental tissue (Figure 38). In fact, iRBC 

adherence was significantly reduced if parasite mature forms were previously incubated with 

CSA (Figure 38B) or HA (Figure 38C). 

   

Figure 38. Ex vivo adhesion of P. berghei-GFP iRBC to mouse placenta. (A) Typical microscopic 

image of adhesion assays showing iRBC adhered in the intervillous space and to 

syncytiotrophoblast cell layer (A). Representative images of blocking adherence assays where 

iRBC were pre-incubated with 2 mg/ml of CSA (B) or HA (C). 

Adhesion was competitively inhibited in a dose-dependent fashion by both CSA (69% reduction 

at 1mg/ml) and HA (80% reduction at 1mg/ml), but not with colominic acid (Figure 39, upper 

graph). In addition, iRBC adhesion also registered a significant reduction on tissue sections pre-

treated with chondroitinase (66% reduction) or hyaluronidase (74% reduction), but heparinase 

had no effect on the iRBC adhesion (Figure 39, lower graph).  

 

 

Figure39. Adhesion-inhibition assays regarding 

CSA and HA as candidate receptors. IRBC were 

pre-incubated with increasing concentrations of 

HA, CSA and colominic acid and then used in 

binding assays (upper graph) as described in 

Methodology section. Adhesion of iRBC to 

uninfected placental tissue was partially abolished 

by pretreatment of the placental sections with 

chondroitinase and hyaluronidase but not with 

heparinase (lower graph). All data represent the 

proportion of bound iRBC expressed as a 

percentage of control (non-preincubated iRBC or 

non-treated placentas, in upper and lower plots, 

respectively). Points and bars represent mean ± 

s.e.m. for three experiments. (***, P-value < 

0.001). 

These findings strongly suggested that CSA and HA in the mouse placental tissue participate in 

adhesion of iRBC, since P. berghei iRBC adhesion is partially dependent on the presence of CSA 

and HA receptors in the placenta and is inhibited by blocking their putative ligands in 

P. berghei-GFP iRBC or after their cleavage on the placentas.  
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Pregnancy-induced recrudescent P. berghei show enhanced affinity to placenta  

iRBC sequestration appears to be the pathogenic trigger of the placenta pathology observed in 

pregnant women. In the previous section, we have shown that P. berghei iRBC from non-

pregnancy origin has the ability to specifically adhere to the mouse placenta tissue. To 

evaluate the adhesion properties of the recrudescent P. berghei we performed adhesion 

assays on placental sections, that compared the adhesion properties of iRBC collected from 

recrudescent primiparous females with iRBC isolated from infected males and non-pregnant 

females. Strikingly, the amount of iRBC adhering to the placenta sections was four-fold 

increased in the samples from recrudescent primigravida (Figure 40A). The adhesion of the 

recrudescent parasite was also partially inhibited when the placental sections were treated 

with chondroitinase (70%) or hyaluronidase (43%), as well as when the iRBC were pre-

incubated with CSA (56%) or HA (76%) (Figure 40B).  

 

 

 

Figure 40. P. berghei iRBC from recrudescent 

females show enhanced adhesion to placenta. 

(A) iRBC from males, non-pregnant females and 

recrudescent females were incubated on 

uninfected placental sections and the adherent 

parasitized cells were counted as described in 

methodology section. (B, upper plot) Adhesion 

assays were also performed after pre-treatment 

of placental sections with chondroitinase ABC, 

hyaluronidase or heparinase (negative control). 

(B, lower plot) Adhesion inhibition assays were 

carried out by pre-incubating iRBC from 

recrudescent females with 1 mg/ml 

concentrations of HA, CSA or CA (negative 

control). In panel B the proportion of bound iRBC 

is expressed as a percentage of the control (non-

treated placentas or non-preincubated iRBC, in 

upper and lower plots, respectively). Error bars 

represent the mean ± s.e.m. of three independent 

experiments. (***, P-value < 0.001). 

 

These results suggest that the recrudescent P. berghei expanding during pregnancy display 

enhanced specificity to the placenta and consequently may induce a specific host response to 

the pregnancy-associated parasite, namely the triggering of placenta pathology events 

associated to PAM. Additionally, our data on mouse PAM indicate that both CSA and HA might 

be candidate mediators for recrudescent parasite adhesion to the placenta. Further 

methodologies to study binding of recrudescent parasites in vivo would have to be applied to 

certify the candidacy of these receptors. Moreover, research is needed to determine the GAGs 

composition on mouse placenta, namely of the chondroitin family, the presence of HA and 

their distribution within the placenta vascular spaces throughout the course of pregnancy.  
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ACQUIRED IMMUNITY IN PRE-EXPOSED FEMALES  

Anti-P. berghei antibody response in pre-exposed females 

We investigated the involvement of components of the acquired immune system in pre-

exposed pregnant females and the persistence of the anti-P. berghei antibody response. We 

were interested in understanding if there is any association between the higher susceptibility 

to malaria in primigravida and the level of specific immunoglobulins. 

