UNIVERSIDADE DE LISBOA FACULDADE DE FARMÁCIA

LIVER REGENERATION AND TISSUE ENGINEERING

PEDRO MIGUEL ALMEIDA DE MATOS BAPTISTA

DOUTORAMENTO EM FARMÁCIA

(BIOTECNOLOGIA FARMACÊUTICA)

2008

UNIVERSIDADE DE LISBOA

FACULDADE DE FARMÁCIA

LIVER REGENERATION AND TISSUE ENGINEERING

PEDRO MIGUEL ALMEIDA DE MATOS BAPTISTA

Dissertation Supervisors:

Prof. Doutor Anthony Atala

Prof. Doutora Maria Henriques Ribeiro

DOUTORAMENTO EM FARMÁCIA

(BIOTECNOLOGIA FARMACÊUTICA)

2008

ACKNOWLEDGEMENTS

-To the 3rd Gulbenkian PhD Program in Biomedicine and everyone that somehow belongs and contributes to it. If it wasn't for them, I wouldn't have even started this amazing journey.

-To the Wake Forest Institute for Regenerative Medicine (WFIRM), my Cradle to Science. I'm in debt to all the people that I met there. Their insight, their constructive criticism... our broad scientific discussions over lunch or coffee, your direct contribution to my work... you won't be forgotten.

-To "Fundacao para a Ciencia e Tecnologia", Portugal. For all the financial support that they provided and made this dissertation possible – Doctoral Scholarship - SFRH/BD/11802/2003.

-To Dr. Anthony Atala, our "big boss". Without his leadership, vision and tireless effort building this lab we simply wouldn't be here. Our Science simply wouldn't be...

-To Dr. Shay Soker, my mentor and "boss". Your friendship, counseling, help, guidance and mentorship were invaluable. No surprise that what I achieved, we achieved together. No surprise that what we achieved is now a PhD thesis. I really owe you a lot...

-To Prof. Doutora Maria Henriques Ribeiro, my national supervisor. Thank you for your constant patience, precious help throughout these years and your priceless advice in everything that happened here and before... Without you, I wouldn't be having the joy of this moment.

-To the faculty of the WFIRM (Dr. Mark Furth, Dr. Mark Van Dyke, Dr. James Yoo, Dr. Koudy Williams, etc) that always helped me immensely with their creative thinking, constructive

criticism and vast knowledge. I improved so much with your example and advice. Thank you so much for caring.

To my dear, dear friends. Without you, life here wouldn't have been so fun and interesting. Home sickness hit me sometimes... but you were always there for whatever it took (Dawn, Daniel, Tamer, Akira, DJ Lee, Luiz, Paulina, Fernanda, Julie, Anna, Lauren, Ken, Yaz, Sergio, Simone, etc, etc). For you, for all of you... Muito obrigado.

-To all those people... that somehow and at some point, contributed to the work presented in this dissertation. You have my deepest gratitude.

-Finally, to My Family. To my brother and sister-in-law for their words and support; to my nephew, my hope for a better future; to my grandparents, for their unconditional love and encouragement, showing me at every moment the true meaning of soul and body "regeneration" from the height of their 90 years old; and foremost, to my parents. Without you, I wouldn't have endured, I wouldn't have come, I wouldn't have prevailed. My absence has generated all that sorrow and "saudades"... but with the promise of coming back home soon, I hope you understand that all these I accomplished... was ultimately for you.

To My Parents... always supportive, constantly caring, eternally loving.

INDEX

Abbreviations	XI
Abstract	XII
Summary	XIII
Resumo	XV

Chapter 1 – Introduction

1.1	Liver Disease and Liver Transplantation	2
1.2	Liver Anatomy and Physiology	4
1.3	Liver Functional Unit – the Acinus	6
1.4	Hepatocytes	8
1.5	Endothelial Cells	9
1.6	Liver Regeneration	10
1.7	Bioartificial Liver Devices	12
1.8	Liver Tissue Engineering	13
1.9	Objectives	14
1.10	Bibliography	16

Chapter 2 – Generation of a 3D Vascularized Liver Bioscaffold for Whole Organ Engineering

2.1	Introd	luction	22
2.2	2 Materials and Methods		24
	2.2.1	Liver preparation	24
	2.2.2	Decellularization	24
	2.2.3	Matrix characterization	25
	2.2.4	Biodegradation assay	25
	2.2.5	Vascular tree imaging	25

2.5	Bibliography		44
2.4	Discussion		40
2.3	Result	8	28
	2.2.9	Transplantation	27
	2.2.8	Implants	26
	2.2.7	Bioscaffold seeding with HepG2 and endothelial cells	26
	2.2.6	Bioscaffold endothelial cell seeding and bead perfusion	26