• Adaptive immunity appears crucial for malaria control  

It has been reported that mice lacking adaptive immune system cannot clear the malaria 

infection (Couper et al., 2007; Nunes et al., 2009) and we have confirmed these findings. Thus, 

immunocompetent BALB/c infected with P.  berghei and treated with chloroquine are capable 

of controlling parasitemia while BALB/c RAG2 KO mice, which lack lymphocytes, die with 

hyperparasitemia (Figure 41) and are unable to control the disease even under chloroquine 

treatment. Infected BALB/c RAG2 KO mice respond to chloroquine treatment reducing the 

level of parasitemia but after a short period the parasitemia rises again and this sequence 

continues until the animal eventually dies.  
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Figure 41. Mice lacking B and T cells are unable to control malaria when chloroquine treated. Course of 

infection as measured by parasitemia is represented for BALB/c grouped mice (6 animals per group) and 

individual BALB/c RAG2 KO (7 animals) infected with P. berghei. Solid lines represent treated mice while 

dashed purple lines correspond to untreated animals. BALB/c mice were treated with chloroquine in the days 

indicated by the red arrows. Conversely, BALB/c RAG2 KO mice were treated with chloroquine in the days 

indicated by the blue arrows but all died without controlling the infection. Light blue lines correspond to 

females receiving early chloroquine treatment (indicated by the light blue arrows) while dark blue represents 

animals treated lately. Untreated BALB/c and BALB/c RAG2 KO (dashed purple lines) died with 

hyperparasitemia. Red lines correspond to BALB/c. Arrows indicate chloroquine treatment with colors 

matching animal lines.  

 

These results illustrate the requirement of an adaptive immune response to control P. berghei 

infection. Thus, we analyzed the course of the adaptive immune response in pre-exposed 

females by monitoring anti-parasite antibodies in the serum. The humoral response, as 

measured by anti-P. berghei IgG, starts around 2 weeks after infection (Figure 42). The anti-

P. berghei IgM production appears to start slightly earlier but overall follows the same kinetics 

as IgG.  
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Figure 42. Representative kinetics of anti-P. berghei IgG and IgM antibody production. IgG and IgM 

titers for a BALB/c female, infected on day 0, who further experienced two pregnancies and a 

challenge as indicated. Serum antibodies were measured by class-specific ELISA.  

Pre-exposed aparasitemic mice maintain a long term production of IgG (Figure 43) and can 

maintain IgG titers for their life time. What keeps this long-term response it is not known but it 

could be due to a persistent unapparent infection.  
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Figure 43. Long lasting IgG production in 

pre-exposed females. Anti - P. berghei 

IgG antibody production of BALB/c 

females infected on day 0, followed by 

chloroquine treatment (days 7-10 post 

infection). Antibodies were measured by 

IgG-specific ELISA in serum. 

 

 

 

Different lines of evidence suggest that long term subclinical infections are sustained in pre-

exposed mice. Isodiagnosis using organs of pre-exposed BALB/c allow to verify that the 

parasite can be “hidden” and hence causing a sub-patent infection. Briefly, several organs of 

eight pre-exposed animals were perfused or macerated and the collected material was 

separately injected in naïve animals. The materials originated from liver and lungs led to five 

positive isodiagnosis, the spleen and kidneys to three, the bone marrow to two and the fat and 

lymph nodes to one. Overall, isodiagnosis was positive for six out of eight pre-exposed animals. 

Furthermore, the isodiagnosis of blood from non-recrudescent pregnant females was positive 

for 7 out of 14 of the cases analyzed, with the period after infection ranging from 110 to 450 

days for the positive cases. In line with these findings we have observed that pre-exposed 

pregnant females can have parasite recrudescence a long time after being infected (more than 

Chloroquine  
treatment 

1st Pregnancy 

G18 

2nd Pregnancy  
15 days after 
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30 weeks after infection, data not shown). These results indicate that parasites may persist for 

long periods in different organs of pre-exposed and protected mice, suggesting that these 

parasites provide the antigenic stimulation that sustains the immunological protective 

response. 

Acquired protection in pregnant females 

P. berghei pre-exposed mice that had not experienced pregnancy respond to parasite 

challenge (with 106 iRBC of non-pregnancy origin/animal, i.p.) with a parasitemia peak that 

typically rises up to 2-10% and eventually resolved (Figure 44). Conversely, pre-exposed 

females that have experienced a former pregnancy, with or without recrudescence, are likely 

to develop, upon challenge uncontrolled parasitemia with a high mortality rate (60%), dying 

normally up to two weeks after challenge. This outcome appears to be independent of the age 

and period of sub-patent infection. 
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Figure 44. Effect of pregnancy on the malaria 

protection status of pre-exposed females. Parasite 

challenge was used to test protection conferred by 

pre-exposure in non-pregnant nulliparous females 

(n=12) and non-pregnant females that formerly have 

experienced at least one pregnancy (n=10). Non pre-

exposed females (n= 5) died with hyperparasitemia 

up to day 25 after infection. Parasitemias of females 

after recovering were excluded. Data points and 

error bars represent average values and s.e.m., 

respectively. 

Following challenge of pre-exposed that did not experienced pregnancy, IgG production 

showed a slight increase but later suffered a reduction and maintained a steady state (Figure 

45A). Interestingly, the observed breakage of malaria protection in females that have 

experienced a pregnancy is paradoxically accompanied by a humoral response of anti-parasite 

antibodies that did not differ from the response of protected pre-exposed females (Figure 

45B). Within each group in Figure 45B (those that recovered and those that succumbed after 

challenge) it was not possible to establish a common previous history, since in both groups 

there were females with and without recrudescence and with different duration periods of 

sub-patent infection.   
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Figure 45. Influence of challenge on IgG production. Typical curves of anti-P. berghei IgG production after 

challenge on day 0 of six pre-exposed BALB/c females never pregnant before (A) and of seven females 

previously pregnant (B). On panel B dashed lines correspond to females that have succumbed after re-

infection. Antibodies were measured in serum by IgG-specific ELISA.  

 

Pre-exposed females previously pregnant challenged with non-pregnancy parasite during 

pregnancy showed poor control of parasitemia (Figure 44), and display a high mortality rate, 

regardless the slight increase in IgG production after challenge (data not shown). These data 

strongly suggest that pregnancy abrogates the malaria protection status conferred by pre-

exposure and induces a state of long term susceptibility to non-pregnancy-associated 

P. berghei.  

Anti-P. berghei antibody response in recrudescent females 

We investigated whether the anti-P. berghei antibody response correlated with parasite 

recrudescence during pregnancy. Analysis of P. berghei-specific IgG in multigravida showed 

that the titers of anti-P. berghei IgG antibodies in sera of pregnant females with recrudescence 

were significantly higher than from pregnant females without recrudescence, independently of 

parity (Figure 46). This suggests that emergence of recrudescent parasite during pregnancy 

elicits a strong specific-antibody response to pregnancy-associated parasite. 
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Figure 46. Anti–P. berghei IgG in serum samples from pregnant females grouped according to parity 
and recrudescence occurrence in pregnancy. Data are shown as medians (middle line in the box), 
central 50% of data (box), data range (whiskers) and outliers (ο). The number of mice per group is 
indicated (n). Antigen preparations used in the ELISA was obtained from iRBCs of recrudescent 
females. Significant differences observed between antibody titers of individuals with and without 
recrudescence in each parity (**, P-value < 0.01; *, P-value < 0.05).  

 

We next evaluated whether the immune response to malaria in pregnancy would favor 

particular IgG subclasses. Again, the antibody response was parity independent and was 

enhanced in presence of recrudescent parasite (Figure 47). IgG2a was significantly increased in 

sera from recrudescent pregnant females irrespective of parity, whereas IgG1 and IgG3 

response appeared to be more relevant in recrudescent primigravida. 

Figure 47. Anti-P. berghei IgG isotypes in serum samples from pregnant females grouped according to the parity and 

recrudescence occurrence in pregnancy. Data are shown as medians (middle line in the box), central 50% of data 

(box), data range (whiskers) and outliers (ο). The number of mice per group is indicated (n). Significant differences 

observed between antibody titers are indicated (*, P-value < 0.05).  

 

The IgG1/IgG2a ratios indicated a tendency for a relative increase in IgG2a, and thus towards a 

Th1 response, which appears to be more relevant in second pregnancies with recrudescence 

(Figure 48).   
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Figure 48. IgG1/IgG2a antibody ratios. IgG1/IgG2a ratios for pregnant females 

grouped according to the parity and recrudescence occurrence in pregnancy. Data is 

represented as in Figure 47. 

 

• Serum from P.berghei-immune mice does not confer protection against malaria in naïve 

individuals  

To investigate if malaria-specific antibodies elicited by PAM and non-PAM parasite cross-

protected against blood-stage malaria infection, we transferred immune serum from one 

immune male and one pre-exposed multigravida into naïve mice. As a control, a group of mice 

received non-immunized serum. On the day after, mice that received the serum were injected 

with 105 iRBC using a group of pre-exposed immune mice as a control. No difference was 

observed in the parasitemia curves of the naïve mice receiving serum and disease protection 

was not observed in any of the serum-recipient naïve mice (Figure 49). 
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Figure 49. Passive transfer of immune sera 

to naïve mice is not protective. Serum 

samples were collected either from non-

immune or immune mice (male and 

multigravida). Serum was injected i.p. into 

naïve BALB/c recipients (3 animals per 

group). On the day after passively immunized 

mice and pre-exposed mice were challenged 

with 10
5
 iRBC from an infected male and 

parasitemia was followed as indicated. 

While these results raise the possibility that serum transfer is not protective we cannot 

exclude that the observed lack of protection could be due insufficient antibody transfer. Four 

days after sera transfer, we detected low titers of specific-P. berghei IgG antibodies, in sera of 

three out of six recipient mice (data not shown). Future experiments using higher amounts of 

transferred antibody will be needed to test whether protection conferred by parasites 

recrudescing during pregnancy is specific to PAM or is also effective against blood stage 

infection in naïve mice.  

ο 
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DISCUSSION 

 

The proposed goals of this thesis were focused on mouse models of pregnancy-associated 

malaria (PAM). Firstly, comments will be tailored on both established models and on their 

validation by paralleling them with the human disease. Secondly, the few immunopathological 

contributions attained with those models will be described. Finally, the potential applications 

and future directions of using mouse models to study PAM will be highlighted.  

PAM MURINE MODELS  

The first aim of this work was to establish and validate mouse experimental systems that 

represent congruent models representation of human PAM. According to Desowitz (Desowitz, 

2001), an experimental model that represents malaria in pregnancy should comprise several 

attributes. Firstly, the maternal disease should show higher parasitemia and virulence as 

compared to non pregnant controls and reflect hematological changes, such as anemia. 

Secondly, the pregnancy outcome (offspring) should be affected by fetal abortions, low birth 

weight, impaired postnatal growth and/or reduced litter size. Finally, the placentas should 

manifest inflammatory/ histopathological defects and show reasonable pathogenesis 

congruency to human disease characteristics, including placental sequestration/cytoadherence 

phenomena.  