Chapter 3 – Perfusion Cell Seeding Optimization of the Decellularized Liver Bioscaffold

3.1	Introduction		50
3.2	Materials and Methods		51
	3.2.1	Liver Bioscaffold Preparation	51
	3.2.2	Bioreactor Assembly	51
	3.2.3	Cell Seeding Optimization	53
	3.2.4	Fixation and Tissue Processing	54
	3.2.5	Histomorphometric Analysis	54
	3.2.6	Histochemical and Immunohistochemical Analysis	54
	3.2.7	Rat Primary Hepatocyte Seeding	55
3.3	Resul	ts	56
3.4	Discussion		63
3.5	Bibliography		66

Chapter 4 – Human Liver Stem/Progenitor Cells for Liver Tissue Engineering

4.1	Introd	luction	71
4.2	Mater	ials and Methods	74
	4.2.1	Bioscaffold Disks Section	74

4.5	Bibliog	graphy	86
4.4	Discus	sion	84
4.3	Result	5	78
	4.2.4	Molecular analysis	76
	4.2.3	Immunohistochemistry	75
	4.2.2	Human Fetal Livers	74

<u>Chapter 5 – hAFS as a Source of Hepatic and Endothelial Progenitors for *In Vivo* Cell Therapy</u>

5.1	Introduction		90
	5.1.1	Development and Characterization of Amniotic Fluid	90
	5.1.2	AFS Isolation, Characterization and Differentiation	94
	5.1.3	Implantation AFS cells in vivo and in animal models of regeneration	99
5.2	Mater	ials and Methods	100
	5.2.1	Teratoma analysis	100
	5.2.2	Myoblast Implantation	100
	5.2.3	Endothelial Cell Implantation	101
	5.2.4	Hepatocyte Implantation	101
5.3	Resul	ts	103
5.4	Discussion		107
5.5	Concl	usion	108
5.6	Bibliography		109

<u>Chapter 6 – Conclusions and Future Perspectives</u>

Conclusions and Future Perspectives	116

INDEX OF FIGURES AND TABLES

<u>Chapter 1</u>

Figure 1.1	Number of patients in Waiting List vs Transplanted until 2007 in the USA	2
Table 1.1	Liver transplantation waiting list patient characteristics in the USA	3
Figure 1.2	Liver segments anatomy	6
Figure 1.3	Acinar microstructure	7

Chapter 2

Figure 2.1	Preparation of the acellular vascularized bioscaffold	28
Figure 2.2	Histochemical analysis of decellularized liver bioscaffold	30
Figure 2.3	Collagen types I, II, III and IV immunohistochemical staining	30
Figure 2.4	Biodegradation of the AVB in the presence of collagenase II	31
Figure 2.5	Ultrastructure of the liver bioscaffold	32
Figure 2.6	Characterization of patency of the AVB vascular tree	34
Figure 2.7	Re-endothelialization of the liver bioscaffold	35
Figure 2.8	Re-cellularization of the liver bioscaffold	36
Figure 2.9	Rat hepatocytes and mouse endothelial cells implanted in bioscaffold	37
Figure 2.10	0 Transplantation of liver bioscaffold	38

Chapter 3

Table 3.1	Perfusion cell seeding bioreactor conditions	52
Figure 3.1	Bioreactor Layout	52
Figure 3.2	Macroscopic appearance of the bioscaffold	57
Figure 3.3	Bioscaffold cell density using different flow rates for cell seeding	57
Figure 3.4	Morphometric analysis of bioscaffolds seeded with different flow rates	58

Figure 3.5	Protein expression analysis of seeded bioscaffolds	59
Figure 3.6	Tissue formation and organization of cells engrafted in the bioscaffold	60
Figure 3.7	Tissue formation of rat primary hepatocytes in the bioscaffold	61

Chapter 4

Figure 4.1	Immunofluorescence of hFL cells seeded in bioscaffold (5 days)	78
Figure 4.2	Determination of hFL cell proliferation by DNA quantification	80
Figure 4.3	Immunofluorescence of hFL cells seeded in bioscaffold (21 days)	80
Figure 4.4	Protein expression of hFL cells seeded in bioscaffold disks	82

Chapter 5

Fable 5.1 Flow cytometric analysis of amniotic fluid cells (no expansion)	
Figure 5.1 Histological analysis of mice teratomas (mES) and testis (hAFS)	103
Figure 5.2 Histological analysis of hAFS cell implantation	104
Figure 5.3 Histological analysis of regenerating mouse liver after hAFS cell injection	106