The mouse models established in this work appear consistent with the main features of the 

PAM disease seen in women and their attributes are discussed in the context of standard 

indicators of detrimental outcomes of malaria in human pregnancy, namely: 

• Mortality - maternal, fetal and infant (reflects the worst effects of malaria) 

• Intrauterine growth retardation, low birth weight (used as a proxy measure of infant 

mortality; epidemiological marker for the impact of malaria in pregnancy) 

• Peripheral parasitemias and placental parasites (used to detect malaria in pregnancy; it 

is recognized that peripheral parasitemias may remain below the level of microscopical 

detection while parasites are harbored in the placenta) 

• Placental histology (histological examination of the placenta provides one of the most 

sensitive indicators of maternal infection especially in women with high premunition) 

• Maternal anemia (important indicator to describe the impact of malaria in pregnancy) 
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 Maternal and Fetal Consequences 

In areas where malaria transmission is low or unstable, the levels of immunization are weak or 

inexistent and PAM clinical outcomes seem to be more severe for both to the mother and the 

fetus. The PAM experimental model here established, by infecting non-immune BALB/c mice 

during pregnancy, displayed enhanced disease severity and led to impaired fetal viability and 

post-natal growth. Thus, pregnant mice were more susceptible to P. berghei infection as they 

experienced faster increase in parasitemia and earlier death by hyperparasitemia as compared 

to non-pregnant mice. A significant proportion of the infected pregnant females most of the 

times abort or even die before parturition, without allowing the progeny observation (Table 2).  

The mechanism by which maternal malaria contributes to IUGR and LBW is not fully 

understood. In human PAM the increased P. falciparum parasite density in the placenta and in 

maternal peripheral blood at delivery, is frequently associated with infant anemia and, 

consequently, child development and survival are at risk (le Cessie et al., 2002; Brabin et al., 

2004a). Our experimental data showed a strong correlatyion between peripheral parasitemia 

and hemoglobin levels, both in pregnancy-induced recrudescence and in infected females. The 

infant risk of having low hemoglobin when birth weight was normal (> 2500 g) was greater in 

anemic mother than in non-anemic mothers. Moreover, infants born to anemic mothers have 

low iron stores, even when they are born at term with normal weight, and are more likely to 

develop anemia (De Pee et al., 2002). In addition, anemia, pathologic disorders may 

complicate oxygen delivery to the fetus by interfering with the intrinsic respiratory capacity of 

the placenta at any given gestational age (Salafia et al., 1995). Therefore, maternal anemia 

lead to insufficient in uterus hemoglobin/iron/oxygen availability, inducing a compensatory 

increase in the number of fetal circulating erythroblasts that we also observed in our 

experimental systems.  

Many common diseases of pregnancy, including recurrent early miscarriage, pre-eclampsia and 

eclampsia, are characterized by inflammation in the fetal-maternal interface and/or systemic 

manifestations. Hypertensive disorders in pregnancy are estimated to cause 10-15% of 

maternal deaths. Pre-eclampsia, a pregnancy-induced hypertension in association with 

significant amounts of protein in the urine (protenuria), is the most frequently reported 

disorder and is more common in primigravida, both in malarious and in non-malarious areas 

(Brabin & Johnson, 2005). The placenta is essential for the pathogenesis of pre-eclampsia and 

it appears that the secretion of inflammatory mediators can activate the placental vascular 

endothelium leading to increased levels of endothelial markers, many of which are 

vasoactivators and procoagulant promoters, resulting in microtrombi formation. This leads to a 

vascularization restriction and high-flow blood flow across placental villi, with consequences 

for the mother and the fetus (Brabin & Johnson, 2005). In placental malaria, the parasites can 

stimulate host inflammatory mediators that directly activate endothelial cells which can lead 

to maternal hypertensive disorders or pre-eclampsia. Reduced placental perfusion and loss of 

endothelial integrity are common features of placental malaria and pre-eclampsia. However an 
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important distinction between both conditions is the frequent accumulation of maternal 

leucocytes in placental malaria and its absence in exclusively pre-eclampsia. This issue has 

recently received more attention since there are evidences that pre-eclampsia and malaria can 

be associated (Duffy, 2007). In a study from Tanzania, placental malaria was associated with 

hypertension in young first-time mothers who present histological features of disease but not 

in older or multigravida women (Muehlenbachs et al., 2006). More longitudinal studies are 

needed to evaluate the interaction between placental malaria and pre-eclampsia. 

The pre-exposure model, in which the females were immunized before pregnancy, 

corresponds to a mouse model of pregnancy-induced parasite recrudescence that 

recapitulates epidemiological observations of PAM occurring in pre-immune women that live 

in regions with high-endemicity. There is solid epidemiological evidence from high-endemicity 

malaria regions that the incidence of PAM in women is parity-dependent (Rogerson et al., 

2007), since resistance to pregnancy malaria is acquired over successive pregnancies. In the 

pre-exposure PAM model we have found that disease incidence and severity decreased with 

parity. Furthermore, the adverse pregnancy outcomes from recrudescent mothers were also 

reduced with parity, since we observed an increased recovering of both the litter size and birth 

weight. Nevertheless, we did not find a correlation between the intensity of the parasitemia 

peak in the pre-mating period and the occurrence of pregnancy-induced recrudescence in the 

first pregnancy, implying that such previous exposure did not confer PAM protection. 

Remarkable was the observation of parasites in placentas and associated pathology in the 

absence of maternal peripheral parasitemia. This event is especially common in pregnant 

women from high transmission regions (Dorman & Shulman, 2000).  

Our experiments confirmed that PAM in pre-exposed individuals does not require re-infection 

and suggest that malaria recrudescence during pregnancy requires pregnancy-specific factors. 

More specifically, parasite recrudescence was never detected before G12, and most frequently 

parasitemia arose after G14. These observations converge to the notion that the 

vascularization of placenta occurring at G12.5 plays a critical role in murine PAM development, 

possibly having a role on promoting parasite recrudescence.  

All together, our findings appear to parallel human PAM characteristics in terms of pregnancy 

outcome and placental damage and inflammation, which are underlying the clinical 

manifestations observed in humans (Nosten et al., 1991; Rogerson et al., 2003b). Our 

observations also support the hypothesis that PAM protection in the mouse is progressively 

acquired through repeated exposure to malaria in pregnancy which is in line with a recent 

report on cumulative immunity to PAM over several pregnancies (Megnekou et al., 2009). 

Placental Pathology Caused by P. berghei 

In the course of P. falciparum infections, the placenta can harbor a striking density of 

parasites, macrophages, hemozoin and excess of fibrinoid deposits associated to morphologic 

alterations, such as necrosis and trophoblast basement membrane thickening (Walter et al., 
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1982) that would be harmful to the developing fetus, as the placental exchanges of respiratory 

gases and nutrients became difficult and reduced. Monocytic/macrophagic infiltrate has been 

considered a hallmark of Plasmodium-infected placentas (Rogerson et al., 2003b; Diouf et al., 

2004).  

P. berghei infected placentas showed general tissue architecture disorganization with 

prominent thickening of the trophoblast basement membrane and fibrinoid deposits. This may 

result in part from fibrosis which has been proposed to arise from the reparative process 

stimulated by the response to infection (Oduola et al., 1986). However, extensive fibrinoid 

necrosis and fibrinoid deposition are abnormal and typical of malaria infected placentas 

(Davison et al., 2000). It is noteworthy that in mouse placentas we observed low degree of 

massive chronic intervillositis as compared to reported observations in infected human 

placentas (Ordi et al., 1998). Possibly this difference is related to the short pregnancy time 

span that may condition the inflammatory process in the mouse as compared to human 

pregnancy. We hypothesize that accumulation of P. berghei-GFP iRBC in the placenta may 

evoke the inflammatory response that resembles the placental malaria pathology attributed to 

P. falciparum. We firstly demonstrate that these characteristics can be observed in the model 

system using non-immune BALB/c mice. A striking pathological finding in infected placentas 

was the reduction of blood sinusoids space, which is attributable to placental tissue thickening 

that presumably compressed available blood vascular space. Furthermore, in recrudescent 

placentas the reduction of the blood sinusoidal space is highly dependent on the parasitemia 

level, reinforcing the notion that the parasite has a pivotal role in the genesis of the placental 

pathology.  

Interestingly, we found that in some non-recrudescent females the placentas could harbor a 

very low density of iRBC, which nevertheless seemed high enough to trigger placenta 

pathology. We speculate that these pathologic mechanisms would explain the death of 

pregnant females that do not show peripheral parasitemia but exhibit placenta pathology. 

Cytoadherence of P. berghei–infected erythrocytes to receptors expressed on the 

syncytiotrophoblast surface is considered to contribute to the described placental disorders, 

but might not be a sufficient condition for pathogenesis, as well as in cerebral malaria 

syndrome (Schofield, 2007). Placental malaria studies propose that the observed intervillositis 

is mostly an immunopathologic process, due to cytokines and chemokines production, leading 

to the activation of the syncytiotrophoblast (Fievet et al., 2001; Lucchi et al., 2008).  

Although we have found important pathological changes in both basal and labyrinthine zones 

of mouse placenta, parasites and hemozoin were never visualized in the fetal circulation and 

positive parasitemia was never recorded in newborns from infected mothers. The absence of 

evidence for congenital infection, despite the presence of numerous iRBC in the placental 

maternal blood, points to the efficacy of the placental trophoblastic layer to block parasite 

traversing to fetal blood. The mechanism by which the trophoblastic cells prevent fetal 

infection is poorly understood, but several trophoblast defense mechanisms have been 
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described, including its capacity of producing immune cells chemoattractants (Guleria & 

Pollard, 2000) or its selective phagocytic ability allowing the removal of infectious agents from 

the maternal-fetal interface (Amarante-Paffaro et al., 2004).  

The vascular control in the placenta is dependent in large part on locally produced vasoactive 

compounds and the loss of main vasodilator properties can have significant consequences on 

the intraplacental perfusion possibly intensifying local areas of hypoxia (Bainbridge & Smith, 

2005) and on the triggering of pre-eclampsia (Brabin & Johnson, 2005). We could not detect a 

significant increase in Hypoxia-Inducible Factor-1alpha (HIF-1α) gene expression in infected 

placentas (data not shown). It is likely that tissue stress responses induced by the alterations in 

placenta blood circulation could play a role in placental physio-pathology. Placenta 

microcirculation is in part controlled through a fine balance between different vasoconstrictors 

such as ET-1, and vasodilators like HO-1 enzyme (Bourgeois et al., 1997; Bainbridge & Smith, 

2005). Recrudescent placentas showed an increase in both ET-1 and HO-1 mRNA expression, 

suggesting that the placenta vasculature is exposed to an abnormal vasoactive regulation.  