ABBREVIATIONS

3D – Three-Dimensional

- AFS Amniotic Fluid Stem
- anti-GFP Anti-Green Fluorescent Protein
- AVB Acelular Vascularized Bioscaffold
- BHA Butylated Hydroxyanisole
- DAB 3,3' Diaminobenzidine
- DMEM Dulbecco's Modified Eagle's Médium
- DMSO Dimethyl Sulfoxide
- ECM Extra-cellular Matrix
- EGM Endothelial Cell Medium
- FBS Fetal Bovine Serum
- hAFS Human Amniotic Fluid Stem Cells
- HDL High Density Lipoprotein
- HepG2 Human Hepatocellular Liver Carcinoma Cell Line
- hFL Human Fetal Liver
- HpSC Hepatic Stem Cells
- IL-1 Interleukin-1
- IL-2 Interleukin-2
- MDR Multidrug Resistant
- MS1 Mouse Endothelial Cells
- NGF Nerve Growth Factor
- NO Nitric Oxide
- PBS Phosphate Buffered Saline
- PI Propidium Iodide
- RER Rough Endoplasmic Reticulum
- SEC Sinusoidal Endothelial Cells
- VEGF Vascular Endothelial Growth Factor
- VLDL Very Low-Density Lipoprotein
- WHO World Health Organization

ABSTRACT

Over 21 million people in the world are estimated to live with chronic liver disease, and about 800,000 expire annually, accordingly with WHO. Liver transplantation remains today the definitive treatment for end-stage liver failure. However, the gap between organ donation and the number of patients in the waiting list for a liver keeps widening. The shortage of organs has stimulated the research for alternatives in end-stage liver disease. Cell therapies with some degree of success are today a reality. Nevertheless, the goal of generating a whole liver *in vitro* remains elusive. The purpose of the work of this dissertation was to develop a new approach to liver tissue engineering that would allow the generation of significant mass tissue readily implantable and/or transplantable. Cell sources for tissue engineering applications are of vital importance. Our research focus on the use of hFL progenitor cells in combination with the liver bioscaffold and on a new promising source of fetal stem cells from amniotic fluid, in liver therapies and tissue engineering.

In our work, we were able to create a novel acellular liver derived bioscaffold with preserved vascular network. This bioscaffold could be efficiently re-cellularized and considerable mass tissue, displaying some hepatic functions, was generated. It was also successfully transplanted to living hosts and perfused with blood. Another goal attained in this work was that the combination of hFL progenitor cells with the liver bioscaffold produced cell engraftment, expansion and differentiation of the hFL cells. hAFS cells also showed engraftment and integration in injured livers, representing a new alternative for *in vivo* cell therapies and liver regeneration.

In conclusion, this doctoral dissertation clearly demonstrates the successful generation of 3D liver tissue with a novel acellular liver bioscaffold using different cell sources. This potentially represents a new hope for patients suffering of end-stage liver disease.

SUMMARY

The severity of end-stage liver disease is directly related with the vital role that the liver plays in systemic metabolic homeostasis. Organ transplantation remains today the definitive treatment for end-stage liver disease. Due to the shortness in organ availability, new alternatives have been sought in the last decade. With the dawn of regenerative medicine, cell transplantation using adult hepatic cells has emerged as a potential therapeutic option to treat various severe liver conditions. Although successful, therapies with adult hepatic cells usually fade within several months. The advancement of stem cell biology as also brought new opportunities in cell therapies with newly identified or differentiated stem/progenitor cells. It also increased the opportunities in finally generating a whole liver *in vitro* able to be readily implanted or transplanted into a host.

In this work, the generation of a novel liver derived biomaterial that could preserve its native vascular network was investigated. We attempted to improve the decellularization of thick tissues and solid organs employing some of the tissue decellularization techniques used for the generation of naturally derived scaffolds. We were succeeded in our attempts on perfusing decellularization solution through the liver vascular system instead of simply shaking the organ with the decellularization solutions relying only on reagent diffusion. The outcome was the generation of a novel acellular liver derived bioscaffold which preserves its native vascular network. This allows the perfusion of culture media and cell seeding through the decellularized organ vasculature reaching virtually every position in the thick 3D bioscaffold. Oxygen and nutrient diffusion limitations are now overcome by the use of the decellularized organ native vascular system, allowing *in vitro* generation of dense 3D tissue.

The optimization of the re-cellularization process was carried out by seeding the cells with culture media perfusion. The use of different perfusion flow rates allowed us to find the optimal

conditions to seed these liver bioscaffolds with different types of cells, which generate high cellular density 3D tissues expressing characteristic hepatic functions.

In order to further enhance hepatic tissue generation, we investigated the use of hFL progenitor cells in combination with the liver bioscaffold. The use of these liver progenitor cells are a valuable resource for liver tissue engineering and cell therapies. Preliminary experiments indicated that hFL progenitor cells seeded in bioscaffold disks engrafted, proliferated and differentiated in hepatocytic and biliary cell lineages.