Adhesion of P.berghei–iRBC to Mouse Placenta 

One of the currently proposed roles for the placenta in P. falciparum PAM pathogenesis is to 

provide new ligands that are recognized by the iRBC. The adhesion mechanisms of iRBC in 

P. falciparum infected placentas remains controversial, but the main placental candidate 

receptors and their cognate parasite ligands participating in iRBC adhesion have been 

identified. Our data show that CSA and HA can be important candidate adhesion receptors in 

mouse placentas. Additionally, iRBC collected from recrudescent females displayed a marked 

enhancement of CSA and HA binding properties, and thus we raise the hypothesis that 

P. berghei expanding during PAM is positively selected by the ability to bind placental ligands. 

This hypothesis is highly supported by recent work showing that pregnant mice acquire 

immunity specific to the recrudescent parasite (Megnekou et al., 2009). Overall, the 

experimental data suggest that cytoadherence of P. berghei-GFP in the placenta may involve 

CSA and HA as receptors and raises the hypothesis that human and murine malaria in 

pregnancy have similar pathogenesis basis. 

In human PAM specific P. falciparum parasites expressing variants of the PfEMP1 such as the 

molecule encoded by the var gene var2csa, are probably expanded via the increased 

cytoadherence of the iRBC to the placental receptors, prominently CSA (Duffy et al., 2005). 

Although PfEMP1 orthologues were not yet found in P. berghei, our findings raise the 

interesting possibility that the receptors mediating adhesion in the mouse placenta could have 

in P. berghei-iRBC cognate ligands. Even though antigenic variation had been shown in other 

murine malaria species, such as P. chabaudi AS (Phillips et al., 1997; Janssen et al., 2002), it is 

noteworthy that P. berghei VSAs were not described so far, although an ancient study (Cox, 

1959) show that P. berghei relapsed parasites (relapsing 90 or more days after infection 

followed by chemotherapic treatment) led to an increased virulence when compared to stock 
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parasites. Nevertheless, our data opens the possibility that murine PAM entails an 

overrepresentation of P. berghei - iRBC displaying parasite components that mediate the iRBC-

placenta interactions.  

IMUNOPATHOLOGY IN MOUSE PAM 

The second aim of our investigation was to show that PAM mouse models presented in this 

thesis could contribute to a better understanding of the immunological basis of the 

protection/susceptibility to malaria shown in pregnancy and of the underlying molecular 

mechanisms. 

Placental inflammatory response to infection in pregnancy  

Systemic immunity to malaria in non-pregnant mice has been subject of intense investigation 

and is very well documented. The early response mainly involves the innate system and is 

dominated by Th1-type cytokines, namely IL-12 and IFN-γ. In mice, blood-stage P. berghei XAT 

infection induces IL-12 production, important for the development of host resistance via IFN-γ 

production, which promote anti-parasitic properties, at least in part by generating high levels 

of TNF-α and NO (Yoshimoto et al., 1998). However, during pregnancy there may be a bias 

towards a Th2-type response and the placenta may synthesize anti-inflammatory cytokines to 

antagonize pro-inflammatory responses that could otherwise be harmful to the fetus.  

Our data show that, in mice infected during pregnancy, the malaria infection rapidly becomes 

established in the placenta, as revealed by the placental accumulation of luciferase-expressing 

P. berghei parasites. In the placenta, the parasite could take advantage of a propitious 

environment for its survival, due to the absence of inflammatory mediators and dominated by 

Th2-like microenvironment necessary to the pregnancy success. Nevertheless, the presence of 

parasites in the placenta can activate the trophoblast that has a role in shaping the local 

immunological milieu (Lucchi et al., 2008) and synthesize chemoattractants that recruit 

monocytes/macrophages to this site of infection. Hofbauer cells, the placental resident 

macrophages, can also be stimulated to produce β-chemokines chemotactic for 

monocytes/macrophages. This is in line with our observation that the chemokine MIP-1α is up-

regulated in infected placentas. MIP-1α is produced by monocytes, macrophages, lymphocytes 

and other cells. Such type of inflammatory triggering can explain the observed recruitment of a 

mononuclear infiltrate that predominate in maternal blood spaces of the labyrinthine zone. 

Expression analysis of cell-type specific markers indicates that in the case of placentas from 

recrudescent mice the mononuclear infiltration includes NK cells, T lymphocytes and 

macrophages ad is associated with increased expression of the chemokines MCP-1 and MIP-1α 

(Figure 32A and 32B). Interestingly, in our model, IL-12 expression in the placenta was 

significantly decreased (Figure 32C), while the expression of TNF-α and IL-10 was increased. 

This down-regulation of IL-12 production was suggested to be due to the inhibitory effects of 

hemozoin.  
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We noted that iRBC were in intimate contact with placental tissue components and that 

hemozoin was widely spread in maternal blood spaces of infected placentas. In fact, hemozoin 

can accumulate in tissue and within macrophages, remaining for several months after parasite 

clearance, leading to placental function impairment and having inhibitory effects on tissue 

monocytes and macrophages (Sullivan et al., 2000; Schwarzer et al., 2001). Early events in the 

cell-mediated immune response required for protection against malaria are initiated by the 

release of IL-12 from monocytes/macrophages, dendritic cells and neutrophils. However, it 

was shown that the constitutive production of IL-12 by monocytes is inhibited following 

phagocytosis of small amounts of hemozoin. Ingestion of hemozoin may possibly have 

differential effects on cytokines production, namely by enhancing IL-10 production and 

suppressing IL-12 release (Luty et al., 2000). These observations allow the speculation that the 

strong local inflammatory environment generated by the iRBC adhesion is counteracted by a 

systemic anti-inflammatory response. In fact, we noted that the up-regulation of IL10 

expression was correlated with the severity of placenta pathology (Figure 32E). Coincidently, 

IL-10 levels in the serum were associated with poor pregnancy outcomes and this cytokine has 

been suggested as a biomarker for placenta inflammation in pregnant women (Kabyemela et 

al., 2008). 

It remains to be resolved whether T cell infiltration corresponds to activated effector T cells or 

to T regulatory cells as part of a placenta anti-inflammatory response. IL-12, produced by 

activated macrophages, DCs, B lymphocytes and neutrophils, has an important role in inducing 

NK cells to produce IFN-γ. However, in recrudescent placentas the IL-12 expression decreases 

and IFN-γ levels did not increase substantially, despite the presence of more NK cells and T 

cells. Similarly TNF-α expression was not substantially increased even though the increased 

number of recruited macrophages to the placenta. These overall results may be a consequence 

of induction of regulatory cytokines that act to suppress synthesis of inflammatory cytokines. 

In fact, placental IL-10 expression was substantially increased in placentas with higher parasitic 

load. In sum, P. berghei clearly induces a Th1/Th2 disequilibrium in the placenta favoring 

inflammatory responses; IL-10 is also increased and should remain effective in protecting the 

placenta by controlling the negative effects of Th1-type cytokines. This is of utmost importance 

as it allows the mother to keep nurturing and protecting the fetus. However, at delivery 

numerous placentas remain infected, suggesting that the parasite-induced response is not 

effective enough to clear placental infection. An additional increase in Th1 response could be 

efficient in clearing infection but could endanger the fetus, given the detrimental effects of 

TNF-α and IFN-γ on pregnancy. 

Classically, BALB/c mice show a natural bias towards Th2 responses (Hansen et al., 2003). 

When infected with Leishmania major, also a protozoan, produce low levels of IFN-γ and high 

levels of IL-4 and IL-5 (Scott et al., 1989). Conversely, C57Bl/6 that has a higher Th1 response is 

capable of self-healing the infection, while BALB/c develop a non-healing and fatal infection. 

Therefore, it would be interesting to evaluate if mice with a stronger inflammatory response 
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(characterized by elevated levels of IFN-γ, for example) and showing a more efficient initial 

malaria attack would have less deleterious placental consequences in terms of parasite 

accumulation and pathology. 

Adaptive immune response in mouse pregnancy 

Pregnant women develop antibodies that are pan-reactive towards placental parasites isolates 

from different geographic areas (Fried et al., 1998b; Lekana Douki et al., 2002). This has 

suggested that the antigenicity of the placental parasite drives a humoral specific response 

that contributes to protect mutigravida from severe forms of PAM.  

We observed that pre-exposed aparasitemic mice display long-lasting high titers of anti-

parasite IgG (Figure 43) and we also observed likewise that the parasites may persist for long 

periods in different organs of pre-exposed mice. Such mice are protected of severe disease, as 

they develop a strong response upon parasites challenge that is revealed by a transient 

parasitemia peak that resolves to apparent cure. These observations sustain the interpretation 

that residual and persistent infection supports a continued humoral anti-parasite response 

that would contribute to a long-term malaria protection state. 

We also observed that pre-exposed females that experience pregnancy maintain high titers of 

antibodies against parasites derived from placenta, implying that these mice were 

immunocompetent towards P. berghei. This was particularly visible in recrudescent females 

irrespective of parity (Figure 46), which display higher levels of IgG (and its subclasses) as 

compared to their non-recrudescent counterparts. These results are suggestive that residual 

P. berghei in pre-exposed females elicits further antigenic stimulation during pregnancy 

particularly when the parasite recrudescence is apparent.  

Surprisingly, we found out that pre-exposed females that are pregnant or that experienced 

pregnancy, loose strong malaria protection upon challenge with parasite of non-placental 

origin (see Figure 44). These data strongly suggest that pregnancy abrogates the malaria 

protection status conferred by pre-exposure and induces a state of long term susceptibility to 

non-pregnancy-associated P. berghei.  

This breakage of malaria protection does not correlate with inability to mount an anti-parasite 

humoral response and contrasts with the increased premunition against recrudescent 

P. berghei acquired by pregnancy-experienced females. Thus, the immune response that 

confers protection to pregnancy–associated P. berghei appears not to protect from non-

placental P. berghei. This implies that the immunogenicity of P. berghei involved in PAM differs 

from regular P. berghei. This is line in with a report demonstrating differential specificities in 

the humoral response to P. berghei parasites collected from pregnant females (Megnekou et 

al., 2009) and raises the possibility that antigenic specificities are critical to confer protective 

immune response to the malaria parasites.  
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Notwithstanding, it is intriguing that pre-exposed females that are pregnant or have 

experienced pregnancy not only to gain PAM-specific premunition but sharply loose the 

previous protection against non-placental parasite. This also suggests that recrudescent 

P. berghei in pregnancy drives an immune response that abrogates the protection conferred by 

previous exposures to parasites that possibly show different antigenicity. This abrogation of 

previous immunological protection could be a general mechanism by which malaria parasites 

escape to immunological control in successive infections, as is frequently observed in high-

transmission regions. 

An alternative explanation for the lack of correlation of the high-antibody titers and disease 

protection could be that the humoral response is not a relevant contributor to the 

effectiveness protection against malaria. This hypothesis would explain the failure of 

hyperimmune serum transfers in protecting from infection (Figure 49). In this context it 

remains to be analyzed the possibility that the effectiveness of previous humoral response to 

malaria parasite is compromised as the proportion of asymmetric antibodies raises in the 

pregnant females. Presumably, this could lead to a repertoire that is able to recognize the 

parasite antigens but would not be able to elicit the effector phase of the immune response. 
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CONCLUDING REMARKS 

This thesis describes two PAM mouse models that are based on experimental placental 

infection by P. berghei. These PAM mouse models were scrutinized for pathological and 

immunological criteria that are relevant for human PAM. We conclude that experimental PAM 

constitutes a lever for new approaches in studying PAM pathogenesis and identifying PAM 

protection mechanisms. 