Finally, we investigated the use of hAFS cells in several *in vivo* regeneration models. Our work confirmed the non-tumorigenic potential of these cells and demonstrated their integration and differentiation in injured muscle and response to angiogenic stimuli. Moreover, these cells were able to engraft in damaged livers. The *in vivo* multipotenty exhibited by hAFS cells is encouraging and confirms their potential in regenerative medicine applications.

Overall, this dissertation work emphasizes the relevance of a new organ decellularization method able to generate liver acellular bioscaffolds with preservation of a functional vascular network. This allows culture media perfusion with 3D tissue generation beyond the oxygen and nutrient diffusion limits. Furthermore, we present evidence that hFL progenitors in combination with the liver bioscaffold and hAFS cells offer new possibilities in liver tissue engineering and cell therapies of end-stage liver disease.

RESUMO

A gravidade das doenças hepáticas terminais está directamente relacionada com o papel vital que o fígado desempenha na homeostase metabólica sistémica. A transplantação de orgãos permanece ainda hoje como o único tratamento definitivo para a doença hepática terminal. Devido à escassez de orgãos, novas alternativas têm sido investigadas na última década. Com o despontar da medicina regenerativa, a transplantação de células hepáticas adultas tem emergido como um opção terapêutica válida no tratamento de várias patologias hepáticas graves. No entanto, embora com algum sucesso, o efeito terapêutico diminui e desaparece ao fim de alguns meses. Os recentes avanços no conhecimento da biologia das células estaminais, nomeadamente na identificação e caracterização, trouxeram novas oportunidades de terapêuticas celulares com recurso a populações de células estaminais/progenitoras. A possibilidade de finalmente gerar um fígado totalmente *in vitro* passível de ser facilmente implantado ou transplantado, também aumentou.

Neste trabalho, foi investigada a geração de um novo biomaterial derivado do fígado preservando intacta a sua rede vascular. Para tal, foram empregues algumas das técnicas de descelularização de tecidos, usadas na obtenção de matrizes naturais, e efectuada a optimização destes processos na descelularização de tecidos mais espessos e orgãos sólidos. O processo revelou-se eficaz quando soluções de descelularização foram perfundidas pelo sistema vascular do fígado em alternativa à simples agitação do órgão imerso nas soluções de descelularização e cujo princípio se baseia na difusão dos reagentes pelo órgão. O resultado foi a obtenção de uma nova matriz acelular derivada do fígado e que preserva o seu sistema vascular nativo. Esta matriz permite a perfusão de meio de cultura e de células através da rede vascular do orgão descelularizado, permitindo virtualmente atingir qualquer posição da espessa matriz 3D. As limitações de difusão de oxigénio e de nutrientes são assim ultrapassadas pela utilização da rede vascular nativa do orgão descelularizado com a geração de denso tecido 3D *in vitro*.

Foi também efectuada a optimização do processo de re-celularização, através da perfusão das células com meio de cultura pela rede vascular do orgão descelularizado. A utilização de diferentes velocidades de perfusão da suspensão celular permitiu determinar as condições ideais para a re-celularização destas matrizes acelulares com diferentes tipos de células. Isto permitiu também gerar tecido 3D densamente re-celularizado e com expressão de marcadores hepáticos característicos.

Para melhorar a geração de tecido hepático, foi investigado o uso de células progenitoras humanas obtidas a partir de fígados fetais em combinação com a matriz acelular. O uso destas células progenitoras constitui sem qualquer dúvida um recurso determinante na engenheria de tecidos do fígado e em terapias celulares. Ensaios preliminares revelaram que estas células progenitoras humanas cultivadas em discos de matriz acelular se estabeleceram, proliferaram e diferenciaram em células de linhagem hepática e biliar.

Finalmente, foi investigado o uso de células estaminais humanas obtidas a partir do fluído amniótico em vários modelos de regeneração *in vivo*. As experiências confirmaram a natureza não tumorigénica destas células e demonstraram a sua integração e diferenciação em modelos de lesão muscular e de angiogénese. Adicionalmente, estas células demonstraram capacidade para se fixar em fígados danificados. A plasticidade exibida *in vivo* por estas células é notável e confirma o seu potencial em medicina regenerativa.

Globalmente, nesta dissertação de doutoramento destaca-se a relevância de um novo método de descelularização de orgãos passível de gerar matrizes acelulares derivadas a partir do fígado com preservação de uma rede vascular funcional. A perfusão de meio de cultura e a geração de tecido 3D permite ultrapassar os problemas de difusão de oxigénio e de nutrientes. Por último, a

utilização de células progenitoras humanas, obtidas a partir de fígados fetais em combinação com a matriz acelular, e de células estaminais humanas, derivadas a partir do fluído amniótico, apresentam potencialmente novas oportunidades na engenharia de tecidos do fígado e nas terapias celulares na doença hepática terminal.