The experimental model established in non-immune mice showed enhanced disease severity 

and magnified pathology phenotypes as compared to the human disease. The prominent 

histological alterations in mouse placenta heavily infected with P. berghei resemble those 

described for acute P. falciparum malaria in humans. Such phenotypic exacerbation allowed us 

to identify trophoblast thickening and vascular space reduction as hallmarks of placenta 

malaria induced by the P.berghei and to hypothesize that placenta immunopathology results 

from an exacerbated inflammatory response to the presence of adherent P. berghei. In the 

pre-exposure (pregnancy-induced malaria recrudescence) mouse model the intensity of 

parasite recrudescence showed to be quantitatively correlated with the placenta pathology 

while the recrudescence incidence and adverse pregnancy outcomes decreased with parity.  

P. berghei-GFP adhesion experiments indicate that iRBC express ligands for different receptors 

in the mouse placenta. iRBC from recrudescent females displayed enhanced adhesion to the 

placenta suggesting that P. berghei parasites mediating PAM have increased specificity for 

placenta receptors. 

We observed that pre-exposed females showed residual but persistent P. berghei infection 

that could explain the long-lasting anti-parasite humoral response that would contribute to a 

long-term malaria protection state. Pregnancy abrogates this malaria protection status 

strongly indicating that the host mechanisms that confer protection to pregnancy–associated 

P. berghei appear not to protect from non-placental P. berghei. This observation compelled us 

to hypothesize that the immunogenicity of P. berghei involved in PAM differs from regular 

P. berghei in an analogy with the P. falciparum variants involved in human PAM. 

The data provided in this thesis demonstrate that the experimental systems based on 

P. berghei-BALB/c mouse are valid models to study the pathogenesis of placenta malaria, the 

adhesion of placenta parasites and the parasite-placenta interaction and the mechanisms of 

PAM protection elicited during pregnancy. 
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FUTURE PERSPECTIVES AND DIRECTIONS 

 

The experimental systems presented in this thesis could prove useful in drawing hypothesis 

and testing analogies on the factors and mechanisms that are considered relevant for human 

PAM. The data presented in this work suggests a number of research avenues that could be 

followed for the detailed characterization of the parasite-placenta interaction in the mouse, 

the dissection of the inflammatory components of placenta malaria and the analysis of the 

antigenic specificities that are involved in PAM acquired protection (see Table 6). Many of 

these questions remained unsolved in human PAM and these investigations in experimental 

systems could provide new hypothesis and solutions to be tested in human PAM. 

Table 6. Exploring PAM mouse models 

Parasite-Host Interaction Characteristic  Approach 

Antigenic specificity of placental P. berghei  
• Immunologic and molecular studies and gene 

expression analysis of antigens of 
recrudescent parasites  

P. berghei ligands mediating placental 
sequestration  

• Ligand-specific binding assays and analyze 
knockout parasites for candidate ligands 

Placenta receptors for iRBC  
• Purify and test individual mouse placental 

potential receptors for iRBC (GAGs), setting 
up in vitro cell culture systems 

Dynamics of placenta sequestration 
• In vivo imaging of recrudescent and non-

recrudescent parasite in pregnant females 

Host inflammatory components in 
pregnancy-induced recrudescence 

• Make use of knockout mice to identify 
several factors involved in PAM 
immunopathology 

• Investigate the existence of soluble 
peripheral markers that quantitatively reflect 
placental disease 

Protective immunity in multiparity 

• Identify antibodies and T cell responses 
specific for the placental P. berghei 

• Assess the role of asymmetric antibodies in 
PAM 

Vertical transmission of malaria and 
protection 

• Analyze the cellular response of newborns to 
malaria antigens 

• Evaluate the transmission of protection by 
anti-parasite antibodies 
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There are a plethora of other unknown mechanisms worthy of further investigation using PAM 

models. Mouse models of PAM can even be used in more generic studies concerning malaria in 

pregnancy, namely:  

• Perform drug trials in pregnancy. The identification of safety/toxicity and effectiveness 

of novel anti-malarials for pregnancy is urgent (WHO, 2006) and it would be 

appropriate to evaluate the mouse models contribution in this respect. Anti-malarial 

drugs have been facing problems of parasite resistance and recrudescence after drug 

treatment is more common during pregnancy. The spread of drug-resistant parasites 

has eroded the value of the few drugs considered safe in pregnancy.  

• Contribute to PAM vaccine studies to prevent pregnancy malaria by identifying in 

P. berghei proteins targeted by the PAM protective immune responses. This would 

provide additional vaccine targets to be tested in P. falciparum to complement current 

efforts to produce a VAR2CSA-based vaccine. 

• Analyze how placental malaria and pre-eclampsia interplay. Pre-eclampsia, the disease 

with the highest pregnancy related maternal lethality in western countries, it is caused 

by impaired trophoblast invasion and placental vascularization alterations, which can 

be caused by inflammation. Recent research interests are focusing in studying the 

interaction and overlap of malaria and pre-eclampsia and the experimental systems 

presented in this thesis provide a useful tool for this research. 
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